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ABSTRACT

FURTHER REGULARITY OF SOLUTIONS FOR ALMOST

CUBIC NLS EQUATION

This thesis consists of two major parts. In the first one, we try to give the

preliminary local well-posedness results for the ACNLS, and L2 −H1 regularity result

which is an easy and straightforward consequence of the equation, since the norm of

the gradientof a function can be estimated by difference quotients.

In the second part, we prove some regularity results for ACNLS. First, we prove

Hs local well-posedness, where the continuous dependence is weakened; and an im-

provement of it by obtaining the continuous dependence with an additional condition.

At the end, we prove local Xs,b local existence result using Banach fixed point theorem,

where the interval of existence is not taken to be maximal. The interval depends closely

on the arguments of the high-low frequency decomposition.
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ÖZET

NEREDEYSE KÜBİK DOĞRUSAL OLMAYAN

SCHRÖDINGER DENKLEMİ’NİN ÇÖZÜMLERİNİN

İLERİ TÜREVLENEBİLİRLİK ÖZELLİKLERİ

Bu tez iki ana kısımdan oluşmaktadır. Birinci kısımda, neredeyse kübik Schrödin-

ger denklemi ile ilgili bazı önbilgi niteliğindeki yerel iyi-tanımlılık neticelerini, ve bir

fonksiyonun türevinin normunun fark-oranlar yardımıyla yakınsanabilmesi yüzünden,

denklemin kolay ve doğrudan getirisi olan L2−H1 türevlenebilirlik sonucunu ispatlay-

acağız.

İkinci kısımda, ACNLS için bazı türevlenebilirlik sonuçları ispatlayacağız. İlk

olarak, sürekli bağımlılığın daha zayıf bir formunun kullanıldığı Hs yerel iyi-tanımlan-

mışlığı ve akabinde bunun fazladan bir koşul daha eklenerek sürekli bağımlılığın elde

edildiği geliştirilmiş bir halini ispatlayacağız. Son olarak, varlık aralığının maximal alın-

madığı, Banach sabit nokta teoremini kullanarak Xs,b uzaylarında yerel varlık teoremini

ispatlayacağız. Bu aralık ağırlıklı olarak yüksek-alçak frekans ayrışımı argümanlarına

dayanarak belirlenmektedir.
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1. INTRODUCTION

A class of equations that generalized the two dimensional cubic NLS was intro-

duced and called almost cubic NLS in a paper of Eden and Kuz. The original intention

was to carry the standard results of the cubic NLS to the case of almost cubic NLS.

Since this class includes some case of the Zakharov-Schulman equations ( see [1]) as

well as the purely elliptic case and the hyperbolic-elliptic-elliptic cases of the gener-

alized Davey-Stewartson equations as introduced in Babaoglu and Erbay, [2], all the

results that are obtained for ACNLS would have been applicable to these equations

as well. In particular, the question when the solutions of the initial value problem for

the generalized Davey-Stewartson equations has global existence and when solutions

blow-up was left open in Babaoglu et.al., [3]. Despite various attempts in [4], [5] a

complete answer was not reached. It was only in the paper of Eden-Gurel-Kuz utiliz-

ing the abstract framework of the ACNLS that a complete answer to the question was

furnished, see [6, Section 7] by analyzing the sign of the symbol that is used to define

the cubic non-local nonlinearity. As is well-known, a well-developed theory exists for

the cubic NLS (see e.g. [7], [8] and [9]), still leaving the question of global existence of

solutions with finite initial mass open. Various attempts were made to obtain results

that produce global existence of solutions for “rough data”, i.e. data with infinite en-

ergy, starting with the seminal work, [10], of Bourgain which introduced the high-low

frequency method. Using this method Bourgain was able to show that for the initial

data in Hs for s > 3/5 one can still have global existence. In fact, in his book Bourgain

also discusses some scattering results for a similar class of initial data, see [9, Prop.

3.53]. Later on, in order to improve these results with the hope of achieving the finite

mass case, the I-method was introduced by Colliander, Keel, Staffilani, Takaoka and

Tao. To the best of our knowledge in the two dimensional case the best result so far is

the one by Grillakis and Fang, in [11], that shows global existence when the data is in

H1/2. This thesis started with the ambitious hope of adapting the high-low frequency

argument of Bourgain in [10] to the case of the ACNLS. This hope is yet to be realized.

In the first part of this thesis, we gave the preliminary local well-posedness results

and L2 −H1 regularity result in details. The second part of the thesis contains some
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original contributions to the theory of ACNLS that we were fortunate to obtain as a

result of our struggle with Bourgain’s paper. Namely, we are able to show that there

are classes of rough initial data for which the Cauchy problem for ACNLS is locally

well-posed, these classes include Hs and Bourgain spaces. For the local well-posedness

in Hs we will make use of the ideas of Cazenave-Weissler, [12], and will concentrate on

the estimates needed for the non-local non-linear term in the appropriate Besov spaces.

This is a reoccuring theme in the study of ACNLS as can be witnessed in [13, Thm

3.5, 4.4, 5.2] as well. For the latter class, we make use of a fixed point argument that

is given in [14] for the case of NLS equation. (a paper that to our opinion seems to

contain some inaccuracies that we also overcame in the process) This section can be

seen as a prelude to our more ambitious and unrealized goal to obtain global existence

results for rough data. The results in the second part of this paper is already published

in [15].
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2. PRELIMINARY RESULTS FOR ACNLS

Consider the following two dimensional NLS equation:

iut + βuxx + uyy −K(|u|2)u = 0 (2.1)

u(0, x) = ϕ(x) , ϕ ∈ Hs

where β = ±1 and K̂(f)(ξ) = α(ξ)f̂(ξ) for f ∈ L2, and the symbol satisfies the

following:

(H1) α is even and homogeneous of degree 0,

(H2) α ∈ C∞(R2 \ {0, 0}).

We call this equation almost cubic nonlinear Schrödinger (ACNLS) equation and clas-

sify the cases β = ±1 as the elliptic and the hyperbolic cases respectively. In the pro-

ceeding arguements we will establish local well posedness of the corresponding Cauchy

problem in Hs. In the local and the global theory of this equation, we will be using

the conservation of some quantities, called the mass and the energy defined as:

M(u) =

∫
R2

|u|2 dx dy, E(u) =

∫
R2

[
β|ux|2 + |uy|2 + 1/2K(|u|2)|u|2

]
dx dy, (2.2)

respectively and mass is naturally defined for L2-solutions whereas it is possible to

define energy (See [13, Corollary 4.5, Proposition 6.1]).

For the mass conservation, if we begin with H1-solutions, considering H−1 −H1

duality product of (2.1) with 2u gives

2i〈ut, u〉−1,1 = 2(β‖ux‖2
2 + ‖uy‖2

2) + 2

∫
R2

K(|u|2)|u|2 dx.
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Since the right hand side is real, we obtain the mass conservation on [0, Tmax). For

the conservation of energy, multiplying (2.1) by 2ūt and then taking real parts give

2Re ūt(βuxx + uyy) = K(|u|2)(|u|2)t from which it follows that

0 =
d

dt

∫
R2

(β|ux|2 + |uy|2) dx dy + Re

∫
R2

α(ξ)f̂(ξ)(̂ft)(ξ) dξ

=
d

dt

∫
R2

(β|ux|2 + |uy|2) dx dy +
1

2

∫
R2

K(|u|2)|u|2 dx dy

 ,
by using Parseval identity and the fact that α is even. These formal computations make

sense for H2-solutions. By using continuous dependence results, one can approximate

L2 and H1-solutions with H1 and H2-solutions, respectively to obtain the necessary

conservation laws. The definition of K with the assumptions (H1) and (H2) allows us

to deduce the facts that Im (K(|u|2)|u|2) = 0 and for G(u) ≡ 1/4
∫
R2 K(|u|2)|u|2dx,

G ∈ C1(L4;R) with G′(u)(v) = Re
∫
R2 K(|u|2)uv̄ dx for every v ∈ L4.

2.1. L2 local well-posedness

Theorem 2.1.1. For the ACNLS, for any φ ∈ L2, there exist Tmax, Tmin ∈ (0,∞] and

a unique maximal solution u ∈ C((−Tmin, Tmax), L2) ∩ L4
loc((−Tmin, Tmax), L4) of the

ACNLS. Moreover, the following properties hold:

(P1) If Tmax < ∞ (respectively Tmin < ∞), then ‖u‖Lq((0,Tmax),Lr) = ∞ (respectively

‖u‖Lq((−Tmin,0),Lr) =∞) for every admissible pair (q, r) with r > 4.

(P2) u ∈ Lqloc((−Tmin, Tmax), Lr) for very admissible pair (q, r).

(P3) ‖u(t)‖L2 = ‖φ‖L2 for all t in (−Tmin, Tmax).

(P4) The mappings φ 7→ Tmin, Tmax are lower semi-continuous L2 → (0,∞]. If φn → φ

in L2 and if un are the corresponding solutions of the ACNLS, then un → u in

Lq(I, Lr) for every interval I b (−Tmin, Tmax) and for every admissible pair (q,r).
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Proof. If I is an interval I ⊂ R with 0 ∈ I and if u, v ∈ L4(I, L4), we have that,

‖K(|u|2)u−K(|v|2)v‖L4(I,L4) ≤ C(‖u‖2
L4(I,L4) + ‖v‖2

L4(I,L4))‖u− v‖L4(I,L4). (2.3)

Then if we write

G(u)(t) =

∫ t

0

Tβ(t− s)K(|u(s)|2)u(s)ds,

from (2.3) and the Strichartz’ estimates, we get,

G(u) ∈ C(I, L2) ∩ Lq(I, Lr) for every admissible pair(q, r),

‖G(u)‖Lq(I,Lr) ≤ C‖u‖3
L4(I,L4) and (2.4)

‖G(u)−G(v)‖Lq(I,Lr) ≤ C(‖u‖2
L4(I,L4) + ‖v‖2

L4(I,L4))‖u− v‖L4(I,L4), (2.5)

for some constant C independent of I. First we will prove the existence and uniqueness

of the solution.

We will prove that there exist a δ > 0 such that if φ ∈ L2 satisfies

‖Tβ(.)φ‖L4(I,L4) < δ, (2.6)

for some interval I ⊂ R containing 0, then there exits a unique solution u ∈ C(I, L2)∩

L4(I, L4) of ACNLS. In addition, u ∈ Lq(I, Lr) for every admissible pair (q, r). More-

over, if φ, ψ ∈ L2 both satisfy (2.6) and if u, v are the corresponding solutions of the

ACNLS equation, then

‖u− v‖L∞(I,L2) + ‖u− v‖L4(I,L4) ≤ C‖φ− ψ‖L2 , (2.7)

for some constant C independent of I, u and v.
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Now fix a δ > 0, to be chosen later, and let φ ∈ L2 satisfy (2.6). Consider the set

E = {u ∈ L4(I, L4) : ‖u‖L4(I,L4) ≤ 2δ},

so that (E, d) is a complete metric space with d(u, v) = ‖u− v‖L4(I,L4).

For u ∈ E, from Duhamel’s principle, for t ∈ I, write,

H(u)(t) = Tβ(t)φ+ i

∫ t

0

Tβ(t− s)K(|u(s)|2)u(s)ds. (2.8)

It follows easily from (2.6), (2.4) and (2.5) that if δ is small enough (independently of

φ and I), then H is a strict contraction on E. Thus H has a unique fixed point u,

which is a unique solution of ACNLS in E.

Using (2.4) and the Strichartz’ estimates, we get that u ∈ C(I, L2) ∩ Lq(I, Lr)

for every admissible pair (q, r). The inequality (2.7) follows easily from (2.5) and the

Strichartz’ estimates.

Now we shall prove uniqueness (without the assumption (2.6)). Let I be an

interval with 0 ∈ I and consider two solutions u, v ∈ L4(I, L4) of ACNLS. We show

that if 0 ∈ J ⊂ I with |J | sufficiently small, then u = v on J . Suppose that this

assumption is true, then we may define 0 < θ ≤ T2 where I = [T1, T2], by

θ = sup{0 < τ ≤ T2 : u = v on (0, τ)}.

It follows that u = v on [0, θ]. If θ = T2, then the uniqueness follows for the positive

times. So assume for a contradiction that θ < T2. We see that u1(·) = u(θ + ·) and

v1(·) = v(θ+ ·) are solutions of ACNLS with φ replaced by u(θ) = v(θ) on the interval

(0, T2 − θ). By uniqueness for the small time, we can say that u1 = v1 on some small

interval [0, ε] with 0 < ε < T2 − θ. But this means that u = v on [0, θ + ε], which

contradicts with the definition of θ. Hence small time uniqueness gives uniqueness for

the positive times. Similarly we can show that the same holds for the negative times.
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Now we will prove our assumption on small time uniqueness, namely, if 0 ∈ J ⊂ I with

|J | sufficiently small, then u = v on J . We have,

‖u‖2
L4(J,L4) + ‖v‖2

L4(J,L4) → 0 as |J | ↓ 0. (2.9)

From (2.7), we can deduce that,

‖u− v‖L4(J,L4) ≤ C(‖u‖2
L4(J,L4) + ‖v‖2

L4(J,L4))‖u− v‖L4(J,L4). (2.10)

Then using (2.9), for |J | sufficiently small, we have

C(‖u‖2
L4(J,L4) + ‖v‖2

L4(J,L4)) < 1,

and we can conclude that

‖u− v‖L4(J,L4) ≤ d‖u− v‖L4(J,L4), with some 0 < d < 1.

Thus ‖u− v‖L4(J,L4) = 0, meaning, u = v on J .

The property (P3), the mass conservation, is proven for smooth solutions. For

the general case we take a sequence φn ∈ H1 such that φn → φ in L2, for which we

will show that the ACNLS is locally well-posed in H1. From Strichartz’ estimates we

get that for n sufficiently large, φn satisfies (2.6), so that by (2.7), un denoting the

solutions associated to φn, un → u in C(I, L2). Then we see that un are H1 solutions

of the ACNLS, so that the mass conservation is obtained for un for n sufficiently large,

namely, ‖un(t)‖L2 = ‖φn‖L2 for all t ∈ I. Then passing to limit as n → ∞ we get

‖u(t)‖L2 = ‖φ‖L2 for all t ∈ I.

We are now able to construct the maximal solution (and consequently property

(P1), the blow-up alternative) and show property (P4), the continuous dependence.

Let φ ∈ L2. By Strichartz’ estimates we know that Tβ(·)φ ∈ L4(R, L4). Then
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we have ‖Tβ(·)φ‖L4((−T,T ),L4) → 0 as T → 0. Hence φ satisfies (2.6) and hence we

can construct the unique local solution u. Again first we will prove arguments for the

positive times, then the proof for the negative times will be done similarly, now we

can define Tmax(φ) = sup{T > 0 : solution to the ACNLS exists on [0, T ]}. Then by

uniqueness, there exists a solution u ∈ C((0, Tmax), L
2) ∩ L4((0, Tmax), L

4) of ACNLS.

If Tmax < ∞ and ‖u‖L4((0,Tmax),L4) < ∞. Let 0 ≤ t ≤ t + s < Tmax. Then we have, by

Duhamel’s principle and uniqueness of the solution, that

Tβ(s)u(t) = u(t+ s)− i
∫ s

0

Tβ(s− τ)K(|u(t+ τ)|2)u(t+ τ)dτ. (2.11)

Then by (2.4) we get,

‖Tβ(.)u(t)‖L4((0,Tmax−t),L4) ≤ ‖u‖L4((t,Tmax),L4) + C‖u‖3
L4((t,Tmax),L4). (2.12)

Hence choosing t close enough to Tmax gives us that

‖Tβ(.)u(t)‖L4((0,Tmax−t),L4) < δ/2.

This says that u can be extended after Tmax, but Tmax was chosen to be maximal. Thus

‖u‖L4((0,Tmax),L4) = ∞, and for any admissible pair (q, r) where r > 4, from Hölder’s

inequality, we have

‖u‖L4((0,T ),L4) ≤ ‖u‖L∞((0,T ),L2)µ‖u‖1−µ
Lq((0,T ),Lr) ≤ ‖φ‖

µ
L2‖u‖1−µ

Lq((0,T ),Lr),

for any T < Tmax, with µ = 2(r − 4)/4(r − 2). Letting T → Tmax, we get

‖u‖Lq((0,Tmax),Lr) =∞.

Thus properties (P1) and (P2) are proven.

To show the continuous dependence, consider T ∈ R such that T < Tmax. Since

u ∈ C([0, T ], L2), it follows from Strichartz’ estimates and compactness of [0, T ] that
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there exists σ > 0 such that ‖Tβ(.)u(t)‖L4((0,σ),L4) ≤ δ/2 for all t ∈ [0, T ]. Let n be

an integer such that T < nσ, let C ≥ 1 be the constant in (2.7), and M be such that

‖Tβ(.)v‖L4(R,L4) ≤M‖v‖L2 . Let ε > 0 be small enough so that MKn−1ε < δ/2. We will

show that if ‖φ−ψ‖L2 ≤ ε, then Tmax(ψ) > T and ‖u−v‖C([0,T ],L2)+‖u−v‖L4((0,T ),L4) ≤

nKn‖φ − ψ‖L2 , where v is the corresponding solution to the initial datum ψ. The

inequality ‖φ− ψ‖L2 ≤ ε, implies that

‖Tβ(.)ψ‖L4((0,T/n),L4) ≤ ‖Tβ(.)φ‖L4((0,T/n),L4) + ‖Tβ(.)(φ− ψ)‖L4((0,T/n),L4)

≤ δ/2 +Mε

≤ δ.

Thus, we get Tmax(ψ) > T/n and that

‖u− v‖C([0,T/n],L2) + ‖u− v‖L4((0,T/n),L4) ≤ K‖φ− ψ‖L2 .

Hence, ‖u(T/n) − v(T/n)‖L2 ≤ Kε, and iterating this argument n times gives the

result.

2.2. H1 local well-posedness and regularity

Theorem 2.2.1. Given φ ∈ H1, there exists a unique maximal solution

u ∈ C([0, Tmax), H
1) ∩ C1([0, Tmax), H

−1),

of the ACNLS on [0, Tmax) with the following properties:

(P1) ∇u ∈ L4([0, t], L4) for every t < Tmax.

(P2) If Tmax <∞, then ‖u‖L∞([0,Tmax),H1) =∞

(P3) If φn → φ in H1 and un’s are the corresponding solutions, then for any I b

[0, Tmax), un → u in C(I,H1)
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Proof. The proof is similar to the proof of the L2 local well-posedness theorem, after

replacing the L2-norm with H1 norm and Lq(I, Lr)-norms with Lq(I,W 1,r)-norms for

all admissible pairs (q, r).

One of the immediate questions to ask about the resemblance of the proof is that,

since the H1 solutions are also L2 solutions, do the solutions in L2 framework and in

H1 framework also resemble? The answer to that question is not immediate. We know

that if the initial datum is in H1, then both local well-posedness theorems give us a

maximal solution and by uniqueness, we can conclude that the solutions coincide in

the maximal intervals of existence. So we can pose the question in another form: If

the initial datum φ is in H1, do the L2 maximal interval of existence and H1 maximal

interval of existence coincide?

Proposition 2.2.2 (L2 − H1 regularity). Consider the ACNLS with the initial da-

tum φ ∈ L2, then by theorem (2.1.1), there exist Tmax and Tmin in (0,∞] and a

unique maximal solution u ∈ C((−Tmin, Tmax), L2). If φ is moreover in H1, then

u ∈ C((−Tmin, Tmax), H1).

Proof. First we can easily see that the maximal interval of existence we obtain in the-

orem (2.2.1) is not larger than the maximal interval of existence we obtain in theorem

(2.1.1) since all H1 solutions are also L2 solutions.

Now let u be the L2 solution of the ACNLS, where we considered the initial

datum in L2 and used the theorem (2.1.1) to construct u. We will show that if φ ∈ H1,

then u ∈ C(I,H1), where I is an interval containing 0. Considering theorem (2.2.1),

we can construct a solution v ∈ C((−T∗, T ∗), H1), where T∗, T
∗ > 0 and (−T∗, T ∗) is

the maximal interval of existence we obtain by theorem (2.2.1). Since v is also an L2

solution, by uniqueness we can say that u = v as long as both are defined. Thus it is

enough for us to show that I ⊂ (−T∗, T ∗). If we assume I = (a, b), and b > T ∗ since

the ACNLS is invariant under space translations and gradient is the limit of the finite
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differences quotient, the inequality (2.7) yields

‖∇v‖L∞((0,T ∗),L2) ≤ C‖∇φ‖L2 ,

which contradicts with the blow-up alternative for the H1 solutions, namely the prop-

erty (P2) of theorem (2.2.1). Hence b < T ∗. Similarly we can show that a > T∗.
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3. FURTHER REGULARITY RESULTS FOR ACNLS

In this chapter we will state some further regularity results for the solutions of

the ACNLS equation. First we will give Hs local well-posedness result and finally we

will prove Xδ
s,b local existence result.

3.1. Hs local well-posedness and regularity

This section consists of two Hs local well-posedness results. In the first one

continuous dependence is weakened, and in the second one we achieve the desired

continuous dependence by requiring an additional condition on the solution.

Theorem 3.1.1 (Hs local well-posedness 1). Let s < 1 and let (γ, ρ) be the admissible

pair defined by ρ = 4/(1 + s), γ = 4/(1 − s). Given ϕ ∈ Hs, there exist Tmax, Tmin ∈

(0,∞] and a unique maximal solution

u ∈ C((−Tmin, Tmax), Hs) ∩ Lγ((−Tmin, Tmax), Bs
ρ,2) (3.1)

of the ACNLS, and the following hold:

(P1) u ∈ Lqloc((−Tmin, Tmax), Bs
r,2) for all admissible (q, r).

(P2) (Blow-up) If Tmax < ∞ (or Tmin < ∞), then ‖u(t)‖Hs → ∞ as t → Tmax (or

t→ Tmin).

(P3) u depends continuously on ϕ in the following sense: There exists 0 < T <

Tmax, Tmin such that if ϕn → ϕ in Hs and if un denotes the solution of ACNLS

with the initial datum ϕn, then 0 < T < Tmax(ϕn), Tmin(ϕn) for all sufficiently

large n and un is bounded in Lq((−T, T ), Bs
r,2) for all admissible (q, r). Moreover,

un → u as n→∞ in Lq((−T, T ), Lr) and in C((−T, T ), Hs−ε) for all ε > 0.

(P4) If, moreover, ϕ ∈ H1 and β = 1 then we have that the energy,

E(u) =

∫
R2

[
β|ux|2 + |uy|2 + 1/2K(|u|2)|u|2

]
dx dy,
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is conserved in every compact subset of (−Tmin, Tmax).

After obtaining Strichartz’ type estimates and some estimates for the nonlinearity,

the result will follow in the spirit of the proof in [12, Theorem 1.3]. Since Strichartz’

type estimates hold for the solution of the linear equation iut + βuxx + uyy = 0 (see

[13] for details), what we need to show is the estimates on the nonlinearity to recall

the proof of the theorem in [12].

Lemma 3.1.2. Let K satisfies (H1)(H2). Let 0 < s < 1, 1 ≤ q ≤ ∞, 1 ≤ p ≤ r ≤ ∞.

If σ = 2pr/(r − p), then

‖K(|f |2)f‖Ḃsp,q ≤ C‖f‖2
Lσ‖f‖Ḃsr,q ,

and

‖K(|f |2)f)‖Bsp,q ≤ C‖f‖2
Lσ‖f‖Bsr,q ∀f ∈ Bs

r,q ∩ Lσ.

Proof. From Hölder’s inequality we have ‖fg‖Lp ≤ ‖f‖Lσ/2‖g‖Lr . Since 2/σ + 1/r =

1/p. Then

‖K(|f |2)f‖Lp ≤ ‖K(|f |2)‖Lσ/2‖f‖Lr .

Since K is a Calderon-Zygmund type operator (see [16],[17]) and σ > 2 then K is

bounded on Lσ/2, which gives

‖K(|f |2)f‖Lp ≤ C‖(|f |2)‖Lρ/2‖f‖Lr = C‖f‖2
Lσ‖g‖Lr .

n Now set τyf = f(· − y). By the Remark 1.4.4 ((ii),(iii)) in [7], if we can show for

y ∈ R2, ‖K(|f |2)τyf−K(|f |2)f‖Lp ≤ C‖f‖2
Lσ‖τyf−f‖Lr , first inequality of the lemma
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will be obtained. So

‖τy(K(|f |2)f)−K(|f |2)f‖Lp = ‖τyK(|f |2)τyf −K(|f |2)f‖Lp

≤ ‖τyK(|f |2)f −K(|f |2)f‖Lp (3.2)

+‖τyK(|f |2)τyf − τyK(|f |2)f‖Lp (3.3)

and

(3.2) ≤ ‖f‖Lσ‖K(τy|f |2)−K(|f |2)‖L2pr/(p+r)

≤ ‖f‖Lσ‖K(τy|f |2 − |f |2)‖L2pr/(p+r)

≤ C‖f‖Lσ‖τy|f |2 − |f |2‖L2pr/(p+r)

≤ C‖f‖Lσ(‖τyf̄(τyf − f)‖L2pr/(p+r) + ‖f(τyf̄ − f̄)‖L2pr/(p+r))

≤ C‖f‖Lσ(‖f‖Lσ‖τyf − f‖Lr)

≤ C‖f‖2
Lσ‖τyf − f‖Lr

where we obtain the second line by the L2pr/(p+r) → L2pr/(p+r) boundedness of K. We

estimate (3.3) by:

(3.3) ≤ ‖τyK(|f |2)(τyf − f)‖Lp ≤ ‖τyK(|f |2)‖Lσ/2‖τyf − f‖Lr

≤ C‖|f |2‖Lσ/(2)‖τyf − f‖Lr

≤ C‖f‖2
Lσ‖τyf − f‖Lr

as desired. Hence the inequalities of the lemma are proved.

Lemma 3.1.3. : For f, g ∈ C(I,Hs) ∩ Lγ(I, Bs
ρ,2) and I = (0, T ) for T > 0 to be

chosen later, we have:

‖K(|f |2)f −K(|g|2)g‖Lγ′ (I,Lρ′ ) ≤ C(‖f‖2
Lγ(I,Bsρ,2) + ‖g‖2

Lγ(I,Bsρ,2))‖f − g‖Lp(I,Bsρ,2),

where 1/p = s+ 1/γ.
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Proof. For such f, g we have

‖K(|f(t)|2)f(t)−K(|g(t)|2)g(t)‖Lρ′ ≤ ‖K(|f(t)|2)(f(t)− g(t))‖Lρ′ (3.4)

+ ‖g(t)K(|f(t)|2 − |g(t)|2)‖Lρ′ . (3.5)

We estimate (3.4) and (3.5) as follows:

(3.4) ≤ ‖f(t)− g(t)‖Lρ‖K(|f(t)|2)‖L2/(1−s)

≤ ‖f(t)− g(t)‖Lρ‖|f(t)|2‖L2/(1−s)

≤ C‖f(t)− g(t)‖Lρ‖f(t)‖2
L4/(1−s)

≤ C‖f(t)− g(t)‖Lρ‖f(t)‖2
Bsρ,2

by the Sobolev embedding, (see [18]), Bs
ρ,2 ↪→ L4/(1−s). For (3.5):

(3.5) ≤ C‖g(t)‖L4/(1−s)‖|f(t)|2 − |g(t)|2‖L2

≤ C‖g(t)‖L4/(1−s)‖|f(t)|+ |g(t)|‖L4/(1−s)‖f(t)− g(t)‖Lρ

≤ C‖g(t)‖L4/(1−s)(‖f(t)‖L4/(1−s) + ‖g(t)‖L4/(1−s))‖f(t)− g(t)‖Lρ .

We obtain by the Cauchy inequality (ab ≤ (a2 + b2)/2) that

‖K(|f(t)|2)f(t)−K(|g(t)|2)g(t)‖Lρ′ ≤ C(‖f(t)‖2
Bsρ,2

+ ‖g(t)‖2
Bsρ,2

)‖f(t)− g(t)‖Lρ ,

then Hölder’s inequality in time yields

‖K(|f |2)f −K(|g|2)g‖Lγ′ (I,Lρ′ ) ≤ C(‖f‖2
Lγ(I,Bsρ,2) + ‖g‖2

Lγ(I,Bsρ,2))‖f − g‖Lp(I,Lρ)

which is the estimate we look for.

Hence we get all the crucial estimates in the proof given in the [12], and the proof

follows similarly.

Theorem 3.1.4. (Hs Regularity) Let (γ, ρ) be defined as in Theorem 3.1.1.
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For ϕ ∈ Hs, let u ∈ C((−Tmin, Tmax), Hs) ∩ Lγ((−Tmin, Tmax), Bs
ρ,2) be the maximal

Hs solution of the ACNLS. Then if, in addition, ϕ ∈ Hs′ for some s < s′ < 1, for any

admissible (q, r)

u ∈ C((−Tmin, Tmax), Hs′) ∩ Lq((−Tmin, Tmax), Bs′

r,2).

Proof. Since there is local well posedness in Hs′ we have u as an Hs′ solution on some

maximal interval [0, T ) where T ≤ Tmax (since all Hs′ solutions are also Hs solutions).

Now we want to show that T = Tmax.

To obtain a contradiction, suppose T 6= Tmax, then T < Tmax and ‖u(t)‖Hs′ → ∞ as

t→ T . Since T < Tmax, we have

‖u‖Lγ((−Tmin,Tmax),Bsρ,2) + sup
0≤t≤T

‖u‖Hs <∞. (3.6)

Then by previous calculations, we get

‖
[
K(|u|2)u

]
(t)‖Bs′

ρ′,2
≤ C‖u‖2

L4/(1−s)
‖u‖Bs′ρ,2 ≤ C‖u‖2

Bsρ,2
‖u‖Bs′ρ,2 , (3.7)

by Sobolev embedding Wm,p ↪→ Lq for p ≤ q ≤ np/(n−mp).

Now let I ⊂ (0, T ). Then

‖K(|u|2)u(t)‖Lγ′ (I,Bs′
ρ′,2) ≤ C‖u‖2

Lγ(I,L4/(1−s))‖u‖Lp(I,Bs
′
ρ,2), (3.8)

where 1/p = 1/γ + s.

Then by Strichartz’ estimates we get,

‖u‖L∞(I,Hs′ ) + ‖u‖Lγ(I,Bs
′
ρ,2) ≤ C‖ϕ‖Hs′ + C‖u‖L1(I,Hs′ ) + C‖u‖Lp(I,Bs

′
ρ,2), (3.9)
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for each I with 0 ∈ I ⊂ (0, T ). Now let 0 < ε < τ < T and consider I = (0, τ). Then

‖u‖L1(I,Hs′ ) ≤ ‖u‖L1((0,τ−ε),Hs′ ) + ‖u‖L1((τ−ε,τ),Hs′ )

≤ ‖u‖L1((0,τ−ε),Hs′ ) + ε‖u‖L∞((τ−ε,τ),Hs′ )

≤ Cε + ε‖u‖L∞(I,Hs′ )

and similarly

‖u‖Lp(I,Bs
′
ρ,2) ≤ Cε + εs‖u‖Lγ(I,Bs

′
ρ,2)

which we obtain by Hölder inequality (here, we want to get positive power of ε which

we did by the choice of (γ, ρ)).

‖u‖L∞(I,Hs′ ) + ‖u‖Lγ(I,Bs
′
ρ,2) ≤ C + Cε + εC‖u‖L∞(I,Hs′ ) + εsC‖u‖Lγ(I,Bs

′
ρ,2)

then choosing ε small enough such that, εC < 1/2 and εsC < 1/2 we get

‖u‖L∞(I,Hs′ ) + ‖u‖Lγ(I,Bs
′
ρ,2) ≤ C,

where C is independent of τ . We obtain a contradiction if we let τ → T with T being

the maximal time of existence. Hence the result follows.

As we can see, the Hs well posedness theorem does not state the continuous

dependence. But we can state (as in [19, Theorem 1.4]):

Theorem 3.1.5 (Hs local well-posedness 2). For φ ∈ Hs, the L2 solution of the

ACNLS and the L2 local well-posedness time T0 satisfy:

(P1) u ∈ L∞(I,Hs).

(P2) There exist δ2 such that if ‖u‖L4(I,L4) ≤ δ2 then ‖Dsu‖Lq(I,Lr) ≤ C‖φ‖Hs for all

admissible pairs (q, r).

(P3) There is a δ3 > 0 such that, if ‖u‖L4(I,L4) ≤ δ2, u′ is a solution of the ACNLS
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with the initial datum φ′ ∈ Hs, and if ‖φ−φ′‖L2 ≤ δ3, then ‖Ds(u−u′)‖Lq(I,Lr) ≤

C‖φ− φ′‖Hs for all admissible pairs (q, r). Again where C is only dependent on

dimension, s and the operator K.

Proof. For the proof of 1. we need to prove two claims;

Claim 1: The operator K commutes with Ds whenever ‖DsK(u)‖L2 <∞ .

Proof of Claim 1: Since K is a singular integral operator, we have that K is bounded

from Lp to Lp if p > 1, and for u ∈ L2, K(u) is in L2 and
∫

(1 + |ξ|2)s|α(ξ)û(ξ)|2dξ ≤

M2
∫

(1 + |ξ|2)s|û(ξ)|2dξ = M2‖u‖2
Hs where M = sup |α(ξ)|, which gives that K(u)

is in Hs for u ∈ Hs. So DsK(u) ∈ L2 whence DsK(u) = K(Dsu) since Fourier

transforms of both sides are equal. For |u|2, consider a sequence of functions (un)

such that un ∈ Hs for all n and K(un) → K(|u|2) in Ḣs then, by Parseval identity,

‖|ξ|sα(ξ)(ûn − ˆ|u|2)‖L2 → 0. So ‖|ξ|s(ûn − ˆ|u|2)‖L2 → 0 which gives that un → u

in Ḣs. Then since for such un’s DsK(un) = K(Dsun), we get ‖K(Ds|u(t)|2)‖L2 =

‖DsK(|u(t)|2)‖L2

Claim 2: ‖Ds(fg)‖Lp ≤ C[‖Dsf‖Lp1‖g‖Lp2 + ‖Dsg‖Lp3‖f‖Lp4 ] where 1/p = 1/p1 +

1/p2 = 1/p3 + 1/p4

Proof of Claim 2: For the functions ψ and φ in L2, if we define operators ∆jf =

F−1(ϕj f̂) for f ∈ S , then by Littlewood-Paley theorem (for details, see [20],[8,

Appendix A]) we know that

‖f‖Ẇ s,p ≈ ‖(
∞∑
−∞

22js∆jf)‖Lp ,

and consequently:

‖Ds(fg)‖Lp = ‖
∑
j,k

Ds(∆jf∆kg)‖Lp

≤ ‖
∑
j

∑
k<j

Ds(∆jf∆kg)‖Lp + ‖
∑
j=k

Ds(∆jf∆kg)‖Lp + ‖
∑
k

∑
j<k

Ds(∆jf∆kg)‖Lp

= S1 + S2 + S3.

Since S1 and S3 are almost symmetric if we can find an estimate for S1 then inter-
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changing the roles of f and g we will get the estimate for S3. Now

S1 ≤ C‖(
∑
j

22js|∆jf |2|
∑
k<j

∆kg|2)1/2‖Lp

≤ C‖(
∑
j

22js|∆jf |2)1/2Mg‖Lp

≤ C‖(
∑
j

22js|∆jf |2)1/2‖Lp1‖Mg‖Lp2

≤ C‖Dsf‖Lp1‖g‖Lp2

where 1/p = 1/p1 + 1/p2 and M is the Hardy-Littlewood maximal operator which is

bounded in Lp where 1 < p. But to have the second line, we have to consider the basic

Fourier transform property that if g(x) = λnf(λ−1x) then ĝ(ξ) = f̂(λx). For f being

the function ψ and so f(λx) being the ϕ(x), since ϕ̌ ∈ L1,
∑

k<j ∆k becomes a radially

bounded approximate identity for j > 0 and we know that such approximate identities

are bounded by M .

Obtaining an estimate for S2 is much easier:

S2 ≤ C‖(
∑
j

22js|∆jf∆jg|2)1/2‖Lp

≤ C‖(
∑
j

2js|∆jf∆jg|)‖Lp

≤ C‖(
∑
j

22js|∆jf |2)1/2(
∑
j

∆jg|2)1/2‖Lp

≤ C‖(
∑
j

22js|∆jf |2)1/2‖Lp1‖(
∑
j

|∆jg|2)1/2‖Lp2

≤ C‖Dsf‖Lp1‖g‖Lp2

by Cauchy-Schwarz inequality. Hence we get the result since p1, p2, p3, p4 are cho-

sen to satisfy the condition in the claim. Now the proof of property 1 will be done

similarly as done in [7, Theorem 4.9.1]. For that, let (ρ, γ) be the admissible pair
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(4/(1 + s), 4/(1− s)) and we have by Hölder’s inequality and Claim 2

‖Ds(K(|u(t)|2)u(t))‖Lρ′ ≤ C‖DsK(|u(t)|2)‖L2‖u(t)‖Lγ

+ C‖Dsu(t)‖Lρ‖K(|u(t)|2)‖L2/(1−s) .

Also by Claim 1:

‖Ds(K(|u(t)|2)u(t))‖Lρ′ ≤ C‖K(Ds|u(t)|2)‖L2‖u(t)‖Lγ + C‖Dsu(t)‖Lρ‖|u(t)|2‖L2/(1−s)

≤ C‖(Ds|u(t)|2)‖L2‖u(t)‖Lγ + C‖Dsu(t)‖Lρ‖|u(t)|2‖L2/(1−s)

≤ C‖(Dsu(t))‖Lρ‖u(t)‖Lγ‖u(t)‖Lγ + C‖Dsu(t)‖Lρ‖|u(t)|2‖L2/(1−s)

≤ C‖(Dsu(t))‖Lρ‖u(t)‖2
Lγ

since γ = 4/(1− s)

Then by Sobolev embedding we reach

‖Ds(K(|u(t)|2)u(t))‖Lρ′ ≤ C‖(Dsu(t))‖3
Lρ .

Applying Hölder’s inequality in time:

‖Ds(K(|u|2)u)‖Lγ′ (I,Lρ′ ) ≤ CT s0 ‖(Dsu)‖3
Lγ(I,Lρ).

Now we apply Strichartz’ estimates to u = H(u) by Duhamel’s principle where H(u)

is the integral representation of the solution of the ACNLS equation, to end up with

‖DsH(u)‖Lq(I,Lr) ≤ C‖φ‖Hs + CT s0 ‖(Dsu)‖3
Lγ(I,Lρ),

for every admissible pair (q, r) which gives the property 1.
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To prove property 2 consider the metric space

E = {u ∈ Lq(I,W s,r) :‖Dsu‖Lq(I,Lr) ≤M1, ‖u‖Lq(I,Lr) ≤M2

, u(0) = φ}

defined for each admissible pair (q, r) equiped with the metric

d(u, v) = sup
(q,r)admissible

‖u− v‖Lq(I,Lr).

First note that completeness of the metric space with respect to the metric follows

directly from Theorem 1.2.5 in [7] (where X denotes W s,q and Y denotes Lr).

Hence to show the existence, what we have to show is that the integral represen-

tation is a contraction mapping in the metric space E. First we show H : E → E.

Pick u ∈ E. Strichartz’ estimates give,

‖H(u)‖Lq(I,Lr) ≤ C‖φ‖L2 +

∥∥∥∥∫ t

0

Tβ(t− τ)[K(|u|2)u](τ)dτ

∥∥∥∥
Lq(I,Lr)

and since

∥∥∥∥∫ t

0

Tβ(t− τ)[K(|u|2)u](τ)dτ‖Lq(I,Lr) ≤ C‖K(|u|2)u

∥∥∥∥
L4/3(I,L4/3)

we have, by Hölder inequality and Lp → Lp boundedness of K

‖K(|u|2)u‖L4/3(I,L4/3) ≤ ‖K(|u|2)‖L2(I,L2)‖u‖L4(I,L4) ≤ C‖u‖3
L4(I,L4).

Hence

‖H(u)‖Lq(I,Lr) ≤ C‖φ‖L2 + CM3
2 ,
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so if M2 is sufficiently small we have

‖H(u)‖Lq(I,Lr) ≤M2,

for (q, r) admissible. Here we also used the fact that if ‖u‖L4(I,L4) is small (<< 1) then

‖φ‖L2 ≈ ‖u‖L4(I,L4).

Moreover we have

‖DsH(u)‖Lq(I,Lr) ≤ C‖Dsφ‖L2 +

∥∥∥∥∫ t

0

Tβ(t− τ)Ds[K(|u|2)u](τ)dτ

∥∥∥∥
Lq(I,Lr)

.

The second summand can be estimated as follows,

∥∥∥∥∫ t

0

Tβ(t− τ)Ds[K(|u|2)u](τ)dτ

∥∥∥∥
Lq(I,Lr)

≤ C‖Ds[K(|u|2)u]‖L4/3(I,L4/3)

≤ C‖K(|u|2)‖L2(I,L2)‖Dsu‖L4(I,L4)

+ C‖u‖L4(I,L4)‖DsK(|u|2)‖L2(I,L2)

≤ C‖|u|2‖L2(I,L2)‖Dsu‖L4(I,L4)

+ C‖u‖L4(I,L4)‖K(Ds|u|2)‖L2(I,L2)

≤ C‖u‖2
L4(I,L4)‖Dsu‖L4(I,L4)

+ C‖u‖L4(I,L4)‖(Ds|u|2)‖L2(I,L2)

≤ C‖u‖2
L4(I,L4)‖Dsu‖L4(I,L4)

+ C‖u‖L4(I,L4)‖u‖L4(I,L4)‖Dsu‖L4(I,L4)

≤ C‖Dsu‖L4(I,L4)‖u‖2
L4(I,L4)

where the constant C is modified at each step. Thus we have

‖DsH(u)‖Lq(I,Lr) ≤ C‖Dsφ‖L2 + C‖Dsu‖L4(I,L4)‖u‖2
L4(I,L4),

so for 2C‖φ‖Hs = M1 and again for M2 small enough, we get H : E → E is into.

Remark 3.1.6. I = [0, T0] so that everything done here is for the L2 local well-
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posedness time T0, and the smallness condition for ‖u‖L4(I,L4) is independent of T0.

Thus what is left to show is that H is a contraction mapping. Now for u, v ∈ E

we have:

‖H(u)−H(v)‖Lq(I,Lr) ≤ C‖K(|u|2)u−K(|v|2)v‖L4/3(I,L4/3)

≤ C‖K(|u|2)(u− v)‖L4/3(I,L4/3)

+ C‖v(K(|u|2 − |v|2))‖L4/3(I,L4/3)

≤ C‖K(|u|2)‖L2(I,L2)‖u− v‖L4(I,L4)

+ C‖v‖L4(I,L4)‖K(|u|2 − |v|2)‖L2(I,L2)

≤ ‖u‖2
L4(I,L4)‖u− v‖L4(I,L4) + C‖v‖L4(I,L4)‖|u|2 − |v|2‖L2(I,L2)

≤ C‖u‖2
L4(I,L4)‖u− v‖L4(I,L4)

+ C‖v‖L4(I,L4)‖u− v‖L4(I,L4)‖u+ v‖L4(I,L4) (3.10)

≤ ‖v‖L4(I,L4)(C‖u‖L4(I,L4) + C‖v‖L4(I,L4))‖u− v‖L4(I,L4)

+ C‖u‖2
L4(I,L4)‖u− v‖L4(I,L4) (3.11)

≤ (C‖v‖2
L4(I,L4) + C‖u‖L4(I,L4)‖v‖L4(I,L4))‖u− v‖L4(I,L4)

+ C‖u‖2
L4(I,L4)‖u− v‖L4(I,L4) (3.12)

≤ (C‖u‖2
L4(I,L4) + C‖v‖2

L4(I,L4))‖u− v‖L4(I,L4) (3.13)

where the last inequality follows from the Cauchy inequality. For M2 small and (q, r)

an admissible pair, we have

‖H(u)−H(v)‖Lq(I,Lr) ≤ 1/2d(u, v),

which implies H is a contraction mapping from E into E. Since there is a uniqueness

in L2, if ‖u‖L4(I,L4) ≤ δ′2 for some δ′2 which makes u satisfy the above conditions,

u coincides with the L2 solution of the equation. Moreover we have ‖u‖L4(I,L4) ≤

δ′2 implies ‖Dsu‖Lq(I,Lr) ≤ C‖φ‖Hs for each (q, r) admissible, which gives the property

2. Call δ2 = δ′2/2. For the property 3 we must mention a couple of things first. We know

from L2 local well-posedness theorem that if ‖φ− φ′‖L2 ≤ δ3 for some δ3 then, if u′ is
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the solution of the ACNLS equation with the initial datum φ′ then ‖u−u′‖L4(I,L4) ≤ δ2

where δ2 is as given above. Thus ‖u′‖ ≤ 2δ2 so u′ satisfies the assertion in property 2.

For any admissible pair (q, r):

‖Ds(u− v)‖Lq(I,Lr) ≤ C‖Ds(φ− φ′)‖2
L + C‖Ds[K(|u|2)u−K(|v|2)v]‖L4/3(I,L4/3)

≤ C‖Ds(φ− φ′)‖2
L + II

and

II ≤ C‖(u− v)Ds(K(|u|2))‖L4/3(I,L4/3) + C‖vDs(K(|u|2 − |v|2))‖L4/3(I,L4/3)

≤ C‖K(Ds|u|2)‖L2(I,L2)‖u− v‖L4(I,L4) + C‖Ds(u− v)‖L4(I,L4)‖u‖2
L4(I,L4)

+ C‖Dsv‖L4(I,L4)‖K(|u|2 − |v|2)‖L2(I,L2)

+ C‖v‖L4(I,L4)‖K(Ds(|u|2 − |v|2))‖L2(I,L2)

≤ C‖Dsu‖L4(I,L4)‖u‖L4(I,L4)‖u− v‖L4(I,L4) + C‖Ds(u− v)‖L4(I,L4)‖u‖2
L4(I,L4)

+ C‖Dsv‖L4(I,L4)‖|u|2 − |v|2‖L2(I,L2) + C‖v‖L4(I,L4)‖Ds(|u|2 − |v|2)‖L2(I,L2)

≤ C‖Dsu‖L4(I,L4)‖u‖L4(I,L4)‖u− v‖L4(I,L4) + C‖Ds(u− v)‖L4(I,L4)‖u‖2
L4(I,L4)

+ C‖v‖L4(I,L4)

(
‖Ds(|u|+ |v|)‖L4(I,L4)‖u− v‖L4(I,L4)

)
+ C‖v‖L4(I,L4)

(
‖Ds(u− v)‖L4(I,L4)‖u+ v‖L4(I,L4)

)
+ C‖Dsv‖L4(I,L4)‖|u|+ |v|‖L4(I,L4)‖u− v‖L4(I,L4).

Upon writing ‖Dsv‖L4(I,L4) ≤ ‖Ds(u−v)‖L4(I,L4) +‖Dsu‖L4(I,L4) by linearity of Ds and

triangle inequality, and using the L2 local well-posedness result above, we get

II ≤ C‖φ‖Hsδ22‖φ− φ′‖L2 + C‖Ds(u− v)‖L4(I,L4)δ
2
2 + C‖Ds(u− v)‖L4(I,L4)2δ2δ3

+C‖φ‖Hs2δ2‖φ− φ′‖L2 + Cδ2(2‖φ‖Hs‖φ− φ′‖L2

+C‖φ‖Hs‖Ds(u− v)‖L4(I,L4)δ3 + C‖Ds(u− v)‖L4(I,L4)2δ2).

Therefore

II ≤ C‖Ds(u− v)‖L4(I,L4)(δ
2
2 + 2δ2δ3 + ‖φ‖Hs(δ2δ3) + 2δ2) + 6C‖φ‖Hsδ2‖φ− φ′‖L2 .
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Choosing δ3 small and δ2 even possibly smaller (δ2 depending on ‖φ‖Hs and δ3 depend-

ing on both ‖φ‖Hs and δ2) we arrive at

1/2d(Dsu,Dsv) ≤ ‖φ− φ′‖Ḣs + 1/2‖φ− φ′‖L2 .

By the previous calculations and L2 local well-posedness, we already have

d(u, v) ≤ 2‖φ− φ′‖L2 .

We combine these results to get the property 3, which is the Hs local well-posedness

result under the given assumptions.

3.2. Bourgain spaces Xδ
s,b and Strichartz type estimates

For s, b ∈ R the Bourgain space Xs,b is the closure of the Schwartz functions

S t,x(R× R2) under the norm

‖u‖Xs,b = ‖〈ξ〉s〈τ − |ξ|2〉bû(τ, ξ)‖L2
τL

2
ξ(R×R2), (3.14)

where 〈x〉 = (1 + |x|2)1/2 and the Fourier transform is not only taken in space but is

taken in both space and time. As we can see the definition is given in R×R2, but we

can define the restriction of the Bourgain space on I ×R2 for some time interval [0, δ]

as

‖u‖Xδ
s,b

= inf{‖f‖Xs,b : f ∈ Xs,b, f(t) = u(t) ∀t ∈ [0, δ]}. (3.15)

This norm (3.14) can be written in another form using the solution operator of

the Schrödinger equation and Bessel potentials, as follows,

‖u‖Xs,b = ‖J bt JsxT1(−t)u(x, t)‖L2(R,L2). (3.16)
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For these spaces, we can see that there is a trivial embedding

Xs′,b′ ⊂ Xs,b, (3.17)

for s′ ≤ s and b′ ≤ b. Also from Parseval’s identity and Cauchy-Schwarz inequality we

have the duality relationship

(Xs,b)
∗ = X−s,−b, (3.18)

These spaces behave well under interpolation in both indices s and b. One of the

most problematic property of these spaces is that although they are invariant under

translations in space and time, they are not invariant under conjugation. This means

even though a function u is in a Bourgain space Xs,b, this does not imply that its

conjugate ū is in that Bourgain space.

In order to use Bourgain spaces we need to give Strichartz-like estimates, namely

we need to give estimates concerning the solution operator and embeddings into spaces

more common and whose theory are much widely explored. Although the study of

Bourgain spaces are rapidly developing we will only focus on the estimates and embed-

dings closely related to the Schrödinger equation.

The basic estimates of the Bourgain spaces can be asserted as follows;

Proposition 3.2.1. For any admissible pair (q, r), any s ∈ R, time interval I = [0, δ]

and ε sufficiently small, we have;

‖u‖Lq(I,Lr) ≤ C‖u‖Xδ
s,1/2+ε

, (3.19)

and

‖u‖Lqθ (I,Lrθ ) ≤ C‖u‖Xδ
s,θ/2+ε

, (3.20)
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where θ ∈ [0, 1], 1/qθ = θ/q + (1− θ)/2 and 1/rθ = θ/r + (1 − θ)/2, where C is

independent of I

Proof. Since Bourgain norms behave well under time restrictions, we only need to show

that for any b > 1/2

‖u‖Lq(R,Lr) ≤ C‖u‖X0,b
.

Because once we showed that for any u ∈ Xδ
0,b, we can find a sequence un ∈ X0,b such

that unχ{[0,δ]×R2} = u and

‖un‖X0,b
≤ ‖u‖Xδ

0,b
+ 1/n for n ∈ N,

and hence conclude that

‖u‖Lq(I,Lr) = ‖un‖Lq(I,Lr) ≤ C‖un‖X0,b
= C‖u‖Xδ

0,b
+ 1/n, ∀n ∈ N,

and as n → ∞, which implies the inequality (3.19). So it is enough for us to show

(3.2). Now let (q, r) be admissible and b > 1/2. We know that

u(x, t) =

∫
R2×R

Fx,t(u)(ξ, λ)ei(ξ.x+λt)dξdλ

=

∫
R2×R

Fx,t(u)(ξ, λ− |ξ|2)ei(ξ.x+(λ−|ξ|2)t)dξdλ. (3.21)

We define

Fx(uλ)(ξ) = 〈λ〉bFx,t(u)(ξ, λ− |ξ|2), (3.22)

and

f(x, t, λ) =

∫
ei(x.ξ+t|ξ|

2)Fx(uλ)(ξ)dξ = T1(t)uλ. (3.23)
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Then we get ‖u‖X0,b
=
(∫

R2×R |Fx(uλ)(ξ)|
2dξdλ

)1/2

and

u(x, t) =

∫
eitλf(x, t, λ)〈λ〉−bdλ,

by (3.21). So we have,

‖u‖Lq(R,Lr) ≤
∫
‖f(·, ·, λ)‖Lq(R,Lr)〈λ〉−bdλ, (3.24)

and Strichartz’ estimates give:

‖f(·, ·, λ)‖Lq(R,Lr) = ‖T1(t)uλ‖Lq(R,Lr) ≤ C‖uλ‖L2 = C‖Fx(uλ)‖L2 . (3.25)

Thus combining (3.24) and(3.25) we get

‖u‖Lq(R,Lr) ≤ C

∫
‖Fx(uλ)‖L2〈λ〉−bdλ ≤ C

(∫
‖Fx(uλ)‖2

L2dλ

)1/2

≤ C‖u‖X0,b
,

where for the second inequality we use Hölder’s inequality and the fact that b > 1/2.

Thus we have showed (3.2).

For the second part of the theorem we only have to observe that

‖u‖L2(I,L2) = ‖u‖Xδ
0,0
,

and the result follows by interpolation.

Corollary 3.2.2. For any sufficiently small ε and admissible (q, r), the following in-
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equalities hold true:

‖u‖L4(I,L4) ≤ C‖u‖Xδ
0,1/2+ε

, (3.26)

‖u‖Lq(I,W s,r) ≤ C‖u‖Xδ
s,1/2+ε

, (3.27)

‖u‖L4−ε(I,L4−ε) ≤ C‖u‖Xδ
0,1/2−ε/8

(3.28)

‖u‖X0,−1/2+ε
≤ C‖u‖Lpε (I,Lpε ), (3.29)

where pε = (4− 8ε)/(3− 8ε).

Proof. We easily see that (3.26) follows from the previous proposition since (4, 4) is an

admissible pair. In the proof of the proposition, if we change u with Jsu, where Js is

the Bessel potential, we get (3.27). Also (3.28) is immediate by letting (q, r) = (4, 4)

and θ = (4− 2ε)/(4− ε) in (3.20) and observing that θ/2 < 1/2− ε/8.

For the inequality (3.29), we use the duality argument and Hölder inequality:

‖u‖Xδ
−1/2+ε

≤ sup
‖v‖

Xδ
1/2−ε

≤1

|〈v, u〉| ≤ sup
‖v‖

Xδ
1/2−ε

≤1

‖v‖L4−8ε(I,L4−8ε)‖u‖Lpε (I,Lpε ),

where pε is as above. Because ‖v‖L4−8ε(I,L4−8ε) ≤ C‖v‖Xδ
0,1/2−ε

, we obtain (3.29).

These embeddings are important in the study of the Bourgain spaces as Lp spaces

are much easier to work with. But to study nonlinear Schrödinger equations, one has

to make use of the following Strichartz type estimates, which are proved by Gou and

Cui in [14].
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Proposition 3.2.3. For s ∈ R, we have

‖T1(t)φ‖Xδ
s,b
≤ C‖φ‖Hs , for −∞ < b <∞, (3.30)

‖u‖Xδ
s,−b1
≤ Cδb1−b2−‖u‖Xδ

s,−b2
, for 0 ≤ b2 ≤ b1 < 1/2, (3.31)∥∥∥∥∫ t

0

T1(t− λ)u(λ)dλ

∥∥∥∥
Xδ
s,b

≤ Cδ1/2−b‖u‖Xδ
s,b−1

, for 1/2 < b ≤ 1, (3.32)

where C is independent of δ.

Proof. First we will prove (3.30). To this end, take a compactly supported C∞(R)

function ψ such that ψ(t) = 1 for 0 ≤ t ≤ 1 and ψ(t) = 0 for t ≤ −1 and t ≥ 2. Then

we have

‖T1(t)φ‖Xδ
s,b
≤ ‖ψ(t/δ)T1(t)φ‖Xs,b = ‖J bt JsxT1(−t)(ψ(t/δ)T1(t)φ)‖L2(R,L2)

≤ ‖J btψ‖L2(R)‖Jsxφ‖L2(R) ≤ C‖φ‖Hs ,

and this is (3.30).

As the time localization arguments done in the previous proposition, (3.31) would

be shown if we could show

‖ψ(t/δ)u‖Xs,−b1 ≤ Cδb1−b2−‖u‖Xs,−b2 . (3.33)

By duality, it is enough to show

‖ψ(t/δ)u‖Xs,b2 ≤ Cδb1−b2−‖u‖Xs,b1 . (3.34)

To prove (3.34), set f(x, t) = J b1t J
s
xT1(−t)u(x, t), so:

‖ψ(t/δ)u‖Xs,b2 =
∥∥J b2t (ψ(t/δ)J−b1t f

)∥∥
L2(R,L2)

. (3.35)
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Since ‖u‖Xs,b1 = ‖f‖L2(R,L2), putting J−b1t ‖f‖L2(R2) = g, the inequality (3.31) will follow

if we can show

‖ψ(t/δ)g‖Hb2 (R) ≤ Cδb1−b2−‖g‖Hb1 (R). (3.36)

By [21, (3,6)], we have

‖ψ(t/δ)g‖Ha(R) ≤ Cδ1−2a‖g‖Ha(R), for 1/2 < a ≤ 1.

Since

‖ψ(t/δ)g‖L2(R) ≤ C

(∫ 2δ

−δ
|g(t)|2dt

)1/2

≤ Cδ1/2−1/q‖g‖Lq(R),

and by Sobolev embedding theorem, ‖g‖Lq(R) ≤ C‖g‖Hb for 2 ≤ q < ∞ and b =

1/2− 1/q, then get

‖ψ(t/δ)g‖L2(R) ≤ Cδb‖g‖Hb , 0 ≤ b < 1/2. (3.37)

For sufficiently small ε > 0 we let a = 1/2 + ε, b = (b1 − b2)(1 + 2ε)/(1− 2b2 + 2ε) and

θ = 2b2/(1 + 2ε) and interpolate between (3.2) and (3.37) to get,

‖ψ(t/δ)g‖Hb2 = ‖ψ(t/δ)g‖Haθ+b(1−θ)(R) ≤ Cδθ(1−2a)+(1−θ)b‖g‖Haθ+b(1−θ)(R).

Similarly, (3.32) follows from the inequality

∥∥∥∥ψ(t/δ)

∫ t

0

T1(t− λ)u(λ)dλ

∥∥∥∥
Xs,b

≤ Cδ1/2−b‖u‖Xs,b−1
, 1/2 < b ≤ 1,

which was shown in [21] for the one dimensional case, and for the n dimension case,

the proof is similar.

This proposition has an important corollary for the study of Schrödinger equa-
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tions:

Corollary 3.2.4. For s ∈ R and sufficiently small ε > 0:

∥∥∥∥∫ t

0

T1(t− λ)u(λ)dλ

∥∥∥∥
Xδ
s,1/2+ε

≤ C‖u‖Xδ
s,−1/2+3ε

, (3.38)

where C is independent of δ.

Proof. In (3.31) and (3.32). Setting b = 1/2 + ε, b1 = 1/2 − ε = −(b − 1) and

b2 = 1/2− 3ε, we get

∥∥∥∥∫ t

0

T1(t− λ)u(λ)dλ

∥∥∥∥
Xδ
s,1/2+ε

≤ Cδ−ε‖u‖Xδ
s,−b1
≤ Cδ−εδb1−b2−ε‖u‖Xδ

s,−b2

≤ C‖u‖Xs,−1/2+3ε
,

which is (3.38)

3.3. Local existence in Bourgain spaces

In this section we give the proof of the local existence theorem which was stated

in the first chapter for ACNLS which also includes the case of cubic NLS for α(ξ) =

1 for ξ ∈ R2.

iut +4u = K(|u|2)u

u(0, x) = φ(x) ∈ Hs 0 ≤ s ≤ 1, (3.39)

which is (2.1) for β = 1. As done in the previous chapter, we decompose the initial

datum into its low and high frequencies φ0 and φ1 and write the corresponding initial
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value problem:

iuot +4u0 = K(|u0|2)u0

u0(0, x) = φ0(x) ∈ H1 (3.40)

By the theory of the ACNLS, we know that u0 exists globally, see [13, Theorem

4.4]. Recalling that φ = φ0 + φ1, consider the difference of the equations (3.39) and

(3.40) and obtain

ivt +4v = K(|u0 + v|2)(u0 + v)−K(|u0|2)u0

v(0, x) = φ1 ∈ Hs. (3.41)

since global existence of the solution to (3.41) is much to ask, we can only expect

that the equation (3.41) is locally well-posed. The following theorem states the local

existence result which is what we require for the proof of the global existence result of

Bourgain.

Theorem 3.3.1. If there exist C1, C2, C3 such that ‖φ0‖L2 ≤ C1, E(φ0) ≤ C2N
2(1−s),

‖φ1‖L2 ≤ C3N
−s and ‖φ1‖Hs ≤ C3, then for δ = cN−2(1−s)−, there exist N0 > 1 and

c0 > 0 such that for each N ≥ N0 and c ≤ c0, the solutions to the initial value problems

(3.40) and (3.41) both exist in [0,δ]

Proof. In the proof of this theorem, we will use the Banach fixed point theorem for the

integral equation that the solution of the ACNLS satisfies in the metric space in which

we want the solutions to reside.

Write

w = T1(t)φ2 − i
∫ t

0

T1(t− τ)F (u0(τ), v(τ))dτ,

where F (u0, v) = K(|u0 + v|2)(u0 + v)−K(|u0|2)u0 and let M be a positive number to
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be specified later. We define the set

Bσ
M,N = {v ∈ Xδ

s,1/2+ε′ : [v] ≡ N s‖v‖Xδ
0,1/2+ε′

+ ‖v‖Xδ
s,1/2+ε′

≤M},

and the map

H(v)(t) = T1(t)φ2 − i
∫ t

0

T1(t− τ)F (u0(τ), v(τ))dτ,

for v ∈ Xδ
s+1/2+ε′ .

So we need to show S is well defined in the metric space and maps the space into

itself.

First we have

‖H(v)‖Xδ
0,1/2+ε′

≤ ‖T1(t)φ2‖Xδ
0,1/2+ε′

+

∥∥∥∥∫ t

0

T1(t− τ)F (u0(τ), v(τ))dτ

∥∥∥∥
Xδ

0,1/2+ε′

≤ C‖φ2‖L2 + C‖F (u0, v)‖Xδ
0,−1/2+3ε′

≤ CN−s + C‖F (u0, v)‖Xδ
0,−1/2+3ε′

,

and by the linearity of the operator K estimating each term in the sum will reveal the

desired result. First call 1/ri = 1/4 + (3− i)/(4 + ε) and let s ≥ 2/3, then:

‖K(u0v̄)v‖Xδ
0,−1/2+3ε′

≤ C‖K(u0v̄)v‖Lr1t,δLr1x (3.42)

≤ C‖v‖L4
t,δL

4
x
‖K(u0v̄)‖

L
(4+ε)/2
t,δ L

(4+ε)/2
x

(3.43)

≤ C‖v‖L4L4‖u0v̄‖L(4+ε)/2
t,δ

(3.44)

≤ C‖v‖Xδ
0,1/2+ε′

‖u0‖L4+ε
t,δ L

4+ε
x
‖v‖L4+ε

t,δ L
4+ε
x
,
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where in the inequality (3.42) we used the Bourgain embeddings and to pass from (3.43)

to (3.44) we used the boundedness of the operator K and the last inequality follow from

the Hölder’s inequality. Now having ‖u0‖L4+ε
t,δ L

4+ε
x
≤ c1/(4+ε) and the Bourgain norm of

v, we need to estimate ‖v‖L4+ε
t,δ L

4+ε
x

and this is achieved by Sobolev embedding theorem

with µε = 2((2 + ε)/(4 + ε)− 1/(4 + ε)) = (2 + 2ε)/(4 + ε) and Bourgain embedding as

follows:

‖v‖L4+ε
t,δ L

4+ε
x
≤ ‖Jµεv‖

L4+ε
t,δ L

(4+ε)/(2+ε)
x

≤ C‖Jµεv‖Xδ
0,1/2+ε′

≤ CN (2+2ε)/(4+ε)

≤ CN (1−2s)/2+O(ε).

Hence, we reach the bound

‖K(u0v̄)v‖Xδ
0,−1/2+3ε′

≤ CN−s(c1/(4+ε)N (1−2s)/2+O(ε)) ≤ Cc1/(4+ε)N−s.

This calculation also says that ‖K(vū0)v‖Xδ
0,−1/2+3ε′

has the same bound.

Now consider ‖K(vv̄)u0‖Xδ
0,−1/2+3ε′

:

‖K(vv̄)u0‖Xδ
0,−1/2+3ε′

≤ C‖K(vv̄u0)‖Lr1t,δLr1x

≤ ‖u0‖L4+ε
t,δ L

4+ε
x
‖vv̄‖Lr2t,δLr2x

≤ ‖u0‖L4+ε
t,δ L

4+ε
x
‖v‖L4+ε

t,δ L
4+ε
x
‖v‖L4

t,δL
4
x

≤ Cc1/(4+ε)‖v‖Xδ
0,1/2+ε′

‖v‖L4+ε
t,δ L

4+ε
x
, (3.45)

but by the preceding calculation (3.45) has the same bound.

Now for ‖K(vv̄)v‖Xδ
0,−1/2+3ε′

we have, again by the above arguments that

‖K(vv̄)v‖Xδ
0,−1/2+3ε′

≤ CN−sN ((1−2s/2+O(ε))2, (3.46)
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which implies ‖K(vv̄)v‖Xδ
0,−1/2+3ε′

≤ CN−sN1−2s+O(ε), which is the desired bound.

For ‖K(u0ū0v)‖X0,−1/2+3ε′
we have:

‖K(u0ū0v)‖X0,−1/2+3ε′
≤ ‖K(u0ū0)v‖Lr1t,δLr1x (3.47)

≤ ‖v‖L4
t,δL

4
x
‖K(u0ū0)‖

L
(4+ε)/2
t,δ L

(4+ε)/2
x

(3.48)

≤ ‖v‖L4
t,δL

4
x
‖u0‖2

L4+ε
t,δ L

4+ε
x

(3.49)

≤ Cc2/(4+ε).N−s (3.50)

which is what we aimed at. So what is left to bound are K(u0v̄)u0 and K(vū0)u0. For

‖K(u0v̄)u0‖Xδ
0,−1/2+3ε′

:

‖K(u0v̄)u0‖Xδ
0,−1/2+3ε′

≤ ‖K(u0v̄)u0‖Lr1t,δLr1x

≤ ‖u0‖L4+ε
t,δ L

4+ε
x
‖K(u0v̄)‖Lγεt,δLγεx

≤ ‖u0‖L4+ε
t,δ L

4+ε
x
‖u0v̄‖Lγεt,δLγεx

≤ Cc1/(4+ε)‖u0‖L4+ε
t,δ L

4+ε
x
‖v‖L4

t,δL
4
x

≤ Cc2/(4+ε)N−s.

This is the desired bound and it also holds for the last term.

We need moreover to show ‖H(v)‖Xδ
s,1/2+ε′

≤ C to conclude H, maps Bδ
M,N into

itself. Firstly

‖H(v)‖Xδ
s,1/2+ε′

≤ ‖T1(t)φ2‖Xδ
s,1/2+ε′

+ ‖
∫ t

0

T1(t− τ)(u0(τ), v(τ))dτ‖Xδ
s,1/2+ε′

(3.51)

≤ C‖φ2‖Hs + C‖F (u0, v)‖Xδ
s,−1/2+3ε′

, (3.52)

and ‖F (u0, v)‖Xδ
s,−1/2+3ε′

= ‖JsxF (u0, v)‖Xδ
0,−1/2+3ε′

≤ C‖JsxF (u0, v)‖Lrεt,δLrεx .

Hence we have to estimate each summand in the sum F (u0, v), where F is defined
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at the beginning of the proof.

‖JsxK(u0v̄)v‖Lr1t,δLr1x ≤ ‖J
s
xv‖L4

t,δL
4
x
‖K(u0v̄)‖

L
(4+ε′)/2
t,δ L

(4+ε′)/2
x

+ ‖v‖
L4+ε′
t,δ L4+ε′

x
‖JsxK(u0v̄)‖Lr2t,δLr2x

= I + II. (3.53)

We consider I and II separately:

I ≤ C‖v‖Xδ
s,1/2+ε′

‖u0v̄‖L(4+ε′)/2
t,δ L

(4+ε′)/2
x

≤ C‖v‖Xδ
s,1/2+ε′

‖v‖
L4+ε′
t,δ L4+ε′

x
‖u0‖L4+ε′

t,δ L4+ε′
x

≤ ‖v‖Xδ
s,1/2+ε′

Cc1/(4+ε)N (1−2s)/2+O(ε).

Since s ≥ 1/2 the order of N is negative. For II we write:

II ≤ CN (1−2s)/2+O(ε)‖K(Jsxu0v̄)‖Lr2t,δLr2x

≤ CN (1−2s)/2+O(ε)‖Jsxu0v̄‖Lr2t,δLr2x

≤ CN (1−2s)/2+O(ε)[‖Jsxu0‖L4
t,δL

4
x
‖v‖

L4+ε′
t,δ L4+ε′

x
+ ‖u0‖L4+ε′

t,δ
‖Jsxv‖L4

t,δL
4
x
]

≤ CN (1−2s)/2+O(ε)(‖v‖Xs,1/2+ε′N
s(1−s) + c1/(4+ε)‖v‖Xδ

s,1/2+ε′
),

by the Bourgain embeddings and interpolation in the Bourgain spaces. Hence

II ≤ CN1/2+O(ε)‖v‖Xδ
s,1/2+ε′

N s(1−s)

≤ C‖v‖Xδ
s,1/2+ε′

N1/2−s2 .

Thus ‖JsxK(u0v̄)v‖Lrεt,δLrεx ≤ C‖v‖Xδ
s,1/2+ε′

. Likely ‖JsxK(vū0)v‖Lr1t,δLr1x admits the same

bound.
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For ‖JsxK(vv̄)u0‖Lr1t,δLr1x we have:

‖JsxK(vv̄)u0‖Lr1t,δLr1x ≤ ‖J
s
xu0‖L4

t,δL
4
x
‖K(vv̄)‖

L
(4+ε′)/2
t,δ L

(4+ε′)/2
x

+ ‖u0‖L4+ε′
t,δ L4+ε′

x
‖JsxK(vv̄)‖Lr2t,δLr2x

= I + II

And

I ≤ cN s(1−s)‖vv̄‖
L
(4+ε′)/2
t,δ L

(4+ε′)/2
x

≤ CN s(1−s)‖v‖2

L4+ε′
t,δ L4+ε′

x

≤ CN s(1−s)N1/2−s+O(ε)‖v‖Xδ
s,1/2+ε′

≤ C‖v‖Xδ
s,1/2+ε′

N1/2−s2+O(ε)

≤ C‖v‖Xδ
s,1/2+ε′

,

and since ‖v‖
L4+ε′
t,δ L4+ε′

x
≤ ‖v‖Xδ

s,1/2+ε′
we get:

II ≤ Cc1/(4+ε)‖K(Jsxvv̄)‖Lr2t,δLr2x

≤ Cc1/(4+ε)‖v‖
L4+ε′
t,δ L4+ε′

x
‖Jsxv‖L4

t,δL
4
x

≤ Cc1/(4+ε)N1/2−s+O(ε)‖v‖Xδ
s,1/2+ε′

≤ Cc1/(4+ε)‖v‖Xδ
s,1/2+ε′

.

Therefore ‖JsxK(vv̄)u0‖Lrεt,δLrεx has the required bound and so does ‖JsxK(vv̄)v‖Lrεt,δLrεx .

For ‖JsxK(u0ū0)v‖Lrεt,δLrεx we have:

‖JsxK(u0ū0)v‖Lrεt,δLrεx ≤ ‖J
s
xv‖L4

t,δL
4
x
‖K(u0ū0)‖

L
(4+ε′)/2
t,δ L

(4+ε′)/2
x

+ ‖v‖
L4+ε′
t,δ L4+ε′

x
‖K(Jsxu0ū0)‖Lr2t,δLr2x

= I + II



39

We bound I and II as follows:

I ≤ C‖Jsxv‖Xδ
0,1/2+ε′

‖u0‖2

L4+ε′
t,δ L4+ε′

x

≤ Cc2/(4+ε)‖v‖Xδ
s,1/2+ε′

,

and

II ≤ C‖v‖Xδ
s,1/2+ε′

[‖Jsxu0‖L4
t,δL

4
x
‖u0‖L4+ε′

t,δ L4+ε′
x

]

≤ Cc1/(4+ε)N s(1−s)‖v‖Xδ
s,1/2+ε′

≤ Cc1/(4+ε)‖v‖Xδ
s,1/2+ε′

.

Finally we treat the last terms:

‖JsxK(u0v̄)u0‖Lrεt,δLrεx ≤ ‖J
s
xu0‖L4

t,δL
4
x
‖K(u0v̄)‖

L
(4+ε′)/2
t,δ L

(4+ε′)/2
x

+ ‖u0‖L4+ε′
t,δ L4+ε′

x
‖K(Jsxu0v̄)‖Lr2t,δLr2x

= I + II.

Similar to what we have been doing:

I ≤ CN s(1−s)‖u0v̄‖L(4+ε′)/2
t,δ L

(4+ε′)/2
x

≤ CN s(1−s)‖u0‖L4+ε′
t,δ L4+ε′

x
‖v‖

L4+ε′
t,δ L4+ε′

x

≤ Cc1/(4+ε)N s(1−s)‖v‖Xδ
s,1/2+ε′

≤ Cc1/(4+ε)‖v‖Xδ
s,1/2+ε′

,

and II ≤ Cc1/(4+ε)‖v‖Xδ
s,1/2+ε′

which is already done in the sequel. The last term

‖JsxK(vū0)u0‖Lrεt,δLrεx also has the same bound.

So we found that ‖H(v)‖Xδ
s,1/2+ε′

≤ C‖v‖Xδ
s,1/2+ε′

Nacb where a < 0 and b > 0

thus we conclude that H is well defined that H maps Bδ
M,N into itself. A similar and
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straight forward argument shows that

[H(u0)−H(v)] ≤ CNa′cb
′
[u0 − v],

for some a′ < 0 and b′ > 0 and hence H is a contraction mapping from Bδ
M,N into itself

for large M , large N and small c, which is the local well-posedness result.
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4. CONCLUSIONS

The aim of this work was to prove global existence for ACNLS with the initial

datum below energy space using high-low frequency decomposition, which we couldn’t

accomplish. The reason why we couldn’t do it was that we couldn’t find the appropriate

way to estimate the H1 norm of the nonlinear term which appears in the integral

equation. The problem was that Bourgain, making good use of the Bourgain spaces

and the duality product, splits the derivative in two parts so that the less regular term

is exposed to “less derivative”, then he uses the bilinear estimates and shows that the

nonlinear term is in H1. While having three terms to differentiate, gave Bourgain

the freedom to choose the regular term in differentiating, in our case for ACNLS, we

couldn’t find a way to put less derivative on the less regular term since there are only

two terms . The nonlocal operator K binds two terms together so that, especially for

the terms containing both the regular and the less regular terms, it becomes difficult

to come up with a way to put less derivative to the less regular term.

Using the same technique plus the pseudo-conformal transformation, Bourgain

also shows that there is scattering for the cubic NLS in L2 with the initial datum in

H0,s for s > 2/3. For ACNLS one can show global existence in Hs for the initial datum

φ ∈ Hs with sufficiently small norm, and we believe that as one can show scattering in

L2 for ACNLS, for the initial datum with small L4-norm, one can also show scattering

in Hs or in H0,s, under some well-posedness and smallness conditions.
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APPENDIX A: BASIC DEFINITIONS AND ESTIMATES

Definition A.0.1. [22] Bessel potential (Js) and Riesz potential (Ds) are the operators

defined as

Jsu = F−1(1 + |ξ|2)s/2û and Dsu = F−1|ξ|sû (A.1)

where the F−1 denotes the inverse Fourier transform and whenever the latter makes

sense.

Since we will use and there does not exist a unique definition of it, it may be

useful to define Hardy-Littlewood Maximal function

Definition A.0.2. For f ∈ L1
loc a Hardy-Littlewood maximal function is defined as

follows

Mf(x) = sup
x∈I

1

|I|

∫
I

|f(y)|dy

where I is open and |I| =
∫
χI(y)dy.

Definition A.0.3. A function, f, is called a Schwartz function if it is infinitely differ-

entiable and xµDγf → 0 as |x| → ∞ for all nonnegative multiindices µ = (µ1, µ2) and

γ = (γ1, γ2) (µi, γi ≥ 0 for i ∈ {1, 2}), where xµ = xµ11 x
mu2
2 and Dγf = dγ1

dx
γ1
1

dγ2

dx
γ2
2
f .

Definition A.0.4. The space S ′ is the space of tempered distributions on R2, which

means that S ′ is the topological dual of S.

Definition A.0.5. For m ∈ N, the Sobolev space Wm,p is given by

Wm,p = {f ∈ Lp : Dαu ∈ Lp ∀α multiindex such that |α| ≤ m}
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with the norm

‖u‖Wm,p =
∑
|α|≤m

α multiindex

‖Dαu‖Lp . (A.2)

For p = 2 we call Wm,2 = Hm and since p = 2 we can characterize the Sobolev

space using the Fourier transform, namely; given m ∈ N we can define

Hs = {u ∈ S′ : (1 + |ξ|2)s/2û ∈ L2}

with the norm

‖u‖Hs = ‖(1 + |ξ|2)s/2û‖L2 (A.3)

where S′ is the dual of Schwartz space. We can see that the requirement s ∈ N is

just to make the definition consistent with the previous one, and we can extend this

definition for the noninteger real positive number as the interpolation between the

integer indiced Sobolev spaces; and to negative numbers by taking the dual of the

positive indiced Sobolev spaces, see for further details [22].

Now, to define Besov spaces, consider a compactly supported function ψ ∈

C∞c (R2) such that, supp(ψ) ⊂ R2 − {0} and
∑∞
−∞ ψ(2−jx) = 1 and call ψj(ξ) =

ψ(2−jξ), namely; consider a radial function φ ∈ C∞c (R2) such that

φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| ≥ 2

then, define ψ(ξ) = φ(ξ)− φ(2ξ), which satisfies the above conditions.

We are now, ready to define Besov spaces.

Definition A.0.6. [22] The Besov space Bs
p,q for 1 ≤ p, q ≤ ∞ and s ∈ R is the
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closure of S′ with respect to the norm

‖u‖Bsp,q = ‖F−1(φû)‖Lp +


(∑∞

j=1(2sj‖F−1(ψjû)‖Lp)q
)1/q

if q <∞

supj≥1 2js‖F−1(ψjû)‖Lp if q =∞
(A.4)

The homogeneous Sobolev(Ḣs) and Besov( ˙Bs
p,q) spaces are the closure of the

Schwartz space, S, under the seminorms

‖u‖Ḣs = ‖u‖Hs − ‖u‖L2 , ‖u‖ ˙Bsp,q
= ‖u‖Bsp,q − ‖F

−1(φû)‖Lp (A.5)

respectively.

There are important embedding results concerning these Sobolev and Besov spaces.

For the Sobolev and Besov spaces we will need the following embedding results.

Theorem A.0.2. [23, Theorem 2.4.5] Let m ≥ 1 be an integer and 1 ≤ p <∞. Then

(1) if 1/p−m/n > 0, Wm,p(Rn) ↪→ Lq(Rn) with 1/q = 1/p−m/n,

(2) if 1/p−m/n = 0, Wm,p(Rn) ↪→ Lq(Rn), for p ≤ q <∞,

(3) if 1/p−m/n < 0, Wm,p(Rn) ↪→ L∞(Rn).

For the proof see [18] and [22].

Theorem A.0.3. For s ∈ R, 2 ≤ p <∞, we have Bs
p,2 ↪→ W s,p

Again see [22] for details.

The basic space-time estimates, essential for solving the ACLNS are the Strichartz

estimates, and to define it we should first introduce an admissible pair.

Definition A.0.7. A pair (q, r) is admissible in R2 if

1/q = 1/2− 1/r
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and 2 ≤ r <∞. We see that (∞, 2) is admissible, and the pair will correspond to some

conserved quantity, so is important.

Now if we denote (Tβ(t))t∈R as the solution semigroup for the linear equation

iut + βuxx + uyy = 0,

we have;

Theorem A.0.4 (Strichartz’ Estimates). [7] If (q, r) is admissible, then the following

properties hold;

(P1) For every ϕ ∈ L2, the function t 7→ Tβ(t)φ belongs to

Lq(R, Lr) ∩ C(R, L2).

Moreover, there exist a constant C such that

‖Tβ(.)ϕ‖Lq(R,Lr) ≤ C‖ϕ‖L2 .

(P2) Let I be an interval of R, J = Ī, and 0 ∈ J . If (γ, ρ) is an admissible pair

and f ∈ Lγ′(I, Lρ′), then for every (q, r), the function t 7→
∫ t

0
Tβ(t− s)f(s)ds for

t ∈ I, belongs to Lq(R, Lr) ∩ C(R, L2) and there exists a constant C depending

on q,r,γ and ρ and is independent of I such that

‖
∫ t

0

Tβ(t− s)f(s)ds‖Lq(I,Lr) ≤ C‖f‖Lγ′ (I,Lρ′ )

see [7] for details.
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