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MIXED CONVECTION ABOUT A ROLATLING SPHERE

ABSTRACT

This report presents a theoretical analysis of flow
qnd heat transfer characteristics of the effects ofvrotationé
al speed, buoyancy force and the Prandtl number on laminar
boundary layer over a rotating sphere in forced flow. Applying
the finite difference method, numerical computations are
carried out for warious values of the above parameters. Beth
assisting and opposing flows are considered. Although the
heating condition of uniform wall:temperature is used in the
analysis, the case of uniform surface heat flux is also
studied in the formudation.

After an introduction to the subject and an examina=
tion of the previous works, the theoretical background chap-
ter supplies a general formulation. In the section which

'follows, the problem is specified. Then the results of the
numerical solution are displayed in graphical form. Finally,
the results are discussed and conclusions are arrived at.
The computer program is also supplied.
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KURE UZERINDE KONVEKTIF ISI TRANSFERI

OZET

Bu ¢aligma, bir akiskan igersinde kendi ekseni etra-
finda dénmekte olan bir kiireye dtnme higi, akigkan yoZunlue
gundakl farklar ve Prandtvl sayisinin etkilerini skig ve 1is2
transferi agisindan incelemektedir. Sonlu farklar metodu
uygulanarak, adi gecen parametreler ig¢in farkli deZerlerde
niimerik hesaplar yapilmistir. Esas olarak ylizey sicaklifi
sin1yr kogulu olarak kulllanildigi halde bagka sinir kogule
larinin tercihi halinde formulasyonun nasil deZigebilecezi
ayrica belirtilmigtir.

Konuya girig kismindan sonra, ilgili alanda gecmige-
e yapilan caligmalar iizerinde durulmugtur. Teorik bilgiler
kasminda gensel bir formulasyon yer almaktadir. Takip eden
kisimda problem matematiksel olarak acgiklanmigtir. Elde
edilen sonuglardan alinan Srnekler grafiksel olarak verilmig-
tir. En son olarek sonuglar {lzerinde tapPagrlmag ve neticew
ye varilmigtir. Ayrice hazirlanmig olan bilgisayat Progra=
m1 d& bu raporda yer ailmektadir,
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LIST OF SYMBOLS

Listed below are the most commonly used symbols.
Some others are defined ad hoc in the study.

Bp Buoyancy parameter

Cf Friction coefficient

Gr Grashof number

& Acceleration due to gravity

8y Projection of g on the x-axis

k Thermal conductivity

Nu Nusselt number

Pr Prandtl number

9, Local surface heat transfer rate per unit area
R Sphere radius

Re Reynolds number

Rp Rotation parameter

r Radius of sphere circle at x

T Temperature

i Velocity at outer edge of the boundary layer

u Velocity component in x~direction

v Velocity component in y-direction

W Velocity component in rotating direction

p 4 Coordinate measured along surface from stagnation
point

Yy Coordinate measured normal to x

% Coordinate measured in rotating direction
4 Thermal diffusivity

f Thermal expansion coefficient

(% Kinematic viscosity

3 Fluid density

Y Angle measured from stagnation point

Ll Angular velocity



Subseripts

w Evaluated at the surface

00 Evaluated at the approach“conditions
Circumflex _

~ Non-dimensional form

Other symbols ,
% For the case of uniform surface heat flux

A A finite increment



I. INTRODUCTION

Heat transfer from rotating bodies is an area which
includes challenging problems for scientists and engineers.
Applications include rotating machinery, spinning projec—
tiles,; re-entry miss8iles, fibre-coating, etc.

The major difficulties encountered in the investiga-
tions regarding rotating bodies are the mathematical diffi-
. culties and the lack of a common formulation for the wide
range of body shapes. In this investigation, the geometry
is taken to be that of a sphere and the mixed free- and
forced-convection is studied. Moreover, rotation in compa-
rable magnitude to forced flow is considéred. Mixed convec-
tion implies that the buoyancy force is not neglected and
a uniform flow parallel to the axis of sphere is present.
One may alsoc think of it as a éphere moving in a direction
parallel to its axis of rotation in a fluid at rest.

In the study, the effects of the variation of the
buoyancy force, rotation speed and the Prandtl number on
the flow and heat transfer are examined. Especially, the
consequences of the Prandtl number variation are treated
sinee it has not been a subject matter before, according to
literature.

Because of the consideration of the buoyancy force,
rotation and forced flow at the same time, the equations
that govern the system are more complex compared to those
of the previous works. The finite difference method is used
to solve the coupled system of equations. In the application
of this method, there is a transformation process. In spite
of the apparent ease of transformations using finite differ-
ences, the numerical solution of such coupled systems of
partial differential equations is not an easy matter. Like
~almost every other engineering problem, it requires some
original thought and modifications. However, once the compu-
ter program is developed, it serves the purpose for any



choice of the parameters of the system. Then the problem
reduces to the examination and discussion of the results
in order to arrive at conclusions,



1I. LITERATURE SURVEY

In the literature, it is possible te come aecross in-
vestigations of laminar heat transfer from axisymmetric bod-
ies. Lin and Chao (1] have considered the problem of steady,
lanminar, free-gonvection Beundaryhlayar flow over axisymmet-
rie Yodies of arbitrary contour placed in an infinite ambi-
ent fluid. By way of a suitable coordinate transformation,
the solution of the geworning comservation equations have
Boen obtained in terms of a sequence of universal funetions.
They depend on the Prandtl number and a configuration func-
tion that is given by the bedy contour and its orientation
rolative to the body foree. It is analogous to the wedge va-
riable in forced flows. Several of the universal functions
have bBeen evaluatsd ard tabulated. To examine the usefulness
and limitations of the analysis, the results have baen ap-~
plied to various body schapes. Spheres as well as other el-
lipsocids of revolution have Been considered.

Anothor investigation which has teen conduected for
the same case (free-coaveetion over a non-rotating sphere)
is ef Hasan and Pujumdar [2). It 18 a proedlem of combined
heat ard mass tranafer. This study is practically important.
Applicatiens include ovaperatiom of fuel droplets, calm-day
vaperisation of mist mnd fog, drying of grains, controlling
‘polymerisation reaction produets by injecting suitable mole-
cular weight reactants along the porous wall of the reactor,
ete, Humerieal results of the leocal Sherwood number, the lo-
¢al Husselt nunbor and the local wall shear stress have been
given in tabular form and graphieally. The eases of alding
and opposing thermal and concemtration buoyaney forces have
been eoncidored. "

An investigation for a rotating Body has been per-
formed by Badr amd Dennis [3]. Thoy have considered the
protiicm of leminayr forced-gomnvection from an isothermal
- eylinder rotating alout its own axis and plaeed in a2 uni-
form strean, Hajor emphasis has bsen given to the effect



of the spead of rotation on the thermal boundary-layer geo-
metry and alsc on the Fusselt numbsr distribution.

In the study of Lee, Jeng and De Witt (4], a procedure
haes Bsom established for the calculation of the momentum and
heat transfer rates through laminar Boundary layers over ro-
tating azisymmetric bodies in forced flow. They have used ap-
propriate coordinate transformations amd Merk's type of ser-
ies and have numerically integrated the obtained coupled or-
dinary differential equations for variocus values of the rota-
tiom parameter and the Prandtl number. As a special case from
the formulation for the rotating sphbere, the flow and heat
transfer characteristice for the rotating disk have boem ob-
tained,

The afore-mentioned buoyancy force has been neglected
in some of the investigaticoms for non~-rotating bodies in
foxced flow and feor rotating bedises either im forced flow
(as in [3] and [4]) or in the absence of a wniform flow froem
infinity. However, the neglect of the buoyancy effect may
not prowe wight when the veloeity is small and the tempera-
iare difference betwaen the surface and the surrounding flu-
id 13 large. In such cases, it is cextain that this buoyancy
force will affect the momentum and beat transfer rates.

Suwono [ 5] has considered these effects on flow and
heat transfer aver retatipg axisymmetric round-nosed bodies.
In that study, the numerical computations have been made for
the case of rotating hemispheres for values of the buoyaney
parameter ranging from gero to infinity. Using the results
for the hemispheres, the buoyancy force effeets on flow and
heat tranafar over & sphere have been examined. The effects
of ths Bbuoyancy foree or flow erupticam have also been inclu-
ded. Since a uniform flow from infinity is abseant in that
study, 1t is not of mixedi-convection ¢ype.

The problem of mixed forced- and free-oonvection about
a sphere has received relatively less attention. Chen and
Mucoglu [ 6] have cenducted such an investigation for non-



rotating spheres maintained at a uniform surface tempera-
ture. They have presented the local wall shear and surface
heat transfer results for gases having a Prandtl number of
0.7 for both assisting and opposing flows. The entire re=-
gime of mixed convection has been considered, ranging from
pure forced~convection tae pure free-convection. As an ex-
tension of their study, Chen and Mucoglu {[7] have also con-
sidered the boundary comdition of prescribed uniform sur-
face heat flux. In both of the studies (6} and (7], the fi-
nite difference method has been used to solve the trans-
formed conservation equations.

Rajasekaran and Palekar (8] have considered mixed
convection about a rotating sphere under two kinds of heat-
ing conditions, uniform wall témperature and uniform surface
heat flux. They have applied appropriate coordinate trans-
formations and Merk's method of series, Numerical computa-
tions have been carried out for Prandtl numbers of 0.7 and
1.0 and the effects of buoyancy force and rotation on the
results have been investigated. The ratio of the Nusselt
number at umiform surface heat flux to the Nusselt number
at uniform wall temperature for different speeds of rota-
tion has been examined. It is also stated in this article (8]
that the effects of variatiom of the Prandtl number on the
- flow and heat transfer due to buoyancy, rotation and forced
flow has not# yet been considered and that this could be a
subject matter for further investigation. In this present
study, also those effects will be considered.



III. THEORETICAL BACKGROUND

In this chapter, initielly, the formulation of the
mixed convection problem over a general three~dimensional
bady will be comsidered and developed. Fhen the dimension-
leass ratios encountered in this study are discusaed for the
sake of emphasising their significence. Finally, a few eom-
ments are made on rotating systems, since the mathemagpicael
models constructed and sometimes even the methods used in
such systems have things in common with one emother.

A, Boundary-layer Equations

The equations of motion for a laminar, constant pro-
perty, incompressibile boundagy-layer flow over & general
three~dimonsional body can Be stated as

2 V. v, oV
1 + 2

1,02 1,y 20, 1'% °h
5
2t hl 2%y by sz 313 h]_h2 X,

v

(1)
v,2 on 1 9p *v
hlha 'axl 3h1 ‘Dxl 2132
2
2V v, >V ¥o >V oV L' P}
-—-—g-+_]-‘.-—£+..‘9:. 24.7’3—-_—%_—._}--—31
2t hl Dxl h2 ’axz Dx3 hlh2 sz
(2)
2
.V, 2h 1 29p Y.

The variables that appear in the above equations are defined

_ Ln the derivation in Appendix-A. Vi are the components of the
/vqlocity veetor and x; are the corresponding curvilinear coor-
dinates. -
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Simge in this study the geometry is that of a spheres,
an appropriate curwilinear coordinate~system is chosen. This
system is valid for any rotationally symmetric blunt-nosed
bedy. Let x-y-z be the mon-rotating orthogonal curvilinear
coordinate system, with velocity components u-v-w, respec-
tively. x 18 the distance along a meridian ceurve and it is
measured aleng the surface from the stagaation pdint. y is
the coordimate normal to x and it indicates the distance
from the surface. g is measured in the rotating direction.
Therefore, for the chosen coordinates,

(3)
Vlzu, V2=u, V3=v
For this partieular coordinate system, h1 and‘h2 can be
evaluated as
h1 =1
(4)
= y(
h, = r{x)

where r(x) is the radius of revolution at x. Then the equa-
tions of motion for a steady,laminar, constant property, in-
conpressible houndary-layer flow in the abo¥e choice of coor-
‘dinates are

2u u w° ar 1 2p 2%u (s)
U 4V —— = o — = = = — U — 5

2x oy r dx ¢ >x 2y

W 2¢ uw dr uézw (6)
U 4 Ve b —— — = U —

3x 2y r dx oy .

The partial derivatives with reépect to & do not appear in
the above equations since there are no variations in that
direction (due to symmetry). The pressure can be determined



by the flow above the boundary layer. Let U, (x) be the ve-
locity at the outer edge of the boundary layer. Then with

dU,e 1l >p
ax § ox

equation (5) becomes

2

2u 2u ¥~ ar dUe 2 u (8)
U=+ Vo e = === [ ==+ VUV — 8
2x 2y r dx € ax oy
The equation of continuity (from Appendix-i),
1 oV
—_— [9—- (n,vy) + 2. (hlvz)} +=2 -0 (9)
hlh2 Bxl X, 913
can be rewritten, with the above formulation, as
2- (zu) + &= (zv) = 0 (10)
ox ¥y

Under the above conditions and when dissipation is
- neglected, the energy equation can be shewn, in a similar
way, to have the form

>T ST > %7 )
q = 4 T = o<-——7 11
X ¥y 2y

where x(=k/¢c) is the thermal diffusivity of the fluid.
¥ith the above form of the energy equation, surface tem-
perature of the Body may wary emly in the x~direction, But
never im the g-direction. One should be aware of this re-
gstriction when stating the boundary comditions. It is also
impartant that, when neglecting the dissipation term in
the energy equation, one should keep in mind that high



values of the Prandtl number (for example, those values
correeponding toe oils) may not dbe considered later in the
study. )

Convection is asseciated with tho motion of the flu-
id surrounding the Body. If this motion is caused by an ex~-
ternally applied pressure difference, it is called forced-
convegtion. If, however, the motion 1is because of the den-
s8ity changes and the gravity, the termrfree-convection is
used. As the %topic of this study suggests, a mixed type of
convection is going to be considered here. Hence, in this
case, the effects of free-conveotion are taken into aceount
as well-as those of the forced type. This requires the ad-
dition of another term, the buoyancy force per unit mass,
on the right-hand-side of equation (8). Let the fluid tem-
perature be T, and the corresponding density be Q.. The buo-
yancy force per unit velume for an element of fluid, at tem-
perature T and density p, will be (¢o-35)g, where g is the
acceleration due to gravity. Then the buoyancy force per unit
mass is (gx-g)g(g. If 3 is the coefficient of thermal expam-
sion, '

-1--::-[-[1+ﬁ(m-mo,,)] | | (12)
3 g,

Then
g_=g[1+p (z-2.)] e

Therefore, the buoyancy force per unit mass is ﬁgi(T-Tqm,
for a more general surface, with

( [1 {dr T (14)
& (x) = & 1= dx} | *
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Then, if the flow is opposite to the gravitational field,
equation (8) beeomes

2

Ju >u W ar au, g Fu ( y  (15)
U ==tV == ===l =+t UV—s=g Tt 1
2x 2y r dx € ax 2y iﬁ w

In equatiem (15), the positive and negative signs are to be
taken for assisting amd opposing flows, respectively.

The equations (6), (10), (11) and (15) are the bound-
ary~-layer equations. Although they are developed with the
geometry of a sphers im mind, they are also valid feor various
ehapes of bodies of revolutien.

B, Dimensionless Raties

It 18 important to realigze the physical significance
of the dimensionless raties used in this study, so that they
will mean more than just numbers. That will be essential for
interpritation of the results. In this seetion, firstly,
those dimensionless ratics that are commenly employed in
heat~-transfer caleunlations will be briefly comsidered. Those
inelude the Reynolds number, the Husselt number, the Prandtl
number, the Grashof number and the friction coefficient.
Later two other dimensionless values which are use& together
with the Prandtl number as paraneters in this investigation
will be preseted: The rotaﬁien parameter and the buoyancy
parametor, They will be definedéd and some comments will be
zade upers them.,

The Roymoldms mumber is a measure of relative magni-
tude of the inertial forces to the viamcous ferces occurimg
in tke flow. The higher tke Reynolds number the greater will
Be the contribution of inertia effecta. The amaller the
Rsynolds number the greater will bde the relative magnitade
of the viscous stressca.
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The Nusselt number gives a measure of the ratio of
the heat transfer rate to the rate at which heat would be
conducted within the fluid under a temperature gradient.

The Prandtl number is the ratio of kinematic viscesi-
ty to thermal diffusivity. Diffusivity is the rate at which
a particular sffect is diffuased through & medium. Kinematic
viscoesity of a fluid is the rate at which momentum diffuses
through the fluid due to molecular motion, amd thermal diffu-
sivity is the rate of diffusion of heat in the fluid. Gases,
in general, correspond to Prandtl numbers between 0,5 and
1.0. While water has the values of the Prandtl number at the
orders of 1 to 10, light organic liquids are known to have
values between 6 and 60. 0ils match to high valuwes of the
Prandtl number. However, they will not be conaidered in this
study due to the reasons explained while constructing equa-
tion (11). Liquid metals, on the other hand, form the other
extreme. They will.'be reprosented with Prandtl numberas of
less than 0,02, In this study, they will not be considered
either. The above Prandtl number spectrum of fluids 1s taken
from Kays [9].

Another dimensionlese number is the local friction
coefficient, which is defined by

B (33/3Y)y=0

> (16)
0.5¢9 1,

Ce

where q»is the free stream velocity.

The rotation parameter is defined accordéng to the
geometry to be considered. Therefore; it is8 sufficient here
only to mention that the rotation parameter is the reletive
magnitude of the rotation speed to the free stream velocity.
A more precise Qefinitiom will be stated later in the report
when the geometry is taken into account. -

/ - The definition of the buoyancy parameter includes the
Grashof number in the numerator and ths Reynols number in



the denominator. As a combination of these two dimension-

less groups, the buoyancy parameter can be interpreoted as -

the degree of free-convection as compared to forced—-con-
vection.

C. Rotating Systems

In the previous sections of this chapter, the for-'
mulation of the mixed forced- and free-convection is made.
However, the geometry and the rotation are other signifi-
cants aspects of this etudy. Therefore, a preliminary dis-
cussion exploring rotating systems with similar geometries
will contribute to this present investigation.

Heat transfer from bodies of revolution spinning
about their axes of symmetry 4s both theoretically and
practically important, in particular, when they are placed
in a forced flow field. As explained in the previous sec=-
tion of this chapter, the rotation parameter conveys the
information about the extent of rotation. According to

literature [3), at high walues of this parameter, the flow

and thermal fields are strongly influenced.

Previous investigations in the field of rotating
systems have commonly employed body shapes from a special
class. [10] The bodies of this class have shapes which can
be deseribed- by a power function of the type

ry (2a-1)/3 |
r(x) = L[—;—J y @22 (17)

where x is the distance from the nose measured along a
meridian, r(x) is the radius of revolution of the body,

L 18 a characteristic length of the body and m determines
the geometry. In the solutions, m is uded as a parameter;
/ for example, m=2 is the case of a rotating disk.

12
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However, cylinders and spheres do not fall in the
class of the bodies mentioned above. It is not possible
to obtain, for example, a sphere using a single m-value.
Therefore, it 14 more convemient to look for other meth-
ods for bodies such as cylinders and spheres. However,
although cylinders and spheres are to be treated sepa-~
rately from the class memtioned above, they have features
in common with those other body shapes. For example, 1t
is possible te obtain the flow and heat transfer charace
teristics for-a rotating disk, as a special case, from
the formulation for the rotating sphere. [ 4] This is why
the comments regarding that aspecial class ars included in
this chapter. Moreover, for a sphere, which is the con-
sidered geometry in this present study, the.Nusselt num-
ber in the vicinity of the poles can be closely approxima-
ted by the equations developed for a rotating disk, which
is a body shape of that class. [TU]



IV. PROBLEM STATEMENT

A. The Governing Equations

The boundary-layer equations for laminar, steady,
non-dissipative, constant property (except changes in den-
sity which produce buoyaney forces), incompressidle bound-
ary-layer flow over a general rotating axisymmetric beody
were derived in the first section of the previous chapter
(equatiorns (6), (10), (11), (15)). In order %o serve for
the discussions in this section, it may help to re-state
the boundary-layer equations, here.

2 (m) + 2 (zv) =0 (10)
9% 2y
2 2
u 20 v ar du Ju
?2x 2y r dx dx éy
2
QW 2W uw 4r oW
2 x ?y r dx 9y
2
2T 2 T
2 x 2y Ay

The aim of this chapter is to adapt those equations
o the geometry of a sphere. As it is clear from Fig. I that
gives the geometry, r(x) is defined for a sphere by

r(x) = R sin § = R sin (x/R) (18)

‘where R is the radius of the sphere and § is the angle meas-
ured from the stagnation point.



Fig. I - The geomeiry of the problem.
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With the above definition of r(x), g, in equation
(14) becomes

gx(x) =g 8in g = g sin (x/R) (19)

As stated earlier, in equation (15), for the sign of By
the positive and negative ones are to be taken for assist-
ing and opposing flows, respectively. In the case of as-
sisting flow, ij>T” and the buoyancy force has a component
in the positive x-direction; and in the opposing flow case,
Tw< T.. and the buoyancy force will have a component in the
negative x-direction. This analysis is also valid for down-
wvard flow. However, in that case, the x-coordinate is meas-
ured from the upper stagnation point. This time, the as=

sisting and opposing flows correspond to Tw< T _and TW>T°°,
respectively.

Ue’ which can be termed as the wvelocity at the outer
adge of the boundary layer or as the local free stream ve-
locity, in general has the expression:

u, x x> . x° x! (20)
— gz f e 4 B{-—s +C—g + D -
U R R R R

where u,, is the free stresam welocity. (6] The corresponding
constants A, B, C, D, etc. for the sphere are given from
potential flow selution by

A=3/¢, B=-1/4, C =1/80

(21)
Dw=1/3360 , etc.

which forms a sine-geries expansion. Therefore, the local
froe stream velocity for a sphere is

5 |
Ug(x) = == u_sin ¢ (22)
2
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Also evalusting dr/dx and dU,/dx, the governing equations
of the system may Be written as

5
<=— {ru) + 2= (zv) = 0 (10)
X 2y
ou 2u w2 9 ni
Y e VT e o e 0B = = - gin cos
EP 4 oy r # 4 R # s (23)
2

Ju
+L)S-§ - gP(?=7,) 8in &
y

2

AW v uw UQW ( )
U = f ¥ oo 4 == 08 § = 24

o x >y . p 3;5 .

30 >F d;% (1)
N e § F —— = 11

ox by

I4 will he useful for later use to parametrize the
above equatioms. The in-the-previous-echapter-memtioned
paramncters, the rotation parameter, Rp and the buoyancy
parameter, Bp are now defined aceording to

2 nrl?
R © | woee mee , for sphere (25)
. 3 ue

vhere /L is the angilar velocity of the sphere, and

Gr ' (26)
Bp o w——
ReR .

where Rep is the Reynolde number, Ru./.



The Grashof number is defined by

? «T.) R’
Gr = gp(;z ) R (27)

The Prandtl number, V/x, is also used as a parameter in
the system. Then the governing equations containing the
parameters are:

2 (zu) + S— (zv) = 0 (10)
ax Qy
2u 2 - 9 uu? W 2 9 uuf
W e—= 4 V === o = =~ |e—ee| Rp ¢cO8 P = = = gin g co8 &
dx 2y 4 r [AR 4 R
(28)
N u + 0.2 (T -To) in 4
+ -
5? R (T, ~T,)
oW 5w uw BW
U —— + V —— + —— cos8 ¢ =l) (24)
> x oy 1 552
. 2 .
ST 2T 37T
W o 4 Y e (29)
dx Py " Pr S;?

B, ' The Boundary Conditions

After the derivation of the governing equations,
it is anow convenient to furnish them with the boundary
conditions. As in most of the other problems of interest,
it is appropriate to solve the equations under the case
of uniform wall temperature.

18
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For the case of uniform wall temperature, the cor- |
responding beymdary conditions are

’ =1 for y=0

(30)
ute, w =0, =", for ywvoo

In this study, the above set of boundary conditions is
used, However, in order to see what differeﬁin the formu-
lation, it is useful to discuss another possidble set, here.
In some of the previous investigations, for example in (7],
the case of uniform surface heat flux has beenremployed.

For that case of Boundary conditions;, the following can be
written:

E
rv=v=0, w=r, 2T = - _EE for y=0
2y k
(31)
u = Ue’ wo= 0 , P = ? for y-»ce

For the uniform surface heat flux case, equation (27) of
the formulation should be replaced by a new definition of
the Grashof number:

4
. g R :
Gr; = [Sqwz ' (32)
ko

In that case, the buoyancy parameter is given by

¥

* & (33)
.

Por the boundary conditions defined by equation (31), it

is necessary to change equation (28) in view of the new

defihition of the buoyancy parameter. Later in the report,
/ when the dimensionless system is obtained, the formulation
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1s going to be made such that a single form is attained
for both sets:-of boundary conditions. The equation that

takes the place of equation (28) for the second case of
boundary conditions is

ou 2u 9u¢,‘,2 w2 9u<,o2 (
W —~— +V =—— « = e | e——| Rp ¢08 § = — — gin g cos ¢
4 R

ox oy 4 r fLR
(34)
.r)zu + ¥% ucoz (!{— oa) ReRl/2
+ ')_'2 < Bp sin ¢
oy R (q, R/X)

It is e¢lear that, in that case of boundary conditions, the
buoyaney force will assist the forced flow for q,,> 0, and
it will oppose the flow for qw< O. Therefore, the positive
and negative sighs in equation (34) are $o be taken ac-
cardingly.



V. THE SOLUTION OF THE PROBLEM

In this chapter, initially, the method of solution
is decided or. This is achieved by discussing various pos-
sible metheds, that have been used in previous investiga-
tions, with regard teo eriteria such as convergence and
8tability. The decision is made on an appropriate method
in recognition of its adventages. Later in the chapter,
the governing equations and the boundary conditions of the
prewious chapter are transformed to form the dimensionless

system of equations, which are then solved& by the chosen
method.

A. The Solution Method

In order to obtain solutions for the coupled momen-
tum and energy equations, different procedures are possible.
By applying appropriate coordinate transformations and
Merk's procedure [11], the governing equations carn be reduced
to a set of coupled ordinary differential equations. Imw
Merk's method, like in G6rtler's method, the series solu~
tion i8 expressed ip terms of universal functions. However,
Merk's procedure treats the wedge variable as one of the
independent coordinates. Merk's procedure for the compu-
tation of boundary-layer transfer has been examined in de-
tail by Choo smd Faghbanle (11) . The first author had pre-
viously disgovered the incorrect equations in Merk's pro-
cedure. In that study [11), the corrected sequence of the
differential equations governing the universal functions
associated with the method are provided.

After the system of ordinary differential equations
with two-point boundary conditions are obtained using the
Merk's method, an approach to the solution is possible by
considering a related initial-value problem. A very effective
-elass of numerical methods, which are called initial~value
or shooting methods, is based on this notion.
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Thgre are two major difficulties asseciated with
the shooting methods. The first one is the problem of
convergence, and the second one is that the initial-value
problem generated is frequently unstable, i.e. it is very
sensitive to perturbations in the initial conditions. Mul~
tiple shooting method is developed to overcome those dif-
ficulties. In this method, the interval of the problem is
devided into many sulWintervals and for each subinterval
a corresponding initial-value problem is generated. Then
the problems are solived making sure that the appropriate

continuity conditions are satisfied at each of the subdi-
vision points.

Rajasekaran and Palekar (8] have numerically integ-
rated the set of coupled ordinary differential equations,
which depend on wedge, rotation and buoyancy parameters,
by applying the multiple shboting method. They have used
the subroutine DFPTB from IMSL (the International Mathema-
tical and& Statistical Library). However, in the instruc-
#ioms given for the usage of this subroutine, it-is indi-
cated that the comvergence is of vital importance. There-
fore, one should take precautions to inerease the probabi-
1lity of convergence. It is the best thing to increase the
number of sheooting points. With many points the program
esgsentially uses a finite 4ifference method, which has less
trouble with nonlinearities than shooting methods, In fact,
in some of the previous work, for example of [6],and [7],
finite difference method i1s applied.

In this present study, the original partial diffe~-
rential equations are solved by the finite difference
method., For the purpose of comparison and with the inten-
sion of forming a parallel description to that of multiple
shooting method (or shooting methods, in general) as stated
above, convergence and stability in the solution of finite
difference equations are now examined.



23

The fundamental concept of the calculus is the in-
terpretation of the derivative as the instantaneous rate
of change. For that purpose, a finite increment is amed
and the limit as that increment approaches zero is exam-
ined. In the finite difference method, the inverse of
this limit process is used. This is usually termed as
"discretization", The discretization of a partial differ-
ential equation in a domain of independent variables re-
sults in the replacement of this domain by a finite num-
ber of preselected, discrete points, referred to as mesh

or grid points, and the values at those points are deter-
mineé,

Let U be the exact solution of a partial differen-—
tial equation and u be the solution of the difference e-
quations, formed by the discretization précess, used to
approximate the partial differential equation. Then the
finite difference solution is said to be convergent when
u tends to U as kai tend to zero, where Xy represent the
independent variables. In general,the error (U-u) can be
decreased by decreasing.ésxi, but this leads to an increase
in. the number of equations to be solved, because it means
an increase in the number:of points., Hence, each additional
points adds to the time and labor of calculation. Therefore,
this way of improvement is limited by such factors as time,
machine storage space, etc.

The discreiization error should be considered apart
from the round-off errors. If it were possible to carry out
all caleulations to infinite:number of decimel places, the
exact solution of the finite difference equations would be
artained. However, calculatiomns are carried out to a fi-
nite number of decimal places, which causes round-off er-
rors. A finite difference solution is said to be stable
.when the total effect of all nround-off errors is megli-
gible. '
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As indicated above, the decision on the method is
made in favor af the finite difference method. In the
following section, the dimensionless system i obtained
to be used in the difference equations.

B. The Dimensionless System of Equations

Ths computational stage of all numerical methods
for solving complex problems generally involves a great
deal of arithmetics. It is, therefore, better to arrange
the problem such that one solution is sufficient for a
variety of different problems. This can be done by ex=-
pressing allcequations in terms of nom-dimensional vari-
ables, Then all problems with the same non-dimensional
nathematical formulation ean be dealt with By meamns of
ope solution. In this study, the non-dimensional vari-
ables are denoted By a circumflex () over their origi-
nal forme. x, ¥, r can be defined as.

/N
)x\ = x/R , y=3 ReRI/Z/R ) /1} = r/R (35)
It is clear that x and o are identisal. From equation (18),
T = 8in ¢ = 8in X : (36)
from which it follows that
P ~
cos § = dxr/dx (37)

Accordingly, the non~dimensional forms of the velocities
can also be obtained:

g)’

" (38)

U oo
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Ve ‘ (39)

A -4
w e
e (40)

The nondimensional form of the temperature depends on the
choice of the boundary cenditions. For the case of unifoim
wall temperature, the obvious non-dimensional form is

A T « T
T
D - T,

(41)

whereas 1f the case of uniform surface heat flux were used,
the appropriate non-dimensional form would be

1/2

I-T») R

s _ ( eo)R/;R . (42)
qw

By

Substituting those non-dimensional forms of equatioms (35) to
(42) in the governing equations ((18), (24), (28), (29)), the
dimensionless system of equations can be formed as

4 v .
2x Ry

fad udE) . W 9, _,dF 9 5dF
Ujow=s = = == | 4 V ==p = =T Rp W~ == = =L
5X T ax °F 4 i€ 4 dx
(44)
2~
+ T = Bpr %
oy

BOGAZIC] UNIVERSITESI KUTUPHAN
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u - + V + U W =T 45
2% s i E TR (

N Y B S

'(1“":+V"'::=—-— (46)
% OF Pr 9§

The above equations are glse valid for the case of uniform
A,

surface heat flux.cBHowever, in that case, T and Bp would be

replaced by T° snd Bp*, respectively.

The boundary conditions should also be written in terms
of the non-dimensional variables. Then the set of boundary
conditions for the case of uniform wall temperature of equa-
tion (30) beecomes |

W=¥=20, ¥ =T ’ T=1 fory = 0
(47)
~ 3 A2 A “ A
M=y , w=0, T=0 . for y oo
2

while on the other hand, if the uniform surface heat flux case
werc to Be used, the non-dimensional form of the boundary condi-
tions set would be as

ST
2=9=20,.9=p, ===l for § = 0
oy
(48)
3 ~
ﬁa—’fz, ¥ =0, g =0 : for?—»w
2

The locel friction coefficient was defined by equation
(16). Its form ir terms of the-nqn-dimensional variables ean
be writien as |

1 1/2

~i
L 2 | 49
- Cp Reg Z 60 (49)
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The‘local Nusselt number can be defined as

hR R (QT/Dy)lyzo

Nu = = (50)
k ‘ Tw-Tw
The nondimensional expression ia therefore
5
~1/2 9
Hu Rep /2 o — (51)
2yl y=0

for the uniform wall temperature case., For the csse of uni- -
form surface heat flux, the local Nusselt number would be

1

_— : | (52)

Nu&ReR'l/z = o
27 ly=0

Now, having established the dimensionless system of
equations, it is time to form thei'difference equations, of
the finite difference method, prior to the construetion of
the computer program.

C. Difference Equations

In the ¢transformation of the differential equations
%6 o form sultoble for the finite difference method, ceftain
finite~difforenco approximations to the derivatives have to
be used. After this process of discretisation, which was
discuseed in the first section of this chapter, the resulting
difference equatione may be obtained.

In this study, an explicit iteration scheme is pre-
ferred and the down-stream direction is taken to be the posi-
tive x-direction. Therefore the iteration is performed start-
ing from the stagnation point,
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The finite-difference approximations for the derivatives of
the system are

28 Up-wU U UU(Y+AY) -.0U(Y)
% AX ’ 3§= ~Y (53)
3¥  VU(T+AY) - VU(Y) |
53 3 (54)
€ WD - WU 5% WU(Y+AY) - WU(Y)
3%  TEMPD - TEMPU 5T TEMPU(Y+AY) - TEMPU(Y)
oy = ’ —~ = - (56)
% AX EX; AY
2% UU(T+AY) - 2 UB(T) + UU(Y-AY) s
=5 = 57
2% - (aY)f
2%  WO(Y+AY) - 2 WU(Y) % WO(Y-AY) (58)
— = 58
3§ ( A1)2 |
2F  TEMPU(Y+AY) = 2 TEMPU(Y) + TEMPU(Y-~AY)
oy (AY)

whexe letiers U and D that follow U, V, W and TEMP denote up-
stroam and down-stream values, respectively. In the new rep-
reseniation of the independent variables, X and Y indlcate

the values of % and y at the preselected, discrete points,

AOX and AY represent the spacing between those points, U, V,

VW and TEMP are the solutions of the finite-difference equations,
Variations in Y are shown in parenthesés. If theré,is no varia-
tion in ¥, those parantheses are omitted, The variatimme in X
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are indicated by U or D, that follows U, V, W and TEMP. The

partial derivatives in equations (43) %o (46) have now their
new representations.

Those finite-difference approximations for the deriva-
tives can now be used together with equations (36), (37), (43),
(44), (45) and (46) to form the difference equations, that con-
struct the nueleus of the computer program, which is presented
in Appendix-B,

In the following section, some comments will be made on
this computer prgram with the intention of simplifying its exa-
nination.

D. Some Comments on the Computer Program

A% this stage, it may seem that it would be enough énly
to discuss the symbols in the program. However, there are still
some comments about the formulation that are significant to be
made., The first one i8 on the duoyancy parameter. In equation
(44), there are plus and minus signs preceding thisrparameter
indicating assisting and opposing flows, respectively. In the
computer program, the buoyancy parameter is taken such that it
may have either positive or negative values and the preceding
sign is therefore shosen plus.

Since the temperature distribution at x=0:is not speci-
fied, a new temperature variable is used in the program. That
is given by

TEMP, = TEMP X Bin § (60)

i
- where 1 denotes the intermediate value. As the name indicates,
the temperature solutions are converted back into the desired
form of formulation later in the program. Therefore, the user
‘does not need to worry about this feature of the program, but

should keep in mind that at the points near the stagnation point

it 1s not possible to obtain the témperature distributions and
;the:efore the Nusselt number.
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Since the velocity distributions at the stagnation
point are known (velocities equal to gero), there is no need
for modifications in their formulation. However, the momen-
tum equation for velocity-u (equation (44)) should be changed
because of the term which includes the temperature variable.
In this way, the temperature value is converted back into
its earlier form within the caleculation in the momentum equa-
tion. This process of changing the temperature variable and
later converting it back into its original form does not af-
foct the solutions for the velocity distributions since for
small values of ¢, that buoyancy term tends %o sero.

The choice of the points, or rather the establishment
of the spacing: between the points 1s quite important. For
this prodlem, A X is taken mueh smaller than AY, because
there is a factor of u before the derivative term and that
aets as a divisor in the difference equations. The valuee of
AX and AY are given in the DATA statements of the computer
program tegether with the other information.

In order to seyve as a multi-ﬁurpose program, the
FORTRAN program of Appendix-B contains a variable WCH, that
indicates the work ¢o be done. When NCH equals I, the veloecity
and temperature distributions are obtained. The corresponding
friction Zactor and the Nusselt number are also supplied.
HCH=3% givéa the effeot of the Prandtl number on the velocity
and temperature profiles, while KRCH=4 gives that on the fric-
tion factor and the Nusselt number. Actually that is the
object of this study. NCH=2 displaye both of the results of
NOH=3 gnd NCH=4, When both the effects of the Prandtl number
and the velocity and temperature distributions for various
angular positions are desired, NCH should be chosen to be
Zero.

The comstants, variables, arrays, parameters, etc, that
arc presont in the computer program are given in Appendix-C,
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E. Rasults

Employing the computer program developed, it is pos-
sible to obtain the velocity and temperature distributions,
either for assisting or opposing flows, at any angle ¢ (meas-
ured from the stagnation point), for any set of values of the
rotation parameter, the buoyancy parameter and the Prandtl

number. In each case, also the Nusselt number and the friction

factor can be evaluated. Although the aim of this study is to
observe the effects of the Prandtl number variation, some
other:results that are attainable all along the study will be
also displayed; and some corresponding conclusions will be
arrived at. This is done with the intention of keeping the
integrity of the subject. Owing to its practical importance,
the set of boundary conditions given by equa$ion (30), i.e.
the uniform wall temperature case, is considered. Some of the
results are displayed in the following graphs. The following
DISCUSSION chapter will be based on those figures.
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Fig. IV - Velocity distributions - Graph 3
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Fig. VI = Velocity distributions - Graph 5
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Fig. VII - Velocity distributions - Graph 6
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Fig. X = Angular distributionsd of the local Nusselt
number
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Fig. XIV - Angular distributions of the loeal
friction factor - Graph 4



Vi, DISCUSSION

In this chapter, the information of the RESULTS sec-
tion of Chapter V will beo referred to and the effects of the
parameters will be exaiined and discussed. This pracesé will
be performed considering each parameter of the system one at
& time, Those parameters inelude the rotation and the buo=
yaney parameters, the angular position, i.e. the angle meas-
ured from the stagnation point, and the Prandtl mrumber. The
- examination of the effects of the Prandtl number is the actual

objeet in this study, and therefore that will be considered as "~

the last parameter in the chapter.

The effeots of the parameters will be examined on the
veloeity and temperature distributions, the Husselt number
and the friction factor. Some of those are affected direct-
1y by any one of the parameters while the values of the others
vary indirectly.

A comparison of the results obtained in this study
with those of the previous ones is also necessary. However,
the formulation differs somevhat in each of the previoué
investigations, It iz not actually the results that are im=-
portant but rather the conclusions. All those that will be
stated for the cases of the ros4astion parameter effects and
the buoyancy parameter effects are in agreement with these
of Rajasckaran and Palekar (8). The effects of the Prandtl
number wers not previously investigated for a rotaing sphere
with mixed type of comnvection.

|
A., The Rotation Parameter

The rotation parameter, Rp, was previously defined.

However, it is significant to mention here that it is depene :

dent not only on the rotation speed but also on the free
stream velocity. Therefore, an inorease in the rotation

/.
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parameter can be interpreted either as a decrease in the
froe stream velocity, u., Or as an increass in the rotation
speed, J1. The smallest value of the rotation parameter is
gero, which corresponds to a non-rotating sphere. Very high
values of the rotation parameter will not be considered in
this study, because in such a case, a degeneration ocours
in the formulation. Then the effects of the free stream ve-
locity are diminished and the system looks like the case of
the absence of flow. However, the-non-dimensional forms are
obtained for a non-zero set of values of the free stream vee
locity.

The pffecte of the rotation parameter will now be
considered after the above establishment of its limits, within
which the system will be examined. The velocity distributions
and therofore the frietion factor are those that are directly
affected by the rotation parameter. An increase in that parae
nater vresults in a corresponding inereaso in the velocity
gradient at %he wall, and therdfore a decrcase in the velocity
boundary-layer thickness. The overahooting of the velocity
profiles Boyond the local free stream velocity, observed at
high values of the buoyancy parameter, takes place carlder
a8 the rotation parameter is increased. This is due o the
ecoupling between the buoyancy and rotation. The abeve-men-
tioned increase in the velocity gradiants at the walll ref-
lects differently to velocities u and W, Since the maximum
value of the velocity‘ﬁ} except the region where. overshooting
is observed, is the leccal free stream veloeity, the velboity,
profile of 4 increases as the velocity gradiant inoreases.
Overshooting alsp acts in the same direction., However, velo~
city # decreases with the rotation paramoter, since the maxi-
nunm velocity of rotation is at the surface of the sphere
and increasfng velocity gradient shifts the Weprofile dowm-
wardes., However, such a commont is mialeadingQ Although one
may talk about a decrease 1n‘§, there is actually an increase
in the veloeity in the rotating direction, since the rotation
parameter increases, i.e. the rotation speed increases. How-
ever, this increase is suppressed when the non-dimensional



form W is obtained in Section B, Chapter IV. As the rotation
parameter increases, the friction factor also increases, &B-
expected, due to the increase in the velocity gradient. The
effects of the rotation parameter on the velocities and the
local friction factor can be observed in figures II, III,
VIII and XI, The overshooting is eclear in figures III and IV.

The temperature distribution and the Nusselt number
are indirectly affected by an increase in the rotation para-
metor. Because of the resulting increase in the velocity, a
decrease in the temperature profile can be observed, if the
wall temperature is higher than the surrounding fluid tempe-~
rature. That, of course, implies an increase in the Nusselt
number.

B. The Buoyancy Parameter

As it is pointed out earlier in the report, the buo-
yancy parameter can be interpreted as the degree of free-
convection as compared to forced-conveection, This implies
that at Bp=0, the problem reduces to pure forced-convection.
WYhile on the other hand, as the buoyancy parameter takes
‘higher vaiuea, the effect of the temperature on velocities
is amplified. It is clear that there is no need for imposing
restrictions on the buoyancy parameter as done in the case
of the rotation parameter, However, it can be stated that
pure forced-convection 1s possible while pure free-~convection
is not attainable in this study. This requires different
formulations as done in the studies [6] and (7] of Chen and
Mucoglu. According to the formulation of Chapter V, the
buoyancy parameter may take either bositive or negative
values, They correspond to assisting and opposing flows,
respectively. Explanation, regarding under what conditions
the flow may be named as assisting and opposing, is present
in Section A, Chapter IV. There is no need to discuss that
once more. However, it is necessary to point out that the
direction of the gravitational force is significant, since

, 1%t 18 the gravitetional field which causes the buoyancy force,
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As in the case of the rotation parameter, the velo-
city distributions and therefore the friction factor are
those that are directly influenced by the buoyancy parame-
ter. For the assisting flow case, as the name suggeste, the
velocity increcases with increasding values of the buoyanecy
paramoter. In & vay, the buoyancy parameter, when 1t jakes
positive values, aids the flow. That can Bbe observed in
figures II1I and II., High values of the buoyancy parameter
causes overshooting of the velocity profiles beyond the lo~
cal fresc stream velocity. The coupling between the rotation
and the! bueyancy increases the amount of overshooting, as
nentioned previously. As in the case of the rotation para=-
mater, the friction factor slso increases with inereaaﬁng
ﬁnoyanoy parameter as seen in figure XII, However when they
are compared with each other, rotation has a more pronounced
affect,

Also ﬁy the buoyancy parameter, the temperature dis-
tribution and the Nusselt number are indireectly affected. If
the wall temperature is higher than the surrounding fluid
temperature, a decrecase in the temperature profile and there-
fore an increase in the Fusselt number is observed in con=-
sequencae of the 1nc¥$ase in veloeity, when the buoyancy

parameter had positive values (assisting flow) and is incréased.

C. The Angular Position

Although the angular position is discussed as a para-
moter, it is quite different in nature when compared with
the othor parametors. It determines the point on the surface .i:«:
that will be considered as one of the boundaries. Due o
symmetry, the angular position is enough as a parameter for
this purpose. Aceording to the formulation pf Chapter V, the
value of ¥ gives direetly the angular position. The minimuw
value is gero amnd corresponds to the stagnation point.
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As mentioned above, the angular position is not a
parameter in the sense of the parameters discussed earlier.
The local free stream velocity, U,, defined by equation (22),
depends on the angular position. Since it acts as the velo-
city -at the outer edgs of the boundary layer and therefore
as cne of the boundary comditioms of velocity @, 1t is ob-
vious that & different veloecity profile wili be obtaine& for
different angular positions. That is due to the geometry of
sphere., The same conclusion can be arrived at for velocity
¥. Since points at different angular positionz on the sphere
rotate at differont speeds, the corresponding velocity pro-
files vary aecordingly. Therefore, the angular position can
be discussed as & parameter only for temperature, the Nusselt
number and the frietion factor, The local Nusselt number and
the hocal friction factor are represented in graphs as angue
Iar distributiohs. (Figs. X to XIV) The other variables can
also be evaluated for various values of the angle 4, not for
the sake of comparison, but for investigating the distribu~
tions at those regions of the sphere. Different angles are
considered also in the graphs.,

D, The Prandtl Number

Ae oxplained in Section B of Chapter III, the Prandtl
mumber, Pr, is the ratio of the diffusivities. The kinematic
viscosity ie the rate at which momentum diffuses through the
fluid due to molecular motion while the thermal diffusivity
is the rate of diffusion of heat in the fluid. The range of
the Prandtl numbers was also discussed in that section of the
report. |

The Prandtl number is an important parameter in this
study, and its effects are examined for the first time for
& rotating sphere in forced flow with buoyancy effects also
eonsidercd, That is indicated in the study of Rajasekaran
. and Palekar [8], who have considered the gffects of the other

/
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parameters and have indicated that the effects of the Prandtl

number variation mould be a subiject matter for further inves-
tigations.

A change in the Prandtl number naturally affects the
temperature distributions amd the Busselt number. The exist-
snce of the buoyancy parameter mekes the Prandtl number pos=-
8ible to influence aZso the velocity distributions and the
friction factor., When the buoyaney parameter takes larger

valués, those effects are easier to observe.

With inoreasing Prandtl number, the temperature dis-
tribution graph shifts downwards, as displayed in Fig. IX,
because higher values of the Prandtl number impiy much smaller
wvalues of the thermal diffusivity, when compared to those of
the kinematic viscodity. As a consequence, heat is not diffused
- at a high rate, That explains why the temperature profiles
becone steeper. Those steeper profiles imply increased tempe-
rature gradient at the mall and therefore decreased thermal
boundary layer thickness. As a result, the local Nusselt num-
ber increases as observed in Fig. X,

The change in the Prandtl number is reflected to the
veleocity distributions by way of the buoyaney parameter. As
geon in figures II, IV, VI and VII, for assisting flow, an
increase in the Prandtl number decreases the velocity profiles.
Less stecp ecurves iﬁply inecreased diffusion of momentum, It
zay be observed im Fig. IV that the overshooting beyond the
local free stream veloelty is prevented as the Prandtl nember
inereases., Then the rotation parameter have to talte larger
values, i.e, tho spher has to Potate at a larger speed, before
overshooting is detected. For opposing flow, on the other hand,
velocity profiles take larger %alues as Pr inereases., That is
clear when one takes into acecount vhat is meant by opposing
flow., That was explained in detail peeviously in the report.
Such a problem with opposing flow'is the case when the sphere
surface temperature iz less than than the fluild temperature.
As it is stated above, paralle]l to the discussion in the pre-
v;ous sections, a decrease 1n‘% is followed with an increase



in ¥, That is due to the shape of the ¥W-profile. When Fig.
VIII is observed, it is seen ¢learly that such an increase
means less steeper profiles, as in the case of deereasing
U-ourves. ’ ‘

Pinally, the effects of the Prandtl number on the
local frietion feawmter are disoussed. As Pr is increased,
the friction factor takes smaller values because of the
deercased veloclity gradients, for the case of assisting
flom. FPor the case of opposing flow, juast the opposite is
observed., The eorresponding results are displayed in figures
XIII and XIV, respectively.



¢+ V1Ls GONCLUSION

In this study of mixed eonvection about a rotating
sphere, the velocity and temperature distributions, the
local Nusselt number and she local friction factor are exa—
mined for varying parametera. Some of those parameters ,
the buoyancy and rotation paramsters, are also used in the
previous studies. The effects of those parameters on the
flow and heat transfer are observed to agree well with
those of the previous investigations. The Prandtl number
variation is considered here, for the first time, according
to literature. The results are displayed in grapis and the
the effects of this parameter on the £lew and heat trans-
for are examined and the reasons for such effects aro ane=-
lysed.

‘In previous studies usually the shhoting methods were
preferred and subroutines Lrom the program libraries were
used, In this study, however, in solving the goverming equa-
tions the finite differonce method is directly applied to
the problem, The computer program developed hero is appli=-

- eable to various boundary conditions and it can be used with
a modification for a wide range of body shapes.
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APPENDIX A

The Derivation of the Equations of Motion for Boundary~-
layer Flow

The following discussion is adapted from that of
Rosenhead [12] . The boundary-layer equations of motion
together with the equation of continmity are derived for
a general threb<dimensional body in space,

Let V be the velocity vector in the fluid with the
components Vl, Vz, V3 corresponding to the curvilinear coore
dinates Xy Xy Xye Iff?'depotes the gradiqnt operator, the
equations of motion of a viscous incompressible fluid can
be expressed in the form

v 1
s TN T ===+ @ ¥ ' (61)
n 3

vhers p is the pressure. Let the surface of the given body
be denoted by S. Then the position of a point im space is
deseribed by means of its distance x3\meaaured along the
unit normal X to S and the position vector & on S. There=
fore, the position vector of such a point is

-

A= E(xl,xz) + X5 'ﬁ(xl,xa) (62)

- The gradient operator 678 for the surface S is

-3 = =
by 3xy b, Ox,
) i
vhere
B ¢ 4
hl = | oo h, = 2_. (64)
Dxl 312
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and
(8/5x,) L (98/9x,)
= L, %= 5 2 (65)
h1 ’ h2

where al and az are unit veectors on S, so that al, az,
form an orthogonal %triad of unit vectors. The surfaces of
x3==con8tant make up the system of surfaces parallel to S,
Let M denote a member of this system. Then

—rp

Ty = Vg + 0(x;) (66)

where O(x ) denote- operators with coofficienta of order Xy
Then the graaiant operator V for the space is

v -» 9
= A 6
v megx} | (67)

Since the velocildy vector V is in the form

+ v3'i‘ (68)

it can be found that

- ™™
V-V = (@ + V.n) (Vo + 3 2) =2.V I (69)
3 3
while
? 2 |
2 2
= - Ty (70)
\V} Vnu M;x3 ""'2'13

vhere ¥, is the first curvature of the surface M, defined
as o

=y | (12)
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If there is a boundary layer on S, then x5 and V3
are small, and the derivatives with respect te X5 are large
compared with‘those witg_respedt to x1~and Xy Therefore,
324 can be replaced by V g+ Then equation (61) becomes

---+n—-1=—2+(?-_6 + V -_--)(3+Vn)c--( p+?i'-—-)
24 e 5 3913 3 3 VS oz,

2
s (Vg2 - g 5?;;- + fo) (W + V1) (72)

- Af%er performing the neeessary calculations, the boundary-

layer equations (1) and (2) stated in Chapter XII can be
obtained. The equation of continuity is

7V V=o0 | (73)
After the same reasoning, equation (9) iz formed.

For mathematical details, one may consult the study
in Rosenhead [12].



APPENDIX B

The Computer Program

o B R et ST R SO S SN U U RSN . e e o e e e e ae e e st et aevmgrna i ST 3

J0U10 PROGRAM GEPR(INPUT,OUT,OUTPUT=0UT)

00020 DIMENSION U(16,500),v(16,500),W(16,500),TEMP(16,500)
J0030 DIMENSION UUC16),UD(16),VUC16) '

v0040 DIMENSION WU(16),WD(16) , TEMPUCTI6) 2 TEMPD (16)
20050 DIMENSION UF(S5,16),WF(5,16) ,TEMPF(5,16) »KNG(5)
30000 DIMENSION VYNUS(500,4) ,VFRI(S500,4),YVA(16) /PRNC4)
JJO70 DATA DELX,DELY,IMAX NI, KMAX,NK/Q.00084,0.20,16,1,1300,10/
J0U80 DATA U1,U2,VUIN,VI1,VIN/D.0,1.5,0.0,0.0,0.0/
J0090 DATA Wl W2, wWIN,T1,T2,TIN/1.0,0.0,0.0,1.0,0.0,0,0/
u0100 DATA ROTP,3UOP,KMF,NCH/1.0,2.0,1000.,2/
20110 DATA AU/AW,AT/1HU,1HA,LHTENWP/

JO0120 DATA NPR,PRN,KRP/4,1.0,2¢5+,5.5,15.0+,1/
w0139 IX=IMAX-1

J0140 Uu(1)=u1

20150 vu(1)=v1

JUT60 WUCIMAX)=W2

J0170 TEMPUCIMAX)=T2

00130 D0 27 I=1,IMAX,NI

J0190 YVACL)=(I-1)*DELY

J0200 27 CONTINUE

J0210 DEY2=DELY*%2

J0220 IF (NCH.EQ.1) PRN(1)=PRN(KRP)

J0230 IF (NCH.EQ.1) KRP=1

J0e40 IF (NCH.EQ.1) NPR=1

J0Z50 LF (NCHLEQ.3) KMAX=KMF+1

J0260 D0 28 NP=1,NPR

J0270 D0 29 I1=2,1IX

20280 UU(CI)=UIN

J0290 VU(I)=VIN

J0300 WUCI)=WIN

JO310 TEMPUCI)=TIN

303230 29 CONTINUE

© 30330 NKv=1

JO340 DO 37 K=1,KMAX~1:

JO350 NKV=NKV-1 .

J0360 AX=(K=1)*DELX

JO370 SAX=SINCAX)

J0380 SAX2=SAX**2

J0390 UUCIMAX)=U2*xSAX2

J0400 WUCT)=WT1xSAX |

30410 TEMPUCI)=T1*SAX

J0420 vR=0.0 -

00430 IF (SAX.GT.0.0001) VR=1.0/SAX

00440 COT=COSCAX)*VR

30450 SAX4=SAXx*x4

00460 00 30 I=2,1IX

00470 DEXU=0.0

JO480 IF (UUCI+1).6T.0.0033) DEXU=DELX/UU(I+1)
JO490 BUDY=BUOP*TEMPU(I)*xSAX2

JOS5S00 UDCI)=COT*(UU(I)*x%x2+2,25% (SAXL+SAXZ*ROTP*WU(I)*%2))
"30510 UDCI)=UDCI)+SAX*(UUCI+1)=-2.0%UUCI)+UU(I=-1))/DEY2




J0520
d0530
JC5490
J3550
J05460
JO570
03530
JG590
J05%039
JO610
JJ620
J0630
J0640
J0630
viodd
J0070
U680
J0690
30700
J0710
J07249
J0730
30740
J0750
JG6760

uybrv7e

J07840
J0790
J0300
J0310
J0820
J03530
J0s40
J03593
J08640
J0379
J0380
J04940

. Jd900

JOv10
309240
0930
J0%4U
JU950
20960
20970
30980
J0990
J1000
21010
013290
d1030
01040
J13530
J1u60
J1070

§ \

UoCD)=UDC D) =VUCD) *(UUCT+1)-UU (I /DELY
UDCI)=(UD(I)+BUOY) *DEXU+UUCI)
VUCI+1)=VUCI)=DELY*(UDC(I)=UUCI))/DELX

IF (ROTP.EQ.0.0) GO TO 91 . 5
WDCI)=SAX % (WU (I+1)=2. 0% WU CI)+WU (I=1)) /DEY2 v
WDCI)=WDC(I)=COT~UU (1) *WU (1) .
ADCI)=C(WD (I)=VUCI) A (WUCTI+ 1) =%WUCI))/DELY ) *DEXU+WUCI)

91 TEMPDC(I)=(TEMPUCI+1)=2.0*TEMPUCI)+TEMPU(CI=1))*SAX
TEMPDCI)=TEMPD(I)/PRN(NP) /DEY2+UJ(I)*TEMPU(I) x0T
TEMPD(ID=TEMPD(I)=VUCI)*(TEMPU(I+1)~TEMPUCI)) /DELY

TEMPD C(ID=TEMPD(I)*DEXU+TEMPUCI)

30 CONTINUE

IF (NKV.NE.O) GO TO 83

KN= (K+9)/1O

NKVENK S ' T

IF (NCH.GE.2) GO TO 84

IF (NCH.EQ.O.AND.NP.NE.KRP) GO TO 8¢

D0 364 I=1,IMAX

U (L KN) =UUCI)

V(I LKN) =VUCT)

WCL,KN) =dUCI)

TEMPCI,KN)=TEMPUCI) *VR

34 CONTINUE

84 IF (NCH.EQ.3) GO TO 33

86 VFRICKNSNP)I=CUUC2)=UUCT))/DELY*VR
VNUSCKN/NP)=(TEMPU(1) =TEMPU(2)) /DELY*VR

33 IF (K.NE.KMF.OR.NCH.£Q.1.0R.NCH.EQ.4) GO TO 87

DO 31 I=1,1MAX

UF(NP,I)=UU (D)

WECNP,I)=WU (L)

TEMPF(NP, I)=TEMPUC(CI)/SAX

31 CONTINUE

37 DO 38 I=2,IX

JUCII =Yd(D

WUCT) =W 0 (1)
TEMPUCI)=TEMPD(I)

3% CONTINUE

37 CONTINUE

28 CONTINUE

DO 32 NP=1,NPR

K=KN
VDY=VNUS(K=T1,NP)=VNUS (K,NP)
31 X=K-1

VDA=VD3
VDB=VNUS(K=1,NP)=VNUS (K,NP)
IF (VDA.GE.VDB.AND.VDB.GE.O0.0) GO TO 81
KNG (NP) =K

32 CONTINUE

IF (BUOP.GT.D.0) PRINT 25
IF (BUOP.LT.0.0) PRINT 26
PRINTZ2,ROTP

PRINTZ,3UOP

IF (NCH.GES.2) GO0 TO 89
PRINT1,PRMN(KRP)

1 FORMAT(/,10X,'"PRANDTL NUMBER : ',F5.2)
PRINTS
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J1090 PRINT4,(YVA(I),1=1,IMAX,NI)

JT100 2C 35 K=1,KN,7

J1110 XVA=(K=1) *DELX*NK

J1120 PRINTS,XVA, (U(I,K),I=1,IMAXANI) /VFRI(K;KRP)

31130 35 CONTINUE

J1140 PRINT?

J1150 7 FORMATC(///7,20%, ' VI(X,Y)* /)

31160 PRINT4, (YVAC(I),I=1,IMAX/NI)

J1170 DO 43 K=1,KN,14

J1130 XVA=(K-1) #DELX*NK

J1190 PRINTO,XVA,(V(I,K),I=1,IMAX,NI)

J1200 49 CONTINUE

J1210 IfF (ROTP.5Q,0.0) GO TO 92

J1220 PRINTSJ

J1230 3 FIORMATC///7,20X," WX Y)',/)

J1240 PRINTL, (YVA(I) A I=1,IMAX,ND)

J1250 DO 50 K=1,KN,8

J1260 XVA=(K=1) #*DEL X*NK

J1270 PRINTI0,XVA,(WCTI,K) ,1=1,IMAX,NI)

J1280 50 CONTINUE

J1290 92 PRINTH1

J1300 11 FORMAT I/ // 20X, TEMP(XAY)' /)

31310 PRINT&4, (YVACI),I1=1,IMAX,NI)

G320 DO OADTKEKNG URRPI L AN ,b - : oo e
J1330 XVA=(K~=1) *DELX*NK

J1340 PRINTS,XVA, (TEMP(I,K),I=1,IMAX,NI),VNUS(K,KRP)

01350 60 CONTINUE

J1360 IF (NCH.EQ.1) GO TO 90

J1370 30 IF (NCH.EQ.4) GO TD 85

J1330 AXF=(XMF-1)=*DELX

J1390 PRINT12,AXF e
J1400 12 FORMATC(///,10X,"VARIATION OF PRANDTL NUMBER (X='1F4.2/)
41670 PRINT13,(YVACL) ,I=1,1MAX,NI) ' |
314203 PRINT14,CAU,PRNINP) »CUF(NP,I),1=1,1MAX,NI),NP=1,NPR)
J1430 IF (ROTP.EQ.0.0) GO TO 93

J1440 PRINT15

J1650 PRINTT4,CAW,PRNINP) #CWF(NP,I),1=1,1MAX,NL),NP=1,NPR)
31460 PRINTIS .

J1470 93 PRINT14, CAT,PRNCNP ), (TEMPF(NP,1I),1=1,IMAX,NI),NP=1,NPR)
01450 IF (NCH.EQ.3) GO0 70 90

J1490 85 PRINT 17 ‘

31500 DO 36 K=1,KN

d1510 V(1 /K)=(K=~1)*DELX*NK

01520 36 CONTINUE

J1530 PRINT19,(PRN(NP),NP=1,NPR) ]

J1540 PRINT16,(V(1,K) ,(VFRICK,NP) /NP=1,NPR) ,K=1,KN,7)
J1550 PRINT13 v

J1560 PRINT19,(PRN(NP),NP=1,NPR)

) 315?0 D0 33 K=KNG(1),KN,5

J1580 IF (KJLT.KNG(4)) GO TO &2 )

J1590 PRINT16,V(1,K), (VNUSCK,NP),NP=1,NPR)

J1600 G0 TO 33

J1610 82 IFf (Ke GE.KNG(3)) PRINT 20,V(1,K),(VNUSC(K,NP),NP=1,3)
271620 IF (K.GELKNG(3)) GO TO 33

J1530 IF (K.GE.XNG(2)) PRINT 21,V ,K), (VNUSCK,NP),NP=1,2)
J10640 IF (K.LTLKNGC2)) PRINT 22,V(T1,K),VNUSC(K,1)




J1700
J17190
J1720
J1730
41749
31750
J1760
J1779
J17890
21790
J1300
J1310
J1820
J1330
J13840
41850

33 CONTINUE
93 STOP

25 FORMATC(///,10X,*ASSISTING FLOW")

26 FORMATC(///,10X,*0PPOSING FLOW®')

2 FORMAT(/’/I'IOXI'ROTATION PARAMETER : ',F5.1)
3 FORMAT(/,10X,'*BUOYANCY PARAMETER : ',F5.1)
4 FORMATC/24X "X 216(2X,Y=",F3.1),/)

13 FORMAT (/ ,8X,'"PN' »16(2X,'Y=",F3.1),/)

14 FORMATC(IX, AL/, F5.1,16F7.3)

5 FORMAT("XiF‘hZI‘IbF?.3153.4)

9 FORMAT(IX,FbL.2,16F7.2)
FORMAT (1 X, Féa2,16F7.3)

FORMAT (/)

FORMAT (7 X, Fb,2,4511.4)
FORMAT(/// 10X, FRICTION FACTOR',//)
FORMAT (///,10X,"NUSSELT NUMBER',//)

FORMAT (10X, "X",4 (3X,"PRN=',F&4. 1))
FORMAT (7 X,F& o 2,3F11.4)
FORMAT(7X,Fb o 2,2F11.4)
FORMAT (7 X,F&4 .2,F11.4)

MU =3 wd ad = o3
V== OO0 OO

[ AV IR AV

4

END

59




APPENDIX C

~ Symbels in the Computer Program

I

K

JU(I,K)
V(I,K)
¥(I,K)
TEMP(I,K)
UU, VU, WU, TEMPU
UD, WD, TEMPD
NPR
UF(HPR,I)
wP(HPR,I)
TEMPF(NPR,I)
KHG(HPR)
VHUS(K ,EPR)
VIRI(X,NPR)
YVA(I)
PRE(HPR)
DELX

DELY

IHMAX

KI

KHMAX

HK(
U1L,Vi,W1,71
u2,42,72
UIN,VIN,VIN,EIR
ROTP

BUOP

KMF

HCH

KRP

‘Variation in the x~direction

o o0 . .0 -d *e ¢ od ow o o9 *n *0 2] >0 .9 L. «0 (2] o *0 o0 - -0 LX) oo L2 2 L2 (13

Variation in the y-direetion

Velocity @

Volocity ¥

Velocity v

Tempera%uro'@

Upstream values

Dowmestrean values

Variation iz the Prand+l number

Veloeity % for various Pr

Velecity'g for various Pr

Ronperature ﬁ‘fur various Pr

Starting point for graphs of Nu for various Pr
The local Hu for various Pr

The loocal Cf for various Pr

Value of ¥ at I'th point

The Prandtl number

A%

AY

Maximum value of I

Every HI of I is eonsidered

Maximum value of K

Every NK of K is considered

7hs values of the variables on the surface

The values of the variables away from the surface
The values at the stagnation point

The Rotation paramoter

The Buoyansy parameter

The value of X for th? desired angle

The choice of work to be dome

PRW(EKRP) is the Pr value for which the distribu-l
tions ams caloulated. o

A
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