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ABSTRACT 

 

 

A STRAIN ENERGY BASED MULTIAXIAL HIGH-CYCLE FATIGUE 

LIFE EVALUATION MODEL FOR NOTCHED STRUCTURES 

 

 

In this study, a model is presented for high-cycle fatigue-life assessment of notched 

engineering components subjected to constant amplitude multiaxial proportional loads. The 

algorithm requires only material-dependent parameters available in material data sheets. 

Applicability of the proposed approach is independent of any experimentally determined 

factor for geometry as well as loading conditions. Instead, the effects of such factors are 

taken into consideration in this study through a newly introduced parameter called equivalent 

strain energy density. The formalized fatigue design methodology estimates the fatigue life 

by directly using elastic stress and strain fields around the notch in conjunction with Coffin-

Manson-Basquin law. Stress/strain states developed in the part are determined via linear 

elastic finite element analysis. Predictions of the presented model are compared with many 

experimental results reported in the literature for specimens with various notch geometries 

made of different materials, including aluminium alloys and steels, subjected to different 

types of multi-axial loads and a remarkable level of accuracy is reached. 
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1.  INTRODUCTION 

 

 

Most mechanical components experience repeated loads and then accumulation of 

microscopic damage caused by the resulting cyclic stresses eventually leads to fatigue 

fracture. Considering fatigue is the critical mode of failure in many engineering applications, 

a successful design process requires an effective fatigue assessment. Response of a structure 

to time varying effects highly depends on the material type as well as the geometry and 

loading conditions. Extensive studies in recent years have provided a deeper understanding 

of the fatigue problem. On the other hand, the challenging nature of this problem has not yet 

allowed a universal consensus to be reached.  

 

An important difficulty encountered in fatigue-life estimation is irregular structure 

geometries. Many structural elements include geometric discontinuities, i.e. notches, leading 

to stress concentration, such as grooves, fillets, holes, and keyways. A notch may 

significantly reduce the fatigue life of a part. A fatigue-assessment model should correctly 

account for the effect of such a stress raiser. In order to account for the notch effect, many 

conventional methodologies in the literature either use experimentally determined 

coefficients that relate the data for smooth specimen to the notched one or directly include 

parameters depending on the notch geometry [1,2]. This seriously limits their applicability 

considering that, such values are available only for common geometries. Then, each new 

non-standard notch geometry requires a new experimental verification.  

 

Another major challenge to be overcome in fatigue assessment is complex stress states. 

Unlike laboratory specimens, mechanical components are mostly subjected to quite complex 

multiaxial loads. Transmission shafts, which are rotating machine elements providing 

transmission of power and torque, and turbine blades are common machine elements 

subjected to combined torsion and bending. Also, rotor shaft of a helicopter, which drives 

rotor blades to provide lifting force, can be given as an example for structures subjected to 

various combinations of axial and torsional loads. Even if the externally applied load is 

uniaxial, a multiaxial stress state develops around a stress raiser. A generally applicable 

model should be able to predict the fatigue life of a part without resorting to experimentally 
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determined load and geometry factors. Increased dependence of a model to experimentally 

determined coefficients reduces its applicability. 

 

Apart from its applicability to a wide range of geometries under various loading 

conditions, a model should be able to estimate the fatigue life using the readily available 

material properties. Many models highly recognized in the literature contain one or more 

additional material constants that are usually obtained by fitting the uniaxial experimental 

data [3-5]. This brings an additional workload and limits the use of such a model in industrial 

applications. 

 

Many of the models proposed in the literature requires nonlinear structure analysis to 

determine the local plastic stress and strain states around the notch. This poses difficulty in 

industrial applications, if the part is large, computational burden of a nonlinear analysis will 

be high. 

 

In the light of these problems that designers face, this study reports on an attempt to 

develop an alternative technique to accurately estimate the fatigue life of mechanical parts 

under constant-amplitude multiaxial loading conditions in the high cycle range. The 

presented fatigue assessment methodology does not include any loading or geometry-

dependent parameters and in this way, it can be applied to nonstandard and irregularly 

shaped structures under a wide variety of loading conditions. The proposed model also uses 

only the material properties available in material data sheets. Fatigue-strength coefficient 

and exponent are the only material properties needed to apply the model. Nonlinear plastic 

structural analysis is not required. A linear analysis for calculating strain energy state around 

the notch is sufficient to apply the model. 

 

As a final point to be noted, the proposed model in this study is a modified and 

improved version of the model previously developed [6,7]. 
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2.  LITERATURE REVIEW 

 

 

In recent years, increasing attention has been given to the study of multiaxial fatigue. 

Current studies can conventionally be classified as stress-strain based, energy based and 

fracture mechanics criteria. However, such a classification is deliberately avoided here 

because some studies involve multiple number of models built on different parameters. 

Instead, existing studies will be treated under the titles of continuum mechanics criteria and 

fracture mechanics criteria, which are related to crack nucleation and propagation phases, 

respectively.  

 

2.1.  Continuum Mechanics Criteria 

 

In this section, crack initiation issue is addressed under the continuum mechanics 

framework. Theory of Critical Distances (TCD), Continuum Damage Mechanics (CDM) and 

critical plane approach, which are widely used in the literature, will be discussed briefly. 

However, as the current trend is concentrated in certain methods and some models are a 

combination of multiple methods, such an extra subcategorization will not be attempted. 

Relevant approaches will be outlined in detail in chronological order as much as possible. 

Similar approaches will be reviewed together. It is worth noting that the models that will be 

mentioned in this section may include large amount of material plasticity i.e. propagation 

stage. The criterion here is that the fatigue process has been handled from the very beginning. 

 

The foundations of the theory of critical distances (TCD), which is an approach used 

to predict the effects of stress raisers on fatigue behaviour, were first laid by Neuber [8,9]. 

Assuming the elastic stress in the vicinity of stress raisers does not reach those values figured 

through the continuum mechanics theory, Neuber postulated that average of the elastic stress 

acting along a critical distance from the notch root is the effective stress damaging the fatigue 

process zone. Afterwards, Peterson [10] advanced a simplified way to apply Neuber's line 

method (LM). He suggested that the stress controlling the fatigue failure is not an averaged 

elastic stress over a critical distance from the hot-spot, but rather the stress state at a point 

located at a certain distance from the notch core (PM). Recently, Taylor [11] and Bellet [12], 

adopting a similar approach, averaged the elastic stress over semi-circular area and half 
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sphere which are centred at the apex of the stress, respectively. Their models are classified 

in the literature as area method (AM) and volume method (VM), respectively. 

 

The nucleation, growth, accumulation and, ultimately, merging of the microcavities in 

the material not only induce the crack initiation process, but also cause deterioration in the 

mechanical properties of the material like decrease in strength, toughness, stability, rigidity. 

This type of deterioration is called material damage. The studies conducted by Hult [13], 

Lemaitre and Chaboche [14], Lemaitre [15,16], Chaboche [17,18,19], Krajcinovic [20] and, 

Krajcinovic and Fonseka [21] in the last quarter of the 20th century revealed the physical 

relationship between the material damage and the mechanical behavior of the material in 

terms of certain mechanical variables. According to their argument, so-called the theory of 

damage mechanics, the severity of damage in a mechanical element is represented by a scalar 

function , which is called damage [22]. Damage is a function of  the stress-strain states 

and, its value varies from zero to one depending on the level of material deterioration. 

 

In conjunction with damage mechanics, the critical plane approach has been accepted 

in the literature and widely used in practice as it accounts for hardening due to phase changes 

and its applicability is not confined to metallic materials. The critical plane criterion is an 

application of the continuum mechanics methods rather than being a new method. After 

determining the plane most likely to be the crack initiation plane, coordinate transformations 

are made to evaluate the stress and strain states corresponding to this plane and damage 

parameter is defined as a function of those values. One of the most striking ideas of 

determining the critical plane was put forward by Brown and Miller in 1973 [23]. According 

to their argument, crack initiates on the plane experiencing the maximum shear stress and, 

propagates along the plane normal to the maximum normal stress direction. 

 

The rest of this section deals with the approaches based on aforementioned methods. 

Only multi-axial approaches are included in this review. Although some early studies are 

mentioned, recent approaches are more fully discussed. 

 

In 1987, Socie [24] proposed a successfully modified version of Smith-Watson-Topper 

parameter (SWT) [25], which is applicable to both proportional and non-proportional 

multiaxial loadings. Assuming that the critical plane is the plane with the maximum normal 
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strain range, , Socie expressed the normal strain energy density in the critical plane in 

terms of the maximum principal strain, ,  and  the maximum normal stress, ,  acting 

on this plane, 

 

 
 (2.1) 

 

where  is the axial fatigue strength coefficient,  is the axial fatigue ductility coefficient, 

 is the axial fatigue strength exponent,  is the axial fatigue ductility exponent, and  is the 

elastic modulus. 

 

Subsequently, Fatemi and Socie [3], inspired by Brown and Miller's critical plane 

approach [23], came up with a new parameter, so-called Fatemi-Socie parameter (FS 

parameter). Considering the friction effect induced by the irregular crack surfaces, which is 

known to extend the fatigue life by reducing stress at the crack tip, they replaced the normal 

normal stresses. Thus, the 

parameter representing the damage on the plane of maximum shear strain amplitude was 

formed as a function of maximum normal stress and maximum shear strain amplitude on the 

critical plane. Fatemi-Socie parameter is expressed as 

 

 
 (2.2) 

 

where   and  are the maximum shear strain amplitude and the maximum normal 

stress on the critical plane, respectively, and  is the yield strength.  is the material 

constant accounting for the impact of normal stress. 

 

Combining the FS parameter with the Manson Coffin Basquin relationship, the 

following fatigue life model can be obtained, 

 

 
 (2.3) 
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Fatemi-Socie critical plane model is a commonly used approach because it adequately 

explains the hardening effect due to non-proportionality and accounts for mean stress effect 

through the maximum normal stress term. 

 

Afterwards, Shamsaei and Fatemi [26,27] introduced a new model applicable to steels 

under multiaxial loading by combining the FS parameter [3] with the Roessle-Fatemi 

hardness method [28] to address the problem of the absence of material fatigue properties, a 

major challenge encountered in fatigue life calculations. Their Brinell hardness (HB) based 

life estimation model is given the following, 

 

 
 (2.4) 

 

This model is formulated under the assumption that the value of the coefficient k in the FS 

parameter is about 1.0 and the elastic modulus for steel materials is equal to 200,000 MPa. 

The parameters ,  and , which are used to represent the common material fatigue 

parameters such as axial fatigue strength coefficient, are given in terms of Brinell hardness 

as 

 

 
 (2.5) 

 

 
 (2.6) 

 

 
 (2.7) 

 

As a disadvantage, the use of this model is limited to steel materials only. 

 

In 1997, Lagoda and Macha [29] developed a new strain energy density rate parameter, 

simply be named as the power density of stresses parameter or shortly power parameter. 

Accordingly, they defined the local notch-tip stress, , based power parameter as follows, 
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 (2.8) 

 

where  is an angular frequency,  is the coefficient of cyclic strain hardening and  is 

the exponent of cyclic strain hardening. 

 

One year later, Lagoda and Macha [30] conducted a comprehensive study to examine 

models by Neuber [31] and Molski and Glinka [32]. Neuber's parameter of the amplitude of 

local strain-energy density and the equivalent strain-energy density parameter by Molski and 

Glinka are as below, respectively, 

 

 
 (2.9) 

 

 
 (2.10) 

 

By taking full advantage of the Manson-Coffin-Basquin equation and the Ramberg-

Osgood relationship, fatigue life models for parameters proposed by Neuber [31], Molski 

and Glinka [32], and Lagoda and Macha [30] can be stated as follows, respectively, 

 

 
 (2.11) 

 

 
 (2.12) 

 

 
 (2.13) 

 



8

The models were applied to notched specimens made of 10HNAP steel subjected to 

pure bending, pure torsion, combined bending and torsion load conditions The results were 

compared with experimental results obtained by the authors [30]. 

 

Considering the fatigue parameters determined for smooth specimens under pure 

tension-compression loading, Lagoda and Macha [30], to reflect the effect of stress gradient, 

used the following relationship between the damage ( ) and the lifetime  of smooth 

and notched parts, 

 

 
 (2.14) 

 

where prime ( ) represents the values of notched specimen,  is the area of the nominal 

cross section of the specimen and,  is the area of the active part of this section. 

Accordingly, they figured the fatigue life of the notched parts by multiplying the  values 

corresponding to each model with the ratio of . The results showed that, their power 

parameter model, together with the Molski and Glinka's equivalent strain energy density 

model, worked well for notched structures under random loading. On the other hand, the 

model developed by Lagoda and Macha requires parameters that relate the smooth specimen 

to the notched one in order to be applied to the notched parts. This limits its applicability 

considerably. 

 

At the beginning of the 21st century, Papadopoulos [5] presented a stress based critical 

plane type life prediction model. The applicability of the model was limited to high-cycle 

fatigue under proportional and non-proportional multiaxial loads with constant amplitude.  

While doing this, Papadopoulos made use of the generalized shear stress amplitude, a 

quantity previously introduced by him [33] and denoted as , as a criterion in determining 

the critical plane. The plane on which  attains its peak value was considered the critical 

plane. The fatigue limit criterion propounded by Papadopoulos [5] can be written as 

 

  (2.15) 
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where  is the maximum value of hydrostatic stress, . It can also be 

written as sum of the mean stress and the stress amplitude, , in the critical 

plane. The material parameters ,  and the generalized shear stress amplitude, , are 

also given in the following form,  

 

 
 (2.16) 

 

  (2.17) 

 

 
 (2.18) 

 

where  and  are the fatigue limit in zero-to-tension and the fatigue limit in fully reversed 

tension-compression, respectively and , , and  are the angles related to the critical plane. 

 

Finally, corresponding fatigue life criterion was formulated by Papadopoulos as 

                                                          

 
 (2.19) 

                                                                 

As seen in the equation, the model uses four material parameters ( , , ). Here, 

 is the fatigue limit under fully reversed torsion and  is the fatigue limit under fully 

reversed bending. The parameters  and  are determined through S-N curves. The excessive 

number of parameters that need to be determined empirically makes the use of the 

Papadopoulos model complicated. 

 

Bearing in mind that variation in principal stress directions has an impact on the fatigue 

behavior, Carpinteri and Spagnoli [34] attempted to formulate a new fatigue failure criterion 

for hard metals (brittle) by correlating the principal axes with the critical plane. To eliminate 

the problem of variation in the principal stress directions, they considered averaged principal 
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stress directions derived through suitable weight functions and suggested the following 

criterion, known as the Carpinteri-Spagnoli (C-S) criterion in the literature, 

 

 

 (2.20) 

 

Their criterion to define the equivalent stress, ,  consists of the maximum normal stress, 

, and the shear stress amplitude, , prevailing on the critical plane. Since no effect of it 

on fatigue strength of hard metals is observed, mean shear stress is not taken into account. 

Also, the expression  in the formula represents the normal stress fatigue limit for bending 

and,  symbolizes the shear stress fatigue limit for torsion. Both are calculated under fully 

reversed load circumstances. 

 

By nature of the stress-based models, Carpinteri-Spagnoli criterion can be applied only 

in long-life fatigue regimes. On the other hand, model adequately accounts for the non-

proportionality and mean stress effects. 

 

Additionally, Carpinteri et al. [35] advanced the above study and developed a strain-

based version of the Carpinteri-Spagnoli criterion to predict the fatigue life of plain metallic 

parts. In this revised version, normal and shear strain amplitudes on the critical plane were 

included, instead of stress components. An equivalent strain amplitude, , as a function 

of normal and shear strains was formed to be damage parameter as 

 

 
 (2.21) 

 

where and  are the normal strain amplitude and the shear strain amplitude related 

to the critical plane.  

 

Combining the equivalent strain amplitude parameter with Manson-Coffin equation, 

the researchers generated a new fatigue life model valid for constant amplitude multiaxial 

loading in the low/medium cycle regime, as the other strain-based models, 
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 (2.22) 

 

No extra experimental procedure was carried out by authors. They examined the validity of 

their model by analyzing the strain controlled experimental data of plain hollow cylindrical 

specimens made of  Inconel 718 and 1045 Steel reported by Socie et al. [36] and, Fatemi and 

Stephens [37]. 

 

Susmel and Lazzarin [38] assumed that the critical plane coincides with the plane 

where the maximum shear stress amplitude, , develops. To identify the maximum shear 

stress amplitude, they benefited from the Papadopoulos's [39] minimum circumscribed circle 

concept [MCC]. A stress ratio parameter including the maximum shear stress amplitude and 

the maximum normal stress, , affecting the critical plane was defined as follows, 

 

  (2.23) 

 

where and are the angles that define the initiation plane. 

 

relationship between the shear stress amplitude and the number of cycles to failure, the 

authors [38] presented a model for estimating the fatigue life of the components under 

multiaxial loading conditions, 

 

 
 (2.24) 

 

where  is the reference number of cycles,  is the fatigue strength corresponding 

to such reference and,  ( ) is the negative inverse slope of  curve. The degree of 

accuracy of the model highly depends on the number of experimental data (i.e. number of 

curves) used to determine the reference fatigue strength and the inverse slope of curves, 

which are a function of the stress ratio parameter, . 
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Later on, Lazzarin and Susmel [38,40] calibrated their model for high-cycle fatigue by 

using a linear combination of experimental data from uniaxial fully reversed constant 

amplitude tension (  =1) and torsion (  =0) tests, 

 

  (2.25) 

 

  (2.26) 

 

The model succesfully accounts for mean stress effect and non-proportionality. Thanks to 

using the fatigue strength reduction factor, , 

this model can also be applied to notched structures. On the other hand, when the value of 

the stress ratio parameter exceeds 1.0, the applicability of the model becomes questionable. 

 

In parallel with that study, Susmel and Taylor [1

method (MWCM) in conjunction with the point method (PM) and devised a new multiaxial 

fatigue life estimation model for notched components. The model was set forth to be valid 

for medium cycle regime .  

 

Since El Haddad parameter serves the purpose only in high-cycle fatigue, Susmel and 

Taylor [1] defined a new critical distance-fatigue life relation for medium-cycle regime, 

 

  (2.27) 

 

Material constants  and  are calculated through two calibration curves plotted for fully 

reversed loading. 

 

 [38], Susmel 

and Taylor [1] used an effective stress ratio parameter, , here, 

 

 
(2.28) 
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where  is the mean stress sensitivity index. The authors [1] stated that, once the stress 

curve related to any material point located on that path at any distance, , from the crack 

initiation point can be sketched and thus, the number of cycles to failure, , can be 

predicted at such point by employing the following relationship, 

 

 
 (2.29) 

 

By 2012, Walat et al. [41] revealed four different models by defining different damage 

parameters as well as different critical plane selections. These models were actually 

generalized forms for low-cycle states of the patterns previously produced by the authors for 

high-cycle regime. Thus, they were capable of accounting for both low-cycle and high-cycle 

conditions. A pair of strain criterion were proposed:  

 

(i) A damage parameter composed of the maximum normal ( ) and shear ( ) 

strains on the plane of maximum normal strain, in conjunction with the Manson-

Coffin-Basquin relationship, was defined as follows, 

 

 
 (2.30) 

 

where  is a material constant to be obtained through the experimental procedure. 

 

(ii) Another strain criterion was put forward considering the critical plane being the same 

as the plane of maximum shear strain, 

 

 
 (2.31) 

 

   where  42,43]. 
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One couple of generalized energy criteria accompanied the strain criteria: 

 

(i) A fatigue life model consisting of the amplitude of both stress ( ) and strain 

( ) components acting on the plane of maximum normal strain energy density 

was introduced as 

 

 

(2.32) 

where  is a material constant determined from uniaxial data. 

 

(ii) Lastly, the energy criterion based on the plane of maximum shear strain energy 

density was proposed in the form below, 

 

 

(2.33) 

 

and 

 

 
 (2.34) 

 

As a final remark, the authors 

experimental data from literature and pointed out that while the criterion on the plane of 

maximum normal strain and maximum shear strain energy density are highly promising, 

other models remained incapable to meet some conditions, such as non-proportional 

hardening for some materials. 

 

Ince and Glinka [44] presented two novel damage parameters. They considered the 

plane experiencing the maximum amount of damage, rather than the extreme stress-strain 

planes, as the critical plane. Their so-called generalized strain energy (GSE) damage 
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parameter can be expressed in terms of normal and shear stresses and strains on such plane 

as follows, 

 

 
 (2.35) 

 

The superscripts  and  symbolise elastic and plastic quantities, respectively. The GSE 

parameter pretty well accounts for the hardening due to non-proportional loading and the 

non-zero mean stress effect through the elastic and plastic energy terms for plain specimens. 

On the other hand, when the model is applied to notched samples, its prediction performance 

decreases. Moreover, by normalizing the shear strain energy terms (first two terms) with the 

shear stress amplitude, , and the normal strain energy terms (3rd and 4th terms) with the 

normal stress amplitude, ,  Ince and Glinka derived a new parameter named as generalized 

strain amplitude (GSA) parameter from generalized strain energy parameter. A deficiency 

about this parameter is that while GSA parameter gives good results under uniaxial stresses, 

it cannot show the same performance in multi-axial loading conditions. 

 

Their generalized strain amplitude parameter can be written as 

 

 
 (2.36) 

 

Susmel et al. [45,46] published two different studies introducing their so-called 

modified Manson-Coffin curve method (MMCCM), which predicts the fatigue life of 

metallic materials. In fact, this approach was nothing but a new version adapted to strains of 

38,40], which is known to be a stress-based 

approach.  

 

Sensitive to phase angle changes and mean stress effect, the MMCCM model was 

formulated as follows,   
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 (2.37) 

 

Here,    are material functions depending on the stress ratio,  

(recall: ), in the plane of maximum shear strain amplitude, . By 

performing appropriate experiments, such functions can be calibrated. The authors [45,46]  

used the fully reversed torsional and uniaxial plain curves for calibration and obtained the 

following explicit forms, 

 

 
 (2.38) 

 

  (2.39) 

 

  (2.40) 

 

 
 (2.41) 

 

where   ratio. 

 

Modified Manson-Coffin curve model can be applicable in both plain and notched 

specimens. On the other hand, correct determination of the stress/strain states at the 

46]. 

 

Liu et al. [47] provided a stress-fatigue life relation for components with stress raisers. 

In order to obtain the effective stress at notch root, they adopted the volume method (VM). 

The plane of maximum shear stress range was considered crack initiation plane i.e. critical 

plane. A hemisphere volume with radius of 1.54L centred the maximum stress point was 

appointed as process zone. After the stress gradient at each material point within the fatigue 

 and , maximum 

effective stresses were acquired by averaging those of values over the control volume,  , as 

follows,  
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 (2.42) 

 

 
 (2.43) 

 

where  and  are the effective shear stress and the effective normal stress, respectively. 

 

Finally, a damage parameter model for notched elements was proposed by Liu and co-

workers [47] on the basis of the effective stresses, 

 

 
 (2.44) 

 

Apart from volume concept, this model can easily be applied to plain specimens by 

employing the maximum shear stress amplitude, , instead of the effective shear stress 

and the maximum normal stress, ,  instead of the effective normal stress in such a 

plane, 

 

 
 (2.45) 

 

Carpinteri et al. [48] correlated the critical plane with averaged principal directions 

through an off-angle, just as it was done in reference [34]. Linking the averaged principal 

directions to the critical plane, this angle was defined as follows, 

 

 
 (2.46) 

 

where  and  are fully reversed normal and shear stress fatigue limits, 

respectively. An equivalent normal stress was expressed by a linear combination of  stress 

components acting on the critical plane, 
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  (2.47) 

 

The weighing factors,  and , are evaluated in terms of the fatigue limits,  and , 

and the angle between the critical plane and the fatigue fracture plane, , considering the 

uniaxial pure tension and pure torsion conditions as 

 

 

 (2.48) 

 

  (2.49) 

 

As the last step, Carpinteri et al. [48] followed a method based on the regression equation 

recommended by American Society for Testing and Materials (ASTM) [49]  in determining 

fatigue life, 

 

  (2.50) 

 

where  and  are the regression equation coefficients to be determined under fully 

reversed bending. 

 

Another comprehensive study for fatigue assessment of notched samples was 

conducted by Branco et al. [4,50]. Assuming that both the plain and the notched components 

fail when the total strain energy density at the crack initiation sites achieves a threshold 

value, Branco and his associates created a new fatigue assessment model for lateral U-shaped 

notched round bars under constant amplitude, proportional bending and torsion. The method 

was based upon the assumption that a notched part is exposed to the same damage as the 

plain one, if the crack initiation sites experience the identical stress-strain states. Thus, the 

stress concentration phenomena could be explained via smooth samples. By performing fully 

reversed strain controlled tests for plain specimens, a fatigue master curve correlating the 

total strain energy density, , to the number of cycles to failure was built by the authors 

as follows, 
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  (2.51) 

 

where   and  are  two material constants, and  is the elastic energy limit for tension. 

Branco and coworkers [4,50] employed the line method (LM) of the theory of critical 

distances (TCD) in order to calculate the uniaxial equivalent stress for notched samples. El-

Haddad parameter was used to define the critical distance. 

 

Afterwards, Branco et al. [51] improved the afore

method  [52] in order to directly compute the total strain energy density. According to 

at the crack initiation site can be expressed in 

terms of elastic strain energy density, , and plastic strain energy density, , by the 

following equation, 

 

  (2.52) 

 

where  is multiaxial coefficient.  and  are defined by the following formulas, 

 

 
 (2.53) 

 

 
 (2.54) 

 

where  is the coefficient of cyclic hardening and  is the cyclic hardening exponent. After 

evaluating the total strain energy density around the fatigue process zone, an effective strain 

energy density parameter can be calculated by using the line method. 

 

Not long ago, Liao and Zhu [53] designed a new energy based-fatigue model for the 

specimens with geometric discontinuities. As a starting point, they took the idea that not 

only the grains along the crack path, but also the ones surrounding them are determining 

factors in the fatigue assessment procedure. Stress field intensity (SFI) approach developed 

by Yao [54] about a quarter-century before this study was a guide for the researchers. 
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Considering the stress state within a local fatigue failure region, , Yao defined the stress 

field intensity damage parameter as 

 

 
(2.55) 

 

where  is function of the equivalent stress and  is the weight function. Yao [54] 

determined the weight function as a linear combination of the distance from any material 

point in local damage region to the critical point, , the direction angle between such points, 

, and, the relative stress gradient, , as follows,  

 

 
(2.56) 

 

Assuming both the smooth and the notched specimens have the same fatigue lives as 

long as their history of the stress field intensity within the local damage region is identical, 

after determining , fatigue life of a notched component can be evaluated through the S-N 

diagram. On the other hand, determining the stress field intensity and the radius of the fatigue 

failure region is laborious and time consuming [53]. 

 

[53] proposed a 

new damage parameter called energy field intensity, ,  

 

 
(2.57) 

 

where is a function of 

density model [52], it can be written in the form 

 

 (2.58) 

 

Liao and Zhu [53] related the process zone radius with the modified total strain energy 

density,  . They assumed the radius of the effective damage zone is equal to the 
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distance from the notch root to the point where value of the maximum modified total strain 

energy density decreases to its half. Finally, they clarified the last undetermined term in their 

formula: the weight function, . Substituting the weight function into the criterion, the 

energy field intensity parameter took its final form as 

 

 
(2.59) 

 

They employed the following fatigue master curve relation, depending on the material 

parameters  and , to evaluate fatigue life of notched samples, 

 

  (2.60) 

 

2.2.  Fracture Mechanics Criteria 

 

Only a few approaches will be briefly discussed in this section, as it is slightly related 

to the content of the work being conducted. 

 

Brown and Miller [55] modified the Dugdale Bilby Cottrell Swinden (DBCS) [56,57] 

model and obtained a plastic zone size expression for biaxial loading as 

 

 

 (2.61) 

 

where sec means secant series,  is the crack length,  is the biaxiality ratio and,  is the 

yield strength.  

 

As clearly seen in this formula, the plastic zone size approaches infinity as the applied 

loads approach the yield strength. In order to remove this problem, Brown and Miller, 

inspiring by the minor revision done by Tomkins [58] on the DBCS model, replaced the 

yield strength by the ultimate tensile strength. Correlating the crack growth equation they 
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developed earlier [59] with the pseudo plastic zone size mentioned above, they defined a 

crack growth rate expression as follows, 

 

 

 (2.62) 

 

In conclusion, by integrating this equation between the initial and the final crack 

lengths, and , the authors determined the crack propagation life, , as follows,  

 

 
 (2.63) 

 

and 

 

 

 (2.64) 

 

Paris type equation [60], which relates the crack growth rate with the stress intensity 

factor range, has been largely used in practice. Tanaka [61] was one of them who made the 

most of the 

crack propagation (combined mode I and mode II loading), Tanaka defined a new effective 

stress intensity factor range in the following form, 

 

  (2.65) 

 

His model was designed based on the assumption that deformations arisen from the 

different loading modes are not interactive. Tanaka suggests that his effective stress intensity 

factor can be improved to account for the combination of three modes [62].  

 

In 1992, Xiangqiao et al. [63] introduced a different effective stress intensity factor 

range as 
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 (2.66) 

 

where  is the angle representing the crack growth path and is determined through the 

maximum tangential stress criterion. One shortcoming about this model is that it was not 

verified by experimental data. 

 

Earlier this century, Paris model was reinterpreted by Kujawski [64] with different 

driving force parameter. Just like Walker did in [65], to eliminate the insensitivity of the 

Paris criterion to the mean stress effect, Kujawski revised the model and proposed the 

following expression, 

 

  (2.67) 

 

where  is the driving force constant depending on the material and the environmental 

condition. Following the empirical determination of the Kujawski model constants, fatigue 

crack growth behaviour of a given material can be correlated for various stress ratio values. 

On the other hand, this model was established ignoring the compressive effects. Only the 

tensile part of stress intensity range, , was considered. Therefore, using this model for 

stress ratios in the range of  gives more accurate results. 

 

Noroozi et al. [66] suggested that a crack can be considered as a narrow notch. Thus, 

crack growth behaviour could be explained through the analysis carried out for a notch with 

the tip radius . Assuming the material consists of the identical imaginary square material 

blocks of which a side length is equal to the notch tip radius, Noroozi et al. correlated the 

fatigue crack growth rate with the average growth rate over a block as follows, 

 

 
 (2.68) 

 

The crack growth constant, , the fatigue crack growth equation exponent, , and the 

model driving force constant, , were given in terms of the basic material fatigue properties 

as 
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 (2.69) 

 

 
 (2.70) 

 

 
 (2.71) 

 

Here, as a symbol that we are not familiar with,  was described by the authors as the 

averaging constant corresponding to first block. The authors states that, as this model is 

created by including the residual stress effect into the crack growth driving force, it is 

applicable to a wide variety of loading conditions as long as the stress ratio is in the range 

of . 
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3.  AN OVERVIEW OF THEORETICAL BACKROUND AND 

FORMULATION OF THE PRESENTED MODEL 

 

 

3.1.  Analytical Formulation 

 

In this study, an energy approach is adopted as a practical way to evaluate the crack 

initiation life of mechanical components with a stress raiser. A new strain energy parameter 

called equivalent strain energy density is defined as a measure of the material damage in the 

structures. 

 

The proposed model is applicable in high cycle fatigue regime where the contribution 

of the plastic deformation to the material damage remains relatively low compared to elastic 

deformation and, mostly negligible. Considering reversed strain fluctuation between  

and  and assuming a linearly elastic stress-strain relation, alternating strain energy 

density, , is expressed in terms of alternating elastic stress, , and alternating 

elastic strain, , as follows, 

 

 
 (3.1) 

 

The relationship between the alternating strain, , and the number of cycles to failure, 

, can be found using by Coffin-Manson-Basquin equation [67] as 

 

 
 (3.2) 

 

where  is the axial fatigue strength coefficient,  is the axial fatigue ductility coefficient, 

 is the axial fatigue strength exponent,  is the axial fatigue ductility exponent, and  is the 

elastic modulus. The superscripts  and  represent the elastic and the plastic quantities, 

respectively. Ignoring effect of the plastic deformation on the fatigue life, the equation is 

simplified to 
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 (3.3) 

 

68], indeed. Substituting 

Equation (3.3), Equation (3.1) becomes 

 

 
 (3.4) 

 

This relation, in its presented form, can only be applied to uniform parts under uniaxial 

loading, not parts containing geometric discontinuities leading to stress concentration. On 

the other hand, a complex multiaxial stress state develops around a stress raiser, even under 

uniaxial loading. In the case of multiaxiality, alternating strain energy at a given material 

point is expressed in terms of alternating stress and strain components,  and , as 

 

 
 (3.5) 

 

and the corresponding fatigue life can be calculated by 

 

 
 (3.6) 

 

One may conjecture that cracks in high cycle regime initiate from a micro crack or a 

micro flaw and the density and size of the microcracks substantially affect the number of 

cycles to failure. An evaluation based on the local extreme point may be misleading as the 

micro flaw containing the point where the maximum stress develops may not be the critical 

one. Such a choice mostly results in overly conservative estimates. On the other hand, 

considering the highly stressed regions have a much more determining effect on the fatigue 

life compared to low-stressed regions, it is obvious that a calculation based on just the 

arithmetic average of the alternating strain energy values around the notch will yield highly 

non-conservative results. In the light of such information, a region consisting of the points 
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having alternating strain energy values greater than a threshold value surrounding the stress 

raiser can be assumed as a control volume to account for the effect of the highly stressed 

region on the fatigue life. 

 

The threshold alternating strain energy density, , can be calculated by 

 

 
 (3.7) 

 

where  is the effective material endurance limit.  If the calculated fatigue life at a point 

around the notch is larger than , that point is disregarded in fatigue-life assessment of 

the notch. 

 

Considering only the material points having alternating strain energies greater than 

, i.e. the points within the high-energy control volume, averaged alternating strain energy 

density is obtained as follows,  

 

 
 (3.8) 

 

where  is the volume of the high-energy region. 

 

Actually, in the control volume, high-stressed regions have much more determining 

effect than the low-stressed regions. So much so that a 10% increase in stress level may 

reduce the life to its half. Accordingly, a fatigue-life assessment performed using only the 

averaged alternating strain energy density (Equation (3.8)) as the equivalent parameter will 

be far from reflecting the actual value. It should be modified to include the said effect. On 

the other hand, the number of cycles to failure calculated at a material point is a measure of 

the contribution of that point to the fatigue life of the structure. Accordingly, alternating 

strain energy value of each material point within the control volume may be normalized by 

a well-defined function of its corresponding fatigue life to account for the effects of the 

highly stressed points on the fatigue life of the part, in direct proportion to their intensities. 
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In the proposed fatigue assessment model  is normalized by  and then the equivalent 

alternating strain energy density is obtained as 

                                                             

 

 (3.9) 

                                                                       

Accordingly, once the stress and strain states are determined, the alternating strain energy 

for each material point in the control volume is calculated using Equation (3.5). Thus, 

following the calculation of corresponding fatigue lives at each point by Equation (3.6), 

equivalent alternating strain energy density can be figured by Equation (3.9). 

 

Finally, the fatigue life of a component is given as 

 

 
 (3.10) 

 

3.2.  Finite Element Modeling (FEM) Formulation 

 

Since the analytical solution is only available for certain geometries and it is not always 

possible to analytically determine the stress and strain states in the parts with complex 

geometry, finite element modeling (FEM) is generally employed to determine the 

stress/strain distribution in irregularly shaped parts. 

 

After determining the alternating elastic stress, , and the alternating elastic strain, 

, in element  by finite element analysis, the alternating strain energy density in that 

element, , can be calculated using the following formula, 

 

 
 (3.11) 
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In parallel with the analytical method, fatigue life corresponding to the element  is 

obtained by  

 

 
 (3.12) 

 

As a final step, the equivalent alternating strain energy density formulated in Equation 

(3.9) can be reinterpreted in terms of the discrete parameters of finite element model as 

                                                                 

 
 (3.13) 

                                                                    

where  is the volume of element . As noted before, only the elements with a strain energy 

density value exceeding the threshold energy density are considered.  
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4.  RESULTS AND DISCUSSIONS 

 

 

4.1.  Fatigue-Life Evaluation through the Proposed Model 

 

In order to evaluate the prediction performance of the model mentioned above, a 

comprehensive study is conducted using a large number of experimental data obtained from 

the literature. ANSYS Parametric Design Language (APDL) is used to develop a code to 

determine the stress and strain states and also to implement the presented fatigue analysis 

methodology for fatigue life estimation. 

 

Assuming all examined materials are linear elastic and isotropic, a linear elastic finite 

element analysis is performed for each different sample. However, in many engineering 

applications, the maximum equivalent stress at the notch exceeds the yield strength of the 

material resulting in local yielding. This affects the accuracy of the calculated stress and 

strain values to some extent. In such a case, as shown schematically in Figure 4.1, a linear 

structural analysis over predicts stresses, but under predicts strains. On the other hand, 

considering strain energy density is equal to the area under stress-strain curve, strain energy 

density in locally yielded zone is more correctly calculated by a linear analysis compared to 

stress and strain values. As long as large plastic deformations do not occur, the proposed 

model can give reasonably accurate estimations. 

 

 

Figure 4.1. A schematic stress-strain diagram for linear and non-linear curves. 
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Geometries of the samples are modelled in finite element code and then meshed. In 

order to shorten the analysis time, only a section containing the critical region is considered 

in some samples, while it is not found necessary such a simplification for most of the parts 

due to the low number of experimental data.  

 

The presented model can be applied for the parts under constant-amplitude multiaxial 

loading conditions. In the region where the concentrated forces are applied, locally high 

stresses develop. On the other hand, according to Saint-Venant principle, as the distance 

from the application point of a force becomes large, the effects of stress concentration 

weaken rapidly. Accordingly, at a sufficiently large distance from the loading points, the 

local effects decay and a smooth stress distribution prevails. Here, considering the Saint-

Venant principle, to prevent such a stress concentration developing in the structure, remote 

loading is resorted. That is to say, an extra part defined with another material and subjected 

to said forces is appended to the actual body to transmit stresses smoothly. The ways the 

loads are applied will be depicted and mentioned in detail in the following subsection. 

 

4.2.  Comparison of Experimental Results and Model Predictions for Fully 

Reversed Proportional Loading  

 

4.2.1.  Modeling and Results for Al-Si Alloy Grooved Shaft Specimen 

 

The fatigue-life assessment model is first applied to a round bar with a circular groove 

under combined tension and torsion loading with constant amplitude. The geometry and the 

dimensions of the specimen are illustrated in Figure 4.2. 

 

 

Figure 4.2. A scheme of the grooved round bar. The dimensions are given in millimetres. 
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The specimen is made of Aluminium-Silicon (Al-Si) alloy. The chemical composition 

and the material properties of Al-Si alloy reported by Liu et al. [69] are given in Table 4.1 

and Table 4.2, respectively. 

 

Table 4.1. Chemical composition of Al-Si Alloy (%) [69]. 

Si Cu Ni Mg Fe Mn Ti Zn Al 

12.37 5.28 2.67 0.82 0.42 0.2 0.106 0.006 78.128 

 

Table 4.2. Mechanical properties of the Al-Si alloy at room temperature [69]. 

 

                                              

Making use of the axisymmetric cross-sectional geometry, analyses are performed in 

two dimension. PLANE83, which is a two-dimensional 8-node axisymmetric structural solid 

element, is used as the element type. Convergence analyses are carried out by trying different 

element sizes and a mesh size is chosen such that increasing the number of elements has 

insignificant effect on the predicted fatigue life. The model includes 30,739 elements and 

93,706 nodes. The finite element model nearby the critical zone is shown in Figure 4.3.  

 

 

Figure 4.3. The finite element model around the critical region. 

 

Elastic Modulus,  (Pa) 7.80E+10 

Poisson's Ratio,  0.3 

Axial Fatigue Strength Coefficient,  (Pa) 3.98E+08 

Axial Fatigue Strength Exponent,  -0.0843 

Yield Strength,  (Pa) 2.12E+08 
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In order to prevent stress concentrations due to concentrated forces, a highly stiff 

section with an elastic modulus much greater than that of the specimen is appended to the 

structural model, and the loads are applied to that section. A section with the same elastic 

modulus as the structure is inserted between the stiff section and the main body to ensure a 

smooth stress transmission. As shown in Figure 4.4, a transverse point force in the z direction 

is applied to the corner of the stiff section to generate the given torque for each loading 

condition and a given axial stress in y direction is applied to far edge of that part. 

 

 

Figure 4.4. Loading pattern of the grooved shaft specimen made of Al-Si alloy. 

 

The axisymmetric round bar is represented by the area A1 in two-dimensional space. 

y axis of the global coordinate system is defined as the axis of symmetry.  In order to apply 

axisymmetric forces like axial force and non-axisymmetric ones like torque, proper 

boundary conditions should be imposed on the model. Since different loading types require 

different boundary conditions in ANSYS, each one is solved separately, and the obtained 

results are superposed. The movement of the edges on the symmetry axis is restricted in the 

x and z directions for tensile loading and z direction for torsional loading, while the top side, 

i.e. edge L1, is not allowed to move in y and z directions for both.  

 

Because the material is assumed to be linear and elastic, only elastic modulus and 

 

 

The fatigue-life estimation methodology estimates the fatigue lifetime based on the 

values of elastic stress and strain components calculated by the linear structural analysis. 
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The elements belonging to the appended sections are unselected so that only the elements of 

the main sample are taken into account. Among these, only the ones having a life less than 

the threshold life, , are considered. Although aluminium does not have any endurance 

limit,  is taken as  cycles for both aluminium alloys and steels in this study. If 

fatigue life of an element is calculated to be above this upper limit value, it is assumed to 

have no effect on the overall fatigue behaviour of the part.   

 

Experimental fatigue lives of the specimens for crack initiation reported by Liu et al. 

[69] and the predicted values corresponding to each load combination are presented in Table 

4.3 and the correlation between the experimental values and the model estimates can be seen 

in Figure 4.5. 

 

Table 4.3. Experimental results for Al-Si alloy notched round bar reported in the study [69] 

and the predictions of the presented model. 

Loading 
Case 

Applied  
Axial 
Load  
(N) 

Applied 
Torque 
 (N.m) 

Equivalent 
Nominal 

Stress 
(MPa) 

Stress 
Concentration 

Factor 

 

Experimental 
Crack 

Initiation 
Life,  

Predicted 
Life,  

 

1 34,461 63 76.2 2.33 38,448 121,946 

2 31,180 57 68.9 2.33 190,220 251,418 

3 28,741 52.5 63.5 2.33 515,580 441,733 

 
 

 

Figure 4.5. Correlation between experimental and theoretical fatigue lives of Al-Si alloy 

grooved round bar. 
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An inference based solely on visual inspection of the graph is not sufficient, it should 

be supported statistically. In order to determine the error range, a fatigue-life scatter analysis 

is performed in this study using the root mean square logarithmic error method [70]. The 

value of the root mean square logarithmic error, , is computed as follows, 

 

 

 (4.1) 

 

where  is the total number of the examined measurements. Accordingly, the mean square 

error, , of the scatter can be determined as 

 

  (4.2) 

 

The calculated mean square error is 2.00. This means that the average scatter of the model 

predictions falls on the scatter bands of factor 2.00. Moreover, as seen in Figure 4.6, the 

ratios of predictions to experimental data are within the acceptable ranges for a fatigue 

model. Thus, it can be concluded that experimental fatigue lives and numerical estimates are 

in satisfactory agreement. 

 

 

Figure 4.6. Experimental vs. predicted fatigue life for the notched specimen made of Al-Si 

alloy. 
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4.2.2.  Modeling and Results for AISI 1141 Stepped and Grooved Shaft Specimens 

 

In this section, two different notched geometries made of the same material are 

examined. Figure 4.7 depicts the shape and dimensions. 

 

 

 

 

Figure 4.7. Specimen geometries and dimensions for (a) AISI 1141 steel stepped shaft 

specimen, (b) AISI 1141 steel grooved shaft specimen. All dimensions are given in mm. 

 

The specimens are made of AISI 1141 steel material. Table 4.4 gives the chemical 

composition of AISI 1141 medium carbon steel presented in reference [71] and the static 

and fatigue properties of that material reported by Gates and Fatemi [72] are given in Table 

4.5. 

 

Table 4.4. Chemical composition of AISI 1141 steel in % (rest Fe) [71]. 

C Mg Si Cu Cr Ni V 

0.39-0.43 1.49-1.66 0.23-0.27 0.14-0.146 0.107-0.12 0.068-0.07 0.053-0.058 

 

(b) 

(a) 
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Table 4.5. Mechanical properties of the AISI 1141 medium carbon steel [72]. 

Elastic Modulus,  (Pa) 2.00E+11 

Poisson's Ratio,  0.29 

Shear Modulus,  (Pa) 8.02E+10 

Axial Fatigue Strength Coefficient,  (Pa) 1.30E+09 

Axial Fatigue Strength Exponent,  -0.089 

Axial Fatigue Ductility Coefficient,  (Pa) 1.0266 

Axial Fatigue Ductility Exponent,  -0.687 

Yield Strength,  (Pa) 5.24E+08 

Ultimate Tensile Strength,  (Pa) 8.75E+08 

 

Both the specimens have axisymmetric geometries. An axisymmetric structure can be 

represented by a two-dimensional finite element model. As in the previous sample, 

PLANE83 is specified as the element type. This element tolerates geometric irregularities 

without much loss of accuracy. In this sense, it is ideal for axisymmetric parts experiencing 

stress concentration. The finite element mesh around the stress raiser is illustrated in Figure 

4.8 and Figure 4.9 for the stepped and grooved shafts, respectively. 

 

 

Figure 4.8. The meshed geometry of the AISI 1141 stepped shaft specimen. The finite 

element model includes 38,098 elements and 116,067 nodes. 
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Figure 4.9. The meshed geometry of the AISI 1141 grooved shaft specimen. The finite 

element model includes 59,215 elements and 179,920 nodes. 

 

The specimens are subjected to fully reversed constant-amplitude proportional tension 

and torsion. The boundary conditions are applied in the same way as in the previous example 

(see Figure 4.4). 

 

Material endurance limit of steels ranges between  and  cycles. Accordingly, 

for AISI 1141 and the other steel materials considered in this study, threshold fatigue life, 

, is taken as  cycles, which is the same as that of aluminium material. In the 

presented model, normally all the elements having calculated life less than the threshold 

value are considered. On the other hand, as the distance from the stress raiser increases, the 

effect of the elements on the fatigue life calculated in that region rapidly decreases. 

Accordingly, it will not be a realistic approach to consider high-energy elements far from 

the critical region in fatigue life evaluation. For this reason, only the sections where the 

maximum equivalent stress is at least 2% above the nominal equivalent stress are included 

in fatigue assessment. The reason for not imposing such a limitation in the previous example 

is that all high energy elements in that specimen are already very close to the notch. 

 

Predictions of the presented algorithm for these parts are compared with the 

experimental data reported by Gates and Fatemi [72]. Experimental and estimated results for 

both specimens are listed together in Table 4.6 and the graphical representations are shown 

separately in Figure 4.10 and Figure 4.11. 
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Table 4.6. Experimental results for AISI 1141 notched shaft specimens reported in [72] 

and the estimates of the presented model. 

Specimen 
Geometry 

Loading 
Case 

Nominal 
Tensile 
Stress  
(MPa) 

Nominal 
Torsional 

Stress 
 (MPa) 

Equivalent 
Nominal 

Stress 
(MPa) 

Stress 
Concentration 

Factor 

 

Experimental 
Crack 

Initiation 
Life,   

Predicted 
Life,  

 

Stepped Shaft 1 0 344 595.8 1.74 1,767 6,916 

Stepped Shaft 2 260 274 541.1 1.96 4,865 12,122 

Stepped Shaft 3 0 294 509.2 1.74 14,492 31,691 

Stepped Shaft 4 201 214 421.7 1.96 49,713 102,432 

Stepped Shaft 5 0 240 415.7 1.74 452,785 188,813 

Stepped Shaft 6 140 154 301.2 1.95 499,081 418,472 

Grooved Shaft 1 0 344 595.8 1.65 1,923 4,631 

Grooved Shaft 2 260 274 541.1 1.85 4,732 6,673 

Grooved Shaft 3 0 294 509.2 1.65 14,912 12,470 

Grooved Shaft 4 201 214 421.7 1.84 44,071 22,057 

Grooved Shaft 5 0 240 415.7 1.65 645,000 58,476 

Grooved Shaft 6 140 154 301.2 1.83 789,999 209,783 

 

 

 

 

Figure 4.10. Correlation between experimental and theoretical fatigue lives of AISI 1141 

stepped shaft specimen. 
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Figure 4.11. Correlation between experimental and theoretical fatigue lives of AISI 1141 

grooved shaft specimen. 

 

Thanks to the sufficient number of experimental data, the comparison between 

experimental and theoretical results can be made numerically by means of correlation 

analysis. Correlation coefficient is a measure of how strong the relationship between the two 

sets of values is. Its value ranges from -1 to +1 where +1 indicates the strongest positive 

agreement, -1 indicates the strongest negative agreement, and 0 means no relationship at all. 

R, can be expressed in terms of experimental and 

theoretical lives as 

 

 
 (4.3) 

 

where  is the total number of the examined measurements and, and  are 

population standard deviations of experimental and predicted values, respectively. 

Population standard deviation can be calculated as follows, 

 

 

and analogously for  (4.4) 
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The correlation coefficient is calculated as 0.90 for the stepped shaft and 0.87 for the 

grooved shaft. This means that there is a satisfactory correlation between the experimental 

data and model estimates.  

 

Moreover, a scatter analysis performed using Equation (4.1) and (4.2) reveals the range 

of deviations from the experimentally determined values. Accordingly, mean square error of 

the scatter is figured as 2.40 for the stepped round bar and 3.38 for the grooved one. One can 

say that the estimations for the grooved shaft show somewhat larger deviation. On the other 

hand, considering most of the results for that geometry are within the 3x band and all the 

relatively large deviations remain at the safe side, as seen in Figure 4.12, it can be concluded 

that the proposed model can be applied for this specimen.  

 

 

Figure 4.12. Experimental vs. predicted fatigue life for AISI 1141 notched specimens. 

 

4.2.3.  Modeling and Results for SAE 1045 Shouldered Shaft Specimen 

 

A more comprehensive study to test the reliability of the model is carried out on SAE 

1045 shouldered cylindrical shaft specimen subjected to various fully reversed proportional 

bending and torsion combinations utilizing the experimental data available in references 

[73,74]. Geometry and dimensions of the specimen are illustrated in Figure 4.13a.  
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Figure 4.13. Shape and dimensions of SAE 1045 shouldered shaft specimen (a) whole 

body, (b) analysis domain [7]. The dimensions are in millimetres. 

 

Since there exists a large number of experimental data, a sufficiently large zone 

covering the entire critical region is employed as the analysis domain to avoid long analysis 

times. An amplified image of the analysed axisymmetric section can be seen in Figure 4.13b. 

It is worth noting that such a simplification does not have a significant effect on the results. 

Even if a larger portion of the specimen is analysed, nearly the same results are obtained. 

 

The specimen is made of SAE 1045 steel, which is a commonly used material in 

industry. Mechanical properties of SAE 1045 steel reported by Boardman [76], Leese and 

Morrow [75] and Fash et al. [74] are given in Table 4.7. The differences in values can be 

thought to arise from differences in steel forming processes and techniques. 
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Table 4.7. Mechanical properties of SAE 1045 steel. 

 Reported by 
Boardman [76] 

Reported by 
Leese and Morrow [75] 

Reported by 
Fash et al. [74] 

Elastic Modulus,  (Pa) 2.16E+11 2.024E+11 2.05E+11 

Axial Fatigue Strength Coefficient,  (Pa) 1.099E+09 9.48E+08 9.80E+08 

Axial Fatigue Strength Exponent,  -0.11 -0.092 -0.11 

Yield Strength,  (Pa) 3.53E+08 3.82E+08 3.80E+08 

 

The axisymmetric part to be analysed is meshed with PLANE83 element of which the 

characteristic features were touched in previous subsections. Additionally, such elements 

can take non-axisymmetric loads like bending and torsion, as the case in this example. The 

density of the mesh is gradually increased until no more significant change in the calculated 

fatigue life occurs i.e. convergence is obtained. The meshed view of the analysis domain is 

shown in Figure 4.14. 

 

 

Figure 4.14. The meshed geometry of SAE 1045 shouldered shaft. 

 

The specimen is subjected to fully reversed constant amplitude loads in the form of 

pure bending, in-

states that the stress states created by two different but statically equivalent loads at distances 

far enough from the application points are nearly identical. In accordance with that 

statement, differently from the preceding examples, here, in order to avoid stress 

concentration due to point forces, the force in the z direction is distributed to some nodes of 

an attached part with the same elastic modulus to generate a given torque for each loading 
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case. Also, bending moment is applied by a pair of transverse forces in x direction with the 

same magnitude but opposite directions. Loading pattern of the specimen is depicted in 

Figure 4.15. 

 

 

Figure 4.15. Loading pattern of SAE 1045 shouldered shaft specimen. 

 

The elements of the added region are unselected during post-processing, here too. 

Besides, only the sections where the maximum equivalent stress is at least 2% above the 

nominal stress are considered in fatigue assessment. 

 

Fatigue life predictions are obtained via the presented fatigue evaluation methodology 

and compared with the experimental data provided by the studies [73,74]. Experimental 

results include the number of cycles for the appearance of a 1.0 mm crack emanating from 

the fillet as well as the ultimate fracture. Since there is a discrepancy between the values 

reported by different researchers for the mechanical properties of the material, as can be seen 

in Table 4.7, the analyses are performed separately regarding to the values declared by 

Boardman [76], Leese and Morrow [75], and Fash et al. [74]. Table 4.8 gives the 

experimental and estimated fatigue lives corresponding to each load level and a graphical 

comparison can be found in Figure 4.16. 

 



45

Table 4.8. Experimental results given by [73,74] and the model predictions obtained using 

the fatigue properties reported by (a) Boardman [76], (b) Leese and Morrow [75], and (c) 

Fash et al. [74]. 

Loading 
Case 

Applied  
Bending 
Moment 
(N.m) 

Applied  
Torsional 
Moment 
 (N.m) 

Experimental 
Life for 

Initiation of  
1-mm Crack 

Final 
Fracture 

Life 

Predicted 
Life 
(a) 

Predicted 
Life 
(b) 

Predicted 
Life 
(c) 

1 1,850 2,550 2,200 5,113 3,589 3,597 1,415 

2 2,800 0 2,571 8,262 2,122 1,768 835 

3 1,250 2,700 6,402 10,420 9,127 10,859 3,465 

4 1,850 2,100 5,740 11,565 7,679 8,599 2,957 

5 1,355 2,550 5,500 11,630 10,373 12,529 3,957 

6 2,325 1,350 2,905 11,735 5,175 5,208 2,017 

7 2,000 2,100 5,998 12,050 5,211 5,469 1,996 

8 0 3,000 5,529 12,124 15,150 19,735 5,749 

9 1,150 2,700 3,000 12,700 10,931 13,433 4,154 

10 2,600 0 6,347 15,043 3,825 3,440 1,529 

11 2,586 0 14,000 17,450 3,988 3,611 1,597 

12 851 2,700 9,000 17,730 17,874 23,835 6,810 

13 840 2,700 10,000 24,540 18,041 24,095 6,885 

14 1,720 1,350 19,260 58,790 35,411 47,191 14,532 

15 1,680 960 30,000 65,049 63,538 89,290 27,378 

16 1,875 0 48,180 112,200 42,018 53,450 18,829 

17 1,220 1,700 60,800 124,500 98,067 156,801 40,546 

18 0 2,400 70,350 132,585 92,833 153,960 37,134 

19 1,680 900 84,950 153,800 66,667 94,322 28,970 

20 780 2,180 70,340 156,100 84,373 137,855 33,776 

21 1,730 0 67,300 157,125 73,198 103,281 33,055 

22 1,220 1,710 89,750 160,900 95,913 153,370 39,568 

23 570 2,180 87,830 182,250 121,551 208,100 49,170 

24 1,550 1,090 88,750 190,200 90,129 135,507 38,941 

25 1,300 1,400 84,680 226,000 140,480 228,205 60,107 

26 1,708 0 163,800 249,900 80,217 114,688 36,205 

27 845 1,800 259,900 396,800 221,251 391,872 93,263 

28 1,475 0 347,500 556,400 218,760 351,893 100,067 

29 1,250 880 462,500 734,750 395,421 654,353 182,807 

30 1,460 0 430,000 764,000 234,319 379,206 107,288 

31 990 1,390 641,500 890,500 424,017 747,256 191,434 

32 0 2,000 1,011,333 1,843,667 361,889 677,790 156,158 
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Figure 4.16. Correlation between the experimental results given by [73,74] and the model 

predictions obtained using the fatigue properties reported by Boardman [76],  Leese and 

Morrow [75], and Fash et al. [74]. 

 

There is a high harmony between experimental data and model estimates in terms of 

increasing and decreasing trends. Correlation coefficients calculated for the three different 

data sets are above 0.90. Moreover, fatigue life estimations performed using the material 

properties reported by Boardman [76] and, Leese and Morrow [75] show satisfactorily small 

deviations from the experimental values. 91% of the results calculated using the data by 

Leese & Morrow remain within the 3x range, while only two values figured with the 

Boardman's data slightly exceeds this band. On the other hand, as a matter of fact, analyses 

based on the material properties reported by Fash et al. [74] yield a bit conservative results. 

Figures 4.18-20 graphically show the deviation ranges of the model predictions from the 

experimental values. 

 

Figure 4.17 shows the contours of strain energy density, SED,  for the filleted 

specimen subjected to a bending moment of 1220 Nm and torsion of 1700 Nm. The fatigue 

lives for uniformly stressed parts corresponding to the contour values are also shown. The 

threshold SED is 80,633  for the material calculated based on the values of fatigue lives 

reported by Boardman [76]. Accordingly, the regions shown by the dark blue color are 

assumed not to contribute to the fatigue life of the specimen. A smaller region has a SED 

larger than 316,435 , which corresponds to , cycles of fatigue life. The algorithm 
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calculates the fatigue life of the specimen as 98,067 cycles for this strain energy distribution, 

while the measured crack initiation and final fatigue lives are 60,800 and 124,500 cycles, 

respectively. It should be noted that the nominal equivalent stress is 304 MPa for this 

loading, which is close to the yield strength of the material; therefore, SED of regions away 

from the notch is above the threshold value of strain energy. In the proposed fatigue 

assessment model, normally all the points around the notch having SED above its threshold 

value are considered. However, including the regions away from the notch is not realistic in 

fatigue assessment; for this reason, only the part of the beam having equivalent stress 2% 

above the nominal stress is included in fatigue calculations. If a part contains a number of 

notches or SED of noncritical regions are above the threshold value, then only the regions 

around the notch for which fatigue assessment is made should be considered. 

 

 

Figure 4.17. Strain energy density contours in the specimen subjected to a bending moment 

of 1220 Nm and torsion of 1700 Nm and the fatigue lives for uniformly stressed parts 

corresponding to the contour values. The threshold SED is 80,633  for the material. 
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Figure 4.18. Experimental vs. predicted fatigue life computed using the material properties 

reported by Boardman [76]. Mean square error of the scatter is equal to 1.78. 

 

 

Figure 4.19. Experimental vs. predicted fatigue life computed using the material properties 

reported by Leese and Morrow [75]. Mean square error of the scatter is equal to 2.06. 
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Figure 4.20. Experimental vs. predicted fatigue life computed using the material properties 

reported by Fash et al. [74]. Mean square error of the scatter is equal to 2.59.  

 

4.2.4.  Modeling and Results for En3B Grooved Shaft Specimens 

 

Prediction capability of the model is further evaluated by considering the experimental 

data reported by Susmel and Taylor [1] for En3B steel circular shaft specimens with V-

grooves of two different radii of curvature. The specimen configuration and dimensions are 

depicted in Figure 4.21. 

 

Application of the proposed fatigue-life assessment methodology requires some 

material values to be known. On the other hand, only the static mechanical properties of the 

examined material are provided in the reference (see Table 4.9). The cyclic properties such 

as fatigue strength coefficient, , and exponent, , are not given. Experimental 

determination of the values for these material properties is a very laborious and costly 

process. Fortunately, using some relations available in the literature, a correlation can be 

established between monotonic and cyclic material properties. Among these relations, the 

universal slopes method developed by Manson and Hirschberg [77], -Seeger uniform 

material law method [78],  Muralidharan-Manson modified universal slopes method [79] 
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and Roessle-Fatemi hardness method [28] are the most used methods in the literature for the 

estimation of fatigue parameters.  

 

The modified universal slopes formula proposed by Muralidharan and Manson is given 

by [80], 

 

 
 (4.5) 

 

where,  is the ultimate tensile strength and  is the true fracture ductility. Accordingly, 

using Equation (4.5) in conjunction with the Coffin-Manson-Basquin formula, the fatigue 

parameters are calculated as  and . 

 

 

Figure 4.21. En3B notched shaft specimen geometries and dimensions [1]. All dimensions 

are given in mm. 
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Table 4.9. Static properties of En3B cold rolled low-carbon steel [1]. 

Elastic Modulus,  (Pa) 2.085E+11 

Ultimate Tensile Strength,  (Pa) 6.76E+08 

Yield Strength,  (Pa) 6.53E+08 

 

The specimen geometries are axisymmetric. On the other hand, to test the 

correspondence between the results obtained both in two-dimensional and three dimensional 

spaces and to show more explicitly the application of forces and boundary conditions to the 

model, analyses are carried out for both 2D and 3D geometries. The finite element model in 

three-dimensional space is illustrated in Figure 4.22.  

 

 

Figure 4.22. The 3D finite element model of En3B grooved shaft specimen with 4 mm 

radius of curvature. 

 

The model is meshed with SOLID187 elements, which is a high order 3-D, 10 node 

tetrahedral structural solid element. This element has a quadratic displacement behaviour 

and it is well suited for irregular geometries. 

 

The specimen is subjected to different combinations of torsional and axial loads. In 

order to prevent the highly stressed regions to form in the structure due to point loads, again, 

extra sections with the same material properties as specimen are appended to both ends of 

the main model of the specimen. Torsional load is applied by a force couple at the bottom 

end and axial stress is defined on the same surface. On the other hand, the movement of the 

top surface is restricted in all directions. The boundary conditions can be seen in Figure 4.23. 
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Figure 4.23. Loading pattern of En3B grooved shaft specimen. 

 

Table 4.10 gives the empirical results reported by Susmel and Taylor [1] and the 

predictions of the model corresponding to the nominal tensile and shear stresses at the 

smallest section. It is worth noting that, since an approximate universal method is employed 

to determine the fatigue properties of the material based on its static strength instead of using 

experimentally obtained values for cyclic properties, the accuracy of the results is 

questionable. On the other hand, as can be seen in Figure 4.24, a graphically good 

correspondence is achieved. The upward/downward tendencies are correctly captured. The 

value of the calculated correlation coefficient is 0.96. 

 

In reference [1], the experimental data are provided for ultimate fracture lifetimes. In 

this respect, remembering that the presented model is developed to predict fatigue-initiation 

life, it is quite reasonable that the estimates obtained from the model are somewhat 

conservative. Nevertheless, all but one of the results stay within the error factor of 3.0. 

Considering that, a significant part of fatigue life is spent on crack formation in high cycle 

fatigue and the estimated lives are on the conservative side, but within the acceptable band, 

it can be concluded that if the experimental data were given for crack initiation lives, the 

predicted results would show a better correlation. Figure 4.25 shows the graphic 

interpretation of the results. The mean square error of the scatter is calculated as 2.02. One 

can say that the model estimates are in sound agreement with the reported experimental data 

for En3B steel grooved shaft specimens. 



53

Table 4.10. Experimental results for En3B steel notched shaft specimens reported in the 

study [1] and the estimates of the presented model. 

Loading 
Case 

Radius of  
Curvature 

r (mm) 

Nominal  
Axial 
Stress  
(MPa) 

Nominal  
Torsional 

Stress 
 (MPa) 

Equivalent 
Nominal 

Stress 
(MPa) 

Stress 
Concentration 

Factor 

 

Final 
Fracture 

Life 

Predicted 
Initial Life 

1 1.25 275 158.8 388.9 1.45 46,254 28,320 

2 1.25 259.6 155.9 374.6 1.45 82,952 40,290 

3 1.25 230 132.8 325.3 1.45 188,480 117,229 

4 1.25 200 115.5 282.9 1.45 437,907 328,901 

5 1.25 190 109.7 268.7 1.45 1,400,006 465,387 

6 1.25 180 103.9 254.5 1.45 2,174,897 670,831 

7 4 370 213.6 523.2 1.15 13,630 14,719 

8 4 350 202.1 495.0 1.15 12,200 23,793 

9 4 330 190.5 466.7 1.15 38,446 39,681 

10 4 290 167.4 410.1 1.15 282,833 116,720 

11 4 280 161.7 396.0 1.15 73,994 155,757 

 

 

 

Figure 4.24. Correlation between the model predictions and the measured final fatigue 

lives reported by Susmel and Taylor [1]. 
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Figure 4.25. Experimental vs. predicted fatigue life for En3B notched specimens.  

 

4.2.5.  Modeling and Results for SAE 1045 Solid Cylindrical Specimen with 

Transverse Circular Hole 

 

Apart from groove and fillet, another stress-increasing geometric irregularity 

frequently encountered in mechanical structures is holes. To support the argument that the 

presented model is valid for all parts regardless of their geometric characteristics, the model 

is further applied to SAE 1045 solid cylindrical specimens with transverse circular hole. The 

geometry of the specimen is drawn in Figure 4.26 and the material properties reported by 

Kurath et al. [81] are given in the Table 4.11. 

 

 

Figure 4.26. Shape and dimensions of SAE 1045 solid cylindrical specimen with transverse 

circular hole. All dimensions are given in mm. 
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Table 4.11. Mechanical properties of SAE 1045 steel material [81]. 

Elastic Modulus,  (Pa) 2.04E+11 

Poisson's Ratio,  0.28 

Shear Modulus,  (Pa) 8.03E+10 

Axial Fatigue Strength Coefficient,  (Pa) 9.3E+08 

Axial Fatigue Strength Exponent,  -0.106 

Axial Fatigue Ductility Coefficient,  (Pa) 0.298 

Axial Fatigue Ductility Exponent,  -0.49 

Yield Strength,  (Pa) 3.8E+08 

Ultimate Tensile Strength,  (Pa) 6.21E+08 

 

Unlike the samples examined previously, specimens with notches in the form of 

transverse circular holes do not have axisymmetric geometries. This necessitates the 

analyses to be carried out in three-dimensional space. The finite element model around the 

critical region is shown in Figure 4.27. Linear elastic finite element analysis is performed 

using SOLID187 type elements. Because the model is highly sensitive to changes in element 

size, the regions around the hole are refined as is done for other stress raisers to obtain more 

accurate results. The finite element model includes 718,654 elements and 987,954 nodes. 

 

 

Figure 4.27. FEM meshes of SAE 1045 solid cylindrical specimen with transverse circular 

hole. 



56

The circular bar is exposed to several fully reversed axial and torsional loads with four 

different biaxiality ratios. The values of the biaxiality ratio are 0 (pure tension), 0.5, 2 and 

(pure torsion). Since the application forms of loads and boundary conditions are identical to 

the previous sample, it will be sufficient to take a glance at Figure 4.23 to visualize the 

loading model. 

 

As may be recalled, it was mentioned that as the distance from the notch increases, the 

effect of high-energy elements on the calculated fatigue life in that region decreases 

substantially. This problem was solved for specimens with groove and fillet shaped notched 

parts, by considering  only the elements from the point where the equivalent streess reaches 

2% above the nominal stress. For the parts with a hole, significant portion of the elements 

have calculated lives shorter than the threshold life for certain load levels. In order to prevent 

consideration of elements far from the hole in fatigue-life calculations, only the elements 

within the cylindrical region having two times the radius of the hole are taken into account. 

 

Experimental results by Yip and Yan [82] and calculated values of crack initiation life 

are given in Table 4.12. 

 

Table 4.12. Experimental results for AISI 1141 notched shaft specimens reported in [82] 

and the estimates of the presented model. 

Loading 
Case 

Biaxiality 
Ratio 

Equivalent 
Nominal 

Stress 
(MPa) 

Axial  
Nominal 

Stress  
(MPa) 

 Torsional 
Nominal 

Stress 
 (MPa) 

Stress 
Concentration 

Factor 

 

Experimental 
Life  

Predicted 
Life 

1 0 177.4 177.4 0 4.50 1,317 457 

2 0 162.6 162.6 0 4.50 2,074 1,023 

3 0 147.8 147.8 0 4.51 4,372 2,454 

4 0 133.0 133 0 4.50 9,735 6,331 

5 0.5 196.5 148.5 74.3 3.93 1,110 1,111 

6 0.5 168.5 127.3 63.7 3.94 3,659 4,534 

7 0.5 159.0 120.2 60.1 3.94 4,907 7,582 

8 0.5 149.7 113.2 56.6 3.93 8,577 12,826 

9 2 209.8 58.2 116.4 3.02 1,696 11,190 

10 2 192.4 53.4 106.7 3.03 3,543 22,161 

11 2 174.9 48.5 97 3.03 5,956 43,285 

12 2 157.4 43.7 87.3 3.02 15,084 82,988 

13  236.4 0 136.5 2.52 955 7,691 

14  216.7 0 125.1 2.52 2,434 15,863 

15  196.9 0 113.7 2.52 4,149 33,548 

16  177.2 0 102.3 2.52 9,538 71,463 
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Figure 4.28 presents the correlation of the model predictions with the experimental 

fatigue data. The correlation coefficient for that geometry is calculated as 0.74. As the 

biaxiality ratio increases, in other words, as the shear stress effect becomes dominant, it is 

seen in Figure 4.29 that the results of the model diverge from the experimental data. 

Nevertheless, the deviations do not reach very high values. The maximum value of the ratio 

of model estimates to experimental data is 8.08. The average scatter of the results falls on 

the scale band of coefficient 4.17. 

 

 

Figure 4.28. Correlation between experimental and theoretical fatigue lives of SAE 1045 

solid cylindrical specimen with transverse circular hole. 

 

 

Figure 4.29. Experimental vs. predicted fatigue life for SAE 1045 solid cylindrical 

specimen with transverse circular hole.  
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4.2.6. Modeling and Results for 2024-T3 Aluminium Alloy Notched Tubular Specimen 

with a Hole  

 

In order to check the accuracy of the presented methodology in estimating number of 

cycles for crack initiation, a tubular specimen with a transverse hole and subjected to in-

phase tension and torsion is selected from the technical literature [72]. The geometry and the 

dimensions of the sample is sketched in Figure 4.30. 

 

 

Figure 4.30. Shape and dimensions of 2024-T3 aluminium alloy notched tubular specimen. 

All dimensions are given in mm. 

 

A prominent feature of the presented model that makes it stand out among many other 

models available in the literature is that its applicability is not confined to steel materials 

only. Here, a specimen made of a non-steel material is chosen to corroborate applicability of 

the model for other materials as in Section 4.2.1. Static and cyclic properties of 2024-T3 

aluminium alloy are tabulated in Table 4.13. 

 

Table 4.13. Mechanical properties of the 2024-T3 aluminium alloy [72]. 

Elastic Modulus,  (Pa) 7.34E+10 

Poisson's Ratio,  0.343 

Axial Fatigue Strength Coefficient,  (Pa) 11.942E+08 

Axial Fatigue Strength Exponent,  -0.133 

Axial Fatigue Ductility Coefficient,  (Pa) 0.066 

Axial Fatigue Ductility Exponent,  -0.445 

Yield Strength,  (Pa) 3.30E+08 

Ultimate Tensile Strength,  (Pa) 4.95E+08 
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Since the procedure followed for the said specimen is exactly similar to the previous 

one, rest of this subsection will not be elaborated further.  

 

The meshed geometry of the specimen generated with SOLID187 elements is 

displayed in Figure 4.31. The finite element mesh is made denser around the hole to obtain 

more accurately the stress and strain distribution in the notch area. 

 

 

Figure 4.31. The finite element model of 2024-T3 aluminium alloy tubular specimen with 

a hole. 

 

The presented model is developed to predict the fatigue life of parts under multiaxial 

loading conditions. However, in the literature, a vast majority of the experimental data are 

given for uniaxial loading for this geometry. On the other hand, considering that, uniaxial 

loading is a special case of multiaxial one and a multiaxial stress state occurs around a stress 

raiser even in cases of uniaxial loading, one can say that uniaxial test data can be used for 

verification purposes. Empirical and theoretical fatigue lives are listed in Table 4.14. 
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Table 4.14. Experimental results for 2024-T3 aluminium alloy notched tubular specimen 

reported in [72] and the estimates of the presented model. 

Loading 
Case 

Axial  
Nominal 

Stress  
(MPa) 

 Torsional 
Nominal 

Stress 
 (MPa) 

Equivalent 
Nominal 

Stress 
(MPa) 

Stress 
Concentration 

Factor 

 

Experimental 
Life 

Predicted 
Life 

1 145 0 145 3.14 9,500 32,692 

2 130 0 130 3.14 26,335 71,161 

3 115 0 115 3.14 140,525 158,127 

4 98 0 98 3.14 735,000 226,371 

5 0 108 187.1 2.36 18,500 49,052 

6 0 91 157.6 2.36 66,015 161,181 

7 0 76 131.6 2.36 215,000 463,792 

8 125 72 176.6 2.96 5,500 14,232 

9 81 50 118.6 2.94 216,000 214,256 

 

Figure 4.32 gives a graphical interpretation to how the estimates obtained from the 

model match with the empirical results. The correlation coefficient is calculated as 0.49 and 

mean square error is 2.44. Relationship between experimental data and model predictions 

can be seen more clearly in Figure 4.33. The results are within the acceptable limits or close 

to them.   

 

 

Figure 4.32. Correlation between experimental and theoretical fatigue lives of 2024-T3 

aluminium alloy notched tubular specimen. 
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Figure 4.33. Experimental vs. predicted fatigue life for 2024-T3 aluminium alloy notched 

tubular specimen. 

 

4.2.7. Modeling and Results for S460N Shouldered Shaft Specimen 

 

The current model is lastly validated for S460N shouldered shaft specimen. Figure 

4.34 picturizes the specimen geometry and dimensions. In order to avoid falling into 

repetition, again, only the points not mentioned in the other subsections will be detailed. 

 

 

Figure 4.34. Shape and dimensions of S460N shouldered shaft specimen [83]. All 

dimensions are given in mm. 
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The specimen is made of micro alloyed fine grained structural steel S460N (FeE460). 

Mechanical properties of S460N steel reported by Hoffmeyer et al. [84] are listed in         

Table 4.15.  

 

Table 4.15. Mechanical properties of S460N steel material [84]. 

Elastic Modulus,  (Pa) 2.085E+11 

Poisson's Ratio,  0.3 

Shear Modulus,  (Pa) 8.02E+10 

Axial Fatigue Strength Coefficient,  (Pa) 9.696E+08 

Axial Fatigue Strength Exponent,  -0.086 

Axial Fatigue Ductility Coefficient,  (Pa) 0.281 

Axial Fatigue Ductility Exponent,  -0.493 

Yield Strength,  (Pa) 5.00E+08 

Ultimate Tensile Strength,  (Pa) 6.43E+08 

 

A finite element model around the stress raiser in bi-dimensional space is depicted in 

Figure 4.35. In parallel with the preceding axisymmetric examples, PLANE83 is determined 

as the element type. 

 

 

Figure 4.35. The meshed geometry of a region around the notch of S460N shouldered shaft 

specimen. The finite element model includes 44,995 elements and 136,762 nodes. 
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The specimen is subjected to in-phase tension and torsion. The loads are applied to the 

structure just as in the first example (see Figure 4.4). Elements belonging to the appended 

regions are excluded so that stress concentrations in these regions due to the applied point 

forces are not considered in fatigue-life calculations. Again, only the sections where the 

maximum equivalent stress is at least 2% above the nominal stress are considered in the 

calculations. 

 

83]. The fatigue 

life results related to the model and the experimental study are summarized in Table 4.16. 

 

Table 4.16. Experimental results for S460N shouldered shaft specimen available in [83] 

and the estimates of the presented model. 

Loading 
Case 

Nominal  
Tensile 
Stress  
(MPa) 

Nominal  
Torsional 

Stress 
 (MPa) 

Equivalent 
Nominal 

Stress 
(MPa) 

Stress 
Concentration 

Factor 

 

Experimental 
Crack 

Initiation 
Life,  

Predicted 
Life,  

 

1 300 262 544.5 1.79 225 964 

2 225 197 408.7 1.79 4,317 14,301 

3 150 131 272.5 1.79 74,019 391,338 

4 125 109 226.8 1.79 903,597 515,038 

 

The increasing-decreasing trends of the experimental data and the model predictions 

can be seen in Figure 4.36 and the severity of the deviation in the predicted results is revealed 

by the subsequent graph. As can be seen in Figure 4.37, all values but one fall slightly out 

of error factor of 3.0. The calculated mean square error of the scatter is equal to 3.63. 
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Figure 4.36. Correlation between experimental and theoretical fatigue lives of S460N 

shouldered shaft specimen. 

 

 

Figure 4.37. Experimental vs. predicted fatigue life for S460N notched specimen. 
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4.3.  Mean Stress Effect 

 

Besides fully reversed loads, fluctuating loads superposed on a static load also appear 

commonly in engineering applications. Accordingly, it is extremely important to consider 

the mean stress effect in fatigue design processes in order to extend the scope of applicability 

of a model. On the other hand, in the presence of geometric discontinuities, accurately 

modelling the mean stress effect is a quite complicated issue. The first steps in understanding 

the influence of non-zero mean stress on fatigue were taken by Sines [85] and Smith [86]. 

Sines' studies have shown that tensile mean stresses have a detrimental effect on fatigue life 

while compressive mean stresses lead to positive effects. Also, Smith has found that mean 

shear stress has no significant effect on fatigue life. 

 

Mean stress effect is incorporated in fatigue parameters in different ways. Fatemi and 

Socie [3], in order to reflect the effects of asymmetric loads, replaced the normal component 

maximum value of normal stress (see 

Equation (2.2)). Ince and Glinka [44], on the other hand, took into account the mean shear 

stress effect via the maximum shear stress term in their so-called generalized strain energy 

(GSE) damage parameter (see Equation (2.35)). Susmel and Taylor [1] accounted for this 

effect with a newly introduced stress ratio parameter. Their parameter included a material 

dependent constant called mean stress sensitivity index (see Equation (2.28)). 

 

The common feature of the above-mentioned models is that they all work on the 

critical plane basis. It is known that critical plane approaches are superior in reflecting 

loading-dependent effects such as mean stress and non-proportionality. For the presented 

model, such corrections alone will not be sufficient in explaining the effect in question. 

Nevertheless, the model can be reformulated to adequately account for the mean stress effect. 

For this purpose, Smith-Watson-Topper (SWT) model is taken as the starting point in this 

study. According to SWT model [25], the fatigue life, , can be obtained using the 

following relation: 

 

  (4.6) 
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This equation implies that any applied combination of non-zero mean stress and 

alternating stress is expected to result in the same life as an equivalent alternating stress 

applied in a reversed cycle. Accordingly, such an equivalent alternating stress, , can be 

expressed as follows 

 

  (4.7) 

 

To account for the mean stress effect, equivalent alternating strain energy density, , 

is multiplied by an introduced mean-stress factor, , and an alternative value for strain 

energy density is obtained as  

 

  (4.8) 

 

where  is the ratio of equivalent alternating stress, , in Equation (4.7) to alternating 

stress, ,  given as 

 

 
 (4.9) 

 

For multiaxial stress states,  is the peak value of Von Mises stress and  is the 

alternating Von Mises stress. 

 

4.3.1.  Modeling and Results for En3B Grooved Shaft Specimens in the Presence of 

Asymmetric Loads 

 

The reliability of the new form of the proposed model to account for the effects of 

mean stress is first tested on the En3B grooved shaft specimens, dealt with in Section 4.2.4, 

subjected to in-phase tension and torsion. Since the information about the geometry, material 

and modelling are given in detail in the mentioned section, only the results will be discussed 

in this section.  
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The loading cases and the corresponding experimental and theoretical fatigue lives are 

given in Table 4.17.  

 

Table 4.17. Experimental results for En3B steel notched shaft specimens reported in 

reference [1] and the estimates of the presented model in the presence of asymmetric loads. 

Loading 
Case 

Radius of  
Curvature 

r (mm) 

Amplitude  
of Nominal  

Tensile 
Stress   
(MPa) 

Amplitude  
of Nominal 
Torsional 

Stress 
 (MPa) 

Load Ratio 
(Min/Max) 

R 

Biaxiality 
Ratio 

 

Experimental 
Life  

Predicted 
Life 

1 1.25 190 190 0 1 34,298 15,846 

2 1.25 180 180 0 1 28,108 25,212 

3 1.25 170 170 0 1 110,056 41,903 

4 1.25 165 165 0 1 249,286 53,364 

5 1.25 160 160 0 1 370,618 68,152 

6 1.25 150 150 0 1 844,615 115,071 

7 4 250 144.3 0 3^(1/2) 60,384 94,735 

8 4 245 141.5 0 3^(1/2) 235,611 112,315 

9 4 240 138.6 0 3^(1/2) 340,599 131,747 

10 4 230 132.8 0 3^(1/2) 316,599 186,049 

11 4 220 127 0 3^(1/2) 488,018 266,691 

12 4 200 115.5 0 3^(1/2) 476,345 533,309 

 

Due to aesthetic concerns, unlike what is done in Section 4.2.4, correlation charts are 

arranged separately for two different geometries. Conformity of the model estimates with 

the experimental data is shown in Figures 4.38 and 4.39. The correlation coefficients are 

calculated as 0.99 for the specimen with a groove of 1.25 mm radius of curvature and 0.73 

for the other one with 4.0 mm radius of curvature. Although the former seems superior in 

terms of upward / downward trends, when it comes to scattering, the predictions for the 

specimen with a groove of 4.0 mm radius of curvature is more consistent as can be seen in 

Figure 4.40. The overall mean square error of the scatter is 2.84. One should also note that 

there are inconsistencies in the experimental results. In the second test, although the load 

was reduced compared to the first test, fatigue life decreased.   
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Figure 4.38. Correlation between the model predictions and the final fatigue lives for 

specimen with a groove of 1.25 mm radius of curvature in the presence of asymmetric 

loads. 

 

 

Figure 4.39. Correlation between the model predictions and the final fatigue lives for 

specimen with a groove of 4.0 mm radius of curvature in the presence of asymmetric loads. 
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Figure 4.40. Experimental vs. predicted fatigue life for En3B notched specimens in the 

presence of asymmetric loads. 

 

4.3.2.  Modeling and Results for DIN 34CrNiMo6 Round Bar with a Lateral U-Shaped 

Notch  in the Presence of Asymmetric Loads 

 

The capability of the model to account for the effects of non-zero mean stress is 

checked lastly on the DIN 34CrNiMo6 round bar with a lateral U-shaped notch using the 

experimental data reported by Branco et al. [4,50,51]. Figure 4.41 illustrates a drawing of 

the geometry of the specimen. 

 

 

Figure 4.41. Shape and dimensions of DIN 34CrNiMo6 specimen with a lateral U-shaped 

notch. All dimensions are given in mm. 
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Monotonic and fatigue properties of DIN 34CrNiMo6 high strength steel material 

provided by reference [50] are summarized in Table 4.18. 

 

Table 4.18. Mechanical properties of DIN 34CrNiMo6 high strength steel [50]. 

Elastic Modulus,  (Pa) 2.098E+11 

Poisson's Ratio,  0.296 

Axial Fatigue Strength Coefficient,  (Pa) 11.837E+08 

Axial Fatigue Strength Exponent,  -0.0545 

Axial Fatigue Ductility Coefficient,  (Pa) 0.4697 

Axial Fatigue Ductility Exponent,  -0.6059 

Yield Strength,  (Pa) 9.67E+08 

Ultimate Tensile Strength,  (Pa) 1.035E+09 

 

The FE mesh of the geometric model for the specimen generated using SOLID187 

elements is shown in Figure 4.42. 

 

 

Figure 4.42. The finite element model of 34CrNiMo6 shaft with a lateral U-shaped notch. 

 

The specimen is subjected to various combinations of synchronized periodic bending 

and torsion. Figure 4.43 shows the boundary conditions applied to the part. As can be seen 
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from the figure, no extra section that carries the boundary conditions is defined for this 

geometry. Instead, the elements in sufficiently large regions at either ends of the sample are 

excluded in the calculations so that the highly stressed zones formed around the application 

points of the loads do not affect the results. Bending moments are generated via a pair of 

forces applied to one end of the bar in the z-direction equal in magnitude but oppositely 

directed and twisting moments are generated by a force couple in y direction. The nodes on 

the other end are fixed. 

  

 

Figure 4.43. Boundary conditions of 34CrNiMo6 specimen with a lateral U-shaped notch. 

 

The validity of the model for this geometry is examined by comparing model 

predictions with the experimental results reported in [4,50,51]. Fatigue lives calculated for 

various load levels are presented in Table 4.19 together with those determined 

experimentally by Branco and his co-workers [4,50,51]. Although large fluctuations are 

observed for a few values, in general, a good similarity in terms of increasing / decreasing 

trends of fatigue lives is obtained. The correlation coefficient between the two data sets is 

calculated as 0.86. The convergence of the model estimates to the empirical values can be 

seen in more detail from Figure 4.44. Also, the scatter map of the results is given in Figure 

4.45. The mean square error of the scatter is 4.53.  
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Table 4.19. Experimental results for 34CrNiMo6 specimen with a lateral U-shaped notch 

reported in [4,50,51] and the estimates of the present model for given asymmetric loads. 

Loading 
Case 

Alternating 
Nominal  
Normal 
Stress   
(MPa) 

Mean 
Normal 
Stress 

Stress 
Ratio 

 

Alternating 
Nominal  

Shear  
Stress 
 (MPa) 

Mean 
Shear 
Stress 

Biaxiality 
Ratio 

 

Experimental 
Life 

Predicted 
Life 

1 179.1 194 0.04 44.8 48.5 4 102,386 569,326 

2 223.8 238.7 0.03 56 59.7 4 49,103 54,156 

3 298.4 313.3 0.02 74.6 78.3 4 24,207 1,607 

4 179.1 194 0.04 89.6 97 2 77,527 172,126 

5 223.8 238.7 0.03 111.9 119.4 2 26,317 13,742 

6 298.4 313.3 0.02 149.2 156.7 2 8,314 749 

7 179.1 189 0.03 134.3 141.8 1.333 50,261 35,195 

8 223.8 233.8 0.02 167.9 175.4 1.333 17,967 3,178 

9 298.4 308.4 0.02 223.8 231.3 1.333 4,099 2,420 

10 197.4 208.1 0.03 0 0 - 100,425 352,100 

11 218.8 229.3 0.02 0 0 - 53,742 119,794 

12 219.3 228.5 0.02 0 0 - 37,108 117,804 

13 288.6 297.6 0.02 0 0 - 13,816 4,323 

 

 

 

Figure 4.44. Correlation between experimental and theoretical fatigue lives of 34CrNiMo6 

specimen with a lateral U-shaped notch. 
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Figure 4.45. Experimental vs. predicted fatigue life for 34CrNiMo6 specimen with a lateral 

U-shaped notch in the presence of asymmetric loads. 

 

Figure 4.46 shows the contour plot of the equivalent stress around the notch where the 

calculated fatigue life is shorter than the threshold life, ,  corresponding to the 7th loading 

case in Table 4.19. In this geometry, only a small region around the notch is critical, that 

means only the elements in close proximity to the notch have calculated fatigue lives shorter 

than the threshold life. Besides, the maximum equivalent stress is obtained as 1458 MPa 

using the linear elastic FE analysis. This value exceeds even the ultimate strength of the 

material. That means significant plastic deformation occurs at the notch. Even though the 

stress levels are not accurate, fatigue-life calculations based on strain energy approximates 

the measured lives. 
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Figure 4.46.  Equivalent-stress contour plot of the region where fatigue life is shorter than 

the threshold life, .   

 

An overall comparison between the experimental results and the model estimates for 

all examined specimens in this section is given in Figure 4.47 and Figure 4.48, for fully 

reversed and asymmetric loading conditions, respectively. 

 

 

Figure 4.47. An overall comparison between the experimental results and the model 

estimates for fully reversed proportional loading. 
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Figure 4.48. An overall comparison between the experimental results and the model 

estimates in the presence of asymmetric loads. 
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5.  CONCLUSIONS 

 

 

In the present study, a new strain energy based multiaxial fatigue analysis 

methodology is proposed to estimate high cycle fatigue life of structures with geometric 

irregularities leading to stress concentration. A new energy parameter called equivalent 

strain energy density is introduced as a measure of material damage. The Coffin-Manson-

Basquin type relationship is adapted to relate the new parameter to the number of cycles to 

failure. The contribution of plastic deformation to material damage is assumed to be small 

in high-cycle fatigue compared to elastic deformation. Accordingly, the value of the newly 

defined parameter is computed based solely on elastic strain energy distribution within the 

parts. Stress and strain states prevailing on the part are determined by a finite element 

analysis. The material is assumed be linear elastic. Only the elements around the notch 

having calculated fatigue life shorter than the threshold life are considered in fatigue 

evolution.  

 

The presented model can be applied to the parts under constant amplitude proportional 

loading conditions. In addition to fully reversed loads, the model is well adapted to 

asymmetric loads with a non-zero mean stress. On the other hand, since the determination 

of the degree of material hardening caused by asynchronous loads requires additional 

analysis, the effects of non-proportional loads is not considered in the presented model. 

Accounting for the effects of non-proportional loads remains as a future study. 

 

The reliability of the proposed methodology is validated using extensive experimental 

data from the literature. The predicting performance of the model is checked for 10 different 

specimen geometries made of 7 different materials (Al-Si alloy, AISI 1141, SAE 1045, 

En3B, 2024-T3 Al alloy, S460N and DIN 34CrNiMo6). Four different notch geometries are 

considered; V-shaped circumferential groove, fillet, circular transverse hole, and lateral U-

shaped groove. The specimens examined in this study are subjected to either various bending 

and torsion combinations or torsion combined with axial loads. 

 

The agreement between the empirical fatigue lives and theoretical estimates for 

proportional loading is fairly good. 77% of the predictions obtained for 88 different test 
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conditions fall within the scatter band with a factor of 3. Moreover, the model adequately 

accounts for the non-zero mean stress effect. 60% of the predictions obtained from the model 

for 25 test conditions with asymmetric loads remain within the error factor of about 3 

compared to the experimental data. Differences between the correlation coefficients 

calculated for different specimens may be attributed to the inconsistency in some test data 

or to the fact that material properties and experimental results for some specimens are 

provided from different sources in this study. On the other hand, considering that, low 

correlations are observed for specimens with circular holes, it may be due to fact that the 

presented fatigue-life assessment model may show different predicting performance for 

diverse notch geometries. Nevertheless, on the whole, it can be said that the proposed 

methodology is highly promising. As long as extensive local yielding does not occur, it can 

give accurate estimations.  

 

The formulation contains only material constants available in material data sheets. 

Applicability of the proposed approach is independent of specimen geometry as well as 

loading conditions. On the other hand, experimental verification of the model is carried out 

by considering only the samples with standard notch geometries. Ensuring the general 

applicability of the presented methodology for arbitrary geometries requires a more 

comprehensive study. 
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APPENDIX A: FATIGUE LIFE PREDICTIONS IN ABSENCE OF 

CYCLIC PROPERTIES 

 

As one may remember, since only monotonic characteristics are given for En3B steel 

in the reference [1], Muralidharan-Manson modified universal slopes method was utilized 

in Section 4.2.4 to approximate cyclic properties of that material. In order to make certain of 

is further applied to some of the other 

examined specimens made of various steel materials.  

 

Approximate solutions obtained for AISI 1141 shouldered shaft and grooved shaft 

specimens are listed in Table A.1 and Table A.2, respectively. To determine the fatigue 

properties approximately, the static material values given in Table 4.5 is used. 

 

Table A.1. Approximate solution results for AISI 1141 shouldered shaft specimen. 

 

Table A.2. Approximate solution results for AISI 1141 grooved shaft specimen. 

  

 

Loading 
Case 

Nominal 
Tensile 
Stress  
(MPa) 

Nominal 
Torsional 

Stress 
 (MPa) 

Experimental 
Life  

Predicted 
Life 

Predicted Life 
(Approximate 

Solution) 
 

1 0 344 1,767 6,916 9,950 1.439 

2 260 274 4,865 12,122 16,730 1.380 

3 0 294 14,492 31,691 44,030 1.389 

4 201 214 49,713 102,432 134,993 1.318 

5 0 240 452,785 188,813 246,620 1.306 

6 140 154 499,081 418,472 433,507 1.036 

Loading 
Case 

Nominal 
Tensile 
Stress  
(MPa) 

Nominal 
Torsional 

Stress 
 (MPa) 

Experimental 
Life 

Predicted 
Life 

Predicted Life 
(Approximate 

Solution) 
 

1 0 344 1,923 4,631 5,666 1.223 

2 260 274 4,732 6,673 7,407 1.110 

3 0 294 14,912 12,470 16,349 1.311 

4 201 214 44,071 22,057 28,753 1.304 

5 0 240 645,000 58,476 76,382 1.306 

6 140 154 789,999 209,783 261,898 1.248 
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The goodness of fit of the results is visualized with the subsequent conformity and 

dispersion graphs. 

 

 

Figure A.1. Conformity of the approximate solution for AISI 1141 shouldered shaft 

specimen. 

 

 

Figure A.2. Conformity of the approximate solution for AISI 1141 grooved shaft 

specimen. 
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Figure A.3. A comparative dispersion chart for approximate solution related to AISI 1141 

shouldered shaft specimen. 

 

 

Figure A.4. A comparative dispersion chart for approximate solution related to AISI 1141 

grooved shaft specimen. 
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Similar procedure is followed for SAE 1045 shouldered shaft specimen. The number 

of cycles to failure calculated based on the uncertain material values obtained with equation 

4.5 can be accessed from Table A.3. 

 

Table A.3. Approximate solution results for SAE 1045 shouldered shaft specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading 
Case 

Nominal  
Bending 
Moment 
(N.m) 

Nominal 
Torsional 
Moment 
 (N.m) 

Final Fracture 
Life 

Experimental 
Life for  

Initiation of  
1-mm Crack 

Predicted Life 
(Approximate 

Solution) 

1 1,850 2,550 5,113 2,200 4,589 

2 2,800 0 8,262 2,571 2,156 

3 1,250 2,700 10,420 6,402 14,119 

4 1,850 2,100 11,565 5,740 11,047 

5 1,355 2,550 11,630 5,500 16,306 

6 2,325 1,350 11,735 2,905 6,521 

7 2,000 2,100 12,050 5,998 6,959 

8 0 3,000 12,124 5,529 25,920 

9 1,150 2,700 12,700 3,000 17,545 

10 2,600 0 15,043 6,347 4,199 

11 2,586 0 17,450 14,000 4,399 

12 851 2,700 17,730 9,000 31,374 

13 840 2,700 24,540 10,000 31,658 

14 1,720 1,350 58,790 19,260 60,625 

15 1,680 960 65,049 30,000 115,102 

16 1,875 0 112,200 48,180 67,793 

17 1,220 1,700 124,500 60,800 204,052 

18 0 2,400 132,585 70,350 202,668 

19 1,680 900 153,800 84,950 120,987 

20 780 2,180 156,100 70,340 181,979 

21 1,730 0 157,125 67,300 132,118 

22 1,220 1,710 160,900 89,750 200,004 

23 570 2,180 182,250 87,830 273,331 

24 1,550 1,090 190,200 88,750 174,222 

25 1,300 1,400 226,000 84,680 295,627 

26 1,708 0 249,900 163,800 146,006 

27 845 1,800 396,800 259,900 506,087 

28 1,475 0 556,400 347,500 443,010 

29 1,250 880 734,750 462,500 774,309 

30 1,460 0 764,000 430,000 474,689 

31 990 1,390 890,500 641,500 909,512 

32 0 2,000 1,843,667 1,011,333 861,834 
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As with the fatigue properties given for the material in question, there is no agreement 

in the time-independent material values. On the other hand, according to American Society 

ot rolled medium carbon 

steel can be taken as 565 MPa [87,88]. Taking this value as the starting point, convergence 

of the approximate solution results is illustrated in Figure A.5. 

 

 

Figure A.5. Conformity of the approximate solution for SAE 1045 shouldered shaft 

specimen. 

 

Similarity solutions are lastly carried out for the S460N shouldered shaft specimen. 

The table and figures below reflect the consistency of the values. 

 

Table A.4. Approximate solution results for S460N shouldered shaft specimen. 

 

 

Loading 
Case 

Nominal  
Tensile 
Stress  
(MPa) 

Nominal 
Torsional 

Stress 
 (MPa) 

Experimental 
Life  

Predicted 
Life 

Predicted Life 
(Approximate 

Solution) 
  

1 300 262 225 964 1,776 1,842 

2 225 197 4,317 14,301 22,555 1,577 

3 150 131 74,019 391,338 494,687 1,264 

4 125 109 903,597 515,038 598,062 1,161 
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Figure A.6. Conformity of the approximate solution for S460N shouldered shaft specimen. 

 

 

 

Figure A.7. A comparative dispersion chart for approximate solution related to S460N 

shouldered shaft specimen. 

 

As can be seen from the numerical and visual data, the results obtained by using the 

material fatigue parameters calculated with the modified universal slopes method are slightly 

non-conservative in comparison with the estimations evaluated using experimentally 

determined material constants. Consequently, it is clear that the model is reasonable. 
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