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ABSTRACT

Missile control methods are briefly
notation and conventions used in guided
are introduced. A realistic simulation

considering the differential equations

outlined, the
missile literature

model 1s formed

governing motion

of the missile in plane, the measurement and control

system and the intercept geometry. Computer simulations

are repeated for various attack géometries and target

escape scenarios using both proportional navigation

guidance and suboptimal adaptive control. Good missile

performance in terms of miss distance is obtained for

proportional navigation guidance. Suboptimal adaptive .

control can be more useful if other performance criteria

are important, such as impact angle at target.



ézET

Fiize kontrol ydntemleri kisaca ag¢iklandi, glidimldi
fiize literatiiriinde Eullénllan yazillm ve kurallar tani-
t1ld1. Fiizenin diizlemsel hareketinin, Blgﬁm ve kontrol
sisteminin ve bulugma geometrisinin diferansiyel denk-
lemleri yardimiyla gergekg¢i bir benzegim modeli kuruldu.
.Oransal ydnlendirme gﬁdﬁmﬁ ve_altOptimal uyurlayieci kont-
rol kullanilarak degisik saldiri geometrileri ve hedef
kégls senaryolari ig¢in bilgisayar benzegimleri yinelendi.
Oransal yénlendirme giidimi ile hedefi yakalama agisinda
iyi sonuglar elde edildi. Altoptimal uyarlayici kontrolun
diger verim Blgﬁtlerinin, hedefe carpma agist gibi, &nemli
oldugu durumlarda daha kullanisli olabilecegi sonucuna

varildai.
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[, INTRODUCTION

In Garnell and East (1) the definitién of a guided missile is
given as: "A guidea missile is one which is usually fired in a direction
approximately towards the target and subsequently receives steering
commands from the guidance system to improve its éccuracy." By accuracy
“—”Wé“mééﬁ“theWmissile should ‘be oriented towards the target in such a
way that at some final time the position of the missile is close to

that of the target; i.e., the miss distance is small.

Guidance laws for short range tactical missiles have become a well
researched topic over the past 40 years with publication of analytical
treatment and implementation of missile gﬁidance going back to 1940's.
Thus, much of the guidance development available in the literature
predates that which is known as modern control theory. These early
concepts, now commonly referred to as classical guidance, have been

~used from that time to the present to command missiles during their
homing phasés of flight to target impact. The performance of classical
guidance techniques were satisfactory against the targets they were
designed for. However, the performance of missiles may be seriously
degraded in engagement against targeté with predicted characteristics
of tHé 1990's and beyond. The guidance laws currently in wide use may
not be adequate in defeating such treats. Thus, it is predicted that
fundamental advances in the application of control systems theory is

required to enhance the guidance effectiveness of future missile systems.



LN

It is observed that guidance laws typically fit within one of
the>following categories: line-of-sight (LOS), pursuit and proportional
navigatidn-guidance (PNG), these three being classical schemes} optimal
guidance and other guidance laws dominated by differential game methods.

A short description of each of the basic guidance laws follows.

The LOS guidance scheme is one in which the missile is guided on
an LOS course in an attempt to remain on the line joining the target

and the point of control.

One of the most straightforward means to assure impact is to keep

‘the missile, which must have velocity superiority, pointed at the target.

This is the principle of pursuit guidance, which has two basic variations:
attitude pursuit, in which the missile's longitudinal axis is directed
at the target; and velocity pursuit, in which the missile's velocity

vector is kept pointed at the target.

Proportional navigatioﬁ guidance (PNG) probably had its origins
among the ancient seafearers ﬁho realised that a collision was ensured
if two constant velocity vessels maintaihed constant relative bearing
while closing in range. Thué, unlike‘pursuit schemes, which seek to

"null the LOS, PNG seeks to null the LOS rate, while closing on the

2

target.

Since the mid-1960's the missile guidance literature has been
permeated by techniques based upon optimal control. Most formulations
consider terminal miss distance and running control effort’iﬁ the
cost functional. A running cost on the state is not appropriate in this
framework, since the'puprSe is to minimize at final time and not
continuously during flight. In an optimal control law the problem is
to find such a control fhat the miss distance is small while also the
control is kept as small as pdssible. Certainly some weighing is

necessary to adjust the relative importance of terminal miss distance

and running control effort.
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The performance of any realistic optimal control law in a missile
application is dependent on the estimation of final timé, or in other
words time-to-go. Typically, an estimate of the range between target
and missile and the rate of change of this range are obtained from
radar or other ranging devices; the time-to-go estimate is then calculated.

This process works well as long as the range and range-rate information

are accurate.

A significant portion of the 1iteraturé on guidance laws does not
readily fall within the coverage of the four previous schemes. Some
of this work concentrates on specialized applications of control theory,
particularly differential games, while others represent very simple
straightforward impieﬁentation of ad-hoc controllers. "

An extensive survey of both classical and optimal guidance covering

work done in this field till 1979 can be found in a paper by Pastrick

et.al. (2), upon which this introduction is based to a great extent.
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I1. MISSILE CONTROL METHODS -

2.1, Introduction to Missile Control Methods

Before going into mathematical detail concerning the motion of a
missile in space as a result of guidance commands, some definitions

and discussion are desirable.

It is convenient to start with a definition of the task of a
missile control system. It is one of the tasks of the guidance system
to detect whether the missile is flying too low or too high, or too
much to the left or to the right. It measures these deviatioﬁs and
sends signals to the control system to reduce these errors to zero.

The task of the control system is therefore to manoeuvre the missile
quickly and efficiently as a result of these signals. Sﬁppose the
guidance "sees” the missile at m relative to its boresight and that

we interpret this to mean that the missile is too far to the right

aﬁd too low. In a Cartesian coordihate system the guidance angular
error detector produces two signals,'a left-right signal and an up-down
signal which are transmitted to two‘separate servos, say fudder servos
and elevator servos. Fig. 2.1.1 shows that this same information can

be expressed in polar coordinates; i.e., R and ¢. If the same information
is expressed in another way then the control system must be mechanised
differently. The usual method is to regard the ¢ signal as a command

to roll through an angle of ¢ measured from the vertical and then to
manoeuvre outwards by means of the missile's elevators. The method of

control compatible with polar coordinates is called twist and steer.
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Cartesian. co-ordinates " Polar co-ordinates

Figure 2.1-1 Missile position and error signals

Guided ﬁissiles usually have one or two axes of symmetry. If a
missile has four control surfaces as shown in Fig. 2.1.2 one regards
___surfaces 1 and 3 as elevators and 2 and 4 as rudders even if the
_mi;sile should rollysebsequently. If 1 and 3 are mechanically linked

together such that a servo must impact the same rotation to both of

z

‘ Figure 2.1-2 Control surfaces looking from rear of missiles

them these surfaces are elevators pufe and simple. The same argument
épplies to the rudders.»Supﬁose now surfaces 1 and 3 each have their
own servo, then it is possible for them to act as ailerons. If>1ooking
in the direction y one surface is rotated‘EO clockwise-aﬁd the other

surface £ anti-clockwise then a pure couple is imparted to the missile
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about the fore and aft axis and this will tend to make the missile
~roll. Such control surfaces are called ailerons. We can double the
power of the ailgroné by doing tﬁe same thing to control surfaces 2
~and 4. If now the aerodynamics are 1inéar, i.e., the normal forces are
pfOportidnal to incidence, then the principle of superposiﬁidn applies.
Commands for'elévator, ruddef and ailerons movements can be added
-electrically resulting in unedual movements to opposite control surfaces.
In this way we have the means to control roll motion as well as the

up—down (i.e., pitch) motion and left-right (i.e., yaw) motion.

2.2 Aerodynamic Lateral Control

' With the Cartesian control system the pitch control system is made
identical to yaw control system so we need to discuss one channel only;
in this respect the nomenclature differs from that used in aircraft.

. With missiles lateral mo?ement usually means up-down or left-right.
With polar control one rolls and elevates. The following remarks apply

to the elevation channel in twist and steer missiles also.

| Thevméjority of tactical missiles have fixed main lifting surfaces
(often called wings) with their center of pressure somewhere near the
missile center of gravity and rear control surfaces. With subsonic
missiles it may be more efficient to use the controls as flaps
immediately behind the wings as the flap controls the circulation over
the whole surfaée. With- supersonic flow the control surface cannot
affect the flow ahead’of itself aﬁd thereforé is placed as far to the
rear as possible in order to exert the maximum moment on the missile.
‘Rear control surfaces often make a convenient arrangement of components.
Usually it is desirable to have the propulsion system placed centrally

in the missile so that the center of gravity shifts due to propellant
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usage are minimized. It is convenieht and sometimes essenfial to have
the warhead and fuze at the front together with any associated ;
electrohicsrincluding the guidance receiver. This leaves the control
system to 6ccupy the rear and with the éropﬁlsioﬁ blast pipe passing
through its center. If there are four servos it is not difficult to

design a neat servo package round this pipe.

When considering lateral forces and moments on missiles it is
convenient first of all to consider the combined normal forces due to
incidence on the body, wings and control surfaces as acting through
a point of the‘body called the center'of pressure (c.p.) and. to regard
the control surfaces as permanently locked in the central position.

‘If the c.p. is ahead of the center of'gravity (c.g.) then the missile is
said to be statically unstable. If it coincides with the c.g. then it

is said to be neutrally stable and if it is behind the c.g. it is said
to be statically stable. This of course is the reason why feathers are
placed at the rear end of an arrow to move the c.p; aft. These three
possible conditions are shown in Fig. 2.2.1 to 2.2,3. The missiles are
shown with a small incidence, i.e., the body is not péinting in the séme
direction as the yélocity vector Um{ In the unstableAgondition any

perturbation of the Body away from the direction of the velocity vector

€G and CP

Fig.2.2.1 Unstable Fig.2.2.2 Neutrally Fig.2.2.3 Stable

stable
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results in a moment about the c.g. wﬁich tends to increase this
perturbation. Conversely in the stable case any perturbation of the
body direction results in a momeﬁt which tends to oppose or decreaseé
this perturbation. The distance of the c.p. to the c.g. is called the
static margin. Since the lateral force and hence the lateral manoeuvre
by aefodynamic means is obtained by exerting a moment on thé_body such
that some incidence occurs it follows tﬁét,if tﬁe static margin is
exéeééive, the missile is unnecessarily stable and control moment will
be relativeiyvineffective in producing a sizeable manoeuvre. There has
to be a compromise between stability and manoeuvrability. Now consider
a missile whose forward speed is constant, with a steédy body and wing
incidence of B and a control surface movement from the central position
of.c. Only motion in the.hdrizontal plane is considered and the missile
is éssumed to Ee not rolling; the effects of gravity are zero in this
plane. Fig. 2.2.4 shows the normal force N due to thé body, wings and
rear control surfaces assumed to be in the central position; this N
force acts through the c.p. But there will be an additional force Nc
due to the éontfol surfaces being deflected by an amount [. Neglecting
the small damping moment due to tﬁe-fact that the missile is executing
a steady turn, this picture can represent dynamic équilibrium if the
rudder movement Nclc is numerically equalnto Nx* where x* is the static
margin. If Rc/x* = 10 say then N = 10N, and the total lateral force =
9Nc. This force is in the opposite sense to Nc. Since x* is typica11y

5 per cent or less of the body length it is easily seen that a small
absolute change in the static margin can affect the manoeuvrability of
the missile. Thus tﬁe standard method of obtaining a large lateral
force on a missile is to have a large moment arm by placing the control
surfaces as far from the c.g. as possible. If the c.p. of the body and
the wings alone is at the c.g. then Eo of cohtrol surface movement will

produce the same amount of body incidence. If the c.p. as just defined



Fig.2,2.7 Moving wings
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is in front of the c.g. fhen Co Ofvrudder movement will produce more
than QQ of body incidence. If this c.p. is behind the c.g. then less
than go'of body incidence will result. If a missile has no autopilot
(i.e., no instrument feedback) a considerable static margin has to be
allowed to ensuré stability.in flight, say 5 per cent or more of the
overall length. With instrument feedback zero or even negative static
margins can be ﬁsed5 thus assisting manoeuvrability. It should be noted
that the overall c.p. can néver be regarded as in a fixed position. The

c.p. of the body in particular will vary with incidence and Mach number.

Since the main object of siting a control surface is to place it
as farbfrom the c.g. as possible, a position as far forward as is
practicable appears a‘iogical choice. Forward contfol surfaces are often
called "canards" named after ducks who apparently steer themselves by
moving their heads. Fig. 2.2.6 shows another ﬁossible case.of dynamic
equilibrium. In this case it is seen that the lateral force due to the
missile as a whole now adds to the fofce due»to.the deflection of
'the control surface and therefore if lc/x* = 10 as before, then the
- total normal force is 11Nc compargd with 9Nc with rear controls. Also,
therfinal §ensevof the total normal force is in the same sense as the
control force. Canafds therefore are‘slightly more effective in the use
of lateral contrqllforces. Canards will not render the missile unstable
since as can‘bé noted from Fig 2.2.6 the main lifting surfaces are rather

further aft to make the overall c.p. aft of the c.g., which is the

stability criterion

To use servos to mer the main lifting surfaces and employ small
‘fixed rear stabilizing surfaces is unusual. There could be the rare
occasion when the servos are more conveniently placed near the center
of the missile, However, the main reason for adopting this configuration

would be, for a given lateral acceleration, to minimize the body
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incidence. For instance if the-pfopuléion éystem is a ram jet the air
intake is likely to choke if the body iﬁcidgnce“is large,’say 15° or
more. However, there are some distinct pénalties involved in the use
of moving wings. Clearly the servos will- be appreciébly iarger to cope
with the increaéed ihértia of thefload and the larger aerodynamic
hinge moments. Also, ﬁoving wings are an inefficient way of producing
a large normal force due to the sm;il moment arm available. Owihg to
the fact that the whole bending moment at the wing root has to be taken
by the shaft, the wing will have to be aesigned much thicker aroﬁnd the
mid chord. This ﬂot only increases the structure weight but at
supersonic speeds it will incréase the drag; the pressure drag varying
with the thickness-to-chord ratio squared. It is desirable to make the
center section of the.missile squafe in cross section to eliminatéba
1arge wing-body gap when the wing ié deflected; such a gap considerably
reduces the generated normal férce. And finally since the moment arm
is small, the position of the c.g.vis critical as a small shift will
make an appreciable change in the control moment arm. Nevertheless, if
the maximum g requirements are low and the speed is_subsohic, such as

- for an anti-ship missile, the overall weight penalty may not be excessive

if small moving wings are used.

2.3 Thrust Vector Control

A completely &iffereht method of steering a missile is to alter fhe
direction of the efflux from the propulsion motor and such a method is.
known as thrust vector control (TVC). This method of control is clearly
not primarily dependenévon the dynamic pressure of the atmosphere, but
on the other hand it is inoperative after motor burn-out. In many
situations there are advantages in having a boost-coast velocity profile.
TVC is therefore likely to have a limited application. The following

situations make TVC essential or desirable.



(a) It is essential_tovuse TVC in the vertical launch phase of all
intercontinental ballistic missiles as thesé missiles, whose total
weight is well over 90 per cent fuel, have to be launched extremely
gradually to avoid dynamic 1oading. Aerodynamic controls would be
completely ineffective for some time and the miésile wou1d>topp1e.over
due to a small inevitable thrust misalignment unless an attitude sensor

and TVC were used.

(b) If a missile is separated some distance from its controller such
as in the anti-tank systeﬁ Swingfire and rapid gathering is required to
achieve a short minimum fange then it must be possible to manoeuvre the
" missile almost immediately after launch.

. (c¢) In a short range air-to-air missile, one may be trying to hit a
fast crossing target with no aim-off and with a flight time of a few

seconds. The exceptional manoeuvrability one can obtain with TVC would
give the system a better coverage.

(d) It can be argued that some systemswould be cheaper and simpler‘
if one launched vertically and then turned over rapidly, thus eliminating
an expensive and heavy launcher.

(e) Vertical launch followed by a rapid turnover is an attractive

A .. . . o
concept for missiles carried and launched from a vehiclej; 360  arc of

fire is obtainable, and storage and reloading is almost certainly
faciliated.

(f) Submarine launched missiles surfacing in different sea conditions

may well need very early course correction.



2.4 Notation and Conventions

The reference axis system standafdized in the guided missile
literature is centered on the c.g. and fixed in the body as follows:
X axis, callsd the roll axis forward along the axis of symmetry if omne
exists, but in any case in the pisne of symmetryf
y axis, called the pitch axis, outwards and to the right if viewing
the missile from behind.
z axis, called the yaw ax1s, dowvnwards in the plane of symmetry to

form a right handed orthogonal system with the other ‘two.

Table 2.4.1 defines the forces and moments acting on the missile,
the linear and angular velocities, and the moments of inertia ; these
quantities are shown in Fig. 2.4.1. The moments of inertia about O are

defined as:

A= I 8m(y? +z?) ' | (2.4.1)
B= I 6m(z?+x%) ' (2.4.2)
C= Iém(x*+y?) | O (2.4.3)

The products of inertia are defined as,

D= I Smyz (2.4.4)
E= I 6mz (2.4.5)
F= I mxy (2.4.6)



Roll axis Pitch axis Yaw axis
y }4
Angular rates ' p | q r
Component of missile
~ velocity along each axis u . - v w
Component of force acting .
on missile along each axis X Y 2
- Moments acting on missile
about each axis o L K} ) J
Moments of inertia about
each axis a B ¢
Products of inertia E F

Table 2.4-1 Notation

[NOTE: 0 IS CENTRE OF GRAVITY OF

MISSILE ]

Figure 2.4-1 Force, moment etc. conventions

The yaw plane is the Oy plane and the pitch plane is the Oz plane.

‘The following angles are defined,



B : incidence in the yaw plane
o : incidence in the pitch plane
A : incidence plane angle

6. : total incidence such that

tand = tanfcosA

and tanB = tanfsin)

The reason why U, the missile velocity along the x axis is denoted
by a capital»letter is to emphasize thét it is a-large positive quantity
changing at most a few per cent per sécond. The angulaxvrates énd |
components of velocity along the pitch and yaw planes however, tend to
~be much smaller quantities which can be positive or negative and can

have much larger rates of change.

2.5 Euler's Equations of Motion for a Rigid Body

_There are six equations of motion for a body with six degrees of

freedom, three force equations and three moment equations. If the missile

mass is m they are:

m(d + qu - Tv) = x (2.5.1)
m(y + rU - pw) =y (2.5.2)
mGi - qU + pv) = z (2.5.3)
Ap - (B - C)qr +‘b(;2 - q?) - E(pqg * 1) * F(xq - @) = L (2.5.4)

+

Bq - (C - A)rp * E(p* - r?) - F(qr + p) * D(pg - 1) =M (2.5.5)

(2.5.6)

EX
1
=z

Ct - (A - B)pq + F(q® - p°) = D(xrp * @) * E(qr - p)



The first equation does not really concern us; we are interested
in the acceleration perpendicular to the velocity vector as this will
result in a change in the velocity direction. In any case in order to
defermine the change in the forward-spééd we must know theAmagnitude
ofAtﬁe propulsive and drag forces, Now consider Eq.(2.5.2), the term
-mpw is saying that there is a force in the y direction due to incidence
in pitch (a - w/U) and roll motion. In other words the pitching motion
of the missile is coupled to the yawing motion on account of roll rates.
The term mpv in Eq.(2.5.3) is also saying that yawing motion induces
forces in the pitch plane if rolling motion is present. This is most
undesirable since we require these two ''channels'" to be completely
uncoupled. Ideally rudder mbvements should produce forces and moments in
the yaw plane and result in yawing motion only; elevators should result
in a manoeuvre in the pitch pléne. Cross—coupling between the planes
must contribute to system inaccuracy. To reduce these undesirable effects
the designer tries to keep roll rateé as small as possible, and in a
simplified énalysis one usually neglects the term pw and pv if roll rates

are expected to be small and incidence (v and w are proportional to

incidence) is not large.

Now consider the moment'equations. Ideally these should’r%gd

‘Ap=1L 3 Bi=M ; Cf=N
i;e., moments about a given axis produce angular accelerations about
that axis. All other terms in these equations are cross-coupling terms
and are undesirable from the point of view of system accuracy. We note
that three out of four of the cross coupling terms in eaéh equation '
aisappear if there are two axes of symmetry, and two will be zero and
one will be small if there is one. axis of symmetry and the missile is

reasonable symmetric about another axis. With two planes of symmetry



and a small roll rate these equations reduce to

n(0 + qu - rv) = X (2.5.7)
qi({r+ rU) =Y (2.5.8)
m({a - qU)‘ =27 ’ (2.5.9)
Ap - (B-C)qr = L (2.5.10)
Bq =M - (2.5;11)
ct =N - -  (2_.5.'1‘2)

The justificatioh for heglecfing the terms pq, pr, pv, pw‘is that
the terms q, r, v, and w are not large and if p is small then their
products can be neglected. Eq.(2.5.10) shows that the;e'is zero
coupling between the pitch and roll and yaw and roll motions if there
are two axeé of symmetry (B = C) and unless the missile is very

unsymmetrical the cross-coupling should be weak.



ITI., 1IN PLANE MISSILE FLIGHT DYNAMICS

AND- ATTACK GEOMETRY

3.1 3 DOF Differential Equations of Motion in the

Vertical Plane

As was mentioned iﬁ Section 2.2 we need to consider only one
channel in a Cartesian control syétem. Heré‘we choose the vértical
(pitch) plane énd'aﬁalyse the pitch control only. A similar analyéis
'could easily be repeated for yaw control. For a symmetrical cruciform
missiIe pitch and yaw autopilots are identical; one injects a g biés
in the vertical plane to'offset'the effect of gravity but this ddes

not affect the design.

4

Figure 3.1.1 Intercept geometry



The intercept geometfy is shown in Fig. 3.1.1 where the various
angles; velocities etc. used in the equatiqns of motion are shown.
One point needs to be noted concerning Fig. 3.3.1. The axes labeled
as x', y' Are only for reference and the plane fhey form is in reality ’
the xz (pitch) plane as defined by the conventional reference system
mentioned in Sec. 2.4, The axis labeled as x is the roll axis of the

missile. Some of the angles shown in Fig. 3.1.1 are named as:
o : angle of attack (incidence)
 : missile heading angle
2 : target heading angle
o : LOS angle

Three degree of freedom (3 DOF) differential equations of motion

in the vertical plane in the body coordinate system are below.

. 1

w="— 7 Cz(a, 62; M) + qu »' (3.1.1)
e [T+gc (cx'.M.h)] - qw (3.1.2)
m R s Ty | ,

: LR LR :

=g =2 s M) + 1.3
d=a5- [clagssm+—=— c q] (3.1.3)

y m ~
b =q | (3.1.4)
where

o = atan(w/u)b ’ . (3.1.5)
b=Q+a | (3.1.6)
v =/ + ‘ - (3.1.7)



- 2 vz s, | | ERNERR
M= /e | | (3.1.9)
¢ = - | - S (10
€, = -C. | o (3.1.11)
C, = € Lot + (M) (h —v6.096)/3;048 +VCB(M)(‘1 -a/a) (3.1.12)
c = CNa(a;M)a . CNGZ(M) 8 - (3.1.i3)
c = [Cm(a;ﬁ) (8 = X (@071 ] e+

_ . S (3.1.14)
C M) +C M) (X_: - X L §
L mSZ( ) Néz( ) ( CG(t? CGB/ R] z
The constants and variables (some of which'are tabulated and some
numerically evaluated) used in the above equations are briefly explained

below. First the constants:

SR : reference area
LR : >reference length
cop ¢ center of gravity 1qcation at burnout
a, * nozzle exit area (rocket-motor)
ab' 7: base area

Tabulated variables:

p(h) s air density (kp/mzsz) vs. altitude (km)
p(h) : static pressure (kP/m?) wvs. altitude (km)
c(h) Speédbof sound (m/s) vs. altitude (km)

CB(M) :  base drag coefficient vs. Mach number



21

pitch damping moment coefficient (per rad) vs. Mach number

C. (M) :
mq
Ng (M) : trim normal force effectiveness (per deg) vs. Mach number
z - .
: Cf(M) ¢ friction drag coefficient vs. Mach number
CC (o3M) : axial force coefficient vs. Mach number and incidence (deg)
o .

CNa(a;M) ¢ normal force coefficient vs. Mach number and incidence (deg)

CmGz(M) : trim pitching moment efféctiyeneés (per deg) vs. Mach number

ch(d;M)A ¢ center of pressure location (m), from nose vs. Mach number
and incidence '
T(t) : rocket motor thrust (kP) vs. time (s)

Numerically evaluated variables:
m : mass of missile

Iy : moment of inertia of missile

XG ¢ center of gravity of missile

Since during boost mass is continuously ejected the mass, moment of
inertia, and center of gravity of the missile will change in this period.
Thrust duration is assumed to be 2.2 seconds and above mentioned variables

are assumed to vary linearly with time from their initial values to their

values at burnout.

The force and moment terms in the equations of motion are related to

‘missile aerodynamics. First we consider the normal force term in Eq.(3.1.1)

N =g Clas 6 ,M) ' (3.1.15)
with ’
- C = sMa + C ) S 3.1.16
N = Cygloste NGZ(M) z , ; ( )
where C and-C are tabulated coefficients. Next we consider the axial

Nov
force term in Eq.(3.1.2) T is the rocket thrust and



" C=3§cC | o (3.1.17)

with

= " + ( +.’ - o .
CG CCo(a,M) YACF(M,h) CB(1 ‘n) v (3.1.18)

where

CCO : axial force coefficient

AC : friction drag coefficient, function of altitude
h(km), due to air viscosity change with altitude

ACF = Cf(h - 6.096)/3.048 : ' (3.1.19)

: base drag coefficient for flight during motor
burning, the base drag is reduced by the ratio
of the nozzle exit area divided by the base area

BASE

C = - . '

mase = Gt T 2f3) . (3.1.20)
Here also C o Cf and CB are tabulated coefficients. Lastly we consider
the'pitching moment term in Eq.(3.1.3)."

c = cNa(a;M)a,[xCG(t) - XCp(a;M)] /L +

(3.1.21)

[Crp, M0 ¥ Oy, DK (8 = Xpop) /1 8,

z Sz
The first line represents the static pitching moment which is obtained
by'multipiying the normal force coefficient with the static margin; i.e.,
by the dimensionless distance separating center of pressure and center
of gravity, both locations being meésured from the nose, positive
backwards. The second term is the flipper deflection moment, which is
cérrected by the change of center of gravity location during boost. While

the expression of the last line accounts for the natural damping moment



in pitch (q:rad's). All pitching moment coefficients are given for

zero bank angle. Here ‘ ‘ ‘
angle. Here, as well, XCp’ CNéz > CmGZ and Cmq are tabu}ated

coefficients.

Inspecting Fig. 3.1.1 we see that the target dynamics can be

represented by

Q - . . .

- aT/vT (3.1.22)
XT = vT COSQT (3.1.23)
Yp = Vi 51nQT (3.1.24)

where a, lateral acceleration of the target.

Similarly the intercept error can be approximated by

e =x_ - X , (3.1.25)

-y | (3.1.26)

From Eqs. (3.1.25) and (3.1.26) we obtain

e =v.cosl - v cos(B - q) (3.1.27)
T T m o

e = v sinQ - v sin(6 - a) (3.1.28)
T T m 7

The trajectory equations for the missile may be helpful.

They are

e
n

v cosf (3.1.29)
m

v . sinQ , (3.1.30)

e
1



We define the relative range R as

R = vVe? + e? (3.1.31)
X y o - :

3.2 Measurement and Control System

Let us consider any aspect of the motion of a missile through
space. Forces and moments w111 produce accelerations and hence veloc1t1es
and displacements with respect to the earth; or, as is often stated
with respect to inértial space. If we wish to make a closed loop system
of the means of controlling the motion of a missile then we muét use
instruments to measure accelerations, velocities and displacements in
space. Accelerometers, rate gyros and position gyros are used for this
purpose. It is usual to call a system comprising missile fin or thrust
vector servos, an airframe, instruments and any electronics and networks

necessary to close the loop an autopilot; but this nomenclature is not
universal,
In the system under consideration a flipper actuation servo and a

rate gyro, to measure the angular rate about the pitch axis, are used.

The flipper actuation servo is a first order element with Laplace

transfdrm
1 -
§ (g) =2 ——mm 6. (3.2.1)
2 Ts +1 Zs
s .

where ‘

6. =6 - & : (3.2.2)

Zg Ze1 2q .

The rate gyro has a Laplace transform

K Ts ' _
§ = —3 8 q(s) (3.2.3)
Zd . 1+1T s
g




From Eqs. (3.2.1) and (3.2;3) we can write

§oe- 2 5 + LR (3.2.4)
z . T z T Zs o

S S
5=—— 8 +R § | (3.2.5)

where
T ¢ servo time constant

K : rate gyro coefficient

Tg : rate gyro time constant

Combining Eqs.(3.2.2) and (3.2.4) we. obtain

. L 1
5= - — S5, §, (3.2.6)
s z s d s el :

Fig. 3.2.1 shows a block diagram of the measurement'and control system.

RATE- q
TRACKER GYRO . [*
8
€ 71 %z
GUIDANCE STEERING SERVO |- -+ ATRFRAME iEAJECTOR3
LOS
- SEEKER
p :
Control o = System
TARGET

bFigure 3.2-1- Measurement and control system
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3.3 Launch Conditions

Since the mahoeuvrability of any missile is limited it»is'important

~ that the missile is launched so that it is approximately directed

towards the target. Bearing this fact“in mind two launch conditions seem
plausible, One is the lead pursuit approach, the other onme lead collision

approach. -These :two approaches are shown schematically in Fig. 3.3.1.

T v

<
=

Lead pursuit , Lead collision

Figure 3.1-1 Launch conditions

In essence lead pursuit is nothiﬁg but simply firing the missile
towards the point the target is at launch time. From Fig. 3;3.1 we see
that 6y = 0y for lead pufsuit. This approach has the serious drawback
that the velocity of the target is not taken into consideration. The
target will be moving away'froﬁ thé point the missile is directed
towards and this may endanger the‘success of the missile; especially
if'the'controlvis not activated immediately after launch as is the case
for the system under consideration. When the control system is activated
the target might be quite away from thé point it was initially and this
may give rise to large control signals. Excessive control may cause

overshoots and erode the stability margins of the control system.

Lead collision approach overcomes most of drawbacks caused by lead.
ﬁursuit. In this approach the missile is fired towards the point we
hope the missile and target will collide. This hope would have been

fulfilled if both missile and.target velocities had remainedd constant



dnd neither the missile nor the target manoeuvred. IniFig. 3.3.1 B is

the angle the missile makes with the LOS. Using sine law we can write

vm At 3 VT At _ . ,
sin(m-0,) = - sinf o (3'3'1),

and rearranging we obtain
v Vi .
sinf = v sing, , (3.3.2)
m ' S

Since the missile should have velocity superiority over the target
we see that the missile is aimed towardsa point ahead of the target
at launch. Note that if the target is stationary lead collision is

equivalent to lead pursuit.

3.4 State Variables for the Intercept Problem

In this section we collect the differential equations for the
intercept problem together and rewrite them in the form of state

equations below.

. 1 . ~ | g
X = q CZ(M’XS) t xyx%3 (3.4.1)
.1 R " ,
kp = —— [T+ g CX(M,h.)] - X)X, (3.4.2)
'r Ly |
> ~ + . .
X3 = —— 40D [,Cm(M,xe) 5 G %3]  (3.4.3)
y . m :
Xy = X (3.4.4)
Xg = - ‘Tl xg * Kq %3 | _ ' (3.4.5)
g
. 1, 1,
Xg = - . (x5 + x6) T Z u' : (3.4.6)



X7 =laT/vT S . - (3.4.7)

igv? Vp cosxy - vméos(ﬁg - a(¥1,x2)) - (3.4.8)

Xy = Vo sinx, f Vm sin(xu - o(x;,%5)) (3.4.9)
where X; = W , X = u , Xg=q , Xy = 0, X5 = ézd s Xg = 62 s

and

The variables and constants appearing in the above equations are

definedbearlier.

Inspecting Eqs. (3.4.1) through (3.4.9) we note that the only
control variable is u' (i.e., Gz ) which constitutes the input to
el
the flipper actuation servo. The control is applied to vary the deflection

of the flipper which in turn affects the other state variables through

the nonlinear state equations above.



IV, APPLIED GUIDANCE LAWS

4.1 ‘Proportional Navigation Guidance

PNG as mentioned in the introduction seeks to null the line-of-sight
- (LOS) rate, while closing on the target. PNG is a guidanceilaw in which,
ideally, the angular rate of the missile flight path is directly

proportional to the angular LOS rate of change, i.e.

(4.1.1)

where § represents the flight path angular rate relative to a fixed

reference, 0 is the LOS rate relative to a fixed reference, PN is the

so-called navigation constant.

In order to obtain some feel for the problem it is worﬁh considering
a speéial,cése_of an intercéption when missile and target speeds are
constant and v /VT = 2 say. The target is assumed to fly straight and
we aim directly at the target. The guidance system in engineeredAsuch
that‘a rate of change of trajectory (g) which isBy times the rate of
change of line—of—sight (5) is produced. Two cases are considered
(a)-PN = i and (b) PN.= 4 and lags on the system are neglectéd. In
Fig.‘4.1;i.Mo, Ml’ M and To’ Tl’ Tn are’posi?ions of the missile
‘and the target at launch and at successive intervals of time after
launch. Dotted lines represent the LOS. If the navigation constant is
unity then it is not difficult to see that as the'tfajectory changés

at the same rate as the line—of-sight and one aims at the target in the

first place then the line drawn tangential to the missile flight path
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flust stért and rémain'coincident.with the'line—of—éight. Since a tangent
to the flight path indicates the iﬁsﬁantaﬁeoﬁs direction of the veloqity
such a trajectory is called the "ﬁursuit course" as'if is the sort of
trajectory a dog might conceivably follow in chasing a rabbit. He always
heads for the'target'andbnever attempts to aim ahead. If a navigation
constant'of‘saybfdur is used, initially the line-of-sight rate must be
the same as in the first case, but the missile .steering commands are
four times as great;vas a fesult the missile veers off much more to the
left. Examination of the diagram shows that the line-of-sight rate
reduces as the engagement bfoceeds. It is important to realise that such

a guidance law automatically establishes a lead angle.

If the line-of-sight does not'rotateAin space’(i.e;, 6 = 0) theh
no'steering commands are’neceséary és one is on a collision coursé}.If
" the line-of-sight does rotate (i.e., ié exists) then a cﬁange~of
trajectory direction is required and it must be in such a sense as to
reduce 0. Clearly the plane of the manoeuvre must be in the plane of §.
Imagine é roll stabilized missile. The homing head measures tHe'vertical
and horizontal component of line-of-sight rate and passes these signals

suitably scaled to the elevator and rudder.servosrfespectively.

It should be noted that Eq}(éjdl)shogs the ideal case, which in
general is not‘attainable. Thus, we cannot control our system so that
Eq.(4.1.1)‘is exactly satisfied. The reason being that we cannot change
® as we wish. The only control is applied to the flipper actuation servo
which in turn affects 6 and other state variabies through the coupled.
state equationé. Also, the time constants for the flipper actuation
servo and the rate gyro inserts time lags into the control system. We

use Eq.(4.1.1) in evaluating.the control 62 such that
~ ' el

$ =P & ' (4.1.2)



where 0 is the‘line;of—sight rate as before.

. Examining Fig. 3.1.1 we note that

. tang = ey ] o (4.1.3)

X

and differentiating Eq.(4.1.3) with feSpeét to time we obtain

G=—3IX X7J (4.1.4)

where R = e; + @2 as defined by Eq.(3.1.31).
v : 'y ]

We have also experimented’witﬁ an augmented control law of the form
§ =P G+P & ©(4.1.5)

where G is the rate of angle of attack and Pa %s aﬁgle of attack

stabilization coefficient (Pd < 0). q is a measure of incidence and it
'is desirable to keep a as small as possible since thevaerodyﬁamic

effectiveﬁess of the missile decreases with increasing angle‘of attack
(e.g., the drag force increases asvd increases). By adding a term into
the control law we can obtain a smaller a throughout without a significant -
decrease in missile performance._Diffefentiating Eq.(3.1.5) respect to -

time we obtain
C.)L =u : (4.1.6)

2 2

where v = u® + w® as before.
m .



4.2 The General State-Regulator Problem

In this section we consider the so-called state regulator problem
which forms the basis of the optimal control IAW'épplied in this present
analysis,1 Basically, the solution of the state-regulator problem leads
to an optimal feedback system with the property that the componentsvof
the state vector x(t) are kept near'zero without excessive expenditure
of coﬁtrol energy.HIn éoiving this problem we are going to make use of

‘the celebrated minimum principle of Pontryagin (3).

Let us consider the iinear_time—varying system,
x(t) = A(t) x(t) + B(t) u(t) (4.2.1)

and the cost functional J is given by

1 T T T )
J=7 X éz*% thf(XQx+u Ruw dt  (4.2.2)
f(xQx*u Ru |

where the below assumptions are satisfied.

The terminal time T% is specified.
S is a constant  nxn positive semidéfinite matrix. -
Q(t) is an nxn positive semidefinite matrix.

R(t) is an rxr positive definite matrix.

The physical iﬁterpfetation of J is this: we want to keep the state near

zero without excessive control-energy expenditure.

We shall show in this section that the optimal control is a linear

~ function of the state,'i.e., is of the form

u(®) = G(6) x(t) (4.2.3)

" where G(t) is.an rxn matrix-valued function called the "gain matrix".

1 We have relied almost exclusively on the results of Falb and Athans (4)

in this section.
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Let us assume that an optimal control exists for any initial state.
We can use the minimum principle to obtain the necessary conditions for
the optimal control and so derive the extremal controls. The Hamiltonian

for the system (4.2.1) and cost J of Eq.(4,2.2) is

' 1 T 1 T T .
H=—" x QX+——URU+) (Ax+3Bu C(4.2.4)

The adjoint (or costate) vector A(t) is the solution of the vector

‘differential equation

. P ' ' . ’ .
Ae) = -—axlz—t)- . ‘ (4.2.5)

whicﬁ reduces to
306 = —q(e) x(t) - AT(E) A(E) 3  (4.2.6)

Along the optimal trajectory, we must have

oH , :
—SETE;— =0 L ‘ | ,(4.2.7)

which implies that

oH

_—85(1:) = R(t) u(t) + _B_T(t) Adt) =2‘ ' (4.2.8)

From Eq. (4.2.8) we deduce that

u(t) = =R (1) B (6) ACE) (4.2.9)

The assumption that R(t) is positive definite” for all te [t,, Tf]

: . -1 _
guarantees the existence of R "(t) for all tE:[to; Tf].

2 : cos . s T
A necessary condition that M be positive definite is detM > 0 and so

M is nonsingular.



35

-We know that the optimal coﬁtrol must minimize the Hamiltonian. The
necessary condition BH/QE(t)': 9 yields_only an extremum of H with respect
to u(t). In order for the extremum of H to be a minimum with respect to
3(;), the rxr matrix 'Bzﬂlaiz(t) must be‘positive definite. But, froﬁ

Eq. (4.2.8), we find that

321

uZ(t) - R(t) ' . (4.2.19)

and, hence, since R(t) was assumed to be positive definite, it follows

that the control u(t) given by Eq.(4.2.9) does indeed minimize H.

The next step is to obtain the reduced canonical equations, to do

that, we substitute Eq.(4.2.9) into Eq.(4.2.1):to obtain the relation
. -1 T o
A(E) = ACE) x(t) - B(£) R (£) B (£) A(E) (4.2.11)

Egs. (4.2.11) and (4.2.6) are the reduced canonical equations; Define

the matrix Eﬁt) by setting
' -1 T R
F(t) =B(OR () B (8) (4.2.12)

Note that F(t) is a symmetric nxn matrix. Using the matrix F(t), we

can combine the canonical Eqs. (4.2.11) and (4.2.6) in the form

re) | [ xo
__;ir_- - (4.2.13)
-A (6)| | AdE) |

x(t) | A(Y)

o] e

Eq. (4.2.13) is a system of 2n linear time-varying homogenous differential
equations. We know that we can obtain a unique solution of this system

' of differential equations provided that we know a total of 2n boﬁndary



conditions. A total of n boundary conditions is provided by the
transversality conditions, which require (sinée‘E(Tf) is not specified)

“that, at the terminal.time~Tf, the costate AﬂTf) must_satiéfy'the ,

relation
) 1 T o ' , ,
AT = ax(T ) [ xap §.§KTf>]J - A(4'2'14),
Thus, we deduce that
AT =sx(T) ' (4.2.15)

Let ¢(t3ty) be the 2nx2n fundamental matrix for the system (4.2.13).
If-we let A(t,) be the (unknown) initial.costafe, then the solution of
Eq.(4.2.13) is of the form |

x(t) - x(tg)

=" ¢ (t3ty) .
Ae) S Ateo)|

(4.2.16)

where Qﬂt;to) is the 2nx2n fundamental matrix for the system (4.2.13).

Therefore, at t = Tf, we must have the relation

T o= 9 (Tf;t) . (4.2.17)
arp| A

Next, we partition the 2nx2n matrix gﬂTf;t) into four nxn submatrices

as follows:

$(T _5t) = tl;————Q—rf—--—-f—- (4.2.18)
.'QZI(Tf;t) E Qéz(Tf;t)



Then Eq.(4.2.17)'can be written in the form .[usihg AﬂTf) = __gﬂTf)J
KT = 11 (T K(E) * 9o (T 0 A(E)  (4.2.19)
AT = 001 (T50) K(E) + dop (T 56D ACE) (4.2.20)

From Egs. (4.2.19) and (4.2.20) we‘find, after some algebraic

manipulations, that
v : - N
AE) = [T ,) = 8 01,(T50)]

' ’ (4.2.21)

[S¢:1:T 56) = 45, (T 50)] x(b)

provided the indicated inverse exists. Eq.(4.2.21) suggests that the

costate A(t) and the state x(t) are related by an equation of the form

A(D) = R(t) x(t) | | | (4.2.22) .

for all tf:[to,Tf]. The matrix K(t) is an nxn time varying matrix which
depends upon the terminal time Tf and the matrix § but does not dépend

upon the initial state. In fact,

| | n
R(t) = [4,,(T 50) = 8 9,,(T30)] |
(4.2.23) -

[§,911(Tf;t) - igi(Tfit)]

It can be shown that (see Kalman(5)) the required inverse matrix exists

for all te:[to,Tf] so that the relation provided by Eq.(4.2.22) is valid.

Let us now comment on evaluatihg the matrix E(t). If the matrices
A(t), F(t), and Q(t) are time-varying, then it is impossible, in general,
to obtain an analytical expression for the 2nx2n fundamental matrix

Q(Tf;t). In this case, one must evaluate K(t) by using (say) a digital
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cemputer. I1f however, the matricee A(t), F(t), and Q(t)~are time-invariant
then the matrix _Q(T jt) can be evaluated analytlcally by using, for
example, Laplace transforms, nonetheless, even in that case, the
evaluat;on of the inverse matrix in Eq.(4.2.21) is an extremely laborious
faSk, esﬁecially if the order-of the'system is high, i.e., if‘n is a

large number.

Thus, we have devised mathematical tools for’fiﬁding an optimal
control for our intercept problem. In Section 4.4 we will show how the

fundamental'matrix,Qﬁngt) can be evaluated using Pade approximations.

4.3 Apparent Linearization

In the,previous section we have shown how to obtain an optimal control
for linear time—varying systeﬁs. However, considering Eqs.(3;4;1) through
1(3.4.9), which we propose to use as our system equations for the
intercept problem, we see that they are higﬁly nonlinear. Thus, if we
want to use fhe'results of the preﬁious section we have to, somehow,

linearize the state equations.

Here we are going to use a method, proposed by Pearson (6), in
which the original system equations are used although the selection of
the matrices is not unique. This method of linearization is called
"apﬁarent 1inearizatien" and is prefefred over linearization by Taylor
series expan31on by Weber and Lapidus (7). An example briefly illustrates

the method Consider the equatlon :
k;(6) = g, (u,t) * h (xu,0) % pGou,t) (=12 (4.3.1)

with at least one term nonzero. We now rewrite (4.3.1) as

| g h, re. 1
P N U 1 IR




‘where S ‘ .
lim l I <o - ’ 1im | | <. o and
X X2 ,
x+0 X, * 0 o
(4.3.3)
. 1 S L
lim l I < oo (i= 1’2)
, u
u+0
The coefficient matrices of the linearized system
X = AGt,u,t) x * B(x,u,t) (4.3.4)
would be
g1/%, hy/x, py/u v v :
é = and E = ) (4.3.5)
h,/x, p2/u

By providing state and control trajectories the dependence of A and B

on x and u can be eliminate& to yield A(t) and B(t).

Following the procedure outlined above, we write equations (3.4:1)

through (3.4.6) and equations (3.4.8) and (3.4.9) in.the form
" (4.3.6)

qu

il = ( — ) X2 F o (%x2) X3
(4.3.7)

kpo= (o
L. 8C : .L; C | o :
X3 = ( = ) X +»(_____EB_9 X3 : (4.3.8)
I x, I v : i
y ‘ y m )
(4.3.9)



3 K Loac X LoC *
X5 = (- =) x5 + (L ——Ty 5 + (—9L R M 3.10)
5 Tg ) X5 - T ) x, +( EEE X3 - (4.3.10)
y ' ’ y m '
. 1 | 1 .,‘ 1 _ ) )
x6 = (- —;;—9 Xg + (- —fg—) xg + ( e ) u | . (4'3'11),-
) Vi COsX; - zn'cos(xq - Q)
xg =( 7a _ )xg t 7
_ - ' ' (4.3.12)
Vp COSXp = v éos(xq-a). '
_( 2x4 ) %o
v sinx; - v ‘sin(x, - Q)
Ry = (— = ) xg *
= Xa
-9 2X8 8
v, sinx; - v sin(x, - Q) : -
( , = ——) xg  (4.3.13)

2Xq

By the way there are a few points that should be noted concerning.
Eqs. (4.3.6)=(4.3.13). First, the eqﬁatidn for i7(i.e., QT) is no more
included among the syétem'equations. This is jpstified by-the'fact that
bofh a_ and v_ as mere perturbations and cannot be affected by whatever
: cont;ol we apply to our gystem. aT and vaare determined by the target
escape policy.rTherefore; we compute QT(x7) as a paramefer and use it
in Eqsl(4.3.12) and (4.3.13). With exclusion of the equatioh for x5 the

order of our system is reduced to eight even though there seem to be nine

state variables.

Secdndly, Eqs.(4.3.12) and (4.3.13) seem to contradict the necessary
-conditions represented by Eq.(4.3.3) which state that the éoefficients

of the matrices A and B should have a finite limit as the state variables
go to zeré; In Eqs.(4.3.12) and (4.3.13) if we let x4 and x4 go'fo zero
the corresponding coefficients would become infinite. Since we are trying

to minimize the miss distance, which is dependent on x4 (ex) and xg(ey),



ideally:xa énd xgréhould equal zero at final time. However;:this’
difficulty can be overcome'easily. As is going to be considered in the

' mext section, we are going to use a suboptimal adaptive control for the
iptercept problem. So, we simply stop adaptation when Xg. or X, become .
small enough. The termslwith X, in the denominator will cause no trouble
because x, (which represents the velocity compoﬁeht of the_missile along

the roll axis) is always nonzero.

4.4 Suboptimal Adaptive Control

In Section 4.2 we have.devised,mathematical tools for obtaining
‘control laws for linear time-varying systems. However, the actual
implementation and computation of such a control law is very difficult
unless some simplifying assumptions are made. As mentioned in Section
4.2 the evaluation of the Ricgati matrix K(ﬁ)‘is quite cumbersome.
Luckily using a method suggested by Davisoh~and Maki (8) the matrix K(t)
can be computed quite fastly on a computer. A generalised version of

Davison and Maki's method is used in this thesis to determine K(t).

‘In Section 4.2 we have considered a linear time-varying system with
a cost functional J where the state and control penalization matrices
gft) and R(t) are functioﬁs of time also. There we had found that the _
control can be easily computed if the fundamental matfix Qﬁt;to) is
evaluated. The evalﬁation of the fundamental matrix Qﬂt;fo) is in general,
a hard task. However, it is a well-known fact that the fundamental

matrix for a linear time-invariant system of the form
x(t) = A x(t) ‘ (4.4.1)
where A is an nxn constant matrix is

oe) = (4.4.2)



At ; '
where e~ may be viewed as the infinite series sum

k
At © k t '
e = kEO é_ o (4.4.3)

Bearing the. above mentioned points in mind, in the remainder of
this section we will develop a suboptimal adaptlve control scheme

follow1ng the method suggested by Kuzucu and Roth (9).

We rewrite the quadratlc cost functlonal as

1 T T :
J=73 % 5x +—;— {Tf(x Qx*+ uRu) dt (4.4.4)

where this time
S is a constant positive semi-definite matrix
Q is a constant positive semi-definite matrix

R is a constant positive definite matrix

Iﬁstead of the control law formulated by Egs. (4.2.9), (4;2.22) and

(4.2.23), which is very hard to determine and implement, we suggest

the following suboptimal feedback control

1

u(t) = Ek i(t) (4.‘4.5).

where Ek is a linear feedback matrix, constant between two corrections

made at adaptation times tk and tk e The optlmal control is approx1mated
by a linear control with constant gain,
The nonlinear state equations are approximated by a linear model

of the form

X=A0pu) x + B (x,u)u (4.4.6)
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valid at the correction time tk and‘ék and Ek are the coefficient matrices

of the linearized system formed through apparent linearization.

A lipear time-invariant problem is defined by Egs. (4.4.4) and (4.4.6)
if ék and Ek are cqnsideredlés constants as long as the nonlinear system
state stays in the validity domain of the linear model (4.4.6). The

solution of this problem yields:
- -1 T ' | ‘
u(t) = R~ B_K(t) x(t) te [to,Tf]. ©(4.4.7)

where K(t) is the Riccati matrix.

Further approximation is introduced by taking t, = tk, considering

only =_§(tk) and keeping it constant until another correction. The

K
_1{
fidal time Tf can be redefined at each correction. Using this approximation
we will have in the suboptimal control law (4.4.5)

I

| K It . (4.4.8
&= B X te[tk"tkwtl]" R

Our interest is now focused on the computation and adaptation of the
i trix G, .
gain matrix G, .
.Canonical’equations for the linear problem formulated in_Eqs.(4.4.4)

and (4.4.6) have the form:

P ST -1
x(t) A B R B x(t)

_ = v (4.4.9)
. . . T -
o e Ae)

The solution of this homogeneous equation is given by
x(t2) | - ' x(ty)
) - Q(tZ;tl) (4.4-10)

M) | Ary)



where
D (t,~t S .
Q(tzitﬂ -e—k( 2 1) (4‘4.11)
with
T -1
A -B
=1 525 E .
Qk,= ) : (4.4.12)
- ~A
Q —*k
énd Ek is obtained from (4.4.10) as.
S | o -
K= (d22 = 8 $12) (8 11 - $21) (4.4.13)

_.1(

here ...are nxn submatrices of T st ).
v .'(‘b'l_] m Sog(f,k)

If we compare the above method with that in Section 4.2 (Eqs.(4.2.9)
through (4.2.23)); we see that the method outlined above involves an

easy way of computing the fundamental matrix ¢(T ;tk).

£
The computation of the matrix exponential in Eq.(4.4.11) is performed

in the following way to improve the precision and to lessen the computation
time.

The fundamental matrix (i.e., exp[Dk(Tf—Tk)]) is computed by use of

third order Pade approximation (see for-example'Vafga (11)) with;a'étep
size s such that

T -t —'2kk s B (4.4.14)'

Van Loan's criterion (12) is adopted to determine the doubling number kk.

kk

< (4.4.15)
) |



where D (T - T i i : £i R
”—kc £ k)ll ;s the Frobenius norm defined as
lxll =1z = |y.. 12 | (4.4.16)
- 1] 13 _
D L | - .
After obtaining ¢(s) = e—ks, QﬂTf_tk)»ls computed by use of the doubling
formula

(4.46.17)

Submatri £
ubmatrices o Qkk

Ek is obtained_fromiEq.(4.4.5);

aré finally replaced in (4.4.13) and Ek.is computed.

The .gain matrix



V. COMPUTER SIMULATION

5.1 Description of Computer Programs Used

A computer program consisting of a main program together with
numerous speciél and general subroutines is used in the computer simulation
of{the intercept problem. A short descriﬁtioh of the main program and -
the routines follows. Only the simulation variables read in the main
program are considered as inputs'énd similarly only the output of the
main program‘is considered. The input and the output lists of the
subroﬁﬁines can be found in the Appendix (at least for most of the

routines) and are not listed here.

The main program reads the necessary constants and tabulated variables

Q and R

uséd in Eqs.(3.1.1)-(3.1.4) from a data file néméd MISDAT. The
matrices are formed (Q is set to g and R = 1 , § isilxl); Thé nonzero
values of the S matrix are read in and echo.pfintéd if suboptimal control
is sought. Then,‘thévsimulation variableé related to intercept gebmetry,
’escape policy of the target etc. are read in. The list of the‘simulation

variables follows:

B

Ho : altitude (km)

RO : range (initial distance between the missile and the target, m)
SIGMA : 1line-of-sight angle O (deg)

MM : initial Mach number of the missile

MT ¢ initial Mach number of the target

GT | : lateral acceleration of the target (in g's)

PNG9 :. initial PNG

ATANGE : tangential acceleration of the targét‘(m/sz)
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DELTAT time at which the ;afget begins to accelerate (s)

DELTAR : time at which target evasive manoeuvre begins (s)
AASC : angle of attack stabilization constant
X(4) : angle of launch 8 (dég)

The target lateral acceleration is in g's following conventions used
in literature (e.é.;‘we'spéak of a target manoeuvre of 5.g's). PNG is |
initially setbto the specified value (we have experiménted with a va;iable
PNG also). During simulation variable target velotity is taken into |
consideration as well. The simulation variable ATANGE enables us to study -
the case in which the target has tangential acceleration as well as
undergoing a manoeuvre. DELTAT_énd DELTAR'specify the time at which the
-~acce1erating'gnd~turning manoeuvres of the target starts. They are usually

set to 2.2 secs since the missile control is activated after 2.2 seconds

fbllowing launch.

After the intercept geometry and initial'conditions are specified the
'state;equations.(Eqs.(3.4.1)—(3.4.9) and the trajectory eduations |
(3.1.29)—(3.1.30).are numerically iﬁtegrated using Runge-Kutta IV with a
time increment of 0.01 seconds initially. To improve resolution time
step, is set tp 0.005 when R becomes less then 50 m and to 0.001 when R
is less than 5 m.- If we note that fhe'velbcity of the missile is about
500 m/s we see that in one time step of 0.0l secs.'the position of the
ﬁissile chaﬁges about 5 m. Since we are aftér obtaining miss distances

of the order 1 m, a time sfep of 0.001 is more suitable when R becomes
small.

While the differential equations are being integrated the necessary.
control is evaluated using_either.PNG or suboptimal adap;ive control
-schemes. The value of the state variables is prinﬁed out every 0.1 seconds.
The simulation continues till the missile and target separation begins
to increase. When R begins to-increase the prograﬁ stops‘aftér printing -

the final values of the state variables and the below listed output.



RMIN

: misé'distance (m)
TIME :  time the simulétidn endéd (seconds)
ALPAV ' time average of angle of attack‘(deg)'
ALPMAX : maximﬁm Value of angle of attack (deg)

Below is.a list and brief description of the subroutines used.

SUBROUTINE RUNGE:
This subroutine is a general purpose subroutine which integrates a

system of differential equations using Runge-Kutta IV method.

SUBROUTINE MISNL:

In this subroutiﬁe the right hand side of the state and trajecfory
equations are evaluated. The coefficients used in these equations
(Cc » C_and Cm) afe computed as well. The necessary inputs and outputs

are supplied by.mainiy COMMON blocks in this ahd‘the following three

subroutines.

SUBROUTINE MISVAR:

The center of gravity, mass and inertia variation of the missile

are evaluated in this routine.

SUBROUTINE MISCOEF:

In this routine various tabulated coeffiqients used in the différential
equations are evaluated using three different intefpolation subroutines.
Also, soﬁe’error checks are pérformed.to ensure that the missile is
within its operation limits (e.g., it is checked that the Mach number

for the missile is between 0.8 and 3.2).

SUBROUTINE MISFIN:

In this subroutine four checks are performed. It is checked that:
1) the missile is statically stable (in fact the missile turns out to be
statically unstable for the first 0.14 seconds after launch); 2) the

velocity of the missile is greater than that of the target; 3) the Mach



number of the missile is greater than 0.8; and 4) the missile is
approaching the target and not moving away from it. This last check is
of primary importance since it constitutes the criterion for ending the

simulation.

SUBROUTINE'S INTPOL, INTER and INTERI :
These all perform linear interpolation for tabulated variables and
“the only difference between them is the manner the tabulated variables

are placed in arrays.

SUBROUTINE MATRIX - :
In this subroutlne the coefficient matrices ék and Ek are computed
at each adaptation. The state equatlons are 11nearlzed via apparent

linearization technique and are scaled as discussed in a later section.

SUBROUTINE GAINl :

This subroutine computes the linear optimal feedback gains correspondlng
to a given horlzon time Tf with- a prescribed dgeree of stability ( in our
case we did not prescribe stability). In essence this.routine numerically

performs the task outlined in Section 4.4.

‘This routine is the backbone of the subopéimal control scheme. It is
a general purpose subroutine which together with thé_follbwing foutines
can be used to solve any linear quédratic optimai control problem of the
form specified by Eqs.(4.4.4) and (4.4.6). o

SUBROUTINE CANM

This subfoutine forms the Hamilton matrix of the linear quadratic
optimal control problem defined‘for the system A, E;with thé'penalization

matrices Q, R in the form

(5.1.1)



'SUBROUTINE'KKH :

This subroutlne computes the 1argest convergent step .size to be used
in the computatlon of the exponential of a matrix. It also indicates
thernumber of doubllng operations necessary to cpver.the desired time
interval. | '

- SUBROUfINE EXPF3 :
 This subroutihe computesrfhe exponential of a general square métrix,

for a given time interval using third order Pade approximation.

SUBROUTINE PART :
This subroutlne partitions a nxm general matrix 1nto four submatrlces

A, B Cand D de11m1ted at the np 'th line and the mp'th column. in  the

follow1ng way

A o3
| : ' o
Foo|—t—| m (5.1.2)
c i o» |

mp
SUBROUTINE GMPRD :
This subroutine is used to multiply two genmeral matrices to form
a resultant matrix. '

SUBROUTINE MINV :

This subroutine inverts a matrix. The standard Gauss-Jordan method
is used. The determinant is also calculated. The input matrix is destroyed

in computation and is replaced by the resultant inverse.

5.2 Scaling

‘A closer inspection of Eqs.(4.3.6) through (4.3.13) reveals that the
coefficients of the A and Ek matrices are not of the same order. While
- -3
some are of the order 1000 some are of the order 10 ., Thus, some sort

of scaling seems necessary. We scaled. the equations as follows. Consider

a differential equation of the form



i. ﬁ } 4 . olo; ‘ . i = "o ' ; .
ol TR P UL TR PR S biu (i =1,...,n)  (5.2.1)

Define new variables as

o i. .
X = =100 | - (5.2.2)
imax .
. ii ! ) '
X = — (i=1,...,n) R C(5.2.3)

is the maximum value

where x. is the maximum value of x., and Xx.
imax i imax

of ii. We can rewrite Eq.(5.2.1) as

= a, X X oo .
in nmax

X, %. . .+t oa, x X + + a, X xn (5.2.4)
imax“i 11 1max 1 12 2max 2 '

or equivalently

o 1max . 2max ‘a nmax .
Xi = ail -- x 3 -' X oo s n i. Xni
: imax imax imax
b, (5.2.5)
i .
1 > u
imax
Thus, a., and b, are transformed to a!, and b! such that
ij i L ' . ij i
X : , o
al', = a,,6 I | (5.2.6)
ij iox,
: imax
b, ‘ ’
b! = ——— - | (5.2.7)
i X



This scaling has the desired effect. The elements of the matrices
ék and Ek become closer to each other orderwise. Another advantage is that
large order terms are no longer present. Hence, the doubling number kk,

which is dependent on the norm of Hamilton matrix, is smaller and less

computation is necessary in evaluating the suboptimal control.

However, one has to be careful in integrating the scaled equations.

Since
x, =/ x, d&& , (5.2.8)
1 1 :
and
x, X, =/ x, X dt ' (5.2.9)
i1max 1 J_.max 1
We obtain
X o= —"— fx 4t (5.2.10)

X,
imax

In scaling the state equations the following maximum values for xi

and x. were used
i _

iz 1 2 3 4 5 6 8 9

. 50 820 0.1 1 0.002 0.1 5000 5000
imax

X : 30 230 0.1 0.08 0.01 0.01 500 500

imax



5.3 Scenarios .

The computer simulation was repeated for several different scenarios.
Different'initial conditions were investigated. Scenarios differed in
launch conditions as well as target escape manoeuvres. The launch

conditions used in simulations are shown in Fig.5.3.1.
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—_—— — —
gy =0 o /,h\\. Jp = 180
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N
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7 | R
/ i N,
s o, -5 N
M

Figure 5.3.1 Launch scenarios

The escape policy of the target can be two fold. It may execute a
(specified number of'g) turn either towards the missile or away from it
and the target may also accelerafe;‘i,e., increase its speed (an escape
policy based on target deceleration is not effective). A more detailed

account of scenarios and escape policies can be found in the section

"

on results obtained by simulation with PNG law.



5.4 Time-to-go Estimation

The horizon time T_ has to be appréximéted_before suboptimal adaptive
control scheme can be applied. The usual procedure in estimating the
homing time:remaining before a'missilefintercepts the target involves
"the quotient of the instantenous range by the range rateiénd is of the

form (séevFig.5.4;1)

. R ' | '
T = — —— .
£ R S (5.4.1)

Noting that

R=/Ve?+e? L (5.4.2)
Xv y

and differentiating Eq.(5.4.2) with respect to time we obtain

T o= — X ' R (5.4.3)

| Eq.(5.4.3) is exact only if the missile is on a perfect collision -
course, i.e.,v & = 0. If the missile suffers from a heading error, G is
not zero, and Eq.(5.4.3) 1is ohiylan apﬁroximation, sometimes.quite bad,
depending on the size of miss%le,heading error deviation from the true
homing course. Alsb Eq.(5.4.3) impiieé that some sort of ranging method
éxists,_either(nlboard the missile or ground based}-Rangiﬁg equipment
carried én board the missile is ﬁsuaily of the active type, e.g., radar.
This involves both weight and power penalties as well as possible |
detection by the target prior to interception. Passive sensors, e.g.,
infrared or opticai, of either line-of-sight angle orfangdlar measurement
type are lighter and are not readily detected. However, they lack range-
finding ability and consequently cannot be used to provide a direct

- estimation of the homing time by the preceding technique.
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Figure 5.4.2 Homing time estimation

In a technical note Rawling (12)'develops a homing time relation
which is applicable to péssive; angle/raté measuring sensors and is
.Qalid when the missile'is not on a perfect intercept course. His relationm,
instead of reﬁresenting tﬁe time-to—go until interception; provides the
time to the pbint of minimum separation between missile and target, since
there will be no interception if G ¢ 0. This time-to-minimum separation
is denoted by Tp, and is referred to as "time-to-pass" in order to
distingﬁisﬁ it from Tf,.the timg-to—go. A fundamental property Tp is
that it reduces to T_ whenever ¢ = 0, i.e., whenever the missile is homing

perfectly. The relation developed by Rawling is

T = 2 00 | (5.4.4)



Eq.(5.4.4) is a completely passive expression for the homing time
remaining from t to the point of minimum separation, involving neither
range nor range rate; furthermore, it is valid for large missile heading

errors as long as the missile is appfoaching the target (R < 0).
Throughout this Study Eq.(5.4.3) was used for approximating the time-
to-go since heading error is sufficiently small during a great portion of

flight.
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VII, SIMULATION RESULTS AND DISCUSSION

. 6.1 General Results

As mentioned earlier the missile accelerates during thé first 2,2
seconds after launch and thenvslowly.decelerafes due fo drag forces;
The velocity profile of the missile (fbr:zero angle of attack) is shown
iﬁ>Fig.6.1.1. This profile, which clearly exhibits the'boosf—coast
character of velocity,‘is for an altitude of 10 km and an initial Mach

number of 1.2.

800

600
500

400

| 1 i

5 , 10 X 15
Figure 6.1.1 - Missile speed vs. time . , TIME(s)




At this-altitude'the velbcity of sound is about 300 m/s. As can be seen
from Fig.6.1.1 the maximum vélocity of the missile is about 2.73 M (or
éQuivalehtly 820 m/s). In a more realistié'simulation where the missile
is trying to intercept a target the missile would &ecelerafe’faster due -
to drag forgeé which increase with incidence (ahgle of attacks). As an
extreme case we performed an ekperimental’simulatipn. We set flippgr
~deflection (62) équal ;01260 at t = 2.2 seconds, and kept it consfant‘

~ later. As a result velocity decreased much faster than that in Fig.6.1.1.
At t = 10 seconds velocity decreased to 425 m/s compared to 600m/s for

zero angle of attack.

The flight path both for the missile and the target are plotted in |
Figs. 6.1.2 to 6.1.6'for each of the launch conditions shown in Fig.5.3.1.
Thesé_exampleiplofs show typical scenarioé-with simple PNG laws. The
simulation variables that are common inlall are listed below and those

that differ in value are stated after the relevant figure.

Ho : _10'km (aititpde) .

MM : 1.2 M (Mach number of the missile)
MT ¢ 0.95 M (Mach number of the tafget)

ATANGE : 10 m/s2 - (tangential acceleration of the target)
DELTAT ©: 2.2 secs | o
DELTAR A: 2.2 secs

AASC : 0.
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Figure 6.1.2 Trajectories for 0, = 0.0

For Fig.6.1.2

R = 2.5 (km)
6T =5 (g's)
PNG = 6 |
6 =0

In Fig.6.1.2 My, M) ... shows the position of the missile at t = 0,1,2..,
seconds and similarly Ty, T;. ... shows the position of the_target at

t =0,1,2,... seconds. Also the intercept time is shown.
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Figure 6.1.3 Trajectories for Oy= 45

For Fig.6.1.3
GT =5 (g's)
Rd = 2.5 (km)

PNG = 6
0, = 28.8°
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Figure 6.1.4 Trajectories for g, = 90°

For Fig. 6.1.4

R = 4 (km)
GT = 5 (g's)
PNG = 6

8, =67.2°
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Figure 6.1.6 Trajectories for Oy = 180°

For Fig;6.1.6
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6.2  Simulation with PNG Law

" First let us consider the 1éunch conditions. In section 3.3 we had
discussed two appréaphés to launch conditions and concluaed that lead
collision approach was likely to yield more successful results compared
to lead pursuit. However, during'computer_éimulation it ﬁas observéd
that for scenarios in which 0, (initial LOS angle) is 45°, 90°, or 135°
lead collision approach also necessitated quite large cbﬁtrols and resulted
in big chances in the lateral component of missile velocity when the control
was initially activated (i.e., just after 2.2 seconds). For a typical |

scenario with the simulation variables



VH¢ . = 10 km G

R¢ = 2500 m
ol =  45°

WM o= 1.2
MT = 0.95
6T = 5

PNG = 6
ATANGE = 10 m/s’
DELTAT = 2.2 s
DELTAR = 2.2°s

AASC = 0.0

the lateral velocity of the ﬁissilé for launch angles, 6, of 450 (lead
pursuit), 25.185 (lead collision) and 28.8o (a value found by trial and

error in numerical experiments) in the time interval 2.3-3.0 seconds is

listed in Table 6.2.1.

For convenience these three launch conditions and the positions of
the missile and target at t -0and t = 2.2 seconds are shown in Fig.6.2.1.
T, and T, show the position of the fafget at t = Ofand t = 2,2 seconds.
respectively. Similarly,‘Mo is the pogition:of the missile at t = 0 and
. M. is the positionvof the_missilé for 1eaa pursﬁit.approach, M1c for

C1p
o
lead collision and finally MIN for 8 = 28.8 at t = 2.2 secs.

The missile intercepts the.target for all three launch angles but
examining the above listed values for w (lateral velocity of missile) .
we see that a launch angle of 28.8° is superior to both lead collision
and lead pursuit approaches. In lead pursuit approach the nissile is’
aimed at a point too backwards the targét is at t = 2.2 secs and this
necessitates a large manoeuvre on behalf of the missile. Lead collision

approach results_in'missile being ahead of the target. Best launch angle is



. 8, o .»
t(sec) 0 45° | 25,185° 28.8°
2.3 -140.5 | 61.3 0.7
2.4 -303.7 136.2 6.2
2.5 ~115.7 - 127.0 14.8
2.6 - 60.9  112.6 27.5
2.7 ~250.5 107.9 27.8
2.8 ~206.6 104.0 31.4
2.9 - 63.1 | 906 34,2
3.0 1677 | 195.8 36.7

Table 6.2.1 Lateral velocity variation with time

Y (km)
2

My

25.1

\ 28.8

1

Ll

2

X(km)

Figrue 6.2.1 Missile and target positionms at t=0, t=2.2 secs



seen to be 8, = 28.8o which is in between the launch ahgles for lead
collision andllead pursuit. Also the aQerage value of anglé of attack
(i.e;,vatan w/u) turns out to be 10.97° for iead.puréuit; 6.16 for iead‘
collision and 9n1y 4.25° for 8 = 28.80.‘Thi$_is another result which
--strentgthens our:claim that 90-;‘28.8° is superior to other launch

approaches.

In Table 6.2.2 the best launch- angles, deterﬁined>by trial and error,

for different initial'launch scenarios are listed.

We repeatéd the computer simulation for different scenarios'ahq trie&_

. to determine the limits for successful intercept. The results that follow
are for éimulation variables H¢ = 10 km , MM = 1,2 , MT = 0.95, ATANGE =
10 m/é2 , DELTAT = 2.2 s , bELTAR = 2.2 s and AASC = 0. Also the launch
anéles for the scenarios are those listed’in Tablé‘6.2.2 where relevant.

The limits for the suécéssfu1>0peration of the miséile in terms of initial
fahge between target and'missile‘and target evasive-manoeu?reé and the.'

underlying reaéons for those limits are below. We try to investigate each

launch condition separately.

. : o .
First let us conside tail chase (i.e., 0p= 0 , see Fig.6.1.2). In
"~ this scenario the initial range R¢ must not be excessively large.
(R . ~5000 m). For ranges between 2000—4500 m the missile functions

.- max _
successfully for target manoeuvres in between *10 g's.

.Fof(Jo- 450_(sée Fig.6;1.3) and Rp = 2500 m intercept is ensured
for -*10 g manoeuvres by the,target. But if R = 4000 m.the miss distance
is acceptable for target manoeuvres in between 6 andb-10 g. For
R$ = 5500 m the miésile cannot catch the .target if the manoeuvre is away
from the missile. | | |

For 06 = 90° (see Fig.6.1.4) and R$ = 2500 m the successful range is

again - t10 g's and for R = 4000 m this range slightly differs (*¥9 and



_ . A : Best Launch
-0 (deg) |, R (m) - Angle (deg)‘
450 2500 28.8°
45° P 29.,5°

45° - | 5500 29.8°
90°. 2500 | . 65,75
90° 'V, 4000 | o 67.2°
90° 5500 . 67.8°
135 | 4000 | 118.5°
135° : ssoq.f 119.1°
1350 7000 119.4°

Table 6.2.,2 Best launch éngles for different scemarios

-12 g's). Again with R$ = 5500 m intercept~ié not possible with a

positive target manoeuvre.
For g4 = 1359 (see Fig.6.1.5) and target manoeuvres of 7 g's
intercept occurs with Rp. = 4000 m and R¢‘=>5500 me.
- ‘.'. . . o . .. . ' - .
For head-on collision (0, = 180 , see Fig.6.1.6), GT = *7 g's and
R$p = 5000 m or Rp = 7000 m the miss distance is about 2 m (whith is
acceptable) with PNG = 15.'For‘R¢ = 8500 m and GT = 5 g's the miss
. distance turns oft to be about 4 m.

From above limits we see thafvthé missile is effective in different
ranges for different LOS angles (g,). The missiie performs quite well in
'shofter ranges fér Oy = 09 and 0, = 45°. For Oy = 135° and 0, = 180° the
range must be longer (R > 4000 ﬁ). Also it turns out that scemarios with
Vg = 135“ und.oo - IBUU'arc the more difticult ones in terms o! allowable
target manoeuvres. However, even for those cases the petformanée is

acceptable since.é_target manocuvre of *7 g's and a linear accelefation'

of 10 m/s2 is an aﬁpreciable manoeuvre.,



The success of the missile is affectéd by two fa¢:oré; the sﬁeed of
the missile and its manoeuvrability. The speed of missile decreases in
time due to drag forces and since we consider acceleratihg~fargéts very
large ranges are.not'allowablé. Also the ménoeuvring'capacity of the
miSsile'is'limited,vThe flippef deflection is limited to +26°
mechanically and for large g_manoéuvres of the.térgetlsatufation of

flipperAdeflection-is observed.

‘Intercept time vafies betweenvabdut 5 ahd 13 seconds depending on
the range and attack geémetry. Larger intercept times are not possible
for accelerating targets*éince the velocity of the missile decreases
quite fastly after burnout. For example, with a tafget acceleratioﬁ.éf
10 m/s2 énd initial target velocity of 0.95 M, the velocity-df the
‘target is about 400 m/s after 13 seconds while the velocity of the
missile is about 500 m/s at the same time (see Fig.6.1.1). Thé_velocity-
difference is not sufficient anymore. Smaller-intercepts times do not

allow enough time for the missile to manoeuvre properly.

Also an augmented PNG law, of the form discussed in Se¢tion_4.i
(i.e.,vﬁzei = ENé f gxdo,.ﬁith the control signal depending on & as well
"as 0 was used in simulation. This guidance law does have some stabilizing

effect for especially lead purguit launches, where apﬁreciable

oscillation in both control and lateral velocity is observedAinitially;

but its effect is not of much importance for launch angles listed in

Table 6.2,2 for lead collision approach.

'Another experimentation was with variable PNG. PNG was increased as
range decreased. However, this approach does not ihprove perfofmance much,
since aé range decreases LOS rate 0 increases (§ is inversely proportiénal
to R?). Also, for large target evasive manocuvres.the flipper deflection

is saturated (i.e., reaches its maximum or minimum allowable value) close



to 1ntercept and any further increase 1n the control cannot improve

manoeuvrablllty of the m1331le.

The effect of launch angle pn’miss distance was investigated for
two scenariosf'An'easy case with GT = 3; PNG = Svand a relatively more
.diffiCU1t case with GT =.5,.PNG =.6 were considered. in both cases
Hp = 10 km, R$ = 2500 m, MM = 1.2, MT'= 0.95, 'siGMA = 45°, DELTAT =
DELTAR = 2 2 secs, ATANGE = 10 m/s and AASC = 0. The varlatlon of miss
~distance is plotted in Fig.6. 2.2 as a functlon of launch angle. From
Flg.6.2.2 it is seen that the miss distance is zero between launch
angles 11.8° and 45.8° for the eésy case; and for the difficult case
between 13.8° and 49.8° (best launch angle for this attack geometry
‘being 28.8?). The miss disfance increases almost 'linearly" outside
thesé ;angeé.'lt is unﬁerstandable that in the'difficult case ﬁhe,missile
is more successful in interceptihg the target for larger angles of.lauﬁch
if we note that this specific manoeuvre is such that the target is
turﬁing towards the left and also a larger angle of launch means that

the missile is aimed towards a point leftwards of the target.

80+
AAan GT = 3
'00_00 GT_ 5 70'
604
E
501}
. -
=
4t 8
W
H
(]
30t wn
4U)
0l
10 t
0 L
: . LAUNCH
1 1 1
L A ~V* W R - —— ANGLE
8]8° 13.8° 18.8°°  28.8° - 43,8° 48.8° 53.8

.Figure 6.2.2. Miss distance vs launch angle



6.3 Suboptimal Guidance

The»suboptimal control ‘for this intercept problem proved-to be a -
formi&able‘task. The-difficolties encountered are two-fold. First
- difficulty is with regards to‘apparent linearization of the system
equatioos. As was also noted in Section 4.3 the apparent linearization
technique does not yield a unique solution to'the.seiection'of the
coefficient matrices. The most'profitable way to 1ineafize>the system

is hard to guess.

Secondly, the selectlon of the penallzatlon matrices S Q and R
‘is an "art rather than sc1ence." Here R was chosen to be unity and Q
identically equal to zero, since we are trying to minimize at final
time and not continuously during flight. it turns out that the sixth
. column and row of the matrix S is of primary importance and the other:

elements of S have negligible effect.

The variation of control as a teSult of both PNG end'suboptimal
adaptive control is plotted in Fig 6.3.1 and thevveriation of laterel
ve10c1ty of the missile is plotted Ain F1g 6.3.2. These plots are both
for a typlcal scenario with H¢ = 10 km, R$ = 2500 m, 0, = 45 » By = 28.80,

3.

= 1.2, MT = 0.95, ATANGE = 10 m/S, DELTAT = DELTAR 2, 2 S, GT
‘The plots are for PNG = 5 and S(6,6) = 1, S(7 6) = S(6 7) = S(8 6) =

4
$(6,8) = 10 respectively.

" We observe that the lateral veloc1ty variation closely follows
.that of the control” signal (as would be expected) for both PNG and
suboptimal control._Another p01nt is that both Gzel and w due to PNG
law exhibits a smooto character while those duerto-suboptimal control
is of an oscillatory character. This_oseiilatory behaviour explains

why it is difficult to choose the elements of S matrix approximately

so that intercept is ensured.
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It is interesting that quite different values for the § matrix can
produce slmllar results. For example the values S(6 6) =1, S(6,7) =
§(7,6) = 750 and S(6,8) = S(8,6) = 3 y1e1ds a control very similar to
that of Fig. 6 3.1. A more stable. control was obtained for_values S(6?6)
=1, 8(6,7) = 5(7,6) = 500 anid $(8,6) = 5(6,8) = = 20. This control is
plotted in Fig.6.3. 3 and the 1atera1 ve10c1ty variation produced by it
in Fig.6.3.4, For a11 these three s matrices the miss distance 1s about

1'm. For all, the state matrices were corrected at every 0.1 seconds.A

The determination of the best S matrix for any scenario seems to
require numerous trials and a deep insight to the problem. In a real
life application predetermined S matrices could be used to depending

upon the initial conditions and the target manoeuvre.

While experimenting with suboptimal control it was Seenvthat the
control was mainly dependent on e, and.‘ey (i.e., xg and x4), as would
be expeeted. Thus, we decided to use only Xg, Xg and Xg- as the state.
variables and evaluate the control using the reduced system. We wrote

Eq.(4.3.11) in the form

L o xs 1y + —=—u  (6.3.1)

and used Eqs (6.3.1), (4 3.12) and (4.3.13) as the new state equatlons.

Thus the. order of the system is reduced to three wh11e 1t was elght
before.

This reduced order system is_qﬁite useful. The performance obtained'
using the reduced order system does not differ much from that obtained
‘'using the eiéhth,order system.,thever, the computation.time varies
drastieelly For example,‘in a shecific scenario the>computation time
using the 61ghth order system is about 30 CPU seconds wh11e for the third

order system it is only 10 CPU seconds (these computatlon tlmes are on

CDC Cyber 170 Model 815 system).
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ﬁ
Apother obgervation is that the performance does not impréVe much if
~ the correc;ion time for the system matrices:is reduced below 0.1 seconds.
For instance, cqrrection times of 0.1, 0.05 and 0.01 seconds were used
in a épecifig scenario and it was seen that the final performance, in
terms of miss diStanqe and average angle of attack, was‘about}thé-same
(although thg instantenousbvalue of the control'changed‘quife:much bétweeh

different correction times).

Aiso, subpptimal control is sensitive to initial cénditions. The effect
"~ of 1aunch_angle (amonngther‘initial conditions). turned out to be quite
importanﬁ.’Its-effect was-investigatéd for the scenario H$¢ = 10 km, R} =
2500 m, SIGMA = 90°, MM = 1.2,.MT = 0.95, GT = 3, PNG = 5, ATANGE = 10,
DELTAT = 2.2 s, DELTAR = 2.2 s and AASC = 0. For a launch angle 8, = 65.2

the final performance turned out to be

RMIN

= 5.134 m
ALPMAX = 4.005°
ALPAV- = 1.335°

For a launch angle 8 = 65o ‘'same values turned out to be

4

RMIN = 1.852 m
- ALPMAX = 2.913°
ALPAV = 0.694°

The above valués are obtained using the reduced order system with

final state penalization matrix.

-

'( 1 500 20

s= |50 1 0 (6.3.2)

20 0 1



“From Table 6.2.2 we see that the best launch aﬁgle for this scenario

is 65 75 for PNG control. However, for suboptlmal control it is seen ;

.that performance varies drastlcally with 1aunch angle’ and a new table

" of best 1aunch angles together with f1na1 state penallzatlon matrlces

§_has to be formed for each scenario.



VII. concLusioN

In Chapter II we explain the task of a missile éontrol‘system and
briefly mention aerodynamic lateral control and thrust vector control.
In Fhe'same chapter we introduce notation and conventions standardised

in the guided missile literature.

Later we introduce the differential equations of motion for missile
fllght dynam1c5, ‘the measurement and control system and the 1ntercept
error. The intercept equations are put into a form of system state

equations suitable to appllcatlon Of~0pt1mal control.

In this work two dlfferent guidance technlques are used: proportlonal
nav1gat10n guidance and suboptimal control Each technique is briefly

explalned in Chapter Iv.

Computer simulatioﬁs are repeated féf various scenarios diffeping
in both.initial conditions and target escape policies.'Several problems
are associated with the impiementation of suboptimal guidance. Subéptimal
~ guidance appears to be sensitive to initial conditions. Allied to this’
is the importance of selecting correct numerical quantitieé for the
elements of the‘weighing matriceé in the chosen perfqrmance.index and the

requirement to model the system accurately.

The intercept equations have to be scaled and linearized before V
suboptimal control can be applied. A reduced order system, including
only the'intercept error equations and the equation for the control

system, is considered in evaluating the suboptimal control as well as



thé.full eighth order system. The résults oBtained ﬁsing»the'third'ordér
system does not - dlffer much from those obtalned u31ng the elghth order '
system, at least 1n terms of miss dlstance and average 1nc1dence. The
computatlon tlme for the reduced order—system 1s much shorter. A serious
‘drawback of th¢~th1rd order system is that the resulting cqntrol does
not vary in an orderly;fashion and appears to be quite.random;‘ If this -

»problem of control stab111ty is overcome the thlrd order system can be
used.

Although modern tendency in missile guidance is towards implementation
of optimal guidance; in this work it is seen-that classical PNG law is
quite successful in engagement against highly manoeuvring targets. An

‘obvious advantage of PNG is simplicity of implementation.
Suboptimal control laws possess the capability of including other
criteria in the specification of the cost functional in addition to miss

distance in an engagement scenario.
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APPENDIX

SIMULATION PROGRAM LISTING
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AD(S,*)STGHA } :

PRINT*; MNZ:  HT 2

READC(S, *) MM, AT : '

PRINT*,' " GT"; PHGO :'!

READ(5,*)GT,PNGD P
CPRINT*, 'TANGENTIAL ACC :'

-RFAD(J,*)ATANGE , F

PRINT*,'DELTAT = DELTAR =

READ(5,%) DELTAT,DELTAR 3 '

PRINT*,"AASCY: AMGLE OF ATTALA aTAbILIZATION COEFFICIENT'
READ(5,*)AASC :

PRINT*, '"LAUNCH ANGLE (Duo) s

READCS, %) X(4) - B

‘INITIALIZEKTQV NECESSARY VARIABLES

SIG= JIG”A*°1/1JJ.
X (5)= P*COS(SIu)'
X(9)= *SIN(SIG)

KX ()= X(A)*DI/1 J.

PNG“PNhﬂ R
R=KD IS
\AIN—1ODUOO :
TI=0.

ALPHA=0. .
516007=0. -}
ALPDPOT=0. 7
pzeL=0. i
D2=0. !

C RPOT=0. ! )

RDOTDE=D, - !
ALPMAX=0. r
SUMALP=0, ;

DZELOP=0,

CALL 4xsc0tr<u,nn,.11,AL'uA,erR)
VIM=Mi*FA - -

X (1)= VIM*)IJCA'PHR)

X (2)= VIM*»O;(ALPHA)

VIT=M4TaFA
PRINT ‘NITIAL CJNulTlOHu AND TARGZD ES CAPE POLICY

WRITE /;310)“/”/41blAlﬂdrMT/GTlPNoIh]A”uE/DLLTAT/D[LTARICVRC
11AASC/(K(I)II 1111) . |

]

Tian=0.01 !

TIAT=0. v
i5=0.01 N
HSx=dS g

LHAX= rlurlq/ns+1pa
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00 500 L=1:LﬁAX

“EVALUATE THE?CONTROL

START SIMULATIAOA

.’

'IF(TIM uT.-.L)TH‘N !

RDOT= (x(%)*ux(s)+x(7)*ox(;))/R ' ‘ IR
SIGPOT= (X(B)fDX(Q)-((7)*DX(’))/R**Z
ALPDOT= (X (2)*BX(1)=XC1) 20 X(2))/VITHx2

SUBOPTIMAL CONTROL
: M L

IFCANSWERLEQE Y Y V) THEN
IFCTIMT QGRELHS*9 ) THEN
IFCRMOTLHELOI)TTG GO‘nuS(n/RDOT)
IF(TTOGOLLE.0.D5)G60TO 15 -
CALL HATRIXCA R M TIN)'

YLALL G'\I'l1(Al ild/((l 1310./ rT(JbO/Nr II\/UKL))

gLep=1. i
0 131 IKK= 1/0
DITLOP=D2E Lop+g<0(1,14r)xx(1h )/XH(IKK)
CONTIMUE = %
\as Lop-ovFL0P+J&bC1,7>.<(J>/xM(a)+c»u<1,a)*<(9>/xw(?)
waxrc(?,141)ovthop,anu .
F?RMAT((/'DZCLQP = YL,G015.641.° CKy = Y5 C1X,513.6))
pzEL=PZELOP * -
ELSE b L
IFCTINLLE . 2.303)D2ZEL=PHGxSIOD0OT-AASCHALPDAT
EWDIF . § o o
¥

CLASSICAL PNG LAY
. l

ELSE "

DZEL= PNG*SIGDJT AA;C*ALPDJT
ENDIF ;

ENDIF ' ]

HSX=HS i

TIM=TIMN-HS ©
CALL MISVAR(TIN)
CALL #MIS OEF(HI(IﬂITI Ir\Ll l‘iAfl f\P)

SUW ALPHA TO EV,\LUI\Tr ITS AVERAGE“

IF(TIN.GT .b.L)THfd .
SUMALP=SUMALP+AIS (AL PHA) :
IFCALPMAX,. LT.AWJ(ALPﬁA))ALP tAX=A3S CALPIHA)

ENDIF !

ST IN=TINM=HS

CALL P'J!‘GH\(MJNL,X II)XI11 /TIll'liaf1)

DECKEASE TImE STLP wuﬁﬂ PAIGE BECOMES SMALL ENOUGH

IF(R.LT.50.)A8=3.005
IF(RLLT LS I NnS=0,00%
TIMNM=TIMATHE® ‘
TIAT=TINT+HS

SET bZ TO ITS'MAX on MIW VALUE 1F NTCTESSARY

IFf (X(u).\)T 0 45237¢50) A0 =0, GLE5TE5G
IF (X(U).IT- ZOJ‘)?(.J\I) X(/)““.Lfbll‘:‘)u

LFCRLLT L RYINY RNIN=R

PRINT THE s1A1c vAa.nLuts AND THL CONTROL LVERY TEN TIME

!
i

STEPS



CIFCTIMT. uc.10 *H’)THLN L , ' ' :

TIMT=0. . ¥ - Lo A
WRITE ,1010)T1n,(x(1) 1= 1,11),ozsL

WRITE(2,12 1)R

121 FORMATO™R = 2, F9.2) '§1
ENDIF R ;
DZ=X(6)*180./p1 i
IF (OZ.uT.JLLIM) PL=LILIN

o LF (b2 .LT.-uZLIm) 37"'DLL11

..
c’ CHECK FOR STOP 16 curTzalA
C 1 MO

CALL MISFINCIERR) i
FFCTIMNGGT .35 3R IERR. T, A)uOTu odU
CIFCIERRLEQLO) GUTO 500
: WRITE (1120—)U)IFRR/TI"‘|1L
509 CONTINUE v
Ul ConTinue b
 ALPAVSSUMALP/(L-220.)

c ,

C PRINT SIMULAfIOHfRESULTc

c . k3 1 .
NRITE(112030)L/TI:"lt?l’.!‘\l/\!_l‘lm)(l-sLF’I\'J,(X([),1=1 1)

- NRITE(ZIZDSU)IL/TIH;RHIUI‘\IL AAXALPAV, (X (1), I=1,11)

c : i : :

C FURMATS FOR DATA

c

1070 FIRMAT(21CF12.64/))

1010 FORMAT(7CF11. 411X)//1u(l11 4,17))
1100 FORMAT(2(F1270)) .

1110 FORWAT(3IFI12.5,F3.0)

1120 FORMAT(S(FS A,Fo.Z))

FORMATS FOR orwtn 1/0 s f

('7(‘7(‘}

2010 F()RMAT(////I1JXI'P‘\OG;Ml lllauILCZo //f1JX/"************"'1////1.
154, "INITIAL. cJNJITl")hb g 211,15%, 'HO ¢ 'yT0.2," K,
2/215%X,'RD ;1 tP,F9 3 Wla /s NNX, ' SIGHAD ¢ Y,F6.2,' DEG',/s

S 315X, VL 'iFé..21/115X/'14T s VTGl sl 213N,V ATAN Y, F6.2-7,
414X,'PNRG YUFO.2,2, 1 X, ATANGE ¢ ' JFUL2.7,13X,"DELT ¢ '156.21/

513%7'DELR 1. 7', F9.2,/ 13X, CYRC ¢ Y500, 213X,V AASC YoF0e34/ .

05X, 'X(I) 1 61X, FD.4) /) a5X 0 R(D) 2 VSRS F9S4D 11D
2015 FORAATCL, 15X, PROGRAM NISSILLSG s/, 15K, o dxaknwxanknknk! /[,
15X, PINITIAL CONDITIONG : ',//, 13X, 'HO ¢ ',F6.2,' Ki', ~
2/,15%X,'P0 :'?',F9 3.0 B, /,11X,081GMAD 1 YLF6.2," DEG'./.
315X, L ¢ IF()-LI/f1 Nt AT e VoF0.2.0 213X, ATAN 'ch’:.?.(/;
4147 2" PNG ¢ IFD.-///11K1'ATA'J(:" : !IFO;21/113XI.DEL’T Y sF6.2.1
513X ,"DELR “,rr.. el P18,V CVRE VoT0.0,0 213X AASC 'sF0.3)
2020 FORMATUSN,YERROR . ' ,15,5X, TIME = ', T0.2,5%X,"PAS .= ',15) -
2050 F)nl“'\T(////.u\f PROGRAP TLRAINATED AT PAS NO @ Yo15.1 71054,
SYPIMAL TIME Doz Y,F6.3,//,5%,"W1SS DISTAUCE : *,F9.3,° MY 21,
CASKAVALPRAX U T iV LFbGLE, Y ALRPAY ' L3303, 1/, ' ,
A5Ke 'N(1) & 'foc1x,r9.4>,//,5x,!x<1> S5 UINGFY L L), 1)
STOP ¢

CiD "
SUBROUTINE (‘11 SNL(I(I TiM,pX)

THE INTE CrPT fu'J/\TIOJo'A;\L CVALUATCD ARND THE NECESSARY COE:'FF'ICIEN
ustb IN THC :,uUI\T”)\L) ARE COMPUTLD, . ' ' _ :
i T ‘

D IMEHSION X(11);0x(11).

Rfl\L LR-MO, mdrlYOIlY 'stl\"(:/.h” Nst nl/\X
REAL M4 ; K
[ OREAL MO, IYD M, LY -
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CRCAL LRAHO,HE,LYU, DY Ko il

R LAL MT ! _
-4 ‘A—G

COHMON /L')HST/PIIJI SRoLR,: IJH’.K‘IXCGU/XCGUIIYOIIYU/TVENT/TB/TAUSI

_.T AUG,KAG, DZLYMs AL, A3, FIHT LA, AT M, HEAX .

CanmnY /LJFF/?”A’E/FIuIC,..NFIECnt,rCIQ/FACF/FCNA/FXCPIFg;FR/FA:

COW“OJ /VAh/XX(11)/37K(1 JrHsXCG, 1Y
C I "‘041 ,UTI&-U CLsClXs '--./:\L/ ALPHAL M l/l!lDZl SCALtl DZELIVI“ :

: C34“0H /TARLIVIT H,,ATAJJL,oLLT«r,oLLTAR,AT,u

COMNMON JHISCO/TTCS4), FTHE (54) ,FSTATC16) JEROCTI6) S FARCTI6) ~
1FAX<’0,?U) FXX (70,2”),rTT(1b)/ZF\CF(J),LrCNA(7)fZPXCP(>)

EVALUATE THl‘fOtFFICIcm1u;

VIH=4QRT(X(1)**’+X(’)**a)5
AL= ATAV(Y(1)IX(“)) ;
ALPHAS AL*1%U /P11

HAsVIA/FA 4

QTILD=FR/ 2, AV IM=*2x 3R

CH=r Cliax LPHA=F CHFaD2

SAU=AE/ AR i :

IF (TIN.GT.T3) ALSAB=0.

CC= FACFHFFRIC (i=5.795) /% 045+FAASL* (1~ AESAD) :

CH=FCAAXALPHA* (KCG=FXCP)/LR+CFCAF=F JF*(xCu—ACbB)/LR)*DL

CX=-CC -t

C1==-CHt

1F (TI4.LT.T8) priL=d.

LFCTINLCELDEETATI VLTS VITHATARGE=HS /4o
i

A1SSILE FLIuHT DYNAAICS

)X(’)—-1*X(J) *X (1) +aT IL D ZA/M+T /1
DX(3)“QTIL)*LR/IY*(C“ LP/JIm*DuD*F&Hd*X(J))

DX(4)= ‘((::)

DxC1= A(3)*X(°)*JT1LL/4*LZ ) | ':‘4
. ’ . ‘

|

|

'MFASU?'HENT Aun LJHT&JL SYSTEM -

DX(5)=-1 /TAUG*A(S)"’(\f)r‘PI/'IDJ *p X(35)
D‘(((.»)—~1 /TAUS*()\(U)*/("‘) -pLEL)

éTFRCLPT taéox

DX(B)= VIT*CUS(K(?))-VI:I*LU;()((L) AL)
DX(IN) = VIT”al’a‘(/(?))"Vl“"JIH(X(A) -AL)
IF(TIA.50 .08 IT]"@R)J‘((") I'/VIT

TRAJECTORY EOUATIONS

DXCI10)=VIMAxCOS(X(4)=AL)
PDACIY)= Vl1*alu(((4)—\L)
RETURH »

“wa

’
.

Su3 ROUTIN 13 "‘al SVAR(T I

MASS ANDSINERTIA VARLATION ’D\JRls\lg. BOOST-..
¢

Cis
No VAR

REAL Mot
CREAL MDD/ IYD ALY
REAL BT Y



_ ('l‘()(';h

(o]

C,

[a}

(B9
\ %0
w

209

ol
3714

C JMMOH /C')!\IJT/PII U JRILR/-'NHE 3/ XCGU/)\LbJI IY0., IYOI TVLNTI TBITF\USI 1S,
1TAUGzth,D‘LfﬂzA.anrFlqTII,MWIN;ﬂdAX

COMMON JCOSF/FIASE, FFRIC, FO Il F,FCHF:FLNQIFACFIFCNA;FKCP;FSIFRtFA'1

COMMON JVAR/XCI1) ,0X(11), 0, %CG, IY :

cgmmoy /15 l/uTILJzC1,LX,L:IAL/ALDHA,M4;HID7IDZEL/VIM

COMMON JTARGIVIT,HS ZATANG T, DL LTAT/DELTARZAT /R ,

COMMON /MISCHITT 4);FTHn(J4):F>TAT(1n)z}RU(16)IFAA(1°)'
1rxx(30, U);FXAT(’Jr’U);FTT(1u)

B l
s

T)UI TIi x
IF (TIM.GT.TE) TSul Td

L HOD=(AM0=10) /T8
X Ci D= (XC50-XCG3) /T

LYD=CIYO-1Y5Y /Ty

Lt ;
MA=(A0-nOD*TSHIN /5
XCG=XCHO-XCGI*TSUL
IY= (IYO-1YD*TSUIN/G

RETUR? ‘
ElD d
.fUARourlur MIJCOLF(HI1WrTI%rALPHA/1CKR)
CIW THIS ROUTIh HUREROUS CH
OF TABULATED VAhI%dLLJ Ak £

£ AREL °ERrOhNtD AND THLE VALUES
£V

K3
ALUATED USI1ikG IKRTERPOLATION.
REAL LR,Mo,ns,IYo,lfu,.es,ﬁﬁin,mmnx'

‘f\EAL ;“1 B . :

REAL ﬂOD,IYD;MzIY

REAL MT )

COMMORN /CO T/PII 3,58 LR, IS )n"‘f‘/ KCGULATOYH, 110/ IYﬁ/TV ENT/ TUITAUS/

1TAJG,KAG, DILEH,AE AT, FINT I¥ 0L, 1HAX
COAMGN /COEF/FIASESFFR IC,FLNF/FCMF,FCanFACF,FCNA,FXCP'FS:FR;FA:T

v o dm i /'J-\'Q/)(('\‘])ID ((11)/ l/A\. .17

COMMON /41SS/QTILD, SZ,CXsC Il"\Lr ALPHA MM+ H D2, DZELIVINM
CaMmMoN /Tr\Ru/VITlHJ/r‘ TANCEZ,0E LT -\TIDLLTQRIATfR
COMMON /i ISCU/TT(D 4), FTuR(34) ,TSTATY (10)IFQO(16)IFA/\(10)I

1FXK(—)U/«?U)IR‘XXT( J/Z'))/rTT('Iu)

.

1tRR=D

IF (TIN.65.00) 607259
. IERR=1. -
LT IA=0. P

WRITEC1,3000) 1& Rr\IT“l
CALL I'JTPOL(TIFTHA/TI"’/ fT/Jff)

IF (HaGil 0. ) 607D TI5G t
I‘RR" .
H=l, ' :

”I?ITL(1;3JQU) TLRR, TIH

IF (HJLT. 15)° bt)TO ¢y

IL.'\:\*)

214,999 :

WR1TE (1.,3000) 1ERR, T1H

cAaLtL IhTF’JL(F.u:E.»TAf;H;H T,10)
CALL I‘JTPOL(F:\;FN/H,?TTA>)
C/“LL IITP\’)L(FA;rAf/d,FTTz1u)

LF (M. Gl .H-'ﬂfn) HoT2 310 )
Jine=4 k 2 '

I\ ]"‘A“]II . : )
'Ia\th (1")0()'.)) Tuf,TIW

17 (it Lf..d‘\/\), (s )T.) :.."
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340)

609
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3390

.0y :

i

L2 B

oL O

cy» 0

[gf]
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Lionn=D . s
M M= MH AL ‘

RITEC,3000) LSRR TIA

Ir (ALP"IA-U». 23.) \;‘JTJ :»50

IERR=06 Y
I\LPHA"'

‘w217£(1,50)n) IZRR, T1A.

IF (ALPHA. LL‘“,) $ITI 340
LIERn=7? : o
CALPHA=25. - %

Wl T: (1,3000) ILI?QITI 4

CCOINTIHJE .

A?ALPHA’nRS(ALPMr)

CALL I‘vT[?'](FuA BT LX 2000, FA \TI1 217)

CALL f](rthCr.f)('/|ukl\)(]/u./'|0).
CALL Ih'TER‘](FCNF/FXXIE‘.'UFKKTV}/r’)
CALL RVCFCHF I FAK, s T AT 4,°9)

CALL ‘JTFQ’](FC‘J/T}\(/-- STXATA5,10)
CALL IATERCTIXX, FXKT,LFACT 12,0,60 3, Fncf th‘1/AdALPHh)

CALL IlT[P(fxx;r)\)(Tl?rr'u’/‘.)/) 15,7 ,FCNA, M ABALPHA),
CALL IlTF?(fXX/!)(/T/'fALr l1..t1l.)ld.)/)Il‘XLPI«‘I"IABALPHA)

Il

COITLIUE

FORHAT (35X, 'ERRIK 11 H15COEF

SRETURA

£ib
"UJROUTINE l‘IIoFI\i(l

Inl THIS R’JUTINr VA‘(IJU* CHL

RCAL M4
REAL #HOD, IYD/:‘I; lY

REA L T
.

cOMMON /C INST/IPL,S, 5?/LR/.1JHL31 (LbUl)\Lb 3, IYQ: IY:" TVENT, TBITAUSI

1TnUU/|’QUr DILIM AL ,AD,FINTIN A0 MINsLTAK
SanmdM JC00 FIFRASE,FFRIC,FINFAF CiaFs FC»’N/FACF/F

CKa

ARE

CREAL LY‘IH’)/'";L IYUIIY r‘u\ fl.lfb.‘l'i-'\)\

C,{)t”’_a"l /VA:(/X(]1)1.)'((11)1’114&\.GIIY
Chmiaon JAISsIuTILD, 22 ,CXr0MTrAL, ALPHAZ MM/ HZDZ, D7CLIV In

€ Inmoil /T\Ru/VI_]/xi.,rnTalnn.IDLLTAT/D CLTAR/ AT #K
TCOHMOI JHL1SCO/TTCA4), FTHR(IE) AT STAT (10) IFR\J(TO)IFAA 1 0)1

uFXX(c"Lf.’d)rFX)’T( Jz_'J)zFTTHU)

INR O

¢

IS srATic HARGIQ POSITIVI ?

FXCP=ACG)/LR

=
(55 '1.'l.T.'J.I) 1L =1

5
I

S
4

S SPCED OF THE wIS3iLe UR

n

IF (LALT,VIT) TIRa=

R}

3
9]
#

IF (MH LT .anfw) Ioie=’

LS RDOT < 3.7

WR= aqr(y(‘)s*>+x(c)r*“>
1F ((R=RR). LT.0.) I
R=RR

£al

IS AISSTLE MACH NUMaDR GRATER

-
L DY

' 15,5X, ' TIAG

PLKFORALCD.

', F8.3)

CNA,FXCP, FS,FRsFAs

THAWN THAT OF TrC TARGET

T“ I\‘\

U.3

2

-

A-8




[N o :

OGO OO

10

50

R-1V)

[t}

CrLesC O C)y Co €9

100

201

. - kB -
.acrunu o P o o . - A-9 |
£ b e ' Lo ‘ : B |
-°U“RJUTIuc 1uraa(x,v,_,ux,ur1,uv_,mz,x1,v1,z1) I
A DrPqu:wT VQiIAJLL
Y : FIRST INDEPENDIMT VARIADLE
Zz SECOND'INDEPCHSENT VARIABLL ‘
NX' '3 UPPER BOUND GF THL 3ECOWD LNDGX OF THE ARQAY o @
HY1 @ LOWER BOUSD GF THD FIRST ILDTX OF THE ARRAY -
Y2 2 UPPER BOUNHD GF THE FLRST INDEA OF THE ARRAY |
NI T NY2=NY1T41 : : : ‘ ’ L
X1 ¢ VALUE O2TAINED CY INTERPOLATION X(Y1,21) : |
cYT T VALUE X1 IS T 3 EVALUATED FOR
21 : VALUE X1 IS T 35 CVALUATED FOR
DIMENSION X(20,200,¥(20,20,2(7) o |
NXX=NX-1 : ‘ ' : o ) : S }
NZZ=NZ-1
DO 10 I=1,n22 |
IFCZ1.6E.2C1Y . Aub.21.L4.2(1))60TO 20 : : A
CORTIHUE ; - | . -
PRI uT*,'ﬁr ORI IhTEROLATbH 17 VALUE HOT IN RANGE !* . |
NYYT=HY1+1-1" : o ' '
NYY2=NY1+I ¢
D0 30 J=1,4XX
LFCYTLGL Y (RYYT /) JAND.YT.LEL Y(dYY11J+1))"0TU 40
CONTINUE b . {
PRINT*, "CRRUR IN INTERPOLATION ! ¥ VALUE NOT IN RANGE !° |
CONTINUE P ; , : .
DI 50 K=1,4xX ' S |
CLFOYTLGE YCHYY2/K) . AUD. 2 LE.YCHYYZ k+1))50T0 60
CONTIHUE . ¥ : |
PRINT *, "ERROR I INTE RPO'ATION ! Y VALUE NuT IN RANGE - (K+1) A
x11 =X (YY1, 4) - (X(NYY1,J) KCHY YT 28 +1)) = (Y LYY 200 - Y1)/(Y(NYY1,J

—Y(HYYT,0+1))

SUBROUTINE Il‘lTr 1L Xy YO/Y FiNsit).

x1 =X (NYY2,K) = (x(xvvl,f) XCHY Y2, +1))x(Y(quz,K)ﬁv1)/(vgnvrb,w
:-Y(MYYB,L+1)) o ‘
X1=X11=(x11-X12 )*(7(1>-r1>/<2(1) 7(1+1)) : ,
RETURN 3 “ ,
£ ND t '
1
X0 ¢ VALUE OJTAYJF) 3y INT RPOLATION x(y Q)
¥ "+ DCPENDENT VARIABLE A=X(Y) :
YO : VALUE FUR WJHICH X IS5 TO GWE EVALUATED
Y ©; INDEPENuENT VARIABLE
W xwotcarzs ROV OF THE Twd DIM: HSTOHAL ARRAY
Mz UPPER 300KD OF THE ZLIOWD INDEX OF THE ARRAY

1.E. KU, 1in)

. X3=0. 2 f

M= -1 d

DD 100 I=1,14%

JF(YD.5F. Y(N)I) AND .Y 1. L: .Y(1411+1))ob TO 2306
CONTINUE ' ‘ » .
PI?I‘JT*I"‘RKUR I ”‘Tl "7\) ATION ! YU =! IY\JI‘ N =Y, N, 11 ="'/,
¥0=0. , o - A

RETURN

X )= ‘((dtl)"’(X(NrI*‘l) 4\(h)l))*(YU"Y(N/I))/(Y(N/I+1)'Y(N/I))
-“-TUI\I E ’ :

|
1
"DIMCONSION X(ZQ/Z'));_Y(?J_;I’.‘.’)) 7 ’ . ' l
|
|
LD - . ’- ) ‘
JUHROUTINE l"lTP)L(X);’(/YJ Yn’:) |

X0 : VALUC 097,41.4[0 ny INTE RI’OL!\MO«\ X(Y0)



(v A s DEPEADENT VARLAGLE X=A(Y) S .
< YJ : VALUE FO WHICH X IS TO LE EVALUATED R e
¢ Y o TADEPENDENT VARIAGLE “
c A 2 UPPER BOJHD GF TiE xnxv
C T

DIHCNSIOA x(&ﬂ),vcan)

A3=0., . . .1

mAsa=1 !

Do 100 1= 1,mm _ : . .
CLF(YOLGELYCI) LAND .Y QL LELY (J+1))GD TO 200,
100  CONTINUE v A .
. RlHT*;'LRROR I INTERPCLATION ¢ YU =',Y0s,' 1 ='sh
C%XN=0. T : ; o o
R2BTURN ¢
200 x3 x(1)+(xtx+1> Y(I))*(YU Y(l))/(Y(I*1) v(1))
REITURN - }
EAND 5
JUHRJUTINE HATQIX(AIL/Hr1I1)

- ‘1“J THIS RO')TIHE THE B=3 A 'IAT'(lJ( AisD THE &»1 B MAT!\IX UsSeEd Il\
CSTATE SPACE REP.?ESLNTATI’JJ ARET FORMEID d.;le :\PPARENT LINEARIZATIO

THL MATRL CEJ"M‘L SCALED ALSOC. : -

i

CIC. O O

‘DINF'J 1 ON A(b/ )/B(Q))/D(';S)rF("')/X-f’I(S)/XID:‘I(S)

REAL L‘?n’lOf' IIYU/IY'rKuun1’IN/lH‘\X
REAL 14 :

‘REAL oD, IYDSMALLY

PﬁAL MT - o

-3
e

[of]

¢ ‘ [
COMMUIN /CONST/PIAG,S </LR/ Uzllu/XLu'.,/ACuHrIYO,IYBJTV’NT/TEITI\USI
1TAUG, KG GG, DILIN,AE LA, FI'QTI-:HI-INIWHAX
COMMON JCOCF/FBASZ,FFRIC, FCiUf,FCAT, FCI}IFACF/FCNA/FXCP/beFRtFAIT
L oMmMoN /\'AR/X(11)/0((11): o kCGs LY . |
CoAMON /1IDJ/UT;LDI u]ICXIC SALLALPHAZ MM, HAD T, SCALE/DZ&LIVIN
COMMON /TARG/VIT,HS JATANGE,DELTAT,LELTAR, AT /R
C)HPON»/MIJCOITT(JA)/FTHh(34)/FJTAT(16)1FR3(16)'FAA(10)r
1FXX()DIQJ)JFXXT(CDIA.U IFTT(1U)IZFACF(J)IZFLNA(?)IZFXCP(S)
DATA XdW/ 50.,2330s41,.03,.01,199.,530.,500./ - |
DATA KH/'0.1920.1.1/1./.Ulc,1.1quﬂd./)00u./, S R 5
AC1,2)= 0TILD7M*'Z/X(°) | , |
CA(1,2)= X(2) % ; o A : ‘ |
A(2,2)= (T+QTILD*CA)/1/X( ) ’ _ '
f\(t’l'l)—-)((S)" ) :
A .2)= LR*QTILO*C/ 1Y /K (2 )
CA(E,3)=- 'ATILD*LR**Z*)UO*FCle/lY/VIH . ; |
A(L,3)=1 : , _— ‘ . i
ACS,2)= A(:IE)*VUG*PI/1|IO - S '
A(5,3)= A(3/3)*r\AG*PI/1oU
CA(S,5)=-1. /TAYG
f\(()(.\)_—"1 / TARUS
al6,86)= A'('Sr.'))‘ '
B 6)Y=1./TAUS
AL7,7)=VIT*CO0S (K(?))/X(‘)
A7 ,7)=-VINeCIS(X(L)- /\L)/)((o)-r,\(71/)
AT, TIEANCT,TYL2 o '
AN(T7 o, :)—:\(7/7)*/(‘)/)((/)
A((JI?)—"‘\/I\*J“l(:((lc)"/\L)/A(u)
A (B,7)= VIT*.:IH(X(?))/K( )"'f*(ul/)
‘A(()I?)’\(JI )Y/2. ! .
ACE,3)=AC3,7)2X (5 )/K(‘))
: © 00 10 I=1.0 F
1u F(1)= X(1) :
_ F(7)=X(5) d
/ _ F(5)=4X(?) '
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CKD=-NN -

CALL cnPR)(A,F,u,s,a,1)'"

S R AT11

D(b)—a(0)+DZEL/TAU§

DO 41 1=1,3

3(I)= B(I)/XDM(I’
DD A1 J=1,5 !

h(l,9)= A(IrJ)*XH(J)/XDM(l)

RETURN

EHD S i

°UoROUTINC PART(F/NszNlrJ ehotssCrll)

'i

. THIS PROGRAN PARTITIOING A (H*d) GENZRAL MATRIX F 10
. . - FOUR sqg.ATDILLs As3sC AND D DELIMITED AT. THE NP'TH LINE
UL THL AP T CQLJh‘,"u THE FOLLOUING WAY: :

"UJSAS

lTl

- e
.ATTENSLdN:

v

DINCVSION F(T)zA(1)r>(1)/C(1)/D(1)

IJITIALI7E ldC ‘M.NTLRb

HHN=N-NP ?
{ = - P R
- KF=-N ;
KA=-HP k
K3==iP

KC==NN ;

. Lo
: PARTITI?N
DO 3 J=1,ip
KF=KF+N
KA=KA+NP
KC=KC+HH *
IK=KF . _
TLA=KA c
“1C=KC o

90 1 1=1,uP

S TA=14+1

IK=IK+1
CACILAYEF (1K) !

\ .
f .

)

E)

S

{
¥
- ARGUMENTS:T'
!
TR

THE F1iST P coLunNsuTo‘A AND € R \

M2
A D
T f-mme-g--=--=1 NP
: €. ¢ D

CALL PART (F H MsHP 0P ,AsE,CrD)

Foooo N*»4 GENERAL INPUT MATRIX
"N NUMIBER UOF ROWS OF . F

Moor NUHZER OF CCLUMNS OF F
WP ¢ RO KWUMBER AT MHICH F IS PARTITICHNED
2 ¢ CAiUd HUM2ER AT WHICH F IS PARTITIONED

A1 NEwxiP SUBAATRIX OF F -

¢ oL NP e{=AP) SUZMATRIX OF F

C ot (=P) =P SUDHATRIX OF F :
0 CGEenp) = (M=EP) SUBMATRIX OF Fo - |

CALBLC AND D SHIULD BE DECLARED AS MATPI»ES WITH(
: AP ROPP'ATL DIHE.bIUNS IN THE MAIN PRGGRAM. ‘



T

1K=TK+]

IC=1C+1 t » P % '.; _ - ' oo , A—if'_
CQC)=F(IK) ! I B ' : S - :

CONTINUL
PARTITIQNiTHE-OTHLR MH=i=P CCLUMNS INTO 'B.AND D

00.6~J=1)Mﬂ.’

K F=KF+H i
KI=K3+NP i
K D=KD+iH i
INKF b |
I3=K5 ‘? L _ _ o
IdD=KD . ER : P . - » ‘

oW

Lo _

. . ]
DO 4 I=1,0P 1
be

IK=TK+1
I2=1+1

B3UD=FUK) P
o N
by 5 I=t.nn T o

Ik=Ixk+1 -~ S - .

[9=1D+1 A

DCID)=F(IK) ¢

OMTINUE i

) i

CRETURN !

END :

SUBROUTINE KKHCA, i, T/&KsH)

DIHEHSION ACT)

ks

' C()"IPUTATIOJ COF THE Wit 0OF (MATRIX A)*(T IME INTERVAL )

i=1,
si +(A(I)*T)**7
= ORT(JV)*’

_ S,ELECTI'JN OF THE 571iP 812t H A.‘li)’ THE WUMRER OF DOUGLING
ITERATIONS USING VAN LOGAN®S CRITERIGH: SSN/(Q2* xKK)<1/2
. s i ,

=0 !

S H=T ” '

K=K+1
““H/L-‘ :

1SN=ISN/2" v SN
IFCISN.GE. 1)uJ 1() <

RETURH o

END : ! :
SUJR’OUTIH( rXPF)(F/‘J/H/t'I/ (.ILIIllrFT)

COMPUTLS THF EXPONle’InL O0F A bENERAL SQUARE MATI

N

CTHIS PRUGRAK
‘|<VAL (s1LP SIZL) H USING 3RD ORDER PADE

Fop A SIVEN TIHE- LUT
_APPROXIMAT;nu. '

USAGLC: :
cAaLL: LXP[-(F;N/li/x.'lll.’rl./l]r EFT)

INhUT «nCJtLNrJ ARE:

r° . bLNCQAL N SQUARE WA TRIX
W : ORDER H OF THE MATRIX F

EE W' TIME INTERVAL (STEP SIZE)
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€ e

rg =

L,m- WIORK VECTORS OF DIMENSIONW N
: _OUTPUT t o o |
O RS

Efr: N*H RESULT MATRIX E£XPOWCNTIAL OF FxH

DIMENSIONS OF MATRICES AND VECTORS SHOULD oC PROPERLY D[CLARI

CIN THE #AIN PRIGRAA.

DINENSION r<1);é1(1>,ﬁz<1>)L<1),m(1>,Err(1)

MATRIX- SI’L AHD IMTLR# DIATE TIMk INTLRVALS

W10t L

N2=N*N

CH2=H/2.

H10={*1/10. ¢
H60=H*H/060, '

SQUARING f

14=0
IK=~N
DO 2 K=1,N
IK=IK+N
Dq 2 J=1,N0 ‘
1J=1J+1 ¢
L JI=J0-N N
18=1K K
sI=0. "
DO 1 I=1,N
JI=JI+N !
Ia3=1a+1 g
SI=SI+F(J1)*F(ib)
EFT(IJ)=SI 5
CONSTRUCTION OF THE WORK MATRIX E1=I+(FHI**2/10.
DO 3 I1=1,02 | :
EN1CI)=EFT(1)4HA0
1J==N ' ¥ .
D0 4°I=1,N }
I1J=TJ+N1 B3
E1(13)= F1(1J)+1.»'
CONSTRULTIUH OF THE JORK MATRIX E2=I+(FH)*%2/60.
DO 5 I 1/”" ?‘
2(1) = LFT(I)*H#O
IJ_"N . :
DO 6 I= 1.0 ‘
IJ 1J+H1 - ¢
L2¢14)= L2(IJ)+1
MULTIPLICATION BY - (Fr/l)
1J=0 B
CIK=-N D
DY B K=1.N6
« IK=TK+N o
DI 3 J=1/N
TJ=1J+1

J1=9-n- | !
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1

- -
1) =2

3

‘DO G

QAT UG R
DO 7 I=1,H _>
JI=JI+n 3
Id= IU-O-‘I .

SISSI+F(ID #E2(In)
CEFT(1Y)=SIxH)

.

I=1,142 g"v
7(1) E1(I)+[FT(I)

\D+(FH)**2/10

DO 10 I= 1,n"'

ENCD =ETCD =EFT (D)

€1 InveRico -

CALL MINVCETIRrd.L,

A-14.

i

. U*(Fu>f#2/1d+(Fu/z>(1+(fu)~*2/ob)]=ﬁ1+ﬁrr PLACED IN E2

(FH/’)(I+(FH)**L/OD)}—E1 EFT PLACED IN- £

Ay

COMPUTATION OF CAPF(FH)I=CFT=E74%E£2

Co1d=0 ' ,

SUSROUTINE CAP\.‘I(/’/

, ;i
THIS

FORMS THE _ ,
OF THE CINZAR QUADRATIC OPTIMAL CONTROL PROBLEM DEFINED
FOR THL®SYSTLN (A,8) WITH THE PCMALIZATION MATRICES (Q/R) .
IN THE EOR%: : : : - S :
t, A s —G*RI*ST ¢
F0=. :______________-______:
! roo =0 -AT :
INPUT ARGUALNTS ARCE
4
! ‘A NN SYSTEM MATRIX
B £ . d*R INPUT MATRIX :
' Q : MaN STATE PENALIZATION MATR IX
: R=R INVERSE OF THE CONTROL PEhALIZATIOW

]

:

QUTPUTS!OF THE
. 3

oy

SUSROUTINE

- IK==N \
DO 12 K=1.,1
I&=TK+} ¢
DO 12 J=1,N
LJ=1J+1 £
JI=J-N )
13=1IK B
S1=0. - i
00 11°1I= 1,u t
JI=JT+N !
CIB= 16+ 1
SI=SI+E1(JII#E2(IB)
EFT(IJ) =51 j '
RETURN - i
END S

I

B,Q,RI-N, IH/oTI RLT' BR3T,F)

CONTINUOUS HAMILTON HMATRIX

| SATRIX
N i ORDER N OF THE SYSTEM
IR : ORDER < OF THE CONTROL VECTOR
SUZROUTINE ARE:
TRANSPOSE OF THE

INPUT MATRIX (R*N)

9T i
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. p0 3 K=1,N

S JI=y-1IR
“s=0.
S 1B=1B+1

- §=§- RI(JI)*UT(IB)
_RUT(IJ) S

HI=NJI+Y

TJJI=I+NNJ

o THIREUL O ARNRIS T A, Y
--i k37 :‘-U*PI*UT (N*H) ' ' A-15
3 o F.o: C2N) * (°N) HAQILTON MATRIX OF THh
K S fUPTIWAL LONTROL PROBLCM
USAGE: !
: Co CALL CANM(FIUIQ/RI/HIIRIDT/RBTIBRBTIF)

‘,JUBROUTIN:b u3£ui. ‘KUZUCU PRuBRAN,uJMPno

YATTENTIQN: DIMENSLIONS OF MATRICES SHOULD BE PROPERLY DECLARE
;~ IN THE anxu PROGRAH .

DIVENQION A(1)lB(1)i3(1)/Rl(1)/BT(1)IRBT(1)/LRBT(1)IF(1)

I

VECTOR sizes :

N2’7*|] o '

H .
l

Ni=Her f

TRANSPOSE OF THE INPUT MATRIX It
t i :

K=0" :

DO 1 I=t,n .

14=T1-N b

DI 1 J=1,1IR

1J=1J+N ' \
K=K+ P !

hT(K) U(IJ) !

COMPUTATIO& OF -RI*3T AFTER thao
14=0
IK=-1IR
IK=IK+1R .
DO 3 J=1,1IR
1TJ=1J+1
13=1K

o 2 I=111R
JI=JI+IR

B ™ - YISt G U g VO P

-

Fa

v COMPUTATIOV OF BROT = D=RUT

- CALL GiPRD(%,hBTzBR?TIJ/IQIH) I L

FORMAFIQN OF THE MATRIX F U‘ING THc ALGORITHM OF FORA .

NNJ=-N2
WJ==N

\'

FIRST N COLUHNS

po 5 J=1,N
HNJ=NHI+N2

0O 4 I=1,N

;
R L S i L

1J=T+NJ
F(IJJ) A(]J)

b0 5. 1= N1;N” A L



£ €3 €

JJ=I-H+NS 5 S R S o
CFups-edy 0 T A6

SECOND N coLumns

NI==-N E
DO 7 J=NToNZE
NNJ=HHI+N2
HJ=NJ+N

L
. R L
DO 6 I=1,N ¥ L
LJd=I+NnNy - b0 a
IJ=1+NJ o
F(I1JJ)=BRBT(I1J)

1J=J=-N2 ¢
DO 7 I=N1,N2°
- 1d=1J+N i

CCTJJSIHENNG b

FCIJJI==-AC14)

RETURH X
END

L}
3
2
g
1]

SUBRUUTINE GAIN1(A,31Q;RI;SrAL;TF:N:IRIGKO)

THIS SUBROUTINE COMPUTES THE LINEAR OPTIMAL FEEDBACK GAINS
CORRESPONDING TO A GIVEN HORIZON TIME TF WITH A PRESCRIGED .
DEGREE OF STABILITY OF AL. - . O

t

INPUT ASGUMENTvagE: v ‘ I o - .

' S A : N*N SYSTEM MATRIX
‘ B : W*R INPUT MATRIX .
‘ Q@ : W STATE WEIGHT MATRIX . :
' RI : R*R INVERSE OF THL CONTROL WEIGHT MATRIX
S : N*N FINAL STATE WLIGHT MATRIX
R AL : DESIRED DEGREL OF 3TABILITY
e TF : HORIZON TIME - _
A N : ORDER N OF THE SYSTEM
‘ . IR :

ORDER R OF THE CONTROL VECTOR
THE OUTPUT OF THE SU3ROUTINE 1S:
GKD : R<N FLEDBACK WATRIX

USAGL: S : )
: ':CAL'L GAINT (A LD /Q_IRIISI-AL/T FrNs IN-_/GKO)
SUBROUTII U v/ .
UZULJ PROGRAMS OGMPRDIHINVI CAN"IIKP\HrE)\P F3/PAPT
****ita**tn\ AR AE AR AN AF AR KN AR KA NT AR KN AR AN N R AA NN KN RRN AR N A KA KRR KK

THIS PROGRAM USES INTCRNEODIATE MATRICES WHICH CAN BE ¥
USEFUL FOR FURTHLK COMPUTATIONS IN THE LINEAR SYSTLM -

*
*
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(o}

<

'DIMENJION A(1);J(1)tu(T)’RI(1)19(1)zGKO(1)

D INENSION DT§1,8Y,RBT(J)ET,BRBT(Ska)’F(16,16)

_DINENSIJN E1(1611b)1£2(1o'1o):LW(1o);MJ(16)1EF(10116)

F11/F121F21/F22

CN1=N+

"CONTINUL

STUDY. - DI”LNJIUND OF THOSE MATRICES SHOULD BE GIVEN -

*
‘-:-' WITHIN THIS. SUSROUTINE. THUSE MATRICES WAY FIGURE
M AHONo THE INPUT ARGUMENTS ‘IF NECCSSARY. o
F.3
*

'-tJIT THE. Q'CESLARY MODlFICATIONS BEFORE USAGL'<

****t!*****ktkk**l***l*:tk:*******************t***k*****tt

INTVRHLDIATE MATRICLJ AHD DIM:NSIONS FOR CANM -

BT': TRANSPOSLE OF .y (rR=N)
RUBT: =-RI*3T - = SR D
BRUT: —B#RI*DT o (Nxi)
F's HAMILTON MATRIX (2N#*2N)
AKX NKXAK AKX KK N ) - :

. B
. .

INTERME?IATE'MATRICCS‘AND'DIMENSIONS FOR ZXPF3

E1,E¢:
LW/MW' 2 WORK VECTORS (2N) .~ (FOR 2N*2N F MATRIX)
EF':

EXPONEHTIAL{OF THE MATRIX F*H.-(ZN*tN)

********

INTERMEDIATE MATRICEo AN D DIMLVJIONS FOR THIS SUBROUTINE

.TRANSITION MATRIX (2N*2H)
CWORK MATRICES FOR PART (n*u)
iRICCATI 1ATRIX (i *N)

“F1

e »s b

PP

N
FAN

Tk kK kK Kk kX

VDINENSION FI(16/1J)/F11(ulo)rF12(b/O)/F21(510)/F52(816)1P(015)

TNTERMEPIATL: MATRICES AND thENSIONb FGR MINV
kY )
KwAK Ak A ' . .

CDIMENSION L(5),i1(3)

INCREMENTORS AHD VECTUR SIZCS

N2=2xN
Nid=Nx I |
LY
INTRODUCTION OF THE PRESCRISED DEGRLE OF STABILITY
IFCAL.LE.0.) GO TJ 3 ;
2 0.2 S
1d==N (
DO 1 I=1,H

IJ=1J+K1 -
ACLI=ALTI +AL

ALTF==AL*XTF*2-
ALTF=EXP(ALTF)
DO 2 I=1,NN '
S(1)=S(I)*ALTF

! .
CONSTRUCTION OF T AARILTON MATRIX

WORK MATRICES (2N#*2H)  (FOR 2ZN*2N F MATRIX) .-

o A_*Ajg o



A [t} ﬁ ¥

CLCL L O C, O ¢
-— -
[oe i o
- [

DR PN PN o S T
- ;
[ad

[AS]

B N ol &)

T OoO0caoocon
L e
c
(oY

ﬁ(bﬁf‘)(?h(‘:(’)
- :

. c .
=

o e e s o

SN

oo

Y 5 K=1,6K !

IHPR""SIJN UF THL HI\ fR1X F-

JkITL(6;1OU) N » .
FORMAT(TX, " akx CAJOAHICAL” MATRIX f *xr',/)
NRITL(uz1J1)((F(I;J);J 1,u>),1 1,n )

****ix*k*xw

CFORMATCIX,12F10.4
SCLECTION OF THL 3THP SLZE AND THE GOUSLING NUMGER

CALL KKHCTZN2,TF, KK id)

- A-18

o TAPRESSION OF Tui STCP SIZE AND THE STEP SIZC

WRITE (6, 102)TF i, QI

CFORMATCIA, Y R 2!, F100bs ' TT=0,F10.4," RR=',13)

CXP”NENTIﬁ' )f ]

CALL LKPFJ(F/N~1JIL1/LL/LAIUJ/tF)

LAPRESSION OF" HC INIIAL TRAQ‘I]ION MA TR IX

CHRITE(6,103)° . , 5 . ,
S OFORMATCIA, 4% TRANSITION MATRIX FOR H *x%',/)
NRITE(GI101)((EF(I(J)/J=1{:2)11=1/H3) .

DOUBLING KX TlJAES

. Yy :
CALL" GHPR D(‘fF,'"’F, F’I/NZ;NZ(NZ)
'»H’RES 10: UF THE TRANSITIONW NATRIX

deTt(;rTOk)K

‘FOKHAT(1Xf'*** TRANSITION AATRIX AT DOUULING Kh

RITL(OI101)((F1(IIJ)fJ 1/&7)/1 1/“2)

IF(K.EQ.KK)SO Tu 5

00 4 J=1,02
DI 4 I=1,n2 "
EFCI,J)=FIC12J)
CONTINUE
PARTITIUN FI=CKiP (F*TF).

CALL PART(FLgNh,N_;H,sz111512;F211F2£

COMPUT"Y 2=F¢2-5=F12

"CALL bﬂph)(bir1_/|/N/4/N)

DO 6 J= 11

‘0 o I= 1/“ ‘. .
FﬁZ(I/J) r (lfJ)'V(I/J)

c)”aUTL F2qE- (R 1-‘*F11)='*F11 21

CALL GHPR)(S!F111P/N/”/N)

'
[

113)
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100 .

DR A AL A 2 B St A ST B o B o B ol B el SN NP

DU 7 J=1,N | : _ ! o ST ‘ -
DO 7. I=1,N - ' Sy YL , o o Ar}9.

’1(I,J)—°(I,J) Fc1(11J)
INVLCRT Faz R

CALL HINV(FL‘; LoD )

| COIPUTL'TH' RICCATi AATR IX P(D)=F52*kﬁ1 
CALL Jm"Ph(F L,F)1,P,N,u,d) |

: Impugssyou oF THE.RICCATI wATRIX P
mu.rﬁ(6,10':5)(é ‘ , |
FORMATC(IX,'a%* THE RICCATIL HATRIX PU ***'/)

WRITEC(GH 1 ‘}0>((P(IIJ)IJ 1/1’) s1=1 .0 ')
FQRVAT(1K/0F1U 4) .

COHPUTL THE F£E33AC GAIN MATRIX GKO=RGT »P (U)
CALL 1"RD(&\1T1P1UAO/IRININ)

RETUhN ;
END 1.

1

SUOROUTINE #Iilv

PURPOSE -
I!VCRT A ARTRIX -

USAGE - i )
CALL )’INV(A/N/D/L/M_) _
’ 1

DLSCRIPTION Of PARAMETEXS

A - INPUT MATRIX., DESTKOYEY IN COMPUTATION AND REPLACED BY

»nESUthNT INVERSE .
ORDLR. BATRIX A
RﬁSULTANT DETURMINANT
AORK VECTON OF LESIGTH i

.WORK VLCTIR OF LENGTH W

Erocz
LI T N |

REMARKS © | |
MATQIX*A‘dUST'UE A GLUERAL AATRIX

JUJROUTINES AHD, FUNCTION SULPRIGRALY KEQUIRED
NOUE ! . S

METHOD - ‘ o : A

THE STANDARD 5AUSS~ JORVAN HETHOD 1S USED. THE DETERMINANT

1S ALSO CALIULATED. A OETIRMINANT UF ZERO INDICATES THAT

THE MATKRIA 1Y SIHGULARN. .

) .
........................b....1..‘....h..................‘.l..........

SUSROUTINE MLV AN b 2Lr0)
DIMENSION A, L) 0 (1)

R i
)

- . L] - a somsv e LI Y
46 89 80 F P S5 6 0Byt oassss Bsan tsasesns arsaes LRI A O I ) . ]

IF A DOULLE pRE
-C Il COLURN 1 S
MHICH TOLLOWS.,

cl _
WOULD 5 REMOVED FRON THE DOUBLE PRECISION

1

STON JERSTCH OF THIS ROUTINE IS DESIRED » THE

e B e

|
|
«
|
i
i
1
i

i

il
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=
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=
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4o

ERE

DOUBLE;ﬁRECISIDN A,3,41;n,duLu,)AaJ‘”’ L e A0

p=1.0
NK=-

59

HK= N+ _
L (K)=XK : -

- THE C itud T ALJ\) JL l\Cn'aJVLU Fl\»):‘ JU LL

CISION STATEMENTS
CTION W1TH THIS

PRE
APPTARING' 1N OTIER ROUTIWLS USZD I CuN U
ROUTIHCa © -
THE DIUILE PRECISION VERSION OF THIS SUZRUUTINE #UST ALSO
CONTALN DOUSLT PRECISION FORTRAN FUNCTIOuJ; A35 IN STATEREN
10 MUST SE CHARCIe T Da25. : . ;

SEARCH FUR LARSLST £LOMACHT

v -

[}

30 £=1,id

ARY=K

K £

= KK §

BIGA=A(KK)

v

23 J=K,N

1Z2=N=(J=1)

Do
IJ=

20 1=K.4

12+1

Ir(/\ub(ﬁluf\) ABJ(:\(IJ))) 141L0/2J
LG IGA=ACTY) ~

L(K)=1
M(K)=J
C-‘L):‘JTINU,E

IuTF C“MNL' 1045

J=L(K) '
I1F(J-K) 3.)1.)5/&}

Kl=
0

KI=K1l+} :
HOLD==A(KI) &

JI=KI=-K+y 7
AKI)=ACII) ? ;

ACII)= HOLD

I=nk) - 7 : :

INTERCHANGE COLUANS

=N
30 I=1,N 7

IFCI-K) 45,45,35 :
JP=nx(1=1) ! ;

J K=
J 1=
HOLD=-A (J»l()
AURKI=AMITD)
A (J 1)= HOLD

DI AD JETAN G ;
HK+J ‘

JP+)

e i Ve e

i

DIVIDL - CuLUﬂV uY_lllUu PIVOL (VALUEl)T FIVOT LLENMENTY 15

COHTAI:!LD 1-l GIGA)

TF(BIGA) 43 /lo(.)'-ou
b= : ¢

.1

RITURY

R

55 1=1.,1

1FCI-¥) 50,55,5u . ! .
I=0Kr] : : -
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PO 65 11,4

K= IJ-IHK
'A(IJ)—uoLonn(“J)+n(1J)

KI=K - AR

ConTIAUT

b= D*quA

30

0 110 4=1,0"

CHOLD=ACKL) 7
JI=I~=N '

nLDucc narylx«‘?

IK=NCHD . O o
HOLD=ACIK). + o : e S - 3
y=1-n - ¢ T

IF(J-1D) u'/05/62_" '

C“NTINU[ :

OIVIDr ROW Y PLyoT
! .

DO 7JAJ—1IH
RKJ=KI+d v
1FCJ-K) 7)/7)/7)
A(hJ)—A(rJ)/leA

PRUDUCT UF PlVOT:'

?LPLACE PIVOT uY RICIPROCAL

A(KkJ=1.0/BI§A
CONTINUE

FINAL ROJ®AND COLJYA LXCHANGE

, , X . , :
K=N :
K=(K=1) : x

CIF(K) 1)J 150;1U)

I L(l’\)

_IF(I —K) 120,125,130

SHx(K=1)  *

JR=N*(1-1)jV' R .

JK=J+ a
HOLD=ACIK) © °

JI=JR+J .
AGUKY==ACII)" ; ‘
AGIT) =HOLD R
J=M(kY o Y g
1F(J- K) 100,100,125
SKI=K- o B

DO 130 I 1/1\) ,
KI=KL+N = :

ACGKI)==ACII)
AGI) =HoLy,
50 TO 140

RETURN o
£ HD - ‘<

oo .
--~-o--.-c------..'-o..o-..». .-vl.ll.l.ll.l.l.l_..‘.l.lI.I..i'll

i

SUBRIUTINE Grixd |



A-22

e e e e i e i e e e e e e e
(% - .
C-. CPURPOSE: : g’ . S
¢ © o MULTIPLY. TWU.G EPAL uArRILES‘To;fORM A RESUL TANT. GENERAL .
< MATRIX ‘ : S I ‘ o
c ¥
¢ USAGE ! .-
¢ . LALL UMP?J(AI 3/Q/fs/ ’IIL)
L ) . B - L - )
¢ DLJCRIPTION OF PARAMET ZR3 S . L
¢ A~ HAME OF FIRST ‘4’u1 MWATRIK - T
< U = WAME OF SECINY INPUT WATIIX B
C. R = NAMC OF OUTPUT JATRIX:
C. N - HUMSER OF RIWS IN A . .
< Mo~ HUNSER OF COLUMNS 1 A AND ROWS IN 3
: L - NUMGER OF COLUHJS InN 8 -
< AT ,
< RECUMARKS - A . .
¢ ALL AATRICES AUST 5 STORED AS GENERAL MATRICES
< HMATRIXR LﬂmuOT 32 1 THE - 5AmE LOCATION AS-MATRIX A
c MATRIX® R CANIOT 3E In THE SAME LOCATION AS MATRIX B .
¢ - NUABEROF COLUMNS OF @ATRIX A MUST 30 EGQUAL TO NJMEER OF RO
< COF MATRIXN 8 ‘ L ' .
: : . , o .
< SUGROUTINES AtO FUNCTLON SUZPROGRAMS RTGWUIRED
c MONE  ? . ' -
< METHOD % ' ' ' : .
< i COTHE 4 BY L MATRIX IS PREWULTIP LICD oY THE t BY M MATRIX A-
C ‘ AND TAL RUSULT IS STORED Id THE N-GY L MATRIX R - = =
. T _ e - , _ |
c -'n..ao--uo‘o-i----------.-----o..----.-nn-o-.-n--o.lo-'..-?.nl‘,noono'l-c1
¢ : ' |
SUSROUT 11l E M?RD(A/3/?:N1|1L) S _ Y
: l)IlncNoIO\l A(’)/.‘S(])/R(‘l) _ . . : ' ot
C1R=0 b : ' B - Co T
IK==-# - :
DY 1U K=1,L 7
1K=IK+H :
DD 13- J=1,0 +
AR=Igt1. Y
JI=J-N !
3= 1K o
wary=9 .
bd 10 I=1,4 1
1a3=19+1 - j ‘ - ' 3
10 RAIR) =R )"n(Jl)* (L‘f) ] . e
RETURN j
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