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ABSTRACT 

 

 

FINITE ELEMENT ANALYSIS OF ELASTOMERIC BEARINGS 

UNDER COMPRESSION AND SHEAR LOADING 

 

 

Elastomeric bearings are widely used as isolators for buildings and bridges. 

Elastomeric bearings may be either stratified structures with repeated parallel layers of 

rubber and steel or plain rubber. This thesis focuses on computational approaches to evaluate 

global and local responses of plain rubber bearings and rubber-steel composite bearings 

which are subjected to either compression load or combination of compression and shear 

loads. 

 

During the development of the finite element model, accurate representation of the 

mechanical behavior of elastomer and steel, and geometric nonlinearities were addressed. 

Hyperelastic and viscoelastic material models for rubber were constructed using a set of test 

data available in the literature. The steel was represented with an elastoplastic material 

model.  

 

Using the developed finite element model, the effects of the rubber viscoelasticity, 

rubber compressibility and the bearing shape factor on the global response, i.e. vertical force, 

vertical stiffness, horizontal force, and horizontal stiffness, were studied in static analysis. 

In addition, the effects of magnitude of the applied load and friction on the local response of 

the bearing were studied in static analysis. For quasi-static analysis, the effects of the applied 

loading rate and compressibility of rubber on the predictions were determined. Implicit time 

integration for static analysis and explicit time integration for quasi-static analysis were used. 

 

The computational approaches presented in this thesis may be applied to the analysis 

of most isolators for buildings and bridges. Future studies may take into account cyclic shear 

loads along with compression load. 
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ÖZET 

 

 

ELASTOMERİK İZOLATÖRLERİN SONLU ELEMAN ANALİZLERİ 

 

 

Elastomer mesnetler yaygın olarak bina ve köprülerin deprem yalıtımında kullanılır. 

Elastomer yalıtıcılar kauçuk ve çelik tabakalarından oluşabileceği gibi yalın kauçuktan da 

oluşabilir. Bu tezde, sonlu elemanlar yöntemi kullanılarak yalın kauçuk yalıtıcıların ve 

kauçuk-çelik kompozit yalıtıcıların global ve lokal davranışlarının belirlenmesi çalışılmıştır. 

 

Sonlu elemanlar modeli oluşturulurken, kauçuk ve çeliğin mekanik davranışlarının 

doğru modellenmesi dikkate alınmış ve doğrusal olmayan geometrik davranışa uygun 

formülasyon kullanılmıştır. Kauçuk için literatürdeki deney verileri kullanılarak hiperelastik 

ve viskoelastik malzeme modelleri oluşturulmuştur. Çelik ise elastik-plastik malzeme 

modeli ile temsil edilmiştir. 

 

Oluşturulan sonlu elemanlar modeli kullanılarak, kauçuk viskoelastisitesi, kauçuk 

sıkıştırılabilirliği ve şekil faktörünün yalıtıcının global davranışı, örneğin düşey kuvvet, 

düşey rijitlik, yatay kuvvet, yatay rijitlik, üzerine etkileri statik analizlerle çalışılmıştır. Ek 

olarak, uygulanan yük miktarı ve sürtünmenin yalıtıcının lokal davranışı üzerine etkileri 

statik analizlerle çalışılmıştır. Yarı statik analizlerde, yükleme hızı ve kauçuk 

sıkıştırılabilirliğinin çözümlere etkisi belirlenmiştir. Statik analizler için örtük entegrasyon, 

yarı statik analizler için belirtik entegrasyon kullanılmıştır. 

 

Bu tezde sunulan hesaplamalı yaklaşımlar çoğu bina ve köprü yalıtıcı analizleri için 

uygulanabilir. Gelecek çalışmalarda basma yükü ile beraber çevrimsel kayma yükleri de 

hesaba katılabilir. 
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1.  INTRODUCTION 

 

 

Elastomeric bearings are stratified structures with repeated parallel layers of elastically 

hard and elastically soft materials. The hard material is typically steel and the soft material 

is natural or synthetic rubber. Plain rubber may also be used as a bearing. 

 

Elastomeric bearings are widely used in civil, mechanical and automotive engineering. 

As an example, bridge bearings are used under pre-cast concrete beams or steel beams and 

are designed to handle vertical loading and rotation through vertical deflection. Vibration 

isolation bearings are used to isolate vibrating machines or buildings in severe acoustic 

environments.  Seismic isolation or base isolation bearings are used to reduce the effects of 

earthquake in buildings and bridges. Figure 1.1 shows an example of a natural rubber isolator 

[1]. 

 

 

Figure 1.1. A natural rubber isolator [1]. 

 

The bearings are usually subjected either to compression or to a combination of 

compression and shear which is illustrated in Figure 1.2 [2]. In the case of seismic isolation, 

the steel layers provide large stiffness under vertical load, while the rubber layers provide 

low horizontal stiffness, when the structure is subjected to lateral loads (e.g., earthquake, 

wind, etc.).  
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Figure 1.2. Typical deformation produced by seismic actions [2]. 

 

1.1.  Literature Review 

 

In the study by Amin et. al. [4], an exponential, rate-independent, that is hyperelastic 

model was proposed to characterize the rubber behavior. The responses of high damping 

rubber and filled natural rubber under compression and shear loading were studied. Both 

instantaneous and equilibrium responses were measured and presented in the study. In this 

thesis, compression and simple shear test data of HDR at instantaneous state were used in 

order to calibrate elastic response of the base isolation rubber. 

 

In Amin et. al.’s study [5], a rate-dependent, i.e. visco-hyperelasticity model, was 

developed in order to represent the response of high damping rubber under compression and 

shear loading. Shape factor and loading rate are two of the parameters examined in the paper. 

In this thesis, stress relaxation test data of HDR, which is the same material used in [4], were 

used to calibrate the viscoelastic behavior of rubber. 

 

In the study by Quaglini et. al. [2], an experimental procedure was established to 

evaluate the behavior of high damping rubber specimens subjected to combination of 

compression and shear loading. The study calls attention to effects of compression load on 

mechanical behavior of HDR bearings, for instance, the secant shear modulus increases as 

compression load increases. 

 

In the study by G. Milani and F. Milani [6], the exponential models proposed in [4, 7] 

and nine-constant Mooney-Rivlin model were used to represent the response of different 

rubber compounds. The predictions for compression and shear loading were compared to 

experimental results. 



3 

 

J.M. Kelly and D.A. Konstantinidis [1] highlighted that compressibility of rubber plays 

a crucial role in the mechanical behavior of base isolation systems. It was also determined 

that for the bearing subjected to shear loading, bending moment is created at the top and 

bottom of the isolation system. This bending moment, in turn, leads to shear strains in rubber 

pads. In addition, friction between the unbonded bearing and its supports above and below, 

notably influences the compression stiffness and the pressure distribution. 

 

In the study by Yurdabak [8], static analysis with implicit integration and quasi-static 

analysis with explicit integration were performed to study compression of rubber discs with 

different shape factors and compressibility values. 2D axisymmetric models were analyzed 

via ABAQUS/Standard and ABAQUS/Explicit. Compressive stiffness, total load and bulge 

strain values were calculated and results obtained from static and quasi-static analyses were 

compared. In this thesis, the study provides a basis for quasi-static analysis with explicit 

integration. 

 

In the study by Hamzeh et. al. [9], elastomeric bridge bearings were numerically 

analyzed taking geometric nonlinearities, material nonlinearities and frictional interface 

properties into account. Yeoh’s strain energy function was used to model the rubber pads. 

The study stated that in bearings subjected to compression rubber pads tend to bulge outward 

which is reduced by the presence of steel shims; as a result, compressive stiffness of pads 

increases. In addition, when the pads are horizontally displaced, reduction in shear stiffness 

is observed. 

 

Salomόn et. al. [10] constituted a FE formulation which models elastomers for base 

isolation considering viscoelastic behavior. The study points out that modeling elastomers 

as viscoelastic is necessary when the loads are quasi-static or dynamic. 

 

In Gajewski et. al.’s study [11], FEA of bridge bearings under compression and shear 

loading were conducted using ABAQUS/Standard for different hyperelastic material 

models, such as Yeoh and Neo-Hookean. It is concluded that results differed considerably 

between 3D analysis and 2D plane strain analysis when the loading was compression, while 

results showed good agreement when the loading was shear. 
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H.H. Nguyen and J.L. Tassoulas [12] studied effects of shear loading direction on 

bridge bearings by performing 3D analysis of rectangular and square bearings via ABAQUS. 

Frictional contact was defined between bearing and rigid supports. It is concluded that rubber 

strains decrease when the shear load is applied along the direction of short side of rectangular 

bearings. 

 

In the study by Kalfas et. al. [13], 3D FEA of elastomeric bearings under various 

combinations of vertical and cyclic shear loads were performed in order to study tensile 

stress developments within the rubber using ABAQUS. It is deduced that the presence of 

shear strain and free or restricted rotation boundary conditions affect the development of 

tensile stresses. 

 

1.2.  Objectives of the Thesis 

 

Finite element modeling of plain elastomer bearings and of composite bearings with 

steel layers is constructed in this thesis. Accurate representation of the mechanical behavior 

of elastomer and steel, and geometric nonlinearities are addressed during the development 

of the finite element model.  

 

The thesis focused on the static analysis with implicit time integration and quasi-static 

analysis with explicit time integration. Using the developed finite element model, the effect 

of the following parameters on the bearing mechanical response were studied: 

 

 Constitutive model of rubber 

 Compressibility of rubber 

 Shape factor of the bearing 

 Magnitude of the applied load 

 Rate of the applied load 

 Friction 

 

The FE model is developed and analyzed in commercial general purpose finite element 

software ABAQUS/Standard and ABAQUS/Explicit [3]. 
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This thesis focuses on computational approaches to evaluate global and local responses 

of plain rubber bearings and rubber-steel composite bearings. This study is not limited to 

hyperelastic constitutive model, as it is the case in most of the work in the literature, but also 

accounts for the viscoelastic behavior of rubber. In addition, in the thesis explicit time 

integration was explored for global response analysis of bearings. In order to highlight the 

importance of rubber compressibility for explicit time integration, different levels of rubber 

compressibility were evaluated. Formerly, compressive response of a rubber disc was 

investigated with implicit and explicit time integrations in [8]. This study investigated not 

only compressive response but also shear response of a rubber layer with implicit and 

explicit time integration. 

 

Organization of the remainder of the thesis is as follows: Background information 

about large deformation analysis, hyperelasticity, viscoelasticity, shape factor, 

compressibility of rubber, and comparison of implicit and explicit time integration are 

presented in Chapter 2. Finite element analysis of a plain rubber bearing by employing 

hyperelastic model and viscoelastic model are discussed in Chapter 3 and in Chapter 4, 

respectively. Chapter 5 focuses on finite element analysis of composite bearing model. 

Summary and conclusions are presented in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

2.  THEORY 

 

 

2.1.  Basic Quantities in Large Deformation Analysis 

 

2.1.1.  Kinematics 

 

Elastomers are mostly subjected to large deformations. In this section, the fundamental 

quantities in finite deformation analysis are summarized. 

 

The deformation gradient F relates undeformed, dX, and deformed, dx, configurations 

of a material line. The deformation gradient is given as: 

 

 

F =
∂x

∂X
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑥ଵ

𝜕𝑋ଵ

𝜕𝑥ଵ

𝜕𝑋ଶ

𝜕𝑥ଵ

𝜕𝑋ଷ

𝜕𝑥ଶ

𝜕𝑋ଵ

𝜕𝑥ଶ

𝜕𝑋ଶ

𝜕𝑥ଶ

𝜕𝑋ଷ

𝜕𝑥ଷ

𝜕𝑋ଵ

𝜕𝑥ଷ

𝜕𝑋ଶ

𝜕𝑥ଷ

𝜕𝑋ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (2.1) 

 

 

Right Cauchy-Green deformation tensor, which is the most commonly used among 

various ways to measure the geometric changes in the continuous medium, is defined as: 

 

 C = FTF (2.2) 

 

Nonlinear, isotropic and elastic response of solids may be derived from a strain energy 

function which is defined in terms of invariants of C: 

 

 I1 = trC (2.3) 

 

 
I2 =

1

2
ൣ(trC)ଶ − trC𝟐൧ (2.4) 
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 I3 = J2= detC (2.5) 

 

where 𝐽 is the volume change ratio. Distortional part of C is defined as: 

 

 Cഥ = Jିଶ/ଷC (2.6) 

 

The invariants of volume preserving part of the deformation is defined as: 

 

 𝐼1̅ = Jିଶ/ଷI1 (2.7) 

 

 𝐼2̅ = Jିସ/ଷI2 (2.8) 

 

 𝐼3̅ = 1 (2.9) 

 

In this study, the test data and model predictions are presented in terms of principal 

stretch ratios, λ௜, which is the ratio of the deformed length to the undeformed length and is 

shown as: 

 

 

𝜆 =
𝑑𝑙

𝑑𝐿
=  ඨ

dx் ∙ dx

dX் ∙ dX
 (2.10) 

 

In addition, shear strain, 𝛾, which is the ratio of the horizontal displacement, ux, to the 

thickness is shown in Figure 2.1 [9]. 

 

 𝛾 = 
ux

T
 (2.11) 

 

 

Figure 2.1. Block of elastomers under simple shear (Dotted lines represent original 

configuration) [9]. 
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2.1.2.  Stress Measures 

 

There are three stress measures in finite deformation theory. The Cauchy stress, or true 

stress, σ, is defined as force per unit deformed area. The First Piola-Kirchhoff stress, 𝐓, is 

defined as force per unit undeformed area, and is often referred to as engineering stress. 

Although First Piola-Kirchhoff stress is physically motivated, it is unsymmetric. The second 

Piola-Kirchhoff stress, S, is derived from the First Piola-Kirchhoff stress and is symmetric. 

The three stress measures are related as: 

 

 𝐓 = JσF-T (2.12) 

 

 
σ = 

1

J
FSFT (2.13) 

 

2.2.  Hyperelasticity 

 

For a hyperelastic material model, the relationship between stress and strain is obtained 

from a strain energy density potential. In particular, in terms of S: 

 

 
S = 2

∂W

∂C
 (2.14) 

 

Several strain energy functions are available in the literature. In this thesis, Yeoh’s 

strain energy function [14] is used. For compressible elastomers, Yeoh’s strain energy 

function is given as the following: 

 

 
𝑊 = ෍ C௜଴

ଷ

௜ୀଵ

(𝐼1̅ − 3)௜ + ෍
1

D௜

ଷ

௜ୀଵ

(J − 1)ଶ௜ (2.15) 

 

where C௜଴ and D௜ are the material parameters. The relation between the parameters and initial 

bulk and shear modulus are defined as: 

 
𝐾଴ =

2

Dଵ
 (2.16) 
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 𝜇଴ = 2Cଵ଴ (2.17) 

 

For incompressible elastomers, the function becomes as the following: 

 

 
𝑊 = ෍ C௜଴

ଷ

௜ୀଵ

(I1 − 3)௜ (2.18) 

 

2.3.  Viscoelasticity 

 

 Rate-dependent representation of the behavior of elastomers requires nonlinear 

viscoelastic material model. The viscoelastic material property may be defined by shear and 

bulk relaxation functions in Prony series form: 

 

 
𝐺(𝑡) = 𝐺ஶ + ෍ 𝐺௜𝑒ି௧/ఛ೔

௠

௜ୀଵ

 (2.19) 

 

 
𝐾(𝑡) = 𝐾ஶ + ෍ 𝐾௜𝑒ି௧/ఛ೔

௠

௜ୀଵ

 (2.20) 

 

where 𝐺ஶ and 𝐾ஶ are the equilibrium shear and bulk moduli, respectively. 𝐺௜ and 𝐾௜ are 

Prony coefficients, and 𝜏௜ are relaxation times. 

 

The dimensionless forms of relaxation functions used in ABAQUS are defined with 

respect to 𝐺଴ and 𝐾଴ which are the instantaneous shear and bulk moduli, respectively. 

 

 
𝑔(𝑡) =

𝐺(𝑡)

𝐺଴
 (2.21) 

 

 
𝑘(𝑡) =

𝐾(𝑡)

𝐾଴
 (2.22) 
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2.4.  Shape Factor 

 

Shape factor is a design parameter used for elastomeric bearings and is classified as 

the first and the second shape factor. The ratio of the loaded area over the force-free area of 

a rubber layer is the first shape factor. The ratio of the effective width over the total thickness 

of rubber pads in bearings is the second shape factor [15,16]. In this thesis, the focus is on 

the first shape factor, 𝑆𝐹. 

 

There are some differences between building isolation and bridge bearing 

requirements. Building bearings are typically circular in shape, while bridge bearings are 

rectangular in shape [17]. In this thesis, rectangular rubber pads with different 𝑆𝐹 are 

examined due to available experimental data. For this geometry, the first shape factor 

becomes: 

 

 
𝑆𝐹 =

BL

2(B + L)𝑡
 (2.23) 

 

where B and L are the side lengths and 𝑡 is the thickness of the rubber pad shown in Figure 

2.2 [18]. 

 

 

Figure 2.2. Dimensions of a single rubber layer [18]. 

 

2.5.  Compressibility of Rubber 

 

 Elastomers mostly behave as incompressible or nearly incompressible. The ratio of 

the initial bulk modulus to the initial shear modulus, 𝐾଴/𝜇଴ , is a measure of compressibility. 

The initial Poisson’s ratio may be obtained from the following equation.  
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𝜈 =

3𝐾଴/𝜇଴ − 2

6𝐾଴/𝜇଴ + 2
 (2.24) 

 

The different compressibility and the corresponding Poisson’s ratio values are given 

in Table 2.1. 

 

Table 2.1. The relation between compressibility and Poisson’s ratio. 

𝐾଴/𝜇଴ 𝜈 

10 0.452 

20 0.475 

50 0.490 

100 0.495 

2000 0.49975 

∞ 0.5 

 

 Compressibility of elastomer substantially influences the procedures for implicit and 

especially for explicit integration because the minimum time increment approaches zero as 

the incompressibility increases. In ABAQUS, the recommended maximum limit for the ratio 

of the initial bulk modulus to initial shear modulus is 100 for analyses with explicit time 

integration [3]. 

 

2.6.  Comparison of Implicit and Explicit Time Integration 

 

Simulations can be performed using implicit or explicit time integration in FEA. 

Depending on problem types, selection between these integration techniques can be done. In 

general, implicit time integration and explicit time integration are used for static and 

dynamic analysis, respectively.  

 

In implicit time integration process, there is equilibrium check meaning that analysis 

is completed when the predetermined tolerance based on the equilibrium of the system is 

obtained. Throughout that process, a large number of non-diagonal matrix inversions are 

encountered, so the duration of the prediction exponentially increases with increasing in 

degrees of freedom of the model and with existing of nonlinear material properties, 
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incompressibility, large deformations, and contact properties. In explicit time integration 

process, there is no equilibrium check and there is no need of calculating the stiffness matrix. 

The diagonal mass matrix inversion is required. The analysis time increases linearly with 

increasing number of degrees of freedom of the model. The comparison between implicit 

and explicit time integration considering the cost per number of degrees of freedom is 

presented in Figure 2.3 [3]. 

 

 

Figure 2.3. The cost per number of degrees of freedom for implicit and explicit time 

integration techniques [3]. 
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3.  FINITE ELEMENT ANALYSIS OF AN ELASTOMER BEARING 

 

 

Finite element model of a plain elastomer bearing is presented in this chapter. The 

response of the bearing for either compression load or combination of compression and shear 

loads was studied. The effects of shape factor and compressibility on vertical and horizontal 

response of the bearing were investigated in static analysis with implicit time integration. In 

addition, quasi-static analysis with explicit time integration, and dynamic analysis with 

implicit time integration were explored. For the explicit analysis, the effect of loading 

velocity on the predictions was determined. 

 

3.1.  Finite Element Model 

 

In this section, material model, geometry, loading and boundary conditions, mesh 

properties of the finite element model are presented. 

 

3.1.1.  Material Model 

 

The elastomer was considered to be HDR (high damping rubber) which is widely used 

for base isolation. Energy dissipation is an important design parameter for base isolation 

systems under large shear displacements. The use of fillers in HDR such as extra fine carbon 

black and oils increases energy dissipation [19]; therefore, HDR provides better damping 

capabilities than NR (natural rubber). 

 

The experimental data for rubber was taken from the literature [4]. The available data 

consisted of stress-strain relations for uniaxial compression and simple shear. Both 

instantaneous and equilibrium curves for HDR were available. In the thesis, the elastomer 

was represented as hyperelastic considering the instantaneous response. Yeoh form of strain 

energy function was selected. Yeoh form was preferred since it allows reasonable 

representation of various deformation states based on uniaxial tension or compression state 

only. The Yeoh coefficients were obtained in Abaqus using uniaxial compression data. The 

experimental data and the resulting curve fit for uniaxial compression are shown in Figure 

3.1. 
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Figure 3.1. Stress-Stretch response for uniaxial compression loading (test data [4]). 

 

The material response under simple shear loading as predicted by Abaqus is presented 

in Figure 3.2 along with the test data. Note that only uniaxial compression data was used in 

calibrating Yeoh model. The good fit in simple shear is a proof of why this particular strain 

energy form was selected. 
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Figure 3.2. Stress-Strain response for simple shear loading (test data [4]). 

 

To evaluate the effect of compressibility, the coefficients C௜଴ (Equation 2.14) were 

kept constant, while bulk modulus was varied. The ratio of initial bulk modulus to initial 

shear modulus, which were used in this thesis, are given in Table 3.1. The initial shear 

modulus is 𝜇଴ = 2Cଵ଴ = 2.87 𝑀𝑃𝑎. 

 

Table 3.1. The Yeoh coefficients. 

𝑲𝟎/𝝁𝟎 𝝂𝟎 𝑫𝟏 (1/MPa) C𝟏𝟎 (MPa) C𝟐𝟎 (MPa) C𝟑𝟎 (MPa) 

10 0.452 0.06976 

1.433477 -0.910061 0.373833 

20 0.475 0.03488 

50 0.490 0.01395 

100 0.495 0.006976 

2000 0.49975 0.0003488 

∞ 0.5 0 
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For explicit analyses, the rubber density was taken as 1 𝑔/𝑐𝑚ଷ. 

 

3.1.2.  Geometry of the Problem 

 

Small-scale rectangular bearings with shape factors of 1, 5, and 12.5 were selected. To 

assess mechanical response of HDR, small-scale specimens were used in [4] from which 

experimental test data was taken to calibrate the for rubber material model used in this thesis. 

Also, the experimental study [2] showed applicability of small-scale specimens for seismic 

performance evaluations. The side dimensions of rectangular bearings were kept constant as 

50x50 mmxmm. The thickness of bearings was adjusted as per the shape factor. Figures 3.3, 

3.4, and 3.5 illustrate the geometries of rectangular bearings for shape factors 1, 5 and 12.5, 

respectively. 

 

 

Figure 3.3. The geometry of the bearing with SF=1 (12.5x50x50 mmxmmxmm). 

 

Figure 3.4. The geometry of the bearing with SF=5 (2.5x50x50 mmxmmxmm). 
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Figure 3.5. The geometry of the bearing with SF=12.5 (1x50x50 mmxmmxmm). 

 

3.1.3.  Mesh 

 

Plane strain analysis of the bearings was conducted. Mesh consisted of quadrilateral, 

reduced integration, linear elements for static analyses with implicit integration and quasi-

static analyses with explicit integration. For dynamic analyses with implicit integration, full 

integration elements were used. Linear elements were used since they are more efficient in 

contact. Hybrid elements were considered for static and dynamic analyses with implicit 

integration. In summary, the elements used for predictions are the followings: 

 

 CPE4RH for static analysis with implicit time integration 

 CPE4R for quasi-static analysis with explicit time integration 

 CPE4H for dynamic analysis with implicit time integration 

 

The mesh structure for each shape factor is shown in Figures 3.6, 3.7, and 3.8. The 

mesh convergence study is presented in Appendix-A. 
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Figure 3.6. The mesh for SF=1. Total number of elements: 3536. 

 

 

Figure 3.7. The mesh for SF=5. Total number of elements: 6792. 

 

 

Figure 3.8. The mesh for SF=12.5. Total number of elements: 4096. 

 

3.1.4.  Loading and Boundary Conditions 

 

 Bearings were subjected to either compression load or combination of compression 

and shear loads. The loads were applied through an analytical rigid body as displacement. 

 

 The compression load was determined according to [15]. In there, one of the allowable 

compression stresses is 12 MPa. For the geometry used in this study, this corresponds to 
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total load of 30000 N. Table 3.2 shows the vertical displacement corresponding to different 

shape factors and bulk modulus to shear modulus ratio. 

 

Table 3.2. Total load and the corresponding vertical displacements in the FE models of the 

bearings. 

SF 𝑲𝟎/𝝁𝟎 
 

Total Load (N) Vertical Displacement (mm) 

1 ∞ 30000 -1.9918 

5 

10 30000 -0.9255 

20 30000 -0.5343 

50 30000 -0.2549 

100 30000 -0.1503 

∞ 30000 -0.0355 

12.5 

10 30000 -0.3633 

20 30000 -0.2015 

50 30000 -0.0886 

100 30000 -0.0471 

∞ 30000 -0.0017 

 

 The shear load was also selected according to the same standard [15] referred for 

compression load. In the standard, the required shear strain is equal to 1. The applied 

horizontal displacement for each shape factor is shown in Table 3.3. The loads were applied 

through a rigid body at top surface of the bearing. 

 

Table 3.3. Shear strain and horizontal displacements. 

SF Shear Strain Horizontal Displacement (mm) 

1 1 12.5 

5 1 2.5 

12.5 1 1 

 

 The boundary conditions were defined through reference points of the two rigid bodies 

as shown in Figure 3.9. For both compression and shear, all displacement components were 

set to zero at “RP_1”. For compression, horizontal displacement component was set to zero 

at “RP_2” while for shear vertical displacement component was set to zero at “RP_2. 
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Vertical and horizontal displacements were applied at “RP_2” for compression and shear, 

respectively. 

 

 

Figure 3.9. The boundary conditions for the elastomer bearing 

 

Tie constraint was applied between top and bottom surfaces, and rigid bodies in order 

to model bearings as bounded. Contact was defined between side surfaces and rigid bodies. 

For normal behavior, hard contact was defined. For implicit analysis, the constraint was 

enforced via Augmented Lagrange Method, while for the explicit analyses only, kinematic 

constraint enforcement method was employed. Tangential behavior was defined as 

frictionless.  

 

3.2.  Results 

 

 The finite element predictions were evaluated for the following quantities: vertical 

force, vertical stiffness, horizontal force and horizontal stiffness. Vertical stiffness is defined 

as the ratio of the vertical load to the vertical displacement. Horizontal stiffness is defined 

as the ratio of the horizontal load to the horizontal displacement. 

 

 For static analysis with implicit time integration, the effects of the following 

parameters on the response were investigated: 

 

 Shape Factor 

 Compressibility 
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 For quasi-static analysis with explicit time integration and dynamic analysis with 

implicit time integration, the effects of following parameters on the response were 

investigated: 

 

 Compressibility 

 Loading Velocity 

 

3.2.1.  Results for Compressive Loading 

 

 The results presented in this section are for the bearings subjected to compression 

load only. The analyses were conducted with implicit and explicit time integrations. 

 

3.2.1.1.  Effect of Shape Factor and Compressibility. For an incompressible material model, 

the vertical force and vertical displacement predictions for different shape factors are shown 

in Figure 3.10. The figure highlights that for the same axial load, axial displacement 

decreases as the shape factor gets larger. The latter is equivalent to increased confinement. 

Therefore, bearings with higher shape factors have higher vertical stiffness. 

 

 

Figure 3.10. The static results for vertical force for the different shape factors for 

incompressible case. 
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The vertical stiffness for various shape factors is shown in Figures 3.11 and 3.12 for 

incompressible case and 𝐾଴/𝜇଴ = 20, respectively. The stiffness values were normalized 

with respect to SF=12.5 result. It is concluded that vertical stiffness is strongly affected by 

the compressibility. For 𝐾଴/𝜇଴ = 20, there seems to be a linear relation between vertical 

stiffness and shape factor, while for incompressible case the relation is exponential. 

 

Figure 3.11. The static results for incompressible case where vertical stiffness ratio is 

normalized with respect to the case of SF=12.5. 

 

Figure 3.12. The static results for 𝐾଴/𝜇଴ = 20 where vertical stiffness ratio is normalized 

with respect to the case of SF=12.5. 
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The vertical stiffness of a bearing with shape factor of 5 and 12.5 was evaluated for 

various bulk to shear stiffness ratios. The results shown in Figure 3.13 and Figure 3.14 were 

normalized by the value of the incompressible case of the corresponding shape factor. It is 

observed that the use of 𝐾଴/𝜇଴ ≤ 100 will result in significant error in the predictions of the 

vertical stiffness as compared to the solution for an incompressible material behavior. 

Moreover, this error increases as shape factor increases from SF=5 to SF=12.5. 

  

 

Figure 3.13. The static results for vertical stiffness ratio normalized with respect to the 

incompressible case for the different compressibility values for SF=5. 

 

 

Figure 3.14. The static results for vertical stiffness ratio normalized with respect to the 

incompressible case for the different compressibility values for SF=12.5. 
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3.2.1.2.  Explicit Time Integration. Quasi-static analyses with explicit time integration were 

performed to evaluate the effects of the loading rate and compressibility on the vertical force 

and vertical displacement response of a bearing with shape factor of 5. The strain rates of 

0.4/s and 2/s refers to frequencies of 0.1 Hz and 0.5 Hz, respectively. These frequencies are 

defined as reference values in [17]. 

 

Negligible inertial effects should be observed in the results of quasi-static analysis with 

explicit time integration. One of the quantities that may be investigated for this effect is the 

ratio of the KE to the IE. Table 3.4 shows the KE/IE ratios for the different velocities and 

compressibility values. From the table, it is observed that for a given loading rate, a 

decreasing KE/IE ratio is obtained with increasing compressibility. Also, for a given 

compressibility, KE/IE decreases with decreasing loading rate. 

 

Table 3.4. KE/IE for the model subjected to compression load. 

Strain Rate 𝑲𝟎/𝝁𝟎 
 

Duration 

(s) 

KE/IE 

% 

2/s 

10 0.185 0.9 

20 0.107 2.3 

50 0.051 9.5 

100 0.030 18 

0.4/s 

10 0.926 0.04 

20 0.534 0.09 

50 0.255 0.45 

100 0.150 1.71 

 

Figures 3.15 and 3.16 show vertical force and vertical displacement response of the 

model with shape factor of 5 for 𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20.  

 

As presented in Figure 3.15, quasi-static solution for strain rate of 0.4/s overlaps with 

static solution. Quasi-static analysis with explicit time integration at higher strain rate (2/s) 

deviates from static solution with implicit time integration, e.g. at -0.1 mm displacement the 

deviation is roughly 20%. 
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Figure 3.16 (𝐾଴/𝜇଴ = 20) indicates that quasi-static solution for both strain rates of 

0.4/s and 2/s overlaps with static solution. In consideration of Figure 3.15 (𝐾଴/𝜇଴ = 100), 

it is concluded that as compressibility increases quasi-static solutions for a given loading 

velocity become closer to static solutions. 

 

 

Figure 3.15. The static and quasi-static results for vertical force for the different velocities 

for 𝐾଴/𝜇଴ = 100. 

 

 

Figure 3.16. The static and quasi-static results for vertical force for the different velocities 

for 𝐾଴/𝜇଴ = 20. 
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The following are concluded based on the compressive loading results presented in 

Section 3.2.1. 

 

 Vertical stiffness increases as shape factor (confinement) increases. 

 The shape factor effect on vertical stiffness decreases as compressibility increases. 

 The use of lower 𝐾଴/𝜇଴ for rubber results in significant error in the predictions of the 

vertical stiffness as compared to the solution for an incompressible material behavior. 

This error increases with increasing shape factor. 

 For 𝐾଴/𝜇଴ = 20, there seems to be linear relation between vertical stiffness and shape 

factor, while for incompressible case the relation is exponential. 

 In quasi-static analysis with explicit time integration, KE/IE values decrease as 

compressibility increases and/or loading velocity decreases. 

 Results of quasi-static analysis at higher strain rate (2/s) mildly deviates from static 

solution with implicit time integration. 

 For a given loading velocity, results of quasi-static analysis become closer to static 

solutions as compressibility increases. 

 

3.2.2.  Results for Combined Compressive and Shear Loading 

 

The results presented in this section are for the bearings subjected to combination of 

compression and shear loads. The analyses were conducted with implicit and explicit time 

integrations. 

 

3.2.2.1.  Effect of Shape Factor and Compressibility. For an incompressible material model, 

the horizontal force and shear strain predictions for different shape factors are shown in 

Figure 3.17. The figure shows that for shear strain up to 0.5, almost the same horizontal force 

response is observed for all shape factors. However, for shear strain greater than 0.5, higher 

horizontal force is observed as shape factor becomes smaller meaning as confinement is 

decreased. 
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Figure 3.17. The static results for horizontal force with respect to shear strain for the 

different shape factors for incompressible case. 

 

The shear stiffness for various shape factors are shown in Figure 3.18 and Figure 3.19 

for incompressible case and 𝐾଴/𝜇଴ = 20, respectively. The stiffness values were normalized 

with respect to SF=12.5 result. It is concluded that shear stiffness is mildly affected by the 

shape factor. In addition, shape factor affects the response in a similar way for various levels 

of compressibility. 

 

 

Figure 3.18. The static results for incompressible case where shear stiffness ratio is 

normalized with respect to the case of SF=12.5. 
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Figure 3.19. The static results for 𝐾଴/𝜇଴ = 20 where shear stiffness ratio is normalized 

with respect to the case of SF=12.5. 

 

3.2.2.2.  Explicit Time Integration. Quasi-static analyses with explicit time integration were 

done to investigate the effects of compressibility and the loading rate on the horizontal force 

and horizontal displacement response of the bearing with shape factor of 5. Table 3.5 

presents the KE/IE ratios for the different velocities and compressibility values. 

 

Table 3.5. KE/IE for the model subjected to the combination of compression and shear 

loads. 

Strain Rate 𝑲𝟎/𝝁𝟎 
 

Duration 

(s) 

KE/IE 

% 

2/s 

10 0.5 0.5 

20 0.5 1.03 

50 0.5 3.7 

100 0.5 6.3 

0.4/s 

10 2.5 0.02 

20 2.5 0.03 

50 2.5 0.05 

100 2.5 0.16 
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Figures 3.20 and 3.21 show horizontal force-displacement response of the model for 

𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20. According to the figures, for a given compressibility, quasi-

static solution with explicit time integration follows the response path predicted with static 

solution with implicit time integration. 

 

According to Figure 3.20, for 𝐾଴/𝜇଴ = 100, noise is present in explicit integration for 

the high loading rate (2/s). On the other hand, Figure 3.21 shows that explicit integration 

noise is significantly reduced for 𝐾଴/𝜇଴ = 20. Quasi-static solutions for a given loading 

velocity become closer to static solutions with increasing compressibility. 

 

 

Figure 3.20. The static and quasi-static results for horizontal force for the different 

velocities for 𝐾଴/𝜇଴ = 100. 
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Figure 3.21. The static and quasi-static results for horizontal force for the different 

velocities for 𝐾଴/𝜇଴ = 20. 

 

The following are concluded according to the combined compressive and shear 

loading results presented in Section 3.2.2. 

 

 Nearly the same horizontal force response is obtained for all shape factors for 𝛾 ≤ 0.5. 

 For 𝛾 > 0.5, horizontal force increases with decrease in shape factor. 

 Shape factor (confinement) mildly affects shear stiffness. Shear stiffness gets larger as 

shape factor increases. 

 Shape factor affects the shear stiffness in a similar trend for various levels of 

compressibility. 

 Results of quasi-static solution follows the response path predicted with static solution 

for any compressibility and/or loading rate. 

 For the high loading rate (2/s), noise is present in quasi-static analysis for 𝐾଴/𝜇଴ =

100. 

 Results of quasi-static analysis for a given loading velocity become closer to static 

solutions as compressibility increases. 
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3.2.3.  Results of the Dynamic Analysis with Implicit Time Integration 

 

The results presented in this section are for the bearings subjected to either 

compression only or combination of compression and shear loads. Dynamic analyses with 

implicit time integration of the model with shape factor of 5 were performed and results were 

compared with quasi-static analyses with explicit time integration. Effects of the loading rate 

and compressibility were studied. Tables 3.6 and 3.7 present the KE/IE ratios for different 

velocities and compressibility values. According to the tables, slightly lower KE/IE ratios 

were obtained compared to those for explicit analyses presented in Tables 3.4 and 3.5 for 

compression load only and for the combination of compression and shear loads, respectively. 

 

Table 3.6. KE/IE for the model subjected to compression load. 

Strain Rate 𝑲𝟎/𝝁𝟎 
 

Duration 

(s) 

KE/IE 

% 

2/s 
20 0.107 1.03 

100 0.030 15.07 

0.4/s 
20 0.534 0.04 

100 0.150 1.13 

 

Table 3.7. KE/IE for the model subjected to the combination of compression and shear 

loads. 

Strain Rate 𝑲𝟎/𝝁𝟎 
 

Duration 

(s) 

KE/IE 

% 

2/s 
20 0.5 0.57 

100 0.5 5.29 

0.4/s 
20 2.5 0.20 

100 2.5 0.32 

 

Figures 3.22 and 3.23 show vertical force and vertical displacement response for 

compression only, at 𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20. It is observed that fluctuations occur 

for the analysis with strain rate of 2/s in dynamic implicit analysis. The amplitude of 

fluctuations decreases with increasing compressibility. For vertical response, quasi-static 
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analyses with explicit time integration provide sufficient accuracy with respect to dynamic 

analyses with implicit time integration, especially at lower strain rate (0.4/s). 

 

 

(a)  

 

(b) 

Figure 3.22. The quasi-static and dynamic results for vertical force-displacement response 

for 𝐾଴/𝜇଴ = 100 for strain rate 2/s (a) and 0.4/s (b). 
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(a) 

 

(b) 

Figure 3.23. The quasi-static and dynamic results for vertical force-displacement response 

for 𝐾଴/𝜇଴ = 20 for strain rate 2/s (a) and 0.4/s (b). 
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Based on Figure 3.22 through Figure 3.25, the analysis at higher strain rate (2/s) 

exhibits noisier response than the analysis with lower strain rate (0.4/s) in both explicit 

analysis and dynamic implicit analysis. 

 

   

(a) 

 

(b) 

Figure 3.24. The quasi-static and dynamic results for horizontal force-displacement 

response for 𝐾଴/𝜇଴ = 100 for strain rate 2/s (a) and 0.4/s (b). 
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(a) 

 

(b) 

Figure 3.25. The quasi-static and dynamic results for horizontal force-displacement 

response for 𝐾଴/𝜇଴ = 20 for strain rate 2/s (a) and 0.4/s (b). 
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higher strain rate (2/s). Increase in compressibility decreases fluctuations. 
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 For vertical and horizontal responses, the analyses with explicit time integration show 

sufficient accuracy with respect to the analyses with implicit time integration. 

 For horizontal response, results of the analyses with explicit time integration follow 

the response predicted with implicit time integration. 

 

3.3.  Conclusions 

 

The followings are concluded based on the results presented in this chapter. 

 

 The effect of the shape factor on the stiffness is much more pronounced in the vertical 

direction as compared to horizontal direction. 

 The effect of shape factor on vertical stiffness decreases with increasing 

compressibility, while the effect on shear stiffness does not considerably change for 

various levels of compressibility. 

 The use of lower 𝐾଴/𝜇଴ for rubber results in significant error in the predictions of the 

vertical stiffness as compared to the solution for an incompressible material behavior. 

This error increases with increasing shape factor. 

 Lower KE/IE values are obtained as compressibility increases and/or loading velocity 

decreases. 

 Compressibility of a rubber material is one of the major concerns in terms of the 

accuracy of a finite element solution in an explicit analysis. For higher 𝐾଴/𝜇଴ (100), 

significant noise is present in quasi-static-explicit integration solution and results 

diverge from static solution with implicit integration. For lower 𝐾଴/𝜇଴ (20), explicit 

integration noise is significantly reduced, and results overlap with those from implicit 

solution. 

 The horizontal response for 𝛾 ≤ 0.5 is nearly the same for all shape factors. 
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4.  FINITE ELEMENT ANALYSIS OF AN ELASTOMER BEARING 

WITH VISCOELASTIC MATERIAL PROPERTIES 

 

 

Finite element model of a plain elastomer bearing with viscoelastic material properties 

is presented in this chapter. Previously, finite element model of a plain rubber bearing with 

hyperelastic properties was presented in Chapter 3. 

 

The response of the bearing under either compression load or combination of 

compression and shear loads was studied. The effects of compressibility, viscoelasticity, and 

velocity on vertical and horizontal response of the bearing were investigated in static analysis 

with implicit time integration. Also, quasi-static analysis with explicit time integration was 

performed and the effect of loading velocity on the predictions was determined. 

 

4.1.  Finite Element Model 

 

In this section, viscoelastic material model, geometry, loading and boundary 

conditions, mesh properties of the finite element model are presented. 

 

4.1.1.  Material Model 

 

The elastomer was considered to be HDR as in Chapter 3 and was represented with a 

viscoelastic material model. The experimental data for HDR was taken from the literature 

[5]. The available data consisted of stress relaxation response for uniaxial compression and 

simple shear. 

 

A nonlinear viscoelastic material model was calibrated. The model consisted of a 

relaxation function combined with a hyperelastic model. Elastic response of the material 

model was obtained from Yeoh form of strain energy and was described in Section 3.1.1 of 

this thesis. The relaxation function was represented with Prony series. The Prony terms were 

determined using the least square method. The experimental data and the resulting curve fit 

for simple shear are shown in Figure 4.1. The resulting coefficients of Prony series are given 

in Table 4.1.  
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Figure 4.1. Shear stress relaxation response of viscoelastic material model (test data [5]). 

 

Table 4.1. The Prony series coefficients. 

𝐺ଵ 𝐺ଶ 𝐺ଷ 𝜏ଵ 𝜏ଶ 𝜏ଷ 

0.57941 0.15825 0.04063 1.5 15 150 

 

The equilibrium shear modulus is 𝐺ஶ = 0.57778 MPa. 

 

The volumetric behavior of rubber was assumed to be incompressible. 

 

To investigate the effect of loading rate on response of viscoelastic material model, 

two different strain rates (0.4/s and 2/s) were studied. Figure 4.2 shows stress-stretch 

response for uniaxial compression. Figure 4.3 shows stress-strain response for simple shear. 

It is concluded that stress relaxation gets higher as loading rate decreases for both loading 

types. 
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Figure 4.2. Loading rate effect for viscoelastic model subjected to uniaxial compression. 

 

 

Figure 4.3. Loading rate effect for viscoelastic model subjected to simple shear. 
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To validate the calibrated material model, long and short term responses were 

predicted for incompressible case under simple shear load at different strain rates (0.1/s, 

0.01/s and 0.005/s) as shown in Figure 4.4. As the loading rate decreases, shear stress-strain 

behavior resembles to equilibrium response presented in [4]. This proves that the constructed 

material model with viscoelastic properties agrees with the experimental data. 

 

 

Figure 4.4. Instantaneous and equilibrium response of viscoelastic material model. 

 

The rubber density was taken as 1 𝑔/𝑐𝑚ଷ for explicit analyses. 

 

4.1.2.  Geometry of the Problem 

  

A rectangular bearing with shape factor of 5, which corresponds to the side dimensions 

of 50x50 mm and thickness of 2.5 mm, was selected. The geometry is shown in Figure 3.4. 

 

4.1.3.  Mesh 

 

Plane strain analysis of the bearings was conducted. Mesh consisted of quadrilateral, 

reduced integration, linear elements for static analyses with implicit integration and quasi-

static analyses with explicit integration. Hybrid elements were considered for the analysis 

with implicit integration. In summary, the elements used for predictions are the followings: 

 CPE4RH for the analysis with implicit time integration 

 CPE4R for the analysis with explicit time integration 
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The mesh structure for the geometry is shown in Figure 3.7. 

 

4.1.4.  Loading and Boundary Conditions 

 

Bearings were subjected to either compression load or combination of compression 

and shear loads. The loads were applied as described in Section 3.1.4 of this thesis. Table 

4.2 is extracted from Table 3.2 and lists the vertical displacements for SF=5. The applied 

horizontal displacement for SF=5 is 2.5 mm which corresponds to the shear strain of 1. 

 

Table 4.2. Total load and the corresponding vertical displacements in the FE models of the 

bearing with SF=5. 

SF 𝑲𝟎/𝝁𝟎 
 

Total Load (N) Vertical Displacement (mm) 

5 

10 30000 -0.9255 

20 30000 -0.5343 

50 30000 -0.2549 

100 30000 -0.1503 

∞ 30000 -0.0355 

 

The boundary conditions and contact behavior were defined as described in section 

3.1.4 of this thesis. 

  

4.2.  Results 

 

The finite element predictions were evaluated for the following quantities: vertical 

force, vertical stiffness, horizontal force and horizontal stiffness. 

 

For static analysis with implicit time integration and quasi-static analysis with explicit 

time integration, the effects of the following parameters on the response were investigated. 

 

 Compressibility 

 Viscoelasticity 

 Loading Velocity 
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4.2.1.  Results for Compressive Loading 

 

The results presented in this section are for the bearings subjected to compression load 

only. The analyses were conducted with implicit and explicit time integrations. 

 

4.2.1.1.  Effects of Compressibility, Viscoelasticity, and Loading Velocity. The vertical 

force and vertical displacement predictions for incompressible case and 𝐾଴/𝜇଴ = 20 are 

shown in Figures 4.5a and 4.5b, respectively. The figures highlight that for a given 

compressibility vertical response of the bearing is not affected by viscoelasticity and/or 

loading velocity for the considered range of strain rate. The conclusions regarding the 

compressibility effect are the same as those presented in Section 3.2.1.1. 

 

 

Figure 4.5a. The static results for vertical force-displacement response for incompressible 

case. 
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Figure 4.5b. The static results for vertical force-displacement response for 𝐾଴/𝜇଴ = 20. 

 

4.2.1.2.  Explicit Time Integration. Quasi-static analyses with explicit time integration were 

performed to evaluate the effects of the loading rate and compressibility on the vertical force 

and vertical displacement response of the bearing. 

 

The KE/IE ratios obtained for the viscoelastic bearings were the same as the KE/IE 

ratios calculated for hyperelastic model presented in Section 3.2.1.2 of this thesis. Therefore, 

it is concluded that viscoelasticity has no effect on the KE/IE ratio for the range of strain 

rates considered in this study. 

  

Figures 4.6 and 4.7 present vertical force and vertical displacement responses of the 

viscoelastic model for 𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20, respectively. For lower strain rate 

(0.4/s), explicit solution overlaps with the implicit solution. Explicit solution for strain rate 

of 2/s, on the other hand, deviates from the implicit solution. It is concluded that explicit 

analysis at higher strain rate (2/s) deviates from implicit solution. 

 

Figure 4.7 (𝐾଴/𝜇଴ = 20) indicates that explicit solution for both strain rates of 0.4/s 

and 2/s overlaps with implicit solution. In consideration of Figure 4.6 (𝐾଴/𝜇଴ = 100), it is 

concluded that as compressibility increases, explicit solutions for a given loading velocity 

become closer to implicit solutions. 
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(a) 

 

(b) 

Figure 4.6. The static and quasi-static results for vertical force-displacement response for 

𝐾଴/𝜇଴ = 100 for strain rate 2/s (a) and 0.4/s (b). 
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(a) 

  

(b) 

Figure 4.7. The static and quasi-static results for vertical force-displacement response for 

𝐾଴/𝜇଴ = 20 for strain rate 2/s (a) and 0.4/s (b). 

 

The following are concluded based on the compressive loading results presented in 

Section 4.2.1. 

 

 For a given compressibility, vertical response of the bearing is not affected by 
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 For vertical response, viscoelasticity has no effect on the KE/IE ratio as compared to 

the KE/IE ratios with hyperelastic model predictions, for the considered range of strain 

rates. 

 Predictions with explicit analysis at higher strain rate (2/s) deviate from predictions 

with implicit analysis. 

 For a given loading velocity, results of quasi-static analysis become closer to static 

solutions as compressibility increases. 

 

The above conclusions are consistent with the elastic volumetric behavior assumed for 

the bearing. 

 

4.2.2.  Results for Combined Compressive and Shear Loading 

 

The results presented in this section are for the bearings subjected to combination of 

compression and shear loads. The analyses were conducted with implicit and explicit time 

integrations. 

 

4.2.2.1.  Effects of Compressibility, Viscoelasticity, and Loading Velocity. The horizontal 

force and horizontal displacement predictions for incompressible case and 𝐾଴/𝜇଴ = 20 are 

presented in Figure 4.8. The figure shows that horizontal response is mildly affected by 

viscoelasticity. The effect of viscoelasticity decreases as compressibility increases. Also, for 

a given compressibility, viscoelastic predictions become closer to hyperelastic results as 

loading velocity increases. Since hyperelastic model was based on instantaneous material 

response, this conclusion is not surprising. 
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(a) 

 

(b) 

Figure 4.8. The static results for horizontal force-displacement response for incompressible 

case (a) and 𝐾଴/𝜇଴ = 20 (b). 

 

The shear stiffness for various compressibility levels (10, 20, 50, 100 and 

incompressible) are shown in Figure 4.9 where the stiffness values were normalized with 

respect to those for the incompressible hyperelastic case. For both hyperelastic and 

viscoelastic models regardless of loading velocity, the stiffness values slightly decrease from 

incompressible case to 𝐾଴/𝜇଴ ≅ 90. Then, the stiffness values slightly increase from 

𝐾଴/𝜇଴ ≅ 90 to 𝐾଴/𝜇଴ = 20. There is a sharp increase in stiffness values between 𝐾଴/𝜇଴ =
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20 and 𝐾଴/𝜇଴ = 10. Therefore, modeling nearly incompressible bearings with higher 

compressibility (𝐾଴/𝜇଴ ≤ 20) in explicit analysis likely results in significant error for shear 

response predictions. 

 

 

Figure 4.9. The static results for different compressibility values where shear stiffness ratio 

is normalized with respect to incompressible result of hyperelastic case. 

 

4.2.2.2.  Explicit Time Integration. Quasi-static analyses with explicit time integration were 

done to investigate the effects of the loading rate and compressibility on the horizontal force 

and horizontal displacement response of a bearing. 

 

The KE/IE ratios obtained for the viscoelastic bearings were the same as the KE/IE 

ratios presented for hyperelastic model in Section 3.2.2.2 of this thesis. It is concluded that 

viscoelasticity has no effect on the KE/IE ratio for the range of strain rates considered in this 

study. 

  

Figures 4.10 and 4.11 present horizontal force and horizontal displacement responses 

of the viscoelastic model for 𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20, respectively. According to the 

figures, for a given compressibility, explicit solution follows the response path predicted 

with the implicit solution. 
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According to Figure 4.10, for 𝐾଴/𝜇଴ = 100, noise is present in explicit integration for 

the high loading rate (2/s). On the other hand, Figure 4.11 shows that explicit integration 

noise is significantly reduced for 𝐾଴/𝜇଴ = 20. Explicit solutions for a given loading velocity 

become closer to implicit solutions with increasing compressibility. 

 

    

(a) 

 

(b) 

Figure 4.10. The static and quasi-static results for horizontal force-displacement response 

for 𝐾଴/𝜇଴ = 100 for strain rate 2/s (a) and 0.4/s (b). 
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(a) 

 

(b) 

Figure 4.11. The static and quasi-static results for horizontal force-displacement response 

for 𝐾଴/𝜇଴ = 20 for strain rate 2/s (a) and 0.4/s (b). 

 

The following are concluded based on the combined compressive and shear loading 
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 For a given compressibility, as loading velocity increases viscoelastic results get closer 

to hyperelastic ones, since the latter was calibrated to instantaneous test data. 

 The use of higher compressibility (𝐾଴/𝜇଴ ≤ 20)  for rubber results in significant error 

in the predictions of the shear stiffness as compared to that with an incompressible 

material behavior. 

 For horizontal response, viscoelasticity has no effect on the KE/IE ratio as compared 

to the KE/IE ratios with hyperelastic model predictions, for the considered range of 

strain rates. 

 Results of explicit solution follow the response path predicted with implicit solution 

for all considered compressibility levels and loading rates. 

 For a given loading velocity, results of quasi-static analysis become closer to static 

solutions as compressibility increases. 

 

4.3.  Conclusions 

 

The followings are concluded based on the results presented in this chapter. 

 

 Stress relaxation increases as loading rate decreases for both uniaxial compression and 

simple shear. 

 For a given compressibility, vertical response of the bearing is not affected by 

viscoelasticity and/or loading velocity, for the considered range of strain rates. 

 Horizontal response is mildly affected by viscoelasticity. The effect of viscoelasticity 

decreases as compressibility increases. For a given compressibility, viscoelastic 

predictions become closer to hyperelastic results as loading velocity increases. 

 The use of higher compressibility (𝐾଴/𝜇଴ ≤ 20)  for rubber results in significant error 

in the predictions of the shear stiffness as compared to the solution for an 

incompressible material behavior. 

 For both vertical and horizontal response, viscoelasticity has no effect on the KE/IE 

ratio as compared to the KE/IE ratios with hyperelastic model predictions, for the 

considered range of strain rates. 

 Predictions with explicit analysis at higher strain rate (2/s) deviate from predictions 

with implicit analysis. 
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 For horizontal response, results of explicit solution follow the response path predicted 

with implicit solution for any compressibility and loading rate considered in the study. 

 For a given loading velocity, explicit solutions become closer to implicit solutions as 

compressibility increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

5.  FINITE ELEMENT ANALYSIS OF A COMPOSITE BEARING 

 

 

In Chapters 3 and 4, finite element models of plain rubber bearing with hyperelastic 

and viscoelastic material properties were presented. In this chapter, a bearing composed of 

alternating layers of rubber and steel is considered. In particular, the response of the 

composite bearing under either compression load or combination of compression and shear 

loads was studied. Finite element analysis results are presented for global and local responses 

of the bearing. 

 

 For global response, the effect of rubber compressibility on vertical and horizontal 

response of the bearing was investigated in static analysis with implicit time integration. In 

addition, quasi-static analysis with explicit time integration was explored. For the explicit 

analysis, the effect of loading velocity on the predictions was evaluated. 

 

For local response, the effects of loading type, boundary type, compression load 

magnitude, and rubber compressibility on stress distribution in rubber pads were investigated 

for static analysis with implicit time integration. In addition, the stress distribution at various 

interfaces was studied. 

 

5.1.  Finite Element Model 

 

In this section, details of the finite element model such as material model of steel, 

geometry, mesh, and loading and boundary conditions are presented. 

 

5.1.1.  Material Models for Rubber and Steel 

 

Rubber was represented with the same material model described in Chapter 3. 

 

The steel was represented with an elastoplastic material model. In particular, kinematic 

hardening model was employed. The model parameters were taken from the literature [9]. 

 

 



54 

 

 𝐸 = 200 𝐺𝑃𝑎 

 𝜈 = 0.3 

 𝜎௬௜௘௟ௗ = 276 𝑀𝑃𝑎 

 𝐸′ = 1034 𝑀𝑃𝑎 

 

The uniaxial stress-strain behavior of steel for tension is shown in Figure 5.1. 

 

 

Figure 5.1. Stress-Strain curve of steel. 

 

For explicit analyses, the steel density was taken as 8 𝑔/𝑐𝑚ଷ. 

 

5.1.2.  Geometry of the Problem 

 

The bearing consists of three layers of rubber pads and two layers of steel plates, which 

are placed in between the rubber pads. A small-scale bearing was considered. Overall 

thickness of the bearing is 11.5 mm. The geometry of the bearing is illustrated in Figure 5.2. 

 

 A layer of rubber pad has side dimensions of 50x50 mmxmm and thickness of 2.5 mm. 

These dimensions correspond to shape factor of 5. A steel layer has the side dimensions of 

50x50 mmxmm and thickness of 2 mm. 
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Figure 5.2. The geometry of the bearing (11.5x50x50 mmxmmxmm). 

 

5.1.3.  Mesh 

 

Plane strain analysis of the steel-rubber bearing was conducted. For rubber pads, mesh 

consisted of quadrilateral, reduced integration, linear elements for static analyses with 

implicit integration and quasi-static analyses with explicit integration. Linear elements were 

used since they are more efficient in contact. Hybrid elements were considered for static 

analysis with implicit integration.  

 

For steel plates, mesh consisted of quadrilateral, linear elements for static analyses 

with implicit integration; and quadrilateral, reduced integration, linear elements for quasi-

static analyses with explicit integration. The mesh convergence study for a steel plate is 

presented in Appendix-B. The mesh structure for the bearing is shown in Figure 5.3. The 

elements used for predictions are as following:  

 

 For rubber pads, CPE4RH in analyses with implicit time integration 

 For rubber pads, CPE4R in analyses with explicit time integration 

 For steel plates, CPE4 in analyses with implicit time integration 

 For steel plates, CPE4R in analyses with explicit time integration 
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Figure 5.3. The mesh for the steel-rubber bearing. Total number of elements: 22376. 

 

5.1.4.  Loading and Boundary Conditions 

 

 The bearing was subjected to either compression load or combination of compression 

and shear loads. The loads were applied through an analytical rigid body. The load was 

applied as displacement. 

 

 Compression stress of 12 MPa was considered in analyses for global response. 

Compression stresses of 12 MPa and 18 MPa were considered in analyses for local response. 

For the geometry used in this study, 12 MPa and 18 MPa correspond to total loads of 30000 

N and 45000 N, respectively. Table 5.1 shows the applied vertical displacement for different 

shape factors and bulk modulus to shear modulus ratios.  

 

Table 5.1. Total load and the corresponding vertical displacements in the FE models of the 

composite bearing. 

 SF 𝑲𝟎/𝝁𝟎 Total Load (N) Vertical Displacement (mm) 

5 

10 30000 -2.7844 

20 30000 -1.6056 

50 30000 -0.7655 

100 30000 -0.4517 

2000 30000 -0.1255 

∞ 30000 -0.1074 

20 45000 -2.3145 

50 45000 -1.1059 

100 45000 -0.6568 

2000 45000 -0.2007 
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 For shear loading the applied horizontal displacement is 7.5 mm which corresponds to 

shear strain equal to 1. 

  

 The boundary conditions were defined through reference points of the two rigid bodies 

as presented in Figure 5.4. For both compression and shear, all displacement components 

were set to zero at “RP_1”. For compression, horizontal displacement component was set to 

zero at “RP_2” while for shear vertical displacement component was set to zero at “RP_2”. 

Vertical and horizontal displacements were applied at “RP_2” for compression and shear, 

respectively. 

 

 

Figure 5.4. The boundary conditions for the bearing. 

 

 Two different interface properties were defined between the bearing and rigid bodies. 

First case is a tie constraint which was applied in order to characterize the bearing as 

bounded. For the second case, contact was modeled. In particular, tangential behavior with 

friction and normal behavior with hard contact were defined. For friction formulation, 

penalty method was used. The friction coefficient was selected as μ = 0.3 [9]. Unless 

otherwise specified, results are presented for tie constraint. 

 

For either of the above models, at the bearing-rigid body interface contact was defined 

between lateral surfaces of rubber pads and rigid bodies. Contact was also defined between 

lateral surfaces of rubber pads and lateral surfaces of steel plates. For normal behavior, hard 

contact was defined. For implicit analysis, the constraint was enforced via Augmented 

Lagrange Method, while for the explicit analysis, kinematic constraint enforcement method 

was employed. Tangential behavior was defined as frictionless. Finally, tie constraint was 

defined at rubber-steel interfaces. 
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5.2.  Results 

 

The finite element predictions were evaluated in terms of global as well as local 

responses. Quantities representative of the global response were selected as: 

 

 Vertical force 

 Vertical stiffness 

 Horizontal force 

 Horizontal stiffness 

 

Static analyses with implicit time integration and quasi-static analyses with explicit 

integration were performed. The effects of following parameters on the global response were 

investigated. 

 

 Rubber Compressibility 

 Loading Velocity 

 

Quantities representative of the local response were selected as: 

 

 Normal stress at top of bearing 

 Maximum tensile stress in rubber 

 Maximum Mises stress in steel 

 Horizontal normal stress at the rubber-steel interface 

 

For static analyses with implicit time integration, the effects of following parameters 

on the local response were investigated. 

 

 Loading Type (Compression only vs. combination of compression and shear) 

 Boundary Type (Bounded vs. frictional) 

 Compression Load Magnitude 

 Compressibility 
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5.2.1.  Results for Global Response 

 

In this section, the results of analyses in regard to vertical and horizontal behavior of 

the bearing are presented. 

 

5.2.1.1.  Results for Compressive Loading. The results presented in this section are for the 

steel-rubber bearing subjected to compression load only. The analyses were conducted with 

implicit and explicit time integrations. 

 

Figures 5.5 and 5.6 show the deformed configurations of the bounded bearing and of 

the bearing with frictional boundary condition subjected to compression load. For the 

bounded bearing, element distortions are much more severe than for the bearing with 

frictional boundary condition. In the former, element distortions are mostly near the edges 

where rubber pads and rigid bodies are in contact. These distortions may cause stress 

concentration at the edges. 

 

 

Figure 5.5. The deformed configuration of the bounded bearing under compression load 

only. 

 

 

Figure 5.6. The deformed configuration of the bearing with frictional boundary condition 

under compression load only. 
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5.2.1.1.1.  Vertical Stiffness. The vertical displacement of the bearing which is subjected to 

compression load of 30000 N was investigated for various bulk to shear stiffness ratios. The 

results are presented in Table 5.2 along with those obtained for one rubber pad presented in 

Chapter 3. It is concluded that at each compressibility level the vertical displacements 

obtained for bearing are about three times of those obtained for a single pad. This result is 

reasonable because the bearing consists of three layers of rubber pads. Furthermore, the 

results indicate that conducting finite element analysis of one layer of rubber pad is adequate 

to characterize the vertical behavior of a complete bearing model. 

 

Table 5.2. Vertical displacements for the steel-rubber bearing and plain rubber pad. 

SF 𝑲𝟎/𝝁𝟎 
Total Load 

(N) 

Steel-Rubber Bearing Plain Rubber Pad 

Vertical 

Displacement (mm) 

Vertical Displacement 

(mm) 

5 

10 30000 -2.7844 -0.9255 

20 30000 -1.6056 -0.5343 

50 30000 -0.7655 -0.2549 

100 30000 -0.4517 -0.1503 

∞ 30000 -0.1074 -0.0355 

 

The vertical stiffness response of the steel-rubber bearing model at different rubber 

compressibility values is presented in Table 5.3 along with the results of plain rubber pad 

model. The vertical stiffness values of single pad analyses are almost three times higher than 

the stiffness values of bearing model. The vertical stiffness of the bearing at various rubber 

compressibility levels is shown in Figure 5.7 where results are normalized by the value of 

the incompressible case. Comparison of Figure 5.7 and Figure 3.13 shows that the effect of 

compressibility on vertical stiffness is nearly the same for both the bearing and one pad 

models. 
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Table 5.3. Vertical stiffness results for the steel-rubber bearing and plain rubber pad. 

SF 𝑲𝟎/𝝁𝟎 
Total Load 

(N) 

Steel-Rubber Bearing Plain Rubber Pad 

Vertical Stiffness 

(N/mm) 

Vertical Stiffness 

(N/mm) 

5 

10 30000 10774 32415 

20 30000 18685 56146 

50 30000 39190 117715 

100 30000 66420 199645 

∞ 30000 279382 845592 

 

 

 

Figure 5.7. The results for vertical stiffness ratio for the different compressibility values of 

the bearing. 
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Figure 3.13. (Repeated) The static results for vertical stiffness ratio normalized with 

respect to the incompressible case for the different compressibility values for SF=5. 

 

5.2.1.1.2.  Explicit Time Integration. Quasi-static analyses with explicit time integration 

were performed to investigate the effects of loading rate and rubber compressibility on the 

vertical response of the bearing. The strain rates of 0.4/s and 2/s corresponding to frequencies 

of 0.1 Hz and 0.5 Hz, respectively, were selected for the analyses.  

 

 Table 5.4 shows the KE/IE ratios for the different velocities and compressibility 

values. According to the table, the KE/IE ratios for the strain rate of 2/s are significantly 

higher than the ratios for the strain rate of 0.4/s; therefore, for the strain rate of 2/s, analyses 

seem to be dynamic rather than quasi-static. 

 

Table 5.4. KE/IE for the bearing subjected to compression load. 

Strain Rate 𝑲𝟎/𝝁𝟎 Duration (s) KE/IE % 

2/s 20 0.107 11.8 

100 0.030 26.5 

0.4/s 20 0.535 0.5 

100 0.151 3.5 

 

Figure 5.8 and Figure 5.9 show vertical force and vertical displacement responses at 

different strain rates for 𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20, respectively. 
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Regarding the effect of velocity, both figures indicate that the solution with explicit 

time integration significantly diverges from the static solution with implicit time integration 

for the analysis at higher strain rate (2/s). This also proves that the analyses with strain rate 

of 2/s are dynamic instead of quasi-static. 

 

Regarding the effect of compressibility, for strain rate of 0.4/s, relatively better results 

are obtained for 𝐾଴/𝜇଴ = 20. It is, therefore, concluded that quasi-static solutions for a given 

loading velocity become closer to static solutions with increasing compressibility. 

 

 

Figure 5.8. The static and quasi-static results for vertical force for the different velocities 

for 𝐾଴/𝜇଴ = 100. 
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Figure 5.9. The static and quasi-static results for vertical force for the different velocities 

for 𝐾଴/𝜇଴ = 20. 

 

5.2.1.2.  Results for Combined Compressive and Shear Loading. The results presented in 

this section are for the steel-rubber bearing subjected to combination of compression and 

shear loads. The analyses were conducted with implicit and explicit time integrations. 

 

Figures 5.10 and 5.11 show the deformed configurations of the bounded bearing and 

of the bearing with frictional boundary condition subjected to combination of compression 

and shear loads, respectively. For the bounded bearing, element distortions are more severe 

than for the bearing with frictional boundary condition. In particular, near the edges where 

rubber pads and rigid bodies are in contact. These distortions cause stress concentrations. 

 

 

Figure 5.10. The deformed configuration of the bounded bearing under the combination of 

compression and shear loads. 
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Figure 5.11. The deformed configuration of the bearing with frictional boundary condition 

under the combination of compression and shear loads. 

 

5.2.1.2.1.  Horizontal Stiffness. The horizontal stiffness response of the steel-rubber bearing 

at different rubber compressibility values is presented in Table 5.5 along with the results of 

plain rubber pad. In the table, the stiffness value of the bearing with 𝐾଴/𝜇଴ = 10 is not 

presented due to lack of convergence in the analysis. The horizontal stiffness values of single 

pad are 3.09-3.22 times higher than the stiffness values of the bearing. The bearing consists 

of three layers of rubber pads. It is concluded that conducting finite element analysis of one 

layer of rubber pad may characterize horizontal behavior of a complete bearing with possible 

relative difference of 3.0-7.3%. The difference increases as compressibility increases except 

for the incompressible case. 

 

Table 5.5. Horizontal stiffness results for the steel-rubber bearing and plain rubber pad. 

SF 𝑲𝟎/𝝁𝟎 
Shear 

Strain 

Steel-Rubber Bearing Plain Rubber Pad 
% 

Difference 
Horizontal Stiffness 

(N/mm) 

Horizontal Stiffness 

(N/mm) 

5 

10 1 - 3837 - 

20 1 690 2222 7.3 

50 1 597 1867 4.3 

100 1 591 1827 3.0 

∞ 1 661 2126 7.2 
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5.2.1.2.2.  Explicit Time Integration. Quasi-static analyses with explicit time integration 

were done to evaluate the effects of loading rate and rubber compressibility on the horizontal 

response of the bearing. Table 5.6 presents the KE/IE ratios for the different velocities and 

compressibility values. It is observed that the KE/IE ratios for the strain rate of 2/s are 

significantly higher than those for the strain rate of 0.4/s, as it was also observed in Table 

5.4. Therefore, for the strain rate of 2/s, analyses become dynamic. 

 

Table 5.6. KE/IE for the bearing subjected to the combination of compression and shear 

loads. 

Strain Rate 𝑲𝟎/𝝁𝟎 Duration (s) KE/IE % 

2/s 20 0.5 10.7 

100 0.5 12.6 

0.4/s 20 2.5 0.3 

100 2.5 0.8 

 

 Figure 5.12 and Figure 5.13 present horizontal force and horizontal displacement 

responses of the bearing at different strain rates for 𝐾଴/𝜇଴ = 100 and 𝐾଴/𝜇଴ = 20, 

respectively. 

 

Regarding loading velocity effect, predictions with explicit time integration extremely 

diverges from the predictions with implicit time integration and has significant noise for the 

analysis at higher strain rate (2/s). As a conclusion, the analyses with strain rate of 2/s are 

dynamic instead of quasi-static.  

 

Regarding the effect of compressibility, for strain rate of 0.4/s, slightly better solution 

is obtained for 𝐾଴/𝜇଴ = 20. This shows that quasi-static solutions for a given loading 

velocity become closer to static solutions with increasing compressibility. 
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Figure 5.12. The static and quasi-static results for horizontal force for the different 

velocities for 𝐾଴/𝜇଴ = 100. 

 

 

Figure 5.13. The static and quasi-static results for horizontal force for the different 

velocities for 𝐾଴/𝜇଴ = 20. 
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5.2.1.3.  Conclusions of the Problem. The following are concluded based on the results 

presented in Section 5.2.1. 

 

 Finite element predictions of a one-layer rubber pad sufficiently highlight vertical 

response of a composite bearing model. 

 Vertical stiffness of the composite bearing can be calculated based on the vertical 

stiffness of the single-rubber pad. 

 The effect of rubber compressibility on vertical stiffness is nearly the same for both a 

rubber-steel bearing and a one-layer rubber pad. In the predictions of the vertical 

stiffness, the use of lower 𝐾଴/𝜇଴ for rubber causes significant error as compared to the 

solution for an incompressible material behavior.  

 For high loading rate (2/s), solutions with explicit time integration are considered as 

dynamic instead of quasi-static for both vertical and horizontal responses and 

predictions for the high loading rate significantly diverge from static solutions with 

implicit time integration. This can be deduced based on the KE/IE ratios which for the 

high loading rate are significantly higher than those for the lower loading rate of 0.4/s.  

 For vertical and horizontal responses, results of quasi-static analysis become closer to 

static solutions as compressibility increases for lower loading rate (0.4/s). 

 Conducting finite element analysis of one layer of rubber pad may characterize 

horizontal behavior of the composite bearing with possible relative difference in the 

range of 3.0-7.3%. 

 

5.2.2.  Results for Local Response 

 

In this section, the stress field predictions in rubber pads and in steel plates of the 

bearing are presented. For the rubber, compressive stress at top of the bearing and maximum 

tensile stress in rubber were evaluated. For the steel, maximum Mises stress, plastic 

deformation, and horizontal normal stress at the steel-rubber interface were studied. Implicit 

time integration was used for analyses. 

 

For rubber, the ratio of initial bulk modulus to initial shear modulus was considered as 

2000. Additionally, the ratios of 20, 50, 100, and incompressible case were considered for 

bearing models in the analysis for maximum Mises stress in steel.  
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5.2.2.1.  Local Response of Rubber. The results presented in this section are for the steel-

rubber bearing with 𝐾଴/𝜇଴ = 2000. Either compression load only or combination of 

compression and shear loads were applied to the model. Compressive stress at top of the 

bearing and maximum tensile stress in rubber pads were evaluated. Effects of loading type, 

boundary type and vertical load were studied. 

 

5.2.2.1.1.  Compressive Stress at Top of the Bearing. Compressive stresses at top of the 

bearing with 𝐾଴/𝜇଴ = 2000 under either compression load (45000 N) or the combination of 

compression and shear loads were evaluated. The results of both loading types are presented 

for both bounded and frictional contact models through the length of bearing in Figures 5.14 

and 5.15. The results are normalized by the average compressive stress, 𝜎௔௩௚ = −18 MPa. 

 

 Based on Figure 5.14, for the case of compression only, parabolic behavior of 

compressive stress is observed with maximum value at the middle of the length and with the 

values close to zero at both ends of the length where mild stress concentration is present 

because of the effect of bounded model. For the case of the combination of compression and 

shear loads, significant stress concentration is present at the end close to 𝑥 = 0 which is on 

the opposite side of applied shear load direction. Compressive stress approaches to zero at 

the end close to 𝑥 = 50 which is on the same side of applied shear load direction. Compared 

to the case of compression only, considerably high compressive stress values were observed 

between 𝑥 = 0 and 𝑥 = 43 in the case of combined loads.  
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Figure 5.14. The results of normalized compressive stress at top of the bearing considering 

the effect of loading type for the bearing with bounded boundary type. 

 

According to Figure 5.15, for the case of compression only, parabolic behavior of 

compressive stress is observed with maximum value at the middle of the length and with the 

values close to zero at both ends of the length where no stress concentration exists. For the 

case of the combined loads, mild stress concentration is present at the end close to 𝑥 = 0. 

Compressive stress approaches to zero at the end close to 𝑥 = 50. Compared to the case of 

compression only, high compressive stress values were obtained between 𝑥 = 5 and 𝑥 = 25 

in the case of the combined loads. Moreover, the ratio of the compressive stress to the 

average compressive stress observed in the case of only compression load is similar (around 

1.5 at the maximum values) to the ratio reported in [9], therein Figure 3. 

 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50

σ 2
2 
/ σ

av
g

x (mm)

COMPRESSION

COMPRESSION+SHEAR



71 

 

 

Figure 5.15. The results of normalized compressive stress at top of the bearing considering 

the effect of loading type for the bearing with friction boundary type. 

 

Effects of boundary type between the bearing and rigid bodies are compared in Figure 

5.16 for the case of compression load only and in Figure 5.17 for the case of the combined 

loads. 

 

For the case of compression load only, it is concluded that the compressive stress 

values throughout the length are higher (max.12%) for the bearing with bounded contact 

than for the bearing with frictional contact. Moreover, the stress concentration observed at 

both ends of the model with bounded contact is not present for the model with frictional 

contact. The cause for the stress concentration was highlighted while discussing Figures 5.5 

and 5.6. 
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Figure 5.16. The results of normalized compressive stress at top of the bearing under 

compression load only for different boundary types. 

 

For the case of the combined loads, a similar trend is observed for both boundary types. 

However, compressive stress values along most of the parts of the length are significantly 

higher (almost 60% higher at 𝑥 = 20 where the compressive stress is maximum for bounded 

type of boundary) for bounded type of boundary.  In addition, no stress concentration exists 

at both ends of the model with frictional contact. The deformed configurations for both 

boundary types are presented in Figures 5.10 and 5.11. 

 

 

Figure 5.17. The results of normalized compressive stress at top of the bearing under the 

combination of compression and shear loads for different boundary types. 
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5.2.2.1.2.  Maximum Tensile Stress in Rubber. Maximum tensile stress in rubber pads in the 

bearing model with 𝐾଴/𝜇଴ = 2000 was evaluated for the combination of vertical and 

horizontal loads. Vertical loads were applied as 30000 N and 45000 N to study the effect of 

compression load magnitude on tensile stress in rubber pads. Figures 5.18 and 5.19 show 

normal stress distribution in vertical direction for both loads. It is observed that tensile 

stresses increase towards the edges of rubber pads. Furthermore, for 30000 N vertical load, 

the maximum tensile stress in rubber was obtained as 4.76 MPa, while for 45000 N, the 

maximum tensile stress in rubber was obtained as 4.28 MPa. As a conclusion, maximum 

tensile stress in rubber decreases with an increase in compression load magnitude. 

 

 

Figure 5.18. Normal stress distribution in vertical direction in rubber pads for the model 

subjected to vertical load of 30000 N. 

 

 

Figure 5.19. Normal stress distribution in vertical direction in rubber pads for the model 

subjected to vertical load of 45000 N. 
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5.2.2.2.  Local Response of Steel. The results of the bearing with 𝐾଴/𝜇଴ = 2000 either under 

compression load or under combination of compression and shear loads are presented for the 

steel plates. Maximum Mises stress and plastic deformation in steel, and horizontal normal 

stress at the steel-rubber interface were examined. The effect of vertical load magnitude was 

evaluated, and various interface models were considered. 

 

5.2.2.2.1.  Maximum Mises Stress and Plastic Deformation in Steel. Maximum Mises 

stresses within steel plates of the bearing subjected to combined compression and shear load 

were calculated for various rubber compressibility values. The maximum Mises stress values 

in steel for the applied vertical loads (30000 N and 45000 N) and for different 

compressibility values are given in Table 5.7. The stress values were obtained at integration 

points in steel. It is concluded that at each compressibility, maximum Mises stress increases 

as vertical load increases. Furthermore, at a given load, maximum Mises stress values seem 

to increase with increasing compressibility. For the case of 𝐾଴/𝜇଴ = ∞ for vertical load of 

30000 N and that of 𝐾଴/𝜇଴ = 2000 for vertical load of 45000 N are exceptions, the former 

possibly due to use of hybrid formulation, the latter possibly due to use of non-converged 

mesh. The incompressible case for vertical load of 45000 N is not given in the table due to 

lack of convergence. 

 

Table 5.7. Maximum Mises Stress (MPa). 

𝑲𝟎/𝝁𝟎 
Total Vertical Load (N) 

30000 45000 

∞ 202.1 - 

2000 190.8 276.4 

100 194.8 267.9 

50 202.9 273.2 

20 209.5 276.1 

 

Plastic deformation within steel was observed for the case with Mises stress values 

exceeding the yield stress, 𝜎௬௜௘௟ௗ = 276 MPa. Figure 5.20 shows Mises stress distribution 

and Figure 5.21 shows plastic deformation locations for 𝐾଴/𝜇଴ = 2000. Figure 5.21 

highlights that plastic deformation starts near the rubber-steel interface located at the mid-

height and spreads further along the interface.  
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Figure 5.20. Mises stress distribution with 𝐾଴/𝜇଴ = 2000 for the case of compression 

force of 45000 N. 

 

 

Figure 5.21. Plastic deformation locations of the model with 𝐾଴/𝜇଴ = 2000 for the case of 

compression force of 45000 N. 

 

5.2.2.2.2.  Horizontal Normal Stress at Interface with Rubber. Horizontal normal stress at 

different steel-rubber interfaces was evaluated for the bearing with 𝐾଴/𝜇଴ = 2000 subjected 

to either compression force or the combination of compression and shear forces. The 

compression force was applied as 45000 N for both loading cases. Two interfaces were 

selected. Interface_1 shown in Figure 5.22, is located between the bottom rubber pad and 

the steel plate near to bottom. Interface_2 shown in Figure 5.23, is located between the 

rubber pad in the middle of the bearing and the steel plate near to bottom. 
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Figure 5.22. Interface_1. 

 

 

Figure 5.23. Interface_2. 

 

 Figure 5.24 shows horizontal normal stress results in steel through the length of 

Interface_1 and Interface_2 for all loading types. It is concluded that for both interfaces the 

results are the same for compression load only. However, for the case of the combination of 

compression and shear loads, the stress distribution throughout the length is different for two 

interfaces. These results are qualitatively similar to those presented in Figure 4 of [9], even 

though the applied compression and shear loads are different. Plastic deformation is 

observed on Interface_2 around 𝑥 = 40 for combined loading case. This can also be 

observed in Figure 5.25, where horizontal normal stress contour plots are shown. 
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Figure 5.24. The horizontal normal stress for the different loading cases and for the 

different interfaces. 

 

 

Figure 5.25. The horizontal normal stress contour plot for the case of the combination of 

compression and shear forces. 

 

5.2.2.3.  Conclusions of the Problem. The following are concluded based on the results 

presented in Section 5.2.2. 

 

 For bounded boundary type, combined loads resulted in considerably higher 
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 For frictional boundary type, the difference between compressive stresses from 

compression only and combined loads was less and was limited to the half section of 

the length (between 𝑥 = 5 and 𝑥 = 25). 

 For the case of compression load only, the bearing with bounded boundary type 

exhibits mildly higher (12% as maximum) compressive stress values along the length 

than the bearing with frictional boundary type. For the case of combined loads, this 

value gets considerably higher (60% at maximum value of the case of bounded 

boundary condition). 

 Compressive stress concentration was observed at ends of the bearing with bounded 

boundary type while no stress concentration was present for the bearing with frictional 

boundary type. 

 The maximum tensile stress in rubber decreases with an increase in compression load 

magnitude. 

 Maximum Mises stress increases as compression load magnitude increases for each 

𝐾଴/𝜇଴. 

 Maximum Mises stress in steel increases with an increase in rubber compressibility. 

There are some exceptions to this trend, which need further modeling studies. 

 Horizontal normal stress distribution differs according to interface locations for the 

case of combined loads, while remains the same for the case of compression load only. 
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6.  CONCLUSION 

 

 

In this thesis, finite element modeling of plain elastomer bearings and of composite 

bearings is constructed. The global and local responses of bearings subjected to either 

compression load or combination of compression and shear loads were investigated. Implicit 

time integration for static analysis and explicit time integration for quasi-static analysis were 

used. The effects of constitutive model of rubber, compressibility of rubber, shape factor of 

the bearing on global response were studied in static analysis. In addition, the effects of 

magnitude of the applied load and friction on local response of the bearing were studied in 

static analysis. For the explicit analysis, the effects of the applied loading rate and 

compressibility of rubber on the predictions were determined. A few dynamic analyses with 

implicit time integration were performed to check the solution quality of explicit time 

integration.  

 

The results of the study highlights that for the strain rates considered in the analysis, 

viscoelasticity does not affect vertical response and mildly affects horizontal response of the 

bearing. The effect of viscoelasticity decreases with increasing compressibility level. Since 

the hyperelastic model was calibrated to instantaneous material data, viscoelastic solutions 

get closer to hyperelastic solutions as loading velocity increases. In the explicit analysis, 

viscoelasticity has no effect on the KE/IE ratio as compared to the KE/IE ratios with 

hyperelastic model predictions. 

 

In an explicit analysis, as compressibility increases, KE/IE values decrease and results 

of quasi-static analysis become closer to static solutions. However, the use of high level of 

rubber compressibility results in significant difference in the global response analysis as 

compared to the solution for an incompressible material behavior. Therefore, particular 

attention needs to be given to the interpretation of explicit analysis results. 

 

As shape factor (confinement) increases, both vertical and horizontal stiffness get 

higher. The effect of the shape factor on the vertical stiffness is much more pronounced than 

that on the horizontal stiffness. For all shape factors, nearly the same horizontal force is 

obtained up to shear strain of 0.5. 
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In an explicit analysis, KE/IE values decrease as rate of applied load decreases. For a 

plain elastomer bearing, predictions with explicit time integration at higher strain rate (2/s) 

mildly deviates from static solution with implicit time integration. However, for a rubber-

steel composite bearing, predictions with explicit time integration at higher strain rate (2/s) 

significantly diverge from static solutions with implicit time integration. 

 

Predictions of a one-layer rubber pad sufficiently highlight vertical response of a 

composite bearing model, while predictions of one-layer rubber pad may characterize 

horizontal behavior of the composite bearing within 3.0-7.3% difference. 

 

Regarding local response, for the bounded bearing, combined loads resulted in 

considerably higher compressive stresses at top of the bearing as compared to compression 

load only. However, for frictional boundary type, the difference between compressive 

stresses from compression only and combined loads was less. Also, compressive stress 

concentration was observed at the bounded bearing edges while no stress concentration was 

present for the bearing with frictional boundary. Under combined loads, the maximum 

tensile stress in rubber decreases as compression load increases. Moreover, maximum Mises 

stress in steel increases as compression load magnitude increases and as rubber 

compressibility increases. Horizontal normal stress distribution at the rubber-steel interface 

changes as per interface location for the case of combined loads, while remains the same for 

the case of compression load only. 

 

The computational approaches presented in this thesis may be applied to the analysis 

of isolators for buildings and bridges. The hyperelastic material model used in the thesis is 

valid up to shear strain of 1. It can be improved in future studies if it is intended to explore 

a bearing response for larger horizontal displacements which correspond to higher shear 

strain levels. Global response of bearings may be studied considering frictional interface 

properties defined between top and bottom surfaces of bearings and rigid bodies. Dynamic 

analysis of bearings with implicit time integration may be further investigated. Also, future 

studies may be focused on mechanical response of a bearing subjected to cyclic loads. 
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APPENDIX A: MESH CONVERGENCE STUDY FOR RUBBER 

 

 

 The mesh convergence study was performed for the incompressible model with SF=5. 

The combination of compression and shear loads were applied. The compression load was 

applied as vertical displacement of -0.125 which corresponds to 𝜆 = 0.95. Also, shear load 

applied as horizontal displacement of 2.5 which corresponds to 𝛾 = 1. Implicit time 

integration was used. There are three different mesh structures evaluated for convergence 

studies. The first mesh structure has no partitions and is shown in Figure A.1. Its side edges 

were divided into 10 parts and its top and bottom edges were divided into 100 parts. The 

simulation with this model was not converged during the application of shear load. It was 

aborted by the software at 83% of the solution time. The reason of this problem is element 

distortions in the corners of rubber pad.  

 

 

Figure A.1. The first mesh structure. 

 

To solve the convergence problem, the second mesh structure, shown in Figure A.2, 

with partition in the corners was evaluated. The models which have parts from one to six in 

the partition sections, from 100 to 200 on top and bottom edges, and from 10 to 30 on the 

side edges were simulated. Table A.1 shows the difference in results of vertical force and 

horizontal force. Based on the results given in the table, it is concluded that differences 

between each case are quite low regarding the vertical and horizontal forces. Therefore, the 

mesh structure, illustrated in Figure A.3, has 16 parts on side edges, 200 parts on top and 

bottom edges were considered as the appropriate one because both force responses have 

difference ratios under 1% so that further refinements were performed in the corners of the 

rubber model. 
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Figure A.2. The partition of the second mesh structure. 

  

Table A.1. The results of the mesh convergence study. 

Number 

of Parts 

on 

Diagonal 

Partition 

Number 

of Parts 

on Side 

Edges 

Number of 

Parts on Top 

and Bottom 

Edges 

Shear Step 

Completed 

(%) 

RF2 (N) 
Difference 

(%) 
RF1 (N) 

Difference 

(%) 

- 10 100 83 - - - - 

1 10 100 13 - - - - 

2 10 100 100 -719500 - 45170 - 

4 10 100 100 -716300 0.44 45040 0.29 

6 10 100 100 -715300 0.14 45040 0.00 

6 10 150 100 -692500 3.19 44250 1.75 

6 10 200 100 -678300 2.05 43900 0.79 

6 16 200 100 -683900 0.83 44220 0.73 

6 20 200 100 -684700 0.12 44160 0.14 

6 30 200 84 - - - - 
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Figure A.3. The mesh design has 16 parts on side edges and 200 parts on top and bottom 

edges. 

 

 In order to construct more refined elements in the corner of the mesh and to construct 

straight elements along edges of the rubber pad, the third mesh structure with the different 

partition, shown in Figure A.4, was created. By taking into account the element size (0.156) 

for side edges of the mesh design shown in Figure A.3, the element size of 0.15 along the 

side edges and the element size of 0.083 along the partition section of the side edges were 

constructed. Although the element size on the top and bottom edges of the mesh design 

shown in Figure A.3 is 0.25, this size was selected as 0.27 in the third design. Figure A.5 

shows the structure of mesh for SF=5. There are 6792 elements and 7007 nodes in the final 

mesh design. 

 

 

Figure A.4. The partition of the third mesh structure. 
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Figure A.5. The structure of mesh for SF=5. 
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APPENDIX B: MESH CONVERGENCE STUDY FOR STEEL 

 

 

 The steel mesh convergence study was performed for the bearing. The ratio of the bulk 

modulus to the shear modulus was considered as 2000 for rubber. The combination of 

compression and shear loads were applied. The compression load was applied as vertical 

displacement of -0.2007 which corresponds vertical load of 45000 N. Shear load was applied 

as horizontal displacement of 7.5 which corresponds to 𝛾 = 1. Implicit time integration was 

used.  

 

 The models which have parts from 50 to 100 on top and bottom edges, and from 6 to 

10 on the side edges were simulated. Also, the effect of bias was investigated on top and 

bottom edges. The bias was applied in two directions towards edges. Table B.1 shows the 

differences in results of maximum Mises stress in steel, maximum and minimum horizontal 

normal stress at interface with rubber. The interface is called “Interface_2” was described in 

Section 5.2.2.2.2 of this thesis. Based on the results given in the table, it is concluded that 

difference ratios for all measures are under 1% for the case of 100 parts on top and bottom 

edges with bias of 25. The last row of the table indicates that increasing the number of parts 

on side edges from 6 to 10 affected normal stress values. Therefore, the mesh structure, 

which has 10 parts on side edges, 100 parts on top and bottom edges were considered. There 

are 1000 elements and 1111 nodes in the final mesh design. The mesh and the detailed view 

of the mesh are shown in Figure B.1 and B.2, respectively.  

Table B.1.  The results of the mesh convergence study. 

Number of 

Parts on Top 

and Bottom 

Edges 

Bias for 

Top and 

Bottom 

Edges 

Number 

of Parts 

on Side 

Edges 

Bias for 

Side 

Edges 

Max. 

Mises 

Stress in 

Steel 

(MPa) 

Diff. 

(%) 

Max. S11 on 

Interface_2 

(MPa) 

Diff. 

(%) 

Min. S11 on 

Interface_2 

(MPa) 

Diff. 

(%) 

50 50 6 5 300 - 274 - -149 - 

80 50 6 5 291 3.00 280 2.19 -161 8.05 

100 50 6 5 287 1.37 281 0.36 -164 1.86 

100 25 6 5 286 0.35 282 0.36 -165 0.61 

100 25 10 5 285 0.35 282 0 -165 0 
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Figure B.1. The structure of mesh for the steel plate. 

 

 

Figure B.2. The detailed view of the mesh. 

 

 


