
O-MINIMAL STRUCTURES

by

Cihan Pehlivan

BS., Financial Mathematics, �stanbul Bilgi University, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial ful�llment of

the requirements for the degree of

Master of Science

Graduate Program in Mathematics

Bo§aziçi University

2011



iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis supervisor Dr. Özlem Be-

yarslan for her concern, endless support and guidance in preparation of this study.

Also, I would like to thank Assist. Dr. Müge Kanuni and Prof. Oleg Bele-

gradek for participating in my thesis committee. I am thankful to my o�cemates for

their support and tolerance. Lastly, I am indebted to my family and my grandfather

for their support and patience through my education.



iv

ABSTRACT

O-MINIMAL STRUCTURES

IfM is a o-minimal expansion of ordered �eld of reals which contains a de�n-

able function which can not dominated by polynomials, then exponential function

appears as a de�nable function. In this study �rstly we introduce notions from

model theory and o-minimality, then we see de�nable functions in o-minimal struc-

ture forms a Hardy �eld and we put valuation on Hardy �eld. By the help of

valuation we can show exponential function is de�nable in a o-minimal expansion

of ordered �eld of reals which is not polynomially bounded.
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ÖZET

O-M�N�MAL YAPILAR

Elimizde e§er s�ral� gerçel say�lar cisminin bir o-minimal geni³lemesi varsa,

bu yap� polinomlardan daha h�zl� büyüyen bir tan�ml� fonksiyon içeriyorsa, yap�m�z

do§al üstsel fonksiyonu tan�ml� olarak icerir. Bu çal�smada oncelikle model teori

ve o-minimal yap�lar hakk�nda bilgi verilmis, sonras�nda o-minimal yap�daki tan�ml�

fonksiyonlar�n Hardy cismini olusturdugu incelenmi³tir ve Hardy cisminin üzerine

valuation konulmu³tur. Bu koydugumuz valuation sayesinde s�ral� gerçel say�lar cisi-

minin polinomlarlarla s�n�rland�r�lmayan her o-minimal geni³lemesinde do§al üstsel

fonksiyonun var oldugu incelenmi³tir.
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1. Introduction

Model theory is a branch of mathematics which studies mathematical struc-

tures. Mathematical assertions can be true or false depending on which structure

we are in, and every statement use mathematical operations such as multiplication

and addition. We can interpret mathematical operations di�erently depending on

structure we are using, if we are working on matrix's the meaning of multiplication

have to be matrix multiplication. Firstly we need to have a language to compose

mathematical statements, then we need a structure to work on, and interpret the

language suitable for that structure. If we restrict ourself in language (+, ·, 0, 1)

where + and · are binary relations and 0 and 1, it is called as a language of rings.

Two examples of structures for this language complex numbers C and matrices over

real numbers M2. For the structure M2 the constants 0 interpreted as 02 and 1

as the identity matrix I, for C the symbols interpreted trivially. Another impor-

tant concept in model theory is de�nable sets which helps to understand structures.

Mathematical formulas are true for some elements of structure, the subset which

is formed by an elements satis�es certain formula are called de�nable sets in that

structure. In o-minimal structures we keep the de�nable sets just the �nite union

of intervals and points.

O-minimality began in the eighties, with the question of Tarski, whether the

real �eld, expanded by the exponential function still has a decidable theory. Decid-

ability has close relationship with de�nability, so it is important to understand what

is de�nable in (R,+, ·,−, 0, 1,≤, exp), this is related to the questions if the theory

of this structure has quanti�er elimination, or model complete. In the begging of

eighties L. Dries introduced o-minimality, and A.Pillay and C. Steinhorn proved the

basic structure theorems on o-minimal structures and developed their abstract the-

ory. In 1991, A. Wilkie showed that the theory of (R,+, ·,−, 0, 1,≤, exp) is model

complete, and also o-minimal. Further results can be found in his paper [1].
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More speci�cally in this study we concentrate on o-minimal expansion of real

closed with emphasizing exponentiation function and polynomial functions. The

natural question which we can ask is whether or not exponentiation function appears

in a o-minimal expansions of ordered �eld which is not polynomially bounded. The

answer is yes and exponentiation function appears naturally, this proved in Millers

paper[2], his result is heavily depends on the article of Rosenlich [3] which studies

Hardy �elds.

Our main aim is develop the tools we need to understand how exponentia-

tion appears in an o-minimal expansion of ordered �eld which is not polynomially

bounded.

In �rst chapter we introduce important concepts from Model Theory �rstly,

then the main theorems and results from o-minimality is given. In second chapter

we focuses on the polynomial functions and exponentiation function in o-minimal

expansions of ordered �elds, and gives the ideas and proofs in Miller's thesis [4]

which will be published in his paper [2] we mention previously. Moreover in chapter

2 we explore Hardy �elds on the way to the main result.
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1.1. Model Theory Background for O-minimal Structures

1.1.1. Basic De�nitions

Firstly, we will introduce the basic notion from model theory.

De�nition 1.1 (Language). A language L is given by the following three ingredients

(i) A set of function symbols F and positive integers nf for each f ∈ F .

(ii) A set of relation symbols R and positive integers nR for each R ∈ R .

(iv) A set of constant symbols C.

The numbers nf and nR tell us that f is a function of nf variables and nR is

an nR-ary relation.

Examples 1.2.

(i) The language of rings Lr = (0, 1,+,−,×) where +,− and × function symbols

and 0, 1 are constants.

(ii) The language of ordered rings Lor = (0, 1,+,−,×, <), where < is a binary

relation symbol.

(iv) The language of groups (e, ·, ·−1), e is constant symbol, · is a binary function,

·−1 is a function.

De�nition 1.3 (Structure). A structureM is given by the following four ingredients

(i) A set M which is called the universe, domain or underlying set ofM .

(ii) A collection of functions {fi : i ∈ I0} where {fi : Mni →M} for some ni ≥ 1.

(iii) A collection of relations {Ri : i ∈ I1} where Ri ⊂Mmi for some mi ≥ 1.

(iv) A collection of distinguished elements {ci : i ∈ I2} ⊂M .

To any structure one can attach a language L with ni-ary functions symbol f̃i
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for each fi, an mi-ary relation symbol R̃i for each Ri and constant symbols c̃i for

each ci.

An L-structure is a structureM where we can interpret all of the symbols of L.

Examples 1.4.

(i) A graph is a non empty set A with a binary relation P both irre�exive and

symmetric. A graph can be viewed as a structure M in the language L con-

sisting of a unique binary relation symbol R, with RM = P . Also a non empty

set A partially ordered by some relation ≤ can be regarded as a structure in

the same language L; this time, RM =≤.

(ii) A group G is a structure of the language L = {1, ·, ·−1} where 1 is constant, ·

and ·−1 are the operation symbols of arity 2 and 1 respectively. 1G represents

the identity element in G, while ·G and ·−1G denote the product and the in-

verse operation in G. We can enrich L with a binary operation symbol [ , ]

corresponds to the commutator operation in G.

(iv) A �eld K is a structure of the language L = {0, 1,+,−, ·} where 0 an 1 are

constant, and +,− and · are function symbols each have an usual interpretation

in K.

(v) An ordered �eld is a structure in the language L = {+,−, ·, 0, 1,≤} obtained

by a new relation symbol ≤ and it is interpretation is just the order relation

in the �eld.

If f is a function of arity n we will denote it as fn

Examples 1.5. Let L = {f 2, g2, h2, c, d} be a language then (Z,+, ·, <, 0, 1),

(R,+, ·, <, 0, 1) are L-structures with usual interpretation.

De�nition 1.6. Let L, L′ be two languages such that L ⊆ L′. The structure K′ is

called extension of K if K = K ′, and for any Q ∈ L QK = QK
′
, i.e. the symbols in

L has same interpretation in L′.

De�nition 1.7. LetM , N be two L-structures α : M → N is called L−monomorphism
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if α is injective and

(i) α preserves all L-operations α(fM(a1, .., an)) = fN (α(a1), ...α(an)) for all

a1, ...an ∈M , where n is arity of f .

(ii) α preserves all L-relations for all P ∈ R, (a1, ..., an) ∈ PM ⇔ (α(a1), ...α(an)) ∈

PN for all a1, ...an ∈M , where n = ar(P ).

(ii) α preserves all L-constants, for all c ∈ C, α(cM) = cN .

De�nition 1.8. Bijective monomorphism called an isomorphism.

Remarks 1.9.

(i) If α :M→N and β : N → K are monomorphisms then their composition is

also a monomorphism.

(ii) Composition of two isomorphism is an isomorphism.

(iii) Inverse of an isomorphism is an isomorphism.

Notation: (M' N )⇔ if there exists an isomorphism (α : M→N ).

De�nition 1.10. If M, N be L−structures such that M ⊆ N and idMN : M →

N is a monomorphism. Then we say that M is a substructure of N . That is

(fM(a1, .., an)) = fN (a1, ...an), cM = cN , (a1, ..., an) ∈ PM ⇔ (a1, ..., an) ∈ PN for

any a1, ...an ∈M.

If N is a substructure of M , one can need stronger condition about substruc-

tures, this leads following de�nition.

De�nition 1.11. LetM, N be L-structures,M⊆ N ,M is called an elementary

structure of N if for any L-formula φ(x1, .., xn) and any ā ∈ Mn M |= φ(ā) ↔

N |= φ(ā). We denote elementary structure asM� N .

Example 1.12. (2Z, <) is a substructure of (Z, <).
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Example 1.13. Let φ(x) : ∃y (y + y) = x then 2Z 2 φ(2) but Z |= φ(2), so

(2Z,+) � (Z,+).

De�nition 1.14. LetM, N are L-structures, α :M→N , α is called elementary

embedding M to N if for any L-formula φ(x1, .., xn), any ā ∈ Mn , M |= φ(ā) ↔

N |= φ(α(ā)).

Remark 1.15.

(i) M� N if and only if idMN is an elementary embedding.

(ii) α : M→N is an elementary embedding ⇒ α(M) � N .

We can use language L to create formulas describing properties of L-structures.

Formulas build up from atomic terms and atomic terms built up from terms. Terms

in the language L are built up by �nitely many applications of function symbols to

the appropriate number of variables and constant symbols. We allow ourselves to

use parentheses as necessary for readability of terms. Formal de�nition of term is

given inductively.

De�nition 1.16. The set of L-terms is the smallest set T such that

(i) c ∈ T for each constant symbol ∈ C,

(ii) each variable symbol vi ∈ T for i = 1, 2... and

(iii) if t1, .., tnf ∈ T and f ∈ F , then f(t1, ...tnf ) ∈ T .

Example 1.17. ·(v1 − (v2, 1)), ·(+(v1, v2),+(v3, 1)) and +(1,+(1,+(1, 1))), are a

terms in Lr. We can simply denote this terms as v1 · (v2 − 1) , (v1 + v2) · (v3 + 1),

1 + (1 + (1 + 1)).

An atomic formula is an application of a relation symbol or equality to terms.

Example 1.18. (x · y + 1) · z = 0 is an atomic formula in the language Lr and

(x · y + 1) · z < 0 is an atomic formula in Lor.
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Formulae are formed by �nitely many applications of connectives and quanti-

�ers to atomic formulae. Let's give formal de�nition of formulae.

De�nition 1.19. The set of L-formulas is the smallest set F containing the atomic

formulas such that

(i) if is φ is in F , then ¬φ in F ,

(ii) if φ and θ and are in F , then (φ ∧ θ) and (φ ∨ θ) are in F .

(iii) If φ is in F , then ∃viφ and ∀viφ in F .

Example 1.20. Ψ(x, y) = (¬(x = 0) → x · y = 1) and θ(x) = (∀x ∃y(x = y · y))

are formulae in Lr

We say that a variable v occurs freely in a formula θ if it is not inside a ∀v or

∃v quanti�er; otherwise, we say that it is bound. For example v1 is free in the �rst

two formulas and bound in the third, whereas v2 is bound in both formulas. We

call a formula a sentence if it has no free variables. Let M be an L-structure. We

will see that each L-sentence is either true or false in M . On the other hand, if is

a formula with free variables v1, ..., vn, we will think of as expressing a property of

elements of Mn. We often write (v1, ..., vn) to make explicit the free variables in .

We must de�ne what it means for (v1, ..., vn) to hold of (a1, ..., an) ∈Mn.

De�nition 1.21. Let θ be a formula with free variables from v̄ = (vi1 , .., vim), and

let ā = (ai1 , ..., aim) ∈Mm. We inductively de�ne M |= θ(ā) as follows.

(i) If θ is t1 = t2, then M |= θ(ā) if tM1 (ā) = tM2 (ā).

(ii) If θ is R(t1, ..., tnR
), then M |= θ(ā) if (tM1 (ā), ..., tMnR

(ā)) ∈ RM.

(iii) If θ is ¬ϕ then M |= θ(ā) if M 2 ϕ(ā).

(iv) If θ is ψ ∨ φ then M |= θ(ā) if M |= ϕ(ā) or M |= φ(ā).

(v) If θ is ψ ∧ φ then M |= θ(ā) if M |= ϕ(ā) and M |= φ(ā).

(vi) If θ is ∃vjψ(v̄, vj) then M |= θ(ā) if there exists b ∈M such that M |= ψ(ā, b).

(vi) If θ is ∀vj ψ(v̄, vj) then M |= θ(ā) if M |= ψ(ā, b) for all b ∈M and M |= φ(ā).
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The elements of structure that satisfy some certain formulas has a important

role in Model Theory. We understand structures via these sets.

De�nition 1.22 (De�nable set). A set X ⊂Mn is de�nable in the L-structureM

if there is a formula φ(x1, . . . , xn+m) and elements b1, . . . , bm ∈ M such that X =

{(a1, . . . , an) : M |= φ(a1, . . . , an, b1, . . . , bm)} X is called A-de�nable or de�nable

over A, where A ⊂ M , if we can choose that b1, . . . , bm ∈ A. If m = 0 we say that

X is ∅-de�nable.

Examples 1.23.

(i) {x : x >
√
π} is de�nable over R but not ∅-de�nable, while {x : x >

√
2} is

∅-de�nable by the formula (xx > 1 + 1) ∧ (x > 0).

(ii) LetM = (R,+,−, ·, 0, 1) be the �eld of real numbers. Let φ(x, y) be the formula

∃z(z 6= 0∧y = x+ z2). Because a < b if and only ifM |= φ(a, b), the ordering

is ∅-de�nable inM.

(iii) Let F be a �eld and M = (F [X],+,−, ·, 0, 1) be the ring of polynomials over

F . Then F is de�nable in M. Indeed, F is the set of units of F [X] and is

de�ned by the formula (x = 0) ∨ (∃y : xy = 1).

Lemma 1.24. Let Lor be the language of ordered rings and (R,+,−, ·, , <, 0, 1) be

the ordered �eld of real numbers. Suppose that X ⊆ Rn is A-de�nable. Then, the

topological closure of X is also A-de�nable.

Proof: Let φ(v1, ...., vn, ā) de�ne X. Let ψ(v1, ...., vn, w̄) be the formula

∀ε [ ε > 0→ ∃y1, ....., yn(φ(ȳ, w̄) ∧
∑n

i=1(vi − yi)2 < ε)]. Then, b̄ is in the closure of

X if and only ifM |= ψ(b̄, ā). �

De�nition 1.25 (Elementary Equivalence). We say that L-structures are elemen-

tarily equivalentM≡ N ifM |= Φ if and only if N |= Φ for all L-sentences Φ and

it is denoted byM≡ N .

De�nition 1.26. We let Th(M), the full theory of M , be the set of L-sentences Φ

such thatM |= Φ.



9

It is easy to see thatM≡ N if and only if Th(M) = Th(N ).

Theorem 1.27. Suppose that j :M→N is an isomorphism. Then,M≡ N .

Proof: We show by induction on formulas that M |= φ(a1, ...., an) if and only if

M |= φ(j(a1), ...., j(an)) for all formulas φ.

Claim : Suppose that t is a term and the free variables in t are from v̄ = (v1, ...., vn).

For a = (a1, ..., an) ∈ M , we let j(ā) denote (j(a1), ...., j(an)). Then j(tM(ā)) =

tN (j(ā)). We prove this by induction on terms.

(i) If t = c, then

j(tM(ā)) = j(cM) = cN = tN (j(ā)).

(ii) If t = vi, then

j(tM(ā)) = j(ai) = tN (j(ai)).

(iii) If t = f(t1, ...., tm),

j(tM(ā)) = j(fM(tM1 (ā), ...., tMm (ā)) = fN (j(tM1 (ā)), ...., j(tMm (ā)));

= fN ((tN1 ( ¯j(a))), ...., (tNm( ¯j(a))))

= tN (j(ā))

We proceed by induction on formulas.

(i) If φ(v) is t1 = t2,

thenM |= φ(ā)⇔ tM1 (ā) = tM2 (ā),

⇔ j(tM1 (ā)) = j(tM2 (ā)) because j is injective

⇔ tN1 (j(ā)) = tN2 (j(ā))

⇔ N |= φ(j(ā)).

(ii) If φ(v) is R(t1, ...., tn), then

M |= φ(ā)⇔ (tM1 (ā), ..., tMn (ā)) ∈ RM

⇔ (j(tM1 (ā)), ..., j(tMn (ā))) ∈ RN

⇔ (tN1 (j(ā)), ..., tNn (j(ā))) ∈ RN
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N |= φ( ¯j(a)).

(iii) If φ is ¬ψ then by induction M |= φ(ā) ⇔ M |= ¬ψ(ā) ⇔ N |= ¬ψ(j(ā))

⇔ N |= φ(j(ā)).

(iv) If φ is φ ∧ ϕ then by inductionM |= φ(ā)andM |= ϕ(ā)

M |= φ(j(ā)) andM |= ϕ(j(ā))⇔ N |= φ(j(ā)).

(v) If φ(v̄) is ∃wθ(v̄, w) thenM |= φ(ā)⇔ N |= θ(ā, b) for some b ∈M

⇔ N |= θ(j(ā), c) for some c ∈ N because j is onto

⇔ N |= φ(j(ā)). �

Proposition 1.28. Let M = (M, ., ., .) be an L − structure. If X ⊆ Mn is A-

de�nable, then every L-automorphism of M that �xes A pointwise �xes X setwise

(that is, if is an σ automorphism ofM and σ(a) = a for all a ∈ A, then σ(X) = X).

Proof: Let φ(v, a) be the L-formula de�ning X where a ∈ A. Let σ be an automor-

phism ofM with σ(a) = a, and let b ∈ Mn. We showed that if j : M→ N is an

isomorphism. In our proposition M = N , M |= φ(a) if and only if N |= φ(j(a)).

ThusM |= φ(b̄, ā)→M |= φ(σ(b̄), σ(ā))→M |= φ(σ(b̄), ā). So b̄ ∈ X if and only

if σ(b̄) ∈ X. �

Proposition 1.29. The set of real numbers is not de�nable in the �eld of complex

numbers.

Proof: If R were de�nable in C, then it would be de�nable over a �nite set A ⊆ C.

Let r, s ∈ C be algebraically independent over A with r ∈ R and s /∈ R. There is an

automorphism σ of C such that σ|A is the identity and σ(r) = s. Thus, σ(R) 6= R

so R is not de�nable over A. �

1.1.2. Quanti�er Elimination

In model theory it is important to understand de�nable sets, it helps to un-

derstand the structures. The study of de�nable sets with quanti�ers is more com-
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plicated. It is easy to understand de�nable sets with quanti�er-free formulas. In the

structure (N,+,−, ·, <, 0, 1) the quanti�er de�nable sets are polynomial equations

and inequalities. Let L be the language. Two di�erent L-formula Ψ(x̄) and Φ(x̄)

could the same meaning in a structureM of L.

De�nition 1.30. A theory T has quanti�er elimination if for every formula θ there

is a quanti�er-free formula ψ such that (T |= θ)⇔ (T |= ψ).

Examples 1.31. Let θ(a, b, c) be the formula ∃x ax2 + bx+ c = 0. By the quadratic

formula, R |= θ(a, b, c)⇔ [(a 6= 0∧b2−4ac ≥ 0)∨ (a = 0∨ (b 6= 0∧c = 0))], whereas

in the complex numbers C |= θ(a, b, c)⇔ (a 6= 0 ∨ b 6= 0 ∨ c = 0)

Examples 1.32. Let φ(a, b, c, d) be the formula ∃x∃y ∃u∃v (xa+yc = 1∧xb+yd =

0∧ua+vc = 0∧ub+vd = 1).Actually the formula φ(a, b, c, d) asserts that the matrix

M =

 a b

c d

 is invertible. By the determinant test, F |= φ(a, b, c, d)⇔ ad−bc 6= 0

for any �eld F .

1.1.3. Complete and Model Complete Theories

Let L be a language. An L-theory T is simply a set of consistent L-sentences.

We say thatM is a model of T and writeM |= T ifM |= φ for all sentences φ ∈ T .

A theory is satis�able if it has a model.

De�nition 1.33. A satis�able theory T is complete if T |= φ or T |= ¬φ for all

L-sentences φ.

Examples 1.34. The theory of groups is not complete since the formula ∀x, y(x.y =

y.x) is just true for abelian groups. The theory of �elds of characteristic 0 is not

complete since the formula ∃x(x x = 1 + 1) is true in R, false in Q. But the theory

of algebraically closed �elds of characteristic 0 is complete.

Proposition 1.35. Let M, N be two L-structures then M ≡ N if and only if

N |= Th(M).
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Proof: If M and N are elementary equivalent it is clear that N |= Th(M). If

N |= Th(M) then M |= φ ⇒ N |= φ for all φ, and if N |= φ then M |= φ,

otherwiseM |= ¬φ implies N |= ¬φ. �

De�nition 1.36. An L-theory T is model-completeM≺ N wheneverM⊆ N and

M, N |= T .

Proposition 1.37. If T has quanti�er elimination, then T is model-complete.

Proof: Let M, N be models of T and M ⊆ N . We want to show M is an

elementary sub-model of N . Let φ(v̄) be an L-formula, and let ā ∈ M . Since the

theory has quanti�er elimination there is a quanti�er-free formula θ(v̄) such that

M |= ∀v̄ φ(v̄) ⇔ θ(v̄)). Quanti�er-free formulas are preserved under substructures

and extensions,M |= θ(ā) if and only if N |= θ(ā). So

M |= φ(ā)⇔M |= θ(ā)⇔ N |= θ(ā)⇔ N |= φ(ā).

�

There are methods to understand whether a theory is model complete or not.

Proposition 1.38. The following are equivalent

(i) T is model complete.

(ii) Whenever K,N ,M |= T and K ⊆ N ,and K ⊆M, we have N ≡K M.

Theorem 1.39. (Robinson's test for model completeness). Let T be a �rst-order

theory. Suppose that T has the following property: For any M,N |= T such that

M ⊆ N , and any quanti�er-free formula φ(v̄) with parameters in M, if N |=

∃v̄ φ(v̄) thenM |= ∃ v̄φ(v̄). Then T is model-complete.

Proof of these results can be found in [5].
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1.2. O-minimality

De�nition 1.40 (O-minimality). The structure R := 〈R,<, ..〉 is said to be o min-

imal if the only de�nable subsets of R are �nite unions of intervals and points, ie.

those sets de�nable with just the ordering.

There are in�nite expansionsM = (M,≤, ..) of linear orderings such that the

subsets of M de�nable inM are the �nite unions of singletons and open intervals,

possibly with in�nite endpoints±∞. In topological view, it means the only de�nable

sets are unions of singletons and intervals including half-lines and whole M . The

ordered �eld of reals (R,+, ·,−, 0, 1,≤), as well as any real closed �eld, is o-minimal.

If we expand the ordered �eld of reals by addition, or addition and multi-

plication together, we get an o-minimal structure. On the other hand there exists

expansions of (R,≤) which are not o-minimal. For example , if we extend the ordered

�eld of reals by sin function, then Z becomes de�nable and we loose o-minimality.

1.2.1. Examples of O-minimal Structures

Examples 1.41.

(i) Let R = (R,<) be a dense linear order without endpoints. Since the theory

of dense linear orders without endpoints has quanti�er elimination R and we

have only one relation in our language the de�nable sets are just �nite union

of intervals.

(ii) Let R = (R,+,−, 1, 0). R has quanti�er elimination so de�nable subsets of

R are boolean combinations of sets of the form {x ∈ R : p(x) = 0} and

{x ∈ R : p(x) > 0} where p ∈ R[X] is polynomial, consequently R is o-

minimal.
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Theorem 1.42. Let R be an expansion of (R, <) and suppose that:

(i) for all n ∈ N every quanti�er-free de�nable subset of Rn has �nitely many

connected components,

(ii) the theory of R is model-complete.

Then our structure R is o-minimal.

Proof: Let X be a de�nable subset of R. By the model-completeness of R X is

de�ned by an existential formula ∃φ(ȳ, x), i.e. φ(ȳ, x) is quanti�er-free. Let Y be

the set de�ned by φ(ȳ, x) must have �nitely many connected components. X is the

image of Y under the projection map π : (ȳ, x) → x so must have �nitely many

connected components also. The only connected subsets of R are intervals and

points so X is of the desired form. �

1.2.2. Monotonocity Theorem

Let M = (M,≤, ...) be an o-minimal structure. If we put an order topology

onM , for every integer n, Mn is a topological space as well, with respect to product

topology. We know the de�nable sets of M . We are trying to �nd the de�nable

subsets of Mn this will lead to notion of cells. First we will prove for R but it can

be generalized to all real closed �elds.

Lemma 1.43. [6] If I ⊂ R is an interval and f : I → R is a de�nable function

then f is continuous at one point of I.
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Proof: case1 :

Assume there is an open set J ⊂ I such that f has �nite range on J . Pick an element

b in the range of f with {x ∈ J : f(x) = b} is in�nite. By o-minimality, there is an

open interval J0 ⊂ V such that f is constantly b on J0.

case2 :

In this case we assume each subinterval of I has in�nite range under f . We can build

I = I0 ⊂ I1 ⊂ I2... of open subsets of I such that the closure In+1 of In+1 is contained

in In inductively. Given In, let X be the range of f on In. Since X is in�nite, by o-

minimality, X contains an interval (an, bn) of length at most 1
n
with closure is in In.

The set Y = {x ∈ In : f(x) ∈ (an, bn)} contains a suitable open interval In+1. R is

locally compact Hausdor� space, by Baire Category theorem
⋂∞
j=1 Ij =

⋂∞
j=1 Ij 6= ∅

let x ∈
⋂∞
j=1 Ij. If we take any interval U containing f(x) then by construction of

In's there exists an In such that (an, bn) ⊂ U then f(In+1) ⊆ U so f is continuous at

x. �

This Lemma is �rst order, so it is true for all Real Closed Fields, by the

completeness of Real Closed �elds.

Theorem 1.44. [6] Let F be a real closed �eld and f : F → F is a de�nable

function. Then, we can partition F into I1 ∪ ....∪ Im ∪X, where X is �nite and the

Ij are pairwise disjoint open intervals with endpoints in F ∪ {±∞} such that f is

continuous on each Ij.

Proof: Let D be the set of points where f is discontinuous i.e.

D = {x : F |= (∃ε > 0∀ δ > 0 ((∃ y |x− y| < δ) ∧ (|f(x)− f(y)| > ε)))}.

Since D is de�nable, by o-minimality D is either �nite or has a nonempty interior.

By Lemma 1.43, D must be �nite. Thus,F\D is a �nite union of intervals on which

f is continuous. �
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In fact Theorem 1.44 can be improved as follows.

Theorem 1.45 (Monotonocity). [6] If f : F → F is (de�nable) function, then

we can partition F into I1

⋃
....

⋃
I2

⋃
X, where X is �nite and the Ij are pairwise

disjoint open intervals with endpoints in F
⋃
{∓∞} such that f is either constant or

monotone and continuous on each Ij.

Proof can be found in [6].

1.2.3. Cells

Let F denote real closed �eld. We understand so far de�nable subsets of F , to

understand the de�nable subsets of F n the notion of cell constructed as follows.

De�nition 1.46 (Cells). We inductively de�ne the collection of cells as follows.

X ⊆ F n is a 0-cell if it is a single point. X ⊆ F is a 1-cell if it is an interval

(a, b), where a ∈ F ∪ {−∞}, b ∈ F ∪ {+∞}, and a < b. If X ⊆ F n is an n-cell

and f : X → F is a continuous de�nable function, then Y = {(x, f(x)) : x ∈ X} is

an n-cell. Let X ⊆ F n be an n-cell. Suppose that f is either a continuous de�nable

function from X to F or f is identically −∞ and g is either a continuous de�nable

function from X to F such that f(x̄) < g(x̄) for all x̄ ∈ X or g is identically +∞;

then Y = {(x̄, y) : x̄ ∈ X, f(x̄) < y < g(x̄)} is an n+ 1-cell.

Theorem 1.47 (Uniform Bounding). Let X ∈ F n+1 be semi-algebraic. There is a

natural number N such that if ā ∈ F n and Xā = {y : (ā, y) ∈ X} is �nite, then

|Xā| < N .

Proof: The set Xā is in�nite if and only if it contains an interval (c, d) ⊆ Xā. Thus

{(ā, b) ∈ X : Xā is �nite } is de�nable. Without loss of generality, we may assume

that for all ā ∈ F n, Xā is �nite and we may assume that

F |= ∀x ∀c ∀d ¬[c < d ∧ ∀y(c < y < d→ y ∈ Xā)]
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Consider the following set of sentences in the language of �elds with constants added

for each element of F and new constants c1, ..., cn. Let Γ be

RCF + DiagF + {∃y1, ..., ym [
∧
i<j

yi 6= yj ∧
m∧
i=1

yi ∈ Xc̄] : m ∈ ω}.

Suppose that Γ is satis�able. Then, there is a real closed �eld K ⊇ F and elements

c̄ ∈ Kn such that Xc̄ is in�nite. By model-completeness, F ≺ K. Therefore

K |= ∀x̄ ∀c d¬[c < d ∧ ∀y(c < y < d→ y ∈ Xā)].

This contradicts the o-minimality of K. Thus is unsatis�able and there is an N such

that

RCF +Diag(F ) |= ∀x̄¬ ( ∃y1, ..., yN [
∧
i<j

yi 6= yj ∧
N∧
i=1

yi ∈ Xx̄])

In particular, for all a ∈ F n, |Xā| < N . �

1.2.4. Cell Decomposition

De�nition 1.48. We say that X ⊂ F n is semialgebraic if it is a �nite Boolean

combination of sets of the form {x̄ : f(x̄) > 0} or {x̄ : f(x̄) = 0}, f ∈ F [X̄].

Corollary 1.49. In a real closed ordered �eld K, the de�nable sets are exactly the

semialgebraic ones.

Corollary 1.50. Let F be a real closed �eld. If X ⊂ F n is a closed and bounded

semialgebraic set and f : X → F n is continuous and semialgebraic, then the image

of X is closed and bounded.

Theorem 1.51. [5] Let X ⊆ Fm be semialgebraic. There are �nitely many pairwise

disjoint cells C1, ..., Cn such that X = C1 ∪ ... ∪ Cn.
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Proof: (m = 2) For each a ∈ F , let

Ca = {x : ∀ε > 0 ∃y, z ∈ (x− ε, x+ ε)[(a, y) ∈ X ∧ (a, z) 6∈ X]}.

Ca called the critical values above a. By o-minimality, there are only �nitely many

critical values above a. By uniform bounding, there is a natural number N such

that for all a ∈ F , |Ca| < N . We partition F into A0, A1, ..., AN , where An = {a :

|Ca| = n}. For each n ≤ N , we have a de�nable function fn : A1 ∪ ... ∪ An → F by

fn(a) = nth element of Ca. As above, Xa = {y : (a, y) ∈ X}. For n ≤ N and a ∈ An,

we de�ne Pa ∈ 22n+1. If n = 0, then Pa(0) = 1 if and only if Xa = F . Suppose that

n > 0. Pa(0) = 1 if and only if x ∈ Xa for all x < f1(a). Pa(2i− 1) = 1 if and only

if fi(a) ∈ X. For i < n, Pa(2i) = 1 if and only if x ∈ Xa for all x ∈ (fi(a), fi+1(a)).

P (2n) = 1 if and only if x ∈ Xa for all x > fn(a). For each possible pattern

σ ∈ 22n+1, let An,σ = {a ∈ An : Pa = σ}. Each An,σ is semialgebraic. For each

An,σ we will give a decomposition of {(x, y) ∈ X : x ∈ An,σ} into disjoint cells.

Because the An,σ partition F , this will su�ce. Fix one An,σ By Corollary 1.43, we

can partition An,σ = C1 ∪ ... ∪ Cl, where each Cj is either an interval or a singleton

and fi is continuous on Cj for i ≤ n, j ≤ l. We can now give a decomposition of

{(x, y) : x ∈ An,σ} into cells such that each cell is either contained in X or disjoint

from X. For j ≤ l, let Dj,0 = {(x, y) : x ∈ Cj and y < f(1)}. For j ≤ l and

1 ≤ i ≤ n, let Dj,2i−1 = {(x, fi(x)) : x ∈ Cj}. For j ≤ l and 1 ≤ i < n, let

Dj,2i = {(x, y) : x ∈ Cj, fi(x) < y < fi+1(x)}. For j ≤ l, let Dj,2n = {(x, y) : x ∈

Cj, y > fn(x)}. Clearly, each Dj,i is a cell,
⋃
Dj,i = {(x, y) : x ∈ An,σ}, and each

Dj,i is either contained in X or disjoint from X. Thus, taking the Dj,i that are

contained in X, we get a partition of {(x, y) ∈ X : x ∈ An,σ} into disjoint cells. �

1.2.5. Some Theorems on O-minimal Structures

Lemma 1.52. [7] Suppose I is an interval, a ∈ I, and f : I → R is a de�nable

function. Then both f ′(a−) = limh→0−
f(a+h)−f(a)

h
and f ′(a+) exists in R ∪ {±∞}.
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Proof: It is enough to prove for f ′(a+), we can prove smilarly for f ′(a−). Let

K = limh→0+ inf f(a+h)−f(a)
h

and L = limh→0+ sup f(a+h)−f(a)
h

, suppose that K < L.

Let r be a rational number such that K < r < L. The set of points h > 0 such that

f(a+ h)− f(a) < rh de�nable and it contains a sequence approaching to 0 then by

o-minimality this set contains (0, t) where t > 0, also the set of points h > 0 such

that f(a+ h)− f(a) > rh is de�nable and it contains a sequence approaching to 0,

then by o-minimality interval containing (0, k) where t > 0, contradiction. �

Lemma 1.53. [7] Suppose I is an interval and f : I → R is continuous and f ′(a+)

is de�ned in R∪{±∞} and greater than 0 for all a ∈ I. Then f is strictly increasing

and, its inverse f−1 de�ned on the interval f(I) has the property that (f−1)′(b+) is

de�ned and equal to 1
f ′(a+)

where f(a) = b.

Proof: f ′(a+) = limh→0+
f(a+h)−f(a)

h
, then the set of points h > 0 such that f(a+h)−

f(a) > 0 is de�nable and this set contains a sequence approaching 0, by o-minimality

this set should contain an interval (0, t) where t > 0, and f is strictly increasing on

that interval. Let f(a) = b, (f−1)′(b+) = limh→0+
f−1(b+h)−f−1(b)

h
, f−1(b+ h) = a+ k

where k > 0, also we know f−1(b) = a then h = f(a+ k)− f(a), and

limh→0+
f−1(b+ h)− f−1(b)

h
= limk→0+

a+ k − a
f(a+ k)− f(k)

=
1

f ′(a+)

, since f is continuous k goes to 0 i� h goes to 0. �

Lemma 1.54. [7] Suppose I is an interval and f : I → R is continuous and the

maps a → f ′(a+) and a → f ′(a−) are well de�ned, real valued, and continuous on

all of I. Then f is di�erentiable and has a continuous derivative on I.

Proof: If we show f ′(a+) = f ′(a−) we are done. Suppose f ′(a+) > f ′(a−) for some

a ∈ I. Since a → f ′(a+) and a → f ′(a−) are well de�ned and continuous there is

a c ∈ R and an interval J ⊂ I containing point a and f ′(x−) < c < f ′(x+) for all

x ∈ J . Then if we de�ne g : J → R with g(x) = f(x) − c it is continuous and
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g′(x−) < 0 and g′(x+) > 0 for all x. By the lemma 1.53 g is strictly increasing on J

and if we apply the lemma to −g(x) it shows that g(x) strictly decreasing on J , we

get contradiction. So f is continuously di�erentiable on I. �

Lemma 1.55. [7] Suppose I is an interval and f : I → R is a de�nable function

then there are only �nitely many x ∈ I such that f ′(x+) = ±∞

Proof: Suppose that {x ∈ I : f ′(x+) = +∞} is in�nite, since this set is de�nable it

contains an interval J . Also by o-minimality we can assume it is continuous also on

J . By the lemma 1.53 we can assume f is strictly increasing in that interval. Also

that implies f ′(x−) ≥ 0 on J . Let B = {x ∈ I : f ′(x−) = +∞} if this set is in�nite

we can assume on our interval J , f ′(x−) = +∞. Otherwise we can assume f ′(x−)

is �nite on J and x→ f ′(x−) is continuous on J . In the �rst situation, f−1 satis�es

(f−1)′(b+) 1
f ′(a−)

= 0 for all b, means f−1 is constant, contradicting the fact that f

is a function.

In second situation we are in the same situation as in the proof of the lemma 1.54

we assume f ′(a+) > f ′(a−) and in similar way we get contradiction. So there are

only �nitely many f ′(x+) = ±∞. �

Theorem 1.56. Let f : I → R be de�nable (semi-algebraic) function. Then, we can

partition I into I1 ∪ .... ∪ Im ∪X, where X is �nite and the Ij are pairwise disjoint

open intervals with endpoints in R∪{±∞} such that f is continuously di�erentiable

on each Ij .

Proof: By Theorem 1.44 we can partition I in intervals such that f is continuous and

f ′(x+) and f ′(x−) are �nite on each interval Ij then the functions x → f ′(x−) and

x → f ′(x+) are de�nable, hence they are same by the lemma 1.54 and continuous

in each interval. �
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1.2.6. The Theory of Real Closed Fields

A generalization of theory of real numbers is real closed �elds, the study of

real closed �elds has an important role in the development of o-minimality. Here

are some theorems proofs can be found in [5].

De�nition 1.57. A �eld F is said to be formally real if −1 is not a sum of squares.

We say F is real closed if it is formally real and has no proper real algebraic exten-

sions.

If F is a real closed and a 6= 0, then exactly one of a and −a is a square. we

can de�ne an order on F such that positive elements are exactly the squares.

Theorem 1.58 (Artin-Schrier). Let (F,<) be an ordered �eld. Then the followings

are equivalent

(i) F is real closed.

(ii) F(i) is algebraically closed ( were i =
√
−1)

(iii) If p(X) ∈ F [X], a, b ∈ F such that a < b and p(a) < p(b) then there is a c ∈ F

such that a < c < b and p(c) = 0

(iv) For any a ∈ F either a or -a is a square and every polynomial of odd degree

has a root.

By (iv), we can axiomatize the theory of real closed �elds in the language of

rings Lr by axioms asserting that F is formally real �eld of characteristic zero where

(iv) holds. We call this theory RCF.

The study of the �eld of real numbers began with the work of Tarski . Unlike

the algebraically closed �elds, the theory of the real numbers does not have quanti�er

elimination in Lr, the language of rings. InR the formula ψ(x) = (∃zz2 = x), de�nes

an in�nite coin�nite de�nable set. In fact the ordering is the only obstruction to
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quanti�er elimination, and the ordering x < y is de�nable in the real �eld by the

formula ∃z(z 6= 0 ∧ x+ z2 = y).

Theorem 1.59. The theory of real closed �elds(RCF) has the elimination of quan-

ti�ers in the language L = {+,−, ·,≤, 0, 1}.

Theorem 1.60. The theory of real closed �elds (RCF) is model complete.

Theorem 1.61. The theory of real closed �elds is complete, RCF is the theory of

the ordered �eld of reals.

Corollary 1.62. Every real closed �eld is o-minimal.
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2. Exponentiation, Power Function and Polynomially

Bounded Structures

2.1. Polynomially Bounded O-minimal Structures

We need to �x our notation and we need to make clear which structure we are

working on. Let R denotes any ordered �eld, and R̄ = (R,<,+,−, ·, 0, 1). Pos(R)

denotes the positive elements of R. MoreoverR will denote any o-minimal expansion

ordered �eld R̄ = (R,<,+,−, ·, 0, 1).

The o-minimality ofR allows us in most cases like we are working in reals. The

mean value theorem, the intermediate value theorem, l'Hospital's Rule, derivatives

tests can be applied to de�nable functions.

De�nition 2.1 (Van den Dries-Miller). An expansion R of the real �eld is said to be

polynomially bounded if for all de�nable functions f : R→ R there exists a natural

number N such that |f(x)| ≤ xN for all su�ciently large x.

De�nition 2.2. Let R be an ordered �eld. A power function on R is an endomor-

phism of the multiplicative group of positive elements of R.

De�nition 2.3. Pos(R) will denote the positive elements of R.

Example 2.4. For each r ∈ R the map xr : Pos(R)→ Pos(R) is a power function.

Proposition 2.5. [8][De�nable Subgroups]There are no proper, non-trivial de�nable

subgroups of either (R,+, 0), (Pos(R), ·, 1).

Proof: Let G be a de�nable subgroup of (R,+, 0). Assume G is not convex then

there exists r ∈ R \ G such that 0 < r < g and g ∈ G. Then for all n ∈ N

ng < r+ ng < (n+ 1)g since G is a subgroup then none of the r+ ng is an element

of G, hence G can not be �nite union of intervals and points. So G is convex let
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s := sup(G) then if we take a ∈ (0, s) a ∈ G since G is a subgroup na ∈ G for all

n ∈ N that implies s = +∞. So G must be R. Similar proof works for (Pos(R), ·, 1).

�

Corollary 2.6. [4] Let f : (Pos(R), ·, 1) → (Pos(R), ·, 1) be a de�nable power

function then f is identically equal to 1 or f is an automorphism of (Pos(R), ·, 1).

Proof: We know that image and the kernel of f is a de�nable subgroup of Pos(R).

By the previous proposition, image of function f is either {1} or Pos(R) and also

kernel of f is {1} or Pos(R). So f is identically 1 or it is a bijection. �

Lemma 2.7. [9] (Lemma 2.2.35)

(i) Let f be a power function then f ′(x) = f ′(1)f(x)
x

.

(ii) f is monotonic power function; if f ′(1) > 0 then f is strictly monotone in-

creasing, if f ′(1) < 0 then f is strictly monotone decreasing and if f ′(1) = 0

then f is constantly 1.

Proof:

(i) If f is a power function for x > 0 and h ∈ R is su�ciently small then

f(x+ h)− f(x)

h
=
f(x)

x

f(1 + hx−1)− 1

hx−1
=
f(x)

x
f ′(1).

Consequently f is di�erentiable at x if and only if f is di�erentiable at 1.

Since f must be di�erentiable at all but �nitely many points by extended

monotonicity f is everywhere di�erentiable.

(ii) Proofs follows by Lemma 1.53. �

Remark 2.8. If f is a de�nable power function, then from Lemma 2.6 f is in�nitely

di�erentiable.
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Lemma 2.9. Let f and g be de�nable power functions in R and suppose that f ′(1) =

g′(1). Then f = g.

Proof: f
g
is a power function with exponent 0. The result follows from lemma. �

2.1.1. Hardy Fields

Let R be an ordered �eld and K be the ring of functions f : R→ R containing

all constant functions and the identity function under pointwise addition and mul-

tiplication of functions. We will say that a property P (x) holds ultimately if P (x)

holds for all su�ciently large x ∈ R. Let I be the ideal of K consisting of all those

f ∈ K that are ultimately zero. Let H = K/I, H is a �eld if and only if for all

f ∈ K/I there exists g ∈ K such that fg is ultimately equal to 1; in particular we

must have that f is ultimately non-zero. Moreover if for all f ∈ K, f has ultimately

constant sign then H becomes an ordered �eld when we say that f < g if and only

if g − f is ultimately positive.

De�nition 2.10. Notation as being above H is called a Hardy Field if all f ∈ K

are ultimately di�erentiable and K is closed under di�erentiation.

If we take the ideal that contain functions that ultimately zero, after dividing

this ideal we make the functions equal if f = g ultimately.

There is another way to seeing this construction if we just work on reals.

De�nition 2.11. Given a ∈ R we de�ne an equivalence relation ∼ on the set of

real valued functions whose domains contains a neighborhood of a by f ∼ g if there

is neighborhood of V of a, V ⊆ dom(f)
⋂
dom(g), such that f |V = g |V . The

equivalence classes are called germs at a.
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Remark 2.12. [10] The elements of Hardy �elds as we constructed above coincides

with the germs at in�nity.

De�nition 2.13 (Valuation). Let R be an ordered �eld and R∗ denotes nonzero

elements of ordered �eld. A valuation on R is a surjective map v : R∗ → G onto an

ordered abelian group G satisfying the following properties.

(i) v(xy) = v(x) + v(y)

(ii) If x+ y 6= 0 then v(x+ y) ≥ min{v(x), v(y)} with equality if v(x) 6= v(y)

(iii) v(x) < 0, then |x| > 1

The group G is called value group of valuation. A valuation can be extended

to all R by adding ∞ greater than every element of G, and de�ning v(0) =∞.

De�nition 2.14. Let f be a power function, f 7→ f ′(1) : A → R is an ordered �eld

embedding. The image of this map is called the �eld of exponents of R and denoted

by K.

2.1.2. Exponentiation Function and Main Result

De�nition 2.15. Let F be an ordered �eld. An exponential function on F is a

homomorphism from the additive group of F to the multiplicative group of positive

elements of F .

The map x→ exp(x) : R→ R is an exponential function on the ordered �eld

of real numbers. exp is of course de�nable in the o-minimal structure Rexp. As we

mentioned previously R will denote an o-minimal expansion of (R,+,−, 0, 1).

Lemma 2.16. [9] Let f be a exponential function on R.

(i) If f is not identically equal to 1 then f is an isomorphism between (R,+) and

(Pos(R), ·).
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(ii) f is di�erentiable with f ′(x) = f ′(0)f(x).

(iii) f is monotonic; if f ′(0) > 0 then f strictly monotone increasing, if f ′(0) < 0

then f is strictly monotone decreasing and if f ′(0) = 0 then f is identically

equal to 1.

Proof:

(i) It follows from 2.5.

(ii) f ′(x) = limh→∞
f(x+h)−f(x)

h
= limh→∞

f(x)(f(h)−1)
h

= limh→∞ f(x)f ′(0).

(iii) Since f ′(x) = f ′(0)f(x), f ′(0) > 0 implies f ′(x) > 0. Then f is strictly

increasing by Lemma 1.53. �

Lemma 2.17. [9] If f is a de�nable exponential function in the structure R where R

is an o-minimal expansion ordered �eld and f ′(0) > 0 then for all r ∈ R, f(x)
xr
→∞

as x→∞.

Proof: Let r ∈ R and let g(x) = f(x)
xr+1 . Then

g′(x) =
f(x)

xr+2
(xf ′(0)− (r + 1)).

Since f ′(0) > 0 then f is positive eventually by monotonocity. So g′(x) and g(x) are

eventually positive then we can �nd R > 0 such that g(x) > R for large x. Therefore
f(x)
xr

= xg(x)→∞ as x→∞. �

Proposition 2.18. [4]

(i) If there is a nonconstant de�nable function f : R→ R with f(x+y) = f(x)f(y)

for all x, y ∈ R in then the structure R is exponential.

(ii) If there exist a nonconstant de�nable function h : Pos(R)→ R in structure R

with h(xy) = h(x) + h(y) for all x, y > 0, then the structure R is exponential.
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(ii) If there exists a de�nable function g : R → R in structure R with xg′(x)→ 1

as x→∞ then R is exponential.

Proof:

(i) If f(a) = 0 for some a ∈ R then f(x) = 0 for all x ∈ R but f(x) is nonconstant

so f(x) 6= 0 for all x ∈ R. For any x ∈ R we have f(x) = f(x/2 + x/2) =

(f(x/2))2 > 0, and for x = 0 f(0) = (f(0))2, so f(0) = 1 and f is always

positive. The kernel of f is de�nable subgroup of (R,+, 0) and the image of

f is a de�nable subgroup of (Pos(R), ·, 1) by the lemma 2.5 the image should

be Pos(R) and the kernel should be {0}, so it is a bijection. Also

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x)f(h)− f(x)

h

= lim
h→0

f(x)
f(h)− 1

h
= lim

h→0
f(x)

f(h)− f(0)

h

so f ′(x) = f(x)f ′(0), by generalized monotonicity it is ultimately di�eren-

tiable. So if it is di�erentiable at 0, that means it is di�erentiable everywhere.

Considering x → f(x/f ′(0)), we can assume f ′(x) = f(x) > 0 so f is strictly

increasing on R so f is a de�nable ordered group isomorphism from (R,<,+, 0)

to (Pos(R), <, ·, 1).

(ii) The kernel of h is a de�nable subgroup (R, ·, 1) and the image of h is a de�n-

able subgroup of (Pos(R),+, 0), since h is nonconstant, by lemma 2.5 h is a

bijection. The inverse of the h satis�es conditions in (i). We can apply one to

inverse function of h.

(iii) Let g : R → R be de�nable and xg′(x) → 1 as x → +∞. If we take s, t > 0

such that limx→∞[g(tx)−g(x)] ∈ R and limx→∞[g(sx)−g(x)] ∈ R. Since both
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limit exist we can write

lim
x→∞

[g(tx)− g(x)] + lim
x→∞

[g(sx)− g(x)] = lim
x→∞

[g(tsx)− g(sx)] + lim
x→∞

[g(sx)− g(x)]

= lim
x→∞

[g(tsx)− g(x)].

Also limx→∞[g(x/t)−g(x)] = limx→∞[g(x)−g(tx)] = − limx→∞[g(tx)−g(x)] ∈

R. So the set {t > 0 : limx→∞[g(tx) − g(x)] ∈ R} is a de�nable subgroup of

(Pos(R), ·, 1). If we can show kernel contains an element di�erent then 1 then

kernel has to be all Pos(R). By mean value theorem, ultimately we have

g(2x) − g(x) = xg′((ξ(x))) where x < ξ(x) < 2x. Also 1/2 < x/ξ(x) <

1. Thus 1/2 ≤ limx→+∞ x/ξ(x) ≤ 1 and 1/2 ≤ limx→+∞[g(2x) − g(x)] =

(limx→+∞ x/ξ(x))(limx→+∞ ξ(x)g′(ξ(x))) ≤ 1. Since limx→+∞ ξ(x)g′(ξ(x)) =

limx→+∞ xg
′(x) = 1. �

Let R be o-minimal expansion of (R,+,−, 0, 1), since de�nable functions are mono-

tone after some point and by Theorem 1.44 they are ultimately di�erentiable and

have constant sign and also closed under di�erentiation so they form a di�erentiable

ordered �eld [10]. Moreover we can regard R as a sub�eld of H by identifying r ∈ R

with the germ of constant function f(x) = r. We will denote the germ of identity

function by x. If we denote nonzero elements of H as H∗ we can put valuation v on

H∗ with following properties.

Theorem 2.19. Let H be a Hardy �eld. Then there exists a map v from the set of

nonzero element H∗ onto ordered abelian group such that

(i) if f, g ∈ H∗, then v(fg) = v(f) + v(g);

(ii) if f ∈ H∗, then v(a) ≥ 0 if and only if limx→+∞ f(x) ∈ R;

(iii) if f, g ∈ H∗ and v(f), v(g) 6= 0,then v(f) ≥ v(g) if and only if v(f ′) ≥ v(g′);

(iv) if f, g ∈ H∗ and v(f) ≥ v(g) 6= 0, then v(f ′) > v(g′)
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Proof can be found in theorem 4 of [11].

Remark 2.20. We will use the following properties of valuation in our proofs.

(i) v(f) = 0 if limx→∞ f(x) ∈ R∗

(ii) v(f) < 0 if limx→∞ |f(x)| = +∞

(iii) v(f) > 0 if limx→∞ f(x) = 0

De�nition 2.21. f ∈ H∗ is in�nitely increasing if limx→∞ |f(x)| = +∞ i.e f > 0,

v(f) < 0.

Remark 2.22. If f ∈ H∗ with valuation di�erent then zero then one of f , 1/f , −f ,

−1/f is in�nitely increasing, and |v(f)| = |v(−f)| = |v(1/f)| = |v(−1/f)|.

Proof: We know v(f + g) = v(f) + v(g), then v(f (1/f)) = v(f) + v(1/f) since

v(1) = 0, v(f) = −v(1/f), and |v(f)| = |(1/f)|. Others follows similarly. �

Remark 2.23. Let f(x), g(x) ∈ H∗ limx→∞
f(x)
g(x)

= 0 if and only if v(f(x)) >

v(g(x)).

Proof: Since limx→∞
f(x)
g(x)

= 0, v(f(x)
g(x)

) > 0 and v(f(x)
g(x)

) = v(f(x)) + v(1/g(x)). So

v(f(x))− v(g(x)) > 0 which means v(f(x)) > v(g(x)). The other way also trivial.�

Remark 2.24. Let f(x), g(x) ∈ H∗ f(x) > g(x) then v(f(x)) ≤ v(g(x)).

Proof: Since f(x) > g(x) then limx→∞
f(x)
g(x)
≥ 1. Then v(f(x)

g(x)
) ≤ 0, but v(f(x)

g(x)
) =

v(f(x))− v(g(x)), implies v(f(x)) ≤ v(g(x)). �

Remark 2.25. It follows from the Remark 2.23 that v(f) = v(g) if and only if

f ∼ cg for some c ∈ R∗.

Proposition 2.26. [4] Let f ∈ H∗ with v(f) = v(xr). Then f ◦ (tx) ∼ trx and

f ◦ (t+ x) ∼ f for each t > 0. If r 6= 0, then xf ′/f ∼ r.
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Proof: Since v(f) = v(xr) there exists c ∈ R∗ such that limx→∞ f/x
r = c. Let t > 0.

then

f(tx)

f(x)
= tr

f(tx)

(tx)r
xr

f(x)

and

f(t+ x)

f(x)
= (1 + (t/x))r

f(t+ x)

(t+ x)r
xr

f(x)
.

Then

lim
x→∞

f(tx)

f(x)tr
= lim

x→∞

f(tx)

(tx)r
xr

f(x)
= (1/c) c = 1

so f ◦ (tx) ∼ trx the second one follows similarly. For the last claim, if we suppose

r 6= 0 then by l'Hospital's rule f ′ ∼ crxr−1. Then xf ′ ∼ rcxr ∼ rf and xf ′/f ∼ r.�

Proposition 2.27. [4] Let f, g ∈ H∗ with v(f) ≥ 0 and v(g) 6= 0. Then v(f ′) >

v(g′/g).

Proof: We can assume v(f) = 0, otherwise we can change f with f + 1. Since

v(g) 6= 0, limx→∞ g(x) is 0 or∞, in both cases we apply l'Hopital's rules to function

fg/g,

f = fg/g ∼ (fg′ + f ′g)/g′ = f + f ′g/g′.

So 1 ∼ 1 + (f ′/f)(g/g′), that means limx→∞(f ′/f)(g/g′) = 0, by Remark 2.23

v((f ′(g/g′)) > v(f), but v(f) = 0, i.e limx→∞ f(x) ∈ R∗, then it follows v((f ′)(g/g′)) >

0, then again by Remark 2.23 v(f ′) > v(g′/g). �

Proposition 2.28. [3] Let f, g ∈ H∗ with |v(f)| ≥ |v(g)|. Then v(f ′/f) ≤ v(g′/g).
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Proof: By Remark 2.22, we can assume f and g are both in�nitely increasing,

without e�ecting |v(f)|,|v(g)| |v(f ′/f)| |v(g′/g)|. Then valuation of f and g will be

negative and v(f) ≤ v(g) < 0. If v(f) = v(g), then by l'Hopital's rule, v(f ′) = v(g′).

If v(f) < v(g) by Remark 2.23 limx→∞
f(x)
g(x)

= 0 so g/f is in�nitely increasing and

(f/g)′ > 0 , f ′g − g′f > 0 which implies f ′/f > g′/g. Then by Remark 2.25

v(f ′/f) ≤ v(g′/g) �

Proposition 2.29. [11] Let f ∈ H∗ with v(f) < v(1/x). Then there exists g ∈ H∗

with g′ ∼ f .

Proof: Let choose u ∈ H∗ with

v(u) = min{|v(x)|, |v(xf)|} = min{v(1/x), v(1/(xf))}.

Then |v(u)| > 0 since the valuation of x and xf cannot be zero. In the Proposition

2.27 if we choose g(x) = x, then v(u′) > 0. Also from Proposition 2.28 we have

v(u
′

u
) ≥ v( 1

x
) > v(f), and thus

v(
u′

fu
) ≥ v(

1

xf
) = |v(xf)| ≥ |v(u)| > 0.

Also

v(
u′

fu
) = |v(

fu

u′
)|.

Since v( u
′

fu
) > 0 so u′

fu
is not a constant function so ( u

′

fu
)′ 6= 0. |v(fu

u′
)| ≥ |v(u)| > 0

if we apply 2.28 again, we get

v(
u′

u
) ≥ v(

(fu/u′)′

fu/u′
) = v(

(fu/u′)′

f
) + v(

u′

u
).

Then v( f
(fu/u′)′

) ≥ 0 and we can apply Proposition 2.27 and get v(( f
(fu/u′)′

)′) > v(u
′

u
),
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thus from Remark 2.23

lim
x→∞

u(x)

u′
(

f(x)

(f(x)u(x)/u′(x))′
)′ = 0.

Let g = f2u/u′

(fu/u′)′
. Then

g′

f
= 1 + (

u

u′
)(

f

(fu/u′)′
)′,

so g′ ∼ f . �

De�nition 2.30. Non zero elements α, β of ordered abelian group are called com-

parable if there are positive integers m|α| > |β| and n|α| < |β|. Non zero f, g of

a hardy �eld H, are called comparable if v(f) and v(g) are comparable in the value

group v(H∗).

Lemma 2.31. If a de�nable function f is not polynomially bounded, then the func-

tion f and g(x) = x aren't comparable.

Proof: The function f is not polynomially bounded i.e limx→∞ f(x)/xn = ∞, so

v(f(x)/xn) < 0 for all n ∈ N. Moreover v(f(x)) + v(1/xn) = v(f(x)/xn) < 0 and

v(f(x)) < −v(1/xn) = v(xn) = nv(x) ∀n ∈ N,

so f and g aren't comparable. �

Proposition 2.32. [3] Let H be a Hardy �eld, f, g ∈ H, v(f), v(g) 6= 0 and

v(f ′/f) = v(g′/g). Then f and g are comparable.

Proof: Without loss of generality we may suppose f and g are in�nitely increasing by

Remark 2.22, since f and g are monotone after some large N we can suppose f ≥ g.

Then log f and log g are in�nitely increasing, log f ≥ log g and limx→∞ log f/ log g =
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limx→∞(log f)′/(log g)′ = limx→∞(f ′/f)/(g′/g), since v(f ′/f) = v(g′/g) limx→∞(f ′/f)/(g′/g)

is a real number. Thus for some positive integer N we have log f/ log g < N , and

f < gN v(f) > Nv(g) so they are comparable. �

Theorem 2.33. [2] Let R be o-minimal and not polynomially bounded. Then the

exponential function is de�nable.

Proof: Since R is not polynomially bounded there exist a de�nable function f which

is not polynomially bounded. By Lemma 2.31 f and g(x) = x aren't comparable.

Then by Proposition 2.32 we can say v(f ′/f) 6= v(1/x) if we choose g as x. Further-

more we can replace f by its compositional inverse if it is necessary we can assume

v(f ′/f) < v(1/x). Then by 2.29 there exists a h ∈ H∗ such that h′ = f ′/f . Then

lim
x→∞

(h ◦ f−1(x))′ = lim
x→∞

h′(f−1(x)) = lim
x→∞

h′(f−1(x))1/f ′(f−1(x))

= lim
x→∞

f ′(f−1(x))/(f(f−1(x)))1/f ′(f−1(x)) = lim
x→∞

1/x.

Then by 2.18(3) R is exponential. �



35

REFERENCES

1. Wilkie A. J., Model Completeness Results for Expansions of the Ordered Field

of Real Numbers by Restricted Pfa�an Functions and the Exponential Function,

Journal of the American Mathematical Society, Vol. 9 Issue 4, pp. 1051-1094,

1996.

2. Miller C., Exponentiation is Hard to Avoid, Proceedings of the American Math-

ematical Society, Vol. 122 Issue 1, pp. 257-259, 1994.

3. Rosenlicht M., The Rank of a Hardy Field, Transactions of the American Math-

ematical Society, Vol. 280, pp. 659-671, 1983.

4. Miller C., Polynomially Bounded O-minimal Structures, Ph.D Thesis, University

of Illinois at Urbana-Champaign, 1994.

5. Marker D., Model Theory: An Introduction, Springer-Verlag, 2002.

6. Dries L., Tame Topology and O-minimal Structures, Cambridge University Press,

New York, 1998.

7. Dries L., Remarks on Tarski's problem concerning, (R,+, ·, exp), Logic Collo-

quium 1982 (G. Lolli, G. Longo, and A. Marcja, eds.), pp. 97-121, North-Holland,

Amsterdam, 1984.

8. Marcja A., C. To�alori, A Guide to Classical and Modern Model Theory, Kluwer

Academic Publishers, Boston, 2003.

9. Foster T., Power Functions and Exponentials in O-minimal Expansions of Fields,

Ph.D Thesis, University of Oxford, 2010.



36

10. Dries L. and C. Miller, Extending Tamm's Theorem, Annales de L I'nstitute

Fourier, Vol. 44 Issue 5, pp. 1367-1395, 1994.

11. Rosenlicht M., Hardy Fields, Journal of the Mathematical Analysis and Appli-

cations Vol. 93 , pp. 297-311, 1983.




