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ABSTRACT

In this thesis, pole assignment problem, one of the
mosﬁ commonly uéed‘ control schemeﬁ, 18 <considered and.
épecial .emphasis is given'qn the applicatioh_of available
pole assingment'algopithmé in multi-input systems.

Various meihods such as Ackermann’s Prodéduré,
Modal 'Control,‘ Direct Design frocedune and FPhase-Variable
Canonical Form are explained for determining the
required feedback éains for arbitréry polé assignment in
single-input systems. Chapter IIkwhich includes also the’
methods developed for the multivariable systemé.

In Chapter III; the squeeze film—beabing theof? is 
.presented.. Squeeze-film bearing eqUétions. , bil—film
coéfficienté and the coordinate t}ansformations are derived.

| In Chapter = 1V, tﬁe "selected 'models vand
their characteristics are‘discussed._ State feedback
control is applied to a rotof bearing system and the
'computér program‘is developed.. ‘
| .Iﬁ,Chapter‘ V, the generélv cohclusions~'of thesis

/

are given.
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OZET

Bu tez c¢alismasinda , en ¢ok: kuLlanllén " Kontrol
ybntemlerinden biri olan durum degisKen geri bes;eﬁéli Kutup
yerlegstirilmesi yontemi incélenmiStiP. Calismanin biuyuk bir
Klsml- ‘Kutup V.yeﬁlestirilmesi ybnteminin ¢ok | gihdili
sistemlere uygulanmasina aynilmfstlr}

Bolum | Ii’. de tek girdili sistemlerin Kutuplarlnin
yerie$tirilme§inde gerekli besleme kazanclarlnl belirlemek
i¢gin Kullanilan Ackefmann’s Ybntemi, Modal Kon;rbl, Dogrudah
Dizayn Yontemi .ve Phase-Variable <Canonical Form  gibi
Kullanilan yonﬁemler inéelendi‘ ve éenellestirilerek Gok
girdili sistemlere de uYgulanabilecek duruma getirirdi.

Bblim III' de squeeze-film bearing teg}isi sunuldu..
Sgueeze-film bearing denkKlemleri, yag-film katsay;larl ve-
koorqinat donusumleri ¢ikarilda. |

Bolum IV’ de secilen” modellef ve bunlarln
OZéllikleri tartisailda, Geni beslemeli Kontrol rotor—yatak
’siﬁtemine uygulandx' ve bilgisayar programinin ag¢iklamasi
yapildi.

Bolum V' de tezin genel sonuglary verildi.
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1. INTRODUCTION

i.ilGenerél Backéround

The study of rotor dynamics has‘_in recent years
become of increasing.importance in the engiﬁeerlng design of
power systems. With the increase -in berfofmance fequifements
0of high-speed fotating machinery in various fields such as
gas turbines, ﬁrocess.équipment, aukiiiary power'machinery
énd space applications, the engineér is faced with the
problem of designing a unit capable ‘bf .smooth oberatidn
under various conditioné oibspeed and léad.

At the turn of the century, . Jeffcott ii} developed
’the fundémentals of _dynamic' response of‘fhe single—mass
unbalanced rotor én a magsiess elastic sha{tvmountéd on the
rigid bearing supportéf The Jeffcott 'analy§is 'Qf the
’ single-mass»model showed that operating speeds above the
first critical-speed were possible.-

Any inéfease in the rotationai épeed causes the
buiid—up éf the vibration. amplitude until the system fails.
This new insight led to’the need to cons'ider the effects of
the oif—film bearings on the'rotor dynamic, Stodeola [2]1 was
the first tovattribute'stiffneés,coéfficients to the oil-
film beéfings but neglectéd the démping propertie#.‘ Since

then a number of researbhers,have investigated the dynamics



Qf .tﬁe oil—film .beariﬁgs. bThe_ most usuél approach 1s to
reﬁreSent the o1l filn Jjournal beéring‘by eight -linearised
stiffness and damping céef{idients.

In. 1963 Cooper [3]"wé§ given thé patent for tﬁe
design of ihe squeeze-film bearing which is a special fype
of 'oil-film Joufnal ‘béaring. In ihe squeézeffilm bearing
applications the,shaftviis usually ‘mounted in 2 roller-
bearihg whose outer face'is-preQented.fPOm'bota;ing. The

static load is supported by.retainer sSprings, fiéure 1.1.1,
The - clearance region bétween the bearing housing and the
outer r;cé of the roller-bearing is filled with oil. In the
case of - squeeze- film beafing' the four stiffness
coefficients disappear and the bearing iS'chéraCterised~by
the four damping coefficients‘which are a function of the
bearing dimensions (l;ﬁ,c), the oil-viscéé;ty (m), journal
static eccentricity ratio'(eo) and the film extend'along the
journal. Howeﬁer{ the effeét of thevoii supply preﬁsure on
the linearized. coéfficients does  not appeér in the
theoretical relationships.

Oil-film Journal_bearings are frequently employed
in ’turbomachiﬁery. The stiffness and damping propertiésvof
‘the oil-film was examined by Smith [#] in 1969. This
prbperties were used to.provide an effeqti#e method for the
passive control'of vibratioﬁ by correct‘selection of bearing
parameters by Morrison ([5)] in 1976. However, these bearings
may also cauie rotor instability. "The various types of

unstable vibrations excited in the bearings are discussed by .



Smith [4].

Bearing—induCed 1nstébiltf can often be remedied by .
introducing a different design for the bearing, but. Smith
,haé“ﬁoied that no‘vsingle design provides a universal
solution to the problem. - This limitaiion~is common to ali
passive forms  of .vibration_icontrol and hasrrled' to
interesting techniqggs for +the adtive 6on£rol of rbtor
vibrations. vThe instability associated ~with 'oil—film
_ bearings cah pe avoided 1if they are replaced ‘by mégnetic
bearings. These elements can‘bé'uséd for the active control
of Qibrations .and this is part;cular}y' significaht in
machines which are reduired to operate in excess of one or
more criticél speeds. These are e#amiﬁed by Schweitzer [6]
in 1975.

The characteristics of a magnetic bearing.for‘thé
éctive coﬁtrol of rotor vibrations were. ekamined by
Schweitzer and- Lange [7] 'invA1976, who derived,a multi-
vériable representation for these .elementS"belating: the
output éontbol force vector tO‘the'input vector. Bleulenr
and Schweitzer [8] 1n 1983 examined the use of two 'magnetic
bearings to support a rigid shaft.

Stanway and Burrows I9] have evaluated the relative
merits of various passive and actiQe schemes for controlling
the lateral vibrations of <flexible rotor. The work was
extented by Burrows and Sahinxaya [10) to consider the.open-
ioopj.cbntrol of multi-mode rétbr-bearing systems. 'They

ﬁighlighted the . problems of designing CIose—loop'conthbl



systems fbr multi—mode'rotor-bearlng.’

1.2 Object Of The Work  And Presentation 0f The
-~ Thesis | |

The purpose of the work 1is to .invéstigate
possibilityaof béiné a state—feedback'mﬁnnér for multifinput 
syéiems ‘which could be appl;cabie to rigid rotor ﬁupported
on squeeze-film bearing while the shaft rotates at a
constanf angular'velocity and computer ‘éimulaiion progrém
of selécted manner.

The thesis consist of two parts. - ‘

In the first part ( chapters II and III ), the
pole-placement problem of muiti—vériable.systeﬁs in.siate—
'space'representation is discussed in  detail ahd basic
methods de?eloped in this field are introduqed.

~ The second part of the ;nééis,( chapter 111 and IV )
-deals “with the squeeze-film beariﬁg dynamics theobetically
and simulgtion-of §tate—f¢edback control!l to a  higid rdtor

supported on squeeze-film bearings.



11. STATE-FEEDBACK CONTROL

2.1 Inirdduction‘

-One of the most pobﬁlar iechniques for altering the
response characteristics of a control system is . the
application of linear state feedbaék. In the past decade,
considerable effort has bgen made to underﬁtand exactly what
feedbacK has offer and what its limitations afe.

AThe fact thai, one can use state feedback to assign:
the closed~- loop system any desired self conjugate sét of
eigen values,: provided that the - open;loob system is
cpntrollable, is a’well Known and commoniy uséd result [11];
For single—input system, this result is simple fo dérive and-
has been Known {for -some +time. Eigenvalue~- placement in
multi-inﬁut systems was studied by Lagenhop {[i2], Wonham
>113], Simon énd Mitier [143},. aﬁd BrunovsKy [15]}. Wonham was
the first tovprdvé the property'of étate— feedback and he
applied to controllable muiii—input syétems. |

Humerous eigenvalueﬁassignment algorithms have been
deQised for controllable multi-input time inVa;iant linear
systems. However, most of these algorithms proceed by
reducing‘ multi-input systems to eqﬁivalent single-input
‘systems in the'interésﬁ_of computational tractability put

1 thus . unfortunately introduce'diffuculties {such as thé need

o



‘tp consider‘ the cyéliéity of blant matrices ‘[16)) not .
associated with the original mu1£i-input system. It is
,féccordingly the purpose to present aﬁ assignment. algorithm
which deals directly with multi-input systems and which also-
felateé eigénvalﬁe-assignMent directly to the fundamental
étructural broperties pf' controlLablé mﬁlti—input time-

invariant linear systems [173.

2.2 Some Aspects Of State-Feedback Contro)

2.2.1, Deiinitions |
System : A'system is a céﬁbination of componenis that aét
together and‘ perform a certain objective. A system 1is notf
1imited to physical ones. The copcept of.the system éan be
applied to. abstract, dynamic -phenomena .such as thosé

encountered in economics. The word system should therefore,

be interpreted ;o imply physica;, bioliogical, econdmics,
etc., systems,

Disturbance : A disturbance is a signal which tends :to
adversely affect the wvalue of the output systgm; If»a

-disturbance 1is génerated within ;he éystem, it is called
intérnal; while aﬁ»external distprbance'is genarated ouiside
tﬁe system and is an input. |

State : The state of a dynamic'system is8 the smallest set of
variables (called -state variables) éuch that Knowledge of
" these variables at tito, together with an input for t2t,
complétély determines the behavior ﬁf the éystemifor any

time t2t,.

/



Thus,‘ the state bf a dynémic systemyai time t is
uniquély ,determihed by the state -at time to énd the input
for t2t, and it‘is'indepen&ént of tﬁe siate ahd inputrbefore
to-

State Variables : The state var;ablés'of a dynamic system
are the smallest set of:variablés which'determiﬁe.the state-
Vof _the 'dynamic _ systeﬁ. If at .least n variables
Xi(t),xg(t),....;xn(i) are needed to completely describe the
behaviour a /dynamic sysfem_ and then such n variables
Xi(t),xg(aj.....,xh(t) are a set of state.variables.

State Vector : ff n state variables are needed to describe
the behaviour of a. giyen syétem, ‘then ’these .n stafe
variables can be considered io‘ be *fhe' n component of a
vector x(t). Such a vector is called a State vector. A gtate
vectorJis thus a vector which determines uniquély the System
stéte 'X(t) for any t2t,, once the input u(t) for t2ty, is
specified.

Feedback Control : Feedback control is an operation~whjch in
the presence of disturbandes,‘tends to redﬁce the différence
.between ihe ocutput of a system and the reference input ( or
‘an arbifrary varied, desired state) and whﬁch does so onlihe
basis of this difference.i- Here ;'only uhpredictable
distrbanceé (i.e., those ‘ﬁnknowny beforehana ) are
deéignated for as such, since with predictable or Known
distﬁrbanceg, it is always possible to include compensation
',within the system S0 that_measurements.are unnecessary .

Feedback Control Systems : A feedback control system’is one



which tends to-mainiﬁin a"prescribed relationship befween
the 'outpui and the reference inpﬁﬁ_by domparing_these ahd
using fhe difiefence a§ a means bf cbntrol.

Open-qup Control Systems : Open-loop control s}stems are.
contirol syitems in which the dutput has no effect_upon the
cdntrol_actibn, .That‘is an openjloopv control system, the
output ne;thef measured nor feedback fér compabison'with the
input. Figure 2.1.1 shows AtheiinpUtféutput relationship of
such a system. | B

Closed-Loop Control Syétems : A clpsed;lobp control systém

is one in which ihé output>signal has é direct _éf{ect upon
the control action. The actuating errof sighal, whiéh is
lthé differénce between the input signal and feedback sighal
(which may be the output signal or a function of the output
signal and its deriyétives), is fed to'the“contnoller so as
to reduce the error and bhihg the output of the system tg a
desired valué."In'other words the ferm closed loop. implies
the use of feédbaCk actioﬁ in order to reduce 'system error.
Figure 2.1.2‘sh0ws the inputfoptpu{ ;relationship of the

closed-loop coﬁtroL systems [18)].

2.2.2 Eigenstructure Assignment - Via Linear
State-FeedbacK Control.
‘Consider the state space representation of a multi—‘

~variable system

AX + Bu o
Cx . ' {2.1)

wKe
non



here énd in  the following? all vectoﬁs and matrices have
teal vaLued elements and all matri;esb aré constant. _Inv
_equation {(2.1) Avahd>B are matrices of dimension nxn and nxm
rgspectively; X is an 'n-dimensional vector dénoiing the
state and u is an m-dimensional input vector. Hence - the
~matrix C is of dimensioﬁ (pxh)bwhere y 1is ap dimensional
output vector. From now on, we will assume " that é}l ‘fhe
states"of §ystem (2.1) aré available and therefore tﬁe,
output equation will,ndt be used. |

The free responseldf the anontrolled plant, _i.e.,
when u{t) is equal to a zero vector, is given by a linear
combihation of the dynamical modes of the system, where the
mode shapés are'determined by the‘eigenﬁeﬁtors ahd-the timev
‘domain characteristics by the pole locations of the system
t19]. It is péssible . that for some reason of another the
vfesponsebof the uncontrolled planf is ~unsatisfactofy. The
éystém response'may bé too siow fbf a particular pufpose or
it may even be unétab;e due to positive real pgrts of its
poles. | |

However, if control loops are .introduced which
generate ihe input vector'byllineér féédback of the state
veétor.of the plant tﬁen the response characteristics of. the
resulting closed-loop system will no lbnger be determined by
the weigen properties of A matrix{ but.by-those of some new.
'closed-lobp plant matrfx whose "eigenproperties and 1its
values ﬁiil dependAup§n the precfse nature of the feedbacgl

loops. It transpires that, byv introducing appropriate

/
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feedback loops, ii is pdssible Vto design a closed- lpop
system thsé ﬁ;ant' ma;fixv is such »thét those of its
eigenvalues ,Which correspond té thé contboJiable modes of
the uncontrolled system can be assigned new values  which
lead 1o thé leSed—Loop-resﬁonse charactefistigs that are
superior to the corresponding chafacierisiics vof ‘the
original undontrolled_‘plant. If all the eléménts of the
state vector x(t), somehbw can . be measured then it is

possible to modify the external input u(;) such as ;
u(t) = Kx(t) + v(t) C(2.2)

where v (t) is a new extérﬁal input an m-dimensional! vector
and K is a (mxn) feedback matrix , such-that the closed-loop

system equation becomes

% = (A+BE)x + Bv o (2.3)

The ma;n concern of the modal‘control theoﬁyvis to choose an.
 appropria{e feédback .gain matrix K so that the new dynamié
matrix (A+BK) has a ngired set. ofi-eigenvalues. In this
chapter we want to answer thé fdllowing questioné:

i) Under which conditions is ii'possible to find an
appropriate K .matrix, such' that ,a desired »closed-loop
ﬁharacterisiic polynomial is obtained ?

: cii) What are the possible apprdaches~ to pole
assignmeﬁt pﬁoblém if‘all'of the state variables :are'_@oir
. accesible 7 |

!
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‘.The procedqre'used 1o détermine the ¥ matrix will
bél disCusséd ih,the next chaﬁter. Eduation (2.3)_indi¢ates
that the effect of the input vafiabie defined by équation
(2.2). is_ to change the plant matrix A to a new matrix

{A+BK).

2.2.3 Controllability of Linear'Systeﬁs

It 1is _shown' tﬁat thercontroliability of an open-~
looﬁ system is;equivalent 10 the pquibility of assigning an
arbitrary set of poles_td the transfer matrix of ihe‘closed—
loop system; fdrmed by means of'suitabfe linear'feedback of
‘the state, As. an application of this result, it is shown
that an ‘opeﬁFloop 'system can be  stabilized ”by. linear
feedback if and- only 1f the unstable modes .of its system
matrix aré controllable [13}].

When one thinks about the conditions which have. to
be satisfied, S0 tﬁat the-exisience of K is guaranteed andg
one 1is immediately léd td the. idea, that the bossibility of
»existence 'dépends upon the controllability’of the state x-
with respect to tﬂe external input u. The‘property bf ipole
assignability which vis shoﬁn to be equivalent to
controllability of (2.1) in the usual sense. |

To be precise, consider thé following. Let be an

arbitrary set of n complex numbers Aj,

Az £ Xy Apyoeveaeapd » (2.4)
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:such thét any Aj with I Xi%c appears\in' A in- a conjugate
S pair. The- nebessaty and éufficieﬁt fconditioh for the
existence of an (mxn) real matrix K, such that the clbged-
loop sysﬁem matri# (A+BK) has the set A as its eigenvalues
is the controllability of the pair (A,B), i.e.,  the
existencé df K implies that +the :(nxmni controllability

-matrix of the system (2.1)
G={ B, AB, .........Ap-4B} (2.5)

is of fﬁll rank n. Then the main rééulf to be proved is the
{ollowing,

, THEOREH (2.1): Fof ~the .n-th order'd?namicalisystem given
in (2.1), let A (2.4) be an arbitrary desired setvof complex
numbers Aj, suChv that any Aj witﬁ Im xi%o appears in as a
conjugaté pa{r, The CIOSed-lodp systém (2.3) has A for its
set of eigenﬁalueé 1f aﬁd”only if (A/B) is controllable.

. Linear state variable feedbﬁck is- an impoftant
compensation technidue in the synthesis bf’lineaﬁ dynamical
éysiems. However - one should be aware of one important
factor concerning linear state variablé feedback, vwhich
caﬁ in many cases prevent itsAdirect'empLoymenf for‘closéd?
loop pble assignment}

In particular, on cloéér‘.iﬁspection of figure
(2.1.3), it 1s appearent that the féedbacx path frém the
state x{t) through the gain matrix k'crosSes the boundary

which encloseé thg- driginal system. This clearly'impliés
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the ability to"directly méasure‘ the entire internal n-
dimensional stat¢ véctor. In generaﬁ, ﬁowever,"oniy the
;externallinput u(t) and output y(t) are'directly measurable
so that the control scheme given in figure (2.1.3) is not
'directlf fealiZaplé; Since all the states of the system are
reqﬁired to implement the control law, we can introduqe .a
-state estimator (observer) into‘thg system, . such ihat the
statesvare.gstimétéd using only thé external input u(tj' and
‘odtput y(t). Hénce vin ~the realization of théycontrol law

~

(2.2) the n dimensional estiméted state veCtob ¥(t) will be
used ;n_place of x(t). Obviously‘this idea of using a Etaté
estiﬁ;tor to reconstruct the unavailable states at the
output, requires the system to be compleiely observable. ;t
has been'shqwn {20) that cbmplete observability bf'the pair
(A, C) is necessary for the realization of an estimétor.
Céhtainly the convergencé rate of'the'eétimator'must be faét
compared to the time constant of the systém,. sgch fhat no
significant delay 1is added to the system performance. The
blockAdiagram‘of the s?stem with an estimator causes a
.8light modification on figure f2.1.4). Under these
.conditions we can modify the statementvof.theorem (2.4} as

follows:

THEOREM (2.2): Consider the nfth ordenr system in (2.1) and
‘assume tpat initially not all the states are available.v.Let
A (2.4) be an arbitrary‘désired set of n comélex_number Ai“.
such that any xiwith Im Ai%o appéars in A in conjugate p;ir.

/
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The <c¢cliosed-loop system (2.3) has’fof its set of eigenvalues
e.i., complete and arbitrary poié-placemeﬁt is realizablé
if ~and 7 bnlf’ if (A, B) 1s Qoﬁtrollable and (A,C) is-
observable.

However, estimating'thevunavéilable States via a
state estimatbr has the disadvantage of considerébly
- increasing: the' system order. Let us assume that ,pdle_
placement 1is primarily ﬁsed forvp1an£ stabilization. The
plant; however, :may not need as many féedbaCk:as ihehe are
states for its 'étabilization, since +the response to thé
normal range of input‘is often determ;hed-éy’a few dominant
poles of the sysiem. Thgfefore one may try‘tofconstruct'
feedbacKk-loops only from the availéble output variables 
Pqie’ placement uSiﬁg only output feédbaCK is certainly an
alternétive approach to using an estimator to egtablish the
necessary state-feédback law. For pole pladement using only
output feedbackf the extérnal "input vector u(t),willvbe

‘modified, and then it is equal to,

u(t)=Key (t)+v(t):

U(L)zKaCR(L)+V (L) (2.6)

the closed~loop system becomes:

Xz (A+BK,C)x + BV (2.7)

the output feedback matrix K, must be chosen such that
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del (A+BK,C) will.bé équal to the dggired' characteristic
Pblynomial‘ to the discussed. However detérmining Ko, >such
that arbitrary ﬁdle placementfis Achieved,is not éasy. It
has beeﬁ'proved [21,22] thét it is élways possible to lécate
exXxactly p' (p is the rank of the oﬁtput matrix C) of the
v Closéd-loop poles to érbitrary locations. If some othgr
‘additidnal constraintS'ahevalso sétisfiqd then all of the n
'closed-ioép poles can be>arbitrary placed using only —outpﬁt

feedback [23].

2.3 State Feedback Contral Methods

The theory of multivariable control system is ~well
 édvenced gnd séverai methods exist for choosing a feedback
law‘ 10 achieve desired désign objectives in cﬁoosing
feédback law {for —controllable multivariable “systems to
achievé a desired dynamics for thg.closed;loop syStem poleé

10 particular locations.

2.3.1 Ackermannfs'ProCedure,For,Po]e'Assignment In
Single-Input System
It is assumed that the process to be controlled can
be described by the model
¥ = AX + bu _ (e.8)"
‘'where u(t') represents the control variable, *%¥(t) represents
tﬁe'state vector. A and b are system and input mairiceé

reSpéctively. wWhen a feedback law of the form
[ ’ i
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u(t) = Ex(t) | (2.9)
is applied such that,

det[ AI-(A+DE)] = A (A) C(2.10)

' where the roots of A{()) are the desired poles of ths CIOSed—

loop system subject to complex pair;ng' Thén the feedback

gain véctor K is given by the fo;lowing équation.
K = -(0..... 0,1).a" 1, aqa) (2.11)

Here G 1s a (nxn) Controllabiliiy matrix of the dontrollable,

~ pair (A, b) and is defined as
Q = (b,Ab, ....... An-ipy (2.12)

ahd A(A) is the characteristic polynomial evaluated at AzA.
The equation (2.11) is called AcKermann?'s formula [24]) .
Under the feedback law as given by (2.9) the

‘closed-loop sxstem equation becomes,

(A+DK)x (1) _ :
F.x(t) ‘ ' (2.13)

where F='(A+bK). Let A (A} be the desired closed-loop
characteristic polynomial of the closed-loop system matrix

(A+bK) .

/
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ACN)

det. (AI-(A+DEK))

AMiay, A7y o san_s A+a (2.14)
i ‘ n-1 n

Since the pair (A, b) is controllable, the qontroliability.
matrix Q, as given in (2.12), is invertible. It is possible

to write thé basic definition of the inverse of a matrik.

.Q‘i.q‘;‘l (2.15)
Let h denotes the last row of a i, Then;
h(b,Abf ..... Al ipy - (6,0,7;.;7.1) ‘ (2.16)
-which ig equivalent to the folrpwing equaiities:
hfb‘z h. (AD) =...... «.ooz D(ART2p)y=0
n(an-ipy = ¢ o (2.175

using (2.47) we obtain the set of eguations,

hF h(A+bK) . ‘hA

hF2 = . (hF)F (RA) (A+bK):= hAZ
nFR-1: (hFR-2)F=z (hAP~2) (A+bK)=hAD"!

hFR:=hAl+ K

Furtheﬁmore, from the Cayley-Hamilton theorem, we Know that

every  matrix satisfies 1its own characteristic équatidn,



AF = ?n+aifn'}4..ﬂ...+an;:0’-, ‘2.19)'
Multiplying (-~2119) by h'and using (2.18) we get
h A(F):mAn)m(aiAn'in..'._...+n(§n1')+'1'<'=.0 | (2.26)
solving'for-K we obtain,
K>:'—h.1.1’(Ai - |  (2.2n)

we have to note also the:fact that h, the,lastvrow of 'G'i,

can be written as,

{0, ......0,1)a° ¢

o)
1

hence

K= -(0,..... 0, 1)a" ! aa) C(2.22)

In thé computation of the feedback gain_vectorvK{_it Is only
_bequired to calculate the last row of a1, whiéh saves much
from computatibn time. Furthermore, even if there are
multiﬁle open-loop or'closed—loop poles, the séme_ theorem
caﬁ .be again applied without.any modificatioh which isvhot
the case in mosf of the’otheb pole assignment algorithms.

o Although AcKermann’®s original procéduré‘can anly be

applied to single input and completely state controllable
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system, .the procedure is later modified [25], so that it can

also be'applieq to partially'controllabie systems,

2.3.2 Modal Control' For Single And Multi-Input
Systeﬁs
In the continious-time domain consider multi-input

~ system equation

X = AX + Bu : (2.23)

where A, ¥, B and u were defined previously.

The free reSponse' of the uncpntholled plaﬁt _is-
‘given Dby linear combination of tﬁe dynamical modes of the
system, where +the mode shapes are  determined by the
eigenvectors and  time-domain 'charaétériétics‘- by "~ the
eigenvaIUes of the appropriate plant matrix A.~

Howevéf, if the control loops are introduced which
generate the inﬁut ‘vector by linear feedback of the state
vector of the plant, thén the responée chahacteris£ics of
the resultihg closed-loop system will no longer be
‘determined by the eigen propefties of A, but. by those of
some new cloged—loop blant matrix whose eigenvectof& and
eigen vaiues~will depehd upon‘_the precise nature of the
feedback loops [19]). |

The equation describing the dynamics of the -system
is given by edﬁafion (2.23). If a new staté‘vectqr'z(t) is

'introduéed into equation‘(a.ZB) by the transformation



where M is the modal matrix of A, then the new state

equation has the form

Mz = AMz + Bu (2.25a)
it follows from equation (2.25a) that
2z = MiAMz + M~ 1Bu (2.25b)

.and therefore tnat

2 = Az+ Bpu , (2.26)

in view of equation (2.23), A=M!AM 1is a diagonal (nxn)
matrix of A, its rank is n and Bh:M'iB is the normalized

input matrix

i 1

A 0 0 |
1 N
0 A 0
, 2 / .
A= Miam = : = diag (N ,A ,....A 1 (2.27)
: . ) i 2 n

0 0 0
o . A

L ‘ ‘ n

and Aj's are the eigenvalues of matrix A. The importance of
ehuation (2.26) as compared'with equation (2.23) is that A

is a diagonal matrix whereas A is, in general, non-diagonal.

Notice that, the transformation matrix M, defined
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by into (2.24), modifies the coefficient matrix of 2z into
the diagonal matfix.v Notice al;o thatvthe diagonal elements
of  the matrix M 1AM in (2.25b) are identical With the
eiggnvaiues of A. It is lmportant to note that Vthe
eigenvalues of A under a linear'transformation, we must shéw
that the characteristic polynomials (XI—Al and |AI—M‘1AM|.
are identical [18].

Since, fhe determinant_of a product i; ihe produét

of the determinants, we obtain,

[ AI-MT1AM| =AM iM-MT 1AM
=|M’1(xI—A)M|'
=|Mf11|XI—A||M

e -
[} ] [ AT-A

noting that the product of determinants'lM'il and |M| is the

determinant of the product |M’1.M|. We obtain,

‘AI-M"iAMI:lM"iMIIAI-Al

= I X.I'/AI

. Thus, it has been proved that. the eigenvalues of A are
invarient under a linear transformation.
Since, let’s apply-contbol law (2.9) 1into equation:

(2.26)

2 = Az+BpEx



2 = ( A+ EfEM)z (2.28)

The equation (2.28) gives the open-loop poles of system.
Suppose thé desired <closed-loop _pbles"ane specified by

(A = A). Then
2 = Nz , (2.29)
in the equation (2.29), A contains the closed-loop poles

which is ‘a diagonal (nxn) matrix. Then by combining

equation (2.28) and (2.29), we obtain

"
>

A + BpKM -

/ . » - .
K (AN=A)yMmt (2.30)

"
joo)
=3

In equation {(2.30) 'Bn is not a square matrix, hence 1its
-inverse can not be calculated. In order to determine K, the

so called Pseudo-Inverse method is used, .

) T =1 . ’ _ .
K = ( By Bp )T By (A - Ay 1 - (2.31)

Meanwhile, it is possible 1o obtain canonical’fobm
using modal ‘analysis for single input systems which is
developed by Wonham and Johnson [256]). It is not mentioned in

this chapter.

In the modal analysis, M is the modal matrix of the
system, wusually . in complex form. In this case, it is

~required the more computational effort to obtain inversé of

fthe complex modal Mmatrix M. At the same time the desiréd
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'c;osed-Loop'eigenvalues must be in the same form with the’
open-loop -eigenvalues for obtaining feedbacx matrix which
only contaihs real part. This is +the another restriction

for modél analysis.

2.3.3 Direct Design Procedure For Singleé-Input

Systems

The method proposed is based on the eqdivalence of
the closed—loop characteristic polynomial of a mpltifinput
and a corresponding Asinglé—inpht syétém. The latter 1is
first designed using the pfeviously ‘established direct
design method for single input system and the result '‘is tﬁen
frcnsferred back to'the multi?input casé.

The method hag a number of .attractive features. 1t
is 'computationally very fast and .is well SUEted to the
'computep—aided design of control system;' It provides the
designec with complete freédom over the relative tightness of
- the feedback to each input-and hence alco allcws ihe design
with feedback to bnfy some inputs, i.e., incomplete  input
feedback. YA fubcher important feature is chat it pEPmits
design with incompleté stafe feedbackﬁ when some of the
states are not accessible.

Since the method involvés‘ihe use of the existing
procedure for single-input systems, this is first summarised
[e7]. »

. Consider - a. conirollable - single-input.  system

described by‘ equation (2.8). The transfer function.
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répresentation of equation (2.8) is:

X(s8) = G(s)U(s) {2.32)
where G(s)=(sI-A) !bz={g;(s)1/F(s), i=1,....n, G(s) is the
nxi openf{oop - transfer-function matrix where F(s) the
characteristic polynomial of the - open-loop- system,,»

vF(s):’sI-A’.
If the  feedback law (2.9) is applied, then the
transfer function representation of the <closed-loop system

becomes
X(s) = Gg(s)V(s)  (2.33)

where Gg(s)=z(sI-A-bK) ip={g(s)I/H(s), i=1,....n, is ihé nx1
closed-lpop transfer function matrix from V(s) to X(s) and
H(s) is the characteriétic polynomial of the closed?ldop
system, H(s):|sI-A-bK]|.

It has been shown that

1K1g1(5) = H(s) - F(s) (2.34)

1

n s

i.e., the scalar product of the feedback and the numerator
transfer function vectors is equal to the difference of the
characteristic polynomials'of the closed-loop and open-loop

systiem. This direct relationship between the feedback
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vector and the closed-loop poleéjestablisheé a direct désign
method whereby the feedback required io shift the. open-loop
poles to desired_ closed—ldoﬁ. positions cah re;dily be
calculated. | | |

The feedback veétor K is simply calcu]ated by
equating coefficients of .like powers of s in eqﬁation

(2.34%).

2.3.4 Direct Design Pfdcedufe For,'Multivariablé
Feedback Systems | |

Consideb a controliabie .multi—inpﬁt system.
described by equation (2.25). The design problemAis'to find
the mkn state—feedback matrix K such £ﬁat the »cloged—loop
systém described by equétion' (2.23) and the feedback law
u=Kx has a prescribed béhaviour_ characterised by n given
closed-loop 8ystém poles xiQ Aa,..;... An -

Now, the closed-loop system poleé are the roots of

the characteristic”equation.
H(s) = 'SI‘A?BKI' ; . (2.35)

If we set K=qp, where gq is an m-column vector and p is a n-

row vector, equation (2.35) can be rewritten as

"
(=]

, lsI—A-quI
or

n
- Q

|sI-A—bp| (2.36)

ORRZICH UIVERSITES] (TpHATIES]



where. bzBq is an (nxi)'matrix.'
-Coﬁparison~of eqﬁation (2.35),and (2.36) yieldsvthe
'follow1ngg: l '
| The closed4lpop poles ofla multi¥input system which
has a vplant' matrix A,  a control matrix B‘ahd a feedback
matrix K afe coincident wiﬁh those of an equivalent single-
_input system which has'tne samé plant matfix A, a control
métbix b and the feedback vector p, where b=Bq and K=qp. |
Making use of'this equivalence, the design problem
can be solved in ihe following - steps:
| i- Choose an m-dimensional vectér'q. In general,
q is arbitrary except for spécial cases.l |
ii- Find the n-dimenSional feédback- vector YP
required to positidn the poles of the equivalent single
inﬁut'gystem.(A,Bq) at the desired location My o Apy ... An.‘
using the single-inpui direct design précedure based on
equation‘(ELBQ); | | |
iii- For the multi-input system (A, B) the required

state feedbaéklmatrix K=gp.

2;4 Phase-Variable Cancnical Farm For.‘Eigenvalue
| AsSignmént
2.4.1 Introduction
 The - deVeiopment of the phase-variable canonical
torm for singie—input‘linear,controllable systems has Dbeen
an éctive areagof réseabch.t14],fiS]Q Partly this is beéause'

the phase-variable form has proved-‘to be an extremely



convenienf ‘stabting point,‘for ‘certain contfdl design
PPObléms and partly‘ it is because canonical forms are
Mathematicaliy intriguing in their own right. |

| Unlike the sing;e-variable case, the corresponding
canonical forms for mhltivariable systems are not unique.
~ This IacK of uniqueness not only tends io make their
deniVat;ohs more difficult but also forced the_vdesign
ehgineer_faced with a_practical application to determine the
best form from the séVetaI possibilities.

Ndw in this chapter, we are going'to‘introduce a
transformation which is examined in [21) to (231, [26]) and
[28]‘ to [30], S0 tﬁat the thansfﬁrmed state equations will
be 1n phase—yariable canonical form. The use'thisA fqrm in
ﬁole'_assigmenf problem will be discussed and illustrated in
detail. The derivation given hére, however, 1is ﬁore generai
and notatibnally sihpler since the combﬁtations are
exprésséd in terms of matrix algebra ﬁheneVer pdssible.

2.4.2 Time - Variable Controllability Matrix In

Canoﬁical Form For Single‘~vlnpﬁt>8ystém$.

CoﬁSider the problgﬁjof transforming tOfequivalent

canonical (phase-variable) form of the system

¢ = AX + bu : ) (2.38)

_where x is a n dimensional state vector, u is a scalar input
function, A and b time variable matrices of appropriate

order.
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The phase-variable form is “one of the severar~ 

usuful canenical system representations and it is defined as

~ »

X = AX + bu - (2.39)

where X 1s a n dimensional state vector.

» : 7 o 7
0 1 0 ...0 0
0 0 R P 0 0
A= b= (2.40).
0 0 0 ...... 1 0
-a -a e -a 1
L n 1'1‘1 1_1 L J
The . coefficient aj (in .general ‘time-variable)

.completely . characterizes (2.39) and will be represented by
the 1 vector whose i-th element is aj.
The system described in (2.38) 1is said " to Dbe

equivalent to a system of the form (2.39) 1if andtonly if, a

non-singuiar continuously differentiable matrix T exists'

such that 2 = Tz. In thev fixed"case the nedessaPyA and
sufficient condition f&f such -an equi?alence to ‘exlst . is
that the system of eduation (2.38) Dhe ﬁompletely
controllabfe fBO].

Before  we obtained the system - eduivalende
'prgblem, several propgrties of the Conttoliability matrixfof
a.time—variablelsystém witl be_reViéwed. The controiiapility

'matrlx of the system in (2.38) 1is definéd as
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o v
[}

= [ PgyPyycvvev.Pyoyd (2.41)

where

Pret _-APK + d/dt.Py s Pg = b

the controllability matrix & of the system of (2.40) is
‘defined similarly and the systeh of (2.38) is uniformly
controllable if G has rank n everywhere Is proved at'thedrem
{(2.1).

Matrices & and ;n' will now Dbe 'examined more
closely, for'it will be shbwn that they éerVe to determine

the transformatlon form (2. 38) to (2.40) when it exists. It

‘can be verified by direct constructlon that

10 o 0 (—1)“"1-T ‘ q 1
: ' n, n
0 0 (-1)n-2 q q .
. . n-i,n-4{; ) n, n-1
- RO , P o=, (2.42a)
| n ) : ,
0 -t . q q q
n-2,2 n-1, 2 n-1, 2
i A o} q
o 1 n-2,1 "n-1,1 J , nh-1,2
Where
9ig="9i-1, k-1*9i-1,k 1<K<ign
i-2 ) o |
=(1)lap-isq- jBg 2n-i9i-1, getdi-g g Kelcisn
,:(' )1an . . {€K=1¢n ‘ (2.42b)

~

from the form of'Q it is clear that any system of the form

f(2.40):.is uniformly controllable. A more informative

-
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relation or djg can be easily derived from (2.42b) as

i ki-l{+1
Qik = (“1)tap-j4x + (1) J§0 an-j39i-k, j+1
K lv'. . . .
+L (*1)J+1qi-j,K-J+1 14K<itn
J=0 . (2.43)
and
qyi=(-1)iay . i¢i<n

it fol)ows by a simple introduction argument that -

qig: (-1)lag-j.g

Jterms involving only the

coefficients a 1£i<K<n ' ' (2.44)

L n

R 1 ‘

. nm-j+rk+1
“For hotétional ¢onvenience, the bracketed epression in
(3.44) will’be represented by the symbol 8j-g. That is, any
function- that cah be expressed soleiy in terms of the
coefficients #n,...an_p+i’will be replaced by the symbol 8
whereQef no bthér ‘infbrmation about the function is

needed. With this notation equation (2.44) becomes

Cdig = (C1)lapojag * Oi-k 7 Bi-kat 1$1<K<n

8o=0  (2.45)

: THEOREM (2.3): - The system 1in (2.38) 1s equivalent to a
system of the form in (2.40) if and only ' if (2.38) is

“uniformly controllable.
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The  necessity of fhe,controllability condition is
easily: esﬁablished, since if the equation (¢.38) is

equivalent to the equation(2.40) where z = Tx,

TQ ‘ E (2.46)

[» 2
"

~

But @ .and T have rank n everywhere, therefore Q must have‘
rank n everywhere, which implies that the system (2.38) is
uniformiy controllable.

_Ifithé system (2.38) is unifobmly controllable, the

matrix
T :=a.0"1 S (e.um)

isb nonAsingular‘when Q is the'controllabiliiy matrix of any
system of the form (2.40). Moreover; (2.45) shows thai
(2.47) ﬁust he tbe form of the transforming matrix if it

exists [30] . Thus, to prove ‘that . the uniform
controllability condition»is sufficient, let z=Tx where T is
given by (2.47). In other words, the nxn matrix T is

~

obtained from dontrollability matrix @ by setting ty, the
first. row of T, equal to the last (n-th) row of Q! and
recursively computing the remaining rows of T by succesive

post multiplication of each preceding row of T by A. In

‘particular,
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T = .} o o (2.148)

1

FWhere ii is the n-th row of @"!. it is thus readily apparent

that |
tyb=tyAb=. . . . . . . tyAR"2p:=0

~ but v ’ ' (2.49a)

t AR ipay

which immediately implies the relation

Tb - [o,o ....P.}.i]T , ' ~(2.49D)
if 2z is defined_as T, it is seén that the first element of
z, namely z4, when differentiated with respect to

time, yields the relation (dropping the time arguments for

convenience)

24 = (t4A)E+ (tyb)u - 4 ' (2.50a)
which in turn equal to 2p=tpx. Furthermore,
Zp = (t4A2)x+ (t{Ab)ju=z3 (2.50Db)

and so forth, or in genaral

2y = Zieq s izl 2, .....(n-t) (2.50c)
therefore, it follbdws that the equivalent single-input
system representation. (A, b) or z = AZ(t) + bu(t) where

A~ ~

"A:=T.A.T-! and b=T.b is in a particular structural canonical
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form (2.40).
Some’ immediate  benefits are derived from the
reduction of (A, b) to controllable canonical form. 1In

particular the characteristic polynomial, det( AI-A), of 'the

~

system is apperant from the last row of A. Expanding the

~

det( AI-A) along any but the last row, we obtain the

~ ~

characteristic polynomial of the pdir (A, b) or (A, b), 1.e.,

~

a(x) det( AI-A) = det( AI-A)

Miay, A7Lleoolany A ovay (2.51)

~

furnepmore, the input u only effects the last row of b, due

to 1ts special structure obtained through the transformation

z = Tx.

2.4.3 Extension Of COnirollable Canonical Form-To
Multivariable System.
"Consider a system governed by the set of first

order differential equation :

x = Ax + Bu l (2.52)

where

x(t) is a (nxt) state vector, u(t) is a (mxi) input

vector, A 18 a {(nxn) matrix and B is an (nzm) input matrix.

. The notation of controllable canonical form is not

confined only tb scalar systeMs and can be extended to more .

general multivaniable cases. In particular, consider -any

completely staie controllable system pair (A, B), with B
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assu@gd tov be of full rank min. This Iateb assumption
implies that all m available inputs are mutually
'independent,vwhich usuariy is the case in praciide.

The fundamental assumption imposedibn the. system is
that of system controllability i.e., it is assumed ﬁhat the

(nxnm) controllability matrix
G = ( B,AB,.........Aq-1B] (2.53)

nas rank n. In éddition{ it is generally assumed that the m:
'cblumns of b are linearly independent. |

“The controllability index py of the system (2.52).
is defined as ‘the smallest positive.integerlfor which the

matrix;
Gy = { B, AB,A%B.........AV"1B] (2.54)

has rank h.Generally,,for multivariable égntrollable systéms
Pein. |

:Canonical forms ’fof the system (2.52) are
constructed .by. iransforming to state vector ‘to a new
coordinate system in which thé system equations take a
particular' form. The transformation emmployed to affecf the
éoordinaté change 1is essentiall? always constructed fromv>

independent columns of the conirollability matrix (2.53).
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The first step in the dpve;opment' of a  canonical,

form of the clgss~disdussed in this part, is the section of
n.;ingarly inerendent vector froﬁ the n.m columns of this
.céntréllability maﬁrix (2.53). It-will.be'required that the
éelectiqn»procedure be so devised thét the n chosen linearly
independent vectors comprise the columns of a matrix P of

_ ithe form.

"Pz|{b ,Ab ,...AP'"1p b (AD ,...AP2-1p . p , ... APmM-1ip (2.55)
1 1 1" 2t e 2 , m

m

The esssential restriction, then, is that no vector
of the form Akbj 1s selected unless all lower powers of A

times bj are also selected.

_2;4;4 Selection of Independent Vgctors Cdntrbllable
' Canohical.Form |

As will ‘be shown below, it 1s possible to ﬁake a
selection of the.reqﬁired form, but in general, it is not
unique. The real difficulty'is in deiermining which of many
possible P matrices leads to the best canonical form.

'Thé selection of the vectors coﬁpbising the P
matrix is straight fohward {but still somewhat arbitrary) if

il is done according to the following precedures.’
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I: Search the iinear iﬁdePendent vectors.,
1—'Select’one Qf the columns of B (without loss of
generality be assumed that by is selected).
2-Select ‘either anofher cofumn of .B (say bp) or the
véctor Aby. If the selected ~vector is linearly
independent of by, bgtain it,. othérwise omit it from
the selection.

3- At anyrstage 6f the process, éelect the new vector
to be of the form AJby where all lower powers of A
times by have  already been retained.' If the new
vectﬁrs 1s linearly independent ibf all previously
selectéd vectors, retain it,_ otherwise omit it from-
the selection,

4; The selection process terminates when n linearly
indepéndent' vector are found. ‘-Arrange the n vectors

in their proper order to form the matrix P [27].

II:‘Searqh the créte by-columﬁs.

We first select by and ;ndicate this by putting an X
in the Aébi’cell. Now if Aby 1s linearly independent
of.bi, we put an ¥ in this.cell as well and continue .

down the first column of the crate until we either

put x in all the.cells or we find a vector, say Allp,

that 18 'linearly-independent on the earlier vectors

in the columﬁ,[31]. We denote this fact by putting 0

in the corresponding (l4,1), then note (by a now

’ familiaf argument) that when this
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X1 x| x| o} a0:z1

X | x|o A

X | o Al

X A3

0 Al
AS
A6

Table 2.4.1 Typical crate diagram filled in by
: searching by columns. We have 1l4:=4,

lp=2, 1l3:=1, 1y=0
happens . all the rémaining vectors in those columns
will Dbe linearly independent on the previously
selected' vectors. We indicate this by leaving the
corresponding cells blank. If we have not found n

linearly independent elements in the'first‘column, we

go to the second column. If. Dbp is linearly o

independent of all previously selected vectors
{by, Abs, ...AP1"1by], we put an x in the corresponding
cell. = MNow repeat  this procedure with Abp and

continue in this way with succesive "columns if

necessary until n linearly independent vectors have

been found. With this scheme, the crate diagram wifl
have ihe general form shown in table (2.1). The cell
with O’S'cornespoﬁd to the vectors (Allp;, i=1,...m].
The pattérh depends on the order in which'the,inputs

are arranged, since the tendency is to have a few
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long <chains of x's and not al! inputs may be called .

upon. A more uniform treatment of the system inputs
is provided by another natural.search procedure.

III: Search the cfate by rows. '

Now we search the rows until we find a vector, sa?
AKlp . that is linearly dependent on all the
previously selected vectors. We pUt a O‘ in -the
cbrresponding cell and note again that all vectors

below it in the same column will also be linearly

dependent on the already-selected vectors. Therefore

we leave all the corresponding cells blank and go on,
ifb necessary to the neﬁt linearly ihdeﬁendent vectof
encquntered in tﬁe row> search (18). (We may remark
th;t searching_ the c¢rate Dby rows corresponds to
searching the éolumns 0of the controllability matfix
from left to right). A typical crate diagr;m produced

by this scheme will

X | x| X ] 0] al=1

X | o} X A

X X Al

0 0 A3
Al
A5
26

Table 2.4.2 Typical crate diagram filled in by
searching by rows. We have k4=3, Kp=1, Kk3:=3 .
The set of length {3,1,3] will be the same even
if the order of the (b3l 1s permuted.

-
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appegr as in Table (3.2). The tendehcy now is to have

several qhéins of nearly equal _ lenéths

Ky, oo .., Kpl.It can be shown that the length we get.

‘ here will_ remain the same, even if the columns are

permuted.

Iv: Searqh the possible indices .
Let us define ‘the controllability matrix (2.53) as
the (nxn) matfix'obtained.by selecting from léft to

write as many as n linearly independent columns of

" the cohtrollability matrix (2.53). Since the system

(2.52) i's assumed to be controllable if & (2.53) has

full rank n, ~We can construct the noensingular (nxn)

matrix P (2.55) by simply reorderihg the n((=n)

columns of Q (2.53), beginning with a power ordering

of the first Py columns of G (2.53) which involves by

is jfirst column of‘B, and then.eﬁploying those pp
columns of G (2.53) which involve bp, next and  so
forth (32). HNow we can define the m integers P; as
the controllability indices of the systeﬁ'ahd 'denbte
by Y, Max(p;) for (iéi,..@ﬁ?...m), -which we further
define as the controllabili{y of the 'Efstem .i.e.{

max (dj)=p. It should now be noted that all m columns

of ‘B are present in P since we assumed that B was

full rank m. We now set

Py LooiEf, ......m ' (2.56)
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which implies that

Ky. = Py
K3z = Pg+pa+..... ... .. 4Py=n

It is shown in Appendix I‘that_ this procesé does
‘not , terminatg' before R independent vectors have been
'sglectéd. It may happen that, as a result of the selection
scheme I , not all colﬁmns of the original B matrix odcur;ng
the P matrix. In this caée, the corresponding input
compbnen@s play n§ special,role in he aséociated canonical
forms andv will appear in an arbitrary fasnidn in the final
result. The other input components enter the canonical forms
and will input components enter the canonical system in a
special way.

Altnough.there is a certain amount of freedom in the
selection process, ithere are two specific plans fér
selection that have special interest. In the first plan, one
starts with the vector§ ‘bi_ and then proceeds to Abi.v
A%by, ..........AD"1p,  is obtained. ‘In this case the system
is controllable frbm the first input alone, or until a
depéndency arises. If more independent vectors are required,
one theh .selects bp, Abp, ... ... ~until a dependehcy arises.
The prodecure continues in this manner ‘tnpough the Dby's
untii n - linearly inde#éndént vectors are obtained._ The
tendency is to devélép a few long chains in this case.- The P

matrix  (2.55) bbtained in this fashion has the property that
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APka'ié lineariy dependeni'on vectors of the form Alb; with
i¢Kk in the scheme I; |
The crate is a table with m columns in table (3.1)
aﬁdvﬁable (2.40), representing the columns of input matrix B
and n  rows éorresponding to the poweh.of'A matrix; the
(i, J)-th cell of the crate then representg the column of
vectqr' Aifibj, and.choosing ﬂ linearly independent columns
oi P matrix (2.55). | | | |
| Scheme IV is used to solve our problem which .is
very_t conveﬁient in multi~input systgm for( combuter

computation. It will be discussed in detail.

2.4.5 Canonical Forms Of The System Matrix
In'a.part. (2.4.4) it has been concerned about
developmenf of tfahsformat}on to put the system under
'consideratibni into. controlléble canonical form. This
parficﬁlar canonical fprm Was then used to develop a simple
vdesign prodecure by many auihors [26]-[32].> A construction
prodecure. . fﬁr the requiréq transformation, forlthe general
case will be presentéd'in tnis.part.
| ' A.énange of the cbordinates from state_védtdr X ‘to
z defined by z = Tx transf&rms the system (2.52) which

becomes.

z =-T.A.T"! 2 +7TBu : :  (2.58)

~

Appropbi&te choices of T lead to <canonical forms

0of the system (2.52).
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Two basic canonical forms are developed from the
matrix - P {(2.55) constructed in this part. Of course there
~are possible variations within each of two basic forms since

~there are possible variations .in the choice of P.- Each>

choice of P, however, leads to two basically different

canonical forms.

Scheme I-

The first canonical form ié ﬁrodﬁcéd by setting
T=pP" ! simﬁle matrix bookKeeping verifies that the system is

then transformed to the form

z = Az + Bu - (2.59)
. . . -
0 0...% X X , 1t 0...0
1.0 4 b4 b4 00
0 ..1 % . .
X 0 0...% . 1
X 1 0...% - 0
. O ;.1 X ) “ : ‘ . .
A- X . B- _ (2.60)
=z «
. X
X
0....%
1
1 <X Y )
0..1 % 0
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Tne system may be considered as .composed of

fundamental»'companidnj matrices located in blocks along the

diagonal. The x's in thé matrix represent possiple nonzero

_elémehts and except for the indicated t's, these occur only
in.the columns corresponding 10 the right-hand edge of a
fundamental companioh matrix. \

Different choices of P lead to different sizes and
" number of.companion matrices as well as different values for
the nonzero elements. If P were chosen according‘tobthe
f;fst.speéiai plan of the.last seqtion. the x's in a given
corumnv cf A would be 2ero‘ below the ‘companion matrix
corresponding to the‘column. Each of the éompanion matriées

can be considered to present a subsystem' coupled to other

systems. For the special choice of P mentioned above, the

coupling between two subsystem 1is in ohe difection only.
Scheme II ' |
The Second Kind‘ ofvcanonical form is more useful
than the first but is somewhat more . diffucult to derive.
Again start with a P matrix of the form (2.55):

“write P"! in terms of its vectors.

11
12 .
pt o= | ' ‘ (2.61)
1pt

21

L Impm,
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Actually, only the m's of these rows play a direct
rolé.in the canonical form. These are the last rows of each
of the m - groups of rows, i.e., the (roﬁj vebtors'eipi,
1:1,3,...m. 'Forisimlicity of notation these vectors aEe now

labelled as
ey = ejpj (2.62)

The _vecto%s; ei,ea,..{em are used to construct  the

transformation.matrix.

T - |e APL7L |- (2.63)

It is shown in Appendix II that T defined by (2.43) is

nonsingulér; “ -
) It 15 again é simple matter of booKKeeping to

verify that the transfobmation T defined by (2.43) reduces-

the system (2.52) to the fbrm (2.43) where now, .



w

vE

X

»
.

i i ... A
'11 i2 im
A A ... A
mi - me mm.
X X ¥

010 O

001t O

i

o1t ...0

% X X % %.. X

45

(2.64)

(2.65a)
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"- ——
00 .....0
00 .....0
1 X X
00 .....0
B- (00 .....0  (2.65b)
01t x ..x
0
0 .... 01
! ]

-~ ~

- The m diagonal blocks Ajj of A are each an upper right

identity companion matrix of dimension p; while the off

diagonal DblockKs, Aij fdr i=j are each idehtically zero
except possibily for their respective final .rows. We

therefore note that all information regarding the equivalent

state matrix A can be derived <from Knowledge of the m -

ordered controllability indices Pj and m ordered k rows of

~ ~

A. The same can also be said of B, since we note that only

these same ordered K rows of B are nonzero.
2.4.6 Extension O0f Controllable Campanion Form
o Partially State Controllable Systems.

We can consider certain implication and 'extensions
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of_ the proceding ‘reshlfs when the ﬁultivariable sYstem is’
. only state'controilable< In particular, - we still assume
tﬁ;t rank (B)=m<n but we consider the case when rank
(Q):H(n. Note tﬁat‘it is still possible to define the (nxn)

matrix @ consisting of the first W linearly independent

columns of @, as well as the (n®W) matrix P as given by'

(2.55) but with Kit?_ipj = n instead of n. The n lineariy
independent columns of P cleérly. form a ba#is of some
.. subspace W of EN, If we define W3 as - the orthogonal
complement of i.eﬂ, the subspace of EM consisting of all

vectors in the sense of a zero 1nner pboduct, it follows

that the any vector v in EM can be expressed as a linear

combination of the same vector w in W and some vector wy in

Wy in particuiar, vzaw+Bwy for all v in E® which implies
that EP can be defined as the direct sum of W and Wy. It is
thus clear that the dimension q of Wy is n-n, since EP is of
dimension n. We let 81,83,....L6q be any basis of W, and

consider the extended state representation

X = Ax + Bpup  (2.66)

where B, is the nx(m+q) matrix obtained by appending to B
the g basis vectors of Wy, i.e, Bg=(B, By, ...,Bq)l while ue is

an - ((m+q)xt) input vector obtained by appending to u, q

additional input elements i.e. ue=[u1,---.um.um+1,-~r.Um+q]T-

The extended system (3.39), thus defined 1is clearly a

controllable 'ohe “and is therefore possible to employ the

‘algorithm presented earlier, to obtain a n-dimensional

-
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equivalence transformation which redude the extended system
to controllable companion form. We denote the éppropriate

transformation’ matrix T, and utilize 1t to reduce the

original 'system to be -equivalent representation é:Az+Bu!'
-~ ..1 ~ C E
- where A=To.A.Te and B=T,.B. Due to the specific choice of

Te, 1t follows that the equivalent pair (A, B} partially

resembles the multivariable companion form. In particular

[sv}s

(2.67)

By
1]

W
1" A

--------

-~ ~

where the pair (Ag,Bg) 1is the n dimensional controllable

~ ~

companion form, i.e., the pair (Ac,Bé) assumes the structure

: m . ,
indicated by (3.38) with k= .21 PJ. = n. Furthermore the
. ~ J:‘ ’ ~

lower left (qun) block of A as well ‘as the final'q row of B
are idenitically zero. On closer inspection it becomes
apparent that the conirollable and the completely
uncontrollable portioh of the systeﬁ have ©been separated.

More specifiCélly, the n dimensional subsystem defined by

~ -~ ~ -~ ~

the first § rows of the pair (A, B) namely ZgzAgZg+AggZg+Bou

~

"is clearly controllable, since A;cZc Can be treated as a

Known disturbance. Furthermore, the g-dimensional subsystem

~ ~

defined by the remaining rows. of (A, B), namely 'zc:ACzc is
completely uncohtrollabie. We further note_that‘in'view of
'(2.51)'and (2.67)'the characteristic polynomial det (AI-A) of

~

A (and hence of A) can be written as the product of the

-
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vcharacteristic ‘polynomials - of the cohtrollable and
completely uncontrollable portion of the System, i.e.,
Jdet( AI-A) = det( AI-A) = det( AI-Ag)det( AI-AT) (2.68)
2.4.7 Pole Assignment  Via The Contrallable
- Companion Form
We will now consider +the general employment of
linear state feedback for arbitrary assignment of the

closed-loop of the multivariable system as giveh in (2.52).

In particular if the linear state variéble feedbaék control -

law

u(t) = Ex(t) + v(t) : | ' (2.69)

is employeq 10 alter the pole configuration of the open-loop

system, we can readily obtain a state space representation

for dynamical behaviour of the compensation system by simply’

substituting (2.69) for u into (2.68):
¥ = (A+BK)X + BV , (2.70)

In general it is not all clear what effect the control law
(2.69) has on the system (2.65), since consider any
“arbitrary unstructured =~ open-—-loop system pair (A, B).
Hdw;ver, if the v;pen?loop system is in bontbol}éble

companion form; theveffect of the feedback law in (2.69) on

pble locations can be easly clarified, Let us give a,‘mainA
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result- of this section as a theorem.

THEOREM (2.4): Consider the system (2.52) and the linear
state variable feedback law (2.69). A1l @ controllable
polgs of the closed-loop system (2.70) c;n‘bé completely and
arbitrary assigned via lineaﬁ state variable feedback whilg

“the n-n uncontrollable poles of the system are uneffected by

(2.69).

PRQOF' :  Assume that we have already transformed the given.
system into controllable companion form (2.67). The pair

~ ~

(AC;BC) s an n-dimensional controllable companion form,
whire_AC represents tne'complétely'uncontrollable portion of

the state matrix. As we have previously noted all (m) Ky

~ ~ ~

" rows of A +BgK¢ can be completely and arbitrarily altered
via K. ( K is the required feedback gain matrix in the

transformed coordinate system and Ke is the‘portion of X

-corresponding to the. n-dimensional controllable system

~ -~ ~ - >~ :

(Ac, BEc). We can choose the'first n columns K. of K, such

that
0 1 0 . . 0
0O 0 i .. 0
A+B E = . ‘ ' 4 (2.71)
c c ¢ . ,

0 0 0 ... 1

-a -a e e —-a

L n. ‘n-i 15

is an n-dimensional ‘companion matrix, where the scalers

-
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244 + s +3p represent  the ~coefficients of the desired

characteristic polynomial, 1i.e., the coefficients of the

~ ~ A

polynomial det(AIfAc—BCKC). Since the remaining n-n columns

~
~

of K affect only A,g, the final n-T rows of A are completely
uneffected by K, which implies that the n-m eigenvalues ;C,
| or gquivalenfly the uncohtréliable poles of the
system, remain_-unaltered  by lingar state feedback. This
Afollqws'formally from the fact that all the‘n poles 0f the
closed—ioop system are equivalent to the zeros of :

L o

det( AI-A-BK)

det{ AI-A-BK)

~ ~ A

det( A -Ag-BcKgldet( AI-AZ) (2.72)

~

In - order toi'explicitly determine a K which yields the
controliable part of the closed loop system matrix as
. ‘ : ¥

- represented by (2.71), we let Ap denote the m ordéredAki

~ ~ -~ ~ ~

rows of Ag+B;K. as given by (2.71) and define Agy and Bgp as

“the same ordered ki rows of A, and Bg, respectively. It
‘therefore follows that

* R

or that the control law (2.69), with tHe first n columns of

~

K given by
~ -y ¥ -
KC = ch (Am - Acm) (2-74)
yields the .desired T-dimensional closed-loop system

. Submatrixz (2.71).
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The final n-n column of é play no paft ih closea?
loop pofe assignment, since they affect onlf l;cg< which in
turn, has no effect on the eigenvalues of the closed-loop
system matrix. We can therefoﬁe say the final n-n columnﬁ
of é equal to zero 1p order to complete our assignment of
all (mn) entries of an appropriate. The state feedbacKk gain
matrix K,'assodiated with the original system is given by

u = Kz2+v = KTx + v= EKx + Vv ' (2.75)

where ' -

K = KT \ ’ (2.76)
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. 111. THEQRETICAL ANALYSIS OF QIL FILM BEARINGS

3.1 Introduction

The technical and industrial growth in the 19th
century_;ed to the'wideséread development in turbomachinery.
Thé use of oil-film journal bearings to suppoft the rotors
led many people to investigate the. characteristics of o0il
f1ilms, and their effect on the dyhamics'of rotor/bearing
systems.

In 1886, Reynolds. [33] published his classical work

to'establish the well Known Reynolds equation,. This defines

the hydro4dynamic pressure distribution in an oil-film.

In 1925, Stodola [2]) modeled a shaft supported on é_

Jdurnal bearing as a mass-spring system and he investigateq
the effect of thé oil-film stiffness on the critical speed.

.This model was used to show. the_ discrepancy between the

observed critical spéed and that predicted by assuming the

bearing as a point support. ~However, because the damping
ability of the bearing was ignored, hé was unable to predict
the amplitude of vibration at the critical speed. Later

investigations in this field have shown that it  is
convenient to represent the shaft and the oil-film as a

fmass—damper—sprihg system are represented by four stiffness

coefficients. o _ ' . S
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Theoretical works to determine these coefficients.

have’prbdgced formula which are valid under certain physical
_condiiions and assumptions [4].

In 1963 Cooper [3) performed a series of
experlments on-a rigid shaft supported in oil- fllm bearlng
The smooth running of the rotor was limited by the on set of
the. so-called ‘'oil-whip? .phenomenon. The shaft was then
supported using rolling element béarings whose outer races
‘were prevented from rotating. He observed that the oil-whip
_phenomenon  disappeared. This ,configuratioﬁ where the
iournal does not rotate 1s termed a squeeze-film bearing.
| | ‘These devices are commonly used in conjuction with
‘ ; rolling element bearing?v,A'ring is firmly attached ﬁo the
outer race'of the roller bearing and the annulus between the
outer diameter of the dampeb-fing and the bearing housing is
fllled.‘with 'oilylin Figure 11,1, Although squeeze-film

bearingsrhave a relatively short history they are now being

extenéively used 1in appllcatlons where it is necessary to

limit rotor vibration and their effect on the =supporting
_strdcture (e.g. turbine engines).

The dynamics of the squeeze- film bearing are
' MmR(1/¢)3

dependent upon the bearing parameter and the
o mw

" supply ppeésure. These factors effect the extend of ‘the

oil-film in the annulus.

Squeeze-film bearings can be designed to

1ncdrporate end seals and in many applications retainer

springs are
} the Reynolds equation is modified

"particular configuration,
‘ hY

-

.ugea to support‘ the static load. In many
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%CCOfdinle and solved to obtain the oii-film coefficients

:,[34]2

MqSt of the lfteratupe concerning squéeze—film
bearings is. devoted to the identification of oil—fil@
coéfficienﬁs and to their . design, when they are used to
support rigidibr flexible rbtors (39]).
| In "this thesis, a.sqﬁeeze-film damper without end
seals and supported by retainer springs is ihvestigated for

state feedback control.

3.2 Dynamic Equations and Transfer Function Models
- A squeeze- film bearing can be regarded as a special
case of a Journal bearing. Tné dynamic equations governing
lhe dynamics of squeeze-film - bearing _are given in the

following section.

3.2.1 Squeeze-film Bearing Equations

Assuming that tnebjournal does not rotate, the four

stiffness terms Whlch are a function of the Journal angutar

veloc1ty,' dlsappear. The static load capa01ty may then be
provided by an external spring. NHeglecting the cross-
étiffness effects, the dynamic equations of motion for a

squeeze-film bearing become

m}‘(‘_-}- CXX}.{ +st +nyY = 'fx
my + Cyx¥ +Ks¥ *Cyy¥

]
.
~
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Where

y dlrectlon respectlvely It is assumed that the stiffness Ks
';s equal 1n both x and Yy directions.

The damping coefficients in local coordinates and
-the coordinate transformations are derived in [36).

In practice f, and fy.are the components of the
mass unbalance force 'along the x and y axis. However, the
‘dynamics of the squeeze-film bearing can be simulate&v by
applyihg eXxlernal perturbations withdutv the rotation of

rotor.

4 3.2.2 Squeeze-iilm Bearing Oil-film Coefficients

The  journal bearing 1is  characterised by eight

linear oil-film coefficients which were ~derived by Holmes

[(373]. The dynamics of the squeeze-film 1s characterised by

considering the journal bearing when the journal rotation is

suppfessed. Then the four stiffness terms in oil-film

disappear.

Assuming that the oil-film exists over an arc of

1809 in Figure 3.2.1,the linearized damping terms in the

1

local r-s coordinate system may be written as

2
, n13R (142€4)
c - m
rr 2¢3 ' (1'€02)5/2
M13R €o

¥ and y r‘G‘F’x‘esen“r. the dlsplacementq in x and

- T » (3.2)°
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The‘coefficients in equation (3.2) are expressed in
dimensional form and they may be non-dimentionalised by

defining non-dimensional terms such as

' Cprr : :
Cpp = ———— , etc. - (3.3)
mMR(1l/c)3 '

Then the non-dimensional coeffiCients may be expreéessed as

2 .
| (1+42€4)
CPI" = )
2€,
Cpg = Cgp = —— 35— (3.4)
, m(1-€8)2
i
Cgs =

2(1-€2)3/2

However it 1is normal practice to operate the
sqﬁeeze?film " bearing with a full 360° film in the annulusf

Under these circumstances, the cross-damping terms ¢pg and

" Cgp vanish, while the two direct terms double in value, such

ihat




c 'nlBR (1+2€o)
= - “
360 = 3 (1-€2)5/2
n13R t
5360 03 : (1_65)3/2

Then the non-dimensional form of the coefficients

in equation (3.5) may be written as

. 2
(1+2€,)
Cpp = .
(i‘Eg)5/2
. 1
Css = :
(1_€g)3/2

3.2.3 Coordinate Transformatians

58

(3.95)

(3.6)

" The oil;film fétces,are genaraliy derived in .the
'ldcal axes ~coordinate system which is related to the
attitude angle &,  Figure 3.2.1 When formulating the
equations of mqtioh of a rotor supported in_ 0il-film
vbearihgs, ‘it is convenient to write the equations in the

fixed axes (x,y) coordinate system.

. From Figure 3.2.1 the displacements along r-s -axes

may be written as




-
1}

Y. sin ¢4 + ¥ cos bo

$ =Y Cos 45 - x sin ¢,

and the velocities are

"5.
"

Y sin ¢, + ¥ cos ¢,

§-.= ycos q’o - % S1in q-’o

’Tne oil-film forces alohg the %-y axes .are

the ¥ and y axes as

fy = fp cos ¢ - fg sin 4,

fty = fp sin bo + g COs &4

The squeeze-film bearing forces

coordinate r-s can be expressed in terms of

damping coefficients as

fp = Cppl + Cpgs
'fs - Csr\r' + Csss.

and for the x-y axes they may be written as

:EX - Cxxx + nyy

H
<o
1]
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(3.8)

resolved along

(3.9) - _

along the ldcal

the linearized

(3.10)

(3.11)
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Qy ‘algebraic manipulation of equatlons (3.8) to
(3. 11) the 011 fllm coefflcxents in statxonary X-Y axes may

be obtalned In terms of the original coefficients in r-s

coordinate system.

- 2 i i
Cxx = CrrC0S®s + Cgssinfoy - (cpg + Cgp) COSPysind,

(Cpp = Cgg) cosdysing, .

éxy z cpgcos3¢d - cspsin3¢o +
) : (3.12)
Cyx = Cgp€OST®y - Cpgsind, + (Cpp - Cgg) COSdgsing,

+

CssC058dy + cppsinlo,

(cpg + Cgp) cosdysing,

As described before , for 3600 film in the annulus,
Cpg and Csr become zeéro and cnp and Ccgg double in value.

However, from equation (3.12)'11 is - seen that . the <c¢ross

damping terms. in x-y axXes are non-zero. To explain the

circumstance under which cgy and cyyx tend to zero, a second
constraint 15 considered. When the journal is centralised
in the bearing, or when the displacement 1is along the

vertical or horizontal axes, then coefficienls Cyy and Cyy

tend to iéro (38]. This situation occurs when the attitude

angle-'¢o 1s set to 09 or 90°%. In this case the c¢ross

-damping ferms in X-y axes disappear and horizontal and

verilcal-motions_of the journal centre are coupled.
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»'3.2.4 Rofor_— Bearing Transfer Function Models
For convenience equation (3.1) <can. be non-
dimeﬁsipnaiised and ihe transfer functions can be derived'as
foliowé,[39]:

Rewriting equation (3;1) in non-dimensional form

. r " e
X | X v b4 X
: + L IC + C _ + K — =u
cwe L XX cw .. XY cw J s ¢ X
. (3.13)
e r ’ . . .I
¥ | y % oy
+ L |C — + C — + K — -u
cwl ‘ ~L YY cw YX  cw J S ¢ Y
where Uy = fyx/mcw?
uy = fy/mCW?
Kg = Kg/mwe
= TmR(l/c)3/mw

and L
Byv introducing 'a suitable set of state variables,

for example

Xy = x/c , ¥Xp :_X/CW. Z3 = y/¢ s, Xy = y/cwW

. then equation (3.13) can be written 1in the state space as

x = Ax + Bu ' . (3.14)

where
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r -
0 1/L 0 0
~k /L -C 0 -C
A = WL . XX Xy
' 0 0. 0 1/L
o -C -k /L -Cyy
A YX s |

Is the system dynamic matrix,

X =1[ X . %, X, % }T is the state vector
bl_i 2 3 4_, . -
0 W 0 o |T
B =
0 0 o W
15 the input transducer matrix, and u = ] u , u l is the

" input vector.

‘The cdrresponding output equation may be written as

Yy = Cx (3.15)

where y = y , v ]T is the output vector.

3 L g

r—
~
-
%
ro

The output transducer matrix C, may be taken as the
1dentiiy matrix since all elements of the state vector x are

directly available for measurement.

Taking. Laﬁ1ace transformations of equations -(3.14)

and  (3.15), and assuming =zero initial conditions, - the

transfer function matrix can be obtained as
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Gs) = = | sI-A|"l B : (3.17)
U(s) : B
where
3 7
s@ s , s
— + — LC + K - LC
Wwe W Yy s : W Xy
s s s s2
| + LC + K | - LC
1 W W W Yy s we Xy
G(s) = 2
' - A(s) A
s st s
- — LC ‘ + LC + K
W YX wa i XX S
52 s sé s
; - — LC | + LC + K |
] we  YX W w2 W XX s
The characteristic equation is
st 53 s& . ‘ -
A(s) = + +(C +C )+ |L3(c C _-C_C_ )+2k |
. Wt w3 XX . ¥YY @R XX YY XY Y¥ s
s o - - .
+ L(Cyx *+ Cyylks + kg = 0~ (3.18)
W - ‘ .

Denoting an element of G(s) as g&;j(s), the response
of ihe four states when a force 1is applied sequentially to
each of the two input channel 1s,

' . gy5(s) ’
Yi(s) = Uj(s) = Tjy(s) Uj(s) , (3;'19) :

A (s) |

-




where Tij is the transfer function between the JtN input,
i=1,2 and i'M output, 1i:1,p2,3, &,
The transfer functions relating the vertical and

horizontal displacements to horizontal forcing are,

Yi(s)  -( s/W ) LCy
Typ(s) = — = , Y (3.20)
U(s) - A (8)
Y3(s) (S2/WB)+ (8/W)LCyyu+kg
Tza(s) = — =z : (3.21)
~ U(s) A (s)

When the journal 1is centralised in the bearing, or
when the displacement is along the vertical or horizontal
axis, then coefficients CXY andi ny tend to " zero [38].
vUnder the§e conditions the coupled model reduces to second

order uncoupled model as follows

Tzp = : for ¢, = 0° (3'?2),
s2 + sLCgg + Kg
1 » ‘
T3p = for &, = 90° (3.23)

s€ + SLCpp + Kg
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IV. STATE-FEEDBACK CONTROL OF SQUEEZE-FILM BEARING-

ROTOR SYSTEM AND COMPUTER PROGRAMMING

4.1  State-feedback Madelling of Squeeze-film

Bearing—Rotdr System

It is well known that the state variable feedback

can be used to control systém modes of vibration. The bbjéét

in‘eigenvaiue assignment in"rotor-ﬂearing system would.be to

stabilize an unstable system or to obtain a better oberating
s?stem whichVWould be phyéically-difficult td design.

| In this work, the equations used are in dimensional

" form. The dynanmic eduations of motion for a rigid rotor

sﬁpported at'the ends by squeeze-film bearing are given by:

M X + Cyg ¥ + Kg X + Cygy ¥ = Uy
My + Cyg X + Kg ¥ + Cyy ¥ = Uy (4.1)
By introducing a suitable set of "state variables,

for example
:{1:‘}(",2{2:1:5:)(3:}":(4:},

then the equation (4.1) can be written in the state space as

~

é = AX + Bu (#.2)

where
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0 1 0 0
A = s XX Xy
0 0 0 \
0 -C /M -¥ /M -c /M
- - YX s YY/ 3
0 1/M 0 0
B = ' o . _

4.1.1 Selection of Models For Squeeze-film Rotor-
"Bearing System

For the simglations four types of models are
selected which have different»configurations of eigenvalues.
Datas of thesé mode1s are givén in Table 4.1.1. These models
are tabulated 1in ‘table #4.1.2. The  eigenvalues. of the
uncontrolled models Are shown on Figure 4.1.1 and given in
table 4.1.3.

As it is seen in Figure #.1.1 all the eigenvalues
of each mode[,‘are located at the left ﬁand side of the s-
plane. :Hencé tne.originall(oben-lqop) models are stable.
Obviously, théir behaviour in the time domain ére dependent
“upon tne‘eigenvalues. |

~In Modelll; the first two eigenvalues are complex
conjugates >ahd -the other two are distinct real. It is
Possible to find out the eigenvalues corresponding to the X
and y-directions respectively! Considering the system
‘equations it»is 0bsefved that the displacements in x and " y-
coupled by the cross-dﬁmping

directions  are  weakly

coefficients CXYY and . Cyx .which are equal and small.
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Therefore,- 1t is possible to treat the system as uncoupled

In thls case, the system can be reduced to two uncoupled

second order models in x and y-directions. For a second
~order model, general characteristic ‘equation is of the form
sZ + ays +ap = 0 in which a, represents the addition and ap

is the multlpllcatlon of eigenvalues respectlvely.

For Model I, we can find the coefficients  of the
.enaracteristie equations in x aﬁd y-direction as ax1=20600 '
agp=85.532 , ay=20000 and .ay2:4é9,840‘ First; let us
ponsider two poles from Figure 4}1;a, namely, Ay, p = -39 ¢
1135 and iry to find out to which directioﬁ these -poles will
corhespdnd, It 1is ciedr.that , the multiplication of these
_ poles 1s 19746 and the addition is 78. 'These numbers are
very close to ayy andiaxa and therefore these poles are the
eigenvalueé'ofbthe displacement in x-direction.

‘It is also possible to reach to'the same cenclu51on
for the y-directibn. .Like the multiplication of the other
4two pofes 15 20228 and, the addition is #441. Therefore,
there is enough ~proof ‘that these poles lie in the y-
, direction. |

Iﬁ‘order to make a time domain analysis,we.can make
use of the dominant root concept. The time. eonstant,
z:r/awn, .15 the reciprecal of the distance from the root to
the imﬁginary axis, 'All ’roots lying on a given vert;aal
line in the s- plane nave the same time constant and the

greater the distance oOf the line from the 1ma51nery ax1.,

the smaller is the time constant. This leads us 1o the
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concept . of the .[dominant root. For a given characteristic

~equation, this is the root  that ljes nearest to the

imaginary axis. therefore, if the system is stable, the

dominant root is the root with the largeSt time constant.

The usefulness of the dominant root is that it allows us to
approximate the speed of response for the system.

The ffee response curveévin X and y directions of
‘the uncontrolled Models I,Ii,IIi and IV are given in Figure
4.1.2 10'4‘1‘9 Pespéptiyely- In Model I, oscillation occurs
only in x-direction and not in y-direction, because in x-
N‘direction the eigenvalues have imagiﬁary parts whereas in y-:
direction, they are distinct reﬁl.

If éZ settling time critefia is used, then the
settling time (tg) 1s approximately four times ihe, time
constant of the system. In Model I, . the settling times of
‘ fhe‘x and y—di}éctiohs are ‘cafculated as O.iOB sec. and
0.076  sec. respebtively. When these arg coﬁpared with
'Figﬁres,é.i.a and 4.1.3, it is seen that' the results are
‘reasonable., Similar results can be obtained for the other
modeis\ |

In order?to apply the state-feedback cgntroi'fo the
roior—bearing system,‘é Set of desired eigenvalues should be
chosen. The choice should be such that the motion in x and y

.directions are overdamped.  However, for the sake of

application two set of deéiﬁed eigenvalues given below are

chosen, ‘ : ' : ' _




69

1 gt set of»desifed eigenvalués
Mgz 7t F 1005 kg = o1 - 1005 h3: ~1.25 Ays -1.5
2 nd set of desired eigenvalues

hy='"2 S hgE -3 . A3z -4 Ayz -5

The reSponse of the «closed-loop system for the
~first set of desired_eigenvalues i1s given in Figﬁres 4,1.10
-n 1.1 andvfor the second set of desired eigenvalues in
Figure 4.1.12-%.1.13 for =x and y-directions respectively.
From thése figures, it is seen that +the assignment of a
complex ¢dnjugate. pair ot ‘éigenvaiues causes oscillatory
~motion in ®-direction in Figure 4.1.10, but a smooth
résponse in'y—qirection in Fiéure 4,1.11. For the second set
of di;tinc{ deéired eigenvalues, fhe expected.displacements
are smoother than those of the original uncontrolled systemn,
Therefore thése results verify the correctness of the phase-
Varlable canognical method for eigenvalue as;ignment and also
"the  correctness  of .the c¢omputational work. Hence the
performance 0t any givén systgm can he improved ﬁsing state-
| feedback éontrol. State-feedback matrices for first and

seconcd desired elrgenvalues are obtained as

-~

| so0000.00 5.86 25.00 3.12
£ o= . . : » - -
Sl ieen -ssv.os  299634.00 89.26 |
‘ ’ ) ’ . ! -
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500000.00 : . 5.86 - 25.60 S 3.1 ]

) . | | o B ,
L‘ JOOQ.OO -3846.87 498225, 00 =320.05% J

4.2 Computer Programming

In this thesis, the phase-variable canonical method

is programmed for state-feedback control! application. The

program  named THESIS! is written in FORTRAN language

according to the mathematical models presented in section
4.1. The computer program is listed in Appendix 1II. The
computer program THESIS!Y 1is modular and  user friepdly. In
mawn program there are 18.subroutines, some of them being
cafled.IMSL library. Tﬁe'fldwchart of the programmrng.logré
18 given in figure 4.2.1. The program after asking for the
iﬁputs interact;vely,' createsvthe dynamic matrix of the
'systém ﬁsing 6il-film coefficients which are given in
Chapter III and then finds'its eigenvalueé) Followingiy. it
imtegrates thé system equatioﬁs using Runge-EKutta methbd‘and
fﬁeh draw§ k—y‘displacement responses of.the sfstem. Then,
i1t computes the coﬁtral{abiiity matrix of the system and

subsequently 1t continues for calculations of obtaining

phase-variable canoﬁical—form. ~ At the end of  these .

calculations,  THESIS1 computes the state-feedback gain

matrix which are to satisfy for. the desired eigenvalues.

‘Finally, THESISi computes the closed-loop dynamic matrix and

1t solves tihe new state-space equations for the controlled

‘responsesare drawn on the screen.
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‘4.2,1 Subroutines .

The main subroutines ~which are used are. given
below: |
Subfoutineb INTER : This subroutiné asks intehactiVely for
- parameters Wh§chA are bnecessary to design rotor bearing

cbefficien{s.

Subroutiﬁg AEMAT : This subroﬁtine compuies tﬁe state-space
representatibh matrich'A and B after calculatihg the oil-
film damping coefficients.'

Subroutine fRANS : This subroutine rénémed ithe A and B
matrfces for following steps.

Subr?Ufine EIGEN : The eigenvalues of dynamic matrix A are
cdmpUtéd.uéing subroutine EIGRF in IMSL library.

Subroﬁtiné RUN1 ot Tnis subroutine solves the open-loop
s?stem equations ﬁsing Runge-Kutta method using subroutine
DVERKVin IMSL library. The.subroutine FCNi1 is called in
subroutine RUN1 1is used for writing system equations which
afe to“be 'solved. The subroutine GRAPH in RUN{ draws
gfaphics. using the Apoinis obtained with the'Runge—Kutta
method. In. addition, there are two more subroutine in GRAPH
called aé AXIS and G which are used for plotting purpose.
Subfoutine COM : This subhou@ine computes the time variable

dontrollability matrix in canonical! form using the method

~explained -in part 2.4%.3.
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Suprgutine INV : This ?UDP°Utine‘°°mPutes'the inverse matpix'u
°f‘_'a_gi"e“' Inpul  matrix using subroutine LINVIF in IMsL
‘library. '
Shbroutine TTRA The transpose of matrices are computed
using TTRA subroutine,
Subroutine TMAT This  subroutine computes | the T
transtrmatioh matrix iﬁ X = Tz ,ﬁsing the invérse
controllability matrix. |
Subroutine ATRAF: Thi§ subroutine éomputes the tranéformed
bmétfices A and E in phase-variable canonical form. |
Subroutine SEIG : This subroutine compuies the
cnaractefistic coefficients of the system in matrix form.
VSubrou;ine DEIG : This subroutine arranges the 'desired
matrix respect io ~desired eigenValues aqd computes the
céefficients of desired characteristic equation in matrix
form.
Subroutine GAIN : The state-feedback gain matrix 1is computed
_usiné the iransformations Wnich are explained }n Chapter II.
Subroutine COE : This Subroutine computes the closed-loop
‘dynamic matrix after Siate—feedback control.
Subroutine RUNZ : This subroutine integrates the closed;loop
systgm equations“using Runge-Kutta method using subroutine
1.DVERK’ in fMSL library. The subroutine FCN2 in RUN2 is used
for writing equatioﬁs which are to be solved. Then it s

called to subroutine GRAPH. for graphics similarly as 1in

subroutine RUN1.
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‘V, CONCLUSIONS

_In this study various approaches to pole assiénment
problemvand its application to a rigid rotor supported .on
squeeze-film bearings have been discussed. However, there is
not a unique state-feedback ‘control method due to the
ambulguity of the problem in multi-input -multi-output
systéms.. Furthermore most of the available algorithms
proceed by first transforming.tne sYstem equations ;nto a
‘canonical fﬁrm ' in_‘ the intefeSt of ‘computatibnal
trébtability., Thé-most attention - "deserving paft of this

study 1s the generalization of AcKkermann's ([24]) procedure to

mul;iVariabLe systems. A trick 1is used to generalize

.Ackérmannfs procedure to multivariable systems ‘0f 1nterest
intQ an equivalenf single input system which was given
diﬁect design proceduré in chapter 1II. Direct design
lprocedure is extremel? convenient to uée with multivariable
sysiems, sinée it requires no explicit transformatioh of the
system équaiiOns_into a canonical form and 1t considerably
- reduces thé number of computations required 1in determihing
the feedback gain matrix K. As explained in dgtail in the
'secghd‘ ¢hapter, this transformation into an équiyaleni
_slngie 1nput-sy§tem 15 establisedbby'ChOOSing the -feedback

matrix K, namely by setting K = gp, where g is arbitrary
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chosen, with the.only restriction of préservihg the system's

Con;tgllability characteristics‘ However, - addifional
flexlbility can be introduced into the control
if g can be chdsen appropriately. Tnerefore, an interesting
pbint which |
wh;chkq musw be chosen.

Anothef point which is still opeﬁ for further
research 1S the modification of Ackermann's original

procedure such that it will also cover pole assignment

through only output  feedback. Use of the output

controllabitity matrix  to derive a formula similar to

AcKermann's original - one will be a logical step to start
this further‘reéearch;

| Finally, ii is concluded that the phase-variabie
candnical raethod 1is succeszu;ly applied for eigenvalue
assignment 1ﬁ rotor bearing éystéms. The performance of
ihese syétems can be improved 1in certain cases or they can
be stabilized'if they are ﬁnstabreﬁ For example,‘it is well
Known that journal bearings ﬁecome unstable when the
operational spéed is twice the first c¢ritical speed [2].
Such theofetically a system has been stabilized using state-
_féedback control approach [40].
B However, the proof presented in this sthdy make use

of +the canonical system equations and is general enough to

include all possible systems.

»system design'

Still deserves special attention is the way in-
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APPENDIX 1
Lemma 1
Unless n veciors have already ‘been seiected (and
petained In the process (2.15)-(2.18) in chapter 2, there is
a vector of form AJby, where all lower powers of A times by
néve'been retainedf which is linearly independent df all

previously éelgcted,ﬁectors.
vProof: Suppoge'that the §e1eéted vectors are:
bi,Abi,...Aqibi,be,Abeﬂ.i.Aqaba,bm,...Aqmbm |  (ata)
and that each of the vectors
Aq1;¥b1,Aq2+1b2,;.......Aqm+1bm

is linearly independent dﬁ ihe selected vectors, so that the
>procéss terminates. = It then follows by the ;nductioh
‘argument sketched below tnai all other vectors. in the
controllability matrix (2.16). This in turn implies that
either the.controilability matrix is less than n of‘ there
are n independent vectors in the selection (Afa).

A sketch of induction proof is as follows: The

vector Ady+2.by is A.A9y+t , since A9y+1.py is-a

linear combination of A times the selected vectors.
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Aq1+1jb1 is the same linear combination of A times selected

vectors. However, by hypothesis, A times any selected vector

is also a linear combination of selected vectors, thus

A94+2.by is a linear combination of selected vectors..

Proceeding in this fashion one proves that all remaining

,vectors~vin the controllability matrix are depend on the

selected vectors,
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APPENDIX I1I

It is shown that the matrix T defined by (2.26) is

nonsingular. To .this and it is sufficient to Show that the

" rows of T are llnearly independent or equ1va1ently that any

null .linear combination of the rows must be the linear

combination consisting of zeros.

Suppose there are constants aij such that

m Pi

E‘ E_aiJeJAJ'i =0 ’ ' (A2a)
i=1 j=1{

Taking the inner product of both sides of the this

equation with by produces
agpg=0 | : (A2Db)

since by définition 0f the ai's each term in the inner
-liﬁear product is zero éxcept the one involving eyAPp-1.bg
which is Unity. | .

Iﬁ view of (A2a), (A2b) can be written equivalently

as’
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m Pi-1
L - aiJe'JAJ“i‘ =0 _ - (A2c)

i=1 j=1

Taking the inner product. of both sides of this with

Apg produces
ag, pk-1:0 . . ‘ (A2d)

continuing in tis manner, by induction, it is proved that

eacn‘aijzo whibhvcompletes the proof.
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APPENDIX IIT

L R R R R R R R R T

& O i e e I e e ek ek ik ek ek e ek ek e el b IR b

L T(INPUT,DUTPUT,UUT1,DuTQ,GUT;,UUTq,‘APEQ=I FUT,

.“UUrPUT,TAPES=UUT1,TAPE?=DUTE,TQPE10=GUT;,TAPE1?=BUT4)

VINVILO, 109, WKAREA(10) , 010, 10) | |

LIFCLO, 100, D, D2, BT C1a) , WA :

M_églo,10),%1(10;1D5;ﬁ2(10,10),A3(10,1ﬁ)
H(lﬁ,10),51(1@,1%1,&2(10,10),33(10,1&)

ARLOLO, 100, &F2010,10), AP3010, 10)

CEi10, 100, 02010, 10), 03010, 10), 54010, 107

LU L0, 100, COEX (10, 100, CON 1D, 100, ZOINV(10, 10)

Ao TROLO10) , TTOOL0, 10, TONCLO, 107 ' ’

sl TOL0, 100, TIOLO, 100, TR(OLO, 100, TS(10, 10)

e ATOLO, 100 BTOLO, 100, AMT(1O, 1)

Sl ZA010, 100, BRO10, 10, BTINVILO, 10)

- WADILG, 1O)  ADCLO, 10

Sl FRLCLG, 103, TAadlo, 10)

Al CEOL0, 10) ETCLO, 100, EIG(10, 10)

TEAL W24, RZ22) ,RE (e
CREAL TIEA Y, WIGE, 100) T, T, TEND

FEAL X 10003, Y1 (1000) ' .

REAL AL01000) , X201000) , X2301000), X4{1000)
EESL LE MA, ER ‘
TR, MW,

CEERON, TA, TDGT, IER

TNTEGER IFPYT4)
COMPLEX Woay, 208, 8), IM
EERIVALENTE (W1, RHIL1)), (Z{1, 1), RZ{1))
COMMON L BWER KL, CXY, CVE, CYY, MA, KBS
COMMON/COEFL/CALL; CALR, CALS, CALY

CORMON S COEF2/0ARL, CAZ A5, ARG
CCOMMON/COEFE/0ATL TADZR, CAZE, TARY
 COMMONSCOEF4/CAA1, CAGZ, CAGTR, CALA
CHARADTERS1T CTH-

BEWINMD = '

11 L L ~_' o
TEGD VALLES GIVEN FOR HHIEH THE SOLUTION 1S SEARCHEDR

ComgE=—l,2E
SO -1,

L=, Q0w




'fﬁiﬂwi ‘ S : ' 80

Tl = =2

ooCALL IMTER (LE,R,CL,FI,EF,KS, MA, VT, - _—
DAL, DR, OXE, X4, NOUT, THRA, “:,L[\:?lilvﬂ]f)l‘-z M, I, 102,
S AL ﬁBM&T(ATB!LE7R1CLyVIyEP,FI"l;H‘
CALL TRANZ (A, B, AL, BL, A2, B2, AT, B2, L, M)
Call ETGEN (A%, L,M,NOUTS ‘ '
FRINT=, “2ENTER 1| TO COMTINUES
REALH S, ) TaNT T .
Al RUML L, T, FI, TGRA, TRLT, NOUT)
DAl POla CAL, AZ, 8FL, APZ, AFZ, L, M)
CALL COM (B1, APL, AFZ, APE, COEX, 101, (02, L, M, NOUT)
Call TNV (L, COEX, COINY, NOUT)
CALL TTRA (COINV, TR, TOL, TOE, L, M, NOUT)
Call. THMaT (TR;APITAPE;APE,TX,Iﬂl,IUE,TI,TB,TE,L,M,NDUT)
C AL TNV (LT TINY, NOUT)Y : '
CEALL ATRACTI, AL, TINV, AT, BL, BT, L, M, NOUT)
Call SEIG (AT, BT, SA, 5B, T00, L, M, NOUT)
CCAlLL DETGINADG TIM, L, M, DL, OX 2, DXE, DX4, MOUT)
Calls TNV (M, SE, BTINY, NOUT) ‘
CALL GATN (MADL ZA, BTINY, C1L, TS, KEL, L, M, NOUT)
Calde DOE (AZ, B2 ERLEL, L, M, NOUT)
Al ETGER (BT, L, M, NOUT) ' 4
FRINTE, “=WHICH ARE SAME A% DESIRED ONES-
PROMTE, T=IF YESD EMTER 17 -
FRIMT=, “=1F MO ENTER O

REATCS, &) CONTI |
IF (CONTILER.0.0) G TO S0
Cabl RUMIOL, CLLFL, IGRA. TRLT NOLT)

=l Cl,FLER, ES, MA VI LM, 1D, T,
STE L, DXE, IR, D4, NOUT, TGRA, IPLT, CHED o
REASL LLE,MA, K
CHARACTER®L CH .
TFEOCRE L ER, 1)E3 TO 50 :
L PFRINT=, © 1-ENTER THE LAND LENGTH OF BEARING : "
£ B M :
READCS, ©1LE :
ROk ER, 1)G0 TO 5 o .
7 PRINTS, - Z-EMTER THE RADIUE OF JOURNAL EEARTNG <
% (MT37
READSE, 2R _
CIF (kL ER. DG TS0 _ . R o
I OPRINT=, < Z-EMTER THE CLEARANCE BETWEEN HOLSING - AND JOU-,
FORNAL BEARING  (MT)7
COREADCE, =CL
1 oL Em, Lo To s .

“ 4-EMTER THE ATTITUDE ANGLE 1M COORDINATE SYSTEMS

READ(S, ©)FT |

TE(ORE, B, DYG00 TR S0 N .
e @L%N;@ E sLENTER THE STATIC ECCENTRICITY RATIOC
REATICE, s YEF o

TF Gk, B, 1yE0 T A




B1.

(N -

IF(!HV ECL G0 To s -
7 {‘TN" ”:’~ENTER THE MAZEZ PER LAND 0F THE BEARINGS,

FREATH S, 5) MA
IFOOHELED. G0 To 500
E PRINTS, © 2-ENTER THE VISCOSITY OF OIL-,
N (NM/ Zesg)
hECD\JT’}V]
IR CCHELERL DG T 50 ‘
#OPRINTE, 7 2-ENTER THE RESL FARY OF DESIRED DquNAN1 oL
CREADE, = 0¥1 : .
ITF{CHEVER, 160 TO S0
10 FRINT#, “10-ENTER THE IMAGINER FARYT OF DOMINANT FOLES",
#7OIM (+) SIGNT :
REALKS, =) DX2 »
TFOOHM D ER. DYGED TO 50 '
1 PRIMTE, “11I-ENMTER THE THIRD REAL DESIRED POLES
REATI(CS, =) IXS2 .
TROOHELER, 1YGE0 T 50 ‘
12 PRIMT#, “12-ENTER THE FOURTH REAL DESIRED POLES
ol AT = "»Tl,\l\
IF.LHL.EU 1YED TO S0
13 PRIMT=, " 12-NUMERICAL OQUTFUTS REGUIRED 7
PRIMT=, " IF YES' EMTER &~
FRoIpiTe=, “TF NO ENTER 27
FEAD(D ,«)NHHF
IF (MR . Lll TAE0TO "7() ]
14 FRINTS, © 14-GRAFHICAL OUTPUT hLHULRfU G
FRIMTS, “IF YES ENTER 17
FRIMTS, “IF N ENTER O~
READCE, =) TGRA
CTFCCHEL ERL DE0 TO S0 ‘
1% PRINT=,  15-FLOTTER DUTFUT RERUIRED <
‘ PRIMT=, “1IF YES ENTER 1
rrIWTr.*TP ML EMTER 07
R =) IFLT ’
- 1L.(: L,u .t“ 160 TO S0
SEECIFTC qLHEE FOR SYSTEM
CeREGRERE OF SYSTEM ' _
M=FGEREE OF TNFUT MATRIX _
I =DEGREE OF FIRST DIAGONAL MATRIX IN JOURDAN FORM
IRTENEGREE OF SECONT DIAGONAL MATRIX IN JOURDAN FORY
Lomd
M=z
TTl=
2=z

s PRIMTS, © 1-LAND LENGTH OF BEARIMNG .
FRINT#, © *«hﬁuxu: OF JOURNAL BEARTNG | tLR
EEYMTE, < S-CLEARANC E ’; ; l_.L.__

rE
~
-
by L
—

i o mlrlFHHr ANGLE TN COORDINATE TY-kal S F
‘hIH( sosTATID ECCEMTRICITY 7 EF
A hFWH[Hih SERING STIFFNESS COEFFICIENT &
: = PER LAMD OF BEARING

YT
~
—
iil

G-ENTER THE RETAINER SPRING STIFFNESS CHEEFICY



FRINTS, © 2-010 vIiscostTy SRV
Bl TRT#, < S s AT M e P

- @ﬁtﬁ;~’f1h ﬁﬁiﬁlﬁéﬁr UF DESIRED DOMINANT POLES @<, DX1
CRANTE, C1O-IMAGINER FART OF 0L DOMINANT POLES O ) 4=
FRINTS, “11~REAL THIRD DESIRED POLE N PLLES 5w'g§5
PRINT=, “12-REAL FOURTH DESIRED POLE <, OX4
RINT#, “LE-MUMERTCAL OUTRLT | L NOUT
A_jlm{%,ilﬁwGRAPHICAL OUTRLT ' :J’Iﬁéﬂ
FRINTS, “15-PLOTTER QUTRUT Lo IPLT

FRINTS, =000 YO WANT TO CHANGE ANY VARIAELE 7 Y/N-
READCE, 209TH o BN b
20 FORMAT (A1)
TFOCHGESL "RG0 TO 50 |
EQ WRITECE, * ("SURITE THE NUMEER OF VARTAELE THAT YO WANT ©
T ZHANGE" ) ) . ,
REALS, #)NU o
IF (ML ST LS 60 To 85
CHE=1 - f _ ,
R THOCL, R, 3,4, 5,4, 7,8,9, 10,10, 17, 13, 14, 15) MU
S5 WRITECS, “("#THERE IS NO VARIAELE THAT MATCHES YOUR CHOTSE®, ///,
g uPLEAZE TRY SGAIH™)) , : .
GOOTO 20

A0 CONTIMUE

,

SUERDLITIME ARMAT (A, B, LE, R, CL, VI, EF, FI, L, M)
FEAL A010,10),B0(10,10) :

REsL LE,MaES :
CUNMDHiQNER/DXX,CXY,CYX,EYY,MA,HS

PI=3. 1410 7 S
CORR=VT s (LE Iy sR/ (s (CLEsD) ) sP I (1+28(ERs=2) )/
({1 (ERwmed) ) e, 5) _ (
Cho=Y s (LEesR) R/ O2 (CLesD) ) #4sEP/ ((1-(ER=e2) ) #ed)
| =R i ’

L%hmviﬁ(LEﬁ%E)%R/(EE(CL§§3))ﬁPlﬁll((l—(EFﬁﬁE))ﬁﬁl.S)’

O X (CRRE (COE (P D) 8820 )+ (O35 (SIN(F D) s8a) )~

£ (CREHER) #COS(F D #RINFD
CWRITE(NOUT, 75) -
CWRITE (WOUT, 78) |
WRTTE (HOLT, 75) j A B
WRTTECNELT, 79) . |
AR TE CNOLIT, 50) o
ﬁ&iTE(HDUT,15)CRR,CXX,GSR,CXYyCRS,CYX,UHE,uY\
WRTTE (NOUT, 20) |

-




83
AL 0=atl, D =a01, 4y =402, 3)=0.0 ‘
, S EIEACE, B =A04, 1120, 0
AL, 3 =5(3,4)=1,0 _

A2, 1i=-ES/Ma

A, &y m-DXX /WA

LR, 4y =-0EY I Ma
A, I =T/ MA

SO, A =l S/MA

By

S o4
AL, Vrmad

Bz, Li=0204, 2h=1/M4 :
GOl 1d=RCL, 2)=R(2, 2) =B (3, 1) =B (2, 2)=R(4, 1)=0. 0
WRITE (L, 75)
WRITE (4. 740 o
WRITE(a 750 s
Do 1 I=1,4 . :
AOWRITE (& 1O CACT, 1, u=1,4)
CHRITE (a, 750
WRITE(E,77)
WRITE (&, 75)
2 I=1,4
2 WRITE (A TOV BT, ), Jd=1,3)
1O FORMAT (401X, E15.8))
AT IVR, "ORES 4K, FLE. 8, 8X, 0XX 7, 4X, F1S.8, /,
LR AL PR, 8K, XY A4, FLELE, /7,
AR, FLIELE BX, COYXL 4K, FLE. S, /,
VAR FLSLE, 8K, LYY 4%, FLS.8)

[l
AU

7a 0 FORMAT (X, 7
7T OFORMAT (X,

P FORMAT (1

DYNAMIC MATRIX ' 5 33
INFUT MATRIX _ EEELY
DAMPING COEFFICIENTS . 0 2

Z FORMAT ; OLAR COORDIMATEZ==', &X, “@xUARTATIAN COORDIINATES::
= T LY 7 e e e s N et et

RETLIRN

.....
ERE

SLBROUT
FEAL A 1971@);g1(10,1Q),A2(1Q,10),A3(1071G)
REAL B(10,10),E1(10,10),B2(10,10), B2(10, 14)
REWIMD & :
ool Is=i, L
ooy o1 Jd=t,L
AL, Dy=a0T,D
AR EACT,D
1 A0, s,
oo o Is=i, b
oo =1, M
BLOI, DRI,
TEZOL, =R - .
TOEEOL, =R '
.:ll I""lru

ME TRANS (A, B, AL B, A2, B2, AZ, B2, L, M)

WRITE (2, 100 (AL{T, 1), J=1
S WRITE(E, 1O (AT, 0 =1
51 WRITE (&, 10) (AF(I, 1), =1




Pty
s

: 84
oy 3% Is=1, 0
WRITECZ, L0V (BLOT, 1), .
WRITE

(R, 10) (BT, ), .

* HRITE(S,lQ)(EE(I;J),J:J
3O FORMATCLGOIX, BE1S.2))

FUE TR '
E R

210,10

REA ﬁpl(lo,10),AP2(1G,1@)’AP3(1Q,10)
REWIMD 2 s ‘

e 1 I=1,1.

[ LA R 5 R

APLCT, y=A10T,0

T Sl IT=1 L

WRITE (S, LOYCARL(T, ), J=1, 1) .
D02 I=1,L : ‘

ooo2 a=1, 0

APZOL, =00

o2 k=il

AFZCT, Dy =aP2CT, D +A1CT, EY=A2 (K, )

Oy S Is=t, L

WRITE(R, 10 {aP2CT, 1), d=1,1) .

MR I=1, L

ooeoE d=1, 0

ARPZOT, =000

PRUKERSCIN D R .

APETT, D=aP3 0D, H+al O, ) saF2E, D

DO ET Is=1,L =
WRITE (2, 10) (APZ(1, .0, J=1,L)
FORMAT (1001, EL5.8))
RETURN

EMND

G I 2 S b S0 e I i Ik e S0 S 2 ik fob I S Sk ek fk b e e e

SURROUTTHE COM - (B1, AFL, AFZ, AP, COEX, D, IO, L, 1, NOUT)
FEal El(l@,1@),AP1(13,10),AP2(10,10),AP?(19,10)
HEALvﬂi(lﬂ,lﬂ)yC2(19:10)153<10r1Q)rc?(luf10)

FEAL COO(L0,10), COEX(10,10), CONCL0, 10)

REWINMO 2 :

o1 Is=i, L

oot oJ=1, M

LT, =RLCI,D

oo oSt Is=ioh ‘
WRITE (S, 100 (1T, =1,
o2 1=, oo

o2 =l

Rl y=0,0

ooz ow=l, L




A

~d

- 85

EELL, =02 0T, AR (T, K) SEL(E, U
OO 55 1= 1L Iy EDERIE, O

m_HRITE(E,lD)(EE\I,J),Jil M)
SRR Ie, L '

T E e,

C2(L,=0.0

D3 =y,

LT, D =301, J)y P

B 5% 1ogoL P PEERROT, 1(% Q)
HRllF(:-lﬂ)(l pddd=1,M

D0 4 T=1,

T 4 =1, M

CACT, D =0,0

DO 4 k=1L

AT, )= CALL, ) +AREUT, 1) 5L U, )
L0 54 Te=g, 0. -

-HrllEk-,lU)(L4(I,%:,d=1,N)

5 I=1,0L

oo S Jd=i,M
“Pﬂ(l'l)~P1(I
ooy, Je2y= rM\I
LLUg] lfﬂ)—C?(l,J/
oo T, +5):t4(1;d)
D I=1,L

SOWRITE (R, 10Y (0oL, J)y, Jd=1, L=M)

fomme-l
'lnl

£ ITER=1,M

;_lll ",7 I::l,l_

ooo7 =i, L

Ll=zsd=(2-1) +kE
COMT, ) =000¢T, LLD
COMTINUE

WRITE (NOUT, 75)

WRITECNOLT, 74

WRITE (MOUT, 75)

oooE Is=1, 0

WRITE (& lU)(FﬂN(I,J),J 1, Ls)
WETTE (NALT, 103 (COM (T, 0, J=1, LeM)

el I, 1D

T 1 z2], |_

mey (T, )y =CONCT, D

oo 1l =1, 10
ooeo11oI=1,L

. sz,;an1)~rﬂN\T,J+4)

HFTIE(HHH[,T&)

W TTE (NOLT, 77

WRTTE (CMOLT, 75)

noo 1w I=1,L

WRITE (S, 10 (COER(T, J) . 0= 1,0

RN




86

12 'l/:JF"':i UHECNDLT, 105 (COEX ( Il Ay =11
Lo FORMAT IO, ELS, 8Y) et ed=l, L

aordu g i

FORMAT L 2%, 7~

C FORMAT (12x, <

INTROLLABILITY MATRIX (E,EA,..(E1,B2) sas’)

77 FORMAT LDy, “ses
RETURN
BT

----- - SELECTED CONTROLLABRILITY MATRIX s )

w pfﬁcfﬁ?ic‘:':’-ﬁ‘:‘ﬁ‘:*:":":‘f{'rﬁ".C':"'?}:.C':'E\':}:O‘:'if’lfcifﬁlb.ii:ﬂitc::s. ........... o et St Tab Sat S0 sa hs oo

INTEGER NM, I8, IDGT, IER
REAL AL, 100, AINVCLO, 10D, WKAREA(10), (10, 10)
SR .

- MOUT 75
WROTE CNOIAT, 7a0
CWRITE CRMOUT, 75
ol I=1, M
TOWRITE CHOUT, 1O (ACT, ) =1, NN

Call LINVLIF(A, NN, TA, ATNY, IDIET, WEAREA, IER)
WELTE CHNOUT, 75 ’
BRI TE CNDUWT, 770
CHRTTE (MOLT, 750
oy 2 I=1, Ny :
WRTTE (CMDLT, 10 (ATNV (T, )y d=1, NN
SOWRITE S, 100 (AINYIT, ), J=1, NN
10 FORMAT(A LA E1S.08)) o
T ETTIEAT © L TR, e e i s e )
TEOFORMATOLRY, CBes INFIIT  MATRIX o o)
TOEQRMAT (132Y, Cews | INVERZE MATRIX EEET)
FETLIR N : '

SROUTTNE TTRA (A, TR, I0L, 12, L, 1, NOUT)
AL &L, L0y, TROLO, 10,
FIND & '
I=3fit
ooy sl L
1 OTROL, Jo=a0T, )
T=T01+10e
oo ey, L
TOTRCE, Dy=a0lD
L SO, 75D
WRTTE (NOLIT, 743
WRITE (HOUT, 75)
o St I=1,HM
WRTTE G2, 100 (TR, 41, 0=1, 1)
WFTRE (RO, 10 (TR, Ly J=1, 1)




on
eH

1
N
ey

[

TR

CWRITE (R, 103 (741,00, J=1,L)

& TNk, r=TTO(L, )

87 .-

FOEMAT A (LY, E1S,8))
FORMAT (12Y, 7 e
FORMAT (12X, “sas
FLE T LIFC

H

S et et et 00 i a0 s et e B et ot an s e 326 £t A et et S 5t 5t et e res e et 2020 e et it o ot o9 S e ¥ )

TRAMIFOZSE MATRIX gE)

~-“JngN§ THAT (TR, AFL, APZ, AFE, TX, 101, 100, T, TE, TG, L, M, NOUT)
mAk TR0, 100, ARTO10,10), AF2(10, 10), APE(10, 10)
EAL TLOLO, 100, T2010,10), T2(10, 10), T4(10, 10)
AL TTOOLD, 100, TON(LO, 10) ,
AL TXOLG, 109, TIOLG, 10), TE(LO, 10), TE(10, 10)

REWIND =

1 I=1,M

oL s, L

TLOL, D=TRIT, )

nooEL I=1,0M :
WRITE(S, 103 (T, ), J=1, 010
O 2 Ja

T AP ETRCL, DSTROI ED=APL(E, D) :
52 I=1,M :
WRITE(R, 10307201, 4, J=1,4)
o3 I=1,M '
TR E A

1,020, 0
N !:l IE'.
TE(T

i

A

3 T=1, M

; 201, D HTRT, E) =aP2 (0, 1)
oo S '
WRITELS, 10y (TR, A, d=1,1)

o4 I=t,M '

oo 4 J=1,0L

TACT, =00

o 4 ket s . .

TACT, D ETA T, DFTROT, ) #ARRE, 1 .
noos4 I=1,mM

[
ey

DoE Isi .M

D5 el L

TTO(L W =T1¢T, :

TYOCI+E, =TT, 0

TTEE Thd, 1) =TE(T, )
TTOCT4+4. =TT,

Do SS Il La ' j
JRITECE 103 CTTOCL, 4, =1, L)

L G R




P O | . L ‘ . . 88

Dl 7 i, L

TONCEAL, D =TT0(T, .0y
MR TTE CMOUT, 7y

WRETE CMIIT, 74

WRTTE (DT, 72)

o Se I=1, s

WRITE (2, 100 CTONCT, 0y, =1, 1)
S WRITECHOUT, 105 CTONCT, J), d=1, L)

~4

O, T
D o| T==1, T
NI =R LIS R
BOTHAL, A =TONCT, O
oo e I, I0n
IR ,
TROTHIDL, Dy =TOH{T+L, J)
WFTTE CNOLT, 75)
WRITE (MOUT, 772
WECCTE CHIOLIT, 75)
=27 T=i, 0 :
ARTTECR, 1OY(TY L, ), =1,
E7 OLWRITECHOUT, 10 CTXOT, d); J=1, L

SR RS
o1l =l L
1

X1, dy

TICI,.,d=1,L).

4wy (TR0, ), =1, 1)

SITE (2, #) (TROT,.D , d=1, 1)

MAT (41X, E15.8))

AT (L2 ¥ oo e oo e )
7 MAT (12X, ~ = TRANSFORMED MATRIX (T, TA) (T1,TiA FORM)=#s")
77 OFURMAT (13X, < sms a T-MATRIZ | B
e TLIRN

END

foo1oJ=El, L
L ANMT(I, D=0.0.
o 1oK=1,L ,

AMT (D, Y mAMT (T, D) +TICL K HAL (R, D

s AT
S =L Is=1,L

WRTTE (S, 10) (AMT (1,00, =1, 40
o2 T=1, L »

‘.... ‘“]
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89

HTOL, D =0,0

I EAMT (T, EIETINVE, )

ffHJUI,,u;
rNuHT,;g,

U‘
x) ﬁ?

=1, L '
*"T”““ U TOYATOL, ), J=1,0Ly

IO, 100 (AT T, ), J=1, L)
3 I=1,L
TE s,

T.03=0.0

CR N A .

(1, r =BT, D+TIOT, ) SR (1, 1)
UIJIF NIIT, 755

WRETEONIUT, 77)

WRITE CHMIT, 75

Rl =]

HHIWL.H,l))‘[fkl b= M
S NPIT”iHiH!,JH’\Il\I,d),d=1,H)
O FORMATOA01K, ELS, &)

st s 1 s 2 s i 4 et e . e e o s e i e )

A-TRANZFORMED MATRIX (ASTSAINY) ®=s’)

"'4Ar(1¢x,
’ E-TRANZFORMED MATRIX C smme)

oy
VEX,

oA

H“FHHFIHE LUMFHIF? EDLIFIlIf 3 UF LHARALTERILTlL
l”l

R SR S g Sl e A R el S et S S S e Sl S S S S

T EETG y, ER, TOL, LM, NEILIT)
Al -.-f'-‘."l"-f.].D,10),II—Z:T(liI),iD),E (1() 10),5E(10,10)
REW TR 2
[RIN} 1 E
e lJﬁﬂkJPl,Jz
= Sod =T, D
i E =1 M
Bl =RETOIDL, D
ooEROE D =ET 4,4
WRTTE CMOLT 750
FCETE CNST, 74)
HRITE(HUUT;?S)
DD 51 I=1,M_ - ‘
f 11)rf#\1,|)7J”1rL) )
=1 LR leHT R E:T- 10 I DR g R
1 r&iLﬁ* CINPUT B-MATRIX OF SYSTEM?
my &m2 I=1.HM ' .
=o' WRTTE (8, 100 (SR(I, 00, =1, M)

lnwmﬁr\1\Lﬂ{L15;q)) e e e e et e s e e e i s e )

e n ot ‘:

FREFE. OF CHARSCTERISTIC MATRIXCEYSTEM) swe)
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JEROUTINE DELG (NAD,IEI,L”
el ALYCLO, 10, NADCLO, 10)
REWIHD &
L- l.;‘_'_. ri ; .:.J ne l:l ;\’ 1 _ll‘ Il Y boA !"1 - D \f N e
4 : L&A L i B =L A AMA =10
BT L1~ (I2+D% 4 HATAEERA
XY s I Eend) + 230X L (DX E+0XA ) +0X 2EDX
A iA1= SEUX A 0¥ ==nXa
e T RN A ) 1 DX e e0XY owsn Y - Y :
ShURA) B (IX L weg aEE) ~2eUX 120X 2elN
A TN ERE2)) s DX 3s0X : ) ?4

o1 I=1,3
1 AT, T41)y=1,
HCL, L =P
alrid, =
ElS, Bi=pl
& 1 . :[ )] e fU
(A1)
WERTTE (CROLUT, 740
WRT TS CROLT, 759
[T S A A :
WRITEC, 10 (A, 0, d=1,07
=1 WRITEMOUT, Loy (aDeI, N, J=1, L0
[T S ET
sADNCL, D =aD0T0L, D
TONADCE, By =ADCS,D)
WRITE {MOLIT, 75)
WRTTENMIAT, 770
WERTTE MO, 75)
DooEE 1=1,M
' W T TECR, 10) (INADICT, J) =1, 00
S WRTTEOMOUT, 10y (NaD(L, 1), Jd=1,L1)
FORMAT (4 0L, ELS,8))
FQRMAT(1gx7ffmmmmwuwww—nmwmmw~mmmmum~«w*wmmh——~wmmmm~~wmwf)
FORMAT (127, T es DESIRED MATRIX R LA
FORMAT (12X, T=5=s COEFFICIENT OF DEZIRED MATRIX e )
RETURN '
E R

[

4
i
4
-

FECMOUT, 750

EEE s R R

SURROUTIME GAIN (NATLL A, BETINY, C1, TO, KR, LM, NOUT)
AL NAD(lQ,10),59(10;19)7TA(10,IG),Cl(lﬂ,lD)
TE(lU,1@),&H1i10,10),ETINV(10,103

JIMI 2 ,
T=:1, M
= L
%"l,d)ﬂNéHiI,J)MEA(l,J)
ST, 75

W TE {ROUT, 750
oo osi 1=1i,M g
WRITE (5, 107 (TACT, D) d=1, Lo

LR .leyl";

=1 WRITE(MOLT, 100 (TATT Ay




) , : . L 91
T=21, 1 : . , i '

J=1 , L

£ 4T, ) =0

i
-t P3P

HoR=LLM

—
L
~

1

i
JEA)
P
—

TTE CNIUT,
LTE

R A
CTE (NI,
=400 T = . M

TECE, 100 (D101, 0, d=1 0
WL TECHIUT, 100 (010, .0y, u=1
i I

LA

g .
oid] 5 L)

RELCL, DU 0T s To, o) -
s o5

(MO, 7

TORL10Y (KELCD, ), d=1,0)
SORIT, 10) (EELCT, ), J=1, L)
AT CIOLY, E1S.8))

e ot e ot i ot B g st b ot e wars

=

75

e =k 1 mam B St o o e e b o P Bt 1120 08 5 2 0 8 R et st RS Sine s i e meh inn e P )

7 DIFFERENCE OF ETGEN VALUEZS
77 ‘ GATMN MATRIX .
VI TRANSFORMED GAIN MATRIX eEE )

SUEROT IME  COE (AR, B2 ERL,EL L, M, NOUT)
AZVL0, 10, B0, 100, 00010, 10) , KRL L0, 10)
ETL1G, 10

8) N
COMMON/GOER /DAL, CALE, TALT, CALY
MM/ COEF 2/ Gl , CAZE, CARE, CAZ4
COEFR/ AL ek

DY HEICT, B BRELO, D

2

~—
-

SR G D D IR ) IR

w‘;;d)+CC(I,J)




£

D

L b

D

10
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F]tu,JJ
E1(4,3)

Cada=E1 (4, 4)

WRITE (MOUT, 78)

WIRT TE (POUT, 789

WRLTE CNOLY, 750

o R I=1,L

WRITECR, LOY(ETLT, 0, Jd=1,0
2 WRITE(MOUT, 10) (EICI,d), d=1, L)

O FORMAT(AC1Y, E1S.8) )
S FDIRMAT (L3, oo oo e )
£ FORMAT (12X, “##sCLOSED LODF MATRIX AFTER FEEDBACK (A+ER)==E")

FETLIRM
T

: UUFINL- _JHFPFE_ THE CIEENVALU
gE=1 CUTRUUTIHF EIHFF

SUERDLT IHE EIHEN\EIH, ,J,NuUT)
REAL EIGULO, 100, WE(24) , RZ(32) , RW{E)
COMELEY W(E), 708, 2),IN
ECTVAL ENCE (W), RWIL)), (Z(1,1),R2(0)
REWIND &
MR
1A=10
WRTTE (NOIIT, 75
W TE CMOLT, 760
WETTE (NOLET, 750
s I=1, MM
WETTE (NOUT, 101) (ETGCI, 4, J=1, NN
COMT IMUE
1 FNRMAT (4(1%, E15, 80
CCOMELTE THE Llth”ALHE'/VEFTHR- OF A
COMTTNLE

llID"' '
CALL ETGRE(EIG, NN, 1A, TIOE, W, 7, 1A, W, LIER)

WRITE THE PlhENleHEZ/”kIIHE aF A

C WRITE(£,78)

WRLTE (£,77) : : | /
WRITE (£, 78 |
WRTTE (£
0 FORMAT (14H ELG

GEHVALLE MO, 10X, ZHRE, 1AX, ZHIMD




e

200

S od s

b

RS I ]

poo20 T=1, NN

wHITE{&,EGO)I,RH(Izml),RN(IE)
CONT TNLIE '
FORMAT 10X, I2, 2F12
FURMAT (123, 7 == me
E@ﬁmg¥gigx,f- INFUT MATRIX
FORMAT (12X, < EIGEN SOLUTION
FORMAT ¢ LR, 7 e n e o e .
FRINTS, - 7 .

FRINT:, “«CHECK THE EIGEN VALUES OF SYSTEWS
RETURN. '

EARI

&)

SUBROLTITME RUNL (L, CL, FI, IGRA, TFLT, NOUT)
FARAMETER (KIX=1000)

EXTERMNAL FONL |

REAL C624),W1(4, 100), T, ToL, TEND

REAL XOKED, YLGRE) »

TEAL X1 OKKD, X2 KD, XKD, X4 (KK

REAL LE,MA, K3

INTEGER L, IND, NW, TER, I

UMM OWER/ZCXX, TRY, VG EYY, MA RS

D=0, 01

EMAK=E0

f
RIRES
T =0, 00001

TND=L

INTTIAL VaLUES FOR DIFFEHENTIAL EGUATIDN
L= sTINIFDD ‘

2)=0,0

MRy =0LECnE D

(A Y=0.0

WRITE (MOLT, 4)
WRTTECHOUT, 5
WRITEMOLT, 42
WRTTE (MOUT, 20
V1L =00

Y1l y=ilesiiFD)
X2 (1)=0,0

Ly =000 FL]

XA (1) =00 . - R
WRTTE CHOLT, 2)Y1 01 X1(1), K21, X301, X4

CWRITE(S, 200Y1(1), X1

by e

WRTTE (5, 20 YL (L), X2 (L)

,HHITE(lG,QO)Yl(l),XEil)

HHITEiii,HQ)Yl(l),X4\1)

-

)
._)
)

T ottt it e o e b e e o e o 0 e b o e o e s et s st i i 4 )
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D01 E=1,EMay
TEMm=E YD1 :

CALL DVERK(L, FONL, T, %, T : - .
HHITEiHuuT,E)TEND,(x?i)%?SiTE%’INU’L’NN'HI’IER)
Y11 =TEND ’

ELCE+1) =X 01y

KR =X (2

O LR+, XL (L
WRITE (Y, 2O0Y L E+1), X3 (+1)
WRITECLD, 20YY 141, X3 (k+1)
WRITECLL, ZOOY1(E+1), ¥4+

1 OO INE . . - :

s FORMAT O3, T 10X, “X 00 7, 13X, X027, 13X, “X(2) 7, 13X, X (4)4)

I OFORMAT(TE. 3, 408X, F13.11))

LI T O B OO U
S OFORMAT (12K, ©wus OFEN LOOP STATES OF SYSTEM s )
20OFORMATOZFIS, 100

b

i 10
FEWTMI 1]
- IFCTGRALER. Q)Y GO TO 25
CAaLL GRAPH (YL, X1, ER, EMAX, IFLT)
Call GRAPH (Y1, X2, EE, KMAX, TFLT)
LLoGRAFH EY1, X3, EE, EMAX, TRLT)
- GRAPH (YL, X4, KR, BEMAY, TPLTY
LIFH

AT INE FON1CL, T; X, XFRIME)

RN o

ALY XPRIMELY T

. MALES & i

COMMON OWER /TR X, ORY, TYX, CYY, MA KRS
XFRIMEC L) =X {2)

YRR TME (2 m (= SeX (1) -0XXsX (2 ~0XY#X (4) ) /MA
AERIME (3 =X (4) i

R T ME ()= (~DXYEY (2) -KEsX (3) -CYY=X(4) ) /MA
FETURN '

EMI

- . . e e S e S 6 S0 R R 6 I W e S R e e el deb o fet fek g feh el s e e Bk B der e IR




ACONT THLIE

l‘mi‘ ﬁ”t‘“ F\ (F }-1’]()0}
<AL FONg

EXT

rFFHHHH%f‘Hkkl LAY, Ca1E, cALE ALY

'unuPWJ/lHErs/lmui CAZE, CARE, CARA
CMMON/ COEF 2/ CAZ, CA%S . Fa %:Lqu

lllHM“N/IWrLQ/iH41 CALZ, CAGE, CAGA

REAL X (1K), Y1 (kK) )

REAL L1 OERD  X2OEE), X3, X4 (Ek)

FREAL x<'4;,w1(4 100), T, TOL, TENG

TNTEGER L, IND, NW, TER, 12
T=0

M=l

A % = S0000 ,
THITIA YALUES FOR DIFFERENTIAL ECHIATION
CLESINGFT)

Afl)me EU—(FL)

X4y =0, '

T =0, QOO0

=01

INC= . A

WRTTECNOUT, 47

WRTTE (MNOLT, 5

WIRLTTE CMIT, 49

WRTTE (NOLIT, &) ' < , .

Y}(j;~0 0

A1l =0 =S IN(FT?

X2 (1)=0,0

ARl =0L=00s(FL)

KL i=0,0
wI1EfNHH\,h)V1(1) IO, X201, X2(1),X4(1)

whllt(,,uﬂJYl(l) Xi{

WRITE (R, 20010, X201

WRITE(L LRI, X3

WRETTECL L, 200V LY, 2441

OO 1 k=i, KHAY '

! D=FLOAT (K =0T

N L DVERK (L, FONZ, T, X, TEND, TOL, IND, ©, NW, W1, IER)

lelkaNHHF;Z)IFND (X (1), I=1,L0
VR Y =TERD ‘
Llik+l=301)

KA1 y==X (2

ARG E R L S C D]

LA {1 Y=E 04

WR 1T f,JH)Yl(Ikl) X1{KE+12
WRTT rL o, BV L ALY, K 2 (k1)
lH-lIE(lu,J(’V‘(}il) KE{kE+1)
WRITE(LL, _317))11(}41),,\4(}+1)

FORMaTLEE, 11X,:x(;;v,13A,JX(2)”,13X,”X(S)“,lEX,’X(4)’)




1000

CCALL INITIGC. TRUE., . TRUE. , 4HNDF 1)

96

FHEWING &
REWIND =
WIME 10
REWIND 11

IFOIGRAVER DY GO OTO 29 :

Call, GRE&aPH (Y1, X1, ER, EMaX, TFLT)

ol GRAPH (Y1, 52, Bk, EMAY, TPLTS

Catl SRAPH YL, X3, ER, EMaX, TELT)

oAl ImeH (Yl,X#,HH,HMAX,IPLT)
= TLIRE . '

TLH h“HuTlHP

2 (L, T,r,XkrIML
'lflﬂll, nlu,lhj:,lA 4
LUHHUH,uULF” AR, lAf;, =
b lH?F SOARL, CAaRE, f 4.
COMMON/COEF4/CA4L, TAAE, CAAR, CALA
INTEGER L '
FESL X L)Y, XF

RIMEOLY T :
A = 1KLY+ 0AaLE AiTYHIAaLdwX (4)
AFRIMEC2)=CA21=X (L) +0a22=X (2)+0AZ K2y +Cazd=X(4)
APFRIME (3 =0a3 1= (1) +DAZZE () +0AT X(Z)#ﬁﬁ34ﬁX(4)
RIME(4 ) =0A41 k\l)kln4J¢X(J1+lA4_*x 2YHCAA4EX (4]
a;thﬂ

X (2)+0ALE

UhAH_’hhAIHU

bUEhHH1INL hhﬁFH\X Y, }I,}MAX IFLF;
DEMENITON XORED Y EED

REWIND &
REWIMD 2
REWING 10
REWIMD 1
lILFwH,

.\-‘”"1-{;5.7\7 ER=0,
P 1000 J=]
TF{XMaX. LT,
IFYMaX. LT AL
CE L MUE

IF CXMAXY.ER. O) XMAX=1.0
lff”NA..;;.u;&Nqnm1[0
TZEX/XMAX=10.0
WV'—LLF.X¥MAX%10.O

S{X (I X 1hX"”L O
E(Y(J))).MAAMACQ\X\J))

CALL AXTE(S1ZEX, SIZEY)




ALl h*Ul,U( X, Y, R, EMAY :
Sl Frumtrkzw,f-Tme VARIAlIHN )
CALL FOSSCUROD, 49

S CALL PROMET (13, "ENTER ANY EEY")
Call, PROMPTOLE, © TO CONTINUE Y
CALL AWTEEY (1, TIR, 1, NG, T0)
IFCIFLYLER, 1) THEN '
Cabl UNION
Al AXIS(SIZEX,EI"E!‘

CALL BODOT, DY, X, YRR KMAX)
CALL H”Lhkk

CENMDE IR
Calb, CLRSVE
CaLL BUITIG(L TRUE.)
RETLIRM
EMLD

SL.RUUllNE AXlg(;laLk,?l’t\)
DRAWING AXIS (X, Y)Y
CZALL MOVEALLOL, L O)
CALL CDFAaWACL 0L, 5
CCALL MOVEAC.OL1, . 5)
Call DEalsal.2,.5)
DRAWING ARROWS ON X AXDE
Call, MOVEAC. 235 :
DAl DRAWAC.2Z
TALL DIRaWaAd 22
CALL DRAWAL, 25, 3
DRAWING ARROWS 0N Y A%XIZ
i t"‘-" A Mo (Ul_r"!( “1; -';’::‘)
-0 1l...|..- L‘F |Ur|( * _ ¥ ou i :'
l"lL.L IlF‘f"lL‘n‘A' (.’.;.{y’- '?EI')-
CALL DRAWA(.OL, . 75)
WRITIMG waRIARBLE ON X AxDE
Calls MOVES (L85, .5) :
CRALL O TEXTOIO, 10H  TIME )
WRITIMG VARTARBLE ON Y 'AXIZ
AL MOVEA (.01, .37 _
Call TEXT(1G, 104 ZTATE )
SOALIME ON X AXIS
i 1 ¥¥=.01,.580,.07
Call, MOVEA(RY, . 51)
ALl ORAHACAX, 4%
1 DONTINLE :
ECALING 0N +Y AXIE
CALL MOVEA(.OL, . 5)
S E YYm, S, . 90,.07
L MOVEAC.O,YY)
el DRAWRC0E, YY)
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CONT TS :
SUALTING ON ~Y AYIS
CalLl o MOIVESAT, O, .S .
DY 2 Yo, 5, 08, -, 07
Call MOVEA(LO, YY)
DALl DRAWAT.OZ, YY)
CONT RS

CALL SMETYL (1)

RETURM THE AXIS ORIGION
Call MOVEAC. 01, .5)
RETLIRN

ENDI

ROUTINE DRAWS

SLIBROUTIME GOOT, Oy, 4, %, B, EMAaX)
DITMERSTON X (KR , ¥ (R ' :

Fi 1ol
CDOY=0YEY (1)

DOT=0T=0 (1)
CALL DRAWRDOT, DoY)
o0 7 d=3, EMAX+1
TOT=0T# % G ~X (I=-17)
DOY=0Ys (Y () -Y {d~1))
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Figure 2.1;1 Open-loop control system.
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Figure 2.1.2 Closed-loop control system.
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feedback.
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MODEL I I .~ MODEL II

Im. \
X 4 135.7 X A X 1 1414
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| - X 4-135.7 X . X o {-141.4
MODEL III ' : ~ MODEL IV | '
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X X - 4 t41.4
Re = ' Re X X X %
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X | X . 4-tu1.4

Figure 4.1.1 Eigenvalues of selected models,
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START

Sét system parameters
interactively

Compute bearing coefficients
C , etc. using equation
KX (3.12) - |

Are the design
parameters
satisfactor

Form dynamic matrix A and
CALL EIGEN to compute eigen
values of system

CALL DVERK to0 integrate
system equations

Display graphs on VDU,

Compute controllability

matrix of equation (2.55)

maKe transformation of
(2.58)
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|

Compute gain matriz K
(2.76) :

- Compute new dynamic matrix
' using (2.52) '

CALL EIGEN to compute new
eigenvalues of controlled
' system

Check
the desired
eigenvalues

CALL RUNZ Integration and
plotting subroutines for
the state-feedbacK case

STOP

Figure 4.2.1 Flowchart of computer program.
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‘Model I Model 11 Model III Model 1V
Land length of bearing o (m) Q.024 .0.009 0.024 0.024
Radius of squeeze bearing S (m) 0.0016 0.09 6.0016A ‘0.0016
Clearance | S (m) | 0.000126 | 0.0004 0.0009 0.000063
Attitude angle in co.ord. system 45 45 45 45
Static eccentricity 0.6 0.6 0.6 0.8
Retainer spring stiffness coetf. (N/m)' 500000 500000 500000 500000
Mass per land of bearing \, (kg) 25 25 251 25
(Ns/m2) | 0.103 0.03 0.103 0.103

Oil viscosity

Table 4.1.!1 Datas of selected models.

113



118

MODEL I
0.00 1.00 - 0.00 0.00
-20000.00  -85.532 ~ 0.00 -45,622
0.00  0.00 ' 0.00 - 1.00
1 0.00 —45;62év -20000.00 -423,840
MODEL II
0.00 . 1.00 0.00  0.00
~20000.00 -2.309 ' 'q;o6- . -t.232
0.00 ° 0.00 . 0.00 1,00
0.00 -1.232 -20000.00 . -11.607
MODEL III
0.00 1.00 0.00 0.00
~20000.00 . -0.234 . 0.00 -0.125
0.00 0.00 ~ 0.00 1,00
0.00  -0.125 -20000.00 -1.179
MODEL IV
0.00 .00 0.00 0.00
-20000.00  -684.256 0.00  -364.981
| 0.00 0.00 ~0.00 - 1,00
0.00 -364.981 -20000.00 -3438.723

" Table 4.1.2 Dynamic matrices of selected models

v
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Eigehvalue no Re. Im.
Model I T -39.794 135.706
2 -39.794 -135.706

3 -383.652 0.0

g -52.130 . 0.0
Model II- 1 . -1.074 141,817
2 -1.074 . -141,417
3 -5.883 141,298
n -5.883 -141.298
Model III g -0.109 141,421
2 -0.109 -1it1 . 421
3 -0.597 141,420
3 -0.597 ~141, 420

Model IV 1 ' -603.580 0.0
2 -33.135 0.0

3 -3480.518 0.0

n -5.746 0.0

Table 4.1.3 Eigenvalues of selected models.
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