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ABSTRACT

RADICALS OF INCIDENCE ALGEBRAS

The incidence algebra of a locally finite partially ordered set X, with the partial
ordering ”<”, over a ring with identity T is defined as the set of all mappings [ :
X x X — T where f(z,y) = 0 for all z,y € X with x £ y and denoted by I(X,T).
The operations on I(X,T') are given by

(f+9)z,y) = flz,y)+g(z,y)

(f-9)y) = D flx,2)-g(zy)

z<z<y

(rf)(m,y) = Tf(l‘,y)

for f,g € I(X,T), r € T and x,y € X. When the ring R is commutative, the ring
I(X, R) becomes an algebra.

The aim of this study is to investigate some special radicals of incidence alge-
bras and determine the necessary and sufficient conditions characterizing elements of

these radicals by using the very definition of the strong product property.



OZET

CAKISMA CEBIRLERININ KOKLERI

Uzerinde 7 <” bagintis1 tanimlanmig yerel sonlu kismi sirali bir X kiimesinin
birimli bir 7" halkasi tizerinde ¢akisma cebiri "z £ y” olacak bicimdeki her z,y € X
icin f(x,y) = 0 kosulunu saglayan f : X x X — T fonksiyonlarindan olusan ve
I(X,T) ile gosterilen kiimesi {izerinde agagida tanimlanan iglemlerle verilen halkadir:

f,ge (X, T), r €T vex,y€ X olmak lizere

(f+9)(x,y) = flo,y)+g(x,y)
(f-9y = > flx,2)-g(zy)

z<z<y

(Tf)(iC,y) = Tf(l',y)

R’nin degismeli halka olmasi durumunda (X, R) bir cebir olur.

Bu ¢aligmanin amaci ¢akigsma cebirlerinin bazi 6zel radikallerini aragtirip, kuvvetli
carpim o0zelliginin tanimindan hareketle bu radikallerin elemanlarini belirleyen gerek ve

yeter kosullar vermektir.
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1. INTRODUCTION

The aim of this thesis is to study the existing results on radicals of incidence

algebras. We will first start with a brief historical outline of the subject:

The various radicals which have been defined by several mathematicians such
as Levitzki, Jacobson, Brown-McCoy, and others constitute an important tool in the
study of the structure of rings. The purpose of this survey is thus to determine some

of these radicals of incidence algebras.

The upper and the lower nilradicals were considered first by M. Baer [1], and
are also known as the upper and the lower Baer radicals. Later, the lower nilradical is

generalized by Amitsur [2]. In addition, an axiomatic study of radicals can be found

in [3], [4] and [5].

In the study of radicals, Kothe [6] suggested the use of nil rings. Yet, the upper
nilradical failed to be useful, since the study of rings with no two sided nil ideals still
required dealing with one sided nil ideals. This raised the famous Kothe Conjecture

which is not readily solved in general.

The theory of incidence algebras goes back to the 60s when it was first intro-
duced by Gian-Carlo Rota and R. P. Stanley. These theorists, however, looked at the
issue from a combinatorial point of view. Later on, after a couple of decades, the
subject was focused on and analyzed with an algebraic point of view which is also the
case in this study. The main topic under consideration will be the incidence algebra
of locally finite partially ordered set over a (both commutative and noncommutative)
ring with identity. However, there are some researchers who have studied incidence

algebras of pre-ordered sets over a field or division ring.

The lower nilradical, or Baer radical of the incidence algebra has been deter-

mined when R is a field by Farkas (1974) (see [7]), when R is an integral domain by



Lerous and Sarraillé (1981) ( see [8]), when R is a commutative ring by Spiegel (1994)
(see [9]), and when R is any ring by Spiegel (2004) (see [10]). The upper nilradical
of the incidence algebra is determined where the coefficient ring is noncommutative
by Spiegel [11]. In [12] and [13], Bell and Klein showed that periodicity is a radical
property in the sense of Kurosh and Amitsur. Guo [14] continued the study of this
periodic radical by showing that P(T") is an intersection of suitable prime ideals and,
consequently, that the periodic radical is a special radical (see Divinsky [15] for de-
tails). In the case of incidence algebras, a complete description is obtained whenever

the coefficient ring is commutative with identity (see [16]).

At this point, we shall sketch the organization of the thesis.

In Chapter 1, introductory explanations are given.

In Chapter 2, basic notations and preliminary results used in the thesis are pre-

sented.

In Chapter 3, incidence algebras are examined.

In Chapter 4, the radical property is introduced. Some special radicals such

as the upper nilradical, the lower nilradical and the Jacobson radical are presented.

In Chapter 5, the upper nilradical and the lower nilradical of an incidence al-
gebra are examined where the incidence algebra is taken over a commutative ring with

unity and taken over a noncommutative ring with unity, respectively.

Finally, In Chapter 6, the notion of periodic radical is presented and the pe-

riodic radical of an incidence algebra is investigated.



2. PRELIMINARIES

In this chapter, our aim is to present basic definitions and results which will be
used in the subsequent chapters of this study. The proofs of all results can be found

in any book on abstract algebra.

Throughout the text by a ring we assume an associative ring with or without

identity:.

Definition The direct product H T; of rings {T; | i € I } is the set of sequences (t;)er
iel
where t; € T; for each ¢ € I with the operations defined componentwise.

Proposition 2.0.1. Let {T;|i €I } be a family of rings. Then the direct product

H T; is a ring.

el

Proposition 2.0.2. Let t be an element of a ring with identity T'. Then
Ann,(t) ={z € T|tz =0}

15 a right ideal and
Anny(t) ={x €T |2t =0}

is a left ideal (called respectively the right and the left annihilators of t in T').

Proposition 2.0.3. If T is a ring with identity, then every ideal of T is contained in

a maximal ideal.

Definition A ring is called simple if it contains no nontrivial ideals.

Proposition 2.0.4. For a ring with identity T, an ideal I mazimal implies that T'/1

simple.



Definition An element e of a ring T is called idempotent if €% = e.

Proposition 2.0.5. If an element e of a ring with identity T is idempotent, then
T=T(1—e)®Te.

If T is a ring with identity, the set of n x n matrices will be denoted by M, (T),
the set of n x n upper triangular matrices by 7,,(T") and the set of n x n lower triangular
matrices by L, (7). We also denote by T (T) and L. (7)) the rings of countable upper
and lower triangular T-matrices, respectively. Standard matrix multiplication is defined

in each of these rings as all sums involve only finitely many non-zero terms.

Definition A left module M over a ring T is an abelian group (M, +) with a “multi-

plication by scalars”, that is, a map

TxM—M

(r,m) — rm

such that the following are satisfied for all my, mo, m € M, for all r,ro, 7 € T"

r(my +mg) = rmy + rme
(r1 +r2)m = rim + rom

(rire)m = r1(ram)

Definition A left T-module M is said to be unitary if T has identity 17 and

lrm=m

for all m € M.

Definition An algebra A is a ring which is also a R-module over a commutative ring



R such that the following condition is satisfied:

r(ab) = (ra)b = a(rd)

for all r € R, a,b € A.

The most natural example of an algebra is n X n matrices over a commutative

ring or n X n upper or lower triangular matrices over a commutative ring.

Definition Let X be a set and < be a binary relation on X. Then, X is called
a pre — ordered set if the relation < is reflexive and transitive. If < is reflexive,
transitive and antisymmetric, then X is called a partially ordered set or simply a poset.
In this case, the relation < is called a partial ordering and a partially ordered set X

with the partial ordering < is denoted by (X, <).

Definition Let (X, <) be a partially ordered set.

(i) An element x € X is called mazimal if for any y € X, x < y implies y = z. If,
in addition, for this z € X, y < x holds for each x € X, then it is called the maximum
element of X.

(i) An element x € X is called minimal if for any y € X, y < z implies y = =

and it is the minimum element of X if x <y for each y € X.

Definition Let C' be a subset of a partially ordered set (X, <). Then, C is called a
chain of X if for all z,y € X, either x <y or y < x. C is called an antichain if any

distinct pair of elements are not comparable, that is, for any z,y € X with x # y both
rLyand y £ x.

A chain is said to be of length-n if it has n elements and a chain of length n

is usually denoted by C,.



Definition Suppose X is a partially ordered set with the partial ordering ”<” and Y
is a partially ordered set with the partial ordering ”<”. Then X and Y are isomorphic
as posets if there is an order preserving bijection between X and Y, that is, if there

exists a bijection ¢ : X — Y with the property that if x < y for x,y € X, then
p(r) < @(y) n Y.

Zorn’s Lemma If .¥ is a non-empty partially ordered set such that every chain

in . has an upper bound in ., then .¥ has a maximal element.

Principle of Transfinite Induction Let &?(z) be a statement involving the
symbol z. Let (A, <) be a well-ordered set. Suppose

(1) Z(a) is true where a is the smallest element of A

(i) if a is not the smallest element of A and Z(b) is true whenever b < a, then
P(a) is true.
Then Z(a) is true for all a € A.



3. INCIDENCE ALGEBRAS

3.1. Locally Finite Partially Ordered Sets

Definition Let (X, <) be a partially ordered set and z,y € X such that x < y. An

interval or segment from x to y, denoted [z, y], is defined to be the set
[zy={reX[z<z<y}

A partially ordered set X is locally finite if every interval of X is finite.

Definition An interval [z, y] in a partially ordered set X is said to have length-n if
there is a chain of length n in [x,y], and any chain in this interval has length less than

or equal to n.

Definition Let X be a partially ordered set. Then, X is said to be bounded if there
exists a positive integer n € ZT such that every interval [z, y] of X is at most of length

n. A partially ordered set X is called unbounded if X is not bounded.

Examples of unbounded locally finite partially ordered sets containing an infinite
chain include Z", the positive integers under the usual ordering, and Z~, the partially
ordered set of negative integers with the usual ordering. If we define the partially

ordered set U C,, to be the set {11, za1, o9, T31, T32, T33, T41, ...} with the relation
neN
that x;; < xp whenever i = k and j < [, for x5,z € U C,, then U C,, is an
neN neN
unbounded locally finite partially ordered set with no infinite chain. In fact, if m is a

positive integer and

A(m):{xijUCnHSjgm},

neN



A /a U c,

neN
Figure 3.1. The three most basic unbounded posets.

then A(m), as a subpartially ordered set, is a chain of length m. No element of A(m;)

and A(ms) are related if mq # msy, and

The Hasse diagrams of Z*,Z~, and U C,, are given in Figure 3.1.

Theorem 3.1.1. Let X be an unbounded, partially ordered set. Then X contains a
subpartially ordered set isomorphic to Z+,Z~ or |J, ey Cn-

Proof. See [17]. O

Lemma 3.1.2. Suppose X is an unbounded locally finite partially ordered set. Then

for each m,n € Z*, we can find disjoint intervals of length m and of length n for

Proof. Assume X is an unbounded locally finite partially ordered set. By Theorem
3.1.1, there exists a chain of length n for each n € Z*. Let us denote an interval
of length n by A,. Put B; = A; and, inductively, B; = A;\B;_; for each i. Then
U A = U B; and B;’s are disjoint.



Now we construct disjoint intervals C;’s so that C; has length 7 as follows:

Set C7 = By. If By contains an interval of length 2, let C'y be this interval. If
not, check Bs. If By contains an interval of length 2, then let C5 be this interval. If
not, check B,. When we find a chain, say D;, of length 2, then choose C5 to be D;,.

Continuing in this manner, we obtained our disjoint intervals C}’s. O]

3.2. The Incidence Algebra

Throughout this text, the letter ” R” denotes a commutative ring and "7 denotes
a ring which is not necessarily commutative. We will define the incidence algebra,
I(X, R), of locally finite partially ordered set X over a commutative ring with identity
R. Later, we will construct I(X,T') over a ring with identity 7" which does not form an
algebra structure in this case. But, by convention, we will call (X, T) as an incidence

algebra.

Definition The incidence algebra 1(X, R) of the locally finite partially ordered set X

over the commutative ring with identity R is
I(X,R)={f: X x X - R| fla,y) =0ifx £y}
with the operations given by

(f+9)z,y) = flz,y)+g(z,y)

(f-9y) = D flx,2)-9(zy)

<2<y

(r-fxy) = rf(x,y)

for f,g € I(X,R) withr € R and z,y € X.

Remark Given that if X is locally finite, the above sum is well-defined. We could



also write

(f-9) () =D fz,2)-g(zy)

zeX

as f(x,z) =0ifx £ zand g(z,y) =0if z £ y.

It is easy to check that I(X, R) is an R-algebra. However, if we take a noncom-

mutative ring, then I(X,T') is not necessarily an algebra.

Now, we will introduce some special elements of I(X,T).

1. Define

such that

1 ifx=y

0 otherwise.

Here we can clearly see that, for all f € I(X,T), and for all x,y € X

(fé)(]i,y) = Z f(x,z)é(z,y)

z<z<y

- f(xay)

and

(5 ’ f)(m,y) = f(x,y),

that is, d € I(X,T) is the multiplicative identity.



2. Define
Y: XxX — T
(,y) = x(z,9)
where
1 ifz<y
x(x,y) =
0 otherwise .
3. Define
(: X xX — T
(z,y) = ((z,y)
such that
1 ifx<y
C(z,y) =
0 if otherwise.
namely

C(z,y) = d(z,y) + x(z,y).

By definition of multiplication on I(X,T'), if an interval [z, y] is of length n, then
X" (z,y) = 0, giving §—x+x%—... is a finite sum. Then we get (6+x)(0—x+x*—...) =4,
that is, 0 + x = ¢ € I(X,T) is invertible and its inverse is called the Mdbius function
of I(X,T) and denoted by pu.

Lemma 3.2.1. Let T be a ring with unity and s € T. If s € T has both a left and a

right inverse, then it is a unit.

Proof. Let ls = sr = 1g for I, € I(X,R). Then, | = I(sr) = (Is)r = r, that is,
l=r. O
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Theorem 3.2.2. Suppose X is a locally finite partially ordered set and R is a commu-
tative ring with unity. For f € I(X, R), the followings are equivalent:

(i) f has a right inverse

(i1) f has a left inverse

(113) f is a unit

() f(x,z) is a unit in R, for all v € X.

Proof. We show the equivalence of (i) and (iv), the equivalence of (ii) and (iv) can be
proven in a similar manner. By Lemma 3.2.1 for a ring with identity R if s € R has
both right and a left inverse, then s is a unit. So (iv) implies both (i) and (ii). Then
it follows that (iv) implies (iii). Finally, since (iii) obviously implies both (i) and (ii),
the theorem will be proved.

(i)=(iv) Suppose that f has a right inverse g. Then, for all z € X, we have

(j,'g)(ﬁalj :=f($,$)g($,1ﬂ ::5($ax):: 1

and therefore f(z,z) is a unit in R.

(iv)=(i) Suppose that f(z,z) is a unit for all x € X. We define a right inverse,
say g, of f inductively on the length of the intervals of X as follows. If |[z,y]| = 0,
then z £ y and set g(z,y) = 0. If |[z,y]] = 1, then x = y and let g(z,x) = (f(z,z)) .
Let n > 1 and assume that for z,y € X with |[z,y]| < n, g(z,y) is already defined.
Let [z,y]| be the interval of length n. We want

0=0(x,y) = (f9)(x,y) = Y flx,2)g(z)

z<z<y

= flw,2)g(x,y)+ > flx,2)g(z,y)

r<z<ly

As f(z,x) is invertible, we can solve this equation for g(x,y). Thus, define

g(az,y)z - Z f(x,z)-g(z,y) 'f(xax)il

r<z<y
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Since the interval [z,y| has length less than n, the function g has been defined for

z,y € X by our induction hypothesis. Therefore, f - g = 9. O

For any cardinal number x and a ring 7', the set of k¥ X k matrices will be denoted
by M, (T) which forms a T-module structure. A submodule of M (T") in which all sums
in the formal matrix products of its elements involve only finitely many summands will
form a matrix ring contained in M, (7). By convention, we will refer to such a ring as a
subring of M, (7). Hence, we will show in the next proposition that the multiplication
of elements in the incidence algebra and multiplication on matrix rings are closely

related.

Proposition 3.2.3. Let X be a locally finite partially ordered set and T a ring with
identity. Then, the incidence algebra 1(X,T) is isomorphic to a subring of M x|(T).

Proof. Suppose that the elements of X is ordered so that X = {x;| ¢ € I } where I is

an indexing set. Consider the entries of an element A in M|x|(T") as indexed by I x I.

Define

¢ I(X,T) — Mx(T)

o= elf)
such that

o(f): I xI T

(ilaiQ) = f(ximxh)

Now, if ¢(f) = 0, then (¢(f))(i1,i2) = f(xy,x;,) =0, for all z;,, z;, € X, thus ¢
is injective. On the other hand, by definition of addition and multiplication on (X, T),

for all f,g € I(X,T) we have o(f +g) = ¢(f) + ¢(g) and ¢(f.g) = ¢(f)¢(g). Hence,
¢ is a ring isomorphism between I(X,T) and a subring of M x|(T). O
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Now suppose that X = {z;|¢ € I} such that z; < x; implies ¢ < j, for all
z;,x; € X. Then, for any f € I(X,T), corresponding ¢(f) is an upper triangular 1 x [
matrix. Therefore, we can say that I(X,T") is isomorphic to T7(7T), a subring of upper

triangular matrices.

If X = {x;|i € I} such that x; < x; implies j < i, for all z;,z; € X, then p(f
becomes a lower triangular I x [ matrix and hence, I(X,T) is isomorphic to L;(T), a

subring of lower triangular matrices.

If in particular X = Z7, then we have I(X,T) = T(T) and if X = Z~, then
I(X,T) = Lo (T).

Definition Elements z,y of a partially ordered set X is called connected if there exists
elements zg, x1,...,z, in X with 2y = x, x,, = y and either x; < ;11 or x;41 < x; for

i=0,1,....,n—1.

Note that, connectedness of elements of a partially ordered set X is an equiv-
alence relation. The equivalence class of an element x € X is called the connected
component of x. Then, X can be written as the disjoint union of its connected com-

ponents. Moreover, if X = UX”’ where X,,’s are the connected components of X,

n
then f(x,y) will be zero when x and y are not in the same connected component or

x £ y. Thus, by definition of ¢, we can say that I(X,T) is isomorphic to a subring of

1 Mix. (D).

If, in particular, X is an antichain, then all X,,’s will be singletons, hence

(xn=J][r

rzeX
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N\

Figure 3.2. The Hasse diagram of Ns.

For X = U C,, if we consider

neN

1(Cy., T) = Tig, (7).

for all n, then I(X,T) = HTICnI(T) and if I(C,,T) = Lic,|(T), for all n, then

I(X,T) =[] Lic. (T).

Example Let X = {x1, %2, 23, 24,25} such that 1 < xo < 25 and 21 < 23 < 24 < 5.

The Hasse diagram of X is given in Figure 3.2.

Consider

1 ifx <y
((z,y) =

0 otherwise .
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Then,
(1111 1]
01001
=100 111
00011
(0000 1]

where ¢ is defined as in the proof of the previous proposition.

Proposition 3.2.4. Let X be a locally finite partially ordered set and R a commutative
ring with the unity. If X' is a subpartially ordered set of X, then I( X', R) is a subalgebra
of (X, R).

Proof. By definition, I(X',R) = {f € I(X,R) : f(x,y) = 0ifx & X' ory ¢ X'}

Then we can easily verify that it is a subalgebra. O]

Proposition 3.2.5. If S is an ideal of R, then I(X,S) is a subalgebra of I(X, R).

Proof. Consider similarly I(X,S) ={f € I(X,R) : f(z,y) =0if f(x,y) € S}. O

Definition Let X be a locally finite partially ordered set and 7" be a ring with unity.
(1) An element f € I(X,T) is called diagonal if f(z,y) = 0 for any z,y € X with
x # y and denoted fp.
(i1) An element f € [(X,T) is called strictly upper triangular if f(z,x) = 0 for
any x € X and denoted fy.

Remark Given f € I(X,T), we can write f uniquely as f = fp + fu, because

fz,z) ifrx=uy
0 ifx#y

fD(x7y) =



15

0 ifr=y
flz,y) fa#y

fu(z,y) =

and therefore,

f(x,y) - fD(x7y) + fU<x7y)

for all z,y € X.

Remark The set of all strictly upper triangular functions, denoted Z(I(X,T)), and
the set of all diagonal functions, denoted D(I(X,T)), are each subalgebras of I(X,T).
In addition,

I(X,T)=Z(I(X,T)) ® D(I(X,T)).
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4. RADICAL PROPERTY

Definition Let . be a certain property that a ring may have. A ring 7T is called an
< -ring if it has the property . and an ideal J of T is called an .#-ideal if J is an
-ring,.

If .7 satisfies the following

(1) A homomorphic image of an .#-ring is an .¥-ring,

(2) Every ring contains an .#-ideal S which contains every other .#-ideal of the
ring,

(3) The factor ring T'/S does not contain any non-zero .#-ideals,
then . is called a radical property and the .#-ideal S is called the . -radical of T.

Definition An element r of a ring T is nilpotent if there exists a positive integer
n € Z" such that r™ = 0. The smallest such n is called the index of nilpotency of r in
T. A subring A of the ring T is nil if each element of A is nilpotent. The subring A is
nilpotent if there exists n € Z* such that a; - ay...a, = 0 for every ay, as, ...,a, € A,

that is, A" = 0.

We now take .# to be the nil property, and a ring 7" is an .%-ring if it is nil. We
shall show that .% is a radical property.

Lemma 4.0.6. (i) If T is a nil ring, so is every subring of T.
(i) If T is a nil ring, so is every homomorphic image of T.

(1i) If A is an ideal of T with both A and T /A nil, then T is a nil ring.

Proof. (i) For any subring T" of T\, T" consists of nilpotent elements and therefore it is

nil.

(i) If ¢ : T — T’ is an epimorphism, then for all » € T, ¢(r) is nil and

therefore T” is nil.
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(#1i) Suppose A is an ideal of T" with both A and T'/A nil. Then, for all r € T
there exists m € Z* with (r + A)™ = r™ 4+ A = A, that is, 7™ € A. But A is also nil,

so, there exists n € Z* with (r™)™ = ™" = 0. Hence r is nilpotent with mn. O

Lemma 4.0.7. If A and B are two nil ideals of a ring T, so is A+ B.

Proof. Since (A + B)/A = B/(AN B), by the second isomorphism theorem, and the
right-hand side is nil as it is a factor ring of a nil ring, (4 4+ B)/A is nil. But then, by
the previous lemma, A and (A 4+ B)/A are nil so that A + B is nil. O

Lemma 4.0.8. The sum of all the nil ideals of a ring T is a nil ideal.

Proof. Let N denote the sum of all the nil ideals of T. For r € N, there are nil ideals
Ay, As, ... Ay of T such that r € Ay + Ay + ...+ Ag. Since Ay + A+ ...+ Ay is a nil

ideal, r is nilpotent. Therefore, N is a nil ideal. O

Remark N is the largest nil ideal of 7" and T//N contains no nonzero nil ideals, that

is, T/N contains no nontrivial nilpotent ideals. Thus, we have,

Corollary 4.0.9. The nil property is a radical property.

Definition The sum of all of the nil ideals of a ring T is called the upper nilradical of
T and denoted by N*(T').

Next we shall check that the Jacobson radical satisfies the radical property.

Definition Let 7' be a ring. Then Jacobson radical of T, denoted by J(T), is the

intersection of all maximal left ideals of 7.
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Lemma 4.0.10. Let T be a ring with unity. Then the following are equivalent:
(i) y € 3(T)
(ii) 1 — xy is left invertible, for all x € T
(iii) y M =0, for all simple T-modules v M.

Proof. (i)= (i) Let y € J(T') and assume 1 — x¢y is not left invertible for some
xg € T. Then T(1 — zgy) is a proper left ideal of T. Since T has the identity element,
T(1 — zgy) is contained in a maximal left ideal I, say. Also, y € I implies xoy € 1.
Therefore 1 — zgy + zoy = 1 € I, a contradiction.

(11)= (iii) Let 1 — zy is left invertible for all = € T. Assume there exists a simple
T-module M such that y M # 0. So, there exists m € M such that ym # 0. Since
M is simple, we can express it as 7 M = Tym. It follows that there exists x € T" such
that m = xym, that is, (1 — zy)m = 0. Then m = 0 as by assumption 1 — zy is left
invertible which is a contradiction.

(i1i)= (1) Suppose yrM = 0 for all simple T-modules 7M. Let I be a maximal
left ideal of T. Then ¢(T'/I) is simple. So, y 7(T'/I) = 0. In particular, y-1 = 0. Hence,
y+ I = I giving that y € I. m

Proposition 4.0.11. The Jacobson radical §(T) of a ring T is a right ideal.

Proof. Take any y € J(T') and t € T. We show 1 — z(yt) is left invertible for all x € T.
Since xy € J(T), 1 — txy is left invertible for all ¢ € T', that is, there exists v € T' such
that v(1 — tzy) = 1, that is, vtry = v — 1 Then,

(1 +zyvt)(1 —ayt) = 1—zyt+ zyvt — xyvtayt
= 1 —ayt + xyvt — zyvt + xyt

=1

Hence, yt € J(T). O
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Let T be a ring with identity. Define an ideal I to be an .#-ideal if for any y € I,
1 —xy is left invertible for each x € T. We show that this property is a radical property
and the .#-radical of T is precisely the Jacobson radical of T.

Proposition 4.0.12. Let . be as above. Then . satisfies the radical property.

Proof. (i) Let I be an .-ring and ¢ : I — B be an epimorphism. We check B is an
S-ring. Fix b € B. Then there exists an element a € I such that ¢(a) = b. Take any
y € B. Then there exists x € I with ¢(z) = y. Since [ is an .-ring, 1 — za is left
invertible with ¢, say. So, t(1 — za) = 1. It follows that

p(t(1 = za)) = p(t)(1 — p(x)p(a)) = e()(1 —yb) =1

This means that 1 — yb is left invertible, therefore, B is an .#-ring.

(i1) Suppose T is a ring with unity. Obviously, any .#-ideal is contained in J(7')
by Lemma 4.0.10 and thus J(7') is the maximal .#-ideal of 7.

(111) Let T be a ring with unity. Suppose B/J(T) is an .#-ideal of T/J(T). Fix
b € B. Then T —ab is left invertible for all @ € T/(T). Let t be a left inverse of T — ab.
Then, {(T — @b) = 1, that is, 1 — t(1 — ab) € J(T). So, 1 — (1 — t(1 — ab)) = t(1 — ab)
is left invertible. If ¢’ is a left inverse of ¢(1 — ab), then we have ¢'t(1 — ab) = 1. This
means that 1 — ab is left invertible for all a € T, that is, b € J(7T)). O

Next, we consider the nilpotent property and see whether it is also a radical

property.

Lemma 4.0.13. (i) If T is a nilpotent ring, so is every subring of T' and so is every
factor ring of T.
(i) If A is an ideal of T with both A and T'/A nilpotent, then T is nilpotent.

Proof. (i) is clear.

(i1) Since A is nilpotent there exists n € Z* such that a;-as---a, = 0 for every
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ap,ag, -+ a, € A. And since T'/A is nilpotent there exists m € Z* such that
(T1+A)(T2+A>(Tm+z4): (Tl'TQ"'Tm)+A:A

for every 7 € T/A, 1 <i < m. Thus for K = mn, we have

T11°T12° *Tin 7217 7227 Ton ** * Tl Tm2 " *Tmn = 0

where 71 791, € Aand r;; € T with 1 <7 < mand 1 < j < n. Hence, T is

nilpotent with index k. O]

Lemma 4.0.14. If A and B are nilpotent ideals of a ring T, so is A+ B.

Proof. Suppose A is nilpotent with n and B is nilpotent with m. We show that A+ B
is nilpotent with m + n. Let a; + b; be elements of A+ B for i =1,2,...,m +n. Then

m+n

H (a; + b;) = 0 because each summand of this expression contains either m many

=1
elements of A or n many elements of B as A and B are ideals of T" and therefore equals

to 0.

Lemma 4.0.15. The sum of all nilpotent ideals of a ring T is nil.

Proof. Every nilpotent ideal is obviously nil and therefore, by Lemma 4.0.8 the sum of

all the nilpotent ideals is a nil ideal. Il

The sum of all nilpotent ideals of a ring 7" is not necessarily a nilpotent ideal as

the following example illustrates.

Example Let A be an algebra over a field F' with basis {x }acr where

I={aceR|0<a<1}
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with the multiplication of basis elements given by:

a 4B =
0 else

A, as a ring, consists of elements of the form Z fara where f,’s are elements of the
finite
field F. We define addition as
faa + f5'2p just written together if oo # (3

fata+ fo'ta = (fa+fo)ra fa=p

1
Now if we choose n € Z* such that n > — then (z,)" = Z4, = 0 and for
e

a = Z faxo if B is the smallest subscript in the expression of a then an integer

1
k € Z* such that k& > B will give (a)® = 0. Thus, each element of A is nilpotent, that

is, A is a nil ring.
However, A is not nilpotent because for all n € Z™,

xa #0.

omn

=
NS
00l

Now, take any basis element x,, and consider the ideal (z,) generated by z,. Then (z,)
is a nilpotent ideal with an integer t satisfying ¢ > é But the union of all the ideals

(z4) is A and, therefore, the union of the nilpotent ideals of A is not a nilpotent ideal.

Corollary 4.0.16. The nilpotent property is not a radical property.

Definition The lower nilradical of T, denoted N,(T'), is the smallest nil ideal of T’

such that T/N,(T) contains no non-zero nilpotent ideals.
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We shall show the existence of N,(T") by Zorn’s lemma:
Let T be a ring. Consider

& ={I|Iis anilideal of T"and T'/I contains no nontrivial nilpotent ideals }

We have . # () as N*(T') € .#. Now, order . by < where I} < I, means I, C I;. Let

¢ be achain in .. Then S = m I is anil ideal and 7'/S does not contain any nonzero

Ie?
nilpotent ideals because otherwise if K/S is a nilpotent ideal of T'/S then there exists

a positive integer N such that KV C S C I, for some I € € and therefore K/I is a
nilpotent ideal of T'/I which is not possible. Note that S is an upper-bound for %.
Hence, by Zorn’s lemma, . has a maximal element. Now, we check this element is
unique. Suppose [1, I, are maximal elements of .. Then I; N Iy is also a nil ideal.
If A/I; NIy is a nonzero nilpotent ideal of T'/I; N Iy, then (I; + A)/I; is a nonzero
nilpotent ideal in T'/I1 N I,. So, [ N Iy € ¥ with I NI, C I, 5. This contradicts
maximality of I; and I5. Hence, . contains a unique maximal element which is the

lower nilradical of T.

Zorn’s lemma gives the existence of the lower nilradical of a ring T', however, does
not characterize the lower nilradical. In order to have other characterizations of N, (T")

we determine N, (7') in a constructive way.

Construction of N,(R) :

We use transfinite induction by defining an ideal A(«) of R for each ordinal a.

Induction Bases: Let A(0) = Ny(T') where No(T') denotes the sum of all the
nilpotent ideals of T
Induction Hypothesis: Let 3 be an ordinal such that A(«) has been defined for

each a < 3.
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Induction Step: If (3 is a limit ordinal, then define

A(B) =) Ala).

a<fB

If § is not a limit ordinal, then there exists an ordinal, say aq satisfying 3 = ag+1. We

T B
set A = B such that N, = . Note that whether 3 is limit ordinal
(5) (a0e) = 700 g

or not A() is nil. So, A(B) € N*(T), that is, N*(7T') is an upper bound for A(3). This

means that there exists an ordinal, say =, satisfying A(y) = A(y + 1). Then, the lower
nilradical of T"is A(7).

Note that the above construction of the lower nilradical also shows that the lower

nilradical satisfies the radical property. See [15] for details.

Before computing the lower nilradical of a ring, we need to review some ring

theoretic results.

Definition An ideal P of a ring with identity 7" is prime if whenever the ideals A, B
of T" have the property A - B C P, then either AC P or B C P,

Proposition 4.0.17. Let T be a ring with identity, P be an ideal of T and k > 2 a
positive integer. Then the followings are equivalent:

(i) P is a prime ideal.

(i1) If by, bo, ..., b € T withby-T-by-T---T-b, C P, then b; € P for some index
1<i<k.

Proof. (i)=(ii) Suppose that by, bs, ..., by are elements of T such that

by - T -by-T---T-b, CP.

Then (T by - T)(T -by-T)-+- (T -b,-T) C P.If weset B, =T -b;- T, then B; is the

ideal generated by b; and so By - By --- B, C P gives B; C P for some ¢ with 1 <i <k,
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as P is prime. Then b; € P for some 1 <17 < k.

(i1)= (i) Suppose that P, By, B, ... By, are ideals of T such that B;-Bs - -+ By, C P.
Assume that B; € P fori =1,2,...,k— 1. For 1 < i < k, choose b; € B;\P and let
b € By. Then

by-T-by-T-t by T -bCP

and as b; € P for 1 <i < k, we have b € P (by assumption). Therefore, By C P and

P is prime.

Definition An element s of a ring T is strongly nilpotent if given a sequence g, s1, Sa, . . .
with sg = s and s;41 € s;T's; for i = 1,2,..., there exists a positive integer n € Z*

such that s, = 0.

Proposition 4.0.18. The intersection of the prime ideals of a ring with identity T is

the set of all strongly nilpotent elements.

Proof. Let
A ={a € T|a is strongly nilpotent}
and
N(T) =P
where the intersection is taken over all the prime ideals of T

(Necessity) We will prove this part by contraposition. If a ¢ N(T'), then there is
a prime ideal P of T such that a ¢ P. Then, by the previous proposition, a-T -a € P
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and so there exists a; € a-T-a such that a; € P. Then again a;-7T-a; € P and so there
exists ag € aq -7 -ay such that as ¢ P. Continuing in this manner, we obtain a sequence
a,ay,as, ... in T such that a; € a;_1 - T - a;_1 and a; & P for each i. Thus, a; # 0 for

each i and therefore a is not strongly nilpotent, that is a ¢ A. Hence, A C N(T).

(Sufficiency) Conversely, suppose that a ¢ A. Then there exists a sequence
ag, 1, as, ... of nonzero elements of 1" such that ag = a and a; € a;_1 - T - a;,_; for
i=1,2,.... Let & = {ag, a1, -+ }. By Zorn’s lemma, there exists an ideal P of T such
that P is maximally disjoint from .. We claim that P is prime. Suppose not, then
there are ideals A and B of T satisfying AB C P with A Z P and B £ P. Then A+ P
and B + P are ideals with P € A+ P and P B + P. So there are indices ¢ and j
such that a; € A+ P and a; € B + P. Without loss of generality, assume ¢ < j. Then

Q. € Cljfl‘T'CLjfl Q CLJ',Q'T'CLJ',Q'T'CLJ',1'T'CLJ',1 Q s Q TCLZT Q A + P

Thus,

ajy1 € (lj'T-(lj - (A+P)T(B+P) cP

as

(a+ p1)r(b+ p2) = (ar + p17)(b+ p2) = arb + arps + p1rb + p1rps € P

foralla € A, b € B, r € T and p1,p» € P. So, a;;1 € P which contradicts our

assumption that P NS = (). Therefore, P is a prime ideal of T and a ¢ P. Hence,
N(T) C P. m

Proposition 4.0.19. The lower nilradical of a ring with identity T is the set of all

strongly nilpotent elements.

Proof. (Necessity) Let a be a nonzero strongly nilpotent element of a ring 7' and Ay

be the ideal generated by a. Assume that a & N.(T). Now (Ag)? € N.(T) because
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otherwise if (Ag)? C N, (T), then
N (T) + 2)(N(T') +y) = Nu(T) + 2y = No(T)

for all z,y € Ay, that is, {N.(T) + z|x € Ao} is a nilpotent ideal of T/N,(T) con-
tradicting the fact that T'/N.(T') contains no nonzero nilpotent ideals. Therefore,
(Ag)? € N.(T) and there exists s; € T with a-s;-a € N,(T) because otherwise
a-si-a € N, (T) implies (Ag)* C N, (T). Let a; = a-s1-a and A; be the ideal generated
by a;. Then, again, (A;)*> € N,(T') and there exists s, € T with a;-sy-a; € N,(T). Let
as = ay-S9-a1 and continue in this manner to obtain a sequence ag = a, ay, as, ... with
a; € a;_1-T-a;_1 and a; € N(T) for i =1,2,.... Then a; # 0 for each i contradicting
the strongly nilpotent property of a. Thus, the set of strongly nilpotent elements is

contained in N, (7).

(Sufficiency) To prove the converse, we show N, (7') is contained in every prime
ideal. Let P be a prime ideal. We check that A(«) C P for each ordinal a. If a@ = 0,
then A(«) is defined as the sum of all the nilpotent ideals of T'. If B; is a nilpotent ideal
of T, then there exists k; € Z* such that B;* = {0} C P and so B; C P (because P
is a prime ideal). It follows that the sum of all the nilpotent ideals > B; = A(0) C P.
Now, suppose that (3 is an ordinal satisfying A(a) C P for each ordinal o < 5. If 3 is
a limit ordinal, then A(5) = Z A(a) giving that A(B) C P. If § is not a limit ordinal,

a<fB
then there is a successor of a, say ~, such that 3 = v + 1. By definition, A(8) = B

where No(T'/A(v)) = B/A(7). Therefore, A(() is the sum of the nilpotent ideals B;
such that A(y) C B; and B;/A(7) is nilpotent. Then there exists a positive integer k
such that B;* C A(y) € P where the second inclusion is verified by the assumption.
It follows that B; C P for each i and therefore A(3) C P. Hence, N,(T) C P which
completes the proof. n

Proposition 4.0.18 and 4.0.19 show that the lower nilradical coincides with the
intersection of the prime ideals of the ring and therefore also known as the prime

radical.
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Definition Let 7" be a ring with identity.
(i) An ideal J is said to be a semi-prime ideal if, for any ideal A of T, A> C T
implies that A C T..

(11) T is called a semi-prime ring if (0) is a semi-prime ideal.

Remark Note that for any ideal P of a ring T, the factor ring T'/P is a semi-prime
ring if and only if P is a semi-prime ideal. Therefore, 7'/ P is semi-prime if and only if

Or/p = P is semi-prime.

Proposition 4.0.20. Suppose T is a ring with identity and J is an ideal in T. Then
the followings are equivalent:
(i) J is semi-prime
(ii) For eachr € T, (r)? € J implies that r € J
(iii) For each r € T, rT'r C J implies that r € J
(iv) For any left ideal A in T, A> C J implies that A C J.

Proof. (i) implies (i), (i1) implies (77) and (iv) implies (i) follow from the definition
of the semi-prime ideal. We check (iii) implies (). Assume that A> C P for some left
ideal A of T, but A ¢ P. Take a € A\P. Then, aTa C P. Using (iii), we get a € P,

which is a contradiction. O

Definition Let T' be a ring with unity and J be an ideal of T". The radical of J, denoted

by V/J, is the intersection of prime ideals of 7' containing .J, that is,

Vi = N P

P prime and JCP

Lemma 4.0.21. Suppose T' is a ring with identity and J is an ideal in T. Then the
followings are equivalent:

(i) J is a semi-prime ideal

(ii) J is an intersection of prime ideals

(iit) J = v/J
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Proof. (iii) = (ii) Obvious by the definition of a radical ideal.
(ii) = (i) Let A be an ideal such that A? C J. By assumption, .J is an intersection of
prime ideals, therefore, A is contained in each of these ideals. Hence, A C J.

(i) = (iii) We show v/J C J. Let a ¢ J. By Proposition 4.0.20,

ala,aTaTaTa,aTaTalaTaTalaTa,... L J

Choose t; € T with atya € J. Since J is semi-prime and aTaTaTa ¢ J, there ex-
ists an element ty € T with atiateatia ¢ J. Similarly, there exists t3 € T with
atiateatiatsatiateatia ¢ J. Continuing in this manner we can find t; € T for each
i € ZT. Let S be the set of a,atya, atiatsatia, atiatrat atzatiatyatqa, . ... By Zorn's
lemma, there exists an ideal P, say, which is maximally disjoint from S. Since JN.S = (),
we have J C P. We show that P is a prime ideal in T. Suppose x € P, y ¢ P but
(x)(y) € P. By maximality of P, there exists s,s" € S with s € P+(z) and s’ € P+(y).
So, there exists t € T with sts’ € S. Then

sts' € (P+ (2))T(P + (y)) € P+ (x)(y) € P

which is a contradiction. Hence, P is prime. It follows that a & v/J. O]

Corollary 4.0.22. Let J be an ideal of a ring T. Then \/J is the smallest semi-prime
ideal in T satisfying J = \/J. In particular, N.(T) = \/(0) is the smallest semi-prime
ideal in T.

Proposition 4.0.23. Let T be a ring. Then N,.(T) = A(a) for any ordinal o with

carda > cardT where A(«) is defined as in the construction of N.(T).

Proof. Note that A(a)’s form an ascending chain of ideals in N, (7). Write B = A(«)
where « is an ordinal with carda > cardT. Then, for any ordinal § with card 8 >
cardT, we have B = A(). Since B C N,(T), it is sufficient to show that N,(T') C B.
Now, T'/ B has no nonzero nilpotent ideals, so it is a semiprime ring. This means that

B is a semiprime ideal. Hence N,(7T") C B since N,(7T) is the smallest semiprime ideal

of T. O
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Next, we will see the relation between the upper nilradical and the Jacobson

radical. First, we need to prove the following lemma.

Lemma 4.0.24. Let T be left artinian ring. Then J(T') is the largest nilpotent (left)
ideal.

Proof. Enough to show that there exits n € Z* such that (J(7"))" = 0. Consider the

descending chain

AT) 2 (A(M)* 2 @(1)*2...

Since T is artinian, there exists N € Z* such that (J(7))Y = (J(T)V ™ = ... = 1.
Hence, we need to see that I = 0. Assume not. Then there exists a left ideal J in T

such that IJ # 0. Consider

& ={J| Jis an ideal in T satisfying IJ # 0 }

Since T is left artinian there exists minimal left ideal Jy, say, satisfying I.J, # 0 by
Zorn’s lemma. So, there exists a € Jy such that Ia # 0. Note that I(Ia) = I*a =
Ia # 0, that is, Ia satisfies this property. We have a € Jy, so, Ia C Jy and since Jy
was minimal Jy C Ia. Therefore, Ia = Jy, that is, there exists x € I such that a = za,
that is, (1 — x)a = 0 where x € I C J(T'). Since 1 — x is invertible we have a = 0, a
contradiction. Hence, I =0 = (J(T))". O

Corollary 4.0.25. Suppose T' is a (left) artinian ring with identity. Then, any (left)
nil ideal of T is also (left) nilpotent.

Proof. Let I be nil left ideal of T. Then I C J(T') where J(T') is nilpotent in this case.
Therefore, I is nilpotent. O

Proposition 4.0.26. Let T' be a ring with identity. Then

N.(T) C N*(T) C §(T)
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If T is left artinian, then

Proof. N.(T) is contained in N*(T") as N,(T") is a nil ideal. On the other hand J(7T)
contains every nil (left) ideal of T as if y € I for a left ideal I of T, and for each = € T,

we have xy € I, therefore, there exists t € Z* such that (zy)" = 0 and

Q+zy+- 4 () (1 —ay) =1

that is 1 — zy is left invertible. Similarly, 1 — xy is right invertible and thus y € J(T).
Assume now T is left artinian. Then J(T") is the largest nilpotent (right) ideal by Propo-
sition 4.0.24. Since (0) is the unique nilpotent ideal in 7'/N.(T"), T/N,(T) semiprime,
s0, if A?2/N,(T) = N.(T)/N.(T), then A/N.(T) = N.(T)/N.(T), that is A = N,(T);
hence A/N.(T) = N.(T)/N.(T) ) it follows that J(7') C N.(7T'). Hence

IT) SNT) € NY(T) € I(T)

giving that all three radicals are equal. O]

Theorem 4.0.27. Let T be a ring with unity. Then any ideal J of M,(T) has the
form M, (I) for a uniquely determined ideal I of T.

Proof. First note that if I is an ideal of 7', then M, (1) is an ideal of M, (T"). Define

¢ : A—B

I — M,(I)

where A is the set of ideals of 7' and B is the set of ideals of M, (T"). We check that
@ is a bijection. ¢ is well-defined and one-to-one as for any ideals Iy, I, of T, Iy = I
if and only if M, ([;) = M,(I2). Let J be an ideal of M,(T"). Then form the set I of

all the (1,1)-entries of matrices in J, that is, if m = (e;;) € J, then put e;; € I and
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]:{a11€T| (aij)GJ}.

Claim 1. I is an ideal of T
Claim 2. M, (I) = J.

Proof of Claim 1. Take any z,y € I, then there exits (a;;),(b;;) € J such that
r = an,y = bll; then (CLU) + (b’LJ> = (Cm’) € J and C11 = Q11 + b11 = xr + Y € I.
Let r € T, then

rein(a;j) € J such that ra;; € 1

(a;j)req; € J such that ar € 1
So, I is an ideal of T.
Proof of Claim 2. Let M = (m;;) € J, take any m,; fixed, then e;Me;; = mjjen € J
implies m;; € I. So, M € M,(I), that is, J C M,(I). Conversely, take any (a;;) €
M, (I). So for any a;;, there exists M € J such that a;; = my;. Then,

aijeij = mnezj = eilMelj € J

therefore,

that is, M, (1) C J. O

Proposition 4.0.28. A ring T is semi-prime if and only if M, (T) is semi-prime.

Proof. Assume T is not a semi-prime ring. This implies that (0) is not a semi-prime
ideal. So, there exists a non-zero ideal I in T with I? = (0). Then (M, (1))? = (0),
so M, (T) is not semi-prime. Conversely, if M, (7T) is not semi-prime, then it has a

non-zero ideal J such that (J)2 = (0). By Theorem 4.0.27, there exists an ideal I in T
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with J = M,,(I). Then 3% = (0) implies that I? = (0), so T is not semi-prime.

Theorem 4.0.29. For any ring with identity T, we have No(M,(T)) = M,(N.(T)).

Proof. We have T'/N,(T) is semi-prime, so M, (T /N.(T)) is also semi-prime by Propo-
sition 4.0.28. But then M, (T")/M,(N.(T')) is semi-prime, so N, (M, (T)) € M, (N.(T))
as N, (7T) is the smallest semi-prime ideal in M, (T"). Using Theorem 4.0.27, write the
ideal N, (M, (T)) of M, (T) in the form M, (I), where I is an ideal in T Then

My (T/1) = My (T)/Mn(I) = My(T) /N(My(T))

is semi-prime, and so is 7'/ by Proposition 4.0.28. This implies that N.(7") C I, so

we have

and the equality holds. O]

It is not known if the equation

holds for the upper nilradicals. In fact, the above equation for all n and for all rings T

is equivalent to the famous Kéthe’s Conjecture which can be found in [?].

Kothe’s Conjecture For any ring 7', N*(7") = (0) implies that 7" has no non-

zero nil one sided ideals.

For several classes of rings, the conjecture has been shown to be true. For exam-

ple, it can be found in [?] that the conjecture holds for the class of right noetherian



rings. However, the conjecture is not solved in general yet.
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5. UPPER NILRADICAL AND LOWER NILRADICAL OF
INCIDENCE ALGEBRAS

In this chapter, our aim is to determine the upper and the lower nilradicals of
an incidence algebra. First, we will investigate the upper and the lower nilradicals
when the incidence algebra is defined over a commutative ring with unity. Then, we
determine necessary and sufficient conditions to characterize the upper and the lower

nilradicals of incidence algebras over a noncommutative ring with unity.
5.1. Upper and Lower Nilradicals of 7(X, R)
Definition Let R be a commutative ring with identity and S be a subset of a locally
finite partially ordered set X. A function f € I(X, R) is fully-nilpotent of index n on
S if there exists a positive integer n such that given any chain of the form
TS ST Y S STy S Yn

in S, H f(zi,y;) = 0. A function that is fully-nilpotent on X will simply be called

1=1
fully nilpotent.
Remark If f is fully-nilpotent of index n on S C X, then (f(x,z))" =0, forall z € S.

Remark When the ring R is an integral domain, then the previous definition is equiv-

alent to the following:
there exists n € N such that given any chain of the form
TSP STy S STy S Yy

in S, f(x;,y;) =0 for some 1 <i < n.
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Proposition 5.1.1. If T is a ring with identity, then strong nilpotency implies nilpo-

tency.

Proof. Suppose s € T is strongly nilpotent. Consider the sequence s, s1, So, ... where

7 . 0 i+1 191 .
s; = s2 for each i. Then sy = s> = s and s;4; = s* = 5?2 = g;s; for each i and
therefore s, = s2" = 0 for some n as s is strongly nilpotent. Hence s is nilpotent with

2", [l

However, the converse need not be true as the following example illustrates.

Example Consider Z* under the usual ordering and let R be a commutative ring with

identity. Observe that Z* is unbounded. Define f € I(Z*, R) by

1 ifx=2%and y = 2¥ + 1, for some k € Z7,
flz,y) =

0 otherwise.

We show that f is nilpotent but not strongly nilpotent. Since for all x,y € Z*,

Play)= > flz,2)f(zy) =0,

z<z<y

that is, f2 = 0 giving that f is nilpotent with 2. Define the function ¢ € I(Z™, R) by

1 ifx =241 and y = 2¢, for some k € Z7,
g(z,y) = .
0 otherwise.

We construct a sequence hq, hy, ho, ... in I(Z*, R) as follows. Put hy = f and induc-
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tively h;11 = h;gh;, for ¢ =1,2,.... Then

ha
ho

hogho
hlghl
h29h2

hi—1ghg—1

= fgf
= fagfafgf
= fgfgfagfafafafaf

Observe that f occurs 2 times in the expression of h;, 22 times in the expression of

ho, 23 times in the expression of hs. Hence f appears 2* times in the expression of hy.

Now consider hy(2,2% + 1), for all k € Z*.

he(2,2% +1) = £(2,2" + 1)g(2" + 1,29 £(2%, 22 + 1)g(22 +1,2%) ... f(2% 27 + 1) =11

Hence, f is not strongly nilpotent.

Proposition 5.1.2. If a ring R with identity is commutative, then nilpotency is equiv-

alent to strong nilpotency.

Proof. Suppose r € R is nilpotent with n. We are to show that r is strongly nilpotent.

Let rg,rq,... be a sequence in R with ro =r and r;;1 € r;Rr; for i =1,2,.... Then
r o= rtir = r’t for some t; € R
ro = 7T1loT] = T2t1t27"2t1 = T4t1t2t1 = 7“4t/2
for some to,t, € R
e = r¥t for some t € R

Let k be a positive integer such that 2¥ > n. Then r, = 0 and thus, 7 is strongly

nilpotent.

]
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Proposition 5.1.3. Let X be a locally finite partially ordered set and R a commutative
ring with identity. A function f € I(X, R) is fully-nilpotent if and only if f is strongly

nilpotent.

Proof. (Necessity) Suppose that f is fully-nilpotent. Then there exists n € Z* such

that whenever

IN
A
8

1 <y <z <y

is a chain on X, we have

Let ho = f and set h;,y = hyg;h; for i =1,2,..., where g; € I(X, R). As f appears 2*

times in the expression of hy, choose k so that 2 > n. Then

hi(z,y) = Z f@,y1)9(y, 22) f(22,92) - - 9(Yar 1, Tor) [ (@, yor)

where the sum is over all possible chains

r=21 <Y1 <0< Tok < Yo =Y.

2k
But H f(x;,y;) is a factor of each summand, and as n < 2%, it follows that each sum-

=1
mand is zero. Hence, hy = 0 and f is strongly nilpotent.

(Sufficiency) Conversely, suppose that f is strongly nilpotent and assume for
a contradiction that f is not fully-nilpotent. Then one of the following two possibilities

must hold.

(1) For each n > 1 there exists x,, € X such that (f(z,,z,))" # 0.
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(11) For each n > 1 there exists a chain

Tn,1 < Un,1 < T2 < Yn2 < < Tpn < YUnn
n
in X with H f(@ni; Yni) # 0.
=1

If (i) holds, then the sequence f, = f*" is a sequence of nonzero functions, contra-

dicting the strong nilpotency of f.

If (ii) holds, then X is unbounded and, by Lemma 3.1.2, we may assume that the

intervals [, 15 Ymm) and [z, 1; yn.n] are disjoint for m # n.

Let £ € N and define the function g as follows. For n > 1 set

1 ifi=21(mod2F) and i <n—1,
91 (Yn,is Tnji) = .
0  otherwise.

We define a sequence of functions {f,} inductively by setting f; = f and for m < 1,
set fma1 = fm9mfm- Thus, if r € N, then

27
fr(@or 15 y2r 2r) = Hf(x%i; yari) 7 0.
i=1

This means that the sequence {f,} is not zero for any integer n, and thus, f is not

strongly nilpotent which contradicts our assumption. Il

Combining this result with Proposition 4.0.19 we conclude the following.

Theorem 5.1.4. Let X be a locally finite partially ordered set and R be a commutative
ring with identity. Then the lower nilradical N,(I(X, R)) is the set of fully-nilpotent
functions of I(X, R).

Proposition 5.1.5. Suppose that X is a bounded, locally finite partially ordered set
and R a commutative ring with identity. Nilpotent functions of I1(X, R) are strongly
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nilpotent.

Proof. 1t is enough to show that if f is nilpotent, then f is fully-nilpotent.

As f is nilpotent, there exists n € Z* such that f™ = 0. Also, since X is bounded,
there exists £ € N such that when 1 < 29 < --- < x4 is a chain in X, then s < k. Let
N =n(k —1)+ 1 and consider a chain in X given by

1<y Sxp <y <--- <y < ypn.

There can be at most k — 1 strict inequalities in the above chain, hence there is a string

of n consecutive subscripts, say ¢ through ¢ +n — 1, such that
Ti =Y = " = Tign-1 = Yitn-1-

N
It follows that H f(x;,y;) contains a factor of the form

j=1
i+n—1
1T f@w) = (f@iw) = (@, 2) =0.
j=i
Hence f is fully-nilpotent. O]

Corollary 5.1.6. If X is a bounded partially ordered set, then N.(I(X, R)), where R

is a commutative ring with identity, is the set of nilpotent functions of (X, R).

Proof. If X is bounded, then f € I(X,R) is strongly nilpotent if and only if f is
nilpotent by Proposition 5.1.5. Then the result follows. O]

It is obvious that N,(T) C N*(T') for a ring 7. In general, N.(T') # N*(T"). We
can also define other nilradicals M such that M is a nil ideal of 7" with 7'/M contains
no nonzero nilpotent ideals. However, all such radicals lies between upper and lower

nilradical as the following proposition states.
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Proposition 5.1.7. If M is a nilradical of a ring T', then

N, (T) € M € N(T)

Proof. M is nil, so, is contained in the sum of all the nil ideals of T, namely N*(T").
The first inclusion is also clear as N, (7') is the smallest nil ideal satisfying T'/N,(T)

contains no nonzero nilpotent ideals. Il

Corollary 5.1.8. If X is bounded, 1(X, R) contains unique nilradical where R is a

commutative ring with identity.

Proof. We have N, (T') C N*(T') for any ring 7' By the previous corollary, N, (I(X, R))

is the set of nilpotent elements and since N*(T") consists of nilpotent elements, we get

NY(I(X, R)) € N.(I(X, R))

which completes the proof. O

This result does not depend on the boundedness of the locally finite partially

ordered set as the following theorem states.

Theorem 5.1.9. Let X be a locally finite partially ordered set and R be a commutative

ring with identity. The incidence algebra I(X, R) contains a unique nilradical.

Proof. If X is bounded, the result follows by Corollary 5.1.8. Suppose now X is
unbounded. It is enough to check N*(1(X, R)) € N,(I(X,R)). Let f € N*(I(X, R)).
We check f is strongly nilpotent. So it is enough to check f is fully-nilpotent. By
way of contradiction, assume f is not fully-nilpotent. Then for each positive integer n,

there exists a chain

Tn,1 S Yn,1 S Tn,2 S Yn,2 S e S Tnn S Yn,n
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in X with

n

H f(l’m, yn,i) #0

i=1

Since X is unbounded, we may assume intervals [Z;,;; Yni] and [Z,,i; Ym,:] are disjoint
for m # n. Hence we can define a well-defined function g € I(X, R) as follows. For any

positive integer n,

1 ifu=uy,,; and v =z, for some n € Z*
g(u,v) = 1 ifu=v=yun

0 otherwise

Then

(fg)n(xn,ﬁ yn,n) = fgfg T fg(an; yn,n)
= f(xn,l; yn,l)g(yn,l; xn,Z) e f(xn,nv yn,n)g(yn,nu yn,n)

=1
£ 0

for each positive integer n and therefore fg is not nilpotent. On the other hand,

fg € N*(I(X, R)) and so nilpotent which is a contradiction. O

5.2. Upper and Lower Nilradicals of /(X,T)

In this chapter we will consider incidence algebras over a ring with identity 7" and
investigate the lower and upper nilradicals of them. First, we will extend the definition

of fully-nilpotent functions to the strong product property.

Definition Let X be alocally finite partially ordered set and 7" be a ring with identity.
An element f € I(X,T) has the strong product property (spp) of index n if there exists
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a positive integer n such that, given any chain
T S Y1 <X S Yo <o <y S Yy
in X, then

f(‘rh yl)Tf(x27y2)T' o Tf(xmyn) =0.

Remark Let s € T where T is a ring with unity. Then f = s¢é € I(X,T) satisfies spp

if and only if s € T' is strongly nilpotent.

Proposition 5.2.1. Any element in the T-submodule generated by
{exy € I(X,T) | x <y}

satisfies spp where

1 ifr=uandy=v
e y(u,v) =
0 otherwise.

forall x,y € X.

Proof. Let f be an element generated by the submodule generated by
{exy € I(X,T) | x <y}
Then
f= itiexi,yisi + injexj,yj
i=1 j=1

where for each 7,5, with 1 < ¢ < nand 1 < j < m, s,t;, € T, n; € Z and
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(@i, i), (x5,9;) € X x X with z; < y; and z; < y;. For any u,v € X, we have
flu,v) = Z ti€a; 4 (U, V)8 + Z Nj€q;y; (U, v) =0
i=1 j=1

if (zs,v:), (z;,y;) # (u,v) for each i, j. Now consider any chain of the form
up S vy <up KUy <t < Upgpmtl < Ungomgl

in X. Then for some k with 1 < k < n+m-+1, (ug, vy) # (@, ;) and (ug, vi) # (5, ;)
So, f(ug,vgx) = 0. Therefore

f(ulv U1>Tf(u27 UQ)T' t Tf(ukw Uk)T' : 'Tf(un-&-m—l-l; Un+m+1) = 0.

It follows that f has spp with n +m + 1. n

Proposition 5.2.2. Let I(X,T) be the incidence algebra of a ring with identity T over
a locally finite partially ordered set X. Then

(i) (f+9)p=[fp+9p

(i) (f9)p = [pgp
forall f,g € I(X,T).

Proof. (i)

(f+9)(z,z) ifz=y

0 else

(f+9)p(x,y) =

flz,z) +g(z,z) fr=y
0 else

= fp(z,y) +gp(x,y)

= (fo+9p)(z,y)
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(i1) Take any =,y € X. If x = y, then
(f9)p(x,x) = (fg)(z,x) = flz,x)g(x,x) = fp(z,2)gp(x,x) = (fpgp) (2, )
If x # y, then (fg)p(z,y) =0 and

(fogp)(@,y) = Y folz,2)gp(z,y) =0

z<z<y

as fp(z,z) # 0onlyif 2 = x and gp(z,y) # Oonly if z = y. So, (fg9)p(z,y) = fpgp. O

Proposition 5.2.3. Let X be a locally finite partially ordered set, T be a ring with
unity and f = Z toyesy € 1(X,T). Then f € N*(I(X,T))\N.(I(X,T)) if and only

finite

if tzw € N*(T') for each x € X and t,, € N*(T)\N.(T) for at least one v € X.

Proof. (Sufficiency) We first check, fp generates a nil ideal in H T. Note that fp has

zeX
only finitely many non-zero terms and each of them is nilpotent as ¢, is nilpotent in 7.

Then fp is nilpotent with the maximum number of the nilpotency in its components.
Now, we check that f has spp. By the above example each ?,,e,, has spp for z < y.

Also each t,.e,, has spp for any x € X because for any chain of the form
T Sy < 1w < Yo
in X, either xy # x or x5 # x giving that

txxexx(xla yl)Ttxxea:x(x% y2) =0.

Therefore, t,.€,, has spp with 2. Thus, t;,e,;, has spp for all z,y € X say with
Ngy. Then, f = Z toy€ey has spp with the sum of n,,’s. Now, we show fp is not

finite
strongly nilpotent in H T. Assume the contrary. Since t,, & N.(T') for some x

zeX
in the expression of f, there exist elements sg, s1,s9,... in T such that the sequence

to,t1,ta,... for which to = t and t; = t;_18,_1t;_1 consists of non-zero elements of T
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Fix any x € X. Consider elements (g;) in H T defined for each 1 = 0,1,2,... as

reX
S if y =z
(gz‘)y =
0 else
Construct a sequence ( fo), (f .in H T with (fo) = fp and (f;) = (fi—1)(gi—1)(fi—1)
zeX
foreachi =1,2,.... Since fp is assumed to be strongly nilpotent, there exists a positive
integer k with (f) = 0. It follows that
(fO)xo = te:coxo (x07 .23'0) =t = to
(f1>€v0 = (fO)xo (go)wo (fO):Eo = tsol = U

(fQ)CBo = (fl)l‘o(gl)mo(fl)xo = 1lsotsitsot = 1o

is a sequence of non-zero elements which is a contradiction.
(Necessity) Conversely, suppose f € N*(1(X,T))\N*(I(X,T)). Since

f = Z foyezy € N*([(Xa T))

finite

we have

fD = Z t:pxexx € N*(H T)

finite reX

It follows that t,, € N*(T) for each x € X. On the other hand, fp ¢ N*(H T).
zeX

So there exists a sequence (f;) of nonzero elements in H T with (fo) = fp and
zeX
H T(fi—1) for ¢ = ... It follows that at least one of the component

reX
of the sequence is non-zero, say (f,)s,, for each n € Z*. This means that ¢,,,, € T is

not strongly nilpotent.
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]

Proposition 5.2.4. Let X be a locally finite partially ordered set and T be a ring with
identity. If f € I(X,T) has spp, then so does fp and fy.

Proof. Suppose f has spp with N but fp does not satisfy spp. Let

NS <T2a<S Yo < <xp < Yn

be a chain in X with n > N. Since fp does not satisfy spp we can find elements

a1,0Q2,...,0,-1 € T with

fo(x1,y1)a1 fo(za, y2)as - - - an_1 fp(Tn, yn) # 0.

If z; # y; for some i, 1 < i < n, then fp(z;,y;) = 0. Then x; = y; for each i, 1 <i < n.

So, fp(x;,y;) = f(x4,y;) for each i, 1 < i < n, giving that

f(xi,yn)af (w2, y2)as - a1 f(2n, yn) # 0.

This contradicts the fact that f has spp with N. fi; has spp can be proven in a similar
way. O

Proposition 5.2.5. Let X be a locally finite partially ordered set and T be a ring with
unity. If [(X,T) contains an element which does not satisfy spp, then X is unbounded.

Proof. Suppose f € I(X,T) does not satisfy spp and X is bounded with n. Then for
any interval [z,y] in X, [z, y] has length at most n. This means that any chain [z, y]
has length at most n. Since there is no chain of length n+ 1 in X, f automatically has

spp with n + 1 which contradicts our assumption. O

Remark If f € I(X,T) does not satisfy spp, then for each n € Z*, there exists a
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chain
Tn,1 < Un,1 < T2 < Yn2 < < Tpn < YUnn

in X and elements a,1,an2,...,0,,—1 €T such that

f(xn,l; yn,1>an,1f($n,2; yn,2>an,2 CRCIS an,n—lf(xn,n; yn,n) % O

Proposition 5.2.6. Let X be a locally finite partially ordered set and T be a ring with
identity. If f € N.(I(X,T)), then fp € N.(J[ 7).

zeX
Proof. Define

p: I(X,T) —» [IT

rzeX
f = fp
Note that ¢ is a surjective ring homomorphism. Let f € N,(I(X,T)). We check that

foeN(]D.

Let (t1), (t2),... be a sequence in H T with (t1) = fp and (t;41) = () (r:)(t;)

zeX
for each ¢ and (r;) € H T. Set g; € 1(X,T) such that
zeX
(ri)x if v = Y
gi(z,y) =

0 otherwise

for each i. Then fi, fo,... is a sequence in [(X,T) with f; = f and f; 11 = fig;f; for
each i. Since f € N,(I(X,T)), f is strongly nilpotent, so, there exists a positive integer
n with f,, = 0. Therefore,

o(fn) = (fa)p=(forfg2 fonf)p = folg)pfp- - folg1)pfp =0
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and since (f,)p = t, we get fp is strongly nilpotent and contained in N*(H 7). O
rzeX

Theorem 5.2.7. Let X be a locally finite partially ordered set and T be a ring with
identity T. Then f € N.(I(X,T)) if and only if fp € N*(H T) and f has spp.

zeX

Proof. (Necessity) Suppose f € N,(I(X,T)). By the previous proposition, we have

fp € N*(H T). We check f satisfies spp. Suppose not, then for each n € Z*, there

xeX
exists a chain

Tn,1 S Yn,1 < Tn,2 S Yn,2 << Tnn S Ynn
in X and elements a1, a2, ...a,n—1 € T with

f(gjn,l; yn,l)an,lf(xnﬁ; yn,2)an,2 s an,n—lf(xnm,; yn,n) 7£ 0.

Since f does not have spp, by Proposition 5.2.5 , X is unbounded. By Lemma 3.1.2,

we may assume the intervals [z, 1; Ynn] and [ 14, ,.] are disjoint for m # n.

Now, define, for each k € Z*, g, € I[(X,T) as follows:

Let n > 1 and
ani  ifu=y,: v=1o,,11 and i = 2" (mod 2¥) for i <n —1
9k (uv U) =
0 otherwise
for each u,v € X. Now, we construct a sequence fi, fa,... in I(X, R) as follows.

Set f1 = f and f;41 = fjg;f; for each j. Then, for any r € Z*

fr($2r,1; yzr,zr) = f(x2’“,1§ y2r,1)a2r,1f(952r,2; yzw)azr,z ©e ot Qor or-1 f(xzr,ws y2r,2r) #0

Hence, f,, # 0 for each m € Z7*. Therefore f is not strongly nilpotent, that is,
f & N, (I(X,T)) which is a contradiction.
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(Sufficiency) Conversely, suppose fp € N*(H T) and f has spp. We check f sat-
zeX
isfies spp. Let fi, f2,... be a sequence in I(X,T) with f; = f and f;11 = fig:f; where

g; € 1(X,T) for each i. Then (f1)p, (f2)p,-.. is a sequence in H T with (f1)p = fp
rzeX

and (fi+1)p = (fi)p(9:)p(fi)p for each i. Since fp € N*(H T), fp is strongly nilpo-

rzeX
tent. So there exists a positive integer ¢ such that (f;)p = 0.

On the other hand, f has spp, say of index N. This means that for any chain
TSy <@ S Yo < < Ty S Y
in X, withn > N,
f(@r,y)Tf(xo,y2)T -+ T f (20, yn) = 0.

Now consider f;,y. We claim that f,. ny = 0. Suppose not, then there exists x,y € X

with fiyn(z,y) #0. If z =y, then

fan(z,y) = fun(r,z) = fi(z,2)s: fi(x,2)s2 -+ sov 1 fe(w,2) =0

for some sy, 89,...80v_1 € T as fi(x,x) = 0. So, there exists z,y € X such that x # y

and fiin(z,y) # 0. Then there exists a chain
T=21 <Y ST <Y <o < Togn < Yon
in X with
Jeen(@,y) = fe(zr, yo)ts fe(@o, y2)ta - - - tov-1 fe(@an, yon ) # 0

for some t; € T with i = 1,2,...,2Y —1. Now let Z9m_1 = Uy, and yop,_1 = v, for
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m=1,2,...,28"1 Then
U <V <Up < VUp < -0 < UgN-1
is a chain in X with 2¥-1 > N and

feen(@,y) = flur, v f(uz, va)ts -+ Tovor g fugn-n ) #0

which contradicts our assumption that f has spp with V. Il

Now, we shall determine the upper nilradical of an incidence algebra where the

coefficient ring is noncommutative with identity. First, we need the following results.

Lemma 5.2.8. Let X be a locally finite partially ordered set and T be a ring with
identity. Suppose f € Z(I(X,T)). Then the following are equivalent:

(i) f satisfies spp,

(ii) The left ideal generated by f is nil,

(i5i) The right ideal generated by f is nil,

(iv) The ideal generated by f is nilpotent.

Proof. (ii)< (iii) Suppose the left ideal generated by f, fr, is a nil ideal and g €
I(X,T). Then (gf)™ = 0 for some n € Z*. If we multiply (¢f)" by f on left and by ¢
on right, we get fgfgf---gfg = (fg)"™* = 0, that is, the right ideal generated by f,

fr, is a nil ideal. Similarly, if fz is nil so is fr.

(iv)=(ii) Since every nilpotent ideal is nil, the result follows.

(i1)= (i) Suppose the left ideal generated by f, fr is nil. Assume for a con-
tradiction that f does not satisfy spp. Since f € Z(I(X,T)), for each n € Z*, there is

a chain

Tn,1 < Yn, < Tn,2 < Yn,2 << Tnn < Yn,n
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in X, and elements a,1,a,2,...,a,n—1 €T such that

f(xn,l; yn,l)an,1f<xn,2; yn,Q)an,2 e @n,nflftcn,n; yn,n> 7é O

Since f does not satisfy spp, by Proposition 5.2.5, X is unbounded. Hence, by Lemma

3.1.2, we may assume the intervals [, 1;Ynn] and [Zp, 1; Ym.m| are disjoint for n # m.

Consider an element g of I(X,T) defined as follows:

1 tu=v=2,1,n=12,...
g(u,v) =3 a,; fu=y,; and v =12,
0 otherwise

for all u,v € X. Then for each n € Z™,

(gf)n(xn,l;yn,n) = (gfgfgf)(xn,lyyn,n)
= g(xn,l; yn,1>f<xn,1; yn,l)g(yn,l; xn,2) e f(xn,na yn,n)
= f(mn,l; yn,l)an,lf(xn,Q; yn,2)an,2 e an,n71f<xn,n; yn,n)

£ 0

Therefore, g f, which is an element in the left ideal generated by f, is not a nilpotent

element. This contradiction establishes the result.

(i)=(iv) Suppose f satisfies spp of index n. Let K be the two sided ideal gener-
ated by f. We claim that K?* = 0. Assume that K?" # (. Then, there are elements
a1, Qg ..., oy € K with aq-ag-- - ag, # 0. It follows that there are elements u,v € X

with o -ag -« - - - on(u,v) # 0. Note that for each i,

m;
o = Z Bij i
j=1
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where 3, ;,7:.; € 1(X,T). Therefore,

mi mo man
Z Brjfr Z Baj [y Z Ban,j fr2n,i(u, v) # 0.
=1 =1 =1

so, there exists Oy, j,, Vi € L(X,T) for 1 <t < n, such that

ﬁkhjlf7k1,j1ﬁk2,j2f’}/k2,j2 T ﬁk2mj2nf7k2mj2n (u7 U) 7& 0.

Since f € Z(1(X,T)), there exists a chain

u<u <v;p Sup <vp < SUgy < U2y SV

in X with f(u;,v;) # 0 for i =1,2,...,2n. Note that for each i we have u; strictly less
than v; because otherwise f(u;,v;) =0as f € Z(I(X,T)). It follows that for

U <V <uz <vy<-- < Up—1 < VUp—1

which is a chain of length n in X, we have

ay f(uy,vi)as f(ug, v2)as - - - an f(tn, Vn)ansr # 0

for some ay,as,...,a,+1 € T which contradicts the fact that f has spp with n. O

Lemma 5.2.9. Let X be a locally finite partially ordered set, T' be a ring with identity.
Suppose f € I(X,T) has spp. Then, for each g € (X, T), fg and gf have spp.

Proof. Suppose f satisfies spp. Let g € I(X,T). Assume for contradiction that fg

does not satisfy spp. Then for each positive integer n, there exists a chain

x1§y1<x2§y2<"'<xn§yn
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in X and elements ay,as,...,a,_1 € T such that

(fg)@jl? y1>a1<fg)(x27 y2)a2 T anfl(fg>(xn? yn) 7£ 0.

Then for each ¢ with 1 < i < n there exists u; € [x;, y;] such that

Sz, u1)g(ur, yr)as f(w2,y2)g(ua, Y2)as - - - ap1 f (T, Un) g (Un, Yn) 7 0

where g(u;,y;)a; € T for each i. This contradicts the assumption that f has spp with
n. Hence, fg satisfies spp for each g € I(X,T). Similarly, gf satisfies spp. O]

Lemma 5.2.10. Let T' be a ring with identity, X be a locally finite partially ordered
set and f € I(X,T). If fg satisfies spp for each g € Z(I(X,T)) then f satisfies spp.

Proof. Suppose that fg satisfies spp for each g € Z(I(X,T)) but f does not satisfy

spp. Then, for all n € Z*, there exists a chain

Tn,1 S Yn,1 < Tn,2 S Yn,2 <. < Tnn S YUnn

in X and elements a,1,a,2,...,0,,—1 €T such that

f(xn,l; yn,l)an,1f<'rn,2; yn,2)an,2 e an,n71f<xn,n; yn,n> 7£ 0 (51)

Since f does not satisfy spp, by Proposition 5.2.5, X is unbounded. By Lemma 3.1.2,

we may select chains so that [z,,1; Yn.n] and [T 15 Ymm] are disjoint for n # m.

Consider an element g € Z(I(X;T)) defined as follows:

i itu=vyniv=op41,n=12...
g(u,v) = ‘
0 otherwise
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Then for each n € Z™,
(fg)(ﬂﬁn,i; 9En,i+1) = f(ﬂﬂn,i; $nz)g($m, CCn,iH) + f(xn,i; ym)g(ym, 5Un,i+1)

+f (@05 it1)9( T it1; Tnitr)

= f(@ni; Ynyi)On,i

Therefore,
2n—1
H (fg) (flfzn,z'; iﬂzn,iﬂ) = f(iUQn,l; y2n,1)a2n,1f($2n,2; y2n,2)(12n,2
i=1
T f(952n,2n—1; y2n,2n—1)a2n,2n—1
# 0
by (5.1), which contradicts the fact that fg has spp. ]

Proposition 5.2.11. If f e N*(I(X,T)), then fp € N*(H T).

rzeX

Proof. Suppose f € N*(I(X,T)). Then, there exists a nil ideal A of I(X,T) containing
f. Consider

Ar={gpe [T g€ A}

zeX

We show that A7 is a nil ideal of H T containing fp. Let gp,hp € Ar. Then there
zeX

exits g,h € A with gp,hp € H T. Since A is an ideal, g — h € A and so
zeX

(g—h)D:gD—hDEHT.

zeX

Thus gp — hp € Ar. Let (t) € H T and gp € Ar. Then there exists g € A with
reX
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gDEHTand

zeX

t, ifrx=y
flz,y) =

0 otherwise

is an element of I(X,T). So (fgp)p = fpyp € H T. Hence (t)gp € Arp. Similarly

reX
gp(t) € Ap giving that Ar is an ideal. We now check Ay is nil. Take any gp € Arp.

Then there exists ¢ € A with gp € H T. Since A is nil, ¢ is nilpotent. So gp is

reX
nilpotent showing that Ar is a nil ideal. O]

Proposition 5.2.12. Suppose T' is a ring with identity and X is a locally finite partially
ordered set. If f € N*(I(X,T)) and g € Z(I(X,T)), then fg has spp.

Proof. Suppose f € N*(I(X,T)) and g € Z(I(X,T)). Then, for all z € X,

(fg)p(x,x) = f(z,z)g(x,z) =0

as g(z,z) € Z(I(X,T)) giving that fg € Z(I(X,T)). To show fg has spp, it is suffi-
cient to check that the left ideal generated by fg is nil (by Lemma 5.2.8).
Consider the left ideal, A, generated by fg. Pick any z € A. Then z = Z sifgi
finite
for some s;,¢9; € I(X,T). Then x € N*(I(X,T)), because f € N*(I(X,T)) and
N*(I(X,T)) is an ideal. Therefore, z is a nilpotent element, that is, A is a nil ideal.

Thus fg satisfies spp. O]

Proposition 5.2.13. Suppose T' is a ring with identity and X is a locally finite partially
ordered set. Then

A={feIX.T)| fo e N(]]T) and f has spp }

zeX

is an ideal of 1(X,T).



26

Proof. Let f,g € A. Then fp,gp € N*(H T). So, (f —g9)p = fo—9p € N*(H T).
zeX zeX

Since f, g has spp so does f — g and therefore f —g € A. Let f € A,g € I(X,T). Then

fg satisfies spp by previous lemma. Since (fg)p(x,x) = (fpgp)(x,z) for all z € X,

and fp € N*(H T), we get (fg)p € N*(H T). So fg € A, that is, A is a right ideal
zeX zeX

of I(X,T.) Similarly, A is a left ideal of I(X,T). O

Proposition 5.2.14. Suppose T is a ring with identity and X is a locally finite partially
ordered set. If f € I(X,T) has spp and fp € N*(H T), then the ideal generated by

reX
fp is a nil ideal in 1(X,T).

Proof. Suppose f has spp and ¢ is an element of the ideal generated by fp. Then there

are elements aq, 01, ag, Ba, ..., ax, B € I(X,T) with

g=oa1fpbBi+arfpBe+ -+ arfpf.

Then

k

gp = Z(ai)DfD(ﬁi)D € N*(H T).

i=1 reX

We claim that gy € Z(I(X,T)) has spp. Assume for contradiction that gy does not

have spp. Then for all n € Z* there exists a chain
U <V < Uy < Vg < oo < Uy < Uy,
in X, and elements a, 1,a,2,...,a,,—1 €T with
Gu (U1, V1) n, 190 (U, V2)An 2+ - An 19U (Un, V) 7 0.
Then there are 7,’s with 1 < ¢, < k and 1 < ¢ < n such that

(OéilfDﬂh)(Uh Ul)an,l(aiszﬁiZ)(u% U2)Gn,2 Tt an,n—l(@infDﬁz‘n)(Um Un) 75 0.
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So, there are u;/,v; € [u;, v;] with 1 < i < n such that

i, (ur, uy") fp(ur’, v1")Bi (01, v1)ant -+ apn—10s, (U, wy') fo(wn', v,") B, (v v) # 0.

So fp does not satisfy spp. This contradicts Proposition 5.2.4. Hence gy has spp.
Also we have gy € Z(I(X,T)), so, be Lemma 5.2.8, gy generates a nilpotent ideal.

On the other hand, gp is nilpotent as gp € N*(H T). So, there exists m € Z*

zeX
with (gp)™ = 0. It follows that ¢™ is an element of the ideal generated by gy (¢™ =

(gu +9p)™ = gu™+ -+ + gp™) and is thus nilpotent. Hence, g is nilpotent. Thus fp

generates a nil ideal. 0

We can now describe the upper nilradical of the incidence algebra I(X,T") in

terms of the upper nilradical of H T and the strong product property.
zeX

Theorem 5.2.15. Let T is a ring with identity and X is a locally finite partially
ordered set. Then, f € N*(I(X,T)) if and only if fp € N*(H T) and f has spp.

zeX

Proof. (Necessity) Suppose f € N*(I(X,T)). By Proposition 5.2.11, we have fp €

N*(H T). We check f satisfies spp. Assume for a contradiction that f does not have

zeX
spp. Then, for all n € Z*, there exists a chain

Tn,1 S Yn,1 < Tn,2 S Yn,2 <. < Tnn S Unn
in X and elements a, 1, an2,...,0,,—1 €T such that

f(xn,l; yn,l)an,1f<xn,2; yn,2)an,2 Tt an,n—1f<xn,n; yn,n> 7é O

It follows that X is unbounded and since X is locally finite we may select chains so

that [Zn1;Ynn) and [T 1; Ym.m| are disjoint for n # m.
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Consider an element g € Z(I1(X;T)) defined as follows:

A i ifu=y,:v=2an41,m=12,...
g(u,v) = ‘
0 otherwise

Then, as in the proof of Lemma 5.2.8, fg does not satisfy spp. But this contradicts
Proposition 5.2.12 . Hence, f satisfies spp.

(Sufficiency) We have seen before

A={felX,T)| fp e N(J[ T) and f has spp}

zeX

is an ideal of I(X,T'). By the necessity part of the proof we have N*(1(X,T)) C A.

Now, let f € A. We first show fi € N*(I(X,T")). Using Theorem 5.2.7 we check
fu € No.(I(X,T)). Since f has spp, fu has spp by Proposition 5.2.4. For all z € X,
(fu)p(z,2) =0, 50 (fu)p € Nu([ [ 7). Hence fy € No(I(X,T)) € N*(I(X,T)).
zeX
In order to show fp € N*(I(X,T)), it is sufficient to show that fp gener-
ates a nil ideal in (I(X,T)). This result follows from Proposition 5.2.14. Therefore
feN(I(X,T)) and A =N*(I(X,T)). O

Proposition 5.2.16. Let T be a ring with identity and X be a locally finite partially
ordered set. Then t € N*(T)\N.(T"), if and only if te,, € N*(I(X,T))\N.(I(X,T)),
forall z € X.

Proof. (Necessity) First we check te,, € N*(I(X,T)). Using Theorem 5.2.15, we show
teg, has spp and (te,.)p € N*(H T).

zeX
Consider any chain of the form z; < y; < x5 < yo in X. Then

tewx(xla yl)Ttexx(x% y2) =0
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since either x # x1 or x # x5. So te,, has spp with 2.

Now consider (teg.)p € H T. We check (te,,)p generates nil ideal in H T.

reX zeX
Let (s) = Z (a)(teg)p(B) be an element of the ideal generated by (te,,)p where
finite
(), (B) € H T. Then for any y € X,
rzeX

(s)y = Z(O‘)y((tem)D)y(ﬁy>

finite
0 ifx#y
(@) t(B),  else

But (a),t(8), € N*(T') as t € N*(T") and therefore (s), is nilpotent. Hence, (te,,)p €

N[ D).

zeX

Now we check (te,.)p € H T is not strongly nilpotent. Assume the con-
zeX
verse. Let (fo),(f1),(f2),... be a sequence in € HT with (fo) = (tew)p and

zeX

(f)) = (fiz1)(gi—1)(fi—1) for some (g;—1) € I[(X,T),i=1,2,.... So there exists m € Z*
such that (f,,) = 0. Consider now

(f())x = fo(l',l') = tegm«(iC,SC) = 1

(fi)e = filz,z) = folz,2)g90(,7) fo(w, ) = t(go)ut
(fQ)JJ = fQ(:L‘wx) = fl(x7x)gl($ax)fl(x7x) = t(gl)wt(QQ)dft(gl)wt

This implies that

(fo)z’ (fl):l:) (fQ)z, R

is a sequence in T with fo(z,z) =t and

( z)a: = (fifl)x(gifﬁa:(fifl)x
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for i = 1,2,.... Also we have (f,), = 0 for each z € X giving that ¢ is strongly

nilpotent, a contradiction.

, ) t ifu=v==x .
(Sufficiency) Since te,,(u,v) = , the result easily follows.
0 otherwise

]

Proposition 5.2.17. Let T is a ring with identity and X s a locally finite partially
ordered set. If I(X,T) has a unique nilradical, so does T.

Proof. Suppose I(X,T') has a unique nilradical but T" does not have a unique nilradical.
Then, there exists an element ¢ € N*(T") which is not contained in N, (7). Let z € X.
Then by Proposition 4.2.13, te,, € N*(I(X,T))/N.(I(X,T)) which contradicts the
fact that I(X,T) has a unique nilradical. ]

Proposition 5.2.18. Suppose X is a finite partially ordered set and T is a ring with
unity. Then T has a unique nilradical if and only if I(X,T) has unique nilradical.

Proof. (Necessity) Assume T has unique nilradical. We check
N*(I(X,T)) € N.(I(X,T).

Pick f € N*(I(X,T)). By Theorem 5.2.7, we have fp € N*(H T) and f has spp. In
zeX
order to show f € N,(I(X,T)) we must check fp € N*(H T). Since fp € N*(H T),
zeX zeX
fp generates a nil ideal in H T. This means that fp(z,x) = (fp), generates a nil

zeX
ideal in 7', for each x € X. It follows that (fp), € N*(T) = N.(T), for each z € X.

That is to say (fp). is strongly nilpotent, for each z € X.
Now, we show that fp is strongly nilpotent. Pick a sequence (1), (t2),. .. in H T
with (t1) = fp and (t;) € (ti1) [[ T(tim1) for i = 1,2,.... Then (t1)a, (ta)a, ... is a

rzeX
sequence in T with (t1), = (fp). and (t;)s € (ti—1)oT (tiz1)s, for each z € X. As (fp)s

is strongly nilpotent, for each € X, there exists n, € Z* such that (¢,,), = 0. Set
n =maz {n, |x € X }. Then (t,), = 0, for each z € X, giving that (¢,) = 0. It follows



that fp is strongly nilpotent.
(Sufficiency) Follows from Proposition 5.2.17.

The converse of the Proposition 5.2.17 is still an open problem.

Question Does I(X,T) have a unique nilradical if 7" has a unique nilradical?

61
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6. THE PERIODIC RADICAL OF INCIDENCE
ALGEBRAS

In this chapter, we first introduce the notion of periodic radical. Secondly, we
will determine the necessary and sufficient conditions for an element to belong to the

periodic radical of an incidence algebra over a commutative ring with unity.

6.1. The Periodic Radical

Definition Let T be aring. An element x in T is called periodic if there exists positive
integers m,n with m # n such that ™ = 2™. A ring consisting of periodic elements is

called a periodic ring.

Proposition 6.1.1. Let x belong to a ring T.
(i) x is periodic if and only if x™ is an idempotent for some positive integer n.
(i1) If x is periodic and T has no nonzero nilpotent elements, then ™ = x for

some integer n with n > 2.

Proof. (i) Let = be periodic. Say ™ = z" with d = m —n > 0. Then inductively we

have 2" = 2" for all s > 1 because
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Hence 2" = 2?"*" for some r > 0, in which case 2"*" is an idempotent as

ntr) _ x2n+27’ _ $2n+rxr — gt

2

It follows that 2"*" is idempotent. Conversely, if z is idempotent, then z is obviously
periodic.

(i1) Let x be periodic and T' has no nonzero nilpotent elements. So 2z = x™ for

some m,n € Z* with m # n. Say m > n. It follows that (™ "*! — z) is nilpotent as

(@ ) = (g ) (@ — ) (@ — )
= (2™ =) (@ - (1))
= (@" =" + (=1)"z)
=0

By assumption 7" has no non-zero nilpotent elements, therefore, 2™ "' —z = 0. This

implies that 2™ "' = 2 where m —n +1 > 2. ]

Theorem 6.1.2. Let T be a ring; and suppose that for allt € T, there exists a positive
integer n = n; and a polynomial p(x) = p,(x) € Z[x] such that t" = t"p(t). Then T

1s periodic.

Proof. Pick any t € T. We identify the ring tZ[t] generated by ¢ with K. Choose n € Z*
and p(z) € Z"[z] such that t" = t""'p(t). Then t — t*p(t) € Ann(t""') as

(t —t*p)Nt" "t =" —t"Tp(t) = 0.

Let K = K/Ann(t"~') and  be the canonical image of t in K. We have f = #2p(%) and

the element € = ¢p(¢) is an idempotent as

In addition, we have t = te.
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Now, if @ = 0, then ¢ = 0, that is, #"~! = 0, that is, " = 0 giving that ¢ is
periodic.

Suppose € has infinite additive order in K. Define

QY / — Ze< K

Then ¢ is obviously onto. In addition, ¢ is one-to-one as if m;e = mye, then we
have (m; — my)e = 0 and since € has infinite additive order m; — my = 0 giving that

my = msy. On the other hand for any my, my € Z,
w(my + mgy) = (my + mg)e = mye + moe = p(my) + @(ms)
and
p(mims) = (mims)e = (mima)e? = (mie)(mae) = (my)p(mo).

Hence ¢ is a ring isomorphism. This implies that K contains an isomorphic copy of Z.
Note that, K satisfies our original hypothesis which yields a contradiction as Z does

not satisfy the hypothesis. Thus, € has finite additive order, and so does t.

Suppose m is the additive order of . Then mK = 0, as K is generated by 7.
Let N be the set of all nilpotent elements of K. Then N is an ideal of K. Now consider
the factor ring K = K/N. If k € K, then we claim that k is of square-free order.
Suppose not. Let n? be the additive order of k. Then n2k = 0 implies n2k? = 0,
that is, (nk)> = 0. But since K = K/N does not contain any non-zero nilpotent
elements, we get nk = 0. Hence, K has all of its elements of square-free order. More-
over, p2q cannot be order of an element in K because otherwise if p2gk = 0, then
qpiqkk = (pql;:)2 =0 and pgk = 0 as K contains no nontrivial nilpotent elements. Let

p1p2 - - -pslg = 0 for some primes py,ps,...,ps € ZT, for some k € K. Then k can be

A

S
written as Zppo cee Dy ~p5aﬂ% where Zplpg <o p; -+ psa; = 1 by Euclidean algo-
i=1 i=1
rithm as py, ps, ..., ps are primes where p; denotes that p; is not in the multiplication
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of p;’s. Note that each pipy---p;-- -psai/; generates an ideal I, of characteristic p;,
therefore, I~Z = Z,, for each 1 <i < s. Also, since we have mK = 6, there exist only
finitely many I;’s. On the other hand, for any ¢ # j, we have I; ﬂfj =0asifi € fiﬂfj,
then p;x = p;T = 0 for some primes pi,p; and 1 = ap; + bp; for some a,b € Z yields
T = ap;+bp;T = 0. Thus, K = & L,®- - -@1,. It follows that ¢ generates a finite ring,
so there exist distinct nq,no € Z* satisfying ™ = "2, that is, ' —¢"> € N. But this
forces t to be algebraic over Z, so that  generates a finite subring of K. Consequently,
there exists j, k € Z* such that ¥ = 7", that is, t — ¥ € Ann(t"=1) or 7l = ghtn=l

Thus ¢ is periodic. O

We shall check now that the periodicity is a radical property.

Lemma 6.1.3. Let T be a ring and I, I be periodic ideals of T. Then I; + Iy s

periodic.

Proof. Suppose I, I, are periodic ideals of a ring T. By the second isomorphism theo-
rem, we have (I + I)/I} = I/(I; N I5). So (I; + I3)/1; is periodic. Therefore, for all
a € I + I, there exists m,n € Z*, m # n such that a™ — a™ € I;. By assumption, I
is also periodic, so, there exists k,j € Z*, k # j such that (a" — a™)? = (a" — a™)*.

Without lost of generality, suppose 7 < k and n < m. Then
(a™ —a™)? = (a" — a™)*
yields
av = (=1 = @™ - (=D)Ra
Then, it follows that

a¥ o= a" — . (=DFa™ 4 (=1 a™
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where p(z) is a polynomial in Z[z]. Thus, I; + I, is periodic by Theorem 6.1.2. O

Corollary 6.1.4. For a ring T, the sum of all periodic ideals is periodic.

Proof. Let P(T) be the sum of all periodic ideals of T" and x € P. Then

$€]1+]2+"'+In

for some periodic ideals I, I5, . . ., I, and hence z is periodic by the previous lemma. [

Lemma 6.1.5. Let T' be a ring and P(T) be the sum of periodic ideals of T. Then

T/P(T) contains no nonzero periodic ideals.

Proof. 1f I/P(T) is a nonzero periodic ideal of T'/P(T'), then I + P(T) is a periodic
ideal containing P(T') which is a contradiction as P(T') is the sum of periodic ideals of

T. O

Obviously, a homomorphic image of a periodic ring is periodic. Hence, we have

Corollary 6.1.6. Periodicity is a radical property.

Definition The periodic radical of a ring T, denoted by P(T'), is the sum of all the

periodic ideals of T.

The next result describes an important relationship among the periodic radical

P(T), the Jacobson radical J(T") and the upper nilradical N*(T").

Proposition 6.1.7. For any ring with identity T', we have P(T) N J(T) = N*(T).

Proof. Suppose € N*(T'). Then there exists a positive integer n such that " = 0. It
follows that " = 2?" = 0 and x is periodic. We now check that z € J(T'). Take any
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t € T. Then tx € N*(T) is nilpotent, say with integer k. Then we get
(1+tw+ (tx)* + -+ ()" (1 —tz) =1 — (ta)F =1
giving that 1 — tx is left invertible, that is, x € J(7'). Hence N*(T') C P(T) N J(T).

Conversely, suppose z € P(T) N J(T). Since x € P(T'), 2™ is an idempotent
for some integer n. But then z™ € J(7T') forces z™ = 0. If 2" # 0, then by Proposition
205, T =T(1—2")@®Tz™ as 2" is an idempotent. We have T'(1 — ") is an ideal of T’
so, by Proposition 2.0.3, contained in a maximal ideal M, say. Then, (1—2") € M. On
the other hand, J(7T') is the intersection of all maximal left ideals of T" and z™ € J(T)
yields 2" € M. Hence, we have 2™, 1 — 2™ € M, that is, 1 € M, a contradiction. Thus,
P(TYNI(T) SNT). O

If T is a ring with identity, then the periodic radical of T is an intersection of

some suitable prime ideals as the following theorem states.

Theorem 6.1.8. Let T be a ring with identity. Then P(T) = ﬂPa, where the inter-

section is taken over the set of prime ideals P, such that T /P, contains no nontrivial
periodic ideals and such that if an integer z is a non-zero divisor in T, then it is still
a non-zero divisor in T'/P,.

If there are no prime ideals P, such that T /P, contains no nontrivial periodic

ideals, we say that the intersection is T.

Proof. If P(T') = T the result is obviously correct. Suppose then that P(T) # T. Let
P, be a prime ideal of T" such that 7'/ P, contains no nontrivial periodic ideals and such

that if z € Z* is a nonzero divisor in 7', then it is still a nonzero divisor in 7'/ P(T). If

P(T) £ P,, then

P, +P(T)

5 —letlalee B+ PN} ={y+ Puly € P(D)}

is a nontrivial periodic ideal of T'/ P,, which is a contradiction. Thus, P(T") C P,, and
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hence P(T") C ﬂ P,.

On the other hand, for any a € T'— P(T), the ideal (a) generated by a is not
periodic. Thus, by the Theorem 6.1.2, there exists an element b € (a) such that
b — 0" p(b) # 0, for all n € ZT and for all p(x) € Z[z]. Let

H={z(t" =b""'p(b)) | n € Z*, p(zx) € Z[z], 2z € Z* non-zero divisor in T}

and A be the set of all ideals P in T with PN H = (). Then A # () since 0 € A, so

there exists a maximal element Ps in A by Zorn’s lemma.

We claim that P, is a prime ideal in T. Let A and B be ideals in T such
that A € Ps and B € Ps. Then, both A + P3 and B + Pj intersect with H, say
21(0™ — b f(b) € A+ Ps and (" — b"Tg(b)) € B + Ps for some m,n € Z*,

f(z),g(x) € Z[x] and non-zero divisors z1, zo in T'. Then

zle(bm-l-n _ bm+n+1h<b>> — Zl(bm _ bm+1f<b))22(bn _ nn+1g<b>>
€ (A+ Ps)(B+ Py)
C AB+ Py

where h(z) = f(z) + g(z) — zf(x)g(x). But 2129(6™" — 0™ 11 (b)) & Pps, hence
AB ¢ Pj giving that Pj is prime.

Next, we prove that T'/Ps contains no nontrivial periodic ideals. Let I D Pg
be an ideal of 7" and I/Pj be a nontrivial periodic ideal of 7'/ Ps. Then, by the maxi-
mality of Pg, there exists an integer m € Z*, a polynomial f(x) € Z[z] and z € ZT, a
non-zero divisor in 7' such that z(b™ — b™ "1 f(b)) € I, so there exists distinct positive

integers s and ¢ with s < ¢ such that

(2(0™ = b TLF(B)) + Pg)* = (2(b™ = b f (b)) + Pp)f



69

and therefore
20" — b F(B)" — 2" — b (b)) € Py
which contradicts the choice of Pj since
("~ (D) — 2" — 5 ()
can be written in the form
25(b™ — o™ B (b)

where h'(x) € Z[z] and 2* a non-zero divisor in 7. Then 7'/ Ps contains no nontrivial

periodic ideals.

We must also check that if z is a non-zero divisor in 7', then z is also a non-
zero divisor in T)/Ps. Suppose z is a non-zero divisor in T. Let 2t = 0 for some
t € T/Ps. We check t = 0. Consider the ideal (217) generated by zly and the
ideal (t) generated by t. We have (z1r)(t) C Pz as zt € Pg. Since Pg prime, ei-
ther (z17) € Ps or (t) C Ps. If (217) C Pg, then 21y € Pz. This implies that
(z17) (0" = 0" Tp(b)) = z(b™ — b 'p(b)) € P for any p(x) € Z[z] and n € Z*. This
yields a contradiction as H N Ps = ). Hence, (t) C Ps and therefore ¢ € Ps. Thus, = 0

and z is a non-zero divisor in 7'/ Pj.

Since a ¢ P3, we have a ¢ ﬂPa where the intersection is taken over the set
of prime ideals P, such that 7'/ P, contains no nontrivial periodic ideals and such that
if an integer z is a non-zero divisor in 7', then it is still a non-zero divisor in 7'/ P,.

Thus, ﬂ P, C P(T) which completes the proof. ]
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6.2. The Periodic Radical of I(X, R)

Let x € P(R). For any y € R, define e,(y) to be the smallest positive integer such

that (zy)®® is an idempotent. Then define e, as follows:

maz{e,(y) |y € R}  if it exists
ey =
00 otherwise

Proposition 6.2.1. Assume R is a commutative ring and A = H R;, with R; = R,
foralli € I. Let a = (a;)icr € A. Then a € P(A) if and only if thezje”éllowmg conditions
all hold:

(i) a; € P(R), for allie I

(i) [{i] eq, = 00}| < o0

(iii) There exists N € Z* such that whenever e,, < oo, then e,, < N, for all

el

Proof. Suppose a € P(A). Obviously, a; € P(R) for all ¢ € I. If either (%) or (%ii) fails
to hold, then we can find a subset {ij,is,...} of I and elements b;,,b;,,... of R such

that
€a;, (bh) < Cay, (blz) <

Consider ¢ = (¢;)ier € A such that ¢, = by, if & = i; for some j and ¢, = 0 otherwise.
Then ac € P(A). So, there exists n € Z* such that (ac)” = (ac)®*. This means that

(a;c;)™ = (a;c;)® for all i which contradicts the fact that €a, (b;;) > n for some j.

Conversely, suppose that (i), (ii) and (i7i) hold. First observe that if z™ is an
idempotent, then so is ™", for all n > 1 because 2" = (z?")™ = (z")™ = ™.
Now let iy,...,7; be indices such that €q;; = 00 for 1 < j < k. Let ny,ng,...,n; be
positive integers such that a;,"7 is an idempotent. Put ¢ = ny - ny---ng. Then aijt

is an idempotent for 1 < j < k. Now consider a;’s where ¢ € I\{iy,...,ix}. By (iii),
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we have e,, < N for some N € Z*. In particular, for all m; € Z* satisfying a;™ is
an idempotent, we have m; < N. Therefore, there are at most N many distinct m;’s.
Let s be the multiplication of m;’s. Then, a;° is an idempotent for i € I\{i1, ..., i}

Hence, a® is an idempotent, that is, a € P(A). Il

Theorem 6.2.2. Suppose R is a commutative ring with unity and X is a locally fi-
nite partially ordered set. Then the Jacobson radical of the incidence algebra 1(X, R),
namely J(I(X, R)), is the set of all functions f € I(X, R) such that f(z,x) € J(R),
for all z € X.

Proof. By Lemma 4.0.10, f € J(I(X, R)) if and only if § — fg is (left) invertible for all
g € I(X, R). But, by Theorem 3.2.2, § — fg is invertible if and only if 1 — f(z, x)-g(x, x)
is a unit in R, for all x € X and g € I(X, R). But this holds if and only if f(z,z) € J(R)
for all x € X.

Definition Let R be a commutative ring with identity. An element f € I(X, R) is

called fully-periodic if the following conditions are satisfied:

(i) fo € P(] ] R)
rzeX
(11) There exists a positive integer n such that if

NS <P Y < <xp <Y

in X, then Hf(xz,yz) = 0.

i=1

Proposition 6.2.3. Fully-nilpotent elements are fully-periodic.

Proof. Suppose f € I(X, R) is fully-nilpotent. This means that, there exists a positive



72

integer n such that given any chain

1<y <<y <<, <y,

in X, H f(xi,y;) = 0. We check f satisfies conditions of the definition of fully-
i=1
periodicity. Obviously, (i) holds. We show fp € ?(H R) by satisfying conditions of

reX
the Theorem 6.2.1.

(i) Since f is fully-nilpotent, say with integer n, we have f"(z,z) = 0, for
all x € X, that is, f*"(z,z) = (f(z,2))*" = (f(x,2))" = f*(z,z) = 0 giving that

f™(x,z) = (f(x,x))™ is an idempotent. Hence, f(z,z) € P(R), for all z € X.

(ii) Let ef(z0)(1) = n, where n, is the smallest positive integer so that (r f(x, x))"

is an idempotent. Since
f(w,x) = f(w,2) =0
we have
(rf(z,2))" = (rf(z,2))* =0,
so, n, < n for all z € X. Hence ey, ) # oo for all z € X, that is,
{z[ef@wa) =00} =0
(iii) By above, ef(z2) = n, < n for all z.

Hence, we conclude that f is fully-periodic. m

Proposition 6.2.4. If f is fully-periodic, then fy is fully-nilpotent.

Proof. Suppose f is fully-periodic. Then by (7i) of the definition of fully-periodicity,
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there exists n € Z* such that given any chain

<y <@Ly <<y <Yy

in X, ﬁf(a:l,yl) = 0.
i=1
We claim that fy is fully-nilpotent with integer 2n. Let
1 S Y S22 S Yo <o < Top S Yo
be a chain in X. For
Ty =Y S Te=Yo < -+ < Top = Yon
we have

2n
HfU(‘rzayz) =0
i=1

as fy(x,z) =0 for all x € X. Hence, it is enough to check when the given chain is of

the form
T <y S <Yy <o < Xy < Yo
We want to show that
2n
HfU(miayi) =0
i=1
Counsider the subchain

T <y <az3 <Yz < -+ < Top—1 < Yop—1-
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If we reindex this chain by 9, 1 = u, and ys,_1 = v,, then we have
U <V < U <V < s < Up < Up,

and since f is fully-periodic with n, we get,

n

Hwai,vi) - Hf(ui,vz-) =0,

that is,
2n—1
H fu(22i—1,y2i-1) = 0.
i=1
Hence,
2n
I fo(ziw) =0
i=1
as

2n—1

H fo(2i-1, y2i-1)
i=1

is a factor of

2n
H fU(% yi)'
i=1

]

Theorem 6.2.5. If R is a commutative ring with identity, then P(I(X, R)) is precisely
the set of fully-periodic elements of 1(X, R).
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Proof. Let
K ={f € I(X, R)| f fully-periodic }.
Then K is an ideal of I(X, R) :

Let f,g € K. We check f+ g € K.

(i) fp,gp € ?(H R) implies fp + gp € T(H R) as fP(H R) is an ideal of

reX zeX zeX
| | R.

rzeX

(11) Suppose f satisfies the condition (7i) of the definition of fully-periodicity
with n and g satisfies the condition (%) with m. Then f + ¢ satisfies the condition (i)

with m + n since if
I1§y1<x2§y2<"'<~rn§yn

is a chain in X, then
n+m n+m n+m
H(f‘FQ)(%,yi) = H f(@iyi) + H 9(@iy) =0+0=0

i=1 i=1 i=1

Hence, f +¢g € K.

Suppose now f € K, h € I(X, R). We check that fg € K.

(i)fp € T(H R), so fpgp = (fg)p € 'P(H R) as (P(H R) is an ideal of H R.

rzeX rzeX rzeX zeX

(i1) Suppose f € K satisfies condition (7i) of the definition of fully-periodicity
with n. Then fh satisfies condition (i) with n as if

<y <@ Sy <<y <Yy
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is a chain in X, then

n

H(fh)(fﬂz,yz) = (f9)(z1,y1) - (f1)(@n, yn)

= ( Z f(xl,zl)h(zl,y1)> ( Z f(xnva>h(Zn>yn)>

15215 n<zn<Yn

= Y flan ) flanz)h(aam) bz )
0

Therefore fh € K. Similarly hf € K and K is an ideal of I(X, R).

Let f € K. Then fp € T(H R), therefore, there exists positive integers m,n with

zeX
m # n such that fp™ = fp". So

U=t == M+ = e = = o

Since f € K and K is an ideal of I(X, R), we have f™ — f* € K. This means that
fm™ — f™is fully-periodic. By the previous proposition, (f™ — f™)y is fully-nilpotent,
therefore, (f™ — f™)v € N*(I(X, R)) = N.(I(X, R)) which consists of fully-nilpotent
elements of I(X, R). Then

K=K/N"(I(X,R)) = {f+N((X,R))|f fully-periodic }
= {fp+N(I(X,R))| f € I(X,R) fully-periodic}

It follows that

K C {fp+N'(I(X,R)| feI(X,R) and fp e P(][ R) }

C {fo+N(I(X,R))| f € I(X,R) and f} is an idempotent for some n € Z*}

= {fp+N({U(X,R))| f€I(X,R) and fp is periodic }
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Therefore,

K CPI(X,R)/N*(I(X,R))) = {f]| f™ = f?» for some m € Z* }

Claim. (K C) P(I(X, R)/N“(I(X, R))) = P(I(X, R))/N*(I(X, R))

Let f = f4+N*(I(X,R)) € P(I(X,R))/N*(I(X, R)). Then there exists a positive
integer n such that f* = f2*. So f = 7%, that is, f € P(I(X, R)/N*(I(X,R))).

Now, suppose f € P(I(X, R)/N*(I(X, R))). Then there exists a positive integer
m such that f is an idempotent, that is, f™ — f2™ € N*(I(X, R)). Since N*(I(X, R))
consists of nilpotent elements, there exists a positive integer ¢ such that (f™— f2™)! = 0.

Then
fmt — (_1>tf2mt _ O

It follows that f™ = fm+ip(f) for some polynomial p(z) € Z[x]. By Theorem 6.1.2,
f is periodic. Hence, f € P(I(X, R))/N*(I(X, R)).

Hence, we get K C P(I1(X, R)).

Conversely, assume f € P([(X,R)) is not fully-periodic. Since the condition
(i) of definition of fully-periodicity is clearly satisfied, the condition (iz) fails to hold,

thus, for all n € Z™, there exists a chain
Tn,1 S Yn,1 < Tn,2 S Yn,2 <. < Tnn S YUnn

such that

n

H f($n,i§ yn,i) # 0.

i=1
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Since X is locally finite, using Lemma 3.1.2, we may assume the intervals [z, 1; Yn.n]

and [Ty,.1; Ym,m| are disjoint for m # n.
Define an element h € I(X, R) as follows.

h(Yni; Tniv1) =1 fori=1,2,...,n—1and n>2

h(z,y) =0 in all other cases.

Then (fh)p = 0 because h(z,z) = 0 for all x € X. So, (fh)(x,z) = 0 € J(R) for
all z € X giving that fh € J(I(X, R)). Since f is chosen from P(I(X, R)), we get
fh e P(I(X,R))NJ(I(X,R)) = N*(I(X,R)). This means that fh is fully-nilpotent.

Now consider chains
Tn,1 < Tn,2 S Tn,2 < Tn,3 S Tn,3 < < Tnn—1 S Tnn—1 < Tnn

for each n € Z*. Then

n—1

H(fh) (xn,i; xn,i-i—l) = f(xn,l; yn,l)h(yn,l; xn,Z) Tt f(xn,n—l; yn,n—l)h’(yn,n—l; xn,n)

=1

= f(xn,l; yn,1> e f(xn,n—l; yn,n—1>
£ 0

This contradicts the fully-nilpotency of f. Hence, f is fully-periodic. O
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