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Boğaziçi University

2007



iii

ACKNOWLEDGEMENTS

Completion of this thesis is a result of a long and hard work with contributions

of some people. I would like to express my gratitude to them.

First of all, I am very grateful to my thesis advisor Assist. Prof. Müge Ka-
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ABSTRACT

RADICALS OF INCIDENCE ALGEBRAS

The incidence algebra of a locally finite partially ordered set X, with the partial

ordering ”≤”, over a ring with identity T is defined as the set of all mappings f :

X × X → T where f(x, y) = 0 for all x, y ∈ X with x 6≤ y and denoted by I(X, T ).

The operations on I(X,T ) are given by

(f + g)(x, y) = f(x, y) + g(x, y)

(f · g)(x, y) =
∑

x≤z≤y

f(x, z) · g(z, y)

(r · f)(x, y) = rf(x, y)

for f, g ∈ I(X,T ), r ∈ T and x, y ∈ X. When the ring R is commutative, the ring

I(X, R) becomes an algebra.

The aim of this study is to investigate some special radicals of incidence alge-

bras and determine the necessary and sufficient conditions characterizing elements of

these radicals by using the very definition of the strong product property.
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ÖZET

ÇAKIŞMA CEBİRLERİNİN KÖKLERİ

Üzerinde ”≤” baǧıntısı tanımlanmış yerel sonlu kısmi sıralı bir X kümesinin

birimli bir T halkası üzerinde çakışma cebiri ”x 6≤ y” olacak biçimdeki her x, y ∈ X

için f(x, y) = 0 koşulunu saǧlayan f : X × X → T fonksiyonlarından oluşan ve

I(X, T ) ile gösterilen kümesi üzerinde aşaǧıda tanımlanan işlemlerle verilen halkadır:

f, g ∈ I(X, T ), r ∈ T ve x, y ∈ X olmak üzere

(f + g)(x, y) = f(x, y) + g(x, y)

(f · g)(x, y) =
∑

x≤z≤y

f(x, z) · g(z, y)

(r · f)(x, y) = rf(x, y)

R’nin deǧişmeli halka olması durumunda I(X,R) bir cebir olur.

Bu çalışmanın amacı çakışma cebirlerinin bazı özel radikallerini araştırıp, kuvvetli

çarpım özelliǧinin tanımından hareketle bu radikallerin elemanlarını belirleyen gerek ve

yeter koşullar vermektir.
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1. INTRODUCTION

The aim of this thesis is to study the existing results on radicals of incidence

algebras. We will first start with a brief historical outline of the subject:

The various radicals which have been defined by several mathematicians such

as Levitzki, Jacobson, Brown-McCoy, and others constitute an important tool in the

study of the structure of rings. The purpose of this survey is thus to determine some

of these radicals of incidence algebras.

The upper and the lower nilradicals were considered first by M. Baer [1], and

are also known as the upper and the lower Baer radicals. Later, the lower nilradical is

generalized by Amitsur [2]. In addition, an axiomatic study of radicals can be found

in [3], [4] and [5].

In the study of radicals, Köthe [6] suggested the use of nil rings. Yet, the upper

nilradical failed to be useful, since the study of rings with no two sided nil ideals still

required dealing with one sided nil ideals. This raised the famous Köthe Conjecture

which is not readily solved in general.

The theory of incidence algebras goes back to the 60s when it was first intro-

duced by Gian-Carlo Rota and R. P. Stanley. These theorists, however, looked at the

issue from a combinatorial point of view. Later on, after a couple of decades, the

subject was focused on and analyzed with an algebraic point of view which is also the

case in this study. The main topic under consideration will be the incidence algebra

of locally finite partially ordered set over a (both commutative and noncommutative)

ring with identity. However, there are some researchers who have studied incidence

algebras of pre-ordered sets over a field or division ring.

The lower nilradical, or Baer radical of the incidence algebra has been deter-

mined when R is a field by Farkas (1974) (see [7]), when R is an integral domain by
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Lerous and Sarraillé (1981) ( see [8]), when R is a commutative ring by Spiegel (1994)

(see [9]), and when R is any ring by Spiegel (2004) (see [10]). The upper nilradical

of the incidence algebra is determined where the coefficient ring is noncommutative

by Spiegel [11]. In [12] and [13], Bell and Klein showed that periodicity is a radical

property in the sense of Kurosh and Amitsur. Guo [14] continued the study of this

periodic radical by showing that P(T ) is an intersection of suitable prime ideals and,

consequently, that the periodic radical is a special radical (see Divinsky [15] for de-

tails). In the case of incidence algebras, a complete description is obtained whenever

the coefficient ring is commutative with identity (see [16]).

At this point, we shall sketch the organization of the thesis.

In Chapter 1, introductory explanations are given.

In Chapter 2, basic notations and preliminary results used in the thesis are pre-

sented.

In Chapter 3, incidence algebras are examined.

In Chapter 4, the radical property is introduced. Some special radicals such

as the upper nilradical, the lower nilradical and the Jacobson radical are presented.

In Chapter 5, the upper nilradical and the lower nilradical of an incidence al-

gebra are examined where the incidence algebra is taken over a commutative ring with

unity and taken over a noncommutative ring with unity, respectively.

Finally, In Chapter 6, the notion of periodic radical is presented and the pe-

riodic radical of an incidence algebra is investigated.
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2. PRELIMINARIES

In this chapter, our aim is to present basic definitions and results which will be

used in the subsequent chapters of this study. The proofs of all results can be found

in any book on abstract algebra.

Throughout the text by a ring we assume an associative ring with or without

identity.

Definition The direct product
∏
i∈I

Ti of rings {Ti | i ∈ I } is the set of sequences (ti)i∈I

where ti ∈ Ti for each i ∈ I with the operations defined componentwise.

Proposition 2.0.1. Let {Ti | i ∈ I } be a family of rings. Then the direct product
∏
i∈I

Ti is a ring.

Proposition 2.0.2. Let t be an element of a ring with identity T . Then

Annr(t) = {x ∈ T | tx = 0 }

is a right ideal and

Annl(t) = {x ∈ T | xt = 0 }

is a left ideal (called respectively the right and the left annihilators of t in T ).

Proposition 2.0.3. If T is a ring with identity, then every ideal of T is contained in

a maximal ideal.

Definition A ring is called simple if it contains no nontrivial ideals.

Proposition 2.0.4. For a ring with identity T , an ideal I maximal implies that T/I

simple.
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Definition An element e of a ring T is called idempotent if e2 = e.

Proposition 2.0.5. If an element e of a ring with identity T is idempotent, then

T = T (1− e)⊕ Te.

If T is a ring with identity, the set of n× n matrices will be denoted by Mn(T ),

the set of n×n upper triangular matrices by Tn(T ) and the set of n×n lower triangular

matrices by Ln(T ). We also denote by T∞(T ) and L∞(T ) the rings of countable upper

and lower triangular T -matrices, respectively. Standard matrix multiplication is defined

in each of these rings as all sums involve only finitely many non-zero terms.

Definition A left module M over a ring T is an abelian group (M, +) with a “multi-

plication by scalars”, that is, a map

T ×M −→ M

(r,m) 7−→ rm

such that the following are satisfied for all m1,m2,m ∈ M , for all r1, r2, r ∈ T :

r(m1 + m2) = rm1 + rm2

(r1 + r2)m = r1m + r2m

(r1r2)m = r1(r2m)

Definition A left T -module M is said to be unitary if T has identity 1T and

1T .m = m

for all m ∈ M .

Definition An algebra A is a ring which is also a R-module over a commutative ring
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R such that the following condition is satisfied:

r(ab) = (ra)b = a(rb)

for all r ∈ R, a, b ∈ A.

The most natural example of an algebra is n × n matrices over a commutative

ring or n× n upper or lower triangular matrices over a commutative ring.

Definition Let X be a set and ≤ be a binary relation on X. Then, X is called

a pre − ordered set if the relation ≤ is reflexive and transitive. If ≤ is reflexive,

transitive and antisymmetric, then X is called a partially ordered set or simply a poset.

In this case, the relation ≤ is called a partial ordering and a partially ordered set X

with the partial ordering ≤ is denoted by (X,≤).

Definition Let (X,≤) be a partially ordered set.

(i) An element x ∈ X is called maximal if for any y ∈ X, x ≤ y implies y = x. If,

in addition, for this x ∈ X, y ≤ x holds for each x ∈ X, then it is called the maximum

element of X.

(ii) An element x ∈ X is called minimal if for any y ∈ X, y ≤ x implies y = x

and it is the minimum element of X if x ≤ y for each y ∈ X.

Definition Let C be a subset of a partially ordered set (X,≤). Then, C is called a

chain of X if for all x, y ∈ X, either x ≤ y or y ≤ x. C is called an antichain if any

distinct pair of elements are not comparable, that is, for any x, y ∈ X with x 6= y both

x 6≤ y and y 6≤ x.

A chain is said to be of length-n if it has n elements and a chain of length n

is usually denoted by Cn.
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Definition Suppose X is a partially ordered set with the partial ordering ”≤” and Y

is a partially ordered set with the partial ordering ”4”. Then X and Y are isomorphic

as posets if there is an order preserving bijection between X and Y, that is, if there

exists a bijection ϕ : X → Y with the property that if x ≤ y for x, y ∈ X, then

ϕ(x) 4 ϕ(y) in Y.

Zorn’s Lemma If S is a non-empty partially ordered set such that every chain

in S has an upper bound in S , then S has a maximal element.

Principle of Transfinite Induction Let P(x) be a statement involving the

symbol x. Let (A,≤) be a well-ordered set. Suppose

(i) P(a) is true where a is the smallest element of A

(ii) if a is not the smallest element of A and P(b) is true whenever b < a, then

P(a) is true.

Then P(a) is true for all a ∈ A.
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3. INCIDENCE ALGEBRAS

3.1. Locally Finite Partially Ordered Sets

Definition Let (X,≤) be a partially ordered set and x, y ∈ X such that x ≤ y. An

interval or segment from x to y, denoted [x, y], is defined to be the set

[x, y] = {z ∈ X | x ≤ z ≤ y }

A partially ordered set X is locally finite if every interval of X is finite.

Definition An interval [x, y] in a partially ordered set X is said to have length-n if

there is a chain of length n in [x, y], and any chain in this interval has length less than

or equal to n.

Definition Let X be a partially ordered set. Then, X is said to be bounded if there

exists a positive integer n ∈ Z+ such that every interval [x, y] of X is at most of length

n. A partially ordered set X is called unbounded if X is not bounded.

Examples of unbounded locally finite partially ordered sets containing an infinite

chain include Z+, the positive integers under the usual ordering, and Z−, the partially

ordered set of negative integers with the usual ordering. If we define the partially

ordered set
⋃

n∈N
Cn to be the set {x11, x21, x22, x31, x32, x33, x41, . . .} with the relation

that xij ≤ xkl whenever i = k and j ≤ l, for xij, xkl ∈
⋃

n∈N
Cn, then

⋃

n∈N
Cn is an

unbounded locally finite partially ordered set with no infinite chain. In fact, if m is a

positive integer and

A(m) = {xmj ∈
⋃

n∈N
Cn | 1 ≤ j ≤ m },
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Figure 3.1. The three most basic unbounded posets.

then A(m), as a subpartially ordered set, is a chain of length m. No element of A(m1)

and A(m2) are related if m1 6= m2, and

⋃

n∈N
Cn =

⋃

m∈N
A(m).

The Hasse diagrams of Z+,Z−, and
⋃

Cn are given in Figure 3.1.

Theorem 3.1.1. Let X be an unbounded, partially ordered set. Then X contains a

subpartially ordered set isomorphic to Z+,Z− or
⋃

n∈NCn.

Proof. See [17].

Lemma 3.1.2. Suppose X is an unbounded locally finite partially ordered set. Then

for each m,n ∈ Z+, we can find disjoint intervals of length m and of length n for

m 6= n.

Proof. Assume X is an unbounded locally finite partially ordered set. By Theorem

3.1.1, there exists a chain of length n for each n ∈ Z+. Let us denote an interval

of length n by An. Put B1 = A1 and, inductively, Bi = Ai\Bi−1 for each i. Then
⋃
i

Ai =
⋃
i

Bi and Bi’s are disjoint.
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Now we construct disjoint intervals Ci’s so that Ci has length i as follows:

Set C1 = B1. If B2 contains an interval of length 2, let C2 be this interval. If

not, check B3. If B3 contains an interval of length 2, then let C2 be this interval. If

not, check B4. When we find a chain, say Di1 of length 2, then choose C2 to be Di1 .

Continuing in this manner, we obtained our disjoint intervals Ci’s.

3.2. The Incidence Algebra

Throughout this text, the letter ”R” denotes a commutative ring and ”T” denotes

a ring which is not necessarily commutative. We will define the incidence algebra,

I(X, R), of locally finite partially ordered set X over a commutative ring with identity

R. Later, we will construct I(X, T ) over a ring with identity T which does not form an

algebra structure in this case. But, by convention, we will call I(X,T ) as an incidence

algebra.

Definition The incidence algebra I(X, R) of the locally finite partially ordered set X

over the commutative ring with identity R is

I(X,R) = {f : X ×X → R | f(x, y) = 0 if x 6≤ y}

with the operations given by

(f + g)(x, y) = f(x, y) + g(x, y)

(f · g)(x, y) =
∑

x≤z≤y

f(x, z) · g(z, y)

(r · f)(x, y) = rf(x, y)

for f, g ∈ I(X, R) with r ∈ R and x, y ∈ X.

Remark Given that if X is locally finite, the above sum is well-defined. We could
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also write

(f · g)(x, y) =
∑
z∈X

f(x, z) · g(z, y)

as f(x, z) = 0 if x � z and g(z, y) = 0 if z � y.

It is easy to check that I(X, R) is an R-algebra. However, if we take a noncom-

mutative ring, then I(X, T ) is not necessarily an algebra.

Now, we will introduce some special elements of I(X, T ).

1. Define

δ : X ×X → T

(x, y) 7→ δ(x, y)

such that

δ(x, y) =





1 if x = y

0 otherwise.

Here we can clearly see that, for all f ∈ I(X, T ), and for all x, y ∈ X

(f · δ)(x, y) =
∑

x≤z≤y

f(x, z)δ(z, y)

= f(x, y)

and

(δ · f)(x, y) = f(x, y),

that is, δ ∈ I(X,T ) is the multiplicative identity.
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2. Define

χ : X ×X → T

(x, y) 7→ χ(x, y)

where

χ(x, y) =





1 if x < y

0 otherwise .

3. Define

ζ : X ×X → T

(x, y) 7→ ζ(x, y)

such that

ζ(x, y) =





1 if x ≤ y

0 if otherwise.

namely

ζ(x, y) = δ(x, y) + χ(x, y).

By definition of multiplication on I(X, T ), if an interval [x, y] is of length n, then

χn(x, y) = 0, giving δ−χ+χ2−... is a finite sum. Then we get (δ+χ)(δ−χ+χ2−...) = δ,

that is, δ + χ = ζ ∈ I(X,T ) is invertible and its inverse is called the Möbius function

of I(X, T ) and denoted by µ.

Lemma 3.2.1. Let T be a ring with unity and s ∈ T . If s ∈ T has both a left and a

right inverse, then it is a unit.

Proof. Let ls = sr = 1R for l, r ∈ I(X, R). Then, l = l(sr) = (ls)r = r, that is,

l = r.
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Theorem 3.2.2. Suppose X is a locally finite partially ordered set and R is a commu-

tative ring with unity. For f ∈ I(X, R), the followings are equivalent:

(i) f has a right inverse

(ii) f has a left inverse

(iii) f is a unit

(iv) f(x, x) is a unit in R, for all x ∈ X.

Proof. We show the equivalence of (i) and (iv), the equivalence of (ii) and (iv) can be

proven in a similar manner. By Lemma 3.2.1 for a ring with identity R if s ∈ R has

both right and a left inverse, then s is a unit. So (iv) implies both (i) and (ii). Then

it follows that (iv) implies (iii). Finally, since (iii) obviously implies both (i) and (ii),

the theorem will be proved.

(i)⇒(iv) Suppose that f has a right inverse g. Then, for all x ∈ X, we have

(f · g)(x, x) = f(x, x)g(x, x) = δ(x, x) = 1

and therefore f(x, x) is a unit in R.

(iv)⇒(i) Suppose that f(x, x) is a unit for all x ∈ X. We define a right inverse,

say g, of f inductively on the length of the intervals of X as follows. If |[x, y]| = 0,

then x 6≤ y and set g(x, y) = 0. If |[x, y]| = 1, then x = y and let g(x, x) = (f(x, x))−1.

Let n > 1 and assume that for x, y ∈ X with |[x, y]| < n, g(x, y) is already defined.

Let [x, y] be the interval of length n. We want

0 = δ(x, y) = (fg)(x, y) =
∑

x≤z≤y

f(x, z)g(z, y)

= f(x, x)g(x, y) +
∑

x<z≤y

f(x, z)g(z, y)

As f(x, x) is invertible, we can solve this equation for g(x, y). Thus, define

g(x, y) =

[
−

∑
x<z≤y

f(x, z) · g(z, y)

]
· f(x, x)−1
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Since the interval [z, y] has length less than n, the function g has been defined for

z, y ∈ X by our induction hypothesis. Therefore, f · g = δ.

For any cardinal number κ and a ring T , the set of κ×κ matrices will be denoted

by Mκ(T ) which forms a T -module structure. A submodule of Mκ(T ) in which all sums

in the formal matrix products of its elements involve only finitely many summands will

form a matrix ring contained in Mκ(T ). By convention, we will refer to such a ring as a

subring of Mκ(T ). Hence, we will show in the next proposition that the multiplication

of elements in the incidence algebra and multiplication on matrix rings are closely

related.

Proposition 3.2.3. Let X be a locally finite partially ordered set and T a ring with

identity. Then, the incidence algebra I(X, T ) is isomorphic to a subring of M|X|(T ).

Proof. Suppose that the elements of X is ordered so that X = {xi | i ∈ I } where I is

an indexing set. Consider the entries of an element A in M|X|(T ) as indexed by I × I.

Define

ϕ : I(X, T ) - M|X|(T )

f 7→ ϕ(f)

such that

ϕ(f) : I × I - T

(i1,i2) 7→ f(xi1 , xi2)

Now, if ϕ(f) = 0, then (ϕ(f))(i1, i2) = f(xi1 , xi1) = 0, for all xi1 , xi2 ∈ X, thus ϕ

is injective. On the other hand, by definition of addition and multiplication on I(X, T ),

for all f, g ∈ I(X,T ) we have ϕ(f + g) = ϕ(f) + ϕ(g) and ϕ(f.g) = ϕ(f)ϕ(g). Hence,

ϕ is a ring isomorphism between I(X, T ) and a subring of M|X|(T ).
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Now suppose that X = {xi | i ∈ I} such that xi ≤ xj implies i ≤ j, for all

xi, xj ∈ X. Then, for any f ∈ I(X,T ), corresponding ϕ(f) is an upper triangular I×I

matrix. Therefore, we can say that I(X,T ) is isomorphic to TI(T ), a subring of upper

triangular matrices.

If X = {xi | i ∈ I} such that xi ≤ xj implies j ≤ i, for all xi, xj ∈ X, then ϕ(f)

becomes a lower triangular I × I matrix and hence, I(X, T ) is isomorphic to LI(T ), a

subring of lower triangular matrices.

If in particular X = Z+, then we have I(X, T ) ∼= T∞(T ) and if X = Z−, then

I(X, T ) ∼= L∞(T ).

Definition Elements x, y of a partially ordered set X is called connected if there exists

elements x0, x1, . . . , xn in X with x0 = x, xn = y and either xi ≤ xi+1 or xi+1 ≤ xi for

i = 0, 1, . . . , n− 1.

Note that, connectedness of elements of a partially ordered set X is an equiv-

alence relation. The equivalence class of an element x ∈ X is called the connected

component of x. Then, X can be written as the disjoint union of its connected com-

ponents. Moreover, if X =
⋃
n

Xn, where Xn’s are the connected components of X,

then f(x, y) will be zero when x and y are not in the same connected component or

x 6≤ y. Thus, by definition of ϕ, we can say that I(X, T ) is isomorphic to a subring of
∏
n

M|Xn|(T ).

If, in particular, X is an antichain, then all Xn’s will be singletons, hence

I(X, T ) ∼=
∏
x∈X

T.
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Figure 3.2. The Hasse diagram of N5.

For X =
⋃

n∈N
Cn, if we consider

I(Cn, T ) ∼= T|Cn|(T ),

for all n, then I(X, T ) ∼=
∏
n

T|Cn|(T ) and if I(Cn, T ) ∼= L|Cn|(T ), for all n, then

I(X,T ) ∼=
∏
n

L|Cn|(T ).

Example Let X = {x1, x2, x3, x4, x5} such that x1 ≤ x2 ≤ x5 and x1 ≤ x3 ≤ x4 ≤ x5.

The Hasse diagram of X is given in Figure 3.2.

Consider

ζ(x, y) =





1 if x ≤ y;

0 otherwise .
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Then,

ϕ(ζ) =




1 1 1 1 1

0 1 0 0 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1




where ϕ is defined as in the proof of the previous proposition.

Proposition 3.2.4. Let X be a locally finite partially ordered set and R a commutative

ring with the unity. If X ′ is a subpartially ordered set of X, then I(X ′, R) is a subalgebra

of I(X, R).

Proof. By definition, I(X ′, R) = {f ∈ I(X,R) : f(x, y) = 0 if x 6∈ X ′ or y 6∈ X ′}.
Then we can easily verify that it is a subalgebra.

Proposition 3.2.5. If S is an ideal of R, then I(X,S) is a subalgebra of I(X, R).

Proof. Consider similarly I(X, S) = {f ∈ I(X, R) : f(x, y) = 0 if f(x, y) 6∈ S}.

Definition Let X be a locally finite partially ordered set and T be a ring with unity.

(i) An element f ∈ I(X,T ) is called diagonal if f(x, y) = 0 for any x, y ∈ X with

x 6= y and denoted fD.

(ii) An element f ∈ I(X, T ) is called strictly upper triangular if f(x, x) = 0 for

any x ∈ X and denoted fU .

Remark Given f ∈ I(X, T ), we can write f uniquely as f = fD + fU , because

fD(x, y) =





f(x, x) if x = y

0 if x 6= y
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fU(x, y) =





0 if x = y

f(x, y) if x 6= y

and therefore,

f(x, y) = fD(x, y) + fU(x, y)

for all x, y ∈ X.

Remark The set of all strictly upper triangular functions, denoted Z(I(X,T )), and

the set of all diagonal functions, denoted D(I(X, T )), are each subalgebras of I(X, T ).

In addition,

I(X, T ) = Z(I(X,T ))⊕D(I(X, T )).
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4. RADICAL PROPERTY

Definition Let S be a certain property that a ring may have. A ring T is called an

S -ring if it has the property S and an ideal J of T is called an S -ideal if J is an

S -ring.

If S satisfies the following

(1) A homomorphic image of an S -ring is an S -ring,

(2) Every ring contains an S -ideal S which contains every other S -ideal of the

ring,

(3) The factor ring T/S does not contain any non-zero S -ideals,

then S is called a radical property and the S -ideal S is called the S -radical of T.

Definition An element r of a ring T is nilpotent if there exists a positive integer

n ∈ Z+ such that rn = 0. The smallest such n is called the index of nilpotency of r in

T. A subring A of the ring T is nil if each element of A is nilpotent. The subring A is

nilpotent if there exists n ∈ Z+ such that a1 · a2 . . . an = 0 for every a1, a2, . . . , an ∈ A,

that is, An = 0.

We now take S to be the nil property, and a ring T is an S -ring if it is nil. We

shall show that S is a radical property.

Lemma 4.0.6. (i) If T is a nil ring, so is every subring of T.

(ii) If T is a nil ring, so is every homomorphic image of T.

(iii) If A is an ideal of T with both A and T/A nil, then T is a nil ring.

Proof. (i) For any subring T ′ of T, T ′ consists of nilpotent elements and therefore it is

nil.

(ii) If ϕ : T → T ′ is an epimorphism, then for all r ∈ T, ϕ(r) is nil and

therefore T ′ is nil.
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(iii) Suppose A is an ideal of T with both A and T/A nil. Then, for all r ∈ T ,

there exists m ∈ Z+ with (r + A)m = rm + A = A, that is, rm ∈ A. But A is also nil,

so, there exists n ∈ Z+ with (rm)n = rmn = 0. Hence r is nilpotent with mn.

Lemma 4.0.7. If A and B are two nil ideals of a ring T , so is A + B.

Proof. Since (A + B)/A ∼= B/(A ∩ B), by the second isomorphism theorem, and the

right-hand side is nil as it is a factor ring of a nil ring, (A + B)/A is nil. But then, by

the previous lemma, A and (A + B)/A are nil so that A + B is nil.

Lemma 4.0.8. The sum of all the nil ideals of a ring T is a nil ideal.

Proof. Let N denote the sum of all the nil ideals of T. For r ∈ N, there are nil ideals

A1, A2, . . . , Ak of T such that r ∈ A1 + A2 + . . . + Ak. Since A1 + A2 + . . . + Ak is a nil

ideal, r is nilpotent. Therefore, N is a nil ideal.

Remark N is the largest nil ideal of T and T/N contains no nonzero nil ideals, that

is, T/N contains no nontrivial nilpotent ideals. Thus, we have,

Corollary 4.0.9. The nil property is a radical property.

Definition The sum of all of the nil ideals of a ring T is called the upper nilradical of

T and denoted by N∗(T ).

Next we shall check that the Jacobson radical satisfies the radical property.

Definition Let T be a ring. Then Jacobson radical of T, denoted by J(T ), is the

intersection of all maximal left ideals of T.
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Lemma 4.0.10. Let T be a ring with unity. Then the following are equivalent:

(i) y ∈ J(T )

(ii) 1− xy is left invertible, for all x ∈ T

(iii) y T M = 0, for all simple T -modules T M.

Proof. (i)⇒ (ii) Let y ∈ J(T ) and assume 1 − x0y is not left invertible for some

x0 ∈ T. Then T (1− x0y) is a proper left ideal of T. Since T has the identity element,

T (1 − x0y) is contained in a maximal left ideal I, say. Also, y ∈ I implies x0y ∈ I.

Therefore 1− x0y + x0y = 1 ∈ I, a contradiction.

(ii)⇒ (iii) Let 1−xy is left invertible for all x ∈ T. Assume there exists a simple

T -module T M such that y T M 6= 0. So, there exists m ∈ M such that ym 6= 0. Since

T M is simple, we can express it as T M = Tym. It follows that there exists x ∈ T such

that m = xym, that is, (1 − xy)m = 0. Then m = 0 as by assumption 1 − xy is left

invertible which is a contradiction.

(iii)⇒ (i) Suppose yT M = 0 for all simple T -modules T M. Let I be a maximal

left ideal of T. Then T (T/I) is simple. So, y T (T/I) = 0. In particular, y ·1 = 0. Hence,

y + I = I giving that y ∈ I.

Proposition 4.0.11. The Jacobson radical J(T ) of a ring T is a right ideal.

Proof. Take any y ∈ J(T ) and t ∈ T. We show 1− x(yt) is left invertible for all x ∈ T.

Since xy ∈ J(T ), 1− txy is left invertible for all t ∈ T, that is, there exists v ∈ T such

that v(1− txy) = 1, that is, vtxy = v − 1 Then,

(1 + xyvt)(1− xyt) = 1− xyt + xyvt− xyvtxyt

= 1− xyt + xyvt− xyvt + xyt

= 1

Hence, yt ∈ J(T ).
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Let T be a ring with identity. Define an ideal I to be an S -ideal if for any y ∈ I,

1−xy is left invertible for each x ∈ T. We show that this property is a radical property

and the S -radical of T is precisely the Jacobson radical of T.

Proposition 4.0.12. Let S be as above. Then S satisfies the radical property.

Proof. (i) Let I be an S -ring and ϕ : I → B be an epimorphism. We check B is an

S -ring. Fix b ∈ B. Then there exists an element a ∈ I such that ϕ(a) = b. Take any

y ∈ B. Then there exists x ∈ I with ϕ(x) = y. Since I is an S -ring, 1 − xa is left

invertible with t, say. So, t(1− xa) = 1. It follows that

ϕ(t(1− xa)) = ϕ(t)(1− ϕ(x)ϕ(a)) = ϕ(t)(1− yb) = 1

This means that 1− yb is left invertible, therefore, B is an S -ring.

(ii) Suppose T is a ring with unity. Obviously, any S -ideal is contained in J(T )

by Lemma 4.0.10 and thus J(T ) is the maximal S -ideal of T.

(iii) Let T be a ring with unity. Suppose B/J(T ) is an S -ideal of T/J(T ). Fix

b ∈ B. Then 1− ab is left invertible for all a ∈ T/J(T ). Let t be a left inverse of 1− ab.

Then, t(1 − ab) = 1, that is, 1 − t(1 − ab) ∈ J(T ). So, 1 − (1 − t(1 − ab)) = t(1 − ab)

is left invertible. If t′ is a left inverse of t(1 − ab), then we have t′t(1 − ab) = 1. This

means that 1− ab is left invertible for all a ∈ T, that is, b ∈ J(T ).

Next, we consider the nilpotent property and see whether it is also a radical

property.

Lemma 4.0.13. (i) If T is a nilpotent ring, so is every subring of T and so is every

factor ring of T.

(ii) If A is an ideal of T with both A and T/A nilpotent, then T is nilpotent.

Proof. (i) is clear.

(ii) Since A is nilpotent there exists n ∈ Z+ such that a1 ·a2· · ·an = 0 for every
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a1,a2, · · · an ∈ A. And since T/A is nilpotent there exists m ∈ Z+ such that

(r1 + A) · (r2 + A) · · · (rm + A) = (r1 · r2 · · · rm) + A = A

for every ri ∈ T/A, 1 ≤ i ≤ m. Thus for k = mn, we have

r11 · r12· · ·r1n · r21 · r22· · ·r2n · · · rm1 · rm2· · ·rmn = 0

where r1 · ri2· · ·rin ∈ A and rij ∈ T with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence, T is

nilpotent with index k.

Lemma 4.0.14. If A and B are nilpotent ideals of a ring T, so is A + B.

Proof. Suppose A is nilpotent with n and B is nilpotent with m. We show that A + B

is nilpotent with m + n. Let ai + bi be elements of A + B for i = 1, 2, . . . , m + n. Then
m+n∏
i=1

(ai + bi) = 0 because each summand of this expression contains either m many

elements of A or n many elements of B as A and B are ideals of T and therefore equals

to 0.

Lemma 4.0.15. The sum of all nilpotent ideals of a ring T is nil.

Proof. Every nilpotent ideal is obviously nil and therefore, by Lemma 4.0.8 the sum of

all the nilpotent ideals is a nil ideal.

The sum of all nilpotent ideals of a ring T is not necessarily a nilpotent ideal as

the following example illustrates.

Example Let A be an algebra over a field F with basis {xα}α∈I where

I = {α ∈ R | 0 < α < 1}
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with the multiplication of basis elements given by:

xα · xβ =





xα+β if α + β < 1

0 else

A, as a ring, consists of elements of the form
∑

finite

fαxα where fα’s are elements of the

field F. We define addition as

fαxα + fβ
′xβ just written together if α 6= β

fαxα + fα
′xα = (fα +fα

′)xα if α = β

Now if we choose n ∈ Z+ such that n >
1

α
then (xα)n = xαn = 0 and for

a =
∑

fαxα if β is the smallest subscript in the expression of a then an integer

k ∈ Z+ such that k >
1

β
will give (a)k = 0. Thus, each element of A is nilpotent, that

is, A is a nil ring.

However, A is not nilpotent because for all n ∈ Z+,

x 1
2
· x 1

4
· x 1

8
· · ·x 1

2n
6= 0.

Now, take any basis element xα and consider the ideal (xα) generated by xα. Then (xα)

is a nilpotent ideal with an integer t satisfying t > 1
α
. But the union of all the ideals

(xα) is A and, therefore, the union of the nilpotent ideals of A is not a nilpotent ideal.

Corollary 4.0.16. The nilpotent property is not a radical property.

Definition The lower nilradical of T, denoted N∗(T ), is the smallest nil ideal of T

such that T/N∗(T ) contains no non-zero nilpotent ideals.
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We shall show the existence of N∗(T ) by Zorn’s lemma:

Let T be a ring. Consider

S = {I | I is a nil ideal of T and T/I contains no nontrivial nilpotent ideals }

We have S 6= ∅ as N∗(T ) ∈ S . Now, order S by 4 where I1 4 I2 means I2 ⊆ I1. Let

C be a chain in S . Then S =
⋂

I∈C

I is a nil ideal and T/S does not contain any nonzero

nilpotent ideals because otherwise if K/S is a nilpotent ideal of T/S then there exists

a positive integer N such that KN ⊆ S ⊆ I, for some I ∈ C and therefore K/I is a

nilpotent ideal of T/I which is not possible. Note that S is an upper-bound for C .

Hence, by Zorn’s lemma, S has a maximal element. Now, we check this element is

unique. Suppose I1, I2 are maximal elements of S . Then I1 ∩ I2 is also a nil ideal.

If A/I1 ∩ I2 is a nonzero nilpotent ideal of T/I1 ∩ I2, then (I1 + A)/I1 is a nonzero

nilpotent ideal in T/I1 ∩ I2. So, I1 ∩ I2 ∈ S with I1 ∩ I2 ⊆ I1, I2. This contradicts

maximality of I1 and I2. Hence, S contains a unique maximal element which is the

lower nilradical of T.

Zorn’s lemma gives the existence of the lower nilradical of a ring T , however, does

not characterize the lower nilradical. In order to have other characterizations of N∗(T )

we determine N∗(T ) in a constructive way.

Construction of N∗(R) :

We use transfinite induction by defining an ideal A(α) of R for each ordinal α.

Induction Bases: Let A(0) = N0(T ) where N0(T ) denotes the sum of all the

nilpotent ideals of T.

Induction Hypothesis: Let β be an ordinal such that A(α) has been defined for

each α < β.



23

Induction Step: If β is a limit ordinal, then define

A(β) =
∑

α<β

A(α).

If β is not a limit ordinal, then there exists an ordinal, say α0 satisfying β = α0 +1. We

set A(β) = B such that N0

(
T

A(α0)

)
=

B

A(α0)
. Note that whether β is limit ordinal

or not A(β) is nil. So, A(β) ⊆ N∗(T ), that is, N∗(T ) is an upper bound for A(β). This

means that there exists an ordinal, say γ, satisfying A(γ) = A(γ + 1). Then, the lower

nilradical of T is A(γ).

Note that the above construction of the lower nilradical also shows that the lower

nilradical satisfies the radical property. See [15] for details.

Before computing the lower nilradical of a ring, we need to review some ring

theoretic results.

Definition An ideal P of a ring with identity T is prime if whenever the ideals A, B

of T have the property A ·B ⊆ P, then either A ⊆ P or B ⊆ P.

Proposition 4.0.17. Let T be a ring with identity, P be an ideal of T and k ≥ 2 a

positive integer. Then the followings are equivalent:

(i) P is a prime ideal.

(ii) If b1, b2, . . . , bk ∈ T with b1 ·T · b2 ·T · · ·T · bk ⊆ P, then bi ∈ P for some index

1 ≤ i ≤ k.

Proof. (i)⇒(ii) Suppose that b1, b2, . . . , bk are elements of T such that

b1 · T · b2 · T · · ·T · bk ⊆ P.

Then (T · b1 · T )(T · b2 · T ) · · · (T · bk · T ) ⊆ P. If we set Bi = T · bi · T, then Bi is the

ideal generated by bi and so B1 ·B2 · · ·Bk ⊆ P gives Bi ⊆ P for some i with 1 ≤ i ≤ k,
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as P is prime. Then bi ∈ P for some 1 ≤ i ≤ k.

(ii)⇒(i) Suppose that P,B1, B2, . . . Bk are ideals of T such that B1·B2 · · ·Bk ⊆ P.

Assume that Bi 6⊆ P for i = 1, 2, . . . , k − 1. For 1 ≤ i < k, choose bi ∈ Bi\P and let

b ∈ Bk. Then

b1 · T · b2 · T · · · t · bk−1 · T · b ⊆ P,

and as bi 6∈ P for 1 ≤ i < k, we have b ∈ P (by assumption). Therefore, Bk ⊆ P and

P is prime.

Definition An element s of a ring T is strongly nilpotent if given a sequence s0, s1, s2, . . .

with s0 = s and si+1 ∈ siTsi for i = 1, 2, . . . , there exists a positive integer n ∈ Z+

such that sn = 0.

Proposition 4.0.18. The intersection of the prime ideals of a ring with identity T is

the set of all strongly nilpotent elements.

Proof. Let

A = {a ∈ T | a is strongly nilpotent}

and

N(T ) =
⋂

P

where the intersection is taken over all the prime ideals of T.

(Necessity) We will prove this part by contraposition. If a 6∈ N(T ), then there is

a prime ideal P of T such that a 6∈ P. Then, by the previous proposition, a · T · a 6⊆ P
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and so there exists a1 ∈ a ·T ·a such that a1 6∈ P. Then again a1 ·T ·a1 6⊆ P and so there

exists a2 ∈ a1 ·T ·a1 such that a2 6∈ P. Continuing in this manner, we obtain a sequence

a, a1, a2, . . . in T such that ai ∈ ai−1 · T · ai−1 and ai 6∈ P for each i. Thus, ai 6= 0 for

each i and therefore a is not strongly nilpotent, that is a 6∈ A. Hence, A ⊆ N(T ).

(Sufficiency) Conversely, suppose that a 6∈ A. Then there exists a sequence

a0, a1, a2, . . . of nonzero elements of T such that a0 = a and ai ∈ ai−1 · T · ai−1 for

i = 1, 2, . . .. Let S = {a0, a1, · · · }. By Zorn’s lemma, there exists an ideal P of T such

that P is maximally disjoint from S . We claim that P is prime. Suppose not, then

there are ideals A and B of T satisfying AB ⊆ P with A 6⊆ P and B 6⊆ P. Then A+P

and B + P are ideals with P 6⊆ A + P and P 6⊆ B + P. So there are indices i and j

such that ai ∈ A + P and aj ∈ B + P. Without loss of generality, assume i ≤ j. Then

aj ∈ aj−1 ·T ·aj−1 ⊆ aj−2 ·T ·aj−2 ·T ·aj−1 ·T ·aj−1 ⊆ · · · ⊆ T ·ai ·T ⊆ A + P

Thus,

aj+1 ∈ aj ·T ·aj ⊆ (A + P )T (B + P ) ⊆ P

as

(a + p1)r(b + p2) = (ar + p1r)(b + p2) = arb + arp2 + p1rb + p1rp2 ∈ P

for all a ∈ A, b ∈ B, r ∈ T and p1, p2 ∈ P. So, aj+1 ∈ P which contradicts our

assumption that P ∩ S = ∅. Therefore, P is a prime ideal of T and a 6∈ P. Hence,

N(T ) ⊆ P.

Proposition 4.0.19. The lower nilradical of a ring with identity T is the set of all

strongly nilpotent elements.

Proof. (Necessity) Let a be a nonzero strongly nilpotent element of a ring T and A0

be the ideal generated by a. Assume that a 6∈ N∗(T ). Now (A0)
2 6⊆ N∗(T ) because
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otherwise if (A0)
2 ⊆ N∗(T ), then

(N∗(T ) + x)(N∗(T ) + y) = N∗(T ) + xy = N∗(T )

for all x, y ∈ A0, that is, {N∗(T ) + x |x ∈ A0} is a nilpotent ideal of T/N∗(T ) con-

tradicting the fact that T/N∗(T ) contains no nonzero nilpotent ideals. Therefore,

(A0)
2 6⊆ N∗(T ) and there exists s1 ∈ T with a · s1 · a 6∈ N∗(T ) because otherwise

a·s1 ·a ∈ N∗(T ) implies (A0)
2 ⊆ N∗(T ). Let a1 = a·s1 ·a and A1 be the ideal generated

by a1. Then, again, (A1)
2 6⊆ N∗(T ) and there exists s2 ∈ T with a1·s2·a1 6∈ N∗(T ). Let

a2 = a1 ·s2 ·a1 and continue in this manner to obtain a sequence a0 = a, a1, a2, . . . with

ai ∈ ai−1 ·T · ai−1 and ai 6∈ N∗(T ) for i = 1, 2, . . . . Then ai 6= 0 for each i contradicting

the strongly nilpotent property of a. Thus, the set of strongly nilpotent elements is

contained in N∗(T ).

(Sufficiency) To prove the converse, we show N∗(T ) is contained in every prime

ideal. Let P be a prime ideal. We check that A(α) ⊆ P for each ordinal α. If α = 0,

then A(α) is defined as the sum of all the nilpotent ideals of T. If Bi is a nilpotent ideal

of T, then there exists ki ∈ Z+ such that Bi
ki = {0} ⊆ P and so Bi ⊆ P (because P

is a prime ideal). It follows that the sum of all the nilpotent ideals
∑

Bi = A(0) ⊆ P.

Now, suppose that β is an ordinal satisfying A(α) ⊆ P for each ordinal α < β. If β is

a limit ordinal, then A(β) =
∑

α<β

A(α) giving that A(β) ⊆ P. If β is not a limit ordinal,

then there is a successor of α, say γ, such that β = γ + 1. By definition, A(β) = B

where N0(T/A(γ)) = B/A(γ). Therefore, A(β) is the sum of the nilpotent ideals Bi

such that A(γ) ⊆ Bi and Bi/A(γ) is nilpotent. Then there exists a positive integer k

such that Bi
k ⊆ A(γ) ⊆ P where the second inclusion is verified by the assumption.

It follows that Bi ⊆ P for each i and therefore A(β) ⊆ P. Hence, N∗(T ) ⊆ P which

completes the proof.

Proposition 4.0.18 and 4.0.19 show that the lower nilradical coincides with the

intersection of the prime ideals of the ring and therefore also known as the prime

radical.
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Definition Let T be a ring with identity.

(i) An ideal J is said to be a semi-prime ideal if, for any ideal A of T, A2 ⊆ T

implies that A ⊆ T.

(ii) T is called a semi-prime ring if (0) is a semi-prime ideal.

Remark Note that for any ideal P of a ring T, the factor ring T/P is a semi-prime

ring if and only if P is a semi-prime ideal. Therefore, T/P is semi-prime if and only if

0T/P
∼= P is semi-prime.

Proposition 4.0.20. Suppose T is a ring with identity and J is an ideal in T. Then

the followings are equivalent:

(i) J is semi-prime

(ii) For each r ∈ T, (r)2 ∈ J implies that r ∈ J

(iii) For each r ∈ T, rTr ⊆ J implies that r ∈ J

(iv) For any left ideal A in T , A2 ⊆ J implies that A ⊆ J.

Proof. (i) implies (ii), (ii) implies (iii) and (iv) implies (i) follow from the definition

of the semi-prime ideal. We check (iii) implies (iv). Assume that A2 ⊆ P for some left

ideal A of T, but A * P. Take a ∈ A\P. Then, aTa ⊆ P. Using (iii), we get a ∈ P,

which is a contradiction.

Definition Let T be a ring with unity and J be an ideal of T. The radical of J, denoted

by
√

J, is the intersection of prime ideals of T containing J, that is,

√
J =

⋂

P prime and J⊆P

P

Lemma 4.0.21. Suppose T is a ring with identity and J is an ideal in T. Then the

followings are equivalent:

(i) J is a semi-prime ideal

(ii) J is an intersection of prime ideals

(iii) J =
√

J
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Proof. (iii) ⇒ (ii) Obvious by the definition of a radical ideal.

(ii) ⇒ (i) Let A be an ideal such that A2 ⊆ J. By assumption, J is an intersection of

prime ideals, therefore, A is contained in each of these ideals. Hence, A ⊆ J.

(i) ⇒ (iii) We show
√

J ⊆ J. Let a 6∈ J. By Proposition 4.0.20,

aTa, aTaTaTa, aTaTaTaTaTaTaTa, . . . 6⊆ J

Choose t1 ∈ T with at1a 6∈ J. Since J is semi-prime and aTaTaTa 6⊆ J, there ex-

ists an element t2 ∈ T with at1at2at1a 6∈ J. Similarly, there exists t3 ∈ T with

at1at2at1at3at1at2at1a 6∈ J. Continuing in this manner we can find ti ∈ T for each

i ∈ Z+. Let S be the set of a, at1a, at1at2at1a, at1at2at1at3at1at2at1a, . . . . By Zorn’s

lemma, there exists an ideal P, say, which is maximally disjoint from S. Since J∩S = ∅,
we have J ⊆ P. We show that P is a prime ideal in T. Suppose x 6∈ P, y 6∈ P but

(x)(y) ∈ P. By maximality of P, there exists s, s′ ∈ S with s ∈ P +(x) and s′ ∈ P +(y).

So, there exists t ∈ T with sts′ ∈ S. Then

sts′ ∈ (P + (x))T (P + (y)) ⊆ P + (x)(y) ⊆ P

which is a contradiction. Hence, P is prime. It follows that a 6∈ √J.

Corollary 4.0.22. Let J be an ideal of a ring T. Then
√

J is the smallest semi-prime

ideal in T satisfying J =
√

J. In particular, N∗(T ) =
√

(0) is the smallest semi-prime

ideal in T.

Proposition 4.0.23. Let T be a ring. Then N∗(T ) = A(α) for any ordinal α with

card α > card T where A(α) is defined as in the construction of N∗(T ).

Proof. Note that A(α)’s form an ascending chain of ideals in N∗(T ). Write B = A(α)

where α is an ordinal with card α > card T. Then, for any ordinal β with card β >

card T, we have B = A(β). Since B ⊆ N∗(T ), it is sufficient to show that N∗(T ) ⊆ B.

Now, T/B has no nonzero nilpotent ideals, so it is a semiprime ring. This means that

B is a semiprime ideal. Hence N∗(T ) ⊆ B since N∗(T ) is the smallest semiprime ideal

of T.
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Next, we will see the relation between the upper nilradical and the Jacobson

radical. First, we need to prove the following lemma.

Lemma 4.0.24. Let T be left artinian ring. Then J(T ) is the largest nilpotent (left)

ideal.

Proof. Enough to show that there exits n ∈ Z+ such that (J(T ))n = 0. Consider the

descending chain

J(T ) ⊇ (J(T ))2 ⊇ (J(T ))3 ⊇ . . .

Since T is artinian, there exists N ∈ Z+ such that (J(T ))N = (J(T ))N+1 = . . . = I.

Hence, we need to see that I = 0. Assume not. Then there exists a left ideal J in T

such that IJ 6= 0. Consider

S = {J | J is an ideal in T satisfying IJ 6= 0 }

Since T is left artinian there exists minimal left ideal J0, say, satisfying IJ0 6= 0 by

Zorn’s lemma. So, there exists a ∈ J0 such that Ia 6= 0. Note that I(Ia) = I2a =

Ia 6= 0, that is, Ia satisfies this property. We have a ∈ J0, so, Ia ⊆ J0 and since J0

was minimal J0 ⊆ Ia. Therefore, Ia = J0, that is, there exists x ∈ I such that a = xa,

that is, (1 − x)a = 0 where x ∈ I ⊆ J(T ). Since 1 − x is invertible we have a = 0, a

contradiction. Hence, I = 0 = (J(T ))N .

Corollary 4.0.25. Suppose T is a (left) artinian ring with identity. Then, any (left)

nil ideal of T is also (left) nilpotent.

Proof. Let I be nil left ideal of T. Then I ⊆ J(T ) where J(T ) is nilpotent in this case.

Therefore, I is nilpotent.

Proposition 4.0.26. Let T be a ring with identity. Then

N∗(T ) ⊆ N∗(T ) ⊆ J(T )
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If T is left artinian, then

N∗(T ) = N∗(T ) = J(T )

Proof. N∗(T ) is contained in N∗(T ) as N∗(T ) is a nil ideal. On the other hand J(T )

contains every nil (left) ideal of T as if y ∈ I for a left ideal I of T, and for each x ∈ T,

we have xy ∈ I, therefore, there exists t ∈ Z+ such that (xy)t = 0 and

(1 + xy + · · ·+ (xy)t−1)(1− xy) = 1

that is 1− xy is left invertible. Similarly, 1− xy is right invertible and thus y ∈ J(T ).

Assume now T is left artinian. Then J(T ) is the largest nilpotent (right) ideal by Propo-

sition 4.0.24. Since (0) is the unique nilpotent ideal in T/N∗(T ), T/N∗(T ) semiprime,

so, if A2/N∗(T ) = N∗(T )/N∗(T ), then A/N∗(T ) = N∗(T )/N∗(T ), that is A = N∗(T );

hence A/N∗(T ) = N∗(T )/N∗(T ) ) it follows that J(T ) ⊆ N∗(T ). Hence

J(T ) ⊆ N∗(T ) ⊆ N∗(T ) ⊆ J(T )

giving that all three radicals are equal.

Theorem 4.0.27. Let T be a ring with unity. Then any ideal J of Mn(T ) has the

form Mn(I) for a uniquely determined ideal I of T.

Proof. First note that if I is an ideal of T, then Mn(I) is an ideal of Mn(T ). Define

ϕ : A → B

I 7→ Mn(I)

where A is the set of ideals of T and B is the set of ideals of Mn(T ). We check that

ϕ is a bijection. ϕ is well-defined and one-to-one as for any ideals I1, I2 of T, I1 = I2

if and only if Mn(I1) = Mn(I2). Let J be an ideal of Mn(T ). Then form the set I of

all the (1, 1)-entries of matrices in J, that is, if m = (eij) ∈ J, then put e11 ∈ I and
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I = {a11 ∈ T | (aij) ∈ J }.

Claim 1. I is an ideal of T.

Claim 2. Mn(I) = J.

Proof of Claim 1. Take any x, y ∈ I, then there exits (aij), (bij) ∈ J such that

x = a11, y = b11, then (aij) + (bij) = (cij) ∈ J and c11 = a11 + b11 = x + y ∈ I.

Let r ∈ T, then

re11(aij) ∈ J such that ra11 ∈ I

(aij)re11 ∈ J such that a11r ∈ I

So, I is an ideal of T.

Proof of Claim 2. Let M = (mij) ∈ J, take any mij fixed, then e1iMej1 = mije11 ∈ J

implies mij ∈ I. So, M ∈ Mn(I), that is, J ⊆ Mn(I). Conversely, take any (aij) ∈
Mn(I). So for any aij, there exists M ∈ J such that aij = m11. Then,

aijeij = m11eij = ei1Me1j ∈ J

therefore,

n∑
i,j=1

aijeij = (aij) ∈ J

that is, Mn(I) ⊆ J.

Proposition 4.0.28. A ring T is semi-prime if and only if Mn(T ) is semi-prime.

Proof. Assume T is not a semi-prime ring. This implies that (0) is not a semi-prime

ideal. So, there exists a non-zero ideal I in T with I2 = (0). Then (Mn(I))2 = (0),

so Mn(T ) is not semi-prime. Conversely, if Mn(T ) is not semi-prime, then it has a

non-zero ideal I such that (I)2 = (0). By Theorem 4.0.27, there exists an ideal I in T
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with I = Mn(I). Then I2 = (0) implies that I2 = (0), so T is not semi-prime.

Theorem 4.0.29. For any ring with identity T, we have N∗(Mn(T )) = Mn(N∗(T )).

Proof. We have T/N∗(T ) is semi-prime, so Mn(T/N∗(T )) is also semi-prime by Propo-

sition 4.0.28. But then Mn(T )/Mn(N∗(T )) is semi-prime, so N∗(Mn(T )) ⊆ Mn(N∗(T ))

as N∗(T ) is the smallest semi-prime ideal in Mn(T ). Using Theorem 4.0.27, write the

ideal N∗(Mn(T )) of Mn(T ) in the form Mn(I), where I is an ideal in T. Then

Mn(T/I) ∼= Mn(T )/Mn(I) = Mn(T )/N∗(Mn(T ))

is semi-prime, and so is T/I by Proposition 4.0.28. This implies that N∗(T ) ⊆ I, so

we have

Mn(N∗(T )) ⊆ Mn(I) = N∗(Mn(T ))

and the equality holds.

It is not known if the equation

N∗(Mn(T )) = Mn(N∗(T ))

holds for the upper nilradicals. In fact, the above equation for all n and for all rings T

is equivalent to the famous Köthe’s Conjecture which can be found in [?].

Köthe’s Conjecture For any ring T , N∗(T ) = (0) implies that T has no non-

zero nil one sided ideals.

For several classes of rings, the conjecture has been shown to be true. For exam-

ple, it can be found in [?] that the conjecture holds for the class of right noetherian
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rings. However, the conjecture is not solved in general yet.
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5. UPPER NILRADICAL AND LOWER NILRADICAL OF

INCIDENCE ALGEBRAS

In this chapter, our aim is to determine the upper and the lower nilradicals of

an incidence algebra. First, we will investigate the upper and the lower nilradicals

when the incidence algebra is defined over a commutative ring with unity. Then, we

determine necessary and sufficient conditions to characterize the upper and the lower

nilradicals of incidence algebras over a noncommutative ring with unity.

5.1. Upper and Lower Nilradicals of I(X,R)

Definition Let R be a commutative ring with identity and S be a subset of a locally

finite partially ordered set X. A function f ∈ I(X, R) is fully-nilpotent of index n on

S if there exists a positive integer n such that given any chain of the form

x1 ≤ y1 ≤ x2 ≤ y2 ≤ . . . ≤ xn ≤ yn

in S,
n∏

i=1

f(xi, yi) = 0. A function that is fully-nilpotent on X will simply be called

fully nilpotent.

Remark If f is fully-nilpotent of index n on S ⊆ X, then (f(x, x))n = 0, for all x ∈ S.

Remark When the ring R is an integral domain, then the previous definition is equiv-

alent to the following:

there exists n ∈ N such that given any chain of the form

x1 ≤ y1 ≤ x2 ≤ y2 ≤ . . . ≤ xn ≤ yn

in S, f(xi, yi) = 0 for some 1 ≤ i ≤ n.
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Proposition 5.1.1. If T is a ring with identity, then strong nilpotency implies nilpo-

tency.

Proof. Suppose s ∈ T is strongly nilpotent. Consider the sequence s0, s1, s2, . . . where

si = s2i
for each i. Then s0 = s20

= s and si+1 = s2i+1
= s2i2i

= sisi for each i and

therefore sn = s2n
= 0 for some n as s is strongly nilpotent. Hence s is nilpotent with

2n.

However, the converse need not be true as the following example illustrates.

Example Consider Z+ under the usual ordering and let R be a commutative ring with

identity. Observe that Z+ is unbounded. Define f ∈ I(Z+, R) by

f(x, y) =





1 if x = 2k and y = 2k + 1, for some k ∈ Z+,

0 otherwise.

We show that f is nilpotent but not strongly nilpotent. Since for all x, y ∈ Z+,

f 2(x, y) =
∑

x≤z≤y

f(x, z)f(z, y) = 0,

that is, f 2 = 0 giving that f is nilpotent with 2. Define the function g ∈ I(Z+, R) by

g(x, y) =





1 if x = 2k + 1 and y = 2k+1, for some k ∈ Z+,

0 otherwise.

We construct a sequence h0, h1, h2, . . . in I(Z+, R) as follows. Put h0 = f and induc-
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tively hi+1 = highi, for i = 1, 2, . . . . Then

h1 = h0gh0 = fgf

h2 = h1gh1 = fgfgfgf

h3 = h2gh2 = fgfgfgfgfgfgfgf
...

hk = hk−1ghk−1

...

Observe that f occurs 2 times in the expression of h1, 22 times in the expression of

h2, 23 times in the expression of h3. Hence f appears 2k times in the expression of hk.

Now consider hk(2, 2
2k

+ 1), for all k ∈ Z+.

hk(2, 2
2k

+ 1) = f(2, 21 + 1)g(21 + 1, 22)f(22, 22 + 1)g(22 + 1, 23) . . . f(22k

, 22k

+ 1) = 1

Hence, f is not strongly nilpotent.

Proposition 5.1.2. If a ring R with identity is commutative, then nilpotency is equiv-

alent to strong nilpotency.

Proof. Suppose r ∈ R is nilpotent with n. We are to show that r is strongly nilpotent.

Let r0, r1, . . . be a sequence in R with r0 = r and ri+1 ∈ riRri for i = 1, 2, . . . . Then

r1 = rt1r = r2t1 for some t1 ∈ R

r2 = r1t2r1 = r2t1t2r
2t1 = r4t1t2t1 = r4t′2

for some t2, t
′
2 ∈ R

...

rk = r2k
t for some t ∈ R

...

Let k be a positive integer such that 2k ≥ n. Then rk = 0 and thus, r is strongly

nilpotent.
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Proposition 5.1.3. Let X be a locally finite partially ordered set and R a commutative

ring with identity. A function f ∈ I(X,R) is fully-nilpotent if and only if f is strongly

nilpotent.

Proof. (Necessity) Suppose that f is fully-nilpotent. Then there exists n ∈ Z+ such

that whenever

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn ≤ yn

is a chain on X, we have

n∏
i=1

f(xi, yi) = 0.

Let h0 = f and set hi+1 = higihi for i = 1, 2, . . . , where gi ∈ I(X, R). As f appears 2k

times in the expression of hk, choose k so that 2k ≥ n. Then

hk(x, y) =
∑

f(x1, y1)g(y1, x2)f(x2, y2) . . . g(y2k−1, x2k)f(x2k , y2k)

where the sum is over all possible chains

x = x1 ≤ y1 ≤ . . . ≤ x2k ≤ y2k = y.

But
2k∏
i=1

f(xi, yi) is a factor of each summand, and as n ≤ 2k, it follows that each sum-

mand is zero. Hence, hk = 0 and f is strongly nilpotent.

(Sufficiency) Conversely, suppose that f is strongly nilpotent and assume for

a contradiction that f is not fully-nilpotent. Then one of the following two possibilities

must hold.

(i) For each n ≥ 1 there exists xn ∈ X such that (f(xn, xn))n 6= 0.
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(ii) For each n ≥ 1 there exists a chain

xn,1 ≤ yn,1 < xn,2 ≤ yn,2 < · · · < xn,n ≤ yn,n

in X with
n∏

i=1

f(xn,i; yn,i) 6= 0.

If (i) holds, then the sequence fn = f 2n
is a sequence of nonzero functions, contra-

dicting the strong nilpotency of f.

If (ii) holds, then X is unbounded and, by Lemma 3.1.2, we may assume that the

intervals [xm,1; ym,m] and [xn,1; yn,n] are disjoint for m 6= n.

Let k ∈ N and define the function gk as follows. For n ≥ 1 set

gk(yn,i; xn,i) =





1 if i ≡ 2k−1(mod 2k) and i ≤ n− 1,

0 otherwise.

We define a sequence of functions {fn} inductively by setting f1 = f and for m ≤ 1,

set fm+1 = fmgmfm. Thus, if r ∈ N, then

fr(x2r,1; y2r,2r) =
2r∏

i=1

f(x2r,i; y2r,i) 6= 0.

This means that the sequence {fn} is not zero for any integer n, and thus, f is not

strongly nilpotent which contradicts our assumption.

Combining this result with Proposition 4.0.19 we conclude the following.

Theorem 5.1.4. Let X be a locally finite partially ordered set and R be a commutative

ring with identity. Then the lower nilradical N∗(I(X, R)) is the set of fully-nilpotent

functions of I(X,R).

Proposition 5.1.5. Suppose that X is a bounded, locally finite partially ordered set

and R a commutative ring with identity. Nilpotent functions of I(X, R) are strongly
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nilpotent.

Proof. It is enough to show that if f is nilpotent, then f is fully-nilpotent.

As f is nilpotent, there exists n ∈ Z+ such that fn = 0. Also, since X is bounded,

there exists k ∈ N such that when x1 < x2 < · · · < xs is a chain in X, then s < k. Let

N = n(k − 1) + 1 and consider a chain in X given by

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xN ≤ yN .

There can be at most k−1 strict inequalities in the above chain, hence there is a string

of n consecutive subscripts, say i through i + n− 1, such that

xi = yi = · · · = xi+n−1 = yi+n−1.

It follows that
N∏

j=1

f(xj, yj) contains a factor of the form

i+n−1∏
j=i

f(xj, yj) = (f(xi, yi))
n = fn(xi, xi) = 0.

Hence f is fully-nilpotent.

Corollary 5.1.6. If X is a bounded partially ordered set, then N∗(I(X,R)), where R

is a commutative ring with identity, is the set of nilpotent functions of I(X, R).

Proof. If X is bounded, then f ∈ I(X,R) is strongly nilpotent if and only if f is

nilpotent by Proposition 5.1.5. Then the result follows.

It is obvious that N∗(T ) ⊆ N∗(T ) for a ring T. In general, N∗(T ) 6= N∗(T ). We

can also define other nilradicals M such that M is a nil ideal of T with T/M contains

no nonzero nilpotent ideals. However, all such radicals lies between upper and lower

nilradical as the following proposition states.
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Proposition 5.1.7. If M is a nilradical of a ring T , then

N∗(T ) ⊆ M ⊆ N∗(T )

Proof. M is nil, so, is contained in the sum of all the nil ideals of T , namely N∗(T ).

The first inclusion is also clear as N∗(T ) is the smallest nil ideal satisfying T/N∗(T )

contains no nonzero nilpotent ideals.

Corollary 5.1.8. If X is bounded, I(X, R) contains unique nilradical where R is a

commutative ring with identity.

Proof. We have N∗(T ) ⊆ N∗(T ) for any ring T. By the previous corollary, N∗(I(X,R))

is the set of nilpotent elements and since N∗(T ) consists of nilpotent elements, we get

N∗(I(X,R)) ⊆ N∗(I(X, R))

which completes the proof.

This result does not depend on the boundedness of the locally finite partially

ordered set as the following theorem states.

Theorem 5.1.9. Let X be a locally finite partially ordered set and R be a commutative

ring with identity. The incidence algebra I(X, R) contains a unique nilradical.

Proof. If X is bounded, the result follows by Corollary 5.1.8. Suppose now X is

unbounded. It is enough to check N∗(I(X,R)) ⊆ N∗(I(X,R)). Let f ∈ N∗(I(X,R)).

We check f is strongly nilpotent. So it is enough to check f is fully-nilpotent. By

way of contradiction, assume f is not fully-nilpotent. Then for each positive integer n,

there exists a chain

xn,1 ≤ yn,1 ≤ xn,2 ≤ yn,2 ≤ · · · ≤ xn,n ≤ yn,n
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in X with

n∏
i=1

f(xn,i; yn,i) 6= 0

Since X is unbounded, we may assume intervals [xn,i; yn,i] and [xm,i; ym,i] are disjoint

for m 6= n. Hence we can define a well-defined function g ∈ I(X,R) as follows. For any

positive integer n,

g(u, v) =





1 if u = yn,i and v = xn,i+1 for some n ∈ Z+

1 if u = v = yn,n

0 otherwise

Then

(fg)n(xn,1; yn,n) = fgfg · · · fg(xn,1; yn,n)

= f(xn,1; yn,1)g(yn,1; xn,2) · · · f(xn,n; yn,n)g(yn,n; yn,n)

=
n∏

i=1

f(xn,i; yn,i)

6= 0

for each positive integer n and therefore fg is not nilpotent. On the other hand,

fg ∈ N∗(I(X, R)) and so nilpotent which is a contradiction.

5.2. Upper and Lower Nilradicals of I(X,T )

In this chapter we will consider incidence algebras over a ring with identity T and

investigate the lower and upper nilradicals of them. First, we will extend the definition

of fully-nilpotent functions to the strong product property.

Definition Let X be a locally finite partially ordered set and T be a ring with identity.

An element f ∈ I(X, T ) has the strong product property (spp) of index n if there exists
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a positive integer n such that, given any chain

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn

in X, then

f(x1, y1)Tf(x2, y2)T · · ·Tf(xn, yn) = 0.

Remark Let s ∈ T where T is a ring with unity. Then f = s δ ∈ I(X, T ) satisfies spp

if and only if s ∈ T is strongly nilpotent.

Proposition 5.2.1. Any element in the T -submodule generated by

{ex,y ∈ I(X, T ) | x < y}

satisfies spp where

ex,y(u, v) =





1 if x = u and y = v

0 otherwise.

for all x, y ∈ X.

Proof. Let f be an element generated by the submodule generated by

{ex,y ∈ I(X, T ) | x < y}

Then

f =
n∑

i=1

tiexi,yi
si +

m∑
j=1

njexj ,yj

where for each i, j, with 1 ≤ i ≤ n and 1 ≤ j ≤ m, si, ti ∈ T, nj ∈ Z and
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(xi, yi), (xj, yj) ∈ X ×X with xi < yi and xj < yj. For any u, v ∈ X, we have

f(u, v) =
n∑

i=1

tiexi,yi
(u, v)si +

m∑
j=1

njexj ,yj
(u, v) = 0

if (xi, yi), (xj, yj) 6= (u, v) for each i, j. Now consider any chain of the form

u1 ≤ v1 < u2 ≤ v2 < · · · < un+m+1 ≤ vn+m+1

in X. Then for some k with 1 ≤ k ≤ n+m+1, (uk, vk) 6= (xi, yi) and (uk, vk) 6= (xj, yj).

So, f(uk, vk) = 0. Therefore

f(u1, v1)Tf(u2, v2)T · · ·Tf(uk, vk)T · · ·Tf(un+m+1; vn+m+1) = 0.

It follows that f has spp with n + m + 1.

Proposition 5.2.2. Let I(X, T ) be the incidence algebra of a ring with identity T over

a locally finite partially ordered set X. Then

(i) (f + g)D = fD + gD

(ii) (fg)D = fDgD

for all f, g ∈ I(X, T ).

Proof. (i)

(f + g)D(x, y) =





(f + g)(x, x) if x = y

0 else

=





f(x, x) + g(x, x) if x = y

0 else

= fD(x, y) + gD(x, y)

= (fD + gD)(x, y)
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(ii) Take any x, y ∈ X. If x = y, then

(fg)D(x, x) = (fg)(x, x) = f(x, x)g(x, x) = fD(x, x)gD(x, x) = (fDgD)(x, x)

If x 6= y, then (fg)D(x, y) = 0 and

(fDgD)(x, y) =
∑

x≤z≤y

fD(x, z)gD(z, y) = 0

as fD(x, z) 6= 0 only if z = x and gD(z, y) 6= 0 only if z = y. So, (fg)D(x, y) = fDgD.

Proposition 5.2.3. Let X be a locally finite partially ordered set, T be a ring with

unity and f =
∑

finite

txyexy ∈ I(X, T ). Then f ∈ N∗(I(X, T ))\N∗(I(X,T )) if and only

if txx ∈ N∗(T ) for each x ∈ X and txx ∈ N∗(T )\N∗(T ) for at least one x ∈ X.

Proof. (Sufficiency) We first check, fD generates a nil ideal in
∏
x∈X

T. Note that fD has

only finitely many non-zero terms and each of them is nilpotent as txx is nilpotent in T.

Then fD is nilpotent with the maximum number of the nilpotency in its components.

Now, we check that f has spp. By the above example each txyexy has spp for x < y.

Also each txxexx has spp for any x ∈ X because for any chain of the form

x1 ≤ y1 < x2 ≤ y2

in X, either x1 6= x or x2 6= x giving that

txxexx(x1, y1)Ttxxexx(x2, y2) = 0.

Therefore, txxexx has spp with 2. Thus, txyexy has spp for all x, y ∈ X say with

nxy. Then, f =
∑

finite

txyexy has spp with the sum of nxy’s. Now, we show fD is not

strongly nilpotent in
∏
x∈X

T. Assume the contrary. Since tx0 6∈ N∗(T ) for some x0

in the expression of f, there exist elements s0, s1, s2, . . . in T such that the sequence

t0, t1, t2, . . . for which t0 = t and ti = ti−1si−1ti−1 consists of non-zero elements of T.



45

Fix any x ∈ X. Consider elements (gi) in
∏
x∈X

T defined for each i = 0, 1, 2, . . . as

(gi)y =





si if y = x0

0 else

Construct a sequence (f0), (f1), . . . in
∏
x∈X

T with (f0) = fD and (fi) = (fi−1)(gi−1)(fi−1)

for each i = 1, 2, . . . . Since fD is assumed to be strongly nilpotent, there exists a positive

integer k with (fk) = 0. It follows that

(f0)x0 = tex0x0(x0, x0) = t = t0

(f1)x0 = (f0)x0(g0)x0(f0)x0 = ts0t = t1

(f2)x0 = (f1)x0(g1)x0(f1)x0 = ts0ts1ts0t = t2
...

is a sequence of non-zero elements which is a contradiction.

(Necessity) Conversely, suppose f ∈ N∗(I(X,T ))\N∗(I(X, T )). Since

f =
∑

finite

txyexy ∈ N∗(I(X, T ))

we have

fD =
∑

finite

txxexx ∈ N∗(
∏
x∈X

T )

It follows that txx ∈ N∗(T ) for each x ∈ X. On the other hand, fD 6∈ N∗(
∏
x∈X

T ).

So there exists a sequence (fi) of nonzero elements in
∏
x∈X

T with (f0) = fD and

(fi) ∈ (fi−1)
∏
x∈X

T (fi−1) for i = 1, 2, . . . . It follows that at least one of the component

of the sequence is non-zero, say (fn)x0 , for each n ∈ Z+. This means that tx0x0 ∈ T is

not strongly nilpotent.
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Proposition 5.2.4. Let X be a locally finite partially ordered set and T be a ring with

identity. If f ∈ I(X, T ) has spp, then so does fD and fU .

Proof. Suppose f has spp with N but fD does not satisfy spp. Let

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn

be a chain in X with n ≥ N. Since fD does not satisfy spp we can find elements

a1, a2, . . . , an−1 ∈ T with

fD(x1, y1)a1fD(x2, y2)a2 · · · an−1fD(xn, yn) 6= 0.

If xi 6= yi for some i, 1 ≤ i ≤ n, then fD(xi, yi) = 0. Then xi = yi for each i, 1 ≤ i ≤ n.

So, fD(xi, yi) = f(xi, yi) for each i, 1 ≤ i ≤ n, giving that

f(x1, y1)a1f(x2, y2)a2 · · · an−1f(xn, yn) 6= 0.

This contradicts the fact that f has spp with N. fU has spp can be proven in a similar

way.

Proposition 5.2.5. Let X be a locally finite partially ordered set and T be a ring with

unity. If I(X, T ) contains an element which does not satisfy spp, then X is unbounded.

Proof. Suppose f ∈ I(X,T ) does not satisfy spp and X is bounded with n. Then for

any interval [x, y] in X, [x, y] has length at most n. This means that any chain [x, y]

has length at most n. Since there is no chain of length n + 1 in X, f automatically has

spp with n + 1 which contradicts our assumption.

Remark If f ∈ I(X, T ) does not satisfy spp, then for each n ∈ Z+, there exists a
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chain

xn,1 ≤ yn,1 < xn,2 ≤ yn,2 < · · · < xn,n ≤ yn,n

in X and elements an,1, an,2, . . . , an,n−1 ∈ T such that

f(xn,1; yn,1)an,1f(xn,2; yn,2)an,2 . . . an,n−1f(xn,n; yn,n) 6= 0.

Proposition 5.2.6. Let X be a locally finite partially ordered set and T be a ring with

identity. If f ∈ N∗(I(X, T )), then fD ∈ N∗(
∏
x∈X

T ).

Proof. Define

ϕ : I(X, T ) →
∏
x∈X

T

f 7→ fD

Note that ϕ is a surjective ring homomorphism. Let f ∈ N∗(I(X, T )). We check that

fD ∈ N∗(
∏

T ).

Let (t1), (t2), . . . be a sequence in
∏
x∈X

T with (t1) = fD and (ti+1) = (ti)(ri)(ti)

for each i and (ri) ∈
∏
x∈X

T . Set gi ∈ I(X,T ) such that

gi(x, y) =





(ri)x if x = y

0 otherwise

for each i. Then f1, f2, . . . is a sequence in I(X, T ) with f1 = f and fi+1 = figifi for

each i. Since f ∈ N∗(I(X,T )), f is strongly nilpotent, so, there exists a positive integer

n with fn = 0. Therefore,

ϕ(fn) = (fn)D = (fg1fg2 · · · fg1f)D = fD(g1)DfD · · · fD(g1)DfD = 0
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and since (fn)D = tn we get fD is strongly nilpotent and contained in N∗(
∏
x∈X

T ).

Theorem 5.2.7. Let X be a locally finite partially ordered set and T be a ring with

identity T . Then f ∈ N∗(I(X, T )) if and only if fD ∈ N∗(
∏
x∈X

T ) and f has spp.

Proof. (Necessity) Suppose f ∈ N∗(I(X,T )). By the previous proposition, we have

fD ∈ N∗(
∏
x∈X

T ). We check f satisfies spp. Suppose not, then for each n ∈ Z+, there

exists a chain

xn,1 ≤ yn,1 < xn,2 ≤ yn,2 < · · · < xn,n ≤ yn,n

in X and elements an,1, an,2, . . . an,n−1 ∈ T with

f(xn,1; yn,1)an,1f(xn,2; yn,2)an,2 . . . an,n−1f(xn,n; yn,n) 6= 0.

Since f does not have spp, by Proposition 5.2.5 , X is unbounded. By Lemma 3.1.2,

we may assume the intervals [xn,1; yn,n] and [xm,1;ym,m ] are disjoint for m 6= n.

Now, define, for each k ∈ Z+, gk ∈ I(X, T ) as follows:

Let n ≥ 1 and

gk(u, v) =





an,i if u = yn,i, v = xn,i+1 and i ≡ 2k−1 (mod 2k) for i ≤ n− 1

0 otherwise

for each u, v ∈ X. Now, we construct a sequence f1, f2, . . . in I(X, R) as follows.

Set f1 = f and fj+1 = fjgjfj for each j. Then, for any r ∈ Z+

fr(x2r,1; y2r,2r) = f(x2r,1; y2r,1)a2r,1f(x2r,2; y2r,2)a2r,2 · · · a2r,2r−1f(x2r,2r ; y2r,2r) 6= 0

Hence, fm 6= 0 for each m ∈ Z+. Therefore f is not strongly nilpotent, that is,

f 6∈ N∗(I(X, T )) which is a contradiction.
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(Sufficiency) Conversely, suppose fD ∈ N∗(
∏
x∈X

T ) and f has spp. We check f sat-

isfies spp. Let f1, f2, . . . be a sequence in I(X,T ) with f1 = f and fi+1 = figifi where

gi ∈ I(X, T ) for each i. Then (f1)D, (f2)D, . . . is a sequence in
∏
x∈X

T with (f1)D = fD

and (fi+1)D = (fi)D(gi)D(fi)D for each i. Since fD ∈ N∗(
∏
x∈X

T ), fD is strongly nilpo-

tent. So there exists a positive integer t such that (ft)D = 0.

On the other hand, f has spp, say of index N. This means that for any chain

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn

in X, with n ≥ N,

f(x1, y1)Tf(x2, y2)T · · ·Tf(xn, yn) = 0.

Now consider ft+N . We claim that ft+N = 0. Suppose not, then there exists x, y ∈ X

with ft+N(x, y) 6= 0. If x = y, then

ft+N(x, y) = ft+N(x, x) = ft(x, x)s1ft(x, x)s2 · · · s2N−1ft(x, x) = 0

for some s1, s2, . . . s2N−1 ∈ T as ft(x, x) = 0. So, there exists x, y ∈ X such that x 6= y

and ft+N(x, y) 6= 0. Then there exists a chain

x = x1 < y1 ≤ x2 < y2 ≤ · · · ≤ x2N < y2N

in X with

ft+N(x, y) = ft(x1, y1)t1ft(x2, y2)t2 · · · t2N−1ft(x2N , y2N ) 6= 0

for some ti ∈ T with i = 1, 2, . . . , 2N−1. Now let x2m−1 = um and y2m−1 = vm for
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m = 1, 2, . . . , 2N−1. Then

u1 < v1 < u2 < vn < · · · < u2N−1

is a chain in X with 2N−1 ≥ N and

ft+N(x, y) = f(u1, v1)t̃1f(u2, v2)t̃2 · · · t̃2N−1−1f(u2N−1,v
2N−1

) 6= 0

which contradicts our assumption that f has spp with N.

Now, we shall determine the upper nilradical of an incidence algebra where the

coefficient ring is noncommutative with identity. First, we need the following results.

Lemma 5.2.8. Let X be a locally finite partially ordered set and T be a ring with

identity. Suppose f ∈ Z(I(X,T )). Then the following are equivalent:

(i) f satisfies spp,

(ii) The left ideal generated by f is nil,

(iii) The right ideal generated by f is nil,

(iv) The ideal generated by f is nilpotent.

Proof. (ii)⇔(iii) Suppose the left ideal generated by f , fL, is a nil ideal and g ∈
I(X, T ). Then (gf)n = 0 for some n ∈ Z+. If we multiply (gf)n by f on left and by g

on right, we get fgfgf · · · gfg = (fg)n+1 = 0, that is, the right ideal generated by f ,

fR, is a nil ideal. Similarly, if fR is nil so is fL.

(iv)⇒(ii) Since every nilpotent ideal is nil, the result follows.

(ii)⇒(i) Suppose the left ideal generated by f , fL is nil. Assume for a con-

tradiction that f does not satisfy spp. Since f ∈ Z(I(X, T )), for each n ∈ Z+, there is

a chain

xn,1 < yn,1 < xn,2 < yn,2 < · · · < xn,n < yn,n
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in X, and elements an,1, an,2, . . . , an,n−1 ∈ T such that

f(xn,1; yn,1)an,1f(xn,2; yn,2)an,2 · · · an,n−1f(xn,n; yn,n) 6= 0

Since f does not satisfy spp, by Proposition 5.2.5, X is unbounded. Hence, by Lemma

3.1.2, we may assume the intervals [xn,1; yn,n] and [xm,1; ym,m] are disjoint for n 6= m.

Consider an element g of I(X, T ) defined as follows:

g(u, v) =





1 if u = v = xn,1, n = 1, 2, . . .

an,i if u = yn,i and v = xn,i+1

0 otherwise

for all u, v ∈ X. Then for each n ∈ Z+,

(gf)n(xn,1; yn,n) = (gfgf · · · gf)(xn,1; yn,n)

= g(xn,1; yn,1)f(xn,1; yn,1)g(yn,1; xn,2) · · · f(xn,n; yn,n)

= f(xn,1; yn,1)an,1f(xn,2; yn,2)an,2 · · · an,n−1f(xn,n; yn,n)

6= 0

Therefore, gf, which is an element in the left ideal generated by f , is not a nilpotent

element. This contradiction establishes the result.

(i)⇒(iv) Suppose f satisfies spp of index n. Let K be the two sided ideal gener-

ated by f. We claim that K2n = 0. Assume that K2n 6= 0. Then, there are elements

α1, α2, . . . , α2n ∈ K with α1 ·α2 · · · · ·α2n 6= 0. It follows that there are elements u, v ∈ X

with α1 · α2 · · · · · α2n(u, v) 6= 0. Note that for each i,

αi =

mi∑
j=1

βi,jfγi,j
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where βi,j, γi,j ∈ I(X, T ). Therefore,

m1∑
j=1

β1,jfγ1,j

m2∑
j=1

β2,jfγ2,j · · ·
m2n∑
j=1

β2n,jfγ2n,j(u, v) 6= 0.

so, there exists βkt,jt , γkt,jt ∈ I(X, T ) for 1 ≤ t ≤ n, such that

βk1,j1fγk1,j1βk2,j2fγk2,j2 · · · βk2n,j2nfγk2n,j2n(u, v) 6= 0.

Since f ∈ Z(I(X, T )), there exists a chain

u ≤ u1 < v1 ≤ u2 < v2 ≤ · · · ≤ u2n < v2n ≤ v

in X with f(ui, vi) 6= 0 for i = 1, 2, . . . , 2n. Note that for each i we have ui strictly less

than vi because otherwise f(ui, vi) = 0 as f ∈ Z(I(X, T )). It follows that for

u1 < v1 < u3 < v3 < · · · < u2n−1 < v2n−1

which is a chain of length n in X, we have

a1f(u1, v1)a2f(u2, v2)a3 · · · anf(un, vn)an+1 6= 0

for some a1, a2, . . . , an+1 ∈ T which contradicts the fact that f has spp with n.

Lemma 5.2.9. Let X be a locally finite partially ordered set, T be a ring with identity.

Suppose f ∈ I(X,T ) has spp. Then, for each g ∈ I(X, T ), fg and gf have spp.

Proof. Suppose f satisfies spp. Let g ∈ I(X, T ). Assume for contradiction that fg

does not satisfy spp. Then for each positive integer n, there exists a chain

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn
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in X and elements a1, a2, . . . , an−1 ∈ T such that

(fg)(x1, y1)a1(fg)(x2, y2)a2 · · · an−1(fg)(xn, yn) 6= 0.

Then for each i with 1 ≤ i ≤ n there exists ui ∈ [xi, yi] such that

f(x1, u1)g(u1, y1)a1f(x2, y2)g(u2, y2)a2 · · · an−1f(xn, un)g(un, yn) 6= 0

where g(ui, yi)ai ∈ T for each i. This contradicts the assumption that f has spp with

n. Hence, fg satisfies spp for each g ∈ I(X,T ). Similarly, gf satisfies spp.

Lemma 5.2.10. Let T be a ring with identity, X be a locally finite partially ordered

set and f ∈ I(X, T ). If fg satisfies spp for each g ∈ Z(I(X, T )) then f satisfies spp.

Proof. Suppose that fg satisfies spp for each g ∈ Z(I(X, T )) but f does not satisfy

spp. Then, for all n ∈ Z+, there exists a chain

xn,1 ≤ yn,1 < xn,2 ≤ yn,2 < · · · < xn,n ≤ yn,n

in X and elements an,1, an,2, . . . , an,n−1 ∈ T such that

f(xn,1; yn,1)an,1f(xn,2; yn,2)an,2 · · · an,n−1f(xn,n; yn,n) 6= 0 (5.1)

Since f does not satisfy spp, by Proposition 5.2.5, X is unbounded. By Lemma 3.1.2,

we may select chains so that [xn,1; yn,n] and [xm,1; ym,m] are disjoint for n 6= m.

Consider an element g ∈ Z(I(X; T )) defined as follows:

g(u, v) =





an,i if u = yn,i, v = xn,i+1, n = 1, 2, . . .

0 otherwise
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Then for each n ∈ Z+,

(fg)(xn,i; xn,i+1) = f(xn,i; xn,i)g(xn,i; xn,i+1) + f(xn,i; yn,i)g(yn,i; xn,i+1)

+f(xn,i; xn,i+1)g(xn,i+1; xn,i+1)

= f(xn,i; yn,i)an,i

Therefore,

2n−1∏
i=1

(fg)(x2n,i; x2n,i+1) = f(x2n,1; y2n,1)a2n,1f(x2n,2; y2n,2)a2n,2

· · · f(x2n,2n−1; y2n,2n−1)a2n,2n−1

6= 0

by (5.1), which contradicts the fact that fg has spp.

Proposition 5.2.11. If f ∈ N∗(I(X, T )), then fD ∈ N∗(
∏
x∈X

T ).

Proof. Suppose f ∈ N∗(I(X,T )). Then, there exists a nil ideal A of I(X,T ) containing

f. Consider

AT = {gD ∈
∏
x∈X

T | g ∈ A}

We show that AT is a nil ideal of
∏
x∈X

T containing fD. Let gD, hD ∈ AT . Then there

exits g, h ∈ A with gD, hD ∈
∏
x∈X

T . Since A is an ideal, g − h ∈ A and so

(g − h)D = gD − hD ∈
∏
x∈X

T.

Thus gD − hD ∈ AT . Let (t) ∈
∏
x∈X

T and gD ∈ AT . Then there exists g ∈ A with
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gD ∈
∏
x∈X

T and

f(x, y) =





tx if x = y

0 otherwise

is an element of I(X,T ). So (fgD)D = fDgD ∈
∏
x∈X

T. Hence (t)gD ∈ AT . Similarly

gD(t) ∈ AT giving that AT is an ideal. We now check AT is nil. Take any gD ∈ AT .

Then there exists g ∈ A with gD ∈
∏
x∈X

T. Since A is nil, g is nilpotent. So gD is

nilpotent showing that AT is a nil ideal.

Proposition 5.2.12. Suppose T is a ring with identity and X is a locally finite partially

ordered set. If f ∈ N∗(I(X,T )) and g ∈ Z(I(X, T )), then fg has spp.

Proof. Suppose f ∈ N∗(I(X, T )) and g ∈ Z(I(X, T )). Then, for all x ∈ X,

(fg)D(x, x) = f(x, x)g(x, x) = 0

as g(x, x) ∈ Z(I(X,T )) giving that fg ∈ Z(I(X,T )). To show fg has spp, it is suffi-

cient to check that the left ideal generated by fg is nil (by Lemma 5.2.8).

Consider the left ideal, A, generated by fg. Pick any x ∈ A. Then x =
∑

finite

sifgi

for some si, gi ∈ I(X, T ). Then x ∈ N∗(I(X, T )), because f ∈ N∗(I(X, T )) and

N∗(I(X, T )) is an ideal. Therefore, x is a nilpotent element, that is, A is a nil ideal.

Thus fg satisfies spp.

Proposition 5.2.13. Suppose T is a ring with identity and X is a locally finite partially

ordered set. Then

A = {f ∈ (I(X,T )) | fD ∈ N∗(
∏
x∈X

T ) and f has spp }

is an ideal of I(X, T ).
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Proof. Let f, g ∈ A. Then fD, gD ∈ N∗(
∏
x∈X

T ). So, (f − g)D = fD − gD ∈ N∗(
∏
x∈X

T ).

Since f, g has spp so does f − g and therefore f − g ∈ A. Let f ∈ A, g ∈ I(X, T ). Then

fg satisfies spp by previous lemma. Since (fg)D(x, x) = (fDgD)(x, x) for all x ∈ X,

and fD ∈ N∗(
∏
x∈X

T ), we get (fg)D ∈ N∗(
∏
x∈X

T ). So fg ∈ A, that is, A is a right ideal

of I(X, T.) Similarly, A is a left ideal of I(X,T ).

Proposition 5.2.14. Suppose T is a ring with identity and X is a locally finite partially

ordered set. If f ∈ I(X, T ) has spp and fD ∈ N∗(
∏
x∈X

T ), then the ideal generated by

fD is a nil ideal in I(X,T ).

Proof. Suppose f has spp and g is an element of the ideal generated by fD. Then there

are elements α1, β1, α2, β2, . . . , αk, βk ∈ I(X, T ) with

g = α1fDβ1 + α2fDβ2 + · · ·+ αkfDβk.

Then

gD =
k∑

i=1

(αi)DfD(βi)D ∈ N∗(
∏
x∈X

T ).

We claim that gU ∈ Z(I(X, T )) has spp. Assume for contradiction that gU does not

have spp. Then for all n ∈ Z+ there exists a chain

u1 < v1 < u2 < v2 < · · · < un < vn

in X, and elements an,1, an,2, . . . , an,n−1 ∈ T with

gU(u1, v1)an,1gU(u2, v2)an,2 · · · an,n−1gU(un, vn) 6= 0.

Then there are it’s with 1 ≤ it ≤ k and 1 ≤ t ≤ n such that

(αi1fDβi1)(u1, v1)an,1(αi2fDβi2)(u2, v2)an,2 · · · an,n−1(αinfDβin)(un, vn) 6= 0.
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So, there are ui
′, vi

′ ∈ [ui, vi] with 1 ≤ i ≤ n such that

αi1(u1, u1
′)fD(u1

′, v1
′)βi1(v1

′, v1)an,1 · · · an,n−1αin(un, un
′)fD(un

′, vn
′)βin(vn

′, vn) 6= 0.

So fD does not satisfy spp. This contradicts Proposition 5.2.4. Hence gU has spp.

Also we have gU ∈ Z(I(X,T )), so, be Lemma 5.2.8, gU generates a nilpotent ideal.

On the other hand, gD is nilpotent as gD ∈ N∗(
∏
x∈X

T ). So, there exists m ∈ Z+

with (gD)m = 0. It follows that gm is an element of the ideal generated by gU (gm =

(gU + gD)m = gU
m + · · ·+ gD

m) and is thus nilpotent. Hence, g is nilpotent. Thus fD

generates a nil ideal.

We can now describe the upper nilradical of the incidence algebra I(X,T ) in

terms of the upper nilradical of
∏
x∈X

T and the strong product property.

Theorem 5.2.15. Let T is a ring with identity and X is a locally finite partially

ordered set. Then, f ∈ N∗(I(X,T )) if and only if fD ∈ N∗(
∏
x∈X

T ) and f has spp.

Proof. (Necessity) Suppose f ∈ N∗(I(X, T )). By Proposition 5.2.11, we have fD ∈
N∗(

∏
x∈X

T ). We check f satisfies spp. Assume for a contradiction that f does not have

spp. Then, for all n ∈ Z+, there exists a chain

xn,1 ≤ yn,1 < xn,2 ≤ yn,2 < · · · < xn,n ≤ yn,n

in X and elements an,1, an,2, . . . , an,n−1 ∈ T such that

f(xn,1; yn,1)an,1f(xn,2; yn,2)an,2 · · · an,n−1f(xn,n; yn,n) 6= 0

It follows that X is unbounded and since X is locally finite we may select chains so

that [xn,1; yn,n] and [xm,1; ym,m] are disjoint for n 6= m.
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Consider an element g ∈ Z(I(X; T )) defined as follows:

g(u, v) =





an,i if u = yn,i, v = xn,i+1, n = 1, 2, . . .

0 otherwise

Then, as in the proof of Lemma 5.2.8, fg does not satisfy spp. But this contradicts

Proposition 5.2.12 . Hence, f satisfies spp.

(Sufficiency) We have seen before

A = {f ∈ I(X, T ) | fD ∈ N∗(
∏
x∈X

T ) and f has spp}

is an ideal of I(X, T ). By the necessity part of the proof we have N∗(I(X,T )) ⊆ A.

Now, let f ∈ A. We first show fU ∈ N∗(I(X, T )). Using Theorem 5.2.7 we check

fU ∈ N∗(I(X, T )). Since f has spp, fU has spp by Proposition 5.2.4. For all x ∈ X,

(fU)D(x, x) = 0, so (fU)D ∈ N∗(
∏
x∈X

T ). Hence fU ∈ N∗(I(X,T )) ⊆ N∗(I(X, T )).

In order to show fD ∈ N∗(I(X,T )), it is sufficient to show that fD gener-

ates a nil ideal in (I(X,T )). This result follows from Proposition 5.2.14. Therefore

f ∈ N∗(I(X, T )) and A = N∗(I(X, T )).

Proposition 5.2.16. Let T be a ring with identity and X be a locally finite partially

ordered set. Then t ∈ N∗(T )\N∗(T ), if and only if texx ∈ N∗(I(X,T ))\N∗(I(X, T )),

for all x ∈ X.

Proof. (Necessity) First we check texx ∈ N∗(I(X, T )). Using Theorem 5.2.15, we show

texx has spp and (texx)D ∈ N∗(
∏
x∈X

T ).

Consider any chain of the form x1 ≤ y1 < x2 ≤ y2 in X. Then

texx(x1, y1)Ttexx(x2, y2) = 0
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since either x 6= x1 or x 6= x2. So texx has spp with 2.

Now consider (texx)D ∈
∏
x∈X

T. We check (texx)D generates nil ideal in
∏
x∈X

T .

Let (s) =
∑

finite

(α)(texx)D(β) be an element of the ideal generated by (texx)D where

(α), (β) ∈
∏
x∈X

T. Then for any y ∈ X,

(s)y =
∑

finite

(α)y((texx)D)y(βy)

=





0 if x 6= y

(α)yt(β)y else

But (α)yt(β)y ∈ N∗(T ) as t ∈ N∗(T ) and therefore (s)y is nilpotent. Hence, (texx)D ∈
N∗(

∏
x∈X

T ).

Now we check (texx)D ∈
∏
x∈X

T is not strongly nilpotent. Assume the con-

verse. Let (f0), (f1), (f2), . . . be a sequence in ∈
∏
x∈X

T with (f0) = (texx)D and

(fi) = (fi−1)(gi−1)(fi−1) for some (gi−1) ∈ I(X, T ), i = 1, 2, . . . . So there exists m ∈ Z+

such that (fm) = 0. Consider now

(f0)x = f0(x, x) = texx(x, x) = t

(f1)x = f1(x, x) = f0(x, x)g0(x, x)f0(x, x) = t(g0)xt

(f2)x = f2(x, x) = f1(x, x)g1(x, x)f1(x, x) = t(g1)xt(g2)xt(g1)xt
...

This implies that

(f0)x, (f1)x, (f2)x, . . .

is a sequence in T with f0(x, x) = t and

(fi)x = (fi−1)x(gi−1)x(fi−1)x



60

for i = 1, 2, . . . . Also we have (fn)x = 0 for each x ∈ X giving that t is strongly

nilpotent, a contradiction.

(Sufficiency) Since texx(u, v) =





t if u = v = x

0 otherwise
, the result easily follows.

Proposition 5.2.17. Let T is a ring with identity and X is a locally finite partially

ordered set. If I(X, T ) has a unique nilradical, so does T.

Proof. Suppose I(X, T ) has a unique nilradical but T does not have a unique nilradical.

Then, there exists an element t ∈ N∗(T ) which is not contained in N∗(T ). Let x ∈ X.

Then by Proposition 4.2.13, texx ∈ N∗(I(X, T ))/N∗(I(X,T )) which contradicts the

fact that I(X, T ) has a unique nilradical.

Proposition 5.2.18. Suppose X is a finite partially ordered set and T is a ring with

unity. Then T has a unique nilradical if and only if I(X, T ) has unique nilradical.

Proof. (Necessity) Assume T has unique nilradical. We check

N∗(I(X, T )) ⊆ N∗(I(X,T )).

Pick f ∈ N∗(I(X,T )). By Theorem 5.2.7, we have fD ∈ N∗(
∏
x∈X

T ) and f has spp. In

order to show f ∈ N∗(I(X,T )) we must check fD ∈ N∗(
∏
x∈X

T ). Since fD ∈ N∗(
∏
x∈X

T ),

fD generates a nil ideal in
∏
x∈X

T. This means that fD(x, x) = (fD)x generates a nil

ideal in T , for each x ∈ X. It follows that (fD)x ∈ N∗(T ) = N∗(T ), for each x ∈ X.

That is to say (fD)x is strongly nilpotent, for each x ∈ X.

Now, we show that fD is strongly nilpotent. Pick a sequence (t1), (t2), . . . in
∏
x∈X

T

with (t1) = fD and (ti) ∈ (ti−1)
∏
x∈X

T (ti−1) for i = 1, 2, . . . . Then (t1)x, (t2)x, . . . is a

sequence in T with (t1)x = (fD)x and (ti)x ∈ (ti−1)xT (ti−1)x, for each x ∈ X. As (fD)x

is strongly nilpotent, for each x ∈ X, there exists nx ∈ Z+ such that (tnx)x = 0. Set

n = max {nx |x ∈ X }. Then (tn)x = 0, for each x ∈ X, giving that (tn) = 0. It follows
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that fD is strongly nilpotent.

(Sufficiency) Follows from Proposition 5.2.17.

The converse of the Proposition 5.2.17 is still an open problem.

Question Does I(X, T ) have a unique nilradical if T has a unique nilradical?
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6. THE PERIODIC RADICAL OF INCIDENCE

ALGEBRAS

In this chapter, we first introduce the notion of periodic radical. Secondly, we

will determine the necessary and sufficient conditions for an element to belong to the

periodic radical of an incidence algebra over a commutative ring with unity.

6.1. The Periodic Radical

Definition Let T be a ring. An element x in T is called periodic if there exists positive

integers m,n with m 6= n such that xm = xn. A ring consisting of periodic elements is

called a periodic ring.

Proposition 6.1.1. Let x belong to a ring T .

(i) x is periodic if and only if xn is an idempotent for some positive integer n.

(ii) If x is periodic and T has no nonzero nilpotent elements, then xn = x for

some integer n with n ≥ 2.

Proof. (i) Let x be periodic. Say xm = xn with d = m − n > 0. Then inductively we

have xn = xn+sd for all s ≥ 1 because

xn = xn+(m−n)

= xnxd

= xn+dxd

= xnx2d

. . .

= xn+sd.
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Hence xn = x2n+r for some r ≥ 0, in which case xn+r is an idempotent as

x2(n+r) = x2n+2r = x2n+rxr = xn+r.

It follows that xn+r is idempotent. Conversely, if x is idempotent, then x is obviously

periodic.

(ii) Let x be periodic and T has no nonzero nilpotent elements. So xm = xn for

some m,n ∈ Z+ with m 6= n. Say m > n. It follows that (xm−n+1 − x) is nilpotent as

(xm−n+1 − x)n+1 = (xm−n+1 − x)(xm−n+1 − x) · · · (xm−n+1 − x)

= (xm−n+1 − x)xn−1(xmn−n2+1 − · · ·+ (−1)nx)

= (xm − xn)(xmn−n2+1 − · · ·+ (−1)nx)

= 0

By assumption T has no non-zero nilpotent elements, therefore, xm−n+1 − x = 0. This

implies that xm−n+1 = x where m− n + 1 ≥ 2.

Theorem 6.1.2. Let T be a ring; and suppose that for all t ∈ T , there exists a positive

integer n = nt and a polynomial p(x) = pt(x) ∈ Z[x] such that tn = tn+1p(t). Then T

is periodic.

Proof. Pick any t ∈ T. We identify the ring tZ[t] generated by t with K. Choose n ∈ Z+

and p(x) ∈ Z+[x] such that tn = tn+1p(t). Then t− t2p(t) ∈ Ann(tn−1) as

(t− t2p(t))tn−1 = tn − tn+1p(t) = 0.

Let K = K/Ann(tn−1) and t be the canonical image of t in K. We have t = t2p(t) and

the element e = tp(t) is an idempotent as

e2 = tp(t)tp(t) = t2p(t)p(t) = tp(t) = e.

In addition, we have t = te.
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Now, if e = 0, then t = 0, that is, ttn−1 = 0, that is, tn = 0 giving that t is

periodic.

Suppose e has infinite additive order in K. Define

ϕ : Z → Ze ≤ K

m 7→ me

Then ϕ is obviously onto. In addition, ϕ is one-to-one as if m1e = m2e, then we

have (m1 −m2)e = 0 and since e has infinite additive order m1 −m2 = 0 giving that

m1 = m2. On the other hand for any m1,m2 ∈ Z,

ϕ(m1 + m2) = (m1 + m2)e = m1e + m2e = ϕ(m1) + ϕ(m2)

and

ϕ(m1m2) = (m1m2)e = (m1m2)e
2 = (m1e)(m2e) = ϕ(m1)ϕ(m2).

Hence ϕ is a ring isomorphism. This implies that K contains an isomorphic copy of Z.

Note that, K satisfies our original hypothesis which yields a contradiction as Z does

not satisfy the hypothesis. Thus, e has finite additive order, and so does t.

Suppose m is the additive order of t. Then mK = 0, as K is generated by t.

Let N be the set of all nilpotent elements of K. Then N is an ideal of K. Now consider

the factor ring K̃ = K/N. If k̃ ∈ K̃, then we claim that k̃ is of square-free order.

Suppose not. Let n2 be the additive order of k̃. Then n2k̃ = 0̃ implies n2k̃2 = 0̃,

that is, (nk̃)2 = 0̃. But since K̃ = K/N does not contain any non-zero nilpotent

elements, we get nk̃ = 0̃. Hence, K̃ has all of its elements of square-free order. More-

over, p2q cannot be order of an element in K̃ because otherwise if p2qk̃ = 0̃, then

qp2qk̃k̃ = (pqk̃)2 = 0̃ and pqk̃ = 0̃ as K̃ contains no nontrivial nilpotent elements. Let

p1p2 · · · psk̃ = 0̃ for some primes p1, p2, . . . , ps ∈ Z+, for some k̃ ∈ K̃. Then k̃ can be

written as
s∑

i=1

p1p2 · · · p̂i · · · psaik̃ where
s∑

i=1

p1p2 · · · p̂i · · · psai = 1 by Euclidean algo-

rithm as p1, p2, . . . , ps are primes where p̂i denotes that pi is not in the multiplication
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of pj’s. Note that each p1p2 · · · p̂i · · · psaik̃ generates an ideal Ĩi of characteristic pi,

therefore, Ĩi
∼= Zpi

for each 1 ≤ i ≤ s. Also, since we have mK̃ = 0̃, there exist only

finitely many Ĩi’s. On the other hand, for any i 6= j, we have Ĩi∩ Ĩj = 0̃ as if x̃ ∈ Ĩi∩ Ĩj,

then pix̃ = pjx̃ = 0̃ for some primes pi, pj and 1 = api + bpj for some a, b ∈ Z yields

x̃ = apix̃+bpjx̃ = 0̃. Thus, K̃ = Ĩ1⊕Ĩ2⊕· · ·⊕ Ĩn. It follows that t̃ generates a finite ring,

so there exist distinct n1, n2 ∈ Z+ satisfying t̃n1 = t̃n2 , that is, t
n1 − t

n2 ∈ N. But this

forces t to be algebraic over Z, so that t generates a finite subring of K. Consequently,

there exists j, k ∈ Z+ such that t
j
= t

k
, that is, tj− tk ∈ Ann(tn−1) or tj+n−1 = tk+n−1.

Thus t is periodic.

We shall check now that the periodicity is a radical property.

Lemma 6.1.3. Let T be a ring and I1, I2 be periodic ideals of T. Then I1 + I2 is

periodic.

Proof. Suppose I1, I2 are periodic ideals of a ring T. By the second isomorphism theo-

rem, we have (I1 + I2)/I1
∼= I2/(I1 ∩ I2). So (I1 + I2)/I1 is periodic. Therefore, for all

a ∈ I1 + I2, there exists m,n ∈ Z+, m 6= n such that am − an ∈ I1. By assumption, I1

is also periodic, so, there exists k, j ∈ Z+, k 6= j such that (an − am)j = (an − am)k.

Without lost of generality, suppose j < k and n < m. Then

(an − am)j = (an − am)k

yields

anj − · · ·+ (−1)jamj = ank − · · ·+ (−1)kamk.

Then, it follows that

anj = ank − · · ·+ (−1)kamk + · · ·+ (−1)jamj

= anj+1p(a)
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where p(x) is a polynomial in Z[x]. Thus, I1 + I2 is periodic by Theorem 6.1.2.

Corollary 6.1.4. For a ring T , the sum of all periodic ideals is periodic.

Proof. Let P (T ) be the sum of all periodic ideals of T and x ∈ P. Then

x ∈ I1 + I2 + · · ·+ In

for some periodic ideals I1, I2, . . . , In and hence x is periodic by the previous lemma.

Lemma 6.1.5. Let T be a ring and P (T ) be the sum of periodic ideals of T. Then

T/P (T ) contains no nonzero periodic ideals.

Proof. If I/P (T ) is a nonzero periodic ideal of T/P (T ), then I + P (T ) is a periodic

ideal containing P (T ) which is a contradiction as P (T ) is the sum of periodic ideals of

T.

Obviously, a homomorphic image of a periodic ring is periodic. Hence, we have

Corollary 6.1.6. Periodicity is a radical property.

Definition The periodic radical of a ring T , denoted by P(T ), is the sum of all the

periodic ideals of T.

The next result describes an important relationship among the periodic radical

P(T ), the Jacobson radical J(T ) and the upper nilradical N∗(T ).

Proposition 6.1.7. For any ring with identity T , we have P(T ) ∩ J(T ) = N∗(T ).

Proof. Suppose x ∈ N∗(T ). Then there exists a positive integer n such that xn = 0. It

follows that xn = x2n = 0 and x is periodic. We now check that x ∈ J(T ). Take any
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t ∈ T. Then tx ∈ N∗(T ) is nilpotent, say with integer k. Then we get

(1 + tx + (tx)2 + · · ·+ (tx)k−1)(1− tx) = 1− (tx)k = 1

giving that 1− tx is left invertible, that is, x ∈ J(T ). Hence N∗(T ) ⊆ P(T ) ∩ J(T ).

Conversely, suppose x ∈ P(T ) ∩ J(T ). Since x ∈ P(T ), xn is an idempotent

for some integer n. But then xn ∈ J(T ) forces xn = 0. If xn 6= 0, then by Proposition

2.0.5, T = T (1−xn)⊕Txn as xn is an idempotent. We have T (1−xn) is an ideal of T ,

so, by Proposition 2.0.3, contained in a maximal ideal M , say. Then, (1−xn) ∈ M. On

the other hand, J(T ) is the intersection of all maximal left ideals of T and xn ∈ J(T )

yields xn ∈ M. Hence, we have xn, 1− xn ∈ M , that is, 1 ∈ M, a contradiction. Thus,

P(T ) ∩ J(T ) ⊆ N∗(T ).

If T is a ring with identity, then the periodic radical of T is an intersection of

some suitable prime ideals as the following theorem states.

Theorem 6.1.8. Let T be a ring with identity. Then P(T ) =
⋂
α

Pα, where the inter-

section is taken over the set of prime ideals Pα such that T/Pα contains no nontrivial

periodic ideals and such that if an integer z is a non-zero divisor in T, then it is still

a non-zero divisor in T/Pα.

If there are no prime ideals Pα such that T/Pα contains no nontrivial periodic

ideals, we say that the intersection is T.

Proof. If P(T ) = T the result is obviously correct. Suppose then that P(T ) 6= T. Let

Pα be a prime ideal of T such that T/Pα contains no nontrivial periodic ideals and such

that if z ∈ Z+ is a nonzero divisor in T, then it is still a nonzero divisor in T/P (T ). If

P(T ) 6⊆ Pα, then

Pα + P(T )

Pα

= {x + Pα |x ∈ Pα + P(T )} = {y + Pα | y ∈ P(T )}

is a nontrivial periodic ideal of T/Pα, which is a contradiction. Thus, P(T ) ⊆ Pα, and
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hence P(T ) ⊆
⋂
α

Pα.

On the other hand, for any a ∈ T − P(T ), the ideal (a) generated by a is not

periodic. Thus, by the Theorem 6.1.2, there exists an element b ∈ (a) such that

bn − bn+1p(b) 6= 0, for all n ∈ Z+ and for all p(x) ∈ Z[x]. Let

H =
{
z(bn − bn+1p(b)) | n ∈ Z+, p(x) ∈ Z[x], z ∈ Z+ non-zero divisor in T

}

and A be the set of all ideals P in T with P ∩ H = ∅. Then A 6= ∅ since 0 ∈ A, so

there exists a maximal element Pβ in A by Zorn’s lemma.

We claim that Pα is a prime ideal in T. Let A and B be ideals in T such

that A 6⊆ Pβ and B 6⊆ Pβ. Then, both A + Pβ and B + Pβ intersect with H, say

z1(b
m − bm+1f(b)) ∈ A + Pβ and z2(b

n − bn+1g(b)) ∈ B + Pβ for some m,n ∈ Z+,

f(x), g(x) ∈ Z[x] and non-zero divisors z1, z2 in T . Then

z1z2(b
m+n − bm+n+1h(b)) = z1(b

m − bm+1f(b))z2(b
n − nn+1g(b))

∈ (A + Pβ)(B + Pβ)

⊆ AB + Pβ

where h(x) = f(x) + g(x) − xf(x)g(x). But z1z2(b
m+n − bm+n+1h(b)) 6∈ Pβ, hence

AB 6∈ Pβ giving that Pβ is prime.

Next, we prove that T/Pβ contains no nontrivial periodic ideals. Let I ⊃ Pβ

be an ideal of T and I/Pβ be a nontrivial periodic ideal of T/Pβ. Then, by the maxi-

mality of Pβ, there exists an integer m ∈ Z+, a polynomial f(x) ∈ Z[x] and z ∈ Z+, a

non-zero divisor in T such that z(bm − bm+1f(b)) ∈ I, so there exists distinct positive

integers s and t with s < t such that

(z(bm − bm+1f(b)) + Pβ)s = (z(bm − bm+1f(b)) + Pβ)t
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and therefore

zs(bm − bm+1f(b))s − zt(bm − bm+1f(b))t ∈ Pβ

which contradicts the choice of Pβ since

zs(bm − bm+1f(b))s − zt(bm − bm+1f(b))t

can be written in the form

zs(bms − bms+1)h′(b)

where h′(x) ∈ Z[x] and zs a non-zero divisor in T. Then T/Pβ contains no nontrivial

periodic ideals.

We must also check that if z is a non-zero divisor in T, then z is also a non-

zero divisor in T/Pβ. Suppose z is a non-zero divisor in T. Let zt = 0 for some

t ∈ T/Pβ. We check t = 0. Consider the ideal (z1T ) generated by z1T and the

ideal (t) generated by t. We have (z1T )(t) ⊆ Pβ as zt ∈ Pβ. Since Pβ prime, ei-

ther (z1T ) ⊆ Pβ or (t) ⊆ Pβ. If (z1T ) ⊆ Pβ, then z1T ∈ Pβ. This implies that

(z1T )(bn − bn+1p(b)) = z(bn − bn+1p(b)) ∈ Pβ for any p(x) ∈ Z[x] and n ∈ Z+. This

yields a contradiction as H∩Pβ = ∅. Hence, (t) ⊆ Pβ and therefore t ∈ Pβ. Thus, t = 0

and z is a non-zero divisor in T/Pβ.

Since a 6∈ Pβ, we have a 6∈
⋂

Pα where the intersection is taken over the set

of prime ideals Pα such that T/Pα contains no nontrivial periodic ideals and such that

if an integer z is a non-zero divisor in T, then it is still a non-zero divisor in T/Pα.

Thus,
⋂

Pα ⊆ P(T ) which completes the proof.
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6.2. The Periodic Radical of I(X, R)

Let x ∈ P(R). For any y ∈ R, define ex(y) to be the smallest positive integer such

that (xy)ex(y) is an idempotent. Then define ex as follows:

ex =





max{ex(y) | y ∈ R} if it exists

∞ otherwise

Proposition 6.2.1. Assume R is a commutative ring and A =
∏
i∈I

Ri, with Ri
∼= R,

for all i ∈ I. Let a = (ai)i∈I ∈ A. Then a ∈ P(A) if and only if the following conditions

all hold:

(i) ai ∈ P(R), for all i ∈ I

(ii) |{i | eai
= ∞}| < ∞

(iii) There exists N ∈ Z+ such that whenever eai
< ∞, then eai

< N, for all

i ∈ I.

Proof. Suppose a ∈ P(A). Obviously, ai ∈ P(R) for all i ∈ I. If either (ii) or (iii) fails

to hold, then we can find a subset {i1, i2, . . .} of I and elements bi1 , bi2 , . . . of R such

that

eai1
(bi1) < eai2

(bi2) < · · ·

Consider c = (ci)i∈I ∈ A such that ck = bij if k = ij for some j and ck = 0 otherwise.

Then ac ∈ P(A). So, there exists n ∈ Z+ such that (ac)n = (ac)2n. This means that

(aici)
n = (aici)

2n for all i which contradicts the fact that eaij
(bij) > n for some j.

Conversely, suppose that (i), (ii) and (iii) hold. First observe that if xn is an

idempotent, then so is xmn, for all n ≥ 1 because x2nm = (x2n)m = (xn)m = xmn.

Now let i1, . . . , ik be indices such that eaij
= ∞ for 1 ≤ j ≤ k. Let n1, n2, . . . , nk be

positive integers such that aij
nj is an idempotent. Put t = n1 · n2 · · ·nk. Then aij

t

is an idempotent for 1 ≤ j ≤ k. Now consider ai’s where i ∈ I\{i1, . . . , ik}. By (iii),
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we have eai
< N for some N ∈ Z+. In particular, for all mi ∈ Z+ satisfying ai

mi is

an idempotent, we have mi < N. Therefore, there are at most N many distinct mi’s.

Let s be the multiplication of mi’s. Then, ai
s is an idempotent for i ∈ I\{i1, . . . , ik}.

Hence, ast is an idempotent, that is, a ∈ P(A).

Theorem 6.2.2. Suppose R is a commutative ring with unity and X is a locally fi-

nite partially ordered set. Then the Jacobson radical of the incidence algebra I(X, R),

namely J(I(X,R)), is the set of all functions f ∈ I(X,R) such that f(x, x) ∈ J(R),

for all x ∈ X.

Proof. By Lemma 4.0.10, f ∈ J(I(X, R)) if and only if δ− fg is (left) invertible for all

g ∈ I(X,R). But, by Theorem 3.2.2, δ−fg is invertible if and only if 1−f(x, x)·g(x, x)

is a unit in R, for all x ∈ X and g ∈ I(X,R). But this holds if and only if f(x, x) ∈ J(R)

for all x ∈ X.

Definition Let R be a commutative ring with identity. An element f ∈ I(X,R) is

called fully-periodic if the following conditions are satisfied:

(i) fD ∈ P(
∏
x∈X

R)

(ii) There exists a positive integer n such that if

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn

in X, then
n∏

i=1

f(xi, yi) = 0.

Proposition 6.2.3. Fully-nilpotent elements are fully-periodic.

Proof. Suppose f ∈ I(X, R) is fully-nilpotent. This means that, there exists a positive
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integer n such that given any chain

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn ≤ yn

in X,

n∏
i=1

f(xi, yi) = 0. We check f satisfies conditions of the definition of fully-

periodicity. Obviously, (ii) holds. We show fD ∈ P(
∏
x∈X

R) by satisfying conditions of

the Theorem 6.2.1.

(i) Since f is fully-nilpotent, say with integer n, we have fn(x, x) = 0, for

all x ∈ X, that is, f 2n(x, x) = (f(x, x))2n = (f(x, x))n = fn(x, x) = 0 giving that

fn(x, x) = (f(x, x))n is an idempotent. Hence, f(x, x) ∈ P(R), for all x ∈ X.

(ii) Let ef(x,x)(r) = nx where nx is the smallest positive integer so that (rf(x, x))nx

is an idempotent. Since

f 2n(x, x) = fn(x, x) = 0

we have

(rf(x, x))n = (rf(x, x))2n = 0,

so, nx ≤ n for all x ∈ X. Hence ef(x,x) 6= ∞ for all x ∈ X, that is,

|{x | ef(x,x) = ∞}| = 0

(iii) By above, ef(x,x) = nx ≤ n for all x.

Hence, we conclude that f is fully-periodic.

Proposition 6.2.4. If f is fully-periodic, then fU is fully-nilpotent.

Proof. Suppose f is fully-periodic. Then by (ii) of the definition of fully-periodicity,
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there exists n ∈ Z+ such that given any chain

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn

in X,

n∏
i=1

f(xi, yi) = 0.

We claim that fU is fully-nilpotent with integer 2n. Let

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ x2n ≤ y2n

be a chain in X. For

x1 = y1 ≤ x2 = y2 ≤ · · · ≤ x2n = y2n

we have

2n∏
i=1

fU(xi, yi) = 0

as fU(x, x) = 0 for all x ∈ X. Hence, it is enough to check when the given chain is of

the form

x1 < y1 ≤ x2 < y2 ≤ · · · ≤ x2n < y2n.

We want to show that

2n∏
i=1

fU(xi, yi) = 0

Consider the subchain

x1 < y1 < x3 < y3 < · · · < x2n−1 < y2n−1.
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If we reindex this chain by x2n−1 = un and y2n−1 = vn, then we have

u1 < v1 < u2 < v2 < · · · < un < vn

and since f is fully-periodic with n, we get,

n∏
i=1

fU(ui, vi) =
n∏

i=1

f(ui, vi) = 0,

that is,

2n−1∏
i=1

fU(x2i−1, y2i−1) = 0.

Hence,

2n∏
i=1

fU(xi, yi) = 0

as

2n−1∏
i=1

fU(x2i−1, y2i−1)

is a factor of

2n∏
i=1

fU(xi, yi).

Theorem 6.2.5. If R is a commutative ring with identity, then P(I(X, R)) is precisely

the set of fully-periodic elements of I(X,R).
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Proof. Let

K = {f ∈ I(X,R) | f fully-periodic } .

Then K is an ideal of I(X, R) :

Let f, g ∈ K. We check f + g ∈ K.

(i) fD, gD ∈ P(
∏
x∈X

R) implies fD + gD ∈ P(
∏
x∈X

R) as P(
∏
x∈X

R) is an ideal of

∏
x∈X

R.

(ii) Suppose f satisfies the condition (ii) of the definition of fully-periodicity

with n and g satisfies the condition (ii) with m. Then f + g satisfies the condition (ii)

with m + n since if

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn

is a chain in X, then

n+m∏
i=1

(f + g)(xi, yi) =
n+m∏
i=1

f(xi, yi) +
n+m∏
i=1

g(xi, yi) = 0 + 0 = 0

Hence, f + g ∈ K.

Suppose now f ∈ K, h ∈ I(X, R). We check that fg ∈ K.

(i)fD ∈ P(
∏
x∈X

R), so fDgD = (fg)D ∈ P(
∏
x∈X

R) as P(
∏
x∈X

R) is an ideal of
∏
x∈X

R.

(ii) Suppose f ∈ K satisfies condition (ii) of the definition of fully-periodicity

with n. Then fh satisfies condition (ii) with n as if

x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn
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is a chain in X, then

n∏
i=1

(fh)(xi, yi) = (fg)(x1, y1) · · · (fh)(xn, yn)

=

( ∑
x1≤z1≤y1

f(x1, z1)h(z1, y1)

)
· · ·

( ∑
xn≤zn≤yn

f(xn, zn)h(zn, yn)

)

=
∑

f(x1, z1) · · · f(xn, zn)h(z1, y1) · · ·h(zn, yn)

= 0

Therefore fh ∈ K. Similarly hf ∈ K and K is an ideal of I(X,R).

Let f ∈ K. Then fD ∈ P(
∏
x∈X

R), therefore, there exists positive integers m,n with

m 6= n such that fD
m = fD

n. So

fm − fn = (fm − fn)D + (fm − fn)U = (fm − fn)U .

Since f ∈ K and K is an ideal of I(X,R), we have fm − fn ∈ K. This means that

fm − fn is fully-periodic. By the previous proposition, (fm − fn)U is fully-nilpotent,

therefore, (fm − fn)U ∈ N∗(I(X,R)) = N∗(I(X,R)) which consists of fully-nilpotent

elements of I(X, R). Then

K = K/N∗(I(X,R)) = {f + N∗(I(X, R)) | f fully-periodic }
= {fD + N∗(I(X, R)) | f ∈ I(X, R) fully-periodic}

It follows that

K ⊆ {fD + N∗(I(X, R)) | f ∈ I(X, R) and fD ∈ P(
∏
x∈X

R) }

⊆ {fD + N∗(I(X, R)) | f ∈ I(X, R) and fn
D is an idempotent for some n ∈ Z+}

= {fD + N∗(I(X, R)) | f ∈ I(X, R) and fD is periodic }
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Therefore,

K ⊆ P(I(X,R)/N∗(I(X,R))) = {f | fm = f 2m for some m ∈ Z+ }

Claim. (K ⊆) P(I(X, R)/N∗(I(X, R))) = P(I(X, R))/N∗(I(X,R))

Let f = f +N∗(I(X, R)) ∈ P(I(X,R))/N∗(I(X, R)). Then there exists a positive

integer n such that fn = f 2n. So f
n

= f
2n

, that is, f ∈ P(I(X, R)/N∗(I(X,R))).

Now, suppose f ∈ P(I(X,R)/N∗(I(X,R))). Then there exists a positive integer

m such that f
m

is an idempotent, that is, fm− f 2m ∈ N∗(I(X, R)). Since N∗(I(X,R))

consists of nilpotent elements, there exists a positive integer t such that (fm−f 2m)t = 0.

Then

fmt − · · ·+ (−1)tf 2mt = 0.

It follows that fmt = fmt+1p(f) for some polynomial p(x) ∈ Z[x]. By Theorem 6.1.2,

f is periodic. Hence, f ∈ P(I(X,R))/N∗(I(X, R)).

Hence, we get K ⊆ P(I(X, R)).

Conversely, assume f ∈ P(I(X, R)) is not fully-periodic. Since the condition

(i) of definition of fully-periodicity is clearly satisfied, the condition (ii) fails to hold,

thus, for all n ∈ Z+, there exists a chain

xn,1 ≤ yn,1 < xn,2 ≤ yn,2 < · · · < xn,n ≤ yn,n

such that

n∏
i=1

f(xn,i; yn,i) 6= 0.
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Since X is locally finite, using Lemma 3.1.2, we may assume the intervals [xn,1; yn,n]

and [xm,1; ym,m] are disjoint for m 6= n.

Define an element h ∈ I(X, R) as follows.

h(yn,i; xn,i+1) = 1 for i = 1, 2, . . . , n− 1 and n ≥ 2

h(x, y) = 0 in all other cases.

Then (fh)D = 0 because h(x, x) = 0 for all x ∈ X. So, (fh)(x, x) = 0 ∈ J(R) for

all x ∈ X giving that fh ∈ J(I(X, R)). Since f is chosen from P(I(X, R)), we get

fh ∈ P(I(X,R)) ∩ J(I(X,R)) = N∗(I(X,R)). This means that fh is fully-nilpotent.

Now consider chains

xn,1 < xn,2 ≤ xn,2 < xn,3 ≤ xn,3 < · · · < xn,n−1 ≤ xn,n−1 < xn,n

for each n ∈ Z+. Then

n−1∏
i=1

(fh)(xn,i; xn,i+1) = f(xn,1; yn,1)h(yn,1; xn,2) · · · f(xn,n−1; yn,n−1)h(yn,n−1; xn,n)

= f(xn,1; yn,1) · · · f(xn,n−1; yn,n−1)

6= 0

This contradicts the fully-nilpotency of f. Hence, f is fully-periodic.
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