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ABSTRACT

In this thesis, the tranéient response of an isotropic, homogenous
and elastic half-space due to a buried finite sized line source was
analyzed. The receiver was always taken on the surface. The solutions
kcorresponding different orientations of line source and receiver were
obtained. Numerical results were illustrated in graphs. The time
dependence of source functions was taken in the form of Delta-Dirac

function.

The results obtained in this work can be used to. explain the effect

of the size of the transducers used in Nondestructive Testing of materials.



OZET

Bu tezde, homojen, elastik ve isotropik bir yari-uzayin, gomiili
bir sonlu ¢izgi kuvvet kaynaga nédeniy]e olusan zamana bagli tepkisi
incelenmistir. Alici siirekli olarak yﬁzeyde-tutulmustur. Farkli kuvvet
kaynagi ve alic yer1e§tirme1erine gore farkli cozimler elde edi]mistir.
Sayisal sonuglar grafikler seklinde verilmistir. Kuvvet kaynaginin

zaman fonksiyonu Delta-Dirac fonksiyonu olarak alinmistir.

Bu calismada elde edilen sonuc¢lar, tahribatsiz malzeme kontrollerinde
kullanilan cevireglerin (transducer) ylizey alanlarinin kontrol iizerindeki

etkisini saptamakta kullanilabilir.
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I. INTRODUCTION

The quality and inteqrity of a structural material is greatly
affected by the number and size of the defects such as cracks, volds,
etc., contained in the material. Under loading or other service conditions,
these defects may cause uneven distribution of stresses which in turn
may produce more defects and then cause failures. Hence, it is vitally
vimportant to detect these defects before any catastrophic failure occurs.
The technoloay used in detecting the defects without changing the original
form of the structural material is called Nondestructive Testing (NOT) of

materials.

Whenever forces are applied on the ‘material, the plastic deformations or
local failures, occured at the defective points, create transient elastic
waves due to the rapid release of energy at these failure or yielding
points. That wave emission is acoustic. So, the technique of detecting and
recording transducers p]ahted at the surface of the material, is called
acoustic emission technique in the field of (NDT). The recorded signals are
then related to the location and physical characteristics of the local

deformation of failure.

For this purpose, the transaucers to be used must be calibrated. The
transducers are calibrated as a source and as a receiver; through a
comparison with a standard source and a.standard receiver respectively.

A transducer of known char;cteristics.andka transfer media of. known -
theoretical solution is used for calibration. To obtain a known theoretical
solution for a chosen media, i.e., half-space, the scientists model the
source as equivalent body forces inside the media, distributed over a line
or the surface of the defect. The equivalent body force is defined as the

body force which should be applied in the absence.of the defect to produce
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the same radiation as a given defect. These idealized sources can be a
center of compression, a sinale point source, a single couple, a double
force, a double couple with or without moment, a finite sized line source

and a finite sized areal source or any combination of these.

The purpose of this thesis is to study the response of a homogeneous
isotropic and elastic half-space due to a finite sized 1ine source. The
basis for such an idealized source mechanism is the single point source
[5]. That is, the response equations will be obtained by integrating the
point source expressions over the finite line of the source. Hence, the
numerical results of the surface response can be easily obtained by

employing the numerical methods.

The basis for the mathematical analysis of the problem will be the theory
of generalized rays. A well documented study on this theory is in the work
of Achenbach [2]. In this theory, the response of the media is sorted out
into individual rays originating from the same source location, but
travelling along different paths before reaching to the receiver. The
expression for each ray is in terms of complicated integrals including a
sourcevfunction describing the source, a receiver function depending on -~
the auantity to be calculated, and, the reflection coefficients describing
the path upon reflections from the surface. The transient response is then
obtained by taking the inverse Laplace transform of the expressions for

each ray using the Caaniard's method.

A brief summary of the basic equations of elasticity are given, and the
particular solutions for the displacements due to a point force are found

in Chapter II.

In Chapter III, a brief history of the methdd of generalized rays is given.
Also in this chapter, the reflection coefficients for a free surface and
the ray solution for a half-space are discussed. The expressions for

receiver functions and the expressions for source functions for a line
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source are also given. In Chapter IV, application of the Cagniard's method

and the inversion of Laplace transforms are discussed.

Finally, in Chapter V, numerical works and results are presented and
discussed. Surface displacements of a half-space due to a line source
inside the media are given for different locations of the receiver and for

different sizes of the source.
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II. EQUATIONS OF ELASTICITY AND SOLUTION FOR
A POINT SOURCE IN AN UNBOUNDED MEDIUM

The basic equations of dynamic elasticity and the particular solution
for a sinale point source in an unbounded, isotropic, homogenous and
- elastic medium will be presented through this chapter. The Tinearized
equations of motion and solutions of them for a poiht force in infinite
media can be found in the classical book by Love [11] and Achenbach {2].
We recast these solutions in terms of Laplace transforms so that one can

modify them for the half-space problems as well.

2.1 DYNAMIC EQUATIONS OF ELASTICITY
When forces are applied on a solid body, the body deforms, i.e,, the

distance between any two points changes; In this thesis, all the strains
are taken to be very small, so that the linear equations of the theory of

elasticity are applicable.

In the linear theory of elasticity, the displacement field u(r,t) for a

homogeneous, isotropic and elastic body satisfies the equation of motion,[2],
uViuor A+ 20) V(Veu) * o F = pll (2.1).

where p is the mass density, A and p Lame constants of the material, F
is the body force per unit mass. A "dot" denotes the partial differentiation
with respect to time, t. In the aboyve equation V2 is the Laplacian operator

and, V- and_z are the divergence and gradient operators respectively.
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The stress-displacement relations for an isotropic elastic material are

aiven by,

=A(Tw) Lru(Tu+ (Yu)) (2.2)

la -

where g and I are the Cauchy stress and the unit tensors respectively.

Equations (2.1) and (2.2) must be satisfied at every interior point of
a body occupying a volume V in space bounded by a surface S. To obtain a
solution for the problem, the boundary conditions on S and the initial
conditions on the displacement and velocity fields throughout the body
at initial time, i.e., t = 0, must be specified. The boundary conditions

involvina tractions are of the form

T=0-n on S - (2.3)
where n is the unit outward normal to the surface S. The boundary conditions
must be replaced by the radiation conditions in the case of an unbounded
medium. That is, all components of the displacement vector must vanish at
infinity. The initial conditions to be specified are in general of the

form
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wheré'g_ (r) and_i;_0 (r) are the initial displacement and velocity fields

respectively.

Our approach to solve Eq.(2.1) will be first to reduce it to wave equations,
using the Helmholtz decomposition theorem. According to Helmholtz theorem

a single valued vector field can be expressed as the sum of the gradient



of a scalar field and the curl of a vector field, [5],

U-Vo*rVx¥, , V¥ =0

| (2.5)
E:VG+_Y_X_|'1 . VeH =0

where ¢, G, and, ¥,, H are called the scalar and vector potentials
respectively. Substitution of the above equations in Eq.(2.1) to wave

‘equations

c? Vi + G =9 s, ct= (At 2 /o

(2.6)

)
N
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N
=
-
+
|=
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=
o
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1

u/p

-The potentials ¢ and ¥, aive rise to waves known as longitudinal waves
(P-waves) and shear waves (S-waves) respectjve]y. The longitudinal waves
travel with the speed c and shear waves travel with C. For plane waves
the particle motion of a P-wave is in the direction of n, the normal to

the wave front, and that of S-wave is in a plane perpendicular to n.

In curvilinear coordinate systems, the equations in terms of the components
of the vector potential are coupled, hence, it is difficult to obtain a
solution. However, in the study of propogation of elastic waves, the particle
displacement due to S-waves is further decomposed into two orthogonal
components. The one that is parallel to a given direction is Ca]]ed the
SH-component and the other is called the SV-component. Waves associated
with these displacements are called the SH-(horizontally polarized) and

SV-(vertically polarized) waves. Thus, a decomposition of the form,

k8!

xe, +Vx(¥e)
(2.7)

+
Hy &, £V x (Hy EZ)

lzc
"
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is possible [20]. In these equations, Ez is a unit vector perpendicular

to the surface of the half-space. With these equations Eq. (2.6) reduce to,

c2 V2 o+ G = ¢

VY +H, =V (2.8)
C2 V2 y+ Hy =¥
with the initial conditions,
o(rs 0) = ¢o(r) > &(r, 0) = é(r)
¥(r, 0) = ¥ (r)  ,  ¥(r, 0) = ¥(r) (2.9)
x(r> 0) = Xo(r) 5 X(r, 0) = xo(r)

It is understood that ¥ gives rise to SV-wave and x to SH-wave.

For analyzing the waves in a half space, it is convenient to introduce

the following non-dimensional quantities,

U=ryu », t=rg %/c R V= rgl_y
$=r2¢ , Va=rdd . x=r2 % (2.0
G=c2G s Hy =1y c? H, Hy = c? H,
s=(A+20)g , k=c/C

where """ denotes the non-dimensional quantities and r, is the distance

“between the source and the receiver in r-direction. Employing these

non-dimensional quantities, Eq. (2.8) becomes,
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(2.11)
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The """ sign, from here on, will be dropped with the understanding that

all the quantities used are dimensionless.

2.2 pARTICULAR SOLUTION FOR A SINGLE POINT FORCE

‘In this section, the general solutions for ¢, V¥, and x in Eq.(2.11)
satisfying the boundary and initial conditions will be obtained using the
transform techniques. Laplace transform of a function f(r,t), denoted as

f(r,s) is defined as,

‘?(L,S)

£ F(rot) et dt
0

(2.12)

S OF(r,s) *% dt

Br

|
Fr.t) = =5

where s is the transform variable and Br is the Bromwich contour in the
complex s-plane, which is a 1ine parallel to the imaginary axis and to the
riaght of all sinqularities of f (r,s). Note that the second equation defines

the inverse transform.

Consider a concentrated force with a time function f(t) applied at a point ..

(0,0,z,) and acting in the direction of a unit vector a, defined as,

=2, € *a, e *ay e

| v
1

(2.13)



where e,, €,, €, and Er’ 847 gz are the unit vectors in cartesian and

cvlindrical conditions respectively.

70 e ]

(0,0,20) CICHPLINLID

Figure 2.1 Geometry for a point force

Components of the vector a in the cylindrical coordinates are related

to the components in cartesian coordinates through the relations

ar = a, cosB@ + a, sinb
3y = -3y sinG + a, cos® (2.14)
8, = 2

‘The concentrated force, F is represented by
F = a FoF(t) 8(z - z4) 8(r)/2mr (2.15)

and a particular solutions for potentials ¢, x and ¥ are (see Appendix A},
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#(r.s,2) = a, s°F(s) [ o -snlz Z°|J0(sélr)£ de

vas?(s) /s e MBI e e e (2.16a)
r P 1

0

X(Eaiai) = -ae SZ}?(S) J SH e—SCIZ—ZOI‘JI(Sgr) ¢ | (2.16b)
5 .

F(ras,a) = -a. s F(s) /s e P2l (sevy ar

z 0V
-a s F(s) I s! L (2.16c) ..
0

where,
F(s) = F, f(s)/4m ? s2 ur:o, S = - , Sé = -e/n

SH = k°/¢ R SV = &/¢ , SV = € (2.17)

g = (8% +k?)? n= (g% +1)H2 € = sgn(z - z,)

n and ¢ are the slowness in the z direction of the P and S waves
respectively, and is the directivity constant and Sj’ Sé are the source
functions with the subscript j indicating the type. Note that, Eq. (2.16)

~completely aarees with Ceranoglu [5].

2.3 DISPLACEMENTS DUE TO A SINGLE POINT FORCE

In studyina the response of a half-space due to a point force, it
is more convenient to use the cylindrical coordinates (r,0,z). In this

case, the Laplacian operator takes the form,

32 1 % 1T 32 92
2 . . + +
Vo e Y Tor REETY 222

(2.18)



Usina Eq.(2.5) and Eq.(2.7), the relations between the displacement and

the potentials can be written,

y o 29 52y dX
r -~ or orsz 90
u - T3¢, ] 22y X
8- r 230 r 903z or
2 2
y o0, 0 g e f
z 9z YA ot

(2.19)

Substitutina the potentials from Eq.(2.19) into Eq.(2.16) we obtain

the displacements as,

- _ 3_ foe)
u_(r,s,a) = s° F(s) {a, { Spsz
+ a foo SD
Z o Vvazv
+ a 'D
LA p Zp
+ a S'D
r o v zZV
U (r,s,a) =s®F(s) ta S SD
(rs.2) = s° F(s) fa, £7s D
+a [SD
Z 3 vorv
-a S'D
rog prp
-a ? gt
r o, Vorv

e‘snlz‘zol
e‘SCIZ‘Zol
onlz-z,

e—sglz—zol

e'5ﬂ|2—20|
e‘SCIZ'Zol
e-snlz—zul

e—sclz—zol

Jo(sEr)g dg

Jo(sEr)g dg

(2.20a)
Ji(s Er)E dg
J,(s&Er)g dg }
Ji(s&r)E dg
Jl(s EY‘)E dg

(2.20Db)

Jo(s Er)E dE

Jo(sEr)E dg }



-sn|z-z,|

+a fﬂ F(s) { {w 51D, e J; (s&r) dg
x5 5! D eSE12720] J; (s&r) dg
0 .
. Sy DrHve—SC|Z—Z°| J; (s&r) de }
0
ue(__‘:sss_a_) = "ae r F(S) { {; SFI) D ; e'5ﬂ|2‘zo| Jl(SEY‘) dg
v s 5,0y eS8zl g ey ae
0
(2.20c)
v S, Doy e St12720 ] Ji(sEr) dE }
0
*ag s3 F(s) {m SH DeH e-sclz-zol Jo(s Er)E dE

where J, and J; are the zeroth and first order Bessel functions and,

D
zp zv rp Op
' (2.21)

rv = oy

Note that Dijls denotes the receiver functions with subscript i indicating
the direction and subscript j indicating the type of wave. For simplicity,

Eq.(2.20) can be written using a different notation as,

- R o -sh_.(z,£&)
uzj(ﬁ’s’é) = s” F(s) {az { Sj Dzj e " j Jo(s&Er)t dg

oo

. -sh (z,&)
ta { Sj DZj e " j Ji(s&r)E dg} (2.22a)



urj(ﬁ’s‘i) = s3 F(s) {az S, D, e-Shj(Z’g) J (s &r)g dg

—a Cstp, e Shs(z:E) Jo(s Er)E dE }

- R ] _
+a = F(s) { f S D . e Shj(z’g) J,(s&gr) dg
o J 1
0 -sh (z,&)
+ £ SHj DrHj e "] Jl(égrﬁ dg} (2.22b)
y . s? = ® -sh.(z,8)
uej = (r,s,a) = 3 ¢ F(s) { { Sj Dej e j J;(s&r) dg
oo -sh.(z,£)
+ { SHj DaHj e Ji(s&r) dg (2.22c)
3 = o0 V —Sh.(Z,E)_ ‘
+ ay s F(s) { SHj DeHj e "] Jo(sEr)E dg
where,
nlz - z,] for P waves
h(2.6) { (2.23)
glz - z,| for SH and SV-waves

The transient response of the unbounded medium can be simply obtained by

takina the inverse Laplace transform of the Eq's. (2.22a,b,c) [5].



IIT. METHOD OF GENERALIZED RAYS AND SOLUTION
FOR A HALF-SPACE

In a bounded medium, waves radiated from the source travel among the
different paths. Some of the waves originated from the source will reach
‘the observation point after several reflections at the boundaries. Method
of generalized rays is based on expressing the solution for such a bounded
medium in terms of individual rays which propogate alonag different paths.
Each ray is identified with a source and a receiver function together with
a specffic combination of the coefficients, The cdmp]ete solution is then

obtained by summing up the responses for all possible rays,

3.1. METHOD OF GENERALIZED RAYS; A BRIEF HISTORY

The classical approach in studying the response of an elastic medium
under any kind of excitation is to use the theory of normal modes. There,
the complementary solutions of the potentials ¢, ¥ and y of Eq.(2.8)
are foundAwith two unknown coefficients‘for each. For axisymmetric loadings,
i.e., X = 0, the number of unknowns reduce to four. By applying the .
boundary conditions to the solutions, the unknowns are all determined.
Téking the inverse transform, the solution is then obtained in terms of
a summation of individual modes, Hence, the accuraéy of resuTts ate Timited
with the number of terms taken in the summation..An alternative method is
knowns as the genéra]ized ray theory, where the displacement field or the
stress field is expressed in terms of the contributions due to different
rays travelling along different pathé between the sourée and the receiver.

‘Summing all the particu1ar.so1utions, one can obtain the final so]utiohﬂ
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Generalized wave theory is well known in the field of optics, where the
individual rays along which 1ight propogates are obtained by using the

hioh frequency limit of the solution, (Born and Wolf). Aside from this

hidh frequency limit analysis, one can sort out the solution into

individual rays by expanding the denominator of constant unknowns of
potentials into a series of products of the ‘reflection and the

transmission (which is in the case of the two media in contact) coefficients

using the Bromwhich expansion.

The aeneralized ray theory was applied to the propogation of elastic
waves by Caaniard [4], when he studied the transient waves in two

half-spaces welded together. Through a series of contour deformations
and change of intearation variables, he was able to find the inverse

transform of the expressions for each ray.

‘Lamb [9] solved the buried force problem in a half-space when he studied
the propooation of earth tremors over the surface of the earth. He
completed the inversion of Fourier transform in the time domain by
chanaing the integration variables in a manner very similar to Cagniard's.
Later on, Pekeris and Lifson [17] solved the buried and surface source
problems in a half-space, Lapwood [10] and Garwin [8] formulated the
buried 1line source problem usina the generalized ray theory and Cagniard's
~method. Tangential surface load over a half-space was studied by Chao [7].
Norwood [13] studied the case of rectangular load and proposed a method

to remove the singularities that are along the integration path which

made the analytical solution for thé case of loads applied over finite
reqions. The generalized ray theory and the Cagniard's method was first
applied to the plate problems by Mencher [12], Sherwood [18], Spencer []9].«
and recently Ceranoglu [5] are the other contributors of the plate problem,
Pao and Gajewski [16] carried the method to a Tayered media. A1l the

works cited above were the mediums with plane boundaries, Receht]y, the
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generalized ray theory was extended to the study of wave propagation media

such as hollow spheres and cylinders, Chen [6], Pao and Ceranoglu [15].

Until 1960's, the individual ray integrals in the generalized ray theory
-were found by using'the Bromwich expansion of the exact solution. This
procedure gets tedious for a layered media problem. Spencer [19] showed
that the inteqral solution for each of the multiply reflected and
transmitted rays in a layered media can be fouhd by a ray grouping
technique. In that technique, the rays are grouped effectively disregarding
their mode conversion history. Wu [21] and Norwood [14] used this

technique together with Cagniard's method in solving the problem of the ’
propodgation of transient waves in an elastic thick plate under an arbitrary

load.

3.2 REDUCED BOUNDARY CONDITIONS FOR A TRACTION FREE PLANE SURFACE

At a traction free plane surface, the boundary conditions of Eq,(2.3)

becomes,

gen=0 (3.1)

where n is the normal vector to the sukface, Employing Eq.(2.19) in

Eq.(2.2), we obtain

%22 * KE:Z | ng ' éi o [ 223 - KZ-—§%§— ]
R =T RS
B T

32X. M W L

Aran roz r 9623z
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1 1 3y 1 %X 32X
+ - -
k2 [ v or | v 202 or? ]
1T 3 3¢ 32y , %Y 1 ) X
- + -
% TR or 2T T2 Tz T e ) T ey Tae Uaz
1 ) 10 D2y , 02Y 1 d X
- + - -
90 % TkZr 30 [2 Y 2 922 ARPYE ] kir  9r [ 9z ]

If the equation of the surface is z = L, where L is a constant, then

the z components of the stress tensor must disappear
=0 =0 =0 s at z =L (3.3)

From Eq.(3.2), we then have,

. 3 ) 2y
(k2-2) § + 2 —=— [ gj N gzi “k?§l=0 , atz=lL (3.4a)
5 o 30 Y, 19 X\
" [2 st 2 v k2 Y] + = ( 32_) =0 , atz =1L (3.4b)
1 9 3 32y ) d X
— 5 [2 = 2 272 k2 ¥] - o (5,) =0 , atz=1L (3.4c)

Let‘s consider a function o(r,0) such that,

3 22y

. 80- .
(2 w2 -2 ) | =2 (3.5a)
z=L
X 30 -
Sl Bl (3-50)

z=L



then Eq.(3.4b) is identically satisfied and Eq.(3.4c) becomes,

920 1. 9o 1 3%0
arZ Ty ar  rZ 902 0 (3.6)

Note that, the above expression is the Laplacian of o(r,8) in the plane
z = L. Hence o is a harmonic function. Since the so]uf%on has to be
bounded at infinity, Liouville's theorem states that ¢ is constant.

Therefore, the boundary conditions given by Eq.(3.4) reduce to,

. 3 8 82\}] .o
{(K2-2)¢+282(3‘§+322-K2w)}=o (3.7a)
z=L
_3_ Cin IS A I
z = | Tl 2 5.2 - K ¥y | =0 (3.7b)
z=L z=L
X
ZH = (~SE—) =0 | (3.7¢)
z=L z=L
where T shows the component of the stresses S and Oz due to P-wave and
SV-wave, and ZH due to SH-wave. Note that, these are the same boundary

conditions used by Ceranodlu [5] and Basakar [3] . By employing these

conditions, it will be possible to obtain the reflection coefficients.

3.3. REFLECTION COEFFICIENTS AT A FREE PLANE SURFACE.

Some of the waves radiated from a buried source in a half-space
travel to the observation pbint directly. These waves behave just like
those which travel in an infinite medium. However, some of the waves

reach to the observation point after transmissions or reflections.

The reflection coefficients at a free surface will be derived considering

the case of a concentrated point force inside a half-space. Before deriving
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the stress equations belonging to the reflected waves, we are going to
derive the equations be]onging to the incident waves. Substitution of

potentials Eq.(2.16) into Eq.(3.2) after taking Laplace transform yields,

i;"c) = 5" F(s) la {m s, Diz) e SMZ2ol b g
va {m s, Diz) e~581720 ] J;g dg
ra LS o(P) emnlz-zal g g e
a {w s! Diz) efsclz'z°| 3,6 de ) (3.8)
where,
olP) - gz e ey, o) e e (3.9)
Similar expressions can be obtained for i(inc) and Eﬁinc) by using

potentials Eq.(2.16) in Eq.(3.7b) and Eq.(3.7¢c)

snC) | g3 F(s) o a 5 S, Dip) e~SN1220] Jy d

0

= o D(v) e—sclz—zol 3, dE

va, sy
o o, o(p) ~snjz-z,]
+ a { Sp DZ e J; dg
o I (V) 'SQIZ'Zol
+ ar { ~Sv DZ e J, dg } (3.10)



(inc)

where,

Dép) ~2eng , Dé") = (€2 + g2) , DéH) = ez (3.12)
It is well known that elastic waves of either mode, P- or SV-, when
| incident on a plane surface, will be reflected as two waves, one in each
mode. For example, a P-wave will be reflected as a P-wave and a SV-wave,
the latter is known as mode conversion. However, a SH-wave will be

reflected only as a SH-wave; i.e., there is no mode conversion for

SH-wave,

sV sy

(O,O,ZO) (0’0320)

)

SH SH

(0,0,2)

Figure 3.1 Reflection and mode conversion



21

In half space, z > 0, the waves which are generated at z = z, will be

reflected when they reach to the surface z = 0. We will assume that the

ratio, R, of the amplitudes of the reflected waves to the incident waves

is some function of the slowness. By this assumption and taking care of
the mode conversion, we can express the corresponding of Eq.(3.8), Eq.(3.10)

and Eq.(3.11) for reflected waves as,

g(ref)

=S F(s) { a

i(ref)=

s jPP plP) sz o) e g
0

fm S RpS'D(V) e-$(n20+§2)
. 2z

I,
Iy
;s
0

wsl
2 b
;oS!
0

£s
[}

N
"
S
I
s
Iosy
;s

RSS

r>P

RPP

s

SS

R°P

RPP
S

rRP

SsS

rR*P

Jo€ dg

Di;) e-sC<ZO+Z) JQE dg

p(P) e-S(cZo+nZ)

2z Yok dE
Di;) o~S(nZy*gz) J,E de
D(V).e'SC(Z+Zo) 3, de

2Z

Dis) e-S(CZO-+nZ) Jlg dg} (3.]33)

p(P) ¢7sn(2o*2) 4 g

D(V) e-S(ﬂZo+CZ) Jo dg
plV) -sc(zg+z) 3, de

o(P) e—s(czq+n2) 3, de
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+ ar foo gt Rpp D(p) e'Sn(Zo+Z) Jl dE
0

+

a s gPS D(v) e-s(nzo+nz) 3, de
r o P v

+a s RE p{V) e758(Za%2) g

+ a fn g! Rsp D(H) e"S(CZo+nZ) Jl dg } (3.]3b)
s, mptH) gmselzetz) 5 e (3.13c)
0

The total wave field, which equals the sum of incident waves and the
reflected waves must satisfy the boundary conditions. Hence, by adding
the corresponding equations of incidence and reflected waves, and forcing

“the result to satisfy the traction free boundary condition at z = O,

we have,

p(P) PP (P) , pps p(V)
Y4 zz ZZ

(p) , PP §(P) , oPs (V)
D"’ + RVT DS R™ D =0
V), pss plv) , psp plp) g (3.14)
Y4 ZZ zZZ
(v) , oSS (V) osp o(p)
D R Dy R™" D77 = 0

Substituting the values of receiver function, i.e., D's, from Eq.(3.9)

and Eq.(3.12) yields,



=
11

ss
R™™ = [4ngE® + (£2 + 02)?| / Ar

-
g=
1

= -4ng (&% + g2)/Ar

Sp 4 ps
R 5
(=) R

(3.15)

R =1
Ar = 4UC€2 - (52 + CZ)Z

The above equations are called the generalized reflection coefficients

for the surface z = 0.

3.4. RAYS SOLUTIONS FOR A HALF SPACE

The complete solution of the displacements due to transient waves
in a media is obtained by combinina the particular solutions of each ray.
These rays may include all types of waves such as longitudinal waves
(P-waves), shear waves (S—waves),head waves, Rayleigh waves and Stoneley

waves. The last wave type only exists when two media are in contact.

Consider a concentrated force acting at a point (0,0,z,) and a receiver

at a point Q(r,0,z)
(0,0,0)

r

Q(r,8,2z)

(OaO,Zo)

Figure 3.2 Rays in a half-space
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It is clear that, there are only two paths of waves. First one is the
path 1 where a direct P-wave or a direct S-wave travel along. As there
is no reflection in path 1, these waves act just 1ike those in an

unbounded medium. Eq.(2.20a) gives the vertical displacement due to the

waves travelling along path 1,

G;(ﬁ,s,é) = s% F(s) { a, 775 D e snlzz, ]

7 3 Do Jo(s Er)E dg

+a S D e—sclz-zo| Jo (s&r)g dg
0

“ s p e SnIZZl J, (SEr)E dE

ra f 5! D oSzl CeyE de ) (2.20a)
0

The waves that are reflected at the surface will reach the receiver by

travelling along the path 2. Again employing Eq.(2.16) in Eq.(2.19) by

takina care of the reflection, we get

u2(r,s,a) = s° F(s) {[a, gw s RPP 0, SN2 20) 5 ¢ g
ta {m 5! kpp 0, e SN 20) 4 ¢ ge ]
+ [ 3, {” Sp R Dzv e_S(ﬁZ°+CZ) Jo& dE
ca, s R e S(N207E2) e e ]
s [a fTs R é”SC(Z+Z°) JoE dE
z 3 v rAY
‘a {“ SP R D e (Z'20) g e
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oo ) -s (gzy™z)
+ 1 a S 0
[a, fos,RUD, e JoE dE

® L, oSp " =s(tzytnz)
+ a S 0
p ISR sze J,€ d€ ]} (3.16)
Similarly we can obtain the displacement equations for ur and u . And
total displacement equations for a half-space is written by s1mp1y

i 0l 0l 0l : 02 2 (3 i
summing up u_ s U s Ug with Uy 5 UL s Ug respectively. The phase of
~each ray is aiven by the arqument of the exponential term. In general

we can write the phase function as
-sh = - _
S s(112p + g Zs) (3.17)

where zn and z  are the total vertical components of the segments in a
particular ray, travelling in the P and S modes respectively. As will be
seen in the next chapter every one of these rays have a unique arrival
time. Therefore, only the ones that arrive prior to the time of interest

are to be considered.

Note that, the terms in the brackets of Eq.(3.16) are all similar in
nature, hence, one can write the contribution of the jth ray to the
displacements, as

-3 - - -sh-
W - 3 F(s) { a, f Sj Hj D . e > JoE dg
0

- 0 -shs
+a S'1.D .e 7J J,& dE} 3.18a
r { i Yz 1 & dE ( )

AN
wm\ \s\\\ms\ss o



U = s(s) {a. s -shj
P (s) {a, S5 mon e g de

- 00 1 . —Sh‘—
, ar { Sj nj Drj e " J J,& dg }
52 = [oe] Sh
+ F(s R
- ()ar{gsjnjom.e J g, dg
/s om0 e g de ) (3.18b)
2 THj THi CrHj 48 :
oJ - ® -sh; :
uy = "3, F(s) { Sj Hj Daj e 7J g, dg
+{a s*F(s) S ~Shy;
a, s° F(s) { SHj HHj DeHj e J J,8 dg

_ShH.

J

0 - / SHj HHj DeHj e J, dg} (3.18c)
where T's are the reflection coefficients for the jth ray. Along path 1,

I, = M,. =1 as there is no reflection. Along path 2, nj = Rpp, Rss’

H
RPS R R>! for the mentioned reflected rays in P and S modes and HHj =1
for the reflected SH-waves.

3.5. EXPRESSIONS FOR THE SURFACE RECEIVER FUNCTIONS

Until now, we discussed the case in which both the source and the
receiver were buried in a half-space. Now, we are going to discuss the

case in which the receiver is at the surface.

To get the surface receiver function, we again consider the buried source
and receiver case. Due to reflection; PP, PS, SP, SS waves will also

reach to the receiver in addition to direct P and S waves.



P-receiver : S-receiver

Fig. 3.3 Rays used in derivation of surface
receiver functions

From Eq.(3.18), as z approaches zero, the P, PP and PS wave integrals
combine and result in a single intearal with a new receiver function,

that is P surface receiver function, as,

0¥ =p +D RPP+p RP® a=r .0,z (3.19)
ap ap ap av

Note that, subscript = denotes the direction. And while z approaches
zero, also the S, SS and SP ray integrals combine and result in surface

function of S-waves.
p¥ =p +D R®+p RP «=r,6,2z (3.20)

Accordingly, for SH-waves, we have,

X H :
_ - , Z 3.21
DaH = DaH + DaH R ZDaH | a=r ,0, ( )

These functions are all included at Appendix C.



3.6. MODIFIED SOURCE FUNCTIONS DUE TO A LINE SOURCE

Until now, we were only concerned with the case of a concentrated
single force source. In this section, the modifications due to the case
of a vertical line source will be discussed. Consider a line force along
the z-axis located between the points z, and z,. There will be three
different cases according to the replacement of the receiver point
application, In the first case, the receiver point is above the line

force, that is z < z, < z,.

Fig. 3.4 Replacement of the receiver

The second one is the case where a receiver is replaced between z, to z,,
i.e., z; <z < z. Accordingly the third case is z, < z, < z. To find
the new expressions for the line force source, we must integrate the

displacement equations in z, from z, to z,. For simplicity, this procedure



will be illustrated using th
incident ray; because the 1in
one, involve the reflection

parameter z,. Hence, conside
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e expression for the first ray, i.e., the
tegrands of the second ray, the reflected
coefficients which are not functions of the

ring only vertical displacement, GZ , and

integrating Eq.(2.20a) for three different replacement of receiver, we

get the new source functions.

(3.23)

z<z, <1z, . lz - z4] = -(z - z)
-1 L <3 [ Zy > -sn(z,-2) d
S ul(r,s,a) = s® F(s){ a {1 { Sp sz e JoEdg dz,
f2 7 "se(2072) § e dz
+az £I{~SVDZV8 o&dg dz,
s "sn(2072) 5 ede daz
a. { f Sp sz e 18dg dz,
{zzf s D, e"SC(ZO'Z) J,EdE dz, ) (3.22)
Y‘ B
substituting the values of Sp’ Sa, SV and S; from Eq.(2.17), then,
- = o 1, - =sn{z,-2) -sn(z,-2)
! = 5?2 -—) D e -e J & dg
S Uz(r}s’g) = s?F(s) {az { ( n ) 2p [ 13
w & -sg(z,-z) _ -sz(z,-2) JEd
ta, £ (- Cz) Dzv[e e ]3d,€ dg
oo -sn(z,-z -sn(z,-z
o £ (e g [ e BT g g e
D A N
s O (_j__) b [e‘SC(Zz‘Z) _ e—sc(zl—z)] 3,E de
| S C\ yAY
In the same manner, GZ is integrated for the other two cases,
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Z, <2<z, , zy toz > |z-z4] = (z-24)
210z, > |z-zy| = ~(z-2,)
-1 _ - oe) ] - - - - -
fu (r‘,s,_a_) = g2 F(s){az { (___) sz [‘e Sn(Zz z) e sn(z Z1)J Jog dg
+ az. {)‘ (_ ng ) DZV [e—sC(Zz"Z)+e"SC(Z'21)_ ZJJOE dg
0 g - - - - -
* aY' { ( ]’]2 ) sz [e Sn.(zz Z)+e Sn(z Zl) - 2[‘-]1g dg
+ a [ (..]_) D l'e—sC(Z"——Z) - e_SC(Z-Zl)] J,& dg}
roo L a2y 16 €8
(3.24)
Zy <Z, <2 > !Z“‘Zol = -(z-z,)
-1 _ 2 F © 1 -sn(z-2,) -s (z-z,)
I uz(ﬁ’s’i) - s2 F(s){a ,or ( - ) sz [ 2 10,8 dg
oo £ - -
ra, (-G n, [ SR 1 e g
© -sn(z-z,) sn(z-z,)
*ar{(nz)‘)zp[ 19,¢ de.
© 1 -sz(z-2,) sg(z-z,)
+ar£(C)DZv[e H]a g ded }
(3.25)

Through the numerical applications in this thesis, we are going to concern

“only the case of surface receiver., This means, only the first one of the

receiver applications, that is z < z, <z, , will be considered. Hence,

from Eq.(3.23) the modified source functions come out as,
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_o £
§P = n ) > §v = (- z? )
(3.26)
i 3 , v
_S_p‘(n?.) s §V—(§)

By going through a similar procedure, one can obtain the expressions

for ﬁé and ﬁ;. Through these expressions, the modified SH-wave source

function is

(3.27)

These modified functions are also listed in Appendix C.



IV, INVERSION OF LAPLACE TRANSFORM AND
CAGNIARD'S METHOD

General expressions for the displacements due to a single concentrated

force was aiven by Eq.(3.18). With the help of sections 3.5 and 3.6 we

can rewrite the equations of the total displacements (both incident and

reflected) due to a 1ine force lying from z, to z, as,

= ~ 2 - 8] b3 "-‘Sh . d
uz(r,s,g) = s* F(s) { 3 { §p sz e J,& dg
0 ¥ -sh
+ a S'D e J, £ d
2 p 7 18 0
va Os 0t e Mk a
Z , vV ozv 0
Z,
0 ¥ =Sh
! d
ra LS D e e £}
Zy
u (r,s,a) = s2 F(s){a I s ot e—'Sh J, & dg
R S . Z o ~p TYp
o0 % -sh »
. d
" { Sy Dy & hEd
. ¥ -sh
- 'D d
ar .g '§D rp e Jo& dg
Z,

co ¥ -sh
- ! d
ar ,g 'S-V DY‘V e Jog g }
Z)
s - Y Dx e-sh J, de
r r g ~Pb ¥vp

(4.1a)



where,

h = +2z
an SC s

¥  -sh
rv Jy dE
22
¥  -sh
oH e J, dg} (4.1b)
Zy
-sh
op e J, & dg .
. Z,
X -sh
6V e Jlg dg }
Z,
¥ -sh
oH e Jo& d&
Z2
® -sh
oH e J, d& } (4.7c)
Zy
for P-waves z = 0 (4.2)

for S-waves zp
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1
o

A1l of the intearals appearing in the above equations are of the two kind.

To(ras,a) = S E,(E)E do(ser) e S{ZpM%8) 4
0 .
I (r,s,a) = {mEz(E)EZ Ji(ser) e SFNTEE) (4.3)

where E, and E, are even functions of & involving the source and the

receiver functions and tﬁe ref]ection'coefficients. The coefficients of

these intearals are of the form sn?(s). Therefore after finding the inverse

transforms of I, and I, , the final sofution can be obtained through

convolution.
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4.1. CAGNIARD'S METHOD
4.1.1. INTEGRAL REPRESENTATIONS OF J, AND J,

In the Cagniard's method, the key point is to use the integral
representations of Bessel functions J, and J,. These are, (Abromovitz
and Stegun [1]),

2 /e .
JO(Z) = T Re J 81 ZCOSLL\dw
’ (4.4)
5 T/, .
Ji{z) = —;— Im f e1zcosw cosw dw
0

Substituting Eq.(4.4) in Eq.(4.3) and interchanging the order of
integration, since the intearals in £ are uniform1y convergent for all

values of w between 0 and n/2,

- 2 “{2 o efd :
To(ris,a) =—=——Re f du / E,(E) e s(igrcosw + 2 vz z) . 4
° ° . (4.5)
= 2 "/ oo -s(1&rcosw + z n+z )
Ii{r,s,a) =~——1Im J coswdn J EE,(E)e p' s” £ dg
4} 0
By following Cagniard's [4] original approach, we make the following
transformations.
4.1.2. TRANSFORMATION OF VARIABLE g TO t
The second step in Cagniard's method is to make the following
transformation,
t = -i€r cosw *+ zp n+ zs; = g(r,z;£) (4.6)

Through above transformation the exponential terms of I, and I, take the

form of e-St. Where, t is a complex quantity. Note that the inverse



transform could be obtained rather easily, if we could make the quantity

t a real variable.

The function g(r,z;g) is a multivalued function with branch points at
£ = +1 due to the second term and £ = *+ik due to the third term. The
branch cuts are chosen such that if £ is real and positive, the radicals

are positive.

Im(g)

Re (&)

Fig. 4.1 & plane, and branch cuts

Note that, the transformation given by Eq.(4.6) transforms the whole

‘complex &-plane on a complex t-plane.
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Im(t)

Re(t)

Fig. 4.2. Map of the &-plane in the t-plane

The oriainal line of integration, that is, the real £-axis, is mapped

into the curve A'B' in the t-plane. The origin, A', of this curve corresponds
to the value of t = ty where, from Eq.(4.6),

(4.7)

By letting £ = & , where & is a real variable, one can show by Tetting

g » + o that the curve A'B' has an asymptote of the/form

X X = rcosw (4.8)



On the other hand, by substituting £ = i 2, one can make the transformation

of the imaginary £-axis.

/2

1
/2 + ZS (KZ_QZ) (4.9)

t = rcosw&*—zp(]—lz)

It can be shown that as % - +=, t approaches an asymptote given by

X = rcosw (4.10)

Eq.(4.8) shows that the points on the imaginary axis with |2} <1, and if
2 = 0 but z_ # 0, the points with |2] <k will Tie on the real t-axis.
Note that, The mapping of the points for [2]<1 or {2] <k would be double
valued if there was a stationary point M. This point must then be an

extremum point for g(r,z,£) and must satisfy the relation,

(), =~ F - 0 (4.17)

The above equation has only one root, & = i Qm' In our case, where we
study the surface response of a half-space (receiver at the surface),

we either have zp or z_ equal to zero, thus,

a X '
g = (4.12)
et

where z, = z and = 1 for P-waves, and, z, = z 20 =K for S-wayes.

To render the single valuedness of the mapping, a branch cut is introduced
along the real t-axis étarting at the point M', corresponding tM. Thus,

the seqment AME of the positive imaginary &-axis is mapped into A'M'E' in
the t-plane where A'M' lies below the branch line and M'E' above the branch

line. And the point M' is given by,

-~



t = X Q2 + ZO(OLZ - 22)]/2

M M M (4.13)

4.1.3. CHANGE IN THE PATH OF INTEGRATION AND—INVERSION OF
LAPLACE TRANSFORMATION

According to the transformation Eq.(4.5), the expressions for I, and
Tl become,

- 2 /s - dg , -st
Io(r,z,s) = ——Re J dw s E,fE(t)] g(t)( qt )8 dt ‘
0 AIBI w
ny (4.14)
1,(r,z,s) = Lo : coswdw S E,|g(t)] £2(t)( dg ) et gt
e m 0 int 2% ’ dt

A'B

where the path of integration is along A'B' in t-plane. Consider the
contour A'B'L'M'A'; since there are no singularities inside this contour,
the intearal along this closed contour, from Cauchy's principle, is zero.
Also B'L' is moved to the infinity, the integrands of Eq,(4.11) disappears
in this portion of contour. Therefore A'M'L' can be taken as the new

path of intearation along the real t-axis, instead of A'B'. Then, the

intearals of Eq.(4.11) become,

- ‘ ﬂ/2 © . - . -st .
I(r.z,s) == Re S do S E[E(t)] g(t)(—g%—-w et 4t
ST 0 ta (4.15)
I 2 ?/ZCOSwdw e ()] E2(t) (S5 &St gt
1(fszs5) = m d 2 dt ‘w

ta

The above analysis is true when w £ w/2, For the case of w = m/2, the

transformation equation of Eq.(4.6) becomes,

t=z ntz " | (4.16)
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Above equation means that the real E-axis is mapped into the real t-axis.
And simply, for this case tA = tM 3 S0 it is understood that Eq.(4.15) is
also valid for w = w/2. Hence, note that, the‘integra1s in Eq.(4.15) converge

uniformly for all 0 < w < w/2. Changing the order of integration 1in
Ea.(4.15)

i ( © 2 /2 : : : dg -st
o{rsz,s) = S {—Re S E |[&(t;0)] E(t;w)( ) dwl}e 77 dt
w0 S At e (4.17)
- 0 LV _
T,(r.z,s) = f {-é%—Im I OE,[E(tw)] Ez(t;w)(—g%—) coswdw e St dt
tA 0 ) w

Note that, if the lower limit of integrations were zero rather than tA’
the above equations would become the Laplace transforms of the expressions
in curly brackets. Hence; introducing the Heavyside step function and,

simply taking the inverse transforms of I, and I, by inspection,

2 e . dg
To(r.z,t) = H(t-t,) — Re { E,|&(t,w)] e(t,w) (=), dw
(4.18)
2 /s : dg
I,(r,z,t) = H(t-tA) -}—-Im SoOEplE(t,w)] E2(t,w)( it )m coswdw

These inteqrals of w can be evaluated numerically.

4.1.4. CHANGE OF INTEGRATION VARIABLE w > &

In calculating the intearals of Eq.(4.18), for each value of t, the
values of £ must to be found for different values of w, 0< w <m/2.

dg
This is a tedious job to do. Secondly, (_EE_)w

will have a singularity
at some value of w, 0 < w < m/2, for each value of t. To overcome these
complications, another change of variable is needed, (Cagniard [4]), w to &.

This Transformation will allow us to transform the finite integral in" the



w- p]ane into another finite integral in the g- p1ane For this, we will make

use of the same transformation given by Eq.(4.6),

zpn+zsc4t
CoSw = ' . r £0 (4.19)
igr

If £ = 0, then from Eq.(4.6), t = tA = zp + 2SK and the above expression

becomes indeterminite. Using the L'Hopitals ru1é, we find that w -~ w/2

as £ ~ 0. For w -~ 0, Eq.(4.6) yields £ = £1(r,z,t) where,

t=-1‘£1r+zpn1+zsc1 » Ny o= (] + 1)
(4.20)
1
gy = (£} + k%) /2
Hence, with the new limits of integrations, Eq.(4.15) becomes
_ _ 2 LIS oW
(4.21)

zntz g -t .
p s 9f ow 2
(o) (), £° B

II(Y‘,Z,t) = H(t-t ) ‘—2—‘ Im f E (E) [
Al 3 igr

From Eq.(4.20), it is understood that £, is a complex number on the contour,
AML,which is the mapping of the real t-axis back into g-plane. The integrals

of the above equation are along AME, which is a finite portion of AML, as

seen in the below fiqure..



Im(&)

Fig. 4.3. Integration path of direct and reflected rays

From Eq.(4.6),

(Bw) _ _-ircosw *zp E/n * 725 &/¢
98 't T -ir £sinw

and using Eq.(4.11) we have,

_fﬁLﬁ _Jﬂﬂ_) - !
5t & ( 8 't ~ir€& sinw

(

From Ea.(4.19), we obtain the expression for sinw,

. , oo 1/2
sinw = —E%:— [52r2-+(zpn vz oL ty3 /

(4.22)

(4.23)

(4.24)
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Hence Eq.(4.23) becomes,

('BEI (Bw 1

ot w e T T TR (4.25)

where,

K(rsz,6.6) = [+ (20 2 & - )21/ (4.26)
Substituting Eq.(4.25) in Eq.(4.21), we obtain,
. ' 2 £ 3
I s :t = - - ! -
0(r z,t) = H(t tA) - Im { Ei(E) ¢ dg (4.27)

z ntz -t

Im /e g, (E) P = de
/ ,

2
A) r

I (r,z,t) = -H(t-t

The above equations are the ones that will be used in numerical calculations.
The K function has a branch point at £ = £;, hence, a branch cut must be
taken such that, it starts at point £ = £ and extends along &;L. This

branch cut is chosen such that the real p;rt of K is positive when real

part of £ is positive.

4.2. ARRIVAL TIMES OF INDIVIDUAL RAYS
TheAexpression for the arrival times of rays, come from the analysis

of the stationary point of the transformation given by Eq.(4.6).

From Ea.(4.13),

2, e o g2y 2
S

. (4.28)

= - 92
tM = QM rcosw + zp (1 M)

The‘physica] meaning of tM is made clear by the following analysis of

geometry. Let,
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—_—

sina = K sing

QM ) a,B >0, B < m/2 (4.29)
and,

zp tana = r,cosw , z_ tang = rycosw (4.30)

- Substituting the above expressions in Eq.(4.1']) we get,

r=r (4.31)

/

: N
E‘... r1Cosw "I' r,CosSw __,IF

B

Fig. 4.4. Geometrical interpretation of Eq. (4.35)

From the fiqure above it is seen that,

Y, COSW
tan; = _r_!%_osg_ . tand, =_——~‘°‘—Z———— (4,32)
P S

Comparing Eq.(4.32) and Eq.(4.30), we get

6, = a , 0, =8 (4,33)



And, Eq.(4.29) becomes,
RM = sind, = sind, ‘ i (4.34)
Now, Eq.(4.28) can be written as,
ty = [r,coswsing, + zpcosel] + k[r,coswsing, + zscosez] (4.35)
‘Note that, tMis a function of w. Then,
tM(m)_Z zpcose1 + zscose2 (4.36)

where equality exists for w = /2. Note that, tM is a continuous function

of w , for 0 < w<w/2. From Eq.(4.5), we get,

ot .
—= = -, rsim (4.37)

thus, tM is maximum for w = 0. Now the Fig. 4.5 can be interpreted
considering A as the source point, D as the receiver point and EF as a
part of the surface of the half-space. And from Eq.(4.34), sin6, = xsind,
is the classical law of reflection of elastic waves, For w = 0, Eq.(4.32)

becomes; tan6, = rl/zp and  tanf, = rz/zs, and the value of tM(w=0) is,
tM(O) = [r,sing, + zpcoselj + k[r,sing, + zscosag] (4,38)

The parameters in the above equation are nondimensional. Restoring the

dimensions from Eq.(2.10), we find,

1 . 1 .
.tM(m=O) = —E—-(rlsmel + zpcosel) + —E—-(rzs1n62 + zscosez) (4.39)
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Fig. 4.5. Geometrical interpretation of Eq.(4.38)

This is exactly the arrival time of the wave along the ray path AB as

a P-wave and the path BD as a S-wave. Therefore, the vé]ue of t = tM
corresponding to the stationary value ¢ = EM’ is the arrival time of
the ray whose path has a total vertical projection of zp-+zs, travelling
in P and S modes respectively, It is well known that when the angle of

incidence of a S-wave is greater than or equal to the critical angle o

where
0 = sin”! /e - sin ' (1/k) (4,40)

there will be a refracted P-wave travelling aTong the surface of a

half-space. It means that the ray travels the path from the source to
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the surface in S-mode and the rest in P-mode. This wave, for the reason
aboye, reaches to the receiver before the direct S-wave. And, it is called

"Head Wave". The arriva] time of this wave is obtained by modifying the
Ea.(4.38),i.e.,

tread(¥2 0) = r ¥z (2 - 1)'/2

(4.41)
In a bounded elastic medium, a third wave known as the Rayleigh Vave

exists which has a velocity of Cr’ aiven by

CR = 0.9194 C (4.42)

where C is the shear wave velocity. Since Rayleigh waves decay exponentially
with depth, thus are confined to a small region near the surface of the
medium. Another feature of these waves is that they decay as r—]/z in the
direction of propogation. Unlike the direct waves and head waves, the |
Rayleiah waves are not associated with a single generalized wave. The
arrival time of these waves can be calculated for the case of both the

source -and the receiver being on the surface.

For a buried source case, the point on the surface where the Rayleigh
wave originates due to diffraction is not known. Pekeris and Lifson [17]

found that there were no distinct peaks in displacement curves for a buried

point force for r,/z,<5.

Now consider the P and S waves travelling from a buried source to a

surface receiver. Solving the upper limit of integration from Eq.(4.20),

we have,

£, = 20— 2 - o2(r? v 22)] P A (4.43)

2 2 2
r2 + 2% re + 23



where @ =1, 0=k and z, = 2, » 2y = 2 for the P-vaves and
S-waves respectively.

4.3. CONVOLUTION OF RAY INTEGRALS

Note that, displacement equations of Eq.s(4.1) have integrals in
the form of I, and I,, and coefficients of them in the form of sn?(s).

In our study, n is either 2 or 1, and the function F(s) involves the time

dependency of the force input.

Recalling Eq.(2.17), we have,
F(s) = Fy F(s) / 4% x? s? yu r? (4.44)

then we obtain,

_ Fo f(s)
s2F(s) =
4 k% u rh (4.45)
- Fo f(s) 1
s F(s) = ( . )
47 «® pry

Now, consider the case where the function f(t) is a Delta-Dirac function,

then f(s) = 1 and the above expressions reduce to

4 «® uor} (4.46)
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Hence, the inverse Laplace transform of these quantities are,

-1 .- Fo
L (S?F(s)) = 8(t)
4m k? u r2
(4.47)
1 - F .
L (sF(s)) = H(t)
4t k2 y v

where &(t) is the Delta function and H(t) is Heavyside's step function.
Therefore, the integrals with s2F(s) as their coefficients should be
convoluted by &(t) and those with sF(s) should be convoluted by H(t).
Recalling the definition of Convolution Theorem, it is well known for

any function y,

8(t) % y(t) = }QG(t—T) y(t) dt
= y(t) (4.48)
t
H(t) % y(t) = { H(t-1) y(1) dt

= pr(T) dt (4.49)

In the view of the above relations, for Delta-Dirac input, only the
intearals with sF(s) as their coefficients should be integrated from t=0
to t=t. However, since each integral has a specific arrival time, the
lower Timit of integration is to be replaced by the corresponding arrival

time of the ray, i.e., integration is from t:tA to t=t.



V. NUMERICAL CALCULATIONS OF FIELD RESPONSES

In this chapter, the numerical procedure used in calculating the
ray intearals will be explained and the response of a half-space due to
a finite Tine source with Delta-Dirac function time dependance will be
documented. In all of the examples, the Poisson's ratio fo the

half-space material is taken to be 0.25 corresponding to k2 = 3.

5.1. PROCEDURE IN NUMERICAL CALCULATIONS

First of all, in all of the examples presented in this thesis, we
have taken the receiver to be on the surface of the half-space. Therefore,
there are two types of rays in our case; one is the incident ray and the
other is the refracted ray. The inteqrals of displacements belonging
to these two rays are well documented in the introduction part of

Chapter IV.

At this point, we remind the conclusion which we had in section 3.6,

To find the response of a vertical Tine source; the derived integrals,

for the bottom point of the line source, are calculated, then the same

~ calculation are done for the top point. The response becomes out as the

difference of these calculated results,

To start the numerical calculations, the stationary point of Cagniard's

y » are found using Eq.(4.12)

and Eq.(4.13) respectively. If there is a head wave effect in the direct

path, gM , and the arrival time of the ray, t

S-wave, the arrival time of it can be calculated from Eq.(4.41). The
upper limit of integration, §&,, for each value of time t, is obtained

from Eq.(4.43).>By combining the modified source functions, receiver



50 -

functions and reflection coefficients; the integrands of the integrals

are formed.

For the P-waves and S-waves with no head wave éffect,.the stationary point
EM is below the branch point £ = i. The upper Timit of integration &, moves
up the imaginary axis from the origin to the stationary point QM. Through
this interval, the integrands of the integrals are all real valued and
since the imaginary part of the integrals are required as final solution,
the response is zero for t less than t,. This is natural because, t, is

M M
the arrival time of the individual ray and no response is expected prior

to the arrival of it, At the point Ey? the integration path leaves the -
imaginary &-axis, but stays in the first quadrant of complex &-plane.
However, the integration along this path is very complicated. Therefore, we
will use an alternative method, introduced by Pao and Gajevski [16], to
solve the intearals. The original path of integration AMg, can be replaced
by the path QMg, since the integral along AQ is zero. Consider the closed

contour OMg,P,P,0 shown in figure below, |

Im(g)

A Re (&)

Fig. 5.1. Integration path for the direct P and S-waves
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There are no sinqularities inside this contour. It is known that the
intearation along QM is zero. Hence, based on Cauchy's theorem, we can
replace the integration along QME, by the sum of the integrals along
OME, by the sum of the intearals along the straight lines QP,, P,P,,
P,&,. This path is much easier to integrate than the original path. The
choice of the points Q, P,, P, were done as follows; let g, be expressed

as £, = a+ib, then, if a < 0.005 ¢

M
0 =4 0.
) i 0.8 QM
P, = 0.05 QM + 1 0.8 %M (5.1)
P, = 0.05 QM + 1 [0.9b +0.1(0.8 QMX]

and if a > 0.05 &

M
Q = 1.0.08 QM
Pr = (a*0.03) *i0.8 ¢ (5.2)
P, = (a+ 0.03) + 1 (b - 0.08)

If the S-waves with head wave effect exist in the media, the stationary
point M corresponding RM lies between the branch points £ = i and £ = ik ,
We know from the previous paragraph that, the integrals are zero for the
values of &, below & = i which corresponds to the arrival of the head waves.

For these rays, the points}Q, P,, P, are chosen as shown in Figure 4.7,
Again representing &, as (a+ ib), the points Q, P,, P, are chosen as,

if a = 0, that is &, is on the imaginary axis.



Im(g)

A Re(E)

Fia. 5,2, Intearation paths for refracted rays

Q=1 0.9

P,

0.05 + i 0.9 (5.3)

P, = 0,05 +ib
if 0<a<0.05

Q=1 0.9

P, = 0.05+ 10,9 (5.4)

P, = 0,05+ ib

k2



if a> 0.05
- i0.9
P, = (a+0.03) +i0.9 . (5.5)
P, = (a+ 0.03) + i (b- 0.08)

These new paths of inteqration are far from the sinqularities. However,
the sinaularity at the upper 1imit of integration, &, , is still on path.

To avoid it, a new variable, o , is introduced such that

1/2

a= (g% - ¢g}) (5.6)
~ then,
o do = £dg ﬂ (5.7)
o 1/2
- (r2 _ g2
Opz - (g p2 gl)

where o is the value of ¢ at point P,-
2

This transformation reduces the intearals of Eq.(4.27), along P g  to,

ey 2 o a
I, | = H(t-t,) — In “é E, [£(a)] K[r.z,t36(a)] da
P2&y , ? . (5-8)
) SN [zn(a)+ 2 cla) - €]
I, | = -H(t-t,) ‘;?"Im agz 2[£la)] K[r,z,t;8(a)] o d

P28,
Note that, as o apnroaches to zero, K also aoes to zero and the above
integrals become indeterminate. To remove this undeterminacy, the function
K is éxpanded into a power series around ¢ = 0, and the common factor

is cancelled by the ¢ in the numerator, see Appendix B.
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Finally, each of the integrals along OP,, P,P, and P,&,, in the complex
g-plane can be transformed to an integration with respect to a real

variable y in the interval [-1,1], using the following transformations.
Along QP,

1 1
E-‘-‘T(gp +£Q)+_2—(F’P1-€Q)‘y

& T B " &) (5:9)
~ Along PP,
] gp) t o (Ep, - Ep,) Y
& =T (gpz gPl) 2 ng Pal Y
S = (B, B) (5.10)
Along P,&,
do o /2
a=(1-y) OLP2/2 ) dy ° P2
£ = (o2 + £1)'/" R I B

Hence, Eq.(5.8) yields,

2 +1 £ dg
To = H(t-ty) =2 | S8 g, @
+1 o dg
C LB Ty e,

+1 o do
—_— d
+ —{ (El K dy )Pzgl .y]



t-zn-1z¢
I, = - P S £
vz H{E-t)) —— Im [_{ (E, - t o, Y
t -2z n'- yAR S
+1
+ P S dg
{ (& K 3y e, Y
t-zn-2z¢
+1
+ p s dg
_{ (E, K * dy )P251dy ]
(5.12)

These intearals were then calculated usina Gaussian quadrature integrations.

5.2. NUMERICAL RESULTS AND CONCLUSION

We have considered in this thesis, the case of a buried vertical
line force source and the receiver was located on the surface of the media
which was taken to be a half-space. The time dependence of source function

was chosen to be a Delta-Dirac function.

The response of a media due to arbitrary time dependency of the source can
be obtained by applying the principle of superposition. Mathematically,

this principle can be written as,
' t
h(t) = s G(t) f(t - 1) dt (5.13)
0

.where G(t) is the transfer function of the media due to a §(t) input, f(t)
is the input time functien and h(t) is the output of the system. This
equation can be evaluated numerically by breaking the total duration inte

n intervals of At. In matrix form it can be written as [5],

SERLE RO 5.14
o () = (6] {f} (5.14)
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In the calibration of a transducer as a source, the response due to an
unknown input force is picked up by a standard transducer. Then finding
the transfer function of the media as explained above, the input function
can be calculated by deconvoluting Eq.(5.13). In matrix form, using

Eq.(5.14), it can be written as,
= — l6] " m (5.15)

In this work, the ray intearals were calculated using the Gaussian
quadrature numerical integration method. For each of the line segments
QPy» PPy, P,Ey, eight point Gaussian quadrature integration was used.
The convolution of the responses were done simply by -employing the
numerical integration methods. Throughout the numerical work, two
different line sources were considered. One of them lied between z, = 1
and z, = 1.5 and the other between z, = 1 and z, = 2, The receivyers were
placed at different r, values on the surface, namely r, = 1,3,4,6, And
for the different combinations of source and receiver orientations, in
the radial and z-direction, i.e., u. o, u o, were numerically calculated,
As a control mechanism upon all the numerical work done, the source length
and receiver orientation were modified to simulate a single point force,
For this purpose, the length of the line force was taken as 0.01 unit,
i.e., z; =1 and z, = 1.01, and the radial difference between source and
receiver was taken as ry = 7. In this case, the time dependence of source
function was introduced as Heaviside's step function. The outcoming time
displacement graph was similar to the one obtained by Pekeris [17] for

a point force buried in a half-space,

If we look at the time-displacement graphs, we make the following
observation. When ro / z,>5, we can clearly see the great peak of

‘ Ray1eigh waves. The response dedicated at the points close to the epicentre
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are strong for all time t. As the receiver point is moved away from the

epicentre, the beginning part of the response signal is weaker when

compared to the Tater part.

Thus, the main problem in the study of acoustic ehission is the
determination of the relations between the recorded signa]kand the
mechanism of the source which emits the signal. It is clear that, if
acoustic emission is to be applied to determine plastic deformation and
fracture of the materials, and to monitor the safety of a étructure,
these relations must be known explicetly to calibrate the control

eaquipment.

In this work, we obtained the theoretical solution and numerical solutions
for some cases for an isotropic, homogenous and elastic half-space due

to application of a vertical line source with a Delta-Dirac input function,
Throuahout the work, the receiver was placed at the surface, The solutions
can be‘used as a comparison in the calibration of transducers haying

different sizes.

i
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APPENDIX A

RESPONSE OF AN UNBOUNDED MEDIUM TO AN
ARBITRARILY ORIENTED CONCENTRATED FORCE

In this appendix, a detailed derivation of the displacement potentials
used in Chapter II will be discussed. We will use the approach given by
Achenbach [2].

The equations of motion for an elastic, isotropic, and homogenous medium

are aiven by,

BVPu +(A+n) VYV -u+pF=zpu (A.1)
where u is the displacement vector, f is body force per unit mass, p is
the mass density, and A and p are the Lame constants of the medium and a

"dot" denotes differentiation with respect to time, t.

Consider a concentrated force of magnitude f(t), direct along the
constant unit vector a, and acting at the point x, in the cartesian

coordinate system. In this case we have

F(x,t) = a f(t) &(x - Xo) (A.2)

where §(x,X,) is Delta-Dirac function, Now, we wish to decompose both the

displacement u and the body force vector f as,

| =
1
<
<
L
<
i
<

Basl
n
<
<)

+
<
X
s
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where ¢ and F are scalar potentials, and, ¥ and G are vector potentials.

Above decomposition is known as Helmholtz decomposition. The result of
it is,

cEV2o+G =4
(A.4)
C2 V2, *H=¥
If F(x,t) is known; G and H can be found. Consider,
VZW=F (A.5)

which is known as the vector Poisson's equation. And it has a well known

solution,

W= - S dx' (A.6)
where V is volume of the body. Using the identity,

VEU =V (TM) -V x (VM) (A.7)

in Eq.(A.5), and comparing the resulting expression with the one given

by Eq.(A.3), we get,

v-u | .8)

5=—wa

Hence, considerinag Eq.(A.2) and Eq.(A.8); Eq.(A.4) can be written as,
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2 o2 f(t) 4
VT () = 6
(A.9)
2 g2 f(t) a -
C vy, + pm _V_X(—R—-):‘l’l
where,
R? = (x - Xo) *(y-y)?*+ (z- z,)? (A.10)
vIntroducinq the following non-dimensional quantities
= o/r} s R .= R/ > §= ro V
(A1)
gl = EI/Y' N K = C/C s “,E = tC/Y'o
Eq.(A.9) yields,
AN A a 82"
P28 - £1() § (=) = ot (R.12)
R
020, + 6 £1(8) Tx () = 22y
- - R at
where,
f(t ,
Fi(t) = o (r.13)

again r, is the radial distance from source to receiver. Dropping the

"Hats", and taking Laplace transform after introducing,

b=V (ad)

(A.14)
Y, = -V ><(a "P)



Eq.(A.12) becomes,

V23 - Fy(s) —%— =23
(A.15)

2

J— — 'I _
v v -fl(s)~—R—= s?2 k2 y
where,

o(x,8) = S a(x,t) e ¥ dt (A.16)

Since the inhomogenous terms in the above equations show polar symmetry,
the solution is conveniently obtained by using the spherical coordinate

system. Eq.(A.15) can be written as,

_ﬁ%—'—%ﬁ_ (R? gi ) - f,(s) w%— =529 (A7)
Introducing,
% = ,/R (A.18)
we have,.
d%e, R
s a fi(s) (R.19)

The complete solution of the above equation is

3, = Ae St f;§S> |  (A.20)

Since @ has to be finite at the origin, R = 0, ¢, must vanish at this

point. Therefore,
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— 7, )
R | (A.21)

and similarly,

¥, (R,s) = _fx_(RSL [ R - 1] (A.22)

Takina Laplace transform of Eq.(A.3) and Eq;(A.14) we have,

U= ¥ 9ruxy
¢ = V-(a o) (A.23)
Y=Y x(ay)
Thus,
u=Y(7-a®)-9yx(Yxal
=V (V-a®)-y(y-a¥) raviy
= VV-a(d-¥) +a(k?s?¥ + k2 F,(s)/R) (A.24)

Substituting the expressions for Eﬁand E from Eq.(A.21) and Eq.(A.22),

the above equation yields,

= __fi(s) . - 2.2
Us—gl¥a-v(a, -9+ axtst g ] (A.25)
where,
1 -sR 1 -skR~
- — - — .26
g =g °© s 9 = | ¢ (A.26)
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Note that, R is given by Eq. (A.10). Also note that Eq.(A.25) agrees with
Pa and Gajewski [16]. The functions 9, and g_ are called the radial wave
functions for lonqitudinal and shear waves. Using Sommerfield's integral

representation [5], gp and g, can be written as,

-sR
e o - -

BroR s [ ml g, (sen 6

(A.27)
e-SKR . [ ‘
N o -sg|z-z
9 = R =S { - e o1 3, (sEr) dg
where,
1/2
ns= (& +1)/ , g = (% + KZ)]/Z (A.28)

rf = (x = x)2 + (y - y,)?

- From Eq.(A.5), we can obtain the components of the displacement vector,

u, as follows,

- ?1(5) th 22

S) = - 2.2
UP(E ) 52 [(ar or 2 Toraz )(gp gs) task 95]
- £,(s) d |

. _hils) . 2 2

Up(rss) = =g 2y [ (g,79,) * s%g ] (A.29)
i (rys) = RS) n 2 Y g 1
U (rss) = s? [(ar oroz %z a2 )(9p79g) a8 ]

Note that the term f,(s)/s?R in Eq.(A.21) and Eq.(A.22) does not appear
in the expressions for the displacements, so it also won't be seen in

the stress expressions. Dropping this term and using Eq.(A.27), we get,

f1(s)

S oo_'_g_ e“San-Zol 'JO (SEY‘) dg

E(E,S) =

o

(A.30)

¥(r,s) i) {m —%— eS8l % J, (s&r) dg



The relations between the potentials and displacements are,

2
o9 Y . 1 X

u = +
r or ©oraz r 30
_ 39 3%y , 9°Y (A.31)
U, = Tz " T T KTz
T 1 3%y X
u = + -
8 r a0 r 969z ar

Usina the above equations and Eq.(A.29), the expressions for the

potentia]s'ﬁ and x are obtained as,

Teoa ) g SEZ Tl g (geyy ar
z s "

_a ls) o s! S0l 5 (sep) dz (AL32)

X = -ag F(s) I S, o5tz J, (s€r) dg (A.33)
0

and using Eq.(A.14) and Eq.(A.30), we get the potential as,

5= Tus)a, I s e Sz zl G sery e a
0

+ Ty (s) a f°‘f.,s;) SNZ el g sErye de (A.34)

S =-¢ , S' = -e/n Sy = 2/t

w
n
w

]

(Y]

-
m
]

£/t sgn|z-z,|

(A.35)



APPENDIX B

' THE POWER SERIES EXPANSION
OoF THE "K” FUNCTION

In this appedix, we expand the "K" function, discussed in section 5.1,
in the form of power series in terms of . This is vitally necessary,

because, when £ approaches 1> K goes to zero, so the term £/K becomes

indeterminate.
£ £
K(r,z,t,8) = [&£xr2+ (zp,1 SETEA t)2]1/2 (B.1)
To remove it, a new variable, o , is introduced,
g% = (a® + Ef)]/z. (B.2)
Thus, we get,
: - 3 | (8.3)

K(r,z,t;8)  —  K(r,z,t;5(a))

The above equation is also indeterminate when o approaches zero, Therefore,

the "K" function will be“expanded into power series around ¢ = 0. Note

that, Eq.(B.1) can be written as,

3
® [(ier + zZon tzog - t) (-igr + RN t)]/2

£
K
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It 1s clear that the indeterminacy occurs due to the second expression

in the denominator. Thus only bracket will be expanded into a power
series. Using Eq.(B.2), we have,

-3 | . 1/2 1/2
1er + R A Ca £2) /2, zp(az + g2+ 1) /

2 1/2

*z (o +E]* K t (B.5)

Consider the following definition of power series expansion around a = 0

1 o 1 o 1 6 5 8 7 10
2 4+ 1L2) = L+ - » o o. o
(e ) 7L 8 L° 6 L5 28 L7 256 L°

(B.6)

. Then, applying the above expansion to Eq.(B.5) and Eq.(B.4) we have,

K(rsz,t,€(a)) = {{ir(a® + 5?)1/2 + Zp(uz v ET Y e z (a? + £ «2)!/?
- tla?[-ir( 2;1 - ; a; RRTTe ) o)
R e e R
A i - AR E L
where,
m o= (8 * 18 , £, = (2 + )/ (B.8)

Fiha]]y, substituting the aboVé equation in Eq.(B.3), a's are cancelled

and the uncertainty is removed,



APPENDIX C

SOURCE AND RECEIVER FUNCTIONS

Interior Source Functions

S =-¢
p
S''=-&/n
" g

S = &/t
v

S':E
\'

2
SH =k°/C

Surface Receiver Functions

D = -2 k2 (E2 + €?)/ Ar
zp ,
X 2 :
=4 k" ng&g/hr

zv : ,

X * 2 .
= = 4 Ar

Drp Dep K°ntgé&/

DX = D% = -2 k2 g(E? + g?)/Ar
rv ov
Dx = Dx =2

rH 6H



Reflection Coefficients‘

Rop = Reg = [Anze®+ (g2 +c®)7]/ ar
Rog = 4 nE (E*+c?) /or

Ry = (—%—) Ros

Ry =1

Modified Source Function for the Case of;

Surface Receiver and Buried Vertical Line

Source

5= (-0
s, = (- =)
51

5! = ()
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APPENDIX D

GRAPHIC EXAMPLES

In all of the following graphs, the displacements and time values
are nondimensional quantities nondimensionalized with nurs/F, and

c/ry correspondingly.
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Figu?e D.8, Response due to a vertical line force, z,=1 a"_d-22=2’ when r‘0=‘i}.
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