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ABSTRACT 

In this thesis, the transient response of an isotropic, homogenous 

and elastic half-space due to a buried finite sized line source was 

analyzed. The receiver was always taken on the surface. The solutions 

corresponding different orientations of line source and receiver were 

obtained. Numerical results were illustrated in graphs. The time 

dependence of source functions was taken in the form of Delta-Dirac 

function. 

The results obtained in this work can be used to explain the effect 

-4, 

of the size of the transducers used in Nondestructive Testing of materials. 

-<, 
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OZET 

Bu tezde, homojen, elastik ve isotropik bir yarl-uzaYln, gomU1U 

bir sonlu ~izgi kuvvet kaynagl nedeniyle olusan zamana bagll tepkisi 

incelenmistir. AllCl sUrekli olarak yUzeyde tutulmustur. Farkll kuvvet 

kaynagl ve allCl yerlestirmelerine gore farkll ~ozUmler elde edilmistir. 

SaYlsal sonu~lar grafikler seklinde verilmistir. Kuvvet kayna~lnln -', 

zaman fonksiyonu Delta-Dirac fonksiyonu olarak allnmlstlr. 

Bu ~allsmada elde edilen sonu~lar, tahribatslz malzeme kontrollerinde 

kullanllan ~evire~lerin (transducer) yUzey alanlarlnln kontrol Uzerindeki 

etkisini saptamakta kullanllabilir. 
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I. INTRODUCTION 

The quality and integrity of a structural material is greatly 

affected by the number and size of the defects such as cracks, volds, 

1 

etc., contained in the material. Under loading or other service conditions, 

these defects may cause uneven distribution of stresses which in turn 

may produce more defects and then cause failures. Hence, it is vitally 

important to detect these defects before any catastrophic failure occurs. 

The technol09Y used in detecting the defects without changing the original 

form of the structural material is called Nondestructive Testing (NOT) of 

materials. 

Whenever forces are applied on the 'material, the plastic deformations or 

local failures, occured at the defectiye points, create transient elastic 

waves due to the rapid release of energy at these failure or yielding 

points. That wave emission is acoustic. So, the technique of detecting and 

recording transducers planted at the surface of the material, is called 

acoustic emission technique in the field of (NOT). The recorded signals are 

then related to the location and physical characteristics of the local 

deformation of failure. 

For this purpose, the transuucers to be used must be calibrated. The 

transducers are calibrated as a source and as a receiver; through a 

comparison with a standard source and a standard receiver respectively. 

A transducer of known characteristics and a transfer media of known 

theoretical solution is used for calibration. To obtain a known theoretical 

solution for a chosen media, i.e., half-space, the scientists model the 

source as equivalent body forces inside the media, distributed oyer a line 

or the surface of the defect. The equivalent body force is defined as the 

body force which should be applied in the absence,of the defect to produce 
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the same radiation as a given defect. These idealized sources can be a 

center of compression, a sinqle point source, a single couple, a double 

force, a double couple with or without moment, a finite sized line source 

and a finite sized areal source or any combination of these. 

The purpose of this thesis is to study the response of a homogeneous 

isotropic and elastic half-space due to a finite sized line source. The 

basis for such an idealized source mechanism is the single point source 

~J. That is, the response equations will be obtained by integrating the 

point source expressions over the finite line of the source. Hence, the 

numerical results of the surface response can be easily obtained by 

employing the numerical methods. 

The basis for the mathematical analysis of the problem will be the theory 

of generalized rays. A well documented study on this theory is in the work 

of Achenbach [2J. In this theory, the response of the media is sorted out 

into individual rays originating from the same source location, but 
I 

travelling along different paths before reaching to the receiver. The 

expression for each ray is in terms of complicated integrals including a 

source function describing the source, a receiver function depending on -~ 

the ouantity to be calculated, and, the reflection coefficients describing 

the path upon reflections from the surface. The transient response is then 

obtained by taking the inverse Laplace transform of the expressions for 

each ray using the Cagniard's method. 

A brief summary of the ba.sic equations of elasticity are given, and the 

particular solutions for the displacements due to a point force are found 

in Chapter I1. 

In Chapter III, a brief history of the method of generalized rays is given. 

Also in this chapter, the reflection coefficients for a free surface and 

the ray solution for a half-space are discussed. The expressions for 

receiver functions and the expressions for source functions for a line 
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source are also given. In Chapter IV, application of the Cagniard1s method 

and the inversion of Laplace transforms are discussed. 

Finally, in Chapter V, numerical works and results are presented and 

discussed. Surface displacements of a half-space due to a line source 

inside the media are given for different locations of the receiver and for 

different sizes of the source. 

.'. 



II. EQUATIONS OF ELASTICITY AND SOLUTION FOR 

A POINT SOURCE IN AN UNBOUNDED MEDIUM 

4 

The basic equations of dynamic elasticity and the particular solution 

for a sin9le point source in an unbounded, isotropic, homogenous and 

elastic medium will be presented through this chapter. The linearized 

equations of motion and solu~ions of them for a point force in infinite 

media can be found in the classical book by Love [llJ and Achenbach [2J. 

We recast these solutions in terms of Laplace transforms so that one can 

modify them for the half-space problems as well. 

2.1 DYNAMIC EQUATIONS OF ELASTICITY 
Hhen forces are applied on a solid body, the body deforms, i.e" the 

distance between any two points changes. In this thesis, all the strains 

are taken to be very small, so that the linear equations of the theory of 

elasticity are applicable. 

In the linear theory of elasticity, the displacement field ~.(!:.,t) for a 
.'. 

homogeneous, isotropic and elastic body satisfies the equation of motion, [2] , 

(2.1) 

where p is the mass density, A and ~ Lame constants of the material, F 

is the body force per unit mass. A IIdotli denotes the partial differentiation 

with respect to time, t. In the above equation v2 is the Laplacian operator 

and, V· and V are the divergence and gradient operators respectively. 



The stress-displacement relations for an isotropic elastic material are 

~li ven by, 

(2.2) 

where ~ and 1 are the Cauchy stress and the ,unit tensors respectively. 

Eauations (2.1) and (2.2) must be satisfied at every interior point of 
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a body occupying a volume V in space bounded by a surface S. To obtain a 

solution for the problem, the boundary conditions on S and the initial 

conditions on the displacement and velocity fields throughout the body 

at initial time, i.e:, t = 0, must be specified. The boundary conditions 

involvin~ tractions are of the form 

T = ~. ~ on S (2.3) 

-<, 

where n is the unit outward normal to the surface S. The boundary conditions 

must be replaced by the radiation conditions in the case of an unbounded 

medium. That is, all components of the displacement vector must vanish at 

infinity. The initial conditions to be specified are in general of the 

'form 

u (!:.' 0) = ~o (r) 

. . 
u (.!:.' 0) = ~o (.!:.) 

(2.4) 

where u (.!:.) andio (.!:.) are the initial displacement and velocity fields 

respectively. 

Our approach to solve Eq.(2.l) will be first to reduce it to wave equations, 

using the Helmholtz decomposition theorem. According to Helmholtz theorem 

a sin~le valued vector field can be expressed as the sum of the gradient 



of a scalar field and the curl of a vector field, [5J, 

~ = Y.... cp + .V X 'l'1 

(2.5) 
V·H = 0 

where cp, G, and, ~1' H are called the scalar and vector potentials 

respectively. Substitution of the above equations in Eq.(2.l) to wave 

eouations 

C 2 = (A + 2lJ) / P 

.. (2.6) 
C 2 V2'l'1 + H = 1.1 C 2 = lJ/ P 

6 

The potentials cp and 'l'1 give rise to waves known as longitudinal waves 

(P-waves) and shear waves (S-waves) respectively. The longitudinal waves 

travel with the speed c and shear waves travel with G. For plane waves 

the particle motion of a P-wave is in the directton of n, the normal to 

the wave front, and that of S-wave is in a plane perpendicular to ~. 

In curvilinear coordinate systems, the equations in terms of the components 

of the vector potential are coupled, hence, it is difficult to obtain a 

solution. However, in the study of propogation of elastic waves, the particle 

displacement due to S-waves is further decomposed into two orthogonal 

components. The one that is parallel to a given direction is called the 

SH-component and the other is called the SV~component. Waves associated 

with these displacements are called the SH-(horizontally polarized) and 

SV-(vertically polarized) waves. Thus, a d~composition of the form, 

1j11 = X e ± V x ('l' e ) -z - -z 
(2.7) 

H = Hl e ± V x (H2 e ) -z -z 
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is possible l, 20]. In these equations, e is a unit vector perpendicular -z 
to the surface of the half-space. With these equations Eq. (2.6) reduce to, 

.. 
c2 V2 <l> + G = <l> 

C2 V2 '¥ + H2 = '¥ (2.8) 

C2 V2 X + Hi '- X 

with the initial conditions, 

(2.9) 

XC!> 0) = Xo C!:J 

It is understood that '¥ gives rise to SV-wave and X to SH-wave. 

For analyzing the waves in a half space, it is convenient to introduce 

the following non-dimensional quantities, 

A A 
-1 

A 

U = ro u t = ro tic V = ro V 

r2 A 

d 
A r2 A (2.10) <l> = 0 <l> '¥ = '¥ X = 0 X' 

c2 A 

c2 A 

c2 A 

,G = G H2 = ro H2 Hi = Hi 

A 

0" = (A + 211) £, K = c/C 

v/here II-II denotes the non-dimensional quantities and ro is the distance 

between the source and the receiver in r-direction. Employing these 

non-dimensional quantities, Eq. (2.8) becomes, 

"<, 



"2 " " ~ 

\j </> + G = </> 

f)2 " K2 " K2 
X (2.11) 

'I' + H2 = 'I' 

V2 " K2 " = K2 
}: 

X + HI X 

The II~II 

si~n, from here on, will be dropped,with the understanding that 

all the quantities used are dimensionless. 

2.2 PARTICULAR SOLUTION FOR A SINGLE POINT FORCE 

In this section, the ~eneral solutions for </>, '1', and X in Eq.(2.11) 

satisfying the boundary and initial conditions will be obtained using the 

transform techniques. Laplace transform of a function f(!,t), denoted as 

f(~,s) is defined as, 

F(!,s) 
00 

F(~,t) e-st dt = f 
0 

(2.12) 

F(!,t) 
1 

F(!,s) est dt = 2rri f 
Br 

where s is the transform variable and B is the Bromwich contour in the 
r 

complex s-plane, which is a line parallel to the imaginary axis and to the 

8 

ri~ht of all singularities of f (!,s). Note that the second equation defines 

the inverse transform. 

Consider a concentrated force with a time function f(t) applied at a point "', 

(O,O,zo) and acting in the ~irection of a unit vector a, defined as, 

(2.13) 

= a e + a e + a e 
r -r e -8 z -z 



where!:.l' !:.2' !:.3 and !:.r' !:.e' !:'z are the unit vectors in cartesian and 

cylindrical conditions respectively. 

~------__ --Ie. 1 

2. 
a(a ,a

G 
,a ) 

- r z 

3, z 

Fi9ure 2.1 Geometry for a point force 

Components of the vector ~ in the cylindrical coordinates are related 

to the components in cartesian coordinates through the relations 

a = a 1 cosG + a2 sinG 
r 

aG = -al sinG + a2 cosG (2.14) 

a = a3 z 

The concentrated force, F is represented by 

F = a FoF(t) 6(z - zo) 6(r)/2nr (2.15) 

9 

and a particular solutions for potentials cj>, X and III are (see Appendix AT, 



x (~,~,~) = -as S2 F( s) 

s F(s) Ij1 (!:.,~,~) = -a z 

s F(s) -a 
r 

where, 

(' SH e-sr;;lz-zObl(ssr) ds 

00 

J 
0 

00 

J 

° 

e-sr;;tz-zoIJo(ssr) ds S v 

S' e -sr;; I z-zo I J
1 
(s s r) ds 

v 

S = sf r;; v 

S =-E 
P 

10 

(2. 16a) 

(2.16b) 

(2.16c) 

(2.17) 

E = sgn(z - zo) 

nand r;; are the slowness in the z direction of the P and S waves 

respectively, and is the directivity constant and S., S~ are the source 
J J 

functions with the subscript j indicating the type. Note that, Eq. (2.16) 

completely a9rees with Ceranoglu [5]. 

2.3 DISPLACEMENTS DUE TO A SINGLE POINT FORCE 

In studyino the response of a half-space due to a point force, it 

is more convenient to use the cylindrical coordinates (r,8,z). In this 

case, the Laplacian operator takes the form, 

(2.18) 

"4, 
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Usin~ Eq.(2.5) and Eq.(2.7), the relations between the displacement and 

the potentials can be written, 

(2.19) 

d<p 
u = -- + z dZ 

Substitutin9 the potentials from Eq.(2.19) into Eq.{2.16) we obtain 

the displacements as, 

u (r,s,a) S3 F(S) {a 
(X) -snlz-zol 

= f S D e Jo(st,;r)t,;dt,; z--- z 0 p zp 

(X) -sz;;\z-zol + a f S D e J 0 (s t,; r) t,; dt,; z 0 v zv (2.20a) 
(X) e-sn\z-zo\ + a f SID J1(st,;r)t,;dt,; r 0 p zp 

(X) e-sz;;lz-zo\ + a f SID J 1 (s t,; r) t,; dt,; } r 0 v zv 

S3 
(X) -snlz-zol u (r,s,a) = F(s) {a f S D e Jds t,; r)t,; dt,; r -.-- z 0 p rp 

(X) -sz;;lz-zol + a f S D e Jdst,;r)t,;dt,; z 0 v rv 
(2.20b) 

(X) e -snl z- zo I - a f SID Jo (s t,; r)t,; dt,; 
r 0 p rp 

(X) 

SID -sZ;;\z-zo\ - a f e J 0 (s t,; r) t,; dt,; } r 0 v rv 

-', 
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2 
e-sn\z-zo\ s F(s) { 

00 

+ a f s· D J1(st,;r) dt,; 
r r 0 p rp 

00 e-ss\z-zo\ + J s· D Jdst,;r) dt,; 
0 v rv 

+ Joo S D . e-ss\z-zo\ 
o H rH 

Jdst,;r) dt,; } 

S 2 _ 00 

= -as -r- F(s) { J S. D e-sn\z-zo\ Jds t,; r) dt,; o p p 

where J o and J1 are the zeroth and first order Bessel functions and, 

0 = - £ n 0 = - t,; 0 = °sp = - t,; 
zp zv rp 

0 = o = - £ S °rH = 0SH = 1 rv Sv 

(2.20c) 

(2.21 ) 

Note that O .. 's denotes the receiver functions with subscript i indicatinq 
. 1 J -
the direction and subscript j indicating the type of wave. For simplicity, 

Eq.(2.20) can be written using a different notation as, 

- ( ) _- S3 F(s) { Joo S 0 -sh.(z,t,;) ( 'd u.r,s,a a .. e J Jost,;r,t,; t,; 
ZJ - - Z 0 J zJ 

+ a Joo S~ 0 . e -shj(z,t,;) Jds t,; r)t,; dt,;} (2.22a) 
r 0 J ZJ 



where, 

S2 
= -a -­e r 

13 

for P waves 
(2.23) 

for SH and SV-waves 

The transient response of the unbounded medium can be simply obtained by 

takina the inverse Laplace transform of the Eq's. (2.22a,b,c) (5]. 

-<, 



III. METHOD OF GENERALIZED RAYS AND SOLUTION 

FOR A HALF-SPACE 

14 

In a bounded medium, waves radiated from the source travel among the 

different paths. Some of the waves originated from the source will reach 

the observation point after several reflections at the boundaries. Method 

of qeneralized rays is based on expressing the solution for such a bounded.~ 

medium in terms of individual rays which propogate along different paths, 

Each ray is identified with a source and a receiver function together with 

a specific combination of the coefficients, The complete solution is then 

obtained by summin9 up the responses for all possible rays, 

3. 1. METHOD OF GENERALI ZED RAYS, A BR I EF H I STORY 

The classical approach in studying the response of an elastic medium 

under any kind of excitation is to use the theory of nor~al modes, There? 

the complementary solutions of the potentials </>? IjI and X Of Eq.(2,8) 

are found with two unknown coefficients for each~ For axisymmetric loadings, 

i.e., X = 0, the number of unknowns reduce to four. By applying the 

boundary conditions to the solutions, the unknowns are all determined. 

Takin0 the inverse transform, the solution is then outained jn terms of 

a summation of individual modes, Hence? the accuracy of results are limited 

with the number of terms taken in the summation. An alternative method is 

knowns as the generalized ray theory, where the displacement field or the 

stress field is expressed in terms of the contributions due to different 

rays travellinq along different paths between the source and the receiver. 

Summing all the particular solutions, one can obtain the final solution, 
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Generalized wave theory is well known in the field of optics, where the 

individual rays along which li~ht propo~ates are obtained by using the 

hiah frequency limit of the solution, (Born and Wolf). Aside from this 

hiqh frequency limit analysis, one can sort out the solution into 

individual rays by expanding the denominator of constant unknowns of 

potentials into a series of products of the 'reflection and the 

transmission (which is in the case of the two media in contact) coefficients 

using the Bromwhich expansion. 

The aeneralized ray theory was applied to the propogation of elastic 

waves by Ca~niard [4J, when he studied the transient waves in two 

half-spaces welded together. Through a series of contour deformations 

and chan~e of inte9ration variables, he was able to find the inverse 

transform of the expressions for each ray. 

'Lamb [9] solved the buried force problem in a half-space when he studied 

the propo0ation of earth tremors over the surface of the earth. He 

completed the inversion of Fourier transform in the time domain by 

chanain~ the integration variables in a manner yery similar to Cagniard's, 

Later on, Pekeris and Lifson [17J solved the buried and surface source 

problems in a half-space, Lapwood [lOJ and Garwin [8J formulated the 

buried line source problem usina the generalized ray theory and Cagniard's 

method. Tangential surface load oyer a half~space was studied by Chao [7J. 

Norwood [13J studied the case of rectan~ular load and proposed a method 

to remove the singularities that are along the integration path which 

made the analytical soluti~h for the case of loads applied oyer finite 

re~ions. The generalized ray theory and the Cagniard's method was first 

applied to the plate problems by Mencher [12J, Sherwood [18]? Spencer [19J 

and recently Ceranoglu (5] are the other contributors of the plate problem. 

Pao and Gajewski Q6J carried the method to a layered media. All the 

works cited above were the mediums with plane boundaries~ Recently, the 
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generalized ray theory was extended to the study of wave propagation media 

such as hollow spheres and cylinders, Chen [6], Pao and Ceranoglu [15J. 

Until 1960 1s, the individual ray integrals in the generalized ray theory 

-were found by using the Bromwich expansion of the exact solution. This 

procedure qets tedious for a layered media problem. Spencer [19J showed 

that the inteqral solution for each of the mUltiply reflected and 

transmitted rays in a layered media can be found by a ray grouping 

technique. In that technique, the rays are grouped effectively disregarding 

their mode conversion history. \~u [21J and Norwood [14J used this 

technique to~ether with Caqniard1s method in solving the problem of the 
-4, 

propo9ation of transient waves in an elastic thick plate under an arbitrary 

load. 

3.2 REDUCED BOUNDARY CONDITIONS FOR A TRACTION FREE PLANE SURFACE 

At a traction free plane surface, the boundary conditions of Eq,(2.3) 

becomes, 

(3.1) 

where n is the normal vector to the surface, Employing Eq.(2.19) in 

Eq.(2.2), we obtain 

K2_2 a2ct> 2 a act> a 2'1' - K2 a 2'1' 
] cr = K2 at2 +~az[az+ az 2 aF zz 

K2_2 a 2ct> 2 a act> a 2'1' + _1_ -1L J cr = K2 . at2 +~ar [3"r+ rr araz r ae 
K2_2 a2ct> 2 [~+ _1_ a21 1 ax 

cree = K2 at 2 + rK 2- ae 2 +---
ar r r ae 

a2x a 2'1' 1 a 2'1' + 
arae araz r ae 2az ] 



2 a [a<j> <j> 
are = Kzr- as ar - -r-

1 a 
arz = 1(2 ar 

a 
ae 

[2 -~ + 2 
az 

__ l_~J 
r az 

1 a 
ae 

17 

(3.2) 

[ ax J 
az 

If the equation of the surface is z = L, where L is a constant, then 

the z components of the stress tensor must disappear 

a - a - a - 0 zz - rz - ze-

From Eq.(3.2), we then have, 

at z = L 

., a a<j> 
(K2_2) <j> + 2 -- [-- + 

az az , at z = L 

a [ a<j> a2,¥ K2 ~J 
1 a ax 2--+ 2 ---- + -r- as (az-) ar az az 2 

a [2~+ 2 a2,¥ - K2 .. a ax --- '1'] -- (-) ae az 2 r - az ar az 

Let's consider a function a(r,e) such that, 

(2 ~ +2 
az 

(~) I = az 
z=L 

- K2 '1') ---.. I aa 
- ae 

aa -r-­
ar 

z=L 

= 0 , 

= 0 , 

(3.3) 

at z 

at z = 

(3.5a) 

(3.5b) 

(3.4a) 

= L (3.4b) 

L (3.4c) 

-'. 
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then Eq.(3.4b) is identically satisfied and Eq.(3.4c) becomes, 

1, ao 1 +---+--r ar r2 (3.6) 

Note that, the above expression is the Laplacian of o(r,e) in the plane 

z = L. Hence 0 is a harmonic function. Since the solution has to be 

bounded at infinity, Liouville's theorem states that 0 is constant. 

Therefore, the boundary conditions given by Eq.(3.4) reduce to, 

{ (K2 - 2) 
.. a a<j> a21j1 _ K2 1jI) } 0 <j>+2-(--+ 

az 2 = az az 
z=L 

(3.7a) 

L I (2 -~ + 2 a2 1j1 K2 1jI) = 0 = az 2 -az (3.7b) 

z=L z=L 

LH I = (~) = 0 az 
(3.7c) 

z:L z=L 

where L shows the component of the stresses 0rz and 0ez due to P-wave and 

SV-wave, and LH due to SH-wave. Note that, these are the same boundary 

conditions used by Ceranoglu [5] and Basakar [3J . By employing these 

conditions, it will be possible to obtain the reflection coefficients. 

3.3. REFLECTION COEFFICIENTS AT A FREE PLANE SURFACE 

Some of the waves radiated from a buried source in a half-space 

travel to the observation point directly. These waves behave just like 

those which travel in an infinite medium. However, some of the waves 

reach to the observation point after transmissions or reflections. 

-', 

The reflection coefficients at a free surface will be derived considering 

the case of a concentrated point force inside a half-space. Before deriving 
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the stress equations belonging to the reflected waves, we are going to 

derive the equations belonging to the incident waves. Substitution of 

potentials Eq.(2.16) into Eq.(3.2) after takin~ Laplace transform yields, 

a(inc) = sit F(s) {a 
zz z 

00 O(v) e-s~lz-zol + a J S Jo~ d~ z 0 v zz 

+ a Joo S' O(p) -snlz-zol 
Jl~ d~ e 

r 0 p zz 

00 S' O(v) e-s~lz-zol Jl~ d~ } + a J r 0 v zz 
(3.8) 

where, 

(3.9) 

Similar expressions can be obtained for ~(inc) and E~inc) by using 

potentials Eq.(2.16) in Eq.(3.7b) and Eq.(3.7c) 

~(inc) F(s) { 
00 o(p) -snlz-zol J o d~ = _S3 a J S e 

z 0 p z 

00 O(v) e-s~lz-zol J o d~ + a J S 
z 0 v z:: 

+ a Joo S' O(p) -snlz-zol J 1 d~ e 
r 0 p z:: 

00 O(v) e-s~lz-z\l1 J
1 
d~ } (3.10) + a J S' 

r 0 v z:: 
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-(inc) 
-S3 

00 O(H) e-s/;;\z-zo\ 
LH = F(s) a { SH J 1 dE;; (3.11) e L 

where, 

O(p) 
= -2EnE;; O(v) 

= _(E;;2 + /;;2 ) , O(H) 
= -E/;; (3.12) 

L L L 

It is well known that elastic v"aves of either mode, P- or SV-, when 

incident on a plane surface, will be reflected as two waves, one in each 

mode. For example, a P-wave will be reflected as a P-wave and a SV-wave, 

the latter is known as mode conversion. However, a SH-wave will be 

reflected only as a SH-wave; i.e., there is no mode conversion for 

SH-wave. 

(O,O,Z ) 
o 

F" 3 1 Reflection and mode conversion lqure . 

-', 
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In half space, Z > 0, the waves which are aenerated at z = Zo will be - ~ 

reflected when they reach to the surface z = O. We will assume that the 

ratio, R, of the amplitudes of the reflected waves to the incident waves 

is some function of the slowness. By this assumption and taking care of 

-<, 

the mode conversion, we can express the corresponding of Eq.(3.8), Eq.(3.10) 

and Eq.(3.11) for reflected waves as, 

-(ref) = sit F(s) {a azz z 

+ a 
z 

+ a 
z 

+ a 
z 

+ a 
r 

+ a 
r 

+ a 
r 

+ a 
r 

+ a 
z 

+ a z 

+ a z 

-<, 
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+ a foo SI RPs D(v) -s(nzo+nz) J de e 1 s r 0 P 

(3.13b) 

(3.13c) 

The total wave field, which equals the sum of incident waves and the 

reflected waves must satisfy the boundary conditions. Hence, by adding 

the corresponding equations of incidence and reflected waves, and forcing 

the result to satisfy the traction free boundary condition at z = 0, 

we have, 

(3.14) 

Substitutin~ the values of receiver function, i.e., Dis, from Eq.(3.9) 

and Eq.(3.12) yields, 

-<, 
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R
PP 

= R
SS = 14nss;2 + (S;2 + 02) 21 j 6r 

RPs 
= -4nS; (S;2 + s2)j6r 

RSP 
= (_s) RPs 

(3.15) n 

RH = 1 

The above equations are called the generalized reflection coefficients 

for the surface z = 0. 

3.4. RAYS SOLUTIONS FOR A HALF SPACE 

The complete solution of the displacements due to transient waves 

in a media is obtained by combininq the particular solutions of each ray. 

These rays may include all types of waves such as longitudjnal \-/aves 

(P-waves), shear waves (S-waves),head waves, Rayleigh waves and Stoneley 

waves. The last wave type only exists when two media are jn contact. 

Consider a concentrated force acting at a point (O,O,zo) and a receiver 

at a point Q(r,e,z) 

(0,0,0) 

r 

Q(r,g,z) 

(O,O,zo) 

z 

Figure 3.2 Rays in a half~srace 

.<, 

.<, 
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It is clear that, there are only two paths of waves. First one is the 

path 1 where a direct P-wave or a direct 5-wave travel along. As there 

is no reflection in path 1, these waves act just like those in an 

unbounded medium. Eq.(2.20a) gives the vertical displacement due to the 

waves travellin~ alonq path 1, 

-1 53 
00 'e -sn! z-zo ! Jo (s ~ r)~ d~ u (r,s,a) = F(s) { a f 5 0 z- - Z 0 P zp 

00 e-SZ;;!z-zo! J o (s ~ r)~ d~ + a f 5 0 
Z 0 v zv 

00 e-sn!z-zo! J1 (s ~ r)~ d~ + a f 5' 0 
r 0 p zp 

00 e-sz;;!z-zol J 1 (s ~ r) ~ d~ } + a f 5' 0 
r 0 v zy 

The waves that are reflected at the surface will reach the receiver by 

travelling along the path 2. Again employing Eq.(2.16) in Eq.(2.19) by 

takino care of the reflection, we qet 
, -

u2 (r,s,a) { [a 
00 

RPP 0 -sn(z+zo) 
Jo~ d~ = S3 F(s) f 5 e 

z- - Z 0 P ZP 

00 

RPP 0 e-sn(z+zo) J1~ d~ J + a f 5' 
r 0 P ZP 

+ [az 
00 

RPs -s(nzo+Z;;z) 
Jo~ ds f S 0 e 

0 P zv 

00 

5' RPs -s(nzo+z;;z) Jos d~ ] + a f 0 e 
r 0 P zv 

+ [ a 
00 

RSS -sZ;;(z+zo) 
Jos ds f 5 0 e 

z 0 v zv 

00 

RSS -s (z+zo) J1~ d~ J + a f 5' 0 e 
r 0 v zv 

(2.20a) 
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··4, 

+ [a 
00 

RSP D e-s (szo+nz) Jo~ d~ J S z 0 v zp 

00 

RSP , -s(szo+nz) 
d~ J} + a J S' D e Jl~ (3.16) r v zp 0 

Similarly we can obtain the displacement equations for u~ and u~. And 

total displacement equations for a half-space is written by simply 

summinq up u1 
, u1 ,u 1 with u2 u2 u3 respectively. The phase of . z r 8 z' r" 8 

each ray is 9iven by the ar~ument of the exponential term. In general 

we can write the phase function as 

-sh :: -s ( n z + s z ) 
p s (3.17) 

where z and z are the total vertical components of the segments in a 
p s 

particular ray, travelling in the p and S modes respectively, As will be 

seen in the next chapter everyone of these rays have a unique arrival 

time. Therefore, only the ones that arrive prior to the time of interest 

are to be considered. 

Note that, the terms in the brackets of Eq.(3.l6) are all similar in 

nature, hence, one can write the contribution of the jth ray to the 

displacements, as 

-j 
S3 F(s) 

00 e","sh j Jo~ d~ u = { a ! S. II. D zj z z 0 J J 

00 

S' e-shj Jl~ d~ } (3. l8a) + a ! II. D zj r 0 J J 

-<. 



-j 
s 3F (s) { a 

00 u = J r z 0 

00 

- a J r 0 

S2 
F(s) { 

00 
+-- a J r r 0 

00 

+ J 
0 

-j S2 _ 
ue = -a -- F(s) e r 

-sh· S. IT. 0 e J J 1 ~ d~ 
J J rj 

-sh· -
S~ IT. 0 e J Jo~ d~ } 

J J rj 

-sh· S. IT. 0 e J J 1 d~ 
J J rj 

-sh· 
SHj ITHj Ow e J J 1 d~ } (3.1Sb) r J 

JOO S I. 0 -shJ· o J ITj ej e J 1 d~ 

- a e 
- co -shw F(s) { SHj ITHj DeHj e J J 1 d~} (3.1Sc) 
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where ITls are the reflection coefficients for the jth ray. Along path 1, 

IT IT 1 th ' fl t' Al th 2 = RPP , RS s , . = H' = as ere 1S no re ec 10n. ong pa, ITj 
RPS , RSP for the mentioned reflected rays in P and S modes and IT

Hj 
= 1 

for the reflected SH-waves. 

3.5. EXPRESSIONS FOR THE SURFACE RECEIVER FUNCTIONS 

Until now, we discussed the case in which both the source and the 

receiver were buried in a half-space. Now, we are going to discuss the 

case in which the receiver is at the surface. 

To get the surface receiver function, we again consider the buried source 

and receiver case. Due to reflection; PP, PS, SP, SS waves will also 

reach to the receiver in addition to direct P and S waves. 

-4, 



zo 

5 
5 

P-receiver 5-receiver 

Fig. 3.3 Rays used in derivation of surface 
receiver functions 
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From Eq.(3.1S), as z approaches zero, the P, PP and P5 wave integrals 

combine and result in a single inte9ral with a new receiver function, 

that is P surface receiver function, as, 

D* = ap 
D + D RPP + D 
ap ap av a=r,e,z (3,19) 

Note that, subscript denotes the direction. And while z approaches 

zero, also the 5, 55 and 5P ray integrals combine and result in surface 

function of 5-waves. 

D* = D + D RSS 
+ D RSP a = r , e , z (3.20) 

aV av aV ap 

Accordingly, for 5H-waves, we have, 

D* DaH 
H 

r ? e ? z (3.21 ) = D + R = 2DaH a = aH aH 

These functions are all included at Appendix C. 
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3.6. MODIFIED SOURCE FUNCTIONS DUE TO A LINE SOURCE 

Until now, we were only concerned with ~he case of a concentrated 

single force source. In this section, the modifications due to the case 

of a vertical line source will be discussed. Consider a line force along 

the z-axis located between the points Zl and Z2. There will be three 

different cases according to the replacement of the receiver point 

application. In the first case, the receiver point is above the line 

force, that is z < Zl < Z2. 

r 

R 

s R 

Z2 

R 

z 

Fi~. 3.4 Replacement of the receiver 

The second one is the case where a receiver is replaced between Zl to Z2' 

i.e., Zl < Z < Z2. Accordingly the third case is Zl < Z2 < z. To find 

the new expressions for th~ line force source? we must integrate the 

displacement equations in Zo from Zl to Z2' For simplicity? this procedure 
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will be illustrated using the expression for the first ray, i.e., the 

incident ray; because the integrands of the second ray, the reflected 

one, involve the reflection coefficients which are not functions of the 

parameter ZOo Hence, considering only vertical displacement, U ,and z 
integrating Eq.(2.20a) for three different replacement of receiver, we 

get the new source functions. 

f u1(r,s,a) S3 F(s) { a l2/J 5 D -sn(zo-z) JoE,;dE,; dz o = e z -,_ - z Z 1 0 P zp 

+ a l2/) 5 D e-s~(zo-z) JoE,;dE,; dz o z Z1 0 V zv 

t 2/) 5' D -sn(z -z) J1E,;dE,; dzo + a e 0 

r 1 0 P zp 

+ a {Z2 foo 5' D -s~(z -z) e 0 J1 E,;dE,; dz o } (3.22) 
r 1 0 V zv 

substitutin9 the values of 5 , 5', 5 and 5' from Eq.(2,17), then, 
p p v v 

u1(r,s,a) f = z -:-- -
s2F(s) {a 

00 

f Z 0 

00 

+ a f z 0 

00 

+ a f -r 0 

00 

+ a f 
r 0 

1 r -Sn(z2-z) e-sn (Z1-z)] JoE,; dE,; (--) D e 
n zp -

E,; [ -ss( Z2 -'z) e -Ss(Z1-Z) ] JoE,; dE,; 
(- ~) D e zv 

E,; 
(rr) Dzp [e 

-sn(z2-z) .,. e - sn ( z 1 - z) ] J 1 E,; dE,; 

In the same manner, u is integrated for the other two cases, 
z 

(3,23) 



Z to Z2 + Iz-zol = ~-(Z-Zo) 

f U-l(r s a) S2 F( ) { foo ( __ 1_) D fe- Sn (Z2-Z) ,,= s a 
Z - - Z 0 n zp 

-1 S2 F{s) {a 
00 

f u (r,s,a) = f z- - Z 0 

00 

+ a f Z 0 

Iz-zol = -(z-zo) 
\ 

1 D r e -sn(z-z2) -(--) 
n zp . 

~ D re-Sl;;(Z-Z2) (-7) zv . 
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(3.24) 

e -s (Z-Zl)] Jo~ d~ 

- e-Sl;;(Z-Z1)] Jo~ d~ 

+ a foo (_1_) D [e -Sl;;(Z-Z2) - e -Sl;;(Z-Z1) ] J ~ d~} 
r 0 l;; zv 1 

(3.25) 

Throu~h the numerical applications in this thesis, we are going to concern 

only the case of surface receiver. This means, only the first one of the 

receiver applications, that is Z < Zl < Z2 , will be considered. Hence, 

from Eq.{3.23) the modified source functions come out as, 
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5 1 t;, = (- -) 5 = (-~) -p n -v 
(3.26) 

5' t;, 
5' (_1 ) = (fi2") = -p -V 1:;; 

By going through a si~ilarprocedure, one can obtain the expressions 

for u~ and u~. Through these expressions, the modified 5H-wave source 

function is 

(3.27) 

These modified functions are also listed in Appendix C. 

-4, 



IV. INVERSION OF LAPLACE TRANSFORM AND 

CAGNIARD'S METHOD 
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General expressions for the displacements due to a sin91e concentrated 

force was 0iven by Eq. (3.18). Hith the help of sections 3.5 and 3.6 we 

can rewrite the equations of the total displacements (both incident and 

reflected) due to a line force lying from ZI to Z2 as, 

u (r,s,a) = S2 F(s) {a foo 5 0* e~sh Jo~ d~ 
Z - - Z 0 -p zp 

+ a 
Z 

fOO 5 0* e-sh Jo~ d~ 
o -v zv 

Z2 

+ a f 5' 0 e J I ~ d~ } 00 * -sh I 
r 0 -v zv 

- - 00 0* ~sh 
u (r, s , a) = s 2 F ( s) {az f 5 e J I S ds r - - 0 -p rp 

+. a 
z 

- a 
r 

00 * -sh f 5 0 e Jis ds 
o -v rv 

00 0* -sh f 5' e Jos ds 
o -p rp 

Z2 

- a 
r 

00 * -sh I f 5' 0 e Jos ds } 
o -v rv 

s 
+ -

r 
F( s) a 

r 
00 5' 0* -sh dc { f e J I '" o -p rp 

(4,la) 



00 + f 
0 

00 + f 
0 

Ue (~, s ,~) s 
F(s) { f 

00 

= -a -e r 0 

00 

+ f 
0 

+ { F(s) 
00 

as s f 
0 

S - 00 

- a - F(s) f 
S r 0 

where, 

h=z n+z z;; 
p s 

0* -sh s· e J 1 dE.: -v rv 
Z2 

0* -sh 
I ~ e J 1 di; } rH 
Z1 

S' 0* -sh e J1 S; di; -p 8p 

Z2 

0* e-sh J 1 S; dS; I 5' } -v ev 
Z1 

~ 
* -sh 

0SH e JoS; dE; 

Z2 
)( 

~ °SH 
-sh e J 1 dE; } I 

Z1 

for P-waves z = 0 
s 

for S-waves z = 0 
p 
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(4.lb) 

(4.lc) 

(4.2) 

All of the inte~rals appearing in the above equations are of the two kind. 

I (r,s,a) 
1- -

(4.3) 

where E1 and E2 are even functions of S; involving the source and the 

receiver functions and the reflection coefficients. The coefficients of 

-<. 

n-these inte9rals are of the form s F(s). Therefore after finding the inverse 

transforms of 10 and II , the final solution can be obtained through 

convolution. 



4.1. CAGNIARD'S METHOD 

4.1.1. INTEGRAL REPRESENTATIONS OF J o AND J
1 

In the Ca9niard's method, the key point is to use the integral 

representations of Bessel functions J o and J 1 • These are, (Abromovitz 

and Stegun [1]), 

2 'IT/2 izcosw
d J 0 (z) - Re f e w 'IT 0 (4.4) 

2 'IT/2 izcosw Jdz) - 1m f e cosw dw 
'IT 0 

substituting Eq.(4.4) in Eq.(4.3) and interchangin~ the order of 

integration, since the inte~rals in s are uniformly convergent for all 

va 1 ues of w betvJeen a and 'IT/2, 

34 

(4.5) 
'IT/2 
f coswdw 
o 

fro S E
2
(s) e-s(isrcosw + zpn+zs~) ~ d~ 

o 

By following Cagniard's [4J original approach, we make the following 

transformations. 

4.1.2. TRANSFORMATION OF VARIABLE ~ TO t 

The second step in Cagniard's method is to make the following 

transformation, 

t = -i ~ r cosw + z n + z l;; = g(r,z;~) 
p s 

(4.6) 

Through above transformation the exponential terms of 10 and 11 take the 

form of e -s t. ~Jhere, tis a complex quantity. Note that the inverse 
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transform could be obtained rather easily, if we could make the quantity 

t a real variable. 

The function g{r,z;~) is a multi valued function with branch points at 

~ = ±i due to the second term and ~ = ±iK due to the third term. The 

branch cuts are chosen such that if ~ is real and positive, the radicals 

are positive. 

iK 

i 

-i 

F 

E 

A 

-
E 

F 

Fi~. 4.1 ~ plane, and branch cuts 

B 
Re{~) 

Note that, the transformation ~iven by Eq.{4.6) transforms the whole 

complex ~-plane on a complex t-plane. 
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Im(t) 
.'. 

GI 

Re(t) 

-
GI 

Fig. 4.2. Map of the ~-plane in the t-plane 

The ori9inal line of integration, that is, the real ~-axis, is mapped 

into the curve AIBI in the t-plane. The origin, AI, of this curve corresponds 

to the value of t = tA where, from Eq.(4.6), 

z + Z K 
P s 

(4.7) 

By lettinq ~ = ~ , where ~ is a real variable, one can show by letting 

~ + + 00 that the curve AIBI has an asymptote of the form 
( 

-x 
t =~--­z + z 

p s 

x = rcOsw (4.8) 

.. ", 

.i 
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On the other hand, by substituting ~ = i ~, one can make the transformation 

of the imaginary ~-axis. 

(4.9) 

It can be shown that as ~ + ±oo, t approaches an asymptote given by 

t = 
z + Z 
P s 

x x = rcosw (4.10) 

Eq.{4.8) shows that the points on the imaginary axis vlith I~I <1, and if 

z = 0 but z f; 0, the points with I~I <K will lie on the real t-axis. n s 
Note that, The mapping of the points for I~I <1 or I~I < K would be double 

valued if there was a stationary point M. This point must then be an 

extremum point for g{r,z,~) and must satisfy the relation, 

z ~ z ~ p s - i x + ---L=--- + --.-...::=--- = 0 
n Z;; 

(4.11) 

The above equation has only one root, ~ = i ~ . In our case, where we 
m 

study the surface response of a half-space (receiver at the surface), 

we either have z or z equal to zero, thus, 
p s 

a x (4.12) 

where Zo = z and = 1 for P-waves, and, Zo = z ,a = K for S-waves. o s 
To render th~ single valuedness of the mapping, a branch cut is introduced 

along the real t-axis starting at the point M', corresponding t M· Thus? 

the se~ment A~1E of the positive imaginary ~-axis is mapped into A'M'E' jn 

the t-plane where A'M' lies beloW the branch line and M'E' above the branch 

line. And the point M' is given by, 

~. 



(4.13) 

4.1.3. CHANGE IN THE PATH OF INTEGRATION AND INVERSION OF 

LAPLACE TRANSFORMATION 

Accordin~ to the transformation Eq.(4.5), the expressions for 10 and 

II become, 

Io(r,z,s) 2 1f/2 d1; -st = - Re J dw J El !1;(tr! 1;( t)(<rt)w e dt 
If 0 
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A'B' 
1f/2 

(4.14) 

I 1 (r,z,s) 2 1;2(t)(~) e -st dt = - 1m J coswdw J E21.~(tn n 0 A'B' dt w 

where the path of integration is along A'B' in t-plane. Consider the 

'contour A'B'~'M'A'; since there are no singularities inside this contour, 

the integral along this closed contour, from Cauchy's principle, is zero. 

Also B'L' is moved to the infinity, the integrands of Eq.(4.ll) disappears 

in this portion of contour. Therefore A'M'L' can be taken as the new 

path of inte9,ration along the real t-axis, instead of A'B'. Then, the 

inte9rals of Eq.(4.l1) become, 

2 TIl 2 
/) El [~(t)] t;(t)(-~~ )w e-st dt Io(r,z,s) - Re J dw 

If 0 tA (4.15) 

2 1f/2 
/) E2 [~(t)] 1;2(t)( ~~) e","st dt I 1 (r,z,s) - 1m ! coswdw 

If 0 tA w 

The above analysis is true when wi n/2, For the case of w = n/2, the 

transformation equation of Eq,(4.6) becomes, 

t = z n + z S p s 

-<. 
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Above equation means that the real s-axis is mapped into the real t-axis. 

And simply, for this case tA = tM ; so it is understood that Eq.{4.15) is 

also valid for 00 = n/2. Hence, note that, the integrals in Eq.{4.15) converge 

uniformly for all a '.:: 00 .:: n/2. Changing the order of integration in 

Eq. (4.15) 

lo(r,z,s) 
00 2 

n/ 2 . ds doo} e -st dt = f {- Re f E1 ls(t;oo)".i s(t;w)(crt)oo 
1A 

n 0 (4.17) 

I 1 (r,z,s) 
00 { 2 ~ 

n/ 2 
S2(t;oo)( ~~ )00 

-st 
= f -1m f E2 [s(t;oori cosoodoo e dt 

tA 
n 0 

Note that, if the lower limit of integrations were zero rather than t
A

, 

the above equations would become the Laplace transforms of the expressions 

in curly brackets. Hence; introducing the Heavyside step function and, 

simply taking the inverse transforms of 10 and 11 by inspection, 

Io(r,z,t) 

(4.18) 

I 1 (r,z,t) 

These integrals of 00 can be evaluated numerically. 

4.1.4. CHANGE OF INTEGRATION VARIABLE 00 + s 

In calculating the integrals of Eq.(4.l8), for each value of t, the 

va 1 ues of s must to be found for different values of 00, 0.:: 00 .:: n/2. 

This is a tedious job to do. Secondly, { ~~ )00 will have a singularity 

-~, 

at some value of 00, 0.:: 00 .:: n/2, for each value of t. To overcome these 

complications, another change of variable is needed, (Cagniard [4]),00 to s· 

This Transformation will allow us to transform the finite integral in the 
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w-plane into another finite integral in the ~-plane.For this, we will make 

use of the same transformation oiven b E (4 6) .' y q. . , 

zn+ZI;;-t 
cosw = _p,--_.....:s __ _ 

i ~ r 
r F 0 (4.19) 

If ~ = 0, then from Eq.(4.6), t = tA = Z + i K and the above expression 
p s 

becomes indeterminite. Usin~ the L1Hopitals rule, we find that w +TI/2 

as ~ + O. For w + 0, Eq.(4.6) yields ~ = ~1{r,z,t) where, 

t = -i ~1 r + Z n1 + Z 1;;1 
P s 

(4.20) 

Hence, with the new limits of integrations, Eq.{4.l5) becomes 

2 a 
a~ aw Io(r,z,t) = H{t-t ) -- Re ~{ Ed~)(at)w (~)t E; dE; A TI 

(4.21) 

2 a 
E2 (E;) l Z n+z I;; -t 

-1 (~){~) ~2 d~ P s 11(r,z,t) = H(t-tA) -;- 1m ~{ 
i ~ r _ at a~ t 

From Eq.(4.20), it is understood that E;1 is a complex number on the contour, 

AML,which is the mapping of the real t-axis back into ~-plane. The integrals 

of the above equation are along AM~1 which is a finite portion of AML, as 

seen in the below fi0ure .. 
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Im(~) 

E 

A Re(~) 

Fiq. 4.3. Integration path of direct and reflected rays 

From Eq. ( 4.6) , 

oW ) -ircosw + zp ~/n + Zs ~/ l;; 
(~ t = -ir ~sinw 

and using Eq.(4.ll) we have, 

From Eq.(4.l9), we obtain the expression for sinw, 

sinw = 1 
t.;r 

_. t)2Il/2 Ct/r 2. + (z n + z z;, J 
P s 

(4.22) 

(4.23) 

(4.24) 

-4. 
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Hence Eq. ( 4.23) becomes" 

(4.25) 

where, ' 

K(r,z,t,l;) = r I;r2 + (z n + z s _ t)2'll/2 
- P s - (4.26) 

Substitutinq Eq.(4.25) in Eq.(4.21), we obtain, 

1 '(r,z,t) = H(t-t
A

) _2_ 1m JI;1 Ed!;) _L dl; 
o n 0 K (4.27) 

h(r,z,t) = -H(t-t ) _2_ 1m JI;1 I; Edl;) 
A nr 0 

z n+z s-t 
--'p'---__ s ___ dl; 

K 

The above equations are the ones that will be used in numerical calculations. 

The K function has a branch point at I; = 1;1, hence, a branch cut must be 

taken such that, it stal'ts at point I; = I; and extends along 1;1L. This 
1 

branch cut is chosen such that the real part of K is positive when real 

part of I; is positive. 

4.2. ARRIVAL TI~1ES OF INDIVIDUAL RAYS 

The expression for the arrival times of rays, come from the analysis 

of the stationary point of the transformation gjven by Eq~(4.6). 

From Eo. ( 4. 13) , 

(1 - lM2)1/2 + z (K2 _ 12)1/2 tM = 1M rcosw + zp . s M (4,28) 

The 'physical meaning of t~, is made clear by the follovJing analysis of 

~eometry. Let, 



1M = sina = K sin8 a,8 > 0, 8 ~ n/2 

and, 

Substitutinq the above expressions ih Eq.{4.11) we get, 

I 

I 
A I~ 

~ 

/ 
/ 

('0 
sa 

./ 

/ 
/ 

/ 

I 
ID 

;:T 

---t+~- r2 cosw --4F 

B 

Fi~. 4.4. Geometrical interpretation of Eq.{4.35) 

From the fiqure above it is seen that, 

tane z = 

Comparin0 Eq .. {4.32) and Eq.{4,30), we get 

43 

(4.29) 

(4.30) 

(4.31) 

-<. 

(4,32) 

(4,33) 
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And, Eq.(4.29) becomes, 

9- M = s i n8 1 = K S i n8 2 (4.34) 

Now, Eq.(4.28) can be written as, 

Note that, tMis a function of w. Then, 

tM(w) > Z cos8 1 + Z cos8 2 - P s (4.36) 

where equality exists for w = 'IT/2. Note that, tM is a continuous function 

of w , for 0 < w < 'IT /2. From Eq. (4.5), we get, 

at 
aw 

~ = i9-
M 

= -9-
M 

rsinw (4.37) 

thus, tM is maximum for w = O. Now the Fig, 4.5 can be interpreted 

considering A as the source point, 0 as the receiver point and EF as a 

part of the surface of the half-space. And from Eq,(4.34), sine l = K sin8 2 

is the classical law of reflection of elastic waves, For w = 0, Eq.(4.32) 

becomes; tan8 1 = rl/zp and tan8 2 = r 2 /zs ' and the value of tM(w=O) is, 

(4,38) 

The parameters in the above equation are nondimensional~ Restoring the 

dimensions from Eq.(2.l0), we find, 

(4.39) 
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/ z 
P / 

/ 
/ 

/ 

E~ r 1 ~: r 2 ~F. 
r 

Fi~. 4.5. Geometrical interpretation of Eq.{4.38) 

This is exactly the arrival time of the wave along the ray path AB as 

a P-wave and the path BO as a S-wave. Therefore, the value of t = tM 

correspondin9 to the stationary value ~ = ~M' is the arrival time of 

the ray whose path has a total vertical projection of z + z , travelling p s 
in P andS modes respectively, It is well known that when the angle of 

incidence of a S-wave is greater than or equal to the critical angle a , c 

where 

a = sin- l C/c 
c 

~l 
= sin (11K) (4,40) 

there will be a refracted p-wave travelling along the surface of a 

half-space. It means that the ray travels the path from the source to 
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the surface in S-mode and the rest in P-mode. This wave, for the reason 

above, reaches to the receiver before the direct S-wave. And, it is called 

"Head Wave". The arrival time of this wave is-obtained by modifying the 
Eq. ( 4.38) , i . e. , 

t (w 0) + (.K2 _ 1)1/2, Head = = r Zs (4.41) 

In a bounded elastic medium, a third wave known as the Rayleigh Wave 

exists which has a velocity of C
r

, given by 

CR = 0.9194 C (4.42) 

-<, 

where C is the shear wave velocity. Since Rayleigh waves decay exponentially 

with depth, thus are confined to a small region near the surface of the 

medium. Another feature of,these waves is that they decay as r- l / 2 in the 

direction of propo~ation. Unlike the direct waves and head waves, the 

Raylei9h waves are not associated with a single generalized wave. The 

arrival time of these waves can be calculated for the case of both the 

source and the receiver being on the surface. 

For a buried source case, the point on the surface where the Rayleigh 

wave ori~inates due to diffraction is not knovoJn. Pekeris and Lifson [17J 

found that there were no distinct peaks in displacement curves for a buried 

poi nt force for ro/ z 0 < 5. 

Now consider the P and S waves travelling from a buried source to a 

surface receiver. Solving the upper limit of integration from Eq,(4~20), 

we have, 

(4,43) 
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where a = 1 , a = K and Zo = Z ,Zo = z for the P-waves and 
p s 

S-waves respectively. 

4.3. CONVOLUTION OF RAY INTEGRALS 

Note that, displacement equations of Eq.s(4.1) have integrals in 

the form of 10 and 11' and coefficients of them in the form of sn~(s). 

In our study, n is either 2 or 1, and the function ~(s) involves the time 

dependency of the force input. 

Recal1in~ Eq.(2.17), we have, 

(4.44) 

then we obtain, 

Fo f(s) 
s2F(s) = 

4n K2 II r~ (4.45) 

Fo f(s) 
(_1 ) s F(S) = 

4n K2 r~ 
s 

II 

Now, consider the case where the function f(t) is a Delta-Dirac function, 

then f(s) = 1 and the above expressions reduce to 

Fo 
S2 F(s) = 

4n K2 II d (4.46) 

Fo 
(_1 ) s F(s) = 

4n K2 II d 
s 

-', 



48 

Hence, the inverse Laplace transform of these quantities are, 

-1 - Fa 
t:.. (s2F(s)) = 8(t) 

4n K2 11 r~ 
(4.47) 

-1 - F 
"c (sF(s)) = H(t) 

4n K2 11 d 

where 6(t) is the Delta function and H(t) is Heavyside's step function. 

Therefore, the integrals with s2F(s) as their coefficients should be 

convoluted by 6(t) and those with sF(s) should be convoluted by H(t). 

Recalling the definition of Convolution Theorem, it is well known for 

any functi on y, 

6(t) * y(t) 
t 

= J6(t-T) y(T) dT 
a 

= y(t) (4.48) 

t 
H(t) * y(t) = J H(t-T) y(T) dT 

a 

t 
= J y(T) dT (4.49) 

a 

In the view of the above relations, for Delta-Dirac input, only the 

inteorals with sF(s) as their coefficients should be integrated from t=O 

to t=t. However, since each integral has a specific arrival time, the 

lower limit of inteqration is to be replaced by the corresponding arrival 

time of the ray, i.e., integration is from t=tA to t=t. 
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V, NUMERICAL CALCULATIONS OF FIELD RESPONSES 

In this chapter, the numerical proced~re used in calculating the 

ray inte~ra1s will be explained and the response of a half-space due to 

a finite line source with Delta-Dirac function time dependance will be 

documented. In all of the examples, the Poisson's ratio fo the 

half-space material is taken to be 0.25 corresponding to K2 = 3. 

5.1. PROCEDURE IN NUHERICA( CALCULATIONS 

First of all, in all of the examples presented in this thesis, we 

have taken the receiver to be on the surface of the haif-space. Therefore~ 

there are two types of rays in our case; one is the incident ray and the 

other is the refracted ray. The integrals of displacements belonging 

to these two rays are well documented in the introduction part of 

Chapter IV. 

At this point, we remind the conclusion which we had in section 3.6. 

To find the response of a vertical line source; the derived integrals, 

for the bottom point of the line source, are calculated, then the same 

calculation are done for the top point. The response becomes out as the 

difference of these calculated results. 

To start the numerical calculations, the stationary point of Cagniard's 

path, ~M ' and the arrival time of the ray, tM ' are found using Eq.(4.1~) 

and Eq,(4.13) respectively. If there is a head wave effect in the direct 

S-wave, the arrival time of it can be calculated from Eq.(4.41). The 

upper limit of inte9ration, ~l' for each value of time t, is obtained 

from Eq.(4.43). By combining the modified source functions, receiver 
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functions and reflection coefficients; the inte9rancts of the integrals 
are formed. 

For the P-waves and S-waves'with no head'wave effect, the stationary point 

sM is below the branch point s = i. The upper limit of integration Sl moves 

up the imaginary axis from the origin to the stationary point sM' Through 

this interval, the integrands of the integrals are all real valued and 

since the ima9inary part of the integrals are required as final solution, 

the response is ~ero for t less than t
M

. This is natural because, tM is 

the arrival time of the individual ray and no response is expected prior 

to the arrival of it. At the point sM' the integration path leaves the 

ima~:dnary s-axis, but stays in the first quadrant of complex s.,.plane, 

However, the integration along this path is very complicated, Therefore, we 

will use an alternative method, introduced by Pao and Gajevski [16]? to 

solve the integrals. The original path of integration AMsl can be replaced 

by the path QMsl since the integral along AQ is zero, Consider the closed 

contour QMS1P2P1Q shown in figure below, 

Im(s) 

E 

F 

M l-__ -

Q 1--------' 

A L-------------Re(s) 

F" 5 1 Integration path for the direct P and S-waves Hj. , • 
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There are no sin~ularities inside this contour. It is known that the 

intearation alon9 QM is zero. Hence, based on Cauchy's theorem, we can 

replace the integration along QM~I by the sum of the integrals along 

QM~1 by the sum of the integrals along the straight lines qP
I

? P1P
2

' 

P2~1' This path is much easier to integrate than the original path. The 

choice of the points Q, PI' P2 were done asfollows~ let ~l be expressed 

as ~l = a+ib, then, if a < 0.005 9..
M 

Q = i O. 8 9..~1 

PI = 0.05 9..
M 

+ i 0.8 9..
M (5.1 ) 

P2 = 0.05 9..M + i [0.9b + 0.1(0.8 9..
M
D 

and if a > 0.05 9..
M 

Q = i 0.08 9..M 

PI = (a + 0.03) + i 0.8 9..
M (5.2) 

P2 = (a + 0.03) + i (b - 0.08) 

If the S-waves with head wave effect exist in the media? the stationary 

point M corresponding 9..
M 

lies between the branch points ~ = i and ~ = iK 

We know from the previous paragraph that, the integrals are zero for the 

values of ~l below ~ = i which corresponds to the arrival of the head waves. 

For these rays, the points Q, PI' P2 are chosen as shown in Figure 4.7. 

A9ain representing ~l as (a + ib)~ the points Q, PI, P2 are chosen as~ 

if a = 0, that is ~l is on the imaginary axis. -4, 
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1,,\ 

Im(~) 

E 
;K 

M 
~I P2 

; 
F "-'"". 

PI 
Q PI 

A Re( ~) 

F;Cl. 5,2. Inte0ration paths for refracted rays 

Q = ; 0.9 

Pl = 0.05 + ; 0.9 (5.3) 

P2 = 0.05 + i b 

if o < a < 0.05 

Q = ; 0.9 

Pl = 0.05 + i 0.9 (5.4) 

P2 = 0.05 4- i b 
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if a > 0.05 

Q = i 0.9 

PI = (a + 0.03) + i 0.9 (5.5) 

P2 = (a + 0.03) + i (b - 0.08) 

These new paths of inte9ration are far from the sin~ularities. However, 

the sinnularity at the upper limit of inteqration, ~l ' is still on path. 

To avoid it, a new variable, a , is introduced such that 

then, 

a da = ~ d~ 

= (t,;2 P _ t,;t) 1 /2 
2 

where a is the value of a at point P2' 
P2 

(5.6) 

(5,7) 

This transformation reduces the inte~rals of Eq.(4.27)? along P2t,;1 to, 

K [r ,Z , t ; ~ (oJ] da 

(5.8) 

-H(t-t ) __ 2_ Im fO E [-dar, 
A nr a 2 . 

P2 

[z n(a) + z da) - tJ 
_-,P~:--_-=s~-:-:~_ a da 

K[r ,z, t ;t,;(a)] 

Note that, as a apnroaches to zero, K also 90es to zero and the above 

integrals become indeterminate. To remove this undeterminacy, the function 

K ;s expanded into a power series around a = 0, and the common factor 

;s cancelled by the a in the numerator, see Appendix B. 
.'. 
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Finally, each of the integrals alon~ QP1' P1P2 and P2~1' in the complex 

~-plane can be transformed to an integration with. respect to a real 

variable y in the interval [-l,lJ, using the following transformations. 

Along QP 1 

(5.9) 

1 
+ --

2 

(5.10) 

( 2 /:"2)1/2 
~ = a + ':>1 

d~ 
~= a/~ (5.11) 

Hence, Eq.(5.8) yields, 

+1 a da J 
+ J (E1 ~-a--y )p ~ dy 

-1 2 1 

-<, 
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2 
[ _(1 (E2 

t - z n - z 1;; 
ds 11 = H(t-t ) - 1m p s 

A TIr K SCiY)QP1 dy 

+1 t - .z n - z 1;; 
dE: + J (E2 P S 

E:---ay)P1P2 dy -1 K 

+1 t - z n - z 1;; 

dE: ] + J ( E2 P s 
K a-d-)p c dy _1 Y 2"'1 

(5.12) 

These inteqrals were then calculated usinn Gaussian quadrature integrations. 

5.2. NU~ERICAL RESULTS AND CONCLUSION 

We have considered in this thesis, the case of a buried vertical 

line force source and the receiver was located on the surface of the media 

which was taken to be a half-space. The time dependence of source function 

was chosen to be a Delta-Dirac function. 

The response of a media due to arbitrary time dependency of the source can 

be obtained by applyinq the principle of superposition~ Mathematically. 

this principle can be written as, 

t 
h(t) = J G(t) f(t - T) dt (5.13) 

o 

where G(t) is the transfer function of the media due to a 8(t) input, f(t) 

is the input time function and h(t) is the output of the system. This 

equation can be evaluated numerically by breaking the total duration into 

n intervals of M. In matrix form it can be v/ritten as [5]? 

-t,_lt- {h} = [G] {f} (5,14) 

-'. 
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In the calibration of a transducer as a source, the response due to an 

unknown input force is picked up by a standard transducer. Then finding 

the transfer function of the media as explained above, the input function 

can be calculated by deconvoluting Eq.(5.13). In matrix form, using 

Eq.(5.14), it can be written as, 

{f} = 1 
fit (5.15) 

In this work, the ray integrals were calculated using the Gaussian 

quadrature numerical integration method. For each of the line segments 

QP I , PIP2, P2~1' eight point Gaussian quadrature integration was used, 

The convolution of the responses were done simply by employing the 

numerical integration methods. Throughout the numerical work, two 

different line sources were considered. One of them lied between ZI = 1 

and Z2 = 1.5 and the other between ZI = 1 and Z2 = 2, The receivers were 

placed at' different ro values on the surface, nalnely ro = 1?3,4~6t And ~4. 

for the different combinations of source and receiver orientations, in 

the radial and z-direction, i,e., u
r 

? Uz ' were numerically calculated l 

As a control mechanism upon all the numerical work done? the source length 

and receiver orientation were modifjed to simulate a single point force, 

For this purpose, the length Of the line force was taken as 0.01 unit? 

i.e., ZI = 1 and Z2 ~ 1.01, and the radial difference between source and 

receiver was taken as ro ~ 7. In this case, the time dependence of source 

function w~s introduced as Heaviside's step function. The outcoming time 

displacement graph \'/as similar to the one obtained by Pekeris [17] for 

a point' force buried in a half..,.space, 

If we look at the ~ime-displacement gr~phs, we make the following 

observation. \.Jhen ro / Zo > 5, we can clearly see the great peak of 

Rayleigh waves. The response dedicated at the points close to the epicentre 



57· 

are stron~ for all time t. As the receiver point is moved away from the 

epicentre, the beginnin~ part of the response signal is weaker when 

compared to the later part. 

Thus, the main problem in the study of acoustic emission is the 

determination of the relations between the recorded signal and the 

mechanism of the source which emits the signal. It is clear that, if 

acoustic emission is to be applied to determine plastic deformation and 

fracture of the materials, and to monitor the safety of a structure, 

these relations must be known explicetly to calibrate the control 

eauipment. 

In this work, we obtained the theoretical solution ~nd numerical solutions 

for some cases for an isotropic~ homogenous and elastic half-space due 

to application of a vertical line source with a Delta~Dirac input function, 

Throu9hout the work, the receiver was placed at the surface, The solutions 

can be used as a comparison in the calibration Qf transducers haying 

different sizes. 

~I 



58 

REFERENCES 

1. Abromovitz, M. and Stequn, I.A., Handbook of Mathematical Functions, 

U.S. Government Printing Office, Washington, D.C., 1964. 

2. Achenbach, J.D., Wave Propo9ation in Elastic Solids, North-Holland 

Company, London, 1973. 

3. Basakar, A., Response of An Elastic Half-Space to Finite Sized Sources, 

BogaziCi University, Istanbul, 1982. 

4. Ca~niard, L., "Reflection and Refraction of Progressive Seismic Haves", 

Translated by Flynn, E.A. and Dix, C.H., Mc Graw-Hill Book Co., 

New York, 1962. 

5. Ceranoglu, A., Acoustic Emission and Propogation of Elastic pulses in 

a Plate, Ph.D. Thesis, Cornell University, Ithaca, New York, 1979. 

6, Chen, P., "Diffraction of Sound Pulses and Acoustic Emission in a 

HollO\'J Elastic Cylinder", Ph,D. Thesis, Cornell University, 

Ithaca, New York, 1978. 

7, Chao, C.C., "Dynamical Response of an Elastic Half-Space to Tangential 

Surface Loadings, Journal of Appl. Mechanics,~, p.539? 1960. 

8. Garwin, H.H., "Exact ~Transient Solution of the Buried Line Source 

Problem"? Froc, of the Royal Soc., London, Ser,A, p.234, 1956. 

9. Lamb, H., "On the Propo~ation of Tremors Over the Surface of An Elastic 

So 1 i d", phil. Transactions of Royal Soc. of London! Ser, A? 242, 

p. 63, 1949, 



59 

10. Lapwood, E.R., liThe Disturbance due to A Line Source in A Semi 

Infinite Elastic Medium", Phil. Trans. of Royal Soc. of London;" 

Ser.A, 242, p.63, 1949. 

11. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, 

Dover, New York, 1944. 

12. t1encher, A.G., "Epicentral Displacement Caused by Elastic Haves in 

An Infinite Slab", Journal of Appl. Physics, 24, p.1240, 1953. 

13. Norwood, F.R., "Exact Transient Response of An Elastic Half-Space 

Loaded over A Rectangular Region of Its Surface II , Journal of 

Appl. Mechanics, p.516~ 1969. 

14. Norwood, F.R., "R~sponse of An Elastic Half-Space to Impulsive 

Stationary Finite Line Sources", Journal of Appl. Mechanics, 

p.549, June 1971, 

15. Pao, Y.H. and Ceranoglu? A." "Acoustic Emission and Transient Haves 

in An Elastic Plate", JQurnal Qf Acoustic Soc. Am" 1978, 

16, Pao, Y.H, and Gajewski? R" liThe Generalized Ray TheQry and 

Transient Response Of Layered Elastic Solids"? Physical Acoustics, 

13, Ch. 6, 1977, 

17, pekeris, C,L, and Lifson~ H., 1I~1otion Of the Surface of A Uniform 

Elastic Half.,.Space Produced by A. Buried PUlse"? {Journal M:oust. 

Soc, Am., p,1233? 1957, 

18. Sherwood, J.H.C., "Transient Sound Propo0ation in A Layered Liquid 

~1edium", Journal Acoust. Soc. Am., 32, p.1673? 1960, 



60 

19. Spencer, T. ~J., liThe Method of Genera 1 i zed Refl ecti on and Transmi ss i on 

Coefficients", Geophysics, 25, p.625, 1960. 

20. Sternber!], E., liOn the Integration of the Equation of t'lotion in the 

Classical Theory of Elasticity", Archiv. for Rational Mechanics 

and Analysis, ~, p.34, 1960. 

21. Wu, J.H., Transient Analysis of a Three Dimensional Elastic Plate 

by the Ray Group Technique, ph.D. Thesis, University of New 

fv'exico,1976. 

-4, 



APPENDIX A 

RESPONSE OF AN UNBOUNDED MEbIUM TO AN 

ARBITRARILY ORIENTED CONCENTRATED FORCE 

61 

In this appendix, a detailed derivation of the displacement potentials 

used in Chapter II \,/i11 be discussed. ~le will use the approach given by 

Achenbach [2]. 

The equations of motion for an elastic, isotropic, and homogenous medium 

are <liven by, 

(A.l ) 

where ~ ;s the displacement vector~ i is bOdy force per unit mass, p is 

the mass density, and A and ~ are the Lame constants of the medium and a 

"dot" denotes differentiation with respect to time, t. 

Consider a concentrated force Of magnitude f(t), direct along the 

constant unit vector a, and acting at the point Xo jn the cartesian 

coordinate system. In this case we have 

(A,2) 

where 6(!,x o) is Delta-Dirac function, Now, we wish tq decompose both the 

displacement ~ and the body force vector i as, 

u = \j <p + \j X 1JI 1 - - ---

(A.3) 

/ . 

-', 
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where ~ and F are scalar potentials, and, '¥ and G are vector potentials. 

Above decomposition is known as Helmholtz decomposition. The result of 
it is, 

(A.4) 

If f(~,t) is known; G and H can be found. Consider, 

(A.5) 

which is known as the vector Poisson's equation. And it has a well known 

solution, 

1 £(~' ) 
w = -ihT f dx' 

V [~-~' ] 
(A.6) 

where V is volume of the body. Using the identity, 

(A.7) 

in Eq.(A.5), and comparing the resulting expression with the one given 

by Eq.(A.3), we qet, 

G = \I. VI 
(A.8) 

H = -\I x W 

Hence, considerinq Eq.(A.2) and Eq.(A.8); Eq.(A.4) can be written as, 
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c2 1/ 2 <t> -
f(t) ,a 

41T 
1/ • (R) = ~ 

(A.9) 

C 2 1/ 2 
\{II + f(t) a .. 

1/ x (-=-) = \{II 41T R 

where, 

(A.10) 

Introducing the followinq non-dimensional quantities 

A 

<t> = <t>/d 
A ,... 
R.= R/ro 1/ = ro 'J... 

(A.ll) 

K = c/C 
,... 
t = tc/ro 

Eq.(A.9) yields, 

(A.12) 

A a '\2\11
1 "2"" 2 A '2 a T 

1/ !1 + K f d t) 1/ X ( ~ ) = K a f -- R 

where, 

fdt) 
f(t) 

(A.13) 

again ro is the radial distance from source to receiver. Dropping the 

"Hats", and taking Laplace transform after introducing, 

<t> = 'J... • (~ <l> ) 

(A.14) 
\{II = -1/ X (~ \{I) 

-<. 
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Eq.(A.12) becomes, 

(A. 15) 

where, 

(A.16) 

Since the inhomogenous terms in the above equations show polar symmetry, 

the solution is conveniently obtained by using the spherical coordinate 

system. Eq.(A.15) can be written as, 

d (2 del» -- () 1 S2 -;;:-R2 aR R ----aR - f 1 s -R = 'i' 
(A.l7) 

Introducing, 

(A. 18) 

we have, 

(A.19) 

The complete solution of the above equation is 

(A.20) 

Since el> has to be finite at the origin, R = 0, el>l must vanish at this 

point. Therefore, 

-<. 
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iP{R,s) = fds) [e-SR _ lJ s2R (A.21) 

and simi 1 arly, 

\1\{R,s) = f 1 (s ) [e -sKR - lJ 
~R (A.22) -', 

Takinq Laplace transform of Eq.{A.3) and Eq.{A.14) we have, 

-
u = ~ <P + ~ X .!1 

<P = ~. (~ iP) (A.23) 

'l'1 = -'1/ x (~ 'l') 

Thus, 

u = ~ (~ • ~ ¢) - '1/ x (~ x ~ 'l') 

(A.24) 

Substituting the expressions for I and ~ from Eq.(A.21) and Eq.{A.22), 

the above equation yields, 

where, 

u = 

1 -sR 
a =-R.e 
"p 

1 
q - R "'S 

-sKR 
e 

(A.25) 

(A.26) 
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Note that, R is qiven by Eq.{A.10). Also note that Eq.(A.25) agrees \,/ith 

Pa and Gajewski [16]. The functions 9 and a are called the radial wave . p .,s 
functions for lon~itudinal and shear waves. Using Sommerfield's integral 
representation [5], a and 9s can be written as, "p 

-sR e 
00 ~ -snlz-z I qp = R = s f - e 0 J o (s ~ r) d~ 

0 n 
(A.27) 

-sKR e 00 -L -sl;;lz-z I a = = s f e 0 J o (s ~ r) d~ "s R 
0 I;; 

where, 

n :; (~2 + 1) 1 /2 ( ~2 2)1/2 
I;; = '" + K (A.28) 

From Eq.(A.5), we can obtain the components of the displ~cement vector, 

u, as fo 11 ows , 

u (r,s) = r-

u (r,s) z -. 

+ a 
z 

+ a 
z 

(A.29) 

Note that the term 71 (s)/siR in Eq.(A.21) and Eq.(A.22) does not appear 

in the expressions for the displacements, so it also won't be seen in 

the stress expressions. Dropping this term and using Eq.(A.27), we get, 

¢(~,s) fds) 00 -L e-snlz-zol J o (s~r) d~ = f s 0 n 

(A.3D) 

'¥ (r., s ) 
f1 (s) 00 ~ e-sslz-zol Jo (s~r) ds J : 

r;; S 0 

", 



The relations between the potentials and displacements are, 

u = _a_cjJ_ + _a_2,¥_ + _1 __ a_x_ 
r ar 'araz r ae 

(A. 31 ) 

1 rtcjJ 1 a 2'11 ax 
u =---+- ---
e r ae r aeaz ar 

USin9 the above equations and Eq.(A.29), the expressions for the 

potentials '¥ and X are obtained as, 

'¥ = -a z 

- a 
r 

(A.32) 

00 -sr.;lz-z I X = -a
e 

f(s) J S e 0 J 1 (s sr) ds (A.33) 
o H 

and using Eq.(A.14) and Eq.(A.30), we get the potential as, 

00 -snlz-z I cjJ = f 1 (s) a J S e 0 J 0 (s s r) s ds 
z 0 P 

00 -snl z- z I 
+ f1(s) a J ,SI e 0 J 1 (ssr)s ds 

r 0 p 
(A.34) 

where, 

f 1 (s) = f(s)/4nr 2c2 

S = - £ 
SI = -£/n SH = K2/r.; 

p p 

S = sir; SI = £ £ = sgnlz-z o I 
v v 
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-<, 

(A.35) 



APPENDIX B 

. THE POWER SERIES EXPANSION 

OF THE uKu FUNCTION 

68 

In this appedix, we expand the "K" function, discussed in section 5.1, 

in the form of pm'ler series in terms of . This is vitally necessary, 

because, when s approaches Sl' K goes to zero, so the term s/K becomes 
indeterminate. 

K{r,z,t,s) (B.l ) 

To remove it, a new variable, a is introduced, 

Thus, we get, 

K{r,z,t;i;) = K{r,z,t;i;{a)) (B.3) 

-'. 

The above equation is also indeterminate when a approaches zero. Therefore, 

the "K" function \'1ill be'expanded into pO\,ler series around a = 0, Note 

that~ Eq.{B.l) can be written as, 

s 
K - [( i t,;r + z n + z c;; - t) (.., i t,;r + z n + z c;; - t) ] 1/2 

P s P s 



69 

It is clear that the indeterminacy occurs due to the second expression 

in the denominator. Thus only bracket will be expanded into a power 

series. Usinq Eq.(B.2), we have, 

-i~r + Z n + Z z;; - t = -ir(a2 + ~i) 1/2 + Z (a2 + ~i + 1) 1/2 
P s p 

2· 1/2 
+ Z (a + ~f + K2) . - t (B.5) 

s 

Consider the following definition of power series expansion around a = 0 

(B.6) 

Then, applying the above expansion to Eq.(B.5) and Eq.(B.4) we have, 

where, 

] 
2 [ • (1 1 a

2 
. ) 

- t a -lr~ -8-~T" ...... (B.7) 

+ Z 
P 

+ Z 
S 

~l 

..... ) 

1/2 ..... ) - tJ } 

( 
2 2)1/2 

~l + K (B.8) 

Finally, substituting the above equation in Eq.(B.3), als are cancelled 

and the uncertainty is removed. 

-'. 



APPENDIX C 

SOURCE AND RECEIVER FUNCTIONS 

Interior Source Functions 

S = - E 
P 

S· = -sin p 

S = s/Z: v 

S· = E 
V 

Surface Receiver Functions 

0* = -2 K2 n (S2 + z:2)1 ~r 
zp 

0* = 4 K2 n z: s I ~r 
zv 

O~p = O~p = 4 K2 n z: s I ~r 

0* = 0* = -2 K2 Z:(S2 + z:2)/~r 
rv 8v 

>l * 0" = 0 2 rH 8H = 

70 

-4, 



Reflection Coefficients 

R :: R = [4 n l;; t,; 2 + (t,;2 + l;; 2 )2J / t.. r pp ss 

R = -4 nt,; (t,;2 + l;;2) /t..r ps 

R = (_l;; ) R sp n ps 

Modified Source Function for the Case of; 

Surface Receiver and Buried Vertical Line 

Source 

S 1 
= (- -) -p n 

S 
t,; 

= (-~) -v 

S' 
t,; . 

:: (-::z-) -p n 

S' 1 
= (--) -v l;; 

71 

-', 
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APPENDIX D 

GRAPHIC EXAMPLES 

In all of the following graphs, the displacements and time values 

are nondimensional quantities nondimensionalized with TI~r~/Fo and 

c/ro correspondingly. 
" 

-<. 
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