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COMPUTER AIDED DESIGN AND DYNAMIC SIMULATION OF
HYDROSTATIC TRANSMISSION SYSTEMS

ABSTRACT

In the present thesis, Computer Aided Design techniques are
intended to be used for the design of Hydrdstatic Transmission Systems
and an user-friendly, intéractive computer program package is developed .
for this purpose,Translational loads and cylinders are also considered
so that the final program is an all purpose one,

In additiqn, a mathematical model is derived for the dynamic
behaviour of Hydrostatic Transmission Systems by taking the pressure
compensation into consideration as well, and another interactive program
is developed for simulation purposes.

Each of the two programs may be used indivihua11y or together
iﬁ anAintegrated manner. The User's Manuals are also offered to help the
user.

The CAD program is hsed for some example app]fcations and compu-

ter éimu]ations are carried out for different cases. The obtained results

are presented,



HIDROSTATIK GOC tLETIMI SETEMLERININ
BILGISAYAR DESTEKL! TASARIMI VE DINAMIK SENZETIM:

KISA UZET

Bu ca]ishada, Hidrostatik Gii¢ tletimi Sistem]er%nin tasarimi .
icin Bilgisayar Destekli Tasarim tekniklerinin kullanilmasi amaglanmis
ve bunun icin bir bilgisayar paket programi hazirlanmistir. Genel amacli
bir program olmasini saglamak iizere, silindirlerin kullan11dig1 hidrolik
devreler de calismaya dahil sdilmistir. % |

Dinamik davranis gézetilmeden ta§ar1m1 yap11an’s%stem1erin sa-
Tinimla calisabilecekleri g6z ©niinde tutularak, olusturulan modele uygun
bir dinamik davranis benzetim programi, basing kompansasyonu da dikkate
alinarak gelistirilmistir, Boylece birbirinden bagimsiz veya birlikte,
birbirini destekleyici olarak kullanilabilecek iki ayri program paketi
olusturulmus ve kullanicy el kitapciklari ile beraber kullanima hazir
duruma getirilmistir. Her iki program da, Bodazici Universitesi Bilgisa-
yar Merkezinde CDC Cyber 820 icin Fortran 77 programlama dili ile kulla-
nict1 etkilesimli olarak yazilmistir,

Her iki program ornek uygulamalar ic¢in ca]1st1r11h1s ve bazi

parametrelerin etkisi de ggzlemlenerek elde edilen sonuclar sunulmustur.
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1. INTRODUCTION

Fluid Power is traditionally associated with the transmission
0of power by means of pressurized fluids in which the energy predomi-
nantly stored as potential rather than kinetic energy. Depending on the
type of the fluid used, fluid power applications can be divided into
two major groups; hydraulics (pressurized liquid), and pneumatics
(compressed gas). In this study, primary attention is given to hydrau-
lics. ' ‘

Although Hydraulic Power Transmission has been known for a long
time it did not gather much interest until recent decades. Nowadays,
some unique advantages of Hydraulics Power Transmission. together with
important developments in manufacturing and control téchniques have
reawakaned an enthusiastic interest in the subject all over the World.
As a developing country, Turkey could not escape from this fact. At
present in the industrial market of Turkey it is possible to see almost
every kind of hydraulic equipment, imported or made in Turkey. Domestic
production covers small percentage at the moment, byt it is rapidly"
increasing. At this poiht it is clear that Turkey vita]]y'needs vast
amount of research and qualified men in every category of this field.

There are many application areas of hydraulics, including air-
craft controls, flight simulators, numerically controlled machine
tools, automation systems, robots, material handling and 1ifting,
porting equipment, construction and agricultural machines, marine ap-
plications, etc. There are a lot of points in favour of hydraulic
systems: '

high forces (torques) with compact size, i.e. high power density,

automatic force adaptation,

movement from standstill possible under full load,

simple overload protection,



- szepless chanda (control or regu]at1on) ot speed torque,stroke,
force,etc. ,

- suitable for controlling fast movement process and for extremely
slow precxsxcn mQvements

- rzlatively simple accumulation of energy.

In a special case of hydraulic systems in which the actuator is
a hydrauTic motor rather than a cylinder, the hydraulic pump and motor
are specifically matched to work together; the power is transmitted
through fluid Tines and the system is called "Hydrostatic Transmission
‘ System P v

Hydrostatic Transmission is preferred to Mechanical Transmission
especially in systems where large power is required at varying levels,
e.g. heavy duty machines, Tifting and porting machines, marine engines
. and off-the-road vehicles. There is also an increasing trend toward the
use of Hydrosatic Transmissions for even high performance over-the-road
vehicles, The overall efficiency of a vehicle pronulsion system can be
greater with a Hydrostatic Transmission (HST) than with a straight
mechanical transmission under certain duty cycles like start-stop situ-
ations under widely varying loads.

Hydrostatic
Constant

TOrQUE aemmm—io

Typical Mechanical Transmi

Speed ——ee—p

FIGURE 1.1 - Comparison of torque- Speed characteristics of
hydrostaf1c transmission and mechanical transmission



Fig.1.1 shows the differ=r= in oneration of the hydrosatic
transmission compared to a three speed gear transmission. The smooth
turve—represents the uniform matciring of torque and speed requirements
by tne hydrosatic transmision. The gear transmission has only three
peints of peak power while the hyrasZatic transmission offers a continu-
gus curve without peaks and vallzy=. :

HST systems have 1ohger~}ife, necessitate less maintenénce,
are 2asily contro]]ab]g, but th=ir investiment cost is higher. That is
why it should be provided to work under very suitable conditions by
choosing the “best suitable circuit components and also by cosidering-
the dynamic behaviour of the system during the design step. Consequently,
the best selection of components to fulfill the load requiremets is
critical from both performance and economic point of view. The dynamic
behaviour should also be considered and observed during the design.

At the present time the design and analysis of hydraulic systems
is usually conducted by a trial and modification procedure that involves
sketching the circuit and calculation of the various component and system
parametersi Industrial designers usually rely on past experince and
after much:testing and redesign usually achieve acceptable hydraulic
system performance. This conventicnal design procedure may sometimes be
quite drastic, time consuming, and expensive. At this point, Computer-
Aided Design techniques have been cosidered as a tool which could be
used to streamline the design procedure. For this purpose a computer
program has been consructed. This program makes possible the design of
a hydraulic circuit - of course it should be in the design limits of the
program - by the selection of appropriate elements from existing files,
which is the first step of the task.

As the second step the dynamic model of Hydrostatic Transmission
Systems is used to perform a digital simulation of the dynamic behaviour
of the designed system. So it is possible to consider the dynamic tehav-
fiouf, j,e transient response, up toa'point depending on preéision of the
system parameter values and capability of the model in predicting the
real system, So the final computer program package is thought to be an
all purpose tool for designing of hydraulic systems, specifically hydro-
static transmission systems. ‘



TII. HYDROSTATIC TRANSMISSION SYSTEMS

2.1 INTRODUCTION

In a typical hydraulic system, a pump drives the system's fluid.
The intake of the pump is connected to a fluid source ( a reservoir ). |
The fluid discharged by the pump is used to control the position or speed
of resisting loads. Motion is usually provided by a hydraulic actuator -
either a linear hydraulic cylinder or a rotary hydraulic motor. The flow
and direction of the pressurized liquid supplied by the pump are cotrolled
by valves farther downstream.

Hydrostatic transmission ( HST ) pumps and motors are designed and
~matched to optimize energy transmission [1] . They offer many important
operating features. They will

-remain stalled and undamaged under full load at low power loss,
-hold a preset speed accurately against‘draving or braking loads,
-may operate in reverse direction at controlled speed within design
limits, unaffected by output loads, .
| -provide faster response than any other transmission, and
-provide dynamic breaking. '

In the following sections the versions of HST systems are investi-
gated. The variable pump-fixed motor version is particularly studied,which
is the basic and most widely used form of hydrostatic power transmission.

In the Tatter sections system elements which form a HST system are
investigated. In order to extend the design limits of the computer aided
design program some elements ,e.g.cylinders, are also considered.So it may
be possible to develop a general purpose program for designing hydraulic
systems. ’



Z-Z: CLASSIFICATION OF HST SYSTEMS

Hydraulic technology has evolved from open. circuit constant flow
systems to open circuit demand flow systems, and is now moving toward
closed looo, electrohydrau]ic servo system§ [1]. Because HST systems have
svolved as a definitive branch of fluid power technology, they firt
reached the market as closed circuit systems, followed by open circuit
systems. Fig.2.1 summarizes the four basic HST configurations, and
conforms with international control technology usage. The entire spectrum
of HST shown in Fig.2.1 is now available commercially.

Hydrostatic Transmissions

o) B ) — . B B
-E‘ Open Circuit Closed Circuit
’ (Discontinuous flow ) : |(Continuous flow)
T
9 ] [ [
Open Loon Closed Loon Oren Loop Closed Loop
(No feedback) (Feedback ) (No feedback ) (Feedback )
g —
)
9 ‘
=
5 ' ot
S bt ? 0
| A )
\

FIGURE 2.1-Basic HST configurations

Another classification of HST systems is based on the types of
pumps and motors used, i.e. fixed or variable displacement, with their
corresponding output characteristics.According to this classification
there are four types which are investigated in the folowing sections.

~ The speed range of the system is an important parameter to asses
~ the system effectiveness. It is defined as the range within the ratio
between.output speed and prime mover speed varies [2] .



2.2.1  Fixed-Displacement Pump and Fixed-Displacement Motor:( PFMF Voo

) Tnis is the simplest form of hydrostat1c transmission.Altough
thlS transmission is inexpensive, its app11cat1ons are limited [2] .
Because pump displacement is fixed it must be sized to drive the motor
at a Tixad speed under full load. However, in order to obtain variable
output speed, a contro]]ab1e bypass valve should' be prov1ded which
returns fluid directly from the delivery 1ine into the tank [3] .

The PFMF transmission is not recommended for applications requiring
frequent starts and stops, because of the Tow efficiency under these
conditiqns [1] . However if the load has constant speed and a constant
speed prime mover is available, this type of transmission may be used.

2.2.2 Fixed-Disp]acément Pump ahd Variable-Dispalecement Motor( PFMV )

If the pump has a fixed displacement and the motor has‘a variable
displacement, the transmission can deliver constant power. If flow to
motor is constant, and motor displacement is varied to maintain the
product of speed and torque constant , then the delivered power may be
kept,constant{

The PFMV transmission can not accelerate a load from rest without
a bypass or a zero spéed prime mover, so its use istlimited.Also its
efficient speed range is only about 4:1 ,[2 ].

2.2.3 Variable-Displacement Pump and Variable-Displacement Motor ( PVMV )

Varying the displacements of pump and motor provides infinite ratios
of torque and power. When motor displacement is at maximum, varying pump
output dirétly varies speed and horsepower output, while torque remains
constant. Decreasing motor displacement at full oump displacement in-
creases motor speedvto its maximum, while torque yari€s inversely with
the speed, horsepower remains constant, ’

A PVMV type transmission is the most flexible, covering speed
ranges of up to 20:1 in some cases [2] ; but this only true as long as the
speed 1imit of the motor increases with reduced d1sp1acement, and has to
" be verified in every instant [3] . 2



2.2.4  Variable-Displacement Pump and Fixed-Diép]éoEment Motor ( PVMF )

The hydrostatic transmission incorporating a variable displacement
pump and a fixed displacement motor is the basic and most widely used fofm
of hydrostatic power transmission [3] . For most applications this con-
figuration unifies all advantages of performance and still has reasonable
simplicity. '

This combination is also called a constant torque transmission.
Torque output is constant at any speed because torque depends only on
fluid pressure and motor displacement.Power output is varied by adjusting
pump displacement with changes motor speed.The efficient speed range is
limited to about 6:1 ,[2] .

There are two possible circuit configuration; open and closed
circuit.In the open circuit transmission, with constant input speed, the
flow is determined by the displacement setting of the pump which must be
controlled according to the load requirements.Although the flow varies
with the displacement setting it is almost unaffected by the pressure.
Therefore this is a constant-flow system with variable pressure as long
.as displacement setting is held constant.

1

<i?%j>j T B
f>$ ]

FIGURE 2.2- Open circuit HST system
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' FIGURE 2.3 - A closed circuit PVMF type hydrostatic transmission
(Eaton Co.,USA)

FIGURE 2. 4 - C]osed circuit PVMF type HST in symbo]1c
representat1on



The closed circuit is more complicated and has more components,
but it is frequently used because motor shaft can be reversed and/or N
* braked.In all applications where these requirements are vital, as in
vehicle drives, the closed circuit is an absolute necessity.

In the open circuit configuration (Fig.2.2), the fluid to the pump
is supplied from a reservoir and delivered to the control biock and motor
inlet. Return and leakage flows come back to the reservoir. The direction’
of movement is determined by a a directional control valve. The motor
y speed can be varied by either using a variable displacement pump or

adjusting motor inlet flow by a servovalve in the control block.
' In the closed circuit configuration (Fig.2.3 and 2.4) motor outlet
is connected to the pump inlet. Either ‘the direction of movement br the
speed is varied by the variable displacement, double direction pump. A
boost pump (charge pump) is used to compensate leakages and provide the
0il to circulate even in stops. Another function of the boost pump is to
fix and regulate the rated pressure in the return line at a level above
the cavitation limit. .

The capacity of the boost pump is normally selected as 10 ér 15
per cent of the maximum system flow and its energy loss is neg]igiﬁ]e in
practice 3 . Another advantage is that the reservoir size is greatly
reduced, according to the capacity of the boost pump and not with respect
to the maximum flow rate of the main pump. |

2.3 SYSTEM ELEMENTS

In this section the e]ements‘which form a HST system as a whole
unit are investigated. In addition, translational loads and cylinders are
also considered so that the final computer program will be an all purpose

one. - |

2.3.1 . Load

2.3.1.1 Translational Load

Although a proper HST is not intended to drive translational
loads, they are also taken into the design Timits of the objective computer
program. A detailed study, however, is not done since primary attenﬁion
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1

is g1ven to rotat1ona1 Toads.

As shcwn in Fig.2.5, a translational load is 1u=n‘171ed by the -

force applied by the load to the cylinder, drive speed and maximum distance
to drive (stroke). '

2.3.1.2 Rotational Load

A typical rotational loéd drive system is shown in Fig.2.5 . As
shown in the figure the load may be connected to the motor via a reductor
with a gear ratio N. In choosing the gear ratio the f011ow1ng criterion
gives a proper reductor-motor pair [4]

-for inertial, starts-and-stops type loading

N2=J1/Jm | (2.1)
-for frictional,constant-speed type loading
NZ:Bl/Bm | | (2.2)

i
I
]

The parameters shifted tb the motor axis are given as follows [a] -

= 2 , ' -
wf%”m+w+%? [kg-m] (2.3)
where

J = inertia shifted to the motor axis

Jl = load inertia moment

Jm = motor. inertia moment

JP1 = reductor inertia moment on the load side

Jr2 = reductor inertia moment on the motor side
and,

= B, /N24B : [Nm/rd/s) | (2.4)

where

B = viscous friction coefficient shifted to the motor axis

Bl = yiscous friction coefficient of the load

Bb = viscous friction coefficient of the reductor
and, '

M= (Mo, ) /MM | e (2.5)
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where _ :
' M =torque shifted to the motor axis

Ml =load torque . -
Mc,=dry friction torque of the load
Mfr=dry friction torque of the reductor

The speed of motor is also givén by

n=N.n % - - Drpm] (2.6)

or for angular épeed,
Q = N.Qi | | [rd/s] (2.7)

If the reductor is not used, by taking N equal to unity and the
parameters of the reductor équa] to zero, in the equations’above, we can
get the parameters which affect the motor axis.

For the steady state operat{on the torque which should be created
by the motor can;be found by this equation:

M= MB.a [ (2.8)

m

2.3.2 Actuator

t
Actuator type will be chosen according to the type of the load.
If one has a translational load it will be a cylinder, if a rotational
load then a hydraulic motor should be selected..

Hydraulic?ty]inders serve to carry out translatory (straight)
movements and to transfer force by so doing. There are some types of
cylinders, but here only differential cylinaer (cylinders with rod on
“one side) are considered (Fig.2.5).

The steady state load equation is

e F ‘ o (2.9
Py PALSF [ o | (2.9)

8



13

where Ph and Pr are head zng rod end gauge pressures and Ah and AP are

head and rod end areas [5]. In an ideal system with no losses Eq.(2.9)
reduces to

PA =F S (2.50)

where P is the system prsssure. However in practice, losses will make
P, Tless than P_ and P greater than tank pressure.

The spéed depends on the oil supply per time unit and the area.
The flow rate required to maintain a given speed is

Q=Av | (2.11)

Forward and backward speeds are different for the same flow rate
because of the difference in effective areas, as well as forces.

Friction losses of cylinder can be taken into account by multi- -
plying the load by a coefficient. o

;
2.3.2.2 Motor

Hydraulic motors can be used to convert the controlled fluid power
from a valve or pump into rotating mechanical power for driving a load. '
The fluid flow is changed to rotational velocity or speed, and the pressure
s converted into torque to move the load. ) |

A hydraulic motor can be rated by its displacement, Dm. Motors
may be either fixed displacement or variable displacement type.In this
study, however, only the former is considered.

For an ideal motor the following equation gives the torque produced
by the motor, which is the product of the displacement and the pressure
| differentia].

M), =P ) D (2.12)

In practice there are some losses: Torque losses are a combination
of breakaway torque, coulomb friction, and viscous drag 1ossesf[6] . In
the model presented here all these losses are taken into account in the
mechanical efficieny,nm . Hence the equation above is modified as follows:

M =P D n - (2.13)

|
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. The real flow required by the motor for a giVen output speed is,
Q = D .Qm.n . (2.]4)

The leakage flpw in the motor is considered by the volumetric efficienéy;nv.

2.3.3 Pump

" Positive'displacemént,pumps serve to create a fluid flow (to dis-

place a volume of fluid) and to allocate the necessary forces to it as

‘required. Pumps'are also rated in terms of delivery or displacement, Dp
Theoritical flow rate of pump can be determined from :

(Q)

D = 80, (2.15)

‘Owing to leakage, the actual flow rate is less, which is determined
by the volumetric efficiency,nV T

2.0 .0 o (2.16)
p PPV
Volumetric efficiencies usuaﬁ]y lie in the range 80 - 90 per cent, being
highest for piston pumps [5] . |
Mechanical power required by the pump is given by

T

W = (AP .D .q )/ 2.17
> ( 05 p) n, , (2.17)
where ny is overall pump efficiency and depends on both of efficiencies:

ne = nen (2.18)

Mechanical efficiencies are usually in the range of 80-95 per cent [5] .
The majority of positive displacement pumps use either gears,vanes
or pistons. Gear pumps are fixed displacement pumps, the others bay be
either fixed or variable type. ' . :
In HST systems, it is a necessary precaution to choose the pump’s"
capacity 10 per cent larger than the largest flow demand [4] . '
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2.3.4  Pipe Line A . | Tt e

Pipe diameters are determined according to the largest flow rate

- required by the system. In selection.of p1pes the following recommendat1ons,
|5 |, are taken as basis:

i) Suctiqn lines should not carry fluid at velocities in excess
of 1.5 m/s .
i) Delivery lines should not carry fluid at velocities in excess
of 4.5 m/s . ' e
_ : ;
iii) Return lines.should be of larger diameter than delivery lines.
They should never be smaller. ’ |

| In the closed circuit HST system delivery and. return 11nes may
interchange, therefore both of them should be considered as de11very line.
The usage of flexible hoses is also possible in some cases When
hose connections are a nécessary operational requirement of a HéT system
the reinforcing type should be selected, if their advantages are not
being exploited, substitution by rigid steel pipes is desirable [7].

2.3.5 ~ Vvalves

Valves fall into three main categories, directional control, flow
control and pressure control. In this study only directional control valves
and pressure relief valves (as pressure control valve) are considered.

i
i

2.3.5.1 Directional Control Valves_ o | ?
. Directional control valves are identified by their position and
port numbers, in addition to port connections in the mid position such as
open centre, closed centre or tandem centre.
While choosing the valve size the following criterion is taken as
basis, [8] : '

Wk o les
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where

N.o= directional conrol valve inlet port nominal radius
' Np = delivery line nominal diameter |

The coefficient of 1/2 is a practical value, otherwise it becomes unprac-
tically overdimensioned. |

The pressure Tosses of directional valves are very hard to calcu-
late from theorjtic31 point of view. However, as most manufacturers release
experirental performance curves, the calculation oflﬁirectional valve loss
involves, first curve fitting to manufacturer's curve and then calculation
of the loss, applying the updated flow. A better result is yielded by a
third-degree polynomial curve fitting. Hence the pressure drop is found
from

AP = C;.Q+Cy.024C5.03 | ' - (2.20)

where C,, C, and C; are the coefficients found by the curve fitting and
Q is the flow rate passing through the valve.
| |
@

2.3.5.2 Pressure Relief Valves

In order to prevent the elements of HST system from damage pressure
relief valves should be employed at the necessary points in the circuit.
The limit pressure set value of thése valves should be selected according
to the largest loading level [4] .

For choosing the size of relief valves the following criterion is
valid [8] =

_ 1
N~ 75 N

where N__ is the inlet port nominal radids of pressure relief valve (valve
size) and Np is the nominal pipe diameter of the delivery line.

2.3.6 Filter

The filter serves to reduce the level of dirt in a pressure medium

to a reliable level, and thus to protect the individual elements from too

|
much wear.
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There are three different filters used in hydraulic systems :
Suctlon, pressure and return line filters.. The most used type is the
return line filter and it is fitted in the return line.

The filter is selected accord1ng to its filtering and flow ca-
oacxty A reasonab]e filtering capacity for the return line filter is
10 micron.

Filter causes pressure df0ps. Flow versus pressure drop curve
is nearly a parabola. By using existing data in the catalog a loss coef-
ficient, Kf » is evaluated for eaéh filter. Hence the pressure drop in
the filter can be determined by )

pf = Kf'Q : (2.22)

i

. 2.3.7 Circuit Losses

In the prev1ous sect1ons pressure losses in the directional valve
and filter were ment1oned and some methods were offered to calculate them.
In this section the other pressure losses are cons1dered ,

Pressure 1osses in pipes are determined from D" Arcy formula for
circular pipe [5] : '

P 2. K g2 ‘ : B
P, = f5 5V —~KIQ (2.23)

where
f.L
d
2
2 A
[0}

N

= density of fluid

= friction factor

= pipe 1ength

internal diameter of pipe
= mean fluid velocity

= flow rate in the pipe

> O < o ~h O
]

= pipe cross section area

The friction factor f is a function of Reynolds numbér (Re) and of the.
pipe roughness. For desjgn purposes it is gehera11y accepted that for

AN

\

1
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laminar flow ( Re < 2300)

f= 64/Re | - | (2;24)
and for turbulent flow ( Re“;2500 )

£ ,=. 0.332/Re 0-25 | | (2.25)

The value of Reynolds number can be determined from
Re=-—Ld 80 (2.26)
v Id v : '
where v s kinematic viscosity of fluid. Kinematic viscosity usﬁally
has a value about 4.0x10 m2/§ at normal industrial working conditions[5].
Sudden contractions and expansions occur where a pipe is attached
to a cylinder, pump or reservoir. In addition there are T and L jointé
in the piping layout. The loss coefficient K in these cases is taken as

i) 0.1 for T joints,
ii) 0.5 for entry from tank or cylinder té pipe (contraction),
iii) 1.0 for entry from pipe to tank or cylinder (expansion);
iv) 1.3 for L joints,

which ‘are experimentally obtained [5] .

2.3.8 Pump Drive

Hydraulic systems usually employ electrical motors to drive the
pump. However, in some HST systems, particulary in mobile applications,
the prime mover is inevitably an internal combustion engine.

In a study [9] performed for a closedvloop controlled diesel
eﬁgine, it is concluded that the effect of prime mover droop is rela-
tively insignificant and can be ignored except in extreme cases.

In this study it is assumed that pump drive speed is held con-
stat whichever prime mover is employed. Thus the effect of prime mover .
dynamics is omitted,

The prime mover should provide the drive power required by the
pump. The maximum power requirement is determined by

A
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W= APP.Qp _ 7»' | (2.27)“.,
- where

APp = maximum pressure diffetgntial on the pump

QP =‘maximum pump flow rate

AP_p is calculated by the following equation

8P = AP+ 8P, | (2.28)

i
|

where 1

APl pressure differential corresponding to the load
_ o
APt total pressure losses of the circuit |

The effect of cy]indef differentiétion'or volumetric efficiency
of the motor on the return flow should be taken into account. Hence
- Eq.(2.27) is modified by an easy manipulation.
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'III. COMPUTER-AIDED DESIGN OF HYDROSTATIC
'TRANSMISSION SYSTEMS

3.1 INTRODUCTION - = | 5
The design process for hydraulic systems starts with a drawing-o%
the circuit layout. The designer then selects the componenfs needed to
form the circuit from manufacturer's catalogues. After the initial design,
the prototype is built in order to test the circuit and check the per-
formance characteristics. Depending on the result, the circuit will then
be modified and retested until the performance réquirements‘are met.
This process requires long lead times and great expense. Computer-aided
design techniques can be used to streamline the design process cutting
out the need for an inordinate number of modifications to the prototype.
There are generally two steps in the design:

i) sketching.the Togical 1ayout;

ii) sizing the components, making all necessdry calculations and
verifications.

Since the aim of this study is ndt to creéate a program enabling
to construct the 1ogica1 layout, which can be added to the work later,
the computer program package assumes that the layout is already created.

‘There are usually several possible solutions to design problems,
and criteria have to. be established to enable a decision among these
alternatives. Low cost, high reliability, high power/weight ratio, safetyz
and easy maintenance are typical criteria for hydraulic circuits [5] . |
The efficent use of energy within the system is another important crite-
rion. The written program package minimizes any component size (for a
~cylinder its volume, for a pump its displacement, for other components
their nominal bores) and a result, minimize the cost while maximizing
power/weight ratio.
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Two basic types of parameters should be considered:

A) Quantities that can be determined with acceptable precision
and whose values remain constant or nearly so, for example, oil stifness. -

'B) Quantities that are difficult to asses, for example, seal
friction and viscous damping. In dealing with the latter the designer

relies on the art of circuit design, supported by the wealth of emprical
data which have been accumulated over years of experience.

In this work, two main circuits are taken as basis for design’
procedure. As shown in Fig.3.1 the first one is a general hydraulic cir-
cuit. The second is a closed HST circuit. So the study which is mainly
devoted to HST systems can be extended general hydrau]ic}systems, e.g.
those employing cylinders. Fig.3.2 shows the closed circuit model.

A user friendly, interactive CAD program has been deve]oped.'It
is assumed that the user is familiar with the subject of‘hydraulic cir-
cuit design, at least with the basic concepts. However, anyohe might use
the program by assistance of the User's Manual. The basicicircuit layout

should be provided by the user. !

{
i

3,2 DESIGN ALGORITHM

The programming details are embedded into thq computér flow charts
which are included in the following sections. A general algorithm of the
program package can be summarized as follows:

1) Set operating pressure and actuator type.
. 2) Take all necessary actuator data(rpm, torque,etc.).

3) Choose a-minimum actuator size, calculate the necessary flow
rate needed to drive this actuator at the given maximum speed.
Calculate return flow rate. '

4) Using this flow rate and.prime mover's speed, choose a minimum
pump size. Update the flow rate with this pump’s net flow rate.
If desired pump is a variable displacement type, use the flow
rate computed at the third step.

N

- \
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FIGURE 3.1 - Open circuit model
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FIGURE 3.2 - Closed circuit model
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5) Using Updated flow rate, choose pipe diameters.

6) Using nominal boke of chosen pipe, choose pressure relief
valve and directional control valve (if required), calculate
pressure loss and loss coefficients of directional valve. -

7) Choose a filter, using maximum flow rate.

8) Enter pipe Tayout for all lines (number of L,T joints, pipe
lengths, pump-tank level difference.

@ 9) Calculate pressure losses and coefficients for all lines in
| turn (joint,pipe,expansion,contraction).

10) Calculate pump pressure differential by taking into consid-
eration the sum of losses as well.

11) Calculate total pressure loss coefficient.
12) Calculate pressure relief valve setting.
13) Calculate required power to drive the pump.

The a1gor1thms used for the main program and subprograms are pre-
sented with their operational flow charts.

3.3 MAIN PROGRAM

The main program fundamentally consits of two sections: the first
is "Component Selection Section" and the second is "Pressure Loss Compu-
tation Section" which is optional. On the other hand it is designed to
perm1t interactive usage.

In Fig.3.3 the flow chart of the main program, namely CADHST, is
given: Printing functions are not shown in order to avoid unnecessary
details. Common parameters are given 1n the forms used in the program,
whose meanings can be found from the g]ossary given in Appendix A.

~ CADHST writes the output data, comments and prompting commands on
the screen and at the same time component specifications are printed on
an output file, OUT3. After running, a printout of this file can be taken.
In Fiq*3.4 all files and programs used by CADHST are listed.



Z/Enter Rated System Pressure, SP///

.
: //Enter Actuator Type//
1

4

M < > yli ’
otor Actuator Type ? Cylinder

i

Motor Selection |’ | Cylinder Selection
CALL MOTSEL CALL CYLSEL
i: SP o i: sP
o: QREQ,PRES,DISP,EFMV . v o: QREQ,PRES,DP,DR
!

Pump Selection
CALL PUMSEL

i: QREQ,PRES
o: QPUMP,EFPV,EFPM
! | . |
l\491:-9—2———-< Actuator Type ? >__£b§&2§§?,
Compute , Compute
SPEED,QRET,QRETM,C1 SPEEDF,SPEEDB,QRET,QRETM,C1
. i | |
Pipe Selection
CALL PIPE
i: QPUMP,PRES
o: NBD,DID,DIS ¢

Directional Valve Selection
CALL DVALVE
i: NBD,PRES,QPUMP,QRET
o: PALOSS,BTLOSS,QDELA,QRETB,FDV1,FDV2

!

Relief Valve Selection
CALL RVALVE
i: NBD,PRES
o: -none

Filter Selection
CALL FILTER
i: QRET
o: FKFI

®

FIGURE 3.3 - General flow chart of CADHST T
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<: Pressure Loss Computation 25
o Yes STOP

<Z[Bnter OVIS and 001537

No

P.Loss Computation for Suction L1ne
' CALL LOSS

i: LN1,qQpPu¥P,DIS,OVIS,ODEN,FKEL,FKC1
o: PLOSS1,FKSUM1

//Enter DIFF//

Vv
Compute PRR

i

P.Loss Computation for Delivery Line
CALL LOSS

|i: LN2,QPUM?,DID,0VIS,ODEN,FKE2,FKC2

o: PLOSS2,FKSUM2

P.Loss Computation for Line A
CALL LOSS
i< LN3,QDELA,DID,OVIS,ODEN,FKE3,FKC3
o: PLOSS3,FKSUM3

P.Loss Computation for Line B
CALL LOSS

i: LN4,QRET3,DID,OVIS,ODEN,FKE4,FKCH
o: PLOSSH4,FKSUM4

v

P.Loss Computation for Return Line
CALL LOSS
i: LNS,QRET,DIS,OVIS,ODEN,FKES,FKCS
'~ o: PLOSSS,FKSUMS

Compute
FLOSS,TLCSS,TFK,PRESS,PRV,POWER

25

i: input parameters from the main program to the subroutine-

o: output parameters from the subroutine

FIGURE 3.3 - Continued

ROGAZICL DNVERSITES] KUY
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Main.program : CADHST

Subroutines

CYLSEL
MOTSEL

PUMSEL

PIPE
DVALVE
RVALVE

FILTER

LOSS
OKAY

Cylinder selection

Motor selection

Pump selection

Pipe selection

Directional valve selection
Relief valve selection ‘
Filter selection : |
Pressure loss computation
Program controlling '

Component data file ¥oading program: FLOAD

Data files (all direct-acceSs):"

~ CYLIN
" MOTOR
PUMPA
DVALF
RVALF
FILTE.

Input file :
INPUT

Output files :
OUTPUT
QuT1
ouT9

|
|
Cylinder  U.N.:10 (Unit No.) |

Motor . . U.N.:20
Pump ‘U.N.:30
D.valve _ U.N.:40
R.valve U.N.:50
Filter U.N.:60

On the screen U.N.:5.

‘On the screen U.N.:6
‘Component listing file U.N.:1

CAD program output file U.N.:9

FIGURE 3,4~ The files and their function list
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3.4, LOSS COMPUTATION

As shown in the.flow chart of the main program, Pressure Loss
Computation is available in the structure of CADHST and optional.

LOSS is a subroutine used for this task. It has to be called
several times to complete the computation, for each Tine in turn. LOSS
is executed for Line 1, Line 2, Line 3, Line 4 and Line 5, which are
shown in Fig.3.1 .If a directional valve is not used, the flow rates are
made equal to zero earlier, then the pressure losses belonging to these
lines become zero. . _

LOSS computes all losses, including L, T joint losses, pipe losses,
contraction and expansion losses. It prompts the user to enter pipe length,
numbers of T and L joints, and then computes pressure losses for that line,
according to the theory.given earlier.

In the main program, pressure losses are calculated and then by
taking a summation the total pressure loss corresponding the previously
defined operation point is evaluated. On the other hand pressure loss
coefficients of loss sources , such as ‘pipe lines, filter and directional
valves,are added up and a total pressure loss cbefficient is determined.,
Consequently it is possible to calculate pressure losses for different
flow rates by using the following equation:

aP=K Q2 | ‘ ' (3.1)
where Kt is the total pressure loss coefficient, and APt is the total
pressure loss of the circuit corresponding the pump flow rate, Q .

Pressure losses of the directional control valve are calculated
by a third order polynomial approximation. However, the loss coefficient
should be determined by a parabolic approximation in order to use it in
the procedure mentioned above. This is done in the subroutine by an easy
manipulation. '

The return flow is different from the delivery flow because of
differentiation of the cylinder or due to the leakage flow in the motor.
That is why a modification is done to compensate this difference. The
1bss coefficients be1ongihg to the lines and components where the return

fluid flows are multiplied by

2

c=0- 2e)2 | o (3.2)

2
DP

o —
o
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in the circuits emp]oying_cy]inder, where D is the rod diameter and D

is the piston diameter; or multiplied by the volumetric efficiency of the
motor in the circuits employing motor.

3.5 COMPONENT SéLECTION SUBROUTINES

MOTSEL, CYLSEL, PUMSEL, PIPE, DVALVE, RVALVE and FILTER are
written to select motor, cylinder, pump, pipe, directional valve, relief
valve and filter respectively. They are also used in an interactive
~ manner. _

These subroutines are designed according to hydraulic principles
and models given in the previous chapter. They admit data during execution
and select appropriate components from the component files. The design
- criteria are mentioned earlier. They print output data on the screen as
~well as on the output file, OUT9 . Their prompting commands are given in
the User's Manual. o |

The biggest advantage of these subroutines is that they use direct
access files as componentfiles whose superority is explained in the re-
lated section. PIPE does not use a component file, its data is given in
itself.
"~ A general flow chart for component selection subroutines is given
in Fig.3.5 . All subroutines have the same structure with minor differ- .
ences, except PIPE. An example of parameters is also given in Fig.3.6 .

3.6 COMPONENT FILES

As mentioned earlier the files which are loaded with component data
are direct-access files. Their superority to sequential files is seen in .
their proper usage, minimizing the time to find an appropriate cdmponent.
It enables us to design the component files as divided into parts, i.e.
data blocks, then it is a convenient way to go directly to the appropriate
data block without having to read unnecessary records. For example, cylin-
der file cbnsists of six data blocks, but only the corresponding data
block is processed once the cylinder type and system pressure are entered.
This is facilitiated by a key-record which takes place on the fourthrecord

—

N



START )}
Parameters from Main Program, PARAi;

&

Open Component File
_ :

WV .
///%nter type and asked data, PARAip J///

Compute required parameters, PARAij

d
Go " to appropriate Data Block
: o=
////iead KEY and other parameters
- on the component file, PARAX1
No ;
—(KEY > 0
- - Yes
[ B

4 1 - 8 '
/ Warning! / l’_-<PARAi > PARA)Qt——ES—

- Comparison of
some parameters

Compute required parameters, PARAYi
A

///;rint output data on the screfg//’
|

(‘sTop ) _Stop {ok.2 y _ Retry .

Continue

///grint output data on the file OUTE///
: No / —b
(sTOP ) {_ Continue ?

Yes

( RETURN )

FIGURE 3.5 - General flow chart of component sel ectiori
subroutines '




~ File Name : MOTSEL Motor'Sélection

- PARA# : SP Rated system preSsure‘
- PARAi, : RPM Max load speed
TRQ Max load torque
PARAi, ' : EFMV Volumetric efficiency of motor
EFMM Mechanical efficiency of motor
DISp . Required motor displacement
PARAXi _ : DISPX Motor disp. on the read record
RPMX Max motor speed on the read record
PRESX Max pressure on the read record
Comparison : DISP 2 DISPX
RPM  §  RPMX
- sp I PRESX
‘PARAY1 . DISP Displacement of the chosen motor
QREQ Maximum requirgd flow
PRES - Pressure required by the load

Printed parameters : DISP
. QREQ
PRES

RPMX
PRESX

EFMV

EFMM

RPM

TRQ -

FIGURE 3.6e‘An'examp1e parameter 1ist for component selection

subroutines
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of the componet files. The key-record has the beginning record numbers
of data blocks, so first it is read and then the beginning record is.
directly accessed.

Fi]e name and file number are written on the first and the second

records respectively. The third record is blank. The fourth is the key-
record mentioned above and the fifth is also blank.

Record
NOoO. — e e e
1" [FILE NAME=MOTOR I
2 ‘FILE NO. =20 |
: | 6 30 40 ‘ : Key-record
6 : 1. 6.50 5000.0 250.0° .00065! ]
- | : | 1.Data Block
| (Gear Motor)_
28 o3, zoz 70 2300.0 175.  .09000, J
29 0. 0. 0. X
30 108 00  710.0 160.  .02500] ] |
z : | | 2.pata Block
- | (Radial P. Motor)
. 38 1053.00  160.0 160.0  .08500{ .

-

9.40 7500.0 350.0 .00080}

|
l' .  3.Data Block
l (Axial P. Motor)

|

|

|
o,

¥ 0. 0. 0. 0. O.

0.

|

l

I

|

|

20.1000.00 1600.0 350.0 .82400

u

FIGURE 3.7- An example direct-access component fi]e:

In the componentfiles, data are recorded, beginning from the sixth
record. Data records begin with a key-parameter. If the key-parameter is
zero , it means that this record is the end of that data block. At the v
same time the key-parameter shows the number of records. Therefore it
can be used as a control parameter to learn the position of the pointer,
i.e. the variable determining which record is accessed.
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The component files are loaded by a program, FLOAD . By us1ng
this program data available from the manufacturer's cata]og are loaded
on the direct- -access component files, but in an arranged manner. FLOAD,
at the same time, copies the componentfiles in an output file which is
more suitable to take a printed copy. The output file has some minor
differences in arrangement but data are completely the same. It is.
possible to load different files at different t1mes, but a file has to
be loaded as a whole at one step.

In Fig.3.7 the structure of motor data file is given as an example.
Some component file examples are also given in Appendix D.

3.7 USER'S MANUAL

In order to help the user a manual has been prepared. Instruct1ons,
are loaded on a file and available in the program package. The user first -
sees a set of instructions on the screen before the execution starts.

The manual is written for the CAD program package as a whole. It
comprises the component file loading program FLOAD, the main program
CADHST, and all subroutines used by CADHST. It also obeys the order of
the algorithm, i.e the commands are written in the order in the programs.
Some commands and comments may not be seen on the screen, in that situa-
tion the nextstep should be expected. ¢

The User's Manual contains prompting commands and some comments
with their meanihgs. If the command demands a value to be chosen from
multiple options, then the menu defined by its number is also offered.
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IV. DYNAMIC BEHAVIOUR

Hydrostatic transmission systems designed without considering the
dynamic behaviour may have ossilations which are not in acceptable limits,
during the transient response time.

In the present chapter, first a mathemat1ca1 model for HST systems
is derived and then a digital computer program for simulation purposes 1is
presented. The program will give thevalues of some parameters which are
used to evaluate the transient response of a given HST system.

4.1 SYSTEM MODELLING

The Variab]é-Disp1acement Pump and Fixed-Displacement Motor (PVMF)
version of closed circuit HST systems is taken as the basic model. However,
it is possible to enlarge the study to other types by some minor modifica-
tions in the model and in the computer program.

4,1,1 Motor and Load

The dynamic behaviour of the hydraulic motor and the load connected
to the motor via a reductor is expressed as follows:

J.nm+ B.Qm + M= Mm ' (4.1) .
where .
’ Q = motor speed _ (refer to EqQ.(2.7))
J = inertia moment (refer to Eq.(2.3))
B = viscous friction coefficient (refer to Eq.(2.4))
"M = load torque (refer to Eq.(2.5))
M =

output torque on the motor shaft
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where _ -
Qp = pump flow rate
Q, = motor flow rate
Be = equivalent bulk modulus
Equivalent bulk modulus B, is calculated by the formula below [5],
1 1 .1
= * S (4.8)
e o P a
where B, is bulk modulus of oil, is of pipe and i8_ is of the air
in the oil. 's' denotes vo]umetr1c percentage of air in the oil.
For calculation of B, >
- in izotermal operation @ g = P,
a . _ (4.9)
- in adiabatic operation B, = Y.Py = 1.4

ié_taken . Hydraulic steel pipe can be treated as a thin walled cylinder
so that | '

- (t.E / D) ) | (4.10)

where
' t = wall thickness of the pipe
D = pipe diameter .
E = modu]us of elasticity of the pipe

The flow rate of the motor is obtained by
= (0 /n) o | (4.11)

where the leakage in the motor is taken into account in the volumetric
efficiency of the motor, n, ‘ -

- Substituting Eq. (4 11) into Eq.(4.7) we have the following equa-
tion determ1n1ng the dynamic behaviour of the pressure in the delivery
line :

D
= (8 /V)(Q ) . ’ (4.12)
n, . . o

If one writes Eq.(4.12) for small variations about a given opera-
tion poiot, ’

A
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: 0 | |
b= (8 /V)(qp - Do) S - (413)

is obtained.

4.1.3 Pump and Control Unit

Here, axial piston, variable displacement pumps in either swash-
_ _p]ate design (Fig.4.1) or bent-axis design are taken into consideration.

In addition, it is assumed that the prime mover speed (pump dr1ve speed)
is held constant. during the operation.

In a swashplate design pump the flow rate depends on the sw1ve1
angle ¢ as in the following equation :

Q, = K -tae (s4)

and in a bent-axis design pump the governing equation for the flow rate
is

Q, = Kq.éin P (4.15)

~ where Kq is a constant depending on pump size, revolution speed, unit
conversion coefficients and volumetric efficiency [4] .

The flow rate increases with increasing swivel angle from zero
to its maximum value. Swivelling the pump over cenére smoothly reverses.
the pump. |

If we make a linearization for small variations about a given
operation point the fol]bwing equation is obtained for either Eq.(4.14)
or Eq.(4.15) :

=K .6 4.16
%= Kt (8.18)

The swivel angle is adjusted with the control variable U, by
the control servomechanism of the pump. In order to eliminate nonlinear -
tefms, writing the equatidn in a linearized form for small variations
about a given point we get '

v b e KU | - (4.17)
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1 : swash plate

2 : adjusting
_ mechanism

3 : pistons’

FIGURE 4.1 - A swash p]ate‘désign axial piston pump with
variable displacement (Rexroth AlV)

!

1

where t, is the time constant of the servomechanism and Kg is a constant
for which in Appendix B an evaluation method is given.
Combining Eq.(4.16) and Eq.(4.17) we obtain

. 1 :
= Tt K K i 4.]8
qp Tp( qp + s g U) ( )

which determines the dynamic behaviour of the»pump in 5asis of flow rate.

The pump can Be controlled by various means; e.g. manual (via

- control lever), electrical (via solenoids), hydraulic (pressure, speed
or torque related). In all of these a control quantity is aaplied ;
that may be a current, an angle of lever or a pilot pressure. Here the
electrical control is taken into consideration since it best{fits our
study, ' Z

Via two solenoids on the electrical control device the adjusting
cylinder in the pump is pressurized with an adjusting pressure relative
to the pre-~selected current, thereby allowing infinite adjustment of

the swash plate and thus the displacement. One control solenoid is al-

Tocated ta each fiow direction.

. N |

i
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In Appendix B it is explainéd how the control parameters ( = .
K and Kq) can be calculated or estimated with data obtained from
manufecturer's catalog.

4.1.4 * Dynamic Model for HST Systems'ﬁithout‘Pressure'Compensation

The model determining the dynamic behaviour of HST systems
about a given operation point is formed by three equations ; Eq.(4.6),
Eq.(4.13) and Eq.(4.18) ,

Hence rewriting,

w, = ~(B/3)y, + (Opn /3P, - (1/3)m ‘ (4.19)
p, = (8 V) (%‘-A (0, /ng Juyy ) » (4.20)
& = (1/x,) (-q + KKju) (4.21)

These three equations form the dynamic model of HST systems.
The signal flow dlagram of the system is shown in Fig.4.2 .

If we take w, , : and as the state variables, u as the
control variable, and m as the disturbance:, we obtain the state space
representation of the system. That is, " |

. 1 1
X1 a;p a2 0} X 0 Cy
X, | = lay; O ays|.| X2 {+} 0 j.u+ | O }.m (4.22)
;(3 0 0 as33 X3 bs 0
where
State variables: X1(t) = wy(t)

x2(t) = p;(t)
x3(t) = qp(t)

u(t)

Control variable: u(t)

Disturbance - : m(t) = m(t)
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: o Transmission
Control Unit -  Pump o Line . Motor Load

Fi (B »V) 2w D FoQ—={F1 (3,8) |-

Motor

m

FIGURE 4.2 - The signal flow diagram of HST system

K

p I .
Transmission

Control Unit-| Pump | Line Motor m Load

. + . . pad
U fc(rp Kl Kq _‘lu.(%?_.ft(ge V)R] Dy £1(J,8) | LE_

FIGURE 4.3 - The signal flow diagram of the pressure compensated
"HST system : :
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Nonzero elements of matrix A :

3= ~(B/9) ’ 3= ~(0, 8,/Vn) > A3~ ~(l/r) -
4, = (qnf\m/‘]) ’ 33 = ~(Be/v)
Nonzero element of vector B :
b; = (Kqu/Tp)
Nonzero element of yector'C
€ = "'(.I/J)

or

x(t) = Ax(t) £+ Bu+Cm : | | (4.23)

4.1,5 Dynamic Model for HST Sytems with Pressure Cimpensation

.For inertial type loading ; pressure compensation may be done
by feeding the motor inlet pressure back into the control variable u
in erder to attain a reasonable damping ratio [4 ]. For this case, the
signal flow diagram is shown in Fig.4.3 .

From the system equations and the signal flow diagram the fol-
lowing equation is obtained:

LK .
q_(t) =" {{———) u(t) ~ K p; ()} K o (8.28)
P . D1 p q
b
where KP is the pressure compensation gain.and Diis a symbol which
indicates differentiation with respect to time. Opening Eq.(4.24) one

;has ‘ , , : : : !

Gy = (/) = (KRB ~(KK/rpdpy * (KK /r)u  (4.25)

Substituting Eq.(4.20) into Eq.(4.25) the following equation is
obtained : : o .

. K K Lo T Be V KsKq

q = (—p—K—gD[—LBpiu)m - (—-B&-)P. - (KEKq 2 e )q +( )u

P Vv n, m T 1 <.y . P T

— ~ ’ k

(4.26)

i
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So, Eq.(4.19), Eq.(4.20) and Eq.(4.26) form the dynamic model
of the pressure compensated HST system. We can write them in matrix
notation, as the state variables , the control variable and the dis-
~ turbance the same as those in-the preceding case. Hence,‘

! a; 3, 0 x| |0 | a
%l = |1 0 asfxn|+] 0 fuel 0 [m (4.27)
3 a3 a3z 33| | X3 b 0
where
a1 ==(B/)) . ap= (0 n/d) &= (B /V)
%1Be K K K KBe v
3y =-(— ) s A= ~(-B—L)  ,  agy =-(E"—)
: v L p ‘ : ™ V
| ] ' K:DuBe
b3 = (KSKq/TP) Py C]_ = -(]/J) ’ a31 =(——-_L;—-)
. ' Vg ‘
or | | .
x(t) = A x(t) + B u(t) + C m(t) (4.28)

Consequently we have the same equation as Eq.(4.23), however, .
some elements of the matrix A are different. ‘

Pressure compensation gain Ko is explained in Appendix B by
giving the method of evaluation. - Y

4.2 SOLUTION OF SYSTEM MATRIX DIFFERENTIAL EQUATION

The form of the dynamic models expressed by Eq.(4.23) and
Eq.(4.28) is suitable to analyse the system by means of a digital com-
puter, N |

The equation to be solved is a linear time-invariant matrix
differential equation: |

%(t) = A x(t) + B u(t) + C m(t) (4.29)

subject to the initial condition x(tg) = Xq
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The solution of Eq.(4.29) is g1ven by (for the so]ut1on procedure:;:u
see Appendix C, | 10| ) k

x(t) = Mt%)u%)+1 A“*)Bu)dr
e
+ z Mt=t) ¢ mr) dr (4.30)
o .
To enable the use of the digital computer, we could d1scret1ze
the equation, Taking tg = 0, v ;
- |
H) B ) & |
1
o .
M) ¢ omie) e  (4.31)

X(t) - eAt XQ 4

O et Ot

Assuming that u and m are constant between any two conse-
cutive sampling instants (for small step sizes, T), or u(t) = u(kT)
for the kth sampling period, then x((k+1)T) can be obtained as follows
(for details see Appendix C)

X((B1)T) = eAT_x(ij + g Mg de u(kT)
| ‘ g eAé.vC de m(kT) (4.32)

If we define, '
G(T) = eAT“ | (4.33)
H(T) = g Fow a o (4.38)
QUT) = g M cd | | | i | (4.35)

then it pecomes ;

| x((ke1)T) = G(T) x(KT) + K(T) u(kT) LM n(kT)  (4.36)

‘So we get a vector matrix difference equation which represents
the solution of Eq. (4 29) on]y at discrete p01nts of time, t = kT,
k= 0,1,2,000000e

~
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: Consequently, the problem reduces to the processing of Eq. (4. 36)
“in the computer. Once G(T) matrix and H(T), Q(T) vectors are computed
according to A matrix and B, C vectors, then the values of state vari-

vab]es @ s P;s and at every mutiple of the step'sizekare obtained,
~provided that the initial valus of variables are given.

4,3 SIMULATION AND COMPUTER PROGRAM

4,3.1 * General Algorithm

A mathematical model for the dynamic behaviour of the HST sys-
tems was given in the previous sections, The model is composed of three
coupled differential equations which are written for motor speed, motor
inlet pressure and pump flow rate, The model is then reduced to a matrix
difference equation to enable the use of the digital computer.

The main object is to determine variations of the state variables
mentioned above during the transient response time, according to a step
change in the input variable U or in the torque disturbance M . The
kinput variahle is the current value to be fed into the solenoids of the
electrical control unit of the pump. The load torque is the disturbance
variable. Both of them, i.e. the current and the torque, may have a
step change, alone or together, The system's responses to them can be
added since the system is linear.

The composition of the simulation program consists of a few
subroutines written for doing necessary computations, and a main prog-
ram organizing these tasks, which are explained in the following sec-

" tions,

4,3,2 Main Program

A general flow chart of the main program named HSTSIM is shown
~in Pig.4.4 , HSTSIM is an interactive program which admits data during
execuation and has some facilities to suit the needs of the inexperi-

enced user. It calls some subroutines : DISCR3, GMPRD, MINV, SMAT, SPARA,

Ad
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Z{Enter Sytem Parameters/ﬁz::::::f_

Z/Enter Case No.//> .
l .

"|Subroutine

SPARA

¥

Form A, B, and C

1

Subroutine
SMAT

' Enter Termindl Time
| and Step Size

i

K =Terminal Time/Step Size

Subroutine
. GMPRD

Z{En%er Pressure Set Valueﬁ//

FIGURE 4.4 - General flow chart of thg dynamic simulation

p Subroutine
Compute G, H, and Q DISCR3
Enter value of u Subroutine |
fforcing function) MINV

|

Enter- value of m
(torque disturbance)

Compute (H.u)’

!

Compute (Q.m)

B!

Initialize xg= 0

! .

Compute for k= 0,1,¢000s
X 4176 %y + H.u +Q.m
- (Control for Pressure Set)

1

Compute Energy Loss|

:

program
A}

|

i

aa
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4.3.3 Subroutine for Computing the Distrete-Time'Sytem Matrices. .

In order to achieve a better result, the discrete-time system
matrices and vectors should be computed precisely. It depends on the
method used. There are some approximation methods to compute eAT
matrix and its integral over the time interval.

Here a subroutine named DISCR3 is used for this purpose. This
subroutine computes the discrete-time system matrices corresponding to
a continuous system defined by its system matrix A and its input
matrix B 1in general, for a given time interval T . The largest con-
vergent step size is computed by the program and the discrete system
- matrices are obtained by using doubling formulas. Selection of the
largest convergent step size and the corresponding doubling number is
based on Van Loan's Criterion [11] . Third order Pade approximations
are used to compute matrix exponentials,

DISCR3 calls subroutine MINV which takes the inverse of a matrix
and subroutine GMPRD which is used for matrix production. MINV uses
standart Gauss~Jordan method.

DISCR3 is called twice by the main program, the firt time for
computing G and H , the second time for computing G and Q .

4.3,4 Pressure Relief Valve and Energy Losses ¢

The simulation program, as mentioned earlier, gives deviations
of the state variables from an initial steady state operation point for
a step change either in the pump control current or in the load torque.

If the system pressure reaches the pressure set value of the
pressure relief valve, then relief valve is opened and the excessive
flow passes from high pressure side of the circuit, through the valve,
to the low pressure Tine to the pump. It means energy dissipation.

This situation is simulated in the program by a pressure control
process. If the pressure is greater than the set value then the pressure
is made equal to this set value.

The useful flow rate can be calculated by making the derivative
of the pressure equal to zero in Eq.(4.20) . '
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So, e
& =(0ain) wy | | - (4.39)

is obtained. Hence the'energy loss can-be determined by integrating the'
following equation over the time in which the relief valve is open:

B =P (g - ¥ y

1 = P (9, - ) . | (4.40)
where

P? = actual pressure set value

qP = pump flow rate

q; = useful pump flow rate

Integration is made easily by using the trapeze rule as the -
state variables are a]reédy computed for every step size. So we get a
comparison value, however, it should be noted that the dynamiés of the
relief valve is omitted here.



V. EXAMPLES

47

5.1 EXAMPLE DESIGN FOR A TRANSLATIONAL LOAD DRIVE SYSTEM

In Fig.5;1 the layout of an example hydraulic circuit is shown.
According to the load and type specifications ehtered‘by the user, the
created design program selected the necessary components from the com-

~ponent files and made the necessary calculations. Besides that, the '

pressure loss computation was also made. This process could be repeated
for different oil viscosity values, so the effect of the viscosity num-
ber on the pressure losses could be also seen.

The pr1rﬂnut taken dur1ng the program runnlng js presented in
Appendix E. The friction losses of cylinder is taken into account by

multiplying the load by 1.15 .

Cylinder N vZote
yilin 60 —_—
- 1 <}£
7
1.0 1.0 | .5
| 0il level with 5
rod extended '
) 09N 0-8 1.5 (@)
0.3 Reservoir N 2.5 1.2 6,0
Filter . 11;9
0.3 <§> 2.5 0,6
@ 2 b
1,0 1,0
2 m 3 Relief B
Head Valve Directional Valve
0.6
1 . 2 Pump . 1 . 2
, ©)
TR

FIGURE 5.1 = Phys1ca1 layout for the trans]atlona1 load driye

system
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5.2 DESIGN AND SIMULATION EXAMPLES FOR HST SYSTEMS

For a rotational load, a PVMF version of closed circuit HST
systems is proposed. Two a1tetnativefsystems'are offered for the same
task. The first is a straight-drive system which is composed of a fixed
radial pistqn motor and a variable axial piston pump. In the second
system a reductor and a fixed axial piston motor are used.

The printouts of the CAD program are presented in Appendix E. In
addition, all parameters used in the CAD and the simulation program are
listed in Table 5.1 ., The parameters used in the simulation program are
preceded by an asterisk, ,

After the design process the s1mu1at1ons of the designed systems
were carrxed out in the computer by the created simulation program. The -
initial conditions belonging to the actual values of the state variables
were calculated at the same Toad speed in order to make the comparison
of the dynamic behaviours of the two alternative systems easy.

- The speed of the load at the given operatidn point is

Ql = 1& [r‘d/S]
So the motor speeds are

i = 16 [rd/s]
“and
fin, = 96 [rd/s]

where the subscript of 1 denotes the firstdesign (straight-drive) and
2 denotes the second des1gn (w1th reductor). The other parameters were
calculated at this operation po1nt To observe the dynamic behaviours,
'step changes as large as various percentages of the design control cur-
rent (U ) were applied at this point. Deviations of motor speed motor
inlet pressure and pump flow rate are illustrated in the figures 5.2 - -
5,18 . The same process was repeated for the pressure compensated case.
Pressures were limited at the réhefva]ve set values and the energy
losses were computed. The simulation program was also used to determine
the responses of the systems to step changes in the load torque. The

effect of the pressure compensation was also observed in this case,
The step size was taken as small as 0 001 seconds in all executions.



TABLE 5.1 - Parameter list of designed HST systems-

© Unit

Parameter Design No.1 Design No.2
Load Paramete}s
M Nm 36.0 36.0
B Nm/rd/s 20.0 20.0
g kg-n? 7.9 7.9
n rpm 210.0 -210.0
2, rd/s 22.0 22.0
Reductor Parameters
N ‘ 1(no reductor) 6
BP Nm/rd/s 0.0 0.01
. -m2 .
JP1 kg-m2 o 0.0 - 0.3
Jr2 _ kg-m2~ 0.0 ‘ - 0.1
M Nm | 0.0 | 0.5
‘Motor Pafameters
Type - Radial Piston(Fix.) Axial Piston(Fix.).
0 m3/rd 4.743x10°° ¢ 0.356x10°5
J kg-m 01 ' 0.0015
n : 0.93 0.94
m : .
n ' 0.90 - 0.92
v ,
“Shifted Parameters
% J kg-m? 8.0 0,332
x B Nm/rd/s 20,0 . 0.566
x M- Nm 36.0 ‘ 6.5
% Q

rd/s 22.0 132.0

Rated System Pressure

P © bars 120 240
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Parameter  Unit Design No.1 - Design No.2
Pump Parameters
Type - ; v‘ Swash plate Bent axis
b m3/rd 0.872x107° 0.447x107°
®ax degree 15.0 25.0
Kk rd/A 0.67 1.056
"Kl m3/rd-s | 4.695x1073" - 1.526x1073
T S 0.3 0.1
qn A 0.3684 0.321
Pipe Line Parameters
Qetivery 0.0209 0.0158
' Ldelivery m 2.5 275
v m3 1.209x107° 0.566x1073
Bulk Modulus
g, N/m2 27.1x10° 34.0x10°
By N/m? - 1.68x107 3.36x10°
'S % 1 1
B, N/ 1.38x10° 1.38x10°
Be N/m?2 0.737x10° 0.95x10°
Pressure Compensation
K m3/sA 0.7x1078 0.7x107°
Uy A - 0.473 0.467
Relief Valve
Pget bars : 120.0 - 270.0
Operation Point Values
% rd/s 160 22.0
P bars 80.708 181795
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wy » Motor sl;eed [rd/s]

pPi » Inlet pressure [bar's]_

5

aU =0.38 Uy
£ =561 Joules

+
o

30
AU =0.2 Ug
E =8 Joules
20 3
i
| AU =0.1 Uy
i E =0

10

11 1 é 1 5
Time [s]
FIGURE 5.2 - Deviations in the inlet pressuré i
(Design No.1 , No pressure compensation)
' |
!
10 ; : . .
® aU= 0.38 U_
8_ -4
L
6l -
@ AU= 0.2 Uy
8 i
() au=o0.au,
I R
2! % -
0 N . , N
1 4 5

Ti@é [s]

" FIGURE 5.3 - Deviations in the motor speed
(Design No.1 , No pressure compensation)
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40 | ' |
o — AU=038U
E . E=408Jou1es
| W § . )
) .
530 F
/)]
43]
O
19
[N
§ 20 @ AU = 0.2 Uy
5 E=0
o
" 1o ® w=o0.1 Uy
E=0
0 |} 1 | 1
1 2 4

Time [s]

_FIGURE 5.4 - Deviations in the inlet pressure
(Design No.1 , Pressure compensated case)

6) au=o0.38y,
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o]
=,
(@ w=oauy,
0 _ B | | L
. 3 L
' ' z Time [s]

FIGURE 5.5 - Dev1at1ons in the motor speed

(Design No.1 , Pressure compensated case)
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2
2

Time [s]
i FIGURE 5.6 - Deviations in the pump flow rate
I (Design No.1, No pressure compensation)
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FIuURE 5 7 - Deviations in the pump flow rate
(Design No.1, Pressure compensated case)
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Pj , Inlet pressure [bar-s

Wy Motof speed [r‘d‘/s]‘
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o
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. E= 2349 Jou]es
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Time [s]

FIGURE 5.8 - Deviations in the inlet pressure

(Design No.2, No pressure compensation)
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~ (Design No.Z , No pressure compensation)



55

100 . .
oo (2 - o0.38y,
j_ﬁa E =721.5 Joules
—

o
19
=3
o B0
A
&
Q‘ .
gw @  aw=o0.2y,.
ol
[a K
20 AU = 0.1 Up
N

S

i

] 2 3 " 5
Time [s] '
FIGURE 5.10 - Deviations in the inlet pressure
(Desiqn Mo.2 , Pressure comnensated case)
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FIGURE 5.11 - Deviations in the motor speed _
. (desian No.2, Pressure compensated case)
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FIGURE 5.12 - Dynamic response of the motor speed to a step
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FIGURE 5.15 - Dynamic response of the inlet pressure to a step
chanae in the load toraue
(Desian No.1 , No pressure comnensation)
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FIGURE 5.17 - Dynamic response of the motor speed to a step
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(Design No.2 , No pressure compensation)
0 T T T y
t
~—
v (07)  aM =36 Mm |
o
Nah
<
U
v
c
n
1 <
[®]
]
2 -6 -
E
3
. aM = 108 Nm
-12 i [} -! | ]

0 : 1 2 3 N . 5
Time [s]
FIGURE 5.18 - Dynamic response of the motor speed to a step

change in the load torque
(Design No.2, Pressure compensated case)
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VI. CONCLUSION -

; Computer ‘aided design and dynam1c 51mu1at1on techn1ques are very
useful tools in the design of hydrostatic transmission systems. The use
of the digital computer makes it possible first to design a HST system
and then to simulate it in a few minutes. So the designer can obtain the
best solution in a shorter time and in a more reliable way. :

Some advantages of the CAD program over the conventional design
process can be summarized as follows:

i) reduces the design time,

| 1) makes all calculations which are sometimes omited in the con-
ventional design procedure,

111) makes possible to see all possible solutions together,

iv) effects of some important parameters, sych as oil viscosity
numher, can be easily seen,

The success of the CAD program heavily depends on the component
files, With small and insufficient files, the program results in wrongly
‘chosen components. Use of direct access files reduces the run time which
is important especially when huge component files are used. '

 Since computer aided design of hydraulic circuits is in fact a
very']arge field, the work presented here is only an 1ntroductory re-
search. However, the scope and effectiveness of the program package can .
be ea511y extended.so that highly complex hydraulic circuits can be
designed by the CAD program, _

' Consideration of the dynamic behav1our is a necess1ty for HST
systems. Simulation of HST system in the digital cumputer makes the CAD
program complete, Usually exist several solutions to a design program.
Obsery; ition of the dynamic behaviours helps the des1gner to choose the

best solution,
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.~ The results obtained from the simulation program are out11ned -
as fo]]ows :

» 1) HST systems may have oscillations during the transient re-
sponse time. If the dynamic behaviour is not tolerable, then the pres-

'sure compensation may be applied. Pressure compensat1on reduces exces-
51ve overshoots,

i) Pressure compensation also causes energy losses to reduce
during the relif valve operation, |

iii) Variations in the load torque causes some oscillations in
the systems without pressure compensation, but does not affect the
steady state value of the speed. However, if pressure compensation is
- applied then it causes a reduction in the steady state value of the
motor speed.

iv) If the deviation in the motor speed is not tolerable, then
by means of. the closed loop control it may be reduced or completely -
overcome. '

The dynamics of the prime mover and the pressure relief valve
is omitted in the dynamic model. The study can be extended so that they

are also considered,
4
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APPENDIX A

GLOSSARY OF COMMON PARAMETERS USED IN CADHST

CBTLOSS Pressure loss of'directiopal valve E
DID - Internal diameter of déli?ery 1ine pipe
DIFF Height difference betweenipump and tank
DIS - Internal diameter of suction (return) line pipe
DISP Motor displacement (geometric de]ivery)
DpP ‘ Diameter of cylinder piston
DR Diaheter of piston rod of cylinder
FKCi Contraction loss coefficient
~ FKCI=0.5, FKC2-0., FKC3=0., FKC4=0.5, FKC5=0,
FOV1 | Directional valve p.loss coefficient (P » A)
FDV2 o Directioné] yalve p.loss coefficient (B - T)
FKEi Expansion loss coefficient -
; | FKE1=0., PKE2=0., FKE3=1,, FKE4=0., FKE5=1.
FKFI Filter loss coefficient
FKSUMi P.loss cefficients of fluid lines
FLOSS P.loss of filter
LN Line code number

LN1: suction Tine
LN2: delivery line

LN3: Tine A

LN4: Tine B

LN5: return line
NBD Delivery line nominal diameter
0DIS v Density of 0i] used in the circuit

ovIs - Viscosity of oil used in the circuit

1
.
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PALOSS

- PLOSST -

POWER
PRES
PRESS
PRR
PRV
TFK
QDELA
QPUMP
QREQ
QRET

QRETE

SP

SPEED

SPEEDB
 SPEEDF
TLOSS

Piloss of directional valve (P A)F
P.loss of line i

Maximum pqwer required‘by the_pumpbl
Updated system pressure |
Pump pressure differentia]v

Preésure at pump inlet |

N
™

Pressure setting value of relief valve

- Total p.loss coefficient (modified)

Flow rate in Line A

Plow rate required by pump

~Maximum flow rate required by actuator

Flow rate in return line

Flow rate in ]iée B

Rated system pressure

Updated motor speed

Updated backward velocity of cylinder
Updated forward.velocity of cy]inger

Total pressure loss in the circuit
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APPENDIX B

EVALUATION OF PUMP CONTROL dOEFFfCIENTS

Here, the evaluation is done for the electrical control, but the
procedure is almost the same for the other control techniques.

I

l
B.1  EVALUATION OF K, AND K_

In Fig.B.1 the control graph for the electrical control is illus-
trated. The input parameter is the electrical current. S

Imax

-DP/DPmax = -1 1 :DP/DPmax

FIGURE B,1 - Control graph of the electrical control

It is cjear froﬁ_the figure that
Uu =1 -1 g | | ~ (B.1)
On the other hana for tﬁe swash plate design pumP}
QPmax= Kq'tg ®nax
or
K= O /19 T N X

|
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At the same time, o

meax VKS. . Kq-. Umax— K. Umax ’

or
K= meax / Umax 7 (8.3)
where
K=K.K = : : .4y
| s"'q - (8.4)

Frop Eq.(B.2) and Eq.(B.3)

i

K =tgae /U | | | (B.5)

S max max

. So, Eq.(B.2) and Eq.(B.S)'give us the bump control coefficients,
namely K and Kq ' |
For the bent~axis design pump the following equatIons can be
_ wr1tten T ' -

K
q

K =sine [ U ) (B.7)

S max max

meaxb / sin ? ax (B.6)

As an example, for a swashp1ate design pump (Rexroth A4V 90) the
necessary parameters are ‘given as :

: - : 0
N 2,25x10°° Dn /s] , o =15

‘max

U, = 600 - 200 = 400 [mA] = 0.4 [A]
By using Eq.(B.2)
‘ ‘Kq 8.397x10” [m/rd s]
" and by using Eq. (8.5)
K = 0,67 [ra/A]
are obéained. Also,

K= KoK 5.625x10"° [m /sA]
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a.ﬂzj EVALUATION OF TIME CONSTANT fp-

n The time costant of the pump control servomechanism can be esti-
mated by
where T is the minimum swivel time and given in the catalog. Eq.(B.8)
reflects from the fact that in a first degree control system the: output
(here swivel angle) reaches 98 percetage of its steady-state value in a

time of 4r for a step change in the output parameter (here so]eno1d
current) .

- B.3 EVALUATION OF PRESSURE COMPENSATION GAIN»KP

'Pressufe compensation gain K can be evaluated by the equations
below which are obtained from an analytic study [4]. In the mentioned
study , omitting the time constant Tp, the natural frequency and the
damping rat1o are given by

2 B - :
‘”0=V{D +KKB} ' (8.9)
and
' t
g =1 B . ok K, (8.10)
2w0 J v 4P

Using these equations and desired damping ratio value a reason-
ahle pressure compensation gain Kp value can be obtained,
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APPENDIX C

SOLUTION OF VECTOR-MATRIX EQUATIONS

C.1 SOLUTION OF TIME-INVARIANT VECTOR MATRIX DIFFERENTIAL EQUATIONS

Consider the following vector-matrix differential equation

%(t) = A x(t) + Bu(t) + Cm(t) , x(t)= %, o (€.1)
where |

A= (nx n) constant matrix

B = (nx r) constant matrix

C= (n x s) constant matrix
~x = (n) vector |
u = (r) vector 1
m= (s) vector |
| |

(Notice that n=3, r=1, and s=1 in our case)
‘ By writing Eq.(C.1) as | .
%(t) - A x(t) = B u(t) + C m(t) o

At

and multiplying both sides of the equation by e™"~ ., we obtain

é"At[i(t) - A x(t)] = e’At[B u(t)'+ c.m(t)]'

or A
—gz[e‘At x(t) ]= e At [B u(t) +C m(t) ]
Integrating the preceding equation between %, and t we get
(j ) . ) t— i . i
eAt x(t) = e At°xo +[e A 8 uf) tCm(r)] dr
.0
or

i) = M) o F AT [Bup) som(nle (C2)
to L
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This is the solution to Eq.(C.1). Notice that if the initial -
time is given as zero instead of t, , then we have

x(t) = e Aty fe’A(t"‘) [Bu@x) + Cmix)] dr (c.3) .
| 0 » :

xg = x(0)

C.2 - DISCRETIZATION OF VECTOR-MATRIX DIFFERENTIAL EQUATION

A continuous time system which ié described by a vector-matrix
differential equation can be approximated by a vector-matrix difference
equation, The discrete-time solutions must be valid at equally spaced
sampling instants, In discretizing the continous-time system it is as-
sumed that the input or the forcing functions to change only at these
same 1nstants ,

Consider the system which is described by Eq.(C. ]) The formal
solution of Eq.(C.1) is Eq.(C.3) .

Taking T as the samp11ng .period, at t = (k+1)T and t = kT we

have
(k+1)T : . : ‘
x((ke1)T) = erlEDT o QAT 5000 AT (o) + Com(x)] de
° t (qu')
and
AKT AT KT e
x(kT) = e xo + ¢ g e [Bu(r) + Cm(x) ] dr (C.5)
Multiplying Eq.(C.5) by e”' and substracting from Eq.(C.4) , we
~ obtain

_ .
AT x(kT) + eA(k+])T( R L (B u(r) +C m(r)]dt
' kT

AT x (k1) + AT 1At g at u(kT)

x((k+1)T)

Q

A oAt ¢ gt m(kT)
0

or



x((k+])T) G(T) x(kT) * H(T) u(kT) + Q(T) m(kT)

where
6(T) = T
U STV S

HT) = T e gaf-r Mg
0 0
T

Ty = e’ feMtcdr=F Ay
0 0

G = (n x n) matrix

H= (nxr) mtrix

(n x s) matrix

nw -
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| j('c’.a) e

(c.7)
(C.8)

(.9)

Consequent]y, the continuous-time system described by Eq.(C. 1)

is approximated by Eq.(C.6) which is a vector-matrix equation.
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COMPONENT. DATA FILE EXAMPLES»



¢mttt‘¢¢#»t~)o*v#4ﬂ§*$$#tu#v!v644¢¢§t;.¢...‘*,¢¢¢¢¢,.,;,..“.t“‘at,‘*““.“.‘
FILL WAF=CYLINDFK . _

FILE Nove=g™

DATA BLUCK hi,= 1
CYLINLEK TYp©:

Lp
L 40
2 Qv.
3 Sie
4 LIV
5. 63,
[$) 63,
4 O
8 8l
9 PRI T
10 Lo
11 1254
12 125
13 .L‘OU.
14 laie
15 Lou,
16 160,
17 200
13 20C .

DATA BLUCK t0,= 2
CYLINUEK YYPES

pe
1 4
2 496
3 S e
L) Sue
5 63
6 Al
K4 [ 1V
8 o
9 LG
10 LN
1y 1254
12 L2Y4
13 L4,
1 4 14y e
15 léte.
1o Lot
17 e
13 % .

DATA BLUCK rnilleg= 3

UR

s'"-
28,
284
36,
6.

45,

45,
5ba
26,
1,
10,
G
90,
1‘4"‘-.
12
118,
125,
140,

OR

¢
L el

28,
B
36,
30,
45,
45,
Db6e

56¢ -

YA
Tt
qn,
9,
10,
Tut,
1Lit,
1.5,

Lan,

CYLIMUFER VYPE:F

[}Y

1 Ay e
2 4 e
3 SUe
4 SUe’
5 A3
(3} 63
7 dve
) due
9 Lt
1o LMo
11 12%
12 12he
13 L,
14 Lhee
15 Loue
16 [, 3
17 2%

16 FAToN

UR
ity
cle
2de
36,
36,
49,

45,

bl
She
AN
7
97,
g,
lufe,
lbﬁu
110,
15,
140,

As B

25

CyDyF

ST
4Y e

z 3('.
143,
342.
&l
44
235,
555,
365
1y,
4T4,
Y73,
815,
TuThe
850,
1114,
0B
“-" 65.

&5

ST
460
994,
Tbue
1325
Tl
1650,
1258,
2u2te
1483,
25,
1965,
3374,
2960
3715,
3184
9Vie

397G

5972

BARS
<7
3 3b.
389
272
Ylbe
38ie
€ se
487,
b4ale
Dlve
167,
172
1427,

1229s

198
Ehoe
12104
Yot
Iy -Ux

o BAKS

ST

65,

275,

175,
395,

26':.

S45.
340,
64
43¢,
Y15,
S0,
1110
930,

. 1230,
()bsl

1 2"'(’.
1240,
16485,

ST
B1e
113¢,
Bo5,e
1495,
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1395,
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175%.
2339
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3738C,
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1490
pR-1IVIN
20lue

ST
olue
1369,
1005,
1695,

1349y, -

2L7Ge
1645,
26495,
2U6H5
2305
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2829
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155.
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565,
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1255,

910,
1695,
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1870,

1510,

1905,
1935,

25604
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770,
1630,
1265,
2155,
1670,
2670,
2045,
3275,
2565,
4105,
3210,
5460,
4755,
6015,
5060,
6220,
6440,
8210,

ST
280,
750,
S5ulty
920,
690,
1150,

865,
L43n,
1094,
1790,
1350,
Z4un,
100,
2650,
1510,
1905,
27404
350N,
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1215,
89 e
15Cue
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188u.
1410
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218G
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2290
2840
2926
381G
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3495,
24lue
387Ge .
2995,
47454
3705,
5605, -
4bALe
778us
69054
8555
7300«
8860
9240,

11790,

ST

4%
100ue

T6Ue
135ue
1u3ue
1710
13Cu.
211Ga
lo2Ue
263ue
2U204
3500
3ubue
366V
2290
284U
4u3Ue
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DATA BLOCK KOo= 4

CYLINDER TYP&34y8

VENOT UMD WNIE

op
63
80

10U

125
140,
16U
200
22U«
250

uR
45,
She
10,
GOy
Iuty,
110,
14,
lou,
g0,

UATA BLUCK NO.=
CYLINDEKR TYPR:C,

VENOCUL WK

op

63

80
10U
125,
140
160«
20U
2206
25U

UK
4%,
6.
7C.
9.,
1N,
N,
140,
lon,
1ud,

0y F

DATA BLUCK NO«= &
CYLIMDER TYPE:IE

SCTS~NCUBS LN~

013

63,

8Ce
1.
125,
14y,
16U«
200,
220
250

OR:
454
564
70,
9,
0,
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140,
| T34
ot
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42ce
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APPENDIX E
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