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ABSTRACT

WAVELET ANALYSIS IN COMPUTATIONAL FLUID

DYNAMICS

Wavelets are compact functions in space and time which enable easy data com-

pression through multi-resolution analysis. The compression is done by scattering dif-

ferent resolution levels of wavelets onto the domain, and then discarding the wavelets

with small energies. Using these properties, wavelets can be an efficient and easily

applied tool to construct an adaptive grid for the solution of a Partial Differential

Equation (PDE) with local structures. In this work, wavelets are used in this manner

of compressing the interpolated data, being combined with finite difference discretiza-

tion to solve the PDE. To calculate the spatial derivatives of the compressed interpo-

lation, algebraic polynomial fits and cubic splines are used on the irregular adaptive

grid. These two approaches are compared with each other and finite differences on

regular grids. Various problems in 1-D and 2-D are solved. As model problems, Pois-

son’s Equation and Helmholtz Equation are solved with artificially created Gaussian

Pulse as the solution. The results seemed to be in agreement in terms of the order

of error with the known exact solutions of the model problems. A new application

for wavelet optimized finite differences is also suggested. To that purpose, split-step

(projection-correction) time scheme is implemented for the Navier-Stokes Equations

governing infamous lid-driven cavity problem. The qualitative results seemed to be

in agreement with other results in literature, however the method is observed to be

not of any advantage for this problem as this problem does not have strong localized

structures. PETSc framework provided the high-level tools, such as matrix and vector

operations and linear solvers, and the work is conducted through this perspective.
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ÖZET

HESAPLAMALI AKIŞKANLAR DİNAMİĞİNDE

DALGACIK ANALİZİ

Dalgacıklar, çoklu çözünürlüklü analiz üzerinden kolaylıkla bilgi sıkıştırmasını

sağlayan uzay ve zaman içerisinde kompakt fonksiyonlardır. Bu sıkıştırma, dalgacıkları

değişik çözünürlük seviyelerinde alana yayıp, enerjisi düşük olan dalgacıkları çıkararak

yapılır. Bu özellikler kullanılarak, dalgacıklar yerel yapılar barındıran kısmi diferan-

siyel denklemlerin çözümü için adaptif ağ inşasında etkili ve kolayca uygulanabilen bir

gereç olabilir. Bu çalışmada dalgacıklar bu yönde kullanılarak enterpolasyonlu verinin

sıkıştırılması ve sonlu farklar ayrıklaştırması birleştirilerek kısmi diferansiyel denklem-

ler çözülmüştür. Sıkıştırılmış enterpolasyonda uzaysal türevlerin hesaplanması için

düzensiz ağ üzerinde cebirsel polinom uydurması ve kübik yaklaşımlar kullanılmıştır.

Bu iki yaklaşım birbiriyle ve düzenli ağda sonlu farklar yöntemiyle karşılaştırılmıştır.

Bir boyutta ve iki boyutta değişik problemler çözülmüştür. Model problemler olarak,

yapay olarak oluşturulmuş bir Gauss Titreşimi çözümü olan Poisson Denklemi ve

Helmholtz Denklemi çözülmüştür. Sonuçların, bilinen kesin çözüme karşı iyi bir hata

mertebesinde olduğu görülmüştür. Dalgacıkla optimize edilmiş sonlu farklar ayrıklaştır-

ması için yeni bir uygulama da önerilmiştir. Bu amaç için, bölünmüş adım (yansıtma

ve düzeltme) zaman şeması Navier-Stokes denklemi tarafından yönetilen ünlü kapak

tahrikli boşluk problemine uygulanmıştır. Nitel sonuçların literatürdeki diğer sonuçlarla

uyumlu olduğu gözlemlenmiş, ancak metodun bu problem özelinde problemin güçlü

yerel yapılara sahip olmaması nedeniyle bir avantajı olmadığı gözlemlenmiştir. Çatı

olarak yüksek seviyedeki gereçleri, matris ve vektör operasyonları ve lineer sistem

çözücüleri gibi, sağlaması için PETSc kullanılmıştır ve bu çalışma bu perspektiften

yürütülmüştür.
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1. INTRODUCTION

Wavelets are compact functions in space and time that support multi-resolution

analysis. They are efficient tools for data compression. With wavelets, any given regu-

larly sampled data can be reconstructed and represented by a smaller number of nodes

than the regular sampling rate. This allows them to be used in signal processing and

image compression fields. They are also used for grid adaptation purpose by Com-

putational Fluid Dynamics (CFD) community to solve Partial Differential Equations

(PDEs), given their ability to compress data.

The grid adaptation, or data compression, comes naturally in wavelet methods.

The idea is to generate a nested, multi-resolution grid. Then, each grid point is as-

sociated with a wavelet that supposedly lives on that point. Following the general

principles of multiresolution analysis, wavelets that correspond to finer levels of the

grid have more compact structures, i.e. smaller spatial region of influence. Each

wavelet’s multiplying coefficient is calculated. Then, the interpolation is represented

by the superposition of these wavelets and their respective coefficients. The wavelets

with coefficients smaller than an a-priori designated value and their corresponding grid

points are discarded, and the irregular grid is obtained.

Once the adaptive grid is obtained, there are different ways to calculate the spa-

tial derivatives of the interpolate. Three main ways are to use a Galerkin method, a

collocation method or a finite difference or volume discretization. Wavelet Galerkin

method requires wavelets to form a linearly independent basis, so the choice of wavelet

type must be compatible. The wavelet collocation method uses the wavelets’ known

properties, such as an individual wavelet’s derivative value at a given point. The finite

difference or volume discretizations use wavelet compression only to obtain the irregu-

lar grid. These discretization methods calculate the spatial derivatives independent of

the wavelet functions’ properties.
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Vasilyev et al. developed a wavelet collocation method [2]. They use the wavelets’

known function properties to evaluate the spatial derivatives. Vasilyev and Paolucci

later turned the method into an adaptive grid method [3], and presented results for

multi dimensional problems [4]. All of these works used Daubechies’ Wavelets’ Auto-

correlation function as a base wavelet.

Wavelet collocation method is also applied using interpolating wavelets by Vasi-

lyev and Bowman [5]. Interpolating wavelets are also called second-generation wavelets.

They support a faster wavelet transformation than Daubechies’ wavelets. However, in-

terpolating wavelets do not support the spatial differentiation procedure used in [3].

So, a new method for spatial differentiation is proposed based on the multilevel wavelet

interpolation. This method is first applied to 1-D transient problems. The method is

then generalized to multi dimensional transient equations by Vasilyev [6].

Wavelet collocation method using interpolating wavelets has been applied to sev-

eral problems. One of these problems is the vorticity evolution equation to solve incom-

pressible Navier-Stokes Equations with Brinkman Penalization to simulate stationary

objects within the flow field, by Vasilyev and Kevlahan [7]. This work showed the

method’s ability to adapt the grid to vortex shedding behind a circular cylinder. The

method was applied to high Reynolds Number flows, both with and without fluid struc-

ture interaction using a direct numerical simulation (DNS) like technique by Kevlahan

and Vasilyev [8]. This paper [8] also introduced the notion to solve the incompressible

Navier-Stokes Equations by a split-step (projection-correction) method with wavelet

collocation. A new method is offered by Goldstein and Vasilyev [9], Stochasic Coher-

ent Adaptive Large Eddy Simulation (SCALES), the Large Eddy Simulation (LES)

equivalent of wavelets. Another application was to shock computations by Regele and

Vasilyev [10]. All of these examples showed the easily applicable adaptive grid property

of interpolating wavelets.

Jameson [11] is first to suggest to use wavelets for only grid adaptation, and

do the differentiation by finite differences, calling it Wavelet Optimized Finite Differ-

ences (WOFD). He claims that using Galerkin method with wavelets makes it more
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difficult than it needs to be, referencing the issue of dealing with nonlinearities and

nonperiodic boundary conditions. He uses the knowledge coming from the wavelet

multi-resolution property to calculate the spatial derivatives, and creates derivative

calculation matrices. However, he does not use the derivatives of wavelets as functions

directly. Using Daubechies’ wavelets, he applies his notion to 1-D time dependent

problems and demonstrates the method’s potential.

Jameson updates his work from [11] in [12]. He suggests using algebraic, expo-

nential or trigonometric polynomial fits for the spatial derivative calculations. He gives

some details on how to generate the differentiation coefficients using algebraic polyno-

mial fits on the irregular data. As an alternative, Walden suggests to use convolution

operators directly on the irregular grid as differentiation tools in his work [13]. How-

ever this method is much more complex than Jameson [12]. Jameson also proposes

techniques to use adaptive differentiation order on the adaptive grid, i.e. the finite

difference order changes within the domain. He applies this technique also on 1-D

time-dependent problems, claiming the possibility to use it for 2-D.

Holmstrom suggests a different finite difference method using wavelet adapted

grid [14]. His idea is to interpolate ghost points around the active wavelet to form

a regular finite difference stencil. Then he suggests to do the differentiation on this

regular finite difference grid. This idea has the benefit of being possibly more accurate

than working directly on the irregular grid, but the process of activating ghost points

is cumbersome.

Jameson and Miyama describe WOFD on 2-D combining Daubechies’ wavelets

and polynomial fit based differentiation on the irregular grid in their work [15]. They

present their method on an oceanography problem. The wavelet adaptive grid seems

to work, and some implementation notions about adaptive grid stability is given, such

as the need to use centered stencils. This method is called WOFD-Adaptive High

Order. In fact the order of error is 4, but this is claimed to be a high order of error for

oceanography.
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Cruz et al. utilize interpolating wavelets for WOFD analysis, using cubic splines

instead of polynomial fits on the irregular grids [16]. They apply this method to 1-D

transient problems. Then, Santos et al. generalize this method to multi-dimensional

transient problems with applications to chemical engineering problems, but not the

incompressible Navier-Stokes Equations [17]. They do not comment in detail on finite

difference grid stability, but the adaptive grids they obtained have the signs of some

extra measures in this regard.

Yousefi and Noorzad use WOFD as a combination of interpolating wavelets and

polynomial fit based differentiation [18]. They apply this method to a wave propagation

problem in a solid medium. They do not comment significantly on either the grid

stability, or the spatial differentiation process.

In this thesis, interpolating wavelets and two different finite difference implemen-

tations, polynomial fit based and cubic spline based, are combined. Some suggestions

are made for certain implementation issues, most importantly the grid stability. Com-

parisons between two spatial differentiation variants are made. The resulting solver is

applied to split-step method for transient incompressible Navier-Stokes Equations.

The split-step (projection-correction) method is preferred over stream function-

vorticity and vorticity-velocity formulations, even though it is harder to implement.

This is because that the vorticity-velocity function is reported to show high errors for

Brinkman Penalization method for high Reynolds Number flows [8]. Also, the main

idea is to demonstrate the WOFD’s applicability to the split-step method, rather than

finding the solutions to well-established benchmark problems.

Portable Extensible Toolkit for Scientific Computation (PETSc) is used as a

framework in the application of WOFD. It is a set of C-language libraries that supports

parallelism through Message Passing Interface (MPI). It provides high level tools for

vector and matrix calculations and linear and non-linear solvers. Several parallel sparse

matrix representations and linear and non-linear solver types are supported, which

makes PETSc a great tool for scientific parallel computing.
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The thesis is constructed as follows. First, 1-D wavelets and the differentiation

procedures are explained. Then, 2-D wavelets are described and the implementation of

a stable irregular grid is given. After that, the model problems and the Navier-Stokes

Equations are defined. The solution for these problems are given. Finally, the thesis

is finalized with concluding remarks.
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2. WAVELET ANALYSIS

Wavelet analysis may be performed with different kinds of wavelets. Three of

these kinds are represented in Figure 2.1. The spatial compactness of the wavelets can

be seen clearly.

(a) (b) (c)

Figure 2.1. Different kinds of wavelets, (a) Daubechies’ 2 Wavelet, (b)

Autocorrelation of Daubechies’ 2, (c) Mexican Hat Wavelet.

Partial differential equation (PDE) applications of wavelet analysis may be per-

formed through the implementation of either one of the three basic approaches: Wavelet

Galerkin, Wavelet Collocation or Wavelet Optimization. Wavelet Galerkin and Collo-

cation methods use properties of wavelet functions directly, whereas wavelet optimized

methods perform their independent spatial differentiations using wavelets only for ir-

regular grid construction.

Wavelet Galerkin methods use Galerkin method, hence the name, to calculate

the stiffness matrix of a partial differential equation (PDE). These methods in general

transform the interpolate into wavelet function space, solve the problem there, and

transform the solution back to the physical domain. This results in difficulties when

dealing with non-linear terms, such as those of the Navier-Stokes equations, or with

non-periodic boundary conditions.

Wavelet Collocation methods use the wavelet’s function and interpolation prop-

erties to calculate the derivatives, but does so in the physical domain. Remaining in
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the physical domain avoids the above difficulties encountered in the Wavelet Galerkin

method. To calculate the derivative at a given point, either the contribution by all the

wavelets that can affect that point is summed up, or the known properties of the overall

wavelet interpolation is exploited. In the case of interpolating wavelets, known prop-

erty of the overall interpolation is that the interpolation coincides with a polynomial

fit on each wavelet level.

Wavelet optimized methods use wavelets only for grid creation. Once the irregu-

lar grid is constructed, these methods use their independent finite differences, volume,

or element discretization. To use this, there are two main choices. Either the approxi-

mation is interpolated onto a regular fine domain and the finite differences or volume

is applied, or the finite differences or volume is applied directly on the irregular grid.

In this work, this approach is used with finite differences being applied directly on the

irregular grid.

Applying finite differences directly on the irregular grid is possible by creating a

local analytical approximation on the stencil. To create this analytical approximation

two approaches are possible, applying polynomial fits or applying cubic splines. Both

approaches are used in this work and they are compared with each other.

2.1. 1-D Multi-Resolution Wavelet Analysis

To understand the basic principle of wavelet analysis, first 1-D models are studied.

Wavelets are constructed on a nested, multi-resolution grid. Say that a grid of level

J is the union of two grids, the grid of one level below and its complementary on the

level J . This proposition can be seen in equation 2.1

VJ = VJ−1 ∪WJ−1 (2.1)

where VJ is the basis grid on the level J , VJ−1 is the basis grid on the level J − 1 and

WJ−1 is the complementary of VJ−1 on level J . This deconstruction can be performed
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until a wanted coarsest level of j0 is reached.

VJ = Vj0 ∪Wj0 ∪Wj0+1.... ∪WJ−2 ∪WJ−1 (2.2)

The idea of this deconstruction can also be seen in Figure 2.2. The parameters are

J = 6 and j0 = 2. The level j0 − 1 represents the basis function locations.

Figure 2.2. The nested grid decomposed to its level for 1-D

Every point of every Wj is associated with a wavelet ψjm(x) and every point in

the basis grid Vj0 is associated with a basis function φj0m(x). In the light of this nested

multi-resolution grid, any given regularly sampled data of a function can be thought

of as given basis function coefficients at a given level J . This can be mathematically

shown as equation 2.3

f(x) =
∑
k∈ZJ

cJkφ
J
k (x) (2.3)

where k is the identifying number of the basis functions and J is the level in which

these basis functions live.

Using the coefficients in these equations, one lower level can be approximated by

a combination of basis and wavelets coefficients as can be seen in the equation 2.4. The

calculation of these coefficients is performed using the lifting scheme as summarized in

the paper of Vasilyev and Bowman [5]. This scheme is explained in the upcoming first
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subheading.

∑
k∈ZJ

cJkφ
J
k (x) =

∑
k∈ZJ−1

cJ−1
k φJ−1

k (x) +
∑

m∈ZJ−1

dJ−1
m ψJ−1

m (x) (2.4)

In equation 2.4,
∑

k∈ZJ−1 c
J−1
k φJ−1

k (x) can also be split into lower level wavelet

and basis function coefficients by the lifting scheme as can be seen in equation 2.5.

∑
k∈ZJ−1

cJ−1
k φJ−1

k (x) =
∑

k∈ZJ−2

cJ−2
k φJ−2

k (x) +
∑

m∈ZJ−2

dJ−2
m ψJ−2

m (x) (2.5)

This process can be done until a desired level of coarseness of j0 to get the initial

interpolation function as a combination of basis function coefficients at j0 and wavelet

function coefficients from J − 1 to j0 as can be seen in equation 2.6.

f(x) =
∑
k∈Zj0

cj0k φ
j0
k (x) +

J−1∑
j=j0

∑
m∈Zj

djmψ
j
m(x) (2.6)

2.1.1. 1-D Lifting Scheme

Wavelet representation of an interpolation function is done using 2nd order wavelets

(interpolating wavelets) lifting scheme. This scheme is facilitated based on the work

of Vasilyev and Bowman [5]. Forward wavelet transformation by this scheme can be

summarized as equations 2.7 and 2.8.

djk =
1

2
(cj+1

2k+1 −
∑
l

wj+1
k,l c

j+1
2k+2l) (2.7)

cjk = cj+1
2k +

∑
l

w̃jk,ld
j
k+l (2.8)
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Backwards wavelet transform is given by equations 2.9 and 2.10 . These simply

take back the steps provided by equations 2.7 and 2.8.

cj+1
2k = cjk −

∑
l

w̃jk,ld
j
k+l (2.9)

cj+1
2k+1 = 2djk +

∑
l

wj+1
k,l c

j+1
2k+2l (2.10)

In the previous equations, w̃jk,l and wj+1
k,l appear to represent the polynomial fit

given by the basis or wavelet coefficients. In equation 2.7, the rough idea is to have

a polynomial fit using a portion of the basis functions, and then setting the wavelet

coefficient as the difference between the polynomial fit and the actual value at that

location. Same principle appears at equation 2.8, where the polynomial fit is now

given by the wavelet functions in order to provide “the lifting scheme”. Note that the

orders of the polynomials does not have to be same for equations 2.7 and 2.8, so the

weights are represented with different notations(one with a tilde). Polynomial fit of

order 5 is used in this work for both cases, i.e. 6 coefficients were used for each
∑

.

2.1.2. 1-D Compression of Interpolation Function

The strength of the wavelet transformation is that it allows easy grid adaptation.

The wavelet coefficients whose magnitudes are less than a chosen ε value in equation 2.6

can be omitted from the expression, and still a good approximation can be obtained.

In mathematical terms, this notion can be summarized as equation 2.11.

f(x) ≈
∑
k∈Zj0

cj0k φ
j0
k (x) +

J−1∑
j=j0

∑
m∈Zj

|djm|≥ε

djmψ
j
m(x) (2.11)
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The compressed function allows the user to find the irregular grid. It is known

that the wavelet coefficients are below an ε value where the gradient of the interpolated

function is low enough. They become significant at the high gradient locations. This

describes how to use the compressed function to generate the irregular grid. Keep the

grid points associated with the wavelets of coefficients greater than epsilon, discard the

others.

Also, wavelet locations which may become significant in the future have to be

kept, even though their coefficients are below ε. This allows tracking the high gradient

regions in time. This is done by turning on certain neighbouring wavelets. The mathe-

matical expression for a neighbouring wavelet ψj
′

k′(x) for any wavelet ψjk(x) is given by

equation 2.12

|j′ ± V r| ≥ j and Hr ≥ |2j′−jk − k′| (2.12)

where V r tells how many levels coarser or denser to go and Hr tells how many wavelets

to the sides to go.

2.1.3. Implementation of 1-D Wavelet Transform

Implementation of the wavelet transform is done to use as little memory as pos-

sible. Wavelet and basis coefficients are kept on a single n × 1 matrix, the sampled

values of the function are kept on a single n× 1 matrix and the adaptive grid is kept

on an n × 1 matrix . All matrices are in sparse matrix format to reduce the memory

use. The foundation of this idea is given by Wirasaet [19]. PETSC package is used for

the implementation [20,21].

The code is written such that at j0 = 4 level of resolution there are 8 wavelets

and 9 basis functions, in total 17 grid points.
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2.1.3.1. Regular Grid. On a regular grid, with the highest level of resolution J, the

number of grid points is given by the equation,

n = 2J−1 + 1 (2.13)

Say that the matrix which holds the values of the function is called γ, the values which

will hold the values of the wavelet and basis coefficients is called ϕ. They are both

matrices of size n× 1.

For a given J and j, the algorithm to find the wavelet coefficients is given as algo-

rithm given in Figure 2.3. Remember that J is defined as the finest level of resolution

with the sampled data as in equation 2.3.

NumberOfWavelets = 2j−1;

for i = 0 to NumberOfWavelets do

m = i2J−j + 2J−j−1 ;

ϕ(m, 1) = 1
2
(ϕ(m, 1)−

∑
l wlϕ((i+ l)2J−j, 1)) ;

end for

Figure 2.3. Forward wavelet coefficient calculation.

Following the same approach, the basis function coefficients are found as algo-

rithm given in Figure 2.4.

NumberOfBasis = 2j−1 + 1;

for i = 0 to NumberOfBasis do

m = i2J−j ;

ϕ(m, 1) = ϕ(m, 1) +
∑

l wlϕ((i+ l)2J−j + 2J−j−1, 1)) ;

end for

Figure 2.4. Forward basis function coefficient calculation.

Using algorithms given in Figures 2.3 and 2.4, the overall wavelet transformation

from level J to level j0 can be constructed as algorithm given in Figure 2.5.
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Copy γ onto ϕ;

for j = J − 1 to j0 do

NumberOfWavelets = 2j−1 ;

for i = 0 until i ≥ NumberOfWavelets do

m = i2J−j + 2J−j−1;

ϕ(m, 1) = 1
2
(ϕ(m, 1)−

∑
l wlϕ((i+ l)2J−j, 1)) ;

end for

NumberOfBasis = 2j−1 + 1;

for i = 0 until i ≥ NumberOfBasis do

m = i2J−j ;

ϕ(m, 1) = ϕ(m, 1) +
∑

l wlϕ((i+ l)2J−j + 2J−j−1, 1));

end for

end for

Figure 2.5. Forward wavelet transformation.

2.1.3.2. Irregular Grid. Suppose that an irregular grid data is provided with a boolean

matrix grid. This matrix has the size of a regular grid n× 1. In this matrix, the value

is 1 if the corresponding grid location is on and the value is absent according to the

PETSc’s sparse matrix representation format if the corresponding grid location is off.

Using the same idea, the matrix that holds the approximations of regular grid

points, γ and the matrix that holds the wavelet coefficients, ϕ, have both n × 1 size.

But, they have values only if the corresponding grid point is on, otherwise the spots

on the matrices are absent according to the sparse matrix representation.

Following the previous points, the forward wavelet transformation can be written

as algorithm given in Figure 2.6.
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Copy γ onto ϕ;

for j = J − 1 to j0 do

NumberOfWavelets = 2j−1 ;

for i = 0 until i ≥ NumberOfWavelets do

m = i2J−j + 2J−j−1;

if grid(m, 1) = 1 then

ϕ(m, 1) = 1
2
(ϕ(m, 1)−

∑
l wlϕ((i+ l)2J−j, 1)) ;

end if

end for

NumberOfBasis = 2j−1 + 1;

for i = 0 until i ≥ NumberOfBasis do

m = i2J−j ;

if grid(m, 1) = 1 then

ϕ(m, 1) = ϕ(m, 1) +
∑

l wlϕ((i+ l)2J−j + 2J−j−1, 1));

end if

end for

end for

Figure 2.6. Forward wavelet transformation on an irregular grid.
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2.2. Spatial Differentiation on Irregular Grid in 1-D

The two ways of creating the finite difference scheme to calculate the spatial

derivatives are explained here. These are mainly the polynomial fit approach, and the

cubic spline approach. Polynomial fit approach suggests to fit a polynomial on the

irregular grid, whereas the cubic spline approach uses cubic splines to fit the data. The

second step is the same for both approaches, the derivative is calculated analytically

on the given polynomial fit or cubic spline.

2.2.1. Polynomial Fit Approach

The only point of the wavelet transformation is to get an irregularly spaced grid

points. The derivative calculation does not use wavelet techniques in this work. One of

the ways to calculate the derivatives of the interpolation function f(x) on grid points

is the algebraic polynomial approximation scheme.

Assume that we have an n point stencil, Sn. Suppose that we want to calculate

dth derivative on the mth point. To do this, we put a polynomial fit on the stencil

points. Also assume that the function can be approximated using a polynomial fit

p(xi) = fi with given function values on the domain f(xi) = fi . This assumption is

fair since we use interpolatory wavelets, and the characteristic of these wavelets is that

they approximate polynomial fits.

The definition of the polynomial is as equation 2.14,

p(x) = c0 + c1x+ c2x
2 + c3x

3 + ...+ cn−1x
n−1 (2.14)

This polynomial can then be differentiated analytically as equations 2.15,

p′(x) = c1 + 2c2x
1 + 3c3x

2 + ...+ (n− 1)cn−1x
n−2

p′′(x) = (2 · 1)c2 + (3 · 2)x3 + ...+ (n− 1)(n− 2)cn−1x
n−3

(2.15)
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The new question arises here on what the coefficients ci are. Knowing fi and that p(x)

must satisfy p(xi) = fi, we can write a linear system of equations to solve for ci as

equation 2.16.

c0 + c1xi + c2x
2
i + c3x

3
i + ...+ cn−1x

n−1
i = fi , xi ∈ Sn (2.16)

Alternatively, this system of equations can be written in dense matrix represen-

tation as equation 2.17.



1 x1 x2
1 . . xn−1

1

1 x2 x2
2 . . xn−1

2

. . . . . .

. . . . . .

. . . . . .

1 xn x2
n . . xn−1

n





c0

c1

.

.

.

cn−1


=



f1

f2

.

.

.

fn


(2.17)

This system is solved for n = 7 in this study. So, given that it is a sufficiently small

system, a direct matrix inversion in PETSc’s low-level kernel is used in its solution.

After this point, having the coefficients ci, the derivative of this polynomial is

available for all x. For accuracy purposes, we always choose the derivation location

from the stencil points.

2.2.2. Cubic Spline Approach

A different way to obtain the spatial derivative in an irregular grid is to form

a cubic spline along the stencil points. Suppose we have an n + 1 point stencil with
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coordinates {x0, x1, x2, x3, ..., xn}. A cubic spline is defined such that

S(x) = Si(x) at [xixi+1] for i = 0, 1, .., n− 1 (2.18)

where

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 (2.19)

This means that any two neighbouring points are connected with a cubic poly-

nomial. There are additional criteria to have unique solutions to the coefficients of the

polynomials as equation 2.20 .

Si(xi) = fi

Sn−1(xn) = fn

Si(xi+1) = Si+1(xi+1)

S
′

i(xi+1) = S
′

i+1(xi+1)

S
′′

i (xi+1) = S
′′

i+1(xi+1)

(2.20)

However, these conditions are not enough by themselves. Two more conditions are

needed. In this paper, since the point of this analysis is to calculate the derivatives, two

conditions are chosen as not-a-knot conditions. Not-a-knot conditions are as equation

2.21.

S
′′′

0 (x1) = S
′′′

1 (x1)

S
′′′

n−2(xn−1) = S
′′′

n−1(xn−1)
(2.21)

Other conditions are possible, such as fixing second derivatives to an a-priori

value. But these conditions could be harmful for the accuracy of the inteprolation, so
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not-a-knot is chosen.

After working on the conditions, it can be seen that the following relationships

between the coefficients and the second derivative of the spline at stencil points σi hold.

Defining hi = xi+1 − xi,

ai =
σi+1 − σi

6hi

bi =
σi
2

ci =
fi+1 − fi

hi
− hi

2σiσi+1

6

di = fi

(2.22)

After inserting these equalities in equation set 2.20, and applying not-a-knot

conditions, the linear system is obtained as equations 2.23.

σ0
−1

h0

+ σ1(
1

h0

+
1

h1

) + σ2
−1

h1

= 0

σi−1
hi−1

6
+ σi(

hi−1

3
+
hi
3

) + σi+1
hi
6

=
fi−1 − fi
hi−1

+
fi+1 − fi

hi

for i = 1, ..., n− 1

σn−2
−1

hn−2

+ σn−1(
1

hn−2

+
1

hn−1

) + σn
−1

hn−1

= 0

(2.23)

After solving this set of equations and putting the solution in equations 2.22, the

analytical description for the cubic spline is obtained. Using the analytical description,

the derivatives of the interpolation are calculated at stencil points.

2.3. 2-D Multi-Resolution Wavelet Analysis

The idea of creating a nested grid in 2-D is very similar to its counterpart in

1-D. The equations 2.1 and 2.2 for multi-resolution grid sets hold also for 2-D. A

representation of a 2-D nested grid can be seen in Figure 2.7. As before, each grid

point is assigned a wavelet or a basis function of the same level. In Figure 2.7, the

square shapes represent the basis locations in level j0 = 2, diamond shapes represent



19

the wavelet locations on level j = 2 and the dots represent the wavelet locations on

level j = 3.

Figure 2.7. The nested grid decomposed to its levels for 2-D. � = Basis Function of

level j = 2, � = Wavelets of level j = 2, · = Wavelets of level j = 3.

There are two basic approaches to use a wavelet transform on 2-D, 2-D wavelets or

dyadic wavelets that are created by multiplication of 1-D wavelets on 2-D. The second

approach is used in this work, as it is simpler to implement once the implementation

code for 1-D is written. Let a function depending on two space dimensions be written

as a superposition of some appropriate basis functions as can be seen in equation 2.24.

f(x, y) =
∑
k∈ZJ

∑
l∈ZJ

cJk,lφ
J
k,l(x, y) (2.24)

where φJk,l(x, y) is the dyadic multiplication of two 1-D basis functions as can be seen

in equation 2.25.

φJk,l(x, y) = φJk (x)φJl (y) (2.25)
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Taking one step on one level lower, the approximation function becomes equa-

tion 2.26.

f(x, y) =
∑

k∈ZJ−1

∑
l∈ZJ−1

cJ−1
k,l φ

J−1
k,l (x, y) +

3∑
µ=1

∑
k∈ZJ−1

∑
l∈ZJ−1

dJ−1,µ
k,l ψJ−1,µ

k,l (x, y) (2.26)

where φJ−1
k,l (x, y) and ψJ−1,µ

k,l (x, y) are the dyadic multiplications as can be seen in

equation set 2.27.

φJ−1
k,l (x, y) = φJ−1

k (x)φJ−1
l (y)

ψJ−1,1
k,l (x, y) = φJ−1

k (x)ψJ−1
l (y)

ψJ−1,2
k,l (x, y) = ψJ−1

k (x)φJ−1
l (y)

ψJ−1,3
k,l (x, y) = ψJ−1

k (x)ψJ−1
l (y)

(2.27)

A new notion that does not appear in 1-D analysis occurs here, called wavelet

type, denoted with µ. It helps in distinguishing between two wavelets which otherwise

have same subscripts, k, l, but associated with different grid points on the domain being

generated by different dyadic multiplications.

By applying this step on the newly generated basis functions until a level of

wanted coarseness, j0 is reached, the function’s wavelet interpolation is concluded as

equation 2.28.

f(x, y) =
∑
k∈Zj0

∑
l∈Zj0

cj0k,lφ
j0
k,l(x, y) +

J−1∑
j=j0

3∑
µ=1

∑
k∈Zj

∑
l∈Zj

dj,µk,lψ
j,µ
k,l (x, y) (2.28)

2.3.1. 2-D Lifting Scheme

Lifting scheme on 2-D is nothing but the consecutive application of 1-D Lifting

scheme on two directions, x and y. Since the 2-D wavelets are the dyadic multiplications

of their 1-D counterparts, this approach yields correct results.
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To take the forward wavelet transform, for a given level of coarseness j, apply

lifting scheme equations 2.7 and 2.8 along the x direction, on all y coordinates that

contain φjk,l(x, y), ψj,1k,l (x, y), ψj,2k,l (x, y) and ψj,3k,l (x, y).

Beware a pitfall here. Note that there may be coordinates that contain wavelets

of higher orders, j + i, between aforementioned y coordinates. But level j of lifting

must not be applied on any of these j + i coordinates.

The completion of a one level wavelet transform with lifting scheme is to apply

equations 2.7 and 2.8 this time on y direction on all x coordinates that contain φjk,l(x, y),

ψj,1k,l (x, y), ψj,2k,l (x, y) and ψj,3k,l (x, y). Beware the same pitfall as above.

2.3.2. 2-D Compression of Interpolation Function

The 2-D compression of the wavelet transformation lies on the same idea with its

1-D counterpart. If there is a sharp gradient, the finer level wavelets attain significant

coefficients. If not, the magnitudes of their coefficients are small and can be neglected,

leading us to equation 2.29. Neglecting wavelets with coefficients of magnitude smaller

than ε does not significantly cripple the interpolation.

f(x, y) ≈
∑
k∈Zj0

∑
l∈Zj0

cj0k,lφ
j0
k,l(x, y) +

J−1∑
j=j0

3∑
µ=1

∑
k∈Zj

|dk,l|≥ε

∑
l∈Zj

|dk,l|≥ε

dj,µk,lψ
j,µ
k,l (x, y) (2.29)

Note that the basis function locations are not omitted, similar to 1-D. This is

done to keep the stability of the wavelet transform.

The adjacent zone creation is performed according to the guideline of equa-

tion 2.12. However, since we are now in 2-D, there are different paths to choose with

this guideline. Recall that a 2-D wavelet ψj,µk,l (x, y) is the dyadic multiplication of two
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1-D wavelets ψj1k1(x) and ψj2l2 (y) (or one of these is a basis function, but for simplicity

it is represented as a wavelet here). Depending on the greatness relation between j1

and j2, k,l and µ are assigned.

The first option is to generate the 1-D adjacent zones in each direction, using the

level and number sets j1, k1 and j2, k2. For a case where j1 = 5, k1 = 8, j2 = 2, k2 = 1,

J = 6, j0 = 2,the application of this approach looks like Figure 2.8. The adjacent zone

created by ψj1k1(x) is represented as dots and the adjacent zone of ψj2k2(x) is represented

by crosses.

0 16 32
x

0

16

32

y

Figure 2.8. First option for adjacent zone creation in 2-D. · = adjacent zone in x,

×=adjacent zone in y.

As it can be seen in Figure 2.8, this is not a “true” 2-D approach. The corner

wavelets are not considered in the adjacent zone, even though they are as related to

the original wavelet as the wavelets that are included.

The second option is to generate a 2-D square adjacent zone from each dimension’s

1-D adjacent zones. Each dimension’s adjacent zone extends also to the other direction

with the same distances from the original point. For the same case as Figure 2.8, this

approach yields more satisfactory results as can be seen in Figure 2.9. Here again,
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the adjacent zone of ψj1k1(x) is represented as dots and the adjacent zone of ψj2k2(x) is

represented by crosses.
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Figure 2.9. Second option for adjacent zone creation in 2-D. · = adjacent zone

created by the wavelet on x, × = adjacent zone created by the wavelet on y.

In Figure 2.9, corner wavelets are also activated. There is a + shaped gap in the

middle of the inner adjacent zone. In theory, this gap may seem problematic. However,

in practice, with the addition of the precautions for the finite difference stencil stability,

this gap does not cause any problems. Also, since there is almost never a case where

a finer level wavelet is active with its coarser level neighbour wavelets inactive, that

gap almost never exists in the first place. Notice that there is also more adjacent

zone points than there should be according to the equation 2.12. The equation is

not changed. This is due to the implementation of the equation in “int” data-type of

C-language.

2.3.2.1. Minimum Set Construction. The wavelet decomposition depends on using

several points to create a polynomial fit, and then taking the difference of the poly-

nomial fit with the actual value at that location. For this reason, a minimum set of

wavelet locations must be present for every active point on the domain for a wavelet

transformation to be possible.
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Since wavelet transformation is a level-by-level exercise, thinking this minimum

set requirement in a level-by-level manner makes things easy. For each wavelet type,

µ = 1, 2, 3 the minimum set locations can be seen in Figure 2.10 for 3rd order polynomial

fits.
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Figure 2.10. Minimum set points for three types of wavelets, (a) is for type 1, (b) is

for type 2 and (c) is for type 3. � = the originally active grid point,◦ and • = the

minimum set points.

Using the idea from Figure 2.10, the minimum set is constructed for every active

wavelet point. Note that before applying the minimum set condition, the only active

points will be dJ−1
k,l > ε for the finest level J − 1. For the coarser levels, the active

points before the application of the minimum set will be djk,l > ε and the minimum set

points coming from finer levels j′ > j. The algorithm for this procedure can be seen

in Figure 2.11.

Given an Irregular Grid G;

for j = J − 1 to j0 do

for µ = 1 to 3 do

Activate Minimum Set Points of all active points of ψjk,l(x, y) in G;

end for

end for

Figure 2.11. Minimum set construction.

Applying this algorithm creates the grid in Figure 2.12 for 3rd order polynomials.

In Figure 2.12 only one wavelet point is originally active, dJ−1
7,0 . Wavelet parameters

are J = 6, j0 = 3.
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Figure 2.12. An example minimum set grid where the square is the originally active

wavelet.

2.4. Spatial Differentiation on Irregular Grid in 2-D

Differentiation on 2-D is done using the 1-D approach. In each direction, x and

y, a number of neighbouring points are chosen and used to create a polynomial fit or a

cubic spline according to the second heading 2.2. A sample stencil can be seen in the

Figure 2.13 for 4th order polynomials.

In Figure 2.13, the point denoted with a circle is the point we would like to

differentiate, and the points that are marked with squares are the respective stencil

points.

As it can be seen, this approach requires active grid points in the main directions,

namely positive and negative x and y directions. If the wavelet compression fails to

provide every point with enough number of stencil points, this method is not applica-

ble. In general, wavelet compression is used with minimum set construction, so this

requirement is fulfilled.
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Figure 2.13. A centered stencil. Active points are denoted with ·, the differentiation

point is marked with ◦ and the stencil points are marked with � in addition to ·.

There is another, more subtle criterion for satisfactory performance of this ap-

proach. A point cannot be its stencil’s edge point if it is not a boundary point for the

entire solution domain. The reason for this criterion is the observations made in the

practice. Especially the second derivative is calculated with up to 10% error on the

edge nodes with polynomial fit approach.

The idea to correct this error is to add grid points where they are needed. One

idea is to activate every grid point that corresponds to a basis location in 1-D in

the direction of the stencil for every active grid point. Since the original 2-D basis

locations are already active, the new grid points automatically have a stencil on the

other direction than the direction of interest. The grid for this approach with j0 = 3,

J = 7, polynomial interpolation of order 4 for one active wavelet, ψ6,3
7,7 can be seen in

Figure 2.14. In Figure 2.14, first this approach is applied, then the minimum set is

constructed. Even though this approach fixes some issues, it is seen in practice that it

is not enough.
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Figure 2.14. The first method for completing the stencils in the grid.

A more intense approach is to use type 1 or type 2 wavelets’ minimum set crite-

rion in Figure 2.10 as if they lie on a 1-D domain on each direction for every active grid

point, and activate points that are spanned by the dyadic union of these perfect recon-

structions. This way, we make sure that the grid points coming in with this operation

have their stencil points on every direction, so they do not require any further atten-

tion. The application of this method is represented in Figure 2.15. For a given central

point (xi, yj) and given points along y direction {xi−m, xi−m+1, ..., xi, ..., xi+n−1, xi+n}

and along x direction {yj−k, yj−k+1, ..., yj, ..., yj+l−1, yj+l} a dyadic union of grid points

is the set of grid points such that {(xa, yb) | a = i−m, ..., i+ n | b = j − k, ..., j + l}.

A comparative figure for the minimum set construction, the first and second

methods to complete the stencils in the grid can be seen in Figure 2.16. In the figure, the

filled square is the only active wavelet on the grid, ψ6,3
7,7, the dots are the minimum set,

the ×s are the points added by the first method and the empty squares are the points

added by the second method. In implementation, the second method and minimum set
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Figure 2.15. The second method for completing the stencils in the grid.

approach covers all the points of the other approaches anyway, so this path is chosen.

2.4.1. An Important Remark

The measures above must be taken for the stability of the finite difference differ-

entiation. However, the stability issue is still not solved, but only reduced. Even after

the application of the second method of grid completion, there are still point errors in

the derivatives for polynomial fit approach. These errors show themselves especially at

the regions where a transition from finer to coarser occur.

For wavelet parameters j0 = 4, J = 9, 5th order polynomial interpolation for

wavelets (6 points for lifting scheme) and 4th order polynomial interpolation for fi-

nite difference (5 point stencil on each direction), the Laplacian of function f(x, y) =

exp(−(x−0.25
0.04

)2−(y−0.5
0.04

)2) on domain [0, 1]× [0, 1] is calculated on an irregular grid with

ε = 10−5. The function and the irregular grid can be seen in Figure 2.17, and the error
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Figure 2.16. The comparison of the minimum set, first method and second method of

completion of the grid. � = active wavelet, · = minimum set points, × = points

added by first method, � = points added by second method.
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(a)

(b)

Figure 2.17. The sample function and the adapted grid.
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Figure 2.18. The error for the Laplacian of the sample function on the adapted grid.

can be seen in Figure 2.18.

The instabilities act as point sources on a Poisson Equation and point body forces

in a Navier-Stokes Equation System. They cripple the accuracy of the solution, being

multiplied by the time-step chosen for the time integration scheme. To remedy the

effects of this instability, the time-step must be chosen with care. Smaller the time-

step is, the less the effects of the instability are. Also, it is observed that once this

instability affects a region, the wavelets sense this instability and make the grid finer

around it for the next time-step of calculations. In a sense, wavelets fix the problem

by themselves if the chosen time-step is small enough. This leads to oscillations of

the active node number at a time-step. We do not develop any methods to determine

the magnitude of the time-step in this work, but rather use trial and error to find a

suitably small time-step.
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3. NUMERICAL PROCEDURE AND SOLVED

PROBLEMS

Having defined the wavelet transformation and the finite differences approxima-

tion on an irregular grid, we are ready to give the algorithm for the numerical procedure.

It can be seen in algorithm 3.1

Having γ, wavelet transform get ϕ ;

Use ϕ to get irregular grid grid ;

Add neighbouring wavelets to grid;

Apply grid completion on grid

Apply Minimum Set Construction on grid ;

for t = 0 until tend do

Take a time step, g gets updated ;

Wavelet transform on γ, get new ϕ ;

Use new ϕ to get new grid ;

Add neighbouring wavelets to new grid;

Apply grid completion on grid

Apply Minimum Set Construction on new grid ;

end for

Figure 3.1. Time integration scheme.

Here, γ represents the current interpolation of the solution function on the irreg-

ular grid, ϕ represents the matrix that holds the wavelet and basis function coefficients

and grid represents the matrix that holds the irregular grid data. Taking the time step

is done using the PETSc linear solvers. The function for the linear solver is constructed

using the finite differences method explained above.
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3.1. 1-D Poisson Equation

3.1.1. Moving Local Structure

The first problem is the 1-D transient Poisson equation. The equation is solved

on a domain [0, 1].

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t) (3.1)

The exact solution is chosen to be equation 3.2

u(x, t) = exp

(
−
(
x− a− bt

c

)2
)

(3.2)

The equation is solved with a consistent source function f(x, t) and two Dirichlet

boundary conditions. The solution is a Gaussian Pulse of height 1 moving on the

computational domain from x = 0.25 to x = 0.75. The adaptive grid is expected to

follow this motion.

Time integration is done using implicit scheme, i.e. Backwards-Euler, for both

the second-order derivative and the source function. This can be seen in equation 3.3.

un+1 − un
∆t

=
∂2un+1

∂x2
+ fn+1 (3.3)
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3.1.2. Disappearing and Reappearing Local Structure

The second problem is also the 1-D transient Poisson equation. The equation is

solved on a domain [0, 1], time t = [0, 2].

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t) (3.4)

The exact solution is chosen to be equation 3.5

u(x, t) = (1− t)exp

(
−
(
x− a
c

)2
)

(3.5)

The equation is solved with a consistent source function f(x, t) and two Dirichlet

boundary conditions. The solution is a Gaussian Pulse of height 1 first disappearing

slowly on x = a, then reappearing until it reaches height −1 on the same spot . The

adaptive grid is expected to slowly lose its fineness around x = a, the regain its fineness

as the structure reappears. Time integration is defined by equation 3.3.

3.2. 2-D Poisson Equation

The first problem in 2-D is the transient Poisson equation with a non-zero source,

on a square domain [0, 1]× [0, 1] represented by equation 3.6,

∂u(x, y, t)

∂t
= ∇2u(x, y, t) + f(x, y, t) (3.6)

where the exact solution is chosen as the equation 3.7

u(x, y, t) = exp

(
−
(
x− a− bt

c

)2
)
exp

(
−
(
y − d
c

)2
)

(3.7)
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and the initial condition is 3.8.

u(x, y, 0) = exp

(
−
(
x− a
c

)2
)
exp

(
−
(
y − d
c

)2
)

(3.8)

The all Dirichlet boundary conditions and the forcing function f(x, y, t) is chosen

accordingly. Implicit method, i.e. Backwards Euler, is used for time integration and

source function, as can be seen in equation 3.9.

un+1 − un
∆t

= ∇2un+1 + fn+1 (3.9)

This problem is chosen because it is a good candidate to show the adaptive grid.

The exact solution is a Gaussian Pulse of height 1 travelling on y = 0.5 line. The

wavelet adaptive grid is expected to follow this bump throughout the solution.

3.3. 2-D Helmholtz Equation

Transient Helmholtz Equation with a non-zero source function is solved. The

problem is solved on a square domain [0, 1] × [0, 1] from time t = 0 to time t = 0.5.

The equation is represented as equation 3.10,

∂u(x, y, t)

∂t
= ∇2u(x, y, t) + u(x, y, t) + f(x, y, t) (3.10)

where the chosen exact solution is chosen as 3.11.

u(x, y, t) = exp

(
−
(
x− a− bt

c

)2
)
exp

−(y − d
c+ t

g

)2
 (3.11)

The initial condition, source function and Dirichlet boundary conditions on all

four sides are chosen according to the exact solution 3.11. The exact solution is a
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travelling and evolving local structure. It is a Gaussian Pulse that moves in positive x

direction while its width increases along y axis. The wavelet adaptive grid is expected

to adapt the solution with respect to the location and shape of the structure.

3.4. 2-D Isothermal Navier-Stokes Equation

Isothermal non-dimensional incompressible Navier Stokes Equations for a New-

tonian fluid, equation 3.12, with continuity equation, equation 3.13, are solved on a

square domain [0, 1]× [0, 1].

∂~u

∂t
+ ~u · ∇~u = −∇p+

1

Re
∇2~u (3.12)

∇ · ~u = 0 (3.13)

with Dirichlet boundary conditions,

~u = α (3.14)

where α is the possibly non-constant component of the Dirichlet boundary condition.

3.4.1. Time Integration Scheme

To integrate this system of equations in time, split-step method, also called pro-

jection correction method, is used as described by Kevlahan and Vasilyev [8]. According

to Kevlahan and Vasilyev, the system of equations can be chopped into two parts, a

projection step for veloctiy components which result in a non-solenoidal velocity field,

i.e. a velocity field that does not obey the continuity equation 3.13, and a correction

step which modifies this velocity into a field which obeys the continuity equation.

At a given time step, n having the current solenoidal (continuity obeying) velocity

field ~un, the projection step that gives the non-solenoidal velocity ~u∗ is the following
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equation 3.15.

~u∗ − ~un
∆t

− ~un · ∇ ~u∗ =
1

Re
∇2 ~u∗ (3.15)

As it can be seen, the advection term is discretized semi-explicitly and the dif-

fusion term is discretized implicitly. Thus, the resulting equations are linear. These

are solved with PETSc’s built-in Generalized Minimal Residual (GMRES) linear solver

with Incomplete LU Factorization of 0 level of fill (ILU(0)) preconditioning.

The boundary conditions for ~u∗ are identical with the boundary conditions of the

original velocity ~u. The pressure term is dropped altogether, although this is not ideal

in terms of accuracy, the error that comes from this step is fixed by the correction step

to some extent.

The correction step consists of two substeps. First substep is to solve a Poisson

equation, equation 3.16.

∇2Φ =
1

∆t
∇ · ~u∗ (3.16)

with Neumann boundary conditions on all boundaries

∇Φ · ~n = ~u∗ · ~n (3.17)

where ~n is the normal vector pointing outwards from the boundary.

This equation with these boundary conditions is problematic most of the times,

and requires special attention. This phenomenon will be explained in first subhead-

ing 3.4.1.1.
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In the second step of the correction operation, having solved the Poisson Neumann

Equation, Φ is modified and added to the non-solenoidal velocity field, equation 3.18,

to have a ~un+1 that satisfies the continuity equation.

~un+1 = ~u∗ −∆t∇Φ (3.18)

The time integration step is completed at this point.

3.4.1.1. Poisson Neumann Equation. Suppose that there is a domain, Ω with bound-

aries ∂Ω. A Poisson equation with a non-zero source function, equation 3.19 on this

domain is defined

∇2Φ + F = 0 (3.19)

with Neumann boundary conditions on the boundary

∇Φ · ~n = G (3.20)

where ~n is the outward normal vector on ∂Ω. For this equation to have a solution, the

following condition has to be satisfied,

∫
Ω

FdΩ =

∮
∂Ω

Gds (3.21)

where ds is the infinitesmal surface element on ∂Ω. Otherwise, there is no solution to

the equation.

This condition is called the compatibility condition. From a physical viewpoint,

it can be explained as a heat source within the domain Ω. All the heat generated by

the heat source F must be evacuated through the boundaries ∂Ω for the system to

have a steady-state solution. Otherwise, the excess heat is constantly accumulated in
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the domain Ω and there is no steady-state solution.

When 3.19 is discretized on a wavelet adapted grid, a system of linear equations

is obtained, as can be seen in equation 3.22

A~x = ~b (3.22)

where A is the system matrix generated by the ∇2 operator and the boundary condi-

tions, ~x is the unknown vector that contains the discrete values of Φ and ~b is the right

hand side vector generated by F and G.

The matrix A has one non-zero unit vector in its right and left null-spaces. In

other words, there exists a non-zero right null-space vector ~r and a non-zero left null-

space vector ~l such that

A~r = ~0 (3.23)

~lTA = ~0T (3.24)

The discrete form of the compatibility condition is that the right hand side vector

~b and the left null-space vector ~l must be orthogonal, i.e. ~b must have no component

in the subspace defined by ~l .

~bT~l = 0 (3.25)

The right null-space vector is known to be ~1, a vector of 1s. The left null-space

vector is identical with the right null-space vector for symmetric matrices, but given

the nature of the irregular grid this is almost never the case.
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The compatibility condition is most generally not satisfied either, so the exact

solution of equation 3.22 is not possible. To tackle this issue, there are different ap-

proaches. One is to calculate the left null space vector and remove its components

fron right-hand side vector ~b as done by Wirasaet [19]. Another is to solve an aug-

mented matrix using the already known right null-space vector ~r as performed by

Henshaw [22]. One other idea is to have a Least-Squares Solution of the system, rather

than the modification of the system.

The method used in this paper is to take advantage of the residual minimization

property of GMRES. Since the residual of the next iteration of the GMRES must

be less than or equal to the current iterate, it can be said that if the residual is not

decreasing anymore, the GMRES has converged. The remaining part of the residual is

on the left null-space of A, thus is not in the span of the Krylov Subspace. So, GMRES

with no restart and ILU(5) preconditioning is used.

3.4.2. Lid Driven Cavity

Lid Driven cavity is a well-etablished benchmark problem for new methods. The

problem is solved here using the split-step method explained above for the solution of

equations 3.12 and 3.13. The solution domain is [0, 1]× [0, 1]. The boundary conditions

are as equation 3.26.
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u(x, 1) = 1

u(x, 0) = 0

u(1, y) = 0

u(0, y) = 0

v(x, 1) = 0

v(x, 0) = 0

v(1, y) = 0

v(0, y) = 0

(3.26)

Physically the problem is a cavity that has non-zero tangential velocity for one of

its walls, in this case the top lid, where all other walls are stationary. No-slip boundary

conditions are applied on all walls.
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4. RESULTS AND DISCUSSIONS

4.1. 1-D Poisson Equation

4.1.1. Moving Local Structure

Using the coefficients of equation 3.2 as a = 0.25, b = 1, c = 0.04, time-stepping

from t = 0 to t = 0.5 with timesteps ∆t = 2.5 × 10−3, the results for two different

spatial differentiations and regular finite differences are obtained.

Figure 4.1 represents the result obtained for polynomial fit differentiation. In

the figure, the adaptive grid is decomposed to its levels to make it easier to interpret.

The levels j0 + m represent all the levels of wavelets, only j0 − 1 represents the basis

function locations. As it can be clearly seen, the fineness of the grid follows the localized

structure in the solution.

Figure 4.2 represents the comparison of the maximum errors during the time

integration for polynomial fit differentiation, cubic spline differentiation and the regular

finite differences analysis. It can be seen that the polynomial fit differentiation clearly

overperforms the cubic spline differentiation. However, the performances of these two

methods seem to be getting closer as node number increases, i.e. ε decreases. It can

be seen that finite differences overperforms both approaches. The possible reason is

that the Taylor Expansion based finite differences is naturally better at estimating

derivatives. Also, this specific problem may not be a clear case, as the Gaussian Pulse

may be too broad.

4.1.2. Disappearing and Reappearing Local Structure

Using the coefficients of equation 3.2 as a = 0.25, c = 0.04, time-stepping from

t = 0 to t = 2.0 with timesteps ∆t = 5× 10−3, the results are obtained.
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Figure 4.1. The time evolution of the solution (a,c,e) and the grid (b,d,f) for right

travelling Gaussian Pulse at t = 0, t = 0.25, t = 0.5 from top to bottom.
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Figure 4.2. The error comparison between polynomial fit differentiation, cubic spline

differentiation and regular finite differences for right travelling Gaussian Pulse.

In figure 4.3, it is clearly observed that the fineness of the adaptive grid around the

localized structure first disappears as the structure itself disappears, then the fineness

reappears as the structure reappears. This clearly demonstrates the ability of the

wavelets to detect a new local structure.

The normalized Euclidian norm of vector of errors containing the maximum local

error at each time-step vs. the node number is given at Figure 4.4. The normalized

Euclidian norm is calculated with equation 4.1,

r =

√
1

N

∑
ε2
i (4.1)

where εi is the maximum local error at ith time-step and N is the number of timesteps

taken at that run.

The Figure 4.4 shows that the errors are very close for regular finite differences

and polynomial fit differentiation. This shows that the methods are very close, and

in cases where the Gaussian pulse is narrower, WOFD is promising to outperform the

regular finite differences. Cubic spline differentiation has higher error similar to the

case for the first subheading 4.1.1. In these settings for 1-D, both for first subheading
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Figure 4.3. The time evolution of the solution (a,c,e) and the grid (b,d,f) for

disappearing and reappearing Gaussian Pulse at t = 0, t = 1.0, t = 2.0 from top to

bottom.
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Figure 4.4. The error comparison between polynomial fit differentiation, cubic spline

differentiation and regular finite differences for disappearing and reappearing

Gaussian Pulse.

4.1.1 and this first subheading, it is more advantageous to use polynomial fits over

cubic splines.

4.2. 2-D Poisson Equation

The exact solution, equation 3.7, is constructed with a = 0.25, b = 1.0, c = 0.04,

d = 0.5. The Poisson Equation is solved from t = 0 to t = 0.5 with time steps

∆t = 2.5 × 10−3. The wavelet parameters are as follows; J = 9, j0 = 4, ε = 10−5,

lifting scheme polynomials of order 5, finite difference polynomials of order 4. The

solutions and the wavelet adaptive grids are seen in Figure 4.5.

In figure 4.5, it can be seen that the localized structure moves in positive x

direction and the grid follows it as it is expected to. Note that there are no grid inner

grid points without a neighbour to any of the four main directions. In other words, no

inner grid point is an edge point in its own stencil.

More results are also taken with different values of ε, giving rise to different node

numbers in the interpolation. Also, differentiations with cubic spline approximations
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5. The solution(a,c,e) and the adaptive grid(b,d,f) for the Poisson Equation

at t = 0, t = 0.25, t = 0.5 from top to bottom.



48

are performed. The maximums of the infinity norm errors of every time-step of a run

are plotted in Figure 4.6. The node numbers correspond to εs of 10−3, 10−4, 10−5,

10−6, and they are the maximum node numbers seen in their respective solutions. The

maximum error is observed for ε = 10−4 in polynomial fit differentiation. This is most

probably an outlier. Other than this outlier, the error seems to have a negative rela-

tionship with the node numbers, i.e. as the node number increases, the error decreases.

This phenomenon can also be observed for the cubic spline based differentiation. The

regular finite difference error seem to have a lowest value for node number of 15625.

The rightmost value of it corresponds to the maximum fineness of the chosen wavelet

parameters. It can be seen that the Wavelet Optimized Finite Differences (WOFD)

with polynomial fit has almost the same error with regular finite differences when they

have the same fineness level. However, WOFD with cubic splines clearly performs

worse than both WOFD with polynomial fit and the regular finite differences in terms

of fineness and node numbers.

Figure 4.6. Error vs. node number for two kinds of the WOFD and regular finite

differences. The line marked with ◦ is for cubic splines, the line marked with � is for

polynomial fits and the line marked with ♦ is for regular grid finite differences.
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In Figures 4.7 and 4.8, errors of the solution and active numbers are given with

respect to time. Both data are given for ε = 10−4 and ε = 10−5 and for both poly-

nomial fit and cubic spline differentiations. There are visible fluctuations in the node

numbers timestep-by-timestep. This phenomenon is due to the point errors generated

by the polynomial fit differentiation scheme. These point errors act as point source

functions in the solution of the problems, thus create small bumps in their vicinities.

These bumps are seen as irregularities by the wavelets and the grid is refined around

them, until the bump is gone. Then the wavelets retreat, and the errors and the bump

occur again. These fluctuations are also seen in error vs. time graph, Figure 4.7 for

polynomial fit differentiation. The cubic spline differentiation seems to be not suffering

from this phenomenon with regards to error, but only with regards to active node num-

bers. This may be because that the cubic spline errors are smoother, the irregularities

created by them do not affect the infinity norm error. Thus, they do not appear on

the error graph as much as polynomial fit differentiation errors.

Figure 4.7. Error vs. time for two kinds of the WOFD for ε = 10−4 and ε = 10−5. – =

cubic splines with ε = 10−4, - - = is cubic splines with ε = 10−5, the -◦- = polynomial

fit with ε = 10−4 and -·- = polynomial fit with ε = 10−5.
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Figure 4.8. Number of active nodes vs. time for two kinds of the WOFD for ε = 10−4

and ε = 10−5. – = polynomial fit with ε = 10−5, - - = is cubic splines with ε = 10−5,

-�- = cubic spline with ε = 10−4 and -·- = polynomial fit with ε = 10−4.
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In Figure 4.9, the error vs. time graph is plotted for different sizes of 1-D stencils

for ε = 10−5. The stencils numbers describe the stencils in 1-D. So when a 5 point

stencil is mentioned, it is really a 9 point stencil in 2-D. The error for 7 point polynomial

fit became too high, so the run was cut in the middle and the results are not represented

here. The error for 3 points cubic spline is missing because the not-a-knot condition

does not allow a cubic spline for 3 points. As it can be seen in the Figure 4.9, the

error goes lower as the stencil size increases, until stencil size of 7 for polynomial fit.

It can also be seen clearly that the fluctuations of the error is lower for 3 point stencil

of polynomial fit differentiation compared to 5 point stencil. This suggests that the

smooth error is dominant over the point errors of differentiation for 3 point stencils, so

the instability caused by the point errors and the resulting ghost point sources is less

effective.

Figure 4.9. The error vs. time with different stencil sizes for Poisson Equation.

– = polynomial fit with 3 point stencil, - - = polynomial fit with 5 point stencil,

-·- = cubic spline with 5 point stencil, -◦- = cubic spline with 7 point stencil.
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4.3. 2-D Helmholtz Equation

The results for the moving and evolving structure produced by a Helmholtz Prob-

lem can be seen in Figure 4.10. The equation and wavelet analysis parameters are all the

same as moving structure, with addition of g = 10.0. The time step is ∆t = 2.5×10−3,

and the time integration is carried from t = 0 to t = 0.5.

In Figure 4.10, it can be clearly seen that the wavelet adapted grid follows the

motion and the shape of the localized structure. The compression of the grid risen

almost steadily from 12% to 17.75% as the width of the structure increased. The

fluctuations of the wavelet compression were also present, being around ±0.5% when

the compression was 12% and around ±1.25% as the compression ratio goes to 17.75%.

The time-step independence of the solution is studied using time-steps of 10−3,

2.5 × 10−3, 5 × 10−3 and 102 with ε = 10−5. The error vs. time plots can be seen in

Figure 4.11. It can be seen that the errors reduce as the time-steps go to 10−3. So, a

compromise between error and total run-time is made and the following runs are taken

with time-steps of 2.5× 10−3.

The comparison of errors of the solution by active node number for different spa-

tial differentiation approaches and regular finite differences can be seen in Figure 4.12.

For polynomial fit differentiation, it can be said that roughly the error decreases with

decreasing ε. The peak error is recorded for one of the middle εs, 10−4, however this is

an outlier similar to the case with the Poisson equation solution. This is most probably

due to the point errors of the polynomial fit differentiation scheme and its incompatibil-

ity with this specific problem and its parameters. The regular finite difference method

seems to outperform both WOFD approaches. When the node number increases, thus

the grid fineness increases, to a certain level for the regular finite differences, the time

integration error becomes dominant and the error rate does not get lower. It is safe

to say that the WOFD gives the same results with less nodes if the time integration

error is the dominant error for the regular finite difference solution. Other than that,

the superiority of regular finite differences is seen.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10. The solution(a,c,e) and the adaptive grid(b,d,f) for the Helmholtz

Equation at t = 0, t = 0.25, t = 0.5 from top to bottom.
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Figure 4.11. The error of the solutions vs. time with different ∆t for Helmholtz

Equation. – = time-step ∆t = 10−3, - - = time-step ∆t = 2.5× 10−3, -·- = time-step

∆t = 5× 10−3, -◦- time-step ∆t = 10−2.

The reason cubic splines performs worse than polynomial fits is that the cubic

splines have a higher error compared to polynomial fits. The error change vs. time

data can be seen in Figure 4.13. In this figure, it can be seen clearly that the error is

higher, but more stable for the cubic spline approach. The polynomial fit approach has

great fluctuations in timestep-by-timestep errors, due to the point errors in the spatial

differentiation process.

The errors vs. stencil sizes are also studied. The runs are taken with 1-D stencils

of size 3,5 and 7 for polynomial fit approach. The run with stencil size of 7 was cut

prematurely at 4th time-step of 250. The reason was that the maximum value in the

solution exceeded 1.5 (50% error).The runs were taken for 5 and 7 point 1-D stencils for

cubic splines approach.The results comparing the error rates with stencil sizes can be

seen in Figure 4.14. It can be seen that the errors are around half the magnitude with

stencils size of 5 compared to 3 for polynomial fit approach. Also, given the large error

of stencil size of 7, it can be concluded that the optimum size of the stencil is 5, finding

the middle way between the accuracy and the locality of the derivative approximation.
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Figure 4.12. The error vs. node numbers. The line marked with ◦ is for cubic splines,

the line marked with � is for polynomial fits and the line marked with ♦ is for

regular grid finite differences.

Figure 4.13. The error vs. time with different ε. – = cubic splines with ε = 10−4,

- - = cubic splines with ε = 10−5, -◦- = polynomial fit with ε = 10−4, -·- = polynomial

fit with ε = 10−5.
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Regarding the cubic spline, stencil size of 7 seems to have a lower error than the 5

points stencil. The locality of the derivatives are not crippled by the cubic splines as

much as they are crippled for the polynomial fits.

Figure 4.14. The error vs. time with different stencil sizes for Helmholtz Equation.

– = polynomial fit with 3 point stencil, - - = polynomial fit with 5 point stencil,

-◦- = cubic spline with 5 point stencil, -·- = cubic spline with 7 point stencil.

4.4. 2-D Isothermal Navier-Stokes Equations

4.4.1. Lid Driven Cavity

The problem is solved with wavelet parameters J = 9, j0 = 4, Hr = 1 and V r = 2

and polynomial fit differentiation. Timesteps of ∆t = 10−2 is used. The streamlines

and velocity profiles for Re = 100 and Re = 400 can be seen in Figures 4.15 through

4.17. The steady-states are taken at dimensionless time 20.0.

It can be seen that the quantitative and qualitative results for Re = 100 is in

good-agreement with Ghia et al. [1]. On the other hand, for Re = 400 the quantitative

results are not in good-agreement. The most probable reason is that the time-step

chosen is too high to resolve this Re accurately.
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(a)

(b)

Figure 4.15. The u vs. y profile on x = 0.5 (a) and the v vs. x profile on y = 0.5 (b)

for steady-state Re = 100 and comparison to [1].
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(a)

(b)

Figure 4.16. The u vs. y profile on x = 0.5 (a) and the v vs. x profile on y = 0.5 (b)

for steady-state Re = 400 and comparison to [1].



59

(a)

(b)

Figure 4.17. The streamline patterns and the adaptive grid for steady state for

Re = 100 (a) and Re = 400 (b).
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The adaptive grids can be seen in Figure 4.17. It is noticable that the grid den-

sity increases along the edges of the moving boundary. This is expected due to the

singularity and sharp velocity direction changes in the corners. It can also be seen that

there are denser grid areas well within the flow field, where no sharp changes occur.

This is due to the point error of the polynomial fit differentiation, and wavelet’s efforts

to fix it. In this case, the point errors act as artificial body forces, creating small

disturbances in the flow field and these disturbances are eliminated by wavelets in the

next time steps. This is seen more intensely in Re = 400 case, which suggests that

the increased non-linearity in the original problem affects the differentiation accuracy

negatively. One possible way to eliminate this is to use smaller time-steps.

(a)

(b)

Figure 4.18. The active node number vs. time for Re = 100 (a) and Re = 400 (b).
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The fluctuations in the number of active points are much higher than Poisson and

Helmholtz Equations. The plots for active node numbers vs. time can be seen in Figure

4.18. It can be seen that the average node number is around 18000 for Re = 100 and

around 22000 for Re = 400. The amplitude of fluctuations is about 12000 for Re = 100

and 20000 for Re = 400. This suggests that the wavelet compression for Re = 100

is better, but the ratio of fluctuations and average node numbers are also higher for

Re = 100. Lower Re seems to be more grid-wise unstable about point errors arising

from the differentiation procedure compared to the higher Re.
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5. CONCLUSIONS

Wavelet analysis is a multi-resolution tool for function interpolations. The main

notion is to represent the given function as the superposition of compact functions of

different levels of resolution, namely wavelets. It is observed that wavelets on the finer

scales have higher multiplying coefficients when there is an irregularity, such as a jump,

in the function. Otherwise, these finer scale wavelets have insignificant coefficients. By

removing these wavelets with insignificant coefficients and their associated grid points,

an adaptive grid is obtained.

To utilize the adaptive grid for spatial derivative calculations, there are three

main methods: Wavelet Galerkin, Wavelet Collocation, and Wavelet Optimization. In

this work, Wavelet Optimization is used with the specific branch Wavelet Optimized

Finite Differences (WOFD). On the irregular grid, two variants of finite difference dis-

cretization are considered. One variant is based on local polynomial fits and one variant

is based on cubic splines. The main idea of both variants is to apply a polynomial fit

or a cubic spline on the irregular stencil. Then this spline or fit is differentiated ana-

lytically to get the derivative values. These approaches are compared and it was seen

that the error is higher and smoother for the cubic splines and lower but rougher for

the polynomial fits. It is seen that the rough errors of the polynomial fits are fixed

by wavelets on each step of the time-integration, so they are tolerable if a sufficiently

small time-step is used.

The proposed adaptive grid with finite differences is applied to several engineering

problems. First, 1-D problems are analyzed. Two 1-D Poisson Equations with known

exact solutions, one a moving Gaussian Pulse and other a disappearing and reappearing

Gaussian Pulse, are solved. It is seen in the former case that the wavelets refine the grid

following the location of the pulse. In the latter case, it is seen that the grid fineness

disappeared as the pulse in the solution died off, then the grid fineness reappeared

with the pulse coming back. In both cases, the natural ability of wavelets to generate

an adaptive grid is observed clearly. The WOFD could not perform better than the
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regular finite differences in either case. It is concluded that this is due to the nature

of the exact solutions, if a rougher exact solution were chosen the WOFD would have

a chance of creating more accurate solutions than regular finite differences.

Several problems are examined in 2-D. 2-D Poisson Equation and 2-D Helmholtz

Equations are solved for different known exact solutions. The Poisson equation has

a 2-D moving Gaussian Pulse as an exact solution. The wavelet grid adaptation is

observed. A good accuracy is accomplished using only around 12% of the maximum

number of possible grid points. However, this accuracy is also observed with regular

finite differences with same number of grid points, most probably due to the nature of

the solution. The Helmholtz problem has a moving and evolving 2-D Gaussian Pulse

as the exact solution. The wavelet grid adaptation is observed and the compression of

the grid is between 12% and 17.75%. Again, the solution is not rough enough to show

the advantages of WOFD.

In both 2-D problems, step-by-step oscillations are seen in the number of the grid

points, due to the attempt of wavelets to fix the point errors of the finite-difference

discretization. It is observed that the grid fineness increases to fix the issues in the

region where these errors exist. Once the issue is fixed, the grid goes back to coarser

state, giving rise to the errors again. This phenomenon is observed to cause cycles.

Finally, 2-D lid-driven cavity problem is solved. A split-step (projection-correction)

scheme is adopted for the solution of the Navier-Stokes equations in primitive variables.

This is performed to show an alternative use for WOFD. The qualitative results are in

agreement with the literature, but the quantitative results agrees with the literature

only for lower Re. The reason for this was the magnitude of the chosen time-step.

The time-step is larger than needed for high Reynolds Number, Re. The step-by-step

fluctuations in the number of grid points are also observed, even in greater magnitudes

than Poisson and Helmholtz Problems. It is commented that the point errors act as

artificial body-forces, disturbing the flow.
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Overall, it is concluded that the wavelet compression is an easy-to-use tool for

grid adaptation. However, finite differences proves to be difficult on an irregular grid.

The discretizations causes undesired point errors. Trying to fix those errors, the wavelet

grid-adaptation results in step-by-step fluctuations of the irregular grid, crippling the

effectiveness of the wavelet compression.

The results obtained here in this study are not necessarily indicative of the su-

periority of the method. However, our intention in developing the method has been to

develop a tool for applications in turbulence, in particular. Future studies may demon-

strate the effectiveness of the method. The future work suggestions are to apply WOFD

to higher Reynolds Numbers with smaller time-steps and possibly apply trigonometric

and exponential polynomials for spatial discretization. Also, Poisson-Neumann Equa-

tion of the projection-correction scheme can be investigated more deeply.
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