by

Ali Ecder

B.S. in M.E., Boğaziçi University, 1984

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science
 in

Mechanical Engineering

Bogazici University Library

Boğaziçi University
1986

MIXED CONVECTION ABOUT A ROMAIING SPHERE

ABSTRACT

This report presents a theoretical analysis of flow and heat transfer characteristics of the effects of rotational speed, buoyancy force and the Prandtl number on laminar boundary layer over a rotating sphere in forced flow. Applying the finite difference method, numerical computations are carried out for various values of the above parameters. Both assisting and opposing flows are considered. Although the heating condition of uniform wallytemperiture is used in the analysis, the case of uniform surface heat flux is also studied in the formuation.

After an introduction to the subject and an examination of the previous works, the theoretical background chapter supplies a general formulation. In the section which follows the problem is specified. Then the results of the numerical solution are displayed in graphical form. Finally, the results are discussed and conclusions are arrived at. The computer program is also supplied.

KURE UZERINDE KONVEKTIF ISI TRANSFERI

ÖZET

Bu çalı.sma, bir akışkan içersinde kendi ekseni etrafinde donmekte olan bir kureye dönme hızı, akıgkan yoğunlu-㒸undaki farislar ve Prandtl sayisinin etkilerini akiş ve 181 transferi açsindan incelemektedir. Sonlu farklar metodu uygulanarak, adı geçen parametreler için farklı deǧerlerde nifmerik hesaplar yapılmıgitir. Esas olarak yfizey sicaklığ sınır koģulu olarak kulllanıldığ halde başka sinır kogullarınin tercihi halinde formulasyonun nasil degigebileceğ ayrica belirtilmigtir.

Konuya giris kismandan sonra, ilgili alanda geçig-㐨 yaplan calignalar izerinde durulmugtur. Teorik bilgiler kasminda genel bir formulasyon fer almaktadir. Fakip eden kisımda problem matematiksel olarak açaklanmıątır. Elde edilen sonuçlardan alınan örnekler grafiksel olarak verilmistir. Fo son olarak sonaçar tuerinde tathablmas ve neticem ye varılmıģtur. Ayrıca hazırlanmıg olan bilgisayat programi da bu raporda yer aimaktadir.

TABLE OF CONTENTS

Page
ABSTRACT iii
ÖZET iv
IIST OF FIGURES vi
LIST OF SYMBOLS viii
I. INTRODUCTION 1
II. LITERATURE SURVEY 3
III. THEORETICAI BACKGROUND 6
A. Boundary-layer Equations 6
B. Dimensionless Ratios 10
C. Rotating Systems 12
IV. PROBIEM STATEMENT 74
A. The Governing Equations 14
B. The Boundary Conditions 18
V. THE SOLUTION OF THE PROBLEM 21
A. The Solution Method 21
B. The Dimensionless System of Equations 24
C. Difference Equations 27
D. Some Comments on the Computer Program 29
E. Results 31
VI. DISCUSSION 45
A. The Rotation Parameter 45
B. The Buoyancy Parameter 47
C. The Angular Position 48
D. The Prandtl Humber 49
VII. CONCLUSION 52
APPENDICES
A. The Derivation of the Equations of Motion for Boundary-layer Flow 53
B. The Computer Program 56
C. Symbols in the Compater Program 60
BIBLIOGRAPHY 61

Fig. XII - Angular distributions of the local friction factor (for varying buoyancy parameters) 42
$\begin{aligned} & \text { Fig. XIII - Angular distributions of the local friction } \\ & \text { factor (for varying Prandtl numbers - } \\ & \text { assisting flow case) }\end{aligned}$
Fig. XIV - Angular distributions of the friction factor (for Varying Prandtl numbers opposing flow case)

Listed below are the most commonly used symbols. Some others are defined ad hoc in the study.

Bp	Buoyancy parameter
C_{f}	Friction coefficient
Gr	Grashof number
${ }_{8}$	Acceleration due to gravity
E_{x}	Projection of g on the x-axis
k	Thermal conductivity
Nu	Nusselt number
Pr	Prandtl number
$\mathrm{q}_{\mathbf{V}}$	Local surface heat transfer rate per unit area
H	Sphere radius
Re	Reynolds number
Rp	Rotation parameter
\mathbf{r}	Radius of sphere circle at x
T	Temperature
u_{e}	Velocity at outer edge of the boundary layer
\square	Velocity component in x-direction
∇	Velocity component in y-direction
W	Velocity component in rotating direction
\mathbf{x}	Coordinate measured along surface from stagnation point
y	Coordinate measured normal to x
ε	Coordinate measured in rotating direction
α	Thermal diffusivity
β	Thermal expansion coefficient
ب!	Kinematic viscosity
ρ	Fluid density
ϕ	Angle measured from stagnation point
Ω	Angular velocity

Subscripts
w Evaluated at the surface
$\infty \quad$ Evaluated at the approach conditions

Circumflex
ヘ Non-dimensional form

Other aymbols

* For the case of uniform surface heat flpx
$\triangle \quad$ A finite increment

Heat transfer from rotating bodies is an area which includes challenging problems for scientists and engineers. Applications include rotating machinery, spinning projectiles, re-entry missiles, fibre-coating, etc.

The major difficulties encountered in the investigations regarding rotating bodies are the mathematical difficulties and the lack of a common formulation for the wide range of body shapes. In this investigation, the geometry is taken to be that of a sphere and the mixed free- and forced-convection is studied. Moreover, rotation in comparable magnitude to forced flow is considered. Mixed convection implies that the buoyancy force is not neglected and a uniform flow parallel to the axis of sphere is present. One may also think of it as a sphere moving in a direction parallel to its axis of rotation in a fluid at rest.

In the study, the effects of the variation of the buoyancy force, rotation speed and the Prandtl number on the flow and heat transfer are examined. Especially, the consequences of the Prandtl number variation are treated since it has not been a subject matter before, according to Iiterature.

Because of the consideration of the buoyancy force, rotation and forced flow at the aame time, the equations that govern the system are more complex compared to those of the previous works. The finite difference method is used to solve the coupled system of equations. In the application of this method, there is a transformation process. In spite of the apparent ease of transformations using finite differences, the numerical solution of such coupled systems of partial differential equations is not an easy matter. Iike almost every other engineering problem, it requires some original thought and modifications. However, once the computer program is developed, it serves the purpose for any
choice of the perameters of the system. Then the problem reduces to the examination and discussion of the results in order to arrive at conclusions.

In the literature, it is possible to come across investigations of laminar heat tranofer from axisymetric bodios. Lin and Chao [1] have concidered the problem of steady, laminar. free-comvection mondary-layer flou over axiaymatric bodies of arbitrary contour placed in an infinite ambient fluid. By way of a auitable coordinate transformation, the solution of the gererning conservation equations heve treen obtained in teras of a sequence of universal fawetions. They depend on the Prandtl number and a configuration function that is given by the bedy contour and its orientation rolative to the wody force. It is analogous to the wedge rariable in forced flows. Several of the universal functions have been ovaluatsd and takalated. To examine the usefalness and limitations of the analybis, the results have haen appliect to various tody shapes. Spheres as well as other ellipsoids of revolution have been considered.

Another investigation which has been conducted for the same case (free-convection over a non-rotating sphere) is Hasan and pujumdar [2]. It is a proislem of combine heat amd mass transior. This study is practically important. Appications include oraporation of fuel droplets, calm-day vaporisation of mist and log, arying of grains, controlling polymerisatiom reaction products by injecting auitable moleoular woight reactants along the porous wall of the reactor, ete. Humerical reantes of the local Sherwood number, the loaal Husselt nusery and the local wall shear stress have been given in tabular form and graphically. The cases of alding and oppooing therwal and concentration buopancy porces have been comeidered.

An investigation for a rotating wody has been performed by Badr and Denais [3]. They have considered the proilicm of laminar forcod-monvection from an izothermal eylinder rotating about its ovin axis and plaeod in a uniform atrean. Hejur emphasis has beon given to the effect
of the speed of rotation on the thermal boundary-layer geometry and also on the Nusselt number distribution.

In the stady of Leee, Jeng and De Witt [4], a procedure mesers established for the calculation of the momentum and heat tranafer rates through laminar houndary layors over rotating ayibymetric bodias in forced flow. They have used approprlato coordinate tranaformations and Pirk'a type of series and have numerically integrated the obtained coupled ordinary differential oquations for various values of the rotatios parameter and the Prandtl numer. As a special case from the fomulation for the rotating sphere, the flow and heat transfer characteristica for the rotating disk have wen obtalized.

The afore-mentioned buoyancy force has been neglected in some of the investigations for non-rotating bodies in forcea ilow and for rotating bedias either in forced flow (as in [3] and [4]) or in the absence of a uniform flow from infinity. Howevery, the negleet of the buoyancy effect may not prewe might when the veloeity is gall and the temperatare dificrence betmeen the gurface and the surrounding fluid is large. In such casaa, it is certain that this buoyancy lorce will affect the momontum and heat transfer rates.

Surono [5] has comsidered those eifecte on flow and heat transiar aver ratating anisymetric round-nosed badisa. In that study, the mumerical computations have been made for the case of rotatiag hemispherea for values of the broyancy parameter ranging fron eero to infinity. Using the results for the healsphores, the buoyancy force effects on flow and heat tranalar over a aphere have been examined. The affects of the proyancy force on flow eruption have also boen included. Since a uniform flow from infinity is absent in that study. it is not of mixed-convection type.

The problem of mixed forced- and froe-oonvection about a aphore has receivel relatively less attention. Ohen and Mucogla [6] have canducted auch an inveatigation for non-
rotating spheres maintained at a uniform surface temperature. They have presented the local wall shear and surface heat transfer reaults for gases having a Prandtl number of 0.7 for both assisting and opposing flows. The entire regime of mixed convection has been considered, ranging from pure forced-convection to pure free-convection. As an extension of their study, Chen and Mucogla [7] have also considered the boundary condition of prescribed uniform surface heat flux. In both of the studies [6] and [7], the finite difference method has been used to solve the transformed conservation equations.

Rajasekaran and Palekar [8] have considered mixed convection about a rotating sphere under two kinds of heating conditions, uniform wall temperature and uniform surface heat flux. They have applied appropriate coordinate transformations and Merk's method of series. Numerical computations have been carried out for Prandtl numbers of 0.7 and 1.0 and the effects of buoyancy force and rotation on the results have been investigated. The ratio of the Nusselt number at uniform surface heat flux to the Nusselt number at uniform wall temperature for different speeds of rotation has been examined. It is also stated in this article [8] that the effects of variatiom of the Prandtl number on the flow and heat transfer due to buoyancy, rotation and forced flow has not yet been considered and that this could be a subject matter for further investigation. In this present study, also those effects will be considered.

Im this chapter, initially, the formulation of the mixed convection proplem over a general three-dimensional Dedy will be comeidered and developed. Then the dimensionLess ratios encountered in this otudy are discussed for the saire of emphasising their signiflcance. Finally, a few comments are made on rotating aystems, since the mathemajicel models constructed and sometimes even the methods used in such sprtems have things in comon with one another.

A. Boundary-layer Equations

The equations of motion for a laminar, constant property, incompressible boundaty-lager flow ofer a general triree-dimensional body can ro stated as

$$
\begin{align*}
& \frac{\partial V_{1}}{\partial t}+\frac{V_{1}}{h_{1}} \frac{\partial V_{1}}{\partial x_{1}}+\frac{V_{2}}{n_{2}} \frac{\partial V_{1}}{\partial x_{2}}+\nabla_{3} \frac{\partial V_{1}}{\partial x_{3}}+\frac{V_{1} V_{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial x_{2}} \\
& -\frac{V_{2}^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial x_{1}}=-\frac{1}{\rho h_{1}} \frac{\partial p}{\partial x_{1}}+\nu \frac{\partial^{2} V_{1}}{\partial x_{3}^{2}} \tag{1}
\end{align*}
$$

$$
\frac{\partial V_{2}}{\partial t}+\frac{V_{1}}{h_{1}} \frac{\partial V_{2}}{\partial x_{1}}+\frac{V_{2}}{h_{2}} \frac{\partial V_{2}}{\partial x_{2}}+V_{3} \frac{\partial V_{2}}{\partial I_{3}}-\frac{V_{1}^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial x_{2}}
$$

$$
\begin{equation*}
+\frac{V_{1} V_{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial x_{1}}=-\frac{1}{\rho^{h_{2}}} \frac{\partial p}{\partial x_{2}}+\nu \frac{\partial^{2} V_{2}}{\partial x_{3}^{2}} \tag{2}
\end{equation*}
$$

The variables that appear in the above equations are defined in the derivation in Appendix-A. V_{i} are the components of the velocity vector and X_{i} are the corrssponding curgilinear coordinates.

Since in this study the geometry is that of a sphere, an appropriate curvilinear coordinatesmatem is chosen. This syatem is valid for any rotationally symmetric blunt-nosed body. Let $x-y-z$ be the mon-rotating orthogonal curvilinear coordinate sy:stem, with velocity components u-v-w, respectively. x is the distance along a meridian curve and it is measured along the surface from the stageation pointo." Fis the coordimate normal to x and it indicates the distance from the surface. z is measured in the rotating direction. Therefore, for the chosen coordinates,

$$
\begin{array}{ll}
x_{1}=\Sigma, & x_{2}=z, \\
v_{1}=u, & v_{2}=w, \tag{3}\\
v_{3}=v
\end{array}
$$

For this particular coordinate system, h_{1} and h_{2} can be evaluated as

$$
\begin{align*}
& h_{1}=1 \\
& h_{2}=r(x) \tag{4}
\end{align*}
$$

where $r(x)$ is the radius of revolution at x. Then the equations of motion for a steady, laminar, constant property, incompressible moundary-layer flow in the abote choice of coordinates are

$$
\begin{align*}
& u \frac{\partial u}{\partial x}+\nabla \frac{\partial u}{\partial y}-\frac{w^{2}}{r} \frac{d r}{d x}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+\nu \frac{\partial^{2} u}{\partial y^{2}} \tag{5}\\
& \mathbf{u} \frac{\partial w}{\partial x}+v \frac{\partial v}{\partial y}+\frac{u w}{r} \frac{d r}{d x}=\nu \frac{\partial^{2} w}{\partial y^{2}} \tag{6}
\end{align*}
$$

The partial derivatives with respect to z do not appear in the atrove equations bince there are no reriations in that direction (due to symmetry). The pressure can be determined
by the flow above the boundary layer. Let $U_{e}(x)$ be the volocity at the outer edge of the boundary layer. Then with

$$
\begin{equation*}
U_{e} \frac{d U_{e}}{d x}=-\frac{1}{\rho} \frac{\partial p}{\partial x} \tag{7}
\end{equation*}
$$

equation (5) becomes

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-\frac{\dot{q}^{2}}{r} \frac{d r}{d x}=\sigma_{e} \frac{d U_{e}}{d x}+v \frac{\partial^{2} u}{\partial y^{2}} \tag{8}
\end{equation*}
$$

The equation of continuity (from Appendix-A),

$$
\begin{equation*}
\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial x_{1}}\left(h_{2} v_{1}\right)+\frac{\partial}{\partial x_{2}}\left(h_{1} v_{2}\right)\right]+\frac{\partial v_{3}}{\partial x_{3}}=0 \tag{9}
\end{equation*}
$$

can rewritten, with the above formulation, as

$$
\begin{equation*}
\frac{\partial}{\partial x}(r u)+\frac{\partial}{\partial y}(r v)=0 \tag{10}
\end{equation*}
$$

Under the above conditions and when dissipation is neglected, the energy equation can be shown, in a similar way, to have the form

$$
\begin{equation*}
u \frac{\partial T}{\partial x}+\nabla \frac{\partial T^{2}}{\partial y}=\alpha \frac{\partial^{2} T}{\partial y^{2}} \tag{11}
\end{equation*}
$$

where $\alpha(=k / \rho C)$ is the thermal diffusivity of the fluid. Weth the above form of the energy equation, surface temperature of the body may vary only in the x-direction, wat never: in the z-direction. One should be aware of this restriction when stating the boundary comditions. It is also impartant that, when neglecting the dissipation term in the energy equation, one should keep in mind that high
values of the Prandtl number (for example, those values corrosponding to oils) may not be considered later in the study.

Convection is associated with the rotion of the flu1d surrounding the body. If this notion is caused by an externally applied pressure difference, it is called forcodconvetios. If, hovever, the motion is because of the denaity changes and the grepity, the termeiree-eonvection is used. As the topic of this study suggesta, a mixed type of convection is going to be considered here. Hence, in this case, the effecta of fres-conveotion are taken into account as well as those of the forced type. This requires the addition of another tera, the buoyancy force per unit mass, on the right-hand-Bide of equation (8). Let the fluid temperature be T_{∞} and the corresponding density be ρ_{∞}. The buoyancy force per unit veluse for an element of fluid, at temperature T and density ρ, will be $\left(\rho_{\infty}-\rho\right) g$, where g is the acceleration aue to gravity. Then the buoyaney force per unit mass is $\left(\rho_{\infty}-\rho\right) g / \rho$. If β is the coefficient of thermal expansion,

$$
\begin{equation*}
\frac{1}{3}=\frac{1}{\rho_{\infty}}\left[1+\beta\left(T-T_{\infty}\right)\right] \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\rho_{\infty}=\rho\left[1+\beta\left(T-m_{\infty}\right)\right] \tag{13}
\end{equation*}
$$

Therefore, the buoyancy force per unit mass is $\beta_{\mathcal{F}_{x}}\left(\mathrm{~T}_{\mathrm{I}} \mathrm{T}_{\infty}\right)$) for a more general surface, with

$$
\begin{equation*}
g_{x}(x)=g\left[1-\left[\frac{d x}{d x}\right]^{2}\right]^{1 / 2} \tag{14}
\end{equation*}
$$

Then, if the flow is opposite to the gravitational field. equation (8) becomes

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+\nabla \frac{\partial u}{\partial y}-\frac{v^{2}}{r} \frac{d x}{d x}=U_{e} \frac{d U_{e}}{d x}+\nu \frac{\partial^{2} u}{\partial y^{2}} \pm g_{x} \beta\left(T-\Psi_{\infty}\right) \tag{15}
\end{equation*}
$$

In equatian (15), the positive and negative signs are to be trken for assisting apposing flows, respectively.

The equations (6), (10), (11) and (15) are the bound-ary-layer equations. Although they are developed with the geometry of a aphere in mind, they are also valid for various shapes of bodies of revolution.

B. Dimensionless Ratios

It is important to realize the physical significance of the dimensionlese ratias used in this study, so that they will mean nore than juat numbers. That will be essential for interpritation of the reaults. In this seetion, firstly, those dimensionless raties that are commenly employed in heat-transfer calealations will be briefly corsidaređ. Those include the Reynolds number, the Fusselt number, the Prandtl number, the Grashof number and the friction coefficient. Later tero other dimensionless values wich are usea together with the Prandtl number as parameters in this investigation will be preseted: the rotafion parameter and the buoyency parametor. They will be deflned and gome corments will be zade upar tren.

The Reymolde maber is a measure of relative amgaitude of the inortial ferces to the viacour ferces occaring in the flow. The higher tie Reynolds number the greater will He the contribution of inertia effecta. The smaller the Reynolds nuger the graater will be the relative magnitude of the Piscone stresess.

The Nussel number gives a measure of the ratio of the heat transfer rate to the rate at winich heat would be conducted within the fluid under a temperature gradient.

The Prandtl mumber is the ratio of kinematic viacosity to thermal diffusivity. Diffusivity ia the rate at which a particular offact is diffuaed through a modium. Kinematic Viscosity of a fluid is the rate at which momentan diffuses through she fluld due to nolecular motion, and thermal diffusivity is the rate of aiffusion of heat in the fluid. Gases, in general, correspond to Prandtl numbers between 0.5 and 1.0. While water has the values of the Prandtl number at the orders of 1 to 10 , light organic IIquids are known to have values between 6 and 60. 0ils match to high values of the Prandtl number. However, they will not be considered in this study due to the reasons explained while constructing equation (11). Ifquid nefals, on the other hand, form the other extreme. They willi be represented with Prandtl numbers of less than 0.02. In this gtudy, they will not be considered either. The above Prandtl number spectrum of fluids is taken from Kays [9].

Another dimensioniess number is the local friction coefficient, which is defined by

$$
\begin{equation*}
c_{p}=\frac{p(\partial u / \partial y)_{y=0}}{0.5 \rho n_{\infty}^{2}} \tag{16}
\end{equation*}
$$

where u_{∞} is the free atream velocity.

The rotation parameter is definod according to the geometry to be considered. Therefore, it is sufficient here only to mention that the rotation parameter is the reletive magnitude of the rotation speed to the free strean relocity. A more precise definition will be atated later in the report when the geometry is taken into account.

The definition of the buoyancy parameter includes the Grashof number in the numerator and the Reynols namber in
the denominator. As a combination of these two dimensionless groups, the buoyancy parameter can be interpreted as the degree of free-convection as compared to forced-convection.

C. Rotating Systams

In the previous sections of this chapter, the formulation of the mixed forced- and free-convection is made. However, the geometry and the rotation are other significants aspects of this study. Therefore, a preliminary discussion exploring rotating systems with similar geometries will contribute to this present investigation.

Heat transfer from bodies of revolution spinning about their axes of aymmetry as both theoretically and practically important, in particular, when they are placed in a forced flow field. As explained in the previous section of this chapter, the rotation parameter conveys the information about the extent of rotation. According to iiterature [3], at high values of this parameter, the flow and thermal fields are strongly influenced.

Previous investigations in the field of rotating systems have comonly employed body shapes from a special class. [10] The bodies of this class have shapes which can be described by a power function of the type

$$
\begin{equation*}
I(x)=L\left[\frac{I}{I}\right]^{(2 m-1) / 3}, m \geqslant 2 \tag{17}
\end{equation*}
$$

where I is the distance from the nose measured along a meridian, $r(x)$ is the radius of revolution of the body, I is a characteristic length of the body and m determines the geometry. In the solutions, in is ued as a parameter; for example, $m=2$ is the case of a rotating disk.

However, cylinders and spheres do not fall in the class of the bodies mentioned above. It is not possible to obtain, for example, a sphere using a single m-value. Therefore, it lat more convenient to look for other methods for bodies such as cylinders and spheres. However, although cylinders and spheres are to be treated separately from the class mentioned above, they have features in common with those other body shapes. For example, it is possible to abtain the flow and heat transfer characteriatics for a rotating disk, as a special case, from the formulation for the rotating sphere. [4] This is why the commente regarding that apecial class are included in this chapter. Moreover, for a shere, which is the considered geometry in this present study, the Nusselt number in the vicinity of the poles can be closely approximated by the equations developed for a rotating disk, which is a body shape of that class. [IO]

A. The Governing Equations

The boundary-layer equations for laminar, steady, non-dissipative, constant property (except changes in density which produce buoyancy forces), incompreseible bound-ary-layer flow over a general rotating axiaymmetric body were derived in the pirst section of the previous chapter (equations (6), (10), (11), (15)). In order to serve for the discussions in this section, it may help to reatate the boundary-layer equations, here.

$$
\begin{equation*}
\frac{\partial}{\partial x}(I \sim u)+\frac{\partial}{\partial y}(I \nabla)=0 \tag{10}
\end{equation*}
$$

$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-\frac{w^{2}}{r} \frac{d r}{d x}=U_{e} \frac{d J_{e}}{d x}+\nu \frac{\partial^{2} u}{\partial y^{2}} \pm g_{x} \beta\left(T-q_{\infty}\right)$
$u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial w}+\frac{u w}{r} \frac{d x}{d x}=\nu \frac{\partial^{2} w}{\partial y^{2}}$
$u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\alpha \frac{\partial^{2} T}{\partial y^{2}}$

The aim of this chapter is to adapt those equations to the geometry of a sphere. As it is clear from Fig. I that gives the geometry, $r(x)$ is defined for a sphore by

$$
\begin{equation*}
r(x)=R \sin \phi=R \sin (x / R) \tag{18}
\end{equation*}
$$

where R is the radius of the sphere and ϕ is the angle measured fron the stagnation point.

Fig. I - The geometry of the problem.

With the above definition of $r(x), g_{x}$ in equation (14) becomes

$$
\begin{equation*}
g_{x}(x)=g \sin \phi=g \sin (x / R) \tag{19}
\end{equation*}
$$

As stared earlier, in equation (15), for the sign of g_{x}, the positivo and negative ones are to be taken for assisting and opposing Rlows, respectively. In the case of asaistirg flow, $T_{w}>T_{\infty}$ and the buoyancy force has a component in the positive x-direction; and in the opposing flow case, $T_{w}<T_{\infty}$ and the buoyancy force will have a component in the negative x-direction. This analysis is also valid for downward flow. Hoverer, in that case, the x-coordinate is measured from the apper stagaation point. This time, the assisting and opposing plows correspond to $T_{w}\left\langle T_{\infty}\right.$ and $T_{w}>T_{\infty}$, respectively.
U_{e}, which can be termed as the velocity at the outer odge of the boundary layer or as the local free strean velocity, in general has the expression:

$$
\begin{equation*}
\frac{u_{e}}{u_{\infty}}=A \frac{x}{R}+B \frac{x^{3}}{R^{3}}+C \frac{x^{5}}{R^{5}}+D \frac{x^{7}}{R^{7}}+\cdots \tag{20}
\end{equation*}
$$

where a_{∞} is the free strase velocity. [6] The corresponding constants $A, H_{i} C, D$, etc. for the sphere are given from potentlal flou aolution by

$$
\begin{gather*}
A=3 / 2, \quad B=-1 / 4, \quad C=1 / 80 \tag{21}\\
D=-1 / 3360, \quad \text { etc. }
\end{gather*}
$$

Ehich forms a sinemeries expansion. Therefore, the local freo stream relocity for a sphere is

$$
\begin{equation*}
U_{0}(x)=\frac{3}{2} u_{\infty} \sin \phi \tag{22}
\end{equation*}
$$

Also sualuating $d r / d x$ and $d U_{e} / d x$, the governing equations of the system may woritten as

$$
\begin{align*}
& \frac{\partial}{\partial x}(r u)+\frac{\partial}{\partial y}(r v)=0 \tag{10}\\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-\frac{w^{2}}{r} \cos \phi=\frac{9}{4} \frac{n_{\infty}^{2}}{R} \sin \phi \cos \phi \tag{23}\\
& \\
& +\nu \frac{\partial^{2} u}{\partial y^{2}} \pm g \beta\left(T-T_{\infty}\right) \sin \phi \tag{24}\\
& u \frac{\partial w}{\partial x}+\nabla \frac{\partial w}{\partial y}+\frac{u w}{r} \cos \phi=\nu \frac{\partial^{2} w}{\partial y^{2}} \tag{11}\\
& u \frac{\partial w}{\partial x}+\nabla \frac{\partial T}{\partial y}=\alpha \frac{\partial^{2} I}{\partial y^{2}}
\end{align*}
$$

It will bo nsefiul for later use to parametrize the above equations. The in-the-previons-chapter-memtioned parameters, the rotation parameter, Rp and the buoyancy parameter, Bp are now defined according to

$$
\begin{equation*}
\operatorname{Rp}=\left[\frac{2}{3} \frac{\Omega R}{u_{\infty}}\right]^{2} \text {, for sphere } \tag{25}
\end{equation*}
$$

Where Ω is the angular velocity of the sphere, and

$$
\begin{equation*}
B p=\frac{G r}{R e_{R}^{2}} \tag{26}
\end{equation*}
$$

Where Re_{R} is the Reynolds number, $\mathrm{Ru} \mathrm{m}_{\infty} / \mathrm{V}$.

The Grashof number is defined by

$$
\begin{equation*}
G r=\frac{g \beta\left(T_{w}-T_{\infty}\right) R^{3}}{\nu^{2}} \tag{27}
\end{equation*}
$$

The Prandtl number, ν / α, is also used as a parameter in the system. Then the governing equations containing the parameters are:

$$
\begin{gather*}
\frac{\partial}{\partial x}(r u)+\frac{\partial}{\partial y}(r v)=0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-\frac{9}{4} \frac{u_{\infty}}{r}\left[\frac{w}{\Omega R}\right]^{2} R p \cos \phi=\frac{9}{4} \frac{u_{\infty}^{2}}{R} \sin \phi \cos \phi \\
+\nu \frac{\partial^{2} u}{\partial y^{2}} \pm B p \frac{u_{\infty}{ }^{2}}{R} \frac{\left(\Psi-T_{\infty}\right)}{\left(T_{w}-T_{\infty}\right)} \text { sin } \phi \\
u \frac{\partial w}{\partial x}+\nabla \frac{\partial w}{\partial z}+\frac{u w}{r} \cos \phi=\nu \frac{\partial^{2} w}{\partial y^{2}} \tag{24}\\
u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial w}=\frac{\nu}{P r} \frac{\partial^{2} T}{\partial y^{2}} \tag{29}
\end{gather*}
$$

B. The Boundary Conditions

After the derivation of the governing equations, it is now convenient to furnish them with the boundary conditions. As in most of the other problems of interest, it is appropriate to solve the equations under the case of uniform wall temperature.

For the case of uniform wall temperature, the corresponding boundary conditions are

$$
\begin{array}{ll}
\mathbf{u}=\mathrm{v}=0, \quad \mathrm{w}=\Omega_{\mathbf{r}}, \quad \mathrm{P}=\mathrm{T}_{\mathrm{w}} \quad \text { for } \mathrm{y}=0 \\
\mathbf{u}=U_{0}, \quad w=0, \quad \mathrm{~F}=T_{\infty} & \text { for } \mathrm{J} \rightarrow \infty \tag{30}
\end{array}
$$

In this study, the above set of boundary conditions is used. However, in order to see what differs-in the formulation, it is useful to discuss another possible set, here. In some of the previous investigations, for example in [7], the case of uniform surface heat flux has been:employed. For that case of bourdary conditioms, the following can be written:

$$
\begin{align*}
& u=\nabla=0, \quad w=\Omega r, \quad \frac{\partial T^{*}}{\partial y}=-\frac{q_{w}}{k} \quad \text { for } y=0 \tag{31}\\
& u=U_{e}, \quad W=0, \quad \mathbb{T}^{*}=T_{\infty} \quad
\end{align*}
$$

For the uniform surface heat flux case, equation (27) of the formulation should be replaced by a new definition of the Grashof number:

$$
\begin{equation*}
\dot{G r^{*}}=\frac{g \beta q_{w} R^{4}}{k \nu^{2}} \tag{32}
\end{equation*}
$$

In that case, the buoyancy parameter is given by

$$
\begin{equation*}
\mathrm{Bp}^{*}=\frac{\mathrm{Gr}^{*}}{\mathrm{Re}_{\mathrm{R}} 5 / 2} \tag{33}
\end{equation*}
$$

For the boundary conditions defined by equation (31), it is necessary to change equation (28) in view of the new definition of the buoyancy parameter. Later in the report, when the dimensionless system is obtained, the formulation
is going to be made such that a single form is attained for both sets of boundary conditions. The equation that takes the place of equation (28) for the second case of boundary conditions is
$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-\frac{9}{4} \frac{u_{\infty}^{2}}{r}\left[\frac{w}{\Omega_{R}}\right]^{2} R p \cos \phi=\frac{9}{4} \frac{u_{\infty}^{2}}{R} \sin \phi \cos \phi$

$$
\begin{equation*}
+\nu \frac{\partial^{2} u}{\partial y^{2}} \pm B p^{*} \frac{u_{\infty}^{2}}{R} \frac{\left(T^{*}-T_{\infty}\right) R e_{R}^{1 / 2}}{\left(q_{w} R / k\right)} \sin \varnothing \tag{34}
\end{equation*}
$$

It is clear that, in that case of boundary conditions, the buoyancy force will assist the forced flow for $q_{w}>0$, and $i t$ will oppose the flow for $q_{w}<0$. Therefore, the positive and negative sighs in equation (34) are to be taken accordingly.

In this chapter, initially, the method of solution is decided or. Mhis is achieved by discussing various possible metheds, that have been used in previous investigations, with regard ta criteria such as convergence and stability. The decision is made on an appropriate method in recognition of its advantages. Later in the chapter, the governing equations and the boundary conditions of the previous chapter are transformed to form the dimensionless syatem of equations, which are then solved by the chosen method.

A. The Solution Method

In order to obtain solutions for the coupled momentum and energy equations, different procedures are possible. By applying appropriate coordinate traneformations and Merk's procedure [11], the governing equations can be reduced to a set of coupled ordinary differential equations. Im Mork's method, like in Gortler's method, the series solution is expressed in terms of universal functions. However, Merk's procedure treats the wedge variable as one of the imdependent coordinates. Merin's procedure for the compuwation of boundary-layer transfer has been examined in detail by Choo and Fagbanle [11]. The iirst author had previously discovered the incorrect equations in Merk's procedare. In that study [11], the corrected sequence of the differential equations governing the universal functions associated with the method are provided.

After the system of ordinary differential equations with two-point boundary conditions are obtained using the Merk'a method, an approach to the solution is possible by considering a related initial-value problem. A very effective class of numerical methods, which are called initial-value or shooting methods, is based on this notion.

There are two major difficulties associated with the shooting methods. The first one is the problem of convergence, and the second one is that the initial-value problem generated is frequently unstable, i.e. it is very sensitive to perturbations in the initial conditions. Multiple shooting method is developed to overcome those difficulties. In this method, the interval of the problem is devided into many subintervals and for each subinterval a corresponding initial-value problem is generated. Then the problems are solved making sure that the appropriate continuity conditions are satisfied at each of the subdi\quad ision points.

Rejabekaran and Palekar [8] have numerically integrated the set of coupled ordinary differential equations, which depend on wedge, rotation and buoyancy parameters, by applying the multiple shooting method. They have used the subroutine DPPTB from IMSL (the International Mathematical and Statistical Library). However, in the instructions given for the usage of this subroutine, it is indicated that the convergence is of vital importance. Therefore, one should take precautions to increase the probability of convergence. It is the best thing to increase the namber of shooting points. With many points the program essentially usea a finite difference method, which has less trouble with nonlinearities than shooting methods. In fact, in some of the previous work, for example of [6] and [7], finite difference method is applied.

In this present study, the original partial differential equations are solved by the finite difference method. For the purpose of comparison and with the intension of foxming a parallel description to that of multiple shooting method (or shooting methods, in general) as stated above, convergence and stability in the solution of finite difference equations are now examined.

The fundamental concept of the calculus is the interpretation of the derivative as the instantaneous rate of change. For that purpose, a finite increment is used and the limit as that increment approaches zero is examined. In the finite difference method, the inverse of this limit process is used. This is usually termed as "discretization". The discretization of a partial differential equation in a domain of independent variables results in the replacement of this domain by a finite number of preselected, discrete points, referred to as mesh or grid points, and the values at those points are determinew.

Let U be the exact solution of a partial differential equation and u be the solution of the difference equations, formed by the discretization prdcess, used to approximate the partial differential equation. Then the finite difference solution is said to be convergent when u tends to σ as Δx_{i} tend to zero, where x_{i} represent the independent variablea. In general, the error ($\mathbb{O}-\mathrm{u}$) can be decreased by decreasing. Δx_{1}, but this leads to an increase in the number of equations to be solved, because it means an increase in the nomber of points. Hence, each additional points adds to the time and labor of calculation. Therefore, this way of improvement is limited by such factors as time, machine storage space, etc.

The aiscretizetion error should be considered apart from the round-oif errors. If it were possible to carry out all calculations to infinitesnumber of decimal places, the exact solution of the finite difference equations would be ciatainea. However, calculations are carried out to a p1nite number of decimal places, which causes round-off errors. A finite difference solution is sadd to be stable when the total effect of all nound-off orrors is negligible.

As indicated above, the decision on the method is made in favor of the finite difference method. In the following section, the dimensionless syatem is obtained to bo used in the difference equations.
B. The Dimensionless System of Equations

The computational stade of all numerical methods for solving complex problems generally involves a great deal of arithmetica. It is, therefore, better to arrange the problem such that one solution is sufficient for a wariety of different problems. This can be done by expressing all oquations in terms of nom-dimensional variables. Then all problems with the same non-dimensional mathematical formulation can be dealt with my means of one solution. In this study, the non-dimensional variables are denoted by a circumflex ($($) over their original forms. x, y, r can be defined as

$$
\begin{equation*}
\hat{x}=x / R, \quad \hat{y}=\eta R e_{R}^{I / 2} / R, \quad \hat{r}=r / R \tag{35}
\end{equation*}
$$

It is clear that I and 0 are identieal. From equation (18),

$$
\begin{equation*}
\hat{r}=\sin \phi=\sin \hat{x} \tag{36}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\cos \phi=d \hat{x} / d \hat{x} \tag{37}
\end{equation*}
$$

Accordingly, the non-dimensional forms of the velocities can also be obtained:

$$
\begin{equation*}
\hat{u}=\frac{\hat{\tilde{r} u}}{\mathbf{u}_{\infty}} \tag{38}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\nabla}=\frac{\hat{r} \nabla R_{R}^{1 / 2}}{u_{\infty}} \tag{39}\\
& \hat{w}=\frac{w}{\Omega_{R}} \tag{40}
\end{align*}
$$

The nondimensional form of the temperature depends on the choice of the boundary conditions. For the case of unifotm wall temperature, the obvious non-dimensional form is

$$
\begin{equation*}
\widehat{T}=\frac{T-T_{\infty}}{T_{v}-T_{\infty}} \tag{41}
\end{equation*}
$$

wheroas if the case of uniform surface heat flux were used, the appropriate nom-dimensional form wowld be

$$
\begin{equation*}
\hat{T}^{s}=\frac{\left(T-T_{\infty}\right) R e_{R} I / 2}{q_{w} R / k} \tag{42}
\end{equation*}
$$

Sunatituting those mon-dimensional forms of equations (35) to (42) in tife governing equations ($(10),(24),(28),(29)$), the dimensionless system of equations can be formed as

$$
\begin{align*}
& \frac{\partial \widehat{u}}{\partial \vec{x}}+\frac{\partial \hat{v}}{\partial \hat{y}}=0 \tag{43}\\
& \hat{u}\left[\frac{\partial \hat{u}}{\partial \vec{x}}-\frac{\hat{u}}{\hat{r}} \frac{\hat{d r}}{\vec{x}}\right]+\hat{\mathbf{x}} \quad \frac{\partial \hat{u}}{\partial \hat{y}}-\frac{9}{4} \hat{r} \operatorname{Rp} \hat{w}^{2} \frac{d \hat{r}}{d \hat{x}}=\frac{9}{4} \hat{r}^{d \hat{r}} \frac{d \hat{x}}{d \hat{x}} \tag{44}\\
& +\hat{\mathrm{r}} \frac{\partial^{2} \widehat{u}}{\partial \hat{y}^{2}} \pm \mathrm{Bp} \hat{\mathrm{r}}^{3} \widehat{\boldsymbol{q}}^{2}
\end{align*}
$$

$\hat{u} \frac{\partial \hat{w}}{\partial \hat{x}}+\hat{\mathbf{v}} \frac{\partial \hat{w}}{\partial \hat{y}}+\frac{1}{\hat{r}} \hat{u} \hat{w} \frac{d \hat{r}}{d \widehat{x}}=\widehat{r} \frac{\partial^{2} \widehat{w}}{\partial \hat{y}^{2}}$

The above equations are also valld for the case of miform surface heat flux. 前owever, in that case, \widehat{T} and $B p$ would be replaced by $\hat{\mathrm{T}}^{\mu}$ and $\mathrm{Bp}{ }^{*}$, respectively.

The boundary conditions should also be written in terms of the non-dimensional variables. Then the set of bowndary conditions for the case of uniform wall temperature of equation (30) becomes

$$
\begin{array}{ll}
\hat{u}=\hat{\mathbf{v}}=0, \quad \hat{\mathrm{u}}=\hat{\mathbf{r}}, \quad \hat{\mathrm{T}}=1 & \text { for } \hat{\mathbf{y}}=0 \tag{47}\\
\hat{\mathbf{u}}=\frac{3}{2} \hat{\mathrm{~T}}^{2}, \quad \hat{\mathrm{y}}=0, \quad \hat{\mathrm{~T}}=0 & \text { for } \hat{\mathrm{y}} \rightarrow \infty
\end{array}
$$

while on the other hand, if the uniform surface heat flux case were to te used, the nen-dimensional form of the boundary conditions set would be as

$$
\begin{array}{ll}
\hat{u}=\hat{\mathbf{v}}=0, \hat{\mathbf{u}}=\hat{\mathbf{r}}, \frac{\partial \hat{\Psi}^{*}}{\partial \mathrm{y}}=-1 & \text { for } \hat{\mathbf{y}}=0 \tag{48}\\
\widehat{u}=\frac{3}{2} \widehat{\mathrm{r}}^{2}, \hat{\mathrm{y}}=0, \hat{\mathrm{~T}}^{*}=0 & \text { for } \hat{y} \rightarrow \infty
\end{array}
$$

The local frietion coefficient was defined by equation (16). Its form in toras of the non-dimensional variables can be written as

$$
\begin{equation*}
\frac{1}{2} C_{\hat{Y}} R e_{R}^{1 / 2}=\left.\frac{1}{\hat{r}} \frac{\partial \hat{u}}{\partial \hat{y}}\right|_{\hat{y}=0} \tag{49}
\end{equation*}
$$

The local Nusselt number can be defined as

$$
\begin{equation*}
N u=\frac{h R}{k}=-\frac{\left.R(\partial T / \partial y)\right|_{Y=0}}{T_{w}-T_{\infty}} \tag{50}
\end{equation*}
$$

The nondimensional expression is therefore

$$
\begin{equation*}
\operatorname{HuRe} e_{R}^{-1 / 2}=-\left.\frac{\partial \hat{T}}{\partial \hat{y}}\right|_{\hat{\mathrm{y}}=0} \tag{51}
\end{equation*}
$$

for the uniform wall tomperature case. For the case of uni-, form aurface heat flux, the local Nusselt number would be

$$
\begin{equation*}
N u^{*} R e_{R}-\dot{j} / 2=\left.\frac{1}{\hat{\Phi}^{*}}\right|_{\hat{y}=0} \tag{52}
\end{equation*}
$$

Noy, having established the dimensionless system of equations, it is time to form the difference equations, of the finite difference method, prior to the construction of the computer program.

C. Difference Equations

In the Eransformation of the differential equations Ge a poxis Buttable for the Pinite difference method, certain finitemdifference approximations to the derivatives have to be used. After this process of discretisation, which was disoussed in the first section of this chapter, the resulting difference equatione may be obtained.

In this study, an explicit iteration scheme is preferred and the down-stream direction is taken to be the positive x-direction. Therefore the iteration is performed starting froll the stagnation point.

The finite-difference approximations for the derivatives of the system are
$\frac{\partial \hat{\mathbf{u}}}{\partial \hat{\mathbf{x}}}=\frac{U D-U O}{\Delta X}, \frac{\partial \hat{u}}{\partial \hat{\mathbf{y}}}=\frac{U U(Y+\Delta Y)-U U(Y)}{\Delta Y}$
$\frac{\partial \hat{\nabla}}{\partial \hat{Y}}=\frac{V U(Y+\Delta Y)-\operatorname{VU}(Y)}{\Delta Y}$
$\frac{\partial \hat{W}}{\partial \hat{X}}=\frac{W D-W U}{\Delta X}, \frac{\partial \hat{W}}{\partial \hat{Y}}=\frac{W O(Y+\Delta Y)-W U(Y)}{\Delta Y}$
$\frac{\partial \hat{\mathbb{T}}}{\partial \hat{X}}=\frac{\text { TEMPD }- \text { TEMPU }}{\Delta X}, \frac{\partial \hat{T}}{\partial \hat{Y}}=\frac{\operatorname{TEMPU}(Y+\Delta Y)-\operatorname{TEMPU}(Y)}{\Delta Y}$
$\frac{\partial \hat{u}}{\partial \hat{\mathbf{Y}}^{2}}=\frac{\mathrm{UU}(\mathrm{Y}+\Delta \mathrm{Y})-2 \mathrm{UU}(\mathrm{I})+\mathrm{UU}(\mathrm{Y}-\Delta Y)}{(\Delta Y)^{2}}$
$\frac{\partial^{2} \hat{\forall}}{\partial \hat{y}^{2}}=\frac{W U(Y+\Delta Y)-2 W U(Y)+W O(Y-\Delta Y)}{(\Delta Y)^{2}}$
$\frac{\partial^{2 \hat{T}}}{\partial \hat{\mathbf{y}}^{2}}=\frac{\operatorname{TEMPU}(Y+\Delta Y)-2 \operatorname{TEMPU}(Y)+\operatorname{TEMPU}(Y-\Delta Y)}{(\Delta Y)^{2}}$
where lottereg U and D that follor U, V, W and TEMP denote upatrean and dovnmatream values, respectively. In the new reprosentation of the independent variables, X and I indicate the values of. \hat{z} and \hat{y} at the preselected, discrete pointe. ΔX and ΔY represent the apacing between those points. U, V, W and TEMP are the solutions of the dinite-difference equations. Variations in Y are onown in parentheses. If there is no variation in 8, those parantheses are omittad. The variations in X
are indicated by U or D, that follows U, V, W and TEMP. The partial derivatives in equations (43) to (46) have now their new representations.

Those finite-difference approximations for the derivatives can now be used together with equations (36), (37), (43), (44), (45) and (46) to form the difference equations, that construct the nucleus of the computer program, which is presented in Appendix-B.

In the following section, some comments will be made on this compater prgram with the intention of simplifying its examination.

D. Some Comments on the Computer Program

At this stage, it may seem that it would be enough only to discuss the symbols in the program. However, there are still some comments about the formulation that are significant to be made. The first one is on the buoyancy parameter. In equation (44), there are plus and minus signs preceding thispparameter indicating assisting and opposing plows, respectively. In the computer program, the baoyancy parameter is taken such that it may have either positive or negative values and the preceding sign is therefore ohosen plus.

Since the temperatare distribution at $x=0$ is not specified, a new temperature variable is used in the program. That is given by

$$
\begin{equation*}
\text { TEMP }_{i}=\text { TEMP } \times \sin \phi \tag{60}
\end{equation*}
$$

where 1 denotes the intermediate value. As the name indicates, the temperature solutions are converted back into the desired form of formulation later in the program. Therefore, the user does not need to worry about this feature of the program, but should keep in mind that at the points near the stagnation point it is not possible to obtain the temperature distributions and therefore the Nusselt number.

Since the velocity distributions at the stagnation point are known (velocities equal to zero), there is no need for modifications in their formulation. However, the momentum equation for velocity $-\hat{u}$ (equation (44)) should be changed because of the tern which includes the temperature variable. In this way, the temperature value is converted back into its earlier form uithin the calculation in the momentum equation. This process of changing the temperature variable and later converting it beck into its original form does not affoct the solutions for the velocity distributions since for small values of ϕ, that buoyancy term tends to zero.

The choice of the points, or rather the establishment of the apacing: between the points is quite important. For this problem, ΔX is taken much mmaller than ΔY, because there is a factor of u before the derivative term and that acts as a divisor in the difforence equations. The values of ΔX and ΔY are given in the DATA statements of the computer program together with the other information.

In order to serve as a multi-purpose program, the FORTRAN progran of Appendix-B contains a variable $N O H$, that indicater the work to be done. When HCH equals I, the velocity and temperature dibtributions are obtained. The corresponding friction actor and the Husselt number are also supplied. HCH $=3$ gives the effeot of the Prandtl number on the velocity and temperature propiles, while NCH=4 gives that on the friction pactor and the Nusselt number. Actually that is the object of this study. $\mathrm{HCR}=2$ displays both of the rosults of $\mathrm{HCH}=3$ and $\mathrm{NCH}=4$. When both the effects of the Prandtl number and the velocity and temperature distributions for various angular positions are desired, HCH should be chosen to be zero.

The constants, variables, arrays, parameters, etc. that are present in the computer program are given in Appendix-C.

Bmploying the computer program developed, it is possible to obtain the velocity and temperature distributions, either for assisting or opposing flows, at any angle (measured from the stagnation point), for any set of values of the rotation parameter, the buoyancy parameter and the Prandtl number. In each case, also the Nusselt number and the friction factor can be evaluated. Although the alm of this study is to observe the effects of the Prandtl number variation, some other:results that are attainable all along the study will be also displayed; and some corresponding conolusions will be arrived at. This is done with the intention of keeping the integrity of the subject. Owing to its practical importance, the set of boundary conditions given by equation (30), i.e. the uniform wall temperature case, is considered. Wome of the results are displayed in the following graphs. The following DISCUSSION chapter will be based on those figures.

Fig. II - Velocity distributions - Graph I

$$
\begin{array}{rl}
\mathrm{Pr}=0.7, & \beta=0.84 \mathrm{rad} . \\
I-R p=5 & B p=2 \\
I I-R p=1 & B p=2 \\
I I I-R p=1 & B p=1 \\
I V-R p=0 & B p=1
\end{array}
$$

$R p=1.0, \quad B p=-1.0$ (opposing flow), $\phi=0.84$ rad.

$$
\begin{array}{rlr}
I-P r=0.7 & I I I-P r=2.5 \\
I I-P r=1.0 & I V-P r=5.5
\end{array}
$$

Fig. V - Velocity distributions - Graph 4

$$
R p=1.0, \quad B p=1.0, \quad \phi=0.59 \mathrm{rad}
$$

$$
\begin{aligned}
I-P r & =0.7 \\
I I-P r & =1.0 \\
I I I-P r & =5.5
\end{aligned}
$$

Fies. VI © Velocity distributions - Graph 5

$$
R p=1.0, \quad B p=1.0, \quad \phi=1.09 \mathrm{rad} .
$$

$$
\begin{gathered}
B p=2.0, \quad \sigma=0.84 \mathrm{rad} \\
I-R p=1 \quad \operatorname{Pr}=5.5 \\
I I-R p=5 \quad P r=5.5 \\
I I I-R p=5 \\
P r=1.0
\end{gathered}
$$

FiE. IX - Tomperature distributions

$$
R p=1.0, \quad B p=1.0
$$

Fig. X Angular distributions of the locel Nusselt number

$$
B p \neq 2.0, \quad \operatorname{Pr}=5.5
$$

Fig. XI - Angular distributions of tho inooal friction factor - Graph 1

$$
\operatorname{Rp}=1.0, \quad \operatorname{Pr}=2.5
$$

Fig. XII - Angular aistributions of the local

Pig. XIII - Angular distributions of the local friction factor - Graph 3

$$
\mathrm{Rp}=1.0, \quad \mathrm{Bp}=-1.0 \text { (opposing flow) }
$$

$$
\begin{array}{r}
I-P r=1.0 \\
I I-P r=5.5
\end{array}
$$

Fig. XIV - Angular distributions of the local iriction pactor - Graph 4

In this chapter, the information of the RESULTS section of Chapter V will be referred to and the effects of the parameters will be exainined and discussed. This process will be performed considerimg ach parameter of the systom one at a time. Those parameters include the rotation and the buoyancy parameters, the angular position, i.e. the angle measured irom the stagnation point, and the Prandtl number. The examination of the effects of the Prandtl number is the actual object in this study, and therefore that will be considered as in the last parametor in the chapter.

The effects of the parameters vill be examined on the Felocity and temperature distributions, the Hasselt namber and the friction factor. Some of those are affected directIy by any one of the parameters while the values of the others vary indirectly.

A comparison of the results obtained in this study With those of the previous ones is also necescary. However, the formulation differs somewhat in each of the previous investigations. It is not actually the reaults that are important but rather the conclusions. All those that will be 3 tated for the cases of the rowation parameter effects and the buoyancy parametor effects are in agreement with those of Rajasekaran and Palekar [8]. The epfects of the Prandtl number were not previously investigated for a rotaing aphere with mixed type of convection.
A. The Rotation Parameter

The rotation parameter, Rp; was previously deifined. Howerer, it is aignificant to mention here that it is dopen:dent not only on the rotation speed but also on the free stream velocity. Therefore, an increase in the rotation
parameter can be interpreted either as a decresse in the free stream velocity, $u_{c o s}$ or as an increase in the rotation speed, Ω. The smallest value of the rotation parameter is gero, which corresponds to a non-rotating sphere. Very high values of the rotation parameter uill not be considered in this study, because in such a case, a degeneration occurs in the formulation. Then the effects of the free stream velocity are diminished and the system looks like the cass of the absence of flow. Hovever, the non-dimensional forms are obtained for a non-zero set of values of the free stream velocity.

The effocts of the rotation parameter will now be considered after the above establishment of its limits, within phich the systom will be examined. The velocity distributions and therefore the friction pactor are those that are directly aliected by the rotation parameter. An increase in that param mator results in a corresponding increase in the velocity gradient at kine wall, and therofore a decrease in the velocity boundary-lager thickness. The overshooting of the velocity propiles beyond the local free stream velocity, observed at high values of the buopancy parameter, takes place earlier as the rotation parameter is increased. This is due to the coupling between the buoyancy and rotation. The above-mentioned increase in the velocity gradiants at the wall reflects aifferently to velocities \widehat{u} and \widehat{w}. Since the maximusa value of the velocity \hat{Q}, except the region where overshooting is observed, is the local free strean velocity, the velocity profile of \widehat{u} incroases as the velocity gradiant incraases. Overshooting alsp acts in the same direction. However, veloefty 會decreases $\begin{aligned} & \text { ith the rotation parameter, since the maxi- }\end{aligned}$ mum velocity of rotation is at the surface of the sphere and increasing velocity gradient shifts the w-profile dounwards. However, such a commont is misleading. Although one may talk about a decrease in $\widehat{\theta}$, there is actually an increase in the velocity in the rotating direction, since the rotation parameter increases, i.e. the rotation speed increases. However, this increase is suppressed when the non-dimensional
form \widehat{W} is obtained in Section B, Chapter IV. As the rotation parameter increases, the friction factor also inceases, expected, due to the increase in the velocity gradient. The effects of the rotation parameter on the velocities and the local friction factor can be observed in figures II, III, VIII and XI. The overshooting is clear in figures III and IV.

The temporature distribution and the Nusselt number are indirectly affected by an increase in the rotation parameter. Because of the resulting increase in the velocity, a decrease in the temperature profile can be observed,ilf the wall temperature is higher than the surrounding fluid temperature. That, of course, implies an increase in the Nusselt number.

B. The Buoyancy Parameter

As it is pointed out earlier in the report, the buoyancy parameter can be interpreted as the degree of freeconvection as compared to forced-convection. This implies that at $B p=0$, the problem reduces to pure forced-convection. While on the other hand, an the buoyancy parameter takes pigher values, the effect of the temperature on velocities is amplified. It is clear that there is no need for imposing restrictions on the buoyancy parameter as done in the case of the rotation parameter. However, it can be stated that pure forced-convection is possible while pure free-convection is not attainable in this study. This requires different formulations as done in the studies [6] and [7] of Chen and Mucoglu. According to the formulation of Chapter V, the buoyancy parameter may take either positive or negative values. They correspond to assisting and opposing ilows, respoctively. Explanation, regarding under what conditions the flow may be named as assisting and opposing, is present in Section A, Chapter IV. There is no need to discuss that once more. However, it is necessary to point out that the direction of the gravitational force is significant, since it is the gravitational fiela which causes the buoyancy force.

As in the case of the rotation parameter, the velow city distributions and therefore the friction factor are those that are directiy influenced by the buoyancy parameter. For the assisting flow case, as the name suggests, the Velocity increases with increasing valuos of the buoyaney paranoter. In a way, the buoyancy parameter, when it fakes positive values, aids the llow. That can be observed in Pigures III and II. High values of the buoyaney parameter causes overshooting of the velocity profiles beyond the local freo stream velocity. The coupling between the rotation and the broyancy increases the amount of overshooting, as rasntioned previously. As in the case of the rotation paramatex, the friction factor also increasea vith inereabing buogancy parameter as seen in IIgure XII. Howover when they are compared with each other, rotation has a more pronounced elfect.

Also by the buoyancy parameter, the temperature distribution and the Nusselt number are indirectly affected. If the wall temperature is higher than the surrounding fluid temperature, s decrease in the temporature profilo and therePore an increase in the Nusselt number is observed in consequences of the inerease in volocity, when the buoyancy parameter had positive values (assisting flow) and is inoreased.

C. The Angular Position

Although the angular position is diacusaed as a paramotox, it $i s$ quito difierent in naturo when comparod vith the othor parameters. It determines the point on the surfaoe that will bo considered as one of the boundaries. Due to symmetry, the anglar poaition is enough as a parametor for thin purpose. According to the formalation of Chapter V, the valuo of \hat{X} gives direetly the angular position. The minimam value is zero and corresponds to the stagnation point.

As mentioned above, the angular position is not a parameter in the sense of the parameters discuseed earlier. The local froe stream velocity, U_{8}, defined by equation (22), depends on the angular position. Since it acts as the velocity at the outer edge of the boundary layer and therefore as one of the boundary conditions of velocity \hat{u}, it is obvious that a different velocity profile will be obtainet for different angular positions. That is due to the geometry of sphere. The same conclusion can be arrived at for velocity何. Since points at different angular positions on the sphere rotate at different speeds, the corresponding velocity profiles vary accordingly. Therefore, the angular position can be discussed as a parameter only for temperature, the Nusbelt number and the friction factor. The local Nusselt number and the 西ocal friction factor are represented in graphs as anguIar distributions. (Figs. X to XIV) The other variables can slso be evaluated for various values of the angle ϕ, not for the salce of comparison, but for investigating the distributions at those regions of the sphere. Different angles are considered also in the graphs.

D. The Prandtl Number

As orplained in Section B of Chapter III, the Prandtl nusber, P_{r}, to the ratio of the diffubivitiee. The kinematic Fiscosity is the rate at which momontum diffuses through the fluid due to molecular motion while the thermal diffusivity is the rate of diffusion of heat in the fluid. The range of the Prandtl numbers was also discussed in that section of the report.

The Prandtl number is an important parameter in this study, and its effects are examined for the Pirst time for a rotating sphero in forced flow with buoyancy effects also considered. That is indicated in the study of Rajasekaran and Palokar [8], who have considered the effects of the other
parameters and have indicated that the effects of the Prandtl nomber variation would be a subject matter for further investigations.

A change in the Prandtl number naturally affects the tomperature distributions and the Nusselt number. The existonce of the buoyancy parameter makes the Prandtl number possible to influence also the velocity distributions and the friction factor. When the buoyancy parameter takes larger values, those effects are easier to observe.

With increasing Prandtl number, the temperature distribution graph ohifts downards, as displayed in Fig. IX, because higher values of the Prandtl number imply much smaller palues of the thermal diffusivity, when compared to those of the kincmatic viscosity. As a consequence, heat is not diffused at a high rate. That explains why the temperature profiles becone steepor. Those steeper profiles imply increased temperature gradend at the mall and therefore decreased thermal boundary layer thickness. As a result, the local Nusselt number increases as observed in Fig. X.

The change in the Prandtl number is reflected to the velocity distributions by way of the buoyancy parameter. As geen in figures II, IV, VI and VII, for assisting flow, an increase in the Prandtl number docreases the velocity profiles. Less steop curres inply increased diffusion of momentum. It may be observed in Fig. IV that the overshooting beyond the local free stream velocity is prevented as the Pranditl namber iacraases. Then the rotation parameter have to tafe larger values, i.e. the spher has to totate at a larger spoed, before overshooting is detected. For opposing flow, on the other hand, velooity profiles take larger walnes as Pr increases. That is clear whon one takes into account what is meant by opposing flow. That was explained in detail peeviously in the report. Such a problem 甘ith opposing flow is the case when the sphere surface temperature is less than tzan the fluid temperature. As it is stated above, parallel to the discussion in the previous eections, a decrease in \hat{a} is followed with an increase
in 令. That is due to the shape of the $\hat{\mathrm{G}}$ profile. When Fig. VIII is observed, it is seen olearly that such an increase means less steeper profiles, as in the casc of docreasing र्u-ourves.

Pimally, the effects of the Prandtl number on the local irietion fastor are disouseed. As Pr is increased, the friction ractor takea maller values because of ske decreased velocity gradients, for the case of assisting flow. For the case of opposing flow, just the opposite is observed. The corresponding results are displayed in figures XIII and XIV, respectively.

In this study of mixed convection about a rotating ephere, the velocity and temperature distributions, the local Nusselt nuaber and the local friction factor are examined for varying parameters. Some of those parameters. the buoyancy and rotation paramsters, are also used in the previons studies. The effects of those parameters on the flow and hoat brangier are observed to agree well with those of the previous investigations. Fhe Prandtl number variation is considered here, for the first time, according to literature. The results are alaplayed in graplas and the the effects of this parameter on the $10 w$ and heat transfer are examined and the reasons for such effects are ana178ed.

In previous studies usually the shboting methods were preferred and subroutines from the progran Iibrarien were used. In this study, however, in solving the governing equations the ilnite difference method is directly applied to the problem. The computer program developed here is applicable to various bourdary conditions and it can be ured with a modification for a wide range of body shapes.

The Dorivation of the Equations of Motion for Boundarylayer Flow

The following discursion is adapted from that of Rosenhead [12]. The boundary-layer equations of motion together with the equation of continyity are derived for a general threefdinensional body in space.

Iet $\bar{\nabla}$ be the velocity vector in the fluid with the components V_{1}, V_{2}, V_{3} corresponding to the curvilinear coordinates x_{1}, x_{2}, x_{3}. If $\vec{\nabla}$ denotes the gradient operator, the equationg of motion of a viscous incompressible fluid can bs expressed in the form

$$
\begin{equation*}
\frac{\partial \vec{\nabla}}{\partial t}+(\vec{\nabla} \cdot \vec{\nabla}) \vec{\nabla}=-\frac{1}{\rho} \vec{\nabla} p+\nu \nabla^{2} \vec{v} \tag{61}
\end{equation*}
$$

where p is the pressure. I-t the surface of the given body bo denoted by S. Then the position of a point in apace is described by means of its distanco x_{3} neasured along the unit normal \vec{n} to S and the position vector \vec{a} on S. Theree fore, the position vector of such a point is

$$
\begin{equation*}
\vec{A}=\vec{A}\left(x_{1}, x_{2}\right)+x_{3} \vec{n}\left(x_{1}, x_{2}\right) \tag{62}
\end{equation*}
$$

Tho gradient operator $\vec{\nabla}_{8}$ for the surface S is
$\vec{\nabla}_{S}=\frac{\vec{a}_{1}}{h_{1}} \frac{\partial}{\partial x_{1}}+\frac{\vec{a}_{2}}{h_{2}} \frac{\partial}{\partial x_{2}}$
vhore

$$
h_{1}=\left|\begin{array}{l}
\partial \vec{a} \tag{64}\\
\partial x_{1}
\end{array}\right|, \quad h_{2}=\left|\frac{\partial \vec{B}}{\partial x_{2}}\right|
$$

and

$$
\begin{equation*}
\vec{a}_{1}=\frac{\left(\partial \vec{a} / \partial x_{1}\right)}{h_{1}}, \quad \vec{a}_{2}=\frac{\left(\partial \vec{a} / \partial x_{2}\right)}{h_{2}} \tag{65}
\end{equation*}
$$

where \vec{a}_{1} and \vec{a}_{2} are unit vectors on S, so that $\vec{a}_{1}, \vec{a}_{2}, \vec{n}$ form an orthogonal triad of unit vectors. The aurfaces of x_{3} meonstant make $u p$ the system of surfaces parallel to S. Lret M denote a member of this system. Then

$$
\begin{equation*}
\vec{\nabla}_{\mathrm{M}}=\vec{\nabla}_{\mathrm{S}}+\overrightarrow{0}\left(x_{3}\right) \tag{66}
\end{equation*}
$$

where $\overrightarrow{0}\left(x_{3}\right)$ denotes operators with coofficients of order x_{3}. Then the gradient operator $\vec{\nabla}$ for the space is

$$
\begin{equation*}
\vec{\nabla}=\vec{\nabla}_{M}+\vec{n} \frac{\partial}{\partial x_{3}} \tag{67}
\end{equation*}
$$

Since the velocily vector $\overrightarrow{\mathrm{V}}$ is in the form

$$
\begin{equation*}
\vec{v}=v_{1} \vec{a}_{1}+v_{2} \vec{a}_{2}+v_{3} \vec{n}=\vec{u}+\nabla_{3} \vec{n} \tag{68}
\end{equation*}
$$

it can be found that

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{\nabla}=\left(\vec{u}+\nabla_{3} \vec{n}\right)\left(\vec{\nabla}_{M}+\vec{n} \frac{\partial}{\partial x_{3}}\right)=\vec{u} \cdot \vec{\nabla}_{M}+\nabla_{3} \frac{\partial}{\partial x_{3}} \tag{69}
\end{equation*}
$$

while

$$
\begin{equation*}
\nabla^{2}=\nabla_{M}^{2}-J_{M} \frac{\partial}{\partial x_{3}}+\frac{\partial^{2}}{\partial x_{3}{ }^{2}} \tag{70}
\end{equation*}
$$

Where d_{M} is the first curvature of the surfaoe M, defined as

$$
\begin{equation*}
J_{\mathrm{M}}=\vec{\nabla}_{\mathrm{M}} \cdot \overrightarrow{\mathrm{n}} \tag{71}
\end{equation*}
$$

If there is a boundary layer on S, then x_{3} and V_{3} are small, and the derivatives with respect to x_{3} are large $\stackrel{\rightharpoonup}{\vec{\nabla}}$ compared with those with respect to x_{1} and x_{2}. Therefore, $\vec{\nabla}_{\mathrm{M}}$ can be replaced by $\vec{\nabla}_{\mathrm{S}}$. Then equation (6I) becomes

$$
\begin{align*}
\frac{\partial \vec{u}}{\partial t}+\vec{n} \frac{\partial \nabla_{3}}{\partial t} & +\left(\vec{u} \cdot \vec{\nabla}_{S}+\nabla_{3} \frac{\partial}{\partial x_{3}}\right)\left(\vec{u}+\nabla_{3} \vec{n}\right)=-\frac{1}{9}\left(\vec{\nabla}_{S} p+\vec{n} \frac{\partial p}{\partial x_{3}}\right) \\
& +\nu\left(\nabla_{S}^{2}-J_{S} \frac{\partial}{\partial x_{3}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right)\left(\vec{u}+\nabla_{3} \vec{n}\right) \tag{72}
\end{align*}
$$

Aiter performing the neeessary calculations, the boundarylayer equations (1) and (2) stated in Chapter III can be obtained. The equation of continuity is

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{v}=0 \tag{73}
\end{equation*}
$$

After the same reasoning, equation (9) is formed.

For mathematical details, one may consult the stady in Rosenhead [12].

APPENDIX B

The Computer Program

```
JOU10 PROGRAM GEPR(INPUT,OUT,OUTPUT=OUT)
UOO20 DINENSION U (16,500),V(16,500),W(16,500),TEMP(16,500)
UOU30 DIMENSION UU(16),UD(16),VU(16)
UOO40 DIMENSION WU(16)/WD(16),TEMPU(16) -TEMPD(16)
JO050 DIMENSION UF(5,16),WF(5,16),TEMPF(5,16),KNG(5)
JOOOO DIMENSION VNUS(500,4),VFRI(500,4),YVA(16),PRN(4)
JOO70 DATA OELX,DELY,IMAX NI,KMAX,NK/O.00084,0.20,16,1,1800,10/
JOU80 DATA U1,U2,UIN,V1,VIN/0.0.1.5,0.0,0.0.0.0/
J0090 DATA W1,W2,WIN,T1,T2,TIN/1.0.0.0.0.0.1.0.0.0.0.01
U010U DATA ROTP,BUOP,KMF,NCH/1.0,2.0.1000,21
J0110 DATA AU,AW,AT/1HU;1HN/4HTEMP/
JO120 DATA NPR,PRN,KRP/4,1.0,2.5,5.5,15.0.1/
UO130 I X=IMAX-1
U0140 UU(1)=U1
00150 VU(1)=V1
J0160 NU(IMAX)=W2
U0170 TEMPU(I INAX) =T2
U0130 D0 27 I =1,IMAX,NI
J0190 YVA(I)=(I-1)*DELY
JO2UU 27 CONT INUE
JO210 DEY2=DELY**2
20220 IF (NCH.EQ.1) PRN(1)=PRN(KRP)
JO230 IF (NCH.EQ.1) KRP=1
J0<40 I F (NCH.EQ.1) NPR=1
JO250 IF (iNCH.EQ.3) KMAX=KMF+1
00200 0) 28 NP=1,NPR
10270 D0 29 I=2,IX
00280 UU(I)=UIN
J0290 VU(I)=VIN
U0500 WU(I) =NIN
J0310 TEMPU(I)=TIN
JO32U 29 CONTINUE
30330 NKV=1
J0340 00 37 K=1,KMAX-1:
J0350 NKV =NKV-1
J0300 AX= (K-1)*DELX
JOS70 SAX=S IN (AX)
J0300 SAX2=SAX**2
30390 UU(IMAX)=U2*SAXZ
J0400 wU(1)=W1*SAX
30410 T EMPU(1)=T1*SAX
00420 VR=0.0
00430 IF (SAX.GT.0.0001) VR=1.0/SAX
30.440 COT = COS (AX)*VR
J0450 SAX4=SAX**4
00460 D0 30 I =2,IX
00470 DEXU=0.0
JO480 IF (UU(I+1).GT.0.0008) DEXU=DELX/UU(I+1)
J0490 BUOY=BUOP *TEMPU(I)*SAX2
j0500 UD(I) =COT*(UU(I)**2*2. 25*(SAX4+SAX2*ROTP*WU(I)**2))
OOj10UD(I)=UD(I)+SAX*(UU(I+1)-2.0*UU(I)+UU(I-1))/DEYZ
```

```
J0520UD(I)=UD(I)-VU(I)* (UU(I+1)-UU(I))/DELY
00530 UD(I)=(UD(I)+BUOY)*DEXU+UU(I)
30540 VU(I+1)=VU(I)-DELY*(UD(I)-UU(I))/DELX
JOS50 IF (ROTP.EQ.O.O) GO TO 91
30560WD(I)=SAX*(WU(I+1)-2.0*WU(I)+WU(I-1))/DEY2
J0570 WD(I)=WD(I)-COT*UU(I)*WU(I)
\cup0530 HO(I)=(WD(I)-VU(I)*(WU(I+1)-WU(I))/DELY)*DEXU+WU(I)
J0590 91 TEMPD(I)=(TEMPU(I+1)-2.0*TEMPU(I)+TEMPU(I-1))*SAX
J0SO0 TEMPD(I)=TEMPD(I)/PRN(NP)/DEY2+UJ(I)*TEMPU(I)*COT
J0610 TEMPD(I)=TEMPD(I)-VU(I)*(TEMPU(I+1)-TEMPU(I))/DELY
30020 TEMPD(I)=TEMPD(I)*DEXU+TEMPU(I)
J0030 30 CONTINUE
J0040 IF (NKV.NE.O) GO TO }8
00050 KN= (K+9)/10
J000J NKV=NK
00070 IF (NCH.GE.2) GO TO }8
UOSSO IF (NCH.EQ.O.AND.NP.NE.KRP) GO TO 8O
J0090 DO 34 I=1,IMAX:
30700 U(I,KN)=UU(I)
J0710 v(I,KN)=VU(I)
U0720 W(I,KN)=NU(I)
J0730 TEMP(I,KN)=TEMPU(I)*VR
30740 34 CONTINUE
JO750 84 IF (NCH.EQ.3) GO TO 83
U0760 36 VFRI(KN,NP)=(UU(2)-UU(1))/DELY*VR
00770 VNUS(KNNNP)=(TEMPU(1)-TEMPU(2))/DELY*VR
JO780 83 IF (K.NE.KMF.OR.NCH.EQ.1.OR.NCH.EQ.4) GO TO 87
J0790 D0 31 I=1,IMAX
J0300 UF(NP,I)=UU(I)
30810 WF(NP,I)=WU(I)
J0820 TEMPF(NP,I)=TEMPU(I)/SAX
0030 31 cONTINUE
J0040 37 DO 38 I=2.IX
30050 JU(I)=JD(I)
j0860 WU(I) =WD(I)
J0870 TEMPU(I)=TEMPD(I)
J0880 38 CONTINUE
U0%90 37 contINUE
UO900 28 CONTINUE
J0Y10 DO 32 NP=1,NPR
30920 K=KN
J0930 VDS=VNUS(K-1,NP)-VNUS (K,NP)
j094U 31 K=K-1
j0950 VDA=VDB
00960 VD{3=VNUS(K-1,NP)-VNUS (K,NP)
J0970 IF (VDA.GE.VDB.AND.VDB.GE.O.0) GO TO 81
30980 KNG (NP) =K
j0790 32 continue
O1U0O IF (BUOP.GT.O.O) PRINT 25
31010 IF (BUOP.LT.O.0) PRINT 26
01320 PRINT2,ROTP
U!U30 PRINTZ.BUOP
U1040 IF (NCH.GE.2) GO TO 80
J1J5J PRINT1,PRN(KRP)
U1U60 1 FOR.MAT(/.10X,'PRANDTL NUMBER : ',F5.2)
J1070 PRINTG
```

```
U\OO G FORMAT(///, 20X,'U(X,Y)',/)
J1090 PRINT4,(YVA(I),I=1,IMAX,NI)
J1100 )O 35 K=1,KN,7
J111J XVA=(K-1)*DELX*NK
J120 PRINT5,XVA,(U(I,K),I=1,IMAX,NI) NFFRI(K;KRP)
J1130 35 CONTINUE
U114U PRINT7
J11507 FORMAT(////, 20X,'V (X,Y):,/)
01160 PRINT4,(YVA(I),I=1,IMAX,NI)
J1170 DO 4J K=1,KN,14
j1180 XVA=(K-1)*DELX*NK
J1190 PRINT9, XVA,(V (I,K),I=1,IMAX,NI)
J1200 40 CONTINUE
J121U IF (ROTP.5Q.0.0) GO TO 92
J1220 PRINT3
j1230 % FORMAT(///, 20X,'W(X,Y)',/)
U1240 PRINT4,(YVA(I),I=1,IMAX,NI)
U1250 DO 50 K=1,KN - 8
J126U XVA = (K-1)*DELX*NK
J1270 PRINT10,XVA,(W(I,K),I=1,IMAX,NI)
J1280 50 CONTINUE
j1290 92 PRINT11
j130011 FORMAT (///, 20X,'TEMP(X,Y)',/)
J131U PRINT4,(YVA(I),I=1,IMAX,NI)
J32O DO SO K=KNG (KRP),KN,O
J1330 XVA=(K-1)*DELX*NK
U1340 PRINTJ,XVA,(TEMP(I,K),I=1,IMAX,NI),VNUS(K,KRP)
01350 60 CONTINUE
J1300 IF (NCH.EQ.1) GO TO 90
J137U 30 IF (NCH.EQ.4) GO TO 85
J1380 AXF=(KMF-1)*DELX
J1390 PRINT12,AXF
11400 12 FORMAT (///,10X,'VARIATION OF PRANDTL NUMEER (X=',F4.2,)
J410 PRINT13,(YVA(I),I=1,IMAX,NI)
31420 PRINT14,(AU,PRN(NP),(UF(NP,I),I=1,IMAX,NI),NP=1,NPR)
J1430 IF (ROTP.EQ.O.O) GO TO 93
J1440 PRINT15
J1450 PRINT14,(AW,PRN(NP),(WF(NP,I),I=1,IMAX,NI),NP=1,NPR)
J1460 PRINT15
U1470 93 PRINT14,(AT,PRN(NP),(TEMPF(NP,I),I=1,IMAX,NI),NP=1,NPR)
01450 IF (NCH.EQ.3) GO TO 90
U1490 85 PRINT 17
31500 D0 36 K=1,KN
j1510 V (1,K)=(K-1)*DELX*NK
U1520 36 CONTINUE
J1530 PRINT19,(PRN(NP),NP=1,NPR)
J1540 PRINT16,(V(1,K),(VFRI (K,NP),NP=1,NPR),K=1,KN,7)
J1550 PRINT18
U1560 PRINT19,(PRN(NP),NP=1,NPR)
J1570 00 33 K=KNG(1),KN,5
J1580 IF (K.LT.KNG(4)) G0 TO 82
J1590 PRINT16,V(1,K),(VNUS(K,NP),NP=1,NPK)
J1000 GO TO 33
J161.0 32 IF (K.GE.KNG(3)) PRINT 20,V(1,K),(VNUS (K,NP),NP=1,3)
J10?J IF (K.GE.KNG(3)) GO TO 33
J1030 IF (K.GE.KNG(2)) PRINT 21,V(1,K),(VNUS(K,NP),NP=1,2)
j1040 IF (K.LT.KNG(2)) PRINT 22,V(1,K),VNUS(K,1)
```

```
U1050 33 CONTINUE
J1660 90 STOP
J1670 25 FORMAT (////10X,'ASSISTING FLOW')
J1080 26 FORMAT(///,10X,'OPPOSING FLOW')
J1590 2 FORMAT(//110X,'ROTATION PARAMETER : ',F5.1)
J1700 3 FORMAT (/, 10X,'BUOYANCY PARAMETER : ',F5.1)
j17104 FORMAT(/, 4X,'X',16(2X,'Y=',Fj.1),/)
J172D 13 FORMAT (/,8X,'PN',16(2X,'Y=',F3.1),1)
J1730 14 FORMAT(1X,A4,F5.1,16F7.3)
」1740 5 FORMAT(1X,F4.2,16F7.3,F3.4)
J17509 FORMAT(1X,F4.2,15F7.2)
J1760 10 FORMAT(1X,F4.2,16F7.3)
j177J 15 FORMAT (/)
J1780 16 FORMAT (7X,F4.2,4511.4)
j179017 FORMAT (///,10X,'FRICTION FACTOR',//)
J130D18 FORMAT (///,10X,'NUSSELT NUMBER',//)
J18101G FORIMAT (10X,'X',4(3X,'PRN=',F4.1))
j1%20 20 FORMAT (7X,F4.2,3F11.4)
U1330 21 FORMAT(7X,F4.2,2F11.4)
J1640 22 FORMAT (7X,F4.2,F11.4)
J1850 END
```

Symbels in the Computer Program
I ：Variation in the J－direction
K ：Variation in the x－direction
$\mathrm{U}(\mathrm{I}, \mathrm{K})$ ：Velocity $\hat{\mathrm{u}}$
$\nabla(I, K):$ Volocity \hat{v}

U（I，K）：Velocity 解
TEHP（ $\left.I_{0} K\right)$ ：Temperature 企

UU，WO，WU，TEMPPU
：Upstream values
$U D_{9} W D, T E T P D$
KPR
$\mathrm{UF}\left(\mathrm{EPR}_{8} \mathrm{I}\right)$
$\Psi\left(E P R_{8} I\right)$

KAG（BPR）
VIUS（ H_{0} HPR）
VIRT（K，HPR）
IVA（I）
PDR（EPR）
DELX
DETY
HAX
甼I
KHAX
VII
U1，WI，W2，MI
U2，W2， 22
UIE，VIH，WIH，TIH
ROTP
BUOP
KMF
HCH
KRP
：Downatrean values
：Variation is the Prandtl number
：Volocity \hat{u} for various Pr
：Velocity for various Pr
：Tomperature T for various Pr
－Starting point for graphs of Nu for various Pr
：The Local Nu for various Pr
：The local C_{f} for various Pr
：Value of \hat{y} at I＇th point
：The Prandtl number
：$\Delta \hat{X}$
：$\Delta \hat{y}$
：Maximua value of I
：Every HI of I is considered
：Maximum value of K
：Bvery IK of K is considered
：Lus values of the variables on the surface
：She valnes of the variables awary from the suriace
：The values at the stagnation point
；The Rotation parameter
：The Buoyaney parameter
：The value of II for the desired angle
：The choice of mork to be done
：PRO（KRP）is the Fr value for which the Aistribu－ tlons ama calculatad．
I. Lin, F. N. and Chao, B. T., MLaminar Free Convection over Two-dimensional and Axisymmotric Bodies of Arbitrary Contourf" ASME Journal of Heat Transfor; Vol. 96; pp. 435-442; 1974.
2. Hasan; M. and Mujumdar; A. S., MCombined Heat and Mass Transfer in Free Convection about a Sphere, "The Canadian Journal of Chemical Engineering, Vol. 63, pp. 412421, 1985.
3. Badx, H. M. and Dennis, S. C. R., "Laminar Forced Convection from a Rotating Cylinder," International Journal of Heat and Mass Transfor, Vol. 28, pp. 253-264, 1985.
4. Lee, M. H., Jeng, D. R. and De Witt, K. J., "Laminar Boundary Layer Transfer over Rotating Bodies in Forced Flow, n ASME Journal of Heat Transfer, Vol. 100, pp. 496m 502, 2978.
5. Suwoxo, A., "Buoyancy Effects on Flow and Heat Transfex 0~ Rotating Axisymetric Round-nosed Bodies," International Journal of Heat and Mass Transfer, Vol. 23, pp. 819-831, 1980.
6. Chen, T. S. and Mucoglu, A., "Analysis of Mixed Forced and Free Conrection about a Sphere," International Joumal of Heat and Mass Transfer, Vol. 20, pp. 867-875, 1977.
7. Chen, T. S. and Mucoglu, A., MMixed Convection about a Sphere with Uniform Surface Heat Flux," ASME Journal of Heat Transier, Vol. 100, pp. 542-544, 1978.
8. Rajasekaran, R. and Palekar, M. G., MMixed Convection about a Rotating Sphere, $"$ International Journal of Heat and Mass Transfer, Vol. 28, pp. 959-968, 1985
9. Kays, W. Mo, Conwective Hoat and Mass Transfer, Tata McGraw-Hill Publishimg Company Iimited, New Delhi, 1979.
10. Irwine, $\mathrm{T}_{\mathrm{A}} \mathrm{Po}, \mathrm{ejic}$. and Hartnett, J. P., as editors, Advances in Heat Transfer, Academic Press, New York, 1968.
11. Chao, B. T. and Fagbanle, R.DO., "On Merk's Method of Calculating Boundary Layer Tranafer," International Joumal of Heat and Mass Transfer, Vol. 17, pp. 233-240, 1974 .
12. Rosenhead, L., as editor, Laminar Boundary Layers, Oxford Uniwersity Press, 1966.

