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ABSTRACT

PROPP-WILSON ALGORITHM AND BEYOND

Propp-Wilson algorithm is a Markov chain Monte Carlo method that produces sam-

ples that are drawn exactly from the stationary distribution of a given Markov chain. The

aim of this master thesis is to unify the underlying ideas of this algorithm and to embed it

into a more general framework. For this purpose, we use coupling theory as the primary

tool. We also introduce Letac's principle which states that if the backward process cor-

responding to a Markov chain converges independent of the initial position, then its limit

is distributed according to the stationary distribution of the Markov chain. With Letac's

principle, su�cient conditions for the convergence of backward processes become very im-

portant and this convergence is usually satis�ed with the choice of contractive maps. We

detail this with examples and work on a case in which we have contractivity on the average.
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ÖZET

PROPP-WILSON ALGOR�TMASI VE ÖTES�

Propp-Wilson algoritmas�, verilen bir Markov zincirinin dura§an da§�l�m�na tam

olarak uyan örnekler almam�z� sa§layan bir Markov zinciri Monte Carlo metodudur. Bu

tezin amac�, bu algoritman�n alt�nda yatan �kirleri bir araya getirmek ve algoritmay� daha

genel bir çerçevenin içine oturtmakt�r. E³le³im teorisi temel araç olarak kullan�lmaktad�r.

Ayr�ca, bir Markov zincirine denk dü³en geri süreç ba³lang�ç pozisyonundan ba§�ms�z olarak

yak�ns�yorsa, geri sürecin limitinin Markov zincirinin dura§an da§�l�m�na göre da§�ld�§�n�

söyleyen Letac'�n prensibine odaklan�lm�³t�r. Letac'�n prensibi ile beraber, geri sürecin

yak�nsamas� için yeter ko³ullar önem kazanmaktad�r. Bu ko³ullar genelde çökücü fonksiy-

onlar üzerinden verilirler. Tezin son bölümünde, bu nokta örneklerle detayland�r�lm�³ ve

ortalamada çöken bir durum incelenmi³tir.
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1. INTRODUCTION

Markov Chain Monte Carlo (MCMC) methods date back to the same time as the

development of ordinary Monte Carlo (MC) methods which were introduced by Stanislaw

Ulam and John von Neumann in late 1940's ([1]). The rise of these methods were in a close

relation with the emergence of computers. In fact, Neumann gave the �rst such method in

1947 after the appearance of the �rst computer, ENIAC (Electronic Numerical Integrator

And Computer), in 1946. At the same time, Ulam and Neumann invented inversion and

accept-reject algorithms to generate random numbers. See [2], [3] and [4] for history and

analysis of MC methods.

The �rst MCMC algorithm is associated with another computer, MANIAC (Mathe-

matical Analyzer, Numerical Integrator and Computer), built in Los Alamos in 1952. This

algorithm was published in 1953 in the Journal of Chemical Physics by Metropolis et al

([5]). Their primary focus in this paper is the computation of integrals of the form:

I =

∫
F (x, y) exp(−E(x, y)/kT )dxdy∫

exp(−E(x, y)/kT )dxdy

where the energy E is de�ned by

E(x, y) =
1

2

N∑
i=1

N∑
j=1,j 6=i

V (dij)

with N being the number of particles, V the potential function and dij the distance between

particles i and j. Since numerical integration was not e�cient in computing these integrals

due to high dimensionality, they invented a genuine method that resembles the Gibbs

Sampler algorithm of modern days.
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Nowadays, MCMC methods are used in a variety of problems in diverse �elds of

applied sciences such as physics, biology and astronomy. Solutions to linear systems of

equations, calculations of integrals and many other problems can be expressed in terms of

Markov chains and their stationary distributions. See [4] and [6] for introductory books,

[7] and [8] for survey papers on MCMC methods.

When solving problems as in the previous paragraph, one eventually faces the hard

problem of getting samples from complicated distributions living in high dimensions. In-

version Method and Rejection Sampling are classical methods for getting exact samples

from a given distribution which become useless as the dimension of the underlying space

increases ([4]). Besides these, there are other methods such as Metropolis-Hastings' algo-

rithm and Gibbs sampling which are widely used to get approximate samples. These latter

algorithms are in fact examples of MCMC methods.

The idea behind Metropolis-Hastings' algorithm is running a Markov chain whose

stationary distribution is same as the one from which we are trying to sample from. So,

once the chain has evolved enough, the distribution of the chain will be close enough to

the stationary distribution of the Markov chain and the problem will be approximately

solved. In this methodology, although there are many results on the convergence rates to

the stationary distribution in some particular cases, it is in general not possible to be sure

that the chain has evolved enough or equivalently that its distribution is close enough. This

is called the 'How long is long enough?' phenomenon in the literature. See, for example,

[2] and [9] for results on Metropolis algorithm.

In 1996, James Propp and David Wilson published a sampling algorithm which is

called as Coupling from the Past (CFTP) or Propp-Wilson (PW) algorithm that can be

used to get exact samples from stationary distributions of �nite state space ergodic Markov

chains ([10]). Their idea was a combination of a well-known fact from Markov chain theory

and a genuine observation on coupling of copies of a Markov chain. Using monotonicity

arguments, PW algorithm can be applied to chains with huge state spaces such as Ising
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model, Hardcore model and more general Markov random �elds. Such application areas

brought a signi�cant reputation to PW algorithm.

Many modi�cations and generalizations of PW algorithm were accomplished in a very

short time. The natural extension to the Markov chains with continuous state spaces was

carried out by Peter Green and Duncan Murdoch in 1998 ([11]). These adaptations are

quite restrictive as it is usually impossible to deal with in�nitely many copies of a chain.

In the same year, James Allen Fill devised an alternative algorithm for exact sampling

whose primary aim was preventing the User Impatiance Bias in CFTP ([12]). In short,

PW algorithm excited many people from various disciplines and created a new �eld of

study which is now called Perfect Sampling.

The underlying idea of Perfect Sampling was already available in 1984 in a paper

of Gerard Letac: If the backward process corresponding to a Markov chain (with some

properties that will be discussed) converges a.s. independent of the initial position, then

its limit is distributed according to the stationary distribution of the Markov chain ([13]).

Once the importance of this idea was understood, �nding su�cient conditions for the

convergence of the backward processes became extremely important. In fact, PW algorithm

relies heavily on the observation that backward processes corresponding to �nite state space

Markov chains converge with probability one independent of the initial position.

In 1999, Persi Diaconis and David Freedman published a survey paper in which they

used algebraic tail and global contractivity on the average conditions for the convergence

of the backward processes ([14]). This paper convinced many that the theory behind was

applicable to areas such as Queueing theory, Image Processing and speeded up the research

on both theoretical and applied sides of this subject.

During the �rst years of 2000's, necessary conditions on the continuity of the update

functions of the underlying Markov chains were relaxed with contributions of Örjan Sten�o

([15]). Under quite general conditions, Ö. Sten�o not only shows the convergence of the
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backward process but also gives results on the convergence rate in terms of the Kantorovich

distance between probabilities. See [16] and [17] as well for Sten�o's further contributions

to perfect sampling on general state spaces and random iterated function systems.

The fundamental aim of this thesis is to understand the ideas given in [14] and analyze

them in a detailed way. The rest of the thesis is organized as follows. In Chapter 2, we

give some notations, de�nitions and preliminary results.

In Chapter 3, we discuss CFTP algorithm and present a generalization of it which

we call Generalized Coupling From the Past (GCFTP). We then consider Green-Murdoch

(GM) algorithms as special cases of GCFTP. Application to Markov random �elds and

further comments on CFTP algorithms are also given in this chapter.

In Chapter 4, after a short review of forward coupling times, the necessary background

on general backward coupling times is given. In particular, we focus on vertical backward

coupling times and using this concept, we analyze CFTP algorithms in a wider sense.

Chapter 5 is devoted to a discussion on the theory behind Letac's principle which is

closely related to CFTP algorithms. We present theorems on stationary distributions of

Markov chains that contract on the average as well.

Appendix A consists of the necessary background on probability metrics. Appendix

B is devoted to Gibbs Sampler.
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2. PRELIMINARIES

In this chapter, we discuss representations of Markov chains on Polish spaces with It-

erative Function Systems and explain introductory concepts on Markov chains. Probability

metrics are recalled in Appendix A.

2.1. Probability on Polish spaces

We start with a short review of basic facts about Polish spaces and probability mea-

sures on Polish spaces to make the thesis self-contained. For the proofs and details, see

[18] and [19].

De�nition 2.1.1. A metric space is said to be a Polish space if it is separable and if there

is an equivalent metric for which it is complete.

Rn,N, �nite subsets of R, Cantor set and C([0, 1], ‖.‖∞) are examples of Polish spaces.

Two very useful properties of probability measures on Polish spaces are given in the fol-

lowing theorems.

Theorem 2.1. [18] Let X be a Polish space and µ be a probability measure on (X ,B(X ))

where B(X ) is the Borel σ-algebra on X . Then for every A ∈ B(X ) and ε > 0, there exist

an open set U and a closed set F that satisfy

F ⊂ A ⊂ U ⊂ X with µ(U − F ) < ε.

Denote by BC(X ) the set of bounded continuous functions on a metric space X .

Theorem 2.2. [18] If X is a Polish space and µ1, µ2 are probability measures on B(X )

with

∫
X
f(x)µ1(dx) =

∫
X
f(x)µ2(dx)

for every f ∈ BC(X ), then µ1 = µ2.
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2.2. Representation of Markov Chains with Iterative Function Systems

This section is devoted to advancing a way of representing Markov chains that will

give us the chance of managing these processes in a more �exible way.

De�nition 2.2.1. Let (X , d) be a Polish space with its Borel σ-algebra B(X ) and (Θ,F)

be a measurable space. Let f : X × Θ → X be a jointly measurable function. Writing

fθ(x) = f(x, θ) for θ ∈ Θ, the set {X ; fθ, θ ∈ Θ} is called an Iterative Function System

(IFS) and the mapping f is called an update function.

Now we wish to discuss processes that are generated using IFSs. For this purpose,

let (X ,B(X )) be a Polish space and (Θ,F) be a measurable space. Letting (θn)∞n=0 be a

stochastic sequence taking values in Θ and �xing an initial point x ∈ X , we may de�ne a

stochastic sequence (Xn(x)) by

X0(x) = x and Xn(x) = (fθn−1o...ofθ0)(x), n ≥ 1. (2.1)

The process (Xn(x)) which is generated via the IFS {X ; fθ, θ ∈ Θ} will be called a stochas-

tically recursive sequence with randomness source (θn) ([20]).

Stochastically recursive sequences are in a very close relation with Markov chains.

We begin by recalling the de�nition of transition probabilities to get into this relation.

De�nition 2.2.2. Let (X ,B) be a measurable space. A mapping P : X ×B → [0, 1] is

said to be a transition probability if for each x ∈ X , P (x, ·) is a probability measure and

for each A ∈ B, P (·, A) is B measurable.

It is worth noting that, for a given stochastically recursive sequence (Xn(x)) on a

Polish space (X ,B(X )) and for any m ∈ N, the map Pm : X ×B(X )→ [0, 1] de�ned by

Pm(x,A) = P(Xm(x) ∈ A)

is a transition probability ([17]).
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Throughout this thesis, we will always work on stochastically recursive sequences

with independent and identically distributed (i.i.d.) randomness source sequence (θn).

Such constructed stochastically recursive sequences are in fact Markov chains as we now

state and prove for the case where θn's are uniformly distributed over (0, 1).

Theorem 2.3. Let (X ,B(X )) be a Polish space and (θn)∞n=0 be a sequence of independent

random variables that are uniformly distributed over (0, 1). Also let the stochastic sequence

(Xn(x))∞n=0 be de�ned as in (2.1). Then (Xn(x)) is a Markov chain starting from x with

transition probability

P (x,A) = m(θ : fθ(x) ∈ A), x ∈ X , A ∈ B(X )

where m is the Lebesgue measure on the Borel σ−algebra of (0, 1).

Proof. Let x ∈ X . The process (Xn(x)) starts from x by de�nition of (Xn(x)). Let {Fn}

be the �ltration induced by the process (Xn(x)). Then for any B ∈ B(X ), we have

P(Xn ∈ B|Fn−1) = P(f(Xn−1, θn−1) ∈ B|Fn−1) = m(θ : f(Xn−1, θ) ∈ B)

= P (Xn−1, B)

where the second equality follows from the disintegration theorem. Thus Xn(x) depends on

Fn only through Xn−1(x) and so (Xn(x)) is a Markov process with transition probability

P as asserted.

Now we face the following important converse problem: Which Markov chains can be

represented by stochastically recursive sequences with i.i.d. randomness source? Theorem

2.4 below gives a su�cient criterion for the existence of such a representation. See [22] for

further representation theorems.

Recall that a metric space X is said to be Borel measurably isomorphic to a Borel

subset of R when there exists a one-to-one Borel map φ : X → R for which M := φ(X ) is

a Borel subset of R with the property that φ−1 : M → X is also Borel measurable.
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Theorem 2.4. [17] Let P be a transition probability on a metric space (X , d) which is

Borel measurably isomorphic to a Borel subset of R. Then there exists a jointly measurable

function f : X × (0, 1)→ X such that for any x ∈ X and for any A ∈ B(X ),

P (x,A) = m(θ ∈ (0, 1) : fθ(x) ∈ A)

where m is the Lebesgue measure on the Borel σ-algebra of (0, 1).

Proof. General case will follow once we prove that Markov chains on X = R can be

represented in the form stated in the theorem. So let X = R and de�ne f : R× (0, 1)→ R

by

f(x, θ) = inf{y : P (x, (−∞, y]) ≥ θ}.

We have,

f(x, θ) > a⇔ P (x, (−∞, a]) < θ

for x ∈ X , θ ∈ (0, 1) and a ∈ R. Thus, for each �xed x ∈ X , f(x, θ) is Borel measurable in

θ by the measurability of the transition probability P . Also since

m(θ ∈ (0, 1) : fθ(x) > a) = m(θ ∈ (0, 1) : P (x, (−∞, a]) < θ)

= 1− P (x, (−∞, a])

= P (x, (a,∞))

and sets of the form (a,∞) generate the Borel σ-algebra on R ([23]), it follows that

P (x,A) = m(θ ∈ (0, 1) : fθ(x) ∈ A)

for any x ∈ X and any A ∈ B(R).
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Next observe that for �xed θ ∈ (0, 1),

{x ∈ R : fθ(x) > a} = {x ∈ R : P (x, (−∞, a]) < θ},

is a Borel set since P is measurable in its �rst coordinate once the second coordinate is

�xed. So fθ : R→ R is a Borel map.

For the case X = R, it only remains to prove that f is jointly measurable. Firstly we

note that for �xed x ∈ X , f(x, θ) = fθ(x) : (0, 1)→ R is nondecreasing and left continuous.

Now set f(x, 0) = −∞ and de�ne for n ≥ 1,

fn(x, θ) = f(x,
j

n
), when

j

n
≤ θ <

j + 1

n
, j = 0, 1, ..., n− 1.

Now, for any A ∈ B(R),

{(x, θ) : fn(x, θ) ∈ A} =
n−1⋃
j=0

{(x, θ) : f(x,
j

n
) ∈ A, j

n
≤ θ <

j + 1

n
}

=
n−1⋃
j=0

(
{(x, θ) : f(x,

j

n
) ∈ A} ∩ {(x, θ) :

j

n
≤ θ <

j + 1

n
}
)

is a Borel subset of R2. Since f(x, θ) is left continuous in θ, it follows that

f(x, θ) = lim
n→∞

fn(x, θ)

for all (x, θ) and thus

{(x, θ) : f(x, θ) ∈ (a,∞)} =
∞⋃
m=1

∞⋂
n=m

{(x, θ) : fn(x, θ) ∈ (a,∞)},

for any a ∈ R. Therefore f is jointly measurable. This completes the proof when X = R.

Now assume that the state space X is Borel measurably isomorphic to a Borel subset
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of R and let φ : X → R be a one-to-one Borel map for which M := φ(X ) is a Borel subset

of R with the property that φ−1 : M → X is also Borel measurable.

Suppose that ψ : R → X equals φ−1 on M and maps R −M on some �xed point

x′ ∈ X . For each x ∈ R and B ∈ B(R), de�ne P̃ (x,B) = P (ψ(x), φ−1(B ∩M)). Then P̃

is a transition probability on R.

We de�ne g : R × (0, 1) → R by g(x, θ) = inf{y : P̃ (x, (−∞, y]) ≥ θ}. First part of

the proof shows that g is jointly measurable. Next letting f(x, θ) = ψ(g(φ(x), θ)), f turns

out to be jointly measurable and for any measurable subset A of X we have

m(θ : f(x, θ) ∈ A) = m(θ : ψ(g(φ(x), θ)) ∈ A) = m(θ : g(φ(x), θ) ∈ ψ−1(A))

= P̃ (φ(x), ψ−1(A))

= P (ψ(φ(x)), φ−1(ψ−1(A) ∩M))

= P (x,A).

This completes the proof.

Corollary 2.5. Any Markov chain on a Polish space X can be represented by an IFS

{X , fθ, θ ∈ Θ} with the randomness source sequence, (θn), being independent and uniformly

distributed over (0, 1).

Proof. Any Polish space is Borel measurably isomorphic to a Borel subset of R ([24], [25]).

Result follows from Theorem 2.4.

Remark 2.6. Note that there is no uniqueness claim in Theorem 2.4. In fact, choice of

an appropriate IFS plays a crucial role in many problems.

2.3. De�nitions and Basic Results Related to Markov Chains

For this section, (X , d) is a Polish space with its Borel σ-algebra B(X ) and (Xn)

denotes a Markov chain on X with transition probability P and corresponding update

function f : X ×Θ→ X where (Θ,F, Q) is a probability space.
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De�nition 2.3.1. A stationary distribution π for the transition probability P with corre-

sponding update function f is the distribution of an X -valued random variable X whose

distribution satis�es LX = Lf(X,θ).

By a stationary distribution of a Markov chain (Xn), we of course mean a stationary

distribution for the transition probability P of (Xn).

Remark 2.7. If the Markov chain (Xn) is started according to the stationary distribution

π, that is, if X0 ∼ π, then LX1 = Lf(X0,θ) = π. Induction reveals LXn = π for every n ∈ N.

De�nition 2.3.2. For a Markov chain on a Polish space X whose IFS representation is

given by {X ; fθ, θ ∈ Θ}, we de�ne the forward process starting from x ∈ X by

F0(x) = x, Fn(x) = (fθn−1o...ofθ0)(x), n = 1, 2, 3...

and the backward process starting from x ∈ X by

B0(x) = x, Bn(x) = (fθ0o...ofθn−1)(x), n = 1, 2, 3...

Remark 2.8. Note that the forward process adds the newly generated randomness at the

last step whereas the backward process adds it through the �rst step. Although these two

processes are quite di�erent in nature, we have

LBn(x) = LFn(x), for n ∈ N and x ∈ X ,

since (θn) is an i.i.d. sequence.

Theorem 2.9. [13] Consider a Markov chain (Xn) on a Polish space X with transition

probability P whose IFS representation is given by {X ; fθ, θ ∈ Θ} where fθ is continuous

for each θ ∈ Θ. If the corresponding forward process Fn(x) converges weakly to a probability

distribution π independent of x ∈ X , then π is the unique stationary distribution for P .
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Proof. For g ∈ BC(X ) and for every n ≥ 1 we have,

∫
X
g(y)LFn(x)(dy) = E(g(Fn(x))) = E(E(g(Fn(x))|Fn−1(x)))

=

∫
X

∫
Θ

g(f(y, θ))Q(dθ)LFn−1(x)(dy).

De�ne ϕ : X → X by ϕ(y) =
∫

Θ
g(f(y, θ))Q(dθ). Then ϕ is bounded since g is bounded

and Q is a probability measure. By the assumption on the continuity of f , we may also

conclude that ϕ is continuous using dominated convergence theorem. Thus ϕ ∈ BC(X ).

Now we may use the weak convergence assumption of the forward process to get

∫
X
g(y)π(dy) =

∫
X

∫
Θ

g(f(y, θ))Q(dθ)π(dy)

by letting n→∞.

So if X0 is a random variable distributed according to π and g ∈ BC(X ), we have

∫
X
g(z)LX0(dz) =

∫
X
g(z)Lf(X0,θ)(dz).

Since this is true for all g ∈ BC(X ), we conclude that LX0 = Lf(X0,θ) holds by Theorem

2.2 and this reveals the required result that π is a stationary distribution for P .

For the uniqueness, suppose that π′ is any stationary distribution and LX0 = π′.

Then LFn(X0) = LX0 for every n ≥ 1 and dW (LFn(X0), π)→ 0 as n→∞ by the �rst part of

the proof where dW is the Wasserstein distance between probability measures (Appendix

I ). Since LFn(X0) = π′ for all n, we conclude that π = π′.

When the forward process converges weakly to some random variable B, the distri-

bution of B is called the limiting distribution of the Markov chain.
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De�nition 2.3.3. Let (Xn) be a Markov chain with an IFS representation {X ; fθ, θ ∈ Θ}.

(Xn) is said to have weak Feller property (WFP) if for any g ∈ BC(X ), the mapping

x→ Eg(fθ(x))

is continuous.

For more on WFP, see [21]. We now give a corollary of Theorem 2.9 that will be

useful in the sequel.

Corollary 2.10. Theorem 2.9 remains valid when the assumption on the continuity of the

update functions is replaced with the WFP assumption for the Markov Chain (Xn).

Next we brie�y discuss uniform ergodicity of Markov chains.

De�nition 2.3.4. Let (Xn) be a Markov chain on a Polish space X with transition prob-

ability P and unique stationary distribution π. The chain is said to be uniformly ergodic

when

lim
n→∞

sup
x∈X
‖P n(x, ·)− π‖TV = 0.

Theorem 2.11. [26] The following conditions are equivalent for a Markov chain (Xn) on

a Polish space X with transition probability P and unique stationary distribution π:

(i) (Xn) is uniformly ergodic.

(ii) There exists c ∈ (0,∞) and λ ∈ (0, 1) such that

‖P n(x, ·)− π‖TV < cλn, ∀x ∈ X , ∀n ∈ Z+.

Theorem 2.12. [26] Let (Xn) be a Markov chain on a Polish space (X ,B(X )) with tran-

sition probability P . If (Xn) is uniformly ergodic, then there exists a probability measure

Φ on (X ,B(X )), m ∈ Z+ and β ∈ (0, 1] that satisfy Pm(x, ·) ≥ βΦ(·) for all x ∈ X .

Remark 2.13. Markov chains having the necessary criterion for uniform ergodicity given

in Theorem 2.12 are called Doeblin chains. These special processes will have great impor-

tance throughout this thesis.
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3. PROPP-WILSON ALGORITHM

3.1. Introduction and Illustration of the Basic Idea

Consider an ergodic Markov chain on a �nite state space X . Since |X | is �nite,

ergodicity assures the existence of a unique stationary (and limiting) distribution which

we call π ([27]). Let f : X × (0, 1) → X be one of the possible update functions for this

Markov chain.

Our aim is getting exact and independent samples from π. As a starting point, one

may think of starting |X | copies of the underlying chain from each possible initial state and

update these chains according to f with the same random numbers over (0,1). It is worth

knowing whether the state at which all of these chains coalesce is distributed according

to π as the e�ect of initial position is swept. Let's see that this is not the case with the

following example:

Example 3.1. Consider a Markov chain with 3 states that has the following transition

matrix,

P =


0.5 0.5 0

0 0 1

1 0 0

 .

This Markov chain is ergodic and its stationary distribution is given by π = (0.5, 0.25, 0.25).

But the three chains initiated from three di�erent states can never coalesce at state 3.

Hence we would get biased samples if we had used the described strategy directly.

What PW algorithm does to get exact samples is reversing the above procedure

([10]). This can be formulated as follows. At time 1, generate θ−1 ∼ U(0, 1) and start

Markov chains from all possible initial states and let them evolve using θ−1. If they have

coalesced at time 0, take the common value at time 0 as a stationary pick. If not, generate
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θ−2 ∼ U(0, 1), start Markov chains from all possible initial states and let them evolve

using θ−2 and θ−1. If they have coalesced up to time 0, take the common value at time

0 as a sample. If not, do the same until you get an output. Main result of next section

assures that the returned value is in fact a perfect sample; that is, the returned value is

exactly distributed according to π. Generalizations of this scenario will also be considered

in following sections. Figure 3.1 below illustrates PW algorithm for a Markov chain with

4 states.

Figure 3.1. Illustration of how perfect sampling works for a Markov chain with 4 states.

Coalescence occurs at T = −3.
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3.2. Coupling from the Past Algorithm

This section is devoted to CFTP algorithm of James Propp and David Wilson ([10]).

Advantages of monotonicity arguments is discussed and a toy example is presented. Note

that CFTP algorithm is also known as Propp-Wilson (PW) algorithm in the literature and

both names will be used throughout this thesis.

For this section, (Xn) is a Markov chain on a �nite state space X which may always

thought to be {1, 2, ...m} for some m ∈ Z+. Let f : X × (0, 1)→ X be one of the update

functions for (Xn). So once the chain is at x ∈ X , a random number θ is generated

uniformly over (0, 1) and the chain moves to f(x, θ). Now, the pseudocode of the PW

algorithm is as follows.

PW(M)

t = −M

Xt = X

while t < 0

t = t+ 1

Xt = f(Xt−1, θt−1)

if |X0| = 1 then

return x0 ∈ X0

else

PW(M+1)

Figure 3.2. Pseudocode for Propp-Wilson Algorithm

For a rigorous analysis of this algorithm, we need to introduce some notation. For

x ∈ X , consider the backward process given by B0(x) = x and Bn(x) = (fθ−1o...ofθ−n)(x)
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for n ∈ Z+. Also de�ne τ = min{n ≥ 1 : Bn(x) = Bn(y), ∀x, y ∈ X} ≤ ∞. This notation

needs an explanation. When there exists an n ∈ N with Bn(x) = Bn(y), ∀x, y ∈ X , we set

τ to be the minimum of such n's. If such an n does not exist, we set τ =∞.

In this setting, when τ is �nite, τ is the coalescence time of the Markov chains

initiated from all possible states and the common value Bτ (x) with x ∈ X is the returned

value of PW algorithm.

Theorem 3.2. [10] (PW algorithm) Let (Xn) be an ergodic Markov chain on a �nite state

space X with stationary distribution π and let f be an update function for (Xn). De�ne τ

and Bn(x) as above and suppose that τ <∞ a.s.. Then, Bτ (x) is distributed according to

π for any x ∈ X .

Proof. As τ is �nite a.s., Bn(x) = (fθ−1o...ofθ−n)(x) becomes constant at a �nite time a.s..

So Bn(x) converges a.s. to some random limit independent of x which we call B. This

gives LFn(x) = LBn(x) → LB. That is, Fn(x) converges weakly to B independent of x. By

Theorem 2.9, we know that LB is the stationary distribution of (Xn). Since an ergodic

Markov chain on a �nite state space has a unique stationary distribution, we conclude

LB = π.

We also have B = limn→∞Bn(x) = Bτ (x) a.s.. Hence Bτ (x) is distributed according

to π independent of x as asserted.

Note that the idea behind PW algorithm can be seen as a special case of backward

coupling times or Letac's principle. More on these topics will emerge in the next two

chapters.

Remark 3.3. Note that the arguments carried out in the proof of 3.2 remains valid when

the state space of the underlying Markov chain is replaced by a Polish space and a unique

stationary distribution exists for the chain.

Remark 3.4. The sequence 1, 2, ...,M,M + 1, ... in PW algorithm can be replaced by

1, 2, 4, ...,M, 2M or in fact by any increasing sequence. This follows from the proof PW

algorithm directly. This observation is very useful in B. Wilson's Read Once Coupling
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from the Past Algorithm (ROCFTP) which is a modi�ed version of the CFTP algorithm

([31]).

Now we present a toy example for PW algorithm.

Example 3.5. Consider a Markov chain (Xn) with state space {0, 1, 2} whose transition

matrix is given by

P =


0.5 0.5 0

0.5 0 0.5

0 0.5 0.5

 .

An update function for (Xn) can be given by,

Xn = f(Xn−1, θn−1) =

 max{Xn−1 − 1, 0} if θn−1 ∈ (0, 1/2]

min{Xn−1 + 1, 2} if θn−1 ∈ (1/2, 1)

Now PW algorithm works for this chain as follows: Firstly, start 3 chains from

3 di�erent states of (Xn) at T = −1 and check for coalescence at t = 0. If coalescence

occurs, the common state at t = 0 is accepted as a sample from the stationary distribution.

Otherwise, the starting time is moved to T = −2, and the chains are evolved and again

checked for coalescence at t = 0. If coalescence occurs, the state of the chain at t = 0 is

accepted as a sample from the desired distribution. The whole process is repeated until

the 3 chains coalesce (which happens a.s. with the chosen update function). When the

coalescence occurs, the state of the chain at t = 0 is taken as a sample from the stationary

distribution π = (1
3
, 1

3
, 1

3
).

A crucial part of PW algorithm is the use of stochastic monotonicity. It becomes

impossible to deal with Markov chains with huge state spaces without monotonicity.

De�nition 3.2.1. An update function f of a Markov chain (Xn) on a partially ordered

state space (X ,≤) is said to be a monotone update function if for any θ ∈ (0, 1), the
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inequality

f(x, θ) ≤ f(y, θ)

holds whenever x ≤ y.

For a detailed discussion of stochastic monotonicity and monotone update functions,

see [20].

Theorem 3.6. Consider an ergodic Markov chain (Xn) on a �nite linearly ordered state

space (X ,≤) with a monotone update function f and let x, x be the minimal and maximal

elements in X respectively. De�ne τe = min{n : Bn(x) = Bn(x)} ≤ ∞ where Bn(x) =

(fθ−1o...ofθ−n)(x). If τe < ∞ a.s., then Bτe(x) is distributed according to the stationary

distribution π of (Xn) for any x ∈ X .

Proof. Firstly observe that

Bn(x) ≤ Bn(x) ≤ Bn(x) (3.1)

for any x ∈ X since f is given to be monotone.

Next, de�ning τ = min{n : Bn(x) = Bn(y), ∀x, y ∈ X} ≤ ∞, we clearly have τe ≤ τ .

Also when Bn(x) = Bn(x), (3.1) reveals that

Bn(x) = Bn(x) = Bn(x)

for any x ∈ X . This gives τ ≤ τe from which we conclude that τ = τe.

So, Bτe(x) = Bτ (x) for any x ∈ X . Since Bτ (x) is distributed according to π by

Theorem 3.2, result follows.

Now going back to Example 3.5, with the trivial ordering 0 ≤ 1 ≤ 2 on X , the given

update function is monotone. That is f(0, θ) ≤ f(1, θ) ≤ f(2, θ) for every θ ∈ (0, 1). Hence
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when applying the PW algorithm to this case, it will be enough to check the coalescence

of the Markov chains that are initiated from the states 0 and 2. Although monotonicity

does not help too much for this toy example, it is certainly inevitable for Markov chains

on huge state spaces. In section 3.4, we shall show the use of monotonicity on Markov

random �elds.

Remark 3.7. An immediate corollary for Theorem 3.6 can be given by replacing the linear

order by a partial order. In this case, the coalescence of the chains starting from various

minimal and maximal elements should be checked.

Remark 3.8. Choice of an inconvenient IFS may turn PW into a useless algorithm. This

is best illustrated with an example. Consider a 2-state Markov chain (Xn) with state space

X = {1, 2} and transition matrix P =

 1/3 2/3

2/3 1/3

 An update function for (Xn) can be

given by: f(1, θ) = 1, f(2, θ) = 2 if θ ∈ (0, 1/3) and f(1, θ) = 2, f(2, θ) = 1 otherwise. We

can not use PW algorithm with this update function since chains starting from di�erent

states can never coalesce.

3.3. Generalized Coupling from the Past

In general, CFTP algorithm can not be applied to Markov chains with general state

spaces in its original form as it is impossible to deal with the coalescence of in�nitely many

chains. For these cases, we present a variation of PW algorithm which we call Generalized

Coupling from the Past (GCFTP).

Let X be a Polish space and (Xn) be a Markov chain on X with an update function

f : X × (0, 1) → X and a unique stationary distribution π. Following the PW algorithm

given in the previous section, we de�ne τ = min{n : Bn(x) = Bn(y), ∀x, y ∈ X} ≤ ∞

where Bn(x) = (fθ−1o...ofθ−n)(x) for n ∈ Z+ as before. We already know that Bτ (x) ∼ π

when τ is �nite a.s. by Theorem 3.2. For the cases of more general state spaces, we need

to de�ne another random time besides τ . For this purpose, �rstly consider the following

pseudocode.
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GCFTP(M)

t = −M

Yt = X

while t < 0

t = t+ 1

Yt = a set containing f(Yt−1, θt−1)

if |Y0| = 1 then

return x0 ∈ Y0

else

GCFTP(M+1)

Figure 3.3. Pseudocode for Generalized Coupling from the Past

Now, let f ′ be the update mechanism described in the pseudocode so that Yt =

f ′(Yt−1, θt−1). We write f ′θt−1
(Yt−1) for f ′(Yt−1, θt−1) as usual. Next de�ne

T = min{m ≥ 1 : |(f ′θ−1
o...of ′θ−m

)(X )| = 1} ≤ ∞.

Note that fθ(A) ⊂ f ′θ(A) for any A ⊂ X . So, τ ≤ T .

Theorem 3.9. (GCFTP) Let (Xn) be a Markov chain on a Polish space X with a unique

stationary distribution π. Let T and Bn(x) be de�ned as above for x ∈ X and suppose that

T <∞ a.s.. Then, BT (x) is distributed according to π.

Proof. Firstly observe that τ ≤ T . Now since for any m ≥ τ , Bm(x) = Bτ (x), we get

BT (x) = Bτ (x) for any x ∈ X . This implies that BT (x) ∼ π by Theorem 3.2 (See Remark

3.3).
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Appropriate choice of the update mechanism f ′ helps us to have control over the

uncoalesced chains and reveal PW-type algorithms on Polish state spaces. We now show

the use of GCFTP with the aid of Multigamma Coupler. See [11] and [28] for similar

examples.

Example 3.10. [11] Let (Xn) be a Markov chain with state space X = R and transition

probability density p(.|x). Suppose that

p(y|x) ≥ g(y), ∀x, y ∈ X ,

is satis�ed for some positive continuous function g with ρ :=
∫
R g(y)dy ∈ (0, 1) so that

(Xn) is a very special case of Doeblin chains. Also de�ne

G(y) = ρ−1

∫ y

−∞
g(v)dv and Q(y|x) = (1− ρ)−1

∫ y

−∞
(p(v|x)− g(v))dv.

An update function for (Xn) can be given by

f(x, (θ1, θ2)) =

 G−1(θ2) , if θ1 < ρ

Q−1(θ2|x) , otherwise

where θ1, θ2 are independent random numbers uniformly distributed over (0,1). To see that

this is the case, we observe that

P(f(x, θ) ≤ y) = ρP(G−1(θ2) ≤ y) + (1− ρ)P(Q−1(θ2|x) ≤ y)

= ρP(θ2 ≤ G(y)) + (1− ρ)P(θ2 ≤ Q(y|x))

= ρG(y) + (1− ρ)Q(y|x)

=

∫ y

−∞
g(v)dv +

∫ y

−∞
(p(v|x)− g(v))dv

= P(Xn+1 ≤ y|Xn = x)

as required. Using this update function, we shall now give the pseudocode for the multi-

gamma coupler as stated in [11].
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Multigamma(M):

t = −M

Yt = X

while Yt in�nite and t < 0

t = t+ 1

if θ1
t < ρ then

Yt = {G−1(θ2
t )}

else

Yt = X

while t < 0

t = t+ 1

if θ1
t < ρ then

Yt = {G−1(θ2
t )}

else

Yt = {Q−1(θ2
t |x)} where Yt−1 = {x}

if |Y0| = 1 then

return x0 ∈ Y0

else

Multigamma(M + 1)

Figure 3.4. Pseudocode for Multigamma Coupler

To show that the Multigamma Coupler returns a value that is distributed according to

the stationary distribution of the underlying Markov chain, we shall make use of GCFTP.

So we need to show that: (i) f(Yt−1, θ) ⊂ Yt and (ii) T is �nite a.s.

First of these assertions follows directly from the choice of the sets Yt. For the second
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one we observe that we will get an outcome whenever we have θ1
k < ρ for some k ∈ N and

the probability that we do not have any θ1
k < ρ for k = 1, ...n equals (1 − ρ)n. So the

probability that we will not have an outcome at a �nite time is limn→∞(1− ρ)n = 0 from

which (ii) follows.

Remark 3.11. In practice it is in general impossible to use multigamma coupler for perfect

sampling. The main reasons for this are:

(i) The normalized update densities are not usually known by the user.

(ii) It is not possible to �nd a suitable lower bound function g in many cases.

3.4. More on Coupling from the Past Algorithm

3.4.1. An Application on Markov Random Fields

In this section, we describe getting perfect samples from Markov random �elds(MRF).

See [29] and [30] for a detailed discussion of MRFs. We start by giving basic de�nitions on

graph theory and random �elds. For the following, let G = (V,E) be a �nite graph and X

be a �nite set.

For v, w ∈ V , write v ∼ w if there exists e ∈ E connecting v and w. Also write

< v,w > for an edge in E connecting v and w. For W ⊂ V , we de�ne the boundary of W ,

∂W , to be ∂W = {v ∈ V −W : ∃w ∈ W such that v ∼ w}.

A random �eld on V with values in X is a collection X = {X(v)}v∈V of random

variables with each of X(v) taking values in X . Note that a random �eld can be regarded

as a random variable taking its values in the con�guration space X V .

A con�guration ξ ∈ X V is of the form (ξ(v) : v ∈ V ) where ξ(v) ∈ X for v ∈ V . For

a given con�guration ξ ∈ X V and a given subset W ⊂ V , de�ne ξ(W ) = (ξ(v) : v ∈ W ) to

be the restriction of ξ to W .
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De�nition 3.4.1. A random �eld X on a �nite graph G = (V,E) is said to be a Markov

random �eld (MRF) with distribution π if for any con�guration ξ, we have π(X = ξ) > 0

and

π(X(W ) = ξ(W )|X(V −W ) = ξ(V −W )) = P(X(W ) = ξ(W )|X(∂W ) = ξ(∂W ))

where W is any subset of V .

Here we will focus on a particular example of MRFs, namely, Ising model which was

introduced by Ernst Ising in 1925. In Ising's �nite model, X = {−1, 1}, V = Z2
m and the

underlying neighborhood system is the nearest neighborhood. The energy of the system at

some con�guration ξ ∈ {−1, 1}V is given by

E(ξ) =
−J
k

∑
<x,y>∈E

ξ(x)ξ(y)− H

k

∑
x∈V

ξ(x)

where k is the Boltzman constant, J is the internal energy of an elementary magnetic

dipole and H is the external magnetic �eld. The (Gibbs) distribution π on X V in terms of

the energy function is now given by π(ξ) = 1
Z
e−E(ξ) where Z is the normalizing constant.

For the following, we assume that there is no external magnetic �eld, that is H = 0. Also

we set β = −J
k

so that π = πβ is given by

πβ(ξ) =
1

Zβ
eβ

∑
<x,y>∈E ξ(x)ξ(y), ξ ∈ {−1, 1}V (3.2)

where Zβ is the corresponding normalizing constant. Now to see that πβ de�nes a MRF, we

observe that the right hand side of equation (3.2) can be factorized into factors involving

only the states of neighbor vertices ([29]).

For a perfect sampling algorithm for the Ising model, we follow the steps sketched

in [30] and use random Gibbs sampler (Appendix B) to form a Markov chain on X V

having π as its stationary distribution. Such a construction requires the knowledge of full

conditionals of π.
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We denote the number of positive and negative neighbors of some v ∈ V when the

con�guration is ξ by P (v, ξ) and N(v, ξ) respectively.

Lemma 3.12. Full conditional distributions of πβ are given by

πβ(X(v) = 1|X(V − {v}) = ξ(V − {v})) =
exp(2β(P (v, ξ)−N(v, ξ)))

1 + exp(2β(P (v, ξ)−N(v, ξ)))

where ξ is a given con�guration and v is any element in V .

Proof. Fix v ∈ V . De�ne ξ+ ∈ {−1, 1}V to be the con�guration that agrees with ξ on

V −{v} and takes the value 1 at v. Similarly de�ne ξ− to be the con�guration that agrees

with ξ on V − {v} and takes the value -1 at v. We have

πβ(ξ+)

πβ(ξ−)
=

exp
(
β
∑

<x,y>∈E ξ
+(x)ξ+(y)

)
exp

(
β
∑

<x,y>∈E ξ
−(x)ξ−(y)

)
= exp

(
β

( ∑
<x,y>∈E

ξ+(x)ξ+(y)−
∑

<x,y>∈E

ξ−(x)ξ−(y)

))

= exp

(
β

( ∑
<v,y>∈E

ξ+(v)ξ+(y)− ξ−(v)ξ−(y)

))

= exp

(
β

∑
<v,y>∈E

(ξ(y) + ξ(y))

)
= exp(2β(P (v, ξ)−N(v, ξ))).

Using this we get

πβ(X(v) = 1|X(V \{v}) = ξ(V \{v})) =
πβ(X(v) = 1, X(V \{v}) = ξ(V \{v}))

πβ(X(V \{v}) = ξ(V \{v}))

=
πβ(ξ+)

πβ(ξ+) + πβ(ξ−)

=
exp(2β(P (v, ξ)−N(v, ξ)))

1 + exp(2β(P (v, ξ)−N(v, ξ)))

from which the required result follows.
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Using these full conditionals, the Gibbs sampler can be constructed with the following

update rule: Given Xn, obtain Xn+1 by picking a vertex v ∈ V at random, picking Xn+1(v)

according to the full conditionals and leaving all other vertices unchanged (Appendix B).

The updating mechanism can be realized by choosing a random number θn ∼ U(0, 1) and

setting

Xn+1(v) = 1 if θn <
exp(2β(P (v, ξ)−N(v, ξ)))

1 + exp(2β(P (v, ξ)−N(v, ξ)))

and setting Xn+1(v) = −1 otherwise.

We can now construct a CFTP algorithm based on the Gibbs sampler by using 2m
2

chains starting from all possible initial con�gurations and checking their coalescence. But

of course using so many chains bring computational burden when m is large. To avoid

this, we establish an order on the con�guration space.

For ξ1, ξ2 ∈ {−1, 1}V , write ξ1 ≤m ξ2 if ξ1(v) ≤ ξ2(v) for all v ∈ V . In this partial

ordering, the con�guration ξ with ξ(v) = 1 for all v ∈ V is the maximal con�guration and

the con�guration ξ with ξ(v) = −1 for all v ∈ V is the minimal con�guration.

Now we claim that the update mechanism given above is monotone with respect to

≤m. Let ξ, η ∈ {−1, 1}V such that ξ ≤m η. Suppose that the randomly chosen vertex is v

so that only the value of X(v) changes during the update. We have

exp(2β(P (v, ξ)−N(v, ξ)))

1 + exp(2β(P (v, ξ)−N(v, ξ)))
≤ exp(2β(P (v, η)−N(v, η)))

1 + exp(2β(P (v, η)−N(v, η)))

since ea

ea+1
≤ eb

eb+1
whenever a and b are real numbers with a ≤ b. This gives us the required

result and so the chains starting from the intermediate states will be sandwiched between

the ones starting from the two extreme states. In fact this is exactly why CFTP algorithm

can be applied to so many computationally di�cult problems in diverse areas.
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3.4.2. Drawbacks of Propp-Wilson Algorithm

Although the coalescence times in PW algorithm are �nite a.s., they can be arbitrarily

large. So the user should take an action and put some bound for the working time of the

algorithm. This may cause biased samples especially for Markov chains with large mixing

times. This kind of bias is known as the user-impatience bias. We explain this with Example

3.5. Recall that (Xn) was a Markov chain on X = {0, 1, 2} with transition matrix

P =


0.5 0.5 0

0.5 0 0.5

0 0.5 0.5

 .

The stationary distribution of (Xn) is π = (1/3, 1/3, 1/3) and a monotone update function

for it is given by

Xn = f(Xn−1, θn−1) =

 max{Xn−1 − 1, 0} if θn−1 ∈ (0, 1/2]

min{Xn−1 + 1, 2} if θn−1 ∈ (1/2, 1)

Now if the user aborts runs not completed in 2 steps, then the output of the algorithm in

the 4 possible cases will be as in the following: if θ1 ≤ 1/2 and θ2 ≤ 1/2 then the output

is 0, if θ1 ≥ 1/2 and θ2 ≥ 1/2 then the output is 2 and in all other cases coalescence does

not occur. Hence in this case we see that PW algorithm returns a biased output with

distribution (1/2, 0, 1/2). Note that this example is also the motivation for Fill's algorithm

which is another perfect sampling algorithm that takes care of user-impatience bias ([12]).

Another drawback of PW algorithm is the memory problem. Namely, at each itera-

tion of the process, the random numbers generated at previous stages are used again and

again until the coalescence occurs. This causes memory problems especially for Markov

chains with huge state spaces. This problem is solved by the Read Once Coupling From

The Past Algorithm of Bruce Wilson ([31]).
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4. COUPLING THEORY

In this chapter, we �rstly consider some elementary notions from forward coupling

theory. Then we introduce the concept of backward coupling times and eventually specialize

on vertical backward coupling times which are closely related to the algorithms described in

Chapter 3. Our discussion will be mainly based on [32]. A standard reference for coupling

theory is [33].

4.1. Forward Coupling

Let X = (Xn) and X′ = (X ′n) be Markov chains on a Polish space (X ,B(X )) with

di�erent initial values x0 and x′0, but with the same IFS representation {X : fθ, θ ∈ (0, 1)}.

They evolve in time via the recursions Xn+1 = f(Xn, θn) and X ′n+1 = f(X ′n, θn) for n ≥ 0

using the same randomness source sequence (θn). So if Xn = X ′n for some n ∈ N, then we

necessarily have Xn+m = X ′n+m for every m ≥ 0.

De�nition 4.1.1. The minimal forward coupling time τ of the Markov chains X = (Xn)

and X′ = (X ′n) is de�ned by

τ(X,X′) = min{n ≥ 0 : Xn = X ′n} ≤ ∞.

τ is said to be successful if τ(X,X′) <∞ a.s..

Since it is not possible to detect minimal forward coupling times in most cases, we

need to introduce a more general de�nition for forward coupling times.

De�nition 4.1.2. A random variable τ taking values in N ∪ {∞} is said to be a forward

coupling time for the Markov chains X and X′ if

τ ≤ n =⇒ Xn+m = X ′n+m, ∀m ≥ 0.
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Note that, if τ is a forward coupling time and τ ′ is another random time that satis�es

τ ′ ≥ τ a.s., then τ ′ is also a forward coupling time.

De�nition 4.1.3. If {X(j)}j∈J is any family of Markov chains with di�erent initial states

xj0, then

τ({X(j)}j∈J) := sup
i,k∈J

τ(X(i),X(k))

is said to be the minimal forward coupling time for the family {X(j)}j∈J .

We now prove the important forward coupling inequality that will play a key role in

the sequel.

Theorem 4.1. (Coupling inequality) Let X = (Xn) be a Markov chain starting from

x0 ∈ X with transition kernel P for which a unique stationary distribution π exists. Further

let X′ = (X ′n) be a stationary version of X and τ be the minimal forward coupling time of

X and X′. Then we have

‖P n(x0, ·)− π‖TV ≤ P(τ > n).

Proof. We de�ne a new stochastic process X via X and X′ as

Xn =

 X ′n if n < τ

Xn if n ≥ τ.

Then (Xn) is a stationary Markov chain with transition kernel P . Also for any A ∈ B(X )

we have,

P(Xn ∈ A) = P(Xn ∈ A|τ ≤ n)P(τ ≤ n) + P(Xn ∈ A|τ > n)P(τ > n)

= P(Xn ∈ A|τ ≤ n)P(τ ≤ n) + P(Xn ∈ A, τ > n)

and
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P n(x0, A) = P(Xn ∈ A) = P(Xn ∈ A|τ ≤ n)P(τ ≤ n) + P(Xn ∈ A, τ > n).

The last two equations immediately give

|P n(x0, A)− π(A)| = |P(Xn ∈ A, τ > n)− P(Xn ∈ A, τ > n)| ≤ P(τ > n).

Since this is true for each Borel subset A, we get

‖P n(x0, ·)− π‖TV ≤ P(τ > n)

from which the required result follows.

With the aid of coupling inequality, we can get sharp bounds for the rate of con-

vergence to the stationary distribution in the cases where we have information on the tail

behavior of the minimal forward coupling time. One such instance can be found below for

�nite state space Markov chains. See [20] and [32] for further notes on the tail behavior of

coupling times.

The following corollary is immediate from the de�nition of successful minimal forward

coupling times.

Corollary 4.2. If the minimal forward coupling time is successful, then

‖P n(x0, .)− π‖TV → 0 as n→∞.

Next we prove that the n−step probabilities of a �nite state space ergodic Markov

chain converges to the stationary distribution geometrically fast. The idea is �nding out

a suitable bound for the tail behavior of the minimal forward coupling time and using

coupling inequality. Precise statement is as follows.

Theorem 4.3. Suppose that (Mn) is an ergodic Markov chain on a �nite state space X

with |X | = M whose transition probability is given by P . Then (Mn) is uniformly ergodic.

Proof. SupposeXn andX ′n are two independent Markov chains having P as their transition

probability. Suppose further that the initial distributions of these chains are δ{x} and π
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respectively where x is any �xed element in X and π is the unique stationary distribution

corresponding to P . Also let τ be the minimal forward coupling time of these two chains.

Since the chain is ergodic, there exist N ∈ N and ε > 0 such that

PN(a, b) > ε, ∀a, b ∈ X .

Using this observation, we get

P(XN = X ′N) =
∑
y∈X

P(XN = y,X ′N = y) =
∑
y∈X

PN(x, y)P(X ′N = y)

> ε
∑
y∈X

∑
z∈X

P(X ′N = y|X ′0 = z)P (X ′0 = z)

> ε2
∑
y∈X

∑
z∈X

P (X ′0 = z)

= ε2M

and so P(XN 6= X ′N) ≤ 1− ε2M . For any k ≥ 1, we get

P(τ > kN) ≤ P(XN 6= X ′N , ..., XkN 6= X ′kN)

= P(XN 6= X ′N)P(X2N 6= X ′2N |XN 6= X ′N)

...P(XkN 6= X ′kN |X(k−1)N 6= X ′(k−1)N , ..., XN 6= X ′N)

≤ (1− ε2M)k

where the last inequality holds since the upper bound for P(XN 6= X ′N) is independent of

the initial state of (Xn). Now for n ∈ N, we set pn = max{m ∈ N : mN ≤ n}. We have

P(τ > n) ≤ P(τ > pnN) ≤ (1− ε2M)pn =
(1− ε2M)

1
N

((pn+1)N)

1− ε2M

≤ ((1− ε2M)
1
N )n

1− ε2M

Now we set c = 1
1−ε2M and λ = (1− ε2M)

1
N (with ε small enough) and use Theorem 2.11

with Theorem 4.1 to get the required result.
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4.2. Backward Coupling

This section is devoted to a study of backward coupling times which will be an inter-

mediate step to treat CFTP algorithms in a more general setting. Consider the probability

space (Ω,F ,m), where Ω = (0, 1)Z, F is the cylinder σ-algebra and m is the Lebesgue mea-

sure. De�ne the coordinate maps θn by θn(ω) = ωn where ω = {ωn}∞n=−∞ ∈ Ω.

De�nition 4.2.1. The m-shift transformation T m on Ω is de�ned by T m(ω) = {ωn+m}∞n=−∞

for any {ωn}∞n=−∞ ∈ Ω, i.e. (T m(ω))n = ωn+m. The m-shift transformation of a set

B ∈ F is de�ned by T m(B) = {T m(ω) : ω ∈ B}.

Note that T m+k(ω) = T m(T k(ω)) for any m, k ∈ Z and any ω ∈ Ω.

De�nition 4.2.2. For any random variable Ψ : Ω → X and any m ∈ Z, the m-shifted

random variable Ψm is de�ned by Ψm(ω) = Ψ(T m(w)) where ω ∈ Ω.

Remark 4.4. The shift transformation T : Ω → Ω is measure preserving. See [34] and

[35] for more on shift transformations.

The de�nition of shifted random variables suggests that we may also de�ne shifted

Markov chains once we represent them with stochastically recursive sequences . For this

purpose, consider a Markov chain X = (Xn)∞n=0 on a Polish space X that is represented

with an IFS {X ; fθ, θ ∈ (0, 1)}. We de�ne them-shifted Markov chain by T mX = (T mXn).

So when X initiates from x0, the m-shifted Markov chain starts at time m from T mx0

and takes the value T mXn at time m + n with m ∈ Z and n ∈ N. Here x0 is a random

variable which is assumed to be adapted to the past. In most cases, x0 will be a constant.

It is important to keep in mind that the de�nition of a shifted Markov chain makes

use of the IFS representation of the original Markov chain X. Shifted chains become more

tractable once we express this relation more explicitly. Firstly, since the state of (Xn) at

time n is given by

Xn = (fθn−1o...ofθ0)(x0)
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we have,

T Xn = (fθno...ofθ1)(T x0).

More generally we have,

T mXn = (fθm+n−1o...ofθm)(T mx0).

When x0 is constant, T mXn = (fθm+n−1o...ofθm)(x0).

We are now ready to give the de�nition of backward coupling times corresponding to

a given Markov chain. These will be the key tools in embedding CFTP type algorithms

into a more general framework.

De�nition 4.2.3. For a Markov chain X = (Xn)∞n=0 with a given IFS representation

{X ; fθ, θ ∈ (0, 1)}, the minimal backward coupling time ν(X) is de�ned by

ν(X) = min{m ≥ 0 : T −n1Xn1 = T −n2Xn2 , ∀n1, n2 ≥ m} ≤ ∞.

De�nition 4.2.4. A random variable ν taking values in N∪{∞} is said to be a backward

coupling time for a Markov chain X = (Xn)∞n=0 if

ν ≤ m, m ∈ N =⇒ T −n1Xn1 = T −n2Xn2 , ∀n1, n2 ≥ m.

ν is said to be successful when ν <∞ a.s..

Note that the de�nition of a backward coupling time depends on just one chain

starting from x0 which was not the case for forward coupling times.

Now we shall give the fundamental theorem of this section.

Theorem 4.5. [32] Let X = (Xn) be a Markov chain on a Polish space (X ,B(X )) with

transition probability P and IFS representation {X ; fθ, θ ∈ (0, 1)}. Suppose that ν is a

successful backward coupling time for X. De�ne another stochastic sequence X̃ = (X̃n) by
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setting X̃0 = T −νXν and X̃n = T nX̃0 for n ≥ 1. Then the sequence X̃ = (X̃n) forms a

stationary Markov chain with transition probability P , and satis�es the recursion

X̃n+1 = f(X̃n, θn)

a.s. for each n ∈ N.

Proof. We start by showing that the stochastic sequence (X̃n) satis�es the given recursion

using induction. For n = 0, we have

X̃1 = T X̃0 = T T −νXν = lim
m→∞

T T −mXm = lim
m→∞

T −m+1Xm = lim
n→∞

T −nXn+1

= lim
n→∞

T −nf(Xn, θn)

= lim
n→∞

f(T −nXn, θ0)

= f(T −νXν , θ0)

= f(X̃0, θ0)

where we just used the fact that T −νXν = T −nXn for su�ciently large n a.s.. Next suppose

that the result is true for some n ∈ N. We have

X̃n+1 = T X̃n = T f(X̃n−1, θn−1) = f(T X̃n−1, T θn−1) = f(X̃n, θn)

as required. Now, since θn's are i.i.d., it follows from Theorem 2.3 that the stochastically

recursive sequence (X̃n) is a Markov chain with update function f and corresponding

transition probability P .

Lastly, using the fact that T is measure preserving, we get

P(X̃1 ∈ A) = P(T X̃0 ∈ A) = P(X̃0 ∈ A)

for any A ∈ B(X ). So (X̃n) is stationary as asserted.
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Remark 4.6. Note that the random variable T −νXν in the proof of Theorem 4.5 is dis-

tributed according to a stationary distribution of the Markov chain (Xn). Henceforth, ex-

istence of a successful backward coupling time assures the existence of a stationary version

of the Markov chain.

4.3. Vertical Backward Coupling Times and Perfect Sampling

In this section, we embed CFTP type algorithms into a more general framework using

the techniques developed in the previous section. For a Markov chain X = (Xn) with state

space X , denote by X(z)
n the chain that starts from z ∈ X . That is, X(z)

n has the same

transition probability with (Xn) but starts from a possibly di�erent initial state z ∈ X .

Theorem 4.7. [32] Let X = (Xn) be a Markov chain on a Polish space X that is repre-

sented with an IFS {X ; fθ, θ ∈ (0, 1)} and suppose that

T = min{n ≥ 0 : T −nX(z)
n = T −nX(y)

n , ∀z, y ∈ X} ≤ ∞

is well-de�ned and measurable. Then we have:

(i) For any x0 ∈ X , T is a backward coupling time for the Markov chain X = (Xn)

starting from x0.

(ii) If T is successful, then for any x0 ∈ X , T −TX(x0)
T is distributed according to π

where π is the unique stationary distribution of the Markov chain (X
(x0)
n ).

Proof. (i) Fix x0 ∈ X and let X = (Xn) be the Markov chain starting at time zero from

x0. We wish to prove that T −mXm equals to a constant value for m ≥ T so that T is a

backward coupling time for (Xn).

Let y be any element in X and set X̃0 = T −TX(y)
T . Note that X̃0 is indepen-

dent of y by de�nition of T . Now for any m ≥ T , if T −mXm−T = z, or equivalently if
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(fθ−T−1
o...ofθ−m)(x0) = z for some z ∈ X , then we have

T −mXm = (fθ−1o...ofθ−T
ofθ−T−1

o...ofθ−m)(x0) = (fθ−1o...ofθ−T
)(z) = T −TX(z)

T .

Since T −TX(z)
T = T −TX(y)

T = X̃0, we conclude that T −mXm = X̃0 for m ≥ T ; that is,

T −mXm becomes constant. Thus T is a backward coupling time for the Markov chain

starting from x0 as asserted.

(ii) By Theorem 4.5 we already know T −TX(x0)
T is distributed according to π where

π is a stationary distribution. In this case we claim that π is necessarily unique. Let

π′ be any stationary distribution. Suppose x0 ∼ π′. By the stationarity of π′ we have,

T −TX(x0)
T ∼ π′ . Following the above proof we also get, T −TX(x0)

T = T −TX(y)
T = X̃0 ∼ π.

Thus π = π′.

De�nition 4.3.1. For a Markov chain X = (Xn) on a Polish space X , the random time

T = min{n ≥ 0 : T −nX(z)
n = T −nX(y)

n , ∀z, y ∈ X} ≤ ∞ is said to be the minimal

vertical backward coupling time for the Markov chain X.

A random variable τ taking values in N ∪ {∞} is said to be a vertical coupling time

for the Markov chain X when we have τ ≥ T a.s. where T is the minimal vertical coupling

time ofX. Also τ is said to be successful when τ is �nite a.s.. Now the following corollary is

immediate since the random time in the mentioned algorithm was just a particular example

of a vertical backward coupling time.

Corollary 4.8. Propp-Wilson algorithm is a valid algorithm to get perfect samples from a

given distribution π.

Remark 4.9. The monotonicity arguments in PW algorithm can be extended to a vertical

backward coupling time setting. For instance, suppose that (Xn) is a Markov chain with

a monotone update function f on a Polish space X . Suppose further that X is linearly

ordered with a minimal element x and a maximal element y. Then it is true that the

random time de�ned by T = min{n ≥ 0 : T −nXx
n = T −nXy

n} ≤ ∞ is a vertical backward



38

coupling time. To see this, observe that for any m ∈ N and any z ∈ X , we have

T −mXx
m ≤ T −mXz

m ≤ T −mXy
m. (4.1)

Thus, when T is �nite, for any m ≥ T , we have T −mXz
m = T −mXx

m = T −mXy
m where

we use the fact that T −mXx
m = T −mXy

m for m ≥ T by the de�nition of T . This reveals

that T is in fact the minimal vertical backward coupling time. Generalizations for partially

ordered state spaces are also possible [20].

We devote the rest of this section to proving the following fundamental theorem which

gives a necessary and su�cient condition for the existence of successful minimal vertical

backward coupling times for Markov chains.

Theorem 4.10. [32] Let X = (Xn) be a Markov chain on a Polish space X with a unique

stationary distribution π. Then the minimal vertical backward coupling time T of X is

successful if and only if X is uniformly ergodic.

We need to give two lemmas before working on the proof this theorem that are very

important themselves.

Lemma 4.11. If T is the minimal vertical backward coupling time for a Markov chain

X = (Xn), then we have

P(T > m+ n) ≤ P(T > m)P(T > n)

for any m,n ∈ Z+.

Proof. For m,n ∈ Z+, we de�ne the following events regarding the coalescence of Markov

chains starting from di�erent states,

Cm = {T −mX(x)
m = T −mX(y)

m : ∀x, y ∈ X},

Cn,m = {T −(m+n)X(x)
n = T −(m+n)X(y)

n : ∀x, y ∈ X},

Cm+n = {T −(m+n)X
(x)
m+n = T −(m+n)X

(y)
m+n : ∀x, y ∈ X}.
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Since Cm ∪ Cn,m ⊂ Cm+n, we have P(Cm ∪ Cn,m) ≤ P(Cm+n). This gives

P(Cc
m+n) ≤ P(Cc

m ∩ Cc
n,m) = P(Cc

m)P(Cc
n,m)

as the events Cm and Cn,m are independent. But we also have P(Cc
m+n) = P(T > m+ n),

P(Cc
m) = P(T > m) and P(Cc

n,m) = P(Cc
n) = P(T > n). Hence

P(T > m+ n) = P(Cc
m+n) ≤ P(Cc

m)P(Cc
n,m) = P(T > m)P(T > n)

as required.

Lemma 4.12. If the minimal vertical backward coupling time T of a Markov chain X =

(Xn) is successful, then there exist c ∈ (0,∞) and λ ∈ (0, 1) such that

P(T > n) ≤ cλn,

for every n ∈ N.

Proof. Since T is successful, for a given β ∈ (0, 1), there exists N ∈ N for which we have

P(T > n) < β for every n ≥ N . Using Lemma 4.11 we get,

P(T > mN) ≤ (P(T > N))m < βm = (β
1
N )mN , for m ∈ N.

Set λ = β
1
N . For a given k = pN + s ∈ N with s ∈ {0, 1, ..., N − 1} we have

P(T > k) ≤ P(T > pN)P(T > s) < (λ)pNP(T > s).

Now if we choose c > 0 large enough so that

P(T > s) < c(λ)s for s = 0, 1, ..., N − 1,
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then we have for k = pN + s ∈ N with s ∈ {0, 1, ..., N − 1},

P(T > k) < (λ)pNP(T > s) < (λ)pNcλs = cλk

from which the result follows.

Proof of Theorem 4.10. Suppose �rstly that the minimal vertical backward coupling

time T of X is successful. Then there exist c ∈ (0,∞) and λ ∈ (0, 1) that satisfy P(T >

n) ≤ cλn for every n ∈ N by Lemma 4.12. Denote by τX the minimal forward coupling

time of the family {X(x)}x∈X = {(X(x)
n )}. Since T is measure preserving we have

P(T > n) = P(∃x, y : T −nX(x)
n 6= T −nX(y)

n )

= P(∃x, y : X(x)
n 6= X(y)

n )

= P(τX > n).

So P(τX > n) ≤ cλn.

We know by Theorem 4.1 that the coupling inequality ‖P n(x0, .) − π‖ ≤ P(τ̃ > n)

holds where τ̃ is the forward coupling time for two Markov chains one of which is stationary

and the other one is initiated from a state x0 ∈ X . Now since τ̃ ≤ τX a.s., we also have

P(τ̃ > n) ≤ P(τX > n). Combining all of these we get

‖P n(x0, .)− π‖ ≤ P(τ̃ > n) ≤ P(τX > n) ≤ cλn

which in particular says that X is uniformly ergodic by Theorem 2.11.

For the converse, assume that (Xn) is uniformly ergodic. Then by Theorem 2.12

there exists a probability measure Φ on X , m ≥ 1 and β ∈ (0, 1] such that

Pm(x, .) ≥ βΦ(.), ∀x ∈ X .

Now, for n ∈ Z, sample and �x i.i.d. sequences Un uniform from (0, 1) and Vn from Φ.
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We construct the sample path of Xmn by setting Xmn = Vmn if Umn ≤ β and drawing

Xmn ∼ 1
1−β (P (X(n−1)m, .)− βΦ(.)) if Umn > β. Note that with this update mechanism we

have,

P(Xmn ≤ y|Xm(n−1) = x) = βΦ((−∞, y]) + (1− β)
1

1− β
(P (x, (−∞, y])− βΦ((−∞, y]))

= P (x, (−∞, y])

and so the transitions are done according to P . Hence this mechanism gives an update

function f for (Xn). Now if we set TU = min{n ≥ 1 : Umn ≤ β}, then for any k ≥ TU ,

T −kXx0
k = (f−1o...of−TU+1of−TUo...of−k)(x0)

= (f−1o...of−TU+1)(V−TU )

which is independent of x0. Thus, TU is a vertical backward coupling time for X. Since

P(TU > k) ≤ (1− β)k, TU is �nite a.s.. As the minimal vertical backward coupling time T

satis�es T ≤ TU a.s., we conclude that T is successful as asserted. �

Thus, one can use CFTP-type algorithms for perfect sampling only if the chain is

uniformly ergodic.
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5. LETAC'S PRINCIPLE

5.1. Letac's Principle

Consider a Markov chain (Xn) on a Polish space (X ,B(X )) with an IFS representa-

tion {X ; fθ, θ ∈ Θ} where (Θ,F, Q) is a probability space. Recall that for such a Markov

chain, we de�ned the forward process starting from x ∈ X by

F0(x) = x, Fn(x) = (fθn−1o...ofθ0)(x), n = 1, 2, 3...

and the backward process starting from x ∈ X by

B0(x) = x, Bn(x) = (fθ0o...ofθn−1)(x), n = 1, 2, 3...

Theorem 5.1. [13] (Letac's Principle) Consider a Markov chain (Xn) on a Polish space

X whose IFS representation is given by {X ; fθ, θ ∈ Θ} where fθ is continuous for each

θ ∈ Θ. If B = limn→∞Bn(x) exists a.s. independent of x, then π := LB is the unique

stationary distribution for (Xn).

Proof. Since Bn(x) → B almost surely, Bn(x) → B weakly. Using LBn(x) = LFn(x) for

every n, we see that Fn(x) converges to B weakly independent of x. Using Theorem 2.9,

we conclude that LB is the unique stationary distribution for the Markov chain.

The following corollary relaxes the continuity condition in Theorem 5.1 using Corol-

lary 2.10.

Corollary 5.2. Theorem 5.1 remains valid when the assumption on the continuity of the

update functions is replaced with the WFP assumption for the Markov Chain (Xn).

Remark 5.3. CFTP algorithms are closely related to Letac's principle. Indeed PW al-

gorithm mainly relies on the following observation: Backward processes corresponding to
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�nite state Markov chains with an appropriate IFS become constant at a �nite time a.s.

and so converge to some random limit. Convergence of the backward process allows us to

have a random variable distributed according to the stationary distribution and get perfect

samples from this distribution.

Now we present an application of Letac's principle on processes evolving according

to a�ne transition maps.

5.1.1. A�ne Maps

Throughout this subsection, we consider a Markov chain (Xn) on X = R whose

update function f : R×R2 → R is given by f(x, θ) = f(x, (a, b)) = ax+ b with θ = (a, b).

Now, for θn = (an, bn), the forward and backward processes turn out to be:

Fn(x) = (Πn−1
j=0aj)x+

n∑
k=1

bk−1(Πn−1
j=kaj) (5.1)

and

Bn(x) = (Πn−1
j=0aj)x+

n−1∑
k=0

bk(Π
k−1
j=0aj). (5.2)

where we set Πk−1
j=kaj = 1 by convention.

To provide some motivation, we follow [14] and suppose for a moment that a ∈ (0, 1)

is constant. Then the �rst few terms of these two processes are;

F0(x) = x, F1(x) = ax+ b0, F2(x) = a2x+ ab0 + b1, F3(x) = a3x+ a2b0 + ab1 + b2,

and

B0(x) = x, B1(x) = ax+ b0, B2(x) = a2x+ ab1 + b0, B3(x) = a3x+ a2b2 + ab1 + b0.
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What di�ers between these processes is that the new randomness in the backward process

is damped by a power of a whereas the randomness in the forward process is preserved all

the time. This explains why the backward process Bn(x) converges independent of x and

Letac's principle is applicable to various problems.

Next we detail an argument on a�ne maps given in [13] that provides su�cient

conditions for the convergence of Bn(x) in the case of a�ne update functions.

Theorem 5.4. The following two conditions are su�cient for the convergence of backward

process Bn(x) in (5.2) independent of the initial position x ∈ R:

γ := E(log |a0|) ∈ (−∞, 0) and E(log+ |b0|) <∞ (5.3)

where a+ =max{a, 0}.

Proof. We �rstly show that

lim
k→∞

(Πk−1
j=0 |aj|)1/k < 1 a.s and lim

n→∞
(Πn−1

j=0aj)x = 0 a.s.

hold. Set An = (Πn−1
j=0 |aj|)1/n. Then the �rst one follows since we have,

logAn =
1

n

n−1∑
j=0

log |aj| → γ < 0

by Strong Law of Large Numbers. This also gives Σn−1
j=0 log |aj| → −∞ as n → ∞ which

reveals the second one. Note that the second one in particular says that the �rst term in

(5.2) drops as n→∞ for any x ∈ R.
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Next as an intermediate step, for k ∈ Z+ and Yk = −2
γ
log+|bk|, we observe

∞∑
k=1

P(Yk > k) =
∞∑
k=1

∞∑
j=k

P(j < Y1 ≤ j + 1) =
∞∑
j=1

j∑
k=1

P(j < Y1 ≤ j + 1)

=
∞∑
j=0

jP(j < Y1 ≤ j + 1)

=
∞∑
j=0

E(jIj<Y1≤j+1)

≤
∞∑
j=0

E(Y1Ij<Y1≤j+1)

= E(
∞∑
j=0

Y1Ij<Y1≤j+1)

= E(Y1)

=
−2

γ
E(log+ |b1|) <∞

where in the last step we use our assumption in (5.3). Now it follows that lim supk→∞
1
k

log+ |bk| ≤
−γ
2

a.s. by Borel-Cantelli's lemma. So

lim sup
k→∞

1

k
log |a0a1...ak−1bk| = lim sup

k→∞
(
1

k
log |a0a1...ak−1|+

1

k
log |bk|)

≤ lim sup
k→∞

(
1

k
log |a0a1...ak−1|) + lim sup

k→∞
(
1

k
log |bk|)

≤ γ − γ

2

=
γ

2
< 0

and this gives

lim sup
k→∞

|a1...ak−1bk|1/k < 1, a.s..

Using Cauchy's root test we see that the random series in (5.2) converges a.s.. As the

�rst term in (5.2) also drops for any x ∈ X , we conclude that the backward process Bn(x)

converges a.s. independent of x.
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The following corollary is an immediate consequence of Letac's principle.

Corollary 5.5. Under the assumption (5.3), the random variable
∑∞

k=0 bk(Π
k−1
j=0aj) has the

stationary distribution of the Markov chain Fn(x) given by (5.1) for any x ∈ R.

A complete treatment of the convergence of the backward process in the case of

a�ne transition maps relies on an analysis of the Lyapounov exponent. See [36] for results

involving a necessary and su�cient condition for the convergence of backward process in

the case of a�ne maps. Also see [13] and [37] for speci�c examples.

5.1.2. Systems Contracting on the Average

Our aim in this subsection is getting conclusions on stationary distributions of Markov

chains that contract on the average. Analysis of the backward processes will be our primary

tool in proving the following fundamental result as in Letac's principle.

Theorem 5.6. [15] Consider a Markov chain (Xn) on a Polish space X with an IFS

representation {X ; fθ, θ ∈ Θ}. Suppose that

E(d(fθ0(x), fθ0(y))) ≤ cd(x, y), ∀x, y ∈ X

holds for some c ∈ (0, 1) and

E(d(x0, fθ0(x0))) <∞, for some x0 ∈ X .

Then there exists a unique stationary distribution µ for the Markov chain (Xn). Further-

more, for a given bounded subset S of X there exists a positive constant αS satisfying

sup
x∈S

dK(µxn, µ) ≤ αSc
n, n ≥ 0 (5.4)

where dK is the Kantorovich distance between probability measures and µxn is the distribution

of the chain starting from x ∈ X at time n.
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Remark 5.7. Note that the update functions are not assumed to be continuous.

Proof of Theorem (5.6). As in the proof of Letac's principle, the backward process

de�ned by B0(x) = x and Bn(x) = (fθ0o...ofθn−1)(x), n ≥ 1 will play a key role in the

proof. Firstly we start by showing that Bn(x) converges a.s.. Proving that it is Cauchy

will su�ce as X is complete.

For N ≤ n ≤ m we have, d(Bn(x), Bm(x)) ≤
∑∞

k=N d(Bk(x), Bk+1(x)). Now, by

an application of Fatou's lemma, observe that if E (
∑∞

k=N d(Bk(x), Bk+1(x))) → 0, then∑∞
k=N d(Bk(x), Bk+1(x))→ 0 and so the Cauchyness of Bn(x) follows. We have,

E

(
∞∑
k=N

d(Bk(x), Bk+1(x))

)
=

∞∑
k=N

E(d(Bk(x), Bk+1(x)))

=
∞∑
k=N

E(E(d(Bk(x), Bk+1(x))|fθ1 , ..., fθk))

=
∞∑
k=N

E(E(d(fθ0(fθ1o...ofθk−1
(x)), fθ0(fθ1o...ofθk(x)))|fθ1 , ..., fθk))

≤
∞∑
k=N

cE(d(fθ1o...ofθk−1
(x)), (fθ1o...ofθk(x)))

Inductively we get

E

(
∞∑
k=N

d(Bk(x), Bk+1(x))

)
≤

∞∑
k=N

ckE(d(x, fθk(x))) =
cN

1− c
E(d(x, fθ0(x))). (5.5)

Next we observe

E(d(x, fθ0(x))) ≤ E(d(x, x0)) + E(d(x0, fθ0(x0))) + E(d(fθ0(x0), fθ0(x))) <∞ (5.6)

and so
∑∞

k=N d(Bk(x), Bk+1(x))→ 0. Thus Bk(x) is Cauchy and therefore converges.

We shall now prove that this convergence is independent of x. Let y ∈ X and ε > 0.
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We have

P(d(Bn(x), Bn(y)) > ε) ≤ E(d(Bn(x), Bn(y)))

ε

=
1

ε
E(E(d(Bn(x), Bn(y)|fθ1 , ..., fθn−1))

≤ c

ε
E(d(fθ1o...ofθn−1(x), fθ1o...ofθn−1(y)))

Iterating n times, we get

P(d(Bn(x), Bn(y)) > ε) ≤ cn

ε
E(d(x, y)).

Setting An = {d(Bn(x), Bn(y)) > ε}, this gives
∑∞

n=0 P(An) < ∞. Using Borel-Cantelli

lemma, we conclude that for a given ε > 0 and for x, y ∈ X , there existsN = Nx,y,ε ∈ N such

that for all n ≥ N , we have d(Bn(x), Bn(y)) ≤ ε. But this says that d(Bn(x), Bn(y)) → 0

as n→∞.

Next let X = limn→∞Bn(x0) where x0 is the special point given in the assumptions of

the theorem. For any x ∈ X , we have d(Bn(x), X) ≤ d(Bn(x), Bn(x0))+d(Bn(x0), X)→ 0

so that d(Bn(x), X) → 0 a.s.. This gives Bn(x) → X a.s. independent of x. Now letting

µ = LX , we observe that for n ≥ 0,

dK(µxn, µ) = sup{|
∫
X
fd(µxn − µ)| : ‖f‖L ≤ 1}

= sup{|E(f(Bn(x)))− E(f(X))| : ‖f‖L ≤ 1}

≤ sup{E(|f(Bn(x))− f(X)|) : ‖f‖L ≤ 1}

≤ E(d(Bn(x), X))

= E( lim
m→∞

d(Bn(x), Bm(x)))

≤ E( lim
m→∞

m−1∑
k=n

d(Bk(x), Bk+1(x))).
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So we get

dK(µxn, µ) ≤ E(
∞∑
k=n

d(Bk(x), Bk+1(x))) ≤ cn

1− c
E(d(x, fθ0(x)))

where in the last step we used our calculation in (5.5). For a given bounded subset S of

X , we get

sup
x∈S

dK(µxn, µ) ≤ cn

1− c
γS, n ≥ 0,

with γS := supx∈S E(d(x, fθ0(x))) <∞ since γS ≤ supx∈S(E(d(x0, fθ0(x0))+(c+1)d(x, x0))) <

∞ by (5.6). Setting αS = γS
1−c , we get

sup
x∈S

dK(µxn, µ) ≤ αSc
n, n ≥ 0

which gives us the convergence rate result given in (5.4). Now we only need to prove that

µ is a stationary probability and actually the unique one having this property. We recall

from Corollary 5.2 that if the Markov chain (Xn) has WFP, then the limiting distribution

is the unique stationary distribution. So proving that our chain has WFP will su�ce.

For this purpose, let (xn) be a sequence in X with xn → x. We claim that E(g(fθ0(xn)))→

E(g(fθ0(x))) for any g ∈ BC(X ). Using Markov's inequality, we get

P(d(fθ0(xn), fθ0(x)) > ε) ≤ E(d(fθ0(xn), fθ0(x)))

ε

≤ c
d(xn, x)

ε
→ 0

as n → ∞. So fθ0(xn) → fθ0(x) in probability and from this we get fθ0(xn) → fθ0(x) in

distribution. From this we get, limn→∞ E(g(fθ0(xn))) = E(g(fθ0(x))) for any g ∈ BC(X ).

Thus WFP is satis�ed and µ is the unique stationary distribution. �
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Some authors study algebraic tail conditions for the tail behavior of appropriate

random variables to catch su�cient conditions for the convergence of the backward process

corresponding to Markov chains. By de�nition, a random variable X has algebraic tail if

there exist α, β ∈ (0,∞) such that P(X > x) < α/xβ for all x > 0. Algebraic tail

conditions not only bring insight to IFS but also help getting important theorems on

stationary distributions of Markov chains. See [14] and [38] for such instances. Here we

quote one such theorem whose proof is very similar to the proof of Theorem 5.6.

Theorem 5.8. [14] Let L(X ) be the set of Lipschitz functions on a Polish space (X , d)

and µ be a probability measure on L(X ). Suppose that

f 7→ Kf has an algebraic tail with respect to µ

and for some x0 ∈ X

f 7→ d(f(x0), x0) has an algebraic tail with respect to µ.

Now, consider a Markov chain on X that moves according to the following rule: starting

from x, the chain chooses f ∈ L(X ) according to µ and goes to f(x). Furthermore we

assume that

∫
L(X)

logKfµ(df) < 0

where the integral can be −∞. Letting µxn be the law of chain after n moves starting from

x, we have:

(i) There is a unique stationary distribution π for the Markov chain.

(ii) There exist Ax ∈ (0,∞) and an r ∈ (0, 1) such that dP (µxn, π) ≤ Axr
n for n ≥ 1

and x ∈ X. The constant r does not depend on n or x; the constant Ax does not depend

on n, and Ax < a+ bd(x, x0) where 0 < a, b <∞.
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The essence of the problem is as before: Backward process converges at a geometric

rate to the stationary distribution independent of the initial state. See [14] for the proof

and interesting examples that study what happens without the regularity conditions given

in the theorem. [14] also contains ideas from applications to queueing theory and image

processing.

Note that there is also a considerable interest in the case where we have a Markov

chain with an IFS of �nitely many (a�ne) strict contractions. The motivation for this case

is obtaining a uni�ed method for generating and classifying a broad class of fractals. See

[39] for an analysis of this case.
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APPENDIX A: PROBABILITY METRICS

In this section, (X , d) is a Polish space with its Borel σ−algebra B(X ). Denote by

BL(X ) the set of bounded continuous functions f : X → R that also satisfy the Lipschitz

condition

‖f‖L := sup
x 6=y

|f(x)− f(y)|
d(x, y)

<∞.

De�ne ‖f‖BL = ‖f‖∞+‖f‖L. Then, (BL(X ), ‖ ‖BL) is a normed vector space and for any

f, g ∈ BL(X ), we have ‖fg‖BL ≤ ‖f‖BL‖g‖BL. See [19] for the proofs.

De�nition A.1. For two probability measures µ1, µ2 on (X ,B(X )), we de�ne the Wasser-

stein distance by

dW (µ1, µ2) = sup{
∣∣∣∣∫
X
f(µ1 − µ2)(dx)

∣∣∣∣ : ‖f‖BL ≤ 1}

and the Kantorovich distance by

dK(µ1, µ2) = sup{
∣∣∣∣∫
X
f(µ1 − µ2)(dx)

∣∣∣∣ : ‖f‖L ≤ 1}.

De�nition A.2. Prokhorov distance dP (µ1, µ2) between two probability measures µ1, µ2

on (X ,B(X )) is de�ned to be the in�mum of the δ > 0 that satis�es

µ1(K) < µ2(Kδ) + δ and µ2(K) < µ1(Kδ) + δ

for all compact subset K of X , where Kδ = {x ∈ X : d(K, x) < δ}.

For more on Prokhorov distance, see [27] and [40].
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Theorem A.3. [19] For any probability measures µn and µ on (X ,B(X )), the following

are equivalent.

(i) µn converges weakly to µ.

(ii) dW (µn, µ)→ 0.

(iii) dP (µn, µ)→ 0.

De�nition A.4. Total variation distance of probability measures µ1 and µ2 on (X ,B(X ))

is de�ned by

‖µ1 − µ2‖TV = sup{|µ1(A)− µ2(A)| : A ∈ B(X )}.
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APPENDIX B: GIBBS SAMPLING

Gibbs sampling is an MCMC method that is used to get approximate samples from a

multivariate distribution π(x1, ..., xn) in cases where sampling from the full conditionals can

be easily implemented. It may be seen as a special case of Metropolis-Hastings algorithm.

Since this technique is used in the thesis, we shortly describe the simulation procedure.

For a detailed treatment, see [4] and [6].

To use Gibbs sampling, one needs to sample from the conditional distributions of

each component given the remaining components (full conditional distributions), i.e. to

simulate from

πXi|X−i
(xi|x−i) where X−i = (X1, ..., Xi, Xi+1, ..., Xn).

Letting x(t) = (x
(t)
1 , x

(t)
2 , ..., x

(t)
n ) be the state of the chain at time t, we may describe the

two common forms of Gibbs sampler as follows.

1. Random Gibbs Sampler At time t + 1, choose a coordinate i uniformly from

{1, 2, ..., n}. Then draw x
(t+1)
i ∼ πXi|X−i

(xi|x−i) and leave all other coordinates unchanged.

2. Deterministic Gibbs Sampler At time t+ 1, draw x
(t+1)
i from the conditional

distribution

π(xi|x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n )

for i = 1, ..., n.
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