by
İlke ÇANAKÇI
B.S., Mathematics, Istanbul University, 2000

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science

ACKNOWLEDGEMENTS

Completion of this thesis is a result of a long and hard work with contributions of some people. I would like to express my gratitude to them.

First of all, I am very grateful to my thesis advisor Assist. Prof. Müge Kanuni for her positive attitude, patience and support throughout the whole study but especially for suggesting me this subject. It would certainly not be possible to complete this thesis without her encouragement and effort. I consider myself very lucky to have worked under the guidance of her.

I would like to express my gratitude to Prof. Cemal Koç for benefiting from his helpful suggestions and constructive criticisms during the preparation of the thesis. It would have been harder without his valuable contributions to every stage of this study. In addition, I appreciate his participation in my thesis committee.

I would like to thank Assist. Prof. Müfit Sezer for his participation in my thesis committee.

I am also extremely thankful to Serkan Sütlü and Elçim Elgün for their friendship and their support during the preparation of this thesis and for being there in mastering any difficulties.

My special thanks are to my family for their confidence in me.

ABSTRACT
 RADICALS OF INCIDENCE ALGEBRAS

The incidence algebra of a locally finite partially ordered set X, with the partial ordering " \leq ", over a ring with identity T is defined as the set of all mappings f : $X \times X \rightarrow T$ where $f(x, y)=0$ for all $x, y \in X$ with $x \not \leq y$ and denoted by $I(X, T)$. The operations on $I(X, T)$ are given by

$$
\begin{aligned}
(f+g)(x, y) & =f(x, y)+g(x, y) \\
(f \cdot g)(x, y) & =\sum_{x \leq z \leq y} f(x, z) \cdot g(z, y) \\
(r \cdot f)(x, y) & =r f(x, y)
\end{aligned}
$$

for $f, g \in I(X, T), r \in T$ and $x, y \in X$. When the $\operatorname{ring} R$ is commutative, the ring $I(X, R)$ becomes an algebra.

The aim of this study is to investigate some special radicals of incidence algebras and determine the necessary and sufficient conditions characterizing elements of these radicals by using the very definition of the strong product property.

ÖZET

ÇAKISMA CEBİRLERİNİN KÖKLERİ

Üzerinde " \leq " bağntısı tanımlanmıs yerel sonlu kısmi ssralı bir X kümesinin birimli bir T halkası üzerinde çakışma cebiri " $x \notin y$ " olacak biçimdeki her $x, y \in X$ için $f(x, y)=0$ koşulunu sağlayan $f: X \times X \rightarrow T$ fonksiyonlarından oluşan ve $I(X, T)$ ile gösterilen kümesi üzerinde aşağıda tanımlanan işlemlerle verilen halkadır: $f, g \in I(X, T), r \in T$ ve $x, y \in X$ olmak üzere

$$
\begin{aligned}
(f+g)(x, y) & =f(x, y)+g(x, y) \\
(f \cdot g)(x, y) & =\sum_{x \leq z \leq y} f(x, z) \cdot g(z, y) \\
(r \cdot f)(x, y) & =r f(x, y)
\end{aligned}
$$

R 'nin değişmeli halka olması durumunda $I(X, R)$ bir cebir olur.

Bu çalı̧manın amacı çakı̧̧ma cebirlerinin bazı özel radikallerini araştırıp, kuvvetli çarpım özelliğinin tanımından hareketle bu radikallerin elemanlarını belirleyen gerek ve yeter koşullar vermektir.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT iv
ÖZET v
LIST OF FIGURES vii
LIST OF SYMBOLS/ABBREVIATIONS viii

1. INTRODUCTION ix
2. PRELIMINARIES 1
3. INCIDENCE ALGEBRAS 5
3.1. Locally Finite Partially Ordered Sets 5
3.2. The Incidence Algebra 7
4. RADICAL PROPERTY 16
5. UPPER NILRADICAL AND LOWER NILRADICAL OF INCIDENCE AL- GEBRAS 34
5.1. Upper and Lower Nilradicals of $I(X, R)$ 34
5.2. Upper and Lower Nilradicals of $I(X, T)$ 41
6. THE PERIODIC RADICAL OF INCIDENCE ALGEBRAS 62
6.1. The Periodic Radical 62
6.2. The Periodic Radical of $I(X, R)$ 70
REFERENCES 79
REFERENCES NOT CITED 81

LIST OF FIGURES

Figure 3.1. The three most basic unbounded posets. 6

Figure 3.2. The Hasse diagram of N_{5}. 13

LIST OF SYMBOLS/ABBREVIATIONS

\square	End of proof
Ann (t)	Annihilator of t
C_{n}	Interval of length n
f_{D}	Diagonal part of f
f_{U}	Upper triangular part of f
$I(X, R)$	Incidence algebra of X over R
$I(X, T)$	Incidence algebra of X over T
\sqrt{J}	Radical of the ideal J
$\mathcal{J}(T)$	Jacobson radical of T
${ }_{T} M$	Left T module M
$N_{0}(T)$	Sum of all the nilpotent ideals of T
$\mathcal{N}_{*}(T)$	Lower nilradical of T
$\mathcal{N}^{*}(T)$	Upper nilradical of T
$\mathcal{P}(T)$	Periodic radical of T
(r)	Ideal generated by r
R	Commutative ring
\mathbb{Z}	Ring of integers
\mathbb{R}	Field of real numbers
T	Noncommutative ring
$\prod_{i \in I} T_{i}$	Direct product of rings $\left\{T_{i} \mid i \in I\right\}$
X	Locally finite partially ordered set
$Z(I(X, T))$	Set of all strictly upper triangular functions of $I(X, T)$
δ	Identity element of $I(X, T)$
poset	Partially ordered set
spp	Strong product property

1. INTRODUCTION

The aim of this thesis is to study the existing results on radicals of incidence algebras. We will first start with a brief historical outline of the subject:

The various radicals which have been defined by several mathematicians such as Levitzki, Jacobson, Brown-McCoy, and others constitute an important tool in the study of the structure of rings. The purpose of this survey is thus to determine some of these radicals of incidence algebras.

The upper and the lower nilradicals were considered first by M. Baer [1], and are also known as the upper and the lower Baer radicals. Later, the lower nilradical is generalized by Amitsur [2]. In addition, an axiomatic study of radicals can be found in [3], [4] and [5].

In the study of radicals, Köthe [6] suggested the use of nil rings. Yet, the upper nilradical failed to be useful, since the study of rings with no two sided nil ideals still required dealing with one sided nil ideals. This raised the famous Köthe Conjecture which is not readily solved in general.

The theory of incidence algebras goes back to the 60 s when it was first introduced by Gian-Carlo Rota and R. P. Stanley. These theorists, however, looked at the issue from a combinatorial point of view. Later on, after a couple of decades, the subject was focused on and analyzed with an algebraic point of view which is also the case in this study. The main topic under consideration will be the incidence algebra of locally finite partially ordered set over a (both commutative and noncommutative) ring with identity. However, there are some researchers who have studied incidence algebras of pre-ordered sets over a field or division ring.

The lower nilradical, or Baer radical of the incidence algebra has been determined when R is a field by Farkas (1974) (see [7]), when R is an integral domain by

Lerous and Sarraillé (1981) (see [8]), when R is a commutative ring by Spiegel (1994) (see [9]), and when R is any ring by Spiegel (2004) (see [10]). The upper nilradical of the incidence algebra is determined where the coefficient ring is noncommutative by Spiegel [11]. In [12] and [13], Bell and Klein showed that periodicity is a radical property in the sense of Kurosh and Amitsur. Guo [14] continued the study of this periodic radical by showing that $\mathcal{P}(T)$ is an intersection of suitable prime ideals and, consequently, that the periodic radical is a special radical (see Divinsky [15] for details). In the case of incidence algebras, a complete description is obtained whenever the coefficient ring is commutative with identity (see [16]).

At this point, we shall sketch the organization of the thesis.

In Chapter 1, introductory explanations are given.

In Chapter 2, basic notations and preliminary results used in the thesis are presented.

In Chapter 3, incidence algebras are examined.

In Chapter 4, the radical property is introduced. Some special radicals such as the upper nilradical, the lower nilradical and the Jacobson radical are presented.

In Chapter 5, the upper nilradical and the lower nilradical of an incidence algebra are examined where the incidence algebra is taken over a commutative ring with unity and taken over a noncommutative ring with unity, respectively.

Finally, In Chapter 6, the notion of periodic radical is presented and the periodic radical of an incidence algebra is investigated.

2. PRELIMINARIES

In this chapter, our aim is to present basic definitions and results which will be used in the subsequent chapters of this study. The proofs of all results can be found in any book on abstract algebra.

Throughout the text by a ring we assume an associative ring with or without identity.

Definition The direct product $\prod_{i \in I} T_{i}$ of rings $\left\{T_{i} \mid i \in I\right\}$ is the set of sequences $\left(t_{i}\right)_{i \in I}$ where $t_{i} \in T_{i}$ for each $i \in I$ with the operations defined componentwise.

Proposition 2.0.1. Let $\left\{T_{i} \mid i \in I\right\}$ be a family of rings. Then the direct product $\prod_{i \in I} T_{i}$ is a ring.

Proposition 2.0.2. Let t be an element of a ring with identity T. Then

$$
\operatorname{Ann}_{r}(t)=\{x \in T \mid t x=0\}
$$

is a right ideal and

$$
A n n_{l}(t)=\{x \in T \mid x t=0\}
$$

is a left ideal (called respectively the right and the left annihilators of t in T).

Proposition 2.0.3. If T is a ring with identity, then every ideal of T is contained in a maximal ideal.

Definition A ring is called simple if it contains no nontrivial ideals.

Proposition 2.0.4. For a ring with identity T, an ideal I maximal implies that T / I simple.

Definition An element e of a ring T is called idempotent if $e^{2}=e$.

Proposition 2.0.5. If an element e of a ring with identity T is idempotent, then $T=T(1-e) \oplus T e$.

If T is a ring with identity, the set of $n \times n$ matrices will be denoted by $M_{n}(T)$, the set of $n \times n$ upper triangular matrices by $T_{n}(T)$ and the set of $n \times n$ lower triangular matrices by $L_{n}(T)$. We also denote by $T_{\infty}(T)$ and $L_{\infty}(T)$ the rings of countable upper and lower triangular T-matrices, respectively. Standard matrix multiplication is defined in each of these rings as all sums involve only finitely many non-zero terms.

Definition A left module M over a ring T is an abelian group $(M,+)$ with a "multiplication by scalars", that is, a map

$$
\begin{aligned}
T \times M & \longrightarrow M \\
(r, m) & \longmapsto r m
\end{aligned}
$$

such that the following are satisfied for all $m_{1}, m_{2}, m \in M$, for all $r_{1}, r_{2}, r \in T$:

$$
\begin{aligned}
r\left(m_{1}+m_{2}\right) & =r m_{1}+r m_{2} \\
\left(r_{1}+r_{2}\right) m & =r_{1} m+r_{2} m \\
\left(r_{1} r_{2}\right) m & =r_{1}\left(r_{2} m\right)
\end{aligned}
$$

Definition A left T-module M is said to be unitary if T has identity 1_{T} and

$$
1_{T} \cdot m=m
$$

for all $m \in M$.

Definition An algebra A is a ring which is also a R-module over a commutative ring
R such that the following condition is satisfied:

$$
r(a b)=(r a) b=a(r b)
$$

for all $r \in R, a, b \in A$.

The most natural example of an algebra is $n \times n$ matrices over a commutative ring or $n \times n$ upper or lower triangular matrices over a commutative ring.

Definition Let X be a set and \leq be a binary relation on X. Then, X is called a pre - ordered set if the relation \leq is reflexive and transitive. If \leq is reflexive, transitive and antisymmetric, then X is called a partially ordered set or simply a poset. In this case, the relation \leq is called a partial ordering and a partially ordered set X with the partial ordering \leq is denoted by (X, \leq).

Definition Let (X, \leq) be a partially ordered set.
(i) An element $x \in X$ is called maximal if for any $y \in X, x \leq y$ implies $y=x$. If, in addition, for this $x \in X, y \leq x$ holds for each $x \in X$, then it is called the maximum element of X.
(ii) An element $x \in X$ is called minimal if for any $y \in X, y \leq x$ implies $y=x$ and it is the minimum element of X if $x \leq y$ for each $y \in X$.

Definition Let C be a subset of a partially ordered set (X, \leq). Then, C is called a chain of X if for all $x, y \in X$, either $x \leq y$ or $y \leq x . C$ is called an antichain if any distinct pair of elements are not comparable, that is, for any $x, y \in X$ with $x \neq y$ both $x \not \leq y$ and $y \not \leq x$.

A chain is said to be of length- n if it has n elements and a chain of length n is usually denoted by C_{n}.

Definition Suppose X is a partially ordered set with the partial ordering " $\leq "$ and Y is a partially ordered set with the partial ordering " \preccurlyeq ". Then X and Y are isomorphic as posets if there is an order preserving bijection between X and Y, that is, if there exists a bijection $\varphi: X \rightarrow Y$ with the property that if $x \leq y$ for $x, y \in X$, then $\varphi(x) \preccurlyeq \varphi(y)$ in Y.

Zorn's Lemma If \mathscr{S} is a non-empty partially ordered set such that every chain in \mathscr{S} has an upper bound in \mathscr{S}, then \mathscr{S} has a maximal element.

Principle of Transfinite Induction Let $\mathscr{P}(x)$ be a statement involving the symbol x. Let (A, \leq) be a well-ordered set. Suppose
(i) $\mathscr{P}(a)$ is true where a is the smallest element of A
(ii) if a is not the smallest element of A and $\mathscr{P}(b)$ is true whenever $b<a$, then $\mathscr{P}(a)$ is true.

Then $\mathscr{P}(a)$ is true for all $a \in A$.

3. INCIDENCE ALGEBRAS

3.1. Locally Finite Partially Ordered Sets

Definition Let (X, \leq) be a partially ordered set and $x, y \in X$ such that $x \leq y$. An interval or segment from x to y, denoted $[x, y]$, is defined to be the set

$$
[x, y]=\{z \in X \mid x \leq z \leq y\}
$$

A partially ordered set X is locally finite if every interval of X is finite.

Definition An interval $[x, y]$ in a partially ordered set X is said to have length- n if there is a chain of length n in $[x, y]$, and any chain in this interval has length less than or equal to n.

Definition Let X be a partially ordered set. Then, X is said to be bounded if there exists a positive integer $n \in \mathbb{Z}^{+}$such that every interval $[x, y]$ of X is at most of length n. A partially ordered set X is called unbounded if X is not bounded.

Examples of unbounded locally finite partially ordered sets containing an infinite chain include \mathbb{Z}^{+}, the positive integers under the usual ordering, and \mathbb{Z}^{-}, the partially ordered set of negative integers with the usual ordering. If we define the partially ordered set $\bigcup_{n \in \mathbb{N}} C_{n}$ to be the set $\left\{x_{11}, x_{21}, x_{22}, x_{31}, x_{32}, x_{33}, x_{41}, \ldots\right\}$ with the relation that $x_{i j} \leq x_{k l}$ whenever $i=k$ and $j \leq l$, for $x_{i j}, x_{k l} \in \bigcup_{n \in \mathbb{N}} C_{n}$, then $\bigcup_{n \in \mathbb{N}} C_{n}$ is an unbounded locally finite partially ordered set with no infinite chain. In fact, if m is a positive integer and

$$
A(m)=\left\{x_{m j} \in \bigcup_{n \in \mathbb{N}} C_{n} \mid 1 \leq j \leq m\right\}
$$

Figure 3.1. The three most basic unbounded posets.
then $A(m)$, as a subpartially ordered set, is a chain of length m. No element of $A\left(m_{1}\right)$ and $A\left(m_{2}\right)$ are related if $m_{1} \neq m_{2}$, and

$$
\bigcup_{n \in \mathbb{N}} C_{n}=\bigcup_{m \in \mathbb{N}} A(m)
$$

The Hasse diagrams of $\mathbb{Z}^{+}, \mathbb{Z}^{-}$, and $\bigcup C_{n}$ are given in Figure 3.1.
Theorem 3.1.1. Let X be an unbounded, partially ordered set. Then X contains a subpartially ordered set isomorphic to $\mathbb{Z}^{+}, \mathbb{Z}^{-}$or $\bigcup_{n \in \mathbb{N}} C_{n}$.

Proof. See [17].

Lemma 3.1.2. Suppose X is an unbounded locally finite partially ordered set. Then for each $m, n \in \mathbb{Z}^{+}$, we can find disjoint intervals of length m and of length n for $m \neq n$.

Proof. Assume X is an unbounded locally finite partially ordered set. By Theorem 3.1.1, there exists a chain of length n for each $n \in \mathbb{Z}^{+}$. Let us denote an interval of length n by A_{n}. Put $B_{1}=A_{1}$ and, inductively, $B_{i}=A_{i} \backslash B_{i-1}$ for each i. Then $\bigcup_{i} A_{i}=\bigcup_{i} B_{i}$ and B_{i} 's are disjoint.

Now we construct disjoint intervals C_{i} 's so that C_{i} has length i as follows:
Set $C_{1}=B_{1}$. If B_{2} contains an interval of length 2 , let C_{2} be this interval. If not, check B_{3}. If B_{3} contains an interval of length 2 , then let C_{2} be this interval. If not, check B_{4}. When we find a chain, say $D_{i_{1}}$ of length 2 , then choose C_{2} to be $D_{i_{1}}$. Continuing in this manner, we obtained our disjoint intervals C_{i} 's.

3.2. The Incidence Algebra

Throughout this text, the letter " R " denotes a commutative ring and " T " denotes a ring which is not necessarily commutative. We will define the incidence algebra, $I(X, R)$, of locally finite partially ordered set X over a commutative ring with identity R. Later, we will construct $I(X, T)$ over a ring with identity T which does not form an algebra structure in this case. But, by convention, we will call $I(X, T)$ as an incidence algebra.

Definition The incidence algebra $I(X, R)$ of the locally finite partially ordered set X over the commutative ring with identity R is

$$
I(X, R)=\{f: X \times X \rightarrow R \mid f(x, y)=0 \text { if } x \not \leq y\}
$$

with the operations given by

$$
\begin{aligned}
(f+g)(x, y) & =f(x, y)+g(x, y) \\
(f \cdot g)(x, y) & =\sum_{x \leq z \leq y} f(x, z) \cdot g(z, y) \\
(r \cdot f)(x, y) & =r f(x, y)
\end{aligned}
$$

for $f, g \in I(X, R)$ with $r \in R$ and $x, y \in X$.

Remark Given that if X is locally finite, the above sum is well-defined. We could
also write

$$
(f \cdot g)(x, y)=\sum_{z \in X} f(x, z) \cdot g(z, y)
$$

as $f(x, z)=0$ if $x \not \leq z$ and $g(z, y)=0$ if $z \not \leq y$.

It is easy to check that $I(X, R)$ is an R-algebra. However, if we take a noncommutative ring, then $I(X, T)$ is not necessarily an algebra.

Now, we will introduce some special elements of $I(X, T)$.

1. Define

$$
\begin{array}{rlc}
\delta: X \times X & \rightarrow & T \\
(x, y) & \mapsto & \delta(x, y)
\end{array}
$$

such that

$$
\delta(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

Here we can clearly see that, for all $f \in I(X, T)$, and for all $x, y \in X$

$$
\begin{aligned}
(f \cdot \delta)(x, y) & =\sum_{x \leq z \leq y} f(x, z) \delta(z, y) \\
& =f(x, y)
\end{aligned}
$$

and

$$
(\delta \cdot f)(x, y)=f(x, y)
$$

that is, $\delta \in I(X, T)$ is the multiplicative identity.
2. Define

$$
\begin{array}{rlc}
\chi: X \times X & \rightarrow & T \\
(x, y) & \mapsto & \chi(x, y)
\end{array}
$$

where

$$
\chi(x, y)= \begin{cases}1 & \text { if } x<y \\ 0 & \text { otherwise }\end{cases}
$$

3. Define

$$
\begin{array}{rlc}
\zeta: X \times X & \rightarrow & T \\
(x, y) & \mapsto & \zeta(x, y)
\end{array}
$$

such that

$$
\zeta(x, y)= \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { if otherwise }\end{cases}
$$

namely

$$
\zeta(x, y)=\delta(x, y)+\chi(x, y) .
$$

By definition of multiplication on $I(X, T)$, if an interval $[x, y]$ is of length n, then $\chi^{n}(x, y)=0$, giving $\delta-\chi+\chi^{2}-\ldots$ is a finite sum. Then we get $(\delta+\chi)\left(\delta-\chi+\chi^{2}-\ldots\right)=\delta$, that is, $\delta+\chi=\zeta \in I(X, T)$ is invertible and its inverse is called the Möbius function of $I(X, T)$ and denoted by μ.

Lemma 3.2.1. Let T be a ring with unity and $s \in T$. If $s \in T$ has both a left and a right inverse, then it is a unit.

Proof. Let $l s=s r=1_{R}$ for $l, r \in I(X, R)$. Then, $l=l(s r)=(l s) r=r$, that is, $l=r$.

Theorem 3.2.2. Suppose X is a locally finite partially ordered set and R is a commutative ring with unity. For $f \in I(X, R)$, the followings are equivalent:
(i) f has a right inverse
(ii) f has a left inverse
(iii) f is a unit
(iv) $f(x, x)$ is a unit in R, for all $x \in X$.

Proof. We show the equivalence of (i) and (iv), the equivalence of (ii) and (iv) can be proven in a similar manner. By Lemma 3.2.1 for a ring with identity R if $s \in R$ has both right and a left inverse, then s is a unit. So (iv) implies both (i) and (ii). Then it follows that (iv) implies (iii). Finally, since (iii) obviously implies both (i) and (ii), the theorem will be proved.
(i) \Rightarrow (iv) Suppose that f has a right inverse g. Then, for all $x \in X$, we have

$$
(f \cdot g)(x, x)=f(x, x) g(x, x)=\delta(x, x)=1
$$

and therefore $f(x, x)$ is a unit in R.
$(i v) \Rightarrow$ (i) Suppose that $f(x, x)$ is a unit for all $x \in X$. We define a right inverse, say g, of f inductively on the length of the intervals of X as follows. If $|[x, y]|=0$, then $x \not \leq y$ and set $g(x, y)=0$. If $|[x, y]|=1$, then $x=y$ and let $g(x, x)=(f(x, x))^{-1}$. Let $n>1$ and assume that for $x, y \in X$ with $|[x, y]|<n, g(x, y)$ is already defined. Let $[x, y]$ be the interval of length n. We want

$$
\begin{aligned}
0=\delta(x, y)=(f g)(x, y) & =\sum_{x \leq z \leq y} f(x, z) g(z, y) \\
& =f(x, x) g(x, y)+\sum_{x<z \leq y} f(x, z) g(z, y)
\end{aligned}
$$

As $f(x, x)$ is invertible, we can solve this equation for $g(x, y)$. Thus, define

$$
g(x, y)=\left[-\sum_{x<z \leq y} f(x, z) \cdot g(z, y)\right] \cdot f(x, x)^{-1}
$$

Since the interval $[z, y]$ has length less than n, the function g has been defined for $z, y \in X$ by our induction hypothesis. Therefore, $f \cdot g=\delta$.

For any cardinal number κ and a ring T, the set of $\kappa \times \kappa$ matrices will be denoted by $M_{\kappa}(T)$ which forms a T-module structure. A submodule of $M_{\kappa}(T)$ in which all sums in the formal matrix products of its elements involve only finitely many summands will form a matrix ring contained in $M_{\kappa}(T)$. By convention, we will refer to such a ring as a subring of $M_{\kappa}(T)$. Hence, we will show in the next proposition that the multiplication of elements in the incidence algebra and multiplication on matrix rings are closely related.

Proposition 3.2.3. Let X be a locally finite partially ordered set and T a ring with identity. Then, the incidence algebra $I(X, T)$ is isomorphic to a subring of $M_{|X|}(T)$.

Proof. Suppose that the elements of X is ordered so that $X=\left\{x_{i} \mid i \in I\right\}$ where I is an indexing set. Consider the entries of an element A in $M_{|X|}(T)$ as indexed by $I \times I$. Define

$$
\begin{aligned}
\varphi: I(X, T) & \longrightarrow M_{|X|}(T) \\
f & \mapsto \varphi(f)
\end{aligned}
$$

such that

$$
\begin{aligned}
\varphi(f): I \times I & \longrightarrow T \\
\left(i_{1}, i_{2}\right) & \mapsto f\left(x_{i_{1}}, x_{i_{2}}\right)
\end{aligned}
$$

Now, if $\varphi(f)=0$, then $(\varphi(f))\left(i_{1}, i_{2}\right)=f\left(x_{i_{1}}, x_{i_{1}}\right)=0$, for all $x_{i_{1}}, x_{i_{2}} \in X$, thus φ is injective. On the other hand, by definition of addition and multiplication on $I(X, T)$, for all $f, g \in I(X, T)$ we have $\varphi(f+g)=\varphi(f)+\varphi(g)$ and $\varphi(f . g)=\varphi(f) \varphi(g)$. Hence, φ is a ring isomorphism between $I(X, T)$ and a subring of $M_{|X|}(T)$.

Now suppose that $X=\left\{x_{i} \mid i \in I\right\}$ such that $x_{i} \leq x_{j}$ implies $i \leq j$, for all $x_{i}, x_{j} \in X$. Then, for any $f \in I(X, T)$, corresponding $\varphi(f)$ is an upper triangular $I \times I$ matrix. Therefore, we can say that $I(X, T)$ is isomorphic to $T_{I}(T)$, a subring of upper triangular matrices.

If $X=\left\{x_{i} \mid i \in I\right\}$ such that $x_{i} \leq x_{j}$ implies $j \leq i$, for all $x_{i}, x_{j} \in X$, then $\varphi(f)$ becomes a lower triangular $I \times I$ matrix and hence, $I(X, T)$ is isomorphic to $L_{I}(T)$, a subring of lower triangular matrices.

If in particular $X=\mathbb{Z}^{+}$, then we have $I(X, T) \cong T_{\infty}(T)$ and if $X=\mathbb{Z}^{-}$, then $I(X, T) \cong L_{\infty}(T)$.

Definition Elements x, y of a partially ordered set X is called connected if there exists elements $x_{0}, x_{1}, \ldots, x_{n}$ in X with $x_{0}=x, x_{n}=y$ and either $x_{i} \leq x_{i+1}$ or $x_{i+1} \leq x_{i}$ for $i=0,1, \ldots, n-1$.

Note that, connectedness of elements of a partially ordered set X is an equivalence relation. The equivalence class of an element $x \in X$ is called the connected component of x. Then, X can be written as the disjoint union of its connected components. Moreover, if $X=\bigcup_{n} X_{n}$, where X_{n} 's are the connected components of X, then $f(x, y)$ will be zero when x and y are not in the same connected component or $x \not \leq y$. Thus, by definition of φ, we can say that $I(X, T)$ is isomorphic to a subring of $\prod_{n} M_{\left|X_{n}\right|}(T)$.

If, in particular, X is an antichain, then all X_{n} 's will be singletons, hence

$$
I(X, T) \cong \prod_{x \in X} T
$$

Figure 3.2. The Hasse diagram of N_{5}.
For $X=\bigcup_{n \in \mathbb{N}} C_{n}$, if we consider

$$
I\left(C_{n}, T\right) \cong T_{\left|C_{n}\right|}(T)
$$

for all n, then $I(X, T) \cong \prod_{n} T_{\left|C_{n}\right|}(T)$ and if $I\left(C_{n}, T\right) \cong L_{\left|C_{n}\right|}(T)$, for all n, then

$$
I(X, T) \cong \prod_{n} L_{\left|C_{n}\right|}(T)
$$

Example Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ such that $x_{1} \leq x_{2} \leq x_{5}$ and $x_{1} \leq x_{3} \leq x_{4} \leq x_{5}$. The Hasse diagram of X is given in Figure 3.2.

Consider

$$
\zeta(x, y)= \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

Then,

$$
\varphi(\zeta)=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

where φ is defined as in the proof of the previous proposition.

Proposition 3.2.4. Let X be a locally finite partially ordered set and R a commutative ring with the unity. If X^{\prime} is a subpartially ordered set of X, then $I\left(X^{\prime}, R\right)$ is a subalgebra of $I(X, R)$.

Proof. By definition, $I\left(X^{\prime}, R\right)=\left\{f \in I(X, R): f(x, y)=0\right.$ if $x \notin X^{\prime}$ or $\left.y \notin X^{\prime}\right\}$. Then we can easily verify that it is a subalgebra.

Proposition 3.2.5. If S is an ideal of R, then $I(X, S)$ is a subalgebra of $I(X, R)$.

Proof. Consider similarly $I(X, S)=\{f \in I(X, R): f(x, y)=0$ if $f(x, y) \notin S\}$.

Definition Let X be a locally finite partially ordered set and T be a ring with unity.
(i) An element $f \in I(X, T)$ is called diagonal if $f(x, y)=0$ for any $x, y \in X$ with $x \neq y$ and denoted f_{D}.
(ii) An element $f \in I(X, T)$ is called strictly upper triangular if $f(x, x)=0$ for any $x \in X$ and denoted f_{U}.

Remark Given $f \in I(X, T)$, we can write f uniquely as $f=f_{D}+f_{U}$, because

$$
f_{D}(x, y)= \begin{cases}f(x, x) & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

$$
f_{U}(x, y)= \begin{cases}0 & \text { if } x=y \\ f(x, y) & \text { if } x \neq y\end{cases}
$$

and therefore,

$$
f(x, y)=f_{D}(x, y)+f_{U}(x, y)
$$

for all $x, y \in X$.

Remark The set of all strictly upper triangular functions, denoted $Z(I(X, T))$, and the set of all diagonal functions, denoted $D(I(X, T)$), are each subalgebras of $I(X, T)$. In addition,

$$
I(X, T)=Z(I(X, T)) \oplus D(I(X, T))
$$

4. RADICAL PROPERTY

Definition Let \mathscr{S} be a certain property that a ring may have. A ring T is called an \mathscr{S}-ring if it has the property \mathscr{S} and an ideal J of T is called an \mathscr{S}-ideal if J is an \mathscr{S}-ring.

If \mathscr{S} satisfies the following
(1) A homomorphic image of an \mathscr{S}-ring is an \mathscr{S}-ring,
(2) Every ring contains an \mathscr{S}-ideal S which contains every other \mathscr{S}-ideal of the ring,
(3) The factor ring T / S does not contain any non-zero \mathscr{S}-ideals, then \mathscr{S} is called a radical property and the \mathscr{S}-ideal S is called the \mathscr{S}-radical of T.

Definition An element r of a ring T is nilpotent if there exists a positive integer $n \in \mathbb{Z}^{+}$such that $r^{n}=0$. The smallest such n is called the index of nilpotency of r in T. A subring A of the ring T is nil if each element of A is nilpotent. The subring A is nilpotent if there exists $n \in \mathbb{Z}^{+}$such that $a_{1} \cdot a_{2} \ldots a_{n}=0$ for every $a_{1}, a_{2}, \ldots, a_{n} \in A$, that is, $A^{n}=0$.

We now take \mathscr{S} to be the nil property, and a ring T is an \mathscr{S}-ring if it is nil. We shall show that \mathscr{S} is a radical property.

Lemma 4.0.6. (i) If T is a nil ring, so is every subring of T.
(ii) If T is a nil ring, so is every homomorphic image of T.
(iii) If A is an ideal of T with both A and T / A nil, then T is a nil ring.

Proof. (i) For any subring T^{\prime} of T, T^{\prime} consists of nilpotent elements and therefore it is nil.
(ii) If $\varphi: T \rightarrow T^{\prime}$ is an epimorphism, then for all $r \in T, \varphi(r)$ is nil and therefore T^{\prime} is nil.
(iii) Suppose A is an ideal of T with both A and T / A nil. Then, for all $r \in T$, there exists $m \in \mathbb{Z}^{+}$with $(r+A)^{m}=r^{m}+A=A$, that is, $r^{m} \in A$. But A is also nil, so, there exists $n \in \mathbb{Z}^{+}$with $\left(r^{m}\right)^{n}=r^{m n}=0$. Hence r is nilpotent with $m n$.

Lemma 4.0.7. If A and B are two nil ideals of a ring T, so is $A+B$.

Proof. Since $(A+B) / A \cong B /(A \cap B)$, by the second isomorphism theorem, and the right-hand side is nil as it is a factor ring of a nil ring, $(A+B) / A$ is nil. But then, by the previous lemma, A and $(A+B) / A$ are nil so that $A+B$ is nil.

Lemma 4.0.8. The sum of all the nil ideals of $a \operatorname{ring} T$ is a nil ideal.

Proof. Let \mathcal{N} denote the sum of all the nil ideals of T. For $r \in \mathcal{N}$, there are nil ideals $A_{1}, A_{2}, \ldots, A_{k}$ of T such that $r \in A_{1}+A_{2}+\ldots+A_{k}$. Since $A_{1}+A_{2}+\ldots+A_{k}$ is a nil ideal, r is nilpotent. Therefore, \mathcal{N} is a nil ideal.

Remark \mathcal{N} is the largest nil ideal of T and T / \mathcal{N} contains no nonzero nil ideals, that is, T / \mathcal{N} contains no nontrivial nilpotent ideals. Thus, we have,

Corollary 4.0.9. The nil property is a radical property.

Definition The sum of all of the nil ideals of a ring T is called the upper nilradical of T and denoted by $\mathcal{N}^{*}(T)$.

Next we shall check that the Jacobson radical satisfies the radical property.

Definition Let T be a ring. Then Jacobson radical of T, denoted by $\mathcal{J}(T)$, is the intersection of all maximal left ideals of T.

Lemma 4.0.10. Let T be a ring with unity. Then the following are equivalent:
(i) $y \in \mathcal{J}(T)$
(ii) $1-x y$ is left invertible, for all $x \in T$
(iii) $y_{T} M=0$, for all simple T-modules ${ }_{T} M$.

Proof. (i) \Rightarrow (ii) Let $y \in \mathcal{J}(T)$ and assume $1-x_{0} y$ is not left invertible for some $x_{0} \in T$. Then $T\left(1-x_{0} y\right)$ is a proper left ideal of T. Since T has the identity element, $T\left(1-x_{0} y\right)$ is contained in a maximal left ideal I, say. Also, $y \in I$ implies $x_{0} y \in I$. Therefore $1-x_{0} y+x_{0} y=1 \in I$, a contradiction.
(ii) \Rightarrow (iii) Let $1-x y$ is left invertible for all $x \in T$. Assume there exists a simple T-module ${ }_{T} M$ such that $y_{T} M \neq 0$. So, there exists $m \in M$ such that $y m \neq 0$. Since ${ }_{T} M$ is simple, we can express it as ${ }_{T} M=T y m$. It follows that there exists $x \in T$ such that $m=x y m$, that is, $(1-x y) m=0$. Then $m=0$ as by assumption $1-x y$ is left invertible which is a contradiction.
(iii) \Rightarrow (i) Suppose $y_{T} M=0$ for all simple T-modules ${ }_{T} M$. Let I be a maximal left ideal of T. Then ${ }_{T}(T / I)$ is simple. So, $y_{T}(T / I)=0$. In particular, $y \cdot \overline{1}=\overline{0}$. Hence, $y+I=I$ giving that $y \in I$.

Proposition 4.0.11. The Jacobson radical $\mathcal{J}(T)$ of a ring T is a right ideal.

Proof. Take any $y \in \mathcal{J}(T)$ and $t \in T$. We show $1-x(y t)$ is left invertible for all $x \in T$. Since $x y \in \mathcal{J}(T), 1-t x y$ is left invertible for all $t \in T$, that is, there exists $v \in T$ such that $v(1-t x y)=1$, that is, $v t x y=v-1$ Then,

$$
\begin{aligned}
(1+x y v t)(1-x y t) & =1-x y t+x y v t-x y v t x y t \\
& =1-x y t+x y v t-x y v t+x y t \\
& =1
\end{aligned}
$$

Hence, $y t \in \mathcal{J}(T)$.

Let T be a ring with identity. Define an ideal I to be an \mathscr{S}-ideal if for any $y \in I$, $1-x y$ is left invertible for each $x \in T$. We show that this property is a radical property and the \mathscr{S}-radical of T is precisely the Jacobson radical of T.

Proposition 4.0.12. Let \mathscr{S} be as above. Then \mathscr{S} satisfies the radical property.

Proof. (i) Let I be an \mathscr{S}-ring and $\varphi: I \rightarrow B$ be an epimorphism. We check B is an \mathscr{S}-ring. Fix $b \in B$. Then there exists an element $a \in I$ such that $\varphi(a)=b$. Take any $y \in B$. Then there exists $x \in I$ with $\varphi(x)=y$. Since I is an \mathscr{S}-ring, $1-x a$ is left invertible with t, say. So, $t(1-x a)=1$. It follows that

$$
\varphi(t(1-x a))=\varphi(t)(1-\varphi(x) \varphi(a))=\varphi(t)(1-y b)=1
$$

This means that $1-y b$ is left invertible, therefore, B is an \mathscr{S}-ring.
(ii) Suppose T is a ring with unity. Obviously, any \mathscr{S}-ideal is contained in $\mathcal{J}(T)$ by Lemma 4.0.10 and thus $\mathcal{J}(T)$ is the maximal \mathscr{S}-ideal of T.
(iii) Let T be a ring with unity. Suppose $B / \mathcal{J}(T)$ is an \mathscr{S}-ideal of $T / \mathcal{J}(T)$. Fix $b \in B$. Then $\overline{1}-\bar{a} \bar{b}$ is left invertible for all $\bar{a} \in T / \mathcal{J}(T)$. Let \bar{t} be a left inverse of $\overline{1}-\bar{a} \bar{b}$. Then, $\bar{t}(\overline{1}-\bar{a} \bar{b})=\overline{1}$, that is, $1-t(1-a b) \in \mathcal{J}(T)$. So, $1-(1-t(1-a b))=t(1-a b)$ is left invertible. If t^{\prime} is a left inverse of $t(1-a b)$, then we have $t^{\prime} t(1-a b)=1$. This means that $1-a b$ is left invertible for all $a \in T$, that is, $b \in \mathcal{J}(T)$.

Next, we consider the nilpotent property and see whether it is also a radical property.

Lemma 4.0.13. (i) If T is a nilpotent ring, so is every subring of T and so is every factor ring of T.
(ii) If A is an ideal of T with both A and T / A nilpotent, then T is nilpotent.

Proof. (i) is clear.
(ii) Since A is nilpotent there exists $n \in \mathbb{Z}^{+}$such that $a_{1} \cdot a_{2} \cdots a_{n}=0$ for every
$a_{1}, a_{2}, \cdots a_{n} \in A$. And since T / A is nilpotent there exists $m \in \mathbb{Z}^{+}$such that

$$
\left(r_{1}+A\right) \cdot\left(r_{2}+A\right) \cdots\left(r_{m}+A\right)=\left(r_{1} \cdot r_{2} \cdots r_{m}\right)+A=A
$$

for every $\overline{r_{i}} \in T / A, 1 \leq i \leq m$. Thus for $k=m n$, we have

$$
r_{11} \cdot r_{12} \cdots r_{1 n} \cdot r_{21} \cdot r_{22} \cdots r_{2 n} \cdots r_{m 1} \cdot r_{m 2} \cdots r_{m n}=0
$$

where $r_{1} \cdot r_{i 2} \cdots r_{i n} \in A$ and $r_{i j} \in T$ with $1 \leq i \leq m$ and $1 \leq j \leq n$. Hence, T is nilpotent with index k.

Lemma 4.0.14. If A and B are nilpotent ideals of a ring T, so is $A+B$.

Proof. Suppose A is nilpotent with n and B is nilpotent with m. We show that $A+B$ is nilpotent with $m+n$. Let $a_{i}+b_{i}$ be elements of $A+B$ for $i=1,2, \ldots, m+n$. Then $\prod_{i=1}^{m+n}\left(a_{i}+b_{i}\right)=0$ because each summand of this expression contains either m many elements of A or n many elements of B as A and B are ideals of T and therefore equals to 0 .

Lemma 4.0.15. The sum of all nilpotent ideals of a ring T is nil.

Proof. Every nilpotent ideal is obviously nil and therefore, by Lemma 4.0.8 the sum of all the nilpotent ideals is a nil ideal.

The sum of all nilpotent ideals of a ring T is not necessarily a nilpotent ideal as the following example illustrates.

Example Let A be an algebra over a field F with basis $\left\{x_{\alpha}\right\}_{\alpha \in I}$ where

$$
I=\{\alpha \in \mathbb{R} \mid 0<\alpha<1\}
$$

with the multiplication of basis elements given by:

$$
x_{\alpha} \cdot x_{\beta}= \begin{cases}x_{\alpha+\beta} & \text { if } \alpha+\beta<1 \\ 0 & \text { else }\end{cases}
$$

A, as a ring, consists of elements of the form $\sum_{\text {finite }} f_{\alpha} x_{\alpha}$ where f_{α} 's are elements of the field F. We define addition as

$$
\begin{array}{ll}
f_{\alpha} x_{\alpha}+f_{\beta}{ }^{\prime} x_{\beta} & \text { just written together if } \alpha \neq \beta \\
f_{\alpha} x_{\alpha}+f_{\alpha}{ }^{\prime} x_{\alpha}=\left(f_{\alpha}+f_{\alpha}{ }^{\prime}\right) x_{\alpha} & \text { if } \alpha=\beta
\end{array}
$$

Now if we choose $n \in \mathbb{Z}^{+}$such that $n>\frac{1}{\alpha}$ then $\left(x_{\alpha}\right)^{n}=x_{\alpha n}=0$ and for $a=\sum f_{\alpha} x_{\alpha}$ if β is the smallest subscript in the expression of a then an integer $k \in \mathbb{Z}^{+}$such that $k>\frac{1}{\beta}$ will give $(a)^{k}=0$. Thus, each element of A is nilpotent, that is, A is a nil ring.

However, A is not nilpotent because for all $n \in \mathbb{Z}^{+}$,

$$
x_{\frac{1}{2}} \cdot x_{\frac{1}{4}} \cdot x_{\frac{1}{8}} \cdots x_{\frac{1}{2^{n}}} \neq 0
$$

Now, take any basis element x_{α} and consider the ideal $\left(x_{\alpha}\right)$ generated by x_{α}. Then (x_{α}) is a nilpotent ideal with an integer t satisfying $t>\frac{1}{\alpha}$. But the union of all the ideals $\left(x_{\alpha}\right)$ is A and, therefore, the union of the nilpotent ideals of A is not a nilpotent ideal.

Corollary 4.0.16. The nilpotent property is not a radical property.

Definition The lower nilradical of T, denoted $\mathcal{N}_{*}(T)$, is the smallest nil ideal of T such that $T / \mathcal{N}_{*}(T)$ contains no non-zero nilpotent ideals.

We shall show the existence of $\mathcal{N}_{*}(T)$ by Zorn's lemma:
Let T be a ring. Consider
$\mathscr{S}=\{I \mid I$ is a nil ideal of T and T / I contains no nontrivial nilpotent ideals $\}$

We have $\mathscr{S} \neq \emptyset$ as $\mathcal{N}^{*}(T) \in \mathscr{S}$. Now, order \mathscr{S} by \preccurlyeq where $I_{1} \preccurlyeq I_{2}$ means $I_{2} \subseteq I_{1}$. Let \mathscr{C} be a chain in \mathscr{S}. Then $S=\bigcap_{I \in \mathscr{C}} I$ is a nil ideal and T / S does not contain any nonzero nilpotent ideals because otherwise if K / S is a nilpotent ideal of T / S then there exists a positive integer N such that $K^{N} \subseteq S \subseteq I$, for some $I \in \mathscr{C}$ and therefore K / I is a nilpotent ideal of T / I which is not possible. Note that S is an upper-bound for \mathscr{C}. Hence, by Zorn's lemma, \mathscr{S} has a maximal element. Now, we check this element is unique. Suppose I_{1}, I_{2} are maximal elements of \mathscr{S}. Then $I_{1} \cap I_{2}$ is also a nil ideal. If $A / I_{1} \cap I_{2}$ is a nonzero nilpotent ideal of $T / I_{1} \cap I_{2}$, then $\left(I_{1}+A\right) / I_{1}$ is a nonzero nilpotent ideal in $T / I_{1} \cap I_{2}$. So, $I_{1} \cap I_{2} \in \mathscr{S}$ with $I_{1} \cap I_{2} \subseteq I_{1}$, I_{2}. This contradicts maximality of I_{1} and I_{2}. Hence, \mathscr{S} contains a unique maximal element which is the lower nilradical of T.

Zorn's lemma gives the existence of the lower nilradical of a ring T, however, does not characterize the lower nilradical. In order to have other characterizations of $\mathcal{N}_{*}(T)$ we determine $\mathcal{N}_{*}(T)$ in a constructive way.

Construction of $\mathcal{N}_{*}(R)$:
We use transfinite induction by defining an ideal $A(\alpha)$ of R for each ordinal α.

Induction Bases: Let $A(0)=N_{0}(T)$ where $N_{0}(T)$ denotes the sum of all the nilpotent ideals of T.

Induction Hypothesis: Let β be an ordinal such that $A(\alpha)$ has been defined for each $\alpha<\beta$.

Induction Step: If β is a limit ordinal, then define

$$
A(\beta)=\sum_{\alpha<\beta} A(\alpha) .
$$

If β is not a limit ordinal, then there exists an ordinal, say α_{0} satisfying $\beta=\alpha_{0}+1$. We set $A(\beta)=B$ such that $N_{0}\left(\frac{T}{A\left(\alpha_{0}\right)}\right)=\frac{B}{A\left(\alpha_{0}\right)}$. Note that whether β is limit ordinal or not $A(\beta)$ is nil. So, $A(\beta) \subseteq \mathcal{N}^{*}(T)$, that is, $\mathcal{N}^{*}(T)$ is an upper bound for $A(\beta)$. This means that there exists an ordinal, say γ, satisfying $A(\gamma)=A(\gamma+1)$. Then, the lower nilradical of T is $A(\gamma)$.

Note that the above construction of the lower nilradical also shows that the lower nilradical satisfies the radical property. See [15] for details.

Before computing the lower nilradical of a ring, we need to review some ring theoretic results.

Definition An ideal P of a ring with identity T is prime if whenever the ideals A, B of T have the property $A \cdot B \subseteq P$, then either $A \subseteq P$ or $B \subseteq P$.

Proposition 4.0.17. Let T be a ring with identity, P be an ideal of T and $k \geq 2 a$ positive integer. Then the followings are equivalent:
(i) P is a prime ideal.
(ii) If $b_{1}, b_{2}, \ldots, b_{k} \in T$ with $b_{1} \cdot T \cdot b_{2} \cdot T \cdots T \cdot b_{k} \subseteq P$, then $b_{i} \in P$ for some index $1 \leq i \leq k$.

Proof. (i) \Rightarrow (ii) Suppose that $b_{1}, b_{2}, \ldots, b_{k}$ are elements of T such that

$$
b_{1} \cdot T \cdot b_{2} \cdot T \cdots T \cdot b_{k} \subseteq P
$$

Then $\left(T \cdot b_{1} \cdot T\right)\left(T \cdot b_{2} \cdot T\right) \cdots\left(T \cdot b_{k} \cdot T\right) \subseteq P$. If we set $B_{i}=T \cdot b_{i} \cdot T$, then B_{i} is the ideal generated by b_{i} and so $B_{1} \cdot B_{2} \cdots B_{k} \subseteq P$ gives $B_{i} \subseteq P$ for some i with $1 \leq i \leq k$,
as P is prime. Then $b_{i} \in P$ for some $1 \leq i \leq k$.
(ii) \Rightarrow (i) Suppose that $P, B_{1}, B_{2}, \ldots B_{k}$ are ideals of T such that $B_{1} \cdot B_{2} \cdots B_{k} \subseteq P$. Assume that $B_{i} \nsubseteq P$ for $i=1,2, \ldots, k-1$. For $1 \leq i<k$, choose $b_{i} \in B_{i} \backslash P$ and let $b \in B_{k}$. Then

$$
b_{1} \cdot T \cdot b_{2} \cdot T \cdots t \cdot b_{k-1} \cdot T \cdot b \subseteq P
$$

and as $b_{i} \notin P$ for $1 \leq i<k$, we have $b \in P$ (by assumption). Therefore, $B_{k} \subseteq P$ and P is prime.

Definition An element s of a ring T is strongly nilpotent if given a sequence $s_{0}, s_{1}, s_{2}, \ldots$ with $s_{0}=s$ and $s_{i+1} \in s_{i} T s_{i}$ for $i=1,2, \ldots$, there exists a positive integer $n \in \mathbb{Z}^{+}$ such that $s_{n}=0$.

Proposition 4.0.18. The intersection of the prime ideals of a ring with identity T is the set of all strongly nilpotent elements.

Proof. Let

$$
A=\{a \in T \mid a \text { is strongly nilpotent }\}
$$

and

$$
\mathcal{N}(T)=\bigcap P
$$

where the intersection is taken over all the prime ideals of T.
(Necessity) We will prove this part by contraposition. If $a \notin \mathcal{N}(T)$, then there is a prime ideal P of T such that $a \notin P$. Then, by the previous proposition, $a \cdot T \cdot a \nsubseteq P$
and so there exists $a_{1} \in a \cdot T \cdot a$ such that $a_{1} \notin P$. Then again $a_{1} \cdot T \cdot a_{1} \nsubseteq P$ and so there exists $a_{2} \in a_{1} \cdot T \cdot a_{1}$ such that $a_{2} \notin P$. Continuing in this manner, we obtain a sequence a, a_{1}, a_{2}, \ldots in T such that $a_{i} \in a_{i-1} \cdot T \cdot a_{i-1}$ and $a_{i} \notin P$ for each i. Thus, $a_{i} \neq 0$ for each i and therefore a is not strongly nilpotent, that is $a \notin A$. Hence, $A \subseteq \mathcal{N}(T)$.
(Sufficiency) Conversely, suppose that $a \notin A$. Then there exists a sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero elements of T such that $a_{0}=a$ and $a_{i} \in a_{i-1} \cdot T \cdot a_{i-1}$ for $i=1,2, \ldots$. Let $\mathscr{S}=\left\{a_{0}, a_{1}, \cdots\right\}$. By Zorn's lemma, there exists an ideal P of T such that P is maximally disjoint from \mathscr{S}. We claim that P is prime. Suppose not, then there are ideals A and B of T satisfying $A B \subseteq P$ with $A \nsubseteq P$ and $B \nsubseteq P$. Then $A+P$ and $B+P$ are ideals with $P \nsubseteq A+P$ and $P \nsubseteq B+P$. So there are indices i and j such that $a_{i} \in A+P$ and $a_{j} \in B+P$. Without loss of generality, assume $i \leq j$. Then

$$
a_{j} \in a_{j-1} \cdot T \cdot a_{j-1} \subseteq a_{j-2} \cdot T \cdot a_{j-2} \cdot T \cdot a_{j-1} \cdot T \cdot a_{j-1} \subseteq \cdots \subseteq T \cdot a_{i} \cdot T \subseteq A+P
$$

Thus,

$$
a_{j+1} \in a_{j} \cdot T \cdot a_{j} \subseteq(A+P) T(B+P) \subseteq P
$$

as

$$
\left(a+p_{1}\right) r\left(b+p_{2}\right)=\left(a r+p_{1} r\right)\left(b+p_{2}\right)=a r b+a r p_{2}+p_{1} r b+p_{1} r p_{2} \in P
$$

for all $a \in A, b \in B, r \in T$ and $p_{1}, p_{2} \in P$. So, $a_{j+1} \in P$ which contradicts our assumption that $P \cap S=\emptyset$. Therefore, P is a prime ideal of T and $a \notin P$. Hence, $\mathcal{N}(T) \subseteq P$.

Proposition 4.0.19. The lower nilradical of a ring with identity T is the set of all strongly nilpotent elements.

Proof. (Necessity) Let a be a nonzero strongly nilpotent element of a ring T and A_{0} be the ideal generated by a. Assume that $a \notin \mathcal{N}_{*}(T)$. Now $\left(A_{0}\right)^{2} \nsubseteq \mathcal{N}_{*}(T)$ because
otherwise if $\left(A_{0}\right)^{2} \subseteq \mathcal{N}_{*}(T)$, then

$$
\left(\mathcal{N}_{*}(T)+x\right)\left(\mathcal{N}_{*}(T)+y\right)=\mathcal{N}_{*}(T)+x y=\mathcal{N}_{*}(T)
$$

for all $x, y \in A_{0}$, that is, $\left\{\mathcal{N}_{*}(T)+x \mid x \in A_{0}\right\}$ is a nilpotent ideal of $T / \mathcal{N}_{*}(T)$ contradicting the fact that $T / \mathcal{N}_{*}(T)$ contains no nonzero nilpotent ideals. Therefore, $\left(A_{0}\right)^{2} \nsubseteq \mathcal{N}_{*}(T)$ and there exists $s_{1} \in T$ with $a \cdot s_{1} \cdot a \notin \mathcal{N}_{*}(T)$ because otherwise $a \cdot s_{1} \cdot a \in \mathcal{N}_{*}(T)$ implies $\left(A_{0}\right)^{2} \subseteq \mathcal{N}_{*}(T)$. Let $a_{1}=a \cdot s_{1} \cdot a$ and A_{1} be the ideal generated by a_{1}. Then, again, $\left(A_{1}\right)^{2} \nsubseteq \mathcal{N}_{*}(T)$ and there exists $s_{2} \in T$ with $a_{1} \cdot s_{2} \cdot a_{1} \notin \mathcal{N}_{*}(T)$. Let $a_{2}=a_{1} \cdot s_{2} \cdot a_{1}$ and continue in this manner to obtain a sequence $a_{0}=a, a_{1}, a_{2}, \ldots$ with $a_{i} \in a_{i-1} \cdot T \cdot a_{i-1}$ and $a_{i} \notin \mathcal{N}_{*}(T)$ for $i=1,2, \ldots$ Then $a_{i} \neq 0$ for each i contradicting the strongly nilpotent property of a. Thus, the set of strongly nilpotent elements is contained in $\mathcal{N}_{*}(T)$.
(Sufficiency) To prove the converse, we show $\mathcal{N}_{*}(T)$ is contained in every prime ideal. Let P be a prime ideal. We check that $A(\alpha) \subseteq P$ for each ordinal α. If $\alpha=0$, then $A(\alpha)$ is defined as the sum of all the nilpotent ideals of T. If B_{i} is a nilpotent ideal of T, then there exists $k_{i} \in \mathbb{Z}^{+}$such that $B_{i}{ }^{k_{i}}=\{0\} \subseteq P$ and so $B_{i} \subseteq P$ (because P is a prime ideal). It follows that the sum of all the nilpotent ideals $\sum B_{i}=A(0) \subseteq P$. Now, suppose that β is an ordinal satisfying $A(\alpha) \subseteq P$ for each ordinal $\alpha<\beta$. If β is a limit ordinal, then $A(\beta)=\sum_{\alpha<\beta} A(\alpha)$ giving that $A(\beta) \subseteq P$. If β is not a limit ordinal, then there is a successor of α, say γ, such that $\beta=\gamma+1$. By definition, $A(\beta)=B$ where $N_{0}(T / A(\gamma))=B / A(\gamma)$. Therefore, $A(\beta)$ is the sum of the nilpotent ideals B_{i} such that $A(\gamma) \subseteq B_{i}$ and $B_{i} / A(\gamma)$ is nilpotent. Then there exists a positive integer k such that $B_{i}{ }^{k} \subseteq A(\gamma) \subseteq P$ where the second inclusion is verified by the assumption. It follows that $B_{i} \subseteq P$ for each i and therefore $A(\beta) \subseteq P$. Hence, $\mathcal{N}_{*}(T) \subseteq P$ which completes the proof.

Proposition 4.0.18 and 4.0.19 show that the lower nilradical coincides with the intersection of the prime ideals of the ring and therefore also known as the prime radical.

Definition Let T be a ring with identity.
(i) An ideal J is said to be a semi-prime ideal if, for any ideal A of $T, A^{2} \subseteq T$ implies that $A \subseteq T$.
(ii) T is called a semi-prime ring if (0) is a semi-prime ideal.

Remark Note that for any ideal P of a ring T, the factor ring T / P is a semi-prime ring if and only if P is a semi-prime ideal. Therefore, T / P is semi-prime if and only if $0_{T / P} \cong P$ is semi-prime.

Proposition 4.0.20. Suppose T is a ring with identity and J is an ideal in T. Then the followings are equivalent:
(i) J is semi-prime
(ii) For each $r \in T,(r)^{2} \in J$ implies that $r \in J$
(iii) For each $r \in T, r T r \subseteq J$ implies that $r \in J$
(iv) For any left ideal A in $T, A^{2} \subseteq J$ implies that $A \subseteq J$.

Proof. (i) implies (ii), (ii) implies (iii) and (iv) implies (i) follow from the definition of the semi-prime ideal. We check (iii) implies (iv). Assume that $A^{2} \subseteq P$ for some left ideal A of T, but $A \nsubseteq P$. Take $a \in A \backslash P$. Then, $a T a \subseteq P$. Using (iii), we get $a \in P$, which is a contradiction.

Definition Let T be a ring with unity and J be an ideal of T. The radical of J, denoted by \sqrt{J}, is the intersection of prime ideals of T containing J, that is,

$$
\sqrt{J}=\bigcap_{P \text { prime and } J \subseteq P} P
$$

Lemma 4.0.21. Suppose T is a ring with identity and J is an ideal in T. Then the followings are equivalent:
(i) J is a semi-prime ideal
(ii) J is an intersection of prime ideals
(iii) $J=\sqrt{J}$

Proof. (iii) \Rightarrow (ii) Obvious by the definition of a radical ideal.
(ii) \Rightarrow (i) Let A be an ideal such that $A^{2} \subseteq J$. By assumption, J is an intersection of prime ideals, therefore, A is contained in each of these ideals. Hence, $A \subseteq J$. (i) \Rightarrow (iii) We show $\sqrt{J} \subseteq J$. Let $a \notin J$. By Proposition 4.0.20,

$$
a T a, a T a T a T a, a T a T a T a T a T a T a T a, \ldots \nsubseteq J
$$

Choose $t_{1} \in T$ with $a t_{1} a \notin J$. Since J is semi-prime and $a T a T a T a \nsubseteq J$, there exists an element $t_{2} \in T$ with $a t_{1} a t_{2} a t_{1} a \notin J$. Similarly, there exists $t_{3} \in T$ with $a t_{1} a t_{2} a t_{1} a t_{3} a t_{1} a t_{2} a t_{1} a \notin J$. Continuing in this manner we can find $t_{i} \in T$ for each $i \in \mathbb{Z}^{+}$. Let S be the set of $a, a t_{1} a, a t_{1} a t_{2} a t_{1} a, a t_{1} a t_{2} a t_{1} a t_{3} a t_{1} a t_{2} a t_{1} a, \ldots$ By Zorn's lemma, there exists an ideal P, say, which is maximally disjoint from S. Since $J \cap S=\emptyset$, we have $J \subseteq P$. We show that P is a prime ideal in T. Suppose $x \notin P, y \notin P$ but $(x)(y) \in P$. By maximality of P, there exists $s, s^{\prime} \in S$ with $s \in P+(x)$ and $s^{\prime} \in P+(y)$. So, there exists $t \in T$ with sts ${ }^{\prime} \in S$. Then

$$
s t s^{\prime} \in(P+(x)) T(P+(y)) \subseteq P+(x)(y) \subseteq P
$$

which is a contradiction. Hence, P is prime. It follows that $a \notin \sqrt{J}$.
Corollary 4.0.22. Let J be an ideal of a ring T. Then \sqrt{J} is the smallest semi-prime ideal in T satisfying $J=\sqrt{J}$. In particular, $\mathcal{N}_{*}(T)=\sqrt{(0)}$ is the smallest semi-prime ideal in T.

Proposition 4.0.23. Let T be a ring. Then $\mathcal{N}_{*}(T)=A(\alpha)$ for any ordinal α with $\operatorname{card} \alpha>\operatorname{card} T$ where $A(\alpha)$ is defined as in the construction of $\mathcal{N}_{*}(T)$.

Proof. Note that $A(\alpha)$'s form an ascending chain of ideals in $\mathcal{N}_{*}(T)$. Write $B=A(\alpha)$ where α is an ordinal with $\operatorname{card} \alpha>\operatorname{card} T$. Then, for any ordinal β with $\operatorname{card} \beta>$ $\operatorname{card} T$, we have $B=A(\beta)$. Since $B \subseteq \mathcal{N}_{*}(T)$, it is sufficient to show that $\mathcal{N}_{*}(T) \subseteq B$. Now, T / B has no nonzero nilpotent ideals, so it is a semiprime ring. This means that B is a semiprime ideal. Hence $\mathcal{N}_{*}(T) \subseteq B$ since $\mathcal{N}_{*}(T)$ is the smallest semiprime ideal of T.

Next, we will see the relation between the upper nilradical and the Jacobson radical. First, we need to prove the following lemma.

Lemma 4.0.24. Let T be left artinian ring. Then $\mathcal{J}(T)$ is the largest nilpotent (left) ideal.

Proof. Enough to show that there exits $n \in \mathbb{Z}^{+}$such that $(\mathcal{J}(T))^{n}=0$. Consider the descending chain

$$
\mathcal{J}(T) \supseteq(\mathcal{f}(T))^{2} \supseteq(\mathcal{f}(T))^{3} \supseteq \ldots
$$

Since T is artinian, there exists $N \in \mathbb{Z}^{+}$such that $(\mathcal{J}(T))^{N}=(\mathcal{J}(T))^{N+1}=\ldots=I$. Hence, we need to see that $I=0$. Assume not. Then there exists a left ideal J in T such that $I J \neq 0$. Consider

$$
\mathscr{S}=\{J \mid J \text { is an ideal in } T \text { satisfying } I J \neq 0\}
$$

Since T is left artinian there exists minimal left ideal J_{0}, say, satisfying $I J_{0} \neq 0$ by Zorn's lemma. So, there exists $a \in J_{0}$ such that $I a \neq 0$. Note that $I(I a)=I^{2} a=$ $I a \neq 0$, that is, $I a$ satisfies this property. We have $a \in J_{0}$, so, $I a \subseteq J_{0}$ and since J_{0} was minimal $J_{0} \subseteq I a$. Therefore, $I a=J_{0}$, that is, there exists $x \in I$ such that $a=x a$, that is, $(1-x) a=0$ where $x \in I \subseteq \mathcal{J}(T)$. Since $1-x$ is invertible we have $a=0$, a contradiction. Hence, $I=0=(\mathcal{J}(T))^{N}$.

Corollary 4.0.25. Suppose T is a (left) artinian ring with identity. Then, any (left) nil ideal of T is also (left) nilpotent.

Proof. Let I be nil left ideal of T. Then $I \subseteq \mathcal{J}(T)$ where $\mathcal{J}(T)$ is nilpotent in this case. Therefore, I is nilpotent.

Proposition 4.0.26. Let T be a ring with identity. Then

$$
\mathcal{N}_{*}(T) \subseteq \mathcal{N}^{*}(T) \subseteq \mathcal{J}(T)
$$

If T is left artinian, then

$$
\mathcal{N}_{*}(T)=\mathcal{N}^{*}(T)=\mathcal{J}(T)
$$

Proof. $\mathcal{N}_{*}(T)$ is contained in $\mathcal{N}^{*}(T)$ as $\mathcal{N}_{*}(T)$ is a nil ideal. On the other hand $\mathcal{J}(T)$ contains every nil (left) ideal of T as if $y \in I$ for a left ideal I of T, and for each $x \in T$, we have $x y \in I$, therefore, there exists $t \in \mathbb{Z}^{+}$such that $(x y)^{t}=0$ and

$$
\left(1+x y+\cdots+(x y)^{t-1}\right)(1-x y)=1
$$

that is $1-x y$ is left invertible. Similarly, $1-x y$ is right invertible and thus $y \in \mathcal{J}(T)$. Assume now T is left artinian. Then $\mathcal{J}(T)$ is the largest nilpotent (right) ideal by Proposition 4.0.24. Since (0) is the unique nilpotent ideal in $T / \mathcal{N}_{*}(T), T / \mathcal{N}_{*}(T)$ semiprime, so, if $A^{2} / \mathcal{N}_{*}(T)=\mathcal{N}_{*}(T) / \mathcal{N}_{*}(T)$, then $A / \mathcal{N}_{*}(T)=\mathcal{N}_{*}(T) / \mathcal{N}_{*}(T)$, that is $A=\mathcal{N}_{*}(T)$; hence $\left.A / \mathcal{N}_{*}(T)=\mathcal{N}_{*}(T) / \mathcal{N}_{*}(T)\right)$ it follows that $\mathcal{J}(T) \subseteq \mathcal{N}_{*}(T)$. Hence

$$
\mathcal{J}(T) \subseteq \mathcal{N}_{*}(T) \subseteq \mathcal{N}^{*}(T) \subseteq \mathcal{J}(T)
$$

giving that all three radicals are equal.
Theorem 4.0.27. Let T be a ring with unity. Then any ideal J of $M_{n}(T)$ has the form $M_{n}(I)$ for a uniquely determined ideal I of T.

Proof. First note that if I is an ideal of T, then $M_{n}(I)$ is an ideal of $M_{n}(T)$. Define

$$
\begin{aligned}
\varphi: & A \rightarrow B \\
& I \mapsto M_{n}(I)
\end{aligned}
$$

where A is the set of ideals of T and B is the set of ideals of $M_{n}(T)$. We check that φ is a bijection. φ is well-defined and one-to-one as for any ideals I_{1}, I_{2} of $T, I_{1}=I_{2}$ if and only if $M_{n}\left(I_{1}\right)=M_{n}\left(I_{2}\right)$. Let J be an ideal of $M_{n}(T)$. Then form the set I of all the $(1,1)$-entries of matrices in J, that is, if $m=\left(e_{i j}\right) \in J$, then put $e_{11} \in I$ and

$$
I=\left\{a_{11} \in T \mid\left(a_{i j}\right) \in J\right\} .
$$

Claim 1. I is an ideal of T.
Claim 2. $M_{n}(I)=J$.

Proof of Claim 1. Take any $x, y \in I$, then there exits $\left(a_{i j}\right),\left(b_{i j}\right) \in J$ such that $x=a_{11}, y=b_{11}$, then $\left(a_{i j}\right)+\left(b_{i j}\right)=\left(c_{i j}\right) \in J$ and $c_{11}=a_{11}+b_{11}=x+y \in I$. Let $r \in T$, then

$$
\begin{aligned}
& r e_{11}\left(a_{i j}\right) \in J \text { such that } r a_{11} \in I \\
& \left(a_{i j}\right) r e_{11} \in J \text { such that } a_{11} r \in I
\end{aligned}
$$

So, I is an ideal of T.

Proof of Claim 2. Let $M=\left(m_{i j}\right) \in J$, take any $m_{i j}$ fixed, then $e_{1 i} M e_{j 1}=m_{i j} e_{11} \in J$ implies $m_{i j} \in I$. So, $M \in M_{n}(I)$, that is, $J \subseteq M_{n}(I)$. Conversely, take any $\left(a_{i j}\right) \in$ $M_{n}(I)$. So for any $a_{i j}$, there exists $M \in J$ such that $a_{i j}=m_{11}$. Then,

$$
a_{i j} e_{i j}=m_{11} e_{i j}=e_{i 1} M e_{1 j} \in J
$$

therefore,

$$
\sum_{i, j=1}^{n} a_{i j} e_{i j}=\left(a_{i j}\right) \in J
$$

that is, $M_{n}(I) \subseteq J$.
Proposition 4.0.28. A ring T is semi-prime if and only if $M_{n}(T)$ is semi-prime.

Proof. Assume T is not a semi-prime ring. This implies that (0) is not a semi-prime ideal. So, there exists a non-zero ideal I in T with $I^{2}=(0)$. Then $\left(M_{n}(I)\right)^{2}=(0)$, so $M_{n}(T)$ is not semi-prime. Conversely, if $M_{n}(T)$ is not semi-prime, then it has a non-zero ideal \mathcal{J} such that $(\mathcal{J})^{2}=(0)$. By Theorem 4.0.27, there exists an ideal I in T
with $\mathcal{J}=M_{n}(I)$. Then $\mathcal{J}^{2}=(0)$ implies that $I^{2}=(0)$, so T is not semi-prime.

Theorem 4.0.29. For any ring with identity T, we have $\mathcal{N}_{*}\left(M_{n}(T)\right)=M_{n}\left(\mathcal{N}_{*}(T)\right)$.

Proof. We have $T / \mathcal{N}_{*}(T)$ is semi-prime, so $M_{n}\left(T / \mathcal{N}_{*}(T)\right)$ is also semi-prime by Proposition 4.0.28. But then $M_{n}(T) / M_{n}\left(\mathcal{N}_{*}(T)\right)$ is semi-prime, so $\mathcal{N}_{*}\left(M_{n}(T)\right) \subseteq M_{n}\left(\mathcal{N}_{*}(T)\right)$ as $\mathcal{N}_{*}(T)$ is the smallest semi-prime ideal in $M_{n}(T)$. Using Theorem 4.0.27, write the ideal $\mathcal{N}_{*}\left(M_{n}(T)\right)$ of $M_{n}(T)$ in the form $M_{n}(I)$, where I is an ideal in T. Then

$$
M_{n}(T / I) \cong M_{n}(T) / M_{n}(I)=M_{n}(T) / \mathcal{N}_{*}\left(M_{n}(T)\right)
$$

is semi-prime, and so is T / I by Proposition 4.0.28. This implies that $\mathcal{N}_{*}(T) \subseteq I$, so we have

$$
M_{n}\left(\mathcal{N}_{*}(T)\right) \subseteq M_{n}(I)=\mathcal{N}_{*}\left(M_{n}(T)\right)
$$

and the equality holds.

It is not known if the equation

$$
\mathcal{N}^{*}\left(M_{n}(T)\right)=M_{n}\left(\mathcal{N}^{*}(T)\right)
$$

holds for the upper nilradicals. In fact, the above equation for all n and for all rings T is equivalent to the famous Köthe's Conjecture which can be found in [?].

Köthe's Conjecture For any ring $T, \mathcal{N}^{*}(T)=(0)$ implies that T has no nonzero nil one sided ideals.

For several classes of rings, the conjecture has been shown to be true. For example, it can be found in [?] that the conjecture holds for the class of right noetherian
rings. However, the conjecture is not solved in general yet.

5. UPPER NILRADICAL AND LOWER NILRADICAL OF INCIDENCE ALGEBRAS

In this chapter, our aim is to determine the upper and the lower nilradicals of an incidence algebra. First, we will investigate the upper and the lower nilradicals when the incidence algebra is defined over a commutative ring with unity. Then, we determine necessary and sufficient conditions to characterize the upper and the lower nilradicals of incidence algebras over a noncommutative ring with unity.

5.1. Upper and Lower Nilradicals of $I(X, R)$

Definition Let R be a commutative ring with identity and S be a subset of a locally finite partially ordered set X. A function $f \in I(X, R)$ is fully-nilpotent of index n on S if there exists a positive integer n such that given any chain of the form

$$
x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \ldots \leq x_{n} \leq y_{n}
$$

in $S, \prod_{i=1}^{n} f\left(x_{i}, y_{i}\right)=0$. A function that is fully-nilpotent on X will simply be called fully nilpotent.

Remark If f is fully-nilpotent of index n on $S \subseteq X$, then $(f(x, x))^{n}=0$, for all $x \in S$.

Remark When the ring R is an integral domain, then the previous definition is equivalent to the following:
there exists $n \in \mathbb{N}$ such that given any chain of the form

$$
x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \ldots \leq x_{n} \leq y_{n}
$$

in $S, f\left(x_{i}, y_{i}\right)=0$ for some $1 \leq i \leq n$.

Proposition 5.1.1. If T is a ring with identity, then strong nilpotency implies nilpotency.

Proof. Suppose $s \in T$ is strongly nilpotent. Consider the sequence $s_{0}, s_{1}, s_{2}, \ldots$ where $s_{i}=s^{2^{i}}$ for each i. Then $s_{0}=s^{2^{0}}=s$ and $s_{i+1}=s^{2^{i+1}}=s^{2^{2^{i}}}=s_{i} s_{i}$ for each i and therefore $s_{n}=s^{2^{n}}=0$ for some n as s is strongly nilpotent. Hence s is nilpotent with 2^{n}.

However, the converse need not be true as the following example illustrates.

Example Consider \mathbb{Z}^{+}under the usual ordering and let R be a commutative ring with identity. Observe that \mathbb{Z}^{+}is unbounded. Define $f \in I\left(\mathbb{Z}^{+}, R\right)$ by

$$
f(x, y)= \begin{cases}1 & \text { if } x=2^{k} \text { and } y=2^{k}+1, \text { for some } k \in \mathbb{Z}^{+} \\ 0 & \text { otherwise }\end{cases}
$$

We show that f is nilpotent but not strongly nilpotent. Since for all $x, y \in \mathbb{Z}^{+}$,

$$
f^{2}(x, y)=\sum_{x \leq z \leq y} f(x, z) f(z, y)=0
$$

that is, $f^{2}=0$ giving that f is nilpotent with 2 . Define the function $g \in I\left(\mathbb{Z}^{+}, R\right)$ by

$$
g(x, y)= \begin{cases}1 & \text { if } x=2^{k}+1 \text { and } y=2^{k+1}, \text { for some } k \in \mathbb{Z}^{+} \\ 0 & \text { otherwise }\end{cases}
$$

We construct a sequence $h_{0}, h_{1}, h_{2}, \ldots$ in $I\left(\mathbb{Z}^{+}, R\right)$ as follows. Put $h_{0}=f$ and induc-
tively $h_{i+1}=h_{i} g h_{i}$, for $i=1,2, \ldots$. Then

$$
\begin{aligned}
& h_{1}=h_{0} g h_{0}=f g f \\
& h_{2}=h_{1} g h_{1}=\text { fgfgfgf } \\
& h_{3}=h_{2} g h_{2}=\text { fgfgfgfgfgfgfgf } \\
& \vdots \\
& h_{k}=h_{k-1} g h_{k-1}
\end{aligned}
$$

Observe that f occurs 2 times in the expression of $h_{1}, 2^{2}$ times in the expression of $h_{2}, 2^{3}$ times in the expression of h_{3}. Hence f appears 2^{k} times in the expression of h_{k}. Now consider $h_{k}\left(2,2^{2^{k}}+1\right)$, for all $k \in \mathbb{Z}^{+}$.
$h_{k}\left(2,2^{2^{k}}+1\right)=f\left(2,2^{1}+1\right) g\left(2^{1}+1,2^{2}\right) f\left(2^{2}, 2^{2}+1\right) g\left(2^{2}+1,2^{3}\right) \ldots f\left(2^{2^{k}}, 2^{2^{k}}+1\right)=1$

Hence, f is not strongly nilpotent.

Proposition 5.1.2. If a ring R with identity is commutative, then nilpotency is equivalent to strong nilpotency.

Proof. Suppose $r \in R$ is nilpotent with n. We are to show that r is strongly nilpotent. Let r_{0}, r_{1}, \ldots be a sequence in R with $r_{0}=r$ and $r_{i+1} \in r_{i} R r_{i}$ for $i=1,2, \ldots$ Then

$$
\begin{aligned}
& r_{1}= r t_{1} r=r^{2} t_{1} \\
& r_{2}= r_{1} t_{2} r_{1}=r^{2} t_{1} t_{2} r^{2} t_{1}=r^{4} t_{1} t_{2} t_{1}= \\
& \\
& \\
& \\
& \\
& \\
& r_{k} t_{2}^{\prime} \\
& \text { for some } t_{1} \in R \\
& t_{2}, t_{2}^{\prime} \in R
\end{aligned}
$$

Let k be a positive integer such that $2^{k} \geq n$. Then $r_{k}=0$ and thus, r is strongly nilpotent.

Proposition 5.1.3. Let X be a locally finite partially ordered set and R a commutative ring with identity. A function $f \in I(X, R)$ is fully-nilpotent if and only if f is strongly nilpotent.

Proof. (Necessity) Suppose that f is fully-nilpotent. Then there exists $n \in \mathbb{Z}^{+}$such that whenever

$$
x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \cdots \leq x_{n} \leq y_{n}
$$

is a chain on X, we have

$$
\prod_{i=1}^{n} f\left(x_{i}, y_{i}\right)=0
$$

Let $h_{0}=f$ and set $h_{i+1}=h_{i} g_{i} h_{i}$ for $i=1,2, \ldots$, where $g_{i} \in I(X, R)$. As f appears 2^{k} times in the expression of h_{k}, choose k so that $2^{k} \geq n$. Then

$$
h_{k}(x, y)=\sum f\left(x_{1}, y_{1}\right) g\left(y_{1}, x_{2}\right) f\left(x_{2}, y_{2}\right) \ldots g\left(y_{2^{k}-1}, x_{2^{k}}\right) f\left(x_{2^{k}}, y_{2^{k}}\right)
$$

where the sum is over all possible chains

$$
x=x_{1} \leq y_{1} \leq \ldots \leq x_{2^{k}} \leq y_{2^{k}}=y
$$

But $\prod_{i=1}^{2^{k}} f\left(x_{i}, y_{i}\right)$ is a factor of each summand, and as $n \leq 2^{k}$, it follows that each summand is zero. Hence, $h_{k}=0$ and f is strongly nilpotent.
(Sufficiency) Conversely, suppose that f is strongly nilpotent and assume for a contradiction that f is not fully-nilpotent. Then one of the following two possibilities must hold.
(i) For each $n \geq 1$ there exists $x_{n} \in X$ such that $\left(f\left(x_{n}, x_{n}\right)\right)^{n} \neq 0$.
(ii) For each $n \geq 1$ there exists a chain

$$
x_{n, 1} \leq y_{n, 1}<x_{n, 2} \leq y_{n, 2}<\cdots<x_{n, n} \leq y_{n, n}
$$

in X with $\prod_{i=1}^{n} f\left(x_{n, i} ; y_{n, i}\right) \neq 0$.
If (i) holds, then the sequence $f_{n}=f^{2^{n}}$ is a sequence of nonzero functions, contradicting the strong nilpotency of f.

If (ii) holds, then X is unbounded and, by Lemma 3.1.2, we may assume that the intervals $\left[x_{m, 1} ; y_{m, m}\right]$ and $\left[x_{n, 1} ; y_{n, n}\right]$ are disjoint for $m \neq n$.

Let $k \in \mathbb{N}$ and define the function g_{k} as follows. For $n \geq 1$ set

$$
g_{k}\left(y_{n, i} ; x_{n, i}\right)= \begin{cases}1 & \text { if } i \equiv 2^{k-1}\left(\bmod 2^{k}\right) \text { and } i \leq n-1 \\ 0 & \text { otherwise }\end{cases}
$$

We define a sequence of functions $\left\{f_{n}\right\}$ inductively by setting $f_{1}=f$ and for $m \leq 1$, set $f_{m+1}=f_{m} g_{m} f_{m}$. Thus, if $r \in \mathbb{N}$, then

$$
f_{r}\left(x_{2^{r}, 1} ; y_{2^{r}, 2^{r}}\right)=\prod_{i=1}^{2^{r}} f\left(x_{2^{r}, i} ; y_{2^{r}, i}\right) \neq 0
$$

This means that the sequence $\left\{f_{n}\right\}$ is not zero for any integer n, and thus, f is not strongly nilpotent which contradicts our assumption.

Combining this result with Proposition 4.0.19 we conclude the following.
Theorem 5.1.4. Let X be a locally finite partially ordered set and R be a commutative ring with identity. Then the lower nilradical $\mathcal{N}_{*}(I(X, R))$ is the set of fully-nilpotent functions of $I(X, R)$.

Proposition 5.1.5. Suppose that X is a bounded, locally finite partially ordered set and R a commutative ring with identity. Nilpotent functions of $I(X, R)$ are strongly
nilpotent.

Proof. It is enough to show that if f is nilpotent, then f is fully-nilpotent.
As f is nilpotent, there exists $n \in \mathbb{Z}^{+}$such that $f^{n}=0$. Also, since X is bounded, there exists $k \in \mathbb{N}$ such that when $x_{1}<x_{2}<\cdots<x_{s}$ is a chain in X, then $s<k$. Let $N=n(k-1)+1$ and consider a chain in X given by

$$
x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \cdots \leq x_{N} \leq y_{N}
$$

There can be at most $k-1$ strict inequalities in the above chain, hence there is a string of n consecutive subscripts, say i through $i+n-1$, such that

$$
x_{i}=y_{i}=\cdots=x_{i+n-1}=y_{i+n-1} .
$$

It follows that $\prod_{j=1}^{N} f\left(x_{j}, y_{j}\right)$ contains a factor of the form

$$
\prod_{j=i}^{i+n-1} f\left(x_{j}, y_{j}\right)=\left(f\left(x_{i}, y_{i}\right)\right)^{n}=f^{n}\left(x_{i}, x_{i}\right)=0
$$

Hence f is fully-nilpotent.
Corollary 5.1.6. If X is a bounded partially ordered set, then $\mathcal{N}_{*}(I(X, R))$, where R is a commutative ring with identity, is the set of nilpotent functions of $I(X, R)$.

Proof. If X is bounded, then $f \in I(X, R)$ is strongly nilpotent if and only if f is nilpotent by Proposition 5.1.5. Then the result follows.

It is obvious that $\mathcal{N}_{*}(T) \subseteq \mathcal{N}^{*}(T)$ for a ring T. In general, $\mathcal{N}_{*}(T) \neq \mathcal{N}^{*}(T)$. We can also define other nilradicals \mathcal{M} such that \mathcal{M} is a nil ideal of T with T / \mathcal{M} contains no nonzero nilpotent ideals. However, all such radicals lies between upper and lower nilradical as the following proposition states.

Proposition 5.1.7. If \mathcal{M} is a nilradical of $a \operatorname{ring} T$, then

$$
\mathcal{N}_{*}(T) \subseteq \mathcal{M} \subseteq \mathcal{N}^{*}(T)
$$

Proof. \mathcal{N} is nil, so, is contained in the sum of all the nil ideals of T, namely $\mathcal{N}^{*}(T)$. The first inclusion is also clear as $\mathcal{N}_{*}(T)$ is the smallest nil ideal satisfying $T / \mathcal{N}_{*}(T)$ contains no nonzero nilpotent ideals.

Corollary 5.1.8. If X is bounded, $I(X, R)$ contains unique nilradical where R is a commutative ring with identity.

Proof. We have $\mathcal{N}_{*}(T) \subseteq \mathcal{N}^{*}(T)$ for any ring T. By the previous corollary, $\mathcal{N}_{*}(I(X, R))$ is the set of nilpotent elements and since $\mathcal{N}^{*}(T)$ consists of nilpotent elements, we get

$$
\mathcal{N}^{*}(I(X, R)) \subseteq \mathcal{N}_{*}(I(X, R))
$$

which completes the proof.

This result does not depend on the boundedness of the locally finite partially ordered set as the following theorem states.

Theorem 5.1.9. Let X be a locally finite partially ordered set and R be a commutative ring with identity. The incidence algebra $I(X, R)$ contains a unique nilradical.

Proof. If X is bounded, the result follows by Corollary 5.1.8. Suppose now X is unbounded. It is enough to check $\mathcal{N}^{*}(I(X, R)) \subseteq \mathcal{N}_{*}(I(X, R))$. Let $f \in \mathcal{N}^{*}(I(X, R))$. We check f is strongly nilpotent. So it is enough to check f is fully-nilpotent. By way of contradiction, assume f is not fully-nilpotent. Then for each positive integer n, there exists a chain

$$
x_{n, 1} \leq y_{n, 1} \leq x_{n, 2} \leq y_{n, 2} \leq \cdots \leq x_{n, n} \leq y_{n, n}
$$

in X with

$$
\prod_{i=1}^{n} f\left(x_{n, i} ; y_{n, i}\right) \neq 0
$$

Since X is unbounded, we may assume intervals $\left[x_{n, i} ; y_{n, i}\right]$ and $\left[x_{m, i} ; y_{m, i}\right]$ are disjoint for $m \neq n$. Hence we can define a well-defined function $g \in I(X, R)$ as follows. For any positive integer n,

$$
g(u, v)= \begin{cases}1 & \text { if } u=y_{n, i} \text { and } v=x_{n, i+1} \text { for some } n \in \mathbb{Z}^{+} \\ 1 & \text { if } u=v=y_{n, n} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
(f g)^{n}\left(x_{n, 1} ; y_{n, n}\right) & =f g f g \cdots f g\left(x_{n, 1} ; y_{n, n}\right) \\
& =f\left(x_{n, 1} ; y_{n, 1}\right) g\left(y_{n, 1} ; x_{n, 2}\right) \cdots f\left(x_{n, n} ; y_{n, n}\right) g\left(y_{n, n} ; y_{n, n}\right) \\
& =\prod_{i=1}^{n} f\left(x_{n, i} ; y_{n, i}\right) \\
& \neq 0
\end{aligned}
$$

for each positive integer n and therefore $f g$ is not nilpotent. On the other hand, $f g \in \mathcal{N}^{*}(I(X, R))$ and so nilpotent which is a contradiction.

5.2. Upper and Lower Nilradicals of $I(X, T)$

In this chapter we will consider incidence algebras over a ring with identity T and investigate the lower and upper nilradicals of them. First, we will extend the definition of fully-nilpotent functions to the strong product property.

Definition Let X be a locally finite partially ordered set and T be a ring with identity. An element $f \in I(X, T)$ has the strong product property (spp) of index n if there exists
a positive integer n such that, given any chain

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

in X, then

$$
f\left(x_{1}, y_{1}\right) T f\left(x_{2}, y_{2}\right) T \cdots T f\left(x_{n}, y_{n}\right)=0 .
$$

Remark Let $s \in T$ where T is a ring with unity. Then $f=s \delta \in I(X, T)$ satisfies spp if and only if $s \in T$ is strongly nilpotent.

Proposition 5.2.1. Any element in the T-submodule generated by

$$
\left\{e_{x, y} \in I(X, T) \mid x<y\right\}
$$

satisfies spp where

$$
e_{x, y}(u, v)= \begin{cases}1 & \text { if } x=u \text { and } y=v \\ 0 & \text { otherwise }\end{cases}
$$

for all $x, y \in X$.

Proof. Let f be an element generated by the submodule generated by

$$
\left\{e_{x, y} \in I(X, T) \mid x<y\right\}
$$

Then

$$
f=\sum_{i=1}^{n} t_{i} e_{x_{i}, y_{i}} s_{i}+\sum_{j=1}^{m} n_{j} e_{x_{j}, y_{j}}
$$

where for each i, j, with $1 \leq i \leq n$ and $1 \leq j \leq m, s_{i}, t_{i} \in T, n_{j} \in \mathbb{Z}$ and
$\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right) \in X \times X$ with $x_{i}<y_{i}$ and $x_{j}<y_{j}$. For any $u, v \in X$, we have

$$
f(u, v)=\sum_{i=1}^{n} t_{i} e_{x_{i}, y_{i}}(u, v) s_{i}+\sum_{j=1}^{m} n_{j} e_{x_{j}, y_{j}}(u, v)=0
$$

if $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right) \neq(u, v)$ for each i, j. Now consider any chain of the form

$$
u_{1} \leq v_{1}<u_{2} \leq v_{2}<\cdots<u_{n+m+1} \leq v_{n+m+1}
$$

in X. Then for some k with $1 \leq k \leq n+m+1,\left(u_{k}, v_{k}\right) \neq\left(x_{i}, y_{i}\right)$ and $\left(u_{k}, v_{k}\right) \neq\left(x_{j}, y_{j}\right)$. So, $f\left(u_{k}, v_{k}\right)=0$. Therefore

$$
f\left(u_{1}, v_{1}\right) T f\left(u_{2}, v_{2}\right) T \cdots T f\left(u_{k}, v_{k}\right) T \cdots T f\left(u_{n+m+1} ; v_{n+m+1}\right)=0
$$

It follows that f has spp with $n+m+1$.

Proposition 5.2.2. Let $I(X, T)$ be the incidence algebra of a ring with identity T over a locally finite partially ordered set X. Then
(i) $(f+g)_{D}=f_{D}+g_{D}$
(ii) $(f g)_{D}=f_{D} g_{D}$
for all $f, g \in I(X, T)$.

Proof. (i)

$$
\begin{aligned}
(f+g)_{D}(x, y) & = \begin{cases}(f+g)(x, x) & \text { if } x=y \\
0 & \text { else }\end{cases} \\
& = \begin{cases}f(x, x)+g(x, x) & \text { if } x=y \\
0 & \text { else }\end{cases} \\
& =f_{D}(x, y)+g_{D}(x, y) \\
& =\left(f_{D}+g_{D}\right)(x, y)
\end{aligned}
$$

(ii) Take any $x, y \in X$. If $x=y$, then

$$
(f g)_{D}(x, x)=(f g)(x, x)=f(x, x) g(x, x)=f_{D}(x, x) g_{D}(x, x)=\left(f_{D} g_{D}\right)(x, x)
$$

If $x \neq y$, then $(f g)_{D}(x, y)=0$ and

$$
\left(f_{D} g_{D}\right)(x, y)=\sum_{x \leq z \leq y} f_{D}(x, z) g_{D}(z, y)=0
$$

as $f_{D}(x, z) \neq 0$ only if $z=x$ and $g_{D}(z, y) \neq 0$ only if $z=y$. So, $(f g)_{D}(x, y)=f_{D} g_{D}$.
Proposition 5.2.3. Let X be a locally finite partially ordered set, T be a ring with unity and $f=\sum_{\text {finite }} t_{x y} e_{x y} \in I(X, T)$. Then $f \in \mathcal{N}^{*}(I(X, T)) \backslash \mathcal{N}_{*}(I(X, T))$ if and only if $t_{x x} \in \mathcal{N}^{*}(T)$ for each $x \in X$ and $t_{x x} \in \mathcal{N}^{*}(T) \backslash \mathcal{N}_{*}(T)$ for at least one $x \in X$.

Proof. (Sufficiency) We first check, f_{D} generates a nil ideal in $\prod_{x \in X} T$. Note that f_{D} has only finitely many non-zero terms and each of them is nilpotent as $t_{x x}$ is nilpotent in T. Then f_{D} is nilpotent with the maximum number of the nilpotency in its components. Now, we check that f has spp. By the above example each $t_{x y} e_{x y}$ has spp for $x<y$. Also each $t_{x x} e_{x x}$ has spp for any $x \in X$ because for any chain of the form

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}
$$

in X, either $x_{1} \neq x$ or $x_{2} \neq x$ giving that

$$
t_{x x} e_{x x}\left(x_{1}, y_{1}\right) T t_{x x} e_{x x}\left(x_{2}, y_{2}\right)=0
$$

Therefore, $t_{x x} e_{x x}$ has spp with 2 . Thus, $t_{x y} e_{x y}$ has spp for all $x, y \in X$ say with $n_{x y}$. Then, $f=\sum_{f i n i t e} t_{x y} e_{x y}$ has spp with the sum of $n_{x y}$'s. Now, we show f_{D} is not strongly nilpotent in $\prod_{x \in X} T$. Assume the contrary. Since $t_{x_{0}} \notin \mathcal{N}_{*}(T)$ for some x_{0} in the expression of f, there exist elements $s_{0}, s_{1}, s_{2}, \ldots$ in T such that the sequence $t_{0}, t_{1}, t_{2}, \ldots$ for which $t_{0}=t$ and $t_{i}=t_{i-1} s_{i-1} t_{i-1}$ consists of non-zero elements of T.

Fix any $x \in X$. Consider elements $\left(g_{i}\right)$ in $\prod_{x \in X} T$ defined for each $i=0,1,2, \ldots$ as

$$
\left(g_{i}\right)_{y}= \begin{cases}s_{i} & \text { if } y=x_{0} \\ 0 & \text { else }\end{cases}
$$

Construct a sequence $\left(f_{0}\right),\left(f_{1}\right), \ldots$ in $\prod_{x \in X} T$ with $\left(f_{0}\right)=f_{D}$ and $\left(f_{i}\right)=\left(f_{i-1}\right)\left(g_{i-1}\right)\left(f_{i-1}\right)$ for each $i=1,2, \ldots$. Since f_{D} is assumed to be strongly nilpotent, there exists a positive integer k with $\left(f_{k}\right)=0$. It follows that

$$
\begin{array}{rlll}
\left(f_{0}\right)_{x_{0}} & =t e_{x_{0} x_{0}}\left(x_{0}, x_{0}\right) & =t & =t_{0} \\
\left(f_{1}\right)_{x_{0}} & =\left(f_{0}\right)_{x_{0}}\left(g_{0}\right)_{x_{0}}\left(f_{0}\right)_{x_{0}} & =t s_{0} t & =t_{1} \\
\left(f_{2}\right)_{x_{0}} & =\left(f_{1}\right)_{x_{0}}\left(g_{1}\right)_{x_{0}}\left(f_{1}\right)_{x_{0}} & =t s_{0} t s_{1} t s_{0} t & =t_{2}
\end{array}
$$

is a sequence of non-zero elements which is a contradiction.
(Necessity) Conversely, suppose $f \in \mathcal{N}^{*}(I(X, T)) \backslash \mathcal{N}^{*}(I(X, T))$. Since

$$
f=\sum_{\text {finite }} t_{x y} e_{x y} \in \mathcal{N}^{*}(I(X, T))
$$

we have

$$
f_{D}=\sum_{\text {finite }} t_{x x} e_{x x} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)
$$

It follows that $t_{x x} \in \mathcal{N}^{*}(T)$ for each $x \in X$. On the other hand, $f_{D} \notin \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$. So there exists a sequence $\left(f_{i}\right)$ of nonzero elements in $\prod_{x \in X} T$ with $\left(f_{0}\right)=f_{D}$ and $\left(f_{i}\right) \in\left(f_{i-1}\right) \prod_{x \in X} T\left(f_{i-1}\right)$ for $i=1,2, \ldots$. It follows that at least one of the component of the sequence is non-zero, say $\left(f_{n}\right)_{x_{0}}$, for each $n \in \mathbb{Z}^{+}$. This means that $t_{x_{0} x_{0}} \in T$ is not strongly nilpotent.

Proposition 5.2.4. Let X be a locally finite partially ordered set and T be a ring with identity. If $f \in I(X, T)$ has spp, then so does f_{D} and f_{U}.

Proof. Suppose f has spp with N but f_{D} does not satisfy spp. Let

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

be a chain in X with $n \geq N$. Since f_{D} does not satisfy spp we can find elements $a_{1}, a_{2}, \ldots, a_{n-1} \in T$ with

$$
f_{D}\left(x_{1}, y_{1}\right) a_{1} f_{D}\left(x_{2}, y_{2}\right) a_{2} \cdots a_{n-1} f_{D}\left(x_{n}, y_{n}\right) \neq 0
$$

If $x_{i} \neq y_{i}$ for some $i, 1 \leq i \leq n$, then $f_{D}\left(x_{i}, y_{i}\right)=0$. Then $x_{i}=y_{i}$ for each $i, 1 \leq i \leq n$. So, $f_{D}\left(x_{i}, y_{i}\right)=f\left(x_{i}, y_{i}\right)$ for each $i, 1 \leq i \leq n$, giving that

$$
f\left(x_{1}, y_{1}\right) a_{1} f\left(x_{2}, y_{2}\right) a_{2} \cdots a_{n-1} f\left(x_{n}, y_{n}\right) \neq 0 .
$$

This contradicts the fact that f has spp with $N . f_{U}$ has spp can be proven in a similar way.

Proposition 5.2.5. Let X be a locally finite partially ordered set and T be a ring with unity. If $I(X, T)$ contains an element which does not satisfy spp, then X is unbounded.

Proof. Suppose $f \in I(X, T)$ does not satisfy spp and X is bounded with n. Then for any interval $[x, y]$ in $X,[x, y]$ has length at most n. This means that any chain $[x, y]$ has length at most n. Since there is no chain of length $n+1$ in X, f automatically has spp with $n+1$ which contradicts our assumption.

Remark If $f \in I(X, T)$ does not satisfy spp, then for each $n \in \mathbb{Z}^{+}$, there exists a
chain

$$
x_{n, 1} \leq y_{n, 1}<x_{n, 2} \leq y_{n, 2}<\cdots<x_{n, n} \leq y_{n, n}
$$

in X and elements $a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1} \in T$ such that

$$
f\left(x_{n, 1} ; y_{n, 1}\right) a_{n, 1} f\left(x_{n, 2} ; y_{n, 2}\right) a_{n, 2} \ldots a_{n, n-1} f\left(x_{n, n} ; y_{n, n}\right) \neq 0 .
$$

Proposition 5.2.6. Let X be a locally finite partially ordered set and T be a ring with identity. If $f \in \mathcal{N}_{*}(I(X, T))$, then $f_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$.

Proof. Define

$$
\begin{aligned}
\varphi: I(X, T) & \rightarrow \prod_{x \in X} T \\
f & \mapsto f_{D}
\end{aligned}
$$

Note that φ is a surjective ring homomorphism. Let $f \in \mathcal{N}_{*}(I(X, T))$. We check that $f_{D} \in \mathcal{N}_{*}\left(\prod T\right)$.

Let $\left(t_{1}\right),\left(t_{2}\right), \ldots$ be a sequence in $\prod_{x \in X} T$ with $\left(t_{1}\right)=f_{D}$ and $\left(t_{i+1}\right)=\left(t_{i}\right)\left(r_{i}\right)\left(t_{i}\right)$ for each i and $\left(r_{i}\right) \in \prod_{x \in X} T$. Set $g_{i} \in I(X, T)$ such that

$$
g_{i}(x, y)= \begin{cases}\left(r_{i}\right)_{x} & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

for each i. Then f_{1}, f_{2}, \ldots is a sequence in $I(X, T)$ with $f_{1}=f$ and $f_{i+1}=f_{i} g_{i} f_{i}$ for each i. Since $f \in \mathcal{N}_{*}(I(X, T)), f$ is strongly nilpotent, so, there exists a positive integer n with $f_{n}=0$. Therefore,

$$
\varphi\left(f_{n}\right)=\left(f_{n}\right)_{D}=\left(f g_{1} f g_{2} \cdots f g_{1} f\right)_{D}=f_{D}\left(g_{1}\right)_{D} f_{D} \cdots f_{D}\left(g_{1}\right)_{D} f_{D}=0
$$

and since $\left(f_{n}\right)_{D}=t_{n}$ we get f_{D} is strongly nilpotent and contained in $\mathcal{N}_{*}\left(\prod_{x \in X} T\right)$.
Theorem 5.2.7. Let X be a locally finite partially ordered set and T be a ring with identity T. Then $f \in \mathcal{N}_{*}(I(X, T))$ if and only if $f_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$ and f has spp.

Proof. (Necessity) Suppose $f \in \mathcal{N}_{*}(I(X, T))$. By the previous proposition, we have $f_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$. We check f satisfies spp. Suppose not, then for each $n \in \mathbb{Z}^{+}$, there exists a chain

$$
x_{n, 1} \leq y_{n, 1}<x_{n, 2} \leq y_{n, 2}<\cdots<x_{n, n} \leq y_{n, n}
$$

in X and elements $a_{n, 1}, a_{n, 2}, \ldots a_{n, n-1} \in T$ with

$$
f\left(x_{n, 1} ; y_{n, 1}\right) a_{n, 1} f\left(x_{n, 2} ; y_{n, 2}\right) a_{n, 2} \ldots a_{n, n-1} f\left(x_{n, n} ; y_{n, n}\right) \neq 0 .
$$

Since f does not have spp, by Proposition 5.2.5, X is unbounded. By Lemma 3.1.2, we may assume the intervals $\left[x_{n, 1} ; y_{n, n}\right]$ and $\left[x_{m, 1 ; y_{m, m}}\right]$ are disjoint for $m \neq n$.

Now, define, for each $k \in \mathbb{Z}^{+}, g_{k} \in I(X, T)$ as follows:
Let $n \geq 1$ and

$$
g_{k}(u, v)= \begin{cases}a_{n, i} & \text { if } u=y_{n, i}, v=x_{n, i+1} \text { and } i \equiv 2^{k-1}\left(\bmod 2^{k}\right) \text { for } i \leq n-1 \\ 0 & \text { otherwise }\end{cases}
$$

for each $u, v \in X$. Now, we construct a sequence f_{1}, f_{2}, \ldots in $I(X, R)$ as follows.

Set $f_{1}=f$ and $f_{j+1}=f_{j} g_{j} f_{j}$ for each j. Then, for any $r \in \mathbb{Z}^{+}$

$$
f_{r}\left(x_{2^{r}, 1} ; y_{2^{r}, 2^{r}}\right)=f\left(x_{2^{r}, 1} ; y_{2^{r}, 1}\right) a_{2^{r}, 1} f\left(x_{2^{r}, 2} ; y_{2^{r}, 2}\right) a_{2^{r}, 2} \cdots a_{2^{r}, 2^{r-1}} f\left(x_{2^{r}, 2^{r}} ; y_{2^{r}, 2^{r}}\right) \neq 0
$$

Hence, $f_{m} \neq 0$ for each $m \in \mathbb{Z}^{+}$. Therefore f is not strongly nilpotent, that is, $f \notin \mathcal{N}_{*}(I(X, T))$ which is a contradiction.
(Sufficiency) Conversely, suppose $f_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$ and f has spp. We check f satisfies spp. Let f_{1}, f_{2}, \ldots be a sequence in $I(X, T)$ with $f_{1}=f$ and $f_{i+1}=f_{i} g_{i} f_{i}$ where $g_{i} \in I(X, T)$ for each i. Then $\left(f_{1}\right)_{D},\left(f_{2}\right)_{D}, \ldots$ is a sequence in $\prod_{x \in X} T$ with $\left(f_{1}\right)_{D}=f_{D}$ and $\left(f_{i+1}\right)_{D}=\left(f_{i}\right)_{D}\left(g_{i}\right)_{D}\left(f_{i}\right)_{D}$ for each i. Since $f_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$, f_{D} is strongly nilpotent. So there exists a positive integer t such that $\left(f_{t}\right)_{D}=0$.

On the other hand, f has spp, say of index N. This means that for any chain

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

in X, with $n \geq N$,

$$
f\left(x_{1}, y_{1}\right) T f\left(x_{2}, y_{2}\right) T \cdots T f\left(x_{n}, y_{n}\right)=0 .
$$

Now consider f_{t+N}. We claim that $f_{t+N}=0$. Suppose not, then there exists $x, y \in X$ with $f_{t+N}(x, y) \neq 0$. If $x=y$, then

$$
f_{t+N}(x, y)=f_{t+N}(x, x)=f_{t}(x, x) s_{1} f_{t}(x, x) s_{2} \cdots s_{2^{N}-1} f_{t}(x, x)=0
$$

for some $s_{1}, s_{2}, \ldots s_{2^{N}-1} \in T$ as $f_{t}(x, x)=0$. So, there exists $x, y \in X$ such that $x \neq y$ and $f_{t+N}(x, y) \neq 0$. Then there exists a chain

$$
x=x_{1}<y_{1} \leq x_{2}<y_{2} \leq \cdots \leq x_{2^{N}}<y_{2^{N}}
$$

in X with

$$
f_{t+N}(x, y)=f_{t}\left(x_{1}, y_{1}\right) t_{1} f_{t}\left(x_{2}, y_{2}\right) t_{2} \cdots t_{2^{N-1}} f_{t}\left(x_{2^{N}}, y_{2^{N}}\right) \neq 0
$$

for some $t_{i} \in T$ with $i=1,2, \ldots, 2^{N}-1$. Now let $x_{2 m-1}=u_{m}$ and $y_{2 m-1}=v_{m}$ for
$m=1,2, \ldots, 2^{N-1 .}$ Then

$$
u_{1}<v_{1}<u_{2}<v_{n}<\cdots<u_{2^{N-1}}
$$

is a chain in X with $2^{N-1} \geq N$ and

$$
f_{t+N}(x, y)=f\left(u_{1}, v_{1}\right) \tilde{t}_{1} f\left(u_{2}, v_{2}\right) \tilde{t}_{2} \cdots \tilde{t}_{2^{N-1}-1} f\left(u_{2^{N-1}, v_{2} N-1}\right) \neq 0
$$

which contradicts our assumption that f has spp with N.

Now, we shall determine the upper nilradical of an incidence algebra where the coefficient ring is noncommutative with identity. First, we need the following results.

Lemma 5.2.8. Let X be a locally finite partially ordered set and T be a ring with identity. Suppose $f \in Z(I(X, T))$. Then the following are equivalent:
(i) f satisfies spp,
(ii) The left ideal generated by f is nil,
(iii) The right ideal generated by f is nil,
(iv) The ideal generated by f is nilpotent.

Proof. (ii) \Leftrightarrow (iii) Suppose the left ideal generated by f, f_{L}, is a nil ideal and $g \in$ $I(X, T)$. Then $(g f)^{n}=0$ for some $n \in \mathbb{Z}^{+}$. If we multiply $(g f)^{n}$ by f on left and by g on right, we get $f g f g f \cdots g f g=(f g)^{n+1}=0$, that is, the right ideal generated by f, f_{R}, is a nil ideal. Similarly, if f_{R} is nil so is f_{L}.
$(i v) \Rightarrow$ (ii) Since every nilpotent ideal is nil, the result follows.
$(i i) \Rightarrow$ (i) Suppose the left ideal generated by f, f_{L} is nil. Assume for a contradiction that f does not satisfy spp. Since $f \in Z(I(X, T))$, for each $n \in \mathbb{Z}^{+}$, there is a chain

$$
x_{n, 1}<y_{n, 1}<x_{n, 2}<y_{n, 2}<\cdots<x_{n, n}<y_{n, n}
$$

in X, and elements $a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1} \in T$ such that

$$
f\left(x_{n, 1} ; y_{n, 1}\right) a_{n, 1} f\left(x_{n, 2} ; y_{n, 2}\right) a_{n, 2} \cdots a_{n, n-1} f\left(x_{n, n} ; y_{n, n}\right) \neq 0
$$

Since f does not satisfy spp, by Proposition 5.2.5, X is unbounded. Hence, by Lemma 3.1.2, we may assume the intervals $\left[x_{n, 1} ; y_{n, n}\right]$ and $\left[x_{m, 1} ; y_{m, m}\right]$ are disjoint for $n \neq m$.

Consider an element g of $I(X, T)$ defined as follows:

$$
g(u, v)= \begin{cases}1 & \text { if } u=v=x_{n, 1}, n=1,2, \ldots \\ a_{n, i} & \text { if } u=y_{n, i} \text { and } v=x_{n, i+1} \\ 0 & \text { otherwise }\end{cases}
$$

for all $u, v \in X$. Then for each $n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
(g f)^{n}\left(x_{n, 1} ; y_{n, n}\right) & =(g f g f \cdots g f)\left(x_{n, 1} ; y_{n, n}\right) \\
& =g\left(x_{n, 1} ; y_{n, 1}\right) f\left(x_{n, 1} ; y_{n, 1}\right) g\left(y_{n, 1} ; x_{n, 2}\right) \cdots f\left(x_{n, n} ; y_{n, n}\right) \\
& =f\left(x_{n, 1} ; y_{n, 1}\right) a_{n, 1} f\left(x_{n, 2} ; y_{n, 2}\right) a_{n, 2} \cdots a_{n, n-1} f\left(x_{n, n} ; y_{n, n}\right) \\
& \neq 0
\end{aligned}
$$

Therefore, $g f$, which is an element in the left ideal generated by f, is not a nilpotent element. This contradiction establishes the result.
(i) \Rightarrow (iv) Suppose f satisfies spp of index n. Let K be the two sided ideal generated by f. We claim that $K^{2 n}=0$. Assume that $K^{2 n} \neq 0$. Then, there are elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n} \in K$ with $\alpha_{1} \cdot \alpha_{2} \cdots \cdots \alpha_{2 n} \neq 0$. It follows that there are elements $u, v \in X$ with $\alpha_{1} \cdot \alpha_{2} \cdots \cdot \alpha_{2 n}(u, v) \neq 0$. Note that for each i,

$$
\alpha_{i}=\sum_{j=1}^{m_{i}} \beta_{i, j} f \gamma_{i, j}
$$

where $\beta_{i, j}, \gamma_{i, j} \in I(X, T)$. Therefore,

$$
\sum_{j=1}^{m_{1}} \beta_{1, j} f \gamma_{1, j} \sum_{j=1}^{m_{2}} \beta_{2, j} f \gamma_{2, j} \cdots \sum_{j=1}^{m_{2 n}} \beta_{2 n, j} f \gamma_{2 n, j}(u, v) \neq 0
$$

so, there exists $\beta_{k_{t}, j_{t}}, \gamma_{k_{t}, j_{t}} \in I(X, T)$ for $1 \leq t \leq n$, such that

$$
\beta_{k_{1}, j_{1}} f \gamma_{k_{1}, j_{1}} \beta_{k_{2}, j_{2}} f \gamma_{k_{2}, j_{2}} \cdots \beta_{k_{2 n}, j_{2 n}} f \gamma_{k_{2 n}, j_{2 n}}(u, v) \neq 0 .
$$

Since $f \in Z(I(X, T))$, there exists a chain

$$
u \leq u_{1}<v_{1} \leq u_{2}<v_{2} \leq \cdots \leq u_{2 n}<v_{2 n} \leq v
$$

in X with $f\left(u_{i}, v_{i}\right) \neq 0$ for $i=1,2, \ldots, 2 n$. Note that for each i we have u_{i} strictly less than v_{i} because otherwise $f\left(u_{i}, v_{i}\right)=0$ as $f \in Z(I(X, T))$. It follows that for

$$
u_{1}<v_{1}<u_{3}<v_{3}<\cdots<u_{2 n-1}<v_{2 n-1}
$$

which is a chain of length n in X, we have

$$
a_{1} f\left(u_{1}, v_{1}\right) a_{2} f\left(u_{2}, v_{2}\right) a_{3} \cdots a_{n} f\left(u_{n}, v_{n}\right) a_{n+1} \neq 0
$$

for some $a_{1}, a_{2}, \ldots, a_{n+1} \in T$ which contradicts the fact that f has spp with n.
Lemma 5.2.9. Let X be a locally finite partially ordered set, T be a ring with identity. Suppose $f \in I(X, T)$ has spp. Then, for each $g \in I(X, T)$, fg and gf have spp.

Proof. Suppose f satisfies spp. Let $g \in I(X, T)$. Assume for contradiction that $f g$ does not satisfy spp. Then for each positive integer n, there exists a chain

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

in X and elements $a_{1}, a_{2}, \ldots, a_{n-1} \in T$ such that

$$
(f g)\left(x_{1}, y_{1}\right) a_{1}(f g)\left(x_{2}, y_{2}\right) a_{2} \cdots a_{n-1}(f g)\left(x_{n}, y_{n}\right) \neq 0
$$

Then for each i with $1 \leq i \leq n$ there exists $u_{i} \in\left[x_{i}, y_{i}\right]$ such that

$$
f\left(x_{1}, u_{1}\right) g\left(u_{1}, y_{1}\right) a_{1} f\left(x_{2}, y_{2}\right) g\left(u_{2}, y_{2}\right) a_{2} \cdots a_{n-1} f\left(x_{n}, u_{n}\right) g\left(u_{n}, y_{n}\right) \neq 0
$$

where $g\left(u_{i}, y_{i}\right) a_{i} \in T$ for each i. This contradicts the assumption that f has spp with n. Hence, $f g$ satisfies spp for each $g \in I(X, T)$. Similarly, $g f$ satisfies spp.

Lemma 5.2.10. Let T be a ring with identity, X be a locally finite partially ordered set and $f \in I(X, T)$. If $f g$ satisfies spp for each $g \in Z(I(X, T))$ then f satisfies spp.

Proof. Suppose that $f g$ satisfies spp for each $g \in Z(I(X, T))$ but f does not satisfy spp. Then, for all $n \in \mathbb{Z}^{+}$, there exists a chain

$$
x_{n, 1} \leq y_{n, 1}<x_{n, 2} \leq y_{n, 2}<\cdots<x_{n, n} \leq y_{n, n}
$$

in X and elements $a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1} \in T$ such that

$$
\begin{equation*}
f\left(x_{n, 1} ; y_{n, 1}\right) a_{n, 1} f\left(x_{n, 2} ; y_{n, 2}\right) a_{n, 2} \cdots a_{n, n-1} f\left(x_{n, n} ; y_{n, n}\right) \neq 0 \tag{5.1}
\end{equation*}
$$

Since f does not satisfy spp, by Proposition 5.2.5, X is unbounded. By Lemma 3.1.2, we may select chains so that $\left[x_{n, 1} ; y_{n, n}\right]$ and $\left[x_{m, 1} ; y_{m, m}\right]$ are disjoint for $n \neq m$.

Consider an element $g \in Z(I(X ; T))$ defined as follows:

$$
g(u, v)= \begin{cases}a_{n, i} & \text { if } u=y_{n, i}, v=x_{n, i+1}, n=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Then for each $n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
(f g)\left(x_{n, i} ; x_{n, i+1}\right)= & f\left(x_{n, i} ; x_{n, i}\right) g\left(x_{n, i} ; x_{n, i+1}\right)+f\left(x_{n, i} ; y_{n, i}\right) g\left(y_{n, i} ; x_{n, i+1}\right) \\
& +f\left(x_{n, i} ; x_{n, i+1}\right) g\left(x_{n, i+1} ; x_{n, i+1}\right) \\
= & f\left(x_{n, i} ; y_{n, i}\right) a_{n, i}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\prod_{i=1}^{2 n-1}(f g)\left(x_{2 n, i} ; x_{2 n, i+1}\right)= & f\left(x_{2 n, 1} ; y_{2 n, 1}\right) a_{2 n, 1} f\left(x_{2 n, 2} ; y_{2 n, 2}\right) a_{2 n, 2} \\
& \cdots f\left(x_{2 n, 2 n-1} ; y_{2 n, 2 n-1}\right) a_{2 n, 2 n-1} \\
\neq & 0
\end{aligned}
$$

by (5.1), which contradicts the fact that $f g$ has spp.
Proposition 5.2.11. If $f \in \mathcal{N}^{*}(I(X, T))$, then $f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$.

Proof. Suppose $f \in \mathcal{N}^{*}(I(X, T))$. Then, there exists a nil ideal A of $I(X, T)$ containing f. Consider

$$
A_{T}=\left\{g_{D} \in \prod_{x \in X} T \mid g \in A\right\}
$$

We show that A_{T} is a nil ideal of $\prod_{x \in X} T$ containing f_{D}. Let $g_{D}, h_{D} \in A_{T}$. Then there exits $g, h \in A$ with $g_{D}, h_{D} \in \prod_{x \in X} T$. Since A is an ideal, $g-h \in A$ and so

$$
(g-h)_{D}=g_{D}-h_{D} \in \prod_{x \in X} T .
$$

Thus $g_{D}-h_{D} \in A_{T}$. Let $(t) \in \prod_{x \in X} T$ and $g_{D} \in A_{T}$. Then there exists $g \in A$ with
$g_{D} \in \prod_{x \in X} T$ and

$$
f(x, y)= \begin{cases}t_{x} & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

is an element of $I(X, T)$. So $\left(f g_{D}\right)_{D}=f_{D} g_{D} \in \prod_{x \in X} T$. Hence $(t) g_{D} \in A_{T}$. Similarly $g_{D}(t) \in A_{T}$ giving that A_{T} is an ideal. We now check A_{T} is nil. Take any $g_{D} \in A_{T}$. Then there exists $g \in A$ with $g_{D} \in \prod_{x \in X} T$. Since A is nil, g is nilpotent. So g_{D} is nilpotent showing that A_{T} is a nil ideal.

Proposition 5.2.12. Suppose T is a ring with identity and X is a locally finite partially ordered set. If $f \in \mathcal{N}^{*}(I(X, T))$ and $g \in Z(I(X, T))$, then $f g$ has spp.

Proof. Suppose $f \in \mathcal{N}^{*}(I(X, T))$ and $g \in Z(I(X, T))$. Then, for all $x \in X$,

$$
(f g)_{D}(x, x)=f(x, x) g(x, x)=0
$$

as $g(x, x) \in Z(I(X, T))$ giving that $f g \in Z(I(X, T))$. To show $f g$ has spp, it is sufficient to check that the left ideal generated by $f g$ is nil (by Lemma 5.2.8).

Consider the left ideal, A, generated by $f g$. Pick any $x \in A$. Then $x=\sum_{\text {finite }} s_{i} f g_{i}$ for some $s_{i}, g_{i} \in I(X, T)$. Then $x \in \mathcal{N}^{*}(I(X, T))$, because $f \in \mathcal{N}^{*}(I(X, T))$ and $\mathcal{N}^{*}(I(X, T))$ is an ideal. Therefore, x is a nilpotent element, that is, A is a nil ideal. Thus $f g$ satisfies spp.

Proposition 5.2.13. Suppose T is a ring with identity and X is a locally finite partially ordered set. Then

$$
A=\left\{f \in(I(X, T)) \mid f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right) \text { and } f \text { has spp }\right\}
$$

is an ideal of $I(X, T)$.

Proof. Let $f, g \in A$. Then $f_{D}, g_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$. So, $(f-g)_{D}=f_{D}-g_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$. Since f, g has spp so does $f-g$ and therefore $f-g \in A$. Let $f \in A, g \in I(X, T)$. Then $f g$ satisfies spp by previous lemma. Since $(f g)_{D}(x, x)=\left(f_{D} g_{D}\right)(x, x)$ for all $x \in X$, and $f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$, we get $(f g)_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$. So $f g \in A$, that is, A is a right ideal of $I(X, T$.) Similarly, A is a left ideal of $I(X, T)$.

Proposition 5.2.14. Suppose T is a ring with identity and X is a locally finite partially ordered set. If $f \in I(X, T)$ has spp and $f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$, then the ideal generated by f_{D} is a nil ideal in $I(X, T)$.

Proof. Suppose f has spp and g is an element of the ideal generated by f_{D}. Then there are elements $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{k}, \beta_{k} \in I(X, T)$ with

$$
g=\alpha_{1} f_{D} \beta_{1}+\alpha_{2} f_{D} \beta_{2}+\cdots+\alpha_{k} f_{D} \beta_{k} .
$$

Then

$$
g_{D}=\sum_{i=1}^{k}\left(\alpha_{i}\right)_{D} f_{D}\left(\beta_{i}\right)_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right) .
$$

We claim that $g_{U} \in Z(I(X, T))$ has spp. Assume for contradiction that g_{U} does not have spp. Then for all $n \in \mathbb{Z}^{+}$there exists a chain

$$
u_{1}<v_{1}<u_{2}<v_{2}<\cdots<u_{n}<v_{n}
$$

in X, and elements $a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1} \in T$ with

$$
g_{U}\left(u_{1}, v_{1}\right) a_{n, 1} g_{U}\left(u_{2}, v_{2}\right) a_{n, 2} \cdots a_{n, n-1} g_{U}\left(u_{n}, v_{n}\right) \neq 0 .
$$

Then there are i_{t} 's with $1 \leq i_{t} \leq k$ and $1 \leq t \leq n$ such that

$$
\left(\alpha_{i_{1}} f_{D} \beta i_{1}\right)\left(u_{1}, v_{1}\right) a_{n, 1}\left(\alpha_{i_{2}} f_{D} \beta i_{2}\right)\left(u_{2}, v_{2}\right) a_{n, 2} \cdots a_{n, n-1}\left(\alpha_{i_{n}} f_{D} \beta_{i_{n}}\right)\left(u_{n}, v_{n}\right) \neq 0
$$

So, there are $u_{i}{ }^{\prime}, v_{i}{ }^{\prime} \in\left[u_{i}, v_{i}\right]$ with $1 \leq i \leq n$ such that

$$
\alpha_{i_{1}}\left(u_{1}, u_{1}^{\prime}\right) f_{D}\left(u_{1}^{\prime}, v_{1}^{\prime}\right) \beta_{i_{1}}\left(v_{1}^{\prime}, v_{1}\right) a_{n, 1} \cdots a_{n, n-1} \alpha_{i_{n}}\left(u_{n}, u_{n}{ }^{\prime}\right) f_{D}\left(u_{n}{ }^{\prime}, v_{n}{ }^{\prime}\right) \beta_{i_{n}}\left(v_{n}{ }^{\prime}, v_{n}\right) \neq 0
$$

So f_{D} does not satisfy spp. This contradicts Proposition 5.2.4. Hence g_{U} has spp. Also we have $g_{U} \in Z(I(X, T))$, so, be Lemma 5.2.8, g_{U} generates a nilpotent ideal. On the other hand, g_{D} is nilpotent as $g_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$. So, there exists $m \in \mathbb{Z}^{+}$ with $\left(g_{D}\right)^{m}=0$. It follows that g^{m} is an element of the ideal generated by $g_{U}\left(g^{m}=\right.$ $\left.\left(g_{U}+g_{D}\right)^{m}=g_{U}{ }^{m}+\cdots+g_{D}{ }^{m}\right)$ and is thus nilpotent. Hence, g is nilpotent. Thus f_{D} generates a nil ideal.

We can now describe the upper nilradical of the incidence algebra $I(X, T)$ in terms of the upper nilradical of $\prod_{x \in X} T$ and the strong product property.

Theorem 5.2.15. Let T is a ring with identity and X is a locally finite partially ordered set. Then, $f \in \mathcal{N}^{*}(I(X, T))$ if and only if $f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$ and f has spp.

Proof. (Necessity) Suppose $f \in \mathcal{N}^{*}(I(X, T))$. By Proposition 5.2.11, we have $f_{D} \in$ $\mathcal{N}^{*}\left(\prod_{x \in X} T\right)$. We check f satisfies spp. Assume for a contradiction that f does not have spp. Then, for all $n \in \mathbb{Z}^{+}$, there exists a chain

$$
x_{n, 1} \leq y_{n, 1}<x_{n, 2} \leq y_{n, 2}<\cdots<x_{n, n} \leq y_{n, n}
$$

in X and elements $a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1} \in T$ such that

$$
f\left(x_{n, 1} ; y_{n, 1}\right) a_{n, 1} f\left(x_{n, 2} ; y_{n, 2}\right) a_{n, 2} \cdots a_{n, n-1} f\left(x_{n, n} ; y_{n, n}\right) \neq 0
$$

It follows that X is unbounded and since X is locally finite we may select chains so that $\left[x_{n, 1} ; y_{n, n}\right]$ and $\left[x_{m, 1} ; y_{m, m}\right]$ are disjoint for $n \neq m$.

Consider an element $g \in Z(I(X ; T))$ defined as follows:

$$
g(u, v)= \begin{cases}a_{n, i} & \text { if } u=y_{n, i}, v=x_{n, i+1}, n=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Then, as in the proof of Lemma 5.2.8, $f g$ does not satisfy spp. But this contradicts Proposition 5.2.12 . Hence, f satisfies spp.
(Sufficiency) We have seen before

$$
A=\left\{f \in I(X, T) \mid f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right) \text { and } f \text { has } \operatorname{spp}\right\}
$$

is an ideal of $I(X, T)$. By the necessity part of the proof we have $\mathcal{N}^{*}(I(X, T)) \subseteq A$.

Now, let $f \in A$. We first show $f_{U} \in \mathcal{N}^{*}(I(X, T))$. Using Theorem 5.2.7 we check $f_{U} \in \mathcal{N}_{*}(I(X, T))$. Since f has spp, f_{U} has spp by Proposition 5.2.4. For all $x \in X$, $\left(f_{U}\right)_{D}(x, x)=0$, so $\left(f_{U}\right)_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$. Hence $f_{U} \in \mathcal{N}_{*}(I(X, T)) \subseteq \mathcal{N}^{*}(I(X, T))$.

In order to show $f_{D} \in \mathcal{N}^{*}(I(X, T))$, it is sufficient to show that f_{D} generates a nil ideal in $(I(X, T))$. This result follows from Proposition 5.2.14. Therefore $f \in \mathcal{N}^{*}(I(X, T))$ and $A=\mathcal{N}^{*}(I(X, T))$.

Proposition 5.2.16. Let T be a ring with identity and X be a locally finite partially ordered set. Then $t \in \mathcal{N}^{*}(T) \backslash \mathcal{N}_{*}(T)$, if and only if te $x_{x x} \in \mathcal{N}^{*}(I(X, T)) \backslash \mathcal{N}_{*}(I(X, T))$, for all $x \in X$.

Proof. (Necessity) First we check $t e_{x x} \in \mathcal{N}^{*}(I(X, T))$. Using Theorem 5.2.15, we show $t e_{x x}$ has spp and $\left(t e_{x x}\right)_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$.

Consider any chain of the form $x_{1} \leq y_{1}<x_{2} \leq y_{2}$ in X. Then

$$
t e_{x x}\left(x_{1}, y_{1}\right) T t e_{x x}\left(x_{2}, y_{2}\right)=0
$$

since either $x \neq x_{1}$ or $x \neq x_{2}$. So $t e_{x x}$ has spp with 2 .
Now consider $\left(t e_{x x}\right)_{D} \in \prod_{x \in X} T$. We check $\left(t e_{x x}\right)_{D}$ generates nil ideal in $\prod_{x \in X} T$. Let $(s)=\sum_{\text {finite }}(\alpha)\left(t e_{x x}\right)_{D}(\beta)$ be an element of the ideal generated by $\left(t e_{x x}\right)_{D}$ where $(\alpha),(\beta) \in \prod_{x \in X} T$. Then for any $y \in X$,

$$
\begin{aligned}
(s)_{y} & =\sum_{\text {finite }}(\alpha)_{y}\left(\left(t e_{x x}\right)_{D}\right)_{y}\left(\beta_{y}\right) \\
& = \begin{cases}0 & \text { if } x \neq y \\
(\alpha)_{y} t(\beta)_{y} & \text { else }\end{cases}
\end{aligned}
$$

But $(\alpha)_{y} t(\beta)_{y} \in \mathcal{N}^{*}(T)$ as $t \in \mathcal{N}^{*}(T)$ and therefore $(s)_{y}$ is nilpotent. Hence, $\left(t e_{x x}\right)_{D} \in$ $\mathcal{N}^{*}\left(\prod_{x \in X} T\right)$.

Now we check $\left(t e_{x x}\right)_{D} \in \prod_{x \in X} T$ is not strongly nilpotent. Assume the converse. Let $\left(f_{0}\right),\left(f_{1}\right),\left(f_{2}\right), \ldots$ be a sequence in $\in \prod_{x \in X} T$ with $\left(f_{0}\right)=\left(t e_{x x}\right)_{D}$ and $\left(f_{i}\right)=\left(f_{i-1}\right)\left(g_{i-1}\right)\left(f_{i-1}\right)$ for some $\left(g_{i-1}\right) \in I(X, T), i=1,2, \ldots$ So there exists $m \in \mathbb{Z}^{+}$ such that $\left(f_{m}\right)=0$. Consider now

$$
\begin{aligned}
\left(f_{0}\right)_{x}=f_{0}(x, x)=t e_{x x}(x, x) & =t \\
\left(f_{1}\right)_{x}=f_{1}(x, x)=f_{0}(x, x) g_{0}(x, x) f_{0}(x, x) & =t\left(g_{0}\right)_{x} t \\
\left(f_{2}\right)_{x}=f_{2}(x, x)=f_{1}(x, x) g_{1}(x, x) f_{1}(x, x) & =t\left(g_{1}\right)_{x} t\left(g_{2}\right)_{x} t\left(g_{1}\right)_{x} t
\end{aligned}
$$

This implies that

$$
\left(f_{0}\right)_{x},\left(f_{1}\right)_{x},\left(f_{2}\right)_{x}, \ldots
$$

is a sequence in T with $f_{0}(x, x)=t$ and

$$
\left(f_{i}\right)_{x}=\left(f_{i-1}\right)_{x}\left(g_{i-1}\right)_{x}\left(f_{i-1}\right)_{x}
$$

for $i=1,2, \ldots$. Also we have $\left(f_{n}\right)_{x}=0$ for each $x \in X$ giving that t is strongly nilpotent, a contradiction.
(Sufficiency) Since $t e_{x x}(u, v)=\left\{\begin{array}{ll}t & \text { if } u=v=x \\ 0 & \text { otherwise }\end{array}\right.$, the result easily follows.

Proposition 5.2.17. Let T is a ring with identity and X is a locally finite partially ordered set. If $I(X, T)$ has a unique nilradical, so does T.

Proof. Suppose $I(X, T)$ has a unique nilradical but T does not have a unique nilradical. Then, there exists an element $t \in \mathcal{N}^{*}(T)$ which is not contained in $\mathcal{N}_{*}(T)$. Let $x \in X$. Then by Proposition 4.2.13, $t e_{x x} \in \mathcal{N}^{*}(I(X, T)) / \mathcal{N}_{*}(I(X, T))$ which contradicts the fact that $I(X, T)$ has a unique nilradical.

Proposition 5.2.18. Suppose X is a finite partially ordered set and T is a ring with unity. Then T has a unique nilradical if and only if $I(X, T)$ has unique nilradical.

Proof. (Necessity) Assume T has unique nilradical. We check

$$
\mathcal{N}^{*}(I(X, T)) \subseteq \mathcal{N}_{*}(I(X, T))
$$

Pick $f \in \mathcal{N}^{*}(I(X, T))$. By Theorem 5.2.7, we have $f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$ and f has spp. In order to show $f \in \mathcal{N}_{*}(I(X, T))$ we must check $f_{D} \in \mathcal{N}_{*}\left(\prod_{x \in X} T\right)$. Since $f_{D} \in \mathcal{N}^{*}\left(\prod_{x \in X} T\right)$, f_{D} generates a nil ideal in $\prod_{x \in X} T$. This means that $f_{D}(x, x)=\left(f_{D}\right)_{x}$ generates a nil ideal in T, for each $x \in X$. It follows that $\left(f_{D}\right)_{x} \in \mathcal{N}^{*}(T)=\mathcal{N}_{*}(T)$, for each $x \in X$. That is to say $\left(f_{D}\right)_{x}$ is strongly nilpotent, for each $x \in X$.

Now, we show that f_{D} is strongly nilpotent. Pick a sequence $\left(t_{1}\right),\left(t_{2}\right), \ldots$ in $\prod_{x \in X} T$ with $\left(t_{1}\right)=f_{D}$ and $\left(t_{i}\right) \in\left(t_{i-1}\right) \prod_{x \in X} T\left(t_{i-1}\right)$ for $i=1,2, \ldots$ Then $\left(t_{1}\right)_{x},\left(t_{2}\right)_{x}, \ldots$ is a sequence in T with $\left(t_{1}\right)_{x}=\left(f_{D}\right)_{x}$ and $\left(t_{i}\right)_{x} \in\left(t_{i-1}\right)_{x} T\left(t_{i-1}\right)_{x}$, for each $x \in X$. As $\left(f_{D}\right)_{x}$ is strongly nilpotent, for each $x \in X$, there exists $n_{x} \in \mathbb{Z}^{+}$such that $\left(t_{n_{x}}\right)_{x}=0$. Set $n=\max \left\{n_{x} \mid x \in X\right\}$. Then $\left(t_{n}\right)_{x}=0$, for each $x \in X$, giving that $\left(t_{n}\right)=0$. It follows
that f_{D} is strongly nilpotent.
(Sufficiency) Follows from Proposition 5.2.17.

The converse of the Proposition 5.2.17 is still an open problem.

Question Does $I(X, T)$ have a unique nilradical if T has a unique nilradical?

6. THE PERIODIC RADICAL OF INCIDENCE ALGEBRAS

In this chapter, we first introduce the notion of periodic radical. Secondly, we will determine the necessary and sufficient conditions for an element to belong to the periodic radical of an incidence algebra over a commutative ring with unity.

6.1. The Periodic Radical

Definition Let T be a ring. An element x in T is called periodic if there exists positive integers m, n with $m \neq n$ such that $x^{m}=x^{n}$. A ring consisting of periodic elements is called a periodic ring.

Proposition 6.1.1. Let x belong to a ring T.
(i) x is periodic if and only if x^{n} is an idempotent for some positive integer n.
(ii) If x is periodic and T has no nonzero nilpotent elements, then $x^{n}=x$ for some integer n with $n \geq 2$.

Proof. (i) Let x be periodic. Say $x^{m}=x^{n}$ with $d=m-n>0$. Then inductively we have $x^{n}=x^{n+s d}$ for all $s \geq 1$ because

$$
\begin{aligned}
x^{n}= & x^{n+(m-n)} \\
= & x^{n} x^{d} \\
= & x^{n+d} x^{d} \\
= & x^{n} x^{2 d} \\
& \ldots \\
= & x^{n+s d} .
\end{aligned}
$$

Hence $x^{n}=x^{2 n+r}$ for some $r \geq 0$, in which case x^{n+r} is an idempotent as

$$
x^{2(n+r)}=x^{2 n+2 r}=x^{2 n+r} x^{r}=x^{n+r} .
$$

It follows that x^{n+r} is idempotent. Conversely, if x is idempotent, then x is obviously periodic.
(ii) Let x be periodic and T has no nonzero nilpotent elements. So $x^{m}=x^{n}$ for some $m, n \in \mathbb{Z}^{+}$with $m \neq n$. Say $m>n$. It follows that $\left(x^{m-n+1}-x\right)$ is nilpotent as

$$
\begin{aligned}
\left(x^{m-n+1}-x\right)^{n+1} & =\left(x^{m-n+1}-x\right)\left(x^{m-n+1}-x\right) \cdots\left(x^{m-n+1}-x\right) \\
& =\left(x^{m-n+1}-x\right) x^{n-1}\left(x^{m n-n^{2}+1}-\cdots+(-1)^{n} x\right) \\
& =\left(x^{m}-x^{n}\right)\left(x^{m n-n^{2}+1}-\cdots+(-1)^{n} x\right) \\
& =0
\end{aligned}
$$

By assumption T has no non-zero nilpotent elements, therefore, $x^{m-n+1}-x=0$. This implies that $x^{m-n+1}=x$ where $m-n+1 \geq 2$.

Theorem 6.1.2. Let T be a ring; and suppose that for all $t \in T$, there exists a positive integer $n=n_{t}$ and a polynomial $p(x)=p_{t}(x) \in \mathbb{Z}[x]$ such that $t^{n}=t^{n+1} p(t)$. Then T is periodic.

Proof. Pick any $t \in T$. We identify the ring $t \mathbb{Z}[t]$ generated by t with K. Choose $n \in \mathbb{Z}^{+}$ and $\mathrm{p}(x) \in \mathbb{Z}^{+}[x]$ such that $t^{n}=t^{n+1} p(t)$. Then $t-t^{2} \mathrm{p}(t) \in A n n\left(t^{n-1}\right)$ as

$$
\left(t-t^{2} \mathrm{p}(t)\right) t^{n-1}=t^{n}-t^{n+1} \mathrm{p}(t)=0
$$

Let $\bar{K}=K / \operatorname{Ann}\left(t^{n-1}\right)$ and \bar{t} be the canonical image of t in \bar{K}. We have $\bar{t}=\overline{t^{2}} \mathrm{p}(\bar{t})$ and the element $\bar{e}=\bar{t} \mathrm{p}(\bar{t})$ is an idempotent as

$$
\bar{e}^{2}=\bar{t} \mathrm{p}(\bar{t}) \bar{t} \mathrm{p}(\bar{t})=\overline{t^{2}} \mathrm{p}(\bar{t}) \mathrm{p}(\bar{t})=\bar{t} \mathrm{p}(\bar{t})=\bar{e}
$$

In addition, we have $\bar{t}=\bar{t} \bar{e}$.

Now, if $\bar{e}=\overline{0}$, then $\bar{t}=\overline{0}$, that is, $t t^{n-1}=0$, that is, $t^{n}=0$ giving that t is periodic.

Suppose \bar{e} has infinite additive order in \bar{K}. Define

$$
\begin{aligned}
\varphi: \quad \mathbb{Z} & \rightarrow \mathbb{Z} \bar{e} \leq \bar{K} \\
m & \mapsto \quad m \bar{e}
\end{aligned}
$$

Then φ is obviously onto. In addition, φ is one-to-one as if $m_{1} \bar{e}=m_{2} \bar{e}$, then we have $\left(m_{1}-m_{2}\right) \bar{e}=\overline{0}$ and since \bar{e} has infinite additive order $m_{1}-m_{2}=0$ giving that $m_{1}=m_{2}$. On the other hand for any $m_{1}, m_{2} \in \mathbb{Z}$,

$$
\varphi\left(m_{1}+m_{2}\right)=\left(m_{1}+m_{2}\right) \bar{e}=m_{1} \bar{e}+m_{2} \bar{e}=\varphi\left(m_{1}\right)+\varphi\left(m_{2}\right)
$$

and

$$
\varphi\left(m_{1} m_{2}\right)=\left(m_{1} m_{2}\right) \bar{e}=\left(m_{1} m_{2}\right) \bar{e}^{2}=\left(m_{1} \bar{e}\right)\left(m_{2} \bar{e}\right)=\varphi\left(m_{1}\right) \varphi\left(m_{2}\right) .
$$

Hence φ is a ring isomorphism. This implies that \bar{K} contains an isomorphic copy of \mathbb{Z}. Note that, \bar{K} satisfies our original hypothesis which yields a contradiction as \mathbb{Z} does not satisfy the hypothesis. Thus, \bar{e} has finite additive order, and so does \bar{t}.

Suppose m is the additive order of \bar{t}. Then $m \bar{K}=\overline{0}$, as \bar{K} is generated by \bar{t}. Let \bar{N} be the set of all nilpotent elements of \bar{K}. Then \bar{N} is an ideal of \bar{K}. Now consider the factor ring $\tilde{K}=\bar{K} / \bar{N}$. If $\tilde{k} \in \tilde{K}$, then we claim that \tilde{k} is of square-free order. Suppose not. Let n^{2} be the additive order of \tilde{k}. Then $n^{2} \tilde{k}=\tilde{0}$ implies $n^{2} \tilde{k}^{2}=\tilde{0}$, that is, $(n \tilde{k})^{2}=\tilde{0}$. But since $\tilde{K}=\bar{K} / \bar{N}$ does not contain any non-zero nilpotent elements, we get $n \tilde{k}=\tilde{0}$. Hence, \tilde{K} has all of its elements of square-free order. Moreover, $p^{2} q$ cannot be order of an element in \tilde{K} because otherwise if $p^{2} q \tilde{k}=\tilde{0}$, then $q p^{2} q \tilde{k} \tilde{k}=(p q \tilde{k})^{2}=\tilde{0}$ and $p q \tilde{k}=\tilde{0}$ as \tilde{K} contains no nontrivial nilpotent elements. Let $p_{1} p_{2} \cdots p_{s} \tilde{k}=\tilde{0}$ for some primes $p_{1}, p_{2}, \ldots, p_{s} \in \mathbb{Z}^{+}$, for some $\tilde{k} \in \tilde{K}$. Then \tilde{k} can be written as $\sum_{i=1}^{s} p_{1} p_{2} \cdots \hat{p}_{i} \cdots p_{s} a_{i} \tilde{k}$ where $\sum_{i=1}^{s} p_{1} p_{2} \cdots \hat{p}_{i} \cdots p_{s} a_{i}=1$ by Euclidean algorithm as $p_{1}, p_{2}, \ldots, p_{s}$ are primes where $\hat{p_{i}}$ denotes that p_{i} is not in the multiplication
of p_{j} 's. Note that each $p_{1} p_{2} \cdots \hat{p}_{i} \cdots p_{s} a_{i} \tilde{k}$ generates an ideal \tilde{I}_{i} of characteristic p_{i}, therefore, $\tilde{I}_{i} \cong \mathbb{Z}_{p_{i}}$ for each $1 \leq i \leq s$. Also, since we have $m \tilde{K}=\tilde{0}$, there exist only finitely many \tilde{I}_{i} 's. On the other hand, for any $i \neq j$, we have $\tilde{I}_{i} \cap \tilde{I}_{j}=\tilde{0}$ as if $\tilde{x} \in \tilde{I}_{i} \cap \tilde{I}_{j}$, then $p_{i} \tilde{x}=p_{j} \tilde{x}=\tilde{0}$ for some primes p_{i}, p_{j} and $1=a p_{i}+b p_{j}$ for some $a, b \in \mathbb{Z}$ yields $\tilde{x}=a p_{i} \tilde{x}+b p_{j} \tilde{x}=\tilde{0}$. Thus, $\tilde{K}=\tilde{I}_{1} \oplus \tilde{I}_{2} \oplus \cdots \oplus \tilde{I}_{n}$. It follows that \tilde{t} generates a finite ring, so there exist distinct $n_{1}, n_{2} \in \mathbb{Z}^{+}$satisfying $\tilde{t}^{n_{1}}=\tilde{t}^{n_{2}}$, that is, $\bar{t}^{n_{1}}-\bar{t}^{n_{2}} \in \bar{N}$. But this forces \bar{t} to be algebraic over \mathbb{Z}, so that \bar{t} generates a finite subring of \bar{K}. Consequently, there exists $j, k \in \mathbb{Z}^{+}$such that $\bar{t}^{j}=\bar{t}^{k}$, that is, $t^{j}-t^{k} \in \operatorname{Ann}\left(t^{n-1}\right)$ or $t^{j+n-1}=t^{k+n-1}$. Thus t is periodic.

We shall check now that the periodicity is a radical property.
Lemma 6.1.3. Let T be a ring and I_{1}, I_{2} be periodic ideals of T. Then $I_{1}+I_{2}$ is periodic.

Proof. Suppose I_{1}, I_{2} are periodic ideals of a ring T. By the second isomorphism theorem, we have $\left(I_{1}+I_{2}\right) / I_{1} \cong I_{2} /\left(I_{1} \cap I_{2}\right)$. So $\left(I_{1}+I_{2}\right) / I_{1}$ is periodic. Therefore, for all $a \in I_{1}+I_{2}$, there exists $m, n \in \mathbb{Z}^{+}, m \neq n$ such that $a^{m}-a^{n} \in I_{1}$. By assumption, I_{1} is also periodic, so, there exists $k, j \in \mathbb{Z}^{+}, k \neq j$ such that $\left(a^{n}-a^{m}\right)^{j}=\left(a^{n}-a^{m}\right)^{k}$. Without lost of generality, suppose $j<k$ and $n<m$. Then

$$
\left(a^{n}-a^{m}\right)^{j}=\left(a^{n}-a^{m}\right)^{k}
$$

yields

$$
a^{n j}-\cdots+(-1)^{j} a^{m j}=a^{n k}-\cdots+(-1)^{k} a^{m k}
$$

Then, it follows that

$$
\begin{aligned}
a^{n j} & =a^{n k}-\cdots+(-1)^{k} a^{m k}+\cdots+(-1)^{j} a^{m j} \\
& =a^{n j+1} p(a)
\end{aligned}
$$

where $p(x)$ is a polynomial in $\mathbb{Z}[x]$. Thus, $I_{1}+I_{2}$ is periodic by Theorem 6.1.2.

Corollary 6.1.4. For a ring T, the sum of all periodic ideals is periodic.

Proof. Let $P(T)$ be the sum of all periodic ideals of T and $x \in P$. Then

$$
x \in I_{1}+I_{2}+\cdots+I_{n}
$$

for some periodic ideals $I_{1}, I_{2}, \ldots, I_{n}$ and hence x is periodic by the previous lemma.

Lemma 6.1.5. Let T be a ring and $P(T)$ be the sum of periodic ideals of T. Then $T / P(T)$ contains no nonzero periodic ideals.

Proof. If $I / P(T)$ is a nonzero periodic ideal of $T / P(T)$, then $I+P(T)$ is a periodic ideal containing $P(T)$ which is a contradiction as $P(T)$ is the sum of periodic ideals of T.

Obviously, a homomorphic image of a periodic ring is periodic. Hence, we have Corollary 6.1.6. Periodicity is a radical property.

Definition The periodic radical of a ring T, denoted by $\mathcal{P}(T)$, is the sum of all the periodic ideals of T.

The next result describes an important relationship among the periodic radical $\mathcal{P}(T)$, the Jacobson radical $\mathcal{J}(T)$ and the upper nilradical $\mathcal{N}^{*}(T)$.

Proposition 6.1.7. For any ring with identity T, we have $\mathcal{P}(T) \cap \mathcal{J}(T)=\mathcal{N}^{*}(T)$.

Proof. Suppose $x \in \mathcal{N}^{*}(T)$. Then there exists a positive integer n such that $x^{n}=0$. It follows that $x^{n}=x^{2 n}=0$ and x is periodic. We now check that $x \in \mathcal{J}(T)$. Take any
$t \in T$. Then $t x \in \mathcal{N}^{*}(T)$ is nilpotent, say with integer k. Then we get

$$
\left(1+t x+(t x)^{2}+\cdots+(t x)^{k-1}\right)(1-t x)=1-(t x)^{k}=1
$$

giving that $1-t x$ is left invertible, that is, $x \in \mathcal{J}(T)$. Hence $\mathcal{N}^{*}(T) \subseteq \mathcal{P}(T) \cap \mathcal{J}(T)$.

Conversely, suppose $x \in \mathcal{P}(T) \cap \mathcal{J}(T)$. Since $x \in \mathcal{P}(T), x^{n}$ is an idempotent for some integer n. But then $x^{n} \in \mathcal{J}(T)$ forces $x^{n}=0$. If $x^{n} \neq 0$, then by Proposition 2.0.5, $T=T\left(1-x^{n}\right) \oplus T x^{n}$ as x^{n} is an idempotent. We have $T\left(1-x^{n}\right)$ is an ideal of T, so, by Proposition 2.0.3, contained in a maximal ideal M, say. Then, $\left(1-x^{n}\right) \in M$. On the other hand, $\mathcal{J}(T)$ is the intersection of all maximal left ideals of T and $x^{n} \in \mathcal{J}(T)$ yields $x^{n} \in M$. Hence, we have $x^{n}, 1-x^{n} \in M$, that is, $1 \in M$, a contradiction. Thus, $\mathcal{P}(T) \cap \mathcal{J}(T) \subseteq \mathcal{N}^{*}(T)$.

If T is a ring with identity, then the periodic radical of T is an intersection of some suitable prime ideals as the following theorem states.

Theorem 6.1.8. Let T be a ring with identity. Then $\mathcal{P}(T)=\bigcap_{\alpha} P_{\alpha}$, where the intersection is taken over the set of prime ideals P_{α} such that T / P_{α} contains no nontrivial periodic ideals and such that if an integer z is a non-zero divisor in T, then it is still a non-zero divisor in T / P_{α}.

If there are no prime ideals P_{α} such that T / P_{α} contains no nontrivial periodic ideals, we say that the intersection is T.

Proof. If $\mathcal{P}(T)=T$ the result is obviously correct. Suppose then that $\mathcal{P}(T) \neq T$. Let P_{α} be a prime ideal of T such that T / P_{α} contains no nontrivial periodic ideals and such that if $z \in \mathbb{Z}^{+}$is a nonzero divisor in T, then it is still a nonzero divisor in $T / P(T)$. If $\mathcal{P}(T) \nsubseteq P_{\alpha}$, then

$$
\frac{P_{\alpha}+\mathcal{P}(T)}{P_{\alpha}}=\left\{x+P_{\alpha} \mid x \in P_{\alpha}+\mathcal{P}(T)\right\}=\left\{y+P_{\alpha} \mid y \in \mathcal{P}(T)\right\}
$$

is a nontrivial periodic ideal of T / P_{α}, which is a contradiction. Thus, $\mathcal{P}(T) \subseteq P_{\alpha}$, and
hence $\mathcal{P}(T) \subseteq \bigcap_{\alpha} P_{\alpha}$.

On the other hand, for any $a \in T-\mathcal{P}(T)$, the ideal (a) generated by a is not periodic. Thus, by the Theorem 6.1.2, there exists an element $b \in(a)$ such that $b^{n}-b^{n+1} p(b) \neq 0$, for all $n \in \mathbb{Z}^{+}$and for all $p(x) \in \mathbb{Z}[x]$. Let

$$
H=\left\{z\left(b^{n}-b^{n+1} p(b)\right) \mid n \in \mathbb{Z}^{+}, p(x) \in \mathbb{Z}[x], z \in \mathbb{Z}^{+} \text {non-zero divisor in } T\right\}
$$

and \mathcal{A} be the set of all ideals P in T with $P \cap H=\emptyset$. Then $\mathcal{A} \neq \emptyset$ since $0 \in \mathcal{A}$, so there exists a maximal element P_{β} in \mathcal{A} by Zorn's lemma.

We claim that P_{α} is a prime ideal in T. Let A and B be ideals in T such that $A \nsubseteq P_{\beta}$ and $B \nsubseteq P_{\beta}$. Then, both $A+P_{\beta}$ and $B+P_{\beta}$ intersect with H, say $z_{1}\left(b^{m}-b^{m+1} f(b)\right) \in A+P_{\beta}$ and $z_{2}\left(b^{n}-b^{n+1} g(b)\right) \in B+P_{\beta}$ for some $m, n \in \mathbb{Z}^{+}$, $f(x), g(x) \in \mathbb{Z}[x]$ and non-zero divisors z_{1}, z_{2} in T. Then

$$
\begin{aligned}
z_{1} z_{2}\left(b^{m+n}-b^{m+n+1} h(b)\right) & =z_{1}\left(b^{m}-b^{m+1} f(b)\right) z_{2}\left(b^{n}-n^{n+1} g(b)\right) \\
& \in\left(A+P_{\beta}\right)\left(B+P_{\beta}\right) \\
& \subseteq A B+P_{\beta}
\end{aligned}
$$

where $h(x)=f(x)+g(x)-x f(x) g(x)$. But $z_{1} z_{2}\left(b^{m+n}-b^{m+n+1} h(b)\right) \notin P_{\beta}$, hence $A B \notin P_{\beta}$ giving that P_{β} is prime.

Next, we prove that T / P_{β} contains no nontrivial periodic ideals. Let $I \supset P_{\beta}$ be an ideal of T and I / P_{β} be a nontrivial periodic ideal of T / P_{β}. Then, by the maximality of P_{β}, there exists an integer $m \in \mathbb{Z}^{+}$, a polynomial $f(x) \in \mathbb{Z}[x]$ and $z \in \mathbb{Z}^{+}$, a non-zero divisor in T such that $z\left(b^{m}-b^{m+1} f(b)\right) \in I$, so there exists distinct positive integers s and t with $s<t$ such that

$$
\left(z\left(b^{m}-b^{m+1} f(b)\right)+P_{\beta}\right)^{s}=\left(z\left(b^{m}-b^{m+1} f(b)\right)+P_{\beta}\right)^{t}
$$

and therefore

$$
z^{s}\left(b^{m}-b^{m+1} f(b)\right)^{s}-z^{t}\left(b^{m}-b^{m+1} f(b)\right)^{t} \in P_{\beta}
$$

which contradicts the choice of P_{β} since

$$
z^{s}\left(b^{m}-b^{m+1} f(b)\right)^{s}-z^{t}\left(b^{m}-b^{m+1} f(b)\right)^{t}
$$

can be written in the form

$$
z^{s}\left(b^{m s}-b^{m s+1}\right) h^{\prime}(b)
$$

where $h^{\prime}(x) \in \mathbb{Z}[x]$ and z^{s} a non-zero divisor in T. Then T / P_{β} contains no nontrivial periodic ideals.

We must also check that if z is a non-zero divisor in T, then z is also a nonzero divisor in T / P_{β}. Suppose z is a non-zero divisor in T. Let $z \bar{t}=\overline{0}$ for some $\bar{t} \in T / P_{\beta}$. We check $\bar{t}=\overline{0}$. Consider the ideal $\left(z 1_{T}\right)$ generated by $z 1_{T}$ and the ideal (t) generated by t. We have $\left(z 1_{T}\right)(t) \subseteq P_{\beta}$ as $z t \in P_{\beta}$. Since P_{β} prime, either $\left(z 1_{T}\right) \subseteq P_{\beta}$ or $(t) \subseteq P_{\beta}$. If $\left(z 1_{T}\right) \subseteq P_{\beta}$, then $z 1_{T} \in P_{\beta}$. This implies that $\left(z 1_{T}\right)\left(b^{n}-b^{n+1} p(b)\right)=z\left(b^{n}-b^{n+1} p(b)\right) \in P_{\beta}$ for any $p(x) \in \mathbb{Z}[x]$ and $n \in \mathbb{Z}^{+}$. This yields a contradiction as $H \cap P_{\beta}=\emptyset$. Hence, $(t) \subseteq P_{\beta}$ and therefore $t \in P_{\beta}$. Thus, $\bar{t}=\overline{0}$ and z is a non-zero divisor in T / P_{β}.

Since $a \notin P_{\beta}$, we have $a \notin \bigcap P_{\alpha}$ where the intersection is taken over the set of prime ideals P_{α} such that T / P_{α} contains no nontrivial periodic ideals and such that if an integer z is a non-zero divisor in T, then it is still a non-zero divisor in T / P_{α}. Thus, $\bigcap P_{\alpha} \subseteq \mathcal{P}(T)$ which completes the proof.

6.2. The Periodic Radical of $I(X, R)$

Let $x \in \mathcal{P}(R)$. For any $y \in R$, define $e_{x}(y)$ to be the smallest positive integer such that $(x y)^{e_{x}(y)}$ is an idempotent. Then define e_{x} as follows:

$$
e_{x}= \begin{cases}\max \left\{e_{x}(y) \mid y \in R\right\} & \text { if it exists } \\ \infty & \text { otherwise }\end{cases}
$$

Proposition 6.2.1. Assume R is a commutative ring and $A=\prod_{i \in I} R_{i}$, with $R_{i} \cong R$, for all $i \in I$. Let $a=\left(a_{i}\right)_{i \in I} \in A$. Then $a \in \mathcal{P}(A)$ if and only if the following conditions all hold:
(i) $a_{i} \in \mathcal{P}(R)$, for all $i \in I$
(ii) $\left|\left\{i \mid e_{a_{i}}=\infty\right\}\right|<\infty$
(iii) There exists $N \in \mathbb{Z}^{+}$such that whenever $e_{a_{i}}<\infty$, then $e_{a_{i}}<N$, for all $i \in I$.

Proof. Suppose $a \in \mathcal{P}(A)$. Obviously, $a_{i} \in \mathcal{P}(R)$ for all $i \in I$. If either (ii) or (iii) fails to hold, then we can find a subset $\left\{i_{1}, i_{2}, \ldots\right\}$ of I and elements $b_{i_{1}}, b_{i_{2}}, \ldots$ of R such that

$$
e_{a_{i_{1}}}\left(b_{i_{1}}\right)<e_{a_{i_{2}}}\left(b_{i_{2}}\right)<\cdots
$$

Consider $c=\left(c_{i}\right)_{i \in I} \in A$ such that $c_{k}=b_{i_{j}}$ if $k=i_{j}$ for some j and $c_{k}=0$ otherwise. Then $a c \in \mathcal{P}(A)$. So, there exists $n \in \mathbb{Z}^{+}$such that $(a c)^{n}=(a c)^{2 n}$. This means that $\left(a_{i} c_{i}\right)^{n}=\left(a_{i} c_{i}\right)^{2 n}$ for all i which contradicts the fact that $e_{a_{i_{j}}}\left(b_{i_{j}}\right)>n$ for some j.

Conversely, suppose that (i), (ii) and (iii) hold. First observe that if x^{n} is an idempotent, then so is $x^{m n}$, for all $n \geq 1$ because $x^{2 n m}=\left(x^{2 n}\right)^{m}=\left(x^{n}\right)^{m}=x^{m n}$. Now let i_{1}, \ldots, i_{k} be indices such that $e_{a_{i_{j}}}=\infty$ for $1 \leq j \leq k$. Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers such that ${a_{i j}}^{{ }^{n}}$ is an idempotent. Put $t=n_{1} \cdot n_{2} \cdots n_{k}$. Then $a_{i_{j}}{ }^{t}$ is an idempotent for $1 \leq j \leq k$. Now consider a_{i} 's where $i \in I \backslash\left\{i_{1}, \ldots, i_{k}\right\}$. By (iii),
we have $e_{a_{i}}<N$ for some $N \in \mathbb{Z}^{+}$. In particular, for all $m_{i} \in \mathbb{Z}^{+}$satisfying $a_{i}{ }^{m_{i}}$ is an idempotent, we have $m_{i}<N$. Therefore, there are at most N many distinct m_{i} 's. Let s be the multiplication of m_{i} 's. Then, $a_{i}{ }^{s}$ is an idempotent for $i \in I \backslash\left\{i_{1}, \ldots, i_{k}\right\}$. Hence, $a^{s t}$ is an idempotent, that is, $a \in \mathcal{P}(A)$.

Theorem 6.2.2. Suppose R is a commutative ring with unity and X is a locally f_{i} nite partially ordered set. Then the Jacobson radical of the incidence algebra $I(X, R)$, namely $\mathcal{J}(I(X, R))$, is the set of all functions $f \in I(X, R)$ such that $f(x, x) \in \mathcal{J}(R)$, for all $x \in X$.

Proof. By Lemma 4.0.10, $f \in \mathcal{J}(I(X, R))$ if and only if $\delta-f g$ is (left) invertible for all $g \in I(X, R)$. But, by Theorem 3.2.2, $\delta-f g$ is invertible if and only if $1-f(x, x) \cdot g(x, x)$ is a unit in R, for all $x \in X$ and $g \in I(X, R)$. But this holds if and only if $f(x, x) \in \mathcal{J}(R)$ for all $x \in X$.

Definition Let R be a commutative ring with identity. An element $f \in I(X, R)$ is called fully-periodic if the following conditions are satisfied:
(i) $f_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$
(ii) There exists a positive integer n such that if

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

in X, then $\prod_{i=1}^{n} f\left(x_{i}, y_{i}\right)=0$.
Proposition 6.2.3. Fully-nilpotent elements are fully-periodic.

Proof. Suppose $f \in I(X, R)$ is fully-nilpotent. This means that, there exists a positive
integer n such that given any chain

$$
x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \cdots \leq x_{n} \leq y_{n}
$$

in $X, \prod_{i=1}^{n} f\left(x_{i}, y_{i}\right)=0$. We check f satisfies conditions of the definition of fullyperiodicity. Obviously, (ii) holds. We show $f_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$ by satisfying conditions of the Theorem 6.2.1.
(i) Since f is fully-nilpotent, say with integer n, we have $f^{n}(x, x)=0$, for all $x \in X$, that is, $f^{2 n}(x, x)=(f(x, x))^{2 n}=(f(x, x))^{n}=f^{n}(x, x)=0$ giving that $f^{n}(x, x)=(f(x, x))^{n}$ is an idempotent. Hence, $f(x, x) \in \mathcal{P}(R)$, for all $x \in X$.
(ii) Let $e_{f(x, x)}(r)=n_{x}$ where n_{x} is the smallest positive integer so that $(r f(x, x))^{n_{x}}$ is an idempotent. Since

$$
f^{2 n}(x, x)=f^{n}(x, x)=0
$$

we have

$$
(r f(x, x))^{n}=(r f(x, x))^{2 n}=0
$$

so, $n_{x} \leq n$ for all $x \in X$. Hence $e_{f(x, x)} \neq \infty$ for all $x \in X$, that is,

$$
\left|\left\{x \mid e_{f(x, x)}=\infty\right\}\right|=0
$$

(iii) By above, $e_{f(x, x)}=n_{x} \leq n$ for all x.

Hence, we conclude that f is fully-periodic.
Proposition 6.2.4. If f is fully-periodic, then f_{U} is fully-nilpotent.

Proof. Suppose f is fully-periodic. Then by (ii) of the definition of fully-periodicity,
there exists $n \in \mathbb{Z}^{+}$such that given any chain

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

in $X, \prod_{i=1}^{n} f\left(x_{i}, y_{i}\right)=0$.

We claim that f_{U} is fully-nilpotent with integer $2 n$. Let

$$
x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \cdots \leq x_{2 n} \leq y_{2 n}
$$

be a chain in X. For

$$
x_{1}=y_{1} \leq x_{2}=y_{2} \leq \cdots \leq x_{2 n}=y_{2 n}
$$

we have

$$
\prod_{i=1}^{2 n} f_{U}\left(x_{i}, y_{i}\right)=0
$$

as $f_{U}(x, x)=0$ for all $x \in X$. Hence, it is enough to check when the given chain is of the form

$$
x_{1}<y_{1} \leq x_{2}<y_{2} \leq \cdots \leq x_{2 n}<y_{2 n}
$$

We want to show that

$$
\prod_{i=1}^{2 n} f_{U}\left(x_{i}, y_{i}\right)=0
$$

Consider the subchain

$$
x_{1}<y_{1}<x_{3}<y_{3}<\cdots<x_{2 n-1}<y_{2 n-1}
$$

If we reindex this chain by $x_{2 n-1}=u_{n}$ and $y_{2 n-1}=v_{n}$, then we have

$$
u_{1}<v_{1}<u_{2}<v_{2}<\cdots<u_{n}<v_{n}
$$

and since f is fully-periodic with n, we get,

$$
\prod_{i=1}^{n} f_{U}\left(u_{i}, v_{i}\right)=\prod_{i=1}^{n} f\left(u_{i}, v_{i}\right)=0
$$

that is,

$$
\prod_{i=1}^{2 n-1} f_{U}\left(x_{2 i-1}, y_{2 i-1}\right)=0
$$

Hence,

$$
\prod_{i=1}^{2 n} f_{U}\left(x_{i}, y_{i}\right)=0
$$

as

$$
\prod_{i=1}^{2 n-1} f_{U}\left(x_{2 i-1}, y_{2 i-1}\right)
$$

is a factor of

$$
\prod_{i=1}^{2 n} f_{U}\left(x_{i}, y_{i}\right)
$$

Theorem 6.2.5. If R is a commutative ring with identity, then $\mathcal{P}(I(X, R))$ is precisely the set of fully-periodic elements of $I(X, R)$.

Proof. Let

$$
K=\{f \in I(X, R) \mid f \text { fully-periodic }\} .
$$

Then K is an ideal of $I(X, R)$:

Let $f, g \in K$. We check $f+g \in K$.
(i) $f_{D}, g_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$ implies $f_{D}+g_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$ as $\mathcal{P}\left(\prod_{x \in X} R\right)$ is an ideal of $\prod_{x \in X} R$.
(ii) Suppose f satisfies the condition (ii) of the definition of fully-periodicity with n and g satisfies the condition (ii) with m. Then $f+g$ satisfies the condition (ii) with $m+n$ since if

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

is a chain in X, then

$$
\prod_{i=1}^{n+m}(f+g)\left(x_{i}, y_{i}\right)=\prod_{i=1}^{n+m} f\left(x_{i}, y_{i}\right)+\prod_{i=1}^{n+m} g\left(x_{i}, y_{i}\right)=0+0=0
$$

Hence, $f+g \in K$.

Suppose now $f \in K, h \in I(X, R)$. We check that $f g \in K$.
(i) $f_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$, so $f_{D} g_{D}=(f g)_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$ as $\mathcal{P}\left(\prod_{x \in X} R\right)$ is an ideal of $\prod_{x \in X} R$.
(ii) Suppose $f \in K$ satisfies condition (ii) of the definition of fully-periodicity with n. Then $f h$ satisfies condition (ii) with n as if

$$
x_{1} \leq y_{1}<x_{2} \leq y_{2}<\cdots<x_{n} \leq y_{n}
$$

is a chain in X, then

$$
\begin{aligned}
\prod_{i=1}^{n}(f h)\left(x_{i}, y_{i}\right) & =(f g)\left(x_{1}, y_{1}\right) \cdots(f h)\left(x_{n}, y_{n}\right) \\
& =\left(\sum_{x_{1} \leq z_{1} \leq y_{1}} f\left(x_{1}, z_{1}\right) h\left(z_{1}, y_{1}\right)\right) \cdots\left(\sum_{x_{n} \leq z_{n} \leq y_{n}} f\left(x_{n}, z_{n}\right) h\left(z_{n}, y_{n}\right)\right) \\
& =\sum f\left(x_{1}, z_{1}\right) \cdots f\left(x_{n}, z_{n}\right) h\left(z_{1}, y_{1}\right) \cdots h\left(z_{n}, y_{n}\right) \\
& =0
\end{aligned}
$$

Therefore $f h \in K$. Similarly $h f \in K$ and K is an ideal of $I(X, R)$.

Let $f \in K$. Then $f_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)$, therefore, there exists positive integers m, n with $m \neq n$ such that $f_{D}{ }^{m}=f_{D}{ }^{n}$. So

$$
f^{m}-f^{n}=\left(f^{m}-f^{n}\right)_{D}+\left(f^{m}-f^{n}\right)_{U}=\left(f^{m}-f^{n}\right)_{U} .
$$

Since $f \in K$ and K is an ideal of $I(X, R)$, we have $f^{m}-f^{n} \in K$. This means that $f^{m}-f^{n}$ is fully-periodic. By the previous proposition, $\left(f^{m}-f^{n}\right)_{U}$ is fully-nilpotent, therefore, $\left(f^{m}-f^{n}\right)_{U} \in \mathcal{N}^{*}(I(X, R))=\mathcal{N}_{*}(I(X, R))$ which consists of fully-nilpotent elements of $I(X, R)$. Then

$$
\begin{aligned}
\bar{K}=K / \mathcal{N}^{*}(I(X, R)) & =\left\{f+\mathcal{N}^{*}(I(X, R)) \mid f \text { fully-periodic }\right\} \\
& =\left\{f_{D}+\mathcal{N}^{*}(I(X, R)) \mid f \in I(X, R) \text { fully-periodic }\right\}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\bar{K} & \subseteq\left\{f_{D}+\mathcal{N}^{*}(I(X, R)) \mid f \in I(X, R) \text { and } f_{D} \in \mathcal{P}\left(\prod_{x \in X} R\right)\right\} \\
& \subseteq\left\{f_{D}+\mathcal{N}^{*}(I(X, R)) \mid f \in I(X, R) \text { and } f_{D}^{n} \text { is an idempotent for some } n \in \mathbb{Z}^{+}\right\} \\
& =\left\{f_{D}+\mathcal{N}^{*}(I(X, R)) \mid f \in I(X, R) \text { and } f_{D} \text { is periodic }\right\}
\end{aligned}
$$

Therefore,

$$
\bar{K} \subseteq \mathcal{P}\left(I(X, R) / \mathcal{N}^{*}(I(X, R))\right)=\left\{\bar{f} \mid \overline{f^{m}}=\overline{f^{2 m}} \text { for some } m \in \mathbb{Z}^{+}\right\}
$$

Claim. $(\bar{K} \subseteq) \mathcal{P}\left(I(X, R) / \mathcal{N}^{*}(I(X, R))\right)=\mathcal{P}(I(X, R)) / \mathcal{N}^{*}(I(X, R))$

Let $\bar{f}=f+\mathcal{N}^{*}(I(X, R)) \in \mathcal{P}(I(X, R)) / \mathcal{N}^{*}(I(X, R))$. Then there exists a positive integer n such that $f^{n}=f^{2 n}$. So $\bar{f}^{n}=\bar{f}^{2 n}$, that is, $\bar{f} \in \mathcal{P}\left(I(X, R) / \mathcal{N}^{*}(I(X, R))\right)$.

Now, suppose $\bar{f} \in \mathcal{P}\left(I(X, R) / \mathcal{N}^{*}(I(X, R))\right)$. Then there exists a positive integer m such that \bar{f}^{m} is an idempotent, that is, $f^{m}-f^{2 m} \in \mathcal{N}^{*}(I(X, R))$. Since $\mathcal{N}^{*}(I(X, R))$ consists of nilpotent elements, there exists a positive integer t such that $\left(f^{m}-f^{2 m}\right)^{t}=0$. Then

$$
f^{m t}-\cdots+(-1)^{t} f^{2 m t}=0
$$

It follows that $f^{m t}=f^{m t+1} p(f)$ for some polynomial $p(x) \in \mathbb{Z}[x]$. By Theorem 6.1.2, f is periodic. Hence, $\bar{f} \in \mathcal{P}(I(X, R)) / \mathcal{N}^{*}(I(X, R))$.

Hence, we get $K \subseteq \mathcal{P}(I(X, R))$.

Conversely, assume $f \in \mathcal{P}(I(X, R))$ is not fully-periodic. Since the condition (i) of definition of fully-periodicity is clearly satisfied, the condition (ii) fails to hold, thus, for all $n \in \mathbb{Z}^{+}$, there exists a chain

$$
x_{n, 1} \leq y_{n, 1}<x_{n, 2} \leq y_{n, 2}<\cdots<x_{n, n} \leq y_{n, n}
$$

such that

$$
\prod_{i=1}^{n} f\left(x_{n, i} ; y_{n, i}\right) \neq 0
$$

Since X is locally finite, using Lemma 3.1.2, we may assume the intervals $\left[x_{n, 1} ; y_{n, n}\right]$ and $\left[x_{m, 1} ; y_{m, m}\right]$ are disjoint for $m \neq n$.

Define an element $h \in I(X, R)$ as follows.

$$
\begin{array}{ll}
h\left(y_{n, i} ; x_{n, i+1}\right)=1 & \text { for } i=1,2, \ldots, n-1 \text { and } n \geq 2 \\
h(x, y)=0 & \text { in all other cases. }
\end{array}
$$

Then $(f h)_{D}=0$ because $h(x, x)=0$ for all $x \in X$. So, $(f h)(x, x)=0 \in \mathcal{J}(R)$ for all $x \in X$ giving that $f h \in \mathcal{J}(I(X, R))$. Since f is chosen from $\mathcal{P}(I(X, R))$, we get $f h \in \mathcal{P}(I(X, R)) \cap \mathcal{J}(I(X, R))=\mathcal{N}^{*}(I(X, R))$. This means that $f h$ is fully-nilpotent. Now consider chains

$$
x_{n, 1}<x_{n, 2} \leq x_{n, 2}<x_{n, 3} \leq x_{n, 3}<\cdots<x_{n, n-1} \leq x_{n, n-1}<x_{n, n}
$$

for each $n \in \mathbb{Z}^{+}$. Then

$$
\begin{aligned}
\prod_{i=1}^{n-1}(f h)\left(x_{n, i} ; x_{n, i+1}\right) & =f\left(x_{n, 1} ; y_{n, 1}\right) h\left(y_{n, 1} ; x_{n, 2}\right) \cdots f\left(x_{n, n-1} ; y_{n, n-1}\right) h\left(y_{n, n-1} ; x_{n, n}\right) \\
& =f\left(x_{n, 1} ; y_{n, 1}\right) \cdots f\left(x_{n, n-1} ; y_{n, n-1}\right) \\
& \neq 0
\end{aligned}
$$

This contradicts the fully-nilpotency of f. Hence, f is fully-periodic.

REFERENCES

1. Baer R., "Radical ideals", American Journal of Mathematics, Vol. 65, No. 4, pp. 537-568, 1943.
2. Amitsur, S. A., "Nil radicals. Historical notes and some new results", Colloquia Mathematica Societies János Bolyai, Vol. 6, Rings, modules and radicals, Keszthely (Hungary), 47-65, 1971.
3. Amitsur, S. A., "A general theory of radicals. I. Radicals in complete lattices", American Journal of Mathematics, Vol. 74, No. 4, 774-786, 1952.
4. Amitsur, S. A., "A general theory of radicals. II. Radicals in rings and bicategories", American Journal of Mathematics, Vol. 76, No. 76, 100-125, 1954.
5. Amitsur, S. A., "A general theory of radicals. III. Applications", American Journal of Mathematics, Vol. 76, No. 76, 126-136, 1954.
6. Köthe, G., "Die Structur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist", Mathematische Zeitschrift, Vol. 32, 161-186, 1930.
7. Farkas, D. R., "Radicals and primes in incidence algebras", Discrete Math., Vol. 10, 257-268, 1974.
8. Leroux, P. and J. Saraillé, "Structure of incidence algebras of graphs", Comm. Algebra, Vol. 9, No. 15, 1479-1517, 1981.
9. Spiegel E. and C. J. O'Donnell, Incidence Algebras, Marcel Dekker, New York, 1997.
10. Spiegel E., "The lower nilradical of an incidence ring and applications to recovery question", Comm. Alg., Vol. 32, No. 2, 621-628, 2004.
11. Spiegel, E. and A. A. Klein, "Algebraic radicals and incidence algebras", Archiv der Mathematik, Vol. 83, 481-487, 2004.
12. Bell, H. E., "On rings with Engel cycles," Canad. Math. Bull., Vol. 34, 295-300, 1991.
13. Bell, H. E., "On commutativity of periodic rings and near-rings", Acta Math. Acad. Sci. Hungar., Vol. 36, 293-302, 1980.
14. Guo, X., "On the periodic radical of a ring", Canad. Math. Bull., Vol. 38, No. 2, 215-217, 1995.
15. Divinsky, N. J., Rings and Radicals, University of Toronto Press,1965.
16. Parmenter, M. M., E. Spiegel, and P. N. Stewart, "The periodic radical of group rings and incidence algebras", Canad. Math. Bull., Vol. 41, No. 4, 481-487, 1998.
17. Schmerl J, and E. Spiegel, "Prime ideals in incidence algebras", Comm. Alg., Vol. 19, No. 11, 3011-3040, 1991.

REFERENCES NOT CITED

Chacron M., "On a theorem of Herstein", Canad. J. Math., Vol. 10, 1348-1353, 1969.

Gray, M., A Radical Approach to Algebra, Addison-Wesley, 1970.

Lam, T. Y., A First Course in Noncommutative Rings, Springer-Verlag, New York, 2001.

Lam, T. Y., Exercise in Classical Ring Theory, Springer-Verlag, New York, 2003.

Lawrence J., "Algebraic ideals in group rings and tensor products", Canad. Math. Bull., Vol. 35, No. 1, 99-102, 1992.

Levitzki J., "On the radical of a general ring", Bulletin of the American Mathematical Society, Vol. 49, 462-466, 1943.

Levitzki, J., "Prime ideals and the lower radical", American Journal of Mathematics, Vol. 73, 25-29, 1951.

McCoy, N. H., "Prime ideals in general rings", American Journal of Mathematics, Vol. 71, 823-833, 1949.

Rowen L., Ring Theory, Volume I, Academic Press, San Diego, 1998.

Spiegel, E., "Algebraic radicals and incidence algebras", J. Discrete Math. Sci. Cryptology, Vol. 2, 197-204, 1999.

