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committee; and I would also like to thank Saadet Erbay for her comments during the

finalization of this work.
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ABSTRACT

ON SPECIAL SOLUTIONS OF ZAKHAROV–SCHULMAN

EQUATIONS

In this work, two types of special solutions for Zakharov–Schulman equations

are studied. Existence of standing wave solutions are established by utilizing varia-

tional methods. First set conditions on the operators for the existence of Arkadiev–

Pogrebkov–Polivanov type travelling wave solutions are derived. It is observed that

there exist blow-up profiles whenever either of these special solutions exist.
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ÖZET

ZAKHAROV–SCHULMAN DENKLEMLERİNİN ÖZEL

ÇÖZÜMLERİ ÜZERİNE

Bu çalışmada Zakharov–Schulman denklemleri için iki tip özel çözüm ince-

lenmiştir. Duran dalga çözümlerinin varlığı varyasyonel yöntemler kullanılarak kanıtlan-

mıştır. Arkadiev–Pogrebkov–Polivanov tipi yürüyen dalga çözümlerinin varlığı için

denklemde yer alan diferansiyel operatörler üzerinde koşullar bulunmuştur. Her iki tip

özel çözümün de varlığında patlama profillerinin var olduğu gözlemlenmiştir.
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1. INTRODUCTION

In [1], Schulman considered the following system of equations.

iut + L1u + ψu = 0,

L2ψ = L3|u|2,
(1.0.1)

where u is a complex valued function and ψ is a real valued function, both depending

on t ∈ (0,∞) and x ∈ RN , for N ∈ {1, 2, 3}; with

Ln =
N∑

j,k=1

Cn
jk

∂2

∂xj∂xk
, n ∈ {1, 2, 3},

being second order linear differential operators with constant coefficients where the

matrices Cn are real and symmetric. Known as Zakharov–Schulman system, the equa-

tions (1.0.1) represent a universal model for the description of interactions of small-

amplitude, high frequency waves with acoustic-type water waves. As it is observed

in [2], in one spatial dimension one recovers

iut + uxx + χ|u|2u = 0, χ ∈ {0,−1, 1},

which is the one dimensional Schrödinger equation - linear, repulsive, attractive de-

pending on the value of χ. In two spatial dimensions, upon setting

u = A, ψ = −χ0|A|2 − χ1φx, (1.0.2)

L1 = σ∂2
x + ∂2

y , L2 = m1∂
2
x + m2∂

2
y , L3 = −βχ1∂

2
x − χ0L2, (1.0.3)
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(1.0.1) can be reduced to Davey–Stewartson (DS) system, which is introduced in [3]

(see also [4]), given in suitably rescaled coordinates by

iAt + σAxx + Ayy = χ0|A|2A + χ1Aφx,

m1φxx + m2φyy = β
(
|A|2

)
x
,

(1.0.4)

with the real parameters σ, χ0, χ1, m1, m2, β, such that |σ| = 1. As Schulman states

in [1] (see also [5]), DS system is known to be a reduced form of the Zakharov–Schulman

system such that it is integrable for some certain parameter regime in two dimensions

and that it is not integrable in three dimensions.

In this work, we study the Zakharov–Schulman system in two spatial dimensions,

that is, we hereafter assume N = 2. Since the only cases we consider are the ones with

L1 being hyperbolic or elliptic, without loss of generality, we rewrite (1.0.1) as

iut + δuxx + uyy + ψu = 0,

L2ψ = L3|u|2, δ ∈ {−1, 1},
(1.0.5)

upon a suitable coordinate transformation. We assume that the solutions suitably

decay at infinity. This assumption will be made more precise later on when we introduce

the related Cauchy problem with the initial data u0. In the case where L2 is elliptic,

i.e. C2 is sign definite, the system (1.0.5) can be reduced to a single equation in u.

To do so, we express ψ in terms of u by solving the Poisson equation (1.0.5)2. Indeed,

taking Fourier transforms of both sides of (1.0.5)2 in space, we evidently have

(C2
11ξ

2
1 + 2C2

12ξ1ξ2 + C2
22ξ

2
2)ψ̂(ξ) = (C3

11ξ
2
1 + 2C3

12ξ1ξ2 + C3
22ξ

2
2)(̂|u|2)(ξ),

with ξ = (ξ1, ξ2) ∈ R2 being the Fourier variables. Then, introducing the nonlocal

linear operator K defined by K̂(f)(ξ) = α(ξ)f̂(ξ), where

α(ξ) =
C3

11ξ
2
1 + 2C3

12ξ1ξ2 + C3
22ξ

2
2

C2
11ξ

2
1 + 2C2

12ξ1ξ2 + C2
22ξ

2
2

, (1.0.6)
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the system (1.0.5) reduces to the so-called almost cubic nonlinear Schrödinger equation

(ACNLS) and so we consider the related Cauchy problem

iut + δuxx + uyy + K(|u|2)u = 0,

u(x, 0) = u0(x),
(1.0.7)

which is extensively studied in [6], [7], [8] and [9] for the cases where the initial data

u0 lie in H1, L2, Σ = L2(|x|2 dx) ∩ H1. We call δ = 1 the elliptic and δ = −1 the

hyperbolic case. At this stage, let us recall that the symbol α satisfies the following

obvious yet important properties:

• α is even, real and homogeneous of degree zero,

• α ∈ L∞(R2 \ {(0, 0)}), and in particular α(ξ) # Mα for all ξ ∈ R2 \ {(0, 0)},

• α ∈ C∞(R2 \ {(0, 0)}).

We shall as well provide the reader with an explicit expression for Mα = max
ξ∈R2\{0}

α(ξ)

in the second chapter. Upon stating such a reduction, as underlined in [2], it is worth-

wile to note now that in general the matrices Cn are not necessarily sign definite; in

particular, the operator L2 can be nonelliptic. In case L2 is hyperbolic, as it is dis-

cussed for DS system in [10], it is still possible to reduce the system (1.0.5) to a single

equation iut + δuxx + uyy + K̃(|u|2)u = 0. However, since the operator K̃ emerges

through solving a wave equation, it enjoys no regularizing effects. Therefore the usual

techniques involving Sobolev space theory for semilinear Schrödinger equations do not

apply to this reduced form. We do not consider such a case in this work.

Throughout the second chapter, assuming L1 and L2 are elliptic, we treat the

system (1.0.1) in the framework of ACNLS equation, and adapt the results obtained

in [7] and [6] for almost cubic nonlinear Schrödinger equation and elliptic generalized

Davey–Stewartson (GDS) system which is derived by Babaoğlu and Erbay [11] to

model the propagation of waves in a bulk medium composed of an elastic medium with

couple stresses. We introduce the focusing and defocusing cases of the solutions of the

Cauchy problem related to the system (1.0.7) with δ = 1; and following [7], we discuss
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that in the focusing case, any given initial datum can be scaled to one with negative

energy so that the corresponding solution blows up in finite time. Existence of such

initial data is one of the main ideas present in [2]. On the other hand, following [7],

we conclude that the focusing case is also characterized by the existence of standing

wave solutions which are introduced below. Apart from this analysis, we prove the

conservation laws for the quantities mass, energy and momenta as stated in [2]; and

derive the conserved quantities corresponding to invariance of the solutions of the

system (1.0.1) under scaling and pseudo-conformal transformation given again in [2]

and [9]. We also establish virial identity which plays a crucial role in the conservation

law corresponding to the scaling invariance and the sufficient conditions given in [2]

and [7, Theorem 2.4] for a finite time blow-up.

In the third chapter we study the existence and regularity of the standing wave

solutions, i.e. the periodic solutions of the form

u(x, t) = ϕ(x)eiωt,

where ω is a positive constant, ϕ is nonzero and lies in the energy class H1(R2).

Heuristically speaking, such solutions appear due to the counterbalance between the

dispersive effect of the linear part of the equation and the focusing effect of the non-

linearity. It is evident that ϕ, which is called the standing wave profile, should be a

solution of

∆ϕ− ωϕ + K(|ϕ|2)ϕ = 0. (1.0.8)

By its very nature, in the Sobolev space H1(R2) we only require (1.0.8) to hold weakly.

Though we later show in the regularity theorem that ϕ is in fact smooth and also

enjoys an exponential decay rate. To prove the existence of such solutions we employ

variational methods by setting up an appropriate functional J over H1(R2) so that the

critical points of this functional are the solutions of (1.0.8). One such approach is to

introduce the kinetic and the potential energies, then to set up and solve a constrained

minimization problem via seeking minimizers of the the energy functional over a level
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set where the potential energy is zero (see [12]). So, it turns out that this process picks

the solutions that are of minimal mass and in this regard, such solutions are called

ground states. Through this route, the existence of standing waves is established for

DS system in [13] and for semilinear Schrödinger equations in [14].

In this work, we adopt an alternative approach devised by Weinstein in [15]

where an unconstrained minimization problem is set to construct the ground states

for nonlinear Schrödinger equation. In particular, as Tao vividly elaborates in [16],

Weinstein’s approach to solving ∆ψ− bψ + a|ψ|p−1ψ = 0 is based upon understanding

the best constant in Gagliardo–Nirenberg–Sobolev inequality (A.4). With the nonlocal

operator K in (1.0.8), we are also able to establish such a sharp estimate for the

constant in a Gagliardo–Nirenberg–Sobolev type inequality by following the argument

in [8].

In general, the process of minimizing a functional J over a function space involves

taking a minimizing sequence {fn} so that J(fn) → j0 = inf J and then showing that

some subsequence of {fn} converges to an actual minimizer. At such a stage, the major

obstacle arising seems to be the lack of compactness; indeed, it only follows that the

minimizing sequence {fn} lies in a bounded set. In bounded domains, one way to elimi-

nate this deficiency is to employ techniques concerning weak topologies. For the spaces

H1 and Lp, 1 < p < ∞, are reflexive, we can extract a weakly convergent subsequence

(see A.1) and then invoke Rellich-Kondrachov compactness theorem (A.2) to obtain

strong convergence. However, in unbounded domains the imbedding of Sobolev spaces

into the appropriate Lp spaces are not compact, that is to say, Rellich-Kondrachov

compactness theorem does not work anymore. In RN , such a loss of compactness

can be compensated by using the translation and rotation invariance of RN and con-

sequently obtaining some sort of “local compactness” in order to conclude that the

weak convergence is also valid in the strong topology. These ideas were introduced

and elaborated in Strauss’ Compactness Lemma [18] for radial functions and in Lions’

Concentration Compactness Principle [17]. Those compactness results are utilized in

the above mentioned works [12], [13] and [14]. In [18] and in [15] the arguments go

through considering radial functions lying in H1(R2), namely H1
r (R2), and utilizing
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the fact that H1
r (R2) is compactly imbedded in Lp(R2) for all 2 < p < ∞. Due to the

nature of the nonlocal term, we cannot restrict our function space to radial functions,

so we follow the arguments given in [19] and [16]. Weinstein’s method is utilized by

Papanicolau et al. in [19] to construct the ground states for DS system, by Eden and

Erbay in [20] for GDS system and by Eden, Gürel and Kuz in [7] for ACNLS equation.

A treatment on variational methods for nonlinear elliptic partial differential equations

with nonlocal terms is present in [21].

The fourth chapter is devoted to the existence of Arkadiev–Pogrebkov–Polivanov

(APP) type travelling wave solutions. Inspired by the work of Ozawa in [22], we

follow [23] and obtain first set conditions on the operators so that these solutions

introduced by Arkadiev et al. exist for the Zakharov–Schulman system. In [22], in

order to to construct an explicit blow-up profile in L2(R2) for the hyperbolic-elliptic

case of the Davey–Stewartson system, Ozawa used solutions of the form

u(x, y, t) =
1

f(x, y)
, φ(x, y, t) = γ∂x log f(x, y), (1.0.9)

where f(x, y) = 1
1+αx2+βy2 , γ ∈ R. In a similar manner, the analogous results were

obtained in [24] for the generalized Davey–Stewartson (GDS) system. As mentioned

in [23], Ozawa’s solution turns out to be a special case of the 1-soliton solution appears

in [25] which is given by

u(x, y, t) = 2ν̄
exp {2iIm(λz) + 4iRe(λ2)t}

|z + 4iλt + µ|2 + |ν|2
, (1.0.10)

where z = x + iy and λ, µ, ν are complex constants. Indeed, setting λ = µ = 0

and ν = 1, it is seen that (1.0.10) recovers Ozawa’s solution (1.0.9). In [23], Eden

and Gürel obtained the conditions on the parameters under which the solutions of

the form (1.0.10) exist for the hyperbolic-elliptic GDS system and it turned out that

these conditions coincide with the conditions given in [24]. Within this perspective,

assuming L1 to be hyperbolic, we derive the first set conditions on the operators L2

and L3 so that the solutions of the form (1.0.10) exist for the system (1.0.1). As

an integrable reduced form of the Zakharov–Schulman system, we observe that upon
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transforming them back via (1.0.2), the conditions derived on the parameters of the DS

system (1.0.4) for the existence of such solutions agree with the ones we derive for the

operators in Zakharov–Schulman system. We also establish that APP type solutions

exist for a different DS system

iAt + λAxx + µAyy = χ0|A|2A + χ1Aφ,

m1φxx + m2φyy = β(|A|2)yy,
(1.0.11)

described by the equations (2.15) and (2.16) in [4]. This system is also a reduced form of

the Zakharov–Schulman system such that it is integrable under some certain parameter

regime. We as well observe that upon transforming them back, the conditions derived

on the parameters also agree with the ones we derive on the operators in (1.0.1). So the

question we address is whether the set of conditions we obtain on the operators pick

only the existence results for the two DS systems, or not. Furthermore, following [22]

and [24] we do obtain an explicit blow-up profile using the invariance of solutions

of (1.0.1) under the pseudo-conformal transformation.
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2. ZAKHAROV–SCHULMAN EQUATIONS AS AN

ACNLS EQUATION

Throughout this chapter we assume L2 to be elliptic and following [2], [23] and [7],

we give a treatment of the Zakharov–Schulman system (1.0.1) in the framework of AC-

NLS equation. In that case, as mentioned earlier, we rewrite (1.0.5) as (1.0.7). So we

find it convenient to start with carrying out our promise on the maximum value of α

and so state the following assertion.

Proposition 2.0.1. [26] The maximum value of the symbol α, as defined in (1.0.6),

is equal to the greater of the roots of the equation

det C3 − λ
(
C3

11C
2
22 − 2C3

12C
2
12 + C2

11C
3
22

)
+ λ2detC2 = 0.

Proof. Let Qj(ξ) denote 〈Cjξ, ξ〉 = Cj
11ξ

2
1 + 2Cj

12ξ1ξ2 + Cj
22ξ

2
2 , j = 2, 3 and ξ = (ξ1, ξ2),

so that α(ξ) = Q3(ξ)
Q2(ξ) . As a linear algebra fact, we know that the quadratic form of a

symmetric matrix attains its maximum on the unit ball at an eigenvector corresponding

to the largest eigenvalue and hence this maximum is equal to that largest eigenvalue.

Noting that we study the case where C2 is sign definite, without loss of generality

we may assume that C2 is positive definite - otherwise, we multiply the numerator

and the denominator of α by −1. By Spectral Theorem for symmetric operators, it is

guaranteed that there exists a basis consisting of eigenvectors of the symmetric positive

definite matrix C2. Since the corresponding eigenvalues of C2 are all positive, taking

the square roots of these eigenvalues we see that there exists a symmetric positive

definite matrix B such that

〈C2ξ, ξ〉 = 〈Bξ, Bξ〉 = |Bξ|2, for all ξ ∈ R2.

Changing variables η = Bξ, and using the fact that B is also a symmetric, positive
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definite matrix, it follows that

α(ξ) =
Q3(ξ)

Q2(ξ)
=
〈C3B−1η, B−1η〉
〈C2B−1η, B−1η〉 =

〈B−1C3B−1η, η〉
|η|2

= 〈B−1C3B−1 η

|η| ,
η

|η|〉.

Therefore, we see that maximizing α over R2 is equivalent to maximizing the form

QB−1C3B−1 on the unit ball in R2. So, it is enough to look for the greater of the roots

of the equation

det (B−1C3B−1 − λI) = 0.

Since

det (B−1C3B−1 − λI) = det (B−1C3B−1 − λB−1C2B−1)

= det (B−1(C3 − λC2)B−1)

=
1

(det B)2
det (C3 − λC2),

it suffices to find the greater of the roots of the equation det (C3 − λC2) = 0, i.e.,

(
C3

11C
3
22 − (C3

12)
2
)
− λ

(
C3

11C
2
22 − 2C3

12C
2
12 + C2

11C
3
22

)
+ λ2

(
C2

11C
2
22 − (C2

12)
2
)

= 0,

and hence follows the claim.

We now discuss the evolution of some global quantities in a formal way.

2.1. Conservation Laws and Other Invariants

In [2], the real valued auxiliary functions φ1, φ2 satisfying L2φj =
∂

∂xj
|u|2, for

j = 1, 2 are introduced to rewrite (1.0.1) as

iut + L1u + (L3φ) = 0,
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where φ = (φ1, φ2), and the operator L3 is defined by

L3φ =
2∑

j,k=1

C3
jk

∂φj

∂xk
.

Through this approach, assuming that the solutions to the Cauchy problem related

to (1.0.1) decay suitably at infinity, the quantity describing the energy of the solutions

u to (1.0.1)1 is introduced to be

E(u) =

∫

R2

2∑

j,k=1

C1
jk

∂u

∂xj

∂ū

∂xk
dx− 1

2

∫

R2

2∑

p,q=1

2∑

r,s=1

C3
pqC

2
rs

∂φp

∂xr

∂φq

∂xs
dx. (2.1.1)

However, since φ̂j(ξ) =
−iξj

(C2ξ, ξ)
|̂u|2, setting f = |u|2, Plancharel’s theorem yields

∫

R2

2∑

p,q=1

2∑

r,s=1

C3
pqC

2
rs

∂φp

∂xr

∂φq

∂xs
dx =

∫

R2

2∑

p,q=1

2∑

r,s=1

C3
pqC

2
rs

(̂
∂φp

∂xr

)(̂
∂φq

∂xs

)
dξ

=

∫

R2

α(ξ)|f̂ |2(ξ) dξ.

Consequently, the assumption that L2 is elliptic enables us to rewrite the energy in

terms of the nonlocal operator K. So, as in [2], the quantities mass, energy and

momenta for (1.0.7) are given by

m(u) =

∫

R2

|u|2 dxdy (2.1.2)

E(u) =

∫

R2

(
δ|ux|2 + |uy|2

)
dxdy − 1

2

∫

R2

K(|u|2)|u|2 dxdy (2.1.3)

Px(u) = i

∫

R2

(uūx − ūux) dxdy, Py(u) = i

∫

R2

(uūy − ūuy) dxdy. (2.1.4)

The above quantities all depend on t but this dependence is suppressed for the ease

of notation. We now show that these quantities are conserved for sufficiently smooth

solutions which suitably vanish at infinity. Multiplying (1.0.7) by ū and integrate over
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R2 we obtain

∫

R2

iutū + δuxxū + uyyū + K(|u|2)|u|2 dxdy = 0,

and upon an integration by parts it follows that

i

∫

R2

(utū) dxdy + δ ‖ux‖2
2 + ‖uy‖2

2 +

∫

R2

K(|u|2)|u|2 dxdy = 0.

We take imaginary parts and get

Re

∫

R2

utū dxdy =
1

2

d

dt

∫

R2

|u|2 dxdy = 0,

which implies the conservation of mass (2.1.2).

Next, multiplying (1.0.7) by 2ūt and taking real parts we obtain

2Re[ūt(δuxx + uyy)] = −K(|u|2)(|u|2)t. (2.1.5)

For the left hand side of (2.1.5), subsequent to integration by parts we have

2Re

∫

R2

ūt(δuxx + uyy) dxdy = − d

dt

∫

R2

(δ|ux|2 + |uy|2) dxdy, (2.1.6)

which in turn gives us

d

dt

∫

R2

(
δ|ux|2 + |uy|2

)
dxdy −

∫

R2

K(|u|2)(|u|2)t dxdy = 0.

Now we set f = |u|2, employ Plancharel’s theorem and take real parts to get

d

dt

∫

R2

(
δ|ux|2 + |uy|2

)
dxdy −Re

∫

R2

α(ξ)f̂(ξ)(̂ft)(ξ) dξ = 0,
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which implies

d

dt






∫

R2

(
δ|ux|2 + |uy|2

)
dxdy − 1

2

∫

R2

α(ξ)|f̂ |2(ξ) dξ




 = 0,

hence follows the conservation of energy (2.1.3). We note that this quantity makes

sense as long as the solutions remain in H1(R2).

Finally, we multiply (1.0.7) by ūx and obtain

iutūx + ūx(δuxx + uyy) + K(|u|2)uūx = 0, (2.1.7)

and next, add (2.1.7) its complex conjugate to get

i(utūx − ūtux) + 2Re[ūx(δuxx + uyy)] + K(|u|2)
(
|u|2

)
x

= 0. (2.1.8)

Recalling that f = |u|2, by we observe

∫

R2

K(f)fx dxdy = Re

∫

R2

α(ξ)f̂(ξ)(−iξ1)
¯̂f(ξ) dξ = Re

∫

R2

iξ1α(ξ)|f̂ |2(ξ) dξ = 0. (2.1.9)

Besides, for the second term in (2.1.8) integration by parts yields

∫

R2

2Re[ūx(δuxx + uyy)] dxdy = 0. (2.1.10)

Next, we integrate by i(utūx− ūtux) by parts, and by (2.1.9) and (2.1.10), it turns out

that

∫

R2

i(utūx − ūtux) dxdy =
1

2

d

dt

∫

R2

i (uūx − ūux) dxdy = 0,

so we have the conservation of momentum Px (2.1.4). The same result for Py is estab-

lished through exactly the same steps.
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Let us now introduce the function

I =

∫

R2

(δx2 + y2)|u|2 dxdy, (2.1.11)

which is the quantity describes the second moment of inertia. Known as the virial

identity, the below result, which is established in a formal way, plays a key role in a

later blow-up argument (2.2.5).

Proposition 2.1.1. [2, Proposition 2.2] For I as in (2.1.11), the following hold.

dI

dt
= 4Im

∫

R2

ū(xux + yuy) dxdy, (2.1.12)

d2I

dt2
= 8E(u). (2.1.13)

Proof. To prove (2.1.12), we multiply (1.0.7) by 2ū and take imaginary parts to get

(|u|2)t + 2Im[δ(uxū)x + (uyū)y] = 0,

and by an elementary calculation we rewrite the above line as

(|u|2)t + i[δ(uūx + ūux)x + (uūy + ūuy)y] = 0.

So, upon integration by parts we have

dI

dt
=

∫

R2

(δx2 + y2)(|u|2)t dxdy

= 2i

∫

R2

δ2x(uūx + ūux) + y(uūy + ūuy) dxdy

= 4Im

∫

R2

(xūux + yūuy) dxdy,
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and hence follows (2.1.12). Then

d2I

dt2
= 4Im

∫

R2

x(ūtux + ūuxt) + y(ūtuy + ūuyt) dxdy,

next, integrating by parts and utilizing (1.0.7) we obtain

d2I

dt2
= 8Re

∫

R2

(−K(|u|2)− δuxx − uyy)(xūx + yūy + ū) dxdy,

= 8






∫

R2

(−K(|u|2)|u|2 −K(|u|2)u(xūx + yūy)) dxdy (2.1.14)

−
∫

R2

δuxxū + uyyū dxdy (2.1.15)

−Re

∫

R2

(xūx + yūy)(δuxx + uyy) dxdy




 . (2.1.16)

After several integration by parts, we observe that the last integral above vanishes and

hence

d2I

dt2
= 8

∫

R2

δ|ux|2 + |uy|2 dxdy

− 4

∫

R2

K(|u|2)(x(|u|2)x + y(|u|2)y) + 2K(|u|2)|u|2 dxdy.

Now we show

∫

R2

K(|u|2)(x(|u|2)x + y(|u|2)y) + K(|u|2)|u|2 dxdy = 0. Let f =

|u|2, g = |f̂ |2 and J =

∫

R2

K(|u|2)(x(|u|2)x + y(|u|2)y) dxdy. Then utilizing Plancharel’s
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theorem and integration by parts we have

J =

∫

R2

xK(f)fx + yK(f)fy) dxdy =

∫

R2

¯̂f(ξ1K̂(f)ξ1
+ ξ2K̂(f)ξ2

) dξ1dξ2

=

∫

R2

¯̂f(ξ1∂ξ1 + ξ2∂ξ2)(αf̂) dξ1dξ2

=

∫

R2

α ¯̂f(ξ1f̂ξ1 + ξ2f̂ξ2) dξ1dξ2 +

∫

R2

¯̂f(ξ1αξ1 + ξ2αξ2)f̂ dξ1dξ2.

The last integral vanishes for α is homogeneous of order zero and since J is real, we

deduce that

J =
1

2

∫

R2

α(ξ1gξ1 + ξ2gξ2) dξ1dξ2

=
1

2

∫

R2

α((ξ1g)ξ1 + (ξ2g)ξ2) dξ1dξ2 −
∫

R2

αg dξ1dξ2

= −1

2

∫

R2

(ξ1αξ1 + ξ2αξ2)g dξ1dξ2 −
∫

R2

αg dξ1dξ2

= −
∫

R2

αg dξ1dξ2 = −
∫

R2

K((|u|2)|u|2 dx,

again by utilizing Plancharel’s theorem, whence follows the claim on a formal level.

At this stage, we note that (2.1.13) and the conservation of energy yields

dI

dt
(t) = 8E(u(0))t +

dI

dt
(0),

which in turn gives

I(t) = 4E(u(0))t2 +
dI

dt
(0)t + I(0). (2.1.17)

Following [6], we now discuss the further invariants of the Zakharov–Schulman system.

Apparently, the solutions of (1.0.7) are invariant under the transformation (x, t, u) -→
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(x̃, t̃, ũ), where

x̃ =
1

γ
x, t̃ =

1

γ2
t, ũ = γu,

for any real parameter γ. By Noether’s theorem, the conserved quantity corresponding

to the above scaling symmetry is given by

Esc(u(t)) =
1

2

dI

dt
(t)− 4tE(u(t)),

whose conservation is immediate by the virial identity (2.1.13). We also consider the

invariance of solutions of (1.0.7) under the pseudo-conformal transformation (x, t, u) -→

(X, T, U) defined in [6] by

X =
x

a + bt
, , T =

c + dt

a + bt
, for



a b

c d



 ∈ SL2(R),

U(t,x) =
1

a + bt
exp

{
ib

δx2 + y2

a + bt

}
u(T,X). (2.1.18)

where the corresponding conserved quantity is given by

Epc(u) =

∫

R2

{δ|xu + 2iδux|2 + |yu + 2ituy|2 + 2t2K(|u|2)|u|2} dxdy,

which also reads as

Epc(u) = I − 4tIm

∫

R2

ū(xux + yuy) dxdy + 4t2E(u0). (2.1.19)

We note that this quantity stands for the energy of the solution in the transformed
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coordinates. It follows by (2.1.12) and (2.1.13) that

dEpc(u)

dt
(t) =

dI

dt
(t)− 4tIm

∫

R2

ū(xux + yuy) dxdy

− t
d

dt
4Im

∫

R2

ū(xux + yuy) dxdy + 8tE(u0) = 0,

whence we obtain the conservation of (2.1.19). As I, this quantity makes sense as long

as the solutions remain in the Hilbert space Σ = H1 ∩ L2(|x|2dx) equipped with the

norm ‖ · ‖2
Σ = ‖ · ‖2

H1 + ‖|x| · ‖2
2.

2.2. Focusing and Defocusing Cases of Elliptic-Elliptic

Zakharov–Schulman System

We consider the Cauchy problem

iut + δuxx + uyy + K(|u|2)u = 0, δ = ±1,

u(0) = u0,
(2.2.1)

which is extensively studied in [6] in the spaces L2(R2), H1(R2) and Σ. Before we in-

troduce the focusing and defocusing cases for solutions of (2.2.1), and adapt the global

existence and blow-up results in [7] depending on the assumptions on α or the initial

data u0; we state the following local existence results achieved in [6] but do not include

their proofs here.

Theorem 2.2.1. [6, Theorem 4.4] Given u0 ∈ H1(R2), there exists a unique maximal

solution u solving (2.2.1) on [0, T ∗) in C([0, T ∗); H1(R2)) ∩ C1([0, T ∗); H−1(R2)) with

the following properties:

(i) ∇u ∈ L4([0, t]; L4(R2)) for every t < T ∗,

(ii) T ∗ < ∞ implies that ‖u‖L∞([0,T ∗);H1(R2)) = ∞,

(iii) If ψn → u0 in H1(R2) and un’s are the corresponding solutions, then for any
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I " [0, T ∗) and for any n sufficiently large, un’s are defined on I and un → u in

C(I; H1(R2)),

(iv) Mass (2.1.2) and energy (2.1.3) are conserved in [0, T ∗).

Theorem 2.2.2. [6, Theorem 5.2] Given u0 ∈ Σ, there exists a unique maximal solu-

tion u solving (2.2.1) on [0, T ∗) in C([0, T ∗); Σ)∩C1([0, T ∗); H−1(R2)) with the follow-

ing properties:

(i) |x|u,∇u ∈ L4([0, t]; L4(R2)) for every t < T ∗,

(ii) T ∗ < ∞ implies that ‖u‖L∞([0,T ∗);Σ) = ∞,

(iii) [0, T ∗) coincides with the maximal interval of existence for the H1-solution in

Theorem (2.2.1) with initial data u0,

(iv) For δ = 1, the mapping t -→ I(t) =
∫

R2

|x|2|u(t,x)|2 dx lies in C2([0, T ∗)) and for

every t ∈ [0, T ∗) the identities (2.1.12) and (2.1.13) hold,

(v) If ψn → u0 in Σ and uns are the corresponding solutions, then for any I " [0, T ∗)

and for any n sufficiently large, un’s are defined on I and un → u in C(I; Σ).

Leaning against the above two theorems, we proceed with a global existence re-

sult for the case where L1 is also elliptic.

Theorem 2.2.3. [7, Theorem 2.3] Suppose that α(ξ) # 0 for all ξ ∈ R2 \ {(0, 0)}.

Then H1-solutions of (2.2.1), with δ = 1, are global in time.

Proof. We set f = |u|2. The assumption on α and energy conservation yields

‖∇u(t)‖2
2 = E(u(t)) +

1

2

∫

R2

α(ξ)|f̂ |2(ξ) dξ # E(u(t)) = E(u0),

for all t ∈ [0, T ∗). Utilizing mass conservation, we obtain

‖u(t)‖2
H1 = ‖u(t)‖2

2 + ‖∇u(t)‖2
2 # m(u0) + E(u0) < ∞
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and hence T ∗ = ∞ by the assertion (ii) in Theorem (2.2.1).

We note that this result extends to Σ-solutions as well by the virtue of the asser-

tion (iii) in Theorem (2.2.2). Before we state the theorem regarding sufficient condi-

tions for a finite time blow-up, we make the following observation.

Lemma 2.2.4. Let u be a Σ-solution for (2.2.1), with δ = 1. If I(t) = 0 for some t,

then the solution blows up in finite time.

Proof. The mass conservation, a simple integration by parts and Cauchy-Schwarz in-

equality enable us to write

‖u0‖2
2 = ‖u‖2

2 = −1

2

∫

R2

x(uū)x dxdy − 1

2

∫

R2

y(uū)y dxdy

# −Re

∫

R2

xūux dxdy −Re

∫

R2

xūux dxdy

# ‖xū‖2 ‖ux‖2 + ‖yū‖2 ‖uy‖2 .

So, since ‖xū‖2
2, ‖yū‖2

2 # I(t), we have

‖u0‖2
2 #

√
I(t)

[
‖ux‖2 + ‖uy‖2

]
,

Thus, if I(t) = 0 for some t, the H1-norm of the solution u becomes unbounded, i.e.

the solution blows up in finite time by Theorem (2.2.2) (i).

We are now ready to state and prove the following theorem.

Theorem 2.2.5. [7, Theorem 2.4] Let u be the solution of the Cauchy problem (2.2.1)

with δ = 1 and initial value u0 ∈ Σ. If one of the conditions

(i) E(u0) < 0,
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(ii) E(u0) = 0 and Im
∫

R2

ū0(x %∇)u0 dx < 0,

(iii) E(u0) > 0 and −Im
∫

R2

ū0(x %∇)u0 dx >
√

2E(u0)I(0),

holds, then T ∗ < ∞ and so, as a result of (ii) in Theorem (2.2.1), u blows up in finite

time.

Proof. Suppose E(u0) < 0. Then it immediately follows from (2.1.17) that for some T

large enough we have I(T ) = 0 and hence the corresponding solution blows up in finite

time by Lemma 2.2.4. On the other hand, if E(u0) = 0 and Im
∫

R2 ū0(x %∇)u0 dx < 0,

then by (2.1.12) we have I ′(0) < 0. Since E(u(t)) = E(u0) = 0, for all t, (2.1.12) implies

that I ′ is constant in time. So, since I(0) > 0, we see that I(T ) = I ′(0)T +I(0) = 0 for

some T large enough and similarly conclude that the solution blows up in finite time.

Finally, suppose that E(u0) > 0 and −Im
∫

R2 ū0(x %∇)u0 dx >
√

2E(u0)I(0). Then

again by (2.1.12) we have −I ′(0) > 4
√

2E(u0)I(0) implying I ′(0)2 > 32E(u0)I(0) >

16E(u0)I(0). So, since I ′(0) < 0, 4E(u)(0)t2 + I ′(0)t + I(0) = 0 has a positive root T .

Thus I(T ) = 0 and consequently the solution blows up in finite.

Regarding the focusing and defocusing cases for the solutions of the problem

(2.2.1) with δ = 1, as it is elaborated in [6], we have the following dichotomy. Either

there exists some u ∈ Σ such that 〈K(|u|2), |u|2〉 > 0 whence follows the existence of

initial data with negative energy and by Theorem 2.2.4 this in turn implies that the

corresponding solutions blow up in finite time; or 〈K(|u|2), |u|2〉 # 0 for every u ∈ Σ

so that H1-solutions are global and so are the Σ-solutions by Theorem 2.2.2. The first

situation is called the focusing case and the latter is the defocusing case. In [7], such

a sharp demarcation is achieved in terms of the assumptions on the symbol α instead

of the L2 inner product 〈K(|u|2), |u|2〉. In the sequel we adapt these results to the

problem (2.2.1).

For the case where α(ξ) # 0 for all ξ ∈ R2 \ {(0, 0)}, we have already shown in

Theorem 2.2.3 that H1-solutions are global in time. Now we state two direct conse-

quences of Theorem 2.2.3 and Theorem 2.2.5.
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Proposition 2.2.6. [7, Proposition 2.5] If α(ξ) # 0, for all ξ ∈ R2 \ {(0, 0)}, then the

zero solution of (2.2.1) with δ = 1 is stable.

Proof. We let ε > 0 and consider an initial datum u0 satisfying ‖u0‖H1 # δ̃ for some

δ̃ > 0. Setting f = |u|2 and f0 = |u0|2, we utilize mass and energy conservations and

obtain

‖u(t)‖2
H1 = ‖u(t)‖2

2 + ‖∇u(t)‖2
2 # ‖u(t)‖2

2 + ‖∇u(t)‖2
2 −

1

2

∫

R2

α(ξ)|f̂ |2(ξ) dξ

= m(u0) + E(u0)

= ‖u0‖2
2 + ‖∇u0‖2

2 −
1

2

∫

R2

α(ξ)|f̂0|2(ξ) dξ

# ‖u0‖2
2 + ‖∇u0‖2

2 +
1

2
‖α‖∞

∫

R2

|f̂0|2(ξ) dξ

= ‖u0‖2
H1 +

1

2
‖α‖∞ ‖u0‖4

4 .

Employing the Sobolev imbedding H1(R2) ↪→ L4(R2), we see that

‖u(t)‖2
H1 # C1δ̃

2 + C2δ̃
4,

for some positive constants C1, C2, and so ‖u(t)‖2
H1 # ε for some suitable choice of δ̃,

whence follows the claim.

Proposition 2.2.7. [7, Proposition 2.6] The nontrivial standing wave solutions of

(2.2.1)1 with δ = 1 are unstable.

Proof. Let u(x, t) = ϕ(x)eiωt, ω > 0, ϕ ∈ H1(R2) be a nontrivial standing wave

solution for the problem (2.2.1), with δ = 1. By Theorem 3.2.1 regarding the regularity

of standing waves, we see that in fact ϕ ∈ Σ. So the virial identity (2.1.13) implies
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that E(ϕ) = 0. Then for the corresponding standing wave u we have

‖∇u‖2
2 = ‖∇ϕ‖2

2 =
1

2

∫

R2

α(ξ)|f̂0|2(ξ) dξ, (2.2.2)

where f0 = |u|2. So, if we consider the initial data (1 + ε)ϕ, for the corresponding

solution it turns out that

E((1 + ε)ϕ) = (1 + ε)2 ‖∇ϕ‖2
2 − (1 + ε)4 1

2

∫

R2

α(ξ)|f̂0|2(ξ) dξ

= ‖∇ϕ‖2
2 ((1 + ε)2 − (1 + ε)4),

by (2.2.2). Thus, E((1 + ε)ϕ) < 0, whenever ε > 0 and the corresponding solution

(1 + ε)u blows up in finite time by Theorem 2.2.5.

As stated in [7, Remark 2.1], this proof points out the fact that standing waves

exist only if there exists some ξ ∈ R2 such that α(ξ) > 0, for E(ϕ) cannot vanish

otherwise. In other words, a standing wave solution to (2.2.1) may exist only in the

focusing case.

We now recall that for a standing wave solution u(x, t) = ϕ(x)eiωt, ω > 0, ϕ ∈

H1(R2), ϕ must be a solution of (1.0.8). So for (1.0.8), setting B(ψ) =

∫

R2

K(ψ)ψ̄ dx

we define the Lagrangian

Lω(ϕ) =
1

2
‖∇ϕ‖2

2 −
1

4
B(|ϕ|2) +

ω

2
‖ϕ‖2

2 ,

and in a standard way, we separate the Lagrangian Lω as the difference between kinetic

and the potential energies

T (ϕ) = ‖∇ϕ‖2
2 , V (ϕ) =

1

4
B(|ϕ|2)− ω

2
‖ϕ‖2

2 , (2.2.3)
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In [2], it is set forth regardless of the spatial dimension that, in case L2 is elliptic,

i.e. C2 sign definite, if there exists some ξ ∈ R2 such that (C2ξ, ξ) and (C3ξ, ξ)

are of the same sign; then there exist initial data u0 lying in the Schwartz class such

that E(u0) # 0 and dI
dt (0) < 0. Moreover, they conclude that in this case the set

Σ− = {v ∈ Σ |E(v) < 0} is nonempty and solutions starting in Σ− blow up in finite

time. Obviously, the above assumptions on the matrices and their quadratic forms are

in agreement with the assumption made in [7] on the symbol α in order to obtain such

a result. In what follows, we introduce the scaling argument utilized both for GDS

system and ACNLS equation in [7] in order to obtain initial data with negative energy

and hence the blow up result.

We transform x via a matrix A(s, c) depending on the real parameters s, c and

define

us,c(x) = | det A(s, c)|1/4u(A(s, c)x).

For f = |u2| as before, we see that f s,c(x) = | det A(s, c)|1/2f(A(s, c)x) and directly

compute f̂ s,c to be

f̂ s,c(ξ) =
1

| det A(s, c)|1/2
f̂((A(s, c)T )−1ξ).

Now we investigate how this transformation maps the potential energy. Using Plan-

charel’s theorem we obtain

B(f s,c) =

∫

R2

α((A(s, t))T ξ)|f̂ |2(ξ) dξ.

As done in [7], we now choose A(s, c) in such a way that the s-limit behaviour of

α((A(s, t))T ξ) reveals the close kinship between B(|u|2) and ‖u‖4
4. As appears in [7]
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we let

A(s, c) =



c(s + 1) s

cs s + 1





and immediately observe that det A(s, c) = c(2s + 1) /= 0, provided that c /= 0 and

s > 0. Besides, we compute that

lim
s→∞

α(A(s, c)T ξ) = α(c, 1),

and so it turns out that this transformation concentrates the Fourier transforms of the

solutions on the line ξ1 = cξ2 as s tends to infinity. Consequently, we obtain

lim
s→∞

B(|us,c|2) = α(c, 1) ‖u‖4
4 (2.2.4)

by the Lebesgue dominated convergence theorem. The below results are established

for the elliptic GDS system and elliptic ACNLS equation in [7].

Lemma 2.2.8. [7, Lemma 4.1] Let ω > 0. If α(c, 1) > 0 for some c, then the set

Σ0 = {v ∈ Σ |E(v) = 0} is nonempty.

Proof. Let c0 be the parameter such that α(c0, 1) > 0. Then α(c0, 1) ‖v‖4
4 > 0 implies

lim
s→∞

B(|vs,c0|2) > 0.

Thus there exists some s0 such that B(|vs0,c0|2) > 0 and then

V (svs0,c0) =
1

4
B(|vs0,c0|2)s4 − ω

2
‖vs0,c0‖2

2 s2 = 0

has a nonzero real root, say s1, so that we have s1vs0,c0 ∈ Σ0.
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Theorem 2.2.9. [7, Theorem 4.2] Let ω > 0. Then α(c, 1) > 0 for some c if and

only if a standing wave solution of the form u(x, t) = ϕ(x)eiωt, where ϕ ∈ H1(R2)

solves (1.0.8) exists.

Proof. Suppose that α(c, 1) > 0. Then Lemma 2.2.8 guarantees that Σ0 is nonempty

and the existence of standing waves follows from the constrained minimization argu-

ment in [14, Theorem 8.1.6]. On the other hand, if such a standing wave solution

exists, then V (ϕ) = 0 by the Pohozaev identites (3.1.1) and (3.1.2), so we conclude

that ϕ ∈ Σ0 Moreover, ω > 0 implies that B(|ϕ|2) > 0 and hence α(ξ) > 0 for some

ξ ∈ R2, for B(|ϕ|2) # 0 otherwise. If ξ2 /= 0, then α(c, 1) > 0 for c = ξ1/ξ2. In case

ξ2 = 0,
C3

11

C2
11

> 0 so letting c tend to infinity we obtain lim
c→±∞

α(c, 1) > 0 which implies

α(c0, 1) > 0, for some c0 ∈ R.

Theorem 2.2.10. [7, Theorem 4.3] If α(c, 1) > 0 for some c, then for any initial

datum u0 ∈ Σ, there exists a suitably scaled initial datum ũ0 such that local in time

solutions of

iut + ∆u + K(|u|2)u = 0,

u(x, 0) = ũ0,
(2.2.5)

blow up in finite time.

Proof. We utilize scaling with the matrix A(s, c) and write the energy for the scaled

version us,c
0 = | det A(s, c)|1/4u0(A(s, c)x). By hypothesis, there exists some c0 such

that α(c0, 1) > 0 and by (2.2.4), we have B(|us0,c0
0 |2) > 0 for sufficiently large s0. We

set ũ0 = µus0,c0
0 and observe that

E(ũ0) = µ2 ‖us0,c0
0 ‖2

2 − µ4B(|us0,c0
0 |2).

Therefore, E(ũ0) < 0 for sufficiently large µ so that the solution of (2.2.5) corresponding

to the initial datum ũ0 blows up in finite time by Theorem 2.2.5.
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3. STANDING WAVE SOLUTIONS OF

ZAKHAROV–SCHULMAN EQUATIONS

In this part of our work, we consider the case where L1 and L2 are both elliptic

operators. So we reduce the system (1.0.1) into the single equation (1.0.7) with δ = 1,

and then examine the existence and regularity of the standing waves, i.e., periodic

solutions of the form

u(x, t) = ϕ(x)eiωt, (3.0.1)

where ω > 0, ϕ ∈ H1(R2), ϕ /= 0. Evidently, u is such a solution if and only if ϕ solves

∆ϕ− ωϕ + K(|ϕ|2)ϕ = 0. (3.0.2)

Before we proceed further, let us mention some properties that the singular integral

operator K enjoys.

Lemma 3.0.11. [20, Lemma 2.1] For 1 < p < ∞ we have:

(i) K is a bounded linear operator from Lp into Lp,

(ii) K is self-adjoint,

(iii) If f ∈ Hs then K(f) ∈ Hs, for all s ∈ (0,∞),

(iv) If f ∈ Wm,p then K(f) ∈ Wm,p and ∂jK(f) = K(∂jf), where j = 1, 2,

(v) K preserves the following operations:

– (translation) K(f(· + τ))(x) = K(f)(x + τ), for all τ ∈ R2,

– (dilatation) K(f(λ·))(x) = K(f)(λx), for all λ > 0,

– (conjugation) K(f) = K(f).

Proof. Since α is homogeneous of order zero and bounded, the assertion (i) follows from

the Calderon-Zygmund theorem [27]. The assertion (ii) is immediate by the definition
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of K. To prove (iii), we invoke the characterization of Hs by Fourier transform, that

is, we recall that

f ∈ Hs(R2) if and only if
(
1 + |ξ|2

)s/2
f̂ ∈ L2(R2).

So, for any f ∈ Hs(R2) we have (1 + |ξ|2)s/2 f̂ ∈ L2(R2). In order to conclude that

K(f) ∈ Hs(R2), it is sufficient to show that (1 + |ξ|2)s/2 K̂(f) ∈ L2(R2). We easily see

that

∥∥∥
(
1 + |ξ|2

)s/2
K̂(f)

∥∥∥
2

=
∥∥∥
(
1 + |ξ|2

)s/2
α(ξ)f̂

∥∥∥
2

# ‖α‖∞
∥∥∥
(
1 + |ξ|2

)s/2
f̂
∥∥∥

2
< +∞,

and hence (iii) follows. We note that we do not have such a characterization using the

Fourier transform for the general Sobolev spaces Wm,p. However, since the singular

integral operator K is defined by the convolution K( · ) = α̌∗ · on C∞
c , we observe that

∂jK(f) = ∂j(α̌∗f) = α̌∗(∂jf) = K(∂jf) and upon a denseness argument the assertion

(iv) follows by (i). The claim (v) is established by straightforward computation and

using again a denseness argument.

3.1. Pohozaev Type Identites

The following identites provide us with necessary conditions for existence of stand-

ing wave solutions. Before we state the theorem, let us set B(f) = 〈K(f), f〉, where

〈·, ·〉 denotes the L2 inner product.

Theorem 3.1.1. Suppose that ϕ satisfies

∆ϕ− ωϕ + K(|ϕ|2)ϕ = 0,

where ϕ is a nonzero function lying in H1(R2). Then ϕ satisfies the following Pohozaev
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type identities:

∫

R2

(2ω −K(|ϕ|2))|ϕ|2 dxdy = 0, (3.1.1)

∫

R2

(|∇ϕ|2 − ω|ϕ|2) dxdy = 0. (3.1.2)

Proof. We mimic the proof given in [20, Theorem 2.1]. Multiplying (3.0.2) by xϕ̄x and

integrating over R2 we have

∫

R2

xϕ̄xϕxx dxdy +

∫

R2

xϕ̄xϕyy dxdy − ω

∫

R2

xϕ̄xϕ dxdy +

∫

R2

xϕ̄xK(|ϕ|2)ϕ dxdy = 0.

By the virtue of Lemma 3.0.11 and the fact that ϕ ∈ H1(R2), no trouble concerning

the boundary conditions of the integrands arises when we employ integration by parts.

We recall that ϕ ∈ H1(R2) in particular implies ϕ ∈ L4(R2) and this is essential for

integrating the fourth integrand by parts. Doing so and taking real parts yields

− 1

2

∫

R2

|ϕx|2 dxdy +
1

2

∫

R2

|ϕy|2 dxdy +
1

2
ω

∫

R2

|ϕ|2 dxdy

− 1

2




B(|ϕ|2) +

∫

R2

K(|ϕ|2)xx|ϕ|2 dxdy




 = 0,

and multiplying by −2 we get

∫

R2

(
|ϕx|2 − |ϕy|2 − ω|ϕ|2

)
dxdy + B(|ϕ|2) +

∫

R2

K(|ϕ|2)xx|ϕ|2 dxdy = 0. (3.1.3)

To ease the notation, let f stand for |ϕ|2 hereafter. By Plancharel’s theorem, we see
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that

∫

R2

K(f)xxf dxdy =
1

2

∫

R2

ξ1K̂(f)(ξ) ¯̂fξ1(ξ) dξ1dξ2 +
1

2

∫

R2

f̂ξ1(ξ)ξ1K̂(f)(ξ) dξ1dξ2

=

∫

R2

ξ1α(ξ)(f̂(ξ) ¯̂fξ1(ξ) + ¯̂f(ξ)f̂ξ1(ξ)) dξ1dξ2

=
1

2

∫

R2

ξ1α(ξ)(|f̂ |2)ξ1(ξ) dξ1dξ2,

where ξ = (ξ1, ξ2). Integrating by parts in the variable ξ1 yields

∫

R2

K(f)xxf dxdy = −1

2

∫

R2

(ξ1α(ξ))ξ1|f̂ |2(ξ) dξ,

and so we can rewrite (3.1.3) as

∫

R2

(
|ϕx|2 − |ϕy|2 − ω|ϕ|2

)
dxdy + B(f)− 1

2

∫

R2

(ξ1α(ξ))ξ1|f̂ |2(ξ) dξ = 0,

which gives us

∫

R2

(
|ϕx|2 − |ϕy|2 − ω|ϕ|2

)
dxdy +

∫

R2

{
α(ξ)− 1

2
(ξ1α(ξ))ξ1

}
|f̂ |2(ξ) dξ = 0. (3.1.4)

Similarly, multiplying (3.0.2) by yϕ̄y, integrating over R2 and following exactly the

same steps above, we obtain

∫

R2

(
|ϕx|2 − |ϕy|2 + ω|ϕ|2

)
dxdy −

∫

R2

{
α(ξ)− 1

2
(ξ2α(ξ))ξ2

}
|f̂ |2(ξ) dξ = 0. (3.1.5)

Finally, we multiply (3.0.2) by ϕ̄ and integrate over R2 to get

∫

R2

(
ϕ̄ϕxx + ϕ̄ϕyy − ω|ϕ|2 + K(|ϕ|2)|ϕ|2

)
dxdy,

and, applying integration by parts to the first and the second terms in the integrand
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we end up with

∫

R2

(
|ϕx|2 + |ϕy|2 + ω|ϕ|2

)
dxdy −B(|ϕ|2) = 0. (3.1.6)

Subtracting (3.1.5) from (3.1.4) yields

∫

R2

(
2ω −K(|ϕ|2)

)
|ϕ|2 dxdy +

1

2

∫

R2

(ξ1αξ1(ξ) + ξ2αξ2(ξ)) dξ = 0.

Writing α(ξ) =
Q3(ξ)

Q2(ξ)
, where Qj, j = 2, 3 is defined as in Proposition 2.0.1, we directly

compute that

ξ1αξ1(ξ) + ξ2αξ2(ξ) =
2Q2(ξ)Q3(ξ)− 2Q2(ξ)Q3(ξ)

Q2
2(ξ)

= 0,

and hence establish

∫

R2

(
2ω −K(|ϕ|2)

)
|ϕ|2 dxdy = 0.

Combining this with (3.1.6), we obtain

∫

R2

(
|∇ϕ|2 − ω|ϕ|2

)
dxdy = 0.

It follows from the identites (3.1.1) and (3.1.2) that the equation (3.0.2) has a

nontrivial solution only if ω > 0. In this regard, we restrict our attention to the case

where ω > 0 throughout this chapter.
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3.2. Regularity of Standing Wave Solutions

Since we later show that the equation (3.0.2) has a nonnegative solution, through-

out this section we assume that ϕ is real valued. We now state the regularity result.

Theorem 3.2.1 (Regularity). [13, Theorem 2.4] If ϕ ∈ H1(R2) is a weak solution

of (3.0.2), then the following hold.

(i) ϕ ∈ W 2,p(R2), for all 2 # p < ∞,

(ii) lim
|x|→∞

{
|∇ϕ(x)| + |ϕ(x)| + |K(ϕ2)(x)|

}
= 0,

(iii) u ∈ C2,

(iv) There exist positive constants C and ν such that

eν|x| {|ϕ(x)| + |∇ϕ(x)|} # C, for allx ∈ R2.

Proof. We proceed in several steps.

Step 1: Our aim is to show that ϕ ∈ L2∩L∞. Since ϕ ∈ H1, we immediately have

ϕ ∈ L2. By the Sobolev imbedding theorem, H1(R2) ↪→ Lp(R2) for all 2 # p < ∞, so

we see that ϕ ∈ Lp for all 2 # p < ∞ and hence ϕ2 ∈ Lp/2 for all 2 # p < ∞. Since

K ∈ L(Lp, Lp) for any 1 < p < ∞, there exists some r > 2 such that ϕ ∈ Lr and so,

K(ϕ2) ∈ Lr/2 implying that K(ϕ2)ϕ ∈ Lr by Hölder inequality. Hence ∆ϕ ∈ Lr and by

elliptic regularity ϕ ∈ W 2,r. Then by the Sobolev imbedding W 2,r(R2) ↪→ W 1,∞(R2)

we have ϕ ∈ W 1,∞, i.e. ϕ is globally Lipschitz continuous, and thus ϕ ∈ L∞.

Step 2: We prove (i). Since ∆ϕ = ωϕ−K(|ϕ|2)ϕ, it is sufficient to show that the

right hand side of this equation is in Lp for all 2 # p < ∞. Now we know ϕ ∈ Lp for all

2 # p # ∞. Then ϕ2 ∈ Lp/2 for all 2 # p # ∞ and so K(ϕ2) ∈ Lp for all 1 < p < ∞.

Thereupon we have

‖K(ϕ2)ϕ‖q # ‖ϕ‖∞‖K(ϕ2)‖q # ∞, for any q ∈ (1,∞),
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so that K(ϕ2)ϕ ∈ Lq for all 1 < q < ∞. Thus ∆ϕ ∈ Lp for all 2 # p < ∞ and hence

ϕ ∈ W 2,p for all 2 # p < ∞ by regularity of the elliptic equations.

Step 3: Since ϕ ∈ L2, we have

lim
|x|→∞

|ϕ(x)| = 0 (3.2.1)

Step 4: As we have shown in Step 1, ϕ ∈ W 1,∞. Yet ϕ ∈ W 2,p for all 2 # p < ∞

has also been established. Thus it follows that ϕ ∈ W 1,p for all 2 # p # ∞. So, for

any fixed p such that 2 # p # ∞, we also have

‖ϕ2‖p
p =

∫

R2

(|ϕ|2)p dx =

∫

R2

|ϕ|2p dx = ‖ϕ‖2p
2p < ∞,

which implies ϕ2 ∈ Lp for any 2 # p # ∞. Moreover, since ∇(ϕ2) = 2ϕ∇ϕ, it follows

that

∥∥∇(ϕ2)
∥∥

p
= 2‖ϕ∇ϕ‖p # ‖ϕ‖∞‖∇ϕ‖p < ∞.

Therefore, ϕ2 ∈ W 1,p for all 2 # p < ∞ and so we obtain K(ϕ2) ∈ W 1,p for all

2 # p < ∞. Now let q > 2 be fixed so that W 1,q is a Banach algebra [28, Theorem

5.23]. Then we have K(ϕ2)ϕ ∈ W 1,q, whence ∆ϕ ∈ W 1,q and by elliptic regularity

ϕ ∈ W 3,q for any q > 2. The assertion (iii) now follows from the Sobolev imbedding

W 3,q(R2) ↪→ C2(R2). Moreover, since ϕ ∈ W 3,p for all 2 < p < ∞, we see that

∇ϕ ∈ W 2,p for all 2 < p < ∞. It follows as a consequence of the Sobolev imbedding

theorem that ∇ϕ ∈ W 1,∞ and just like in Step 3 we get

lim
|x|→∞

|∇ϕ(x)| = 0. (3.2.2)

Step5: We have previously shown that ϕ ∈ W 3,p for all 2 < p < ∞ and so, in
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particular ϕ2 ∈ W 2,q for some q ∈ [2,∞). Then from Lemma 3.0.11 it follows that

K(ϕ2) ∈ W 2,q, whence K(ϕ2) ∈ W 1,∞ by Sobolev imbedding theorem. Thereupon, we

similarly conclude that lim
|x|→∞

|K(ϕ2)(x)| = 0. Combining this with (3.2.1) and (3.2.2)

the assertion (ii) follows.

Step 6: Now the only task remains is to prove (iv). We first note that it is

sufficient to consider the case ω = 1 since ψ defined by ϕ(x) =
√

ωψ(
√

ωx) satisfies

∆ψ − ψ + K(|ψ|2)ψ = 0, whenever ϕ is a solution of (3.0.2). Now, for any ε > 0, we

define θε(x) = exp

(
|x|

1 + ε|x|

)
. Then θε is bounded since θε(x) # exp

(
1

ε

)
= M , for

all x ∈ R2. Furthermore, with x = (x1, x2),

|∇θε(x)|2 = θ2
ε(x)

x2
1

|x|2(1 + ε|x|)4
+ θ2

ε(x)
x2

2

|x|2(1 + ε|x|)4
= θ2

ε(x)
1

(1 + ε|x|)4
# θ2

ε(x)

clearly states that |∇θε| # θε almost everywhere in R2, and since θε # M we deduce

that θε is globally Lipschitz continuous.

We now multiply the equation (3.0.2) by θεϕ ∈ H1, integrate over R2 and obtain

∫

R2

(∇ϕ · ∇(θεϕ)) dx +

∫

R2

θεϕ
2 dx =

∫

R2

θεϕ
2K(ϕ2) dx,

subsequent to an integration by parts. Since ∇ (θεϕ) = ϕ∇θε + θε∇ϕ, we see that

∇ϕ · ∇(θεϕ) = θε|∇ϕ|2 + ϕ(∇ϕ · ∇θε). Yet, by Cauchy–Schwarz inequality it follows

that (∇θε · ∇ϕ)ϕ $ −|ϕ||∇ϕ|θε, and thus

∫

R2

θε|∇ϕ|2 dx−
∫

R2

θε|ϕ||∇ϕ| dx +

∫

R2

θεϕ
2 dx #

∫

R2

θεK(ϕ2)ϕ2 dx.

Now let δ <
1

4
. By (ii), there exists some r1 > 0 such that |K(ϕ2)(x)| < δ, whenever

|x| $ r1. On the other hand, by Cauchy inequality we have

∫

R2

θε|ϕ||∇ϕ| dx # 1

2

∫

R2

θεϕ
2 dx +

1

2

∫

R2

θε|∇ϕ|2 dx,
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which in turn gives us

1

2

∫

R2

θε|∇ϕ|2 dx +
1

2

∫

R2

θεϕ
2 dx #

∫

|x|<r1

θεK(ϕ2)ϕ2 dx +

∫

|x|"r1

θεK(ϕ2)ϕ2 dx.

Moreover, since θε # e|x| it follows that

1

2

∫

R2

θε|∇ϕ|2 dx +
1

2

∫

R2

θεϕ
2 dx #

∫

|x|<r1

θεK(ϕ2)ϕ2 dx + δ

∫

|x|"r1

θεϕ
2 dx

# C1 +
1

4

∫

|x|"r1

θεϕ
2 dx # C1 +

1

4

∫

R2

θεϕ
2 dx,

and hence

1

2

∫

R2

θε|∇ϕ|2 dx +
1

4

∫

R2

θε|ϕ|2 dx # C1,

where C1 is a constant not depending on ε. Letting ε → 0 yields

1

4

∫

R2

e|x|(|ϕ|2 + |∇ϕ|2) dx # C1, (3.2.3)

by the Monotone Convergence Theorem.

At this stage, we once again recall what we have proven in assertion (ii) and see

that for some r2 > 0, we have |ϕ(x)| + |∇ϕ(x)| < 1, whenever |x| $ r2. On the other

hand, for |x| # r2, it follows that

e
|x|
2 (|ϕ(x)| + |∇ϕ(x)|) # e

r2
2 ‖ϕ‖W 1,∞ . (3.2.4)

Now we let x ∈ R2 be fixed such that |x| $ r2. Since ϕ and ∇ϕ are both globally

Lipschitz continuous, there exists L > 0 such that for all y ∈ R2 we have,

|∇ϕ(x)| − |∇ϕ(y)| # ||∇ϕ(x)| − |∇ϕ(y)|| # L√
2
|x− y|,
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and,

|ϕ(x)| − |ϕ(y)| # ||ϕ(x)| − |ϕ(y)|| # L√
2
|x− y|,

which simply imply

|∇ϕ(y)| $ |∇ϕ(x)| − L√
2
|x− y|,

|ϕ(y)| $ |ϕ(x)| − L√
2
|x− y|.

(3.2.5)

Thereupon we get |ϕ(x)|2 + |∇ϕ(x)|2 # 2(|ϕ(y)|2 + |∇ϕ(y)|2 + L2|x − y|2). Let us

now take ρ :=
1

2L
(|ϕ(x)|2 + |∇ϕ(x)|2)1/2. Then for any y ∈ Bρ(x) it turns out that

|ϕ(x)|2 + |∇ϕ(x)|2 # 4(|ϕ(y)|2 + |∇ϕ(y)|2).

Integrating both sides of this inequality over Bρ(x) we obtain

(|ϕ(x)|2 + |∇ϕ(x)|2)
∫

Bρ(x)

dy = C2ρ
2(|ϕ(x)|2 + |∇ϕ(x)|2)

# 4

∫

Bρ(x)

(|ϕ(y)|2 + |∇ϕ(y)|2) dy,

and plugging ρ yields

C3(|ϕ(x)|2 + |∇ϕ(x)|2)2 # 4

∫

Bρ(x)

(|ϕ(y)|2 + |∇ϕ(y)|2) dy, (3.2.6)

where C3 =
C2

4L2
. We also note that for |x| $ r2 we have

|ϕ(x)|2 + |∇ϕ(x)|2 # (|ϕ(x)| + |∇ϕ(x)|)2 < 1,
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which implies ρ # 1

2L
, and thus

|y| − |x| + 1

2L
$ 0 for all y ∈ Bρ(x).

Multiplying (3.2.6) by e|x| it follows from (3.2.3) that

C3e
|x|(|ϕ(x)|2 + |∇ϕ(x)|2)2 # 4

∫

Bρ(x)

e|x|(|ϕ(y)|2 + |∇ϕ(y)|2) dy

# 4

∫

Bρ(x)

e
1

2L e|y|(|ϕ(y)|2 + |∇ϕ(y)|2) dy # C4,

for some constant C4 > 0. Thus for |x| $ r2, we have

e|x|
(
|ϕ(x)|2 + |∇ϕ(x)|2

)2 # C5, (3.2.7)

and the assertion (iv) is now an immediate consequence of (3.2.4) and (3.2.7).

3.3. Existence of Standing Wave Solutions

In order to establish the existence of standing wave solutions, we adopt Wein-

stein’s approach [15] and set up an equivalent variational problem. We briefly recall

that a standing wave profile ϕ ∈ H1(R2) satisfies (3.0.2). As we have also noted in the

previous section, it is sufficient to consider the case where ω = 1, for ϕ is a solution

of (3.0.2) if and only if ψ defined by ϕ(x) =
√

ωψ(
√

ωx) is a solution of

∆ψ − ψ + K(|ψ|2)ψ = 0. (3.3.1)

So we hereafter assume that ω = 1. Employing Pohozaev identities, we deduce that

for such a solution u we have

E(u(t)) = E(ϕ) = ‖∇ϕ‖2
2 −

1

2

∫

R2

K(|ϕ|2)|ϕ|2 dx = 0, for all t $ 0.
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Multiplying this Hamiltonian by ‖ϕ‖2
2 yields

‖ϕ‖2
2 =

2‖ϕ‖2
2‖∇ϕ‖2

2

〈K(|ϕ|2), |ϕ|2〉 ,

where 〈·, ·〉 stands for the usual L2 inner product. This allows us to define the associated

Weinstein functional by

W (f) =
2 ‖f‖2

2 ‖∇f‖2
2

〈K(|f |2), |f |2〉 . (3.3.2)

Apparently, the nonlinear functional W returns the squared L2-norm of the ar-

gument if the argument is a solution of (3.3.1). So, if there exists a minimizer for W

and that minimizer is also a solution of (3.3.1), then it turns out to be a solution with

minimal mass for the equation (3.3.1). At this stage, we note that it is not trivial to

have control over the denominator of W ; indeed, it may attain the value zero making

W even undefined for some nonzero f . Inspired by [16] we consider maximizing its re-

ciprocal J = 1
W instead of minimizing W itself and fortunately the mentioned obstacle

disappears. In this regard we are to show the existence of maximizers for J and that

these maximizers solve (3.3.1) in the weak sense. We first present a result that enables

us to restrict our attention on the existence of nonnegative and real valued solutions

for (3.3.1).

Lemma 3.3.1. [16, Lemma B.2] Let ψ ∈ H1(RN). Then we have

−|∇ψ| # ∇|ψ| # |∇ψ|

in the weak sense. In particular, |ψ| ∈ H1(RN).

As a direct consequence of this lemma, it turns out that

J(f) =
〈K(|f |2), |f |2〉
2‖f‖2‖∇f‖2

# 〈K(|f |2), |f |2〉
2‖f‖2‖∇|f |‖2

= J(|f |),
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for any f ∈ H1(R2), whence J has a nonnegative, real valued maximizer in case a

maximizer exists. Before we advance, utilizing Plancharel’s theorem and Gagliardo–

Nirenberg–Sobolev inequality we note that

∣∣〈K(|f |2), f2〉
∣∣ =

∣∣∣∣∣∣

∫

R2

α(ξ)|̂f |2(ξ)|̂f |2(ξ) dξ

∣∣∣∣∣∣
# ‖α‖∞ ‖f‖

4
4 # C ‖f‖2

2 ‖∇f‖2
2 ,

which implies M = sup
f∈H1(R2)

J(f) < ∞. Moreover, if J(f) is positive for some f , then

evidently M is positive; that is, M > 0 only if there exists some f ∈ H1(R2) such that

〈K(|f |2), |f 2|)〉 > 0. The existence of such an f is equivalent to the existence of some

ξ ∈ R2 such that α(ξ) > 0, and this corresponds to the focusing case previously dis-

cussed in Chapter 2. Leaning against Theorem 2.2.9, we assume the existence of some

f such that 〈K(|f |2), |f 2|〉 > 0 and so concentrate on the case where M is positive. We

are now ready to establish that the nonnegative, real valued maximizers, upon their

existence, are weak solutions of (3.3.1).

Lemma 3.3.2. [15] Let ϕ ∈ H1(R2) be such that ϕ is nonnegative, not identically zero,

and that J(ϕ) = max
f∈H1(R2)

J(f). Then ϕ is a weak solution of (3.3.1).

Proof. We show that any real valued, nonzero critical point of the nonlinear functional

J solves (3.3.1) in the weak sense. This is established by directly computing the

Gateaux derivative and observing that the solutions of the Euler–Lagrange equation

dJ(ϕ, h) = lim
ε→0

J(ϕ + εh)− J(ϕ)

ε
=

d

dε

∣∣∣∣
ε=0

J(ϕ + εh) = 0, for all h ∈ C∞
c (R2),

satisfies (3.3.1). Indeed, utilizing the fact that K is a self-adjoint operator, we compute

that

dJ(ϕ, h) =
1

4 ‖ϕ‖4
2 ‖∇ϕ‖4

2

{
8〈K(ϕ2), ϕh〉 ‖ϕ‖2

2 ‖∇ϕ‖2
2

− 2〈K(ϕ2), ϕ2〉 d

dε

∣∣∣∣
ε=0

(
‖ϕ + εh‖2

2 ‖∇ϕ + ε∇h‖2
2

)
}

= 0.
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Integration by parts yields

d

dε

∣∣∣∣
ε=0

(
‖ϕ + εh‖2

2 ‖∇ϕ + ε∇h‖2
2

)
= 2



‖∇ϕ‖2
2

∫

R2

ϕh dx + ‖ϕ‖2
2

∫

R2

(−∆ϕ)h dx



 ,

and thus it follows that a critical point ϕ of J is necessarily a solution of

8〈K(ϕ2)ϕ, h〉 ‖ϕ‖2
2 ‖∇ϕ‖2

2 + 4〈K(ϕ2), ϕ2〉 ‖∇ϕ‖2
2

∫

R2

(−ϕ)h dx

+ 4〈K(ϕ2), ϕ2〉 ‖ϕ‖2
2

∫

R2

(∆ϕ)h dx = 0. (3.3.3)

Thanks to Pohozaev identites obtained in Theorem 3.1.1, the solutions of (3.3.1) sat-

isfy (3.3.3). On the other hand, an elementary calculation shows that J is invariant

under the transformation f -→ fa,b = af(b ·), with a pair of parameters (a, b) ∈ R2,

and so ϕ is a maximizer if and only if ϕa,b is. In particular, noting that 〈K(ϕ2), ϕ2〉 is

positive, we set

a =

√
2 ‖ϕ‖2√

〈K(ϕ2), ϕ2〉
and b =

‖ϕ‖2

‖∇ϕ‖2

and obtain

∫

R2

(
∆ϕa,b − ϕa,b + K

(
(ϕa,b)2

)
ϕa,b

)
h dx = 0.

Therefore it follows that any nonnegative and real valued maximizer ϕ of J , up to a

scaling, is a weak solution of (3.3.1).

Before we state the theorem on existence of maximizers we present a compact-

ness result due to Lieb [29] which is useful to conclude that, under some condition, a

bounded sequence of functions in W 1,p(RN) can, after suitable translations, be assumed

to have a weak limit that is not zero. The following result is valid for RN as well, but

for the sake of coherence within our work we state it in R2.
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Lemma 3.3.3 (Compactness lemma). [29, Lemma 6] Let 1 < p < ∞ and let {fk} be a

uniformly bounded sequence of real valued functions in W 1,p(R2) with the property that

Ek = {x|fk(x) > ε} satisfies meas(Ek) $ C for some fixed ε, C > 0. Then there exists

a sequence of translations {τk} of (RN , τk : y -→ y+xk, Fk(y) = fk(τky) = fk(y+xk),

such that Fkj ⇀ F weakly in W 1,p and F /= 0, for some subsequence kj.

What remains to show is the existence of maximizers of the functional J .

Theorem 3.3.4 (Existence of maximizers). [15] There exists a nonnegative real val-

ued function ϕ ∈ H1(R2), not identically zero, such that J(ϕ) = M , where M =

sup
f∈H1(R2)

J(f).

Proof. By definition of M we may pick a sequence {ψn} ⊂ H1(R2) of nonzero functions

such that {J(ψn)} is a nondecreasing sequence with

lim
n→∞

J(ψn) = M,

namely, we may pick a maximizing sequence {ψn}. Since M > 0, without loss of

generality, we assume J(ψn) to be positive, and by Lemma 3.3.1, we may also assume

ψn to be nonnegative, for each n ∈ N. Similar to the preceding proof, the invariance of

J under the transformation f -→ fa,b = af(b ·) enables us to define another maximizing

sequence {ϕn} by ϕn(x) = aψn(bx), for each n, with a = 1
‖∇ψn‖2

and b = ‖ψn‖2
‖∇ψn‖2

. We

quickly observe that

‖ϕn‖2 = 1 and ‖∇ϕn‖2 = 1, (3.3.4)

for all n, and hence

lim
n→∞

J(ϕn) = lim
n→∞

〈K(ϕn
2), ϕn

2〉
2

= M,
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also in a nondecreasing fashion. By (3.3.4), {ϕn} is clearly a bounded sequence in

H1(R2) which is reflexive. Thus there exists a subsequence which we still denote by

{ϕn}, and some ϕ in H1(R2) such that {ϕn} converges to ϕ in the weak topology

(see A.1). Provided by Sobolev imbedding theorem, ϕn, ϕ ∈ Lp(R2), for all p $ 2;

and we further note that {ϕn} is bounded also in Lp(R2), for all p $ 2, all of which

are reflexive spaces as well. We proceed by setting ωn = ϕn − ϕ, and clearly {ωn}

converges to zero weakly in H1(R2). We observe in particular that {ωn} is bounded

in L4(R2) ∩ L8(R2) so that the sequence {ωn
2} remains bounded in L2(R2) ∩ L4(R2).

Moreover, it follows from Lemma 3.0.11 that {K2(ω2
n)} is also bounded in L2(R2).

Therefore, we can extract subsequences in an iterative manner and finally end up

with a sequence which we still denote by {ϕn} such that {ω2
n}, {K2(ω2

n)}, {ωn} all

converge to zero weakly in L2(R2), and that {ωn} converges to zero weakly in H1(R2).

Our task now is nothing but to show that this convergence is also valid in the strong

topology in H1(R2). Before we advance, we note that upon a Cantor diagonalization

argument, we may also assume {ϕn} and {∇ϕn} to converge almost everywhere to {ϕ}

and {∇ϕ}, respectively. By Rellich–Kondrachov compactness theorem (A.2), for any

open rectangle RN = (N, N)2 ⊂ R2, {ϕn} has a subsequence strongly converging to ϕ

in L2(RN), and hence a subsequence converging to ϕ almost everywhere in RN . For

N = 1 we name this subsequence {ϕ(1)
n } and for N = 2, we use the same argument

to extract a subsequence {ϕ(2)
n } of {ϕ(1)

n } which converges to ϕ almost everywhere in

L2(R2). Iterating this process, we obtain a subsequence {ϕ(N+1)
n } of {ϕ(N)

n } converging

to ϕ almost everywhere in L2(RN+1). By construction, the diagonal sequence {ϕ(n)
n }

converges to ϕ almost everywhere in L2(R2) and is clearly a subsequence of {ϕn}.

So, up to a relabeling we assume that {ϕn} also converges to ϕ almost everywhere in

L2(R2). We now observe that the weak convergence ϕn ⇀ ϕ yields

lim
n→∞

‖ϕn − ϕ‖2
H1 = lim

n→∞
〈ϕn − ϕ, ϕn − ϕ〉H1

= lim
n→∞

{〈ϕn, ϕn〉H1 + 〈ϕ, ϕ〉H1 − 〈ϕn, ϕ〉H1 − 〈ϕ, ϕn〉H1}

= 2− ‖ϕ‖2
H1(R2) ,

where 〈·, ·〉H1 denotes the inner product on H1(R2). This indicates that for strong
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convergence in H1(R2) to be established, it is sufficient to show that ‖ϕ‖2 = 1 and

‖∇ϕ‖2 = 1. By Lemma 3.3.3, the weak limit ϕ can be assumed to be nonzero. Imme-

diate by Fatou’s lemma is that we have ‖ϕ‖2 # 1 and ‖∇ϕ‖2 # 1 and we are to show

that strict inequality cannot occur. It is guaranteed by [30, Theorem 1] that

lim
n→∞

{
‖ϕn‖2

2 − ‖ϕn − ϕ‖2
2

}
= ‖ϕ‖2

2 ,

which implies

lim
n→∞

‖ωn‖2
2 = 1− ‖ϕ‖2

2 , (3.3.5)

and similarly

lim
n→∞

‖∇ωn‖2
2 = 1− ‖∇ϕ‖2

2 . (3.3.6)

We are now ready to investigate the limit behaviour of 〈K(ω2
n), ω2

n〉. First of all,

utilizing the fact that K is self-adjoint, we have

〈K(ω2
n), ω2

n〉 =

∫

R2

K(ω2
n)ω2

n dx =

∫

R2

K(ϕ2
n − 2ϕnϕ + ϕ2)ω2

n dx

=

∫

R2

K(ϕ2
n)ω2

n dx +

∫

R2

K(ϕ2)ω2
n dx− 2

∫

R2

K(ω2
n)ϕnϕ dx

=

∫

R2

K(ϕ2
n)(ϕ2

n − 2ϕnϕ + ϕ2) dx +

∫

R2

K(ϕ2)ω2
n dx− 2

∫

R2

K(ω2
n)ϕnϕ dx

=

∫

R2

K(ϕ2
n)ϕ2

n dx +

∫

R2

K(ϕ2)ω2
n dx +

∫

R2

(ϕ2 − 2ϕnϕ)K(ϕ2
n) dx

− 2

∫

R2

ϕnϕK(ω2
n) dx.

Since

∫

R2

(K(ϕ2) ·) dx defines a bounded linear functional on L2(R2), the weak conver-
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gence ω2
n ⇀ 0 in L2(R2) implies that lim

n→∞

∫

R2

K(ϕ2)ω2
n dx = 0, so that we have

〈K(ω2
n), ω2

n〉 =

∫

R2

K(ϕ2
n)ϕ2

n dx +

∫

R2

(ϕ2 − 2ϕnϕ)K(ϕ2
n) dx− 2

∫

R2

ϕnϕK(ω2
n) dx.

We now show that

lim
n→∞

∫

R2

(ϕ2 − 2ϕnϕ)K(ϕ2
n) dx = −

∫

R2

ϕ2K(ϕ2) dx, (3.3.7)

and

lim
n→∞

∫

R2

ϕnϕK(ω2
n) dx = 0, (3.3.8)

from which it follows that lim
n→∞

{
〈K(ω2

n), ω2
n〉 − 〈K(ϕ2

n), ϕ2
n〉

}
= −〈K(ϕ2), ϕ2〉. To

prove (3.3.7), adding and subtracting 〈K(ϕ2
n), ϕ2〉 and recalling that K is self-adjoint,

we have

J =

∣∣∣∣∣∣

∫

R2

(ϕ2 − 2ϕnϕ)K(ϕ2
n) dx +

∫

R2

ϕ2K(ϕ2) dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

R2

ϕ2K(ϕ2
n) dx− 2

∫

R2

ϕnϕK(ϕ2
n) dx +

∫

R2

ϕ2K(ϕ2) dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

R2

(−ϕ2
n + ϕ2)K(ϕ2) dx +

∫

R2

2(ϕ2 − ϕnϕ)K(ϕ2
n) dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

R2

(−ωn)(ϕn + ϕ)K(ϕ2) dx + 2

∫

R2

(−ωn)ϕK(ϕ2) dx

∣∣∣∣∣∣

#

∣∣∣∣∣∣

∫

R2

(−ωn)(ϕn + ϕ)K(ϕ2) dx

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣

∫

R2

(−ωn)ϕK(ϕ2) dx

∣∣∣∣∣∣



44

Using Cauchy–Schwarz inequality, we get

lim
n→∞

J # lim
n→∞









∫

R2

ω2
nK

2(ϕ2) dx




1/2 


∫

R2

(ϕ2
n + ϕ2)2 dx




1/2

+2




∫

R2

K2(ϕ2
n) dx




1/2 


∫

R2

ω2
nϕ

2 dx




1/2





.

As before, we observe that

∫

R2

(K(ϕ2) ·) dx and

∫

R2

(ϕ2 ·) dx define bounded linear func-

tionals on L2(R2). So, the weak convergence ω2
n ⇀ 0 in L2(R2) yields

lim
n→∞

∫

R2

ω2
nK(ω2

n) dx = 0 and lim
n→∞

∫

R2

ω2
nϕ

2 dx = 0.

Thus,

lim
n→∞

∣∣∣∣∣∣

∫

R2

(ϕ2 − 2ϕnϕ)K(ϕ2
n) dx +

∫

R2

ϕ2K(ϕ2) dx

∣∣∣∣∣∣
= 0,

which proves (3.3.7). In the same spirit, we employ Cauchy–Schwarz inequality and

obtain

lim
n→∞

∣∣∣∣∣∣

∫

R2

ϕnϕK(ω2
n) dx

∣∣∣∣∣∣
# lim

n→∞









∫

R2

ϕ2K2(ω2
n) dx




1/2 


∫

R2

ϕ2
n dx




1/2





.

So, (3.3.8) is now established by the weak convergence K2(ω2
n) ⇀ 0 in L2(R2), and

hence

lim
n→∞

{
〈K(ω2

n), ω2
n〉 − 〈K(ϕ2

n), ϕ2
n〉

}
= −〈K(ϕ2), ϕ2〉. (3.3.9)

Now we note that J(ωn) # M and J(ϕ) # M , by definition of M . Using (3.3.5)
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and (3.3.6) we have

lim
n→∞

〈K(ω2
n), ω2

n〉 # 2M(1− ‖ϕ‖2
2)(1− ‖∇ϕ‖2

2), (3.3.10)

and also

lim
n→∞

〈K(ϕ2), ϕ2〉 # 2M ‖ϕ‖2
2 ‖∇ϕ‖2

2 # 2M. (3.3.11)

Moreover, recalling that lim
n→∞

J(ϕn) = M , clearly

lim
n→∞

〈K(ϕ2
n), ϕ2

n〉 = 2M. (3.3.12)

Combining (3.3.9), (3.3.10), (3.3.11) and (3.3.12) yields

−2M ‖ϕ‖2
2 ‖∇ϕ‖2

2 # −〈K(ϕ2), ϕ2〉 = lim
n→∞

{
〈K(ω2

n), ω2
n〉 − 〈K(ϕ2

n), ϕ2
n〉

}

# 2M(1− ‖ϕ‖2
2)(1− ‖∇ϕ‖2

2)− 2M,

which in turn gives us

‖ϕ‖2
2 (1− ‖∇ϕ‖2

2) + ‖∇ϕ‖2
2

(
1− ‖ϕ‖2

2

)
# 0. (3.3.13)

Since ϕ is nonzero, (3.3.13) holds if and only if ‖ϕ‖2 = ‖∇ϕ‖2 = 1 and hence the claim

follows.

In the first chapter we have discussed that an alternative approach to establish

existence of standing wave solutions is to minimize the Lagrangian

Lω(ψ) =
1

2
T (ψ)− V (ψ)
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over the set Σ0 = {ψ ∈ H1(R2) : V (ψ) = 0}, where

T (ψ) = ‖∇ψ‖2
2 , V (ψ) =

1

4
〈K(|ψ|2)|ψ|2〉 − ω

2
‖ψ‖2

2

are the kinetic and the potential energies, respectively. Through this constrained

minimization problem we obtain the existence of a solution ϕ of (3.0.2) such that

Lω(ϕ) # Lω(ψ), for any H1-solution ψ of (3.0.2), namely a solution belonging to the

set of ground states defined by

G = {ψ ∈ H1(R2) : ψ solves (3.0.2) and Lω(ψ) = j0},

where j0 = inf
ψ∈H1(R2)

{Lω(ψ) : ψ solves (3.0.2)}. As underlined in [8], the minimizers

obtained from this constrained minimization problem and the minimizers of the We-

instein functional (3.3.2) coincide. Therefore the minimization argument in our work

also yields ground states.

The main result of this chapter is now a corollary that follows from Lemma 3.3.2

and Theorem 3.3.4.

Corollary 3.3.5. There exists a nonnegative weak solution ϕ ∈ H1(R2) to the equa-

tion (3.0.2), such that ϕ is a ground state for (3.0.2).

Following [8] we observe that if α(ξ) > 0 for some ξ ∈ R2, then we have the

following Gagliardo–Nirenberg–Sobolev type inequality

〈K(|f |2), |f |2〉 # Copt ‖f‖2
2 ‖∇f‖2

2 ,

for any f ∈ H1(R2), where the best constant Copt is given by Copt =
2

‖ϕ‖2
2

, with ϕ

being a nontrivial solution of (3.3.1). As observed in [20], this estimate enables us to

obtain an upper bound on the initial mass so that H1-solutions are global in time in

the focusing case as well.
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Corollary 3.3.6. For initial data u0 ∈ H1(R2) with ‖u0‖2 < ‖ϕ‖2, the corresponding

solutions for the Cauchy problem (2.2.1) are global in time.
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4. ARKADIEV–POGREBKOV–POLIVANOV TYPE

SOLUTIONS OF ZAKHAROV–SCHULMAN EQUATIONS

4.1. APP Type Travelling Wave Solutions

In this part of our work, we seek the necessary and sufficient conditions for the

existence of solutions of the form

u(x, y, t) = 2ν̄
exp {iθ(x, y, t)}

(x− 4λ2t + µ1)2 + (y + 4λ1t + µ2)2 + |ν|2 , (4.1.1)

for (1.0.5), with δ = −1, where λ1, λ2, µ1, µ2 are real constants, ν is a complex constant,

and θ is a real valued polynomial. Before we proceed, we note that choosing λ1 = λ2 =

µ1 = µ2 = 0 and θ to be identically zero, we recover the solutions Ozawa considers

in [22] for the DS system. In [22] an explicit blow-up profile is also obtained by

using the invariance of the solutions for the related Cauchy problem under the pseudo-

conformal invariance. In [24], the conditions on the parameters for the existence of

the time-independent and radial form of the travelling wave solutions (4.1.1) for the

hyperbolic-elliptic-elliptic (HEE) GDS system are derived. Moreover, following Ozawa,

these solutions are utilized in [24] to develop an explicit blow up profile for the HEE

GDS system. Eden and Gürel show in [23] that there actually exist time-dependent

travelling wave solutions (4.1.1) for the HEE GDS system and it turns out that the

conditions derived on the parameters coincide with the ones given in [24]. In the

sequel, we not only obtain the first set conditions on the operators for the existence

of the travelling wave solutions of the form (4.1.1) for the system (1.0.1), but also

follow [22] and [24] and develop an explicit blow-up profile as well in the next section.

Before we proceed, we set X = x + µ1 − 4λ2t, Y = y + µ2 + 4λ1t, T = t and

R = X2 + Y 2 + |ν|2. Doing so, u becomes

u(x, y, t) = 2ν̄
exp {iθ(x, y, t)}

R2
.
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We immediately observe that

∂x = ∂X , ∂y = ∂Y , ∂t =
∂X

∂t
∂X +

∂Y

∂t
∂Y +

∂T

∂t
∂T = −4λ2∂x + 4λ1∂Y + ∂T ,

and then compute

ux = 2ν̄ exp (iθ)
iθXR− 2X

R2
,

uy = 2ν̄ exp (iθ)
iθY R− 2Y

R2
,

uxx =
2ν̄ exp (iθ)

R3
{−θ2

XR2 − 2R + 8X2 + iR(θXXR− 4θXX)},

uyy =
2ν̄ exp (iθ)

R3
{−θ2

Y R2 − 2R + 8Y 2 + iR(θY Y R− 4θY Y )},

ut =
2ν̄ exp (iθ)

R2
{iθtR−Rt},

Moreover, we have θt = θXXt + θY Yt + θT = −4λ2θX + 4λ1θY + θT and Rt = RXXt +

RY Yt + RT = −8λ2X + 8λ1Y so that

ut =
2ν̄ exp (iθ)

R2
{i(−4λ2θX + 4λ1θY + θT )R + 8λ2X − 8λ1Y }.

We next impose the ansatz ψ =
h(X, Y, T )

R2
with h being a real-valued function, and

then (1.0.5)1 with δ = −1 yields

2ν̄ exp (iθ)

R3

{
8(Y 2 −X2) + R2(4λ2θX − 4λ1θY − θT + θ2

X − θ2
Y )

+iR((θY Y − θXX)R + 4θXX − 4θY Y + 8λ2X − 8λ1Y ) + h(X, Y, T )} = 0. (4.1.2)

The vanishing of the imaginary part entails

(θY Y − θXX)(X2 + Y 2 + |ν|2) + 4θXX − 4θY Y + 8λ2X − 8λ1Y = 0,
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whence

θY Y − θXX = 0, (4.1.3)

θX = −2λ2 and θY = −2λ1, (4.1.4)

and in fact θY Y = θXX = 0 by (4.1.4). Plugging these into the real part, we obtain

(−8λ2
2 +8λ2

1−θT +4λ2
2−4λ2

1)(X
2 +Y 2 + |ν|2)2 +8(Y 2−X2)+h(X, Y, T ) = 0, (4.1.5)

and it follows that θT = 4(λ2
1 − λ2

2) and hence

θ(X, Y, T ) = −2λ2X − 2λ1Y + 4(λ2
1 − λ2

2)T + C,

where C is a real constant. Consequently, h(X, Y, T ) = 8(X2 − Y 2) and so

ψ(X, Y, T ) =
8(X2 − Y 2)

R2
.

We now substitute x, y and t back in θ, arrange the arbitrary constant C so that we

recover θ in the original variables as

θ(x, y, t) = −2λ2x− 2λ1y − 4(λ2
1 − λ2

2)t.
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We proceed by computing the derivatives involved in (1.0.5)2.

(|u|2)x = −16|ν|2 X

R3
,

(|u|2)y = −16|ν|2 Y

R3
,

(|u|2)xx = −16|ν|2R− 6X2

R4
=

16|ν|2

R4
(5X2 − Y 2 − |ν|2),

(|u|2)yy = −16|ν|2R− 6Y 2

R4
=

16|ν|2

R4
(−X2 + 5Y 2 − |ν|2),

(|u|2)xy = (|u|2)yx = 16|ν|2 6XY

R3
,

ψX =
8

R3
(−2X3 + 6XY 2 + 2|ν|2X),

ψY =
8

R3
(2Y 3 − 6X2Y − 2|ν|2Y ),

ψXX =
8

R4

{
(−6X2 + 6Y 2 + 2|ν|2)(X2 + Y 2 + |ν|2)

−(−2X3 + 6XY 2 + 2|ν|2X)6X
}

=
16

R4
(3X4 + 3Y 4 − 18X2Y 2 − 8|ν|2X2 + 4|ν|2Y 2 + |ν|4),

ψY Y =
8

R4

{
(−6X2 + 6Y 2 − 2|ν|2)(X2 + Y 2 + |ν|2)

−(6Y 3 − 6X2Y − 2|ν|2Y )6Y
}

=
16

R4
(−3X4 − 3Y 4 + 18X2Y 2 − 4|ν|2X2 + 8|ν|2Y 2 − |ν|4),

ψXY = ψY X =
16

R4
(12X3Y − 12XY 3).

So (1.0.5)2 reads as

C2
11(3X

4 + 3Y 4 − 18X2Y 2 − 8|ν|2X2 + 4|ν|2Y 2 + |ν|4) + 2C2
12(12X3Y − 12XY 3)

+ C2
22(−3X4 − 3Y 4 + 18X2Y 2 − 4|ν|2X2 + 8|ν|2Y 2 − |ν|4)

=C3
11(5X

2 − Y 2 − |ν|2) + 2C3
12(6XY ) + C3

22(−X2 + 5Y 2 − |ν|2),

and we immediately observe that X4 and Y 4 terms yield

C2
11 − C2

22 = 0, (4.1.6)
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also by X3Y and XY 3 terms we have

C2
12 = 0. (4.1.7)

On the other hand, collecting X2 and Y 2 terms and utilizing (4.1.6) we have

−12C2
11 = 5C3

11 − C3
22, (4.1.8)

12C2
11 = −C3

11 + 5C3
22. (4.1.9)

Next, we add (4.1.8) and (4.1.9), and get

C3
11 + C3

22 = 0, (4.1.10)

and so, by (4.1.8) and (4.1.10) it follows that

C2
11 = −1

2
C3

11 (4.1.11)

Finally, XY terms yield

C3
12 = 0. (4.1.12)

Therefore, (4.1.6), (4.1.7), (4.1.10), (4.1.11), and (4.1.12) entail

C2 =



r 0

0 r



 and C3 =



−2r 0

0 2r



 , (4.1.13)

for some r ∈ R. We conclude that for the existence of the solutions of the form (4.1.1),

the coefficient matrices C2 and C3 of the operators L2 and L3 should satisfy (4.1.13).

We now proceed by investigating what is imposed on the parameters if we carry

out the same analysis for the two different DS systems (1.0.4) and (1.0.11), which are

known to be integrable under certain parameter regimes (see [1]). We first consider
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the hyperbolic DS system given by

iAt − Axx + Ayy = χ0|A|2A + χ1Aφx,

m1φxx + m2φyy = β
(
|A|2

)
x
,

(4.1.14)

where χ0, χ1, m1, m2, and β are all real constants. Seeking travelling wave solutions

of the form (4.1.1) with the above introduced notation, for γ to be later determined,

we impose the ansatz φ = γ∂x log R. Through similar computations it turns out

that (4.1.14)1 yields

8(Y 2 −X2) = χ04|ν|2 − 2γχ1(−X2 + Y 2 + |ν|2),

from which we deduce

γχ1 = 4, (4.1.15)

and so,

χ0 = −2. (4.1.16)

On the other hand, (4.1.14)2 implies

∂x

(
γm1

−2X2 + 2Y 2 + 2|ν|2

R2
+ γm2

2X2 − 2Y 2 + 2|ν|2

R2

)
= ∂xβ

(
4|ν2|
R2

)
,

and as a matter of fact

2m1γ(−X2 + Y 2 + |ν|2) + 2m2γ(X2 − Y 2 + |ν|2) = 4β|ν|2.
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Therefore, we have

2(−m1γ + m2γ) = 0, (4.1.17)

2(m1γ + m2γ) = 4β, (4.1.18)

and so,

m1 = m2 = m and γm = β. (4.1.19)

Plugging (4.1.15), (4.1.16), (4.1.17), (4.1.18) and (4.1.19) into (1.0.2), it turns out that

C2 =



m 0

0 m



 and C3 =



−2m 0

0 2m



 ,

and thus we conclude that the conditions imposed on the parameters involved in DS

system obey (4.1.13).

We now consider a different DS system (1.0.11) which reads as

iAt + σAxx + Ayy = χ0|A|2A + χ1Aφ,

m1φxx + m2φyy = β
(
|A|2

)
yy

,
(4.1.20)

in suitably scaled coordinates. We immediately observe that setting

u = A, ψ = −χ0|A|2 − χ1φ, (4.1.21)

L1 = σ∂2
x + ∂2

y , L2 = m1∂
2
x + m2∂

2
y , L3 = −χ0L2 − χ1β∂2

y , (4.1.22)

we recover the Zakharov–Schulman system. With X, Y and R defined as above, we

now impose

φ(X, Y ) =
aX2 + bY 2 + cXY + d

R2
.
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Considering (4.1.20)1 with σ = −1, through similar computations we end up with

8(Y 2 −X2) = 4χ0|ν|2 + χ1(aX2 + bY 2 + cXY + d),

whence c = 0 and a = −8
χ1

= −b so that we have

φ(X, Y ) =
a(X2 − Y 2) + d

R2
.

We also note that the constant terms yield

4χ0|ν|2 + dχ1 = 0. (4.1.23)

Now, we compute the derivatives involved in (4.1.20)2.

φx =
1

R3
(−2aX3 + 6aXY 2 + (2a|ν|2 − 4d)X),

φy =
1

R3
(2aY 3 − 6aX2Y − (2a|ν|2 + 4d)Y ),

φxx =
1

R4

{
(−6aX2 + 6aY 2 + (2a|ν|2 − 4d))R

−(−12aX4 + 36aX2Y 2 + 6(2a|ν|2 − 4d)X2)
}

,

φyy =
1

R4

{
(6aY 2 − 6aX2 − (2a|ν|2 + 4d))R

−(12aY 4 − 36aX2Y 2 − 6(2a|ν|2 − 4d)Y 2)
}

,

Subsequently it follows that

m1

[
(−6aX2 + 6aY 2 + (2a|ν|2 − 4d))(X2 + Y 2 + |ν|2)

−(−12aX4 + 36aX2Y 2 + 6(2a|ν|2 − 4d)X2)
]

+ m2

[
(6aY 2 − 6aX2 − (2a|ν|2 + 4d))(X2 + Y 2 + |ν|2)

−(12aY 4 − 36aX2Y 2 − 6(2a|ν|2 − 4d)Y 2)
]

= 16β|ν|2(−X2 + 5Y 2 − |ν|2).
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Collecting X4 and Y 4 terms we obtain

6a(m1 −m2) = 0,

and since a = − 8

χ1
/= 0, we have m = m1 = m2. On the other hand, constants, X2

and Y 2 terms yield

dm = 2β|ν|2, (4.1.24)

−3ma|ν|2 + 2dm = −2β|ν|2, (4.1.25)

3ma|ν|2 + 2dm = 10β|ν|2. (4.1.26)

Subtracting (4.1.25) from (4.1.26), we have ma = 2β and since a = − 8

χ1
it turns out

that

χ1β = −4m. (4.1.27)

On the other hand,

0 = 4χ0|ν|2 + dχ1 = 4χ0|ν|2 − d
8

a
= 4χ0|ν|2 − dm

8

2β
= 4χ0|ν|2 − 8|ν|2, (4.1.28)

by (4.1.24), and hence χ0 = 2. Thus we have

L2 = m∆ and L3 = −2m∂2
x + (−2m∂2

y + 4m∂2
y) = −2m∂2

x + 2m∂2
y ,

in other words,

C2 =



m 0

0 m



 and C3 =



−2m 0

0 2m



 ,

and it is therefore seen that the conditions derived on the parameters for existence of

APP type travelling soultions for this Davey–Stewartson system as well coincides with

the conditions given in (4.1.13).
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4.2. An Explicit Blow Up Profile a la Ozawa

As mentioned earlier, if L2 and L3 satisfy (4.1.13), taking λ1 = λ2 = µ1 = µ2 = 0

and ν = 1 we recover the radial solution

u(x, y, t) =
1

1 + β(x2 + y2)
,

for (1.0.1) with ψ chosen as in the previous section. Since the solutions of the Zakharov–

Schulman system are invariant under the pseudo-conformal transformation given in

(2.1.18),

U(x, y, t) =
1

a + bt
exp

(
ib

y2 − x2

a + bt

)
u(T,X)

is also a solution of (1.0.1). A straightforward computation yields

‖U(t)‖2
2 =

π

β
.

Following [24], we assume ab < 0 and let T ∗ = −a

b
. Setting ε = a + bt = b(t −

T ∗), we see that |U(x, y, t)|2 =
1

ε2

∣∣∣u
(x

ε
,
y

ε

)∣∣∣
2

. We note that u is a radial solution

whereas the solution U obtained via utilizing the above mentioned symmetry of the

Zakharov–Schulman is no longer radial. However, |U |2 is radial since the exponential

term simplifies and |U |2 is clearly a decreasing function of |x|. Indeed, the maximum

value of |U(x, t)|2 is attained at the origin and

max
x∈R2

|U(x, t)|2 =
1

b2(t− T ∗)2
.

At this stage we observe that as t tends to T ∗, the mass density |U(x, t)|2 of U converges

to the Dirac distribution δ0 at the origin in the sense of tempered distributions, namely,

lim
t→T ∗−

|U(x, t)|2 =
π

β
δ0, inS ′,



58

and hence occurs the mass concentration phenomenon. Consequently, the solution U

blows up in finite time.



59

5. CONCLUSION

Utilizing the results in [2] and [7], in case L2 is an elliptic operator we have intro-

duced the focusing and defocusing cases of solutions for the Cauchy problem related

to the Zakharov–Schulman system (2.2.1). In the defocusing case, that is when the

symbol α(ξ) # 0 for all ξ ∈ R2 \ {(0, 0)}, we have established the global existence of

H1-solutions for (2.2.1). On the other hand, characterized by the existence of some

ξ∗ ∈ R2 such that α(ξ∗) > 0, the defocusing case gives rise to initial data with negative

energy and hence a finite time blow-up in the corresponding solutions. These ideas

were present in [2] and the existence of initial data with negative energy involved a

tedious computation. The scaling argument used in [6], [7] and in our work establishes

in a more simple form that any given initial datum can be scaled to one with negative

energy. We have also concluded that the standing wave solutions among the special

solutions we discussed in this work exist in and only in the focusing case, and that these

solutions are unstable. Upon establishing the existence of such solutions in H1(R2), we

have seen that the standing wave profile ϕ lies in C2(R2) and it enjoys an exponential

decay rate. Moreover, the existence of such a ground state ϕ enables us to obtain the

best constant for a Gagliardo–Nirenberg–Sobolev type inequality which in turn yields

an upper bound for the initial mass so that the corresponding H1-solutions are global

in time as well in the focusing case.

Aside from the standing wave solutions, we have shown that the Zakharov–

Schulman system admits Arkadiev–Pogrebkov–Polivanov type solutions (4.1.1) and we

have derived the first set conditions on the operators so that such solutions exist. It

turned out that these conditions coincide with the parameter regime necessary for the

existence of such solutions for the DS systems (1.0.4) and (1.0.11) which are known

to be two reduced forms of the Zakharov–Schulman system such that they are inte-

grable under certain parameter regimes. Therefore we have concluded that when L2

is elliptic, among its integrable reduced forms, the APP type solutions admitted by

the Zakharov–Schulman system consists of the same type of solutions that exist for

the DS systems. Moreover, following [22] and [24] we have obtained a finite time-blow
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up profile upon the existence of these time dependent travelling wave solutions. It

is observed that there exist blow-up profiles whenever either of the special solutions

studied in this work exist.
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APPENDIX A: SOME BACKGROUND IN ANALYSIS

A.1. A Weak Convergence Characterization

Theorem A.1.1. [31, 28 Theorem] A set in a reflexive space is weakly sequentially

compact if and only if it is bounded.

A.2. Rellich–Kondrachov Compactness Theorem

Theorem A.2.1. [32, Theorem 5.7.1] Assume U is a bounded open subset of Rn, and

∂U is C1. Suppose 1 # p < N . Then the Sobolev imbedding W 1,q(U) ↪→ Lq(U)

is compact for each 1 # q < p∗, where p∗ denotes the Sobolev conjugate defined by

p∗ = np
n−p .

A.3. Sobolev Imbedding Theorem

Theorem A.3.1. [33, Theorem 2.4.5] Let m $ 1 be an integer and 1 # p < ∞. Then

(i) if
1

p
− m

n
> 0, Wm,p(Rn) ↪→ Lq(Rn), with 1

q = 1
p −

m
n ,

(ii) if
1

p
− m

n
= 0, Wm,p(Rn) ↪→ Lq(Rn), for p # q < ∞,

(iii) if
1

p
− m

n
< 0, Wm,p(Rn) ↪→ L∞(Rn).

In particular Wm,p(Rn) ↪→ Ck(Rn) for m >
n

p
, where k =

⌊
m− n

p

⌋
.

In particular we have, for n = 2, m = 1 and p = 2, H1(R2) ↪→ Lq(R2) for all

2 # q < ∞.
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A.4. Gagliardo–Nirenberg–Sobolev Inequality

Theorem A.4.1. [14, Theorem 2.3.7] Let 1 # p, q, r # ∞ and let j,m be two integers,

0 # j < m. If

1

p
=

j

n
+ a

(
1

r
− m

n

)
+

(1− a)

q
,

for some a ∈ [j/m, 1] (a < 1 if r > 1 and m − j − n

r
= 0), then there exists C =

C(n, m, j, a, q, r) such that

∑

|α|=j

‖Dαu‖p # C




∑

|α|=m

‖Dαu‖r




a

‖u‖1−a
q ,

for every u ∈ C∞
c (Rn).

Taking n = 2, p = 4, q = 2, r = 2, j = 0, m = 1 and a =
1

2
yieldst ‖u‖4

4 #
C1‖∇u‖2

2‖u‖2
2 for some C1. Similarly for n = 2, p = σ + 2, q = 2, r = 2, j = 0, m = 1

and a =
σ

σ + 2
there exists a constant C2 such that ‖u‖σ+2

σ+2 # C2‖∇u‖σ
2‖u‖2

2.
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11. Babaoğlu, C. and Erbay, S., Two-dimensional wave packets in an elastic solid with

couple stresses, Int. J. Non-Linear Mech. 39 941–949, 2004.

12. Berestycki, H., Gallouet, T. and Kavian, O. Équations de champs scalaires eucli-
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