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A STUDY OF MANIPULATOR DYNAMICS
AND CONTROL

ABSTRACT

-~

In this work, the dynamics ahd control of a manipulator arm are
inveétigated. Two different forms of the dynamic model of an n degree -
- of freedom manipulator are studied and génera] computer oriented algo-
rithms are developed to obtain the system matrices of the dynamfc
model. The algorithms are based on Newtonian mechanics; they are re-
cursive and independent of the manibu]atdr configuration.

For the purpose of control of a manipulator arm tWo different
control schémes are proposed which are baéed on minimum energy optimal
contro1; In the first method the system is decomposed fnto n sub-
systems and each subsystem is controlled independently while in the
second method the dynamic coupling among subsystems is taken into
account. |

Computer simulations-are carried out for two different manipulator
~ models in order to investigate the effectiveness of the proposed con-
trol methods, and it is seen that the proposedlsuboptimal adaptive

~ feedback law gives reasonably good results.



ROBOT KOLU DiNAMi&t VE DENETIMi
OZERINE BIR CALISMA

KISA UZET

”~

Bu ca11smadé bir robot kolunun dinamigi ve denetimi incelen-
.mistir. N serbestlik dereceli bir robot kolunun dinamik modelinin
elde edilebilmesi icin iki genel hesap yﬁntemi‘gelistirilmistir. Bu
yontemler Newton mekanigine gore gelistirilmis olup robot kolunun
yapisindan ba§1ms1zd1r1ar. |

Robof kolunun denetimi i¢in iki dedisik yontem sunulmustur.
Her iki‘ybnfem de minimum enerji optimum kontrol teorisine gore
gelistirilmis o]ub.ilk yontemde sistem eklem sayisi kadar (n tane)
altsisteme ayrilip her altsistem bagims1z olarak kontrol edilmekte,
ikinci yontemde ise eklemler arasindaki dinamik etkilesim gﬁzbnﬁné
alinmaktadir.

Sunulan. kontrol ybntémTerinin uygulanilabilirligini sinamak
amaciyla iki dedisik robot kolunun kontrolu bilgisayarda bénzetim
yolu ile ihce]enmis ve sung]an altoptimal kontrol yonteminin iyi

sonuclar verdidi gozlenmistir.
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I. INTRODUCTION .

Industrial robots ha;e become incfeasing]y important in.
induétrig] automation in recent years. They are extensively used
and are normally equipped with relatively simp]ercontro1 systems.
Such control systems have proved adequate on]y»at low speeds. Hence,
there is a need for improved control techniqueé because of the in-
creased demand on manipulator performance. /

" The first step in the development of a manipulator control
law is the derivation of the dynamic mode] of the system. It becomes
very difficult to derive the equatidn of motion ana]ytfca]]y for a
manipulator when it has more than three degrees of freedoﬁ. It is
also necessary to develop a general method for the dynamic modelling
of a manipu]ator; thus allowing to analyze vafious‘manipulator models.
Those reasons motivated the reseéréhers recently to propose various
computer driénted algorithms for the real time computation of the
' manipu]ator,dynaﬁics. Those algorithms consists of recursive equa-
tions based on'efther a Lagrangian formuTation:[1,2], dr a Newtonian
formulation [3,4,5]. They have the common feature that, bésed‘on the

information about the kinematic scheme of the mechanism, the algorithm



calculates positions, velocities and accelerations, and derfves
differential equations of motion. A]though those recursive equa-'
tions are suitable for real time control, they don't give closed
form differential equations that describe the dynamic behaviour of
a manipulator. | |

Manipulators are basically positioning devices and the dyna-
mic control of them involves the determination of the inputs for the
actuators which operate at the_ joints so that a set of desired values
for the positions and velocities of the manipulator are achieved.
One of- the difficulties in the control of a manipulator is that its
equations are highly nonlinear and involve coupling among the multiple
links. This complicates the design of a contro] system for high per-
formances. Several methods are proposed for the control of a mani-
pulator arm. The control schemes‘suggested include classical con-
trollers [6,7] as well as optimum controllers [8,9]. Among the clas-
sical controT'methodstthe calculation of the torques for a nominal
trajectory is presented in [6]. This control method requires a con-
siderable amount of calculations and memory storage. Another of the
early proposed techniques is the resolved rate control [7] in which
the joint angle rates are computed so as to cause the end point of
the manipﬁlator to move in a definite direction. More recent studies
apply optimum control theory to the manipulator control. Thefe are
also adaptive control strategies found in literature. The most
notable of these is the mpde]mreferenced adaptive control [10]. In
Athié method the coupling terms between thé joinfs are neglected and

a linear second'order time invariant model is used as the reference




model for each degree of freedom. The manipulator is controlled by
adjusting position and velocity feedback gains to follow the reference
mode]. | |

In this work two general tomputer oriented algorithms are
developed, which can be used to construct the dynamic model of any
kind of open kinematic chain that consists of-a combination of rota-
tional and translational joints. With those algorithms it is possible
to solve both the direct and inverse problem of mechanics. The deri- .
vation of the algorithms are explained in Chapter 2.

| In Chapter 3 two different control schemes are proposed in
order to control a manipulator. In both methods»optimum control of
a manipu]ator arm is investigated using an enérgy optima]~performance :
index. In the first method the system is decoup]ed and the opt{hum
control is-found for éach subsystém. In the second method a subop-
timal adaptive feedbaqk law is proposed to control the system. |

Dynamfc and static performances of the prpposed algorithms
have been tested on a‘typica] manipulator configurdtion. A recti-
Tinear trajectory in three dimensional sbace has been selected as
the basic scenario-and various computer simulations are carried out
with different combinations of simulation parameters in order to
emphasize the advantages and-dfsadvantages of the propoéed methods.

The numerical simulation results are presented in Chapter 5.

Chapter 6, concluding this work, resumes the basic results and
gives recommendations for.further studies to improve the dynamic analy-
" sis and control of manipulators. The modé111ng algorithms have proven
to be successfui and the probosed control methods, in spite of the
* conservative behaviour of the minimum enefgy apﬁroach, have lead to

satisfactory results.



IT. MATHEMATICAL MODELLING OF A RIGID LINK
SERTAL MANIPULATOR ARM

2.1 KINEMATICS OF THE MANIPULATOR ARM

A mechanical manipulator is an open loop chain which consists
of a sequenée of rigid bodies, called ]inks, connected 1in series by
kinematic joints. The joints allow relative motion of the tﬁg bodies
they connect. One end of the chain is génera]ly fastened to a support,
while the other end is free to move in space.

. In this study kinematic and dynamic equations are derived

for a manipulator which has one degree'of freedom‘joints which may be
either revolute (rotating) or prismatic (sliding). Each joint-link
pair constitutes one degree.of freedom. Thus.for én n degree of
freedom manipulator there will bé h Tinks and n joints. The joints
and 1links are numbered ouéwards, starting from the base, which is.
taken as Tink 0,.to the end effector of the manipulator which is Tink
n. Joint i is the joint which connects link i-1 to Tink i. |

| In order to develop a systematic and generalized method for

the der1vat1on of the kinematic and dynam1c equations of a man1pu—

. 1ator arm a body coordinate frame (Xi’yi’zi) is attached to each



link i. Adjacent coordinate frames are related to each other by four
parameters developed by Denavit and Hartenberg [11]. Those parameters

are defined as follows (shown in Fig. 2.1):

6, = the jbint'angle from §i_1 axis to the ;i axis about
the ;i—l axis (using the righthand rule).
d; = the distance from the origin of the (i-1)th coordinate

frame to the intersection of the 31_] axis with the ;1

. ' - .
axis along the z, ; axis.

Link i1

FIGURE 2.1 - Parameters relating adjacent coordinate systems.




a; = the offset distance from the intersection of the 21—1
axis with the ;i axis to the origin of the ith frame
along the fi axis (or shortest distance between the

z and 2 )
io1 z; axes).

a, = the offset angle from the ?i-l axis to the ?i axis

about the ?1 axis (using the righthand rule).

For a revolute joinf; di’ a% and a; are the jointvparameters
and remain constants, while ei is the joint variable that changes when
Tink i1 rotates with reépect to 1inklﬁ-]. For a brismatic joint, 65s
a; and a; are the joint parameters and remain constants, while di is
the joint vériab]é. These parameters cqnstitute a minimal sufficient
set to determine the complete kinematic configuration of eacﬁ/]ink of
the manipulator arm. |

Every coordinate frame is determined and established on the

basis of three rules [12]:

i) the 31_] axis Ties along the axis of motion of the

ith_joiht;

ii) the ?1 axis is normal to the Ei-] axis, pointing away

from it;

iii) the §i axis gomp]etes the righthand coordinate system

as required.

With the above ruTes, reference frame (;o,§0,30) can be placed any-

. where in the supporting base as long as the 36 axis lies along the



axis of motion of the first joint. The last coordinate frame (nth
frame) can be placed anywhere in the hand as long as the?n axis is
normal to the’?n_] axis. An algorithm for establishing consistent
orthonormal coordinate systems for a manipulator is given in Appendix A.
| In order to transform a vector expressed in the coordinate
system of link i to the coordinate system of 1ink i-1 homogeneous
transformation matrices are used. Using Denavit—Hartenberg‘parameters
in order to relate the two cébrdirmfesystems, the homogeneous trans-
formation matrix that maps the coordinates of a vector expressed in

the coordinate system (§1,§i,§i) to the coordinate system (?1_],§i_],

-> . .
Zi—]) is given as

I . -coSo..Sind. sino.sind. a.cosb.| /
cose1 co j 1ne] 3 ; ; 0] 3
. ing. .COSH . -siny.cosO. a.sind.
. ) s1ne1 cosa;Co 61 ;€0s8, ; ;
A]_] - . (2'])
ina . COoSo. . d.
0 s1noc1 SOL] ;
| O 0 0 1 i

The inverse of the matrix A;_] which is also used for the

~transformation of a vector from the (i-1)th frame to the ith frame

is given by
i . sing. 0 Co-a.
COSQ1 i i
. . " l-cosa.Sind. cosc.cost. sino. -d.sino,
. -1 . Ai-l i i i 1 . i i i
(A1 = (2.2)
- .- ino-sin®. -sino.coso. cosa. ~d.coso.
s1na1s1qe1 sino, 3 i j j
0 0 0 1T ]

The homogeneous transformation matrix that will transform

. the coordinates of a vector from the coordinate system of link i to the



coordinatebsystem of 1ink J is obtained by successive multiplication
of the transformation matrices
AL Al s A (2.3)

| The upper left 3x3 submatrix of the homogeneous transforma-
tion matrix A:_] represents the rotation matrfx which is used exten-
sively in the derivation of the dynamic model of the manipulator arm;
The rotation matrix maps the coordinates of a vector ffom ohe coor-
dinate system to another one whose origins are the same, but rotated
with respect to each other. The rotation matrix for the transforma-

tion from 1link i coordinates to Tink i-1 coordinates is given by

i - .sing. Sing.sing. e
cose coso;sing, o STng y

i . ‘ .
S, o= . . . - .C0S6. | .
,R1_1 sing, COS0 ;0S5 Sino;coss; (2.4)
0 sinai cosa;

Since the transformation given by Egq. (2.4) is an ortho-
normal transformation, the inverse of the rotation matrix is equal

to its transpose

R = R )T . (2.5)

A'homogeneous transformation matrix geometrically represents
" the Tocation (poﬁition and orientation) of a rotated coordinate sys-
tem with'respeét-to a reference frame. Given a referehée frame
(fb,yo,zb) and a homogeneous transformation matrix Ag the column

vectors of the rotation submatrix represent the principal axes of

. the coordinate system (Yi,yi;?i) with respect to the reference frame.



The fourth column of the homogeneohs transformation matrix represent
the position of the origin of the ith frame with respect to reference

frame as given by

%, 3. i % -
A('l) = 1 1 1 1 (2.6)
0 0 0 1 :

If n is substituted for i in Eq. (2.6) the obtained matrix
is called the arm matrix which compiete]y specifies the position and

orientation of the hand with respect to the referepe frame

where

unit normal vector of the hand,

unit sliding vector of the hand,

unit approach vector of the hand,

oy oy wndy SY

position vector of the hand.

A1l these vectors are defined with. reference to base coordinates as
shown in Fig. 2.2.

Once the 1link coordinate frames have been assigned to the
manipulator it is.possible'to obtain‘the cartesién position and
orientation of the manipu]at&r end effector with given joint coordi-
»natés using Eq. (2.3). This is called the "direct kinematics sd]u;

tion" as given'by
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= =. . n
H= A=A, = AT ....... AL . (2.8)

FIGURE 2.2 - Position and orientation vectors of the hand.

Thé control of a manipulator necessitates the inverse kine-
matics solution. For the solution of the inverse kinematics prob]em
it is necessary to find the required joint coordinates given the
desired position and orientation of the hand. The existence of an

exp]icit-so1utiqn to the kinematic equations for any manipulator is
of great importance in evaluating the manipulator's suitabi]ity for

computer control. .
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2.2 DYNAMICS OF THE MANIPULATOR ARM

2.2.1 Introduction

The first step for manipulator design and control is to derive
its dynamic model. For manipulators with only two or three degrees
of freedom the dynamic equations of the system can be derived manu-
a11y. For manipulators with more than three degrees of freedom the
equations are so complex that 4t becomes very difficult to derive
them by hand. Then it is required to form such an a]gorithm which
could automatically compoée the dynamic equations, based only on input
data on mechanism parameters. This he]ps_td eliminate the problem of
Eommitting errors when forming the model by hand;' '

The following requirements should be considered in order to

find an efficient mefhod for manipulator modelling:

i) The method to derive the equations of motion should not

be very comp1ex,'it should be easy to formulate.

ii) The model must be accurate énough to give results which
satisfactorily describe the operation of the actual
system yet simple enough to be of practical use for

both design and real time control.

111)‘ The systém equations must be solveable in a short time
for on-line cdnfro] purposes and computational efficiency.

This is requfred also to reduce the cost of simulation.

iv): The method should solve both direct and inverse problems

of dynamics. That is, given‘the motion of the mechanism
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members it should compute the necessary torques to ensure
that motion, or given torgques it should calculate the

accelerations.

v) The method has to be general. Given only the system para-
meters as input, it should give all the information needed

for the study of the system.

vi) Thé dynamic model should consider-the constraints of the
system. It should provide information to predict and

prevent actuator overloads.

2.2.2 A General Computer Oriented Algorithm- for Qynamic

Modelling of a Manipulator e

There are various recursi?e a]gorithms proposed in the
Titerature for dynamic modelling of manipu]ato}s [1-5]. They.
genera]]y-ca]cﬁlate the velocities and accelerations of each 1iﬁk
by a forward recursion starting from the’bése of thé maniﬁu]ator
" to the end 1ink. Then the generalized forcés are obtained by a
backward recursion from the end link to the base of the manipulator.
In this section a general a]gorithm for dynamic modelling of an n |
degree of freedom manipu]at&r is developed using Newton Euler's fof4
mulation. Rather fhan calculating the velocities and accelerations
directly, their éofresponding.coefficientsAare calculated as proposed
in t3]. Thus a dynamic model of the system is obtained which can be
used for ihe solution of both direct and ihverse problem of mechanics.

Also the velocities and accelerations (or corresponding coefficients)
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are calculated in each 1ink's internal coordinate system as suggested
in [4], thus eliminating the need for a great deal of coordinate
transformations.

The dynamic model of an n degree of freedom manipulator is
represented by a set of n nonlinear differential equations which
describe the motion of the system in the space of 1ntérna1 (joint)
coordinates. The equations of motion can be generated in various
forms depending on whether the information on dynamics is necessary
for dynamic analysis of the system or for the synthesis of control
algorithms and the simu]étién of particular control laws.

In general; the equation of motion_for an n degree of freedom

manipulator can be written as:

/.

. L - . . - AN
T = 9(Q)g + V3 + £(3;3,,9) + 5(@) + T (@) (2.9)
where
3 : nx]'vector of joint varijables,
J(E) : nxn symmetric, nonsingular moment of ineftia matrix,
) : nxn diagonal viscous friction matrix,

f(&iéj,a): nx1 vector specifying Coriolis and centrifugal

- effects, (i,j = 1,2,...,n),

g(q) - : nxl vector sbecifying the effects due to gravity,-

ﬁ(a) . nx1 vector specifying thg effects due to external
" forces and moments exerted on link n,

T : nx1 vector of input gengra]ized forces.

In this section a method is developed to form the matrices

.'J‘and V, and the vectors ?, E,and h assuming tﬁat the vectors 3 and E
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are known. In this method a recursive formulation based on Newton-
Euler dynamics is used. First the velocities and accelerations of
all the links of the manipﬁ]ator are obtained by a forward recursion
starting from the base of the manipulator to the end link. Generalized
forces are then calculated by a backward recursion.starting from the
end 1ink to the base of the manipulator.

There is one coordinate system attached to each link of the
manipulator which moves together with the 1ink.v Considering the
three coordinate systems as shown in Fig. 2.3, one can obtain thé

vector equation

> > % 5 :
Pi+1 = p'i + Pis _ . , (2.10)

FIGURE 2.3 - Relationship between 1ink coordinate systems.
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The Tinear velocity of the coordinate system of Tink i+l

with respect to the base coordinates is obtained by the differen-

tiation of Eq. (2.10),

dp
> _ > - T i+]

Vigl T Vi oy X Pyt )y (2.11)
where "x" sign denotes the cross product, and

51 : angular velocity of ith frame with respect to

-~

the base frame

. dﬁ-l-] L ok . .
(—HE——Ji : rate of change of Pi] with respect to the ith

frame

Differentiating Eq. (2.10) once more gives the linear acce-

Teration of ith frame with respect to the base frame /

> > > -k > - >
oo = A . . + W, . g
Q41 T T (a1 X p1+1) Wy X (w1 X p1+1)

dp* d2p¥
- i+l i+]

i
where
o, : angular acceleration of ith frame with respect

"~ to the base frame.

THe third and fourth terms on the right side of Eq. (2.12) represent
the centrifugal and Coriolis accelerations respectively. The angular

velocity of link i+1 with respect to the base coordinates is given by

> & >k

Wipp = O + w].ﬂ 7 | (2.13)
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where $?+] is the angular velocity of (i+1)th frame with respect to
the ith frame. The angular acceleration of (i+1)th coordinate frame

is obtained by differentiating Eq. (2.13)

o’
> - a ¥ (+ 1+])

d1+] i w1 X w1+]) + ( dt (20]4)

.i
Equations (2.11) to (2.14) are the basic relations for velocities
and accelerations between links and the base of the manipulator.

If 1ink i+1 is translational in coordinates (?i,yi,?.) it
travels in the direction Z, with a linear velocity 4;,q relative to
-5
2

Tink i. If it is rotational in coordinates (?.,y ) it rotates

about ? ax1s with an angular velocity §.,; relative to link i .due

i+ !
to the definition of Tink frames according to the rules given ing

Section 2.1. Hence, one obtains

21941

? q]+] , if link i+l is rotational
+% ) :
S = | (2.15)
G, if Tink i+1 is translational -
4 ' :
? P , if link i+1 is rotational
aoF i+l ’ ,
ity _
()7 | (2.16)
' 0 , 1f link i+1 is translational
1ﬂxb*]ﬂ, if Tink i+] is rotational
d ‘
(=it 31+]) ~ N « - (2.17)
ZiG.4y  » F Tink 41 s translational
dg* .
i+1 % : s :
: (——) . XPr, . + o X (i xp ), if Tink i+1 is
423 e i1 i+l ,1+] 7 yotational
Pist, | ‘ . (2.18)
dt? "1 1 7.9 if 1ink i+1 is translational o



17 -

Combining Eqs. (2.11-18) yields the following recursive
equations for angular and Tinear velocities and accelerations:

’

G; *2,0,,; » if link i+1 is rotational
;M = 4 ' (2.19)
31 , if link i+1 is translational
31. + %iam + 31. X (_;iai+1) , if 1ink i+1 is rotational
&m = 1 | (2.20)
&i _ » if link i+1 is translational
.
Vi + $1+]XB:+] s if’]inkli+1 i; rotational »
(7L R ’ S (2.21)
-> > e . . . . . - . .
\V1 + w1+]xp1+] t oz, i+ if 1ink i+1 is translational
> > ok - >
3. 0 XDy F s X (@i, XPh,) » if link i+1 is
i P17+ T 1+1 rotational
> -
iy = - (2.22)
- . .
a; + a]+]xp1+] + w]+]x( 1+]xpM]) , if Tink i+1 is

g translational
* 2m1+1x(z1q1+]) Z1q1+1

In order to obtain the ve1oc1ty and acceleration of the mass

" center of link i, S, is substituted instead of p ] in Egs. (2.1])

i

and (2.12)
> - -> +. )
> _ > -> > -> > _ .
dg; = a5 * Oy X S5 topX (wixsi)] (2.24)_
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FIGURE 2.4 f’Vectors related with the 1inks.

The equations of motion for link i can be obtained by

D'Alembert's Principle as

where

=y T

=3

e

—te

mac; ‘ - (2.25)

. ) | | (2.26)

+ total external force vector exerted on link i

. total external moment yector exerted on link i

: total mass of link i

: inertia matrix of 1ink i about its center of mass in

KV
xo’yo’ o'’
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The equations of motion dérived for 1ink i are referenced to
the bése coordinate system. However the inertia matrix is dependent
on the orientation of link i, which is chahging. Thus the computation
- is quite'comp1icated. A more efficient technique for determfnation
of the equations of motion is to havekeach Tink's dynamics referenced
to its own link coordinate system as suggested in [4]. The end result
of referencing the dynamics to the link coordinates is to obviate a
gfeat deal of coordinate transformation and to allow the inertia
matrix to be fixed in each_]ink~coordfnate system. Hence, Eqs. (2.19-
24) are rewritten in terms of each 1ink's internal coordinate system
using rotation matrices.

i

0> > . .. . . .
Ripq (Riws¥ZQ5,q) 5 1F Tink 41 s rotat1oni]/
Ria®iey =9 o (2.27)
. i 0~ . . . . .
R1+1(Riw1) , 1f Tink i+1 is trans]aﬁ1ona1
> . . —>‘ N T
where z, is given by z, = (001).
i o> > = O+ = .. . . .
R: - (Riq:+Z G 1 tR:00:XZ Q. 1) » if Tlink i+1 is
. 1 AR e Hao D 2 R Rat Mo £ rotational A
R_H_]oc]-ﬂ = : (2.28)
. 0> . . . . .
Ri+1(Riui o if 1ink i+1 is translational
i 0 ‘0 > 0 % . . .
R: 1 (RV.)HR:  qwa 7XR: 4P,y » 1T Tink i+1 is
S A KO £ o R M o DRV S
RiVie =1 | » o (2.29)
i 0+ > o 0o - 0 % . . . )
Ri+1(Rivi+zoqi+1)+R1+1w1+1XRj+1pi+1 , if 1ink i+1 is

translational
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7o 0 o - 0 % 0 - 0o - o >%
Ry (RY2 MR 10 R P PR 41054 (R 0547 XRG P4y 5

if 1link i+1 is rotational
0 >

Ri+1%541 =1 (2.30)
i 03 0 - 0 > 0 %
Ris1 (R33; oq1+1) Ri41%541%R547P5 P‘1‘+1 i+ (R1“’1+1XR1‘+1P1‘+1
L + 2R?+]mi+]xR1+] 0q1+] , if Tink i+1 1is translational

O>r% .
where RopY = (a.. r. T, AT
iP; = (a5 rysim, rocosa )l

The Tinear velocity and acceleration of mass center of link

i is given by -
b>  _ oy 0>
Rivﬁi = Ri i F R ey x R1 ; (2.31)
or  _ 0% o> 0> 0>
R.ag; = R1 ; + R® u1 X R s t Rowy X (RiijRiSi) (2.32)

where R?gi is the véctor from the origin of the ith frame to tﬁs mass
center of 1ink i referred to link i coordinates (Fig. 2.4). Once
coordinafé systems are assigned to each Tlink these vectors become.
the geometric parameters of the system. | |

Since fhe joint acce]eratioﬁs are not known,kthe expressions
for angular and linear accelerations have to be written in a modified

form in order to solve the inverse dynamics problem [3].

The angular acceleration of Tink 1 can be written as
o;->- ol L. .
Ria: = I y..q. + 6, - (2.33)

where $1j and 5} are angular.acceleration toefficients."They are .
. obtained by substituting Eq. (2.33) into Eq. (2.28). For a rotational
link
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S | o
> _ pi-ls ' :
i TRy 7 o (234
> -l 1,00+ ey
07 =Ry 059 * Ry Ry_jogy x Z,05)

For a translational 1ink

> _ i~1 . .

Yij = Ry Iﬁi-l,j . for 1< §<i-l

Pii = ) (2.35)
T I e

o5 TRy 0y

The linear acceleration of each 1ink can dlso be written as

i Y,
0> . > e - ‘
Riai _§ Bijqj s | (2.36)
- - 3=1 :

where gij and ﬁi are linear acceleration coefficients. Substituting

equations (2.33) and.(2.36) into Eq. (2.30) yields the recursive

equations for §1j and ﬁ% for a rotational 1ink as

§i. = R}'1§i_]’j + $ij X R?E? for 1 <3§ <i-

J
> - T 0>y, o :
Bii = Vi X RyPT - (2.37)
> _ pi-l= - O, 0> 0- 02,
o= Ry ngoy F 05 X RyPY Ry x (Ryuy x RypY)

and for a translational 1ink*
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_ pi- o
Big = Ry B,y * Ty x RGPS for 1< < i-l
- * . oi-1 :
Bis = Uiy x RGBT+ Ry (2.38)
_ oi-1 > 00
i = Ry Mgyt ey X RIPT RS x (R%S: x RIPY)

i+ ivi i7q

0~ i-T»
t2Rjeg X Ry 200,

The Tinear acceleration of mass center of link i can also

be represented as

Xood, + ?i 7 | (2.39)

0 =
R Tigt

i%Gi T .
J

I3 e IE

The recursive equations for vector coefficients X.., and v. are
ij Y4

obtained by substituting Egs. (2.33), (2.36) and (2.39) into Eq. (2.32)

> _ > 0 . .
Xis = By % Rigj + §1j for 1<j<i

| (2.40)
Vo= 0y x REEy o+ RYGy x (R x REZ)) + R, |

Equations of motion for Tink i can be written in coordinates

of ith frame as

(2.41)

0 0

RiFs = miRiag;

0% _ T po> 0> T p0> A | )

RiMi = IiRiui + Riwi X (IiRiwi) (2.42)

- where T} is the inertia matrix of link i.about: its center of mass

. . O .
referred to its own coordinates (Xi’yi’zi)'
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Substituting Eqs. (2.33) and (2.39) into Eqs. (2.41) and

(2.42) one gets

0+

0—)'

A:M

where Li and

and the

T, =

4

A. =
i

i

=¥

Nj are 3xn matrices given as

- > >
mi X5 Kip oeeen Xig 0 e 0]
s > -> -> >
I1[¢1] Pig werens Pes 0 eln. 0]

(2.43)

(2.44)

Considering the forces and moments acting on Tink i as shown

in Fig. 2.4,
+ —
F]-"
‘+ -—
M_i_
where
' ->
f5
->
m

one gets the equations

- > -

= fyp vy

> > - > -> >

mi RS A + (pi_] - Ci) X ?i - (p1 - C]) X

. force exerted on 1ink i by Tink i-1
: moment exertedmon link i by link -1

: gravitational acceleration .

(2.45)
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-> -

Since T.-p. o =Pp* +3 | as seen from Fig. 2
i7Pioy 3 j rom Fig. 2.4, the above

equations Tead to the following recursive relations for the reaction

forces and moments:

> > - - :
Ty = Ty P Fy - myg | (2.47)
> >% > ->% -+
m'| mw‘+‘|+ -,X 1+]+(1+§1)XF1
-;* > > :
- (P +55) xmg + B, - (2.48)

Rewriting equations (2.47) and (2.48) in the internal coor-

dinate system of 1ink i gives

ox: _ nitl, 0 = o 0 -
i Rs (Ri+1f1+]) + RiFi - ijig (2.49)

-t
1

_ pitlr0 o 0 % 0 = ’
Ry = Ry IR g+ Ry B x (R Fag)]

0% oF
+ (R_ip_i + R?gi) X (RiFi

- R%.g) + ROM (2.50)
B io

A1l the unknown reaction forces and moments can be calculated
usfng equations (2.49) and (2.50) by a’backward recursion starting
from 1ink n-to the base of the manipulator. For an n degree of
freedom manipulator %;+1 and ;h+j are, respectively the force and
moment exerted by ]ink n ﬁpdn an external object. |

Substituting Eq. (2.43) into Eq. (2.49), one obtains an
expression.fof the reaction forces which is suitable for deriving

the equation of motion.of the manipulator.

04 L3 - . -
Rifg = Ty # by =9 Y Py (2.51)




25

where the elements of this equation are given by the recursive

relations:
_ aitl :
Ty =Ry Tig L (2.52)
T i+l ,
b= Ryt | (2.53)

+ R?m1§ (2.54)

i+]
g..= RIFIg
fi 1’ f1+]

First terms of the above equations are omitted for i=n.

- i+1=>
f,. =R, 'f : . (2.55)
Hi i Hi+]

For i =n f,. is given by f, = ROF

_or i=n fy; s given by f, =R ..

Simiiar]y the reaction moments are also obtained by substi-

tuting Eq. (2.44) into Eq. (2.50) /

-.0 _ o % o > , ‘
Ry = S;@ + 35 - Gy + Wy (2.56)

The elements of Eq. (2.56) are given by the recursive relations:

5, = ritls

§ TR S PG DNy - (2.57)

where the kth column of the matrices Ci and Difare given as

k _ ,0 i+l
C: —»Riﬁ? x (Ry'T

N
5 )

341 (2.58)

k 0~ 0 k
D% (Rip$ + Risi) x L

j (2.59)

where the superscript k iancates the kth column of the matrices

involved.
+ "+1 \ 0+ i+l 0 0=+ > >
S1= RITEL o RBE X R+ (RIPY RS x B+ ny (2.60)
et ‘Y_ 1
RO (RN
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The first two terms of equations (2.57), (2.60) and (2.61) are

omitted for i = n.

> _ oitls 0 = |
My = Ri m, o+ Ripﬁ X in . (2.62)
i+] :
s > . . - Ory o
For i = n mys 1S given by m,. = ann+1 + Rnpn X an.

The required force o; torque at joint i that the acfuator
should provide is equal to the projéction of the reaction force or
moment at the joint (?i or;ﬁi according to whether the joint is
trans]ation;1 or rotational) onto the ?i_T»axis plus the friction

force or moment. Hence, )
| /

[Rj j( R% )]T+ + biqi , if Tink i+1 is rotational
(A (2.63)
( [R1 ](R ¥, )]T'+ + biai , if 1ink i+1 is translational

Equations (2.51) and (2.56) are substituted into Eq. (2.63)
>
in order to form the inertia matrix J, and the vectors f, 3 and M.

Sfarting from the first link to the last link all elementsof the

inertia matrix and the vectors are formed by means of the expressions:

| \(Ri-151)3j , if link 1.1s rotational
J.. = - _ (2.64)
i e vsl s N
(Ri-]Ti)3j , if link URE translational
for i, = 1,...,n
where the subscripts i and j on Mij indicates the corresponding

element of matrix M.
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i1 1.)3 » if 1ink i is rotational

—hy
n

i | - (2.65)

(R; qts) s if link i is translational
LY i-17173

(R;_]ﬁhi)3 , if link § is rotational
+ —
5 = 1 - . (2.66)

(R

| i-1§f1)3 , if Tink i is translational

(Ri_jfi)g » if Tink i is rotational

-
h, = 1 | ' (2.67)

.

1 ->
(R;_]in)3 » if Tink i is translational
where the subscript i on v, indicates the‘ith component of the’/vector V.

2.2.3 A Mpdified Method for Dynamic Modelling

of a Manipulator

For purposes of control it may.be desirable to have the

equation of motion of the manipulator in the form

7= 0(3)4 + Vg + ¢(3:3)d +3(F) + (D) (2.68)

where C is an nxn matrix specifying Coriolis and centrifugal effecfs.
In order to form C matrix it is necessary to reformulate the dynamic
equations of the manipulator separating di terms. Therefore angular

velocities are written in the form

& | (2.69)



assuming zero velocity for the base frame. For the case of a rotational

Tink the angular velocity coefficients are given as

PR Bl e .
Eij = Ry Ei-],j for 1< j<i-l
T o gi-lz

81 TRy 5

and for the case of a translational link

> eIz - L
S5 TR Bia1g 2is

>
0

b
]

1]
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(2.70)

(2.71)

The only part of the equations for angular and linear veloci-

. . . . . : > s -
ties which contains 95 terms consist of the vectors 055 Ny» and/yi as

given in equations (2.33), (2.36) and (2.39). Hence those vectors

are rewritten separating the éi terms. Assuming zero base ve]ocfty

those vectors can be written as

T o
ei = j§1 kzj,Kijkqjqk+] for 1i=2,...,n
where
> - R’I—]-*
Kigk = " Si-1,3k
Fisk " E&k x 7, for k = i-1
i

-> .
n: = & §&::9;

1 j;l 1] ']

(2.72)

(2.73)

(2.74)
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For the case of a rotational 1ink the coefficients gij are given as

i-1 i
P s 21y i-1
84 kﬁj( ijk * R1p1)qk+1 ¥ kﬁl(gij XELN Ry 85,5
for 1< j<i-1
. (2.75)
i
_ > -> .
849 = 2 (5 %508
k=1
For the case of a translatiomal Tink
8§ = e ROp*)a, .1 + % (Ee: XE. =13 )
ij kEj(Kijk X RiP18a kE-I(E'iJ Eiday + 2085 % Ry 2p)q
+RTS . for 1< J < i-1
1 Ti-1,3 -V =
. (2.76)
1 . /
> >y i-Ts ye
§ii k§1(g11 Xgik) (511 X Ry Zo) i
>y L > 0
where — gis = £i4 X RP¥
T (2.77)
i T L ¢::0Q. , ' 2.77
T 45 713
where the coefficients aij are given as
> i-1 -> -Og. ) ! 'g
for 1< j<i-l
(2.78)
- i >
31 = 51(511 Xgik)qk ¥ gn
" - . 0
where gii,— gij X Ryss
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The vectors Ii, and Ei which appear in the equations for

total forces and moments as given in Eqs. (2.44) and (2.45) are

rewritten using Egs. (2.72) and (2.76):

i
£.= % 3'.9
5 Y1
S I
where ¢1j m1$1j
Ro= I B
e N §
where
T TR, Q.4 + ; (.. x 1.E.,)a | for
Mig Ty ik T 2 B X %
-> _ .i > I—+ )
Hig ~ k§1( i X 138409

Substituting_Eqs.

one gets
n.
-> > .
t. = I 0.:9.
T g5y 1
where .
iz ! for 1<j<i
Ry G541,5 T %5 o . =J2
. ‘ _
Oij - .
T+ - for i<
Ry %441,j I J
. > =+|-
For i ='n Onj ¢nJ'

(2.79)

(2.80)

(2.79) and (2.80) into Egs. (2.53) and (2.57),

(2.82)

(2.83)
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- n
St =% V,.Q. (2.84)
Lt R B A .
where
it 0>, . = 60 O~ - -
Ri Vi, ¥ RPY Xogyq 5+ (RYPE+ RSE) X 44y + iy
vij =1 ,for 1<j<i (2.85)
i+ - 0+ > » . .
Ri Vitl,; + Rip? X Oi41,5 ° for i< 3
Fori=n .= (ROE* +R% ) x F SRR Using Eqs. (2.82) and
nj nn n"n ni  Mnj - g £qs. L=

(2.84) ¢ matrix can be formed. The elements of the C matrix are

given by

(R;_]zij)3 , if link i is rotational -
- '(2.86)

(R]._]S’ij)3 , if link i'i; translational
for i,j = 1,...,n.

Two different algorithms have been.deve1oped in order to
obtain the dynamic model of an n degree of freedom manipulator arm.
Both algorithms consist of recursive equations, thus making them

suitable for'programming on a digital computer. They basically

contain four stages to set-up the equations of motion:

i) In the first stage the coeffigientsyfor angular and
linear velocities and accelerations of the mass centers
of each link is calculated in internal coordinates of

links starting from the base to the end link.
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i1) In the second stage total forces and total moments
acting on each link are calculated. The values of
Tinear and ahgu]ar accelerations needed for this cal-

culation have been determined in the first step.

ii1) The reaction forces and moments acting on each link is
determined by using D'Alembert's principle, starting

from the end 1ink to the base.

”~

iv) The equation of motion of the manipulator is obtained

using the equations found in step 3.

The main difference between the fifst and second algorithms
.
is that the vector f, which represents the effects of Corio]ii/and
centrifuga1 forces, is obtained in an expanded form in the second

a]gorithm as

> > 3.5
= C(g,a)q
Thus it is expected that more insight about the system behaviour can

be‘obtained.
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ITI. CONTROL OF THE MANIPULATOR ARM

-~

The purpose of control of a manipulator arm is to maintain
a prescribed motion fdr the arm along a desired trajectory by applying
corrective compensation torques or forces to the actuators to adjust
for any deviation of the arm from the trajéctory. Since the dyhamic
model of an n degree of freedom manipulator arm consisté of n/highly
coupled, nonlinear, second order differential equations, it 15 diffi-
cult fo design a control system in order to achieve high performances.
In this section, two simple control schemes are proposed which can be
easily implemented and give satisfactory results. Thé two basic models,
which are derived in Chapter 2, are used for the calculation of system
matrices in order to obtain the feedback gain; andrthe control vector.
The first model is used when computing the control by the computed
torque technique as described in éection 3.i. In Section 3.2 an
adaptive cohtro] scheme is proposed where the second model is alsd

used to tonsider the coupling terms due to Coriolis and centrifugal

effects.
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3.1 COMPUTED TORQUE TECHNIQUE

If the equation of motion of the manipulator arm (Eq. 2.9)

is solved for joint accelerations, one obtains an equation of.the

form
§= @0 - - (3.1)

where ¥ is given by ¥ = Vé f’?(éidj,a) = 3(q) + R(q). Eq. (3.1) can

also be written as
- . Q.= UL , i=1,2,...,n o (3.2)

where U is an nx1 control vector. Thus thé system is decomposed into
n subsystems, one for eéch degree of freedom. The manibulatopfis -
contro]}ed using simple servo controllers that are closed separately
around each degree of freedom, as given by the linear control equation

= K (8 - 8) + K (G - @) + G I )

where 3&, 3& and éd are the desired trajectories given in joint

space, and K_ and KV are nxn diagonal position and velocity feedback

p
gain matrices. If Eq. (3.3) is written for joint i, one obtains the

scalar equation

=K -aq.) k(6 - 4.)+ | 3.4
u; kpi(qdi a;) kvi(qdi q;) a, (3.4)
where k_ and kV are the aiagona1 elements of the matrices Kp and Kv.
, i i : ' , : . _
Substituting Eq. (3.4) into Eq. (3.2) one gets an expression which

. describes the dynamic behaviour of the ith subsystem as
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.+ k q.+k q.=k + k0 4
q; Viq1 piqT piqdi viqd]- + qdi (3.5)

Hence, certain design requirements may be imposed upon the system by

choosing appropriate values for kp. and kV . After the control vector,
i i

u, is found,the generalized forces can be obtained in terms of the

. 2
measured quantities, d, and § as

-5

) AR AR R WA R (3.6)

The first term of Eq. (3.6) Will generate the desired torqué or force
for each joint if no que1ling error exists and system parameters are
known. However, errors due to uncertainty about system parameters,
external di§turbances,'and time delay in the servo loop exist, making
deviation from thé desired trajectory inevitable. The remaining terms
of Eq. (3.6) will generate the correction torque or force, deéénding
on whétﬁer the joint 1is rotatjonal or translational, to compensate

for small deviations from the desired joint trajectory.

3.1.1 A Simple Adaptive Approach

If the equétions of motion for the manipulator can be derived
in a closed-form, then the coupling terms can be eliminated by mathe-
matical hanjpu]ation of fhe'equations, which is equivalent to a non-
linear transformation.- This is done in [13] for a three degree of
freedom manipulator arm where the position and velocity feedback gains
are chosen to have a dampiﬁg ratio of 0.8, and a natural ffequency of
20 Hz for each link of the manipu]ator,iahd fhe system parameters are

" updated whenever their variation exceeds a predetermined tolerance value.
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3.1.2  Minimum Energy Approach with Specified

Final Time and State

Since Eq. (3.2) 1is being completely decoupled, it has a
closed form solution for the optimal control problem. If the
desired acceleration of each joint of the manipulator is known

for a given time interval [tk, tk+1] as

:;.

9

=T, . C3.7)
ko k+1 :

where T is given by T =_(y1,y2,....,yn)T, then defining the state

variables as follows

X]=qd"q s

,(3.8)
.X2 - qd - q ’
one obtains the state model of the ith subsystem as
X 0 11 X 0 0
d - o fut » te [tk’tk+]]
dt : (3.9)

with the initial condition ?(to) = ;k'

The optimal control problem is solved by using an ehergy
optimal pérformance index because it leads to stabilizing feedback
‘matrices, and the number of control parameters that should be chosen

will be reduced. The performance index s givgn by
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k+] >T. >

t
J=-1 i) u'Ru dt (3.10)
2 K . '

t

where R = p, and the terminal condition is given by X( = 0.

b
Solution of the optimal control problem defined by Egs. (3.9)
and (3.10) gives the control for ith joint as (detailed solution is

given in Appendix B)

. 6 | v ) . ) :
U-i(t) = (qd - ql') + _('qd'] - qi) + Yik ° te [tk’ tk'ﬂ]
| (3.11)

—
N
| wdy
—

where T is called time-to-go, and given by_T = tk+1 - t. Substituting
CEq. (3.11) ifto Eq. (3.2), one gets |

g+ _ég.qi'+ _gz.qi - _;;.qdi‘+_fF_ qdi + adi et tyy)
| (3.12)
‘Thué the natural frequency of the system defined by Eq. (3.12)
can be adjusted by bn]y changing time-to-go, while the daﬁping ratio
of the system is a constant having the value £ = 0.82. Therefore

~the rigidity of ‘the system can be increased by changing only a single

parameter.

3.2 A MINIMUM ENERGY ADAPTIVE SCHEME FOR
INTERACTIVE NONLINEAR MODEL

It seems that the efficiency of the control of a manipulator
arm will increase as long as the original structure of the physical

system 15 preserved in the state model. So the way in which the
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dynamic equations of the manipulator a;e converted into a state model
effects the control algorithm that will be applied to the system and
consequently its efficiency. Keeping that point in mind, the state
model of the system is described by a nonlinear equation which takes

the coupled dynamics of the joints fnto account, and given by
-> .

X = F(X,3,0) - (3.13)
where X is the state vector, a is the parameter vector, and U is the
control vector. The minimum energy'problem is considered given the
performance index to be minimized as

te

J=——; TR gt - (3.14)
2 -to . R

where R is a constant positive definite control penalization matrix.
The optimal control problem formulated by Eqs. (3.13) and (3.14)
is very hard to be determined and implemented. Therefore a sub-
optimal Tinear feedback law is proposed which requires the repeated
1inearization of the nonlinear state equations [14]. The‘non1inear

state model is approximated by a linear model given as

e

which is va]id around the measured values ;k’ gk and ﬁk at the corréc—
tion 1nstaht ty. Thus thg problem is reduced to a Tinear time in-
variant servomechanism problém if A Bk and 30k are considered

~ constants as long as the-non1inear system state stays in the vaTidity
domain of the T1inear stationary model. The solution of this prbb]em

.is_given by



39 -

At) = —R~]BE

PIOK(E) - R7BIB(E) , te (tt) (3.16)

where P(t) and p(t) are obtained from the adjoint variable via the
Tinear Riccati transformation X(t) = P(t)X(t) + P(t) and satisfy
the conventional Riccati differential equations of the linear servo-
mechanism problem. -

Further approximation is introduced by taking to = tk,
considering only Py = P(tk) and Ek = F(tk) and keeping them constants
until another correction. Thé’final time tf may be kept unchanged or
redefined at each correction for a chosen operation time A such that

tf = tk + A. Thus the suboptimal control law is given by

W(e) = () + 1, - @

/
where Gk is a linear.feedback matrix and ﬁok an open loop component

of the control vector, both constants between two corrections made

at tk and tk+1’ and they are given as

1,7,

An efficient method for the computation of G, and abk is given in

[14].

3.2.1 Linear System Matrices and Their Generation

The lirear model matrices which appear in Eq. (3.15) should
bé defined in order to apply the control a]gorithm described in
Section'3.2.1. The linear model matrices which are valid at the

, fime instant t, are obtained by evaluating the matrices in the
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equation of motion of the manipulator instead of linearizing the
nonlinear state equations. Two different forms of the equation of
motion are used to obtain the Tinear model of the system.

In order to derive the state model of the system state

variables are defined as
(3.19)

where n is the degree of freedom of the manipulator arm. If Eq. (3.1)
is used in order to obtain the linear model matrices with the above

definition of state variables, one obtains

0.1 0 0...07 0 0 ..... 0 ]
0 0 0 0...0 by byp -ee-b
A=|0 0 0 1...0|, B=[0 0 ....0 | (3.20)

0 0 0 0...1 ’ b bn2 ....b

0 0 0 0...0

where A is a (2nx2n) and B is a (2nxn) matrix. The elements of the

B matrix are obtained from the inverse of the inertia matrix as
-] .. -
= . ,J = 1,2,...4n0 . 3.21
b [J ]1J i,J , ( )
and the vector & is given'by

g =0k, | | (3.22)
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3 E,e e
where k = Va + f(qiqj,a) - a(a) + ﬁ(a). As an alternative, if a
symbolic torque vector is defined as TF =T - k¥ then the vector a

0
becomes equal to zero.
The second form of the equation of motion can also be used

to derive the state model of the system. Solution of Eq. (2.68) for

joint accelerations is given by

§= 0T @I - @ + v+ & BNEES)

-~

where k' = §(q) - B(g). With state variables defined as in Eq. (3.19),

Tinear state model matrices can be obtained from Eq. (3.23) as

0 1 0 0....... 0 ]
0 aH 0 a]2 ....... a}n .
A={0 0 0 1....... 0
0 0 0 0 .ue... 0
L0 a3,y O CHPYRRRREE CH

where the elements of the A matrix is given by the relation.
R . |
a5~ [-J Cjij 153 1,25...5N0 (3.24)

The matrix B is the same as given in Eq. (3.20), and the vector 36‘
is given as

T T2 o  (3.25
a0 J - | ‘( )
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3.3 MODEL AND CONTROL HORIZON UPDATE POLICIES

The methods for the computation of the feedback gains and
the open-loop components of the control vector, proposed in this
study, are based on a Tinear model which has to appreximate the non-
linear state equations of the controlled system. Linear mode] mat-
rices used to generate the control vector are valid as long as the
system state stays in the va]idity‘domain of the linear model. This
linear model and correspondiﬁé feedback gains have to be corrected
when the approximation error introduced by the Tinearization procedure
becomes important with respect to linear terms. Therefore the system
matrices, that appear in the equation of motion of the manipulator
should be updated when they no more represent the actual system. There

. /
are mainly two approaches adopted for that purpose:

i) The first one is on-line calculation of the system matrices
| at given instants of time with a predetermined frequency
as the manipulator arm moves along the.speciffed trajec-
tory. The update frequency of the system matrices can be
'adjusted depending upon the desired trajectories and the
desired quality of control. As a modification of that
approach, the system matrices may be updated only when
the system state moves away from the desired trajectories

more than a tolerance value. .

ii) The second approach is off-line calculation of the system
matrices. The system matrices for desired trajectories

can be calculated and memorized prior to task execution
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assuming that the desired trajectories are known in
advance. Then during movement of the manipulator arm,
required system matrices can be picked up from the memory
and kept constant as 1qng as the system state’stays in
the considered region of the desired trajectory. Signi-
ficant departures from the planned trajectory can not be
tolerated because the precomputed system matrices are
valid only when the arm configuration is in the vicinity
of the desired state. In order to overcome this drawback
Raibert and Horn [15] proposed to calculate the system
matrices for every possible configuration of the manipu]ator’
arm and store them for future use. .However, this method

requires considerable memory space. a

| éince the system matrices change during the motion of the |
manipulator arm along the trajectory, feedback gains should also be
changed according to the changing system matrices. The system matrices
and the feedback gains are updated together in most of the adaptive
control schemes found in literature.

In this étudy the update frequency of fhe system matrices and
the feedback gains are adjusted éebarately. Depending_upon the followed
trajectofy it may not be needed to update the system matrices as fre-
quent as the feedback gains.

The vaiués of the control vector.depend‘upon aAhorizon time,

T (or time-to-go) at the ehd of which the controller wants to drive
‘the system state to the desired state whf1e minimizing the control

cost. The response of the system can be improved by proper tuning
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of a single adjustment parameter which is the horizon time. Various

policies can be adopted for its adjustment:

i) A horizon time, T is chosen and kept constant in the

time interval (t,tf) where t, = t + T defines the

f
target point for the system to pass through.. The feed-
back matrix and open loop control bomponent are calcu-

lated once at time t and kept constant in the same time

”~

interval (t,t.) as shown in Fig. 3.1.

Trajectories

Gains

—~—— DESIRED TRAJECTORY /
. ——— ACTUAL TRAJECTORY
Time
Update Update
\ 1
t 1 Time

FIGURE 3.1 - Change of feedback gains with constant
' horizon time.
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ii) Instead of keéping the horizon time fixed in the inter-
val (t,tf), it is updated with a predetermined frequency.
Hence the contrb] vector is also updated with the same
frequency by taking errors with respect to the target
point at tf as shown in Fig. 3.2. Hence thg'gain values

increases asymptotically in the interval (t,tf).

Trajectories

Gains

-
- <
// :
'e}/‘
Ve .
e, e T-244 ©  ——— DESIRED TRAJECTORY
e, A —— ACTUAL TRAJECTORY
P _
e T- At
-
~
- /
- — 1 . il : -
t t, Time
/
] !
/
/
/
/
/ | S
s
. /’
f’/

ottt

Update Update Update Update
1 1 1 1

1 t, Time

FIGURE 3.2 - Change.of feedback gains with varijable
horizon time. _
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IV, SIMULATION OF MANIPULATOR BEHAVIOUR

A computer program is written to make numerical simulation
studies in order to investigate the effectiveness of the proposed

control schemes. The program is explained in the following sections.

4.1 MAIN PROGRAM

,/ ’
The general structure of the simulation program is given in

Fig. 4.1; In the first part of the program off-line calculations are
performed which include the inverse kinematics solution in order to
determine the desired joint trajectories. The second part of the program
includes the block for simulation of system dynamicé with the selected
control. scheme. | |

A1l inpﬁt data required for the-progrém cah be classified

into four groups:

} Geometric and dynamic parameters of the manipu]étor.
) Data re]ated.wjth the desired trajectories.

ii1) Data related with the control scheme.
)

Other data related with the simulation.
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A description of input data for the simulation program is given in

Appendix C.

1.2 SUBPROGRAMS FOR TRAJECTORY DEFINITION AND INVERSE
KINEMATICS SOLUTION |

There are three subprograms written for the calculation of
position, velocity, and acceleration of the end point of the manipu- |
lator arm in order to have the manipulator tip to follow a sfraight
1ine between two points given in terms of base coordinates. Those
subprograms give three different acce1eration profi]es as shown in
Fig. 4.2 and they require the end points of the stra1ght line segment
and the trave] time tf in order to generate the desired traJector1es _
of the man1pu1ator tip. Subprograms HTASK2 and HTASK3 also requ1res

the acceleration time tac

lal Acceleration profile given by:

——— SUB. HTASKI
——=- SUB. HTASK2’
""" SUB. HTASK3

FIGURE 4.2 - Acce]erat1on profiles given by subprograms
for traaectory def1n1t1on
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Given the trajectories of tﬁe man%pu]étor tip subprograms
JOINT3 and JOINT6 calculates the desired trajectories of joint coor-
dinates for two manipulator models with three and six degrees of free-
dom, respectively. The kinematic propérties of those models and their

inverse kinematics solutions are presented in Appendix D.

4.3 SUBPROGRAMS FOR DYNAMIC MODELLING OF MANIPULATOR

Three programs have~been written for dynamic modelTing of
an n degree of freedom manipulator. Eaéh of them requires the géo—
metric and dynamic parameters of the manipulator and the joint coor-
dinates and velocities as input data. HoweVer»they generate three
different forms of the equation of motion. -

The first subprogram which is cé]]ed SYST] generates fﬁé

matrices J and V and the vecfors, t, g, and b as given in Eq.(4.1).

TG VG F G+ R (4.1)

The second subprogram, SYST2, generates a short form of
Eq. (4.1) by forming the matrix J and the vector ¥ as given in Eq. (4.2).
T=0(q)g+k | (4.2)

>

Vo + F+ 3 + B

where X

“The last subprogram written for dynamic modelling of a mani-
pulator arm which is called SYST3 generates the matrices J, V, and C,

and the vectors E, and B, thus giving the equation of motion in the

form

' > > 3 > .
T2 ()6 + [C(E,Q) +VIg G+ B (4.3)
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4.4 SUBPROGRAMS FOR THE CONTROL GENERATION

There are mainly two subprograms written to generate the
inputs for the actuatorslat each joint. The first one which is cajled
REG requires the inertia matrix J and the vector k as defined in Eq.
(4.2), the desired joint positions, velocities, and acce}erations and
the horizon time as input data.

The second subprogrém, REG2 uses the values of the feedback
matrix and the control vector given by subbrogram GAIN2 in order to
calculate the actuator inputs. The inputs required for GAIN2 includes
the linear state model'matrices, A, B, and the vector 30, the control
penalization matrix R, desired terminal state vector id and the horizon

time.
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V. SIMULATION RESULTS

In order to investigate the effectiveness of the proposed
control schemes a series of computer simulations are carried outrfor
two revolute robot arms with three and six degrees of freedom, res-
pectively. The Tatter model is obtained by adding a three degree of
freedom hand to the former one. The parametérs-of'the six degree of
freedom model are given in Table 5.1 and its mechanical configufétion'

is presented in Appendix D (Fig. D.1).

TABLE 5.1 - Parameters of the six degree of freedom manipulator

|  model. '

Link Mass (kg) | Length (m) Iy (kgm?) Iy (kgm?) I (kgm?)
1 4.0 , 0.20 0.0167 0.0167 0.0067
2 2.5  0.60 . 0.0042  0.0771 0.0771
3 1.5 0.50 - 0.0025 0.0325 0.0325
4 0.5 0.12 0.0009 0.0004 | 0.0008
5 0.5 0.12  0.0008 0.0009 0.0004
6 0.5°  0.08 0.0003 0.0005 0.0003

The basic scenario used for the simulation studie; is to have

. the manipulator tip to move along a straight line from point P to point P2
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4n 1.6 seconds. The numerical values Ehosen for P] and P2 are
Py = (1,0,0) and P, = (-0.5,0.5,0.5) ekpressed in meters. A parabo-
Tic distribution is chosen for the speed of the manipulator tip, and
fhe maximum value it takes along the desired trajectory is 1.56 m/sec.

The main parameters of the simulation are the update period
of feedback gains (TGAIN), update period of system matrfces (TUP), and
the horizon time (or time-to-go, TTG). Compufer simulations are carried
out with various combinationé‘pf those parameters. .The integration tech-
nique usgd in the simulations is the fourth order Runge-Kutta with a -
step size of 0.01 seconds. Simulation results are summarized in Tables
5.2-4. The values 1h the last two columns of those tables evaluate the
tracking quality and the control cost of the system and they arevdbtained
by calculating the quédrafic performance index e

. 1 tr T > T
J=— f [(xd - %) Qxy - x) + u Ruldt
2 ty ‘

where §d.is the vector of desired states. Hence the term zd - X gives
the deviation from fhe desired trajectories (in Tab]es 5.2-4 this term

. . > . . c s .
is given as e). Q and R are diagonal penalization matrices whose- ele-

ments are given by

—
(e
(e ]
™
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-
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>
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with n being the degree of freedom of the manipd]ator

The first two sets of s1mu1at1on are carried out for the

‘ three degree of freedom model using respect1ve1y, the computed torque
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te;hnique and the adaptive feedback céntro], and the results are pre-
sented in Tables 5.2 and 5.3. A comparison of the values given in
Tables 5.1 and 5.2 shows that the adaptive feedback control gives much
better results than the computed torque technique. For both control
schemes the best tracking is achieved with a horizon time of 0.04
seconds while the system matrices and feedback gains afe updated at
each 0.01 seconds. The values given in Tab]e'5.3 indicates that in-
creasing the update period of/;ystem matrices and/or feedback gains
decreases system performance. Howéver, increasing TGAIN influences
system performance more than increasing TUP. Therefore it will be
advantageous to increase the update period of system matrices rather
tﬁan the update period of feedback gains if it is necessary‘to saVe
computer time. |

Vs

TABLE 5.2 - Performances obtained with the computed torque technique
for the three degree of freedom model (TGAIN = 0.01 sec).

T R STy Ale e AT e
0.04  0.01  0.085 13.92 32,04 67592
0.04  0.04 0.216 16.22  39.6 70350
0.04  0.08 - 0.36] 29.78 58.10 76338
0.08 0.0 0.136 1422 17.37 15578
0.08  0.04 0.124 12.19 19.78 16047
0.16  0.01 ~ 0.241 12.79 16.39 3954
0.16  0.04- ~ 0.233 1.77 15.57 3900

0.16 0.08 0.489 19.74 21,12 4319
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TABLE 5.3 - Performances obtained Qith the adaptive feedback law
for the three degree of freedom model.

TG TUP TGAIN max.error max. error T > +T >
(sec) (sec) ' (sec) -on 8.(rad) on 5. (rad/sec) Je'Qe dt  Su'Ru dt

0.04 0.0  0.01  0.000065 0.008 0.000005  14.59
0.04 0.08  0.01  0.001296 0.161  0.000848  17.03
0.04  0.01  0.04  0.081871 3.127 1.979498 5058.77
0.8 0.01  0.01  0.000271 0.011 0.000013  14.58
0.08 0.08  0.01  0.001566 0.109 0.000516  16.15
0.08 0.16  0.01  0.006350 ' 0.320 0.004270  20.39
0.08 0.0  0.04  0.104791 3.831 1.463104  2020.30
0.08 0.0  0.08  0.19494] ~ 2.844 1.670103  687.58
0.16  0.01  0.01  0.002100 0.044 0.000278  29.04
0.16  0.08 0.0  0.008548  0.182 0.003197  15.66
0.16 .0.16  0.01  0.012209 0.426 0.006668  20.18
016 0.01  0.00 0.133913 3.219 1.326210  825.06
0.16  0.01  0.08  0.19842] 2,684 1.910185  310.71
0.6 0.0  0.16  0.400077 2.899 5.094765  153.65

Figures 5.3-5 show the oscillating behaviqur of the tracking
errors of joint angles for different horizon times. It is seen that as
the horizon time is increased the feequency of oscillations decreases
while the maénitude of fhe errore increases. The torque values aTse
osci]]atee when either TUP or TGAIN 1is inereased'as shown in Figs. 5.9-12
whereas they only ripple for TUP = TGAIN =.0.01 sec (Fig. 5.8) and the
fkequency of osci]latiohs depends‘upon the horizon time. On the other
hand the control energy expended during the movement of’the mahipu]ator

A arm decreases as the horizon time is increased:
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Finally, a third set of simulations are carried out for the

six degree of freedom model using the same numerical values for the

motion of the manipulator tip that are used for the three degree of

freedom model.

following the straight line from point P] to point P

9

The orientation of the hand is kept fixed while

Performances

obtained with the adaptive control scheme are presented in Table 5.4.

TABLE 5.4 - Performances obtained with the adaptive feedback

law for the six degree of freedom model.

(ZLE) &2‘; EQ?)‘ rgﬁxéim) onmg?iigg(/)gec) g dt ARG
0.04 0.01 0.01 0.00060 0.083 0.00039 »54.46
0.04 0.08 0.01 0.01529 2.291 0.07093 69.19
0.04 7.01 0.04 0.07719 ' 2.911 2.59373 14133.91
0.16 0.01 0.01 0.22322 5.924 7.26140 >2606.59}
0.16- 0.08  0.01  0.53936 8.958 13.63615  2666.37
0.16 0.16 0.01 0.42860 7.137 10.79370 261].62?
0.16 “0.0] 0.16 0.25714 ‘4.95595 ]685.00:

4.559

Investigating the simulation results obtained with the six

degree of freedomrmode1, it is found that the maximum tracking errors

occurred in the last three joints of the manipulator. Due to the nature

of the applied control scheme the joints are perturbed with a certain

frequency by the actuator supplied torques. Since the inertias of the

last three 1links, which form the hand of the Manipu]ator arm, are

“smaller than the inertiasmof the first three links, those perturbations

causes the joints of the hand to overshoot the desired trajectories.
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FIGURE 5.1 - Desired trajectories of joint angles for the three-
degree-of-freedom model. /
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FIGURE 5.2 - Variation of the elements of the inertia matrix along
T the desired trajectories for the three-degree-of-freedom

model,
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FIGURE 5 3 - Tracking errors at joint ang]es of the three- -degree-of-
freedom model obtained with the adaptive feedback law

for TTG = 0.04 sec, TUP = 0.01 sec., and TGAIN = 0.01 sec.
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FIGURE 5.3 (continued).
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FIGURE 5.4 - Tracking error at first joint of the three-degree;of—-
freedom model obtained with the adaptive feedback Taw

for TTG = 0.08 sec., TUP = 0.01 sec., and TGAIN = 0.01 sec.
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FIGURE 5.5 - Tracking error at first Jomt of the three- -degree-of-
freedom model obtained with the adaptive feedback law
for TTG = 0.16 sec., TUP = 0 01 sec., and TGAIN = 0.01 sec.
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FIGURE. 5. 7 - Variation of the feedback. gain [GKO]]1 obtained with the
adaptive feedback law for TTG = 0.08 sec., TUP = 0.01 sec.,
and TGAIN = 0.01 sec. (three- degree -of-freedom case).
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FIGURE 5. 8 - Idealized torques acting-at Jo1nts of the three-degree-of-
* freedom model obtained with the adaptive feedback law for
TT7G = Q.04 sec., TUP = 0.01 sec., and TGAIN = 0.01 sec.
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FIGURE 5.9 - Idealized torque T, acting at first joint of the three-
degree-of-freedom mode] obtained with the adaptive feed-
back iaw for TTG = 0.04 sec., TUP = 0.10 sec., and
TGAIN = 0.01 sec. :
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FIGURE 5. 10 - Idealized torque T, act1ng at f1rst Jo1nt of the three-
' degree-of-freedom model obtained with the adaptive feed-
back Taw for TTG = 0.08 sec., TUP = 0 01 sec., and
TRAIN = 0.08 sec. '
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FIGURE 5.11 - Idealized torque T, acting at first joint of the ‘three-.
degree-of-freedom model obtained with the adaptive feed-
back law for TTG = 0.08 sec., TUP = 0.08 sec., and
TGAIN = 0.01 sec. '
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5. 12 - Idealized torque T, acting at first Jo1nt of the three-
FIGURE degree-of-freedom’ model obtained with the adaptive feed-
back law for TTG = 0.08 sec., TUP = 0.16 sec., and
TGAIN = 0.01 sec. o
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FIGURE 5.13 - Desired trajectories of joint angles for the six-
degree-of-freedom model.
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FIGURE 5.14 - Variation of the elements of the inertia matrix along
the desired trajectories for the six-degree-of-freedom
model.
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FIGURE 5. 15 - Idealized torques acting at joints of the s1x degree-of-
’ freedom model obtained with the adaptive feedback law
for TTG = O. 04 sec., TUP = 0. 01 sec., and TGAIN = 0. 01 sec.
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VI. CONCLUSIONS

The dynamic equations/of a-manipulator are very difficu]t
to obtain analytically when the degree of freedom of the system
exceeds three. Therefore a recursive a]gorithm ié developed which
forms fhe system matrices given the strucfure and design parameters
of the systeﬁ. The a1gok1thm is general and‘allows the study of a
kinematic chain of any degree of fréedom with any combination éf
joints (translational or rotational). Thfs systematic approach may
also be used to obtain closed form expressions for the dynamic model
in an easier way. Furthermore the second form of the dynamic model
derived in Section 2.2.3 considers a]solthe coup1fng térms and may
~lead to more efficient control algorithms.

Since a manipulator is a highly nonlinear ahd interactive
system, control of it for positioh and velocity tracking is very
difficu1t; and it has no génera] solution. The scheme adopted in this
" study is based'on.successive generation of a linear model using results
of the dynamic‘mbde11ing described in Chébter 2. Thus the nonlinear
p%ob]em is solved with an adaptive scheme. Control algorithms proposed

in this study have two main advantages:
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i) Feedback matrix generation is fast and compatible with

real time control constraints.

ii) Even though the minimum energy optimal control is adopted
the tuning of the control system depends on a single
basic parameter which is the horizon time, leading to a

simple operation.

A general formulation of manipulator dynamics is necessary as

a basis to the investigation of a manipulator with desired structure
and its control. Proposed algorithms are general and may be used to

investigate the dynamical behaviour of any manipulator. This general

“structure is obtained with a sacrifice on computer time but can serve

as a software support for the CAD of industria] robots.



.7]

APPENDIX A
AN ALGORITHM FOR LINK COORDINATE SYSTEM
| ASSTGNMENT

Given an n degreé of freedom manipulator the below algorithm
-assigns an orthonormal coordinate system.to each link of the manipu-

lator [12].

1. [EstabTish the base coordinate system]
| Establish a righthand orthonormal coordinate system .
—)-

' (xo,yo,go) at the supporting base with the ;o axis

lying along the axis of motion of joint 1.

2. [Initialize and loop]

For each i = 1,...,n perform steps 2.1 to 2.4.

2.1 [Establish joint axis]
| “Align the ;i with the axis of motion (rotating or

~sliding) of joint i+1. |

2.2 [Establish the origin of the j¥th coordinate system]
Locate the origin of the i-th coordinate system at

the intersection of the 31 and 31_] axes or at the
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. . ” >
ntersection of common normals between the Z; and

-+ -> .
Zi-] axes and the z; axis.

2.3 [Establish axis]-

-
X
. > -> > P> -

.= 2(z, . . .
Establish x, (54 x 21)/||z1_] X z1ll or along
the common normal between the ;i—l and ;i axes when

they are parallel.

2.4 [Establish y. axis]
Assign ;i = (Zi X ;i)/llgi X ;ill to complete the
righthand coordinate system. Extend the ?1 and ;i

axes if necessary for steps 3.1 to 3.4.

[Find joint and link parameters]

For each i, i = 1,2,...,n perform steps 3.1 and 3!4;

3.1 [Find di]
d1 is the distance from the origin of the (i-1)th
coordinate system to the intersection of the ?i_]
axis and the ;i axis along the ;i-l axis. . It is

the joint variable if joint i is prismatic.

3.2 [Find ai]
| a; is the distance from the intersection'of the .
;1-1 axis and and the ;i axis to the origin of the
~ ith coordinate system along the ;i axis.

3.3 [Find 6,]
6, is the angle of rotation from the X;_p axis to X;

axis about the ;i—l axis. It is the joint variable
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if joint 1 is revolute.

3.4 [Find ai]
o is the angle of rotation from the 31_] axis

to the ?1 axis about the ?1 axis.
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APPENDIX B
LINEAR FIXED END POINT MINIMUM
ENERGY PROBLEM

In order to solve the optimal control problem given the

- Tinear time invariant system
- - - > ‘ -
x = Ax + Bu + a, . (S;T)

with the-initial cohdition ?(to) = ;o’ where

)
n
———
o o
o =
| FE— )
-
[we)
n
—————y
— o
| SEEO——
-
vy
o
"

and the performance index

. |
= MiRae (B.2)
2

-t

o

3, the Hamiltonian is written as

with the terminal condition §(tf)

>] >

H o= - GTRY + XTIAX + BU
. v

+

KO] : : (B.3)

" Application of the maximum princip]e requires that for an

optimum system and unconstrained control
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oH.

= 6 = RK + BTK (B.4)
ou _

Solving Eq. (B.4) for the .control vector u gives the relation

d=-R718™% o (8.5)

. - 3 3 .
Using the conditions aH/BK = ; , and -9H/9x = A, one obtains the

system of equations

A -BRTBR 43, (8.6)

i = -ATX _ | | _ (B.7)

5
X

- with boundary conditions given only for X. Solution of Eq. (B.6)

for t e [t,t%] gives

| o
3t = ) Fy - 7 M TarTe (e
‘ t

t .
+ ff eA(tf'T)aodT (B.8)

t

Solving Eq. (B.7) for t e [t,t] gives
£e ~AT(T-t)+ ‘ o
AMt) = e x(t) : : (B.9)

Replacing Eq. (B.9) in (B.8) and méking a chanje of variables as
™ = 1-t, and lTetting T= tf-t one gets
_ T

T
- * - _A *
- My - ) £ e AT BT T e

x(t) .‘

v/ eA(TrT*)aOdI* (8.10) -
0 : .
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. _). 3 ’ ' .
Since x(tf) being constrained to zero, solving Eq. (B.10)

for K(t) gives

Rt) = m T (e)x(t) + R (OH(EE, . (8.11)
where
T o pex 1T -ATx
M(t) S BR d
0]
Fg(t) = AT and -~ H(t) = s eA(T T g
0

Hence the control vector is obtained by substituting Eq. (B.11)
- into Eq. (B.5) as |

St = -RTBMNOR() - R ](t)FZ( OHEE,  (8,12)

. If the expréssion for control is evaluated using the matrices

given in Eq. (B.1), and‘taking R = p, one obtains
u(t) = gy - q) F (3 - &) + (), e (t.tp)
Tsz q T d Y s o’"“f
(B.13)

where T is called time-to-go.
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APPENDIX C
INPUT DATA FOR THE SIMULATION PROGRAM

A descriptioh of ﬁnput variables of the simulation program

are given below:

i) Geometric and Dynamic Parameters of the Manipu]ator:b

N2
JT(1)

ALFD(I), THTD(I),
A(1), o{1)
MASS(I)

S(1,9)

INR(I,J)

: Number of degrees of freedom”

(d.o.f.)

: 2 XN

: N dimensional array which specifies

joint types (JT(I) = 0-if joint-i
is rotational, JT(I) =1 if joint-i
is translational.

: N dimensional arrays which give link
- coordinate parameters corresponding

. .. . d d..
to Gy 61, ass and ;

: N dimensional array which specifies

the mass of each 1ink.

: (3xN) matrix, i-th column of whiéh

gives the mass center of link i
rgfegreg to its own coordinates

(X'i"y'i’zi)'

: (9xN) matrix i-th column of which

gives the inertia matrix of Tink i
about its center of mass referred to
jts own coordinates. (The entries
of i-th column of INR are obtained




i1)

ii1)

VISFC(I)
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‘by storing the elements of each

three columns of the inertia matrix,
15, starting from the first column).

: N dimensional array which specifies

the viscous friction,coefficients
associated with each joint.

Input Data Related with Desired Trajectories:

NS

TF(I)

TAC

POINT(I,J)

TASK

: Number of straight line segments

in the desired trajectory of the
manipulator tip. ‘

: NS dimensional array which gives

the travel time of each straight
line segment.

: Acceleration and deceleration period

for the velocity profiles given by
subroutines HTASK2 and HTASK 3.

: (3 x (NS#1)) matrix which stores the

Cartesian coordinates of corner points
of the desired path given/with respect

3>
to base frame (xo,yo, o)

: Control variable used to select the

desired acceleration profile among
the three profiles shown in Fig. 4.2.

(Given a value of 1,2, -or 3 corres-

ponding to the acceleration profiles
given by subroutines HTASK1, HTASK2,
and HTASK3, respectively).

Input Data Related with the Control Scheme:

TTG
TUP
TGAIN

: Horizon time (or time-to-go).
: Update period of system matrices.

: Update period of feedbaék gains and

open loop control.
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iv) Input Data Related with the Simulation:

HF(I), HM(I)

HXX
IFORM

IHF

: 3 dimensional arrays which give

the force and moment vectors exerted
by the hand upon an external object
given in terms of base coordinates.

: Step size of integration.

: Control variable used to select the -

desired form of the dynamic model.
(Given a value of 1,2, or 3 corres-
ponding to the models formed by sub-
routines SYST1, SYST2, and SYST3,.
respectively). ~

: Control variable which sbecifies

whether the load at hand will be
taken into account or not while
generating the control. (Load is
not taken into account when it is
given the value zero).
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APPENDIX D
KINEMATIC EQUATIONS FOR THE MANIPULATORS

In this study two manipulator models are considered} é
thfee degree of freedom model, and a six degree of freedom model.
"The geometric and dynamié parameters of tHe first three links of
both models have the same values. The six'degree of freedom model

is shown in Fig. D.1 with the 1ink coordinate systems attached to it.

D.1 THREE DEGREE OF FREEDOM MODEL

D.1.1°  Solution for the Joint Angles

The homogeneous transformation matrices for the three degree
of freedom model are obtained using the coordinate parameters of the

fipst three links of the six degree of freedom model given in Table D.1.
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FIGURE D.1 - Link coordinate syétems for the six—degrée-of—

freedom manipulator model.

TABLE D.1 - Link Coordinate Parameters for the Six—Degrée-of-
. Freedom Manipulator Model
JOINT-1 . o, (deg) P 2y (m) d, (m)
1 -90 8, 0 0
2 0 6, 0.6 0
3 o 8, 0.5 0
4 90 | 0, 0 -0
5 90 0, 0 - 0.24
6 90 0, 0 0
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co ) .

S8 ce,- O 2,50
2 _ 2
Ay = ¢ ee (0.2)

0 0 1 0
0 0 0 1 |

Se o] 0 a.Se
0 0o - 1 0
0 0 0 1T ]

where S and C refer to sine and cosine, respectively.
In prder to find the joint coordinates corresponding to a
given position of the manipulator tip it is necessary to so]ve/the

matrix equation

(D.4)

0 0 0 1

where the transformation matrix Ag is obtained using the matrices

given by Eqs. (D.1-D.3) as

2 3___ - ) 5
Ao 0* A-l . AZ [aklj kaQ' ]aa4 (D )

Equating the efements of ‘the last column of matrix Ag to the compo-
ﬁents of the position vector P, one obtains the basic kinematic equa-

tions for the three degree of freedom mode] as



= 8 -
a]4 a2C ]C62,+ a3c6]c623 px

a24 = aZSG]CG2 + a3se]cez3‘ vpy

334 = a2562 + a35623 = pz

Solving Eqs. (D.6-D.8) for joint angles, one gets

8, = tan™} ¥
Py
- -p
0, = sin ! Z - - tan™!
(ag + 22,2,00, + a%)E
2 2 2 2
¢+ pZ-a;-a
6, = cos™! P27 % " %
, 2a2a3
where
p,/CO
c=f XL Hf e =0
Py/Se]

D.1.2 Solution for Joint Velocities

83

(D.9)

(D.12)

In order to control the manipulator, it is also necessary

to determine the desired joint velocities. Therefore Eqs. (D.9-D.11)

are differehtiated, yielding

’EyCB] - pXSG]

pxce] + py561

g a5t 233

De
T

aZCe2 + a3Ce23

(D.13)

‘(D.14)
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. cC + p'ﬁ :

- z

6y - —=2 (D.15)
a2a3se3

where Pys py and 52 are components of the vector E, which defines fhe

velocity of the manipulator tip} and ¢ and ¢ are given by Eqs. (D.12)
and (D.16).

(, + p,8;567)/Ce,

¢c={ . (D.16)
|y - pye C6;)/s8, , if o

I
(]

-~

D.1.3 | Solution for Joint Accelerations

Equations (D.13); (D.14) and (D.15) are differentiated once

more in order to obtain the desired joint accelerations as

. . e . . .2 / . .
pyce1 - pXSe] - 26](py36] + pxCG]) + e](pxse] - pyCB])

é] =
pXCe] + pySe]
(D.17)

. . . 2 .. -
. a35623(62,+ 93) - P, + azseze2 a3C623 3
0, = (D.18)

a2Ce2 + a3C623
. RN p2 + P, 5 + 2,2,0,00
5. 23373 (D.19)
3 2,50
8983°Y3

where Bx’ By and 52 are components of the vector E, which defines the
acceleration of the manipulator tip; and c, E,‘and ¢ are given by

Eqs. (D.12), (D.16), and (D.20).




D.2

D.2.1

-85

e . .
Px1 * P850y + (p, + p, 8,58, + p 8,56, )C86,

.. | ot
¢= 82 _ % 8.co. + s * 5o ; * (D.20)
py ] py tha py - py ]C 1 - py ]CG])SG]
cpt
56]
if CG] =0

SIX DEGREE OF FREEDOM MODEL

-Solution for the Joint Angles

The homogeneous coordinate transformation matrices for the

first three 1inks of the six degree of freedom model are the same

as for the three degree of freedom model, given by Egs. (D.1-D.3).

The transformation matrices of the‘remaining 1inks are obtained

using the Tink parameters given in Table D.1.

Ce, 0 S§, 0]
Y: 0 -Ce 0 ,
AL - 4 4 : (D.21)
0 1 0 0 ~
| 0 0 0 1]
Coy 0  Sgg 0]
;! 0 -Co 0 ; :
A = 5 5 - (D.22)
0 1 0 dg
o 0 0 1




86

co 0 56 0]
|se 0 -C8
5 | (D.23)

I
o0
1]
()]

In order to solve for joint angles, given the position

and orientation of the manipulator tip, the transformation matrix

Af is formed as follows:

Z . Ag = [ak%] k,2 = 1,...,4 (D.24)

‘where the elements of the third column of matrix A% are given by

agy * 565C96; a32 = —C65 3 a33 = 565566 3 89y T 0
| (D.25)
The transformation matrix Af can also be obtained from the arm
matrix as
6 = a0 6 = p0
A1 A] . AO A] . H
r 171 i
CG] SS] 0 O ny sX ax pX
0 0 -1 Ofin S a p '
= y vy (D.26)
-se] Ce] 0 Q n, S, a, P,
| 0 o o0 1o o o 1]

where A? is obtained by taking the inverse of the transformation
matrix Aé. After doing the multiplication shown in Eq. (D.26) and
“equating the elements of the third column of the resulting matrix to

the cbrresbonding elements given by Eq. (D.25), one gets
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n,COp - n 56, = s6.Co. | . (D.27)
5,00, - 5,58, = -Ca | (.28)
ayce] - axSG] = 565566 (D.29)
pyce]‘- PS8 = 0 | - (D.30)

Joint angles 6], 65 and 66 are solved from Eds. (D.27-D.30), yielding

P |

6, = tan” —L- . (D.31)
Py

B = cos'](s S8, - s Co,) ' (D.32)

5 x0Ty » )
a,C6, - a Se

o, = tan”l L1 X1 (D.33)
nyce] - nxse] S

. The remaining joint angles are solved using a geometric
approach. Since the joint angles 65 and 86 are known, the positibn
>

z) to

vector Bé that points from the origin of the base frame-(§6,§0, o

the origin of the coordinate frame (§3,§3,?3) cén'be derived as

Py = P - e - - (D.34)
where ;5 is given by the second column of the transformatioﬁ matrix
Ads as |

n - ce6Z ~ | (D.35)

95-= S0

Thus, the solutions for the joint angles 62 anq 63 obtained for the
three degree of freedom model can be used by the substitution of the

COmponénts of'the vector 33 for the corresponding components of the

. vector 3 in Egs. (D.10-D.12).°
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The joint angle 9, is obtai i
g 4 tained using the 2y and ans

elements of the matrix equation

A=Ay H ~ (D.36)

yielding

D
1

sar=]
g = tan {Ci/C,} - 6, : (D.37)

where

”~

C] wC62 - pZSG2 - 2 - a3ce3

C2 = w392 + pzse2 + a3563

with W= pX06] + py591 .

D.2.2 Solution for the Joint Velocities

e
/

Joint velocities é], éz and é3 are the same as for the three
degree of freedom model and they are given by Eqs. (D.13-D.16) where
compon;nt§4of the vectors BB‘and 33 should be substituted for the
corresponding combonents of the vectors B and 3 in Eqs. (D.14-D.16).

The remaining joint velocities are derived as

a2
cod, (
Ao

C] - C 34) - 93 (D.38)

De
I

2tan Q

2

where

S OYe
1

= (v - p,8,)C0, - (why + p,)S8, + 238550,

C, = (W - p,0y)88, + (why + p,)CO, + 2305085

with = (B, + p,8y)C0) + (B, - ,81)S8




if o

if o

where

De

=0

De

:0’

De

]

(s. -5 6])06] - (sX + sye])se

S6

y1

6

- axe])CG] - (ax + a8 )Se] - 6,.56.CH

5

6

C65566

N 1

6

5

6

C65C96

e1C6] - e2591

nyCe] - nxce]

(n, - nxe])CG] - (nX +n 6])36 + 6.56.56

89

(D.39)

(D.40)

(D.41)

(0.42)
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