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MIXED CONVECTION ABOUT A RO~ATING SPHERE 

ABSTRACT 

This report presents a theoretical analysis of flow 
and heat transfer cgaracteristics of the effects of rotation-, 
al speed, buoyancy force and the Prandtl number on laminar 
boundary layer over a rotating sphere in forced flow. Applying 
the finite difference method, numerical computations are 
carried out for various values of the above paDameters. Both 
assisting and opposing flows are considered. Although the 
heating condition of uniform wall,~tem.peuture is used in the 
analysis, the case of uniform surface heat flux is also 
studied in the formulation. 

After an introduction to the subject and an examina­
tion of the previous works, the theoretical background ohap­
ter supplies a general formulation. In the seotion which 
~ .. '- --,~ , ... -.. , .. -. 
f'o11ows;-Lthe problem is specified. Then the resul to of the 
numerical solutio~ are displayed in graphical form. Finally, 
the results are discussed and conclusions are arr1vedat. 
the computer program" is also supplied. 
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KURE UZER1NDE KONVEKT1F lSI TRANSFER! 

OZET 

Bu 9al~§map bir ak~~kan ieereinde kendi skeeni etra­
f1nda dtinmekte olan bir kareye dtinme h1Z~, ak1~kan yogunlu­
gundaki farklar V0 Prandtl saY1s1n~n etkllerini ak1~ ve 1S~ 
transfer1 aQ18~ndan inoelemektedir. Sonlu farklar metodu 
uygulanarak, adl gSQen parametreler iein farkl1 de~erlerds 
nUmerik heeaplar yap1lm1~t~r. Esas olarak yUzey e1cakl1~1 
S1n1r kogulu olarak kulllan1ld~~~ halde ba~ka s~n~r ko~ul­
lar1n~n ~rcihl hallnde formulasyonun nas~l degi~ebileeegi 
ayr~ea belirtllmi~tir. 

Konuya giri§ k1sm~ndan sonra, ilgili alanda gec;miQ-
1ie ya.p~lsn Qtlll.lilllala.r iizerinde durulmuQturo Teorlk bl1gller 
kl.srrunda genal bir ;t'oI"!nulBsyon yer almaktad1r. Takip eden 
k1s~mda problem matematiksel olarak aQ1klanm1Qt1r. Elde 
edl1en sonuQlardan al~nan tirnekler grafiksel olarak verilmi§­
tir" En f:Jon ola.rak t3onuc;la.r ~;lre.:cill~.~. '~I3·;t.lntlfi va netice ... 
ye var~lm1~t1r. Ayr~ea haz1rlanm~Q alan bllgisaya~ progra-
ml de. bu raporda-yer alhmaktad1r. 
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LIST OF SYMBOLS 

Listed below are the most commonly used symbols. 
Some others are defined ad hoc in the study. 

Bp Buoyancy parameter 

Cf Friction ooeffioient 
Gr Grasho! number 
g Acceleration due to gravity 

gx Projection of g on the x-axis 
k Thermal conductivity 

Nu Nusselt number 
Pr Prandtl number 
qw Local surface heat transfer rate per unit area 
R Sphere radius 
Re Reynolds number 
Rp Rotation parameter 

r Radius of sphere circle at x 
T Temperature 
Ue Velocity at outer edge of the boundary layer 
u Velocity component in x-direction 
v Velooity component in y-direction 

w Velocity oomponent in rotating direction 
x Coordinate measured along surface from stagnation 

point 
y Coordinate measured normal to x 

z Coordinate measured in rotating direction 

~ Thermal dlffUslvlty 

~ Thermal expansion coefficient 
V Kinematic viscosity 

f Fluid density 
.p Angle measured from stagnation point 
!L Angular velocity 



Subscripts 
w Evaluated at the surface 
00 Evalu.ated at the approach conditions 

Circumflex 
A Non-dimensional form 

other 

*" Ll 

symbols 
For the case of uniform surface heat fl~ 
A finite increment 

Ix 



I. INTRODUCTION 

Heat transfer from rotating bodies is an area which 
includes challenging problems for scientists and engineers. 
Applications include 'rotating machinery, spinning projec­
tiles, re-entry missiles, fibre-coating, etc. 

The major difficulties enoountered in the investiga­
tions regarding rotating bodies are the mathematical diffi­
culties and the lack of a common formulation for the wide 
range of body shapes. In this investigation, the geometry 
is taken to be that of a sphere and the mixed free- and 
forced-convection is studied. Moreover, rotation in compa­
rable magnitude to forced flow is considered. Mixed convec­
tion implies that the buoyancy force is not neglected and 
a uniform flow parallel to the axis of sphere is present. 
One may also think of it as a sphere moving in a direction 
parallel to its axis of rotation in a fluid at rest. 

In the study, the effects of the variation of the 
buoyancy force, rotation speed and the Prandtl number on 
the flow and heat transfer are examined. Especially, the 
consequences of the Prandtl number variation are treated 
sinee i~ has not been a subject matter before, according to 
literature. 

Because of the consideration of the buoyancy force, 
rotation and forced flow at the same time, the equations 
that govern the system are more complex compared to those 
of the previous works. The finite difference method is used 
to solve the coupled system of equations. In the application 
of this method, there is a transformation process .• In spite 
'of the apparent ease of transformations using finite differ­
ences, the numerical solution'of such coupled systems of 
partial. differential equations is not an easy matter. Like 

. almost every o~her engineering problem, it requires some 
original. thought and modifications. However, once the compu­
ter program is developed, it serves the purpose for any 
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choice of the parameters of the system. Then the problem 
reduces to the examination and discuBsion of the results 
in order "to arrive at conclusions. 



II. LITERATURE SURVEY 

In the literature, it is possible to come across in­

vestigations of laminar heat transfer ~om axisymmetric bod­
les. Lin and Chao [1] have considered the plrob1em of steeAy, 
lam1Jmr" free-convee:tion boundal1"Y-1ay.er fio" over axisymmet­
ric bodies of aEbi1rary ~ontour placed in an infinite ambi­
en1ii fiuid. By way of a suitable coordinate transformation, 
the solution of th$ ~rn1ng cOl1Servatioll equations have 
hen. obta1ned~ 1l9. 'tierss of a sequence of univewa1 :tu1lctions. 
~e~ depend on the Prandtl number and a configuration func­
tion that Is given b.Y the body. contour and its orientation 
relative to tho 'tlod.;F force. It is analogous to the wedge va­
riable in :f"orced nows. Several. of the universal tune:tioll8 
haYe lisen evaluated and 'tia1ml.ated. !fo examine. the use:tulness 
ad limitations of the analysis. the results have been ap­
pliect to various bedy shapes. Spheres as well as other e1-
11psoi4s of re~olu~ion have been considered. 

Another tnvest1g$tioa which has been conduoted for 
the same case (:tree-eoDvee-t1oD over a non-rotating sphere) 
18 ~ Hasan aad Piu~um.4alr [2). It itS a preOO.em of comb1ne4 
heat, aB4 BaSS tra.na:fer. ~is study 1s practioal1,.- important. 
Applioaticms ineluc1e evspcratioll of hel drople'ts. oalm-c1.ay 
vaporiBation of mis"t and :tog, 4ryiDg of grains. controlling 
polymer1sati~Dl resriioD proc1uMs by ~ect1q sulta'bla mole­
oular weight reactants along· the porous wall o:f the reac~or. 
e1!c. Numerical results of the local Shenro04 number. the 10-
aal. Bussel t num~r and the local wall shear stress have been 
given in tabular torm and graplUoa1ly. ~e eases of a141Dg 
and oppoeillg thermal and concentration buopncy forces haTe 
been eons14ered. 

An investigation for a rotating 1lo47 has been per­
:torm~4 bJ' Badr ad Deml1s [3]. nay have c01UIi6:entf 'the 

pro" of lUJiDSJ" torce4-conveetioa :from aniIJo'tbezmal 
cy:l.1D4er routintJ ahut its OWB ax18 ~d p1aeed ill a tm1-

~Gm 8'troam.ma~.. empbasl's has 'baen siveD. to the et~eot 
I 



o~ the speed of rotation on the thermal boundary-layer geo­
metry and also on the NUBsel~ number di8tribu~lon. 
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In the study of Lee, Jeng and De Witt [4], a prooedure 
has bees established for the calculation of the momentum and 
heat trana~er rates thraugh laminar boundary layers over ro­
tating Ql[1s~etr1c bodies ill forced fiow. They have used ap­
propr1ats coordinate transfor.matlons aad Herk's t.ype of ser­
les and have numerically integrated the obtained eouple~ or­
dinary differentIal equations for ~1ous values ot the rota­
tiGD· parameter and the Prandtl numbGr. As a special case :£'rom 
the formu1atlon for the rotatlnt sphere, the fiow and heat 
transfer charaoteristics 'for the rotating disk have beeD ob­
ta1s.ed. 

~e afore-mentioned buoyancy force has been neglected 
in some of the investigations for non-rotating bodies in 

forced: now and for rotat1Dg bedias el~er' iB forced flow 
(as in [3] and [4J) or in the absence of a UDiform :flow from 
1nf1nIV. However, the neglect of 'the buoyancy effect mal" 
not pltG'WG ldgllit wen the velocity 1s maall and the tempera­
ture difference between tho surface and the surrounding fiu-
14 is large. In sua casos, it is certain that this buoyancY' 
force w111 affect ~ momentum and heat transfer rates. 

,Suwono [5] bas cens1delNdl those e-:flects on flov and 
heat transfer over retattag axi8,mmetEfc roun4-nose4 bodies. 
In 'that study, the numerical computations have been made for 
the case of rotat1Dg hemispheres tor values of the buo;yaney 

parameter ranging :tram zero to iJdiD.iV. Using the re8Ul. ta 

for the hem.iaphtlrea, the buoyanoy torce ef:tec,u on fiow ad 
heat tranaf0r ever a sphere have been exammed. no effects 
of the buoyan~y ~oree on flow eruption have also been inclu­
ded. Since a ~iform fiow from 1nf'1n1ty is absent in that 

stucly, it 1s not of muedl-convect1on We. 

~e problem of mixed torced- and f.ree-oonYectlon about 
a sphere has rece1~e' relatively less atteJl~ion. Chell aa4 
Huooglu [6] have een4uc'ted such aD 1nvGetigaticm for JlOD-



rotating spheres maintained at a uniform surface tempera­
ture. They have presented the local wall shear and surface 
heat transfer results for gases having a Prandtl number of 
0.7 for both aSSisting and opposing flows. The entire re­
gime of mixed convection has ~een considered, ranging from 
pure forced-convection to pure free-convection. As an ex­
tension of their study, Chen and Mucoglu (7) have also con­
sidered the boundary condition of prescribed uniform sur­
face heat flux. In both of the studies (6) and (7), the fi­
nite difference method has been used to solve the trans­
formed conservation equations. 

Rajasekaran and Palekar [8] have considered mixedi 
convection about a rotating sphere under two kinds of heat­
ing conditions, uniform wall temperature and uniform surface 
heat flux. They have applied appropriate coordinate trans­
formations and Merk's method of series. Numerica1computa­
tions have been carried out for Prandtl numbers of 0.7 and 
1.0 and the effects of buoyancy force and rotation on the 
results have been investigatea. The ratio of the Nusselt 
number at uniform surface heat flux to the Nusse1t number 
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at uniform wall temperature for different speeds of rota­
tion has been examined. It is also stated in this article [aj 
that the effects of variatiom of the Prandt1 number on the 
flow and hea~ transfer due to buoyancy, rotation and forced 
flow has no~yet been considered and that this could be a 
subject matter for further investigation. In this present 
study, also those effects will be considered. 



III. THEORETICAL BACKGROUND 

In this chapter, initially. the formulation of the 
mixed oonvection prol.llem over a general three-dimensional 
bcq will be considered and· developed. fileD. the dimension­
less ratios encountered in 'this study are discussed for the 
sake of emphasiming their sigDltleance. F1Dally, a few com­
menu are made on rotating systems, since the mathemaj;ical 
models «onstructed and sometimes even th0 methods use~ in 

such slfSteas have thiDgs in common wi til one another. 

A. Boundary-layer Equa tiona 

Cfhe equations of motion for a laminar, constant pro­
perty, incompressible bGund~-layer flow' over a general 
t1iree-dimensional body can be stated as 

(1) 

V2
2 dh2 . 1 d p 

- -=---+1.> 
~h2 d xl ~~ d X 1 

:;>V2 VI dV2 V2 ~V2 dV2 
V 2 
~ 1 -+--+- + V3 --

~t hI ~xl h2 a X2 dX, ~h2 d X 2 

(2) 

V
1

V2 ~h2 1 'dp ;/v 
V 2 +- 1:1-- + 

dX 2 ~h2 ~xl 3h
2 

dX2 3 

Da: vaziables that appear in the a~ove equat10ns are defined 

in th~ derivat10n in Appen4ix-A. Vi are the componeD-ts of the 
velocIty vector and xl ar~ the corrosponding c'UrYll1near coor-
I 
d1nates. 



SiDae in this study the geometry is that of a sphere, 
an appropriate curwilinear coordinat.enspte13 Is chosen. This 
system is valid for any rotationally. symmetric blunt-nosed 
body. Let x-y-zbe the non-rotating orthogonal curvilinear 
coordinate system, with velocity components u-v-w, respec­
tively. x Is the ~18tance along a meridian eurve and it is 
measured along the surface from the stagaati'oni.. pbii1to~' 7~ 18 
the eoordlDate normal to x and it indicates the distance 
fnom the surface. z is measured in the rotating direction. 
Therefore, for the ~osen coordinates, 

For this particular coordinate system, hI and h2 can be 

evalua1ted as 

(3) 
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where r(x) is the radius of revolution at x. Then the equa­
tions of mQ~ian for a steady,laminar, constant property, in­
compressible boundar.y-layer flow in the abo~e choice of coor­
dinates are 

dU )u ,i dr 1 ap "d 2u 
u + v - - --= --- +v 

dV2 
~x dy r ax J )x ., 

(5) 

d W dW uw dr ~2w 
u -+v-+ --: LJ 

~x "Jy- r dx ¥ 
(6) 

The partial derlvatlveswith respec~ to s do not appear in 

the above equat10ns since 'the:re are no variat10ns in that 
direction (due to symmetry). The pressure ean be determinetd 



by tae flow above the boundary layer. Let U (x) be the ve­e 
locity at the oute~ edge of the boundary layer. Then with 

dUe 1 aP 
Ue -= - --

dx S ax 
(7) 

e:quatlon (5) becomes 

~u d U it~ dr dUe d 2
U 

u-+ v-- --= Ue - + tJ 
~ dX "dy r dx dx 

(8) 

The equatian of continuity (from Appendix-A), 

can be rewritten, with the above formulation, as 

:L (ru) + L (rv) = 0 (10) 
aX "dy 

Under the above conditions and when dissipation is 
neglected, the energy equation can be shown, in a similar 
way, to have the form 

dT dT" 
u-+v-= (11) 

~X "";Jy 

where ~(=k/gc) is tha thermal dlffusivlty of the fluid. 
With the above form of the energy equation, surface tem­
perature of the body.: may ~ary onlly in the x-direction, but 

nevelt: 1%1' the z-dlrectlo11. One should be aware of this re­
striction when stating the boundary o.omi:ltions. It 1s also 
important that, when neglecting the dissipation term in 

the energy equation, one, should keep in mind that high 

8 



values of the Prandtl number (for example, those values 
corresponding to 011s) may not be considered later in the 
study. 

Convection is aslJoc-iated with tho motion of the :flu­

id surrounding the body. If this motion is caused by an ex­
ternally applied pressure difference. it is called forced­
convadtion. 1f t however, the motion is becauso of the den-
si ty Clumg0G and the grav1 ty II the termrfree-convection i8 

used. As the topic of this study suggests, a mixed type of 
convection is going to be considered here. Hence, in this 
case, the effects of free-coDveotio. are taken into account 
as we11',as those of the forced type. This requires the ad­

dition of another term, the buoyancy force per unit mass, 

9 

on the rlght-hand-side of equation (8). Let the f1u!d tem­
perature be To.a Ol1d the corresponding density be 3.",. !fhe buo­
yancy force per unit volume for an element of fluid, at tem­
perature T and density.f II will be (goo-j')g, where g. is the 
acceleration due to gravity. ~hen the buoyancy force per unit 
mass is (~-S)g/~. If ~ is the coefficient of thermal expan­
sion, 

(12) 

Then 

Therefore, the buoyano1 force per unit mass is ~~(T-~oJ), 
for a more general surface, w1~ 

[ 
2]1/2 

Bx(X) a g 1- [;;] . 



Then, if the flow is opPosite to the gravitational field, 
equation (8) becomes 

~ U d U w2 
dr dUe 

u - + v - - - - = U·' - + 
ox 'dy r dx e dx 

(15) 

In equation «15), the positive and negative signs are to be 
taken for assisting amd opposing flows, respectively. 

10 

The equations (6), (10), (11) and (15) are the bound­
aryo-layer equations. Al though they are deye10ped with the 

geometry of a sphere in' mind. they are also valid for various 
s9apes of bodies of revolution. 

B. Dimensionless Ratios 

It is important to realize the physical significance 
of the dimensionless ratios usee! in this study, so that they 
will mean more than just numbe~. That will be essential for 
taterpr1tatlon of the results. In this seetion, firstly, 
'those dimensionless ratias that are commenly employ-eel ill 
heait-traDsfer caleulatlollS will be brien,. eoasidereti. Those 
include tho Reynolde number, the Busselt number, the Prandtl 

.number, the Grashof number and the frictio~ coefficient. 
Later two other dimensionless values ",hieb al:9 \l8e41 'ttoge'ther 
w.i til tile Prandtl number as; pammeters in this invEJat1gatiOil 
wUl be presated, The rota~cm parameter and the buoyancy 
palmmEJtsr. They wIll be de1'1ned and some eommeuB w111 be 

made: upcs them. 

De R0ynoldil:s m.u.1ber is a measure of relative magni­
tude o-r tb inertial :forces "to the viscous :torces occurl.q 
ill tlae flow. ~G higher 'the Reynolds number the greater rill 
lie tile contr1bution of inertia e:tfeots. no smaller the 
Re1llo1ds number Ule greater wUl be the relative magnitude 
of ~ viscous stresses. 



The Nusse1t numb0r gives a measure of the ratio of 
the heat transfer rate to the rate at which heat would be 
conducted within the fluid under a temperature gradient. 

~h0 Prandt1 number 1s the ratio of kinematic viscosi­
ty to thermal dltfuaivl ty. Diffusivi ty is the rate at which 

11 

a particular effect is diffused through a medium. Kinematic 
viscosity of a fluid is tho rate at whioh momentum diffUses 
through the fluid due to molecular motion, and thermal dlffu­

sivity is the rate of 4iffuaion of heat in the fluid. Gases, 
1D. general, correspond to Prandtl numbers between 0.5 and 
1.0. While water has the Talues of the Prandtl number at the 
orders of 1 to 10, light organic liquids are known 10 have 
values between 6 and 60. Oils match to h1.gh values of 'the 

Prandtl number. However, they will not be oonsidered in this 
study due t(l) the ressons explaine4l while construoting equa­
tion (11). Liquid metals, on the other hand, form the other 
extreme. They willj.'be reprosented w1 th Prandtl numbers ot 
less than 0.02. In this study, they will not be considered 
either. The above Prandtl number speotrum of fluids is taken 
from Kaya (9). 

Another dimensionless number 1s the local friction 
coefficient, which is defined by 

P (du/~y)y=o 
O.5s~2 

where ~Is the free stream velocity. 

(16) 

~e rotation parameter is defin0d according to ~e 
geometry to be considered~ Therefore, it is sufficient here 
only to mention that the rotation parameter is the relative 
magnItude of the rotatIon speed to the free stream Teloeity. 
A more precise daf1n1tioD will be state~ later in the report 
when the geometry is taken into account. 

2Qe 4efinitlon of the buoyancy parameter includes the 
Grasho! number in the numerator and th. Reynols number in 



the denominator. As a combination of these two dimension­
less groups, the buoyancy parameter can be interpreted as 
the degree of free-convection as compared to foroed-con­
vec:tion. 

c • Rotating Sys terns 

In the previous sections of this ohapter, the for-' 
mulation of the mixed forced- and free-convection is made. 
However, the geometry and the rotation are other signi~i­
cants aspects of this study. Therefore, a preliminary dis­
cussion exploring rotating systems with similar geometries 
will contribute to this present investigation. 

Heat transfer from bodies of revolution spinning 
about their axes of symmetry 4.s"both theoretioally and 

practically important, in pa~~ieular, when they are placed 
in a forc~d; flow field. As explained in the previous sec­
tion of this chapter, the rotation parameter conveys the 
ilJ..formation about the extent of rotation-. According to 
literature [3J, at high values o~ this parameter, the flow 
and thermal fields are strongly. influenced!. 

Pre~ious investigations in the field of rotating 
systems have commonly employed body shapes from a special 
class. [lOJ The bodies of this class have shapes whioh can 
be describe4blr a power function of the type 

-[ x J(2m-l) /3 
r(x) :: L -

L 
(17) 

whe:e x 1s the distance from the nose measured along a 
meridian, rex) is the radius of revolution of the body, 
L is a characteristic length of the body and m determines 
the geometry. In the solutioDs, m 1s u4ed as a parameter; 

I for example, m=2 1s the case of a rotating disk. 
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However, cylinders and spheres do not fall in the 
class of the bndies mentioned above. It is not possible 
to obtain, for example, a sphere using a single m-value. 
Therefore, it 1a more convenient to look for other meth­
ods for bodies such as cylinders and spheres. However, 
although cylinders and spheres are to be treated sepa­
rately from the class mentione~ above, they have features 
in common with those other body shapes. For example, it 
is possible t(i' obtain the fiow and heat transfer chara.c­
teristics for'-:Q rotating disk, as a special case. from 

13 

the formulation for the rotat1ns sphere. (4) This is why 
the comments regarding that special class are included in 

this ahapter. Moreover, for a sphere, which is the con­
sidered geometry in this present Btudy, thel."Nu8selt num­
ber in the vicinity of the poles can be closely approxima­
ted by the equations developed for a rotating disk, which 
is a body shape of that class. [1'-0] 



IV. PROBLEM STATEMENT 

A. The Governing Equations 

The boundary-layer equations for laminar, steady, 
non-dissipative, constant property (except changes in den­
sity Wkdeh produce buoyancy forces), inoompressible bound­
ary-layer flow over a general rotating axisymmetrio body 
were derived in the first section of the previous chapter 
(equations (6), (10), (11), (15». In order to serve for 
the diseussions in this section, it may help to re-state 
the boundary-layer equations, here. 

- (lm) d +- (rv) = 0 (10) 
""dy 

2 2 
'0 u 0- u w dr dUe :;;> U + 

u-+v----=U -+tJ~-~(T-T...,) (15) 
o x d y r dx e dx ~y 

uw dr 
(6) u-+v-+--= 

"x ~y r dx 

(11) 

The aim of this chapter is to adapt those equations 
to 'the geometry of a sphere. As it is clear from Fig. I that 
gives the geometry, rex) 1s defined for a sphere by 

rex) 1:1 R sin p :: R sin (x/R) (18) 

where R is the radius of the sphere and p 1s the angle meas­
ured from the stagnation po1.Dt. 



I 
I . 
I 
I 

~ -- -- - - - - - -.- - - -- - --- -

lrrr f 11 
Ltoo ,Too 

- --

Fig. I - The geometry of the problem. 



With the above definition of r(x). g in equation x 
(14) becomes 
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~(x) = g sin p :: g sin (x/R) (19) 

Ae stated earlier, in equation (15), for the sign of gx' 
the positive and negative ones are to be taken for assist­
ing and opposing flows, respectively. In the case of 8S­
siet1ltg flow, Tw> Too and' the buoyancy force has a component 
in the positive x-direotion; and in the oppOSing flow case, 
Tw<!Eoe and the buoyancy fONe will have a component in the 
negative x-direotion. This analysis is also valld for down­
ward flow. However, in that case, tbe x-coordinate is meas­
ured from the upper stagnation po.lnt. This time, the as­
Sisting and opposing fiows oorrespond to Tw<!oo and Tv > Too • 
respectively. 

Ue , which oan be termed as the velocity at the outer 
edge of the boundary layer or as the. local ~e stream ve­
lOCity, in general has the expression: 

• • • (20) 

where U eo is the free stream velocIty. [6J The corresponding 
constants ~g B, 0, D, etc. for the sphere are given from 
potential !low solution by 

A lIZ 3/2 , B I: - 1/4 , o :It 1/80 
(21) 

D = - 1/3360. etc. 

Which forms a sine-series expansion. Therefore, the local 
free stream velocity for a sphere 18 

3 
Uft(x) lIZ - u sin P .... 2 <>0 

(22) 
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Also evaluating dr/dx and dUe/dx, the governing equations 
of the system may ~ written as 

d . 
- (ru) + .L. (rv) u 0 
~x "dy 

(10) 

d U d u w2 9 112 
ao 

- - - COB P = - - sin !It cos pi 
"dy r 4 R (23) u - + v 

'}u 
+ t.> dy2 :!: g f-> (T-~oo) sin If 

d l1 ~ W uw '}w 
u - + v - + - cos J1 .tJ~ 

d x ~ y r 'dy 
(24) 

(11) 

It will bo useful for later use to parametrize the 
above equations. The in-the-previous-chapter-meml'tieneel! 
parameters o the rotation parameter, Rp and the buoyancy 
parameter, Bp are now defined according to 

[ 2 llR]2 
Rp=--
.. 3 U oo 

, for sphere (25) 

where.JL is the angUlar veloei ty of the sphere, and 

(26) 

. where ReR ~ the Reynolds number, Ruo<>/IJ. 
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The Grashof number is defined by 

Gr' :: (27) 

The Prandtl number, ~/~, is also, used as a parameter in 
the system. Then the governing equations containing the 
parameters are: 

- (nu) + L (rv) :: 0 
dy 

(10) 

U :: + v -~; ~ ~ u;2 [~J Rp COB p = ~ U; sin P cos d 

(28) 

, 2 
d W dW uw d W 

u - + v - + - cos " :: I,) ~ 
dX dy r dy 

(24) 

'dT 'dT 
u-+v-= 

dx d y 
(29) 

B. ,The Boundary Conditions 

After the derivation of, the governing equations, 
it is now convenient to furnish them with the boundary 
conditions. As in most of the other problems of interest, 

, it is appropriate to solve the equations under the case 
of uniform wall temperature. 
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For the case of uniform wall temperature, the cor­
responding bopndary. eonditions are 

u=v=o, w =J1.r , 

U :: U , e w = 0 , 

Y ::::: T w for y=O 

(30) 

for y.-.oo 

In this study, the above set of boundary conditions is 
used. However, in order to see what dlffere~in the formu­
lation, it is useful to discuss another possible set, here. 
In some of the previous investigations, for example in (7J, 
the case of uniform surface heat nux has been;'employed. 
For that case o~ boundary eonditioIlSC, the following can be 
written: 

u v 0 w =llr 
'"0 Tit ~ = = , , - = - for y=O 
"dy k 

(31) 

u ::I Ue , w--·= 0 , 'Elf :: !o.o for y-~ 

For the uniform surface heat flux case, equation (27) of 
the formulation should be replaced by a new definition of 
the Graehof number: 

.-J( 

Gr :: 

In that case, the buoyancy parameter is given by 

~ 

~ Gr 
Bp Ill: -R-e--lll"'5/~it"-· 

R 

(32) 

(;;) 

For the boundary conditions defined by equation (31), it 
is necessary to change equation (28) in view of the new 
definition of the buoyancy parameter. Later in the report, 

( when the dimensionless system is obtained, the formulation 



is going to be made such that a single form is attained 
for both sets: of boundary oonditions. The equation that 
takes the place of equation (2~,> for the seoond oase of 
boundary conditions is 

u-+v--

,2 u 2 
d U + I(.. 00 

+ LJ~ - Bp 
Jy R 

(T ~ ) Re 1/2 
- 00 R 

--------- sin fI 
(qw It/k) -
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(34) 

It i8 clear that, in that oase of boundary conditione, the 
buoyanoy force will assist the forced flow for qw>o, and 
it- wil] oppose the flow for ~<o. Therefore, the positive 
and negative sighs in equation (34) are ~o be taken ac­
oordingly. 



v. THE SOLUTION OF THE PROBLEM 

In this chapter, initially, the method of solution 
is dec"1ded on. This is achieved by discussing various pos­
sible methods, that have been used in previous investiga­
tions, with regard ta criteria such as co~ergence and 
stability. The deCision is made on an appropriate method 
in recognition of its advantages. Later in the chapter, 
the governing equations and the boundary eonditions of the 
prewious chapter are transformed to form the dimensionless 
system o~ equations, which are then solve~ by the chosen 
method. 

A. The Solution Method 

In order to obtain solutions for the coupled momen­
tum and ~nergy equations, different procedures are possible. 
By applying appropriate coordinate transformations and 
Merk's procedure [11), the governing equations can be reduced 
to a set of «~uple~ ordinary differential equations. I~ 
Merk'e method, like in Gijrtler's method, the series solu­
tion is expressed 10 terms of universal functions. However, 
Merk'e procedure treats the wedge variable as one of the 
independent coordinates. Karm's procedure for the compu­
tation of boundary~layer transfer has been examined in de­
tail by Ubao and Fagbanle (11). The first author had pre­
viously diB~overed the incorrect equations in Mark's pro­
cedure. In that study ~lJ, the corrected sequence of the 
differential equations governing the universal tunctions 
associated with the method are provided. 

After the system of ordinary differential equations 
with two-point boundary condItione are obtaine« using the 
Merk's method, an approach to the solution is possible by 

considering a related initial-value problem. A very effective 
"class of numerioal methods, which are called initial-value 
or shooting methods, is based on this notion. 
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There are two major diffioulties associated with 
the shooting methods. The first one is the problem of 
convergence, and the seoond one is that the initial-value 
problem generated is frequently unstable, i.e. it is very 
sensitive to perturbations in the initial conditions. Mul­
tiple shooting method is developed to overcome those dif­
ficulties. In this method, the interval of the problem is 
devided into many sub1n~erva18 and for each subinterval 
a corresponding initial-value problem is generated. Then 
the problems are 80lYed making sure that the appropriate 
continuity conditions are satisfied at each of the subdi­
vision points. 

Rajaaekaran and Palekar (8) have numerioally integ­
rated the set of coupled ordinary differential equations, 
which depend on wedge, rotation and buoyancy parameters, 
by applying the multiple 8hpo~1ng method. They have used 
the subroutine DTPTB from IMSL (the International Mathema­
tical and Statistical Library). However, in the instruc­
tions given for the usage of this subroutine, it'·:is indi­
cated that the convergence is of vital importance. There­
fore, one should take precautions to increase the probabi­
lity of convergence. It is the best thing to inorease the 
number of shooting points. With many points the program 
essentially usee a finite difference method, which has less 
trouble with nonl1nearities than shooting methods. In fact, 
in some of the previous work, for example of [6Jand [7J, 
finite difference method is applied. 

In this present study, the original partial diffe­
rential equations are solved by the finite difference 
method. For the purpose of comparison and with the inten­
sion of forming a parallel description to that ot multiple 
shooting method (or shooting methods, in general) as stated 
above, convergenoe and stability in the solution of finite 
differenoe equations are now examined. 



The fundamental concept of the calculus is the in­
terpretation of the derivative as the instantaneous rate 
of change. For that purpose, a finite increment is uBe.d 
and the limit as that increment approaches zero is exam­
ined,. In the finite difference method, the inverse of 
this limit process is use~. This is usually termed as 
ndiscretization". The discretization of a partial differ­
ential equation in a domain of independent variables re­
sulta in the replacement of this domain by a finite num­
ber of preselected, discrete pOints, referred to as mesh 
or grid points, and the values at those points are deter­
mine&? 

Let U be the exact solution of a partial differen­
tial equation and u be the solution of the difference e­
quations, formed by the discretization prmcess. used to 
approximate the partial differential equation. Then the 
finite difference solution is said to be convergent when 
u tends to U as ~xi tend to zero, where Xi represent the 
independent variablem. In general, the error (U-u) can be 
decreased by decreasing,~xi' but this leads to an increase 
in. the number of equations to be solved, because it means 
an increase in the number(of points. Hence, each additional 
points adds to the time and labor of calculation. Therefore, 
this way of improvement is limited by 8uch factors as time, 
machine storage space, etc. 

The discretization error should be considered apart 
from the round-off errors. If it were possible to carry out 
all calculations to infini te:.number of decimal placEts, the 
exact solution of the finite difference equations would be 
obtained. However, ealculatio~s are carried out to a fi­
nit0 number of decimal places, which causee roun4-off er­
rors. A finite difference solution i8 sadd to be stable 

.when the total effect of all nound-off errors is negli­
gible. 
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As indicated above, the decision on ihe method is 
made in faTor ot the finite difference method. In the 
following section, the dimensioniess system i8 obtained 
to bo used in the difference equations. 

B. The Dimensionless System of Equations 

The computational stage of all numerical methode 
fon solving complex problems generally involves a great 
deal of arithmeties. It is, therefore, better to arrange 
the problem Buch that one solution i8 suff1eient for a 
~rfety of different problems. This can be done by ex­
pressing all('(t~ua.tionlJ in terms of nom-dimensional vari­
ablese Then all problems with the same noD-41meneional 
mathematical ~ormulation can be dealt with 'Y means of 
oue aolut1on. In this study, the non-dimensional vari­
ables ~e denote~ bY. a circumflex (~) over their origi­
nal forms. x, 1, r ean be defined as 

A-
X = x/R , 

A 
r = r/R (35) 

It is clear that % and 0 are i4entiual. From equation (18), 

A A 
r = s1n 9 = s1n x 

from whlchlt follows that 

",... /'. 

coe /J = dr/dx 

(36) 

(37) 

Accordingly, the non-dimensional forms of the TGlocities 
can also be obtained: 

J-. 

" w u=-
u oo 

(38) 



A ~ v Re 1/2 v :a ___ ~R=--_ 

A W 
W 1:1 -

flR 
(40) 

The nondimeneional form of the temperature depends on the 
choice of the boundary conditions. For the case of unifoim 
wall temperature, the obvious non-dimensional form is 

A T - Too 
T IZ ---- (41) 

whereas if the case of uniform suntaee heat flux were used, 
the appropriate non-dimensional form wou[d be 

(42) 
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Su'&ztltuting those non-dimensional forms of equations (35) to 
(41) in the governing equations «16), (24), (28), (29», the 
dimensionless system of equations can be formed ae 

..... ..... 
~u dV 
-+-=0 
d x "dY· 

(44) 

BOGl\zi~i UNivERSiTESi I(UTUPHAi~E~. 
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(45) 

(46) 

~h0 above equations are ~so valid for the case of uniform 
"'-surface heat t1ux.cROlfever, in that case, ! and Bp would be 

~'" it replaced by! $B4 Bp , respectively. 

The boundary conditions should also be written in terms 
of the non-dimensional variables. !hen the set of boundary 
oonditions for the case of uniform wall temperature of equa­
tion (30) becomes 

".. ..... ,... -- ,... 
for y u = V :cr 0 , W :: r , T = 1 = «) 

(47) 

... 3 A2 A ,... 
A-

U = -It e W ::: 0 , T :: 0 for Y' .... ~ 
2 

whilo on the other hand, if the uniform surface heat flux case 
wer0 to be uae~, the non-dimensional form of the boundary condi­
tione set would be as 

..... ~ A '" 
U ::: V ::: 0 , ~. w = r 

, W::: 0 t 

-::: -1 
A-

for y =0 

The local trietion ooefficient vas defined by equation 
(16). Its form in terms of the.n.on-dimensional variables can 

be written as 

:. C'· Re 1/2 
2 f R ::: --ray (49) 



The local Nusselt number can be defined as 

hR 
Nu = - = -

k 

R (~T /;)y) , y=o 

Tw-Teo 

The nondimensional expression is therofore 

-1 2 d 5! ;..,/ 
Nu ReR / = -~ ~ 

~y y=o 
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(50) 

(51) 

for the uniform wall temperature case. For the caoe of uni- I 

form surface heat flUX, the local Nusaelt number would be 

. 1 
Nu-Re -1/2 = _ 

R !'" y=O (52) 

Now, having established the dimensionless system of 
equations. lot is time to form thei'difference equationB, of 
the finite difference method, prior to the construction of 
the computer program. 

O. Difference Equations 

In tho transformation of the differential equations 
t.fJ n fom auitnblefor th~ finite difference method, certain 
fin1te-d1ff$rene0 approx1ma~ione to the derivatives have to 
b~ used. After thia prooess of discretization, which was 
disoussed in the first section of this chapter, tho resulting 
difference equations may be obtained. 

In this study, an explicit iteration Bcheme is pre­
ferred and the down-stream direction is taten to be the posi­
tive x-direction. Therefore the iteration is performed start­

,tug from the stagnation point. 



The f1nite-uifference approximations for the derivatives of 
the system are 

" 'd U Up - Uu. 
-:s -----_ ~ , 
dX ~X 

d U UU(Y+ 6 Y) - )JlJ(Y) 
_a o. 
dY bY 

A 

d V VU(Y+AY) - VU(Y) 
(54) --- = ----------------dy 

d\t' WU(Y+~Y) - w(Y) 
(55) -=----d'X' AX ' -=--------"d1 AI 

TEMPD - TEMPU 

AX 
, TEMPU(Y+A Y) - TEMPU(Y) 

AI 

UU(Y+.A Y) - 2 UU(Y) + UU(Y- AY) 

(6. y)2 

WU(Y+AY) - 2 W(Y) of WU(Y-.-AY) 

( Ay)2 

TEMPU(Y+ AI) - 2 TEMPU(Y) + TEMPU(Y-AY) 

(A y)2 

(57) 

(58) 

(59) 
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(56) 

wher~ letters U and D that follow U, V, W and TEMP denote up­
stream and down-stream values, respectively. In the new rep­
rQsentation of the independent variables, X and Y indioate 

.,... A 
the values of-x and r at the preseleoted, disorete points. 
OX and ~Y represent the spacing between those points. U, V, 
W and TEMP are the solutions oithe finite-difference equations. 
Variations in Yare onown in parentheses. If there Is no varia­
tion in J, those paranthes8s are omitte~. !he variat1Pns in X 



are indicated by U or D, that follows U, V, W and TEMP. The 
partial derivatives in equations (43) to (46) have now their 
new representations. 
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Those finite-difference approximations for the deriva­
tives can now be usediogether with equations (36), (37), (43), 
(44), (45) and (46) to form the difference equations, that con­
struct the nucleus of the computer program, which is presented 
in Appendix-B. 

In the following section, some comments will be made on 
this aomputer prgram with the inten*ion of simplifying its exa­
mination. 

D. Some Comments on the Computer Program 

At this stage, it may seem that it would be enough Only 
to discuss the symbols in the program. However, there are still 
samo comments about the formulation that· are significant to be 
made. The first one is on the buoyancy parameter. In equation 
(44), there are pluB and minus signs preceding this!,parameter 
indicating aSSisting and opposing flows, respectively. In tbe 
computer program, the buoyancy parameter is taken such that it 
maY have either positive or negative values and the preceding 
sign is therefore Ohoslm 'plus. 

Since the temperature distribution at x=O;is not speci­
fied, a new temperature variable is used in the program. That 
1s given by 

(60) 

where i denotes the intermediate value. As the name indicates, 
the temperature solutions are converted back into the desired 
form of formulation later in the program. Therefore, the user 

,does not need to worry about this feature of the program, but 
should keep in mind that at the points near the stagnation point 
it is not possible to obtain the temperature distributions and 

therefore the Nusselt number. 



Since the velocity distributions at the stagnation 
pOint are known (velocities equal to zero), there is no need 
for modifications in their formulation. However, the momen- . 
tum equation for velocity-~ (equation (44» should be changed 
because of the term which includes the temperature variable. 
In this way, the temperature value is converted back into· 
its earlier form within the calculation in the momentum equa­
tion. This process of changing the temperature variable and 
later converting it back into its original form does not af­
fect the solutions for the velocity distributions sinee for 
small values ot ;, that buoyancy term tends to zero. 

The choice of the pointe, or rather the establishment 
of the apacing;between the points is quite important. For 
this problem, .A X 1s taken much smaller than 6. Y, becawso 
there is a factor of u before the derivative term and that 
acts as a divisor in the differenoe equations. The value. ot 
.L\ X and A Yare given in the DATA statements of the computer 
program together with the other information. 

In order to servo as a multi-p~rpoBo program, the 
FORTRAN program of Appendix-B contains a variable WOH, that 
indicates the work to be dOne. When NOH equals 1, the Telocity 
and temperature distributions are obtained. !he corresponding 
friotion «actor and the lusselt number are also uupplied. 

I IOR=3 givoB th0 effeot of the Prandtl number on the velocity 
and temperature profilee, wile NCH=4 gives that· on the fric­
tion factor and the NUBselt number. Actually that 1s the 
ob~ect of ~~is study. HCH=2 displays both of the results of 
NOlI::3 and 100=4. \'/hen both the effects of the Prandtl number 
and the velocity and temperature distributions for various 
angular positions are deSired, BCH should be chosen to be 
zero. 

The constants, variables, arrays, parameters, etc. that 
are present in the computer program are given in Appendtz-C. 
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E. R.8sul ts 

Employing the computer progr~ developed, it is pos­
sible to obtain the velocity and temperature distributions, 
either for assisting or opposing flows, at any angle ~ (meas­
ured from the stagnation point), for any set of values of the 
rotation parameter, the buoyancy parameter and the Pranc!ltl 
number. In eaoh cQse, also the Nusselt number and tho friotion 
factor can be evaluated. Although the aim of this study is to 
observe 'the effects of the Prandtl number variation, some 
other,'resul ts that are attainable all along the study will be 
also displayed, and some oorresponding conolusions will be 
arrived at. ~his is done with the intention of keeping the 
integrity of the subject. Owing to ita practical importance, 
the set of boundary conditions given by equa;ion (30), i.e. 
the uniform wall temperature case, is considered. Some of the 
resulta are displayed in the following graphs. !he following 
DISCUSSION chapter will be based on those figures. 
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VI. DISOUSSION 

In this chapter, the information of the RESULTS sec-
tion of Chapter V will be referred to and the effects of the 
parameters will be exai1ned and discussed. This process will 
be performed considering each parameter of the system one at 
a time. Those parameters inelude the rotation and the buo-; 
yancy parameters, the angular po~ition, i.e. the angle meas-
ured from the stagnation point, .and the Prandt1 number. The 
examination of the effects of the Prandtl number is the actual 
objoct in this stu4y. and therefore that will be considered as .; :"1, 

the last parameter in the chapter. 

The effects of the parameters will be examined on the 
velocity and temperature distributions, the HU8se1t number 
and the friction factor. Some of those ara affeoted direct­
ly by anyone of the parameters while the values of the others 
vary indirectly. 

A comparison of the results obtained in this stu4r 
with tho~c of the previous ones is also necessary. However, 
the formulation diff'0re some\t,hat in each of the previous 
investigations. It ie not ac~lly the results that are~­
portant but rather the conclusions. All those that will ... pe 
stated for the oases of the roS~t1on parameter effects and 
tho buoyanoy parameter effects are in agreement with 'those 
of Rajasekaran and Palekar (8). The effects of the Prandtl. 
number were· not previously investigated for ~ rotaing sphere 
with mixed type of convection. 

I 

A. Thea Rotation Parame:te~ 

The rotation parameter, RP. was previously defined. 
However, it is significant to mention here that it is d.pen~ 
dent not only on the rotation speed but also on the free 
stream velocIty. Therefore, an inorease in the rotation 

H. 
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parameter can be interpreted either as a decrease in the 
frGe stroam velocity, UClDt or as an increase in the rotation 
epeed,J1. The smallest value of ~he rotation parameter is 
sero,wh1ch corresponds tp a Don-rotating sphere. Very high 
values of the rotation parameter will Dot be coneidered in 
this study, because in such a case, a degeneration occurs 
in thG formulation. Then the effects of the free stream ve­
locity are diminished and the system looks like the case of 
the absence of flow. However, the·"non-dimensional forms are 
obtained tor a nOD-zero Bet of values of the free stream ve­
locity. 

The ef.fects of the rotation parameter will DOW be 
considered after the above establishment of its limits, within 
which the system will be examined. The velocity distributions 
and therefore the friction factor are those that are directly 
affected by the rotation parameter. An increase in that para­
matsr results in a corresponding iBcrease in the velocity 
gradiont at lbe ~ll, and therffore a decrease in the velocity 
boundary-layer thickness. The overshooting of the velocity 
profiles beyond the local free stream veloc1~, observed a~ 
high values of the buoyancy parameter, takas place earlier 
as the rotation parameter is increased. !his is due to the 
coupling between the buoyancy and rotation. The above-men­
tioned increase in the velocity gra41ants at the wa!l ref-

..,A "" lecta dIfferently to velocities u and w. Sinoe the maximum 
value ~f the veloc1ty~, except the region where overshooting 
1s observed, is the local free stream velocity, the velocity 
profIle of~ incroases as the velocity gradiant !nore,araee. 
Overshooting alsp acts in the same direction. However, velo-

~ city w deoreases with the rotation paramoter, since tho max1-
mum velocity of rotation is at the 'surface of the sphere 
and increas~ Velocity gradient sh1fts the v-profile doWn­
wards. However, Buoh a comment 1s mio1eaaiDg~ Although ODe 

may talk about a decrease in w, there is actually an inorease 
in the velocity in the rotating direction, since the rotation 
parameter inoreases, i.e. the rotation 8pee~ 1ncreases. HOv­
ever, this increase is suppressed when the non-dimene1onal 

.; : 
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form w is obtained in Section B, Chapter IV. As the rotation 
parameter increases, the friction factor also increases. a1!I:" 

expected,. due to the increase in the velocity gradient. The 
effects of the rotation parameter on the velocities and the 
local friction factor can be observed in figures II, III, .. , 
VIII and XI. The overshooting is clear in figures III and IV. 

The temp~rature distribution and the Nusselt number 
are indirectly affected by an increase in the rotation para­
metor. Because of the resulting increase in the velocity, a 
decrease in the temperature profile can be observed.J1f the 
wall temperature is higher than the surrounding fluid tempe­
rature. ~hat, of course, implies an increase in the Nusselt 
number. 

B. ~e Buoyancy Parameter 

As it is pOinted out earlier in the report, the buo­
yancy parameter can be interpreted as the degree of free­
convection as compared to forced-convection. This implies 
that at Bp=O, the problem reduces to pure forced-eonvection. 
\Yhile on the other hand, as the buoyancy parameter takes 
'plgher values, the effect of the temperature on velocities 
is amplified. It is clear that there is no need for imposing 
restrictions on the buoyancy parameter as done in the case 
of the rotation ~arameter. However, it can be stated that 
pure forced-convection is possible while pure free-convection 
is not attainable in this study. This requires different 
formulations as done in the studies [6] and (7J of Chen and 
Mucoglu. According to the formulation of Chapter V, the 

I buoyancy parameter may take either positive or negative 
values. They oorrespond to assisting and opposing flows, 
respect1vely. Explanation, regarding under what conditions 
the flow may be named as assisting and oPPosing, is present 
in Section A, Chapter IV. There is no need to discuss t~t 
once more. However, it is necessary to point out that the 
direction of the gravitational force is Significant, since 

/ it is the gravitational fie14 which oauses the buoyanoy force. 
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As in the case of the rotation parameter, the velo­
city distributions and therefore the friction factor are 
those that are directly influenced by the buoyancy parame­
ter. For the assisting flow case, 'as the name suggests, the 
velocity increases with increasing values of the buoyancy 
parameter. In a way, the buoyancy parameter, when it ~ak.s 
positive valuea, aids the flow. That can De observed in 
figures III and II. High values of tho buoyancy parameter 
causes overshooting of the velocity profiles beyond the lo­
cal fras stream velocity. The coupling between the rotation 
and thel·bueyancy increase8 the. amount of overshooting, 8S 

mentioned previously. As in the case of the rotation para-
t. 

m&ter, the friction factor a180 1l'lcreaeeo with inere8s .• ng 

buoyancy parameter as seen in figure XII. However when they 
are compared with each other, rotation has a more pronounced 
effect. 

Also by the buoyanoy parameter, the temperature dis­
tribution and the Nussel t number are indirectly a:tfec.~ed. It 
the well temperature is higher than the surrounding fluid 
temperaturo, a decrsQse in the temperature profile and there­
fore an increase in the Nusselt number is observod in con-

I . 

aequeno0 of the 1no~ase in volocity, when the buoyancy 
parameter had positive values (assisting flow) and is 1J)or·eas8d • 

. : ,.,:' C. The Angular Position 

Although th~ angular position 1s discussed as a para­
Meter, it is quite different in nature when compared with 
th() othor parameters. I~ determines the point on the surfaoe' ~ :'\<. ' 

,,. j 141 

that will bQ considered as one of the boundaries. Due to. 
symmetry, the ~ar position i8 enough as a parameter tor 
t~is purpose. According to the formulation p! Chapter ,,!, th,,~ 

value of x gives direetly the angular pooi tion. The minimum.:,; 
value 1s zero amd corresponds to the stagnation point. 



As mentioned above, the angular position is not a 
param0terin the sense of tho parameters discus8e~ earlier. 
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The local free stream velocity, u.! detine~ by equation (22),· . 
depends on the angular position. Since it acts as the velo­
city·at the outer edge of the boundary layer and therefore 

. ...." as one of the boun4ar.y conditions ot velocity u, it 18 ob-
vious that a different velocity profile will be ob~1ne~ for 
different angular positions. That is due to the geometry of 
sphere. ~he same conclusion can be arrived at for velocIty 
...... 
Wo Since pointe at d1fferent angular positions on tho sphere 
rotate at dIfferent speeds, the oorresponding velocity pro­
files vary accordingly. Therefore, the angular position can 
be d1scussed as a parameter only tor temperature, the NUBselt 
number and the fri~~ion factor. The local NU8selt number and 
the ~ocal friction factor are represeDted in graphs as angu­
lar distributions. (Figs. x to XIV) The other variables can 
algo be evaluated for various values of the angle p, not tor 
the sake of comparison, but for investigating the distribtt­
tiona at those regions of the sphere. Different angles are 
cons14ere~ also in the graphs. 

D. The Prandtl Number 

As oxplained in Section B ot Chapter III, the Prandtl 
. number~ Pr, io tho ratio of the diffuoivltiee. The kinematic 
viscosity is the rat. at which momantum diffuses through the 
flui« due to molecular motIon whIle the thermal 4ItfUsivity 
1s the rate of diffusion of hea~ in the fluid. ~he range of 
the Prandtl numbers was also disoussed in that section of the 
report. 

!he Prandtl number is an important parameter in this 
study, and its effects are examined for the first time for 
a rotating sphere in forced flow with buoyanoy effects also 
considered. That is indicated in the study of Rajasekaran . 
and Palekar [a). who have considered the effects of the other 

,'::1,...11 

"':".::_'! 



parameters and have indicated that the effects of the Prandtl 
number variation ~uld be a 8u~ect matter for further inves­
tigations. 

A change in the Prandtl number natUrally affects the 
temperature distributions aad the ~usselt number. ~he exist-
0noe of the buoyancy parameter makes the Prandtl number pos­
sible to influence also the velocity distributions and the 
friction factor. When the buoyancy parameter takes larger 
values, those effects are easier to observe. 
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With inoreasing Prandtl number, the temperature dis­
tribution graph shifts downwards, as displayed in Fig. IX, 
because higher values of the Prandtl number imply much smaller 
~lues of the therma~ diffusivity, when compared to those of 
the ktaematic visoosity. As a consequence, heat is not diffused 
~t a high rate. That explains why the temperature profiles 
become steeper. Those steeper profiles imply increased tempe­
rature gradieni at the Hall and therefore decrease~ thermal 
boundary layer thickness. As a result, the local Nusselt num­
ber increases as observed in Fig. X. 

~he change in the Prandtl number is reflected to the 
velOCity distributions by way of the buoyancy parameter. As 
seen in figures II, IV, VI and VII, for assisting flow, an 
inorease in·the Prandtl number decreases the velocity profiles. 
Less steep e~e8 imply inereased diffusion of momentum. It 
may be observ0d in Fig. IV that the overshooting beyond the 
local free stream velOCity is prevented ao the Prandtl number 
~cr0ases. ~en the rotation parameter have to t~e larger 
Talues, i.e. the sphsr has to to tate at a larger speed, before 
evershoottng is d&tected. ~or opposing flow, on the other hand, 
volocity profiles take larger .a1ues as Pr inoreasGs. That is 
clear when one takes iDto aooount what i8 meant by opposing 
flow. That DS explained in detail pl1eviously in the report. 
Such a problem with opposing flow i8 the case when the sphere 
surface temperature is less than tban the fluid temperature. 
As it is stated above, parallel to the discu8sion in the pre-

. " vious sections, a decreaso in u is followed with an increase 
I 

Ij 



.A. ~ in w. That is due to the shape of the v-profile. When Fig. 
VIII is observed, it is seen olearly that such an incresse 
means les8 steeper profiles, as in the C8se of decreasing 
...... 
u-curvea. 

Ftnally, the effects of the Prand~l number on the 
local friction tauter are discuse.d. As Pr is increased, 
the friotion factor takes smaller values because of t~e 
aecr0aBe4 velocity gradients, tor the case of assisting 
flQm. For tho caBO of opposing flow, just the opposdte io 
observed. The corresponding results are displayed in figures 
XIII and XIV, respectively_ 
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" I ..• VII .. :.CONCLlJSION . . ... '. .,!....... .' ~ ... , 

In this study of mixed convection about a rotating 
sphere, the velocity and temperature distributions, the 
local Hueselt number ana the local friction faotor are exa­
mined tor varying parameters. Some of those parameters, 
the buoyancy and rotation parameters, are also used in the 
previous studies. The effects of those parameters on the 
flow and host transfer are observe~ to agree well with 
thoBe of the previous investigations. !rho Prandtl nubar 
variation is considered heJe, for the first time, according 
to literatureo The results are displayed in grap8s and the 
the effects of this parameter on the flow and heat trans­
fer are examined and the reasons for such effeots are ana­
lyzed. 

" . " 

'In previous stUdios usually the shboting method's were 
preferred and subroutines trom the program libraries were 
used. In this study, however, in solving the govera!ng equa­
tions the finite dl~ference method is directly applied to 
the problem. The oomputer program developed here 1s appli­
cable to va~1ous boundary oon41 tioD8 and it can be useff with 
a modification for a wide range of body shapes. 

/ / 

'. ,; . ~ , 



APPENDIX A 

!he Derivation of the Equations of Motion for Boundary­
layer Flow 

The following discussion is adapted from that of 
Rosenhead (lzl. The bouncla17-1ayer equa tiona of motion 
together with the equation of continp1ty are derived for 
a general thre.~dimensional body in space. 

-Ii> 

Let V be the velocity vector in the fluid with the 

5' 

oomponents V1 , V2 ' V, corresponding to tho curvilinear coor­
dinates xl' x2 , x,. Ir~ de~ote8 the gradient operator, the 
equatioDS of motion ot a viscous incompressible fluid can 
be expressed in the form 

.... 
aV ~~ ~ lri 2-'" 
- + (V. V ) V ::: - - Vp + vV V 
dt S 

(61) 

whers p ~s the pressure. Let the surface of the given body 
be denoted by S. Then the position of a point in opace i8 
described by m0ansot its distanoe x,meaeured along the 
unit normal rt to S and the position vector a on S. There­
fore, the position vector of such a point is 

(62) 

~he gradient operator ~ 8 for the surface S is 

where 

(64) 

',' 
"." 
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It there is a boundary layer on S, then x, and V, 
are small, and the derivatives with respeot to x, are large 
compared with those with respect to xl and %2. Therefore, 
V M can be replaced by V s. Then equation (61) becomos 

~. A~ter parforming the necessary caloulations, the boundary­
layer equations (1) and (2) stated in Chapter J11 can be 
obtained. The equation of continuity 1s 

V·V = 0 

Atter the same reasoning, equation (9)·· is tormed. 

For mathematical details, one may consult the study 
in Rosenhoad [J.2]. 
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JOU10 
J0020 
JD030 
..,0040 
J0050 
J0060 
J8070 
J008U 
J0090 
U0100 
J0110 
J0120 
u013() 
J0140 
00150 
J0160 
J0170 
00130 
J0190 
J0200 
J0210 
J0220 
J0230 
jO,-4J 
J0250 
J0260 
J0270 
J0230 
J0290 
.)()300 
J0310 
J0320 
·J0330 
J0340 
J03SQ 
J0360 
JO.)70 
J0330 
J0390 
j040c) 
J0410 
00420 
00430 
J 0·440 
J0450 
00460 
00470 
J0480 
J0490 
JO:iOO 

(J0510 

~ 

PROGRAM GEPR(INPUT,OUT,buTPUT=QUT) 
DINENSION U(16,500),V(16,SOO),W(16,500),TEr-1P(16,500) 
DIMENSION UU(16),Uo(16),VU(16) 
DIM ENS ION W U ( 1 6 ) , W 0 (1 6) , T E r~ p U (1 6) ~ T EM P 0 (1 6) 
D If~ ENS ION U F ( 5, 1 6 ) , IN F (5,1 6) , T E,"1 P P{' 5 , 1 6) , K N G (5 ) 
DIMENSION VNUS(50Q,4),VFRI<500,4),YVA(16),PRN(4) 
DATA DELX,OELY,IMAX,,'lI,Kt,\AX,i'iK/O.00084,0. 20,16,1,1800,10/ 
DATA U1 ,u2,UIN,V1 ,VIN/O.0,1.5,O.0,O.O,O.O/ 
DATA W1,W2,wIN,T1,T2,TIN/1.0,O.0,O.O,1.0,O.O,O.OI 
JATA ROTP,8UOP,KMF,~CH/1.0,2.0,1000,21 
JATA AU,AW,AT/1HU;1H~,4HTEMPI . 
DATA NPR,PRN,KRP/4,1.0,Z.5,5.5,15.0,11 
I X= IMAX-1 
UU(1)=u1 
VU(1)='J1 
WU( IMAx)=W2 
T E."i P U (I i~ A X) = T 2 
DO 27 I=1,IMAX,~I 
Y VA (I ) = (I -1 ) * D ~ L Y 
27 CONTHIUE 
OEY2=DELV**2 
IF (NCH.EQ.1) PRN(1)=PRN(KRP) 
IF (NCH.EQ.1) KRP=1 
IF (NCH.EQ.1) NPR=1 
I F ( N C H • E Q • 3) K r1 A x = K1"1 F + 1 
DO 23 NP=1,NPR 
00 29 I=2,IX 
UU(I)=UIN 
VU(!)=VIN 
WU(I)=i>JIN 
TEMPU(I)=TIN 
29 CONTINUE 
N KV=1 
DO 37 K=1,KMAX-1' 
NKV=NKV-1 
AX= (K-1 )*DELX 
S AX=S IN (AX) 
SAX2=SAX**2 
UU(IMAX)=U2*SAX2 
wU(1)=\>J11<SAX 
T Ef'lPU (1 )=T1 *SAX 
'JR=O.J 
IF (SAX.GT.O.OOQ1) VR=1.0/SAX 
COT=COS(AX)*VR 
SAX4=SAX1<*4 
DO 30 1=2, I X 
D EX U= 0.0 
IF (UU(I+1>.GT.O.0003) DEXU=DELX/UU(I+1) 
a uo Y= au OP *T E~' PU (I ) * SA X 2 
UD(I)=COT*(UU(I)**2+2.25*(SAX4+SAXZ*ROTP*WU(I)**Z» 
U 0 ( I) =U 0 ( I> +S A X * (UU (I +1 ) - 2.0* UU <r ) +UU (I -1 » IDE Y 2 
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J 05 20 LJ D ( 1) = U 0 ( I) - V U cry* ( uUTr+1J-uu (I ) ) / D-E [y'" ._---- -------
00530 UO(I)=(UO(I)+BUOY)*OEXU+UU(I) 
J0540 VU(I+1)=VU(I)-OeLY*(UO(I)-LJU(I»/DELX 
JOSSO IF (ROTP.EQ.O.O) Go" TO 91 
JOS60 WD(I)=S~X*(~U(I+1)-2.0*WU(I)+WU(I-1»/DEY2 
J0570 WO(I)=WO(I)-COT~UU(I)*WU(I) 
J0580 AO(I)=(WD(I)-VU(I)*(WU(I+1)-WU(I»/OELY)*DEXU+WU(I) 
JOS90 91 TE~PO(I)=(TEMPU(I+1)-2.0*TEMPU(I)+TEMPU(I-1»*SAX 

J0600 TEMPD(I)=TEMPD(I)/PRN(NP)/OEY2+UJ(I)*TEMPU(I)*COT 
J0610 TEMPO(I)=TEMPD(I)-VU(I)*(TEMPU(I+1)-TEMPU(I»/DELY 
J0620 TEMPD(I)=TEMPD(I)*D~XU+TEMPU(I) 
JOo30 30 CONTINUE 
J0640 IF (NKV.NE.O) GO TO 83 
J0650 KN=(K+9)/10 
..J ~oblJ Ii Kv=NK 
J0070 IF (NCH.GE.2) GO TO 84 
00680 IF (NCH.EQ.O.AND.NP.NE.KRP) GO TO 86 
J0690 DO 34 I=1,IMAX 
J0700 U(I,KN)=UU(I) 
J0710 V(I,KN)=VU(I) 
00720 W(I,KN)=~U(I) 

'. 

J0730 TEMPO,KN)=TENPU(I) *VR 
)0740 34 CONTINUe 
j0750 84 IF (NCH.~Q.3) GO TO 83 
J0760 56 VFRI(KN,NP)=(ULJ(2)-UU(1»/DELY*V~ 
0077UVNUS(KN,NP)=(TEMPLJ(1)-TEMPU(2»/DELY*VR 
)0780 d3 IF (K.NE.KMF.OR.NCH.€Q.1.0R.NCH. EQ.4) 
)0790 DO 31 I=1,11~AX 
J0300 UF(NP,I)=UU(I) 
J0610 ~F(NP,I)=WU(I) 
J0320 TE~PF(NP,I)=TEMPU(I)/SAX 
J0630 .31 CONTINUE 
J0640 37 DO 38 I=2,IX 
J0650 UU(I)=U:>(I) 
J086J WUCI)=WD(I) 
J0870 TE~PU(I)=TEMPDCI) 
J0380 38 CONTINUE 
00690 37 CONTINUE 
00900 28 CONTINUE 
JOY10 DO 32 NP=1,NPR 
J 0920 K =K N 
00930 VD9=VNUS(K-1,~P)-VNUS(K,NP) 
J094u 81 K=K-1 
J0950 'JDA=VD9 
J0960 VDU=VNU$(K-1,NP)-VNUS(K,NP) 
J0970 IF (VDA.GE.V08.AND.VD8.GE.O.0) ,GO TO 81 
J0980 KNG(NP)=K 
J0990 32 CONTINUE 
01000 IF (SUOP.GT.O.O) PRINT 25 
J1010 IF (SUOP.LT.O.D) PRINT 26 
01]28 PRINT2,ROTP 
01U30 PRINT3,~UOP 
01040 IF (NCH.G::.2) GO TO 8,J 
J1J5J ?RINT1,PRN(KRP) 
J1Ll60 1 FOR . ..,AT(/,10X,·PRANOTL NUt"8~R 
J1J70 PRINT6 

·,F5.2) 

GO TO 87 

; ..... ~ 
:,. " :(~ :": 
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w1 Ub a 
J1090 
J 1100 
J 111 ) 
J1120 
J1130 
J1140 
J 11 50 
01160 
J117U 
J1180 
J1190 
J1200 
J 1210 
J1220 
J1230 
01240 
J1250 
J1260 
J 127 0 
J1280 
J1290 
j1::>OO 
J1310 
Ji j~li 
,)1330 

I i.J1340 
01350 
J1360 
J1.370 
J1380 
J1390 
J1400 
J1410 
J142J 
01430 
J1440 
J1450 
J1460 
01470 
;J14SJ 
J 149 0 
J1500 
j 151 0 
01520 
:.11530 
)1540 
J1550 
J1560 
J1570 
J1580 
J1590 
J1t.OO 
J 161.0 

.oj 1 b 2 J 
J1:>30 
)'b40 

6 FORMAT</I/,20X,'lJ(X,y)',1) 
PRINT4,(YVA(I),I=1,IMAX,NI) 
)0 35 K=1,KN,7 
XVA=(K-1)*DELX*NK 
P R I N T 5, x V A., (u ( I , K ) , I = 1 , I 101 A X , N I) , V F R I ( K; K R P) 
35 CONTINUE 
P R I NT 7 
7 FORi>1AT(III,ZOX,'V(X,Y)',/) 
PRINT4, (YVA(I),I=1, IMAX,NI) 
DO 4'J K=1,KN,14 
XVA=(K-1)*DELX*~K 
P R I NT 9, XV A, (V (I , K ) , 1=1 , I:~ A X, N I) 
4'J COi'lTINUE 
IF (RQTP.t:Q.O.O) GO TO 92 
P R I NT a 
3 FORI.,AT(/I/,20X,'w(x,Y)' ,I) 
P RI NT4, (y VA (I), 1=1, IMAX,N I) 
DO 50 K=1,KN,8 
XVA=(K-1)*OELX*NK 
PRINT10,XVA,(W(I,K),I=1,IMAX,NI) 
50 CONTINUE 
92 PRINT11 
11 FORMATU/I,20X,'TEMP(X,Y)',/) 
PRINT4, (YVA(I),I=1,IMAX,NU 
D 0 bu' K =Kr'llj t"K.'R1'"):' r<."N , b 
XVA=(K-1)*OSLX*NK 
P R I NT 5, XV A, C T EM P <r , K) , 1=1 , I NA X, N I ) , VN US (K ,K RP ) 
60 CONT INUE 
IF (NCH.EQ.1> GO TO 90 
80 IF (NCH.EQ.4) GO T'J 85 
AXF=(KMF-1)*DELX 
PRlr~T12,AXF __ 

58 

12 FORMAT(//I,10X,'VA~IATION OF PRANDTL NUMBER (X=',F4.2,) 
PRINT13,(YVA(I),I=1,IMAX,NI) 
P R I til T 1 4 , ( AU, P R ~~ (N P) , ( U F C N P, I ) , I = 1 , Ir~ A X, N I ) , N P = 1 , N P R ) 
IF (ROTP. E'~.O.O) GO TO 93 
PRINT15 
P R I NT 1 4 , ( A \oJ , P R N OJ P ) , ( 14 F ( N P, 1) , I =1 , I r~ A X, N I ) , N P = 1 , N P R ) 
PRINT15 
93 PRINT14, CAT,PRN(NP), CTEMPF(NP,I) ,1=1 ,IMAX,NI),NP=1,NPR) 
IF (NCH.EQ.3) GO TO 90 
85 PRINT 17 
DO 36 K=1,KN 
V (1 ,K)= (K-1 )*i>ELX*NK 
36 CONTINUE 
P R I NT 1 9 , ( P R rH N P ) , N P = 1 , N P R ) I 

P R I NT 16,. ( v (1 , K) , ( V F iU (K, N P) , N P= 1, NP R) , K =1 , K N, 7) 
PRINT13 
PRINT19,(PRNCNP),NP=1,NPR) 
~O 33 K=KNG(1),KN,5 
IF (K.LT.KNG(4» GO TO 82 
PRINT16,V (1 ,K), (VNUSCK,NP),NP=1 ,NPR) 
GO TO 33 
82 IF (K.GE.kNGC3» .PRINT 20,V(1,K),(VNUS(K,NP),NP=1,3) 
IF (K.GE.KNG(3» GO TO 33 
IF (K.GE.KNGC2» PRINT 21,V(1,K),(VNUS(K,NP),NP=1,2) 
IF (K.LT.KNG(Z» PRINT 22,V(1,K),VNUS(K,1) 

,t':li3 u:: 
:~,~~::~~ 



u1b50 33 CONTINUE 
J1660 90 STOP 
)1670 25 FORMAT(III,10x,'ASSISTING FLOW') 
J1680 26 FORr1AT(/II,10x,'OPPOSI~G FLOW') 
)1690 2 FORMAT(II,10X,'ROTATION PARAMETER: ',FS.1) 
J1700 3 FORMATC/,10x,'SUOYANCY PARAMETER: ',FS.1) 
J17104 FORi.,ATC/,4X,'X',16(2x,'Y=',F3.1),/) 
J1720 13 FORMAT(/,8X,'PN',16(2x,'Y=',F3.1),1) 
J1730 14 FORMAT(1X,A4,FS.1,16F7.3) 
J1740 5 FORMAT(1X,F4.2,16F7.3,F3.4) 
)1750 9 FORMAT(1X,F4.2,16F7.2) 
J1760 10 FORMAT(1X,F4.2,16F7.3) 
J177J 15 FORr~AT(/) 
J1780 16 FOR"IAT(7X,F4.2,4C'11.4) 
;)179017 FORMATU/I,10x,'FRICTION FACTOR',//) 
J1600 18 FORMATU!/,10x,'NUSSELT NU~BER',//) 
J 1 8 1 I] 1 <; FOR :~ A T (1 0 X , , X ' , 4 (3 x, , P R N = ' , F 4. 1 ) ) 
j1820 20 FO~MAT(7X,F4.2,3F11.4) 
U 1 (3 3 0 2 1 FOR r~ AT (7 X, F 4 • 2 , 2 F 1 1 • 4 ) 
J1340 22 FOR'"AT(7X,F4.2,F11.4) 
J1850 END 

59 
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APPENDIX a 

Symbols in the Computer Program 

I 

K 
,U(IoK) 
V(I,X) 
W(I,K) 
TEMP(I,K) 
UU t VU , WU I) TEHPU 
UD,WD,TEMPD 
liPR 
UF(iPR,I) 
WF(lIPR9I) 

!fEMPi(HPRtI) 
lOIG(NPR) 
VllUS(K,iPR) 
VJU(lt,HPR) 
YVA(I) 
PmJ(nR) 
DEI.X 
DELY 
DIAl 
II 
KMAX 

UK 
Ul,n,n,Tl 
U2,W2,T2 

: Variation in the y-direetion 
: 'Variation in the x-direction 

A : Velocity u 

'" : Velocity v 
'" : Velocity 111 

b 
: Temperature ! 
: Upstream values 
: Dowstream values, 
: Variation ~ the Prandtl number 

A : Velocity u for various Pr 
/'. 

: Velocity w tor various Pr 
b : ~emperaturo T for ~rlous Pr 

t Start1Dg point for graphs of lu tor variou8 Pr 
: Tho local lu tor various Pr 
: The 100al Cf tor various Pr 
: Value ,of y at 11th point 
: The Pran4t1 number 
:, ~~ 
: ~y 
: Max1mwa value of I 
: Every II of I is considered 
: Maximum value of It 
: Every UK of K 18 considered 
f ~h0 values of the variables on the surface 

I', .1,. 

: !fhe values' of the variables awrsy from the surfaoe 
UlB,VII,Wm,!IB I The values a1; the stagnation point 
ROTP ; fhe Rotation parameter 
BUOP 
KMIl 
NOH 
KRP 

: The Buoyancy parameter 
: The value of I for the desired angle 

I 

: The choice of work to be done 
: PRW(KRP) 1s the Pr value for which the 41strlbu­

tiona ame caloulated. 

.::!l t~ !:: .. 
.. ~: : ~ ~': :, ~ 
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