EFFECTS OF EXTRUSION PARAMETERS ON THE MECHANICAL PROPERTIES OF ALUMINUM

by

İsmail KARAHAN

B.S. in M.E., Technical University of Istanbul, 1982

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Boğaziçi University

ACKNOWLEDGEMENTS

I would like to express my most sincere appreciation to my thesis supervisor Doc.Dr.Sabri Altıntaş for his most helpful advice and guidance throughout the course of this work.

I also wish express my gratitude to Prof.Dr.Şefik Güleç, Head of the Material Research Department, for permission to carry out this research in TÜBİTAK.

My grateful appreciation goes to Dr. Mustafa Gevrek for his guidance in theoretical work, to Mr. Suat Tuncel for photography and to Mr.Sinan Onurlu for useful discussions.

I am particularly grateful to Mr.Saadettin Ozan, Mr.Ömer Şafak and Mr. Sadullah Otuk for their careful work in specimen preparation and assistance in performing the tests.

July, 1986

İSMAİL KARAHAN

EFFECTS OF EXTRUSION PARAMETERS ON THE MECHANICAL PROPERTIES OF ALUMINUM

ABSTRACT

The effects of some extrusion parameters, extrusion ratio and initial billet temperature, on the structure and mechanical properties of aluminum are examined.

Initial billet temperature and extrusion ratio determine the structural changes occuring during and after the extrusion process and their contribution to the structure of the product. It is noted that mechanical properties of product also change with these parameters via the structure.

Extrusion ratio effects are recognized in the strain rate which is, then combined with temperature effects in a temperature corrected strain rate term, Z. It is shown that structure and mechanical properties of product are related to, and can be controlled by, Z. Relations between the logarithm of Z and mechanical properties of product are used to develope the extrusion limit diagram so that it shows the mechanical properties of extruded product.

ÖZET

Ekstrüzyon oranı ve ilk takoz sıcaklığı gibi bazı ekstrüzyon değişkenlerinin alüminyumun mikroyapısı ve mekanik özelliklerine etkisi incelenir.

İlk takoz sıcaklığı ve ekstrüzyon oranı, işlem sırasında ve sonrasında olan mikroyapı değişikliklerini ve onların ürün üzerindeki birleşik etkilerini belirler. Ürünün mekanik özelliklerinin de mikroyapıdaki bu değişikliğe bağlı olarak bu işlem değişkenlerinden etkilendiği belirtilir.

Ekstrüzyon oranı etkisi, şekil değiştirme hızı olarak gözönüne alınıp, sıcaklık etkileri ile sıcaklık dengelemeli genleme hızı, Z, teriminde birleştirilir. Ürünün mikroyapısının ve mekanik özelliklerinin Z ile ilgili olduğu ve bu değişkenle kontrol edilebileceği gösterilir. Log Z ile ürünün mekanik özellikleri arasındaki bağlantılar ekstrüzyon sınır diyagramının ürünün mekanik özelliklerini gösterecek şekilde geliştirilmesinde kullanılır.

TABLE OF CONTENTS

에 있는 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ÖZET	v
LIST OF FIGURES	viii
LIST OF TABLES	xii
LIST OF SYMBOLS	xiii
I. INTRODUCTION	1
II. EXTRUSION OF ALUMINUM	3
A. EXTRUSION PROCESS PARAMETERS	3
B. STRUCTURAL CHANGES OCCURING DURING AND AFTER	
EXTRUSION	9
1. Effective mechanisms on the structure of aluminu	um 9
a) Dynamic recovery	11
b) Static recovery and static recrystallization	15
2. Structure of aluminum products	16
a) Microstructure	16
b) Substructure	18
c) Effect of precipitation	19
C. EXTRUSION LIMIT DIAGRAM	20

vi

vii

의 것은 것을 가장하는 것은 것을 하는 것을 하는 것을 수 있다. 이 가지 않는 것은 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 같은 것은 것은 것은 것은 것은 것은 것을 하는 것을 하는 것은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 하는 것은 것은 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것	Page
1. Restrictions on working conditions	20
2. Structural considerations on limit diagram	28
III. EXPERIMENTAL WORK	31
A. EXPERIMENTAL PROCEDURES	31
1. Extrusion process	31
2. Metallographic examinations	32
3. Microhardness measurements	34
4. Tension tests	36
B. EXPERIMENTAL RESULTS	39
1. Microstructure	39
2. Mechanical properties	46
IV. DISCUSSION OF THE RESULTS	63
A. MICROSTRUCTURES	63
B. MECHANICAL PROPERTIES	65
V. CONCLUSIONS	74
DEFENDENCEC	
KEI EKENCES	/၁
APPENDICES	79
A - CALCULATION OF TEMPERATURE DISTRIBUTION	80
B - CALCULATION OF STRAIN RATE DISTRIBUTION	99
C - MICROSTRUCTURES OF EXTRUDED PRODUCTS	106

LIST OF FIGURES

<u>FIGURE NO:</u>	age
1 - Direct extrusion process.	2
2 - Indirect extrusion process.	2
3 - Interactions between the properties of material and	4
process parameters in the direct extrusion.	
4 - Heat flows during the extrusion process.	7
5 - A typical temperature rise curve during the extrusion.	8
6 - Variation of strain rate with the distance from the	9
centerline of the rod.	
7 - Softening mechanisms effective during and after the	10
extrusion of aluminum.	
8 - Substructure development in aluminum during the hot-	11
working.	n e e
9 - Flow curve of aluminum at high temperatures.	12
10 - Hardness variation with the aging time.	20
11 - Working range for a deformation process.	21
12 - Variation of working range with strain rate and	22
pressure.	
13 - Simple extrusion limit diagram.	23
14 - Surface cracking boundaries for some AL alloys.	27

			x
		γ (1) γ (Page
72	-	Extrusion limit diagram for 2014 Alloy.	28
16		Structural limit diagram for AL-Cu alloy.	29
17	-	Limit diagram showing mechanical properties of the	30
		product for 99.99% AL.	
18	_	Vertical hydraulic Enefco press.	31
19	-	Lectropol electroetching and electropolishing	33
		equipment.	
20	 -	Reichert optical microscope.	33
21	-	Microhardness test equipment.	34
22	-	Measurement places to determine the hardness.	35
23	-	Measurement places to determine the hardness	36
		variation along the rods.	
24	-	Instron-1115 Tension test equipment.	37
25	-	TS 138-6 Tension test specimen.	37
26	-	Typical elongation and load curve obtained from	38
		tension test.	
27	-	Variation of recrystallized grain size with the	40
	arta 1994 Alfa a	logarithm of Z_i for $R = 25$.	t e s See
28	-	Variation of recrystallized grain size with the	40
		logarithm of Z_i for $R = 160$.	
29	-	Microstructure of product which was extruded with	41
t di tit Tetra		an extrusion ratio of 25:1 at 350 ⁰ C initial billet	
		temperature.	
30	_	Microstructure of product which was extruded with	42
		an extrusion ratio of 25:1 at 400 ⁰ C initial billet	
		temperature.	n de la composition de la composition de la composition
31	- 	Microstructure of product which was extruded with a	an_42
	•	extrusion ratio of 25:1 at 450 ⁰ C initial billet te	m-

perature.

- 32 Microstructure of product which was extruded with 43 an extrusion ratio of 63:1 at 350^oC initial billet temperature.
- 33 Microstructure of product which was extruded with 43 an extrusion ratio of 63:1 at 400^oC initial billet temperature.
- 34 Microstructure of product which was extruded with 44 an extrusion ratio of 160:1 at 350^OC initial billet temperature.
- 35 Microstructure of product which was extruded with 45 an extrusion ratio of 160:1 at 400[°]C initial billet temperature.
- 36 Microstructure of product which was extruded with 45 an extrusion ratio of 160:1 at 450[°]C initial billet temperature
- 37 Variation of hardness with the extrusion ratio.
 38 Variation of hardness with the initial billet tem49 perature.
- 39 Variation of maximum hardness values taken throughout 51 the diameter with the position along the rod.
- 40. Variation of hardness with the distance from the 52 centerline of the product.
- 41. Dependence of hardness on the logarithm of the strain 53 rate for constant temperature.
- 42. Variation of proof stress with initial billet temperature.
- 43. Variation of the ratio of proof stress to ultimate 56 tensile strength with initial billet temperature.

X

Page

			?age
44	_	Variation of final strain with initial billet	56
		temperature.	ţ.
45	-	Variation of proof stress with extrusion ratio.	57
46	-	Variation of the ratio of proof stress to ultimate	57
		tensile strength with extrusion ratio.	· . ·
47		Variation of final strain with extrusion ratio.	57
48	-	Variation of proof stress with the temperature	60
		corrected strain rate.	
49		Variation of strain herdening exponent with tem-	61
		perature corrected strain rate.	
50	<u> </u>	Variation of ultimate tensile strength with the	62
		logarithm of temperature corrected strain rate.	
51	-	Microstructures of extruded products.	64
52	-	Diagram showing the proof stress values of product	71
		as a function of deformation temperature and extrusion	1
		ratio.	

xi

53 - Extrusion limit diagram of AA 1100 including the proof 72 stress values of product.

LIST OF TABLES

		승규 방지 않는 것은 것이 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 나는 것이 않아요. 나는 것이 같아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 아니 아. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 것이 않아요. 나는 않아. 나는 않아. 나는 않아. 아. 나는 않아. 나는 않아. 나는 않아. 나는 않아. 나는 않아. 나 않아. 나는 않아. 나는 않아. 나 ? 않아. 나 ? 아. 나는 않아. 나는 않아. 나는 않아. 나는	
TAB	LE	<u>NO :</u>	Page
1 -	_	Chemical compound of the extruded product.	32
2	<u> </u>	Results of microhardness tests performed on the	47
		specimens cut from position B.	
3	<u> </u>	Results of microhardness tests performed on the	49
		specimens cut from position A.	
4	- 	Results of microhardness tests performed on the	50
		specimens cut from position C.	
5		Proof stress, $\sigma_{0,2}$, ultimate tensile strength, $\sigma_{\rm UTS}$	54
		and final strain values obtained from tension tests.	e a for da for Marina
6		Proof stress, $\sigma_{0,2}$, ultimate tensile strength, $\sigma_{\rm UTS}$	59
	n a na ng a ng m	and strain hardening exponent values obtained from	
		the tension tests performed on the specimens which	
		have fibrous structure.	
7	<u> </u>	Deformation temperature values corresponding to	70
		given extrusion ratios for specified proof stress	
		values of product.	

xiii

LIST OF SYMBOLS

A ₁ , A ₂ , A ₃	: Material constants
^B 1, ^B 2, ^B 3	: Material constants
đ	: Mean subgrain diameter
D _B	: Billet diameter
D _E	: Die diameter
h	: Depth of recrystallized layer
ΔH	: Activation energy for hot working
K	: Subboundary strengthening coefficient
к ₁ к ₇	: Constants in heat equation
Γ	: Billet length
n	: Strain hardening exponent
q	: Extrusion load
P max	: Maximum extrusion load
r	: Distance from the centerline of the product
R	: Extrusion ratio
t	: Time, extrusion time
T	: Deformation temperature
ΔͲ	: Temperature rise during extrusion
To	: Initial billet temperature
V	: Extrusion speed

Ŵ	: Semiangle of deformation cone
Z	: Temperature corrected strain rate
Zi	: Initial temperature corrected strain rate
Q ₁ Q ₇	: Heat flows
ε	: Strain rate
α	: Material constant
σ	: Flow stress
σi	: Internal stress
σ*	: Effective stress
σy	: Yield stress
^σ 0.2	: Proof stress
^o uts	: Ultimate tensile strength

I, INTRODUCTION

Deformation is one of the several processes which may be used to obtain intermediate or final shapes in metals. The applicability and development of these types of processes are completely dependent on the plasticity of the solid metal. The study of plasticity is concerned with the relationships between metal flow and applied stress. If these can be determined, then the required shapes can be achieved by the application of calculated forces, in specified directions, at controlled rates. In practice, the external load is applied by a tool and its shape controls the direction of application necessary to achieve the desired flow. The type of tool can be used to classify the different categories of deformation processes. Common industrial processes fall into six categories; deep drawing, rolling, forging, stretching, extrusion, wiredrawing. Although there are other processes, e.g. roll forging, spray forming, etc., these are not of any great industrial significance [1].

In extrusion process, besides the fact that prediction of the metal flow and temperature changes during extrusion is hard to handle, the problem of choosing suitable die

materials to withstand the high temperatures and pressures required to extrude the harder, stronger materials are not overcome. Nowadays, it is possible to extrude successfully the following metals and their alloys; aluminum, copper and lead [1]. Although a special technique is required, the extrusion of steel is also possible.

There are two kinds of extrusion; direct and indirect.In the former case, the ram and die are at opposite ends of the billet and the metal is pushed up to and through the die as represented in Fig.1.

FIGURE 1. Direct extrusion process[1].

With direct or inverted extrusion, the die is held at the end of the hollow ram and is forced into the billet so that metal is extruded backwards through the die as represented in Fig.2.

FIGURE 2. Indirect extrusion process [1].

II. EXTRUSION OF ALUMINUM

A. EXTRUSION PROCESS PARAMETERS

Attempting to describe the relations between extrusion parameters is difficult, since this process has many parameters and interactions between these parameters are complex. Fig.3 shows these interactions in direct extrusion. It has been reported that initial billet temperature, extrusion ratio and speed are directly effective parameters on the microstructure of the product [2-3]. Initial billet temperature determines the temperature of deformation and, extrusion ratio and extrusion speed determine the strain rate during this process.

The strain rate varies from point to point throughout the deformation zone during the extrusion process so, it is necessary to define some average value for this parameter. There are two techniques, which appear to be acceptable, to calculate average strain rate : finite-elemant technique and the minimized upper-bound solution. Most previous researchers have used the approach suggested by Feltham [2]. According to Feltham, the mean strain rate may be written as.

FIGURE 3. Interactions between the properties of material and product and process parameters in the direct extrusion. [3]

total strain time taken to effect that strain 5

(1)

(2)

(4)

Total strain is given by a constant, c, and the time taken to effect this strain can be easily calculated as [2]

$$D_{\rm B}^3 - D_{\rm E}^3$$

6. $D_{\rm B}^2$.v.tan w

giving

ε

$$\varepsilon = \frac{6.\overline{c}.v.D_B^2.tan w}{D_B^3 - D_E^3}$$

where D_B = Billet diameter, D_E = Die diameter, v = Extrusion speed, w = Semiangle of deformation cone.

Sheppard [2] has given the relations (determined by using upper-bound solution and verified by inspection of macro-etched billet) :

$$w = 54.1 + 3.45 LnR$$
 (3)

c = LnR

for 1100 alloy. R is extrusion ratio.

During the extrusion processes, energy dissipated is converted to thermal energy resulting in temperature variations both traverse to and perpendicular to the ram travel. Traverse variations in temperature produce variations in structure, and hence in properties, across the extruded section. However, since it is the bulk properties which are important and, in any case, structural differences across the section are difficult to determine, it is acceptable to calculate an average temperature rise at any instant [3].

Factors affecting the temperature rise may be quantified by placing a control volume around deformation zone and equating the heat leaving this volume to the work put into it [3]. Since the billet is also losing heat to container, outside this area, a second control volume may be used to include this heat loss in overall equation. The heat losses are shown in Fig.4. Assuming that 90% of the work is converted into heat, the following applies

 $0.9 \text{ P.v.t} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7$ (5)

where	P = Extrusion load,
	v = Ram speed,
	t = Extrusion time,
	Q_1 = Heat loss from deformation zone to dead zone,
	Q_2 = Heat loss from deformation zone to container,
	Q_3 = Heat loss from product to die,
	Q_4 = Heat loss from deformation zone to billet,
	Q_5 = Heat loss from billet to container,
	Q_6 = Heat loss from billet to ram,
	Q7 = Heat loss from deformation zone to product.

7

FIGURE 4. Heat flows during the extrusion process [3].

Sheppard [2] has calculated the heat losses and solving the heat equation, he has given the equation for temperature rise as

$$\Delta T = \frac{0.9 \text{ P.v.t} - \Delta T_{\text{p. }C_2(t)}}{C_1(t)}$$
(6)

$$C_1(t) = K_1 t^{1/2} + K_2 t^{2/3} + K_3 t$$

$$C_2(t) = K_4 t^{1/2} + K_5 t^{3/2} + K_6 t^{4/3} + K_7 t^{5/3}$$

where ΔT = Temperature rise,

$$\Delta T_{p}$$
 = Temperature differential between product and tool,
 K_{1-7} = Constants related to heat losses [2].

More recently, M.Gevrek [4] have developed a finitedifference algorithm to calculate temperature distribution on the deformation zone during extrusion. This programme was used in this study to calculate the temperature rise during extrusion. Fig.5 shows the temperature increase of the product calculated by this programme as a function of product length at a given extrusion ratio, R=25 and initial billet temperature, $T_0 = 350$ °C. Detailed information about this programme is given in Appendix A.

8

FIGURE 5.A typical temperature rise curve during extrusion .

Average strain rate values for the specimens were also calculated by means of a computer programme which gives the strain rate values for 30 points throughout the diameter of the product [4]. Variation of the strain rate with the distance from the centerline of the rod is given in Fig.6. Strain rate at the center of the product is higher than the one at the surface. An average of the strain rate values corresponding to the points inside the specimen diameter was taken into account.

FIGURE 6. Variation of strain rate with the distance from the centerline of the rod.

Detailed information about this computer programme is given in Appendix B.

B. STRUCTURAL CHANGES OCCURING DURING AND AFTER EXTRUSION

Almost all metals, excluding some castings, are hot-worked during processing into a final product. Most of these hotworked materials go into service in the as-deformed state in the form of products such as steel plate or aluminum extrusions. Whether as an intermediate or as a final product, the properties of such hot-deformed materials are determined by the working process. Therefore, one should consider the structural changes occuring both during and after working, and describe the influence of these changes on the mechanical

properties of the worked material.

The restoration mechanisms in hot working can be divided into dynamic ones in the deformation zone and static ones in the cooling zone (Fig.7). Metals of high stacking fault energy like aluminum undergo dynamic recovery at both low and high

FIGURE 7. Softening mechanisms effective during and after extrusion of Aluminum [5].

strains followed by static recovery and recrystallization respectively. Metals of low SFE like copper undergo dynamic recovery and, in addition, dynamic recrystallization at high strains, followed in both cases by static recrystallization [5].

Aluminum is a metal of high SFE. It undergoes dynamic recovery during the extrusion process. This is followed by static recovery and static recrystallization after extrusion [6-8]. In Fig.8 substructures of aluminum are given for undeformed, deformed to 0.1, steady state at 0.5 and steady state at 2.0 conditions. Dynamic recovery, static recovery and static recrystallization will be discussed in details below.

Undeformed Deformed to Steady state Steady state individual 0.1 subbound- at 0.5 subdislocations daries grains formed grains persist

FIGURE 8. Substructure development in Aluminum during the hot working [5].

a) Dynamic recovery

When a recrystallized metal is loaded at constant nominal strain rate, the resulting flow curve can be divided into three distinct stages The first stage is that of microstrain deformation occuring as the plastic strain rate in the sample increases from zero to the approximate strain rate of the test [3]. (Fig.9) During this interval the state of stress in the material rises rapidly although not quite as steeply as it does at conventional temperatures. Typical loading slopes during initial loading range are around E/50 at high temperatures and high strain rates. The loading slopes are not comparable with the modulus because of the plastic strain produced during the loading interval prior to the microscopic flow. This strain arises from the operation of the thermally activated mechanisms that are rate controlling in this temperature range and, therefore, increases with increasing temperature and decreasing rate of loading.

FIGURE 9. Flow curve of aluminum at high temperatures.

The end of the microstrain interval is signified by a decrease in the slope of the loading curve about an order of magnitude. Yield drops are not, in general, observed and the yield stress is defined instead in the term of a plastic strain offset of 0.1 or 0.2 %. (Fig.9) The region of the yield stress marks the beginning of the work hardening and, the slopes are again temperature and rate sensitive. During this second stage deformation, the work hardening rate gradually decreases until the net rate of work hardening is zero. This regime, named steady state regime, is characterized by constancy of three parameters: stress, temperature and strain rate. It should be considered that the microstructural changes accompany the three stages of flow curve depicted in Fig.9. Some dislocation multiplication takes place during the microstrain interval and the dislocation density increases. It continues to increase with strain after yielding at a slower rate and attains a constant value in steady state region [9]. During the phase of positive strain hardening, the dislocations begin to form a cellular structure. By the time the steady state regime is attained, the dislocation have arranged themselves into subgrains whose perfection, dimensions and misorientations depend on the metal and on the strain rate and temperature of deformation [10]. This condition of essentially constant dislocation density, which is necessary for the absence of strain hardening results from the attainment of the dynamic equilibrium between dislocation generation and annihilation. The stable subgrain size depends on the equilibrium dislocation density which is established by this balance.

The higher the temperature of deformation and the lower the strain rate, the larger are subgrains that are formed during high temperature deformation. As they increase in size the subgrains contain fewer dislocations. This structural variation reflects the diminution in the equilibrium dislocat density arising from the increase in temperature and decrease in strain rate. The generation rate decreases, because effect stress decreases with decreasing strain rate and with increas temperature. The annihilation rate, on the other hand, does not decrease as "much" with a decrease in strain rate, because it is not sensitive to a stress decrease as the generation rate is.

The dependence of mean subgrain diameter, d, on the temperature, T and strain rate, $\hat{\epsilon}$ is described by the relation:

$$\mathbf{d}^{-\mathbf{m}} = \mathbf{a} + \mathbf{b} \, \mathbf{Ln} \, \mathbf{Z} \tag{7}$$

where a and b are empirical constants m is a material constant and Z is the temperature corrected strain rate which is defined by the relation :

$$Z = \hat{\epsilon} \cdot \exp(\Delta H/GT)$$
(8)

where ΔH = activation energy for hot working, and G = Universal gas constant.

At high temperatures, it is common to express the flow stress, $\boldsymbol{\sigma}$, as

$$\sigma = \sigma^* + \sigma_i \tag{9}$$

where σ^* , known as the effective stress, is the reversible component of the flow stress, changes in which are concurrent with changes in temperature or strain rate. The term σ_i refers to the irreversible or structural component of flow stress, also known as the internal stress. If σ^* remains approximately constant with strain and setting [9]

$$\sigma_i = K d^{-1}$$
 (10)

-where K is the subboundary strengthening coefficient, we can

write that:

$$\sigma = \sigma^* + Kd^{-1}$$

Yield stress, σ_y is an approximately constant fraction of flow stress in most material. Thus, if the only softening mechanism is dynamic recovery, one can write by combining the Eq.7 and Eq.11

$$v_{\rm V} = A + B \ln Z \tag{12}$$

Here, A and B are empirical constants.

b) Static recovery and static recrystallization

Static softening processes take place after deformation is complete or between intervals of hot-working. These processes can be divided into two distinct categories :

- i) The recovery process which involves the annihilation of dislocations in individual events.
- ii) The recrystallization process, in which dislocations are simultaneously eliminated in large numbers as a result of the motion of high angle boundaries.

The main experimental variable affecting the recovery rate are the temperature, strain and strain rate[11]. The effect of temperature is evident but is not particularly marked, because the amount of stored energy driving the recovery decreases as the deformation temperature is increased. It is

(11)

also apparent that the rate of recovery decreases with time indicating that the stored energy or driving force is progressively reduced by the operation of the recovery process [11]. Because the driving force for recovery is generally different at different deformation temperatures, it is difficult to determine the activation energy associated with static recovery, after high temperature deformation. In general, increases in strain lead to increase in the recovery rate, until steady state flow is achieved. This can be attributed to the increase in dislocation density, and therefore driving force, with strain until equilibrium is reached.

Static recrystallization has been reported frequently in literature [12-15]. The time for complete recrystallization increases with the deformation temperature. The recrystallized grain size also increases with temperature, confirming the strong influence of subgrain size and driving force on the processes of the nucleation and growth. Increasing the strain rate of deformation decreases the incubation time and increases the rate of subsequent recrystallization. Finer grains are produced by deformation at higher strain rates because of the reduced grain sizes formed by dynamic recovery at lower values of temperature corrected strain rate. The increase in recrystallization rate with strain is accompanied by a decrease in recrystallized grain size.

2. Structure of the aluminum products

a) Microstructure

The considerations above indicate that microstructures of - the aluminum alloys after extrusion are likely to be complex

because of the heterogeneous nature of the deformation. Although dynamic recovery is usually the mechanism operative during deformation, the strain, strain rate and temperature conditions at the periphery of product may be suitable to provide the driving force necessary for static recrystallization to occur at this location [8].

Most of the researchers reported using materials which dynamically recover, have been related to the extrusion of aluminum and its alloys [16-22]. These researchers observed that, the microstructure most usually appears "fibrous". The structure consists of the original cast grains elongated into the extrusion direction and having a ratio roughly equal to the extrusion ratio. The fibrous effect is due to the high angles existing between the string-like grains. Although static recovery may occur after the extrusion, static recrystallizatio does not.

Incorrect extrusion conditions may lead to gross heterogeniety in the product in which the surface layer recrystallizes to produce large recrystallized grains. This is least desirable structure. Sheppard [6] has given a linear relationship

$$h = M + N LnZ$$
(13)

where M and N are empirical constants and h is the recrystallization depth. Stress corrosion susceptibility and heat treatment sensitivity indicate the need to predict when extrusion will produce a recrystallized structure. The method most commonly used is to plot hardness values v.s. extrúsion temperature. But in extrusion, some other parameters such as strain rate and cooling conditions, are also effective. Raybould and Sheppard [2] have reported that the Al-7% Zn Alloy had a minimum LnZ value of 28.55 to recrystallize when it was water-quenched. In general, this may be written as

$$T_{R} = \frac{H}{G_{e} Ln (Z_{p}/\epsilon)}$$
(14)

where Z_R is the critical temperature corrected strain rate value for recrystallization.

b) Substructure

It has been suggested that it is the effective stress upon a dislocation and the distance moved which uniquely determines deformation characteristics in such a way that Z should relate the final properties of a metal under differing deformation conditions. The final properties are most conveniently represented by the subgrain diameter and will depend upon the quench rate. In literature [6,8,19,23], for air cooled products and for different material, some parametric equations have been given as;

$d^{-1} = 0.15 \text{ LnZ} - 3.5$	(AA 2014)	(15)
$d^{-1} = 0.044 \text{ LnZ} - 0.884$	(Commercially pure AL)	(16)
$d^{-1} = 0.037 \text{ Lnz} - 0.67$	(AL-Li-Mg)	(17)
$d^{-1} = 0.0058 \text{ LnZ} - 0.1733$	(AA 1100)	(18)

c) Effect of precipitation

It has been shown that both precipitations during extrusion and the quenching type after extrusion may have some effects on the mechanical properties of product [7,18,24] and the extrusion parameters, hence quenching type should be chosen according to age hardening features of the material [25].Paterson and Sheppard [7] have observed that AA 2014 alloy has softened considerably, despite the structural differences observed has been constant for all of the extrudates. (Fig.10)

FIGURE 10. Hardness variation with the aging time [7].

The retained substructures do not seem to contribute to strength for some alloys. The strength of the alloy can be improved by natural aging at room temperatures or by artificial aging at elevated temperatures. The greater, the amount

of solute in solution, the greater the influence of the zones which act as obstacles to dislocation motion and make material more strong. Despite that there is a little amount of solute in commercial pure aluminum, it has been observed that whether fine or coarse dispersion of precipitation may have a considerably important effect on the mechanical properties of this material [21].

C. EXTRUSION LIMIT DIAGRAM

1. Restrictions on working conditions

The choice of the temperature range for hot working is important. During the deformation process, the heat of the deformation may cause a temperature rise, if the strain rate is so high that conditions are approaching adiabatic. On the other hand, if the strain rate is low, heat may be lost to the surrounding and the temperature of the workpiece will drop as it is deformed. The finishing temperature will have a marked effect on the structure and the properties of product. If the temperature is high, then the final grain size will be coarse, affecting the mechanical properties. If, on the other hand, deformation rates cause adiabatic conditions, the resulting temperature rise of the metal might exceed the solidus, giving rise to incipient melting.

Smith [26] has shown that the extrusion temperature and the strain rate must be jointly controlled, if the defects are to be avoided. The working range of an alloy can be illustrated in a diagrammatic manner by considering the metal temperature and the amount of deformation. The effect of strain rate can be added later to the diagramme so that all the variables controlling working range are included. For a given working pressure and temperature, there will be a maximum amount of deformation that can be carried out on the metal. If the working pressure is maintained, the amount of deformation possible will increase, if the temperature of the metal is increased due to the fact that flow stress is lowered. In Fig.ll, this is illustrated by line AB which seperates those areas in which deformation is possible from those in which it is not, for a given applied pressure. The area in which deformation is possible, is restricted at higher

Metal preheat temperature

FIGURE 11. Working range for a deformation process [1].

temperatures due to the risk of incipient melting. If deformation is carried out very slowly, the limiting temperature is solidus. If, however, deformation is carried out at faster rates and some energy of deformation appears as a temperature rise, then the temperature of the metal must be restricted. The greater amount of deformation, the greater the temperature rise. Therefore, a line CD which has a negative slope will limit the upper temperature of working range. The effect of the other possible variables, pressure and strain rate can be included to the diagram as shown in Fig.12. Increasing the applied pressure will increase the

FIGURE 12. Variation of working range with strain rate and pressure [1].

deformation range whilst increasing the strain rate will have the opposite effect.

Extrusion process is limited by the capacity of the press and melting of the material extruded. The extrusion load, which depends on the flow stress of the material at elevated temperatures should not exceed the press capacity. Incipient melting restricts the initial billet temperature. These two limitations can be shown in a diagram, called "extrusion limit diagram". Fig.13 shows a simple limit diagram in which temperature are plotted against the logarithm of extrusion ratio to be used for choosing of possible working conditions

Temperature

FIGURE 13. Simple extrusion Limit diagram [7].

in which press capacity and material properties are determined for a constant velocity.

To draw the pressure limit, a formulation, which determine the extrusion pressure as a function of the flow stress and the extrusion process parameters, should be derived.

For constant initial billet temperature, T_o, extrusion speed, v and billet length, L, maximum extrusion pressure
increases linearly with the logarithm of extrusion ratio, R
[3] :

$$P_{max} = (A_1 + B_1 LnR)_{T_0V_1L}$$
(15)

where A_1 and B_1 are constants depending on the extruded material and extrusion conditions.

For constant extrusion speed, extrusion ratio and billet length, maximum extrusion pressure decreases linearly with the initial billet temperature [3] :

$$P_{max} = (A_2 - B_2 T_0) R_{V,L}$$
(16)

where A_2 and B_2 are constants depending on the extruded material and extrusion conditions.

Considering that material flow stress at high temperature depends on the strain rate, maximum extrusion pressure will be clearly dependent on both temperature and strain rate [3]. These parameters are combined in the temperature corrected strain rate,Z. Then, for constant billet length and extrusion ratio, we may write

$$P_{max} = (A_3 + B_3 LnZ)_{R,L}$$
 (17)

where A_3 and B_3 are material constants. Thus, extrusion pressure can be determined as a function of extrusion and material parameters, by combining Eqs. 15,16 and 17, for constant temperature:

$$P_{max} = \sigma (A + B LnR)$$

For high stresses, it has been shown that flow stress of material at elevated temperatures depends on the strain rate and temperature by the equation [6,27]:

$$\sigma = \frac{1}{\alpha \cdot n} \left(\operatorname{Ln} \left(\frac{Z}{A^*} \right) - \frac{\Delta H}{GT} \right)$$
(19)

where α and n are material constants. Substituting Eq.19 into Eq.18 :

$$P_{\max} = \frac{1}{\alpha \cdot n} \cdot \left(\ln \left(\frac{Z}{A^*} \right) - \frac{\Delta H}{GT} \right) \cdot \left(A + B \ln R \right)$$
(20)

or in general form

$$P_{\max} = \frac{1}{\alpha \cdot n} \quad (a + b \ln R + c \ln \frac{Z}{A^*}) \quad (21)$$

may be written.a, b and c can be determined by the experiments which are performed for constant billet length. Thus, constant pressure limit on extrusion limit diagram can be plotted by using Eq.21.

In literature, to verify the form of Eq.21, the extrusion data has been subjected to multiple regression analysis for some aluminum alloys and reported as given below [3,27] :

$$P_{\max} = \frac{1}{\alpha \cdot n} (12,48 \text{ LnR}+5.65 \text{ Ln} \frac{Z}{A^*} - 15.692) \text{ (AA1100)} (22)$$

BOĞAZİÇİ ÜNİVERSİTESİ KÜTÜPHANESİ

(18)

$$P_{\max} = \frac{1}{\alpha \cdot n} (13, 14 \ln R + 4.3 \ln \frac{Z}{A^*} - 3.33) \quad (AA2014) \quad (23)$$

$$P_{max} = \frac{1}{\alpha.n} (17.3 \text{ LnR} + 10.3 \text{ Ln} \frac{Z}{A^*} + 11.2) (Commercial(24))$$
pure AL)

The actual working temperatures should be used to determine both the flow stress and incipient melting line. The upper-bound solutions indicate that most of the work done during extrusion occurs at the maximum temperature rather than the initial temperature. It has been shown that the working temperature remains relatively constant during steady-state extrusion. "Integral profile"temperature shows good correlation with experimental results [28]. Having calculated the temperature, it is still not clear what the limiting temperature line should represent. The main criterion in aluminum alloy production is the surface finish of the product, thus indicating that this is parameter which should determine the temperature locus on the limit diagram [27].This phenomenon is a particular problem during the extrusion of high strength aluminum alloys such as 2014. Although the ductility of aluminum alloys generally increases with temperature, the flow stress decreases such that as the temperature of extrusion is increased, tensile fracture can be induced by the tensile stresses imposed by friction conditions It has been shown that the defining line good and unacceptable surfaces could be represented by a relationship [27]. It has been reported that the condition for acceptable surface could be represented by a relationship. It has been reported that the condition for acceptable surface finish for 2014 alloy is [27]

By plotting the parameter Ln(Z/A) against the initial billet temperature, different aluminum alloyscan be compared. A is a material constant. Such a comparison is shown in Fig. 14 for alloys 2014,7075 and 5456. It has been noted that the

FIGURE 14.Surface cracking boundaries for some aluminum alloys [27].

propensity for surface cracking increases from the 5456 to the 2014 and up to the 7075 alloy which is consistent with the corresponding increase in the pressure required for the high temperature extrusion of these alloys [27].

Eq.21 and Eq.25 may be combined within a single graph to show the limiting extrusion conditions. Such a graph is

(25)

shown in Fig.15, indicating the possible working conditions for the extrusion speeds of 3.2 and 6.8 mms⁻¹ without surface cracking.

FIGURE 15. Extrusion Limit diagram for 2014 Alloy [27].

2. Structural considerations on limit diagram

Sheppard and Raybould [29] have shown how the extrusion limit diagram may be constructed to give information on the structure of product. It is clear that both desired structure and property parameters may be presented on the extrusion limit diagram. Fig.16 shows a limit diagram of AL-Cu Alloy indicating subgrain diameter variation with extrusion parameters for a constant ram speed of 10 mms⁻¹ [6].

FIGURE 16. Structural limit diagram for AL-Cu alloy [6].

Fig.17 shows the mechanical properties of product for 99.99 % AL. In this diagram, proof stresses, recrystallization boundary and predicted maximum recrystallization temperatures are shown as a function of initial billet temperature and extrusion ratio [29]. In this graph, recrystallization boundary shows the beginning of the recrystallization, predicted maximum recrystallization temperature boundary shows the beginning of the incipient melting and proof stress curves show the extrusion conditions corresponding to the given proof stresses of products.

FIGURE 17. Limit diagram showing mechanical properties of the product for 99.99% AL; water-quenched; $\dot{\varepsilon} = 16 \text{ s}_{-}^{-1}$; maximum pressure = 1100 N/mm² [29].

III, EXPERIMENTAL WORK

A-EXPERIMENTAL PROCEDURES

1. Extrusion process

Cylinder billets of commercially pure aluminum, which have 100 mm. in diameter and 100 mm.in length, were extruded at 350, 400 and 450 °C initial billet temperatures, using a vertical Enefco hydraulic press of 500 ton capacity, (Fig.18) to produce 8,12.5 and 20 mm. rods (Extrusion ratios; 160:1, 63:1, 25:1).

FIGURE 18. Vertical Enefco hydraulic press .

Air cooling was performed. Chemical composition of the material is given Table 1.

Element	Fe	Cu	Mn	Mg	Zn	Si	AL
Weight %	.1921	.07004	.015022	.5461	.024027	.124-06	Othe
						•	

TABLE 1. Chemical composition of the extruded material.

2. Metallographic examinations

Longitudinal and traverse sections were cut from the extrudate and prepared for optical examination. To examine the microstructures of the products at same conditions for different extrusion ratios, all specimens were chosen from the middle sections of the rods. The longitudinal sections were cut from the products and mounted in bakkelite, ground on 200 and 600 grade SiC papers and polished using 6µm diamond paste. Final polishing was achieved using 0.3µm aluminum powder. Using the equipment shown in Fig.19, the specimens were electroetched for three minutes in an acid solution $(4mL HBF_4 + 200 mL H_20)$ with specimens as anode, with a potential of 12 V applied with a maximum current density of $0.2 A/cm^2$ [30].

FIGURE 19. Lectropol electroetching and electropolishing equipment .

The specimens were inspected under polarized light by means of a Reichert optical microscope (Fig.20).

FIGURE 20. Reichert optical microscope

Recrystallized grain diameters were measured from the photographes using ASTM-E-112 standard, Lineal (Heyn) intercept method for the specimens extruded at 350, 400 and 450°C initial billet temperatures with the extrusion ratios of 25:1 and 160:1.

3. Microhardness measurements

Microhardness measurements were performed on the mechanically polished surfaces with a load of 200 gr. by means of a microhardness test equipment (Fig.21). To eliminate the

FIGURE 21. Microhardness test equipment.

hardened layer produced by mechanical polishing, electropolishing was performed. Specimens were polished mechanically in the same way described for specimens of metallographic examination. Then, they were electropolished in an acid solution (40% Percloric acid + ethyl alcohol) with a potential of 20 v/cm^2 . As a result of this process, a layer of about 250µm was eliminated. Average of 6-10 readings through the diameter determined the microhardness values of specimens (Fig.22).

FIGURE 22. Measurement places to determine the hardness.

Microhardness tests performed fall into three categories. Purpose of the first serial tests was to determine the variation of microhardness with initial billet temeprature and extrusion ratio. Nine specimens which were extruded at 350,400 and 450[°]C initial billet temperature with the extrusion ratios of 25:1, 63:1 and 160:1, were tested. To test the rods at same conditions for different extrusion ratios, all specimens were chosen from the middle of the rods.

Second serial tests were performed to examine the hardness variation along the rods. Specimens were cut from the A,E and C positions of the rods (Fig.23).

FIGURE 23. Measurement places to determine the hardness variation along the rods.

Third serial tests determined the microhardness variation throughout the diameter of the products which have the fibrous structures.

4. Tension Tests

Tension tests were performed by means of an Instron-1115 test equipment (Fig.24).Specimens for tension tests were cut from the middle of the rods which were extruded at 350, 400, 450° C initial billet temperatures with the extrusion ratios of 25:1, 63:1 and 160:1, and prepared according to TS 138 standart (Fig.25).A typical graph obtained from the tension test is given in Fig.26. In all of the tension tests, the speed of crosshead was chosen to be 0.2 cm/min. Considering that ther are no apperant yield point in the graphes of load-elongation, (Fig.26) proof stresses were determined by means of the extension-under-load method according to the method of

FIGURE 24. Instron-115 tension test equipment .

FIGURE 25. TS 138-6 Tension test specimen.

.

FIGURE 26. Typical elongation and load curves obtained from tension test.

ASTM E-8 standard specified extension-under-load was determined to be 0.23 % by ploting the stress-strain curves and averaging plastic strain values corresponding to elastic strain of 0.2% in these plots.

In the second serial tests, specimens which have only fibrous structure were chosen. Strain hardening exponent was determined by ploting true strain versus true stress curve in logarithm scale and calculating the slope of the curve after yielding.

1. Microstructure

Variation of recrystallized grain size with the temperature corrected strain rate, Z_i is given in Figs.27 and 28. Temperature corrected strain rate was calculated by

$$Z_{i} = \dot{\varepsilon} \cdot \exp\left(\frac{\Delta H}{G \cdot T_{O}}\right)$$
(26)

where T_0 is initial billet temperature. Activation energy. ΔH was been given for this process

$$\Delta H = 156.5 \text{ kj/mol}$$
 (27)

in the literature 3 . Strain rate, ϵ was calculated by Eq.2

Lineal intercept method 31 was used to estimate the grain size,d. The number of grains intercepted by three straight lines was counted on the photomicrographs of a representative field of the specimens cut from the rods which were extruded at 350,400 and 450° C initial billet temperatures with the extrusion ratios of 25:1 and 160:1.Fig.27 and Fig.28 show the variation of the recrystallized grain size with the temperature corrected strain rate, Z_i , for R=25 and R=160 respectively.

FIGURE 27. Variation of recrystallized grain size with the logarithm of $\rm Z_{i}$ for R=25 .

FIGURE 28. Variation of recrystallized grain size with the logarithm of Z_i for R=160.

Photomicrographs of the products which were extruded with an extrusion ratio of 25:1 at 350°C, 400°C and 450°C initial billet temperatures are given in Figs 29,30 and 31. Figure 29 shows a fibrous structure, while Figs.30 and 31 show dublex structure. Figures 32 and 33 show the microstructure of products which were extruded with an extrusion ratio of 63:1 at 350°C and 400°C initial billet temperatures. Both of them show dublex structure. Photomicrographs given in Figs.29-33 have a magnification of about 50:1.

400 µm

FIGURE 29. Microstructure of the product which was extruded with an extrusion ratio of 25:1 at350°C initial billet temperature.

FIGURE 30. Microstructure of the product which was extruded with an extrusion ratio of 25:1 at 400°C initial billet temperature.

400 µm

FIGURE 31. Microstructure of product which was extruded with an extrusion ratio of 25:1 at 450 °C initial billet temperature.

400 µm

FIGURE 32. Microstructure of product which was extruded with an extrusion ratio of 63:1 at 350°C initial billet temperature.

FIGURE 33. Microstructure of product which was extruded with an extrusion ratio of 63:1 at 400°C initial billet temperature.

Photomicrographes of the products which were extruded with an extrusion ratio of 160:1 at 350°C, 400°C and 450°C initial billet temperatures are given in Figs. 34,35 and 36. Figs.34 and 35 show the dublex structures, while Fig.36 show a fully recrystallized structure. Photomicrographes given in Figs. 34-36 have a magnification of 200:1. Some other photomicrographes of the extruded products are given in Appendix C.

100µm

FIGURE 34. Microstructure of the product which was extruded with an extrusion ratio of 160:1 at 350°C initial billet temperature.

100 µm

F

FIGURE 35. Microstructure of the product which was extruded with an extrusion ratio of 160:1 at 400°C initial billet temperat

100 µm

FIGURE 36. Microstructure of the product which was extruded with an extrusion ratio of 160:1 at 450°C initial billet temperature.

2. Mechanical Properties

Results of microhardness tests are tabulated in Tables 2 3 and 4 according to the positions from where specimens were taken. Position B represents the middle position of the rods (Fig.23). Since the temperature rise during the extrusion depends on the length of product, the variation of average hardness of the product with extrusion ratio and initial billet temperutare are plotted according to Position B. Microhardness measurements were performed 6-10 different places across the section represented by r_0-r_{10} as given in Fig.22. Maximum and minimum values of hardness are also given in Figs.37 and 38. Position A represents the beginning position of the rods while position C represents the end position. (Fig.23) Fig.39 shows the variation of hardness with the position along the products. It should be noted that, in this graph, maximum values of the hardness across the section were considered.

	Тċ	Pla	Places where microhardness tests were performed										
R	[° _C]	ro	rl	r ₂	r ₃	r ₄	r5	r ₆	r7	r ₈	r ₉	(average)	
25	350	41.1	38.5	37.0	38.4	37.6	36.9	37.0	35.4	36.6	34.5	37.3	
25	400	40.4	39.1	38.8	38.8	36.1	35.9	37.2	35.4	36.2	36.9	37.5	
25	450	50.4	44.4	43.4	42.7	40.6	43.6	44.0	38.6	40.9	40.2	42.9	
63	350	39.2	38.1	36.8	34.9	35.2	37.1	37.7	36.9			37.0	
63	400	45.2	42.2	40.4	43.8	44.3	40.9	43.9	44.4			43.1	
160	350	41.4	44.5	35.5	36.6	37.3	39.7					39.2	
160	400	46.5	44.1	39.6	42.7	41.7	43.8					43.1	
160	45.0	58.4	54.9	53.6	53.4	51.3	65.9					56.3	

TABLE 2. Results of microhardness tests performed on the specimens cut from Position B

FIGURE 37. Variation of hardness with the extrusion ratio.

FIGURE 38. Variation of hardness with the initial billet temperature

	•		la anti-artenda Statistica Artenda anti-artenda											
	Тo	Pla	Places where microhardness test were performed											
R	[°C]	ŕ _o	rl	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	(Average)		
25	350	51.8	50.8	50.7	48.4	47.5	45.9	44.6	43.4	42.9	42.7	46.9		
25	450	47.9	45.6	44.4	44.3	43.7	42.5	42.3	42.1	41.9	39.9	43.5		
63	400	49.6	48.7	48.3	48.4	47.6	47.4	46.4	40.7			47.1		
160	400	45.2	42.5	41.6	43.8	42.3	40.5					42.7		

TABLE	3.	Results	of	microhardness	tests,	performed	on	the	specimens	cut	from	position /	Α.
				· · · · · · · · · · · · · · · · · · ·		4			<u> </u>				

Ð	Т _о	Plac	es whe	ere mici	rohardne	ess test	s were	performe	èđ			ΥC
- K	[°c]	ro	rl	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	(Average)
25	350	48.1	49.8	45.8	41.3	39.7	39.7	46.3	43.5	42.9	45.7	44.4
25	400	46.8	43.0	41.1	43.6	41.0	39.4	37.0	38.6	42.7	41.9	41.5
25	450	57.9	53.8	50.6	51.6	51.3	47.3	50.3	46.7	45.0	47.3	50.2
63	400	46.4	43.5	46.4	43.7	43.4	45.4	45.3	45.4			44.9
160	400	46.7	45.5	46.4	44.3	44.5	42.9					45.0

TABLE 4. Results of the microhardness tests, performed on the specimens cut from Position C.

FIGURE 39. Variation of maximum microhardness values taken throughout the diameter with the position along the rod.

In Fig.40 variation of hardness throughout the diameters of the products, which were extruded at 350 and 450 ^OC initial billet temperatures with an extrusion ratio of 25:1, is illusturated for Position A. Metallographic examinations showed that these specimens have fibrous structure, showing that the only operative mechanism on the structure during and after extrusion is dynamic recovery.

FIGURE 40. Variation of hardness with the distance from the centerline of the product.

In Fig.41, variation of hardness with the logarithm of the strain rates corresponding to the positions shown in Fig.22 is shown. The strain rate values were calculated by means of a computer programme. Detailed information about this programme is given in Appendix B.

FIGURE 41. Dependence of hardness on the logarithm of strain rate for constant temperature .

Proof stress, $\sigma_{0,2}$, ultimate tensile strength, $\sigma_{\rm UTS}$ and final strain data are given in Table 5. These data were obtained from the tension tests, performed on the specimens cut from the rods which were extruded at 350,400 and 450°C initial billet temperatures with the extrusion ratios of 25:1, 63:1 and 160:1.

						<u> </u>			
Τ _Ο		350 ^o c			400 ⁰ C			450 ⁰ 0	2
R	σ0.2 [MPa]	^σ UTS [MPa]	Final Strain %	^σ 0.2 [MPa]	^σ UTS [MPa]	Final strain %	σ0.2 [MPa]	^σ UTS [MPa]	Final strain %
25	66.1	115.0	26.3	63.8	124.5	27.3	59.7	119.4	30.7
63	62.8	116.0	27.7	52.6	105.7	28.7	48.6	100.6	31.3
160	73.4	147.1	24.7	55.2	112.2	26.7	56.0	124.4	27.0

TABLE 5. Proof stress, $\sigma_{0,2}$, ultimate tensile strength, σ_{UTS} and final strain values obtained from tenison tests.

Variations of proof stress, ratio of proof stress to ultimate tensile strength and final strain with initial billet temperature are given in Figs 42,43 and 44, respectively. Proof stress, ratio of proof stress to ultimate tensile strength and final strain are also plotted against the extrusion ratio. These are given in Figs.45,46 and 47, respectively It should be noted that the tension test specimens were cut from the position B of products and designed according to TS 138, and data obtained from the tests were evaulated according to ASTM. E-8.

Initial billet temperature [°c]

FIGURE 42. Variation of proof stress with initial billet temperature.

FIGURE 43. Variation of the ratio of proof stress to ultimate tensile strength with initial billet temperature.

FIGURE 44. Variation of final strain with initial billet temperature.

FIGURE 45. Variation of proof stress with extrusion ratio.

FIGURE 46. Variation of the ratio of proof stress to ultimate tensile strength with extrusion ratio.

FIGURE 47. Variation of final strain with extrusion ratio.

Results of second serial tension tests, performed on the rods which were observed to have only fibrous structure by metallographic examinations, are given in Table 6. Data obtained from these tests were evaluated and proof stress, strain hardening exponent and ultimate tensile strength were plotted against the logarithm of temperature corrected strain rate. These graphes are given in Figs. 48,49 and 50. Temperature corrected strain rate was calculated by the equation

$$Z = \hat{\varepsilon} \cdot \exp\left(\frac{\Delta H}{GT}\right)$$

58

(8)

TABLE 6. Proof stress, $\sigma_{0,2}$ ultimate tensile strength, σ_{UTS} and strain hardening exponent, n values obtained from tension tests performed on specimens which have fibrous structure.

No	_{™o} [°c]	R	T[^o C]	ε[s ⁻¹]	LnZ	^σ 0.2	σuts	n
l	350	25	355	4.49	31.48	66.7	113.3	0.130
2	350	25	361	4.45	31.18	65.9	114.4	0.137
3	350	25	383	4.41	30.18	64.5	118.0	0.150
4	400	63	430	11.36	29 . 21	62.6	123.6	0.182
5	450	63	455	11.36	28.28	61.6	119.9	0.200
6	450	25	455	4.49	27.36	59.7	126.0	0.219

FIGURE 48. Variation of proof stress with the temperature corrected strain rate.

In this equation, deformation temperature, T was determined from the temperature rise curves as shown in Fig.5, considering the length of product where the specimens were cut. Mean strain rate, $\dot{\epsilon}$ was calculated by averaging the strain rate values inside the specimen diameter, calculated by the computer programme mentioned in Chapter 2.

IV. DISCUSSION OF THE RESULTS

A. MICROSTRUCTURE

Metallographic examinations show that three types of structure appear in product; fibrous structure as shown in Fig.51.a, dublex structure as shown in Fig.51.b, fully recrystallized structure as shown in Fig.51.c. Although, this is in aggrement with most previous workers [5-15], it has been reported that, for water quenching, fibrous structure appears mostly. For same working conditions, but air-cooling, fibrous structure appeared only in the products which were extruded at 350° C initial billet temperature. Since, the products are subjected to high temperature for a longer duration than in water-quenching conditions, this is not surprising.

Fig.27 and 28 shows that, for constant extrusion ratio, increasing temperature leads to an increase in the diameter of recrystallized grains as reported by previous authors [21]. Although dynamic recovery is usually the mechanism operative during the deformation, the strain, strain rate and temperature conditions may be suitable to provide the driving force for static recrystallization. Since these properties cannot be determined accurately, structural changes across the section are difficult to determine. Except these inner locations, it was

$$T_o = 350 °C$$

R = 25
length of product,L=10cm

 $T_{o} = 400 \ ^{\circ}C$ R = 25 L = 200 cm.

 $T_{O} = 450^{\circ}C$ R = 160L = 400 cm.

400 µm BEBRO DODANE

FIGURE 51.Microstructures of extruded products a)fibrous b)dublex, and c)fully recrystallized structure.

observed that recrystallization begins at the surface of products, as reported by most previous workers [6]. This may be because of the strain rate which has a minimum value at the surface. Amount of recrystallized locations increases with the initial billet temperature for constant extrusion ratio, as shown in Figs. 34,35 and 36.

Another result which is in agreement with previous authers [21] is that, for constant initial billet temperature, recrystallized grain size increases with decreasing extrusion ratio. This can be seen in Figs. 30,33 and 35. Reason for this happening is the increasing strain rate due to the increasing extrusion ratio.

B. MECHANICAL PROPERTIES

The effects of extrusion ratio and initial billet temperature on the hardness of product are shown in Figs. 37 and 38. It should be noted that, in these graphes, the dependence of temperature rise on the extrusion ratio was not considered.

Sheppard [6] has noted that mechanical properties of product increase with the increasing temperature corrected strain rate. The hardness of product increases with increasing extrusion ratio as shown in Fig.37, supporting the Sheppard's conclusions, since the increase in strain rate, due to the increasing extrusion ratio, results in increase of the temperature corrected strain rate via the Eq.8. But hardness of product also increases with increasing initial billet temperature, although temperature corrected strain rate decreases with increasing temperature as shown in Fig.38. This result is not in agreement with Sheppard. The fine precipitates may be reason of this result as reported by previous authers [21].

Although, the hardness value across the section varies in a large range, it takes the maximum value around the centerlines, so, instead of average hardness, these maximum values were taken into acccount to compare the results. The results of tests performed for examining the hardness variations along the rods are in agreement with the assumption that temperature corrected strain rate may be effective until a critical point is reached after which precipitation is more effective. As shown in Fig. 39, hardnesses of the products with 25:1 extrusion ratio at 350°C and 63:1 extrusion ratio at 400 °C decrease from position A of the product to position B then, after a critical point, begin to increase. However, for 160:1 extrusion ratio at 400 °C and 25:1 extrusion ratio at 450°C products, this critical point may be reached initially and the hardnesses of these products increase along the rods.

For some products, hardness values throughout the diameter are maximum at the centerlines of the rods and decrease as the distance from the centerline increases, as shown in Fig.40. As a result of metallographic examinations, it was observed that most of these specimens had only fibrous structure, indicating that dynamic recovery was operative mechanism. Assuming that the temperature is constant across the section, one can see that this variation of hardness may be related to the strain rate. The hardness values were plotted against the

logarithm of strain rate corresponding to the points where hardness measurements were taken (Fig.41). Regressions resulted in the linear relationships.Considering the slopes of lines in Fig.41, it can be seen that dependence of hardness on the strain rate decreases with increasing deformation temperature.

When the values of proof stress and final strain are plotted versus the initial billet temperature in Figs. 42 and 44, we can see that increasing billet temperature causes increases in final strain and decreases in proof stress. These effects of initial billet temperature on the final strain and proof stress are in agreement with previous papers [6,19]. However, the effects of this process parameters on the ratio of proof stress to ultimate tensile strength have not been reported in the literature. As shown in Fig.43, the ratio of the proof stress to ultimate tensile strength increases with the increasing initial billet temperature. This may be related to the strain hardening exponent. For commercial pure aluminum, it has been reported that temperature rise leads to finer precipitation in the matrix [21]. This may be reason for the increase in the strain hardening exponent. Effects of extrusion ratio on the mechanical properties of product are shown in Figs. 45-47. The influence of the extrusion ratio on the temperature rise makes these results difficult to analyse.

As a result of tension testing of the products which have only fibrous structure, strain hardening exponent, proof stress and ultimate tensile strength plotted against the logarithm of temperature corrected strain rate are shown in Figs48-50. Regressions fitted the linear relationships :

$\sigma_{0,2} = 11.2$	+ 1.78	LnZ	[MPa]			(28)
				-		
$\sigma_{\rm UTS} = 180.9$	9 + 2.1	LnZ	[MPa]			(29)

(30)

Eq. 28 and Eq.30 are similar to those reported by Sheppard for AA.2014 Alloy [6]. Dependence of strain hardening exponent on the temperature corrected strain rate for commercial pure aluminum is much more than that for AA2014, as we can see from the slope of the line in Fig.49. The reason for this may be, as mentioned before, the fine precipitates in the matrix.

Another interesting feature of commercial pure aluminum is that increasing temperature corrected strain rate leads to the decrease in ultimate tensile strength. But Sheppard has reported that ultimate tensile strength of AA 2014 increases with this parameter. This different behaviour of commercial pure aluminum may be related to its strain hardening exponent.

Now, we can use these results in extrusion limit diagram as restricting conditions. We can state Eq.28 in the general form as

$$\sigma_{0,2} = A + B.LnZ \tag{31}$$

Combining this equation with Eq.8

n = 0.85 - 0.023 LnZ

$$\sigma_{0.2} = A + B \cdot \frac{1}{T} + C \ln \dot{\epsilon}$$
(32)

recalling

$$= \frac{6.c.V.D_{B}^{2}.tan w}{D_{B}^{3} - D_{E}^{3}}$$
(2)

(4)

and for commercial pure aluminum

$$w = 54.1 + 3.45 LnR$$
 (3)

$$\mathbf{c} = \mathbf{L}\mathbf{n}\mathbf{R}$$

we obtain

$$\dot{\epsilon} = D \left(\frac{\text{LnR} \cdot \tan (54.1 + 3.45 \text{LnR})}{1 - \frac{1}{R\sqrt{R}}} \right)$$
 (33)

where D is a function of extrusion speed and billet diameter. Substituting Eq.33 into Eq.32 yields

$$\sigma_{0,2} = f(R,T)$$
(34)

This implies that mechanical properties of the product can be expressed as a function of extrusion process parameters and taken into account in the extrusion limit diagram. Combining Eq.32 and Eq.33 and substituting constants of extrusion process for the experiments of this study into this equation, we obtain

$$\sigma_{0.2}^{=9.06} + \frac{34.250}{T} + 1.78 \ln(\frac{\ln R. \tan (54.1+3.45 \ln R)}{1 - \frac{1}{R\sqrt{R}}})$$
 (35)

TABLE 7. Deformation temperature values corresponding to given extrusion ratios for specified proof stress values of product.

	Specified proof stress [MPa]						
R	50	55	60	65			
4	586 [°] C	490 ⁰ C	414 ⁰ C	351 [°] C			
9	597 ^o c	499 ⁰ C	421 ^o C	357 ^o c			
16	602 ⁰ C	503 ^o c	424 ^o c	360 [°] C			
25	606 ^О С	506 [°] C	426 ^O C	362 [°] C			
169	615 ⁰ C	513 ^o c	432 ⁰ C	366 ⁰ C			
400	617 [°] C	515 [°] C	433 ⁰ C	367 °C			

By using this equation, deformation temperature values corresponding to given extrusion ratios were calculated for some specified proof stress values of product. These are given in Table 7 and were used to determine the curves shown in Fig.52. While proof stress values obtained from the tension

FIGURE 52. Diagram showing the proof stress values of product as a function of deformation temperature and extrusion ratio.

tests of the products agree fairly well with those shown in Fig.52 for small extrusion ratios (R=25) and low temperatures $(300-400 \ ^{O}C)$, they do not for large extrusion ratios and high temperatures. This may be because of the recrystallized locations which cause the heterogeneity in the product, resulting in the decreases in the mechanical properties. So a recrystallization boundary should be added to this diagram and then it should be only used for the products which have fibrous structure. (Sheppard [29] has developed a method to draw the recrystallization boundary.)

It should be noted that the temperature values tabulated in Table 7 are the deformation temperatures. That means these temperatures are higher than the initial billet temperatures because of the temperature increase during the extrusion. Relation between the initial billet temperature, T_0 and the deformation tempetature, T is:

$$\mathbf{T}_{\mathbf{O}} = \mathbf{T} - \Delta \mathbf{T}$$
(36)

Temperature increases of the products extruded with the extrusion ratios of 25:1, 63:1 and 160:1 were calculated for steady 'state extrusion by means of the computer programme, and, using Eq.36, extension of the diagram given in Fig.52 to include the initial billet temperature was achieved (Fig.53). Since initial billet temperature can be easily controlled, this second diagram will be more useful in practice.

Obviously, for other mechanical properties such as ultimate tensile strength, same procedure can be applied and the extrusion limit diagram can be developed so that it gives the information about those properties of product.

V. CONCLUSIONS

i) Microstructures of the extruded aluminum products are closely related to the initial billet temperature and extrusion ratio.

ii) These products may have three types of microstructures;fully recrystallized, fibrousand dublex structures.

iii) Increasing billet temperature and decreasing extrusion ratio result in increases in recrystallized grain size.

iv) Extrusion ratio effects may be recognized in the strain rate and then combined with the temperature effects in a temperature corrected strain rate term. This parameter affects the mechanical properties of the product, but it may not be only parameter operative on the properties of the product because of the precipitations in aluminum.

v) Mechanical properties of products, which have only fibrous structures, are directly related to the temperature corrected strain rate.

vi) Some parametric equations between the properties of the product and process parameters can be established. These equations can be used as limiting conditions on the limit diagram, and lead to the extrusion limit diagram as a useful tool for process control interpretation.

REFERENCES

- [1] HARRIS, J.N. "Mechanical working of metals-Theory and Practise", <u>International series on materials science</u> <u>technology</u>, Völume 36, Pergamon Press, P.71-210, Oxford (1983).
- [2] SHEPPARD, T.: CASTLE, A.F. "Hot working theory applied to the extrusion of some Al alloys", <u>Metals technology</u>, October 1986, 454-464.
- [3] GEVREK, M.:ALTAN, B.:ONURLU, S. "Alüminyum ekstrüzyonunda sınır diyagram kavramı ve kullanılması", <u>Progress Report-1</u>, TBTAK-MAE, Gebze press(1983).
- [4] GEVREK, M.: ALTAN, B.: ONURLU, S. "Ekstrüzyonda sıcaklık artışının sonlu farklar yöntemi ile bulunması", <u>Proceedings</u> <u>of l.National machine design and manufacture conference</u>, ODTU Press, ANKARA (1984), 469-476.
- [5] McQUEEN, H.J. "The experimental roots of thermomechanical treatments for AL alloys", <u>Proceedings of thermomechanical</u> <u>processing of AL alloys</u>, the metallurgical society of AIME, edited by MORRIS, J.G. (1979) 1-23.

- [6] SHEPPARD, T. "Temperature and speed effects in hot extrusion AL alloys", <u>Metals technology</u>, April 1981, 130-140.
- [7] SHEPPARD, T.: PATERSON, J.J. "Structural changes during thermal treatments during extrusion of AL-Cu-Mg-Mn-Si(AA 2014) alloy", <u>Metals technology</u>, October 1982, Vol.9, 389-398.
- [8] SHEPPARD, T.: PATERSON, S.J. "Some observations of metal flow and the development of structure during the direct and indirect extrusion of commercial purity aluminum", <u>Metals technology</u>, October 1983, Vol.10, 361-372.
- [9] McQUEEN, H.J.: JONES, J.J. "Recovery and recrystallization during high temperature deformation "<u>Treatise on material</u> <u>science and technology</u>, volume 6, Ed.by R.J.Arsenoult, Academic press, (1975), 393-493.
- [10] PLUMTREE, A: DEEP, G. "Microstructural misorientations in extruded aluminum", Metals technology, January 1977, 1-6.
- [11] BLADE,J.C. "Recrystallization in hot rolling of dilute AL alloys" <u>Metal science</u>, April 1979, 206-210.
- [12] HASEGAWA, T.: KOCK, U.F. "Thermal recovery process in deformed aluminum", <u>Acta metal.</u>, Vol.27, 1979, 1705-1716.
- [13] SANDROM, R.:LIMDGREN, I. "The combined influence of recrystallization and recovery on stress strain curves in aluminum", <u>Material science and engineering</u>, 47(1981), 217-228.
- [14] HANSEN, N.: BAY, B. "Initial stages of recrystallization in aluminum containing both large and small particles", Acta metall., 29(1981), 65-77.

- [15] HANSEN, N.: BAY, B. "Initial stages of recrystallization in aluminum of commercial purity", <u>Metall.Trans.AIME</u>, 10A(1979), 279-288.
- [16] ROBINSON, D.L.: HUNTER, M.S. "Interrelation of TEM microstructure composition tensile properties and corrosion resistance of Al-Cu-Mn-Mg alloy", <u>Metall.trans.</u>, 3(1972), 1147-1155.
- [17] STYCZYNSKI,L.: PACHLA,W.: WASCIECHOWSKI,S. "Thermal softening processes in polycrystalline aluminum during hydrostatic extrusion", <u>Metal science</u>, 16(1982),525-528.
- [18] MORRIS, P.L.: DUGGAN, B.J. "Precipitation and recrystallization in an AL-1.8% Mn alloy", <u>Metal Science</u>, January (1978), 1-7
- [19] SHEPPARD, T.: PARSON, N.C. "The effect of extrusion process paremeters on the microstructure and properties of an AL-Li-Mg alloy", <u>Metal Trans.</u>, 3(1972),53-63.
- [20] McQUEEN, H.J.: WONG, W.A.: JONAS, J.J. "Deformation of aluminum at high temperatures and strain rates", <u>Canadian Journal</u> <u>of physics</u>, 45(1967), 1225-1235.
- [21] ALTAN,B.:GEVREK,M.:ONURLU,S. "Ekstrüzyon çubuklarında mikroyapı incelemeleri", Progress Report:2,TBTAK-MAE, Gebze Press (1983).
- [22] SHEPPARD, D.: Raybould, D. "Axisymmetric extrusion: The effect of temperature rise and strain rate on activation enthalpy and material constants of some aluminum alloys and their relation to recrystallization, substructure and subsequent mechanical properties", <u>J.Inst.Metals</u>, 101(1973), 65-72.

- [23] GEVREK, M.:ALTAN, B.:ONURLU, S. "Ekstrüzyonda sıcaklık dağılımı için geliştirilen bir sonlu farklar modelinin incelenmesi", <u>Progress Report:4, TBTAK-MAE</u>, Gebze Press (1985).
- [24] LATKOWSKI, A.: STEC, Z. "Effect of extrusion temperature and magnese contents on structure and properties of the ALMn SiMn alloy", <u>Johrg.</u>, 8(1984) 606-609.
- [25] ALTINTAŞ.S. "ALMgSi 0.5 ekstrüzyonu ve mekanik özelliklerine etki eden parametreler" <u>A report of institute for</u> graduate studies in science and engineering, B.Ü.Press, 1984.
- [26] SMITH,C. "Working range of an aluminum alloy" J.Inst. Metals., 76(1950),429-435.
- [27] SHEPARD, D.: PATERSON, S.J. "Direct and indirect extrusion of aluminum alloys", Met.technol., 9(1982), 274-281.
- [28] SHEPPARD,T. : CASTLE,A.F. "Observations on the application of limit diagrams to the aluminum alloy extrusion", <u>Proceedings of 16.international mechine tool design and</u> <u>research conference</u>, Macmillan Pres (1976),535-543.
- [29] SHEPPARD, T.: RAYBOULD, D. "A new approach to the construction of extrusion limit diagrams, giving structural information with application to superpure aluminum and AL-Zn-Mg alloys", J.Inst.Metals, 101(1973), 73-78.
- [30] ÜÇIŞIK,H. "Metalografik numune hazırlama tekniğinde dağlama ve dağlama reaktifleri" <u>İTÜ,Faculty of metallurgy</u> press,(1981).

A - CALCULATION OF TEMPERATURE DISTRIBUTION
B - CALCULATION OF STRAIN RATE DISTRIBUTION
C - MICROSTRUCTURES OF EXTRUDED PRODUCTS

APPENDICES

APPENDIX A

CALCULATION OF TEMPERATURE DISTRIBUTION

To calculate the temperature distribution during the extrusion process finite element method was used. A computer programme was used to determine the finite difference equations and to solve them for the nodes shown in Fig.A-1.

FIGURE A-1. Nodes where the temperature values were calculated.

To construct and write the programme easily, control volume was divided into six main regions; B(billet), D(deformation zone), E(product), Z(dead zone), C(container) and F(die) (Fig. A-2). All the regions were defined in cylindrical coordinates except region D which was defined in spherical coordinates. Heat conduction equations were established seperately for each region.

FIGURE A-2. Six main regions in the control volume.,

To write the finite differences equations, it is necessary to specify the finite number of nodes in the control volume. Schematic sketch of the extrusion process used in the programme is shown in Fig.A-3. Finite difference mesh parameters used in the computer programme are given below.

IMAX : Radial step number at Region D.
JMAX : Tangential step number at Region D.
IB : Vertical step number at Region B.
IC : Horizontal step number at Region C.
IE : Vertical step number at Region E.
IF : Vertical step number at Region F.

FIGURE A-3. Finite difference mesh parameters .

The heat equations were established for each region and expressed in a linear equation

$$(\mathbf{M}. \Delta \mathbf{t} + \mathbf{I}). \ \mathbf{T} = \mathbf{T}' + \mathbf{Q} \ . \ \Delta \mathbf{t}$$

(A-1)

where M is the heat conduction coefficient matrix, Δt is time interval, I is unit matrix, \vec{T} is temperature vector at the end of the time interval, \vec{T}' is the temperature vector at the beginning of the time interval and \vec{Q} is the heat generation vector.

$$N = M \cdot \Delta t + I$$
 (A-2)

and

$$\vec{P} = \vec{T}' + \vec{Q} \cdot \Delta t$$
 (A-3)

and substituting Eq.(A-3) and Eq.(A-2) into Eq.(A-1) yields:

$$N \cdot \vec{T} = \vec{P}$$
 (A-4)

Then we can solve \tilde{T} , temperature vector at the end of the time interval.

Flow diagram of main computer programme which calculates the temperature distribution during the extrusion process is given in Table A-1. Parameters and subroutines used in the programme are given below.

INPUT DATA

IMAX,JMAX,IB,IC,IE,IF:Finite difference mesh parameters. DELTAC(I) : Horizontal step dimension field at Region C. B(I) : Vertical step coordinate field at Region B E(I) : Vertical step coordinate field at Region E.

RAD(I)	: Radial step factor field at Region D.
ANG(I)	: Tangential step factor field at Region D.
DCONT	: Container diameter.
BL	: Billet Length.
RATIO	: Extrusion ratio.
VEL	: Extrusion velocity.
PARA	: Strain rate parameter.
TIMMAX	: Total time.
DTIM	: Time interval.
TEMP	: Initial billet temperature.
TEMPC	: Initial container temperature.
TEMPD	: Initial die temperature.

VARIABLES

VØ	: Extrusion velocity.
TIME	: Time
TIBIL(I)	: Temperature field at region B.
T.I(I,J)	: Temperature field at region D.
TEMPIN(I)	: Initial temperature field.
TEMPFI(I)	: Calculated temperature field.
TFARK(I)	: Calculated temperature rise field

SUBROUTINES

MESH	: Calculates the coordinates of the nodes and
	elements defined around the nodes.
ARVOL	: Calculates the volumes and the surface areas
	of the volume elements around the nodes.

- CON : Calculates heat transfer equation coefficients for the nodes at each region.
- CONMAT : Collects the heat transfer equation coefficients calculated by CON in a matrix.
- GEN : Calculated the heat generation values at deformation zone.
- GENVEC : Collects the heat generation values in a general hea generation vector.
- GAUSS : Solves the expanded solution matrix by gauss elimina tion method and calculates the temperatures at the nodes.
- SOLMAT : Determines the expanded solution matrix.
- BACK : Set the calculated temperatures as initial temperatures for the next time step.

List of main programme to calculate the temperature distribution during extrusion is given in Table A-2.

Outputs of this program for R = 25 at $T_0 = 350^{\circ}C$ and R = 63 at $T_0 = 400^{\circ}C$ are given in Table A-3 and Table A-4 respectively.

TABLE A-2.List of main programme.

MAIN PROGRAMME TO CALCULARE THE TEMPERATURE DISTRIBUTION
* DURING THE EXTRUSION

COMMON/XXX/UI(10), DJ(10), DJ0(10), DAI(11), DAJ(11),
181(15),8J(10),8AI(16),8AJ(11),EI(15),EJ(10),EAI(10),EAJ(11),
12I(10),2J(10),2AI(11),ZAJ(11),CI(30),CJ(5),CAI(30),CAJ(5),
1F1(5).FJ(10).FA1(5).FAJ(10).
$T_{1}P_{*}D(1) = 101 \cdot D(1) = 101 \cdot S(D_{*}D(1)) = 101 \cdot V_{1}D(1) = 101 \cdot V_{1}D($
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
TIUPAZ(10,10), BUIAZ(10,10), SIDAZ(10,10), VULZ(10,10),
TUPAC(30,5),BOTAC(30,5),SIDAC(30,5),VOLC(30,5),
1TUPAF(5,10), BUTAF(5,10), SIDAF(5,10), VOLF(5,10),
<pre>> 1V0L05(10,10),V0L8s(15,10),V0LE8(15,10),V0L28(10,10),V0LF8(5,10)</pre>
1AKEAD(10,10), AREAB(15,10), AREAE(15,10), B(0), E(0), DELTAC(5)
CUMMO(4/XXY/DK(50,50),BK(70,70),EK(70,70),
17×105+651+6×180+801+F×135+351
CUMMUN/YYY/ZeBIE(15,10),51681E(15,10),51KA(E(10,10),ZENER(10,15
ISIGMA(10,10),TETACR(10)
CUMMON/YYZ/SK(100), DSK(10C)
CUMMON/ZZX/VSKI2051
COMMON/ZZY/TEMPIN(205), TEMPFI(205)
COMMON/777/VSNP12051.GKP1205.2051.GKPAUG1205.2051
COMMON/222/1000 (2005)
LUMMUN/TTT/TFINC(205)
¥******************
* FINITE DIFFERENCE MESH PARAMETERS
<i>*************************************</i>
MAX, JMAX: VERTICAL AND HORIZENTAL MESH LINES AT DEF. ZONE
" IB :VERTICAL STEPSAT THE TOP OF BILLET
* IC :HORIZENTAL STEPS AT CONTAINER
TF :VERTICAL STEPS AT DIE

<u> </u>
INPUT DATA

WRITE(5,509)
509 FORMAT(///**********************************
1********/ THIS PROGRAMME CALCULATES TEMPERATURE DISTRIBUTION I
ITRUSTUN*/* = = = = = = = = = = = = = = = = = = =
linging 1///)
Δυστατα ////
NETTICATION THAT WAY TO TO TO TO TO ACCONTACTLY AND
DIU PUKMAIITENIEK IMAX, JMAX, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11
REAU(5,5102)IMAX,JMAX,IB,IC,IE,IF

89

5102 FURMAT(BII) I MA X M2 = I MA X - 2JMAXMZ=JMAX-2 READ(4,512)(DELTAC(K),K=1,IC) READ(4,513)(b(K),K=1,10) READ(+,51+)(E(K),K=1,IE) WRITE(5,521) 521 FORMAT(* ENTER CONTAINER DIAMETER(M) :*) READ(5,*)DCUNT WRITE(5,522) 522 FURMAT('ENTER BILLET LENGTH(M) : ') READ(5,#)BL WRITE(5,523) 523 FURMAT("ENTER RADIUS DIVISION FACTORS (IMAX-2) :*) $READ(5, \varphi)(KAD(I), I=1, IMAXM2)$ WRITE(5,524) 524 FURNAT("ENTER ANGLE DIVISION FACTORS (JMAX-2) : ") REAU(5, #) (ANG(J), J=1, JMAXM2) WKITE(5,525) 525 FURMAT('ENTER EXTRUSION RATIO : ') READ(5,+)RATIO WRITE(5,526) 526 FORMAT('ENTER INTERMEDIATE TIMES TI,T2 & MAXIMUM TIME (SEC) :' REAU(5,#)TMAX1,TMAX2,TIMMAX WRITE(5,527) 527 FORMAT('ENTER TIME INCREMENTS DELTAT1, DELTAT2, DELTAT3 (SEC) : ' REAU(5,*)DTIM1;DTIM2;DTIM3 WRITE(5,528) 528 FORMAT('ENTER INITIAL TEMPERATURES OF BILLET, CONTAINER & DIE READ(5, *) TEMP, TEMPC, TEMPD WRITE(5,529) 529 FURMAT(ENTER EXTRUSION SPEED (M/SEC) : 1 READ(5,++)VEL WRITE(5,530) 530 FURMAT('ENTER CONSTANT U : ') READ(5 🛹)U WKITE(5,531) FURMAT('ENTER NO OF THE NODE TO BE PRINTED(MAX 4 PTS.)') 531 READ(5,*)ND1,ND2,ND3,ND4 AKITE(5,532) 532 FORMAT(• ENTER BILLET-CONTAINER INTERFACE STRAIN-RATE PARAMETER READ(5,*)PARA V0=0.0 TIME=DTIM1 EPS=0.0001 IMAXM1=IMAX-1 JMAXM1=JMAX-1 IMAXB=JMAX+IB IMAXC=IMAXB+IMAX+IF-1 N1=IB#JMAX N2=N1+((JMAXM1##2)+JMAXM1)/2 N3=N2+IMAX&JMAX

```
N4=N3+((JMAXM1**2)+JMAXM1)/2
    N5=N4+IE*JMAX
    N_{6} = N_{5} + (I I M A X M 1 \neq \neq 2) + 1 M A X M 1) / 2
    N7=N6+IC#IMAXC
    NNODE=N7+IF+IMAXM1
    NNODE1=NHODE+1
    N=NNODE
    NP1=N+1
    ********
    SETTING BILLET, CONTAINER AND DIE TEMPERATURES
    **************
    TABS=TEMP+273.
    TABSC=TEMPC+273.
    TABSD=TEMPD+273.
    D0 1000 I=1, NNODE
    IF(I.GT.No) GO TO 1010
    TEMPFI(I)=TABS
    GO TÙ 1000
1010 IF(I.GT.N7) GO TO 1020
    TEMPFI(I)=TABSC
    GU TO 1000
1020 TEMPFI(1)=TABSD
1000 CONTINUE
   SETTING BILLET DIE SURFACE TEMPERATURES
    *********************
    TEMPFI(N2+JMAX) = (TABS+TABSD)/2.
    DÚ 1001 I=1,IMAXM1
    TEMPFI(N5+I) = (TABS+TABSD)/2.
1001 CONTINUE
    00 1002 I=1,IE
    TEMPFI(N4+(I*JMAX))=(TABS+TABSD)/2.
1002 CONTINUE
    ********
    00.995 I=1+NHUDE
    TINC(1)=TEMPFI(1)-273.
 995 CONTINUE
    IMAXE1=IMAX8-1
    DO 1200 I=1, IMAXE1
    DU 1200 J=1, JMAX
    TIBIL(I,J)=TABS
1200 CUNTINUE
    DO 900 I=1,IMAX
    00 900 J=1+JMAX
    TI(I,J)=TcMP
 960 CONTINUE
    DO 990 I=1, NNODE
    TFARK(I)=U.
 990 CUNTINUE
          OUTPUT FORMATS
    WRITE(7,2029)
     WKITE(7,2030) RATIO, DCONT, BL, VEL, TEMP, TEMPC, TEMPD
     WRITE(7,981) ND1+ND2+ND3+ND4
```

981 FORMAT(///22X, DUGUM NOKTALARININ SICAKLIKLARI //3X, ZAMAN(SH) . WAITE(0,2031) WKITE(6,2032) WRITE(0,2033)(I,TINC(I),I=1,NNODE) SUBROUTINES **** CALL MESH(DCONT, BL, RATIO, IMAX, JMAX) CALL ARVOL(IMAX, JMAX, IB, IC, IE, IF) 1500 CALL CONICIMAX, JMAX, IB, IC, IE, IF, VO, RATIO, U, TIME, TMAX1, EPS) CALL CONMAT(IMAX, JMAX, IB, IC, IE, IF) 1600 CALL GENTIMAX, JMAX, IB, PARA, RATIO, VO) CALL GENVEC(IMAX, JMAX, IB, NNCDE) CALL SOLMAT(NNODE, TIME, DTIM1, DTIM2, DTIM3, TMAX1, TMAX2) CALL GAUSS (N+NP1) CALL BACK(IMAX, JMAX, IB, NNODE) OUTPUT TERMS ARITE(5,2110)TIME 2110 FORMAT(*TIME=*, F25.20) WRITE(5,1110)VO 1110 FORMAT(*VU=*,F9.5) WRITE(7.4098) WRITE(0,2000) TIME WRITE(0.2010) WRITE(0,617)(I,TFINC(I),I=1,NNODE) WKITE(6,3000)TIME WRITE(0,3010) WRITE(6,717)(I,TFARK(I),I=1,NNODE) WRITE(7,982)TIME, TFINC(ND1), TFINC(ND2), TFINC(ND3), TFINC(ND4) 982 FUKMAT(F11:4:5X:4F10:2)

TIME INTERVAL IF(TIME.GE.TMAXI)GO TU 2 TIME=TIME+OTIM1 GU TO 1000. 2 VO=VEL ECTIVES OF TWO POCLO

```
IF(TIME.GE.TMAX2-EPS)GO TO 4
IF(TIME.EQ.TMAX1) GO TO 3
TIME=TIME+DTIM2
GO TO 1600
3 TIME=TIME+DTIM2
```

GU TO 1500 4 TIME=TIME+OTIM3 IF(TIME.LE.TIMMAX-EPS) GO TO 1600 STOP

INPUT FORMATS

512 FURMAT(6F5.3)

- 513 FURMAT(0F5.3)
- 514 FURMAT(F6.4,5F5.3)

```
OUTPUT FORMATS
SION PROCESS
                   1
  2030 FURMAT(/3X, ' EXTRUSION RATIO = ', F5.1, /8X, 'BILLET DIAMETER
                                           1F5.3, M',/8X , BILLET LENGTH = ', F5.3. M',/8X, PRESS VEL
  1 = ',F5.3,' M/SN',/dX,'BILLET TEMPERATURE ',F5.1,' C',/dX
1'CONTAINER TEMP. = ',F5.1,' C',/dX,'DIE TEMPERATURE' = ',F5.1
  1.4
     C .)
2031 FURMAT(////IOX, 'INITIAL TEMPERATURE DISTRIBUTION (C)')
2033 FURMAT(10('(',13,')',F6.1,2X))
4098 FORMAT(//)
2000 FURMAT(//10X.F5.2.1X, SECOND AFTER, TEMPERATURE DISTRIBUTION (C
617 FURMAT(10( '( ', 13, ') ', Fe.1, 2x1)
3000 FURMAT(//10X, F5.2, 1X, ' SECOND AFTER, TEMPERATURE RISES') 1
717 FURMATLIO('(', I3, ')', Fc. 1, 2X))
   €.ND
```

TABLE A-3. Output of the main programme for R=25 and T_{O} =350 ^{O}C .

* TEMPERATURE DISTRIBUTION DURING EXTRUSION PROCESS

EXTRUSION RATIO	=	25.0	
BILLET DIAMETER	.=	0+100	M
BILLET LENGTH	=	0.150	M
PRESS VELOCITY	=	0.005	MISM
BILLET TEMPERATURE	=	350.0	C C
CONTAINER TEMP.	. =	263.0	С
DIE TEMPERATURE	Ξ	202.0	C

	(TEMPER	ATURES AT	NODES	
TIME (SN):	31	32	33	34
****	******	*** <i>**</i> ***	<u></u> ******	*****
2.0000	347.72	347.63	347.52	347.60
4.0000	344.12	344.01	343.83	344.01
o.0000	339.85	339.75	339.54	339.80
0000	335.44	335.35	335.13	335.43
10.0000	331.21	331.13	330.91	331.21
10.5000	- 336.65	335.73	335.69	334.71
11.0000	343.79	342.94	342.91	341.87
11.5000	347.38	346.87	346.78	340.17
12.0000	349.54	349.23	349.14	343.30
12.5000	351.08	350.88	350.81	350.60
13.0000	352.27	352.14	352.12	351.97
13.5000	353.27	353.20	355.21	353.10
14.0000	354.15	354.11	354.17	354.07
14-5000	355.48	355.47	355.61	355.45
15.0000	355.90	356.92	357.15	350.94
10.0000	301.09	301.39	362.55	362.11
21.6000	302.93	303.23	364.06	303.54
24.0000	303.92	304.20	305.22	304.03
27.0000	304.84	365.22	366.26	305.62

TABLE A-4. Output of main programme for R=63 and T_{o} = 400 $^{\circ}C$.

TEMPERATURE DISTRIBUTION DURING EXTRUSION PROCESS

EXTRUSION RATIO	=	63.0	
BILLET DIAMETER	=	0.100	M
BILLET LENGTH	Ξ	0.150	M
PRESS VELOCITY	Ŧ	0.005	MISN
BILLET TEMPERATURE	=	400.0	C
CONTAINER TEMP.	=	350.0	C
DIE TEMPERATURE	=	300.0	C

	I TEMP	PERATURES	AT NODES	•••••
TIME (SN)	31	32	33	34
****	******	*********	¥₩₩₩₩₩₩₩₩₩	******
2.0000	398.26	398.20	398.10	398.18
4.0000	395.92	395.85	395.79	395.85
6.0000	393.29	393.23	393.10	393.25
8.0000	390.03	390,58	390.50	390.02
10.0000	388.11	388.06	387.99	383.11
10.5000	399.51	398.78	398.72	397.77
11.0000	409.77	409.41	409.36	408.87
11.5000	413.70	413.58	413.01	413.38
12.0000	415.98	415.90	416.05	415.90
12.5000	417.65	+17.67	417.81	417.69
13.0000	418.99	,419.04	419.23	419.09
13.5000	420.13	420.20	420 • 44	420.28
14.Ú000	421.13	421.22	421.50	421.33
14.5000	422.05	422.75	423.13	+22.87
15.0000	424.19	424.30	424.77	424.44
18.0000	429.01	429.21	430.06	429.42
21.0000	430.08	430.31	431.27	430.50
24.0000	431.01	431.20	432.31	431.53
27.0000	431.82	432.09	433.19	432.38

`

FIGURE A-4.Temperature rise calculated by finite difference computer programme for R=25 at varying initial billet temperatures.

96

FIGURE A-5. Temperature rise calculated by finite difference computer programme for varying extrusion ratios at 400°C initial billet temperature ..

Temperature rise during extrusion process calculeted by this computer programme is plotted against the extrusion time. Fig.A-4 shows the temperature rise for the extrusion ratio of 25:1 at 350°C, 400°C and 450°C initial billet temperatures. It can be seen that increasing initial billet temperature causes a decrease in the temperature rise during extrusion.

Fig.A-5 shows the temperature rise for the extrusion ratios of 63:1 and 160:1 at 400[°]C initial billet temperature. It can be seen that increasing initial billet temperature results in an increase in temperature rise.

98

APPENDIX B

CALCULATION OF STRAIN RATE DISTRIBUTION

For the analyses of deformation during the direct extrusion process, spherical velocity field model, first suggested by Avitzur [21], was used. According to this model, material moves during the extrusion process as shown in Fig.B-1.

FIGURE B-1. Avitzur's spherical velocity field model.

At region I, namely the billet, material flows with a uniform velocity, V_0 , parallel to the centerline. At Region I namely the deformation zone, material moves on the lines, which pass through a point on the centerline with a velocity

$$V = -V_0 r_0^2 \frac{\cos\theta}{r^2}$$
(B-1)

where r is the distance between any point in the deformation zone and point 0, and θ is the angle between the line that connects that point to point 0, and the centerline.

For deformation zone, the velocity components in spheric coordinates can be written as [21]

$$V_r = V = -V_0 R_0^2 \frac{\cos\theta}{R^2}$$
(B-2)

$$V_{\theta} = 0 \tag{B-3}$$

$$V_{\phi} = 0 \tag{B-4}$$

Region III, or product has a uniform velocity, V_{f} , parallel to the centerline. In Region IV, namely the dead zone materia does not move.

Using Eq.s(B-2)-(B-4), strain rates can be calculated in spherical coordinates as [21]

$$\dot{\varepsilon}_{rr} = -2\dot{\varepsilon}_{\theta\theta} = -2\dot{\varepsilon}_{\phi\phi} = 2V_{f}r_{f}\frac{\cos\theta}{r^{3}}$$
 (B-5)

 $\dot{\varepsilon}_{r_{\theta}} = \frac{1}{2} V_{f} r_{f}^{2} \frac{\sin\theta}{r^{3}}$

(B-6)

$$\dot{\varepsilon}_{\varphi\theta} = \varepsilon_{r\varphi} = 0$$

A computer programme was developed in the light of information given above so that the strain rate values in the deformation zone could be determined.

Results of the programme are denoted by the followings

REX(MM) : Distances from the Point O(r)TEXT(RAD):Angles to the centerline (θ) SR(1/SN): Strain rates

Outputs of this programme for R = 25 and R = 63 are given in Table B-1 and Table B-2 respectively.

(B-7)

TABLE B-1. Output of the Computer programme which calculates the strain rate distribution, for R=25.

STRAIN RATE DISTRIBUTION

EXTRUSION RATIO:25

REALMAIL TEXT(RAD) Sk(1/Sh) REX(NM) TEXT(RAD) Sk(1/Sh) 11.015 0.03060 4.53707 11.015 0.34141 2.42055 15.219 0.34141 2.42015 15.422 0.34141 2.6681 17.625 0.3000 1.65418 15.422 0.34141 0.79723 17.625 0.34141 0.79723 2.4234 0.234141 0.73723 24.234 0.00000 0.426281 2.4234 0.34141 0.73723 24.234 0.00000 0.426281 2.4234 0.34141 0.73723 24.234 0.00000 0.32835 26.437 0.34141 0.19585 30.640 0.00000 0.23825 26.437 0.34141 0.19585 30.640 0.00000 0.12811 33.646 0.34141 0.19585 35.247 0.00000 0.12811 33.646 0.34141 0.19595 30.650 0.00000 0.12817 41.459 0.34141 0.002121 37.453 0.00000 0.06127 41.459 0.34141 0.002121 <tr< th=""><th></th><th>The second</th><th></th><th></th><th>بالمحدث ويبره بأراكا الكاري وكالما كالمت تتنازعي معمماني ببعا</th><th>الأجوار والبود والمنافع والمستعد ومن المتتوجد الشاكر الماكون</th></tr<>		The second			بالمحدث ويبره بأراكا الكاري وكالما كالمت تتنازعي معمماني ببعا	الأجوار والبود والمنافع والمستعد ومن المتتوجد الشاكر الماكون
11.0150.000004.5370711.0120.341414.2995313.2190.341412.481515.4220.000001.5541815.4220.341411.5664817.6250.000011.5743117.6250.341411.0496719.6260.0000010.5673822.0310.341410.4037722.0310.0000010.5673822.0310.341410.4037726.4370.0000010.4262824.2340.00077726.43726.4370.0000010.4262720.4400.341410.4037726.4370.0000010.1281520.4400.341410.1592430.0430.000000.1281235.2490.341410.1592435.2440.0000010.1135235.2490.341410.1592437.4530.000000.1135235.2490.341410.1093935.4460.000000.0157241.8590.341410.078354.46590.000000.0612741.8590.341410.0921534.4000.000000.0612744.8680.341410.068034.4650.000000.0612744.8680.341410.068034.46500.000000.0612744.8680.341410.0641750.6710.000000.0612744.8680.341410.0641750.6710.000000.046350.6710.3141410.0641750.6710.000000.0462350.6710.3141410.0650750.671	KEX (MM)	TEXTIKADI	SR(1/SN)	REX(MM)	TEXT(RAD)	SR(1/SN)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.015	0.00000	4.53707	11.015	0.34141	4.29953
15,422 $0,00000$ $1,65418$ $15,422$ 0.34141 1.56684 $17,625$ 0.34141 $1.0,967$ $19,624$ 0.0000 0.77331 $19,626$ 0.34141 0.73723 $22,031$ 0.0000 0.42628 $24,624$ 0.34141 0.53744 $24,234$ 0.00000 0.42628 $24,624$ 0.34141 0.53744 $24,437$ 0.00000 0.42628 $24,640$ 0.34141 0.51102 $26,447$ 0.00000 0.42628 $24,640$ 0.34141 0.719585 $30,645$ 0.00000 0.16311 $33,046$ 0.34141 0.195924 $35,247$ 0.00000 0.1352 $35,249$ 0.34141 0.195924 $37,453$ 0.00000 0.06272 $41,659$ 0.34141 0.0029215 $41,657$ 0.00000 0.06272 $41,659$ 0.34141 0.09215 $41,657$ 0.00000 0.06272 $41,659$ 0.34141 0.09215 $41,657$ 0.00000 0.06272 $41,659$ 0.34141 0.06803 $40,668$ 0.34141 0.005803 0.00507 0.06172 $41,659$ 0.34141 0.06803 $40,668$ 0.00000 0.062372 $44,668$ 0.34141 0.06803 $40,668$ 0.34141 0.06803 0.06102 0.0414 0.03141 0.06803 $40,677$ 0.0000 0.062372 $44,668$ 0.51212 0.06313 $40,60000$ 0.06632 $50,671$ 0.34141 <	13.219	ິ ພວບວບ	2.62678	13.219	0.34141	2.48815
$\begin{array}{llllllllllllllllllllllllllllllllllll$	15.422	0.00000	1.55418	15.422	0.34141	1.56689
$\begin{array}{llllllllllllllllllllllllllllllllllll$	17.025	0.00000	1.10817	17.625	0.34141	1.04969
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.626	<u>0.0000</u>	0.77331	19+626	0+34141	0.73723
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.031	0.00000	0.50738	22.031	0.34141	0.53744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.234	0.00000	0.42628	24+234	0.34141	0.40379
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	20.437	0.00000	0.32835	20.437	0.34141	0.31102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.040	0.00000	0.25825	20.040	0.34141	9-24463
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	30.043	υ.υούνύ	0.20677	30-843	0.34141	0.19585
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33.040	0.00000	0.16811	33+046	0.34141	0.15924
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	35-247	0.00000	0.13352	35.249	0.34141	0.13121
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.453	0.00000	0.11549	=======================================	0.34141	0.10939
41.657 0.00000 0.0272 41.8692 0.34141 0.97836 $4v.062$ 0.0000 0.00127 44.062 0.34141 0.06713 $4o.265$ 0.00000 0.065329 48.468 0.34141 0.06713 $4o.768$ 0.00000 0.05329 48.468 0.34141 0.05047 50.671 0.00000 0.04663 50.671 0.34141 0.034141 55.077 0.00000 0.03631^{-1} 55.077 0.34141 0.03408 55.077 0.00000 0.03631^{-1} 55.077 0.34141 0.03408 55.077 0.00000 0.03631^{-1} 55.077 0.34141 0.03408 55.077 0.00000^{-1} 0.03631^{-1} 55.077 0.34141 0.03408 55.077 0.0000^{-1} 0.03631^{-1} 55.077 0.34141 0.03408 55.077 0.0000^{-1} 0.03631^{-1} 55.077 0.34141 0.03408 55.077 0.17071 4.47863 11.015 0.51212 4.00950 13.214 0.17071 1.63215 15.422 0.51212 0.46032 17.625 0.17071 0.7594 19.826 0.51212 0.68733 22.031 0.17071 0.42061 24.234 0.51212 0.28997 26.6437 0.17071 0.25482 26.437 0.51212 0.14866 35.046 0.17071 0.16398 33.046 0.51212 0.14260 34.453 0.17071 <th>39.650</th> <th>0.0000</th> <th>0.09729</th> <th>39.656</th> <th>0.34141</th> <th>0.09215</th>	39.650	0.0000	0.09729	39.656	0.34141	0.09215
4+.062 0.00000 0.07092 44.062 0.34141 0.06713 40.265 0.00000 0.06127 40.262 0.34141 0.05803 40.468 0.00000 0.06529 48.468 0.34141 0.05047 50.671 0.00000 0.04663 50.6712 0.34141 0.05047 50.671 0.00000 0.04663 50.6712 0.34141 0.05047 52.674 0.00000 0.04663 50.6712 0.34141 0.03808 55.077 0.00000 0.036317 55.0774 0.34141 0.03808 55.077 0.00000 0.036317 55.0774 0.34141 0.03808 55.077 0.00000 0.036317 55.0774 0.34141 0.03808 55.077 0.00000 0.036317 55.0774 0.34141 0.03808 55.077 0.17071 4.47863 11.015 0.51212 4.00850 13.214 0.17071 1.63215 15.422 0.51212 0.40332 17.025 0.17071 1.63215 15.422 0.51212 0.67733 17.025 0.17071 0.76794 19.826 0.51212 0.67733 22.031 0.17071 0.75983 22.631 0.51212 0.28977 26.437 0.17071 0.25482 28.640 0.51212 0.28977 26.437 0.17071 0.16588 33.046 0.51212 0.14846 52.49 0.17071 0.13668 35.249 <th>41.859</th> <th>0.00000</th> <th>0.00272</th> <th>41.859</th> <th>0.34141</th> <th>0.07836</th>	41.859	0.00000	0.00272	41.859	0.34141	0.07836
40.265 0.00000 0.06127 46.265 0.34141 0.05803 40.408 0.00000 0.94663 50.671 0.34141 0.05047 50.671 0.0000 0.94663 50.671 0.34141 0.0388 55.077 0.0000 0.04104 52.874 0.34141 0.0388 55.077 0.00000 0.03631 55.077 0.34141 0.03442 $REX(NM)$ $IEXT(RAD)$ $SR(175N)$ $REX(NM)$ $IEXT(RAD)$ $SR(175N)$ 11.015 0.17071 4.47863 11.015 0.51212 4.00850 13.214 0.17071 2.59100 13.219 0.51212 2.31974 15.422 0.17071 1.63215 15.422 0.51212 2.31974 15.422 0.17071 1.63215 15.422 0.51212 0.66733 17.025 0.17071 1.63215 15.422 0.51212 0.66733 22.031 0.17071 0.76794 19.826 0.51212 0.66733 22.031 0.17071 0.25462 26.437 0.51212 0.28977 26.437 0.17071 0.20402 30.8433 0.51212 0.28977 26.437 0.17071 0.20402 30.8433 0.51212 0.22807 30.443 0.17071 0.20402 30.8433 0.51212 0.14846 35.249 0.17071 0.20402 30.8433 0.51212 0.12897 26.437 0.17071 0.20402 30.8453 <th>44.062</th> <th>0.00000</th> <th>0.07092</th> <th>44.052</th> <th>0.34141</th> <th>0.06713</th>	44.062	0.00000	0.07092	44.052	0.34141	0.06713
40.400 0.00000 0.05329 48.468 0.34141 0.05047 50.671 0.00000 0.04663 50.671 0.34141 0.0417 52.674 0.00000 0.01631 55.077 0.34141 0.03440 85.077 0.00000 0.01631 55.077 0.34141 0.03440 85.077 0.00000 0.01631 55.077 0.34141 0.03440 85.077 0.01000 0.01631 55.077 0.34141 0.03440 85.077 0.017071 4.47863 11.015 0.51212 4.00850 13.214 0.17071 2.59140 13.2149 0.51212 2.31976 15.422 0.17071 1.63215 15.422 0.51212 0.66733 17.025 0.17071 0.76794 19.626 0.51212 0.66733 22.031 0.17071 0.55983 22.031 0.51212 0.28977 26.437 0.17071 0.25482 26.437 0.51212 0.22807 26.437 0.17071 0.25482 28.660 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.12873 37.453 0.17071 0.16598 3.046 0.51212 0.12833 37.453 0.17071 0.16598 3.046 0.51212 0.12833 37.453 0.17071 0.06793 44.062 0.51212 0.07305 41.659 0.17071 0.06793 44.062 0.51	40.265	0.00000	0.06127	40.200	0.34141	0.05803
50.671 0.0000 0.04663 50.671 0.34141 0.0417 52.374 0.0000 0.04104 52.374 0.34141 0.03888 5.077 0.00000 0.03631 55.077 0.34141 0.03440 $xEX(MM)$ $IEXT(RAD)$ $SR(1/SN)$ $REX(MM)$ $IEXT(RAD)$ $SR(1/SN)$ 11.015 0.17071 4.47863 11.015 0.51212 4.00850 13.214 0.17071 2.59140 13.219 0.51212 2.40850 13.214 0.17071 1.63215 15.422 0.51212 1.46032 17.025 0.17071 1.63215 15.422 0.51212 0.46733 22.031 0.17071 0.76794 19.626 0.51212 0.66733 22.031 0.17071 0.55983 22.031 0.51212 0.28997 26.437 0.17071 0.25482 28.640 0.51212 0.28997 26.640 0.17071 0.20402 30.843 0.51212 0.18260 30.843 0.17071 0.20402 30.843 0.51212 0.18260 31.453 0.17071 0.16598 33.0046 0.51212 0.18260 31.453 0.17071 0.08162 41.859 0.51212 0.08592 31.453 0.17071 0.08162 41.859 0.51212 0.07305 44.062 0.17071 0.06593 44.062 0.51212 0.07305 44.062 0.17071 0.06045 40.205 <td< th=""><th>40.400</th><th>0.00000</th><th>0.05329</th><th>48.458</th><th>0.34141</th><th>0.05047</th></td<>	40.400	0.00000	0.05329	48.458	0.34141	0.05047
52.674 0.00000 0.04104 52.874 0.34141 0.03808 55.077 0.00000 0.03631 55.077 0.34141 0.03440 $KEX(MA)$ $TEXT(RAD)$ $SR(1/SN)$ $REX(MA)$ $TEXT(RAD)$ $SR(1/SN)$ 11.015 0.17071 4.47863 11.015 0.51212 4.00850 13.214 0.17071 2.59180 13.219 0.51212 4.00850 13.214 0.17071 1.63215 15.422 0.51212 1.46032 17.025 0.17071 1.09342 17.025 0.51212 0.66733 2.031 0.17071 0.75794 19.826 0.51212 0.66733 22.031 0.17071 0.42061 24.234 0.51212 0.28997 26.437 0.17071 0.42061 24.234 0.51212 0.28997 26.437 0.17071 0.25402 26.434 0.51212 0.18260 30.443 0.17071 0.20402 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.18260 33.046 0.17071 0.01595 37.453 0.51212 0.18260 34.453 0.17071 0.08162 41.859 0.51212 0.08592 41.659 0.17071 0.08162 41.859 0.51212 0.07305 44.062 0.51212 0.06263 46.265 <	50+671	0.00000	-0+04663	50.671	0-34141	1.04417
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.074	0.00000	0.04104	52.874	0.34141	0.03888
REX(MM)TEXT(RAD)SR(1/SN)REX(MM)TEXT(RAD)SR(1/SN)11.015 0.17071 4.47863 11.015 0.51212 4.00850 13.219 0.51212 2.31974 15.422 0.17071 1.63215 15.422 0.51212 1.46032 17.025 0.17071 1.09342 17.025 0.51212 0.66733 22.031 0.17071 0.76794 19.826 0.51212 0.66733 22.031 0.17071 0.55983 22.031 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.28997 26.043 0.17071 0.25482 28.640 0.51212 0.28997 26.043 0.17071 0.25482 28.640 0.51212 0.18260 30.0443 0.17071 0.2668 33.046 0.51212 0.18260 33.046 0.51212 0.18260 33.046 0.51212 0.18260 33.045 0.17071 0.16538 33.046 0.51212 0.12233 37.453 0.17071 0.11395 37.453 0.51212 0.10197 39.656 0.17071 0.08162 41.859 0.51212 0.08592 41.859 0.17071 0.06993 44.062 0.51212 0.07305 44.062 0.17071 0.06993 44.062 0.51212 0.04706 46.265 0.17071 0.06993 44.062 0.51212 0.04706 50.071 0.17071 0.06045 <td< th=""><th>55.077</th><th>0.00000</th><th>0,03631</th><th>55.077==</th><th>0.34141</th><th>0.03440</th></td<>	55.077	0.00000	0,03631	55.077==	0.34141	0.03440
REX(MM)IEXT(RAD)SR(1/SN)REX(MM)IEXT(RAD)SR(1/SN)11.015 0.17071 4.47863 11.015 0.51212 4.00850 13.217 0.17071 2.59180 13.219 0.51212 2.31976 15.422 0.17071 1.63215 15.422 0.51212 1.46032 17.025 0.17071 1.09342 17.025 0.51212 0.66733 22.031 0.17071 0.76794 19.826 0.51212 0.66733 22.031 0.17071 0.55983 22.031 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.28997 26.0437 0.17071 0.25482 28.640 0.51212 0.28997 26.043 0.17071 0.25482 28.640 0.51212 0.18260 30.443 0.17071 0.20402 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.12233 37.453 0.17071 0.09599 39.656 0.51212 0.08592 41.659 0.17071 0.08162 41.859 0.51212 0.08592 44.062 0.51212 0.06263 46.265 0.51212 0.06263 46.265 0.17071 0.06045 40.265 0.51212 0.051212 40.062 0.17071 0.06045 40.265 0.51212 0.05263 <			······································			
11.015 0.17071 4.47863 11.015 0.51212 4.00853 13.217 0.17071 2.59180 13.219 0.51212 2.31976 15.422 0.17071 1.63215 15.422 0.51212 1.46032 17.025 0.17071 1.09342 17.025 0.51212 0.97364 19.828 0.17071 0.75794 19.826 0.51212 0.63733 22.031 0.17071 0.759963 22.031 0.51212 0.63733 22.031 0.17071 0.55963 22.031 0.51212 0.63733 22.031 0.17071 0.55963 22.031 0.51212 0.63733 22.031 0.17071 0.55963 22.031 0.51212 0.37046 24.234 0.17071 0.42061 24.234 0.51212 0.28997 26.437 0.17071 0.25482 28.640 0.51212 0.22807 30.443 0.17071 0.25482 28.640 0.51212 0.18260 30.443 0.17071 0.16588 33.046 0.51212 0.18260 33.046 0.17071 0.16588 35.249 0.51212 0.1233 37.453 0.17071 0.16598 35.249 0.51212 0.16592 37.453 0.17071 0.069597 39.856 0.51212 0.05992 39.656 0.17071 0.06993 44.062 0.51212 0.05492 41.659 0.17071 0.06993 44.062 0.51212 0.05410 <t< th=""><th>REXIMM</th><th>TEXTINAUL</th><th>SRI1/SNI</th><th>KEX(MM)</th><th>TEXTIRAUL</th><th>SRUVSNI</th></t<>	REXIMM	TEXTINAUL	SRI1/SNI	KEX(MM)	TEXTIRAUL	SRUVSNI
13.214 0.17071 2.59180 13.219 0.51212 2.31976 15.422 0.17071 1.63215 15.422 0.51212 1.46032 17.625 0.17071 1.09142 17.625 0.51212 0.97364 19.826 0.51212 0.63733 22.031 0.17071 0.76794 19.826 0.51212 0.63733 22.031 0.17071 0.55983 22.031 0.51212 0.63733 22.031 0.17071 0.55983 22.031 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.28997 26.437 0.17071 0.25482 28.640 0.51212 0.28997 26.437 0.17071 0.25482 28.640 0.51212 0.18260 30.843 0.17071 0.26462 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.16598 33.046 0.51212 0.16197 37.453 0.17071 0.09599 39.856 0.51212 0.08592 41.859 0.17071 0.06162 41.859 0.51212 0.07305 44.062 0.17071 0.06045 40.205 0.51212 0.05110 41.859 0.17071 0.06045 40.205 0.51212 0.07305 44.062 0.17071 0.06045 40.205 0.51212 0.04706 50.671 0.1	11.015	J.17071	4.47863		0.51212	4.00950
15.422 0.17071 1.63215 15.422 0.51212 1.46032 17.025 0.17071 1.09142 17.025 0.51212 0.97364 19.828 0.17071 0.76794 19.826 0.51212 0.66733 22.031 0.17071 0.55983 22.031 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.23997 26.437 0.17071 0.25482 28.640 0.51212 0.23997 26.433 0.17071 0.25482 28.640 0.51212 0.2807 30.843 0.17071 0.20402 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.16598 33.046 0.51212 0.1697 37.453 0.17071 0.13668 35.249 0.51212 0.1697 37.453 0.17071 0.09599 39.656 0.51212 0.04592 41.659 0.17071 0.08162 41.859 0.51212 0.06263 46.265 0.17071 0.06045 46.265 0.51212 0.05410 46.265 0.17071 0.06045 46.265 0.51212 0.05410 46.265 0.17071 0.06045 46.265 0.51212 0.05410 46.265 0.17071 0.06045 46.265 0.5121	13.217	u.17071	2.591-00	13.217	0.51212	2-31974
17.025 0.17071 1.09142 17.025 0.51212 0.97364 19.020 0.17071 0.76794 19.026 0.51212 0.68733 22.031 0.17071 0.55983 22.031 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.37646 26.437 0.17071 0.42061 24.234 0.51212 0.28997 26.437 0.17071 0.25482 28.640 0.51212 0.28997 26.6437 0.17071 0.25482 28.640 0.51212 0.28997 30.843 0.17071 0.20402 30.843 0.51212 0.18260 30.843 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.13668 35.249 0.51212 0.16197 37.453 0.17071 0.09599 39.656 0.51212 0.08592 41.859 0.17071 0.08162 41.859 0.51212 0.08592 41.859 0.17071 0.06045 46.265 0.51212 0.05105 46.265 0.17071 0.06045 46.265 0.51212 0.05410 46.265 0.17071 0.06045 46.265 0.51212 0.05410 46.265 0.17071 0.06045 46.265 0.51212 0.04706 50.671 0.17071 0.04050 52.674 0.51212 0.04706 50.671 0.17071 0.04050 52.677 $0.$	15.422	U.17071	1.63215	15.422	0.51212	1.40082
19.828 0.17071 0.76794 19.826 0.51212 0.68733 22.031 $D.17071$ 0.55983 22.031 $D.51212$ 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.37646 26.437 $D.17071$ $D.32393$ 26.437 0.51212 0.28997 26.437 $D.17071$ 0.25482 28.640 0.51212 0.28997 26.437 0.17071 0.25482 28.640 0.51212 0.28997 30.843 0.17071 0.20402 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.11395 -37.453 0.51212 0.10197 39.656 0.17071 0.02597 39.656 0.51212 0.08592 41.659 0.17071 0.08162 41.859 0.51212 0.07305 44.062 0.51212 0.07305 44.062 0.51212 0.06263 46.265 0.17071 0.06075 46.265 0.51212 0.07305 46.265 0.17071 0.06075 46.265 0.51212 0.07305 46.265 0.17071 0.06075 46.265 0.51212 0.05263 46.265 0.17071 0.06075 46.265 0.51212 0.05410 46.468 0.17071 0.06075 46.265 $0.$.17.025	0.17071	1.09342	17.025	0,51212-	0.97364-
22.031 0.17071 0.55983 22.031 0.51212 0.50106 24.234 0.17071 0.42061 24.234 0.51212 0.37646 20.437 0.17071 0.23993 26.437 0.51212 0.28997 26.6437 0.17071 0.25482 28.640 0.51212 0.2807 30.843 0.17071 0.20402 30.843 0.51212 0.18260 30.643 0.17071 0.16588 33.046 0.51212 0.18260 33.046 0.17071 0.16588 33.046 0.51212 0.14846 35.249 0.17071 0.13668 35.249 0.51212 0.10197 37.453 0.17071 0.01395 -37.453 0.51212 0.10197 39.656 0.17071 0.08162 41.859 0.51212 0.07305 44.062 0.17071 0.06045 46.265 0.51212 0.051212 46.265 0.17071 0.06045 46.265 0.51212 0.051212 46.468 0.17071 0.06045 46.265 0.51212 0.05110 46.468 0.17071 0.06045 46.265 0.51212 0.05110 50.671 0.17071 0.04050 52.874 0.51212 0.03267 55.077 0.17071 0.04050 52.874 0.51212 0.03267	14.020	0.17071	0.76794	19.826	0.51212	0.68733
$24 \cdot 234$ $0 \cdot 17071$ $0 \cdot 42061$ $24 \cdot 234$ $0 \cdot 51212$ $0 \cdot 37646$ $26 \cdot 437$ $0 \cdot 17071$ $0 \cdot 25482$ $26 \cdot 437$ $0 \cdot 51212$ $0 \cdot 28997$ $26 \cdot 640$ $0 \cdot 17071$ $0 \cdot 25482$ $28 \cdot 640$ $0 \cdot 51212$ $0 \cdot 22807$ $30 \cdot 843$ $0 \cdot 17071$ $0 \cdot 20402$ $30 \cdot 843$ $0 \cdot 51212$ $0 \cdot 18260$ $33 \cdot 046$ $0 \cdot 17071$ $0 \cdot 16588$ $33 \cdot 046$ $0 \cdot 51212$ $0 \cdot 14846$ $35 \cdot 249$ $0 \cdot 17071$ $0 \cdot 13668$ $35 \cdot 249$ $0 \cdot 51212$ $0 \cdot 12233$ $37 \cdot 453$ $0 \cdot 17071$ $0 \cdot 11395$ $-37 \cdot 453$ $0 \cdot 51212$ $0 \cdot 10197$ $39 \cdot 656$ $0 \cdot 17071$ $0 \cdot 08162$ $41 \cdot 859$ $0 \cdot 51212$ $0 \cdot 08592$ $41 \cdot 659$ $0 \cdot 17071$ $0 \cdot 08162$ $41 \cdot 859$ $0 \cdot 51212$ $0 \cdot 07305$ $44 \cdot 062$ $0 \cdot 17071$ $0 \cdot 06993$ $44 \cdot 062$ $0 \cdot 51212$ $0 \cdot 07305$ $46 \cdot 265$ $0 \cdot 17071$ $0 \cdot 06993$ $44 \cdot 062$ $0 \cdot 51212$ $0 \cdot 074706$ $46 \cdot 265$ $0 \cdot 17071$ $0 \cdot 05259$ $48 \cdot 468$ $0 \cdot 51212$ $0 \cdot 04706$ $50 \cdot 671$ $0 \cdot 17071$ $0 \cdot 07405$ $50 \cdot 671$ $0 \cdot 51212$ $0 \cdot 03267$ $55 \cdot 077$ $0 \cdot 17071$ $0 \cdot 04050$ $52 \cdot 874$ $0 \cdot 51212$ $0 \cdot 03267$	22.031	0.17071	0.55983	22.031	0+51212	0,50106
20.437 0.17071 0.32393 26.437 0.51212 0.2397 20.643 0.17071 0.25482 28.640 0.51212 0.22807 30.843 0.17071 0.20402 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.13668 35.249 0.51212 0.14846 35.249 0.17071 0.11395 37.453 0.51212 0.10197 37.453 0.17071 0.11395 37.453 0.51212 0.08592 41.659 0.17071 0.08162 41.859 0.51212 0.08592 41.659 0.17071 0.06045 40.265 0.51212 0.02533 46.265 0.17071 0.06045 40.265 0.51212 $0.05+10$ 48.468 0.17071 0.05253 48.468 0.51212 0.04706 50.671 0.17071 0.04050 52.874 0.51212 0.02565 55.077 0.51212 0.03267	24.234	0.17071	0.42061	24.234	0.51212	0.37046
26.640 0.17071 0.25482 28.640 0.51212 0.22807 30.843 0.17071 0.20402 30.843 0.51212 0.18260 33.046 0.17071 0.16598 33.046 0.51212 0.14846 35.249 0.17071 0.13668 35.249 0.51212 0.12233 37.453 0.17071 0.13668 35.249 0.51212 0.16197 37.453 0.17071 0.11395 37.453 0.51212 0.10197 39.656 0.17071 0.09599 39.656 0.51212 0.08592 41.659 0.17071 0.08162 41.859 0.51212 0.07305 44.062 0.17071 0.06993 44.062 0.51212 0.05710 46.265 0.17071 0.06993 44.062 0.51212 0.05710 46.468 0.17071 0.06045 40.205 0.51212 0.04706 50.671 0.17071 0.04050 52.874 0.51212 0.04706 50.671 0.17071 0.04050 52.874 0.51212 0.03207	20.437	0.17071		26 • 43/	0.51212	-0.28997
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.040	0.17071	0.25482	28.540	0.51212	0.22807
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30-843-	0.17071	0.20402		0.51212	0.18260-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.040	0.17071	0.16588	33.046	-0.51212	0.14846
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35-249	0.17071	0.13668	32.249	=U.51212	0.12233-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.453	0.17071	0.11395	37.453	0.51212	0.10197
41.659 0.17071 0.08162 41.859 0.51212 0.07305 44.062 0.17071 0.06993 44.062 0.51212 0.06263 46.265 0.17071 0.06045 46.265 0.51212 0.05410 46.468 0.17071 0.05253 48.468 0.51212 0.04706 50.671 0.17071 0.04601 50.671 0.51212 0.04118 52.874 0.17071 0.04050 52.874 0.51212 0.03267 55.077 0.17071 0.03267 0.03267	39.050	0.17071	0.09599	<u>. 39.656</u> ≣	0.51212	08592
44.062 0.17071 0.06993 44.062 0.51212 0.06263 46.265 0.17071 0.06045 46.265 0.51212 0.05410 48.463 0.17071 0.05253 48.463 0.51212 0.04706 50.671 0.17071 0.04601 50.671 0.51212 0.04118 52.474 0.17071 0.04050 52.874 0.51212 0.03267 55.077 0.17071 0.03267	41.859	707	0.08162	41-859	0.51212	0.07305
46.265 0.17071 0.060+5 46.265 0.51212 0.05+10 48.468 0.17071 0.05258 48.468 0.51212 0.04706 50.671 0.17071 0.04601 50.671 0.51212 0.04118 52.674 0.17071 0.04050 52.874 0.51212 0.03267 55.077 0.17071 0.63583 55.077 0.51212 0.03267	44.002	0				
48.468 0.17071 0.05253 48.468 0.51212 0.04705 50.671 0.17071 0.04601 50.671 0.51212 0.04118 52.674 0.17071 0.04050 52.874 0.51212 0.03625 55.077 0.17071 0.03267 0.03267		0.17071	0.06993	44.062	0.51212	0.06263
50.671 0.17071 0.0+001 50.671 0.51212 0.04118 52.474 0.17071 0.04050 52.874 0.51212 0.03625 55.077 0.17071 0.03583 55.077 0.51212 0.03207	40.205	0.17071	0.06993	44.062	0+51212	0.06263 0.05+10
52.d7+ 0.17071 0.04050 52.874 0.51212 0.03625 55.077 0.17071 0.03583 55.077 0.51212 0.03207	46.265	0.17071 0.17071 0.17071	0.06993	44•062 46•265 48•468	0.51212 0.51212 	0.06263 0.05+10 0.04706
55.077 0.17071 0.03583 55.077 0.51212 0.03207	46.265 48.408 50.671	0.17071 0.17071 0.17071 0.17071 0.17071	0.06993 0.06045 0.05258 0.04001	44.062 46.265 48.468 50.671	0.51212 0.51212 0.51212 0.51212 0.51212	0.06263 0.05+10 0.04706 0.04118
	40.205 48.408 50.071 52.074	0.17071 0.17071 0.17071 0.17071 0.17071 0.17071	0.06993 0.06045 0.05258 0.04001 0.04050	44.062 46.265 48.468 50.671 52.874	0.51212 0.51212 0.51212 0.51212 0.51212 0.51212	0.06263 0.05+10 0.04706 0.04118 0.03625

and the second second second second second second second second second second second second second second second		· · · · · · · · · · · · · · · · · · ·			
REX(MM)	TEXT(RAD)	SRITISNT	REXCMM	TEXTIRADI	SR(1/5:1)
11.015	0-58283	3.61714	11.015	1.02424	2.51130
13.219	0.68283	2.09325	13.219	1.02424	1.51117
15.422	0.63283	-1.31520=-	12.426	1.02424	0.95164
17.625	0.68283	0.35309	17.025	1.02424	0.63752
14.828	0.68283	-0.62022==	19.823	1.02424	0.44775
22.031	0.68283	0.45214	22.031	1.02424	0.32541
24+234=	Q.68283	0.33970=	24.234	E1=02+24	0.24524
20.437	0.68253	0.26166	26.437	1.02424	0.13390
28.040	0.63233	0.20580	28.640	1.02424	0.14357
30.643	0.68283	0.16478	30-043	1.02424	0.11396
33.446	<u> </u>	0.13397==	33.045	1.02424	0.09671
35.249	0.68233	0.11039	35.249	1-02424	0.07909
37.453	<u> </u>	=0.09203==	37.453	1.02424	0.04644
39.056	0.63283	0.07753	39.056	1.02424	0.05597
41-854	0-55523	0.05592	41.859	1.62424	=0.04759
44.062	0.68253	0.05652	44.062	1.02424	0.04080
46+265	- 68283	0.04882	46.265	1.02424	0.03525
48.408	0.68283	0.04240	40.408	1.02424	0.03055
50.011=	U-63233	0.03/10	50.671	1.02424	0.02683
52.874	0.68233	0.03271	. 52.874	1.02424	0.02361
55.071	0.68283	0.02054	52.077	1.02424	0.02039

REX(MM)	TEXTIRADI	SRI175N1
11.015	0-05353	3.14281
13.219	0.85353	1.31875
15.422	0.35353	1.14534
17.025	0.85353	0.76729
19.020	0.85353	0.53889
22.031	0.65353	0.39285
24.234	Ú-05353	0.29515
20.437	0 • 8535 3	0.22734
20.040	0.85353	0.17381
30+043	0.85353	0.14317
33.040	0.85353	0,11640
35+249	= J +85353=	0,09591
37.453	0.85353	0.07995
37.050	U. 05353	J_06736
41.059	0.85353	0.05728
44.002	u-115353	0.04211
40.205	3.85353	0.04242
40.408	0.85353	0.03689
50.671	0.85353	0.03229
52.474	=0.02353 ==	0.02842
55.077	0.85353	0.02514

TABLE B-2.Output of the computer programme which calculates the strain rate distribution, for R=63.

STRAIN RATE DISTRIBUTION

EXTRUSION RATIO:63

NEXIME	Τζγτιάνιν		HEX (MM)	=======================================	
2 975	D COUCO		A. 775	0.53716	10.71250
		11+11400		11000000000000000000000000000000000000	10001220 2014 (1074) H =
7.120		4.17409	11-175	0 53717	210186
110440		2.4.41102		annikaðarsaur	2.10105 2.1.60
13.020	0.00000	1.37068	134020		1.42V1.57
10+1/0		0.86085		U • J J I L O	
18.525	0.00000	0.07304	10.320		0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
20.010	<u></u>	0.40048	20.010	0.00110	しょうイクエン
23.221	000000	9-29085	23.221	0+23/10	
25.5/1		0.21//3	25.511	0.53710	
21.921	2.00000	0.16729	21.921	0.33/15	
34.211	0.00000	0.13128	30.277	0.53115	U+11+4-9
32-021	0.00000	0.10491	52+0E1	-0.23/16	0.09140
34.911	0.00000	0.08515	34.911	0.53716	0.07423
37-520	000000	0.07006	31-328	<u>u-53/16</u>	
39.07.8	0.00000	0.05833	39.678	0.53710	0.05085
42.020	0.0000	0.04908	42.020	0.53716	0,04279
44+378	0.0000	0.04169	44.378	0.53716	0,03635
40.728	0.0000	0.03571	46-728	0.53710	- 0 <u>+</u> 03113
49.070	0.0000	9.03982	49.078	0.53715	0.02687
51-420	0.0000	0.02679	51+420	0.53/16	
53.779	0.00000	0.02343	53.779	0.53716	0.02042
	· · · · · · · · · · · · · · · · · · ·				
REXIMMI	ELEXTERAD)	SH (1/SH)==	REXIMM	TEATIRADI	SR(1/S:.)
REX[MM]	1EXTIRAD1 0.17905	SR11/SN1	REX(MM)	TEXT(RAD)	SR(1/S:.) 9.11098
.REX[MM] 6.775 9.126	1EXTIRADI 0.17905 -0.17905	SR11/SR1 11.54312 4.12447	KEX(MM) 0+115 9+126	TEXT(RAD) = 0.71622	SR(1/S::) 9.11098 3.72902
.REX(MM) 6.775 9.126 11.476	1EXTIRAD) 0.17935 0.17935 0.17935	SR11/SN) 11.54312 4.72447 2.37571	REX(MM) 6.775 9.126 11.476	TEXT(RAD) 0.71622 0.71622 0.71622	SR(1/S:;) 9:11098 3:72902
REXIMM1 6.775 9.126 11.476	1EXTLRAD) 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571	REX(MM) 0.775 9.126 11.476	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622	SR(1/S:.) 9.11098 3.72902 1.87515
REXIMMI 6.775 9.126 11.476 13.826 10.176	1EXTLRAD1 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34824	REX(MM) 9.126 11.976 13.026	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S:.) 9.11098 3.72902 1.87515 1.07225
REXIMM1 6.775 9.120 11.476 13.826 16.176	1EXTLRAD1 0.17905 0.17905 0.17905 0.17905 0.17905	SH11/SA) 11.54312 4.72447 2.37571 1.35849 0.34924 0.56455	REX(MM) 0.115 9.126 11.576 13.026 16.175 18.526	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11098 3:72902 1:87515 1:07220 0:56952
REX(MM) 6.775 9.120 11.476 13.820 10.176 18.526	lex[ika0] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SH11/SH) 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 3.39462	REX(MM) 0.175 9.126 11.976 13.826 16.175 18.526 20.876	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72932 1:87515 1:07225 0:56952 0:44568
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.876 20.876	lex[[ka0] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 0.39462	REX(MM) 0.175 9.126 11.476 13.026 16.176 18.526 20.676 23.227	TEAT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72902 1:87515 1:07225 0:56952 0:44569 0:31147
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.926 20.876 23.221	lex[LRA0] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 0.39462 0.28554 0.21758	REX(MM) 0.175 9.126 11.676 13.026 16.175 18.526 20.876 23.227	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72932 1:87515 1:07225 0:56952 0:44568 0:31147 0:22617
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.876 23.221 25.577	lex [[KA0] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SN 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 0.39462 0.28554 0.21459	REX(MM) 0.775 9.126 11.676 13.826 16.176 18.526 20.876 23.227 25.577	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72932 1:87515 1:07225 0:56952 0:44568 0:31147 0:22617 0:16938
REX(MM) 6.775 9.125 11.476 13.825 16.176 18.526 20.875 23.227 25.577 27.927	1 EX [L RAD] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34524 0.56455 0.39462 0.23554 0.21459 0.16464	REX(MM) 0.175 9.126 11.676 13.026 16.176 18.526 20.876 23.227 25.577 27.927	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11098 3:72902 1:87515 1:07223 0:56952 0:44569 0:31147 0:22617 0:16938 0:13011
REXIMMI 6.775 9.126 11.476 13.826 16.176 18.526 20.876 23.221 25.577 27.921 30.277	lEXILRAD) 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SH11/SH 11.54312 4.72447 2.37571 1.35849 0.34924 0.56455 0.39462 0.23654 0.21459 0.12936	REX(MM) 0.115 9.126 11.976 13.026 16.176 18.526 20.076 23.227 25.577 27.927 30.217	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72932 1:87515 1:07225 0:44569 0:44569 0:31147 0:22617 0:16938 0:13011
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.076 23.227 25.577 27.927 30.277 32.527	lex [(RAD) 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SH11/SH 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 0.39462 0.23554 0.21459 0.12936 0.12936 0.10337	REX(MM) 0.115 9.126 11.476 13.826 16.175 18.526 20.876 23.227 25.511 27.927 30.277 32.627	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72932 1:87515 1:07228 0:44568 0:31147 0:22617 0:16938 0:13011 0:10219 0:08159
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.076 23.221 25.577 27.921 30.277 32.621 34.577	lex [(RAD) 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SH11/SH 11.54312 4.72447 2.37571 1.35849 0.34824 0.56465 0.39462 0.28654 0.21459 0.12936 0.12936 0.12936 0.10337 0.08390	REX(MM) 0.175 9.126 11.476 13.826 16.176 18.526 20.076 23.227 25.577 27.927 30.277 32.627	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72902 1:87515 1:07228 0:44569 0:31147 0:22617 0:16938 0:13011 0:10219 0:06159 0:06159
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.876 23.221 25.577 27.921 30.277 32.621 34.977 37.328	lex[[ka0] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SH11/SH 11.54312 4.72447 2.37571 1.35849 0.34824 0.56465 0.39462 0.23654 0.21459 0.12936 0.12936 0.12936 0.10337 0.08390 0.66903	REX(MM) 0.175 9.126 11.476 13.026 16.176 18.526 20.676 23.227 25.577 27.927 30.277 32.627 34.977 37.328	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11398 3:72902 1:87515 1:07225 0:44569 0:44569 0:31147 0:22617 0:16938 0:13011 0:10210 0:03159 0:05449
REX(MM) 6.775 9.120 11.476 13.826 16.176 18.926 20.876 23.221 25.577 27.921 30.277 32.621 34.977 37.328 -39.678	lex [[RAD] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34824 0.56465 0.39462 0.28554 0.21459 0.12936 0.12936 0.12936 0.12936 0.12937 0.08390 0.05749	REX(MM) 0.175 9.126 11.476 13.026 16.175 18.526 20.876 23.227 25.577 27.927 30.277 32.627 37.328 39.678	TEXT(RAD) 0.71622	SR(1/S::) 9:11398 3:72932 1:87515 1:07225 0:56952 0:44568 0:31147 0:22617 0:16938 0:13011 0:16213 0:13011 0:10213 0:05159 0:05449 0:05449
REX(MM) 6.775 9.120 11.476 13.826 16.176 18.526 20.876 23.221 25.577 27.921 30.277 32.52 34.577 37.328 39.678 42.028	lex [[RAD] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 0.39462 0.26554 0.21459 0.12936 0.12936 0.12936 0.12937 0.08390 0.05749 0.04837	REX(MM) 0.175 9.126 11.676 13.826 16.176 18.526 20.876 23.227 25.577 30.277 30.277 32.627 34.977 37.328 39.678 42.028	TEXT(RAD) 0.71622	SR(1/S::) 9:11398 3:72902 1:87515 1:07225 0:56952 0:44568 0:31147 0:22617 0:16938 0:13011 0:16238 0:13011 0:03159 0:05449 0:05449 0:03817
REXIMMI 6.775 9.125 11.476 13.825 16.176 18.526 20.875 23.221 25.577 27.921 30.277 32.621 34.577 37.328 39.678 42.028 44.378	lex [[KA0] 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34824 0.56455 0.39462 0.21459 0.12936 0.12936 0.12936 0.12937 0.08390 0.05749 0.04037 0.04108	REX(MM) 0.175 9.126 11.676 13.826 16.176 18.526 20.876 23.227 25.571 30.277 37.328 39.678 42.028 44.378	TEXT(RAD) 0.71622	SR(1/S::) 9:11098 3:72902 1:87515 1:07225 0:56952 0:44568 0:31147 0:22617 0:16938 0:13011 0:16219 0:05159 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:03817 0:03243
REXIMMI 6.775 9.125 11.476 13.825 16.176 18.526 20.875 23.221 25.577 27.921 30.277 32.621 34.977 37.328 39.678 42.028 44.378 46.128	lex [(RAD) 0.17905	SR11/SR1 11.54312 4.72447 2.37571 1.35849 0.34924 0.56455 0.39462 0.23554 0.21459 0.12936 0.12936 0.12936 0.12937 0.08390 0.05749 0.0403 0.04108 0.03519	REX(MM) 0.175 9.126 11.676 13.026 16.176 18.526 20.876 23.227 25.577 30.277 37.328 39.678 44.378 46.728	TEXT(RAD) 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622 0.71622	SR(1/S::) 9:11098 3:72902 1:87515 1:07225 0:56952 0:44568 0:31147 0:22617 0:16938 0:13011 0:10219 0:03159 0:05449 0:05449 0:03817 0:93243 0:02777
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.076 23.221 25.577 27.921 30.277 32.621 34.577 37.328 39.678 42.028 44.378 46.728 49.078	lex [(RAD) 0.17905	SH11/SH) 11.54312 4.72447 2.37571 1.35849 0.34824 0.56465 0.39462 0.21459 0.12936 0.12936 0.12936 0.12936 0.12936 0.12937 0.08390 0.66903 0.05749 0.04108 0.0337 0.04108	REX(MM) 0.175 9.126 11.476 13.826 16.175 18.526 20.876 23.227 25.577 30.277 32.627 34.977 37.328 39.678 42.028 44.378 46.728 49.078	TEXT(RAD) 0.71622	SR(1/S::) 9:11398 3:72902 1:87515 1:07228 0:44569 0:44569 0:31147 0:22617 0:16938 0:13011 0:16219 0:06159 0:06449 0:06449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449
REX(MM) 6.775 9.120 11.476 13.826 10.176 18.526 20.076 23.221 25.577 27.921 30.277 32.621 34.977 37.328 39.678 42.028 44.378 45.728 49.078 51.428	lex [(RAD) 0.17905 0.1790	SH11/SH 11.54312 4.72447 2.37571 1.35849 0.34824 0.56465 0.39462 0.21459 0.12936 0.12936 0.12936 0.12936 0.12937 0.08390 0.065903 0.05749 0.04037 0.04108 0.03519 0.02540	REX(MM) 0.175 9.126 11.476 13.826 16.175 18.526 20.076 23.227 25.577 30.277 32.627 34.977 37.328 39.678 42.028 44.378 46.728 51.428	TEXT(RAD) 0.71622	SR(1/S::) 9:11398 3:72902 1:87515 1:07228 0:44569 0:44569 0:31147 0:22617 0:16938 0:13011 0:10219 0:03159 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449 0:05449

			Antonio a serie de la companya de la companya de la companya de la companya de la companya de la companya de la		
KEX(HH)	TEATINADL	SR(1/SH)	REXTHE	TEXTIRADI	SR(1/S
0.775	0.89527	7.73515	6.712	1-07433	
7+120		3.15075	9.126	1.07433	2.5978
11++10	0.09527	1.60243	11++16	1.07433	1.3013
13+020	Q+89527	0.71534	13.820	1.07433	0.7441
10.110	0.09527	3.57216	10.170	1.07433	0.4040
10+240-	0. 39527	0.33087	10-520	1.07433	0.3092
20.310	0-59527	0.26613	20.676	1.07413	0.2151
43.427	ü•₫9227-	0.19328	23.227	1.07-33	0-1559
43.511	Ŭ•69527°	0.14475	22+277	1.07433	0.1175
21.927	ū•¤9527	0.11119	27.927	1.07433	0.0902
30.277	0.89527	0.08726	30-277	1.07433	0.0726
32.027	0.89527	0.05773	32.627	1.07433	0.0566
34.977	0.39527	0.05000	34.977	1.07433	0.0459
37.323	0.09527	0.04055	37.328	1.07433	0.037
34.018	0.09527	0.03377	39.678	1.07433	0.0314
42+028	0+39527	0.03257	42.028	1.07433	0.0264
44.310	0.01527	0.02771	44+373	1.07433	-0-0225
40.128	0-39521	0.02374	40.720	1.07433	0.0192
47.070	J-89521	0.02049	49.073	1.07433	D. 0166
21+420	0.89527	0.01/80	51+420	1.07433	0.0144
22.114	0.09251	0.01557	53.779	1.07433	0.012

APPENDIX C

MICROSTRUCTURES OF EXTRUDED PRODUCTS

In Figs. (C-1), (C-2), some photomicrographes of extruded aluminum products, are given. These show the variation of structure with the initial billet temperature and length of the product.

a) R=163, $T_0=400^{\circ}C$ L = 150 cm b) R=163, $T_0=400^{\circ}C$ L=300 cm FIGURE C-1. Variation of surface layer with the length of the product,L.

400 µm

a) $R = 160, T_0 = 350^{\circ}C$

400 µm

b) $R = 160, T_0 = 400^{\circ}C$

FIGURE C-2. Variation of structure with the initial billet temperature.