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ABSTRACT

FURTHER REGULARITY OF SOLUTIONS FOR ALMOST
CUBIC NLS EQUATION

This thesis consists of two major parts. In the first one, we try to give the
preliminary local well-posedness results for the ACNLS, and L? — H! regularity result
which is an easy and straightforward consequence of the equation, since the norm of

the gradientof a function can be estimated by difference quotients.

In the second part, we prove some regularity results for ACNLS. First, we prove
H? local well-posedness, where the continuous dependence is weakened; and an im-
provement of it by obtaining the continuous dependence with an additional condition.
At the end, we prove local X, local existence result using Banach fixed point theorem,
where the interval of existence is not taken to be maximal. The interval depends closely

on the arguments of the high-low frequency decomposition.



OZET

NEREDEYSE KUBIK DOGRUSAL OLMAYAN
SCHRODINGER DENKLEMI’'NIN COZUMLERININ
ILERI TUREVLENEBILIRLIK OZELLIKLERI

Bu tez iki ana kisimdan olugmaktadir. Birinci kisimda, neredeyse kiibik Schrodin-
ger denklemi ile ilgili baz1 6nbilgi niteligindeki yerel iyi-tanimlilik neticelerini, ve bir
fonksiyonun tiirevinin normunun fark-oranlar yardimiyla yakinsanabilmesi yiiziinden,
denklemin kolay ve dogrudan getirisi olan L? — H! tiirevlenebilirlik sonucunu ispatlay-

acagiz.

Ikinci kisimda, ACNLS icin baz tiirevlenebilirlik sonuclar ispatlayacagiz. Ik
olarak, siirekli bagimliligin daha zayif bir formunun kullamildigi H*® yerel iyi-tanimlan-
misghgr ve akabinde bunun fazladan bir kogul daha eklenerek siirekli bagimliligin elde
edildigi gelistirilmis bir halini ispatlayacagiz. Son olarak, varlik araliginin maximal alin-
madig1, Banach sabit nokta teoremini kullanarak X ; uzaylarinda yerel varlik teoremini
ispatlayacagiz. Bu aralik agirlikli olarak yiiksek-alcak frekans ayrigimi argiimanlarina

dayanarak belirlenmektedir.
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denotes D(R?), space of infinitely differentiable compactly

supported functions
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cated variable a.
W*2(R?), Banach space of elements u € S'(R?) such that
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1. INTRODUCTION

A class of equations that generalized the two dimensional cubic NLS was intro-
duced and called almost cubic NLS in a paper of Eden and Kuz. The original intention
was to carry the standard results of the cubic NLS to the case of almost cubic NLS.
Since this class includes some case of the Zakharov-Schulman equations ( see [1]) as
well as the purely elliptic case and the hyperbolic-elliptic-elliptic cases of the gener-
alized Davey-Stewartson equations as introduced in Babaoglu and Erbay, [2], all the
results that are obtained for ACNLS would have been applicable to these equations
as well. In particular, the question when the solutions of the initial value problem for
the generalized Davey-Stewartson equations has global existence and when solutions
blow-up was left open in Babaoglu et.al., [3]. Despite various attempts in [4], [5] a
complete answer was not reached. It was only in the paper of Eden-Gurel-Kuz utiliz-
ing the abstract framework of the ACNLS that a complete answer to the question was
furnished, see [6, Section 7] by analyzing the sign of the symbol that is used to define
the cubic non-local nonlinearity. As is well-known, a well-developed theory exists for
the cubic NLS (see e.g. [7], [8] and [9]), still leaving the question of global existence of
solutions with finite initial mass open. Various attempts were made to obtain results
that produce global existence of solutions for “rough data”, i.e. data with infinite en-
ergy, starting with the seminal work, [10], of Bourgain which introduced the high-low
frequency method. Using this method Bourgain was able to show that for the initial
data in H*® for s > 3/5 one can still have global existence. In fact, in his book Bourgain
also discusses some scattering results for a similar class of initial data, see [9, Prop.
3.53]. Later on, in order to improve these results with the hope of achieving the finite
mass case, the [-method was introduced by Colliander, Keel, Staffilani, Takaoka and
Tao. To the best of our knowledge in the two dimensional case the best result so far is
the one by Grillakis and Fang, in [11], that shows global existence when the data is in
H'/2. This thesis started with the ambitious hope of adapting the high-low frequency
argument of Bourgain in [10] to the case of the ACNLS. This hope is yet to be realized.
In the first part of this thesis, we gave the preliminary local well-posedness results

and L? — H! regularity result in details. The second part of the thesis contains some



original contributions to the theory of ACNLS that we were fortunate to obtain as a
result of our struggle with Bourgain’s paper. Namely, we are able to show that there
are classes of rough initial data for which the Cauchy problem for ACNLS is locally
well-posed, these classes include H® and Bourgain spaces. For the local well-posedness
in H* we will make use of the ideas of Cazenave-Weissler, [12], and will concentrate on
the estimates needed for the non-local non-linear term in the appropriate Besov spaces.
This is a reoccuring theme in the study of ACNLS as can be witnessed in [13, Thm
3.5, 4.4, 5.2] as well. For the latter class, we make use of a fixed point argument that
is given in [14] for the case of NLS equation. (a paper that to our opinion seems to
contain some inaccuracies that we also overcame in the process) This section can be
seen as a prelude to our more ambitious and unrealized goal to obtain global existence
results for rough data. The results in the second part of this paper is already published
in [15].



2. PRELIMINARY RESULTS FOR ACNLS

Consider the following two dimensional NLS equation:

ity + Blgy + uyy — K(Ju*)u = 0 (2.1)

uw(0,z) = ¢(x), pe H*

where = +£1 and I?(?)(g) = oz(é“)f(f) for f € L2, and the symbol satisfies the

following:

(H1) « is even and homogeneous of degree 0,

(H2) a € C=(R?\ {0,0}).

We call this equation almost cubic nonlinear Schrodinger (ACNLS) equation and clas-
sify the cases § = +1 as the elliptic and the hyperbolic cases respectively. In the pro-
ceeding arguements we will establish local well posedness of the corresponding Cauchy
problem in H®. In the local and the global theory of this equation, we will be using

the conservation of some quantities, called the mass and the energy defined as:

M(u) = / lul*drdy, E(u)= / [ﬁ|ux|2 + Juy | + 1/2K(\u!2)\u|2] dedy, (2.2)

RQ

respectively and mass is naturally defined for L2-solutions whereas it is possible to

define energy (See [13, Corollary 4.5, Proposition 6.1]).

For the mass conservation, if we begin with H'-solutions, considering H ! — H!

duality product of (2.1) with 2u gives

2i(ug, u)-11 = 2(Blluallz + lluyll2) + 2/K(WI2)|U\2d«’L’-
R2



Since the right hand side is real, we obtain the mass conservation on [0, 7},4.). For
the conservation of energy, multiplying (2.1) by 24, and then taking real parts give
2Re iy (Buge + uyy) = K(|u)?)(Jul?); from which it follows that

0= 5 [l + ) dedy + Re [ a@ 7@€ de

R2 R2

d 1
== /(ﬁ|uw\2 + |uy|2)dxdy + 3 /K(|u\2)|u|2 drdy| ,
2

R2

by using Parseval identity and the fact that a is even. These formal computations make
sense for H2-solutions. By using continuous dependence results, one can approximate
L? and H'-solutions with H' and H2-solutions, respectively to obtain the necessary
conservation laws. The definition of K with the assumptions (H1) and (H2) allows us
to deduce the facts that Im (K(|u|*)[u]*) = 0 and for G(u) = 1/4 [o. K(|u|*)ul*dz,
G € C'(L*%R) with G'(u)(v) = Re [, K(|ul?)ud dz for every v € L*.

2.1. L? local well-posedness

Theorem 2.1.1. For the ACNLS, for any ¢ € L?, there exist Tyaz, Tynin € (0, 00] and
a unique mazimal solution u € C((—Tyin, Trnaz)s L?) N L ((=Trmin, Trmaz), L*) of the
ACNLS. Moreover, the following properties hold:

(P1) If Thaz < 00 (respectively Trnim < 00), then |||l a0, 1ma.),Lry = 00 (respectively
Ul La((=Tyin,0),L7) = 00) for every admissible pair (q,r) with r > 4.

(P2) u € L] ((=Tmin, Tinaz), L") for very admissible pair (q,r).

(P3) ||u(t)||r2 = ||@||z for allt in (—Thin, Tinaz)-

(P4) The mappings ¢ = Trin, Trnaz are lower semi-continuous L? — (0,00]. If ¢, — &
in L? and if u, are the corresponding solutions of the ACNLS, then u, — u in

LI, L") for every interval I € (—Tmin, Tmae) and for every admissible pair (q,r).



Proof. If I is an interval I C R with 0 € I and if u,v € L*(I, L*), we have that,
1K (Jul*)u — K ([ol*)vll ooy < ClullZag,pay + 0ll7a,o)lle = vlleaeey.  (2:3)
Then if we write
t
Glu)lt) = [ Talt = K (u(s))u(s)ds,
0
from (2.3) and the Strichartz’ estimates, we get,

G(u) € C(I,L*)N LI, L") for every admissible pair(q,r),
IG (W) lzorery < Cllullgag,zay and (2.4)

IG(w) = G)llzsr.ery < ClullLagr ooy + 10l Za pa)le = vlzsgzs, — (25)

for some constant C' independent of I. First we will prove the existence and uniqueness

of the solution.
We will prove that there exist a § > 0 such that if ¢ € L? satisfies
1 T5()0l 21,24y <6, (2.6)
for some interval I C R containing 0, then there exits a unique solution u € C(I, L?)N
LA(I,L*) of ACNLS. In addition, u € L(I, L") for every admissible pair (¢,). More-

over, if ¢,1 € L* both satisfy (2.6) and if u,v are the corresponding solutions of the
ACNLS equation, then

v — vl goo(r,02) + [[u — || Loz 1y < Ol — |2, (2.7)

for some constant C' independent of I,u and v.



Now fix a § > 0, to be chosen later, and let ¢ € L? satisfy (2.6). Consider the set
E={ue L*I, L") : ||lul|pacr,ray < 26},
so that (&, d) is a complete metric space with d(u,v) = ||u — v|| 47,14
For v € /| from Duhamel’s principle, for t € I, write,

H(u)(t) = Ts(t)¢ + 2/0 Ts(t — $)K ([u(s)[*)u(s)ds. (2.8)

It follows easily from (2.6), (2.4) and (2.5) that if § is small enough (independently of
¢ and I), then H is a strict contraction on £. Thus H has a unique fixed point wu,

which is a unique solution of ACNLS in F.

Using (2.4) and the Strichartz’ estimates, we get that u € C'(I,L*) N LY(I, L")
for every admissible pair (¢, 7). The inequality (2.7) follows easily from (2.5) and the

Strichartz’ estimates.

Now we shall prove uniqueness (without the assumption (2.6)). Let I be an
interval with 0 € I and consider two solutions u,v € L*(I,L*) of ACNLS. We show
that if 0 € J C [ with |J| sufficiently small, then v = v on J. Suppose that this

assumption is true, then we may define 0 < 6 < T, where I = [T}, T3], by
0 =sup{0 <7 <Tr:u=won (0,7)}.

It follows that w = v on [0,6]. If # = T3, then the uniqueness follows for the positive
times. So assume for a contradiction that < Tp. We see that u;(-) = u(6 + -) and
v1(+) = v(0 + -) are solutions of ACNLS with ¢ replaced by u(#) = v(#) on the interval
(0,75 — #). By uniqueness for the small time, we can say that u; = v; on some small
interval [0, €] with 0 < € < T, — 6. But this means that v = v on [0,6 + €], which
contradicts with the definition of 6. Hence small time uniqueness gives uniqueness for

the positive times. Similarly we can show that the same holds for the negative times.



Now we will prove our assumption on small time uniqueness, namely, if 0 € J C [ with

|.J| sufficiently small, then u = v on J. We have,
lullZsrzey + [0l Zaszey = 0 as [J] L0 (2.9)

From (2.7), we can deduce that,

lu = vl zanyy < CUlullzags ey + 10l Zag o) lu = vll Ly (2.10)
Then using (2.9), for |J| sufficiently small, we have

C(|’UH%4(J,L4) + ”UH%‘l(J,L‘l)) <1,

and we can conclude that

| — vl zacspe) < dlju — v||pag ey, with some 0 <d<1.
Thus ||u — v||za(s,24y = 0, meaning, v = v on J.

The property (P3), the mass conservation, is proven for smooth solutions. For
the general case we take a sequence ¢, € H' such that ¢, — ¢ in L?, for which we
will show that the ACNLS is locally well-posed in H!. From Strichartz’ estimates we
get that for n sufficiently large, ¢, satisfies (2.6), so that by (2.7), u, denoting the
solutions associated to ¢,, u, — w in C'(I, L*). Then we see that u, are H' solutions
of the ACNLS, so that the mass conservation is obtained for u,, for n sufficiently large,
namely, ||u,(t)||zz = ||¢nl|r2 for all ¢ € I. Then passing to limit as n — oo we get

u(®)]|z2 = |||z for all ¢ € 1.

We are now able to construct the maximal solution (and consequently property

(P1), the blow-up alternative) and show property (P4), the continuous dependence.

Let ¢ € L% By Strichartz’ estimates we know that 73(-)¢ € L*(R, L*). Then



we have ||Ts(-)||L4(—r,r),L9y — 0 as T" — 0. Hence ¢ satisfies (2.6) and hence we
can construct the unique local solution u. Again first we will prove arguments for the
positive times, then the proof for the negative times will be done similarly, now we
can define T}4:(¢) = sup{T > 0 : solution to the ACNLS exists on [0,7]}. Then by
uniqueness, there exists a solution v € C((0, Tynaz), L*) N LA((0, Thnaz), L*) of ACNLS.
If Thnaz < 00 and [[ul| 140,100, 04) < 00. Let 0 <t <t 4+ 5 < Tpae. Then we have, by

Duhamel’s principle and uniqueness of the solution, that
Ts(s)u(t) =u(t +s) — z'/os Ts(s — ) K (|u(t + 7)[*)u(t + 7)dr. (2.11)
Then by (2.4) we get,
T )w() || 20, Tmas—1),14) < 0l L8t Tae) %) T C|’U||?£4((t,Tmaz),L4)~ (2.12)
Hence choosing t close enough to 71},,, gives us that
175 () 240 Tnaw—1).L9) < 0/2:
This says that u can be extended after T},,., but T},., was chosen to be maximal. Thus

||| La¢(0,Tymae),24) = 00, and for any admissible pair (¢,r) where r > 4, from Holder’s

inequality, we have
lull o).y < lullzsory.c2ymllull oloz oy < NSl lull ato 7 Loy
for any T' < Thae, with p = 2(r — 4)/4(r — 2). Letting T — T oz, We get
2] £a((0, Trman),Lr) = O0-
Thus properties (P1) and (P2) are proven.

To show the continuous dependence, consider 1" € R such that T < T,,,,. Since

u € C([0,T], L?), it follows from Strichartz’ estimates and compactness of [0, 7] that



there exists o > 0 such that ||73(.)u(t)||r(0,0),4) < 6/2 for all ¢ € [0,T]. Let n be
an integer such that 7' < no, let C' > 1 be the constant in (2.7), and M be such that
| 75( )0l a4y < M||v|[z2. Let € > 0 be small enough so that M K™ 'e < §/2. We will
show that if ||¢ =2 < €, then Thee(¥) > T and |[u—v||cqo,r),22) 1w =2 L4(0.1),24) <
nK"||¢ — ¥||12, where v is the corresponding solution to the initial datum . The

inequality ||¢ — ¢||z2 < ¢, implies that

T30 Lago,rymy,ry < N1 Ta( )Pl Laqor/my,Lry + 1 Ta() (@ — )| ao.0/m).0)
< /24 Me

<.

Thus, we get The: () > T/n and that

lu —vllcqor/m,e) + v — vl Laomm),ry < K¢ — ]| 2.

Hence, ||[u(T/n) — v(T/n)||2 < Ke, and iterating this argument n times gives the

result. O

2.2. H! local well-posedness and regularity
Theorem 2.2.1. Given ¢ € H', there exists a unique mazimal solution
u € C([0, Tnaa), H') N CH([0, Tpaar), ),
of the ACNLS on [0, Tryax) with the following properties:
(P1) YVu € L*([0,t], L*) for every t < Trnaz.
(P2) If Trnax < 00, then |[u]| Lo (0,700 ), 1) = OO

(P3) If ¢, — ¢ in H' and u,’s are the corresponding solutions, then for any I €
0, Trnaz), Un — w in C(I, H')
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Proof. The proof is similar to the proof of the L? local well-posedness theorem, after
replacing the L?-norm with H* norm and L%(1, L")-norms with L4(I, W'")-norms for

all admissible pairs (g, r). ]

One of the immediate questions to ask about the resemblance of the proof is that,
since the H' solutions are also L? solutions, do the solutions in L? framework and in
H*' framework also resemble? The answer to that question is not immediate. We know
that if the initial datum is in H!, then both local well-posedness theorems give us a
maximal solution and by uniqueness, we can conclude that the solutions coincide in
the maximal intervals of existence. So we can pose the question in another form: If
the initial datum ¢ is in H', do the L? maximal interval of existence and H' maximal

interval of existence coincide?

Proposition 2.2.2 (L? — H'! regularity). Consider the ACNLS with the initial da-
tum ¢ € L2, then by theorem (2.1.1), there exist Tryaw and Tryym in (0,00] and a

unique maximal solution v € C((=Tmin, Trnaz), L?). If ¢ is moreover in H', then

u € C((_Tmzrm Tmax): Hl)

Proof. First we can easily see that the maximal interval of existence we obtain in the-
orem (2.2.1) is not larger than the maximal interval of existence we obtain in theorem

(2.1.1) since all H' solutions are also L? solutions.

Now let u be the L? solution of the ACNLS, where we considered the initial
datum in L? and used the theorem (2.1.1) to construct v. We will show that if ¢ € H*,
then u € C(I, H'), where [ is an interval containing 0. Considering theorem (2.2.1),
we can construct a solution v € C'((—T.,T*), H'), where T,,T* > 0 and (=T, T*) is
the maximal interval of existence we obtain by theorem (2.2.1). Since v is also an L?
solution, by uniqueness we can say that u = v as long as both are defined. Thus it is
enough for us to show that I C (=7, 7%). If we assume I = (a,b), and b > T™* since

the ACNLS is invariant under space translations and gradient is the limit of the finite



11

differences quotient, the inequality (2.7) yields

||VU||L00((O7T*)7L2) S C||V¢||L27

which contradicts with the blow-up alternative for the H' solutions, namely the prop-

erty (P2) of theorem (2.2.1). Hence b < T*. Similarly we can show that a > T,. O
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3. FURTHER REGULARITY RESULTS FOR ACNLS

In this chapter we will state some further regularity results for the solutions of
the ACNLS equation. First we will give H® local well-posedness result and finally we

will prove ijb local existence result.
3.1. H? local well-posedness and regularity

This section consists of two H?® local well-posedness results. In the first one
continuous dependence is weakened, and in the second one we achieve the desired

continuous dependence by requiring an additional condition on the solution.

Theorem 3.1.1 (H* local well-posedness 1). Let s < 1 and let (v, p) be the admissible
pair defined by p=4/(1+s), v=4/(1 —s). Given p € H*, there exist Tyaw, Tinin €

(0, 00| and a unique mazximal solution

u € C<<_Tmzn7 Tmax)u HS) N LW((_Tmma Tmam), B;Q) (31)

of the ACNLS, and the following hold:

(P1) we L] ((=Tmins Trmaz)s B;,) for all admissible (q,r).
(P2) (Blow-up) If Tyaw < 00 (01 Thin < 00), then ||u(t)]
t — Tonin)-

gs — 00 ast — T (o7

(P3) u depends continuously on ¢ in the following sense: There exists 0 < T <
Trnaz> Tmin such that if ¢, — @ in H® and if u, denotes the solution of ACNLS
with the initial datum ¢,, then 0 < T < Tae(©n), Tmin(pn) for all sufficiently
large n and uy, is bounded in L((=T,T), B;,) for all admissible (q,r). Moreover,
Up = u asn — oo in LY((=T,T),L") and in C((=T,T), H*~°) for all € > 0.

(P4) If, moreover, ¢ € H* and 3 = 1 then we have that the energy,

Eu) = / [Blual? + [y + 1/2K (Jul?)uf?] de dy,

R2
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is conserved in every compact subset of (—Tin, Tinaz)-

After obtaining Strichartz’ type estimates and some estimates for the nonlinearity,
the result will follow in the spirit of the proof in [12, Theorem 1.3]. Since Strichartz’
type estimates hold for the solution of the linear equation iu; + Sug, + uyy = 0 (see
[13] for details), what we need to show is the estimates on the nonlinearity to recall

the proof of the theorem in [12].

Lemma 3.1.2. Let K satisfies (H1)(H2). Let0<s<1,1<g<o0,1<p<r<oo.
If o =2pr/(r —p), then

LK (1)1

iy, < ClfIL-1If]

35
B"'»q

and

53, < CIIFIIZ-I1f]

p,a —

I (LF1%).0)]

B, Vf c Biq NL°.

Proof. From Hoélder’s inequality we have ||fg|» < || f||zos2||g||lLr- Since 2/o + 1/r =
1/p. Then

(S fllze < NE QS orz 1 f ]l

Since K is a Calderon-Zygmund type operator (see [16],[17]) and ¢ > 2 then K is

bounded on L?/2, which gives

IEAf ) flle < CUAFP erz I Il = ClEIIZ gl

n Now set 7,f = f(- —y). By the Remark 1.4.4 ((ii),(iii)) in [7], if we can show for
y € RZNE(fP) 7 f = K(fP)flle < ClfIZell7yf = fllo, first inequality of the lemma
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will be obtained. So

Iy (K1) F) = KA e = Im KA 7 f = K1) e
< Nm K (F1)f = K)o (3:2)
Hin K(f ) f = K () e (33)

and

(32) <l 1K (7 £17) = K (AP p2orsoen
< A Nee IE Tl 1P = 1) peorsoer)
< Cllfllzellry £1* = £l 2o
< O\ fllee (Nl f(ry f = Ollpzorsaen + 1 (7 f = Pllz2orscen))
< Ol fllee LAl ee Iy f = Fller)
< ClIfIz- 7 f = Fllz-

where we obtain the second line by the L?P"/(P*7) — [2r7/(P7) houndedness of K. We

estimate (3.3) by:

3.3) < my K (IfP)(ryf = e <N KASf P porellryf = fllir
< Clf Pl pese Iy f = fller
< CI e llmyf = Fller

as desired. Hence the inequalities of the lemma are proved. O

Lemma 3.1.3. : For f,g € C(I,H*)N L"(I,B;,) and I = (0,T) for T > 0 to be

chosen later, we have:

(1) f = Kgl)gll 1oty < CUF T ms ) + 9200 s ) = gllzasg.,),

where 1/p = s+ 1/7.
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Proof. For such f, g we have

(L @)f ) = K(lg@OF)g@ll e < IEAFOF)FE) — gl (3-4)
+llgOK AL = lg@®O)L- (3.5)

We estimate (3.4) and (3.5) as follows:

(34) < 1F (1) = g Lo K (F O] 209
< £ @) = g@OllzelLf O F ] z2ra-

< CIF@) = 9Ol FONFara-

(&) = g(@®)llze L/ ()]

< C[If(®)

2
Bs,
by the Sobolev embedding, (see [18]), B5, < LY(7%). For (3.5):

(3.5) < Cllg®) | ara-s I F O = 1g() [l 2
< Cllgllpara-o ILF @O+ lg@ s

< Cllg@llzsra—s (Lf Ol ara-o + lg(@)ll z47a-)

f@) = g()lze
£ (&) = g()]|e-

We obtain by the Cauchy inequality (ab < (a* + b*)/2) that

(L @1P)f (1) = Kl F)g @)l < CLF ()]

2 lgOI3: ) — a0,

then Holder’s inequality in time yields
I FP)S = K99l .oy < CUFN .53 ) + N9 .ms ) = 9llzoi,zey
which is the estimate we look for.

Hence we get all the crucial estimates in the proof given in the [12], and the proof

follows similarly. |

Theorem 3.1.4. (H® Regularity) Let (v, p) be defined as in Theorem 3.1.1.
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For p € H?, let u € C((=Trnins Trnaz), H*) N LY ((=Tonins Trnaz), Bj 2) be the mazimal
H?® solution of the ACNLS. Then if, in addition, p € H® for some s < s' <1, for any

admissible (q,r)

ue C((_Tm““ T””““f')’ HSI) N Lq((_Tﬂunv Tma:(:); Bf;?)

Proof. Since there is local well posedness in H* we have u as an H* solution on some
maximal interval [0, T) where T' < T},q. (since all H*' solutions are also H® solutions).
Now we want to show that T = T,,4x.

To obtain a contradiction, suppose T # Tpaz, then T < T4, and ||u(t)]

s’ — 00 as

t —T. Since T' < T4, we have

”u”L’Y((_Tnnn,Tmaz)yB; 2) + Sup ||u| Hs < 0. (36)
’ 0<t<T
Then by previous calculations, we get
I [ Qulye] (e, < Cllull, lelgy, < Cllully Jullyy, G

by Sobolev embedding W™ — L%  for p<q<np/(n—mp).
Now let I C (0,7). Then

1K (ful)u(t) HLW’(I,B;;Q) < CH“”%’Y(I,L“/U*S)) ||u||Lp(1,B;f2)> (3.8)

where 1/p =1/ + s.
Then by Strichartz’ estimates we get,

||U||Lo<>(1,Hs’) + ||U||Lw(1,B;f2) < Cllell g + CHUHLl(LHs’) + C||U||Lp(1,33f2)a (3.9)
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for each I with 0 € I C (0,7). Now let 0 < e < 7 < T and consider I = (0, 7). Then

el zrer,mey < Nwllpaormemsy + el prrmen) e

< ullpro,r—ep,my + €l oo ((r—ery, 1oy

<Ce+ €||U||L<>O(I,Hs’)

and similarly

el o,y < Cet €Ml a7,

which we obtain by Hélder inequality (here, we want to get positive power of € which

we did by the choice of (7, p)).

||u||L°°(I,HS/) + ||u||Lv(1,Bgf2) <C+Ce+ ECHUHL‘”(LHS') T ESOHUHL”(LBZ@

then choosing € small enough such that, eC' < 1/2 and €*C < 1/2 we get

el oo (1ot 0l 1 ) < €

where C' is independent of 7. We obtain a contradiction if we let 7 — T with T" being

the maximal time of existence. Hence the result follows. O

As we can see, the H® well posedness theorem does not state the continuous

dependence. But we can state (as in [19, Theorem 1.4]):

Theorem 3.1.5 (H® local well-posedness 2). For ¢ € H®, the L? solution of the
ACNLS and the L? local well-posedness time Ty satisfy:

(P1) uwe L>(I, H®).
(P2) There exist 0y such that if ||ul|par,zay < 02 then | D%ul|par,ry < Cll9|

s for all

admissible pairs (q,r).

(P3) There is a 03 > 0 such that, if ||ul|par,14) < 02, ¥’ is a solution of the ACNLS
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with the initial datum ¢ € H®, and if ||¢p—¢'|| 2 < 03, then [|[D*(u—u')||Lo(r,zr) <
Cllo — &' ||us for all admissible pairs (q,r). Again where C is only dependent on

dimension, s and the operator K.

Proof. For the proof of 1. we need to prove two claims;

Claim 1: The operator K commutes with D® whenever ||[D*K (u)|z2 < oo .

Proof of Claim 1: Since K is a singular integral operator, we have that K is bounded
from LP to L? if p > 1, and for u € L?, K(u) is in L? and [ (1 + [£]*)*|a(&)u()[PdE <
M2 [ (14 &) |a(€)PdE = M?||lu|3;. where M = sup|a(§)|, which gives that K(u)
is in H® for u € H*. So D*K(u) € L* whence D*K(u) = K(D*%u) since Fourier

transforms of both sides are equal. For |u|?, consider a sequence of functions (u,,)
such that u, € H* for all n and K (u,) — K(|u|?) in H® then, by Parseval identity,
I[P a(€)in = [ul2)lz2 = 0. So [[€]°(hn — [uf)]lz2 — 0 which gives that u, —
in H*. Then since for such u,’s D*K(u,) = K(D%u,), we get | K (D%|u(t)?)| 2 =
|D°K (ju(®)?) 12

Claim 2 ||D*(fg)ller < CUD flleoillgllLre + D9l Los|[ fl|Lrs] where 1/p = 1/py +
1/ps=1/ps+1/ps

Proof of Claim 2: For the functions ¢ and ¢ in L? if we define operators A;f =
F(g;f) for f € S, then by Littlewood-Paley theorem (for details, see [20],[8,
Appendix A]) we know that

o0

1F e 2 1O 22585 )1
and consequently:
1D ()l = 11 D D (A f Arg)ll o
g,k
<IDD DA A e + 1> D (A f D)o + 110D DA fAkg) v
J o k<j Jj=k k <k
=51+ 52+ Ss.

Since S; and S3 are almost symmetric if we can find an estimate for S; then inter-
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changing the roles of f and g we will get the estimate for S3. Now

S1 < OINQ_ 211 ) Akgl) e
J

k<j

< Ol 2% A 11P) 2 Myl o

J

< O 27|85 )2 oo | M g oo

J

< CID* fllzm llgllzee

where 1/p = 1/p; + 1/p2 and M is the Hardy-Littlewood maximal operator which is
bounded in L” where 1 < p. But to have the second line, we have to consider the basic
Fourier transform property that if g(z) = A"f(A~'z) then §(¢) = f(Az). For f being
the function ¢ and so f(Az) being the ¢ (x), since ¢ € L', 37, . Ay, becomes a radially
bounded approximate identity for 7 > 0 and we know that such approximate identities
are bounded by M.

Obtaining an estimate for S5 is much easier:

Sp < O 2514 291°) | o

J

< O 27 A:f Aggl)ll e

J

< ONQ_ 218,22 (Y A2l
J J

< OIQ 2185 )l 1Y 185912 2 e
J

J

< OID* fllzrligll e

by Cauchy-Schwarz inequality. Hence we get the result since pi, ps, ps, ps are cho-
sen to satisfy the condition in the claim. Now the proof of property 1 will be done

similarly as done in [7, Theorem 4.9.1]. For that, let (p,v) be the admissible pair
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(4/(1+s),4/(1 — s)) and we have by Hélder’s inequality and Claim 2

1D (K (Ju(®)*)u)ll o < CID*K (Jut)[*)]| c2llu(t) [+

+ ClID ()| o | K () ")) v -
Also by Claim 1:

1D (K (Ju(®)F)u)ll Lo < CIHE (D ut)*) | c2llu(®)l 2 + CID ()| o [[[ul®) ]| 2ra-s)
< CIND* [u® )2 [u@®)llzr + CID @) [ (@) P[] 20—
< D@ u®)) |z lu@®)llzllu@®lzs + CID )| e [lu(t) ]| 20—

< CII(D*u(®)lleo llu®)Z-

since v =4/(1 —s)
Then by Sobolev embedding we reach

1D* (K (Ju(®)*)u®) s < ClID*u(t)IZ0-
Applying Holder’s inequality in time:
1D* (K (Jul*) )l 1,0y < CTSID W Za 1,10

Now we apply Strichartz’ estimates to u = H(u) by Duhamel’s principle where H (u)
is the integral representation of the solution of the ACNLS equation, to end up with

| D*H (u)|| pacr,zry < Cll¢]

me + CTS (D) 3o 1. 1e),

for every admissible pair (g, r) which gives the property 1.
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To prove property 2 consider the metric space

E = {U c Lq(I, Ws,r) :||DSU||Lq([7Lr) < Ml, ||u||LLI([7L'r) < M2
, u(0) = ¢}

defined for each admissible pair (g, r) equiped with the metric

d(u,v) = sup | — vl La(r,r)-
(g,r)admissible

First note that completeness of the metric space with respect to the metric follows

directly from Theorem 1.2.5 in [7] (where X denotes W*? and Y denotes L").

Hence to show the existence, what we have to show is that the integral represen-
tation is a contraction mapping in the metric space FE. First we show H : £ — F.
Pick v € E. Strichartz’ estimates give,

1H ()| zar.Lry < Cll¢llz2 + /0 Ta(t — ) K ([uf*)u](r)dr

La(I,L7)

and since

/0 Ta(t — DK (ul*)u) (7)d7 || gLy < CIHE (Jul*)u

we have, by Hoélder inequality and LP — LP boundedness of K

L4/3(I,L4/3)

1K (lul®)ullpassparsy < I (w2l gy < Cllullda -
Hence

|H (w)||Lar,ry < Cll@]|z2 + CM;3,



22

so if M, is sufficiently small we have
1H (u)l[Lagr,ry < My,

for (¢,r) admissible. Here we also used the fact that if ||u|;4(; 14 is small (<< 1) then

19ll2 = Jullaqr.zay.

Moreover we have

1D H ()| ar 2y < ClID*6] 2 + H [ 7= D0 Gl rhae

La(I,L"™)

The second summand can be estimated as follows,

< O D*[K (Jul*Yulll pass (1, £/
La(I,L")

< O K (Jul*)| 21,22 | D*ull Lar, o)

/0 To(t — 1) DK (| yul(r)dr

+ Cllull a1 D* K ([ul) || 22,22
< Olllul |2, 1Dl pagr i)
+ Cllufl g 1K (D |ul?) || 22,22
< CllullZaq e |1 D*ull L,y
+ Cllullagr.onl(D[uf*) | 2r.22)
< C||U||%4(I,L4)||DSU||L4(LL4)
+ Cllullpar,z lull s, | D*ul[ a2

< ClDullpaqr,enllul 7o, 1)
where the constant C' is modified at each step. Thus we have
1D*H (u)l|o(r,.Lry < CID*@ll12 + CllDull pagr, o [l Loz 14y,

so for 2C|¢|

us = M; and again for M, small enough, we get H : E — FE is into.

Remark 3.1.6. I = [0,7p] so that everything done here is for the L? local well-
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posedness time Ty, and the smallness condition for ||ul|pa(r,pey is independent of Ty.

Thus what is left to show is that H is a contraction mapping. Now for u,v € E

we have:

|1H (u) = H()||pagr,ory < CIK (Jul*)u = K(|v*)oll gassg,pas)

< CIIK ([ul*) (w = )| arsz, pass)

+ Cllo(K (Jul* = [oP) | ars(r, s
< CIIK ([ul*) 2.2 1w = vll 2 ooy

+ CHU”L‘*(I,L‘*)HK(WP - |U\2)HL2(I,L2)
< ||U||%4(1,L4)||U — vl + C||U||L4(I,L4)|||U|2 - |U|2||L2(I,L2)
< CllullFag pallw = vllLag Loy

+ Cllollpag,enllv = vllzapallu + vl a2 (3.10)
< lollzaq o (Cllulla,pay + Clloll zag ) llu — vl zagr, ey

+ CllullZagr payllu = vl Lz, (3.11)
< (Cllvll7a pay + Cllull .o lvll zac,oy) e = vl| Lagr Loy

+ CllullZagr payllu — vl L,z (3.12)

< (Cllullgag pay + CllollEs o) llw = vllzag,ze (3.13)

where the last inequality follows from the Cauchy inequality. For M, small and (g, )

an admissible pair, we have
[1H (u) = H()|[Lo(r,Lry < 1/2d(u, v),

which implies H is a contraction mapping from £ into E. Since there is a uniqueness
in L2, if ||ul|pa 4y < & for some &, which makes u satisfy the above conditions,
u coincides with the L? solution of the equation. Moreover we have ||u| a4y <

0y implies || D*u||pa(r,ry < C||¢|

g for each (g, r) admissible, which gives the property
2. Call 6 = 64/2. For the property 3 we must mention a couple of things first. We know

from L? local well-posedness theorem that if ||¢ — ¢'[|z2 < d5 for some &3 then, if u’ is
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the solution of the ACNLS equation with the initial datum ¢’ then |ju—u'{|za(;, 1) < 95
where 0, is as given above. Thus ||u'[| < 202 so ' satisfies the assertion in property 2.

For any admissible pair (g, 7):

1D*(w = )| oy < CIDY¢ = $IIE + CID K (Jul*)u — K(Jo*)o]ll sz, pars)

< C|D* (¢ — ¢)II7 + 11
and

1T < Ol(u = 0)D*(K (|ul*)) | 731,43y + ClloD* (K ([u* = [0]*)) | gars (1, pars)
< CIK D |ul) 2,02y 1w = vllzacoey + CID*(w — v) || paqr oo 1ull 2o oy
+ CID*v|| g e |1 K (Jul® = [0]*) || 21,2
+ Cllvllpa o | K (D*(Jul® = [0*)[| z21,2)
< CID%ull g oo lull ool = vl Loz Loy + ClID* (w = 0) |, lJullZagr oy
+ CID*| g oy ul? = [Pl 21,22y + Cllvllza o 1D (Jul* = o) ]| 22,22
< CID*ull g oo llull Lo, oo llu = vl Lo Loy + ClID* (u = 0) |, llul| Zagr 1oy
+ Cllvllza,poy (1D (Jul + Dl zaq po 1w = vl zag 1e))
+ Clloll gy (1D*(w = o)l on 1w + vl agrzay)

+ C||DSU||L4(LL4)|||U| + |U| ||L4(17L4)||u — U||L4(I,L4)-

Upon writing || D*v||pa(r 4y < || D*(u— )| pacr,04) + || D% La(r, 4y by linearity of D* and

triangle inequality, and using the L? local well-posedness result above, we get

1T < Clgus6:2ll6 — ¢'ll12 + CID* (u — )| 1a(r.0903 + C| D (u — v) || 1.1+ 26263
+C| o r:202]¢ — ¢l 12 + Co2(2(| Al 1=l — ¢'|| 2
+C|l§b| Hs D5<u — U)||L4(I,L4)53 —|— OHDS(U — U)HL‘*(I,L“)Q(;Q)-

Therefore

IT < C||D*(u — v)|| par,z4y (05 + 26205 + || ¢

11+ (8283) + 285) + 6C|¢|

02|l — ¢ 2.
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Choosing 03 small and d5 even possibly smaller (0, depending on ||¢|| zs and d3 depend-

ing on both ||¢[|gs and d2) we arrive at

1/2d(D*u, D*v) < [|¢ — /|

as +1/2[¢ — ¢'|| e
By the previous calculations and L? local well-posedness, we already have
d(u,v) < 2[|¢ = ¢'[| 2.

We combine these results to get the property 3, which is the H?® local well-posedness

result under the given assumptions. O

3.2. Bourgain spaces Xib and Strichartz type estimates

For s,b € R the Bourgain space X, is the closure of the Schwartz functions

S (R x R?) under the norm

lullx,, = I1€)*(7 = [€%)° a7, )l 12 22y (3.14)
where (z) = (1 + |2|?)'/? and the Fourier transform is not only taken in space but is
taken in both space and time. As we can see the definition is given in R x R?, but we
can define the restriction of the Bourgain space on I x R? for some time interval [0, d]

as

lullxs, = inf{llfllx., : f € Xep, f(t) =u(t) Vte0,4]}. (3.15)

This norm (3.14) can be written in another form using the solution operator of

the Schrodinger equation and Bessel potentials, as follows,

lullx,, = 17 2T (—t)ul@, )]l 2 z2)- (3.16)
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For these spaces, we can see that there is a trivial embedding

Xs’,b’ C Xs,ba (3].7)

for s < sand b <b. Also from Parseval’s identity and Cauchy-Schwarz inequality we

have the duality relationship

(Xs,b)* - X—s,—b7 (318)

These spaces behave well under interpolation in both indices s and b. One of the
most problematic property of these spaces is that although they are invariant under
translations in space and time, they are not invariant under conjugation. This means
even though a function u is in a Bourgain space X;, this does not imply that its

conjugate @ is in that Bourgain space.

In order to use Bourgain spaces we need to give Strichartz-like estimates, namely
we need to give estimates concerning the solution operator and embeddings into spaces
more common and whose theory are much widely explored. Although the study of
Bourgain spaces are rapidly developing we will only focus on the estimates and embed-

dings closely related to the Schrédinger equation.

The basic estimates of the Bourgain spaces can be asserted as follows;

Proposition 3.2.1. For any admissible pair (q,7), any s € R, time interval I = [0, ]

and € sufficiently small, we have;

lullzacery < Cllullxs . (3.19)
and
]| 290 (1,70) < Cllul|xs (3.20)

5,0 /2+e€ ’
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where 0 € [0,1], 1/gp=6/qg+ (1 —0)/2 and 1/rg=0/r+ (1 —0)/2, where C is

independent of 1

Proof. Since Bourgain norms behave well under time restrictions, we only need to show

that for any b > 1/2
[ullzo.ry < Cllullx,,-

Because once we showed that for any u € X¢,, we can find a sequence u,, € Xy, such

that u,Xx{0,6xr2y = u and
[unllxo, < llullxg, +1/n for n €N,
and hence conclude that
ullor,ory = llunllpagriry < Cllunllxg, = Cllullxg, +1/n, Vn €N,

and as n — oo, which implies the inequality (3.19). So it is enough for us to show

(3.2). Now let (¢,7) be admissible and b > 1/2. We know that

u(w,t) = Foa(w) (€, N)eEFAded )
R2xR
= [ Fual e - et e 0geay (321)
R2xR
We define
Folur)(€) = (N Fuu(w) (€A — [€[%), (3.22)
and

Flat,\) = / IR . (11,)(€)dE = Ti (t)us. (3.23)
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1/2
Then we get ||u]|x,, = ( Jros ]]—"x(uA)(g)Pdgd)\> and
o) = [ @ ot )
by (3.21). So we have,
ey < [ 1M asman ()0 (3.24)
and Strichartz’ estimates give:
1FC s Mpaery = 1Ti@)urll Lo,y < Clluallrz = Cf| Folun)||ze- (3.25)

Thus combining (3.24) and(3.25) we get

1/2
Jullnuiry <€ [ IFdun) ot ir < © ( / ||fx<ux>||%2dA)

< Cllullxq,,

where for the second inequality we use Holder’s inequality and the fact that b > 1/2.
Thus we have showed (3.2).

For the second part of the theorem we only have to observe that
lull2(r,r2) = ||U||Xg707

and the result follows by interpolation. m

Corollary 3.2.2. For any sufficiently small € and admissible (q,r), the following in-
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equalities hold true:

lullsres < Cllullxs, (3.26)
[ullpagweny < Cllullxs . (3.27)
lullps—er oo < Cllullxg (3.28)
ullxg 1oy < Cllullzee,ore), (3.29)

where p. = (4 — 8¢) /(3 — 8e).

Proof. We easily see that (3.26) follows from the previous proposition since (4, 4) is an
admissible pair. In the proof of the proposition, if we change u with J*u, where J* is
the Bessel potential, we get (3.27). Also (3.28) is immediate by letting (¢,7) = (4,4)
and 0 = (4 — 2¢)/(4 — €) in (3.20) and observing that /2 < 1/2 —¢/8.

For the inequality (3.29), we use the duality argument and Holder inequality:

lullxs,, < sup [wu) < suplollpasezo-solJull oo,
8 aie
vllys <1 vl s <1
1/2—€ 1/2—¢
where p, is as above. Because ||v]|pa-se(s pa-sc) < C||v||Xgl/2 , we obtain (3.29). O
3 —€

These embeddings are important in the study of the Bourgain spaces as L” spaces
are much easier to work with. But to study nonlinear Schrodinger equations, one has
to make use of the following Strichartz type estimates, which are proved by Gou and

Cui in [14].
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Proposition 3.2.3. For s € R, we have

us, for —oo<b< oo, (3.30)

ITi(®)¢lxs, < Cll¢]
lullxs | < CO" " lullgs , for 0<by<b <1/2, (3.31)
s,—by s,—bg

where C' is independent of 0.

/ tﬂ(t — Nu(N)dx

<OV ullys, |, for 1/2<b <1, (3.32)
x4 o

s,b

Proof. First we will prove (3.30). To this end, take a compactly supported C*°(R)
function 1 such that ¢(t) =1 for 0 <¢ <1 and ¢(t) =0 for t < —1 and ¢t > 2. Then

we have

IT(®)¢llxs, < 1wt/ Ti®)olx., = [T LT(=) (/D) Ti()¢)l|2w,2)

<N Y@l 50l 2wy < Cllolla:,
and this is (3.30).

As the time localization arguments done in the previous proposition, (3.31) would

be shown if we could show

lot/o)ully, , < C8" " ullx, _,,. (3.33)
By duality, it is enough to show
lot/o)ully,, < C6" " |lullx,,,- (3.34)

To prove (3.34), set f(z,t) = JJTi(—t)u(x,t), so:

[4(t/6)ul

Xy = 172 @) I )| e - (3.35)
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Since ||ullx,, = || fllr2@.r2), putting J; | fllL2(r2) = g, the inequality (3.31) will follow

s,b1

if we can show
1 (t/8)g ] ooy < CO" " llgllaros gy - (3.36)
By [21, (3,6)], we have
10(t/8)gll ey < C8lgllocey, for 1/2<a<1.

Since

1/2

20
46(t/3)gl ey < C ( / rg<t>|2dt) < COV g e

and by Sobolev embedding theorem, ||g||Lsm) < C||g|[ze for 2 < ¢ < 0o and b =
1/2 —1/q, then get

10 (t/0)gl 12y < CO°llglle, 0 <D <1/2. (3.37)

For sufficiently small € > 0 we let @ = 1/2+¢€, b = (by — b2)(1 + 2¢) /(1 — 2by + 2¢) and
0 = 2by/(1 4 2¢) and interpolate between (3.2) and (3.37) to get,

Hw@/d)gHHbz = |‘¢(t/5)gHHG9+b(l—9)(R) < 069(172a)+(170)bHgHHaOer(ke)(R).

Similarly, (3.32) follows from the inequality

< C827ful
Xs,b

ot [ - A

Xopn  1/2<b<T

which was shown in [21] for the one dimensional case, and for the n dimension case,

the proof is similar. O

This proposition has an important corollary for the study of Schrodinger equa-
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tions:

Corollary 3.2.4. For s € R and sufficiently small e > 0:

t
[T vuan| <l (3.39)
0 Xg’1/2+6 s,—1/2+3¢
where C'is independent of 6.
Proof. In (3.31) and (3.32). Setting b = 1/2+4+¢, b = 1/2—¢ = —(b—1) and
by = 1/2 — 3¢, we get
t
/ Ti(t — Nu(N)dA <O Y ullys < COE 02| s
0 X2 1 24e v e
< O||u||Xs,—l/2+3€7

which is (3.38) O

3.3. Local existence in Bourgain spaces

In this section we give the proof of the local existence theorem which was stated
in the first chapter for ACNLS which also includes the case of cubic NLS for a(¢) =
1 for £ € R

iug + Au = K (|ul*)u

u(0,2) = ¢(x) € H® 0<s<1, (3.39)

which is (2.1) for # = 1. As done in the previous chapter, we decompose the initial

datum into its low and high frequencies ¢ and ¢, and write the corresponding initial
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value problem:

iuot + AUO = K(|U0‘2>U0

up(0,2) = ¢o(z) € H' (3.40)

By the theory of the ACNLS, we know that w, exists globally, see [13, Theorem
4.4]. Recalling that ¢ = ¢g + ¢, consider the difference of the equations (3.39) and
(3.40) and obtain

v + Av = K(|ug + v\2)(u0 +v) — K(]uo\Q)uo
v(0,2) = ¢ € H®. (3.41)

since global existence of the solution to (3.41) is much to ask, we can only expect
that the equation (3.41) is locally well-posed. The following theorem states the local
existence result which is what we require for the proof of the global existence result of

Bourgain.

Theorem 3.3.1. If there exist Cy, Cy, C3 such that ||¢ol|z2 < Oy, E(dg) < CyN21=9),
|p1llze < OsN~% and ||¢1|| s < Cs, then for 6 = cN~20797 there exist Ny > 1 and

co > 0 such that for each N > Ny and ¢ < cg, the solutions to the initial value problems

(3.40) and (3.41) both exist in [0,0]

Proof. In the proof of this theorem, we will use the Banach fixed point theorem for the
integral equation that the solution of the ACNLS satisfies in the metric space in which
we want the solutions to reside.

Write

w=Ti(t)gs — i / Ti(t — ) F(uo(7), v(r))dr,

where F(ug,v) = K (|ug +v|?)(uo 4+ v) — K (|ug|*)up and let M be a positive number to
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be specified later. We define the set

Bin={v € Xdypppe W] = Nllxs  + [lvllxs

0,1/2+¢€’ s,1/24¢€

< M},
and the map

HW)(t) = To(t) by — i / Ti(t — 7)F(up(r), o(r))dr,

P
for v € XS“/QJFG/.

So we need to show S is well defined in the metric space and maps the space into

itself.

First we have

/0 Ti(t — 7)F(uo(7),v(T))dr

1H ()l x2

0,1/2+4¢

< ITOelxg, ., +|

5
X0,1/2+e'

< Cllgal|r2 + O F(ug, v)|| xs

0,—1/243¢’

< ON=* + C|[F(uo,v) |3

)
,—1/2+3¢’

and by the linearity of the operator K estimating each term in the sum will reveal the

desired result. First call 1/r; =1/44 (3 —1)/(4 +€) and let s > 2/3, then:

1 (uov)ollxg |, < ClE (wov)ollp, (3.42)
< Cllollus sl K (o)l sz osorre (3.43)
< Cllollparslluovll garors (3.44)
< C”UHXg’l/HG/ H“OHL;{?L;‘C“ UHLffgéLiv“é,
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where in the inequality (3.42) we used the Bourgain embeddings and to pass from (3.43)
to (3.44) we used the boundedness of the operator K and the last inequality follow from
the Holder’s inequality. Now having [Jug||pa+epa+e < /449 and the Bourgain norm of
v, we need to estimate ||v|| Litertte and this ,is achieved by Sobolev embedding theorem
with e =2((24¢)/(4+¢€) —1/(4+€)) = (2 + 2¢) /(4 + ¢€) and Bourgain embedding as

follows:

||U||Lf§6L3+6 < [|J*v |L§$eL§c4+e)/<2+e>

< C||J“‘v||Xg’l/2+€/

< CN(2+26)/(4+6)

< CN(lfQS)/2+O(e) )

Hence, we reach the bound

||K(U07_J)U||X5 < CN—s(Cl/(4+e)N(1—2s)/2+O(e)) < C«Cl/(4+6)N—S'
0,—1/2+43¢ — -
This calculation also says that HK(UU_O)UHXg s has the same bound.
,—1/243¢€

Now consider ||K(m7)u0||Xg e’
,—1/243e

IK@oullxs <

< OHK(U@UO)HL;{;LQ

,—1/2+3¢/

< luoll e 0ol 72 .2

< HUOHL;*;EL;*C“ UHL;*;EL;%E UHL;{(SLg
<M ola  [ollggsepsre (3.45)
but by the preceding calculation (3.45) has the same bound.
Now for HK(U@)UHXg aeas W have, again by the above arguments that
,—1/243¢€’
— —s A7((1—2s/240(€))2
K el ., <CONTN , (3.46)
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which implies ||K(v@)v||Xg ey < ON~*N'=25+0(9 which is the desired bound.
,—1/243€
For || K (uotiov)|x, _, ., We have:
K (uotiov)l|x, 550 < M (uot0) |71 120 (3.47)
< ||v|| 14 L4||K(u07.[0)||L(4+6)/2L(4+6)/2 (3.48)
t,6"x t,6 T
< HUHL;;&L;\|U0||i;x;eLg+a (3.49)
< O+ N (3.50)

which is what we aimed at. So what is left to bound are K (ugv)ug and K (vig)ug. For

HK(UOE)UO ‘|Xg,71/2+36/ :

1K (uov)uol xs < [ (uov)uol 1

,—1/2+43¢€

< Nluoll pggepave [ K (uo) || i e

< HuOHLf’JgEL‘é*E o[ g 1y

< O fug | s o

UHLf,éL‘é

< CCQ/(4+6)N73.
This is the desired bound and it also holds for the last term.

We need moreover to show ||H(v)|| xs < C to conclude H, maps Bj,; y into

s,1/2+¢

itself. Firstly

t
IHOlxs, < IT@elxs,,  + ] / Tilt = )(uo(r), o(r)drlls, - (351)
< Cllgallae + ClIF (wo0) x5 (3.52)
and | F(uo, 0)llxs = I TiF (o, 0)llxs < CITF (o, )z

Hence we have to estimate each summand in the sum F'(ug, v), where F'is defined



at the beginning of the proof.

I J;K<UOE>U||L:’16L;1 < J;ﬁvHLfyéLg | K (uov) ||L§45+6/)/2L§c4+6/)/2

+ ||UHL§;€’L§+E/ S (uo) || 7z 172

=1+1I.
We consider I and II separately:

I < C||U||X§,1/2+5/ ||U017||L§j16+e/)/2Lg4+e')/2

<Clollxs, . ol s psee

[ a+e ate!
s,1/24¢€ 0||Lt:g6 Lz+6

< ”UHX5 CC]./(4+€)N(1—28)/2+O(6).

s,1/24¢€

Since s > 1/2 the order of N is negative. For II we write:

11 < CNO200| K (J2uq) |73,

< ON(1=29)/2+0(0) I Jiuoi_JHL:%L;?

< ONC2I2 00| 2] g pallol s v + ol o

< CN(1723)/2+O(€)(||U||X Ns(lfs) + Cl/(4+€)HUHX5 )7

’
s,1/2+e s,1/2+¢€

by the Bourgain embeddings and interpolation in the Bourgain spaces. Hence

II < ON1/2+O(€)||U||X6 Ns(l—s)

s,1/2+¢€

<Cvllxs NV

s,l/2+€/

ol za]
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(3.53)

Thus || J3 K (uv)v||zre rre < C’HUHX(?U2+ - Likely [[J2K (vig)vl[ 1 1 admits the same

bound.



For ||J§K(v@)u0||L§}5L;1 we have:

1z K (vo)uoll sz < Nl Jzuoll e ol K (W] pasenrsayaivenrsa

+ ||UOHL;1:(§€’L§;+E/ JiK(UT}) HL:,?SL;?

=141
And

I < Ns(l—s) — . .
¢ HUUHL§46+ /2 () /2

< ONO ol

44-¢! 1 a+€
Lt,é Ly

< CNs(l—s)N1/2—s+O(e) ||U||X5

s,l/2+€/

< CH'U”X‘s N1/2—82+O(6)

s,1/24¢€

< Cllvflxs

?
s,1/24¢€

and since HU”LgS'Li“' < ||v||Xf,1/2+a we get:

IT < OV K (J308) | 72 12

S Ccl/(4+€) ||’U||L?EE,L§;+E/

J§U||L§6Lg
< C«Cl/(4+e)N1/2—s+O(e) ||U||X‘5
- s,1/2+€

< O /o] s

s,1/2+¢€
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Therefore [|.J; K (v0)ugl| g7 7 has the required bound and so does ||J; K (v0)v||re pre-

For HJ;K(uOZZO)vHL;%L;e we have:

12 K (uotio)vl| e e < N[ Jovll g s | B (uoto) | parera oo

+ ||U||L?EE/L;1¢+€/ K(Jiuodo) ||L:,26L;2

=I+1I



We bound I and I as follows:

s 2
I S C||J$U||Xg,l/2+6, HUO||L?::’;EILi+€/

< O v xs

Y
s,1/2+¢’

and

1T < C||U”Xf,1/z+a [||J§U0HL§5L§ HUOHL;&;e’Liﬂ’]

< Ocl/(4+e)Ns(1—s) ||U||X5

s,1/2+¢€

< CMEI o] s

s,1/24¢€

Finally we treat the last terms:

12K (uot)uol e e < N[ Jouoll g, rall K (uwoD) parene paverso

+ HUOHL?jge’LiJre’ K(‘];uoﬁ) HL:’%L;Q

=1+1I
Similar to what we have been doing;:

I < CN#(1-5) Hu(ﬂ_}||L(4+e/)/2L(4+e/)/2
1,6 @

< ON"C ol s v oll e e

< CCI/(4+5)N5(1—5) ||U||X6

39

s,1/2+¢€
1t
< Cc ||U||Xf,1/2+a’
and II < Ccv/U49||v]| s which is already done in the sequel. The last term

s,1/2+¢

|3 K (v )uo|| L7 L7e also has the same bound.

So we found that ||H(v)||xs

s,1/2+¢€

s,1/24¢€

< CO|v|| xs N where a < 0 and b > 0

thus we conclude that H is well defined that H maps Bj, y into itself. A similar and
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straight forward argument shows that
[H(ug) — H(v)] < CN [ug — v),

for some @’ < 0 and & > 0 and hence H is a contraction mapping from Bg/[’ y into itself

for large M, large N and small ¢, which is the local well-posedness result. O
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4. CONCLUSIONS

The aim of this work was to prove global existence for ACNLS with the initial
datum below energy space using high-low frequency decomposition, which we couldn’t
accomplish. The reason why we couldn’t do it was that we couldn’t find the appropriate
way to estimate the H' norm of the nonlinear term which appears in the integral
equation. The problem was that Bourgain, making good use of the Bourgain spaces
and the duality product, splits the derivative in two parts so that the less regular term
is exposed to “less derivative”, then he uses the bilinear estimates and shows that the
nonlinear term is in H!. While having three terms to differentiate, gave Bourgain
the freedom to choose the regular term in differentiating, in our case for ACNLS, we
couldn’t find a way to put less derivative on the less regular term since there are only
two terms . The nonlocal operator K binds two terms together so that, especially for
the terms containing both the regular and the less regular terms, it becomes difficult

to come up with a way to put less derivative to the less regular term.

Using the same technique plus the pseudo-conformal transformation, Bourgain
also shows that there is scattering for the cubic NLS in L? with the initial datum in
H%* for s > 2/3. For ACNLS one can show global existence in H® for the initial datum
¢ € H?® with sufficiently small norm, and we believe that as one can show scattering in
L? for ACNLS, for the initial datum with small L*-norm, one can also show scattering

in H° or in H%*, under some well-posedness and smallness conditions.
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APPENDIX A: BASIC DEFINITIONS AND ESTIMATES

Definition A.0.1. [22] Bessel potential (J®) and Riesz potential (D*) are the operators
defined as

Ju=F 1+ and D*u=F ¢l (A1)

where the F~' denotes the inverse Fourier transform and whenever the latter makes

sense.

Since we will use and there does not exist a unique definition of it, it may be

useful to define Hardy-Littlewood Maximal function

Definition A.0.2. For f € L} a Hardy-Littlewood mazimal function is defined as

follows

Mf(z) = sup|—}| / )|y

zel
where I is open and |I| = [ x;1(y)dy.

Definition A.0.3. A function, f, is called a Schwartz function if it is infinitely differ-
entiable and D7 f — 0 as |x| — oo for all nonnegative multiindices pu = (p1, po) and
v =(1,7%) (1,7 =0 for i€ {1,2}), where a# =z 25" and D" f = %% .

1 2
Definition A.0.4. The space S’ is the space of tempered distributions on R?, which
means that S’ is the topological dual of S.

Definition A.0.5. For m € N, the Sobolev space W™P is given by

WmP ={f e LP: D% € L Ya multiindex such that |o| < m}
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with the norm

lullwms = >~ 1D%ul|Ls. (A.2)

|| <m
a multiindex

For p = 2 we call W™? = H™ and since p = 2 we can characterize the Sobolev

space using the Fourier transform, namely; given m € N we can define
H={uec8:(1+|»)ael?
with the norm

e = (14 [€[*)2a] 2 (A.3)

[l

where § is the dual of Schwartz space. We can see that the requirement s € N is
just to make the definition consistent with the previous one, and we can extend this
definition for the noninteger real positive number as the interpolation between the
integer indiced Sobolev spaces; and to negative numbers by taking the dual of the

positive indiced Sobolev spaces, see for further details [22].
Now, to define Besov spaces, consider a compactly supported function v €

C>(R?) such that, supp(y)) € R?* — {0} and Y>> _¢(277z) = 1 and call ¢;(§) =
¥ (279€), namely; consider a radial function ¢ € C°(R?) such that

P(&) =1 for (] <1 and ¢(§) =0 for |¢] =2

then, define ¥(§) = ¢(&) — ¢(2€), which satisfies the above conditions.

We are now, ready to define Besov spaces.

Definition A.0.6. [22] The Besov space B;  for 1 < p,q < oo and s € R is the
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closure of 8 with respect to the norm

1/q
(2;’21<2sjuf-1<wja>||m>q) if q< o0

sup,»y 25| FH(Wa)||r if q = o0

lull gy, = 17 (@@)ze + (A.4)

The homogeneous Sobolev(H#) and Besov(B;j,q) spaces are the closure of the

Schwartz space, S, under the seminorms

[ull s = [lellzzs = [l 2, lull g, = lullgg,, = IF " (6@)l]» (A.5)

respectively.
There are important embedding results concerning these Sobolev and Besov spaces.

For the Sobolev and Besov spaces we will need the following embedding results.

Theorem A.0.2. [23, Theorem 2.4.5] Let m > 1 be an integer and 1 < p < co. Then
(1) if 1/p—m/n >0, W™P(R") — LIY(R"™) with 1/q =1/p —m/n,

(2) if 1/p—m/n =0, W"P(R") — LIYR"), for p < q < oo,
(8) if 1/p—m/n <0, W™P(R™) — L>*(R™).

For the proof see [18] and [22].

Theorem A.0.3. For s € R, 2 < p < oo, we have By, < WP

Again see [22] for details.

The basic space-time estimates, essential for solving the ACLNS are the Strichartz

estimates, and to define it we should first introduce an admissible pair.

Definition A.0.7. A pair (q,7) is admissible in R? if

1/g=1/2—1/r
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and 2 <1 < oco. We see that (00, 2) is admissible, and the pair will correspond to some

conserved quantity, so is important.

Now if we denote (75(t)):er as the solution semigroup for the linear equation
1y + Blgy + Uyy = 0,

we have;

Theorem A.0.4 (Strichartz’ Estimates). [7] If (q,7) is admissible, then the following

properties hold;
(P1) For every ¢ € L?, the function t — Ts(t)¢ belongs to
LYR, L") N C(R, L?).
Moreover, there exist a constant C such that
1T5()¢llLaerry < Cllollze.
(P2) Let I be an interval of R, J = I, and 0 € J. If (v,p) is an admissible pair
and f € LV (I, L), then for every (q,r), the function t — fot Ts(t — s)f(s)ds for

t € I, belongs to LY(R, L") N C(R, L?) and there exists a constant C depending

on q,ry and p and is independent of I such that

t
|| / Tolt — ) F(8)dsllacrry < Clf i1

see [7] for details.
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