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o Z E T 

Eksen dogrultusunda ivmelenen ipin enine titregirnleri 

incelenrnigtir. Hareket denklerni Harnilton prensibinden c~ka

rl.lrnl.gt~r. Ortaya Cl.kan kl.srni diferansiyel denklern Galerkin 

rnetodu ile adi diferansiyel denkl'ernlere doniigtiiriilrn~gtiir. Ga:. 

lerkin yaklag~rnl.nda bir terirn al~nd~gl.nda cozlirnii cok iyi bili

nen Mathieu denklerni ortaya c~krnaktadl.r. tki terirn yaklag~rn~n

da ortaya c~kan ikidenklern sisterni nlirnerik rnetodlarla coziil

rniigtiir. Bir terirn ve iki terirn yaklag~rnlarl.n~n sonuclar~ kar-

'g~lagt~r~lrn~g ve neticede bir terirn yaklag~rnl.n~n eksen dogrul

tusunda ivmelenen ipin ternel enine rnekanizrnas~n~ elde etrnede 

yeterli olrnad~g~ goriilrniigtiir. 

", 
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ABSTRACT 

The transverse vibration of an axially accelerating 

string is investigated. The equation of motion is developed 

using Hamilton's principle. The resulting partial differential 

equations are discretized using Galerkin's method. Retaining 

one-term in Galerkin's approximation leads to a Mathieu 

equation, the solution of which is well known. In the two-term 

approximation the resulting coupled equations are solved by 

numerical methods. Results of the one-term and two-term 

approximations are compared, and it is concluded that the 

one-term approximation is not adequate for capturing the basic 

transverse instability mechanisms of the axially accelerating 

string. 
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I-INTRODUCTION 

The problem of axially moving materials is a subject 

of technological interest since many such materials are 

observed in manufacturing industries. High speed fiber winding, 

magnetic tape systems, threadlinesJband-saw blades, belts and 

pipes transporting fluids all belong to this class. Numerous 

researchers have examined the dynamic, response of such materials. 

The early research in this area includes those by Skucth [lJ 

and Sack [2J. The work done up to ~'978 has been reviewed by 

Ulsoy and Mote \3\. Among these studies reviewed in [3J are 

several investigations of parametric instability due to axial 

tension variations and periodic edge loads in strings ,and ,band 

moving axially at constant velocity. More recently Ulsoy and 

Mote [4J have used an axially moving plate model to investigate 

the role of in~plane stresses iri the transverse vibration of 

band saw blades. The coupled vibrations of the belt and 

tensioner in automotive accessary drive systems has also been 

experimentally and analytically investigated [5J. Chon an [6J 

studied·the steady state response of an axially moving thick 

beam subjected to a concentrated constant lateral force. 

In all these works the velocity of the moving system 

was taken to be constant. However, the actual systems are 

subject'to accelerations and dece~erations, which in fact may 

seriously change the vibration behaviour. The equation of 

motion for the transverse v~bration of an axially accelerating 
I 

string was derived by Miranker [7J but he did not present a 
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solution. In the present study the general case, in which 

velocity is not constant but a prescribed function of time is 

treated. The partial differential equations governing the 

motion are derived. Discretization of the differential equations 

by Galerkin's method gives a system of n ordinary differential 

equations. In the present analysis only the first and second 

terms are considered. (i.e. n=l and n=2). The time dependant 

axial velocity function v(t) is assumed to be sinusoidal. Taking 

only one term this reduces to the standard Mathieu equation, 

the solution of which is well known. Taking two terms the 

resulting two ordinary differential equations are coupled and 

periodic. They are solved by numerical methods since analytical 

solutions are very difficult to obtain. A stability analysis 

for each solution is made, and the results of the two solutions 

are compared. In the two-term solution the coupling effects of 

the equations lead to different results from those, of the one

term solution. 
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II- EQUATIONS OF MOTION 

In this chapter the equations of motion are derived. 

The physical model considered, shown in figure 1, is a 

continuous string or strip passing over two pulleys at a 

transport velocity v(t). First the stationary string equations 

will be derived (i.e., v=O). Then the constant velocity case 

will be examined. The chapter will be concluded by treating 

the most general case, that is the variable velocity case. 

y 
L 

~~-.....;;.P(t} P(t) 

Figure 1. Coordinates and geometry 

2-1. TRANSVERSE VIBRATIONS OF A STATIONARY STRING 

According to Hamilton's principle the variation of the 

functional 
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(2.1) 

is zero where T and V are, respectively, the kinetic and 

potential energies of the system [8J, 

(2.2) 

Because of zero velocity in ~he x direction the kinetic 

energy is only due to velocity in the y direction, hence 

T = JL J:... A (~) 2 dx 
o .2 P at (2.3) 

The potential energy v is obtained in the following way 

dV = P(ds-dx) 

Figur~ 2- A differential element of the vibrating string 

From figure 2 

(2.4) 
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(2.5) 

substituting (2.5) into (2.4) and factoring (dx)2 gives, 

dV d 2~ = P ( (1+(ai-) )dx-dx (2.6) 

Expanding the square root term in binomial form and neglecting 

higher order terms and finally integrating over the length of 

the string yields 

v = 1 
2 

p(~i)2 dx (2.7) 

substituting the expressions for T and V from equations (2.3) 

and (2.7) into equation (2.2) we get, 

1 
2 

pA(y)2 dx- -}- p(y,)2 dx } dt = 0 

Taking the variation gives 

Using integration by parts we obtain 

Py' oylL =0 
o 

(2.8) 

(2.9) 

(2.10 ) 
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For.equation (2.10) to be zero~ with arbitrary ey the 

integrand and the boundary terms must all be zero. Thus, 

(2.11) 

which is the equation of transverse motion of a stationary 

string. The second term in eq. (2.10) leads to initial 

conditions at tl and also states that variations must vanish 

or 
(2.12) 

The third term in eq. (2.10) leads to boundary conditions 

y' (0) = y' (L) = 0 

or 

ey(O) = ey(L) = 0 (2.13 ) 

Equations (2.11-2.13) are well known, and their solution has 

been extensively studied [9J 
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2-2. TRANSVERSE VIBRATIONS OF A STRING MOVING WITH CONSTANT 

VELOCITY V. 

The expressions for the kinetic and potential energies 

in the case of a string moving with constant velocity are, 

L 1 [2. 2 J T = oj -2- pA v + (y+vy I) dx (2.14) 

V = (2.15) 

Substituting (2.14) and (2.15) into equation (2.2) one 

obtains, 

Taking the variation gives, 

J t 2 JL {pA(y+vy') (oy+voyl) - Pyloyl} dxdt = 0 
t1 0 

Expanding the products and making use of the relations 

oy = a 
at 

( oy) 

Equation (2.17) can be written as 

a oyl = 
ax ( oy) 

t L a· a . a 
J 2 oj pA [Y at (oy) +vY'--ax (oy) +vy I . at (oy) + 

t1 

v2Y'~(oy)J - Pyl :x (oy)} dxdt = 0 
a:;{ 

(2. 16 ) 

(2.17) 

(2.18) 

(2.19 ) 



Using integration by parts yields 

t Lr::: u •• 2 Iii 
tlf 2 of {teA(y+vy'+vy'+v y" ) ,'" pYJ oy} dxdt -

Py'oy IL = 0 
o 

15 

(2.20) 

Setting the coefficient of oy to zero we finally obtain the 

. equations of motion. 

or 

or 

or 

and 

or 

or 

+ ( 
2 

pAv -p) 
pA 

(2.21) 

The initial conditions at t l , and the conditions at 

. y (t
1

) = y.(t2 ) = 0 

oy(tl ) = oy(t2 ) = 0 (2.22.A) 

v(tl ) = v (t2 ) = 0 

y'(t
1

) = y' (t2 ) = 0 (2.22.B) 

oy (t1 ) = oy (t2 ) = 0 

the boundary conditions are, . 

v (0) = v(L) = 0 

y (0) = y(L) - 0 (2.23.A) 

oy (0) = ov (Ll = 0 
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v (0) = v(L) = 0 
or 

y' (0) = y' (L) = 0 (2.23.B) 

or 
ey(O) = '(jy (L) = 0 

y'(O) = y'(L) = 0 

or 
ey(O) = ey(L) = 0 (2.23.C) 

Note that when v=O, equations (2.21), (2.22), (2.23) reduce 

to equations (2.11), (2.12) (2.13) respectively. 

2-3. TRANSVERSE VIBRATIONS OF AN AXIALLY ACCELERATING 

STRING 

The aim here is to derive the equations for the axially 

accelerating string and then introduce some assumptions to 

simplify the equations. The string or strip has a great 

flexibility in the transverse direction and we will also 

assume that the stiffness is very large in the longitudional 

direction. Due to longitudional displacement in the string 

we add a ·term u in the kinetic and potential energy relations. 

~he velocity is not constant but assumed to be a prescribed 

function of time. 

We begin the analysis by writing the kinetic and 

potential energies. 

T = 1 pA JL[(y+vy' ) 2 + (u+v) 2 ] dx -2- 0 (2.24) 



L 1 L 2 L 
V = f - P£dx + --2- EA f £Ldx + -f F~dx 
000 
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(2.25) -

The first integral in (2.25) is due to the tension 

force P, the second term is due to axial deformation and the 

third term is the work done by the net force F which causes 

the motion with ~ representing the total longitudional 

displacement of the system. 

The strain, £, can be written as 

2 2:k 
£ = [ ( 1 +u • ) + (y') ] 2 - 1 (2.26) 

Inserting (2.26) into (2.25), then (2.24) and (2.25) into 

equation (2.2) we obtain 

(2.27) 

Taking the variation with respect to ~, u,v, and y 

f t2 fL< 1 {.. •• 
tl 0 --2- pA 2yoy+2vY'oy+2YY'ov+2yvoy' 

.-p {+ [(1+u·)2+(y.)2 ]-~. [2(1+u')ou'-+ 2y'oy' ] } 

11 2 2:k --2- EA {2(1+u')ou'+2y'oy' - 2 --2- [(l+u') +(y') ]-: 
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[2 (l+u' ) au' + 2y' ay' J } - Fal\>dxdt = 0 (2.28) . 

Rearranging the terms and writing a~ instead of OV 

L •• • (l+u') OU' f <pA {uou + Vau } - p 
o ou'-

(l+u') ou' 

2 Py'oy' y'oy' +V y' oy' }- - EA {y' oy' -- - } 

{ ( 1 +u ' ) 2 + (y , ) 2 ~ ( (1 +u • ) 2 + (y , ) 2 ~ 

> dxdt = 0 (2.29) 

FOr equation (2.29) to be zero the three integrals 

"should be equal to zero seperately, thus the integrals lead 

to 3 "different equations which will be examined explicitly. 

Applying integration by parts to the first integral and 

writin'g all the terms as a multip!ication of ol\ and equating 

this factor to zero we obtain 
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pA {yyl + yyl + V(yl)2 + 2Vylyl + V + U } - F = 0 (2.30) . 

Neglecting the second order terms and assuming a high 

stiffness in the x direction u will be zero and the equation 

reduces to 

pAv = F (2.31) 

The driving force F is arbitrary so v is also arbitrary 

and equation (2.30) does not restrict the choice of v. 

We now take the second integral in equation (2.29) and 

apply integration by parts to each term. Equating this expression 

to zero we obtain the second equation of motion, 

( 1 +u I ) [( 1 +u I ) U II +y 1.Y..2 } 

[(1+u 1)2+(yf)2J3}2 

(1+u 1) [(1+U1)UIl+yly"] } = 0 (2.32) 

[ ( 1 +u I ) 2 + (y I ) 2 l ~ /2 

Lets check the equation for the limiting cases such as 

y very small. The factor multiplying P will be zero and we are 

left with the terms 

(2.33) 

(2.34) 



Equation (2.34) is obviously the equation of 

longitudional vibration of a string. When we make the 

20 

assumption that the stiffness is high enough in the x direction 

equation (2.34) can be neglected. 

Now we take the third integral from equation (2.29) 

and applying integration by parts we finally obtain, 

pA {y + vyl + 2vy' + yvl + 2vv'y' + v 2y" } -

p { . y" Y I [( 1 +u I ) u .. +y I y" ] 
[ (1 +u I ) 2 + (y I ) 2 J ~ - [ ( 1 +u I ) 2 + (y I ) 2 ] 3/2 

} -

Y I [( 1 +u I ) u .. +y I y" ] } 

[(1+u , )2+(y,)2 J3 /2 
(2.35 ) 

One can now make the assumption that the stiffness in 

the longitudional direction is very high, so that the u terms 

can be neglected. Also Vi is zero because velocity is a 

function of time only. Second and higher order terms are also 

neglected and equation (2.35) finally reduces to 

2 a2 2 a2v 
pA { ~+ ~ ~ + 2v ~} + (pAv -P) ~ = 0 

at2 at ax axat ax2 (2.36) 

This equation has also been derived in [7J. However, 

its so~ution has not been studied! and that will be the goal 

of the following chapters. 'To review the formulation, we obtain 

three important equations namely equations (2.30), (2.32) and 

1(2.35). With the assumptions made as previously mentioned 
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equation (2.30) reduces to axial force is equal to the mass 

multiplied by axial acceleration. The force being arbitrary 

gives us the flexibility to choose a desired axial velocity 

function vet). Equation (2.32) vanishes for high longitudional 

stiffness and we are left with only equation (2.35). This 

also reduces to equation (2.36). The following analysis will 

be based on equation (2.36) and the associated initial 

conditions at t=tl and conditions at t=t2 and boundary 

conditions are, 

or 
(2.37. A) 

v(tl ) = v(t2 ) = a 
or 

y' (tl ) = y' (t2 ) = a (2.37.B) 

or 
oy(tl ) = oy(t2 ) = a 

.. • y (0) = yeLl = a 
or 

v (0) = veL) = a (2.38.A) 

or 
oy (0) = oy(L) = a 

v (0) = veL) = a 
or 

y' (0) = y' (L) = a (2.38.B) 
or 

oy(O) = oy(L) = a 

y' (0) = y' (L) = a 
·or"· (2.38.C) 

oy (0) = oy (L) = a 
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111- DISRETIZATION OF THE EQUATION OF MOTION 

The aim in this chapter is to discrete the differential 

equation given by (2.36) using Galerkin's method [lOJ. For 

convenince we write equation (2.36) again. 

222 
pA { aat~ + ~ ~ + 2v ~} + (pAV2-P) a y. = a 

at ax axat ax2 

3.1 GALERKIN METHOD FOR N TERMS 

We first choose the trial function as 

y(x,t) = n ilTX 
L qisin L 

i=l 

(3.1) 

(3.2) 

ilTX where sin -L- are the eigen functions of the stationary string, 

and the generalized displacements qi(t) are merely a function 

of time. Taking the appropiate derivatives 

• 
y = 

., n n i lTX 
L q.sin L 

. 1 l. l.= 
y = 

n 
L 

i=l 

y" 

ilT 
L 

y' = 

= 

n ilT ilTX 
L q.cos 

i=l L l. L 

n .2 2 . ilTX 
L 

l. IT 

7 q.Sl.n--
i=l l. L 

(3.3) 

Inserting the relations (3.3) into equation (3.1) to find 

the residual 



R = 
n 

.f i 1TX 
E pAq.sin --L-- + 2pAv 

i=l J. 
i1T. i1TX + • i1T 

L qi cos L pAv L 

q.cos J. 
L 

2 .2 2 . 
+ (P-pAv ) ~ q.sin J.1TX 

L J. L 

The Galerkin's method requires, 

L 
of R -r,..;r dx = 0 
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(3.4) 

(3.5) 

The weighting functions W (x') are also the stationary 

string eigen functions [11] 

w 
j 

= sin ~ 
L (3.6) 

Inserting equations (3.4) and (3.6) into equation (3.5) 

n 2 .2 2 . . 
fL E [pAq. + (P-pAv ) J. 1T qJ.' ] sin J.1TX sin ~ + 

o i=l J. 7 L L 

[ 
i1T 

2pAv ,L q" + pAve i1T q J cos i1TX sJ.·n j1TX = 0 
-i L iLL 

Taking the integral 

n 2 .2 2 
E [pAq. + (P- pAV ) J. 1T qi ] 

. 1 J. ------L2 
J.= 

" 

sin (i+j) L1T x ________ ~_ J L - [2pA; i~ _ qi + pA;' 
1T . (i+j) -y;-

o 

(3.7) 



1 QY' cos (j+i) ~ x 
-2- [ + 

(j+i)· 1T 
L 

1T cos (j-i) r;- x 

(j:-:i) 1T 
L 
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(3.8) 

Equation (3.8) is valid when itj.\~en i=j the paranthesized 

terms (a) and (b) will be replaced by the following, 

1 2i1Tx JL 
, sin L 0 
4~ 

L 

, 2 i1Tx 
Sln -L-
----JL 

2i1T 
L 

3.2 ONE - TERM APPROXIMATION 

o 

(3.9) 

For theone-term approximation take i=l, j=l in equation 

(3.8) while keeping in mind that for the terms (a) and (b) 

relation (3.9) is valid. The equation takes the form 

2 ,2 2 
[pAq + (P-pAv ) l 1T ql J . [ ~ 

1 L2 
L sin 2 1T X 1 L ( 3 • 10 ) --:r:rr L 0 

which. after some rearrangement, can be written as, 

P = 0 (3.11) pA 

.. 
As will be shown later, equation (3.11), with velocity 

. being a sinusoidal function of time, can be easily put into 

the form of a standard Mathieu equation,· the solution of which 

is known f12l, r13l . 
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3.3 TWO-TERM APPROXIMATION 

When we take two terms in the Galerkin's method we 

obtain a system of coupled differential equations. First equation 

is obtained by setting i=1,2 j=l in equation (3.8) 

1 
--2--

Dividing the equation by 

.. P 2 'IT 2 
ql + ( - - v ) - q -

pA L2 1 

L [ 2'IT .. • 2'IT J 
-2-- - 2pAv L q2 + pAv L q2 

pAL we obtain 
--2--

= 0 

(3.12 ) 

(3. 13 ) 

To get the second equation one must set i=1,2 j=2 in 

equation (3.8), yielding, 

- [2pAV ~ C:r l + pAV 
'IT 
L 

] 1 8L [.. 2 
ql -2- (- 3iT) + pAq2 + (P-pAv ) 

(3 • 14 ) 

Dividing by P~L and rearranging gives 

... 
(3. 15 ) 

Finally writing equations (3.13) and (3.15) together 

using matrix notation gives, 

HOGA7iri ihJiVfRSiTFSi J(iiTiipHMJ~C;i 
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-i6v 2 • -.,-

1 0 
.. 

0 • P 2 1f -8v 
ql 3L ql (pA - v ) ---""-

3L :2 1 L 
+ + 0 (3.16) = 

0 1 " l6v • 2 
q2 0 q2 • P 2 21f q2 

3L 8v (- - v ) 
L2 3L pA 

Note that these equations introduce features of the 

problem which were not evident in the one-term approximation. 

Namely the skew symmetric gyroscopic matrix multiply the 

generalized velocities, and the skew symmetric coupling terms 

in the stiffness matrix. Note also' that both the gyroscopic 

and stiffness matrices contain time varying parameters due to 

the presence of the velocity v(t). 



28 

Therefore the axial velocity can be written as, 

v(t) = Vo sin wot (4.1) 

The tension force in the band varies with velocity 

according to the following relation [14J ,[15J. 

2 P = Po + npAv (4.2) 

Figure 4-A- Constant displacement mechanism 

C)~ 
Figure 4-B- Spring supported mechanism 

When the position of the wheels do not change relative 

to eaqh other as in the case of figure 4-A we take n=O because 

velocity has no influence on th~ tension in the strip. As in 

the case of figure 4-B the velocity influences- the tension and 

(when- k=O we have n=l. For values of the pulley support stiffness 
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O~k~ru the parameter l~n?O. We also define the nondimensional 

pulley support constant K = l-n. 

4.1- ONE-TERM APPROXIMATION 

We r-ewrite equation (3.11) which we obtained by taking 

one term in the Galerkin's method. 

•• P 2 
ql + ( pA - v ) 

2 
7r 

ql = 0 
L2 

(4.3) 

Inserting equations (4.1) and (4.2) into (4.3) and using 

the new variable K 

(4.4) 

Equation (4.4) can be put in the form of a standard Mathieu 

equation 

.• 2Po 2 2 7r
2 

ql + ( - K Vo + K Vo cos 2wot) - q = 0 (4.5) 
pA 2L 2 1 

where we have used the identity 

. 2 t Sln w = o 2 

Defining tl=wot leads to, 

2 
2 d ql . 

= woo dt ,2 

(4.6) 

(4.7) 
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Thus, Eq (4.5) can now be written as, 

2 
2 d ql 

Wo 2 
dt' 

cos 2t' ]ql = o (4.8) 

or 

2P 2 
[(~ - K v~) TI + 

. pA 2W2L2 
o 

cos o (4.9) 

This equation is now compared to the standard Mathieu 

equation 

(4.10) 

Thus we see that for our problem-we have, 

2 
e: = (4.11 ) <5 = TI 

The solution of the Mathieu equation is given in [12J. 

For convenience we simply present the results using the strutt 

diagram in figure 5. The solution leads to stability and 

instability regions, where the shaded areas in the figure 

represent the stable regions. The aim therefore in a design 

should be to stay in the stable .region during operation. Note 

that the unstable areas iriterse~t the <5 axis at points given 

by the relation, 
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Figure 5- Hathieu stability, instability 

areas. (from 5'd). 
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n = 0,1,2, •.. (4.l2) 

Examining the definitions of 0 and E from (4.ll) we see 

that Po and Vo are the important parameters influencing 0 and 

E. Vo appears in both 0 and E hence increasing Vo increases E 

and decreases 0.' So we conclude that the likelihood of 

instability increases at high speeds. P influences 0 only, 
o 

qnd increasing Po increases 0 without any change in E. SO 

increasing P may be useful for stability. 

The constant K is another important parameter which 

alters the magnitude of 0 and E. In constant displacement 

mechanisms such as tape bands K can be taken as 1. In constant 

tension mechanisms K = O. Now we apply the formulation (4.ll) 

We have obtained to two working mechanisms 

Example I- (Band Saw Blades) 

The following measurements are taken from a small size 

typical band saw [4J. 

Po = 76.22 N, 
3 

p = 7754 kg/m , A = 0.5202 10-5 2 
m 

Vo = l5m/s , K = 0.22, L = 0.3681 m, Wo= 0.2 rad/s 

From equations (4.ll) 



33 

8 = 
2 

2' 76.22 2 
2 7T 

21'0 

pA 
_ K v 2 ) 7T = 

o 2W~L2 7754 0.5202 10-5 0.22 15 ) 2~'.. 
2:0.2 0.368. 

= 3395900 

K 2 2 
152

7T
2 v 7T 

0.22 0 
22535 E = = = 

4W;L2 4 0.22 0.36812 

8 150 '" E 

Note that 1842 2 <3395900<1843 2 and we are in between the two 

intersection points and very near to 0 axis. Therefore we are 

in the stable region. 

Examp1e-II-Tape Band 

A standard VHS video band is considered with data taken 

from the company RAKS 

P = 0.5N, p = 1050 kg/m3 , 

K = 1 Vo = 23.39 rnrn/s, L = 14.5 cm, Wo = 0.1 rad/s 

From equations (4.11) 

2P . 2 
2. 0.5 0.02339 2 ) 

2 
(~ v2) 7T ( i\ 1 7T 

0 = -K = 
2.34;10-7 O~2 0.145 2 

pA o 2 2L2 1050 2 Wo 

= 95 527 526 
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£ = 

£ 

= 
2 2 

°1 0.02339 Tr 

4 0.12 0.145 2 

oe 14 926 176 

~ 6.4 

Once again 9773
2

<95527526<9774 2 and we are in between the two 

intersection points and very near to 0 axis. Therefore we are 

in the stable region. 

These two examples are important because they are working 

mechanisms without any instability problem. The criteria we 

derived confirms this expected result. 

As a conclusion in these low working speeds instability 

due to axial acceleration is not a problem.However, in the 

future new designs may corne out with extremely high speeds 

which may make it necessary for us to use the criteria we have 

derived above, namely eq. (4.11) 

4.2 COMPUTER PROGRAM FOR TWO TERM APPROXIMATION 

We rewrite equation (3.16) which is obtained by taking 

two terms in Galerkin method. 

-16v P v 2 ) 
2 -Bv Tr 

1 0 ql 0 3L ql (pA L2 ql 
3L 

'+ + . =0 
2 

16v Bv (-L _ v2)~ 
0 1 q2 3L 

0 q2 3L pA L2 q2 

(4.13 ) 



35 

The analytical solution of coupled equations (4.13) is 

very difficult to obtain, thus a numerical solution is 

preferred. Our aim is to write the equation in the form of ' 

. 
X = AX (4.14) . 

by reducing the two second order differential equations to 

four first order equation. Defining new variables as 

• 
xl = ql x3 = ql 

, 
x 2 = q2 x 4 = q2 (4.15 ) 

We finally obtain 

· xl a a 1 a Xl 

• a 1 X2 X2 
a a 

(4.16) 

, p 2 'Jf2 a 16v X3 -(- - v )- 8v X3 
pA L2 3L 3L 

2 -16v a X4 • P _ \T2)~ X4 -8v -(- 3L 
3L pA L2 

Inserting the expressions of v and P from equation 

(~.l) and (4.2) into equation (4.16) we get 
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o X· 
1 

o 1 ~ o 
2Po 2 2 

o 

= - (- -Kv (l-cos2w t)~ 
x pA 0 0 2L2 

3 

8v w cosw t 
00 0 

3L o 

2P 2 2 -16~t~wo~ 
- (~ - Kv (1-cos2w t)~ ... \~ 0 

pA 0 0 L2 3L 
• 8v w cosw t X4 - 0 0 0 

3L 

(4.17) 

Equation (4.17) is solved numerically by a computer 

program written in FORTRAN. The program uses a subroutine from 

the IMSL library which solves the differential equations by 

applyinJ the Runge Kutta method of fifth or sixth order. The 

prOj ram is given in the appendix for reference. 

We then check the pr~ram for the li~iting cases, especially 

the constant velocity case. From[17] we know the solution for 

this case which is, 

2 
n(P- pAvo 

k 
2L (pAP) 2. 

SUbstitutin1 the expression (4.1) and (4.2) for v and P 

2 
n (Po - KpAvo ) 

(4.18 ) 

(4.19) 

Runnirg the program with different velocities we obtain 

the correspondinJ frequencies which are tabulated in table 1. 



The results from computer are very close to those from 

equation _ (4 .19) • 

V (axial velocity) f (frequency of ql ) 0 

0 59 

10 57 

20 52 

30 45 

40 37 

50 29 

'.' 60 22 

70 14 

80 8 

92.67 0 

Table 1- Axial velocity versus frequency of ql 
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. Note that 92.67 is the critical velocity for which frequ~ncy 

comes out to be zero. It is found by equating equation (4.19) 

to zero.The data of 

figure 6. 

table 1 is shown' gra~hically in 
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Figure 6- Fundamental Natural Frequency versus Axial Velocity. 

4-3. RESULTS FOR TWO TERM APPROXIMATION 

Equation (4.17) will be solved numerically using the 

parameters given in [4], where these parameters are shown in 

table 2. 

Standard 

Parameters 

P 
0 

76.22 N 

p 7754 kg/m3 

-5 2 
A 0.5202xlO m 

K 0.22 

L 0.3681 

Table 2- Standard parameters for numeriacal 

analysis, [4J 
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We run the program for different axial velocity and frequency 

values ahd decide whether the system is stable or unstable for 

that values. In order to compare the results with the one term 

case we proceed in the 'following way. Rewriting equations (4.11) 

which are the definitions of 0 and £ 

£ = (4.20) o = 
2 

7f 

pA 

These expressions can be solved for Wo and v
o

' yielding, 

P £ 
o 

(o+2£)pAK 
w = 7f o 

p 
o 

2 pAL (o+2d 

(4.21) 

For specific 0 and £ values we are now able to find 

the corresponding v and Wo values and running the program , 0 

with the values obtained we find whether the point is stable 

or unstable. The data obtained in tfuis way is presented in 

figure 7. Comparing figure 7 with figure 5 we can easily state 

that two solutions differ greatly from each other. As can be 

seen from figure 7 all the points except one came out to be 

stahle. We then concentrate our study in the small shaded area 

in figure 7. This small area corresponds to high frequency 

values and velocity values that are close to the critical speed. 

Th'e area is shown in detail in figure 8. As can be seen we 

obtained three instability .regions.Computer drawn graphs 

corresponding to some of these points are obtained. Figures 

I (9-18) are the response plots of stable points and figures 
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(19-2S) are the response plots of unstable points. In stable 

points we observe that the amplitude doesn't increase. When 

the velocity is too low, the graph of q1 becames sinusodia1 

and amplitude of q2 is rather low as shown in figure 13. 

Examing the unstable points we see that they differ from each 

other. The amp1itudein figures 19,25 and 27 increase slowly 

whereas for the others the increase is rather fast. 

As mentioned earlier, the analytical solution of equation 

(4.13) is rather com1ex. However in [16] a solution is presented 

for a special case. In this reference the equation to be 

solved is of the form, 

d
2
x + EC(t) dx "+"(B(O)+ ~ B(t» x = 0 

dt2 dt 
(4.22 ) 

where E>O is a small parameter. Comparing (4.13) with (4.22) 

we define the parameter E as 

E = (4.23) 

and the matrices are defined as 

[ 0 -l~ ] C (t) = sinwot (4.24) 
16 
-3-



B(t) = 

2P 
(~ 

pA 

o 

2 Kv 1T o 

2L 

2 
1T 

2L2 

...,;..'Qw .. 1>7 0 

3 

2 
KV01T 

L 

o 

cos2w t 
o 

41 

(4.25) 

(4.26) 

According to [16J for small E instatiality may occur 

at excitation frequencies in the neighborhoods of 

w.+w. 
1 J 

s 

w.-w. 
J 1 

S 
i,j,s = 1,2 (4.27) 

In our case fromeq. (4.23) Vo should be small enough 

and that will lead to points very close to the. 0 axis. wi and 

w~ are equal to the terms in the diagonal of B{O) matrix. 

From equation (4.25) 

2P 
= (_0_. (4.28) 

pA. 
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2P 
= (_0_ (4.29) 

pA 

For low velocities and frequencies given in (4.27}the 

corresponding 0 and E values are calculated and given in 

Table 3. 

s Wo 0 E 

1050 0.125 0.001 

1 742 0.25 0.001 

448 0.686 0.001 

154 5.8 0.001 

525 0.5 0.001 

2 371 1.0 0.001 

224 2.74 0.001 

77 23.2 0.001 

Table 3- 0 ana E values where instability may occur. 

Results from analytical solutions are. compared with the 

numerical solutions and we see that they agree with each other. 

From figure 8 we see that there is an instability area 

beginning from 0 = 0.5 and arising to the left. Also a narrow 

band is observed in the upper part of 0 = 1. We also wondered 

i~ the instability area at the top has a connection with the 

points just above. 0 = 2 ~ 74 .• The numerical analysis in th~t 

region show that there is no link iri between. 
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To summarize the chapter first we can state that the 

analytic-al solution given in [16J shows reasonable aggrement 

with our numerical solution. We also see that the results of 

two-term approximation is different from that of one-term 

approximation. The coupling terms may be effective in making 

the system more stable in the two term approximation case. 

Hence to depend only on the results of one-term approximation 

may lead to wrong results. 

/ 
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v- SUMMARY AND CONCLUSIONS 

We investigated the transverse vibrations of an axially 

accelerating string. First equations of motion are derived.The 

partial differential equation governing the motion is discretized 

by Galerkin's method. First we take one term in ·Galerkins 

method and finally obtain the Mathieu equation. Then· "je take two 

terms and solve the resulting coupled ordinary differential 

equations by numerical methods. The results for both cases are 

presented. 

Comparing the results of the two cases we conclude that 

they differ significantly. In the one term case the solution 

reduces to Mathieu stability and instabi]Lty areas as shown in 

figure 5. The solution of the two-term case as shown in figures 

7 and 8 are different. The coupling terms in the two term 

approximation may cause the system to be more stable. However 

our numerical solution gives approximately same results with 

the analytical solution presented in[l6 ] .Hence uSing two-terms 

in Galer~ins method gives better results. In general we observe 

th~t instability occurs at high frequency and velocities that 

are olose to critical speed. These values are high when 

compared with that of the working mechanisms such as band-

saws and tape bands. However in future new design may come 

out with extremely high speeds and, frequencies which may make 

it necessary to use the results obtained in this study. 
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Additional work can be done on the subject. For example 

we have chose~ a sinusoidal function for axial velocity. 

Different axial velocity functions can be investigated in the 

same way. In the study, Galerkins method is applied for n-terms 

but only the one and two term approximations are examined. 

The solutions of higher order approximations can also be made 

and results can be compared with those of one-term and two

term approximations. Experimental studies would,of course, 

also be desirable. 
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Figure 10- Generalized coordinates and velocity functions 

for point B(Stable) 
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Figure 17- Generalized coordinates and'velocity functions 

for point I(Stable) 
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for point K(Unstab1e) 
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Figure 20- Generalized coordinates and velocity functtons 

for point L(Unstable) 
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Figure 21- Generalized coordinates and velocity functions 

for point M(Unstable) 
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for point N(Unstable) 



~ 

VI .... 
r 
'-' 
;) 

r. 
~ ... 
M 
U 
0 
oJ w_ 
:. 
..J 
a: .... 
x 
a: 

... 
Q 

r. 
VI 
W ... 
a: z 
M 
C 
Do: 
o 
o 
u 
a 
w 
t.J ... 
..J 
a: 
Do: 
~ 
i:i 
~ 

... 
III . 
a;. 

X 
'-' 

" III 
W .... 

80'+' 

0 

a: __ 

Z 0 .... 
C 
0.: 
o 
o 
o 
c 
W 
tol ... 
..J 
a: 
Do: 
w 
Z 
w 
~ 

62 

(\ 
0.1 

TIHE HSE;C) 

Figure 23- Generalized coordinates and velocity functions 

for point P(Unstable) 



63 

Viii = 50.0 
1S0 = 5,.,0.0 

~ 60" 
I: 

! , .WV\~~ ~ 0r-~-=~~~~~-~-~~~~~~r~~~~~'V~~~~jV __________ ~, 
.... 
c 
0.: 
o 
o 
(.) 

c 
U 
t~ 
H 
J 
ex: 
a: 
u 
:z: 
u 
I:) 

~ 60 
I: 

... 
!II . 
& 

X 
~ 

N 
Q 

r. 
~l 
U ... a: _____ ""\.~, 

:: 'II .... 
c 
~ 
o 
o 
(.) 

c 
U 
N .... 
J 
ex: 
Ilo! 
w 
Z. 
W 
I:) 

'TUlE HSECl 

. ~igure 24- Generali.~ed coordimites and velocity functions 

for, point Q (Unstable) 



r. 

64 

V0 = 93.~ 
"0 = 371.0 

0-.... 
~ 01T~~~~~~~~~~~~~~~ o 
..J 
U 
::. 
oJ 
It .. 
:.c 
It 

~ :;:: 
I: 

... 
III . 
~ 

x 

, , 

~ 
I 

; , I • I l 
~ 0~~~~~~~~~~~V~~~~.~.~ ... 
o 
01 
o 
o 
~ 

o 
U 
toJ ... 
ri· 
Q: 
U 

5 
~ 

TIME T<SECl 

Figure 25- Generalized coordinates and velocity. functions 

for point R(Unstable) 



~ 

v, 
..... 
z: .... 
::> 
~ ... ... ... 
(.) 
0 
-l 
U 
::> 
..J 
a: ... 
:< 
a: 

... 
CP . 
1(0 

X . ., ... 
Col .. 
v, 
u ... 

0 

§ 0 - --~-------..../_~-\j ... 
c 
~ 
o 
o 
(.) 

c 
U 
t.J ... 
-' a: 
~ 
u 
:z 
u 
C) 

.. 
VI 
U ... 

65 

V0 = 10'1-.0 
l!!0 = 293.~ 

~ 0~~~~~~~~~~~~~~~+-~~~~~~4-~~+-~ ... 
c 
~ 
o 
o 
(.) 

o 
U 
N ... 
...t a:. 
~ 
u 
5 
C) 

TIHE T(SEO 

Figure 26- Generalized coordinates and velocity functions 
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