
CLASSICAL AND MODERN TREATMENTS OF RIEMANN ZETA FUNCTION

by

Murat Güngör
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ABSTRACT

CLASSICAL AND MODERN TREATMENTS OF

RIEMANN ZETA FUNCTION

Tate’s doctoral thesis, Fourier Analysis in Number Fields and Hecke’s Zeta-

Functions, on the analytic properties of the class of L-functions introduced by Erich

Hecke, is one of the relatively few such dissertations that have become a byword.

In it the methods, novel for that time, of Fourier analysis on groups of adeles, were

worked out to recover Hecke’s results. In this M.S. thesis, after a brief chapter on the

classical treatment of Riemann zeta function, we discuss the local theory, restricted

direct products, and the global theory following Tate’s thesis. We compute prime

divisors of quadratic fields and quasi-characters of p-adic fields.
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ÖZET

KLASİK VE MODERN YÖNTEMLERLE

RIEMANN ZETA FONKSİYONUNUN İNCELENMESİ

Tate’in doktora tezi, Sayı Cisimlerinde Fourier Analizi ve Hecke’nin Zeta Fonksi-

yonları, adı deyimleşmiş ender tezlerden biridir. Erich Hecke’nin L-fonksiyonlarının

analitik özelliklerini konu edinen bu tezde, adeller grubu üzerinde Fourier analizi yapıla-

rak Hecke’nin sonuçları yeniden elde edilmiştir. Bu yüksek lisans tezinde, Riemann

zeta fonksiyonunun klasik yöntemle ele alınması üzerine kısa bir bölümün ardından,

Tate’in tezi ışığında yerel teori, sınırlı direkt çarpım ve global teori incelenmiştir. Ayrıca

kuadratik cisimlerin asal bölenleri ve p-adik cisimlerin kuasi-karakterleri bulunmuştur.
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1. CLASSICAL TREATMENT OF RIEMANN ZETA

FUNCTION

We begin this chapter with the definition of Riemann zeta function ζ. We continue

with the expression of ζ as an infinite product. Finally, we give the meromorphic

continuation of ζ to the complex plane, and prove its functional equation.

1.1. Definition of Riemann Zeta Function

In real analysis, real powers of positive real numbers are defined. With the

knowledge of complex exponential function this quickly extends to complex powers:

for each t ∈ (0,∞) and z ∈ C, we have tz = ez log t. In particular, n−z is a complex

number for all n ∈ N, z ∈ C. If t ∈ (0,∞) and z ∈ C, then |tz| = |ez log t| = eRe (z log t) =

e(Re z) log t = tRe z.

Theorem 1.1.1. For each z ∈ C with Re z > 1, the complex series
∑∞

n=1 n
−z is

absolutely convergent.

Proof. Let z ∈ C be arbitrary with Re z > 1. For all n ∈ N, we have |n−z| = nRe (−z) =

n−Re z = 1
nRe z . Thus

∑k
n=1 |n−z| =

∑k
n=1

1
nRe z for all k ∈ N. By introductory real

analysis, the p-series
∑∞

n=1
1
np is known to converge for p > 1. Consequently, the series∑∞

n=1 n
−z is absolutely convergent. q.e.d.

Absolutely convergent complex series are convergent, so the series
∑∞

n=1 n
−z con-

verges to a complex number for each z ∈ C with Re z > 1.

Definition 1.1.2. Riemann zeta function ζ is the complex-valued map defined on the

set {z ∈ C : Re z > 1} by ζ(z) :=
∑∞

n=1 n
−z.
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1.2. Expression as an Infinite Product

Infinite product generated by a complex sequence (zn)n∈N is defined, in analogy

with the definition of infinite sums, as the sequence
(∏k

n=1 zn
)
k∈N of partial products.

If the limit of
(∏k

n=1 zn
)
k∈N exists, then the infinite product of (zn)n∈N is said to exist,

and is defined as limk→∞
∏k

n=1 zn. We shall denote, as we do with infinite series, both

the sequence
(∏k

n=1 zn
)
k∈N and its limit, if it exists, by

∏∞
n=1 zn. The next result is

due to Euler (Theorem VII.8.17 of Conway [1], p. 193).

Theorem 1.2.1. Let (pn) be the sequence (2, 3, 5, . . .) of prime numbers. For each

z ∈ C with Re z > 1, the equality

ζ(z) =
∞∏
n=1

1

1− p−zn

holds.

Proof. Let z ∈ C be arbitrary with Re z > 1. We are to show that the infinite

product on the right-hand side exists, and is equal to ζ(z). For each prime p, we

have |p−z| = 1
pRe z <

1
p
< 1 so that the complex number (1 − p−z)−1 is the sum of the

geometric series
∑∞

n=0(p
−z)n. If p and q are distinct primes, then the Cauchy product

of the series
∑∞

n=0(p
−z)n and

∑∞
n=0(q

−z)n is absolutely convergent since these two series

are so, and we have

∞∑
n=0

n∑
m=0

(p−z)m(q−z)n−m =

(
1

1− p−z

)(
1

1− q−z

)
.

Consider now the series
∑

i,j≥0(p
iqj)−z. This series is absolutely convergent since each

term of
∑

i,j≥0 |(piqj)−z| appear exactly once as a term of
∑∞

n=1 |n−z|. Thus the series∑
i,j≥0(p

iqj)−z converges to one and only one complex number irrespective of the enu-

meration of its terms. If we choose the enumeration 1, p−z, q−z, (p2)−z, (pq)−z, (q2)−z, . . .

then
(∑k

n=0

∑n
m=0(p

m)−z(qn−m)−z
)
k∈N∪{0}

is a subsequence of the sequence of partial

sums of
∑

i,j≥0(p
iqj)−z, and we get

∑
i,j≥0(p

iqj)−z =
∑∞

n=0

∑n
m=0(p

m)−z(qn−m)−z =
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∑∞
n=0

∑n
m=0(p

−z)m(q−z)n−m =
(

1
1−p−z

)(
1

1−q−z

)
. Inductively, this result can be general-

ized to the case of a finite number of primes so that

∑
i1,...,ik≥0

(pi11 · · · p
ik
k )−z =

(
1

1− p−z1

)
· · ·
(

1

1− p−zk

)

for all k ∈ N.

Let πk :=
∏k

n=1(1 − p−zn )−1 and σk :=
∑k

n=1 n
−z for all k ∈ N. Take an arbi-

trary ε > 0. Since
∑∞

n=1 n
−z is absolutely convergent, there exists K ∈ N such that∑∞

n=k |n−z| < ε for all k ≥ K. Given k ∈ N, each summand of
∑k

n=1 n
−z appears ex-

actly once as a term of
∑

i1,...,ik≥0(p
i1
1 · · · p

ik
k )−z and each term of

∑
i1,...,ik≥0(p

i1
1 · · · p

ik
k )−z

appears exactly once as a term of
∑∞

n=1 n
−z. Hence, for any k ≥ K, we have

|πk − σk| =

∣∣∣∣∣
k∏

n=1

(1− p−zn )−1 −
k∑

n=1

n−z

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i1,...,ik≥0

(pi11 · · · p
ik
k )−z −

k∑
n=1

n−z

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

p
i1
1 ···p

ik
k >k

(pi11 · · · p
ik
k )−z

∣∣∣∣∣∣∣
≤

∑
p

i1
1 ···p

ik
k >k

|(pi11 · · · p
ik
k )−z|

≤
∞∑

n=k+1

|n−z|

< ε.

Thus we have proved limk→∞(πk − σk) = 0, which implies

∞∏
n=1

1

1− p−zn
= lim

k→∞
πk = lim

k→∞
σk = ζ(z).

q.e.d.
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1.3. Meromorphic Continuation and Functional Equation

We begin this section by proving that Riemann zeta function is holomorphic on

its domain of definition. For an open subset G of C, we denote by C(G) the set of all

complex-valued continuous functions on G, and by H(G) the set of all holomorphic

functions on G. We endow C(G) with the metric of uniform convergence on compact

subsets.

Theorem 1.3.1. Riemann zeta function is holomorphic on {z ∈ C : Re z > 1}.

Proof. Let G := {z ∈ C : Re z > 1}. For all n ∈ N, the map un : G → C defined

by un(z) := n−z is holomorphic. Then fk :=
∑k

n=1 un belongs to H(G) for all k ∈ N.

By definition of Riemann zeta function, the sequence (fk) has pointwise limit ζ. For

ε > 0, let Gε := {z ∈ C : Re z ≥ 1 + ε}. If Mn := n−(1+ε) for all n ∈ N, then

|un(z)| = |n−z| = n−Re z ≤ n−(1+ε) = Mn for all n ∈ N, z ∈ Gε. Since
∑∞

n=1Mn < ∞,

the sequence (fk) is uniformly convergent on Gε by Weierstrass M-test. If K is a

compact subset of G, then K is sequentially compact and closed so that K ⊆ Gε for

some ε > 0. Hence, (fk) converges to ζ uniformly on compact subsets of G. Thus

ζ ∈ C(G) and (fk) converges to ζ in the metric space C(G). Since fk ∈ H(G) for all

k ∈ N and H(G) is closed in C(G) (Theorem VII.2.1 of Conway [1], p. 151), we get

ζ ∈ H(G). q.e.d.

Meromorphic continuation of Riemann zeta function can be carried out in several

ways. We present below the one which makes use of Poisson summation formula. In

this respect, the proof to be given shows parallelism with the proof of the meromorphic

continuation of the global zeta function in Tate’s thesis [2]. When compared to the

style of exposition adopted until now, we shall be rather sketchy.

Let f : R → [0,∞) be a continuous function such that the integral
∫∞
−∞ f(x) dx

exists as an improper Riemann integral. If f is increasing on (−∞, 0] and decreasing
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on [0,∞), then we have

∞∑
m=−∞

f(m) =
∞∑

n=−∞

∫ ∞
−∞

f(t)e−2πint dt,

each series being absolutely convergent (Theorem 11.24 of Apostol [3], p. 332). This

is a particular way of expressing Poisson summation formula. It is used to derive for

x > 0 the transformation equation

θ(x) = x−
1
2 θ(x−1)

for the theta function θ : (0,∞) → (0,∞) which is defined by θ(x) :=
∑∞

n=−∞ e
−n2πx

(Apostol [3], p. 334). We shall use this equation to obtain the meromorphic contin-

uation of Riemann zeta function to whole complex plane at one stroke. We follow

Whittaker and Watson [4].

Fix an arbitrary complex number s with Re s > 2. Let us denote Re s by σ for

simplicity. By a change of variables, we get from Γ
(

1
2
s
)

=
∫∞

0
e−xx

1
2
s−1 dx (Theorem

VII.7.15 of Conway [1], p. 180) the equality

n−sΓ

(
1

2
s

)
π−

1
2
s =

∫ ∞
0

e−n
2πxx

1
2
s−1 dx.

Summing up over all positive integers n, we have

ζ(s)Γ

(
1

2
s

)
π−

1
2
s = lim

k→∞

∫ ∞
0

k∑
n=1

e−n
2πxx

1
2
s−1 dx.

If we define ϑ : (0,∞) → (0,∞) by ϑ(x) :=
∑∞

n=1 e
−n2πx then θ(x) = 1 + 2ϑ(x)

for all x > 0, and the transformation equation for theta yields 1 + 2ϑ(x) = x−
1
2

(
1 +

2ϑ(x−1)
)
. Thus we see limx→0 x

1
2ϑ(x) = 1

2
whence the convergence of

∫∞
0
ϑ(x)x

1
2
s−1 dx.
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Consequently, we have

ζ(s)Γ

(
1

2
s

)
π−

1
2
s = lim

k→∞

(∫ ∞
0

ϑ(x)x
1
2
s−1 dx−

∫ ∞
0

∞∑
n=k+1

e−n
2πxx

1
2
s−1 dx

)
.

The modulus of the last integral tends to zero since

∫ ∞
0

∞∑
n=k+1

e−n(k+1)πxx
1
2
σ−1 dx =

∫ ∞
0

e−(k+1)2πxx
1
2
σ−1

1− e−(k+1)πx
dx

<
1

π(k + 1)

∫ ∞
0

e−(k2+2k)πxx
1
2
σ−2 dx

=
1

π(k + 1)

(
(k2 + 2k)π

)1− 1
2
σ
Γ

(
1

2
σ − 1

)

for all k ∈ N. Thus

ζ(s)Γ

(
1

2
s

)
π−

1
2
s =

∫ ∞
0

ϑ(x)x
1
2
s−1 dx.

We have

∫ 1

0

ϑ(x)x
1
2
s−1 dx =

∫ 1

0

(
− 1

2
+

1

2
x−

1
2 + x−

1
2ϑ(x−1)

)
x

1
2
s−1 dx

= −1

s
+

1

s− 1
+

∫ 1

0

x−
1
2ϑ(x−1)x

1
2
s−1 dx

=
1

s(s− 1)
+

∫ 1

∞
x

1
2ϑ(x)x−

1
2
s+1

(
−1

x2

)
dx

=
1

s(s− 1)
+

∫ ∞
1

ϑ(x)x
1
2
(1−s)x−1 dx

so that

∫ ∞
0

ϑ(x)x
1
2
s−1 dx =

∫ 1

0

ϑ(x)x
1
2
s−1 dx+

∫ ∞
1

ϑ(x)x
1
2
s−1 dx

=
1

s(s− 1)
+

∫ ∞
1

ϑ(x)x
1
2
(1−s)x−1 dx+

∫ ∞
1

ϑ(x)x
1
2
sx−1 dx

=
1

s(s− 1)
+

∫ ∞
1

(
x

1
2
(1−s) + x

1
2
s
)
x−1ϑ(x) dx.
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Hence, we have proved

ζ(s)Γ

(
1

2
s

)
π−

1
2
s − 1

s(s− 1)
=

∫ ∞
1

(
x

1
2
(1−s) + x

1
2
s
)
x−1ϑ(x) dx

for all s ∈ C with Re s > 2. The integral on the right represents a holomorphic function

of s since ϑ(x) <
∑∞

n=1 e
−nπx = e−πx 1

1−e−πx ≤ e−πx 1
1−e−π for all x ∈ [1,∞). Moreover,

it remains unchanged when we replace s by 1− s. We proved the following (Theorems

VII.8.13 and VII.8.14 of Conway [1], pp. 192-193).

Theorem 1.3.2. Riemann zeta function ζ has a meromorphic continuation to whole

complex plane. It has a simple pole at s = 1 with residue 1, and it satisfies the

functional equation ξ(s) = ξ(1 − s) where ξ is the entire function defined by ξ(s) :=

s(s− 1)ζ(s)Γ
(

1
2
s
)
π−

1
2
s.
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2. TATE’S THESIS

In this chapter, we give a detailed treatment of some parts of Tate’s thesis [2],

including the local theory, restricted direct products, and most of the global theory.

2.1. The Local Theory

2.1.1. Introduction

Let k0 be a number field. Two valuations | |1 and | |2 on k0 are equivalent if

| |1 = | |t2 for some t > 0. Equivalence classes of nontrivial valuations are referred to as

prime divisors of k0. Every prime divisor p determines a metrizable topology on k0,

the metric completion of which is called as the completion of k0 at p.

Let k denote the completion of k0 at a prime divisor p. If | | is a representative of

p, then its restriction | |Q to Q is a valuation on Q, and is equivalent to, by Ostrowski’s

theorem (Cassels and Fröhlich [5], p. 45), either the ordinary absolute value | |∞ or

the p-adic valuation | |p for some rational prime p. In the first case, p is said to

be archimedean; in the second case, p is said to be discrete. The field k is a finite

extension of the completion of Q with respect to | |Q. This completion is R or the

p-adic field Qp according as | |Q is equivalent to | |∞ or | |p. Consequently, k is R or C

if p is archimedean, and k is a finite extension of Qp for some p if p is discrete. In the

latter case, we say that k is p-adic.

Any valuation belonging to p naturally extends to a valuation on k, and any two

such extensions are equivalent. From the collection of these equivalent valuations, we

select | | to be the ordinary absolute value if k = R, and the square of the ordinary

absolute value if k = C. If p is discrete and | | is a valuation belonging to p, then

o := {α ∈ k : |α| ≤ 1} is called as the ring of integers of k. This ring contains a unique

prime ideal {α ∈ k : |α| < 1} which we denote by p, too. With this denotation, the

symbol p becomes ambiguous; nevertheless, the meaning attached to p hereafter shall
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be clear from the context. The quotient ring o/p is a finite field. We denote the index

of an ideal a in o by N(a). In particular, the order of o/p is N(p). The ring o is a

Dedekind ring so that every proper ideal in o can be written as a positive power of p.

We define the ordinal number ord(α) of α ∈ k× as 0 if |α| = 1, as n if |α| < 1 and

αo = pn, and as −n if |α| > 1 and α−1o = pn. When k is p-adic, we select | | to be the

valuation defined by |α| := N(p)−ord(α) if α 6= 0, and |α| := 0 if α = 0.

In any case, k is a locally compact field, and a subset of k has compact closure if

and only if it is bounded in absolute value.

2.1.2. Additive Characters and Measure

If G is a locally compact abelian group and H is a subgroup of G, then there is

an isomorphism Ĝ/H ∼= H⊥ of topological groups, where H⊥ denotes the annihilator

of H in Ĝ. This result from the theory of topological groups will be used several times

in the sequel. One instance is encountered in the proof of the lemma below, by which

we shall set up a topological group isomorphism between the additive group k+ of k

and its Pontryagin dual (character group) k̂+.

Lemma 2.1.1. If ψ ∈ k̂+ is nontrivial, then ψη : k+ → S1 defined by ψη(ξ) := ψ(ηξ)

belongs to k̂+ for each η ∈ k+ and the mapping from k+ to k̂+ sending each η to the

character ψη is an isomorphism of topological groups.

Proof. Let ψ ∈ k̂+ be nontrivial. Each ψη, being the composition of the continuous

group homomorphism ξ 7→ ηξ with ψ, is in k̂+. Let βψ : k+ → k̂+ be defined by

βψ(η) := ψη. This map is an algebraic homomorphism since ψη1+η2(ξ) = ψ(η1ξ+η2ξ) =

ψ(η1ξ)ψ(η2ξ) = ψη1(ξ)ψη2(ξ) for all η1, η2, ξ ∈ k+. For any η ∈ Ker βψ, we have

ψ(ηξ) = ψη(ξ) = 1 for all ξ ∈ k+, implying η = 0 since ψ is nontrivial by hypothesis.

Hence, βψ is injective.

As βψ is an algebraic homomorphism of topological groups, it is enough to prove
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the continuity at 0 for the continuity of βψ. Take an arbitrary open neighborhood

W (K,U) of the identity character. The set K, being compact, is bounded in absolute

value, say by M > 0. Since V := ψ←(U) is an open neighborhood of 0, there exists

ε > 0 such that B(0, ε) ⊆ V . If V ′ := B
(
0, ε

M

)
, then for any η ∈ V ′, we have

ψη ∈ W (K,U) because ψη(ξ) = ψ(ηξ) ∈ ψ
(
B(0, ε)

)
⊆ U for all ξ ∈ K. Hence

βψ(V ′) ⊆ W (K,U), as desired.

In order to prove βψ : k+ → Im βψ is open, it is sufficient to show that βψ
(
B(0, ε)

)
is open in Im βψ for all ε > 0, which in turn is proved if, for each ε > 0, we can find a

W (K,U) such that W (K,U)∩Im βψ ⊆ βψ
(
B(0, ε)

)
. Let ε > 0 be given. Say ψ(ξ0) 6= 1,

and let r := |ξ0| > 0. Choose M > 0 so large that Mε ≥ r, and put K := B[0,M ].

The set K is closed and, being bounded in absolute value, has compact closure; so it

is compact. If U is an open neighborhood of 1 in S1 such that ψ(ξ0) /∈ U , then the

inclusion stated must hold. Indeed, if ψξ belongs to the complement of βψ
(
B(0, ε)

)
in

Im βψ, then |ξ| ≥ ε, implying ψ(ξ0) ∈ ψ
(
B[0, r]

)
⊆ ψ

(
{η : |η| ≤ Mε}

)
⊆ ψξ(K). By

definition of U , ψ(ξ0) /∈ U , so ψξ(K) * U , which gives ψξ /∈ W (K,U).

It remains to prove that βψ is onto k̂+. The image of βψ is locally compact since

βψ : k+ → Im βψ is continuous, open and surjective. Consequently, Im βψ is closed in

k̂+ because locally compact subgroups of the Hausdorff topological groups are closed.

Hence, it is enough to show that Im βψ is dense in k̂+. Let H be the closure of Im βψ

in k̂+. The dual of k̂+/H is isomorphic to H⊥. Pontryagin duality theorem allows us

to see H⊥ as a subgroup of k+. Since ψ is nontrivial, H⊥ is the trivial subgroup in k+.

As a consequence, the dual of k̂+/H is trivial. Then the double dual of k̂+/H is also

trivial, whence the triviality of k̂+/H itself by Pontryagin duality again. Thus we get

k̂+ = H, which is to say that Im βψ is dense in k̂+. q.e.d.

Now we shall construct a special nontrivial character of k+. Let R denote the

completion of Q with respect to the restriction of any valuation in p. Thus, R is equal

to R or the p-adic field Qp for some p according as p is archimedean or discrete. We

define a map λ : R → R/Z as follows: if R = R, then λ(x) := −x + Z; if R = Qp
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for some p, then λ(x) := r + Z where r is a rational number such that (1) pnr ∈ Z

for some n ≥ 0, and (2) x − r ∈ Zp. In the latter case, such an r ∈ Q indeed exists,

for if x ∈ Qp, then x = a−np
−n + . . . + a−1p

−1 + a0 + a1p + . . . for some n ≥ 0 with

0 ≤ aj ≤ p− 1 for all j ≥ −n. If we let r to be 0 or a−np
−n + . . .+ a−1p

−1 according as

n = 0 or n > 0, then pnr ∈ Z and x− r = a0 + a1p+ . . . ∈ Zp. Moreover, if r and s are

two rational numbers satisfying (1) and (2), then r − s = (r − x) + (x− s) is a p-adic

integer which can be written as m/pn for some m ∈ Z and n ≥ 0, so we necessarily

have r − s ∈ Z; that is, r + Z = s+ Z.

Lemma 2.1.2. The map λ : R→ R/Z defined above is a nontrivial continuous group

homomorphism.

Proof. First, the case R = R. The natural homomorphism from R to R/Z is continuous

by definition of the quotient topology on R/Z, and the map x 7→ −x is a continuous

homomorphism from R to R, so their composition λ is a continuous homomorphism,

which is nontrivial since λ(1
2
) = −1

2
+ Z 6= 0 + Z = 0R/Z. Second, the case R = Qp for

some p. If λ(x) = 0R/Z, then x ∈ Zp, so λ is nontrivial since Zp is a proper subset of Qp.

If x, y ∈ Qp, then λ(x)+λ(y) is a rational number satisfying the properties (1) and (2)

defining λ(x+ y), so λ(x+ y) = λ(x) + λ(y). This proves that λ is a homomorphism.

For any sequence (xn) in Qp with xn → 0, we have |xn|p → 0, so (xn) is eventually in

Zp. Since λ(x) = 0R/Z for all x ∈ Zp, all but a finite number of terms of the sequence(
λ(xn)

)
is equal to 0R/Z so that λ(xn) → λ(0). Thus λ is continuous at 0. This implies

the continuity of λ because λ is an algebraic homomorphism of topological groups Qp

and R/Z. q.e.d.

The field extension k/R is finite and separable, so we have a map Tk/R : k → R

sending each ξ ∈ k to its trace Tk/R(ξ) ∈ R. This map is an additive surjection. It is

moreover continuous since k is isomorphic to Rn as a topological vector space if n is

the degree of the extension k/R (Proposition 4-13 of Ramakrishnan and Valenza [6],

p. 140). We let Λ := λ ◦ Tk/R. The composition of Λ with the continuous group

homomorphism t + Z 7→ e2πit is a nontrivial character of k+. Lemma 2.1.1 yields the
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next theorem.

Theorem 2.1.3. The mapping from k+ to k̂+ sending each η to the character ξ 7→

e2πiΛ(ηξ) is an isomorphism of topological groups.

Let µ be a Haar measure for k+. Fix α ∈ k× arbitrarily. Then ξ 7→ αξ is a

topological automorphism of k+ and it follows that the function µα : B(k+) → [0,∞]

defined by µα(M) := µ(αM) is a Haar measure on k+. Since Haar measure on a

locally compact group is unique up to a positive constant (Theorem 9.2.3 of Cohn [7],

p. 309), there exists cα > 0 such that µα = cαµ. This constant does not depend on the

particular choice of µ. The next lemma renders one reason for why we selected | | in

the Introduction as such.

Lemma 2.1.4. cα = |α| for all α ∈ k×.

Proof. Let α ∈ k×. For the cases k = R and k = C, the equality cα = |α| is an

easy consequence of the definition of | |. Suppose now k is p-adic. If |α| = 1, then

αo = o, so µ(αo) = |α|µ(o). If |α| < 1, then αo = pn for some n ∈ N. On writing

o as a disjoint union of cosets of pn and using the translation-invariance of µ, we get

N(pn)µ(pn) = µ(o). By definition, |α| = N(p)−n so that µ(αo) = N(pn)−1µ(o) =

N(p)−nµ(o) = |α|µ(o). If |α| > 1, then µ
(

1
α
o
)

=
∣∣ 1
α

∣∣µ(o) by the preceding case, so

|α|µ
(

1
α
o
)

= µ
(
α
(

1
α
o
))

. As a result, cα = |α| in any case. q.e.d.

By linearity of the integral and monotone convergence theorem, it follows by the

lemma above that
∫
k+ f dµ = |α|

∫
k+ f(αξ)µ(dξ) for every integrable map f : k+ → C

and α ∈ k×.

Now we select a fixed Haar measure for k+. In the rest of the Local Theory, let µ

denote the ordinary Lebesgue measure on R if k = R, twice ordinary Lebesgue measure

on C if k = C, and the Haar measure on k+ for which o gets measure N(d)−
1
2 if k is
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p-adic. This µ induces a measure µ̂ on k̂+ via the isomorphism given in Theorem 2.1.3.

It turns out that µ̂ is the dual measure of µ; in other words, µ̂ satisfies the Fourier

inversion formula. This fact is the content of the next theorem. We denote by S(k+) the

collection of all continuous, integrable maps f on k+ with continuous, integrable Fourier

transform f̂ . Fourier inversion formula holds for such functions (see “Prerequisites” of

Tate’s thesis [2]).

Theorem 2.1.5. The measure µ̂ is the dual measure of µ.

Proof. It is enough to establish the inversion formula f(ξ) =
∫
ck+ f̂(ψ)ψ(ξ)µ̂(dψ) for

particular f ∈ S(k+) and ξ ∈ k+ with f(ξ) 6= 0. We shall choose f as ξ 7→ e−πξ
2

for

k = R, as ξ 7→ e−2π|ξ| for k = C, and as the characteristic function of o for p-adic k,

and take ξ = 0 in all cases. Then ψ(ξ) = 1 for all ψ ∈ k̂+ and f(ξ) = 1 in all cases,

so the equality to be proved simplifies as 1 =
∫
ck+ f̂(ψ)µ̂(dψ), which can equivalently

be written as 1 =
∫
k+ f̂(ψη)µ(dη) by definition of µ̂. This equality will be an easy

consequence of the computations to be made in the final subsection devoted to the

computation of ρ by special zeta functions. q.e.d.

2.1.3. Multiplicative Characters and Measure

The mapping α 7→ |α| from k× into (0,∞) is continuous and multiplicative. Its

kernel, which we denote by u, is closed and bounded, hence compact. If k is p-adic,

then u is moreover open since o is open, p is closed and u = o \ p. We shall call a

continuous multiplicative map χ : k× → C× a quasi-character of k× and reserve the

term character for the case Imχ ⊆ S1. We say that a quasi-character is unramified if

χ|u ≡ 1. The next proposition is stated without proof.

Proposition 2.1.6. (1) If γ : (0,∞) → C× is a continuous multiplicative map, then

there exists a unique s ∈ C such that γ(x) = xs for all x ∈ (0,∞).

(2) Let 〈N(p)〉 be the subgroup of (0,∞) generated by N(p). If γ : 〈N(p)〉 → C× is a
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continuous multiplicative map, then there exists an s ∈ C, unique modulo 2πi/ logN(p),

such that γ(x) = xs for all x ∈ 〈N(p)〉.

Lemma 2.1.7. A map χ : k× → C× is an unramified quasi-character of k× if and only

if there exists s ∈ C such that χ(α) = |α|s for all α ∈ k×. If p is archimedean, then s

is unique; if p is discrete, then s is unique modulo 2πi/ logN(p).

Proof. Let χ : k× → C× be an unramified quasi-character. Let v(k×) := Im | |. We

define χ1 : v(k×) → C× by χ1

(
|α|
)

:= χ(α). This is a well-defined multiplicative map.

The diagram

v(k×)
χ1

##FFFFFFFF

k×

| |
OO

χ
// C×

commutes and | | is an open mapping, so χ1 is moreover continuous. The conclusion

follows by the foregoing proposition. q.e.d.

If p is archimedean, then every α ∈ k× can be written uniquely in the form α̃ρ

with α̃ ∈ u and ρ > 0. If p is discrete and π is a fixed element of ordinal number 1,

then every α ∈ k× can be written uniquely as α̃ρ with α̃ ∈ u and ρ a power of π. The

mapping α 7→ α̃ is a continuous homomorphism from k× onto u which is identity on u.

Theorem 2.1.8. A map χ : k× → C× is a quasi-character of k× if and only if there

exists a character χ̃ of u and an s ∈ C such that χ(α) = χ̃(α̃)|α|s for all α ∈ k×. The

map χ̃ is uniquely determined by χ, and s is determined as in Lemma 2.1.7.

Proof. Let χ : k× → C× be a quasi-character of k×. Then χ̃ := χ|u is a continuous

homomorphism. Since u is compact, χ̃(u) must be compact, hence bounded in C.

This forces Im χ̃ ⊆ S1. So χ̃ is a character of u. The mapping α 7→ χ(α)/χ̃(α̃) is an

unramified quasi-character of k×. The result follows by Lemma 2.1.7. q.e.d.
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Now we shall describe the characters of u. For k = R, we have u = {−1, 1}, so

there are two characters of u, the mappings α 7→ 1 and α 7→ α. For k = C, we have

u = S1. The characters of S1 are precisely those maps of the form α 7→ αm where

m ∈ Z. Finally, we consider the p-adic case. For each n ∈ N, the subgroup 1 + pn

of u is an open neighborhood of 1. Furthermore, sets of the form 1 + pn make up a

neighborhood basis at 1. This implies that for any character χ̃ of u, there is an n ∈ N

such that χ̃(1 + pn) = {1}. If χ̃ is trivial, put n := 0; otherwise, let n be the minimum

natural number satisfying χ̃(1 + pn) = {1}. We call the ideal pn =: f as the conductor

of χ̃. Characters of u are in one-to-one correspondence with characters of the factor

group u/(1 + f). This is a finite group since open subgroups of compact groups have

finite index. Consequently, u/(1 + f) has finitely many characters. Hence, characters

of u in the p-adic case may be described by a finite table of data.

We define the exponent of a quasi-character χ = χ̃| |s to be the real part of s,

which is uniquely determined by χ. A quasi-character is a character if and only if its

exponent is zero.

We will be able to select a Haar measure on the multiplicative group k× in

relation with µ. The function ν0 : B(k×) → [0,∞] defined by ν0(A) :=
∫
A
|ξ|−1µ(dξ) is

meaningful since B(k×) ⊆ B(k+). It follows by monotone convergence theorem that ν0

is a Borel measure on k×. Since k× is second countable and ν0 is finite on compact sets,

we deduce that ν0 is regular (Proposition 7.2.3 of Cohn [7], p. 206). Moreover, it is

nonzero and, as a consequence of the identity
∫
f dµ = |α|

∫
f(αξ)µ(dξ), translation-

invariant. Therefore, ν0 is a Haar measure on k×. By using linearity of the integral

and monotone convergence theorem, we obtain the lemma below.

Lemma 2.1.9. A complex-valued map g defined on k× is ν0-integrable if and only if

g| |−1 is µ-integrable on k+ \{0}. In this case,
∫
k×
g(α)ν0(dα) =

∫
k+\{0} g(ξ)|ξ|

−1 µ(dξ).

We choose our Haar measure ν on k× as ν0 if p is archimedean, and as N(p)
N(p)−1

ν0

if p is discrete. In the latter case, we have ν(u) = N(d)−
1
2 . Indeed, ν0(u) =

∫
u
dν0 =
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∫
u
|ξ|−1µ(dξ) =

∫
u
dµ = µ(u) = N(p)−1

N(p)
µ(o). Thus ν(u) = µ(o) = N(d)−

1
2 by definition

of µ.

2.1.4. The Local Zeta Function and Functional Equation

From this point on, we shall see Fourier transforms f̂ of functions f in L1(k+) as

if they have domain k+ by means of the isomorphism k̂+ ∼= k+. We define a collection

Z of functions as

Z = {f ∈ S(k+) : f |k×| |σ and f̂ |k×| |σ belong to L1(k×) for σ > 0}.

It will be convenient to denote by Q the set of all quasi-characters of k× and by QS

the set of all quasi-characters with exponents in S ⊆ R.

Definition 2.1.10. Corresponding to each f ∈ Z, the map ζf : Q(0,∞) → C defined

by ζf (χ) :=
∫
k×
f(α)χ(α)ν(dα) is called a zeta function of k.

The condition f |k×| |σ ∈ L1(k×) guarantees that ζf has a meaningful definition.

We have f̂ ∈ Z whenever f ∈ Z since the identity f(ξ) =
̂̂
f (−ξ) holds for all ξ ∈ k.

In particular, ζ bf is also a zeta function of k for f ∈ Z.

We define an equivalence relation on Q by declaring two quasi-characters to be

equivalent if their quotient is an unramified quasi-character; that is, if they agree on

u. Let us denote by C the equivalence class of χ so that C =
{
χ| |s : s ∈ C

}
. If p

is archimedean, then the quasi-characters χ| |s in C are distinct for each s ∈ C; if p

is discrete, then they are distinct for s ∈ C modulo 2πi/ logN(p). Therefore, we may

view C as a complex plane in the archimedean case and as a cylinder C/〈2πi/ logN(p)〉

(a complex plane in which points differing by an integral multiple of 2πi/ logN(p) are

identified) in the discrete case. Thus we may see a function of quasi-characters as a

function defined on a collection of planes or cylinders. Such a function will be said to

be holomorphic at a point of its domain if its restriction to the corresponding plane
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or cylinder is holomorphic at that point. Being holomorphic on a subset is defined

accordingly.

Lemma 2.1.11. Zeta functions of k are holomorphic on Q(0,∞).

Proof. Let f ∈ Z and let χ be an arbitrary quasi-character with exponent 0. The

complex-valued function s 7→
∫
k×
f(α)χ(α)|α|sν(dα) is holomorphic on the domain

{s ∈ C : Re s > 0}. In fact, it can be differentiated under the integral sign: its

derivative at s is equal to
∫
k×
f(α)χ(α) log |α||α|sν(dα). Hence, the restriction of ζf

to C ∩ Q(0,∞) is holomorphic, where C denotes the equivalence class of χ. Since χ is

arbitrary, this shows that ζf is holomorphic on Q(0,∞). q.e.d.

For each quasi-character χ of k× we define χ̂ to be the quasi-character χ−1| |. If

χ has exponent σ, then χ̂ has exponent 1− σ.

Lemma 2.1.12. For all χ ∈ Q(0,1) and f, g ∈ Z, we have ζf (χ)ζbg(χ̂) = ζ bf (χ̂)ζg(χ).

Proof. Fix χ ∈ Q(0,1) arbitrarily. Let f, g ∈ Z. Then

ζf (χ)ζbg(χ̂) =

∫
k×
f(α)χ(α)ν(dα)

∫
k×
ĝ(β)χ̂(β)ν(dβ)

=

∫
k×

∫
k×
f(α)χ(α)ĝ(β)χ̂(β)ν(dα)ν(dβ)

=

∫
k×

∫
k×
f(α)ĝ(β)χ(αβ−1)|β|ν(dα)ν(dβ)

=

∫
k××k×

f(α)ĝ(β)χ(αβ−1)|β|(ν × ν)
(
d(α, β)

)
where the last equality is a consequence of Fubini’s theorem (Theorem 5.2.2 of Cohn [7],

p. 159). For any ν × ν-integrable complex-valued map h on k× × k× it follows again

by Fubini’s theorem and the translation-invariance of ν that

∫
k××k×

h(α, β)(ν × ν)
(
d(α, β)

)
=

∫
k××k×

h(α, αβ)(ν × ν)
(
d(α, β)

)
.
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So the integral

∫
k××k×

f(α)ĝ(β)χ(αβ−1)|β|(ν × ν)
(
d(α, β)

)
equals

∫
k××k×

f(α)ĝ(αβ)χ(β−1)|αβ|(ν × ν)
(
d(α, β)

)
which in turn is equal to

∫
k×

(∫
k×
f(α)ĝ(αβ)|α|ν(dα)

)
χ(β−1)|β|ν(dβ).

Thus we have shown

ζf (χ)ζbg(χ̂) =

∫
k×

(∫
k×
f(α)ĝ(αβ)|α|ν(dα)

)
χ(β−1)|β|ν(dβ).

Hence, it suffices to show that the integral in parentheses is symmetric in f and g.

Pick an arbitrary β ∈ k×. Let c be the constant defined by ν = cν0. By Lemma ??,

we have

∫
k×
f(α)ĝ(αβ)|α|ν(dα) = c

∫
k+\{0}

f(ξ)ĝ(ξβ)µ(dξ)

= c

∫
k+

f(ξ)ĝ(ξβ)µ(dξ)

= c

∫
k+

f(ξ)

(∫
k+

g(η)e−2πiΛ(ξβη)µ(dη)

)
µ(dξ)

= c

∫
k+×k+

f(ξ)g(η)e−2πiΛ(ξβη)(µ× µ)
(
d(ξ, η)

)
.

The result follows since the last integral above is symmetric in f and g. q.e.d.

Theorem 2.1.13. There is a meromorphic function ρ on Q, with domain a superset

of Q(0,1), such that ζf (χ) = ρ(χ)ζ bf (χ̂) for all f ∈ Z and χ ∈ Q(0,1). By this functional

equation, each zeta function of k is defined to be a meromorphic function on Q.
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Proof. In the next subsection, we will exhibit for each equivalence class C of quasi-

characters an explicit function fC ∈ Z such that χ 7→ ζfC
(χ)/ζcfC

(χ̂) defines a function

ρC on C ∩ Q(0,1), which will turn out to be a familiar meromorphic function of the

parameter s with which we describe the plane or cylinder C. Thus ρ is defined to be a

meromorphic function, namely as ρC , on all of C for every C; this is exactly what we

mean by saying that ρ is meromorphic on Q. Now let f ∈ Z and χ ∈ Q(0,1). Call the

equivalence class of χ as C. By Lemma 2.1.12, the equality ζf (χ)ζcfC
(χ̂) = ζ bf (χ̂)ζfC

(χ)

holds. Hence, we have ζf (χ) = ρ(χ)ζ bf (χ̂). q.e.d.

2.1.5. Computation of ρ by Special Zeta Functions

In this subsection, treating each case k = R, k = C and k = p-adic separately, we

exhibit for each equivalence class C of quasi-characters an explicit function fC ∈ Z, as

promised in the proof of the last theorem of the previous subsection, and then compute

ζfC
(χ) as well as ζcfC

(χ̂) for χ ∈ C ∩Q(0,1) to determine ρC .

If ϕ is a character of u, then α 7→ ϕ(α̃) defines a character of k×. In this

way, we may see characters of u as characters of k×. Every quasi-character of k× is

equivalent to a character of u by Theorem 2.1.8, and two distinct characters of u are

not equivalent. Hence, characters of u make up a complete set of representatives for

the set of equivalence classes of quasi-characters.

2.1.5.1. k = R. Let us denote the equivalence class of α 7→ 1 by C, and the equivalence

class of α 7→ α by Csgn. Thus C =
{
| |s : s ∈ C

}
and Csgn =

{
sgn| |s : s ∈ C

}
. We define

f and fsgn by f(ξ) := e−πξ
2

and fsgn(ξ) := ξe−πξ
2

for all ξ ∈ R (we use the notations

f and fsgn instead of fC and fCsgn for simplicity). These maps are continuous and

integrable. Now we compute their Fourier transforms. We notice that Λ = λ◦TR/R = λ.

Thus, for all η ∈ R, we have

f̂(η) =

∫
R
e−πξ

2

e−2πiΛ(ηξ)µ(dξ) =

∫ ∞
−∞

e−πξ
2+2πiηξ dξ = e−πη

2
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where the last equality can be proved by using elementary complex analysis. On the

other hand, we have

f̂sgn(η) =

∫
R
ξe−πξ

2

e−2πiΛ(ηξ)µ(dξ)

=

∫ ∞
−∞

ξe−πξ
2+2πiηξ dξ

=
1

2πi

∫ ∞
−∞

d

dη

(
e−πξ

2+2πiηξ
)
dξ

=
1

2πi

d

dη

(∫ ∞
−∞

e−πξ
2+2πiηξ dξ

)
=

1

2πi

d

dη

(
e−πη

2)
= iηe−πη

2

for all η ∈ R. Hence, Fourier transforms of f and fsgn are also continuous and in-

tegrable so that these maps belong to S(R+). Moreover, it follows from the integral

representation of the gamma function that we have f ∈ Z and fsgn ∈ Z. We proceed

to compute the zeta functions. Let s ∈ C be arbitrary with Re s > 0. Then

ζf
(
| |s
)

=

∫
R×
f(α)|α|sν(dα)

=

∫
R+\{0}

e−πξ
2|ξ|s−1µ(dξ)

= 2

∫ ∞
0

e−πξ
2

ξs−1 dξ

= π−
s
2 Γ

(
s

2

)

and

ζfsgn
(
sgn| |s

)
=

∫
R×
fsgn(α)sgn(α)|α|sν(dα)

=

∫
R+\{0}

ξe−πξ
2

sgn(ξ)|ξ|s−1µ(dξ)

= 2

∫ ∞
0

e−πξ
2

ξs dξ

= π−
s+1
2 Γ

(
s+ 1

2

)
.
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If we further assume Re s < 1, then

ζ bf
(
|̂ |s
)

= ζf
(
| |1−s

)
= π−

1−s
2 Γ

(
1− s

2

)

and

ζdfsgn

(
ŝgn| |s

)
= iζfsgn

(
sgn| |1−s

)
= iπ−

(1−s)+1
2 Γ

(
(1− s) + 1

2

)
.

Therefore, by the identities Γ(z)Γ(1−z) = π csc(πz) and
√
πΓ(2z) = 22z−1Γ(z)Γ

(
z+ 1

2

)
,

we obtain

ρC
(
| |s
)

= ζf
(
| |s
)
/ζ bf
(
|̂ |s
)

= 21−sπ−s cos

(
πs

2

)
Γ(s)

and

ρCsgn

(
sgn| |s

)
= ζfsgn

(
sgn| |s

)
/ζdfsgn

(
ŝgn| |s

)
= −i21−sπ−s sin

(
πs

2

)
Γ(s).

2.1.5.2. k = C. Let us denote the equivalence class of α 7→ αm by Cm for each m ∈ Z.

Then Cm =
{
χm| |s : s ∈ C

}
where χm : C× → S1 is defined by χm(reiθ) := einθ. We

define fm : C → C (short for fCm) by

fm(ξ) :=

ξ
m
e−2π|ξ|, if m ≥ 0;

ξ−me−2π|ξ|, if m < 0.

Thus, for all m ∈ Z and x, y ∈ R, we have

fm(x+ iy) =

(x− iy)ne−2π(x2+y2), if m ≥ 0;

(x+ iy)−me−2π(x2+y2), if m < 0.

The maps fm are continuous and integrable. Now we compute their Fourier transforms.

We notice Λ = λ ◦ TC/R so that Λ(ξ) = λ
(
TC/R(ξ)

)
= λ(2 Re ξ) for all ξ ∈ C. We claim
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that the equality f̂m = i|m|f−m holds for every m ∈ Z. We shall prove this for m = 0,

and then for m > 0 via induction, and finally for m < 0. Let µ0 denote the Lebesgue

measure on R. For all η = u+ iv ∈ C, we have

f̂0(η) =

∫
C
e−2π|ξ|e−2πiΛ(ηξ)µ(dξ)

= 2

∫
R

∫
R
e−2π(x2+y2)e4πi(ux−vy)µ0(dx)µ0(dy)

= 2

(∫ ∞
−∞

e−2πx2

e4πiux dξ

)(∫ ∞
−∞

e−2πy2e−4πivy dξ

)
= e−2π(u2+v2)

= f0(η).

This proves the claim for m = 0. Now suppose the claim is true for arbitrary m ≥ 0.

This means that the equality

∫ ∞
−∞

∫ ∞
−∞

(x− iy)me−2π(x2+y2)e4πi(ux−vy)2 dx dy = im(u+ iv)me−2π(u2+v2)

holds for all u, v ∈ R. We apply the operator D := 1
4πi

(
∂
∂u

+ i ∂
∂v

)
to both sides:

Dim(u+ iv)me−2π(u2+v2) = im(u+ iv)mDe−2π(u2+v2)

= im+1(u+ iv)m+1e−2π(u2+v2).

On the other hand, the function

D

∫ ∞
−∞

∫ ∞
−∞

(x− iy)me−2π(x2+y2)e4πi(ux−vy)2 dx dy

is equal to

∫ ∞
−∞

∫ ∞
−∞

D(x− iy)me−2π(x2+y2)e4πi(ux−vy)2 dx dy
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which in turn equals

∫ ∞
−∞

∫ ∞
−∞

(x− iy)m+1e−2π(x2+y2)e4πi(ux−vy)2 dx dy.

Hence, we obtain

∫ ∞
−∞

∫ ∞
−∞

(x− iy)m+1e−2π(x2+y2)e4πi(ux−vy)2 dx dy = im+1(u+ iv)m+1e−2π(u2+v2).

Thus, our claim is proved for m + 1. Consequently, the equality f̂m = i|m|f−m holds

for all m ≥ 0 by induction. Finally, let m < 0 be arbitrary. We know f̂−m = i|m|fm =

i−mfm so that fm = imf̂−m. Taking Fourier transforms of both sides, we get

f̂m(η) = im
̂̂
f−m(η)

= inf−m(−η)

= im(−1)−mf−m(η)

= i|m|f−m(η)

for all η ∈ C. Therefore, the equality f̂m = i|m|f−m holds for all m ∈ Z. As a

consequence, we deduce that the maps fm belong to S(C+). Moreover, it follows from

the integral representation of the gamma function that fm ∈ Z for all m ∈ Z. We

proceed to compute the zeta functions. Let s ∈ C be arbitrary with Re s > 0. Then

ζfm

(
χm| |s

)
=

∫
C×
fm(α)χm(α)|α|sν(dα)

=

∫ ∞
0

∫ 2π

0

r|m|e−imθe−2πr2eimθr2s2r dθ dr

r2

= 2π

∫ ∞
0

(r2)(s−1)+
|m|
2 e−2πr22r dr

= 2π

∫ ∞
0

t(s−1)+
|m|
2 e−2πt dt

= (2π)(1−s)− |m|
2

∫ ∞
0

ts+
|m|
2
−1e−t dt

= (2π)(1−s)− |m|
2 Γ

(
s+

|m|
2

)
.
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If we further assume Re s < 1, then

ζcfm

(
χ̂m| |s

)
= ζi|m|f−m

(
χ−m| |1−s

)
= i|m|ζf−m

(
χ−m| |1−s

)
= i|m|(2π)s−

|m|
2 Γ

(
(1− s) +

|m|
2

)
.

Therefore, we obtain

ρCm

(
χm| |s

)
= ζfm

(
χm| |s

)
/ζcfm

(
χ̂m| |s

)
=

(2π)(1−s)− |m|
2 Γ
(
s+ |m|

2

)
i|m|(2π)s−

|m|
2 Γ
(
(1− s) + |m|

2

)
= (−i)|m|

(2π)1−sΓ
(
s+ |m|

2

)
(2π)sΓ

(
(1− s) + |m|

2

) .

2.1.5.3. k = p-adic. When k is p-adic, recall that each character of u has a conductor

pn for some n ≥ 0, and there are finitely many characters of u having the same

conductor. Unlike the previous cases, we shall not explicitly state each equivalence

class of characters of u, but consider arbitrary characters of u with specified conductors

to denote any one of those finitely many characters having that conductor. So let, for

each n ≥ 0, χn denote any character of u with conductor pn and let Cn denote the

equivalence class of χn. Thus Cn =
{
χn| |s : s ∈ C

}
for all n ≥ 0 where χn denotes the

map α 7→ χn(α̃) on k×. For any element π of ordinal number 1, we have χn(π) = 1.

Before we define for n ≥ 0 the corresponding functions fn (short for fCn), we shall

record some facts.

For all m ∈ Z, we have pm = {ξ ∈ k : |ξ| ≤ N(p)−m} since pm = πmo. As

a consequence of the ultrametric inequality, pm is a subgroup of k+. This subgroup,

being closed and bounded, is compact. We have µ(pm) = µ(πmo) = |πm|µ(o) =

N(p)−mN(d)−
1
2 . Let Am := {ξ ∈ k : |ξ| = N(p)−m} for all m ∈ Z. The equations

Am = pm \ pm+1 and Am = πmu give alternative definitions. Each Am is compact, and
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we have µ(Am) = µ(pm \ pm+1) = N(p)−(m+1)
(
N(p)− 1

)
N(d)−

1
2 . The different d of k

is a nontrivial proper ideal of o, so d = pd for some d ∈ N. For every η ∈ k, we have

η ∈ d−1 if and only if Λ(ηo) = 0. The following lemma, whose proof we omit, will be

frequently used in the sequel.

Lemma 2.1.14. Let G be a locally compact group, let µ be a Haar measure on G, let

H be a subgroup of G, and let f : G → C× be µ-integrable on H. If f is a nontrivial

homomorphism of abstract groups, then
∫
H
f dµ = 0.

For each n ≥ 0, we define fn : k → C as

fn(ξ) :=

e
2πiΛ(ξ), if ξ ∈ d−1p−n;

0, if ξ /∈ d−1p−n.

It will be convenient to denote the characteristic function of a set A by [A]. Thus, if ψη

denotes the character of k+ corresponding to η by Theorem 2.1.3, then fn = ψ1[d
−1p−n]

for all n ≥ 0. Each fn is continuous and integrable; we just notice d−1p−n = p−(d+n).

For all η ∈ k, we have

f̂n(η) =

∫
d−1p−n

e−2πiΛ((η−1)ξ)µ(dξ).

If η ≡ 1 (mod pn), which is to say η − 1 ∈ pn, then (η − 1)ξ ∈ d−1. This implies

that Λ
(
(η − 1)ξ

)
= 0. Consequently, f̂n(η) = µ(d−1p−n) = N(p)nN(d)

1
2 . If η 6≡ 1

(mod pn), then the homomorphism ξ 7→ e−2πiΛ((η−1)ξ) is nontrivial on the subgroup

d−1p−n whence
∫

d−1p−n e
−2πiΛ((η−1)ξ)µ(dξ) = 0. Hence, for all η ∈ k, we proved

f̂n(η) =

N(p)nN(d)
1
2 , if η ≡ 1 (mod pn);

0, if η 6≡ 1 (mod pn).

Thus f̂n = N(p)nN(d)
1
2 [1 + pn] for all n ≥ 0. Each f̂n is continuous and integrable.

Therefore, fn ∈ S(k+) for all n ≥ 0. In fact, each fn belongs to Z (see the computations
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below). We proceed to compute the zeta functions. Let s ∈ C be arbitrary with

Re s > 0. First, we treat the unramified case n = 0. Since χ0 is the trivial character

and f0 = [d−1], we have

ζf0
(
χ0| |s

)
=

∫
k×
f0(α)|α|sν(dα)

=

∫
d−1

|α|sν(dα)

=

∫
Ṡ

m≥−dAm

|α|sν(dα)

=
∞∑

m=−d

∫
Am

|α|sν(dα)

=
∞∑

m=−d

N(p)−ms
∫
Am

dν

=
∞∑

m=−d

N(p)−ms
N(p)

N(p)− 1

∫
Am

dν0

=
∞∑

m=−d

N(p)−ms
N(p)

N(p)− 1
N(p)mµ(Am)

=
N(d)s−

1
2

1−N(p)−s
.

Now suppose further that Re s < 1. We have f̂0 = N(d)
1
2 [o], so

ζ bf0

(
χ̂0| |s

)
= N(d)

1
2

∫
o

|α|1−sν(dα) =
1

1−N(p)s−1
,

the latter equality being proved as above. Next, we treat the ramified case n > 0. We

have

ζfn

(
χn| |s

)
=

∫
k×
fn(α)χn(α)|α|sν(dα)

=

∫
d−1p−n

e2πiΛ(α)χn(α)|α|sν(dα)

=
∞∑

m=−(d+n)

N(p)−ms
∫
Am

e2πiΛ(α)χn(α)ν(dα).

We claim that
∫
Am

e2πiΛ(α)χn(α)ν(dα) = 0 for all m > −(d + n). If m ≥ −d, then
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Am ⊆ d−1 so that

∫
Am

e2πiΛ(α)χn(α)ν(dα) =

∫
Am

χn(α)ν(dα)

=

∫
u

χn(π
mα)ν(dα)

=

∫
u

χn(α)ν(dα).

The last integral is 0 because χn is nontrivial on u. If −d > m > −d − n, then we

write Am as a finite disjoint union: Am =
⋃̇
α0∈Am

(α0 + d−1). So we need only show∫
α0+d−1 e

2πiΛ(α)χn(α)ν(dα) = 0 for each α0 ∈ Am. Fix such an α0. For all α ∈ d−1 we

have Λ(α0 + α) = Λ(α0). Thus

∫
α0+d−1

e2πiΛ(α)χn(α)ν(dα) = e2πiΛ(α0)

∫
α0+d−1

χn(α)ν(dα).

We compute

∫
α0+d−1

χn(α)ν(dα) =

∫
α0(1+p−d−m)

χn(α)ν(dα)

=

∫
1+p−d−m

χn(α0α)ν(dα)

= χn(α0)

∫
1+p−d−m

χn(α)ν(dα).

The integral
∫

1+p−d−m χn(α)ν(dα) is 0 since χn is nontrivial on 1 + p−d−m. Thus we

have proved
∫
Am

e2πiΛ(α)χn(α)ν(dα) = 0 for all m > −(d+ n). As a result, we get

ζfn

(
χn| |s

)
= N(p)(d+n)s

∫
A−(d+n)

e2πiΛ(α)χn(α)ν(dα).

We shall rewrite the integral above in a better form. Suppose ε1, . . . , εr make up a

complete set of representatives of u modulo 1 + pn. Then A−d−n is a disjoint union

of the sets εjπ
−d−n(1 + pn) = εjπ

−d−n + d−1. Fix j arbitrarily. Both Λ and χn are

constant on εjπ
−d−n + d−1 since for all ξ ∈ d−1 we have Λ(εjπ

−d−n + ξ) = Λ(εjπ
−d−n),
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and for all α ∈ 1 + pn we have χn(εjπ
−d−nα) = χn(εj). Hence

ζfn

(
χn| |s

)
= N(p)(d+n)s

r∑
j=1

∫
εjπ−d−n+d−1

e2πiΛ(α)χn(α)ν(dα)

= N(p)(d+n)s

r∑
j=1

e2πiΛ(εjπ
−d−n)χn(εj)

∫
εjπ−d−n+d−1

dν

= N(p)(d+n)s

r∑
j=1

e2πiΛ(εjπ
−d−n)χn(εj)

∫
1+pn

dν

= N(p)(d+n)sν(1 + pn)
r∑
j=1

e2πiΛ(εjπ
−d−n)χn(εj)

for all n > 0 (note that r depends on n here). Assume Re s < 1 further. Then

ζcfn

(
χ̂n| |s

)
= N(p)nN(d)

1
2

∫
1+pn

χ−1
n (α)|α|1−sν(dα) = N(p)nN(d)

1
2ν(1 + pn).

Therefore, for all s ∈ C with 0 < Re s < 1, we have

ρC0

(
χ0| |s

)
= ζf0

(
χ0| |s

)
/ζ bf0

(
χ̂0| |s

)
=

N(d)s−
1
2

1−N(p)−s
÷ 1

1−N(p)s−1

= N(d)s−
1
2
1−N(p)s−1

1−N(p)−s
.

For all n > 0 and s ∈ C with 0 < Re s < 1, we have

ρCn

(
χn| |s

)
= ζfn

(
χn| |s

)
/ζcfn

(
χ̂n| |s

)
=

N(p)(d+n)sν(1 + pn)
∑

j e
2πiΛ(εjπ

−d−n)χn(εj)

N(p)nN(d)
1
2ν(1 + pn)

= N(dpn)s−
1
2N(pn)−

1
2

∑
j

e2πiΛ(εjπ
−d−n)χn(εj)

= N(df)s−
1
2 ρ̃Cn(χn)

where f is the conductor of χn and ρ̃Cn(χn) := N(f)−
1
2

∑
j χn(εj)e

2πiΛ(εj/π
ord(df)) with

ord(pn) defined to be n for all n ∈ N.
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2.2. Restricted Direct Products

2.2.1. Introduction

Let I be an index set, and let I∞ be a fixed finite subset of I. Let Gi be a locally

compact group for each i ∈ I, and let Hi be a compact open subgroup of Gi for each

i ∈ I \ I∞. We define S to be the collection of all finite subsets of I containing I∞. In

the sequel, “. . . for almost all i” means “there is an S ∈ S such that . . . for all i /∈ S.”

Definition 2.2.1. Restricted direct product of the groups Gi relative to the subgroups

Hi is defined to be the set of all I-tuples (xi)i∈I such that xi ∈ Hi for almost all i. It

is denoted by
∏′

i∈I Gi.

Restricted direct product
∏′

i∈I Gi is a subgroup of the direct product
∏

i∈I Gi

and it becomes a topological group on stipulating that sets of the form
∏

i∈I Ni, where

Ni is an open neighborhood of the identity in Gi for all i and Ni = Hi for almost all i,

make up a neighborhood basis of open sets at the identity 1 of
∏′

i∈I Gi (see Section 4

in Chapter II of Higgins [8]). We write G to abbreviate
∏′

i∈I Gi. We shall most often

omit indices from notation whenever a product is over the whole index set I.

For S ∈ S, let GS :=
∏

i∈S Gi ×
∏

i/∈S Hi. Each GS is a subgroup of G, and the

subspace topology ς on GS coincides with the product topology $ on GS: the sets

GS ∩
∏
Ni are open in the product topology, this implies ς ⊆ $; conversely, every

basic neighborhood of 1 in the product topology is of the form
∏
Ni, implying $ ⊆ ς.

Theorem 2.2.2. G is locally compact.

Proof. For any two elements of G, there is a GS containing both of them. Every GS

is Hausdorff and, being of the form
∏
Ni, open in G. Consequently, G is Hausdorff.

For local compactness, fix any S ∈ S. Since GS is locally compact, there is a compact

neighborhood of 1 in GS, hence in G. Thus G is locally compact. q.e.d.
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For each i ∈ I, let πi denote the projection from G onto Gi. These projections

are continuous since their restrictions to the open subsets GS are continuous.

Theorem 2.2.3. A subset Y of G has compact closure if and only if Y ⊆
∏
Ki for

some compact sets Ki ⊆ Gi with Ki = Hi for almost all i.

Proof. Let Y ⊆ G have compact closure. The collection {GS : S ∈ S} is an open cover

for Y , so Y is contained in finitely many of the GS, hence in one of them, say in GS0 .

We define Ki to be πi
(
Y
)

or Hi according as i ∈ S0 or i /∈ S0. Then Y ⊆ Y ⊆
∏
Ki

where Ki is compact for all i by the continuity of projections. The converse follows

from Tychonov’s theorem. q.e.d.

2.2.2. Characters

It will be convenient to abbreviate πi(y) by yi for i ∈ I, y ∈ G. We denote the

subgroup
∏

i∈S{1i} ×
∏

i/∈S Hi by GS for S ∈ S. We identify each Gi with its image

under the embedding which sends x ∈ Gi to the tuple having x in the ith coordinate

and identity elements in the other coordinates. In accordance with our previous usage

of the term, we mean by a quasi-character a continuous homomorphism into C×.

Lemma 2.2.4. If χ is a quasi-character of G, then χ is trivial on Hi for almost all i,

and χ(y) =
∏

i∈I χ(yi) for all y ∈ G (this is a finite product).

Proof. Let U be an open neighborhood of 1 in C× containing no multiplicative subgroup

of C× other than the trivial subgroup; for example, let U be the open ball around 1 of

radius 1
2
. There is an open neighborhood

∏
Ni of 1 in G with χ(

∏
Ni) ⊆ U . Select an

S ∈ S such that Ni = Hi for all i /∈ S. Then GS ⊆
∏
Ni, so χ(GS) ⊆ χ(

∏
Ni) ⊆ U ,

implying χ(GS) = 1. Hence, χ is trivial on Hi for all i /∈ S. Now let y ∈ G. Enlarge

S (if needed) so that y ∈ GS. Write y = yS
∏

i∈S yi with yS ∈ GS. Then χ(y) =

χ(yS)
∏

i∈S χ(yi) =
∏

i∈S χ(yi) =
∏

i∈I χ(yi). q.e.d.
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Lemma 2.2.5. For each i, let χi be a quasi-character of Gi. If χi is trivial on Hi for

almost all i, then
∏

i∈I χi is a quasi-character of G.

Proof. Let χ :=
∏

i∈I χi for ease of notation. We show the continuity of χ only. Let

U be an open neighborhood of 1 in C×. Select an S ∈ S such that χi is trivial on Hi

for all i /∈ S, and let n := |S|. Choose an open neighborhood V of 1 in C× such that

V n ⊆ U . For i ∈ S, let Ni satisfy χi(Ni) ⊆ V , and for i /∈ S, let Ni := Hi. Then

χ(
∏
Ni) ⊆ V n ⊆ U , proving the continuity of χ. q.e.d.

Suppose that the Gi are abelian in the rest of this subsection. Fix an arbitrary

i /∈ I∞. For U as in the proof of Lemma 2.2.4, we have H⊥i = W (Hi, U) so that H⊥i

is an open subgroup of Ĝi. On the other hand, Hi is open in Gi, implying that Gi/Hi

is discrete, which in turn gives that Ĝi/Hi is compact. Consequently, H⊥i is compact

since Ĝi/Hi and H⊥i are isomorphic as topological groups. Therefore, H⊥i is a compact

open subgroup of Ĝi for all i /∈ I∞, and the restricted direct product
∏′ Ĝi of the

groups Ĝi relative to the subgroups H⊥i makes sense.

Theorem 2.2.6. Ĝ ∼=
∏′ Ĝi.

Proof. It follows from Lemmas 2.2.4 and 2.2.5 that the map ϕ : Ĝ →
∏′ Ĝi defined

by χ 7→ (χi) is an algebraic isomorphism of groups. We will show ϕ is moreover

a homeomorphism. Take an open neighborhood
∏
Oi of the identity in

∏′ Ĝi with

Oi = H⊥i for almost all i, and Oi = W (Ki, Ui) for the remaining i. Select an S ∈ S

such that Oi = H⊥i for all i /∈ S. Put K :=
∏

i∈SKi ×
∏

i/∈S Hi and U :=
⋂
i∈S Ui. We

may assume that U contains no multiplicative subgroup of C× other than the trivial

one. Then ϕ
(
W (K,U)

)
⊆
∏
Oi. This proves ϕ is continuous. Next, take an open

neighborhood W (K,U) of the identity in Ĝ. By Theorem 2.2.3, we have K ⊆
∏
Ki

for some compact sets Ki ⊆ Gi with Ki = Hi for almost all i. Select an S ∈ S such

that Ki = Hi for all i /∈ S, and let n := |S|. Choose an open neighborhood V of 1 in

S1 such that V n ⊆ U . Then
∏

i∈SW (Ki, V )×
∏

i/∈S H
⊥
i is a subset of ϕ

(
W (
∏
Ki, U)

)
,

hence of ϕ
(
W (K,U)

)
. This proves ϕ is open. q.e.d.



32

2.2.3. Measures

Each Gi admits a left Haar measure µi. We assume µi(Hi) = 1 for almost all

i. For each S ∈ S, let µS denote the Haar measure on GS such that µS(GS) =∏
i/∈S µi(Hi), and let µS denote Haar measure on GS which is the transfer of the product

measure
(∏

i∈S µi
)
× µS on

(∏
i∈S Gi

)
× GS to GS by means of the isomorphism

GS
∼=
(∏

i∈S Gi

)
×GS.

Theorem 2.2.7. There exists a Haar measure µ on G such that µ|B(GS) = µS for all

S ∈ S.

Proof. For each S ∈ S, we can choose a Haar measure µ(S) onG such that µ(S)|B(GS) =

µS. We will show this choice is independent of S. Let S, T ∈ S be arbitrary. We

may assume S ⊆ T so that GS ⊆ GT . It is enough to find a compact K ⊆ GS

of nonzero measure such that µS(K) = µT (K), implying µT |B(GS) = µS, whence we

get µ(S) = µ(T ). Take compact neighborhoods Ki of 1i in Gi for i ∈ S, and let

K :=
∏

i∈SKi ×
∏

i/∈S Hi. Then

µT (K) =
∏
i∈S

µi(Ki)×
∏
i∈T\S

µi(Hi)× µT (GT )

=
∏
i∈S

µi(Ki)×
∏
i∈T\S

µi(Hi)×
∏
i/∈T

µi(Hi)

=
∏
i∈S

µi(Ki)×
∏
i/∈S

µi(Hi)

=
∏
i∈S

µi(Ki)× µS(GS)

= µS(K).

q.e.d.

We shall denote the measure µ of the preceding theorem by
∏
µi. From this

point on, we assume that Gi is second countable for all i ∈ I and the index set I is

countable. As a consequence, G is second countable. We shall make use of this fact in
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the next theorem.

Theorem 2.2.8. Let f : G → C be measurable. If f ≥ 0 or f ∈ L1(G), then∫
f dµ = limS∈S

∫
GS
f dµ.

Proof. Let K denote the set of all compact subsets of G. Assume f ≥ 0. Since G is

second countable, we have
∫
f dµ = limK∈K

∫
K
f dµ. This implies the equality above

since every K ∈ K is contained in some GS. For the case f ∈ L1(G), consider the

positive and negative parts of f . q.e.d.

Let us denote by F the collection of all finite subsets of I, and by ‖ ‖1,i the

L1-norm on Gi for each i ∈ I.

Theorem 2.2.9. For each i ∈ I, let fi : Gi → C be continuous and integrable. Suppose

fi|Hi
≡ 1 for almost all i. If f : G→ C is defined by f(y) :=

∏
fi(yi) then the following

hold.

(1) f is continuous.

(2) For all S ∈ S such that fi|Hi
≡ 1 and µi(Hi) = 1 for i /∈ S, the equality∫

GS
f dµ =

∏
i∈S
( ∫

Gi
fi dµi

)
holds.

(3) If limF∈F
∏

i∈F ‖fi‖1,i is finite, then f ∈ L1(G) and the equality
∫
f dµ =

limF∈F
∏

i∈F
( ∫

Gi
fi dµi

)
holds.

Proof. (1) It is enough to show the continuity of the restrictions f |GS
. Let S ∈ S be

arbitrary. Select T ∈ S such that fi|Hi
≡ 1 for all i /∈ T . Then, for every y ∈ GS, we

have f(y) =
∏
fi(yi) =

∏
i∈S∪T fi(yi). Since the fi are continuous by hypothesis, the

restriction f |GS
is continuous.
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(2) Let S be as stated. Then f(y) =
∏

i∈S fi(yi) for all y ∈ GS. Thus

∫
GS

f dµ =

∫
GS

f |GS
dµS

=

∫
GS

dµS ·
∏
i∈S

(∫
Gi

fi dµi

)
=

∏
i∈S

(∫
Gi

fi dµi

)

because
∫
GS dµS = µS(GS) =

∏
i/∈S µi(Hi) = 1.

(3) By Theorem 2.2.8, the equality
∫
|f | dµ = limS∈S

∫
GS
|f | dµ holds (here

| | stands for the ordinary absolute value of complex numbers). We observe that

on replacing each fi above by |fi| we construct |f | instead of f . So
∫
GS
|f | dµ =∏

i∈S
( ∫

Gi
|fi| dµi

)
for all S ∈ S such that fi|Hi

≡ 1 and µi(Hi) = 1 for i /∈ S. Fix such

an S0 ∈ S. Then

∫
|f | dµ = lim

S∈S

∫
GS

|f | dµ

= lim
S⊇S0

∫
GS

|f | dµ

= lim
S⊇S0

∏
i∈S

(∫
Gi

|fi| dµi
)

= lim
S⊇S0

∏
i∈S

‖fi‖1,i

= lim
F∈F

∏
i∈F

‖fi‖1,i

< ∞

so that f ∈ L1(G). Following the same lines of argument by using f in place of |f | one

proves
∫
f dµ = limF∈F

∏
i∈F
( ∫

Gi
fi dµi

)
. q.e.d.

Theorem 2.2.10. For each i ∈ I, let fi : Gi → C be continuous and integrable.

Suppose fi = [Hi] for almost all i. If f : G→ C is defined by f(y) :=
∏
fi(yi) then the

following hold.

(1) f is integrable.
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(2) If the Gi are abelian, then f̂(χ) =
∏
f̂i(χi) for all χ ∈ Ĝ.

Proof. (1) By hypothesis, ‖fi‖1,i = µi(Hi) for almost all i, so ‖fi‖1,i = 1 for almost all

i. Hence, by Theorem 2.2.9(3), we have f ∈ L1(G).

(2) First of all, note that the product is finite since, given any i ∈ I \ I∞, we have

f̂i = µi(Hi)[H
⊥
i ] whenever fi = [Hi]. Now let χ ∈ Ĝ. We use Theorem 2.2.9 with the

fi replaced by fiχi. Then

f̂(χ) =

∫
fχ dµ

= lim
F∈F

∏
i∈F

(∫
Gi

fiχi dµi

)
= lim

F∈F

∏
i∈F

f̂i(χi)

=
∏

f̂i(χi).

q.e.d.

Suppose once again that the Gi are abelian. If fi = [Hi], then it follows from the

equality f̂i = µi(Hi)[H
⊥
i ] and Fourier inversion formula that 1 = µi(Hi)µ̂i(H

⊥
i ). Hence,

we have µ̂i(H
⊥
i ) = 1 for almost all i since µi(Hi) = 1 for almost all i by assumption.

So we can define a measure
∏
µ̂i on the restricted direct product

∏′ Ĝi. Consequently,

by the isomorphism given in Theorem 2.2.6, we obtain a measure on Ĝ, which we also

denote by
∏
µ̂i. The next theorem presumes the existence of nontrivial functions in

S(Gi) for each i ∈ I∞. One shall see later that this is indeed the case when G is the

adele group of a number field.

Theorem 2.2.11. The measure
∏
µ̂i on Ĝ is the dual measure of µ.

Proof. Let µ̂ denote the dual measure of µ. We know f(y) =
∫
bG f̂(χ)χ(y)µ̂(dχ) for all

f ∈ S(G), y ∈ G. In order to prove
∏
µ̂i = µ̂, we shall view the integrand above as a
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map defined on
∏′ Ĝi and show that the integral of this map over

∏′ Ĝi with respect to∏
µ̂i is equal to f(y). It is sufficient to do this for particular f ∈ S(G) and y ∈ G with

f(y) 6= 0. We define fi to be [Hi] for i /∈ I∞ and to be a map in S(Gi) with fi(1i) = 1

for i ∈ I∞. Let f : G → C be defined by f(y) :=
∏
fi(yi). For all (χi) ∈

∏′ Ĝi,

we have f̂(
∏
χi) =

∏
f̂i(χi) as a consequence of Theorem 2.2.10(2). On replacing the

fi by f̂i in Theorem 2.2.9, the integral of f̂ over
∏′ Ĝi with respect to

∏
µ̂i is seen

to be limF∈F
∏

i∈F
( ∫
cGi
f̂i(χi)µ̂i(dχi)

)
, which in turn is equal to limF∈F

∏
i∈F fi(1i) by

using Fourier inversion formula at each coordinate. Since limF∈F
∏

i∈F fi(1i) = 1, the

integral of f̂ over
∏′ Ĝi is f(1). q.e.d.

2.3. The Global Theory

In this section, k denotes a number field. A generic prime divisor of k will

be denoted by p, and the completion of k with respect to p by kp. All the sym-

bols | |, o, N, ord,Λ, u, d defined for this local field kp also receive the subscript p:

| |p, op, Np, ordp,Λp, up, dp.

2.3.1. Additive Theory

Each prime divisor of Q has a finite number of prolongations to k (Corollary 4-32

of Ramakrishnan and Valenza [6], p. 162), so all but a finite number of primes of k are

discrete. Hence, we can define the restricted direct sum of the groups kp relative to the

subgroups op.

Definition 2.3.1. The restricted direct sum
⊕′

p kp of the groups kp relative to the

subgroups op is called the adele group of k. It is denoted by Ak.

Since k is fixed, we write A instead of Ak for simplicity. We have the following

isomorphisms of topological groups: Â ∼=
∏′ k̂p

∼=
⊕′ kp where the restricted direct

product is relative to the subgroups o⊥p and the restricted direct sum is relative to the

subgroups d−1
p . The first isomorphism is a consequence of the theory of restricted direct
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products. The second isomorphism follows from the fact that k̂p
∼= kp for all p, and that

o⊥p is mapped onto d−1
p under this isomorphism for discrete p. Finally,

⊕′ kp (relative

to d−1
p ) is equal to A since dp = op for almost all p. Hence, we obtain Â ∼= A. In order

to write this isomorphism explicitly, let multiplication on A be defined coordinate-wise

and let Λ(x) be defined as the finite sum
∑

p Λp(xp) for x ∈ A.

Theorem 2.3.2. The mapping from A to Â sending each y to the character x 7→

e2πiΛ(yx) is an isomorphism of topological groups.

Let µp denote the measure on kp. For almost all p, the equality dp = op holds so

that µp(op) = Np(dp)
− 1

2 = Np(op)
− 1

2 = 1. We denote by µ the measure
∏
µp on the

restricted direct product A. Let µ̂ :=
∏
µ̂p. By Theorem 2.2.11, the measure µ̂ on Â

is dual to µ, so f(x) =
∫
bA f̂(ψ)ψ(x)µ̂(dψ) for all f ∈ S(A), x ∈ A. On writing this

integral over A in view of the isomorphism Â ∼= A, we get the next theorem.

Theorem 2.3.3. The inversion formula f(x) =
∫

A f̂(y)e2πiΛ(yx)µ(dy) holds for all

f ∈ S(A), x ∈ A.

For each a ∈ A, the map x 7→ ax is a continuous homomorphism from A to A.

We shall see in the next lemma when this map has a continuous inverse, but first we

must introduce the idele group of k.

Definition 2.3.4. The restricted direct product
∏′

p k
×
p of the groups k×p relative to

the subgroups up is called the idele group of k. It is denoted by Ik.

As in the case of adele group, we write I for Ik. Under coordinate-wise multi-

plication, A becomes a ring. Then I is exactly the multiplicative group of units of

A.

Lemma 2.3.5. For all a ∈ A, the map x 7→ ax is a topological automorphism of A if

and only if a ∈ I.
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Proof. If x 7→ ax is a topological automorphism of A, then it must be surjective so that

ab = 1 for some b ∈ A. Thus a ∈ A× = I. Conversely, if a ∈ I then ab = 1 for some

b ∈ A. Consequently, the composition of x 7→ ax and x 7→ bx in either order is the

identity map on A, implying that x 7→ ax is a topological automorphism of A. q.e.d.

For all a ∈ I, the function µa : B(A) → [0,∞] defined by µa(M) := µ(aM) is a

Haar measure on A so that µa = caµ for some ca > 0. This ca turns out to be the finite

product
∏

p |ap|p. We define the absolute value |a| of an idele a as
∏

p |ap|p.

Lemma 2.3.6. ca = |a| for all a ∈ I.

Proof. Let a ∈ I be arbitrary. It is enough to show µ(aK) = |a|µ(K) for a compact

K ⊆ A of nonzero measure. Select a finite set of primes S including the archimedean

ones such that µp(op) = 1 and ap ∈ up for all p /∈ S. We put K :=
∏

p∈SKp ×∏
p/∈S op where Kp is a compact neighborhood of 0 in kp for each p ∈ S. Then µ(K) =

µS(K) =
∏

p∈S µp(Kp). On the other hand, µ(aK) = µS
(∏

p∈S apKp ×
∏

p/∈S op

)
=∏

p∈S µp(apKp) =
∏

p∈S |ap|pµp(Kp) = |a|
∏

p∈S µp(Kp). Therefore, we have µ(aK) =

|a|µ(K) as desired. q.e.d.

The field k is canonically embedded in its adele group A by ξ 7→ (ξ, ξ, . . .). Notice

that the infinite part of the image of ξ under this embedding consists of the conjugates

of ξ relative to Q. We denote the set of archimedean primes of k by S∞ and the ring

of integers of k by o.

Lemma 2.3.7. k ∩ AS∞ = o and k + AS∞ = A.

Proof. The first equality is a restatement of the fact that an element of k is an integer

if and only if it is an integer with respect to each discrete prime of k. To prove the

second equality, let x ∈ A. Since xp ∈ op for almost all p, we can find an integer m such

that mx ∈ AS∞ . Suppose p1, . . . , pr are those primes with respect to which x is not an
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integer. Let n1, . . . , nr be the exponents of these primes in the factorization of the ideal

(m). Since op is dense in o for every p, there exists ηi ∈ o with |mxi−ηi|i ≤ Ni(pi)
−ni for

each i ∈ {1, . . . , r} (we replaced the subscripts pi by i for ease of notation). Applying

Chinese remainder theorem to the ideals pni
i and integers ηi, we find a η ∈ o such that

mxi ≡ η (mod pni
i ) for all i. Then |mxi − η|i ≤ Ni(pi)

−ni for all i. We put ξ := η
m

so

that x− ξ = 1
m

(mx− η) belongs to AS∞ . This proves k + AS∞ = A. q.e.d.

We put A∞ :=
∏

p∈S∞ kp. If k = Q(θ) and if the minimal polynomial of θ over Q

has r1 real roots and r2 pairs of complex roots, then A∞ is the product of r1 real lines

and r2 complex planes. So A∞ is a real vector space of dimension r1 + r2 = n where

n := [k : Q]. For each x ∈ A, we denote (xp)p∈S∞ by x∞.

Lemma 2.3.8. If {ω1, . . . , ωn} is a minimal basis for the ring of integers o of k over

the rational integers, then {ω∞1 , . . . , ω∞n } is a basis for the vector space A∞ over R.

The parallelotope D∞ :=
{∑n

i=1 ciω
∞
i ∈ A∞ : 0 ≤ ci < 1 for all i

}
spanned by this

basis has the volume
√
|d| where d is the discriminant of k.

Proof. For the vectors ω∞1 , . . . , ω
∞
n to make up a basis of A∞ it is necessary and suf-

ficient that they are linearly independent. This is true since their determinant in

ordinary absolute value equals 2−r2
√
|d| 6= 0 (cf. the proof of Theorem 95 of Hecke [9]).

We have chosen as our measure on C twice the Lebesgue measure, so the volume of

D∞ is 2−r2
√
|d| multiplied by 2r2 . q.e.d.

Definition 2.3.9. Additive fundamental domain D is defined as D := D∞×
∏

p/∈S∞ op.

Theorem 2.3.10. (1) A =
⋃̇
ξ∈k(ξ +D).

(2) µ(D) = 1.

Proof. (1) Let x ∈ A be arbitrary. Since k + AS∞ = A, there is ξ ∈ k such that

x − ξ ∈ AS∞ . This ξ is unique modulo o. Indeed, if ξ′ ∈ k is such that x − ξ′ ∈ AS∞
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then ξ− ξ′ ∈ k as well as ξ− ξ′ = (x− ξ′)− (x− ξ) ∈ AS∞ so that ξ− ξ′ ∈ k∩AS∞ = o.

Now it is enough to find η ∈ o with (x−ξ)+η ∈ D, since then x = (ξ−η)+
(
(x−ξ)+η

)
∈

(ξ − η) +D, as desired. If we add any element of o to x− ξ, we are still in AS∞ , so we

need only consider the archimedean coordinates. By definition of D, there is a unique

η ∈ o such that (x− ξ)+ η ∈ D. Thus we have shown A =
⋃
ξ∈k(ξ+D). To prove that

the union is disjoint, suppose x ∈ A belongs to both ξ +D and ξ′ +D where ξ, ξ′ ∈ k.

Consider x− ξ′. We have just seen that there is a unique η ∈ o with (x− ξ′) + η ∈ D.

However, we can take η to be 0 as well as ξ − ξ′. Therefore, ξ = ξ′ and the union is

disjoint.

(2) By the theory of algebraic numbers, we know N(d) = |d|. Hence, we have

µ(D) =
√
|d|
∏

p/∈S∞ µp(op) = N(d)
1
2

∏
p/∈S∞ Np(dp)

− 1
2 = 1 since N(d) =

∏
p/∈S∞ Np(dp)

(see Hasse [10], p. 442). q.e.d.

Corollary 2.3.11. k is a discrete subgroup of A. The factor group A/k is compact.

Proof. One can obtain, by shifting the infinite part of D, a neighborhood of 0 in A

whose intersection with k is the singleton {0}. This shows that k is discrete in A. The

preceding theorem implies A = k + D, where D denotes the closure of D in A. As a

result, the factor group A/k is compact since D is compact. q.e.d.

Lemma 2.3.12. Λ(ξ) = 0 for all ξ ∈ k.

Proof. For all ξ ∈ k, we have Λ(ξ) =
∑

p

∑
p|p λp

(
Tkp/Qp(ξ)

)
=
∑

p λp
(∑

p|p Tkp/Qp(ξ)
)

=∑
p λp
(
Tk/Q(ξ)

)
since the trace is the sum of local traces (see Hasse [10], p. 303). It

suffices then to show that
∑

p λp(r) = 0 for r ∈ Q because Tk/Q(ξ) ∈ Q. Let r ∈ Q be

given. Say
∑

p λp(r) = c + Z. By definition of the λp we must have c ∈ Q. For any

rational prime q, the equalities

c+ Z = λq(r) + λ∞(r) +
∑

p/∈{q,∞}

λp(r) =
(
λq(r) + (−r + Z)

)
+

∑
p/∈{q,∞}

λp(r)
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hold. Since both λq(r)+(−r+Z) and the λp(r) belong to Zq/Z, we get c+Z ∈ Zq/Z so

that c ∈ Zq. This is true for all q, implying c ∈ Q∩
⋂
q Zq = Z. Therefore,

∑
p λp(r) = 0

so that Λ(ξ) = 0. q.e.d.

Theorem 2.3.13. For all x ∈ A, we have x ∈ k if and only if Λ(xξ) = 0 for all ξ ∈ k.

Proof. Under the isomorphism Â ∼= A, we may regard k⊥ as a subgroup of A. Then

x ∈ k⊥ if and only if Λ(xξ) = 0 for all ξ ∈ k, so we are to show k⊥ = k. The preceding

lemma gives k ⊆ k⊥. We prove the converse by showing [k⊥ : k] = 1. We have

k⊥ ∼= Â/k, so the compactness of A/k implies that k⊥ is discrete. Consequently, k⊥/k

is discrete. Discrete subgroups of Hausdorff topological groups are closed (Proposition

1-6 of Ramakrishnan and Valenza [6], p. 8), so k⊥/k is closed in A/k. Hence k⊥/k is

compact. The factor group k⊥/k, being compact and discrete, is finite. This is possible

only if [k⊥ : k] = 1 since k is infinite. Therefore, we have k⊥ = k. q.e.d.

2.3.2. Multiplicative Theory

Let us denote by M the group of all fractional ideals of o. We make M into a

topological group by endowing it with the discrete topology. The map ϕ : I → M

defined by ϕ(a) :=
∏

p/∈S∞ pordp(ap) is a homomorphism since ordp(apbp) = ordp(ap) +

ordp(bp) for all a, b ∈ I and p /∈ S∞. It is continuous since each of its restrictions ϕ|IS

is so. We have Kerϕ = IS∞ and Imϕ = M.

The map a 7→ |a| is a continuous surjective homomorphism from I onto (0,∞).

We shall denote its kernel by J . Thus J = {a ∈ I : |a| = 1}. This is a closed subgroup

of I. We canonically embed k× into I by α 7→ (α, α, . . .). Artin’s product formula says

k× ⊆ J . We fix an arbitrary archimedean prime p0 of k, and let

T := {a ∈ I : ap0 > 0 and ap = 1 for all p 6= p0}.

The mapping a 7→ |a| is an isomorphism of topological groups T and (0,∞). We identify
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these two groups so that t ∈ (0,∞) stands for the idele (t, 1, 1, . . .) or (
√
t, 1, 1, . . .)

according as kp0 = R or kp0 = C if the p0-component is written first. We have an

isomorphism of topological groups: I ∼= T × J . Indeed, the assignment (t, b) 7→ tb

defines a topological isomorphism from T × J onto I. The idele group I admits a Haar

measure as a restricted direct product. Let us call this measure ν. By the isomorphism

above, ν induces a measure on T × J , which we also denote by ν. Let νT denote the

restriction to (0,∞) of the Haar measure on R× defined in the Local Theory. We select

such a Haar measure νJ on J that the equality ν = νT × νJ holds. Thus, for any

ν-integrable function f : I → C, we have

∫
I
f dν =

∫
T

∫
J

f(t, b)νJ(db)νT (dt) =

∫
J

∫
T

f(t, b)νT (dt)νJ(db)

by Fubini’s theorem.

We put JS∞ := J ∩ IS∞ . Equivalently, J is the subgroup of all ideles of norm

1 whose discrete coordinates are all of absolute value 1. Let S ′∞ := S∞ \ {p0} and

r := |S ′∞|. We note that r = r1 + r2 − 1. The map l : JS∞ → Rr defined by

l(b) := (log |bp|p)p∈S′∞ is a continuous homomorphism. Moreover, l is surjective since

we can adjust the p0-component of b ∈ JS∞ freely. Since k× ⊆ J by the product

formula, we have k× ∩ JS∞ = k× ∩ IS∞ . So k× ∩ JS∞ consists exactly of the units of

the ring of integers o of k because α is a unit of o if and only if α is a unit of op for all

discrete p. In symbols, k× ∩ JS∞ = o×.

We put W := o× ∩ Ker l. It turns out that W is the group of all roots of unity

in k. Hence W is a finite cyclic group. We denote its order by w. As a consequence of

Dirichlet’s unit theorem, we see that the factor group o×/W is a free abelian group on

r generators; that is to say, there exist ε1, . . . , εr ∈ o×/W such that every ε ∈ o×/W

can be written uniquely in the form ε = ε1
m1 · · · εr mr with m1, . . . ,mr ∈ Z. Then the

r-tuples l(ε1), . . . , l(εr) make up a basis for the real vector space Rr. For proofs of the

facts mentioned in this paragraph, see Hecke [9], p. 108ff.

For each b ∈ JS∞ , there are unique scalars c1, . . . , cr ∈ R such that l(b) =
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∑r
i=1 cil(εi). Denote by P the parallelotope in Rr spanned by the vectors l(ε1), . . . , l(εr).

Thus P =
{∑r

i=1 cil(εi) ∈ Rr : 0 ≤ ci < 1 for all i
}
. Let R be the regulator

| det(log |εi|p)| of the field k. The volume of l←(P ) in J is known to be given by

the formula below.

Lemma 2.3.14. νJ(l
←(P )) = 2r1 (2π)r2√

|d|
R.

Let h denote the class number of k. Choose h ideles b(1), . . . , b(h) such that the

ideals ϕ
(
b(1)
)
, . . . , ϕ

(
b(h)
)

represent distinct ideal classes. We may assume b(1), . . . , b(h) ∈

J . Let E0 :=
{
b ∈ l←(P ) : 0 ≤ arg(bp0) <

2π
w

}
.

Definition 2.3.15. We define the multiplicative fundamental domain for J/k× to be

E := E0b
(1) ∪ · · · ∪ E0b

(h).

The union above is disjoint. In fact, for each v ∈ {1, . . . , h}, the ideles in E0b
(v)

correspond to ϕ
(
b(v)
)

because E0 ⊆ Kerϕ.

Theorem 2.3.16. (1) J =
⋃̇
α∈k×(αE).

(2) νJ(E) = 2r1 (2π)r2hR√
|d|w

.

Proof. (1) Let b ∈ J . For one and only one v, the ideal ϕ(b) belongs to the class

represented by ϕ
(
b(v)
)
. Then ϕ(b) = (α)ϕ

(
b(v)
)

for some α ∈ k× where (α) denotes the

principal ideal generated by α. This implies ϕ
(
α−1 b

b(v)

)
= o because ϕ(α) = (α). Then

α−1 b
b(v) ∈ Kerϕ, which gives α−1 b

b(v) ∈ JS∞ . There exist unique c1, . . . , cr ∈ R such that

l
(
α−1 b

b(v)

)
=
∑r

i=1 cil(εi). Pick integersm1, . . . ,mr to satisfy 0 ≤ ci+mi < 1 for every i.

Then
∏
εmi
i α−1 b

b(v) ∈ l←(P ). We can find a root of unity ζ which multiplies this idele to

make the argument of the product lie in the interval [0, 2π
w

). Thus ζ
∏
εmi
i α−1 b

b(v) ∈ E0

so that b ∈ βE0b
(v) ⊆ βE where β = ζ−1

∏
ε−mi
i α.

(2) We have νJ(E) =
∑h

v=1 νJ(E0b
(v)) = hνJ(E0) = h

w
νJ(l

←(P )) = 2r1 (2π)r2hR√
|d|w

.

q.e.d.
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Corollary 2.3.17. k× is a discrete subgroup of J . The factor group J/k× is compact.

Proof. The idele topology on I is stronger than the subspace topology on I inherited

from A. The first assertion then follows from the discreteness of k in A. The second

one is a consequence of the fact that l←(P ) is contained in a compact set. q.e.d.

By a quasi-character of I we shall mean a continuous homomorphism from I into

C× which is trivial on k×. So every quasi-character of I naturally induces a character

of J/k× since J/k× is compact. Hence, quasi-characters of I (when restricted to J) are

characters of J . If χ is a quasi-character of I which is trivial on J , then χ1 : (0,∞) → C×

defined by χ1(t) := χ(t) is continuous and multiplicative, so there exists a unique s ∈ C

such that χ1(t) = ts for all t ∈ (0,∞). Consequently, χ(a) = χ
(
|a|
)

= |a|s for all a ∈ I.

Therefore, for each quasi-character χ of I which is trivial on J , there exists a unique

s ∈ C such that χ(a) = |a|s for all a ∈ I.

Let χ be any quasi-character of I. Then |χ| is a quasi-character of I which is

trivial on J , so there is a unique s ∈ C such that |χ(a)| = |a|s for all a ∈ I. In

particular, |a|s > 0 for all a ∈ I. This would imply, if the imaginary part of s were

nonzero, that Im | | lay in a discrete subgroup of (0,∞), but we know Im | | = (0,∞),

so s must be real. We call this number as the exponent of χ. A quasi-character of I is

a character if and only if its exponent is zero.

As in the Local Theory, it will be convenient to denote by Q the set of all quasi-

characters of I, and by QS the set of all quasi-characters of I with exponents in S ⊆ R.

For each quasi-character χ of k× we define as before χ̂ to be the quasi-character χ−1| |.

If χ has exponent σ, then χ̂ has exponent 1− σ.

2.3.3. The Zeta Functions and Functional Equation

By “convergence” of a series
∑

ξ∈k zξ with terms in C, we mean absolute conver-

gence. Let Z be the collection of all functions f : A → C satisfying the conditions:



45

(1) f belongs to S(A).

(2) For all a ∈ I, x ∈ A, the series
∑

ξ∈k f(a(x + ξ)) and
∑

ξ∈k f̂(a(x + ξ)) are

convergent, the convergence being uniform in the pair (a, x) for x ranging over D and

a ranging over any compact subset of I.

(3) f |I · | |σ and f̂ |I · | |σ belong to L1(I) for all σ > 1.

Theorem 2.3.18. (Poisson summation formula) Let f : A → C be a function satisfy-

ing the conditions:

(1) f is continuous and integrable.

(2) For all x ∈ A, the series
∑

ξ∈k f(x+ ξ) is convergent, and the convergence is

uniform on D.

(3) The series
∑

ξ∈k f̂(ξ) is convergent.

Then we have

∑
ξ∈k

f̂(ξ) =
∑
ξ∈k

f(ξ).

The essential step in the proof of the main theorem of this subsection consists in

using the number-theoretic analogue of the Riemann-Roch theorem, which is a corollary

of the Poisson summation formula. We state this result below. Hypotheses to be listed

are apparently fulfilled for the functions in Z.

Theorem 2.3.19. Let f : A → C be a function satisfying the conditions:

(1) f is continuous and integrable.

(2) For all a ∈ I, x ∈ A, the series
∑

ξ∈k f(a(x+ξ)) is convergent, the convergence

being uniform for x ranging over D.

(3) For all a ∈ I, the series
∑

ξ∈k f̂(aξ) is convergent.

Then, for all a ∈ I, we have

1

|a|
∑
ξ∈k

f̂

(
ξ

a

)
=
∑
ξ∈k

f(aξ).
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Definition 2.3.20. Corresponding to each f ∈ Z, the map ζf : Q(1,∞) → C defined

by ζf (χ) :=
∫

I f(a)χ(a)ν(da) is called a zeta function of k.

The condition f |I · | |σ ∈ L1(I) guarantees that ζf has a meaningful definition. We

have f̂ ∈ Z whenever f ∈ Z since the identity f(x) =
̂̂
f (−x) holds for all x ∈ A. In

particular, ζ bf is also a zeta function of k for f ∈ Z.

We define an equivalence relation on Q by declaring two quasi-characters to be

equivalent if they agree on J . As in Local Theory, let us denote by C the equivalence

class of χ so that C =
{
χ| |s : s ∈ C

}
. Each s ∈ C determines a distinct quasi-character

χ| |s in C. Therefore, we may view C as a complex plane. Thus we may see a function

of quasi-characters as a function defined on a collection of complex planes. Such a

function will be said to be holomorphic at a point of its domain if its restriction to the

corresponding plane is holomorphic at that point. Being holomorphic on a subset is

defined accordingly.

One can show, mimicking the corresponding proof given in the Local Theory, that

zeta functions of k are holomorphic on their domain of definition.

We shall need two lemmas for the proof of the main theorem. We abbreviate the

volume 2r1 (2π)r2hR√
|d|w

of the multiplicative fundamental domain by κ. Remember that if

χ is a quasi-character which is trivial on J , then there is an s ∈ C such that χ = | |s.

Lemma 2.3.21. For all χ ∈ Q, t ∈ (0,∞), we have

∫
E

χ(tb)νJ(db) =

κt
s, if χ = | |s for some s ∈ C;

0, if χ is nontrivial on J .

Proof. Let χ ∈ Q, t ∈ (0,∞). First of all, we note that the integral
∫
E
χ(tb)νJ(db) exists

since the integrand is continuous and E has compact closure. Since χ is multiplicative,
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we have

∫
E

χ(tb)νJ(db) = χ(t)

∫
E

χ(b)νJ(db).

If χ = | |s for some s ∈ C, then χ is trivial on J , hence on E, so that
∫
E
χ(tb)νJ(db) =

|t|sνJ(E) = κts. If χ is nontrivial on J , then the quasi-character on J/k× induced by χ is

also nontrivial, implying that its integral over J/k× is 0. This means
∫
E
χ(b)νJ(db) = 0.

Therefore,
∫
E
χ(tb)νJ(db) = 0. q.e.d.

Fix a function f ∈ Z arbitrarily. Pick one σ0 > 1. Since f ∈ Z, we have

|fI| · | |σ0 ∈ L1(I) (here | | stands for the ordinary absolute value of complex numbers).

Consequently, by Fubini’s theorem, the integral
∫
J
|f(tb)||tb|σ0νJ(db) exists for almost

all t ∈ (0,∞); that is,
∫
J
|f(tb)|νJ(db) exists for almost all t ∈ (0,∞). Now let χ ∈ Q

be arbitrary with exponent σ. For all t ∈ (0,∞), b ∈ J , we have |f(tb)χ(tb)| =

|f(tb)||tb|σ = |f(tb)|tσ. Therefore, the integral

ζf (χ, t) :=

∫
J

f(tb)χ(tb)νJ(db)

exists for almost all t ∈ (0,∞).

Lemma 2.3.22. For all χ ∈ Q, for almost all t ∈ (0,∞), we have

ζf (χ, t) + f(0)

∫
E

χ(tb)νJ(db) = ζ bf

(
χ̂,

1

t

)
+ f̂(0)

∫
E

χ̂

(
1

t
b

)
νJ(db).

Proof. Let χ ∈ Q be arbitrary. The above equality makes sense for almost all t ∈

(0,∞). Take such a t ∈ (0,∞). From J =
⋃̇
α∈k×(αE), translation-invariance of νJ ,



48

and χ|k ≡ 1, we get

ζf (χ, t) =

∫
J

f(tb)χ(tb)νJ(db)

=
∑
α∈k×

∫
αE

f(tb)χ(tb)νJ(db)

=
∑
α∈k×

∫
E

f(αtb)χ(αtb)νJ(db)

=
∑
α∈k×

∫
E

f(αtb)χ(tb)νJ(db).

Since the sum
∑

α∈k× f(αtb) is, by hypothesis, uniformly convergent for b in the rela-

tively compact set E, we have

∑
α∈k×

∫
E

f(αtb)χ(tb)νJ(db) =

∫
E

( ∑
α∈k×

f(αtb)

)
χ(tb)νJ(db).

Hence

ζf (χ, t) + f(0)

∫
E

χ(tb)νJ(db) =

∫
E

(∑
ξ∈k

f(ξtb)

)
χ(tb)νJ(db).

By the Riemann-Roch theorem, we have
∑

ξ∈k f(ξtb) = 1
|tb|
∑

ξ∈k f̂
(
ξ
tb

)
, so

ζf (χ, t) + f(0)

∫
E

χ(tb)νJ(db) =

∫
E

(
1

|tb|
∑
ξ∈k

f̂

(
ξ

tb

))
χ(tb)νJ(db)

=

∫
E

(∑
ξ∈k

f̂

(
ξ
1

t
b−1

))
χ(tb)

t
νJ(db)

=

∫
E

(∑
ξ∈k

f̂

(
ξ
1

t
b

))
χ(tb−1)

t
νJ(db)

=

∫
E

(∑
ξ∈k

f̂

(
ξ
1

t
b

))
χ̂

(
1

t
b

)
νJ(db).

Once we make the same computations with the right-hand of the equality lemma

asserts, we obtain the last expression above. q.e.d.
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By Fubini’s theorem and the definition of νT , we have

ζf (χ) =

∫ ∞
0

ζf (χ, t)
dt

t
=

∫ 1

0

ζf (χ, t)
dt

t
+

∫ ∞
1

ζf (χ, t)
dt

t

for all χ ∈ Q(1,∞). The second integral
∫∞

1
ζf (χ, t)

dt
t

converges in fact for all χ ∈ Q.

Indeed, we have

∫ ∞
1

ζf (χ, t)
dt

t
=

∫
{a∈I:|a|≥1}

f(a)χ(a)ν(da)

since [1,∞)×J corresponds to {a ∈ I : |a| ≥ 1} under the isomorphism I ∼= T×J . The

integrability of a 7→ f(a)χ(a) on {a ∈ I : |a| ≥ 1} for a quasi-character χ of exponent

σ0 implies the integrability of the same map on the same set for every χ of exponent

less than or equal to σ0. Since the integrability is known for all σ0 > 1, it follows that∫∞
1
ζf (χ, t)

dt
t

converges for each χ ∈ Q.

Now we consider the first integral
∫ 1

0
ζf (χ, t)

dt
t
. By Lemma 2.3.22, this integral

equals

∫ 1

0

(
ζ bf

(
χ̂,

1

t

)
+ f̂(0)

∫
E

χ̂

(
1

t
b

)
νJ(db)− f(0)

∫
E

χ(tb)νJ(db)

)
dt

t
.

We note that, in the collection of planes representing the domain Q of all quasi-

characters of I, one and only one plane consists of those quasi-characters which are

trivial on J . For this plane, we identify the quasi-character | |s with the point s. In

order to express the above expression succinctly, we introduce this notation: for a

mathematical proposition P , we define [P ] to be 1 or 0 according as P is true or false.

In particular,
[
χ = | |s

]
is 1 if χ = | |s for some s ∈ C, and 0 otherwise (in which case

χ is understood to be a quasi-character which is nontrivial on J). Then the above

expression can be rewritten as

∫ 1

0

(
ζ bf

(
χ̂,

1

t

)
+
[
χ = | |s

]
f̂(0)κ

(
1

t

)1−s

−
[
χ = | |s

]
f(0)κts

)
dt

t
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by using Lemma 2.3.21. Writing this as a sum of three integrals and computing the

last two of them yields

∫ 1

0

ζ bf

(
χ̂,

1

t

)
dt

t
+
[
χ = | |s

]
κ

(
f̂(0)

s− 1
− f(0)

s

)
.

Finally, as we make the substitution t 7→ 1
t

in the integral above, we get

∫ ∞
1

ζ bf (χ̂, t)
dt

t
+
[
χ = | |s

]
κ

(
f̂(0)

s− 1
− f(0)

s

)
.

Thus we have proved that the equality

ζf (χ) =

∫ ∞
1

ζf (χ, t)
dt

t
+

∫ ∞
1

ζ bf (χ̂, t)
dt

t
+
[
χ = | |s

]
κ

(
f̂(0)

s− 1
− f(0)

s

)

holds for every χ ∈ Q(1,∞). The two integrals above exist for all χ ∈ Q. In fact, they

are holomorphic functions of χ. By this equation, we enlarge the domain of ζf to Q

except the two quasi-characters | |0 and | |1 (belonging to the plane of quasi-characters

which are trivial on J). Thus ζf is a meromorphic function on Q having simple poles

at | |0 and | |1 with residues −κf(0) and κf̂(0), respectively. Moreover, the form of the

expression above is unchanged when we replace f and χ by f̂ and χ̂. Thus we have

proved the main theorem of this subsection.

Theorem 2.3.23. Each zeta function ζf of k is meromorphically continued to the

domain Q of all quasi-characters except at | |0 and | |1 where it has simple poles with

residues −κf(0) and κf̂(0), respectively. Moreover, ζf satisfies the functional equation

ζf (χ) = ζ bf (χ̂).
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3. SOME COMPUTATIONS

3.1. Prime Divisors of Quadratic Fields

Ostrowski’s theorem determines the prime divisors of Q. In order to do this for

a quadratic field Q
(√

m
)
, where m is a nonzero square-free rational integer other than

1, we need only find out the prolongations of the prime divisors of Q to Q
(√

m
)
.

The degree of the extension Q
(√

m
)
/Q is 2. Hence, for each p, the prime divisor

| |p of Q has two prolongations or one prolongation to Q
(√

m
)

according as the minimal

polynomial of
√
m over Q splits in Qp or not; equivalently,

√
m ∈ Qp or not. In

the former case, the two prolongations are defined by a + b
√
m 7→

∣∣a + b
√
m
∣∣
p

and

a + b
√
m 7→

∣∣a − b
√
m
∣∣
p
. In the latter case, the unique prolongation is defined by

a + b
√
m 7→

√
|a2 −mb2|p (see Proposition 4-31 of Ramakrishnan and Valenza [6],

p. 161).

If p = ∞, then Qp = R so that
√
m ∈ Qp if and only if m > 0. Assume p 6= ∞

now. We have

√
m ∈ Qp ⇐⇒ x2 = m for some x ∈ Qp

⇐⇒ x2 = m for some x ∈ Zp

⇐⇒ x2 ≡ m (mod pn) is solvable for all n ∈ N.

If p | m, then m = pm1 for some m1 ∈ Z \ {0} with p - m1, so the congruence x2 ≡ m

(mod p2) is not solvable because we would otherwise have x2 = pm1 + p2l = p(m1 + pl)

for some l ∈ Z, which is impossible since the number of p’s in the prime factorizations

of x2 and p(m1 + pl) cannot be equal. Thus we have
√
m /∈ Qp for those m which are

divisible by p. If p - m, then Hensel’s lemma (Theorem 2.23 of Niven et al [11], p. 87)

is applicable to simplify the last condition stated above.
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Theorem 3.1.1. (Hensel’s lemma) Let f ∈ Z[x], a ∈ Z, j ∈ N. If f(a) ≡ 0 (mod pj)

and f ′(a) 6≡ 0 (mod p), then there exists t ∈ Z, unique modulo p, such that f(a+tpj) ≡

0 (mod pj+1).

We shall put f(x) := x2 −m. Let us consider the case p 6= 2, first. If f(a) ≡ 0

(mod p) for some a ∈ Z, then f ′(a) = 2a 6≡ 0 (mod p); otherwise, we would have

p | a, implying p | m, contrary to our assumption. By Hensel’s lemma, f(a + tp) ≡ 0

(mod p2) for some t ∈ Z. Since f ′(a+ tp) = 2(a+ tp) ≡ 2a 6≡ 0 (mod p), there exists,

by Hensel’s lemma again, u ∈ Z such that f(a+ tp+up2) ≡ 0 (mod p3). Proceeding in

this manner, it can be shown that f(x) ≡ 0 (mod pn) is solvable for all n ∈ N. Hence,

f(x) ≡ 0 (mod pn) is solvable for all n ∈ N if and only if the congruence f(x) ≡ 0

(mod p) is solvable. Equivalently,
√
m ∈ Qp if and only if m is a quadratic residue

modulo p.

Second, we consider the case p = 2, whence m is odd. From Theorem 47 of

Hecke [9], we learn that x2 ≡ m (mod 2n) is solvable for n ≥ 3 if and only if x2 ≡ m

(mod 8) is solvable, which is to say that m ≡ 1 (mod 8); x2 ≡ m (mod 4) is solvable if

and only if m ≡ 1 (mod 4); and x2 ≡ m (mod 2) is always solvable. Hence,
√
m ∈ Q2

if and only if m ≡ 1 (mod 8). Thus we have proved the theorem below.

Theorem 3.1.2. Let m be a nonzero square-free rational integer other than 1. The

prime divisor | |∞ has two prolongations to Q
(√

m
)

if and only if m > 0. If p | m, then

| |p has a unique prolongation. If p - m and p 6= 2, then | |p has two prolongations if

and only if m is a quadratic residue modulo p; if 2 - m, then | |2 has two prolongations

if and only if m ≡ 1 (mod 8).

For example, the prime divisors | |∞ and | |2 have unique prolongations to Q(
√

2),

and for p 6= 2, the prime divisor | |p has two prolongations to Q(
√

2) if and only if(
2
p

)
= 1. Since

(
2
p

)
= (−1)(p2−1)/8 for an odd rational prime p, we have

(
2
p

)
= 1 if and

only if p ≡ ±1 (mod 8). Consequently, | |p has two prolongations to Q(
√

2) if and only

if p ≡ ±1 (mod 8).
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3.2. Quasi-Characters of Q×p

In Local Theory, we have seen that for a local field k, the quasi-characters of

k× are completely determined once the characters of u (the subgroup of k× consisting

of elements of absolute value 1) are known. We described then the characters of u

explicitly for k = R and k = C, but we were content with a classification based on

conductors in case k is a finite extension of some p-adic field Qp. In this section, we

investigate more closely the characters of u when k = Qp.

Fix a rational prime p. Then

u =
{
a0 + a1p+ a2p

2 + . . . : 0 ≤ aj < p for all j ≥ 0, a0 6= 0
}

and

1 + pn =
{
1 + anp

n + an+1p
n+1 + . . . : 0 ≤ aj < p for all j ≥ n

}
for all n ∈ N, where p = Zp \ Z×p as usual. We know that we need only determine the

characters of each factor group u/(1 + pn). These groups are discrete since 1 + pn is

open in u for every n, so in fact the question is that of finding the homomorphisms

from u/(1 + pn) into S1.

Let us start with the simplest cases and then generalize. We have

u

1 + p
= {a0 : 0 < a0 < p}

where a0 denotes the coset of a0. Indeed, if a0 + a1p+ a2p2 + . . . = b0 + b1p+ b2p2 + . . .

then (a0 + a1p+ a2p
2 + . . .)(b0 + b1p+ b2p

2 + . . .)−1 ∈ 1 + p. Say c0 + c1p+ c2p
2 + . . . =

(b0+b1p+b2p
2+. . .)−1. Then a0c0 ≡ 1 and c0b0 ≡ 1 (mod p), implying a0 ≡ b0 (mod p),

whence a0 = b0. Conversely, the equality a0 + a1p+ a2p2 + . . . = b0 + b1p+ b2p2 + . . .
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is implied by a0 = b0. Hence, we have u
1+p

= {a0 : 0 < a0 < p}. The map

u

1 + p
→ Z×p

a0 7→ [a0]

is an isomorphism of groups, where [a0] denotes the equivalence class of a0 in Z×p .

Similarly, we have

u

1 + p2
=
{
a0 + a1p : 0 < a0 < p, 0 ≤ a1 < p

}
.

Indeed, if a0 + a1p+ a2p2 + . . . = b0 + b1p+ b2p2 + . . . and c0 + c1p + c2p
2 + . . . =

(b0 + b1p + b2p
2 + . . .)−1 as above, then a0c0 ≡ 1, a0c1 + a1c0 + a0c0−1

p
≡ 0, c0b0 ≡ 1,

c0b1 + c1b0 + c0b0−1
p

≡ 0 (mod p), implying a0 ≡ b0 and as a consequence a1 ≡ b1

(mod p), whence a0 = b0 and a1 = b1. Conversely, the equality a0 + a1p+ a2p2 + . . . =

b0 + b1p+ b2p2 + . . . is implied by a0 = b0 and a1 = b1. Hence, we have u
1+p2 =

{a0 + a1p : 0 < a0 < p, 0 ≤ a1 < p}. The map

u

1 + p2
→ Z×p2

a0 + a1p 7→ [a0 + a1p]

is an isomorphism of groups. In general, for each n ∈ N, we have

u

1 + pn
=
{
a0 + a1p+ . . .+ an−1pn−1 : 0 ≤ aj < p for all j, a0 6= 0

}

and the map

u

1 + pn
→ Z×pn

a0 + a1p+ . . .+ an−1pn−1 7→ [a0 + a1p+ . . .+ an−1p
n−1]
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is an isomorphism of groups. Therefore, we are to find the homomorphisms from Z×pn

into S1. These homomorphisms form a group under pointwise multiplication. We

denote this group by Hom(Z×pn , S1). From the theory of finite abelian groups (see §10

in Hecke [9]), we know Hom(Z×pn , S1) is isomorphic to Z×pn itself.

Let Cm be the cyclic group of order m. The group Z×2 is trivial, we have

Z×4 ∼= C2, and Z×2n
∼= C2 × C2n−2 for n ≥ 3 (Theorem 45 of Hecke [9]). If p is

odd, then Z×pn
∼= C(p−1)pn−1 (Theorem 44 of Hecke [9]). Thus Hom(Z×2 , S1) is trivial,

Hom(Z×4 , S1) is generated by the homomorphism defined by g 7→ −1 where Z×4 = 〈g〉,

and Hom(Z×2n , S1) is generated by the two homomorphisms defined by (g, h) 7→ −1 and

(g, h) 7→ exp
(

2πi
2n−2

)
where Z×2n = 〈g〉× 〈h〉. If p is odd, then Hom(Z×pn , S1) is generated

by the homomorphism defined by g 7→ exp
(

2πi
(p−1)pn−1

)
where Z×pn = 〈g〉.
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4. CONCLUSIONS

Much information on rational primes is encoded in the Riemann zeta function ζ

which is defined by the absolutely convergent series

ζ(s) :=
∞∑
n=1

n−s

for complex numbers s such that Re s > 1. This function admits a meromorphic

continuation to whole complex plane, except for a simple pole at s = 1, and satisfies

the functional equation

ξ(s) = ξ(1− s)

where ξ is the entire function defined by

ξ(s) := s(s− 1)ζ(s)Γ

(
1

2
s

)
π−

1
2
s.

One establishes this meromorphic continuation and the functional equation by making

use of the transformation equation

θ(x) = x−
1
2 θ(x−1)

for the theta function θ which is defined by

θ(x) :=
∞∑

n=−∞

e−n
2πx

for x > 0. The zeta function could be greatly generalized with the introduction of

the Dirichlet series, important examples of which are furthermore generalized simul-

taneously as the L-function L(s, χ) associated with a continuous character χ of the

idele class group of any number field k. A substantial achievement of Erich Hecke was
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to establish the meromorphic continuation and the functional equation of L(s, χ) for

any idele class character χ by an enormously complicated application of generalized

theta functions and the higher analogues of the equation θ(x) = x−
1
2 θ(x−1), which

are now understood to be consequences of the Poisson summation formula. One thing

that Hecke’s method could not describe satisfactorily was the nature of the global con-

stant appearing in the functional equation of L(s, χ). Then, circa 1950, following a

suggestion of his erstwhile thesis advisor Emil Artin, John Tate made use of Fourier

analysis on adele groups to reprove both the meromorphic continuation and the func-

tional equation of L(s, χ), giving in the process a satisfactory description of this global

constant.

After a brief chapter on Riemann zeta function, we have discussed in this M.S.

thesis the local theory, restricted direct products, and most of the global theory in

detail, following Tate’s thesis.

We have computed prime divisors of quadratic fields: we proved that if m is

a nonzero square-free rational integer other than 1, then the prime divisor | |∞ has

two prolongations to Q
(√

m
)

if and only if m > 0. If p | m, then | |p has a unique

prolongation. If p - m and p 6= 2, then | |p has two prolongations if and only if m is

a quadratic residue modulo p; if 2 - m, then | |2 has two prolongations if and only if

m ≡ 1 (mod 8).

Finally, we gave an explicit description of the quasi-characters of p-adic fields:

Hom(Z×2 , S1) is trivial, Hom(Z×4 , S1) is generated by the homomorphism defined by

g 7→ −1 where Z×4 = 〈g〉, and Hom(Z×2n , S1) is generated by the two homomorphisms

defined by (g, h) 7→ −1 and (g, h) 7→ exp
(

2πi
2n−2

)
where Z×2n = 〈g〉 × 〈h〉. If p is odd,

then Hom(Z×pn , S1) is generated by the homomorphism defined by g 7→ exp
(

2πi
(p−1)pn−1

)
where Z×pn = 〈g〉.
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APPENDIX A: ERRORS IN THE LITERATURE

We shall point out in this appendix three errors from the book Fourier Analysis

on Number Fields [6].

A.1. First Error

If there is a complex Banach space V such that Aut(V ) 6= Auttop(V ), then Corol-

lary 2-2 is false: take T ∈ Aut(V ) \ Auttop(V ) and put G := Z. The map

ρ : G→ Aut(V )

m 7→ Tm

is an abstract representation of G, and for each x ∈ V , the map m 7→ Tm(x) is

continuous from G to V since its domain has the discrete topology. However, ρ cannot

be a topological representation; otherwise, the image of G under ρ lies in Auttop(V ),

contrary to T /∈ Auttop(V ).

The additional assumption Im ρ ⊆ Auttop(V ) corrects Corollary 2-2. This as-

sumption is fulfilled for the reference made to Corollary 2-2 in the proof of Proposition

3-3.

A.2. Second Error

In the proof of Proposition 2-16, the containment γ(T ) ∈ sp(T ) lacks justification;

nevertheless, we have γ(T ) ∈ spA(T ), where spA(T ) denotes the spectrum of T in A.

On the other hand, the inclusion spA(T ) ⊆ R does not follow from Proposition 2-15.

The generalization of Proposition 2-15 below proves spA(T ) ⊆ R.

Proposition A.2.1. Let A be a self-adjoint, closed, unital subalgebra of End(H). If

T ∈ A is unitary, then spA(T ) ⊆ S1; if T ∈ A is self-adjoint, then spA(T ) ⊆ R.
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Proof. For all T ∈ A, λ ∈ C, we have

T ∈ A× ⇐⇒ T ∗ ∈ A×

λ ∈ spA(T ) ⇐⇒ λ ∈ spA(T ∗)

and for all T ∈ A×, λ ∈ C×, we have

λ ∈ spA(T ) ⇐⇒ λ−1 ∈ spA(T−1).

In view of these biconditionals, the conclusions are derived as in the proof of Proposition

2-15; just note that the spectral radii of T ∈ A in End(H) and in A are the same as a

consequence of Theorem 2-6. q.e.d.

A.3. Third Error

Proposition 4-10, which characterizes multiplicative functions F satisfying the

inequality F (m+ n) ≤ A · sup
{
F (m), F (n)

}
for some constant A, has a flawed proof.

The auxiliary function f must have codomain R, whence the inequalities thereafter

lack justification. Nevertheless, the proposition is proved under the stronger hypothesis

that F satisfies the triangle inequality: the argument given in the proof of Ostrowski’s

theorem in Cassels and Fröhlich [5] works with almost no change. Consequently, we

obtain the below corollary in view of the fact that every absolute value is equivalent

to one that satisfies the triangle inequality.

Corollary A.3.1. If k is a nondiscrete locally compact field, then either

(1) modk(n) ≤ 1 for all n ∈ N ∪ {0}, or

(2) there is λ > 0 such that modk(n) = nλ for all n ∈ N ∪ {0}.

The authors essentially utilize the corollary above, not Proposition 4-10, in the

preliminary analysis for the classification theorem of nondiscrete locally compact fields

having zero characteristic.
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