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ABSTRACT

SOME MEAN VALUE PROBLEMS ABOUT DIRICHLET

L-FUNCTIONS AND THE RIEMANN ZETA-FUNCTION

The average values of higher derivatives of the Riemann zeta-function and Dirich-

let L-functions over a set of special points, specifically the set of nontrivial zeta zeros,

are important tools to understand the distribution of zeta zeros and the relationships

between the Riemann zeta function and Dirichlet L- functions. In this thesis, we study

the following sums

∑
ρ:ζ(ρ)=0
0<=ρ≤T

ζ(j)(ρ) and
∑

ρ:ζ(ρ)=0
0<=ρ≤T

L(j)(ρ).
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ÖZET

DIRICHLET L-FONKSİYONLARI VE RIEMANN

ZETA-FONKSİYONU İLE İLGİLİ BAZI ORTALAMA

DEĞER PROBLEMLERİ

Riemann zeta fonksiyonunun ve Dirichlet L-fonksiyonlarının türevlerinin bazi

özel nokta kümelerinde, spesifik olarak zeta fonksiyonunun sıfırlarında, ortalama degerleri

bu fonksiyonları ve aralarindaki ilişkileri anlamak için önemli araçlardir. Bu tezde,

∑
ρ:ζ(ρ)=0
0<=ρ≤T

ζ(j)(ρ) ve
∑

ρ:ζ(ρ)=0
0<=ρ≤T

L(j)(ρ)

toplamları incelenmiştir.
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LIST OF SYMBOLS/ABBREVIATIONS

e(θ) = e2πiθ

f (j)(s) j th derivative of f(s), f (0) = f .

L(s, χ) A Dirichlet L-function.

β The real part of a zero of the zeta function or of an L-function.

Γ(s) =
∫∞

0
e−xxs−1dx for σ > 0; called the Gamma function.

γ The imaginary part of a zero of the zeta function or of an

L-function.

ζ(s) The Riemann zeta-function.

Λ(n) = log p if n = pk, = 0 otherwise; known as the von Mangoldt

Lambda function.

µ(n) = (−1)ω(n) for square-free n, n = 0 otherwise. Known as the

Möbius mu function.

ρ = β + iγ; a zero of the zeta function or of an Dirichlet L-

function.

τ = |t|+ 4.

τ(χ) =
∑q

a=1 χ(a)e(a/q); known as the Gauss sum of χ.

φ(n) The number a, 1 ≤ a ≤ n, for which (a, n) = 1; knowns as

Euler’s Totient function.

χ(n), ψ(n) A Dirichlet character.

χ(s) The function defined by the functional equation for ζ(s).

χ(s, ψ) The function defined by the functional equation for L(s, ψ).

ω(n) The number of distinct primes dividing n.

JxK The unique integer such that JxK ≤ x < JxK + 1; called the

integer part of x.

{x} = x− JxK; called the fractional part of x.

f(x) = O(g(x)) |f(x)| ≤ C|g(x)|, where C is an absolute constant.

f(x)� g(x) f(x) = O(g(x)).

f(x) = Oα1, α2,...(g(x)) |f(x)| ≤ Cg(x), where C is a constant which depends on

α1, α2, ....

f(x)�α1, α2,... g(x) f(x) = Oα1, α2,...(g(x)).



viii

f(x)� g(x) g(x) = O(f(x)).

f(x)�α1, α2,... g(x) g(x) = Oα1, α2,...(f(x)).

f(x) � g(x) f(x) = O(g(x)) and g(x) = O(f(x)).

f(x) ∼ g(x) limx→∞ f(x)/g(x) = 1.
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1. INTRODUCTION AND STATEMENT OF RESULTS

D. Shanks conjectured that the average value of ζ ′(ρ), over the nontrivial zeros ρ

of the Riemann zeta-function ζ(s), is a positive real number. J. B. Conrey, A. Ghosh

and S. M. Gonek [1] proved that this is true asympotically, and that if we average over

the zeros with 0 < =(ρ) ≤ T then this average is ∼ 1
2

log T . Fujii [2] gave the more

precise estimate

∑
0<γ≤T

ζ ′(ρ) =
T

4π
log2 T

2π
+ (γ0 − 1)

T

2π
log

T

2π
+ ( γ1 − γ0 )

T

2π

+ O
(
T exp

(
−c
√

log T
))

(1.1)

for this average, where γ0 and γ1 arise from the Laurent expansion of the Riemann zeta

function (see (2.11)) and c is some positive constant. Under the Riemann hypothesis

(R.H.), Fujii sharpened the above error term to T
1
2 (log T )

7
2 . In this thesis, we shall

prove the following extension of (1.1).

Theorem 1.1. Let j ≥ 1 be a fixed integer. Then, for large T

∑
0<γ≤T

ζ(j)(ρ) =
(−1)j+1

j + 1

T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
.

The average value of ζ(j)(ρ), over the zeros ρ of ζ(ρ) = 0 with 0 < =(ρ) ≤ T , i.e.

1

N(T )

∑
0<γ≤T

ζ(j)(ρ),

where N(T ) is the number of terms in the above sum, by the fact that N(T ) ∼ T

2π
log T

(see (2.9)), is
(−1)j+1

j + 1

(
log

T

2π

)j
. So this tells us about the size of ζ(j)(s) at certain

points (namely the nontrivial zeros ρ). We can say that, on R.H., there exist points s
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on the critical line with 0 < =(s) ≤ T such that

∣∣ζ(j)(s)
∣∣�j logj T.

In the second part of our thesis, we shall be concerned with the mean value of L(j)(ρ),

over the nontrivial zeros ρ of ζ(s). We’ll obtain the following formulas.

Theorem 1.2. Let ψ be a primitive character modulo q ≥ 3. For large T and A an

arbitrarily large fixed number, we have

∑
0<γ≤T

L(ρ, ψ) =
T

2π
log

T

2π
− T

2π
− µ(q)ψ(−1)τ(ψ)

φ(q)

T

2π
L(1, ψ) +

T

2π

L′

L
(1, ψ)

+OA

(
T exp

(
−u
√

log T
))

,

and, for j ≥ 1,

∑
0<γ≤T

L(j)(ρ, ψ) =− µ(q)ψ(−1)τ(ψ)

φ(q)

T

2π

j∑
ω=0

j!

ω!

j∑
ν=ω

(−1)ν

(ν − ω)!
L(ν−ω)(1, ψ)

(
log

qT

2π

)ω
+
T

2π

(
L′

L

)(j)

(1, ψ) +OA,j

(
T exp

(
−u
√

log T
))

. (1.2)

In both cases, the asymptotic formulas are valid under the restriction q ≤ logA T and

u is a non-effective constant depending on j and A.

As obvious corollaries of Theorem 1.2 for j = 0, we can write

lim
T→∞

2π

T

∑
0<γ≤T

{L(ρ, ψ)− 1} = −µ(q)ψ(−1)τ(ψ)

φ(q)
L(1, ψ) +

L′

L
(1, ψ),

which was proved by Fujii (Under the R.H.) [3], and

lim
T→∞

1

N(T )

∑
0<γ≤T

L(ρ, ψ) = 1,
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i.e. the average value of L(ρ, ψ) is asymptotically 1. However, for j = 1, we have

∑
0<γ≤T

L′(ρ, ψ) =
µ(q)ψ(−1)τ(ψ)

φ(q)

T

2π

{
L
(
1, ψ

)
− L′

(
1, ψ

)
− L

(
1, ψ

)
log

qT

2π

}

+
T

2π

(
L′

L

)′
(1, ψ) +OA,j

(
T exp

(
−u
√

log T
))

,

and so

lim
T→∞

1

N(T )

∑
0<γ≤T

L′(ρ, ψ) =
µ(q)ψ(−1)τ(ψ)

φ(q)
L
(
1, ψ

)
.

By the facts that φ(q)� q
log q

, |τ(ψ)| = √q and L
(
1, ψ

)
� log q (see Proposition 4.1),

we can say that the average value of L′(ρ, ψ) is asymptotically very close to 0 for large

q.

We now determine the exact order of the sum
∑

0<γ≤T

L(j)(ρ, ψ). We first note that

by Proposition 4.1 we have L(κ)
(
1, ψ

)
�κ (log q)κ+1, κ ∈ N. In addition to this, we

need a lower bound for L
(
1, ψ

)
and an upper bound for

(
L′

L

)(κ)

(1, ψ), κ ∈ N. It

easily follows from (2.17), the equation (11.7) in [4], and Proposition 5.2 that

(
L′

L

)(j)

(1, ψ)�A,j q
j+1
A and L

(
1, ψ

)
�A

1

q
1
A

.

So, in the range q ≤ logA T , we have

(
L′

L

)(j)

(1, ψ)�A,j logj+1 T and L
(
1, ψ

)
�A

1

log T
.

In the range considered for q using these estimates in Theorem 1.2 gives

∑
0<γ≤T

L(ρ, ψ) =
T

2π
log

T

2π

(
1 +OA

(
log log T

log T

))
,
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and, if µ(q) 6= 0, i.e. q is square-free,

∑
0<γ≤T

L(j)(ρ, ψ) = (−1)j+1µ(q)ψ(−1)τ(ψ)

φ(q)
L
(
1, ψ

) T
2π

(
log

T

2π

)j (
1 +OA,j

(
log log T

log T

))
.

(1.3)

If q is not square-free, then (1.2) becomes

∑
0<γ≤T

L(j)(ρ, ψ) =
T

2π

(
L′

L

)(j)

(1, ψ) +OA,j

(
T exp

(
−u
√

log T
))

. (1.4)

The main handicap of (1.4) is that

(
L′

L

)(j)

(1, ψ) can be too close to 0 for some values

of q in the range q ≤ logA T so that the O-term in (1.4) can dominate the main term in

(1.4). If this is the case, then we lose the asymptotic fomula. We need a lower bound

for

∣∣∣∣∣
(
L′

L

)(j)

(1, ψ)

∣∣∣∣∣, but we do not know even whether

(
L′

L

)(j)

(1, ψ) is 0 or not. So,

in this case, we can only say that

∑
0<γ≤T

L(j)(ρ, ψ)�j,A T (1.5)

in the range q ≤ logA T .

Finally, we mention two points on the above formulas. First, comparing (1.3) and

(1.5) shows the effect of the modulus of the Dirichlet character on mean values. Second,

(1.3) expresses a connection of the distribution of ρ with the important arithmetic

quantity L
(
1, ψ

)
.
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1.1. Outline for the Proofs of Theorem 1.1 and Theorem 1.2

The basic idea of the proofs of our main theorems is to interpret the sums of

ζ(j)(ρ) and L(j)(ρ, ψ) as a sum of residues. By Cauchy’s theorem we have

∑
0<γ≤T

f(ρ) =
1

2πi

∫
R

f(s)
ζ ′

ζ
(s)ds, (1.6)

where f(s) is ζ(j)(s) or L(j)(s, ψ) and R is the rectangle joining the points a + i, a +

iT, 1− a+ iT and 1− a+ i, a is a fixed number > 1.

In chapter 2 and 4, we give some estimates of ζ(j)(ρ), L(j)(ρ, ψ) and ζ′

ζ
(s). Using

these estimates, in both cases of f(s), the horizontal integrals and the vertical integral

from a + i to a + iT can be bounded trivially and the contribution of these three

integrals are very small and the main terms of the formulas in Theorems 1.1 and 1.2

come from the vertical integral from 1− a+ i to 1− a+ iT .

The next step is to obtain the main term from the remaining integral. Using

certain exponential integral estimates, Lemmas 3.11 and 3.15, we convert this integral

to a finite sum, but in this case, summand of this finite sum includes more elemen-

tary factors, not like ζ(j)(ρ) or L(j)(ρ, ψ). Finally, applying standard techniques of

analytic number theory, such as Perron’s formula, Dirichlet hyperbola method, partial

summation formula and so on, we complete the last part in chapters 6 and 7.
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2. SOME FORMULAE and ESTIMATES

Before we develop the basic idea of the proof of the Theorem, it will be useful

to set down certain formulae and estimates. These are given without proof, the proofs

can be found in most classical books on Analytic Number Theory, see, for example,

[5], [6], [4] or [7]. Throughout this paper s = σ + it denotes a complex variable,

τ = |t|+ 4 and ρ = β+ iγ denotes nontrivial zeros (i.e. complex zeros) of the Riemann

zeta-function.

2.1. χ-Function

The functional equation of the Riemann zeta-function can be expressed in the

asymmetric form

ζ(s) = χ(s)ζ(1− s), (2.1)

where

χ(s) : = 2sπ−1+s sin

(
1

2
sπ

)
Γ(1− s) (2.2)

= πs−
1
2

Γ
[

1
2
(1− s)

]
Γ(1

2
s)

. (2.3)

Firstly, we state two well-known asymptotic formulas involving the Γ function:

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)
, (2.4)

Γ′

Γ
(s) = log s+O

(
1

|s|

)
. (2.5)
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These formulas are valid as |s| → ∞, in the angle −π+ δ < arg s < π− δ, for any fixed

δ > 0. By using the above formulas, it is easy to show that

Γ(s) = |t|σ+it− 1
2 (2π)

1
2 exp

{
sgn(t)

[
iπσ

2
− tπ

2
− iπ

4

]
− it

}[
1 +O

(
1

|t|

)]
, (2.6)

χ(s) =

(
|t|
2π

) 1
2
−σ

exp

(
−it log

|t|
2πe

+
iπ

4
sgn(t)

)(
1 +O

(
1

|t|

))
, (2.7)

χ′

χ
(s) = − log

|t|
2π

+O

(
1

|t|

)
, (2.8)

uniformly in α ≤ σ ≤ β and |t| ≥ 1, for any fixed real numbers α and β, where

sgn(t) :=


1 if t > 0

0 if t = 0

−1 if t < 0.

2.2. Estimate for ζ′

ζ

The Riemann-von Mangoldt formula states that

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ), (2.9)

where N(T ) is the number of nontrivial zeros ρ = β + iγ of ζ(s) with 0 < γ < T .

So, we have N(T + 1) − N(T ) � log T . In other words, there are at most O(log n)

non-trivial zeros ρ = β + iγ with n < γ ≤ n + 1 for n = 2, 3, .... Among the gaps

between the ordinates of the zeta zeros there must be a gap of length � (log n)−1.

Hence, there exists a Tn ∈ (n, n+ 1] such that |Tn − γ | � 1
logn
≥ 1

log Tn
for all zeros

ρ. Thus, we get a set F :=

{
T ∈ R : ∃n ≥ 2, n < T < n + 1, |T − γ| > 1

log T
∀ρ
}

with F ∩ (n, n+ 1] 6= ∅ for any n = 2, 3, . . . . Consider the standard formula

ζ ′

ζ
(σ + iT ) =

∑
|T−γ|≤1

1

s− ρ
+O(log T ) .
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This estimate is for large T and uniformly for −1 ≤ σ ≤ 2 and the sum is limited to

those ρ for which |T −γ| ≤ 1 (See [7], §9.6). Since there are at most O(log T ) terms in

the sum of the above formula and each term is� log T if T = F , we have the estimate

ζ ′

ζ
(σ + iT )� (log T )2 , ( for − 1 ≤ σ ≤ 2). (2.10)

2.3. Some Laurent Expansions

The Riemann zeta function is a meromorphic function with a simple pole with

residue 1 at s = 1. So, it has a Laurent expansion in the neighborhood of s = 1

ζ(s) =
1

s− 1
+ γ0 + γ1 (s− 1) + γ2 (s− 1)2 + . . . (2.11)

=
1

s− 1
+O (1), (s→ 1).

By differentiation of the above Laurent series, it is easy to see that

ζ(j)(s) =
(−1)j

(s− 1)j+1
+Oj (1), (s→ 1), (2.12)

and then

ζ ′

ζ
(s) = − 1

s− 1
+O (1), (s→ 1). (2.13)

2.4. The Order of ζ(s) and Its Derivatives

We have, for k = 0, 1, 2, ... and |t| ≥ 1

ζ(k)(σ + it)�ε,k


|t| 12−σ+ε if σ ≤ 0

|t| 12 (1−σ)+ε if 0 ≤ σ ≤ 1

|t|ε if σ ≥ 1,

(2.14)
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with an arbitrarily fixed ε > 0. (See Gonek [8], section 2)

2.5. Dirichlet’s L-Functions

These are the most common zeta functions besides ζ(s) and are defined by

L(s, ψ) =
∞∑
n=1

ψ(n)n−s (σ > 1),

where for a modulus q (≥ 1), ψ(n) is the arithmetical function known as a Dirichlet’s

character modulo q [for q = 1, taking ψ ≡ 1 we retrieve the Riemann zeta-function].

Each character ψ(n) is a totally multiplicative function (i.e. ψ(nm) = ψ(n)ψ(m) for

all m and n) which is complex valued and satisfies |ψ(n)| ≤ 1. It also has the following

periodic property: ψ(n) = ψ(m) if n ≡ m (mod q), while ψ(n) = 0 if (n, q) > 1 and

ψ(n) 6= 0 if (n, q) = 1. There exists φ(q) distinct characters modulo q, and they

form an abelian group (under pointwise multiplication) which is isomorphic to the

multiplicative group of the reduced system of residues mod q. A special character is

the principal character, denoted by ψ0(n), defined by ψ0(n) = 1 if (n, q) = 1 and zero

otherwise.

Let ψ(n) be any character to the modulus q other than the principal character.

We know that ψ(n) is a periodic function with period q. It is possible, however that

for values of n restricted by the condition (n, q) = 1, the function ψ(n) may have a

period less than q. If so, we say that ψ is imprimitive, and otherwise primitive. We

note that if ψ is a primitive character modulo q, then q ≥ 3.

For any character ψ(n) to the modulus q, the Gaussian sum τ (ψ) is defined by

τ (ψ) =

q∑
m=1

ψ(m)e

(
m

q

)
,

where e(α) = e2πiα. We have
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- For any primitive character ψ modulo q, |τ(ψ)| = √q.

- For any character ψ modulo q, |τ(ψ)| ≤ √q.

- |τ(ψ0)| = µ(q).

2.6. The Zero-Free Region for Dirichlet’s L-Functions

There is an absolute constant c1 > 0 such that if ψ is a complex Dirichlet character

modulo q and L(β + iγ, ψ) = 0 then

β < 1− c1
log qτ

. (2.15)

If ψ is a quadratic character, then (2.15) holds for all zeros of all L(s, ψ), ψ(mod q),

with at most one exception. The exceptional zero, denoted by β1, if it exists, is real,

simple and may only occur for at most one quadratic character (See [6], §14). Of

course, by the Generalized Riemann Hypothesis, all nontrivial zeros of the L(s, ψ) lie

on the critical line and no such exceptional zero exists. However, we have two versions

of a theorem due to Siegel (See [6], §21), which establish an upper bound for β1 and a

lower bound for L(1, ψ):

For any ε > 0, there exist positive numbers C1(ε), C2(ε) such that

β1 < 1− C1(ε)

qε
(2.16)

and

L(1, ψ) >
C2(ε)

qε
. (2.17)

The disadvantage of these bounds is that we are unable to compute the value of C1(ε)

and C2(ε), i.e. these constants are non-effective.
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2.7. Functional Equation for Dirichlet’s L-Functions

Let L (s, ψ) be a Dirichlet L-function, where ψ is a primitive character (mod q),

q ≥ 3. There are two symmetric forms of the functional equation for L(s, ψ)(See [6],

§9), depending on the value of ψ(−1):

π −
1
2

(1−s) q
1
2

(1−s) Γ

[
1

2
(1− s)

]
L
(
1− s, ψ̄

)
=

q
1
2

τ(ψ)
π −

1
2
s q

1
2
s Γ

(
1

2
s

)
L (s, ψ) if ψ(−1) = 1;

π −
1
2

(2−s) q
1
2

(2−s) Γ

[
1

2
(2− s)

]
L
(
1− s, ψ̄

)
=

iq
1
2

τ(ψ)
π −

1
2
(s+1) q

1
2
(s+1) Γ

[
1

2
(s+ 1)

]
L (s, ψ) if ψ(−1) = −1.

Using the following functional relations involving Γ(s)

Γ(s+ 1) = sΓ(s),

Γ(s) Γ(1− s) =
π

sin(πs)
,

Γ(s) Γ(s+
1

2
) = 21−2s π

1
2 Γ(2s),

we can convert the above symmetric forms into the unsymmetric forms:

L(s, ψ) =
τ(ψ)

q
1
2

π −1+s q
1
2
−s 2s sin

(πs
2

)
Γ (1− s)L(1− s, ψ̄)

=
τ(ψ)

q
1
2

π −
1
2
+s q

1
2
−s Γ

[
1
2
(1− s)

]
Γ
(

1
2
s
) L(1− s, ψ̄)

if ψ(−1) = 1; and

L(s, ψ) =
τ(ψ)

i q
1
2

π −1+s q
1
2
−s 2s cos

(πs
2

)
Γ (1− s)L(1− s, ψ̄)

=
τ(ψ)

i q
1
2

π −
1
2
+s q

1
2
−s Γ

[
1
2
(2− s)

]
Γ
[

1
2
(1 + s)

]L(1− s, ψ̄)
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if ψ(−1) = −1. It is possible to put together the two unsymmetric forms of the

functional equation and we have

L (s, ψ ) =
τ(ψ)

iaq
1
2

π −1+s q
1
2
−s 2s sin

[π
2

(s+ a)
]

Γ (1− s)L (1− s, ψ̄) (2.18)

=
τ(ψ)

ia q
1
2

π −
1
2
+s q

1
2
−s Γ

[
1
2
(a + 1− s)

]
Γ
[

1
2
(a + s)

] L(1− s, ψ̄) (2.19)

where a is defined by

a =

 0 if ψ(−1) = 1

1 if ψ(−1) = 1.

Now, we define a new function

χ (s, ψ ) : =
τ(ψ)

i aq
1
2

π −1+s q
1
2
−s 2s sin

[π
2

(s+ a)
]

Γ (1− s) (2.20)

=
τ(ψ)

ia q
1
2

π −
1
2
+s q

1
2
−s Γ

[
1
2
(a + 1− s)

]
Γ
[

1
2
(a + s)

] . (2.21)

Then, we have

L (s, ψ ) = χ (s, ψ )L (1− s, ψ̄) . (2.22)
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2.8. χ( s, ψ )-Function

Now, we want to get an asymptotic formula for χ( s, ψ ). We insert the equation

(2.6) into the equation (2.21) and we get

χ (s, ψ ) =
τ(ψ)

iaq
1
2

(
π

q

)− 1
2
+s [

1 +O

(
1

|t|

)]
(
|t|
2

) 1+a−σ
2
− it

2
− 1

2
exp

{
−sgn(t)

[
iπ
2

(
1+a−σ

2

)
+ πt

4
− iπ

4

]
+ it

2

}
(
|t|
2

) a+σ
2

+ it
2
− 1

2
exp

{
sgn(t)

[
iπ
2

(
a+σ

2

)
− πt

4
− iπ

4

]
− it

2

}
=
τ(ψ)

ia q
1
2

(
2π

q|t|

)σ+it− 1
2

exp

{
sgn(t)

(
iπ

2

)(
1

2
− a

)
+ it

}[
1 +O

(
1

|t|

)]
=
τ(ψ)

iaq
1
2

(
2π

q|t|

)σ− 1
2

exp

{
−it log

q|t|
2πe

+ sgn(t)

(
iπ

2

)(
1

2
− a

)}[
1 +O

(
1

|t|

)]
,

(2.23)

uniformly in α ≤ σ ≤ β and |t| ≥ 1, for any fixed real numbers α and β. Here the

constant of the above O-term depends on α and β.
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3. LEMMAS

The essential results in this chapter are Lemmas 3.5, 3.9, 3.15 and 3.17. We’ll use

these lemmas in the proof of Theorem 1.1 and 1.2 to calculate the integrals involving

the zeta, a L-function and their derivatives. In general, proofs of the lemmas are

simple, but we’ll give all proofs for completeness.

Lemma 3.1. For x > 1 and k ∈ Z+,

Ik =

∫ x

1

logk u du = x

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n x

}
+ (−1)k+1k!.

Proof. The proof goes by induction on k. If k = 1, then

I1 =

∫ x

1

log u du = [u log u− u]x1 = x log x− x+ 1 = x (log x− 1) + 1.

Assume that the lemma holds for each positive integer ≤ k, k > 1. By partial integra-

tion, we have

Ik+1 =

∫ x

1

logk+1 u du =
[
(u log u− u) logk u

]x
1
− k

∫ x

1

(u log u− u) logk−1 u
du

u

= x logk+1 x− x logk x− k
∫ x

1

logk u du+ k

∫ x

1

logk−1 u du.
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Then induction hypothesis gives

Ik+1 = x logk+1 x− x logk x− k

[
x

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n x

}
+ (−1)k+1k!

]

+k

[
x

{
k−1∑
n=0

(−1)n
(k − 1)!

(k − 1− n)!
logk−1−n x

}
+ (−1)k(k − 1)!

]

= x logk+1 x− x logk x− k

[
x logk x+ x

{
k∑

n=1

(−1)n
k!

(k − n)!
logk−n x

}
+

(−1)k+1k!

]
+ k

[
x

{
k∑

n=1

(−1)n−1 (k − 1)!

(k − n)!
logk−n x

}
+ (−1)k(k − 1)!

]

= x logk+1 x− (k + 1)x logk x− kx

{
k∑

n=1

(−1)n
logk−n x

(k − n)!
(k! + (k − 1)!)

}
−k(−1)k+1k! + k(−1)k(k − 1)!

= x logk+1 x− (k + 1)x logk x− x

{
k∑

n=1

(−1)n
(k + 1)!

(k − n)!
logk−n x

}
+(−1)k+2(k + 1)!

= x logk+1 x− (k + 1)x logk x+ x

{
k+1∑
n=2

(−1)n
(k + 1)!

(k + 1− n)!
logk+1−n x

}
+(−1)k+2(k + 1)!

= x

{
k+1∑
n=0

(−1)n
(k + 1)!

(k + 1− n)!
logk+1−n x

}
+ (−1)k+2(k + 1)!.

So mathematical induction completes the proof.

Lemma 3.2. For x > 2 and k ∈ N,

∑
n≤x

logk n = x

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n x

}
+Ok(logk x).

Proof. If k = 0 then
∑

n≤x logk n =
∑

n≤x 1 = JxK = x − {x} = x + O(1) since

{x} ∈ [0, 1) for any x ∈ R. The case k = 1 is a version of the famous Stirling’s formula
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( [6], p. 56). If k > 1 then, by partial summation, we have

∑
n≤x

logk n = JxK logk x− k
∫ x

1

JuK logk−1 u
du

u

= (x− {x}) logk x− k
∫ x

1

(u− {u}) logk−1 u
du

u

= x logk x− k
∫ x

1

logk−1 u du− {x} logk x+ k

∫ x

1

{u} logk−1 u
du

u
.

Since {x} ∈ [0, 1) for any x ∈ R, we have

∑
n≤x

logk n = x logk x− k
∫ x

1

logk−1 u du−O
(
logk x

)
+O

(
k

∫ x

1

logk−1 u
du

u

)
.

In the right-hand side of the above equation the second O-term is

� logk u
∣∣x
1

= logk x.

After this using Lemma 3.1, we can write

∑
n≤x

logk n

=x logk x− k

[
x

{
k−1∑
n=0

(−1)n
(k − 1)!

(k − 1− n)!
logk−1−n x

}
+ (−1)k(k − 1)!

]
+O(logk x)

=x logk x− k

[
x

{
k∑

n=1

(−1)n−1 (k − 1)!

(k − n)!
logk−n x

}
+ (−1)k(k − 1)!

]
+O(logk x)

=x logk x+ x

[{
k∑

n=1

(−1)n
k(k − 1)!

(k − n)!
logk−n x

}]
− k(−1)k(k − 1)! +O(logk x)

=x logk x+ x

[{
k∑

n=1

(−1)n
k!

(k − n)!
logk−n x

}]
+Ok(logk x)

=x

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n x

}
+Ok(logk x).

Hence the proof is completed.
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Lemma 3.3. For <s > 1 and k ∈ N, we have

∫ ∞
x

logk u

us
du = x1−s

k∑
m=0

k!

(k −m)!(s− 1)m+1
logk−m x. (3.1)

Proof. The proof is by induction on k. If k = 0, then

∫ ∞
x

du

us
=

[
u−s+1

−s+ 1

]∞
x

=
x1−s

s− 1
.

Suppose that the lemma is true for some k ∈ Z, k ≥ 1, then integration by parts gives

∫ ∞
x

logk+1 u

us
du =

[
logk+1 u

(−s+ 1) (us−1)

]∞
x

+
k + 1

s− 1

∫ ∞
x

logk u

us
du

=
logk+1 x

(s− 1) (xs−1)
+
k + 1

s− 1

[
x1−s

k∑
m=0

k!

(k −m)!(s− 1)m+1
logk−m x

]

= x1−s

[
logk+1 x

s− 1
+
k + 1

s− 1

k+1∑
m=1

k!

(k + 1−m)!(s− 1)m
logk+1−m x

]

= x1−s

[
logk+1 x

s− 1
+

k+1∑
m=1

(k + 1)!

(k + 1−m)!(s− 1)m+1
logk+1−m x

]

= x1−s
k+1∑
m=0

(k + 1)!

(k + 1−m)!(s− 1)m+1
logk+1−m x.

Thus, induction completes the proof.

Lemma 3.4. Let <s > 1, then for any k = 0, 1, 2, ..., we have

∑
n>x

logk n

ns
=− x1−s

k∑
n=0

(−1)n
k!

(k − n)!

[
logk−n x− s

k−n∑
m=0

(k − n)!

(k − n−m)!(s− 1)m+1
logk−n−m x

]
+Ok

(
|s|x−σ logk x

)
, (x ≥ 2).

Proof. Let y ∈ R with y > x ≥ 2, then by partial summation

∑
x<n≤y

logk n

ns
= y−s

∑
n≤y

logk n− x−s
∑
n≤x

logk n+ s

∫ y

x

{∑
n≤u

logk n

}
u−s−1du.
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Using Lemma 3.2, we have

∑
x<n≤y

logk n

ns
=y−s

[
y

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n y

}
+Ok

(
logk y

)]

− x−s
[
x

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n x

}
+Ok

(
logk x

)]

+ s

∫ y

x

[
u

{
k∑

n=0

(−1)n
k!

(k − n)!
logk−n u

}
+Ok

(
logk u

)]
u−s−1du.

Since <s > 1, letting y →∞ gives

∑
n>x

logk n

ns
=− x1−s

k∑
n=0

(−1)n
k!

(k − n)!
logk−n x+Ok

(
x−σ logk x

)
+

k∑
n=0

(−1)n
k!

(k − n)!
s

∫ ∞
x

logk−n u

us
du+Ok

(
|s|
∫ ∞
x

logk u

uσ+1

)
.

We now use Lemma 3.3 and have

∑
n>x

logk n

ns
=− x1−s

k∑
n=0

(−1)n
k!

(k − n)!
logk−n x+Ok

(
|s|x−σ logk x

)
+ s

k∑
n=0

(−1)n
k!

(k − n)!

{
x1−s

k−n∑
m=0

(k − n)!

(k − n−m)!(s− 1)m+1
logk−n−m x

}
.

Hence, we get the lemma .

Lemma 3.5. Let α and β be arbitrarily fixed real numbers with α < β, then

ζ(j)(1− s) = (−1)jχ(1− s)
[
1 +O

(
1

|t|

)] j∑
k=0

(
j

k

)(
log
|t|
2π

)j−k
ζ(k)(s), (|t| ≥ 1)

uniformly for σ ∈ [α, β].

The proof follows from differentiating the functional equation (2.1) j times and

using estimates for χ(s) and its derivatives. The proof follows the lines of the proof of

the formula (3.22). For exact details see the proofs of Lemma 3.7, 3.8 and 3.9. Also

this result can be seen in Conrey - Ghosh’s paper [9] (See the equation 16).
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Lemma 3.6. Let n be a positive integer then

(
d

ds

)n
Γ′

Γ
(s)�δ,n

1

|s|n
. (3.2)

This is valid for |s| ≥ 1
2

and | arg s| < π − δ, where δ > 0 is arbitrary but fixed.

Proof. Firstly, we have ( See [10], p. 47)

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +

1

12s
−
∫ ∞

0

B2 (x− JxK)
2(s+ x)2

dx, (3.3)

where B2 is Bernoulli polynomial defined by

B2(x) =
1

6
+ x2 − x, x ∈ [0, 1) , (3.4)

B2(x) = B2(x− JxK), for x ∈ R. (3.5)

Differentiating the equation (3.3), we have

Γ′

Γ
(s) = log s− 1

2s
− 1

12s2
+

∫ ∞
0

B2 (x− JxK)
(s+ x)3

dx.

It is easy to see that

(
d

ds

)n {
log s − 1

2s
− 1

12s2

}
�n

1

|s|n
. (3.6)

Now, it is enough to show that

(
d

ds

)n {∫ ∞
0

B2 (x− JxK)
(s+ x)3

dx

}
�δ,n

1

|s|n
, (3.7)

to get the result. Firstly, we have

(
d

ds

)n {∫ ∞
0

B2 (x− JxK)
(s+ x)3

dx

}
=

(−1)n (n+ 2)!

2

∫ ∞
0

B2 (x− JxK)
(s+ x)n+3

dx. (3.8)
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From (3.4) and (3.5), we have

|B2(x)| ≤ 1

6
∀x ∈ R. (3.9)

So,

∫ ∞
0

B2 (x− JxK)
(s+ x)n+3

dx ≤ 1

6

∫ ∞
0

dx

|s+ x|n+3
. (3.10)

From the substitution x = |s|y, the inequality (3.10) becomes

∫ ∞
0

B2 (x− JxK)
(s+ x)n+3

dx � 1

|s|n+2

∫ ∞
0

dy∣∣s|s|−1 + y
∣∣n+3 . (3.11)

∣∣s|s|−1 + y
∣∣ represents the distance from the point −y to a point of the unit circle.

Since |s| ≥ 1
2

and | arg s| < π− δ, it is easy to show that geometrically this distance at

least |ei(π−δ) + y|. So

∫ ∞
0

dy∣∣s|s|−1 + y
∣∣n+3 �δ,n 1 (3.12)

Combining (3.8), (3.11) and (3.12), we have

(
d

ds

)n {∫ ∞
0

B2 (x− JxK)
(s+ x)3

dx

}
�δ,n

1

|s|n+2
�δ,n

1

|s|n
. (3.13)

Hence, we are done.

Corollary 3.1. Let n be a positive integer and s = σ + it then, as t→∞

(
d

ds

)n
Γ′

Γ
(s)�α,β,n

1

|t|n
, (3.14)

uniformly in α ≤ σ ≤ β, for any fixed real numbers α and β.

The result obviously follows from the above lemma.
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Lemma 3.7. Let ψ be primitive character modulo q ≥ 3, then for large t

χ′

χ
(s, ψ) = − log

q|t|
2π

+ Oα,β

(
1

|t|

)
(3.15)

uniformly in α ≤ σ ≤ β, for any fixed real numbers α and β.

Proof. Taking logarithmic derivative of the equation (2.21) gives

χ′

χ
(s, ψ) = log π − log q − 1

2

Γ′

Γ

[
1

2
(a + 1− s)

]
− 1

2

Γ′

Γ

[
1

2
(a + s)

]
(3.16)

Using the formula (2.5) in the above expression, we have

χ′

χ
(s, ψ) = − log

q

π
− 1

2
log

(
a + 1− s

2

)
− 1

2
log

(
a + s

2

)
+ O

(
1

|s|

)
, (3.17)

where |t| ≥ 1. In a fixed strip α ≤ σ ≤ β, as t→∞, we can neglect the variable σ and

(3.17) becomes

χ′

χ
(s, ψ) = − log

q

π
− 1

2
log

(
−it
2

)
− 1

2
log

(
it

2

)
+ O

(
1

|t|

)
. (3.18)

Using

log(it) = log |t|+ i sgn(t)
π

2

in (3.18), we get the result.

Lemma 3.8. Let ψ be primitive character modulo q ≥ 3 and r ∈ Z+. As t→∞,

χ(r)(s, ψ) = χ(s, ψ)

(
− log

q|t|
2π

)r [
1 + Oα,β,r

(
1

|t| log qτ

)]
(3.19)

uniformly in α ≤ σ ≤ β, for any fixed real numbers α and β.

Proof. We proceed by induction on r. The case r = 1 is true by the above lemma.

Assume the statement holds for each i < r, r ∈ Z with r > 1. Taking (r − 1)th
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derivative of the identity

χ′(s, ψ) = χ(s, ψ)
χ′

χ
(s, ψ),

we obtain

χ(r)(s, ψ) =
r−1∑
i=0

(
r − 1

i

)
χ(r−1−i)(s, ψ)

(
χ′

χ

)(i)

(s, ψ).

By the induction assumption, we have

χ(r)(s, ψ) =χ(s, ψ)

[
1 +Oα,β,r

(
1

|t| log qτ

)]
r−1∑
i=0

(
r − 1

i

)(
− log

q|t|
2π

)r−1−i(
χ′

χ

)(i)

(s, ψ). (3.20)

Combining (3.16) and Corollary 3.1, we have

(
d

ds

)i
χ′

χ
(s, ψ)�α,β,i

1

|t|i
, (3.21)

for i ≥ 1. Using Lemma 3.7 and (3.21) in (3.20), the result follows.

Lemma 3.9. Let ψ be primitive character modulo q ≥ 3, then for j = 0, 1, 2, ... and

large t we have

L(j)(s, ψ) = (−1)j χ(s, ψ)

{
j∑

k=0

(
j

k

) (
log

q|t|
2π

)j−k
L(k)

(
1− s, ψ

)}
[
1 + Oα,β,j

(
1

|t| log qτ

)]
(3.22)

uniformly in α ≤ σ ≤ β, for any fixed real numbers α and β.

Proof. Differentiating j times the equation (2.22), we find

L(j)(s, ψ) =

j∑
k=0

(
j

k

)
χ(j−k)(s, ψ)(−1)k L(k)

(
1− s, ψ

)
.
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By Lemma 3.8,

L(j)(s, ψ) =

j∑
k=0

(
j

k

)
χ(s, ψ)

(
− log

q|t|
2π

)j−k [
1 + Oα,β,j−k

(
1

|t| log qτ

)]
(−1)k L(k)

(
1− s, ψ

)
.

Then the result easily follows.

Lemma 3.10. For m = 0, 1, 2, ..., A large, and A < r ≤ B ≤ 2A,

∫ B

A

exp

[
it log

t

re

](
t

2π

)a− 1
2
(

log
t

2π

)m
dt

= (2π)1−ara e−ir+
πi
4

(
log

r

2π

)m
+ E(r, A,B) (logA)m ,

while for r ≤ A or r > B,

∫ B

A

exp

[
it log

t

re

](
t

2π

)a− 1
2
(

log
t

2π

)m
dt = E(r, A,B) (logA)m ,

where

E(r, A,B) = O
(
Aa−

1
2

)
+O

(
Aa+

1
2

|A− r|+ A
1
2

)
+O

(
Ba+ 1

2

|B − r|+B
1
2

)
. (3.23)

Lemma 3.11. Let {bn} ∞n=1 be a sequence of complex numbers such that for any

ε > 0, bn �ε n
ε. Let a > 1 and m be a nonnegative integer, then for T sufficiently

large,

1

2π

∫ T

1

χ (1− a− it)
(

log
t

2π

)m ∞∑
n=1

bn
na+it

dt =
∑

1≤n≤T/2π

bn logm n + O
(
T a−

1
2 logm T

)

Lemmas 3.10 and 3.11 have been proved in Gonek’s paper [8]. We want to extend

Lemma 3.11 to Dirichlet’s L-functions to estimate integrals containing χ(s, ψ).
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Lemma 3.12. For m = 0, 1, 2, ..., A large, and A < r ≤ B ≤ 2A,

∫ B

A

exp

[
it log

t

re

](
t

2π

)a− 1
2
(

log
qt

2π

)m
dt

= (2π)1−ara e−ir+
πi
4

(
log

qr

2π

)m
+ E(r, A,B) (log qA)m ,

while for r ≤ A or r > B,

∫ B

A

exp

[
it log

t

re

](
t

2π

)a− 1
2
(

log
qt

2π

)m
dt = E(r, A,B) (log qA)m ,

Proof. From the binomial expansion

(
log

qt

2π

)m
=

m∑
i=0

(
m

i

)
(log q)m−i

(
log

t

2π

)i
,

it follows that

∫ B

A

exp

[
it log

t

re

](
t

2π

)a− 1
2
(

log
qt

2π

)m
dt

=
m∑
i=0

(
m

i

)
(log q)m−i

∫ B

A

exp

[
it log

t

re

](
t

2π

)a− 1
2
(

log
t

2π

)i
dt,

then the result follows from Lemma 3.10.

Lemma 3.13. For an arbitrarily fixed number a > 1, we have

∞∑
n=1

1

na
(
|C − 2πn|+

√
C
) �a

1

C
, (C ≥ 2). (3.24)
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Proof. Firstly, we divide the infinite sum in (3.24) into five parts,

∞∑
n=1

1

na
(
|C − 2πn|+

√
C
) =

∑
1≤n< C

4π

+
∑

C
4π
≤n<C−

√
C

2π

+
∑

C−
√
C

2π
≤n<C+

√
C

2π

+
∑

C+
√
C

2π
≤n< 2C

2π

+
∑
n> 2C

2π

 1

na
(
|C − 2πn|+

√
C
)


= S1 + S2 + S3 + S4 + S5, say.

If 1 ≤ n < C
4π

, then |C − 2πn|+
√
C � C and so

S1 �
1

C

∑
1≤n< C

4π

1

na
.

By integral test, the above sum is

≤ 1 +

∫ C
4π

1

dx

xa
.

Since a > 1, the above integral is � 1. Hence,

S1 �
1

C
. (3.25)

If C
4π
≤ n < 2C

4π
, then

1

na
� 1

Ca
. (3.26)

So,

S2 �
1

Ca

∑
C
4π
≤n<C−

√
C

2π

1

|C − 2πn|+
√
C
� 1

Ca

∑
C
4π
≤n<C−

√
C

2π

1
C
2π
− n
� 1

Ca

∑
√
C

2π
≤m< C

4π

1

m
.
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Noting that

∑
n≤x

1

n
= log x+ γ0 +O

(
1

x

)
, (3.27)

we can conclude

S2 �
logC

Ca
� 1

C
, (3.28)

since logC/Cb → 0 as C →∞ for any b > 0. We shall estimate S3 and S4. By (3.26),

we have

S3 �
1

Ca

∑
C−
√
C

2π
≤n<C+

√
C

2π

1

|C − 2πn|+
√
C
� 1

Ca
√
C

∑
C−
√
C

2π
≤n<C+

√
C

2π

1� 1

Ca
� 1

C
,

(3.29)

similarly, by (3.26),

S4 �
1

Ca

∑
C+
√
C

2π
≤n< 2C

2π

1

|C − 2πn|+
√
C
� 1

Ca

∑
C+
√
C

2π
≤n< 2C

2π

1

n− C
2π

� 1

Ca

∑
√
C

2π
≤m< C

2π

1

m
.

By (3.27), the sum in the last statement is � logC and so

S4 �
logC

Ca
� 1

C
. (3.30)

For the last case n ≥ 2C
2π

, we have |C − 2πn|+
√
C � C and so

S5 �
1

C

∑
n≥ 2C

2π

1

na
� 1

C

∞∑
n=0

1

na
� 1

C
(3.31)

since a > 1. Finally, combining (3.25), (3.28), (3.29), (3.30) and (3.31), we get the

result.

Lemma 3.14. Let E(r, A,B) be as in (3.23), where A is large and A < B ≤ 2A.

Assume {bn}∞n=1 is a sequence of complex numbers such that bn �ε n
ε for any ε > 0.
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Then for any fixed a > 1,

∞∑
n=1

bn
na
E

(
2πn

q
,A,B

)
� Aa−

1
2

uniformly for q ≥ 1, where the implied constant depends on a and ε.

Proof. Choose ε so that 0 < ε < a− 1. Then

∞∑
n=1

bn
na
E

(
2πn

q
,A,B

)
�

∞∑
n=1

n−a+εE

(
2πn

q
,A,B

)
�Aa−

1
2

∞∑
n=1

n−a+ε + Aa+
1
2

∞∑
n=1

1

na−ε
(∣∣A− 2πn

q

∣∣+
√
A
)

+Ba+ 1
2

∞∑
n=1

1

na−ε
(∣∣B − 2πn

q

∣∣+
√
B
) .

The proof of the lemma is completed by noting that

∞∑
n=1

n−a+ε � 1

and, by Lemma 3.13,

∞∑
n=1

1

na−ε
(∣∣C − 2πn

q

∣∣+
√
C
) � ∞∑

n=1

q

na−ε
(∣∣Cq − 2πn

∣∣+
√
Cq
) � 1

C
.

Lemma 3.15. Let {bn}∞n=1 be a sequence of complex numbers such that bn �ε n
ε for

any ε > 0 and ψ a primitive character modulo q ∈ Z+. Let a > 1 and m a non-negative

integer. Then for T sufficiently large,

1

2π

∫ T

1

{
∞∑
n=1

bn
na+it

}
χ(1− a− it, ψ)

(
log

qt

2π

)m
dt =

τ(ψ)

q

∑
1≤n≤ qT

2π

bn e

(
−n
q

)
logm n +O

(
(qT )a−

1
2 (log qT )m

)
.
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Here, the implicit constant of ”O” depends on ε, a and m.

Proof. By (2.23), we have

1

2π

∫ T

T
2

{
∞∑
n=1

bn
na+it

}
χ(1− a− it, ψ)

(
log

qt

2π

)m
dt

=
τ(ψ) exp

{−iπ
4

}
2π q 1−a

∫ T

T
2

{
∞∑
n=1

bn
na+it

}(
t

2π

)a− 1
2

exp

{
it log

qt

2πe

}(
log

qt

2π

)m
dt

+O

(
|τ(ψ)|
q 1−a T a−

1
2 (log qT )m

∫ T

T
2

{
∞∑
n=1

|bn|
na

}
dt

t

)
. (3.32)

Since bn �ε n
ε and a > 1,

∞∑
n=1

|bn|
na
� 1.

Thus, the error term in (3.32) is

� (qT )a−
1
2 (log qT )m

by noting that |τ(ψ)| =
√
q for any primitive character ψ. Then, the right hand side

of (3.32) becomes

τ(ψ) exp
{−iπ

4

}
2π q 1−a

∞∑
n=1

bn
na

∫ T

T
2

(
t

2π

)a− 1
2

exp

{
it log

qt

2πne

}(
log

qt

2π

)m
dt

+O
(

(qT )a−
1
2 (log qT )m

)
, (3.33)

the inversion of summation and integration being justified by absolute convergence.

Now the integral in (3.33) is of the form estimable by Lemma 3.12 with A = T
2
, B = T
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and r = 2πn
q

. Thus, (3.33) is equal to

τ(ψ)

q

∑
qT
4π
<n≤ qT

2π

bn e

(
−n
q

)
logm n+O

(
(qT )a−

1
2 (log qT )m

)

+
τ(ψ) exp

{−iπ
4

}
2π q 1−a

(
log

qT

2

)m ∞∑
n=1

n/∈
(
qT
4π
, qT
2π

] bn n−aE
(

2πn

q
,
T

2
, T

)
.

By Lemma 3.14, we can conclude that

1

2π

∫ T

T
2

{
∞∑
n=1

bn
na+it

}
χ(1− a− it, ψ)

(
log

qt

2π

)m
dt

=
τ(ψ)

q

∑
qT
4π
<n≤ qT

2π

bn e

(
−n
q

)
logm n+O

(
(qT )a−

1
2 (log qT )m

)
(3.34)

for T ≥ T0, say. Now let l be the unique integer such that T0 ≤ T
2l
< 2T0. Adding the

result of (3.34) for the ranges
[
T
2j
, T

2j−1

]
(j = 1, 2, ..., l), we find that

1

2π

∫ T

T

2l

{
∞∑
n=1

bn
na+it

}
χ(1− a− it, ψ)

(
log

qt

2π

)m
dt

=
τ(ψ)

q

∑
qT

2l+1π
<n≤ qT

2π

bn e

(
−n
q

)
logm n+Oε

(
(qT )a−

1
2 (log qT )m

)
. (3.35)

We have

1

2π

∫ T

2l

1

{
∞∑
n=1

bn
na+it

}
χ(1− a− it, ψ)

(
log

qt

2π

)m
dt � qa−

1
2 logm q, (3.36)

since the length of integration is < T/2l < 2T0, i.e. � 1, and, by (2.23),

|χ(s, ψ) | �
(
q|t|
2π

) 1
2
−σ

.
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Also, we have

τ(ψ)

q

∑
1≤n≤ qT

2l+1π

bn e

(
−n
q

)
logm n� q

1
2
+ε. (3.37)

This follows from trivial calculation and the fact that |τ(ψ)| = √q. Finally, combining

(3.35), (3.36) and (3.37) gives the lemma.

Lemma 3.16. Let k be a nonnegative integer. For x ≥ 2, we have

∑
n≤x

Λ(n)

n
logk n =

logk+1 x

k + 1
+ O

(
logk x

)
,

where Λ is the von Mangoldt Lambda function which is defined by

Λ(n) :=

 log p if n = pk for some k ∈ Z+,

0 otherwise.

Proof. The case k = 0 follows from (3.14.2) of [7]. If k ≥ 1 then by partial summation

formula, we have

∑
n≤x

Λ(n)

n
logk n =

{∑
n≤x

Λ(n)

n

}
logk x− k

∫ x

1

{∑
n≤u

Λ(n)

n

}
logk−1 u

du

u
.

Using the result for k = 0, we can write

∑
n≤x

Λ(n)

n
logk n = logk+1 x+O

(
logk x

)
− k

∫ x

1

logk u
du

u
+O

(
k

∫ x

1

logk−1 u
du

u

)
.

Then the proof is completed by noting that

∫ x

1

logm u
du

u
=

logm+1 u

m+ 1

∣∣∣∣∣
x

1

=
logm+1 x

m+ 1
(m = 0, 1, 2...).

Lemma 3.17. Let ζ(k)(s) · ζ
′

ζ
(s) =

∞∑
n=1

bk(n)

ns
for <s > 1, where k ∈ N. Then for
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x ≥ 2,

∑
n≤x

bk(n) =
(−1)k+1

k + 1
x logk+1 x + O k

(
x logk x

)
.

Proof. Firstly, we note that ζ(k)(s) =
∞∑
n=1

(−1)k logk n

ns
and

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns

for k = 0, 1, 2, . . . and <s > 1. Then, by multiplication of Dirichlet series, we can

write

bk(n) =
∑
dr=n

(−1)k+1 Λ(d) logk r. So,

∑
n≤x

bk(n) =
∑
n≤x

∑
dr=n

(−1)k+1 Λ(d) logk r = (−1)k+1
∑
dr≤x

Λ(d) logk r

= (−1)k+1
∑
d≤x

Λ(d)
∑
r≤x

d

logk r.

By Lemma 3.2, we get

∑
n≤x

bk(n) = (−1)k+1x
∑
d≤x

Λ(d)

d

k∑
n=0

(−1)n
k!

(k − n)!

(
log

x

d

)k−n
+Ok

(∑
d≤x

Λ(d)
(

log
x

d

)k)

The above error term is

�k logk x
∑
d≤x

Λ(d)�k x logk x.

The last asymptotic inequality follows from the prime number theorem which says that

∑
d≤x

Λ(d) ∼ x.

Noting that

(
log

x

d

)k−n
=

k−n∑
h=0

(
k − n
h

)
(−1)h (log x)k−n−h (log d)h ,
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we have

∑
n≤x

bk(n) =(−1)k+1x
k∑

n=0

(−1)n
k!

(k − n)!

k−n∑
h=0

(−1)h
(
k − n
h

)
(log x)k−n−h

∑
d≤x

Λ(d)

d
logh d

+Ok

(
x logk x

)
.

We now use Lemma 3.16 to obtain

∑
n≤x

bk(n) = (−1)k+1x
k∑

n=0

(−1)n
k!

(k − n)!

k−n∑
h=0

(−1)h
(
k − n
h

)
(log x)k−n−h

[
logh+1 x

h+ 1
+

O
(
logh x

) ]
+ Ok

(
x logk x

)
= (−1)k+1 x

k∑
h=0

(−1)h
(
k

h

)
logk+1 x

h+ 1

+ (−1)k+1 x
k∑

n=1

(−1)n
k!

(k − n)!

k−n∑
h=0

(−1)h
(
k − n
h

)
logk−n+1 x

h+ 1

+ O

(
x

k∑
n=0

k!

(k − n)!

k−n∑
h=0

(
k − n
h

)
logk−n x

)
+ Ok

(
x logk x

)
.

The second and third parts of the right hand side of the above equation is trivially

�k x logk x,

and this gives

∑
n≤x

bk(n) = (−1)k+1 x (log x)k+1

k∑
h=0

(−1)h
(
k

h

)
1

h+ 1
+Ok

(
x logk x

)
.

We now make some calculations on the coefficient of the main term of the above



33

asymptotic equality;

(−1)k+1

k∑
h=0

(
k

h

)
(−1)h

h+ 1
=

(−1)k

k + 1

k∑
h=0

(
k + 1

h+ 1

)
(−1)h+1

=
(−1)k

k + 1

k+1∑
ν=1

(
k + 1

ν

)
(−1)ν

=
(−1)k

k + 1

{
(1− 1)k+1 − 1

}
=

(−1)k+1

k + 1
, (3.38)

and this completes the proof.
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4. THE ORDER OF A DIRICHLET L-FUNCTION AND

ITS DERIVATIVES

We need an estimate for L(s, ψ) in the critical strip, 0 ≤ σ ≤ 1, where ψ is any

primitive Dirichlet character. We first give an integral representation for L(s, ψ), ([6],

p. 82),

L(s, ψ) = s

∫ ∞
1

S (x, ψ)x−s−1dx (σ > 0),

where S(x, ψ) :=
∑

n≤x ψ(n). Since |S(x, ψ)| ≤ q, it implies that

L(s, ψ)� qτ

(
σ0 ≥ σ ≥ 1

2

)
, (4.1)

where σ0 is an arbitrary number > 1/2. For σ < 1
2
, corresponding results follow from

the functional equation (2.22). In any fixed strip α ≤ σ ≤ β, by (2.23), we have

|χ (s, ψ) | �
(
q|t|
2π

) 1
2
−σ

(|t| ≥ 1). (4.2)

Hence

L(s, ψ)� (qτ)
3
2
−σ (4.3)

for σ1 ≤ σ < 1
2

and |t| ≥ 1, where σ1 is an arbitrary number < 1/2.

Now, we’ll show that (4.3) is also valid in the bounded region σ1 ≤ σ < 1
2
, |t| ≤ 1.

Combining (2.20) with the basic fact |τ(ψ)| = √q, we get

χ(s, ψ)� q
1
2
−σ
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in the region considered. Using this in (2.22), we have

L(s, ψ)� q
1
2
−σ|L

(
1− s, ψ̄

)
| (4.4)

for σ1 ≤ σ < 1
2
, |t| ≤ 1. By (4.1), (4.4) becomes

L(s, ψ)� q
3
2
−σ (4.5)

for σ1 ≤ σ < 1
2
, |t| ≤ 1. It easily follows from (4.3) and (4.5) that

L(s, ψ)� (qτ)
3
2
−σ

(
σ1 ≤ σ <

1

2

)
. (4.6)

In addition to (4.1), in any in any half-strip σ ≥ 1 + δ, δ > 0, we have

|L(s, ψ)| =
∣∣∣∣ ∞∑
n=1

ψ(n)

ns

∣∣∣∣ ≤ ζ(1 + δ)�δ 1.

Now, we’ll prove the following theorem that gives a better estimate near the line

σ = 1.

Proposition 4.1. Let ψ be a non-principal character modulo q ≥ 3, then for j =

0, 1, 2, ... we have

L(j)(s, ψ)�j,A (log qτ)j+1, (4.7)

uniformly for 1− A
log qτ

≤ σ ≤ 2, where A is an arbitrarily large positive constant.
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Proof. Let R(u, ψ) :=
∑
m≤u

ψ(m) logjm. Then

R(u, ψ) =
∑
m≤u

[S(m,ψ)− S(m− 1, ψ)] logjm

=
∑

m≤JuK−1

S(m,ψ)
[
logjm− logj(m+ 1)

]
+ S (JuK, ψ) logj (JuK) .

Using the trivial estimate S(u, ψ)� q, we have

R(u, ψ)� q
∑
m≤u

∣∣ logjm− logj(m+ 1)
∣∣+ q logj u.

Since log x is a strictly increasing function, we have

R(u, ψ)� q
∑
m≤u

(
logj(m+ 1)− logjm

)
+ q logj u� q logj u. (4.8)

For 1− A
log qτ

≤ σ ≤ 2, we can write

L(j)(s, ψ) = (−1)j
∞∑
n=1

ψ(n) logj n

ns

= (−1)j
∑
n≤qτ

ψ(n) logj n

ns
+ (−1)j

∑
n>qτ

ψ(n) logj n

ns

=O

(∑
n≤qτ

logj n

n1− A
log qτ

)
+ (−1)j

∑
n>qτ

R(n, ψ)

(
1

ns
− 1

(n+ 1)s

)
− (−1)j R (JqτK, ψ)

1

(JqτK + 1)s
. (4.9)

By (3.27), we have

∑
n≤qτ

logj n

n1− A
log qτ

�A logj qτ
∑
n≤qτ

1

n
�A logj+1 qτ. (4.10)
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Using (4.8) and (4.10), (4.9) becomes

L(j)(s, ψ) =(−1)j
∑
n>qτ

R(n, ψ)

(
1

ns
− 1

(n+ 1)s

)
+OA

(
logj+1 qτ

)
=(−1)js

∑
n>qτ

R(n, ψ)

∫ n+1

n

du

us+1
+OA

(
logj+1 qτ

)
. (4.11)

By (4.8),

L(j)(s, ψ) = O

(
qτ
∑
n>qτ

logj n

∫ n+1

n

du

uσ+1

)
+OA

(
logj+1 qτ

)
= O

(
qτ
∑
n>qτ

logj n

n2− A
log qτ

)
+OA

(
logj+1 qτ

)
. (4.12)

By Lemma 3.4, the sum in (4.12) is

�j,A (qτ)−1+ A
log qτ logj qτ �j,A

logj qτ

qτ
. (4.13)

Combining (4.12) and (4.13), we get the result.

We can improve the estimate for L(s, ψ) over the region σ ≤ 0. Proposition 4.1

implies that

L(s, ψ)�ε (qτ)ε (4.14)

for σ ≥ 1. Combining this with (4.2) and (2.22), we obtain

L(s, ψ)�ε (qτ)
1
2
−σ+ε (σ ≤ 0, |t| ≥ 1). (4.15)

By (4.4) and (4.14), the above estimate is valid in the region σ ≤ 0, |t| ≤ 1; so we

conclude that

L(s, ψ)�ε (qτ)
1
2
−σ+ε (σ ≤ 0, t ∈ R). (4.16)
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Proposition 4.2. Let ψ be a primitive character modulo q ≥ 3, then we have

L(s, ψ)�ε q
1
2
(1−σ)+ε, (4.17)

uniformly for 0 ≤ σ ≤ 1, |t| ≤ 1.

Proof. It follows from (4.7) that

L(σ + it, ψ)�ε q
ε (4.18)

uniformly for 1− 1
log q
≤ σ ≤ 1, |t| ≤ 1. In the right half-plane, we have

L(σ + it,ψ) =
∞∑
n=1

ψ(n)

ns
=

∑
n≤√q log q

ψ(n)

ns
+

∑
n>
√
q log q

ψ(n)

ns

=O

 ∑
n≤√q log q

1

nσ

+
∑

n>
√
q log q

S(n, ψ)

(
1

ns
− 1

(n+ 1)s

)
−
S
(
J√q log qK, ψ

)(
J√q log qK + 1

)s
=S1 + S2 + S3, say.

By integral test,

S1 � 1 +

∫ √q log q

2

dx

xσ
� x1−σ

1− σ

∣∣∣∣∣
√
q log q

2

� q
1
2
(1−σ)+ε (4.19)

for 1− 1
log q
≥ σ ≥ 1

2
. To treat S2 we use the Pólya-Vinogradov inequality (See Theorem

9.18 of [4])

∑
N<n≤M

ψ(n) � √q log q

for any primitive character ψ. (This inequality holds for any non-principal Dirichlet’s
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character.) In the bounded region 1
2
≤ σ ≤ 1− 1

log q
, |t| ≤ 1, we have

S2 �
√
q log q

∑
n>
√
q log q

|s|
∫ n+1

n

dx

xσ+1

�√q log q

∫ ∞
√
q log q

dx

xσ+1
� q

1
2
(1−σ)+ε. (4.20)

Finally, it follows from the Pólya-Vinogradov inequality that

S3 � q
1
2
(1−σ)+ε. (4.21)

Combining (4.18), (4.19), (4.20) and (4.21) completes the case 1
2
≤ σ ≤ 1, |t| ≤ 1. The

other case 0 ≤ σ < 1
2
, |t| ≤ 1 easily follows from (4.4).

Summarizing our results, |L(s, ψ)| has the following upper-bounds:

1. L (σ + it, ψ) � qτ (σ ≥ 1
2
, t ∈ R)

2. L (σ + it, ψ) � (qτ)
3
2
−σ (σ < 1

2
, t ∈ R)

3. L (σ + it, ψ) �ε (qτ)
1
2
−σ+ε (σ ≤ 0, t ∈ R)

4. L (σ + it, ψ) �ε (qτ)ε (σ ≥ 1, t ∈ R)

5. L(σ + it, ψ) �ε q
1
2
(1−σ)+ε (0 ≤ σ ≤ 1, |t| ≤ 1),

(4.22)

Now, we improve the first and second estimates in the above list. For this, we

give a Phragmén-Lindelöf type theorem with slight modifications. (See, for example,

Titchmarsh [11], §5.65)

Proposition 4.3. If φq(s) is regular and Oε (eεqτ ), q ∈ Z+, for every positive ε, in the

strip σ1 ≤ σ ≤ σ2, and

φq(σ1 + it) = O
(
(qτ)k1

)
, φq(σ2 + it) = O

(
(qτ)k2

)
(t ∈ R),
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and

φq(σ + it) = O(qk(σ)),

for σ1 ≤ σ ≤ σ2, |t| ≤ 1, k(σ) being the linear function of σ which takes the values

k1, k2 at σ = σ1, σ2, respectively, then

φq(σ + it) = O
(
(qτ)k(σ)

)
uniformly for σ1 ≤ σ ≤ σ2.

Proof. Let

Ψ(s) := (−iqs)k(s) = ek(s) log(−iqs),

Φ(s) :=
φq(s)

Ψ(s)
,

where the logarithm has its principal value. This function is regular for σ1 ≤ σ ≤

σ2, t ≥ 1; also, if k(s) = as+ b, which takes the values k1, k2 for s = σ1, σ2, then

<{k(s) log(−iqs)} = < [{k(σ) + iat} log(qt− iqσ)]

= k(σ) log qt+O(1).

Hence

|Ψ(s)| = (qτ)k(σ)eO(1).

So, there exists M > 0 such that M does not depend on q and is the upper bound of

Φ(s) on these two lines σ = σ1, σ = σ2 and on the line segment between the points

σ1 + i and σ2 + i. Let ε > 0, put

g(s) := eεqsiΦ(s), (σ1 ≤ σ ≤ σ2, t ≥ 1),
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then

|g(s)| = e−εqt|Φ(s)| ≤ |Φ(s)| ≤M

for σ = σ1, σ = σ2. Also |g(s)| → 0 as t → ∞ for σ1 ≤ σ ≤ σ2; and so, if T is large

enough, then |g(s)| ≤M on t = T , σ1 ≤ σ ≤ σ2. Hence |g(s)| ≤M at all points of the

rectangle with vertices σ1 + iT, σ2 + iT, σ1 + i, σ2 + i. Then the maximum-modulus

theorem implies that |g(s)| ≤M at all points in the region σ1 ≤ σ ≤ σ2, t ≥ 1, i.e.

|Φ(s)| ≤ eεqtM (σ1 ≤ σ ≤ σ2, t ≥ 1).

Making ε → 0, it follows that |Φ(s)| ≤ M . So φq(σ + it) = O((qτ)k(σ)) for σ1 ≤ σ ≤

σ2, t ≥ 1, and similarly for the region σ1 ≤ σ ≤ σ2, t ≤ −1.

Since L(s, ψ) satisfies the conditions of Proposition 4.3, we can apply it and so

L(s, ψ)�ε (qτ)
1
2
(1−σ)+ε

uniformly in 0 ≤ σ ≤ 1. Summarizing all these results, we have

L(σ + it, ψ)�ε


(qτ)

1
2
−σ+ε if σ ≤ 0

(qτ)
1
2
(1−σ)+ε if 0 ≤ σ ≤ 1

(qτ)ε if σ ≥ 1

(4.23)

where ε is an arbitrarily small positive number. By Cauchy’s integral formula, we have

L(j)(s, ψ) =
j!

2πi

∫
C

L(s, ψ)

(w − s)j+1
dw,
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where C is an arbitrarily small circle with center s and j = 1, 2, . . .. Using (4.23) in

the above integral, it easily follows that

L(j)(σ + it, ψ)�j,ε


(qτ)

1
2
−σ+ε if σ ≤ 0

(qτ)
1
2
(1−σ)+ε if 0 ≤ σ ≤ 1

(qτ)ε if σ ≥ 1

(4.24)

where ε is an arbitrarily small positive number and j = 0, 1, 2, . . ..
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5. NOTE ON L(j)(1, ψ) AND
(

L′

L

)(j)
(1, ψ)

Proposition 5.1. Let ψ be any non-principal character modulo q ≥ 3. Then, for

j = 0, 1, 2, . . ., we have

(−1)j
∑
n≤x

ψ(n) logj n

n
= L(j)(1, χ) +Oj

(
logj x

x

)
.

Proof. Put f(u) = logj u
u
, j = 0, 1, ..., then by partial summation, we have

∑
x<n≤y

ψ(n) logj n

n
=

{∑
n≤y

ψ(n)

}
f(y)−

{∑
n≤x

ψ(n)

}
f(x)−

∫ y

x

{∑
n≤u

ψ(n)

}
f ′(u)du.

We use the Pólya-Vinogradov inequality and make y → ∞ in the above equation to

obtain

∑
n>x

ψ(n) logj n

n
= O (

√
q log q |f(x)|) +O

(
√
q log q

∫ ∞
x

|f ′(u)|du
)
.

If j = 0, then

∑
n>x

ψ(n)

n
= O

(√
q log q

x

)
.

It easily follows from the Dirichlet series representation of L-function that

∑
n≤x

ψ(n)

n
= L(1, χ) +O

(√
q log q

x

)
.
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Otherwise, j ≥ 1, we have

∑
n>x

ψ(n) logj n

n
= O

(√
q log q logj x

x

)
+O

(
√
q log q

∫ ∞
x

|j logj−1 u− logj u|
u2

du

)
.

By Lemma 3.3, the integral in the O-term is �j
logj x

x
. This gives

L(j)(1, ψ)− (−1)j
∑
n≤x

ψ(n) logj n

n
= (−1)j

∑
n>x

ψ(n) logj n

n
�j

√
q log q logj x

x
.

Hence, the result follows.

Proposition 5.2. Let ψ be a non-principal character modulo q ≥ 3 and j = 0, 1, 2, . . .,

then we have

(
L′

L

)(j)

(s, ψ) =
(−1)jj!E(ψ)

(s− β1)j+1
+Oj

(
(log qτ)j+1

)
uniformly for σ > 1− c1/(4 log qτ), t ∈ R, where

E(ψ) =

 1 if β1 exists,

0 otherwise.

Proof. First of all, we quote from Theorem 11.4 of [4]:

Suppose that σ ≥ 1− c1/(2 log qτ). If L(s, ψ) has no exceptional zero, or if β1 is

an exceptional zero of L(s, ψ) but |s− β1| ≥ 1/ log q, then

L′

L
(s, ψ)� log qτ. (5.1)

Alternatively, if β1 is an exceptional zero of L(s, ψ) and |s− β1| ≤ 1/ log q, then

L′

L
(s, ψ) =

1

s− β1

+O(log q) (s 6= β1). (5.2)
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Since β1, if it exists, is a simple pole of L′/L with residue 1,

f(s, ψ) :=
L′

L
(s, ψ)− E(ψ)

s− β1

(5.3)

is an analytic function in the region

σ ≥ 1− c1
2 log qτ

. (5.4)

Combining (5.1) and (5.2), we obtain

f(s, ψ)� log qτ

(
σ ≥ 1− c1

2 log qτ
, t ∈ R

)
. (5.5)

By Cauchy’s integral formula we have

f (j)(s, ψ) =
j!

2πi

∫
D

f(w,ψ)

(w − s)j+1
dw, (5.6)

where D is a small disc centered at s = σ + it and with radius � 1/ log qτ , and

σ > 1− c1/(4 log qτ). Using (5.5) in (5.6) gives

f (j)(s, ψ)�j (log qτ)j+1

(
σ ≥ 1− c1

4 log qτ
, j = 0, 1, 2, ...

)
. (5.7)

Differentiating (5.3) j times gives

(
L′

L

)(j)

(s, ψ) =
(−1)jj!E(ψ)

(s− β1)j+1
+ f (j)(s, ψ). (5.8)

Combining (5.7) and (5.8) completes the proof.

Proposition 5.3. Let ψ be a non-principal character modulo q ≥ 3 and A an arbitrarily

large fixed number. If q ≤ logA x, then

∑
n≤x

ψ(n)Λ(n) logj n

n
= (−1)j+1

(
L′

L

)(j)

(1, ψ) +OA,j

(
exp

(
−c2

√
log x

))
, (j = 0, 1, ...)

(5.9)
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where c2 is a non-effective positive constant depending on j and A.

Proof. We first state a general form of Perron’s formula (See [12], A.3):

Let A(s) =
∞∑
n=1

ann
−s converge absolutely for σ = <s > 1 and |an| < CΦ(n),

where C > 0 and for x ≥ x0, Φ(x) is monotonically increasing. Let further

∞∑
n=1

|an|n−σ � (σ − 1)−α

as σ → 1+ for some α > 0. If w = u+ iv (u, v real) is arbitrary, b > 0, T > 0, u+b > 1,

then

∑
n≤x

ann
−w = (2πi)−1

∫ b+iT

b−iT
A(s+ w)xss−1ds+O

(
xbT−1(u+ b− 1)−α

)
+O

(
T−1Φ(2x)x1−u log 2x

)
+O

(
Φ(2x)x−u

)
,

and the estimate is uniform in x, T, b, and u provided that b and u are bounded.

Since |ψ(n)Λ(n) logj n| � (log n)j+1 and, by (2.12),

∞∑
n=1

|ψ(n)Λ(n) logj n|
nσ

≤

∣∣∣∣∣
(
ζ ′

ζ

)(j)

(σ)

∣∣∣∣∣�j
1

(σ − 1)j+1

as σ → 1+, we use Perron’s formula to obtain

∑
n≤x

ψ(n)Λ(n) logj n

n
=

(−1)j+1

2πi

∫ 1
log x

+iT

1
log x
−iT

(
L′

L

)(j)

(s+ 1, ψ)
xs

s
ds

+O
(
T−1 logj+2 x

)
+O

(
log x

x

)
(5.10)

and the estimate is uniform in x and T .

The next step is to replace the vertical line of integration in (5.10) by the other



47

sides of the rectangle with vertices

1

log x
− iT, 1

log x
+ iT, −δ + iT, −δ − iT. (5.11)

We should choose δ so small that there are no zeros of L(s, ψ) inside and on the

rectangle above. The zero-free region theorems on Dirichlet L-functions (see §2.6)

suggest the choice δ = B(log qT )−1, B will be determined later. But when ψ is a

quadratic character, then the region considered may contain the exceptional zero β1.

For this reason, some condition must be imposed on q in relation to that of T . In the

light of Siegel’s Theorem (see 2.16) we should guarantee the inequality

1− C1(ε)

qε
≤ 1− B

log qT
(5.12)

to make the region considered zero-free. Suppose q ≤ logA T , A is an arbitrarily

large fixed positive number, then the above inequality is valid, i.e. there are no zeros

inside and on the rectangle determined by (5.11), if we choose ε = 1/A and B <

min {c1/4, C1(1/A)}. Thus s = 0 is the only pole of the integrand of the integral in

(5.10). Then the theorem of residues gives

(2πi)−1

∫ 1
log x

+iT

1
log x
−iT

(
L′

L

)(j)

(s+ 1, ψ)
xs

s
ds =

(
L′

L

)(j)

(1, ψ)

+
1

2πi

(∫ −δ−iT
1

log x
−iT

+

∫ −δ+iT
−δ−iT

+

∫ 1
log x

+iT

−δ+iT

)
. (5.13)

It remains to estimate the contribution made by the integrals in (5.13). We first

remark that the condition B < min {c1/4, C1(1/A)} makes Proposition 5.2 applicable.

We start with the horizontal integrals in (5.13). On the line segment between the

vertices 1/ log x+ iT and −δ + iT , we have

(
L′

L

)(j)

(1 + s, ψ)�j (log qT )j+1.



48

The above estimate follows from Proposition 5.2. So trivial estimation of the horizontal

integral from 1/ log x+ iT to −δ + iT gives

(2πi)−1

∫ −δ+iT
1

log x
+iT

�j
(log qT )j+1

T
.

The second horizontal integral in (5.13) is similarly�j
(log qT )j+1

T
. We now deal with

the integral (2πi)−1

∫ −δ+iT
−δ−iT

. For any s ∈ [−δ − iT,−δ + iT ] we have

1

s+ 1− β1

� 1

1− B
log qT

−
{

1− C1(ε)
qε

} (
ε =

1

A
, B < min

{
c1
4
, C1

(
1

A

)})

=
qε log qT

C1(ε) log T + (C1(ε) log q −Bqε)

�A log T (5.14)

if q ≤ logA T . It follows from Proposition 5.2 and (5.14) that

(
L′

L

)(j)

(s+ 1, ψ)�A,j (log qT )j+1

on the line segment [−δ − iT,−δ + iT ]. So we have

(2πi)−1

∫ −δ+iT
−δ−iT

�A,j x
− B

log qT (log qT )j+1

∫ T

−T

dt√
δ2 + t2

�A,j x
− B

log qT (log qT )j+2. (5.15)

From the above results, (5.13) becomes

(2πi)−1

∫ 1
log x

+iT

1
log x
−iT

(
L′

L

)(j)

(s+ 1, ψ)
xs

s
ds =

(
L′

L

)(j)

(1, ψ)

+Oj

(
(log qT )j+1

T

)
+OA,j

(
x−

B
log qT (log qT )j+2

)
. (5.16)
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Inserting (5.16) into (5.10) gives

∑
n≤x

ψ(n)Λ(n) logj n

n
= (−1)j+1

(
L′

L

)(j)

(1, ψ) +Oj

(
(log qT )j+1

T

)
+OA,j

(
x−

B
log qT (log qT )j+2

)
+O

(
T−1 logj+2 x

)
+O

(
log x

x

)
.

(5.17)

Suppose T = exp
(√

log x
)
. Under the restriction q ≤ logA T = log

A
2 x, the error terms

in the above equation can be absorbed in

Oj,A

(
exp

(
−c2

√
log x

))

where 0 < c2 < min {1, B} and c2 is a non-effective constant which depends on j and

A. So this completes the proof.

Proposition 5.4. Let ψ be any character modulo q and A arbitrarily large fixed pois-

itive number. If q ≤ logA x, then

∑
n≤x

ψ(n)Λ(n) logj n

=

Oj,A

(
x exp

(
−c2
√

log x
))

if ψ 6= ψ0,

x
∑j

ν=0

(
j
ν

)
(−1)j−ν (j − ν)! logν x+Oj,A

(
x exp

(
−c5
√

log x
))

ψ = ψ0,

where c5 is a non-effective positive constant depending on j and A.

Proof. As in the proof of the above theorem, we can apply Perron’s formula and we

have

∑
n≤x

ψ(n)Λ(n) logj n =
(−1)j+1

2πi

∫ 1+ 1
log x

+iT

1+ 1
log x
−iT

(
L′

L

)(j)

(s, ψ)
xs

s
ds

+O
(
xT−1 logj+2 x

)
+O

(
logj+1 x

)
(5.18)

and the estimate is uniform in x and T . Let R denote a closed contour that consists
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of line segments joining the points

1 +
1

log x
+ iT, 1 +

1

log x
+ iT, 1− δ + iT, 1− δ − iT. (5.19)

Case 1. Suppose ψ is a non-principal character. As in the proof of the above

theorem, we choose δ = B(log qT )−1, 0 < B < min {c1/4, C1(1/A)} so that inside and

on R there are no zeros of L(s, ψ) if q ≤ logA T . Since ψ is a non-principal character,

L(s, ψ) is an entire function, so

(
L′

L

)(j)

(s, ψ)
xs

s

has no poles inside and on the contour. By Cauchy’s theorem we have

(2πi)−1

∫
R

(
L′

L

)(j)

(s, ψ)
xs

s
ds = 0. (5.20)

It follows from (5.18) and (5.20)

∑
n≤x

ψ(n)Λ(n) logj n =
(−1)j+1

2πi

(∫ 1+ 1
log x

+iT

1−δ+iT
+

∫ 1−δ+iT

1−δ−iT
+

∫ 1−δ−iT

1+ 1
log x
−iT

)(
L′

L

)(j)

(s, ψ)
xs

s
ds

+O
(
xT−1 logj+2 x

)
+O

(
logj+1 x

)
,

if q ≤ logA T . As we did in the proof of the previous theorem, the three integrals in

the above equation can be bounded by

OA,j

(
x−

B
log qT (log qT )j+2 +

(log qT )j+1

T

)

Again we put T = exp
(√

log x
)
, then under the constraint q ≤ logA T = logA/2 x, the

proof of Case 1 is completed.

Case 2. Suppose ψ is the principal character modulo q, ψ = ψ0. Firstly, we note
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two well-known identities involving Dirichlet’s L−function with the principal character

ψ0:

L(s, ψ0) =ζ(s)
∏
p|q

(
1− 1

ps

)
, (5.21)

L′

L
(s, ψ0) =

ζ ′

ζ
(s) +

∑
p|q

log p

ps − 1
. (5.22)

Equation (5.21) implies that L(s, ψ0) has a pole at s = 1 with residue φ(q)/q, it has all

the zeros of ζ(s), and it also has zeros of the form 2πik/ log p where k takes integral

values and p|q. Thus, we can use the zero-free region theorems for ζ(s); there exists an

effective numerical constant c3 such that ζ(s), so L(s, ψ0), has no zeros in the region

σ > 1− c3/ log τ . Hence, put δ = −c3/(5 log T ) in (5.19). However, by differentiating

(5.22) j times it is easy to see that the j th derivative of L′/L has a pole at s = 1 of

order j + 1. By the theorem of residues, (5.18) becomes

∑
n≤x

ψ0(n)Λ(n) logj n = (−1)j+1Ress=1

{(
L′

L

)(j)

(s, ψ0)
xs

s

}

+
(−1)j+1

2πi

(∫ 1+ 1
log x

+iT

1−δ+iT
+

∫ 1−δ+iT

1−δ−iT
+

∫ 1−δ−iT

1+ 1
log x
−iT

)(
L′

L

)(j)

(s, ψ0)
xs

s
ds

+O
(
xT−1 logj+2 x

)
+O

(
logj+1 x

)
. (5.23)

Next, we calculate the residue at s = 1;

Ress=1

{(
L′

L

)(j)

(s, ψ0)
xs

s

}
=

1

j!

dj

dsj

{
(s− 1)j+1

(
L′

L

)(j)

(s, ψ0)
xs

s

}
s=1

.

By the generalized Leibniz rule, the right side of the above equation is

1

j!

∑
i1+i2+i3=j

(
j

i1, i2, i3

)
di1

dsi1

{(
L′

L

)(j)

(s, ψ0)(s− 1)j+1

}
s=1

di2

dsi2
{xs}s=1

di3

dsi3

{
1

s

}
s=1

.
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Since ζ ′/ζ has a pole at s = 1 with residue −1, we can easily deduce from (5.22) that

(
L′

L

)(j)

(s, ψ0) =
(−1)j+1j!

(s− 1)j+1
+ A0(j, q) + A1(j, q)(s− 1) + .... (5.24)

If i1 > 0 then it easily follows from (5.24) that

di1

dsi1

{(
L′

L

)(j)

(s, ψ0)(s− 1)j+1

}
s=1

= 0.

Then we obtain

Ress=1

{(
L′

L

)(j)

(s, ψ0)
xs

s

}
= (−1)j+1x

∑
i2+i3=j

(
j

i2, i3

)
(−1)i3 i3! logi2 x.

The last part is to estimate the three integrals in (5.23). For this, we need an

estimate for the j th derivative of
L′

L
(s, ψ0). From Theorem 6.7 of [4] we deduce that

ζ ′

ζ
(s) = − 1

s− 1
+ g(s)

(
σ > 1− c3

2 log τ
, t ∈ R

)
, (5.25)

where g(s) is an analytic and

g(s)� log τ (5.26)

throughout the region σ > 1 − c3/(2 log τ), t ∈ R. By Cauchy’s integral formula we

have

g(j)(s) =
j!

2πi

∫
D

g(w)

(w − s)j+1
dw, (5.27)

where D is a small disc centered at s = σ + it and with radius � 1/ log τ , and σ >
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1− c3/(4 log τ). Then trivial estimation of the above integral gives

g(j)(s)�j (log τ)j+1

(
σ ≥ 1− c3

4 log τ
, t ∈ R, j = 0, 1, 2, ...

)
. (5.28)

It follows from (5.25) and (5.28) that

(
ζ ′

ζ

)(j)

(s) =
(−1)j+1j!

(s− 1)j+1
+ Oj

(
logj+1 τ

) (
σ > 1− c3

4 log τ
, t ∈ R

)
(5.29)

Differentiating (5.22) j times gives

(
L′

L

)(j)

(s, ψ0) =

(
ζ ′

ζ

)(j)

(s) +
dj

dsj

∑
p|q

log p

ps − 1

 . (5.30)

Since (log p)/(ps− 1)� 1 for σ ≥ 1/2, the above sum over p is � ω(q)� log q, where

ω(q) denotes the number of distinct prime divisors of q. Then by applying Cauchy’s

integral formula in an arbitrarily small ε−disc centered at s = σ+ it with σ ≥ 1/2 + ε,

we have

dj

dsj

∑
p|q

log p

ps − 1

 �j,ε log q. (5.31)

Combining (5.29), (5.30) and (5.31), we get

(
L′

L

)(j)

(s, ψ0) =
(−1)j+1j!

(s− 1)j+1
+Oj

(
(log τ)j+1

)
+Oj(log q) (5.32)

for σ > 1− c3/(4 log τ), t ∈ R.

Now, we return to the estimation of the three integrals in (5.19). Using (5.32),

we have

∫ 1+ 1
log x

+iT

1−δ+iT

(
L′

L

)(j)

(s, ψ0)
xs

s
ds�j xT

−1
{

(log T )j+1 + log q
}

(5.33)
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and, similarly,

∫ 1−δ−iT

1+ 1
log x
−iT

(
L′

L

)(j)

(s, ψ0)
xs

s
ds�j xT

−1
{

(log T )j+1 + log q
}
. (5.34)

We have

(−1)j+1j!

(s− 1)j+1
�j logj+1 T

for any s ∈ [1− δ − iT, 1− δ + iT ]. On this line segment, by (5.32), we have

(
L′

L

)(j)

(s, ψ0)�j logj+1 T + log q.

So

∫ 1−δ+iT

1−δ+iT

(
L′

L

)(j)

(s, ψ0)
xs

s
ds�j x

1−c3/(5 log T )
{

(log T )j+1 + log q
}
. (5.35)

If we choose T = exp
(√

log x
)

and q ≤ logA T , A an arbitrarily large fixed positive

number, then, by (5.33), (5.34) and (5.35), the sum of the above three integrals can be

bounded by

Oj,A

(
x exp

(
−c4

√
log x

))
, (5.36)

where 0 < c4 < c3/5. Combining the above results, (5.23) becomes

∑
n≤x

ψ0(n)Λ(n) logj n =x
∑

i2+i3=j

(
j

i2, i3

)
(−1)i3 i3! logi2 x+Oj,A

(
x exp

(
−c5

√
log x

))
,

(5.37)

where 0 < c5 < c4.
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6. PROOF OF THEOREM 1.1

Let R denote the closed rectangle in the complex plane with vertices at a + i,

a + iT , 1− a + iT and 1− a + i, where a = 9/8 and T is a sufficiently large number.

Then, consider the integral

I =
1

2πi

∫
∂R

ζ(j)(s)
ζ ′

ζ
(s) ds =

4∑
i=1

Ii,

where j is a fixed integer ≥ 1, ∂R is the boundary of R, the integral is taken in the

counterclockwise sense and

I1 =
1

2πi

∫ a+i

1−a+i
ζ(j)(s)

ζ ′

ζ
(s) ds,

I2 =
1

2πi

∫ a+iT

a+i

ζ(j)(s)
ζ ′

ζ
(s) ds,

I3 =
1

2πi

∫ 1−a+iT

a+iT

ζ(j)(s)
ζ ′

ζ
(s) ds,

I4 =
1

2πi

∫ 1−a+i

1−a+iT
ζ(j)(s)

ζ ′

ζ
(s) ds.

Assume T ∈ F (at the end of proof this restriction will be removed), then no

zero ρ of ζ(s) lies on ∂R and all zeros with the condition 0 < γ ≤ T lie in R, since all

complex zeros are in the critical strip and the ordinate of the first zero of ζ(s) above

the real axis is > 14. By Cauchy’s theorem from complex analysis, we have

∑
0<γ≤T

ζ(j)(ρ) = I =
1

2πi

∫
∂R

ζ(j)(s)
ζ ′

ζ
(s) ds. (6.1)

Since ζ(j)(s) and ζ′

ζ
(s) are analytic functions on the complex plane, except at

s = 1, their modulus are bounded by a positive constant, which does not depend on
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T , on the set {σ + i ∈ C : 1− a ≤ σ ≤ a}. Hence, by trivial estimation, we have

I1 �j 1.

For s ∈ [1− a+ iT, a+ iT ] we have

ζ ′

ζ
(s)ζ(j)(s)� log2 T max

1−a≤σ≤a
| ζ(j)(σ + iT ) | �j,ε T

a− 1
2
+ε log2 T �j,ε T

a− 1
2
+ε

by (2.10) and (2.14). So trivial estimation gives

I3 �j,ε T
a− 1

2
+ε.

Now, we’ll estimate the integral I2. To do this, we use the Dirichlet series repre-

sentations of ζ(j)(s) and ζ′

ζ
(s):

I2 =
1

2πi

∫ a+iT

a+i

ζ(j)(s)
ζ ′

ζ
(s) ds

=
1

2π

∫ T

1

ζ(j)(a+ it)
ζ ′

ζ
(a+ it) dt

=
1

2π

∫ T

1

{∑
n≥2

(−1)j logj n

na+it

} {
−
∑
m≥2

Λ(m)

ma+it

}
dt

=
1

2π

∫ T

1

∑
n,m≥2

(−1)j+1 Λ(m) logj n

(nm)a+it
dt

=
1

2π

∑
n,m≥2

(−1)j+1 Λ(m) logj n

(nm)a

∫ T

1

dt

(nm)it
,
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where the inversion of the order of summation and integration is justified by absolute

convergence. Since n,m ≥ 2, we have

∫ T

1

dt

(nm)it
=

exp (−it log nm)

−i log nm

∣∣∣∣∣
T

1

� 1. (6.2)

Thus,

I2 �
∑
n,m≥2

Λ(m) logj n

(nm)a
=
∣∣∣ζ ′
ζ

(a)
∣∣∣ |ζ(j)(a)| � 1,

since a is fixed. Hence, we can conclude that

I = I4 + Oj,ε

(
T a−

1
2
+ε
)
. (6.3)

Our problem is reduced to estimating I4 . We write directly from the definition

of I4 that

I4 = − 1

2π

∫ T

1

ζ(j)(1− a+ it)
ζ ′

ζ
(1− a+ it) dt.

Taking the complex conjugates of both sides of the above equation we get

I4 = − 1

2π

∫ T

1

ζ(j)(1− a+ it)
ζ ′

ζ
(1− a+ it) dt

=
−1

2π

∫ T

1

ζ(j)(1− a+ it)

{
ζ ′

ζ
(1− a+ it)

}
dt

= − 1

2π

∫ T

1

ζ(j)
(
1− a+ it

) ζ ′
ζ

(
1− a+ it

)
dt

= − 1

2π

∫ T

1

ζ(j) (1− a− it) ζ
′

ζ
(1− a− it) dt (6.4)

By logarithmic differentitation of the equation (2.1), we have

ζ ′

ζ
(1− s) =

χ′

χ
(1− s) − ζ ′

ζ
(s). (6.5)
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We insert the expression of ζ(j)(1 − s) in Lemma 3.5 and the above expression of

ζ′

ζ
(1− s), with s = a+ it, into (6.4) and we then get

I4 =
(−1)j+1

2π

∫ T

1

χ(1− a− it)
[
1 +O

(
1

t

)]{ j∑
k=0

(
j

k

)(
log

t

2π

)j−k
ζ(k)(a+ it)

}
{
χ′

χ
(1− a− it) − ζ ′

ζ
(a+ it)

}
dt

=
(−1)j+1

2π

∫ T

1

χ(1− a− it)

{
j∑

k=0

(
j

k

)(
log

t

2π

)j−k
ζ(k)(a+ it)

}
{
χ′

χ
(1− a− it) − ζ ′

ζ
(a+ it)

}
dt

+O

(∫ T

1

∣∣∣χ(1− a− it)
∣∣∣ ∣∣∣∣∣

j∑
k=0

(
j

k

)(
log

t

2π

)j−k
ζ(k)(a+ it)

∣∣∣∣∣∣∣∣∣∣χ′χ (1− a− it) − ζ ′

ζ
(a+ it)

∣∣∣∣∣ dtt
)
.

From the asymptotic formulas (2.7), (2.8) and the facts that

|ζ(k)(a+ it)| ≤ |ζ(k)(a)| � 1,∣∣∣∣∣ζ ′ζ (a+ it)

∣∣∣∣∣ ≤
∣∣∣∣∣ζ ′ζ (a)

∣∣∣∣∣� 1,

it easily follows that the above error term is

�j T
a− 1

2 (log T )j+1

∫ T

1

dt

t
�j,ε T

a− 1
2
+ε.

Thus, I4 becomes

I4 =
(−1)j+1

2π

j∑
k=0

(
j

k

)∫ T

1

χ(1− a− it)
(

log
t

2π

)j−k
ζ(k)(a+ it)

χ′

χ
(1− a− it) dt

+
(−1)j

2π

j∑
k=0

(
j

k

)∫ T

1

χ(1− a− it)
(

log
t

2π

)j−k
ζ(k)(a+ it)

ζ ′

ζ
(a+ it) dt

+Oj,ε

(
T a−

1
2
+ε
)

= S1 + S2 +Oj,ε

(
T a−

1
2
+ε
)
, say.
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Firstly, we deal with S1. By (2.8), we have

S1 =
(−1)j

2π

j∑
k=0

(
j

k

)∫ T

1

χ(1− a− it)
(

log
t

2π

)j−k+1

ζ(k)(a+ it) dt

+O

(
j∑

k=0

(
j

k

)∫ T

1

∣∣∣∣∣χ(1− a− it)
(

log
t

2π

)j−k
ζ(k)(a+ it)

∣∣∣∣∣ dtt
)
.

The above error term is, as in the estimation of the error term in I4,

�j,ε T
a− 1

2
+ε.

Since ζ(k)(s) =
∑∞

n=1
(−1)k logk n

ns
for <s > 1, we can write

S1 = (−1)j
j∑

k=0

(
j

k

)
1

2π

∫ T

1

χ(1− a− it)
(

log
t

2π

)j−k+1 ∞∑
n=1

(−1)k logk n

n a+it
dt

+Oj,ε

(
T a−

1
2
+ε
)
.

For the integral in the right hand side of the above equation we apply Lemma 3.11 and

we get

S1 = (−1)j
j∑

k=0

(
j

k

)[∑
n≤ T

2π

(−1)k (log n)j+1 +O
(
T a−

1
2 logj−k+1 T

)]
+Oj,ε

(
T a−

1
2
+ε
)

= (−1)j
j∑

k=0

(
j

k

)
(−1)k

∑
n≤ T

2π

logj+1 n+Oj,ε

(
T a−

1
2
+ε
)
.

Using Lemma 3.2 in the above equation gives

S1 = (−1)j

{
j∑

k=0

(
j

k

)
(−1)k

}
T

2π

{
j+1∑
m=0

(−1)m(j + 1)!

(j + 1−m)!

(
log

T

2π

)j+1−m
}

+Oj,ε

(
T a−

1
2
+ε
)
,

but, in the above result the main term disappears since

j∑
k=0

(
j

k

)
(−1)k = (1− 1)k = 0.
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So, we can conclude that

S1 �j,ε T
a− 1

2
+ε.

Next, we shall estimate S2. Firstly, recall from Lemma 3.17 that

ζ(k)(s) · ζ
′

ζ
(s) =

∞∑
n=1

bk(n)

ns
(<s > 1),

where k = 0, 1, 2, . . . . Then

S2 = (−1)j
j∑

k=0

(
j

k

)
1

2π

∫ T

1

χ(1− a− it)
(

log
t

2π

)j−k ∞∑
n=1

bk(n)

na+it
dt.

We now apply Lemma 3.11, and we have

S2 = (−1)j
j∑

k=0

(
j

k

)  ∑
n≤T/2π

bk(n) logj−k n + O
(
T a−

1
2 logj−k T

)
= (−1)j

j∑
k=0

(
j

k

) ∑
n≤T/2π

bk(n) logj−k n + O j,ε

(
T a−

1
2
+ε
)

= (−1)j
j−1∑
k=0

(
j

k

) ∑
n≤T/2π

bk(n) logj−k n + (−1)j
∑

n≤T/2π

bj(n) + O j,ε

(
T a−

1
2
+ε
)
.

Using Lemma 3.17 gives

S2 = (−1)j
j−1∑
k=0

(
j

k

) ∑
n≤T/2π

bk(n) logj−k n − 1

j + 1

T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
.

(6.6)
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For k = 0, 1, .., j − 1, we have by partial summation,

∑
n≤T/2π

bk(n) logj−k n =

 ∑
n≤T/2π

bk(n)


(

log
T

2π

)j−k

− (j − k)

∫ T
2π

1

{∑
n≤u

bk(n)

}
(log u)j−k−1du

u
. (6.7)

Lemma 3.17 implies that

∑
n≤u

bk(n) �k u logk+1 u.

Using this in the above integral and again by Lemma 3.17, (6.7) becomes

∑
n≤T/2π

bk(n) logj−k n =

{
(−1)k+1

k + 1

T

2π

(
log

T

2π

)k+1

+ O k

(
T logk T

)}(
log

T

2π

)j−k

+O j

(∫ T
2π

1

logj u du

)

=
(−1)k+1

k + 1

T

2π

(
log

T

2π

)j+1

+O j

(
T logj T

)
.

Substituting the last result into (6.6), we have

S2 = (−1)j
j−1∑
k=0

(
j

k

) {
(−1)k+1

k + 1

T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)}

− 1

j + 1

T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
= (−1)j+1

{
j∑

k=0

(
j

k

)
(−1)k+1

k + 1

}
T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
.

Combining the results of S1 and S2 gives

I4 = (−1)j+1

{
j∑

k=0

(
j

k

)
(−1)k

k + 1

}
T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
.



62

Since the main term of the above statement is real-valued, we have

I4 = (−1)j+1

{
j∑

k=0

(
j

k

)
(−1)k

k + 1

}
T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
.

By (3.38) we have

I4 =
(−1)j+1

j + 1

T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
. (6.8)

It follows from (6.1), (6.3) and (6.8) that

∑
0<γ≤T

ζ(j)(ρ) =
(−1)j+1

j + 1

T

2π

(
log

T

2π

)j+1

+ O j

(
T logj T

)
. (6.9)

We have proven Theorem 1.1 when T ∈ F . Now, we want to remove this

restriction on T . Increasing (or decreasing ) T by an amount ≤ 1 means addition

(or deletion) of � log T terms to (from) the sum in (6.9) and this produces an error

� T
1
2
+ε by (2.14). However, the right hand side of (6.9) changes by � logj+1 T as

a result of this change on T . But, these errors can be absorbed by the error term in

(6.9). So, this means that (6.9) holds for all large T .
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7. PROOF OF THEOREM 1.2

Let j be a fixed integer ≥ 0 and ψ a primitive character modulo q. We consider

the following integral I around the rectangle R joining the points a+i, a+iT, 1−a+iT

and 1− a+ i, where a = 9/8, T ∈ F and T sufficiently large,

I =
1

2πi

∫
∂R

L(j)(s, ψ)
ζ ′

ζ
(s)ds

=
1

2πi

(∫ a+iT

a+i

+

∫ 1−a+iT

a+iT

+

∫ 1−a+i

1−a+iT
+

∫ a+i

1−a+i

)
L(j)(s, ψ)

ζ ′

ζ
(s)ds

=I1 + I2 + I3 + I4, say.

Cauchy’s theorem implies that

I =
∑

0<γ≤T

L(j)(ρ, ψ). (7.1)

We’ll start with the estimation of the integrals I1, I2 and I4. By (4.24) we have

I4 � max
1−a≤σ≤a

|L(j)(σ + i, ψ)| �j,ε q
a− 1

2
+ε.

In estimation of I1, since a > 1, the functions in the integrand can be represented by

Dirichlet series, so

I1 =
1

2πi

∫ a+iT

a+i

L(j)(s, ψ)
ζ ′

ζ
(s) ds

=
1

2π

∫ T

1

L(j)(a+ it, ψ)
ζ ′

ζ
(a+ it) dt

=
1

2π

∫ T

1

{∑
n≥2

(−1)jψ(n) logj n

na+it

} {
−
∑
m≥2

Λ(m)

ma+it

}
dt

=
1

2π

∫ T

1

∑
n,m≥2

(−1)j+1 ψ(n)Λ(m) logj n

(nm)a+it
dt.
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By the absolute convergence of the series in the integrand, we can interchange the order

of summation and integration, i.e.

I1 =
1

2π

∑
n,m≥2

(−1)j+1 Λ(m)ψ(n) logj n

(nm)a

∫ T

1

dt

(nm)it
.

By (6.2) we have

I1 �
∑
n,m≥2

Λ(m) logj n

(nm)a
=
∣∣ ζ(j)(a)

∣∣ ∣∣∣∣ζ ′ζ (a)

∣∣∣∣�j 1

since a is fixed number > 1.

To treat I2 we write

I2 =
1

2πi

∫ 1−a

a

L(j)(σ + iT, ψ)
ζ ′

ζ
(σ + iT )dσ.

By (2.10) and (4.24), we have

I2 � (log T )2 max
1−a≤σ≤a

|L(j)(σ + iT, ψ)| �j,ε (qT )a−
1
2
+ε.

Collecting the previous results, we obtain

I = I3 +Oj,ε

(
(qT )a−

1
2
+ε
)
. (7.2)

Now, we ’ll estimate I3,

I3 = − 1

2πi

∫ 1−a+iT

1−a+i
L(j)(s, ψ)

ζ ′

ζ
(s)ds

= − 1

2π

∫ T

1

L(j)(1− a+ it, ψ)
ζ ′

ζ
(1− a+ it)dt.
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It follows from the facts

L(j)(s̄, ψ) = L(j)
(
s, ψ
)

and
ζ ′

ζ
(s̄) =

ζ ′

ζ
(s)

that

I3 = − 1

2π

∫ T

1

L(j)
(
1− a− it, ψ

) ζ ′
ζ

(1− a− it)dt.

By (6.5) and Lemma 3.9, we have

I3 =
(−1)j+1

2π

∫ T

1

χ(1− a− it, ψ)

{
j∑

h=0

(
j

h

) (
log

qt

2π

)j−h
L(h) (a+ it, ψ)

}
[
1 + Oj

(
1

|t| log qτ
2π

)][
χ′

χ
(1− a− it) − ζ ′

ζ
(a+ it)

]
dt

=
(−1)j+1

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h
L(h) (a+ it, ψ)

χ′

χ
(1− a− it)dt

− (−1)j+1

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h
L(h) (a+ it, ψ)

ζ ′

ζ
(a+ it)dt

+Oj

(∫ T

1

|χ(1− a− it, ψ)|
∣∣∣∣ j∑
h=0

(
j

h

) (
log

qt

2π

)j−h
L(h) (a+ it, ψ)

∣∣∣∣∣∣∣∣χ′χ (1− a− it) − ζ ′

ζ
(a+ it)

∣∣∣∣ dt

t log qτ
2π

)
.

Since a is a fixed number > 1,

L(h) (a+ it, ψ) ,
ζ ′

ζ
(a+ it)�h 1.

So, by (2.8) and (4.2), the above error term is

�j

(
qT

2π

)a− 1
2

(log qT )j+1

∫ T

1

dt

t
�j,ε (qT )a−

1
2
+ε.
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Then

I3 =
(−1)j+1

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h
L(h) (a+ it, ψ)

χ′

χ
(1− a− it)dt

− (−1)j+1

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h
L(h) (a+ it, ψ)

ζ ′

ζ
(a+ it)dt

+Oj,ε

(
(qT )a−

1
2
+ε
)
. (7.3)

By (2.8) we can write − log
qt

2π
+ log q +O

(
1

t

)
instead of

χ′

χ
(1− a− it) in (7.3).

Then this equation becomes

I3 =
(−1)j

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h+1

L(h) (a+ it, ψ) dt

+
(−1)j+1 log q

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h
L(h) (a+ it, ψ) dt

+O

(
j∑

h=0

(
j

h

)∫ T

1

|χ(1− a− it, ψ)|
(

log
qt

2π

)j−h+1

|L(h) (a+ it, ψ) |dt
t

)

− (−1)j+1

2π

j∑
h=0

(
j

h

)∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)j−h
L(h) (a+ it, ψ)

ζ ′

ζ
(a+ it)dt

+Oj,ε

(
(qT )a−

1
2
+ε
)
.

The first error term in the right-hand side of the above equation is �j,ε (qT )a−
1
2
+ε

similar to the way the error term in (7.3) was obtained. Thus,

I3 = (−1)j
j∑

h=0

(
j

h

)
[A1(j − h+ 1, h)− A1(j − h, h) log q + A2(j − h, h)]

+Oj,ε

(
(qT )a−

1
2
+ε
)
, (7.4)
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where

A1(m, r) :=
1

2π

∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)m
L(r) (a+ it, ψ) dt,

A2(m, r) :=
1

2π

∫ T

1

χ(1− a− it, ψ)

(
log

qt

2π

)m
L(r) (a+ it, ψ)

ζ ′

ζ
(a+ it)dt

and m, r ∈ N. We note that

L(r)(s, ψ) = (−1)r
∞∑
n=1

ψ(n) logr n

ns

and we write

L(r)(s, ψ)
ζ ′

ζ
(s) :=

∞∑
n=1

br(n)

ns
, (7.5)

then Lemma 3.15 implies that

A1(m, r) = (−1)r
τ
(
ψ
)

q

∑
1≤n≤ qT

2π

ψ(n) e

(
−n
q

)
logm+r n +Om,r,ε

(
(qT )a−

1
2
+ε
)

(7.6)

and

A2(m, r) =
τ
(
ψ
)

q

∑
1≤n≤ qT

2π

br(n) e

(
−n
q

)
logm n +Om,r,ε

(
(qT )a−

1
2
+ε
)
.

We now calculate A1(m, r). Firstly, consider the sum

∑
1≤n≤ qT

2π

ψ(n) e

(
−n
q

)
logm+r n. (7.7)
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We convert the exponential factor e
(
−n
q

)
in the above sum into the character sum by

the following formula ([6], p.146)

e

(
−n
q

)
=

1

φ(q)

∑
χ (mod q)

χ(−1)τ(χ)χ(n) (7.8)

if (n, q) = 1. Using this in (7.7), we have

∑
1≤n≤ qT

2π

ψ(n) e

(
−n
q

)
logm+r n =

1

φ(q)

∑
χ

χ(−1)τ(χ)
∑

1≤n≤ qT
2π

(χψ) (n) logm+r n. (7.9)

We note that (See [12], A.5):

Let {an}∞n=1 be a sequence of complex numbers and {bn}∞n=1 a sequence of real

numbers. If 0 ≤ b1 ≤ b2 ≤ ..., then

∣∣∣∣∣ ∑
M<n≤N

anbn

∣∣∣∣∣ ≤ 2bN max
M<n≤N

∣∣∣∣∣ ∑
M<m≤n

am

∣∣∣∣∣. (7.10)

If χ 6= ψ, then the inner sum in (7.9) is

� √q(log q) logm+r qT

by the Pólya-Vinogradov inequality and (7.10). Hence,

1

φ(q)

∑
χ 6=ψ

χ(−1)τ(χ)
∑

1≤n≤ qT
2π

(χψ) (n) logm+r n� q(log q) logm+r qT. (7.11)

This follows from the facts that |τ(χ)| ≤ √q for any character χ modulo q, and the

number of characters modulo q is φ(q).
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Otherwise, if χ = ψ, we consider the following sum

∑
1≤n≤x

χ0(n) loge n,

where χ0 denotes the principal character modulo q and e ∈ N. Consider the case e = 0.

We have

∑
1≤n≤x

χ0(n) =

q
x
q

y∑
k=1

kq∑
n=(k−1)q+1

χ0(n) +
∑

q
q
x
q

y
+1≤n≤x

χ0(n)

= φ(q)
rx
q

z
+O(φ(q))

=
φ(q)

q
x+O(φ(q)). (7.12)

Otherwise, if e ≥ 1, by partial summation, we have

∑
1≤n≤x

χ0(n) loge n =

{ ∑
1≤n≤x

χ0(n)

}
loge x− e

∫ x

1

{ ∑
1≤n≤u

χ0(n)

}
(log u)e−1du

u
.

Using (7.12) in the above equation gives

∑
1≤n≤x

χ0(n) loge n =
φ(q)

q
x loge x+O (φ(q) loge x)

− e

∫ x

1

{
φ(q)

q
u+O (φ(q))

}
(log u)e−1du

u

=
φ(q)

q
x loge x+O (φ(q) loge x)− e

φ(q)

q

∫ x

1

(log u)e−1 du.

By Lemma 3.1, we have

∑
1≤n≤x

χ0(n) loge n =
φ(q)

q
x loge x+O (φ(q) loge x)

− e
φ(q)

q
x

{
e−1∑
ν=0

(−1)ν
(e− 1)!

(e− 1− ν)!
(log x)e−1−ν

}
. (7.13)
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Combining (7.12) and (7.13), for e = 0, 1, 2, ..., we have

∑
1≤n≤x

χ0(n) loge n =
φ(q)

q
x loge x+O (φ(q) loge x)

− ae
φ(q)

q
x

{
e−ae∑
ν=0

(−1)ν
e!

(e− ae − ν)!
(log x)e−ae−ν

}
, (7.14)

where

ae :=

0 if e = 0,

1 if e ≥ 1.

Then, it easily follows from (7.9), (7.11), (7.14) and the fact |τ (ψ) | = √q that

∑
1≤n≤ qT

2π

ψ(n)e

(
−n
q

)
logm+r n = ψ(−1)τ(ψ)

T

2π

(
log

qT

2π

)m+r

+O
(
q log q logm+r qT

)

− am+rψ(−1)τ(ψ)
T

2π

{
m+r−am+r∑

ν=0

(−1)ν(m+ r)!

(m+ r − am+r − ν)!

(
log

qT

2π

)m+r−am+r−ν
}
.

(7.15)

Using the facts |τ (ψ) | = √q, τ
(
ψ
)

= ψ(−1)τ(ψ), and (7.15) in (7.6), we have

A1(m, r) =(−1)r
T

2π

{(
log

qT

2π

)m+r

− am+r

[
m+r−am+r∑

ν=0

(−1)ν(m+ r)!

(m+ r − am+r − ν)!(
log

qT

2π

)m+r−am+r−ν
]}

+Om,r,ε

(
(qT )a−

1
2
+ε
)
. (7.16)

From (7.16), it is easy to see that the h dependence of

A1(j − h+ 1, h) and A1(j − h, h)
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is only the factor (−1)h. So the sums

j∑
h=0

(
j

h

)
A1(j − h+ 1, h) and

j∑
h=0

(
j

h

)
A1(j − h, h)

contain the factor

j∑
h=0

(
j

h

)
(−1)h, which is 0 since j ≥ 1. Thus, (7.4) takes form

I3 =

(−1)j
∑j

h=0

(
j
h

)
A2(j − h, h) +Oj,ε

(
(qT )a−

1
2
+ε
)

if j ≥ 1,

T
2π

log T
2π
− T

2π
+ A2(0, 0) +Oε

(
(qT )a−

1
2
+ε
)

if j = 0.

(7.17)

Next, we calculate A2(j − h, h), h = 0, 1, ..., j,

A2(j − h, h) =
τ
(
ψ
)

q

∑
1≤n≤ qT

2π

bh(n) e

(
−n
q

)
logj−h n +Oj,h,ε

(
(qT )a−

1
2
+ε
)
. (7.18)

Consider the sum

∑
1≤n≤ qT

2π

bh(n) e

(
−n
q

)
logj−h n.

From (7.5), we see that

bh(n) = (−1)h+1
∑
d|n

ψ(d) (log d)h Λ
(n
d

)
.
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We then have

∑
1≤n≤ qT

2π

bh(n)e

(
−n
q

)
logj−h n

= (−1)h+1
∑

1≤n≤ qT
2π

∑
d|n

ψ(d)(log d)hΛ
(n
d

)
e

(
−n
q

)
logj−h n

= (−1)h+1
∑

dm≤ qT
2π

ψ(d)(log d)hΛ(m)e

(
−dm
q

)
logj−h dm

= (−1)h+1

j−h∑
η=0

(
j − h
η

) ∑
dm≤ qT

2π

ψ(d)(log d)j−ηΛ(m)e

(
−dm
q

)
logηm

= (−1)h+1

j−h∑
η=0

(
j − h
η

){ ∑
d≤
√

qT
2π

∑
m≤ qT

2πd

+
∑

m≤
√

qT
2π

∑
d≤ qT

2πm

−
∑

d≤
√

qT
2π

∑
m≤
√

qT
2π

}
ψ(d)(log d)j−ηΛ(m)e

(
−dm
q

)
logηm

= (−1)h+1

j−h∑
η=0

(
j − h
η

)
{S1 + S2 − S3} , say. (7.19)

We write S1 in the form:

S1 =
∑

d≤
√

qT
2π

(d,q)=1

ψ(d) (log d)j−η
{ ∑

m≤ qT
2πd

(m,q)=1

Λ(m) e

(
−dm
q

)
logηm

+
∑

m≤ qT
2πd

(m,q)>1

Λ(m) e

(
−dm
q

)
logηm

}
.

Using (7.8), we obtain

S1 =
1

φ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d
∑
χ

χ(−1) τ(χ)χ(d)
∑

m≤ qT
2πd

Λ(m)χ(m) logηm

+ O

( ∑
d≤
√

qT
2π

(d,q)=1

logj−η d
∑

m≤ qT
2πd

(m,q)>1

Λ(m) logηm

)
.
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The error term in the right of the above equation is equal to

∑
d≤
√

qT
2π

(d,q)=1

logj−η d
∑
p|q

p:prime

log p
∑
α

pα≤ qT
2πd

(log pα)η .

The number of terms in the innermost sum of the above is

≤
log qT

2πd

log p
≤ log qT

log p
.

So, the error term can be bounded by

logη+1 qT
∑
p|q

p:prime

1
∑

d≤
√

qT
2π

logj−η d

It is easy to see that

∑
p|q

p:prime

1� log q.

Using this and Lemma 3.2, the error term is

�j,η,ε (qT )
1
2
+ε.



74

So, we get

S1 =
1

φ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d
∑
χ

χ(−1) τ(χ)χ(d)
∑

m≤ qT
2πd

Λ(m)χ(m) logηm

+ Oj,η,ε

(
(qT )

1
2
+ε
)

=
τ(χ0)

φ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d
∑

m≤ qT
2πd

Λ(m)χ0(m) logηm

+
1

φ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d
∑
χ 6=χ0

χ(−1) τ(χ)χ(d)
∑

m≤ qT
2πd

Λ(m)χ(m) logηm

+ Oj,η,ε

(
(qT )

1
2
+ε
)
. (7.20)

Using Proposition 5.4 in (7.20), we obtain

S1 =
τ(χ0)qT

2πφ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d

d

η∑
ν=0

(
η

ν

)
(−1)η−ν(η − ν)!

(
log

qT

2πd

)ν

+Oj,η,ε

(
(qT )

1
2
+ε
)

+OA,η

 qT

φ(q)

∑
d≤
√

qT
2π

logj−η d

d

∑
χ

|τ(χ)| exp

(
−c6

√
log

qT

2πd

) ,

(7.21)

where c6 = min (c2, c5). This holds uniformly with respect to q in the range q ≤ logA T .

Since the number of characters modulo q is φ(q), τ(χ0) = µ(q) and |τ(χ)| ≤ √q for

any character χ modulo q, we can conclude that

S1 =
µ(q)qT

2πφ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d

d

η∑
ν=0

(
η

ν

)
(−1)η−ν(η − ν)!

(
log

qT

2πd

)ν

+Oj,η,ε

(
(qT )

1
2
+ε
)

+OA,η

q 3
2T

∑
d≤
√

qT
2π

logj−η d

d
exp

(
−c6

√
log

qT

2πd

) . (7.22)
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If d ≤
√

qT
2π

, then we have

exp

(
−c6

√
log

qT

2πd

)
≤ exp

(
−c7

√
log qT

)
,

where 0 < c7 < c6. So the error terms in the right of (7.22) is

�A,j,η q
3
2T (log qT )j−η exp

(
−c7

√
log qT

) ∑
d≤
√

qT
2π

1

d
.

By (3.27), since q ≤ logA T , the error term can be majorized by

C(A, j, η)T exp
(
−c8

√
log T

)
,

where C(A, j, η) is a non-effective constant and 0 < c8 < c7. Thus, (7.22) becomes

S1 =
µ(q)qT

2πφ(q)

∑
d≤
√

qT
2π

ψ(d) logj−η d

d

η∑
ν=0

(
η

ν

)
(−1)η−ν(η − ν)!

(
log

qT

2πd

)ν
+OA,j,η

(
T exp

(
−c8

√
log T

))
. (7.23)

In (7.23) replacing

(
log

qT

2πd

)ν
by

ν∑
κ=0

(
ν

κ

)
(− log d)κ

(
log

qT

2π

)ν−κ
gives

S1 =
µ(q)qT

2πφ(q)

η∑
ν=0

ν∑
κ=0

(
η

ν

)(
ν

κ

)
(−1)η+κ−ν(η − ν)!

(
log

qT

2π

)ν−κ ∑
d≤
√

qT
2π

ψ(d) logj+κ−η d

d

+OA,j,η

(
T exp

(
−c8

√
log T

))
(7.24)

if q ≤ logA T . By Proposition 5.1, we have

(−1)j+κ−η
∑

d≤
√

qT
2π

ψ(d) logj+κ−η d

d
= L(j+κ−η)(1, ψ) +Oj+κ−η

(
logj+ν−η−κ qT√

qT

)
.
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Using this in (7.24), we get

S1 =
µ(q)qT

2πφ(q)

η∑
ν=0

ν∑
κ=0

(
η

ν

)(
ν

κ

)
(−1)j−ν(η − ν)!

(
log

qT

2π

)ν−κ
L(j+κ−η)(1, ψ)

+OA,j,η

(
T exp

(
−c8

√
log T

))
(7.25)

for q ≤ logA T .

To treat S2 we note that

S2 =
∑

m≤
√

qT
2π

∑
d≤ qT

2πm

ψ(d) (log d)j−η Λ(m) e

(
−md
q

)
logηm

=

{ ∑
m≤
√

qT
2π

(m,q)=1

∑
d≤ qT

2πm

+
∑

m≤
√

qT
2π

(m,q)>1

∑
d≤ qT

2πm

}
ψ(d) (log d)j−η Λ(m) e

(
−md
q

)
logηm

= S21 + S22, say. (7.26)

We first deal with S22. We rewrite S22 in the form

∑
m≤
√

qT
2π

(m,q)>1

Λ(m) logηm
∑
d≤ qT

2πm

ψ(d) (log d)j−η e

( −md
(m,q)
q

(m,q)

)
.

In the sum over d each term with (d, q) > 1 vanishes, since ψ(d) = 0, so we can assume

(d, q) = 1 and this gives

(
md

(m, q)
,

q

(m, q)

)
= 1. Thus, we can use (7.8) and have

S22 =
∑

m≤
√

qT
2π

(m,q)>1

Λ(m) logηm
∑
d≤ qT

2πm

ψ(d)(log d)j−η
1

φ
(

q
(m,q)

) ∑
χ(mod q

(m,q))

χ(−1)τ(χ)χ

(
md

(m, q)

)

=
∑

m≤
√

qT
2π

(m,q)>1

Λ(m)(logm)η
1

φ
(

q
(m,q)

) ∑
χ(mod q

(m,q))

χ(−1)τ(χ)χ

(
m

(m, q)

) ∑
d≤ qT

2πm

(ψχ) (d) logj−η d.

(7.27)
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Since ψ is a non-principal character modulo q and χ is a character modulo q/(m, q),

ψχ is a character modulo q. If ψχ were principal, then ψ(n)χ(n) = 1 for any n with

(n, q) = 1. So ψ(n) = χ(n), and since the period of χ is equal to q/(m, q) < q , ((m, q) >

1), this would contradict the primitivity of ψ. Hence, ψχ is non-principal for any χ

modulo q/(m, q). Then the Pólya-Vinogradov inequality and (7.10) implies that

∑
d≤ qT

2πm

(ψχ) (d) logj−η d� √q(log q) logj−η (qT ) (7.28)

for any χ modulo q/(m, q). Combining (7.27), (7.28) and the following facts that

|τ(χ)| ≤
√

q

(m, q)

for any character χ modulo q/(m, q), and the number of characters modulo q/(m, q) is

φ (q/(m, q)), we obtain

S22 �
√
q(log q) logj−η (qT )

∑
m≤
√

qT
2π

(m,q)>1

Λ(m)(logm)η
√

q

(m, q)

By the prime number theorem, the last equation becomes

S22 �ε,j,A (T )
1
2
+ε (7.29)

for q ≤ logA T .

To estimate S21, as we did S22, we use (7.8) to obtain

S21 =
1

φ(q)

∑
χ(mod q)

χ(−1)τ(χ)
∑

m≤
√

qT
2π

Λ(m)χ(m) logηm
∑
d≤ qT

2πm

(ψχ) (d) logj−η d.
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We separate the terms with χ = ψ and put

S211 :=
1

φ(q)
ψ(−1)τ(ψ)

∑
m≤
√

qT
2π

Λ(m)ψ(m) logηm
∑
d≤ qT

2πm

χ0(d) logj−η d,

S212 :=S21 − S211 (7.30)

=
1

φ(q)

∑
χ 6=ψ

χ(−1)τ(χ)
∑

m≤
√

qT
2π

Λ(m)χ(m) logηm
∑
d≤ qT

2πm

(ψχ) (d) logj−η d.

We first deal with the innermost sum in S212. Since χ 6= ψ, ψχ is non-principal.

Hence, by the Pólya-Vinogradov inequality and (7.10), we can write

∑
d≤ qT

2πm

(ψχ) (d) logj−η d� √q(log q)

(
log

qT

2πm

)j−η
.

Using this and the prime number theorem, we have

S212 �
q
√
T (log q) logj(qT )

φ(q)

∑
χ 6=ψ

|τ(χ)|.

Since the number of characters modulo q is φ(q) and |τ(χ)| ≤ √q for any non-principal

character χ,

S212 �A,ε,j T
1
2
+ε (7.31)

for q ≤ logA T .



79

To treat S211, by (7.14), we first note that

∑
1≤d≤ qT

2πm

χ0(d) logj−η d = φ(q)
T

2πm

(
log

qT

2πm

)j−η
+O

(
φ(q)

(
log

qT

2πm

)j−η)

− aj−ηφ(q)
T

2πm

j−η−aj−η∑
ν=0

(−1)ν
(j − η)!

(j − η − aj−η − ν)!

(
log

qT

2πm

)j−η−aj−η−ν
= φ(q)

T

2πm

j−η∑
κ=0

(
j − η
κ

)
(−1)κ

(
log

qT

2π

)j−η−κ
logκm

− aj−ηφ(q)
T

2πm

j−η−aj−η∑
ν=0

(−1)ν
(j − η)!

(j − η − aj−η − ν)!

j−η−aj−η−ν∑
κ=0

(
j − η − aj−η − ν

κ

)
(−1)κ

(
log

qT

2π

)j−η−aj−η−ν−κ
logκm

+O

(
φ(q)

(
log

qT

2πm

)j−η)
.

Using this result in S211, we have

S211 = ψ(−1)τ(ψ)
T

2π

j−η∑
κ=0

(
j − η
κ

)
(−1)κ

(
log

qT

2π

)j−η−κ ∑
m≤
√

qT
2π

Λ(m)ψ(m) logκ+ηm

m

− aj−ηψ(−1)τ(ψ)
T

2π

j−η−aj−η∑
ν=0

(−1)ν(j − η)!

(j − η − aj−η − ν)!

j−η−aj−η−ν∑
κ=0

(
j − η − aj−η − ν

κ

)
(−1)κ

(
log

qT

2π

)j−η−aj−η−ν−κ ∑
m≤
√

qT
2π

Λ(m)ψ(m) logκ+ηm

m

+O

|τ(ψ)|
∑

m≤
√

qT
2π

Λ(m) (logm)η
(

log
qT

2πm

)j−η . (7.32)

It easily follows from the prime number theorem and the fact that |τ(ψ)| =
√
q that

the above error term is

�A,j,ε T
1
2
+ε (7.33)

in the range q ≤ logA T .
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Combining (7.30), (7.31), (7.32) and (7.33) gives

S21 = ψ(−1)τ(ψ)
T

2π

j−η∑
κ=0

(
j − η
κ

)
(−1)κ

(
log

qT

2π

)j−η−κ ∑
m≤
√

qT
2π

Λ(m)ψ(m) logκ+ηm

m

− aj−ηψ(−1)τ(ψ)
T

2π

j−η−aj−η∑
ν=0

(−1)ν(j − η)!

(j − η − aj−η − ν)!

j−η−aj−η−ν∑
κ=0

(
j − η − aj−η − ν

κ

)
(−1)κ(

log
qT

2π

)j−η−aj−η−ν−κ ∑
m≤
√

qT
2π

Λ(m)ψ(m) logκ+ηm

m
+OA,ε,j

(
T

1
2
+ε
)
. (7.34)

if q ≤ logA T . It follows from Proposition 5.3 that

(−1)κ+η+1
∑

m≤
√

qT
2π

Λ(m)ψ(m) logκ+ηm

m
=

(
L′

L

)(κ+η) (
1, ψ

)
+OA,κ+η

(
exp

(
−c2

√
1

2
log

qT

2π

))
,

(7.35)

under the same condition q ≤ logA T . Then, using (7.35) and the fact |τ(ψ)| = √q in

(7.34), we have

S21 = −ψ(−1)τ(ψ)
T

2π

j−η∑
κ=0

(
j − η
κ

)
(−1)η

(
log

qT

2π

)j−η−κ(
L′

L

)(κ+η) (
1, ψ

)
+ aj−ηψ(−1)τ(ψ)

T

2π

j−η−aj−η∑
ν=0

(−1)ν+η(j − η)!

(j − η − aj−η − ν)!

j−η−aj−η−ν∑
κ=0

(
j − η − aj−η − ν

κ

)
(

log
qT

2π

)j−η−aj−η−ν−κ(L′
L

)(κ+η) (
1, ψ

)
+OA,j,η

(
T exp

(
−c9

√
log T

))
,

(7.36)

where 0 < c9 < c2/
√

2 and q ≤ logA T .
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Combining (7.26), (7.29) and (7.36), we have

S2 = −ψ(−1)τ(ψ)
T

2π

j−η∑
κ=0

(
j − η
κ

)
(−1)η

(
log

qT

2π

)j−η−κ(
L′

L

)(κ+η) (
1, ψ

)
+ aj−ηψ(−1)τ(ψ)

T

2π

j−η−aj−η∑
ν=0

(−1)ν+η(j − η)!

(j − η − aj−η − ν)!

j−η−aj−η−ν∑
κ=0

(
j − η − aj−η − ν

κ

)
(

log
qT

2π

)j−η−aj−η−ν−κ(L′
L

)(κ+η) (
1, ψ

)
+OA,j,η

(
T exp

(
−c9

√
log T

))
,

(7.37)

for q ≤ logA T .

Finally, S3 can be treated as S1. In all steps in the estimation of S1, we should

replace the range 1 ≤ m ≤
√

qT
2πd

with 1 ≤ m ≤
√

qT
2π

and then, it is easy to verify that

for q ≤ logA T

S3 =
τ(χ0)

φ(q)

√
qT

2π

η∑
ν=0

(
η

ν

)
(−1)η−ν(η − ν)!

(
log

qT

2π

)ν ∑
d≤
√

qT
2π

ψ(d) logj−η d

+Oj,η,ε

(
(qT )

1
2
+ε
)

+OA,η


√
qT

φ(q)

∑
d≤
√

qT
2π

logj−η d
∑
χ

|τ(χ)| exp

(
−c6

√
log

qT

2π

) ,

(7.38)

which is analogous to (7.21). By Lemma 3.2, it is easy to see that the above error

terms can be bounded by T exp
(
−c10

√
log T

)
in the range considered for q. This

upper bound is also valid for the first part in the right of (7.38) since

∑
d≤
√

qT
2π

ψ(d) logj−η d� √q(log q) logj−η(qT ).

Then, we have

S3 �A,j,η T exp
(
−c10

√
log T

)
. (7.39)
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Combining (7.19), (7.25), (7.37) and (7.39), we obtain

∑
1≤n≤ qT

2π

bh(n)e

(
−n
q

)
logj−h n

=− µ(q)qT

2πφ(q)

j−h∑
η=0

η∑
ν=0

ν∑
κ=0

(
j − h
η

)(
η

ν

)(
ν

κ

)
(−1)j+h−ν(η − ν)!

(
log

qT

2π

)ν−κ
L(j+κ−η)(1, ψ)

+ ψ(−1)τ(ψ)
T

2π

j−h∑
η=0

j−η∑
κ=0

(
j − h
η

)(
j − η
κ

)
(−1)h+η

(
log

qT

2π

)j−η−κ(
L′

L

)(κ+η) (
1, ψ

)
− ψ(−1)τ(ψ)

T

2π

j−h∑
η=0

j−η−aj−η∑
ν=0

j−η−aj−η−ν∑
κ=0

(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν

κ

)
(−1)h+ν+η

(
log

qT

2π

)j−η−aj−η−ν−κ(L′
L

)(κ+η) (
1, ψ

)
+OA,j,h

(
T exp

(
−c11

√
log T

))
, (7.40)

where 0 < c11 < min {c8, c9, c10} and q ≤ logA T . Since τ(ψ) = ψ(−1)τ
(
ψ
)

and

|τ(ψ)| = √q, combining (7.18) and (7.40) gives

A2(j − h, h) =− µ(q)ψ(−1)τ(ψ)T

2πφ(q)

j−h∑
η=0

η∑
ν=0

ν∑
κ=0

(
j − h
η

)
(
η

ν

)(
ν

κ

)
(−1)j+h−ν(η − ν)!

(
log

qT

2π

)ν−κ
L(j+κ−η)(1, ψ)

+
T

2π

j−h∑
η=0

j−η∑
κ=0

(
j − h
η

)(
j − η
κ

)
(−1)h+η

(
log

qT

2π

)j−η−κ(
L′

L

)(κ+η) (
1, ψ

)
− T

2π

j−h∑
η=0

j−η−aj−η∑
ν=0

j−η−aj−η−ν∑
κ=0

(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν

κ

)
(−1)h+ν+η

(
log

qT

2π

)j−η−aj−η−ν−κ(L′
L

)(κ+η) (
1, ψ

)
+OA,j,h

(
T exp

(
−c11

√
log T

))
. (7.41)
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So, we have

A2(0, 0) =− µ(q)ψ(−1)τ(ψ)

φ(q)

T

2π
L(1, ψ) +

T

2π

(
L′

L

)(
1, ψ

)

+OA

(
T exp

(
−c11

√
log T

))
.

Using this in (7.17), after this, taking complex conjugate gives

I3 =
T

2π
log

T

2π
− T

2π
− µ(q)ψ(−1)τ(ψ)T

2πφ(q)
L(1, ψ) +

T

2π

L′

L
(1, ψ) +OA

(
T exp

(
−c11

√
log T

))

for q ≤ logA T . Combining this with (7.1) and (7.2) , we get Theorem 1.2 for the

case j = 0 under the restriction T ∈ F , but this can be easily removed, as we did in

Theorem 1.1.

In the case j ≥ 1 we can deduce from (7.17) and (7.41) that

I3 =− µ(q)ψ(−1)τ(ψ)T

2πφ(q)

j∑
h=0

j−h∑
η=0

η∑
ν=0

ν∑
κ=0

(
j

h

)(
j − h
η

)
(
η

ν

)(
ν

κ

)
(−1)h−ν(η − ν)!

(
log

qT

2π

)ν−κ
L(j+κ−η)(1, ψ)

+
T

2π

j∑
h=0

j−h∑
η=0

j−η∑
κ=0

(
j

h

)(
j − h
η

)(
j − η
κ

)
(−1)j+h+η

(
log

qT

2π

)j−η−κ(
L′

L

)(κ+η) (
1, ψ

)
− T

2π

j∑
h=0

j−h∑
η=0

j−η−aj−η∑
ν=0

j−η−aj−η−ν∑
κ=0

(
j

h

)(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν

κ

)
(−1)j+h+ν+η

(
log

qT

2π

)j−η−aj−η−ν−κ(L′
L

)(κ+η) (
1, ψ

)
+OA,j

(
T exp

(
−c11

√
log T

))
.
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Taking complex conjugate of the above equation and combining this result with (7.1)

and (7.2), we get

∑
0<γ≤T

L(j)(ρ, ψ) = −µ(q)ψ(−1)τ(ψ)T

2πφ(q)

j∑
h=0

j−h∑
η=0

η∑
ν=0

ν∑
κ=0

(
j

h

)(
j − h
η

)
(
η

ν

)(
ν

κ

)
(−1)h−ν(η − ν)!

(
log

qT

2π

)ν−κ
L(j+κ−η)(1, ψ)

+
T

2π

j∑
h=0

j−h∑
η=0

j−η∑
κ=0

(
j

h

)(
j − h
η

)(
j − η
κ

)
(−1)j+h+η

(
log

qT

2π

)j−η−κ(
L′

L

)(κ+η)

(1, ψ)

− T

2π

j∑
h=0

j−h∑
η=0

j−η−aj−η∑
ν=0

j−η−aj−η−ν∑
κ=0

(
j

h

)(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν

κ

)
(−1)j+h+ν+η

(
log

qT

2π

)j−η−aj−η−ν−κ(L′
L

)(κ+η)

(1, ψ)

+OA,j

(
T exp

(
−c11

√
log T

))
(7.42)

if j ≥ 1 and q ≤ logA T . By the substitutions ω = ν − κ in the first part, ω = η + κ in

the second part, and ω = η + aj−η + ν + κ in the third part of the right hand side of

(7.42), we obtain

∑
0<γ≤T

L(j)(ρ, ψ) =− µ(q)ψ(−1)τ(ψ)

φ(q)

T

2π

j∑
ω=0

U1(ω, ψ)

(
log

qT

2π

)ω

+
T

2π

j∑
ω=0

U2(ω)

(
log

qT

2π

)j−ω (
L′

L

)(ω)

(1, ψ)

− T

2π

j∑
ω=0

U3(ω, ψ)

(
log

qT

2π

)j−ω
+OA,j

(
T exp

(
−c11

√
log T

))
, (7.43)
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where

U1(ω, ψ) :=

j−ω∑
h=0

j−h∑
η=ω

η∑
ν=ω

(
j

h

)(
j − h
η

)(
η

ν

)(
ν

ν − ω

)
(−1)h−ν(η − ν)!L(j+ν−ω−η)(1, ψ),

U2(ω) :=

j∑
h=0

min(j−h, ω)∑
η=0

(
j

h

)(
j − h
η

)(
j − η
ω − η

)
(−1)j+η+h,

U3(ω, ψ) :=

j∑
h=0

min{j−h,ω−1+Jω
j

K(1−ah)}∑
η=0

ω−η−aj−η∑
ν=0

(
j

h

)(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν
ω − η − aj−η − ν

)
(−1)j+h+ν+η

(
L′

L

)(ω−aj−η−ν)

(1, ψ) .

We now make some simplifications on U1(ω, ψ). We have

U1(ω, ψ) =

j∑
η=ω

η∑
ν=ω

j−η∑
h=0

(
j

η

)(
j − η
h

)(
η

ν

)(
ν

ν − ω

)
(−1)h−ν(η − ν)!L(j+ν−ω−η)(1, ψ).

Since

j−η∑
h=0

(
j − η
h

)
(−1)h = 0 unless j = η. Then, we get

U1(ω, ψ) =
j!

ω!

j∑
ν=ω

(−1)ν

(ν − ω)!
L(ν−ω)(1, ψ).

We calculate U2(ω). We have

U2(ω) =
ω∑
η=0

j−η∑
h=0

(
j

h

)(
j − h
η

)(
j − η
ω − η

)
(−1)j+η+h

=
ω∑
η=0

(−1)j+η
(
j

η

)(
j − η
ω − η

) j−η∑
h=0

(
j − η
h

)
(−1)h.

The inner-sum of the last equation is 0 unless j = η. Thus, U2(ω) = 0 if ω < j, and

U2(j) = 1.



86

If ω < j, then

U3(ω, ψ) =

j∑
h=0

min{j−h,ω−1}∑
η=0

ω−η−aj−η∑
ν=0

(
j

h

)(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν
ω − η − aj−η − ν

)
(−1)j+h+ν+η

(
L′

L

)(ω−aj−η−ν)

(1, ψ)

=
ω−1∑
η=0

ω−η−aj−η∑
ν=0

j−η∑
h=0

(
j

η

)(
j − η
h

)
(j − η)!aj−η

(j − η − aj−η − ν)!(
j − η − aj−η − ν
ω − η − aj−η − ν

)
(−1)j+h+ν+η

(
L′

L

)(ω−aj−η−ν)

(1, ψ) .

Since η ≤ ω − 1 < j, the inner-most sum over h vanishes. So U3(ω, ψ) = 0 for any

ω < j. For the case ω = j, we have

U3(j, ψ) =

j∑
h=0

j−h∑
η=0

j−η−aj−η∑
ν=0

(
j

h

)(
j − h
η

)
(j − η)!aj−η

(j − η − aj−η − ν)!

(−1)j+h+ν+η
(
L′

L

)(j−aj−η−ν)

(1, ψ)

=

j∑
η=0

j−η−aj−η∑
ν=0

j−η∑
h=0

(
j

η

)(
j − η
h

)
(j − η)!aj−η

(j − η − aj−η − ν)!

(−1)j+h+ν+η
(
L′

L

)(j−aj−η−ν)

(1, ψ) .

If η 6= j, then

j−η∑
h=0

(
j − η
h

)
(−1)h = 0; if η = j, then aj−η = 0. Thus, U3(j, ψ) = 0.

Combining these results on U1(ω, ψ), U2(ω) andU3(ω, ψ) with (7.43), and then

removing the restriction T ∈ F , we obtain Theorem 1.2 for j ≥ 1.
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