The Design
on
Steam Heating and Air Conditioning of

NATIONAL HOSPITAL OF ALEPPO by

BASHIR IBRAHIM

Submitted to the Faculty
of
Robert College Engineering School
in partial fulfillment of the
requirements for the Degree
of
BACHELOR OF SCIENCE
in
MECHANICAL ENGINEERING

$$
\begin{aligned}
& \text { Nowher }+ \text { ereder } \\
& \text { May 29, } 1941
\end{aligned}
$$

The author desires to express his
thanks to Dr. Lynn A. Scipio, Dean of the Engineering Department of Robert College, for his help, the valuable advices, and supervision over the preparation of this Thesis.

Introduction 1
Coeficient of Tr ansmission 8
Explanation on the Assumption
and Method used 9
Sample of Calculation 10
Areas of the rooms and heat
losses tabulated 13
Chosing the radiator 25
Calculation of Mains 30
Calculation of Risers 34
Selection of Boiler 36
Air conditioning. 38
Computation for required air 40
Duct size rize and peturn(calculated 41
Heater 44
Washer 44
References 46

Intorduction:
It is well in beginning the thesis to write噰 something about the history of the system of heating I am going to design.

Heating and Air Conditioning has grown to be one of the important industries. We may properly term it domestic engineering, as on the work of the heating and ventilating engineer depends largely the health and consequently the happiness of the great body of civilized people of the world.

Now referring to the design, I have to say something about the development of the steam heating system. Steam was probably first used for heating purposes in the early part of the ninteenth century, when efforts were made to heat a factory by steam at a high pressure. The development of steam heating from that date to the present time has been both rapid and constant, although the last decade has seen this industry advanced to a state of perfection never dreamed of by the early heating engineers. From a loose and haphazard method of figuring and installing work of this character, it has reached a scientific stage and as such is more or less understood by a large majority of those engaged in the business.

The early method of heating by steam was with the two
pipe system, small sizes of pipe being used and a high pressure of steam maintained;as our knowledge of steam heating increased larger piping and a lower pressure were made use of.

At the present time there are many buildings such as factories and offices, or comnercial buildings; where a medium or comparatively high pressure is used, the steam being generated at high pressure by the boiler and reduced for use in heating system. Usually the water of condensation is returned to the boiler by retrun steam traps or by pump.

The advantage of steam heating over other systems are: (1) there is less liability of damage by frost; (2) smaller radiators and piping are used, hence more economical regarding first cost; (3) rooms are more quickly warmed and cooled and (4) where a system of ventilation is used, the air is more quickly purified.

Also by the use of automatic dampor regulators safety valves etc, the danger of explosion has been practically eliminated, so that now steam may be used with as great a degree of safety as any other system.

While designing the steam system one should take in mind the following consideration. In the first place, the heating engineer must entertain no idea that the piping of steam works has any relationship to that of a hot water apparatus. Both may consist of lines of pipes and in most cases there has to
be a kind of circulation established; but beyond this; to associate hot water practices with those of steam work must only end in confusion and failure. This is mentioned as the idea that the two bear a resemblance to each other is not a rare one.

With many there prevails an impression that steam heatIng is very simple, owing to the fact that steam can be made to readily pass through pipes, and in this respect the impression may be a correct one. With any method of heating by steam there are two difficulties to be overcome, and it might almost be said that the skill required by the engineer lies in dealing with these, One, the chief one, lies in disposing. of the condensed water; the other in defeating the ill effect that air in the apparatus can produce. In affording heat by steam the chief result, other than obtaining heat is the condensation of the steam into water; for only by this means can the heat distributing surfaces - pipe or radiatorsIn any modern form of apparatus be kept supplied with new steam. A radiator, for instance, when doing its work is perpetually losing heat, with a consequent return to water of some of the steam with in it. This causes a state of vacuum to occur, which is as quickly filled by new steam flowing in it is a comparatively easy matter to get this action of steam supply to occur, but before it will happen
all air must be driven out of the apparatus and the resulting condensed water must not only be disposed of, but it must be prevented from interferring with the steam supply.

Another natural phenomenon that the steam-heating engineer relies on is the fact that water has its volume increased 1640 times (varying somewhat according to pressure) when converted into steam. This enables him to fill an extensive system of pipes etc. with steam without causing a serious drop of the water line in his boiler.

Still another natural and highly important phenomenon is the latent heat of steam. The term "latent" meaning hidden, is a correct one, for although a pound of water at $212^{\circ} \mathrm{F}$ will still register a temperature of 212° when converted to steam, it will have taken up no less than 966 units of heat in the change. It only takes 212 units to heat a pound from 0° to 212° theoretically, so that when this weight of water is converted to steam it has absorbed sufficient heat to raise about five times its weight from say, freezing to boiling. In other words a pound of steam, has at 212° carries 966 units plus 212 which it/received as water to reach boiling point, making together a total of 1178 units. Of these, as will be understood, it has 966 to give out from the heat-distributing radiators, or pipes, before it assume the form of water again.

As already stated, condensed water can give considerable trouble if it is not properly disposed of either by retarding the flow of steam, blocking the steam from its work, or coming in conflict with it. On this account the covering of steam mains to prevent loss of heat- chiefly to prevent the occurence of water in them- is very important, and it is desirable also from the fact that cooled steam means steam and heat completely lost. With hot water mains a little loss of heat, wasteful as it may be may scarcely show at the radiators, buth with steam it means the disappearance of a certain proportion of the heating power.

A remaining detail that may be mentioned here relates to the practical use of steam in the apparatus. When a radiator, or coil of pipes, is connected on the one pipe system, the branch, as will be learned directly is a single pipe, and this has the customary stop valve where it joins the radiator. With the two pipe system each radiator has as pair of branch pipes and each pipe has a stop valve, so that every radiator with this system has a valve at each end. The reason for thus putting two valves and the same reason applies with the single valve in the one pipe branch- is that when it si required to shut of steam from a radiator it must be completely

Through this one pipe and valve steam has to pass the radiator in one direction and condensing water has to come back through the other way. These two contrary movements will readily come into conflict, with bad results, if they are allowed to, and it is only prevented by having the pipe and valve of a recognized sufficient size. Thus if a $1 / 4$ inch pipe is considered correct then the valve must be $11 / 4$ inch also, and it must clear open way through it of this size. If the valve is partially closed with the idea of rem gulating the steam supply and the heat of the radiator, all the condition of using too small a valve are immediately obtained. On this account the valve must always be wide open or tightly closed.

Similarly with a radiator connected on two pipe system, 1t will be found, however, that on partially closing the steam supply valve the balance of pressure between the two branches will be disturbed, and the result will be a rise of water up the return pipe.

the conductivity of the material
wall construction

K for brick	$=5.0$
$"$ plaster	$=3.3$
" stone	$=12.5$
fir	$=1.9$

fig is a constant which represents the surface conductance. The over all transmission coefficient for the wall then would be:

$u=\frac{1}{\frac{2}{1.9}+\frac{10}{5}+\frac{15}{12.5}+\frac{1}{3.3}}$
u for glass $=1.13$
u for the floor (concrete floor against earth)

$$
\begin{array}{r}
=1.07 \text { (heating and Air conditioning } \\
\text { by Allen and Walker table lo) }
\end{array}
$$

u for the roof (Allen and Walker) $=0.35$
u for the doors (hard wood)

$$
=0.5
$$

Outline and Data assumed:

Infiltration:
Allen and Walker Book P. 33 gives a table of air changes for different kinds of room.

The following values have been obtained from that table:

Kind of Room
Rooms wind or 1 or 2 sides
Entrance Halls
small stores
waiting rooms

The changes per hour $11 / 2$ 33

The coldest outside temperature is assumed to be $32^{\circ} \mathrm{F}$. The inside temperature for different rooms as given by Allen and Walker P. 37
$70^{\circ} \mathrm{F}$ for living rooms and $65^{\circ} \mathrm{F}$ for stores
At the same time G.A.T. Middleton P. 103 gives a table of required temperature:

$$
\begin{aligned}
& 55^{\circ} \mathrm{F} \text { for bedroom and places of employment. } \\
& 70^{\circ} \mathrm{F} \text { for bath-rooms } \\
& 60^{\circ} \mathrm{F} \text { for living rooms and offices. }
\end{aligned}
$$

As a result I chose temperature in between. So throughout the design 65° was considered a comfortable temperature for living rooms and waiting rooms, $60^{\circ} \mathrm{F}$ for
bed rooms, and 70° for bath-rooms.

The hospital I am designing is assumed to be at Aleppo, Syria, where the temperature during winter time is almost about $32^{\circ} \mathrm{F}$.

Also throughout the design I had to do assumption due to lacking of data concerning the material of the building. In the case of exposure I assumed 5-10\% on the amount of heat loss according to the situation of the room and its size.

Sample of calculation:
Heat loss:
The drawing scale is $2.7^{\prime}=1 \mathrm{~cm}$
The hight of the building is :
Basement $=91 / 2 \mathrm{ft}$.
Ground floor $=11.6^{\prime}$
First floor $=13.6^{\prime}$
Second floor $=13.0^{\prime}$
Third floor $=12.0^{\prime}$

Servant Hall
(Basement)
Wall area :
$16.2 \times 91 / 2=354$
$21.6 \times 91 / 2=205$
(Gross wall area) $359 \mathrm{sq} . f t$.
2 windows at $63 / 4 \times 31 / 2$
net wall area

$$
\frac{47.4}{311.6} \text { sq.ft. }
$$

Floor area $\quad=16.2 \times 21.6=350$ sq.ft.
Volume

Loss through wall:

$$
\begin{aligned}
H & =A \times u \times\left(t_{\text {in }}-t_{\text {out }}\right. \\
& =311.6 \times .218 \times(65-32) \\
& =2240 \text { B.T.U } / \mathrm{hr} .
\end{aligned}
$$

Loss through window:

$$
\begin{aligned}
H & =A U\left(t_{\text {in }}-t_{\text {out }}\right) \\
& =47.40 \times 1.13 \times(65-32) \\
& =1690 \text { B.T.U./hr. }
\end{aligned}
$$

Loss through floor:

$$
\begin{aligned}
H & =A U\left(t_{\text {in }}-t_{\text {out }}\right) \\
& =350 \times 1.07 \times 20 \\
& =7500 \text { B.T.U. } / \mathrm{hr}
\end{aligned}
$$

Infiltration loss:

$$
\begin{aligned}
& H=\frac{V \times N \times \Delta t}{55.2} \\
&=\frac{3320 \times 3 \times 33}{55.2} \\
&=5950 \text { B.T.U. } / \mathrm{hr} \\
& \text { Total loss } \\
&=2240+7500+1690+5950 \\
& \neq 17,380 \text { B.T.U/hr. }
\end{aligned}
$$

Assume 5% loss due to exposure, then Total loss $=17380 \times 1.05=18200 \mathrm{BTU} / \mathrm{hr}$.

Infirmary: (thrid floor)

> Exposed wall : $17.5 \times 12=210 \mathrm{ft}^{2}$ (Gross) 2 windows at $31 / 2 \times 5=\frac{35 \mathrm{ft}^{2}}{175 \mathrm{ft}^{2}}$ net wall area Ceiling area $=17.5 \times 10.7=187 \mathrm{ft}^{2}$ Volume $\quad=187 \times 12=2240 \mathrm{cu} . \mathrm{ft}$.

Loss through wall= $175 \times .218 \times 33$

$$
=1250 \text { B.т. . } / \mathrm{hr} .
$$

$"$ through windows $=35 \times 1.13 \times 33$

$$
=1300 \text { B.T. } \mathrm{J} / \mathrm{hr}
$$

" " ceiling = $187 \times .32 \times(70-32)$
$=2280$ B.T.U. $/ \mathrm{hr}$.
Infiltration: $\quad=2240 \times 2 \times 33=$

$$
=2680 \text { B. Т.U./hr. }
$$

Total Loss plus 10% exp. :

$$
\begin{aligned}
&=7510 \times 1.10= \\
& 8250 \text { B. T.U. } / \mathrm{hr} .
\end{aligned}
$$

I especially took the sample of calculation from
the Basement in order to include the gound and the ceiling, for in the rest the gound and ceiling should not be considered.

Area of the Basement:

Room	Gross Wall area f^{2}	Number and area of windows f^{2}	$\begin{gathered} \text { Net wall } \\ \text { area } \\ f t^{2} \end{gathered}$	floor area f^{2}	Volume $f q^{3}$	Doos are f^{2}
Post.	444	$3=71$	373	190	1810	32
Wash House	282	$2=47.4$	234.6	253	2400	--
Store NO. 1	76	--	76	86.5	820	--
Store NO. 2	257	--	257	153	1450	-
Bath	101.5	--	101.5	87.6	822	∞
Kitchen	359	$2=47.4$	311.6	350	3320	-
Large Hall and corridors	--	--	, --	957	9100	--
Scullers	128	$2=47.4$	45	189	1800	36
Servant Hall	359	$2=47.4$	311.6	350	3320	--
Bed room	256	$1=24$	232	182	1725	--
Ladder Space	128	--	128	73	694	--
Dormitory	524	$4=95$	429	358	3400	-
Linen	205	$5=71$	134	262	2490	

Heat Loss:

Room	Walls Loss	Windows and Door Loss	Floor Loss	Infiltra- tion	Total Loss	$\begin{array}{r} \text { Total } \\ \text { and } \\ 5-10 \% \\ \text { exp } \end{array}$
Post.	2685	$\begin{array}{r} 2640 \\ 791 \end{array}$	4060	3250	13426	14800
Wash House	1690	1740	5400	2890	11700	12900
Store No.l	546	--	1850	1465	3861	3861
Store No. 2	1850	--	3280	2600	7730	7730
Bath	845	--	2340	565	3750	3750
Kitchen	2240	1690	7500	5950	17380	19100
Large Hall and corridors	--	--	20500	16300	36800	36800
scullers	325	$\begin{array}{r} 1690 \\ 594 \end{array}$	4050	2150	8810	9250
Servant						
Hall	2240	1690	7500	5950	17380	18200
Bedroom	1565	716	3890	885	7056	7056
Tadder		845	157	1240	3162	3162
Space	920	845	157	1240	3162	3162
Dormitory	3200	3000	7660	2600	16460	18100
Linen	965	2640	5620	2980	12205	13400

Area of the ground floor:

Room	Gross Wall area f_{t}^{2}	Number and area of windos f_{4}^{2}	Net wall area $f t^{2}$	Door area 32	$\begin{aligned} & \text { Volume } \\ & \mathrm{ft}^{3} \end{aligned}$
Vestibule	343	$2=59.5$	283.5	51	405
Entrence Hall	--	--	--	--	1525
Surgeons sitting room	124	$1=30$	94	--	2020
Surgeons bed room	299	$2=59.5$	239.5	--	2095
Board room	448	$3=82$	366	--	4160
Secretary room	310	$2=42.1$	267.3	--	2100
Hall	124	$2=59.5$	69.5	--	4600
Porters bedroom	115	$1=30$	85	--	1240
Porter	115	$1=3$	85	--	735
Corridor	--	--	--	--	4320
Operatin Room	--	$2=59.5$	--	--	2660
Accident and surgeon	445	$4=119$	324	--	4300
Registrar	78	$1=30$	48	--	900
Surgeon	165	59.5	105.5	--	1985

Dressing room	62	30	32	-	745
Waiting					
room	258	$3=89$	179	54	5630
N.Part	263	-	263	21.2	1840
Physicien	331	$2=89$	242	-	2240
Dispensary	150	-	150	--	1200

Room	Loss through wall BTU	through window BTU	Door loss BTV	İnfiltra- tion BTU	Total Loss	$\begin{gathered} \text { Total } \\ 5 \% \\ \text { to } \\ 10 \% \\ \hline \end{gathered}$
Registrar	346	1120	--	805	2271	2500
Surgeon room	760	2220	--	1780	4760	5250
Dressing room	23	1110	--	665	1798	2002
Waiting room	1290	3320	890	10100	15600	17100
N. Part	1890	--	350	3300	5540	6000
Physician	1745	3320	--	2000	7065	7800
Dispensary	1080	--	--	1075	2155	2370

Room	Gross wall area f^{2}	Number and area of window f_{t}^{2}	```Net wall area ft```	Door area f^{2}	Volume ft^{3}
Men's ward					
NO. 1	2250	$12=356$	1894	--	20800
Bath room					
NO. 1	708	$5=81$	627	--	2410
Corridors	872	$7=157$	715	--	6720
Duty room	516	$2=59$	457	--	2410
Single					
wards	145	$1.5=45$	100	--	1880
Men's ward 045					
NO. 2	845	$6=178$	667	--	6550
Bath room No. 2	645	$4=68$	566	--	1950

Heat Loss of the lst floor: .

Room	Walls	Window	Floor	Infiltra	Total	Total
	Loss	Loss	Loss	tion	Loss	BTU
	BTU	BTU	BTU	BTU	BTU	$5 \%-10 \%$

ward No. 1	13600	13600	--	20485	47685	52500
Bath room						
NO. 1	5200	3480	--	3320	13200	13200
Corridors	5140	5850	--	12000	22990	25300
Duty						
Room	3290	2200	--	1970	7460	8200
Single						
wards	720	680	--	1680	3080	3390
Men's						
ward NO. 2	4800	6650	--	7850	19300	21200
Bath room						
No. 2.	4860	3920	--	1480	8260	9100

Area of the 2nd Floor:

Room	Gross wall area $f{ }^{2}$	Nunber and area of windows ft	Net wall area $f t^{2}$	$\begin{gathered} \text { Ceiling } \\ \text { area } \\ \text { ft }^{2} \end{gathered}$	Volume $f t^{3}$

Women's ward	832	$7=208$	624	- -	13000
Double ward	415	$3=89$	326	--	3250
Single ward	315	$3=89$	224	--	1900
Bath room					
No. 1	708	$5=81$	627	--	2410
Duty room	516	$2=59$	457	--	2410
Corridor					
No. 1	570	$9=122.6$	447	--	6350
Corridor					
No. 2	--	--	--	292	3800
Bath room					
No. 2	708	$5=81$	627	144	2410
Special					
No. 1 and 2	(145)2	$3=(90) 1$	100	276	1880
Isolation					
ward	541	$4=119$	422	355	4600

Heat Ioss of the 2nd Floor:

Rooom	Walls Loss BTU	$\begin{aligned} & \text { Window } \\ & \text { Loss } \\ & \text { BTV } \end{aligned}$	$\begin{gathered} \text { Ceiling } \\ \text { Loss } \\ \text { BTU } \end{gathered}$	$\begin{gathered} \text { Infiltra- } \\ \text { tion } \\ \text { Loss BIU } \end{gathered}$	Total Loss BTU	Total $\begin{gathered} 5-10 \% \\ \text { exp. } \\ \text { BTU } \end{gathered}$
Women's						
ward	6000	7750	--	15500	29250	32125
Double						
ward	2950	3310	--	3000	9260	10200
Single ward	1610	3310	--	1700	6620	7300
Bath						
Room NO. 1	5200	3480	--	3320	13200	13200
Duty room	3290	2200	--	1970	7460	8200
corridor						
No. 1	3210	4560	--	11400	19170	21000
Corridor						
No. 2	--	--	6000	6800	12800	12800
Bath room						
No. 2	4860	3920	3470	1480	12570	12570
Special						
ward No.						
1 and 2	1440	1360	5660	3360	12440	12440
Isolation						
ward	3040	4450	7300	4120	18910	20800

Area of the 3rd Floor:

Room	Gross wall area $f t^{2}$		Net wall area $f t^{2}$	$\begin{gathered} \text { Ceiling } \\ \text { area } \\ \mathrm{ft}^{2} \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & f t^{3} \end{aligned}$

| Dining negligi- 35 | | |
| :--- | :--- | :--- | :--- | :--- |
| room | | |
| 2240 | | |

Cibrary
Sewing

room	$"$	35	--	187	2240
Corri-					
dors	--	--	--	192	2310
Crapel	980	87.5	892.5	607	7300

Heat Loss of the 3rd Floor:

	Wall	Window Ceiling	Infiltra- Total	Total		
Room	Loss	Loss	Loss	Lion	Loss	
	BTU	BTU	BTU	Loss	BTU	$5-10 \%$
						BTU

Gibran chapel \quad| | 6420 | 3260 | 7820 | 10900 | 28400 | 31250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& =679789 \mathrm{Bta} / \mathrm{m} \\
& \approx 700000
\end{aligned}
$$

Choosing the radiators:

Having found the H.S. required (by dividing the heat loss by 240): The windows are 3^{\prime} above the floor, therefore if the radiators are to be located bellow the window - the best suitable place- then a height of $32^{\prime \prime}$ for the radiator would be convenient.

Page 73, table 15 of Allen and Walker Heating and Air conditioning gives the square feet of heating surface for different kinds of radiatiors. According to that table the radiator sizes have been computed. The length of each section is given to be $21 / 2^{\prime \prime}$ and the tapping $11 / 2^{\prime \prime}$ top and bottom.

The number of radiators and their number are shown in the drawing.

The total heating surface required for the whole building is:

Table showing Sizes of Radiators
(Refer to final Drawing)
Basement $\quad \because \quad$ Tapping

Rad. No. H.S. Height Tube Sec. Length Supply Return
(ref .to
drawing)

23	24.6	"	4	7	$171 / 2$	$1 "$	$3 / 4^{\prime \prime}$
24	$311 / 2$	"	4	9	$221 / 2$		
25	10.5	16	4	6	15		
26	21.6	32	5	5	$121 / 2$.
27	10.5	16	4	6	15		
28	10.5	16	4	6	15		
29	24.6	32	4	7	$171 / 2$		
30	30.5	"	4	9	$221 / 2$		
31	30.5	"	4	9	$221 / 2$		
32	14	16	4	8	20		.
33.	$311 / 2$	32	4	9	$221 / 2$		
34	24.6	"	4	7	. $171 / 2$		
35	14	16	4	8	20		
36	45	32	6	9	$221 / 2$	$1 "$	$3 / 4^{\prime \prime}$
37	$171 / 2$	32	4	5	171/2		
38 lst Floor	21.6	32:	5	5	$171 / 2$		
$\frac{1 \text { ct }}{39}$	$311 / 2$	32	4	9	$291 / 2$		
40	$311 / 2$	32	4	9	$221 / 2$		
41	55	32	6	11	$271 / 2$		
42	38	32	4	11	27 I/2		
43	45	32	6	9	$221 / 2$		-
44	45	32	6	9	$221 / 2$		
45	$341 / 2$	32	5	8	20		
. 46	. 55	32	6	11	$27.1 / 2$		

47	55	32	6	$\because 11$	$271 / 2$	1 1'	$3 / 4^{\prime \prime}$
48	$311 / 2$	32	4	9	$221 / 2$		\bigcirc
49	$341 / 2$	32	5	8	$20: \%$		
50	$311 / 2$	32	4	9	- $221 / 2$		
51	14	32	4	4	10 :		
52	14	32	4	4	10		.
53 2nd Floor	14	32	4	4	10		
54	49	32	4	12	30		
55	$341 / 2$	32	5	8	20		
56	. $341 / 2$	32	5	8	20		
57	55	32	6	11	$271 / 2$		
58	52	32	5	12	30		
59	49	32	4	12	30		
60	52	32	5	12	30		
61	$431 / 2$	32	5	- 10	25		1
62	30	32	6	6	15		
63	$431 / 2$	32	5	10	25		
64	$341 / 2$	32	5	8	20		
65	$341 / 2$	32	5	8	20		
66	$341 / 2$	32	5	8	20		
67	52	32	5	12	30		
68	52	32	5	12	30		
69	$431 / 2$	32	5	10	25		
$\frac{3 r d ~ F l o o r ~}{70}$	$341 / 2$	32	5	8	20		

71	$431 / 2$	32	5	10	25	$1^{\prime \prime}$	$3 / 4^{\prime \prime}$
72	$431 / 2$	32	6	10	25		
73	$381 / 2$	32	4	11	$271 / 2$		
74	$431 / 2$	32	5	10	25		
75	28	32	4	8	20		
76	$431 / 2$	32	5	10	25		
77	$381 / 2$	32	4	11	$271 / 2$		
78	$241 / 2$	32	4	7	$171 / 2$		
79	$341 / 2$	32	5	8	20	20	
80	$341 / 2$	32	5	8			

Calculation of Mains:

There are two main pipe leaving the boiler. They have length of 38 ft . and 220 ft . respectively. The short one has only 3 risers and supply steam for a total heating surface of $630 \mathrm{ft}^{2}$. The long one supplies heat for 13 risers of total heating surface of $2020 \mathrm{sq.ft?}$

Total heating surface connected to each riser:

Riser No.	Heating Surface	Riser No	Heating Surface
1	\% 219	9	93
3	229	10	28
3	182	11	175
4	239	12.	143
5	137	13	196
6	160	14	42
7	181	15	224
8	272	16	129

Here if the two mains were supplying steam for the same amount of heating surface, then the boiler would be load center and the pressure drop consequently would be equal for the two main. Unfortunately in thes design the
boiler room is located at one corner of the building, because the architect had to construct the hospital on a not restrict land on which he could/give another shape, and as a result he did not take into consideration the heating problem at all.

However, one possibility of balancing the load was by making tunnels and thus passing the pipes from there, but this method would be too expensive, and as a result the conditions were taken as stated in the beginning.

By reference to formula 7 page 189 of heating and air conditioning by Allen and Walker a pressure drop of 1/4 lb. has been approximated for the short main and $3 / 4$ lb. for the long main. The pressure drop of the short pipe per 10 ft . will be:

$$
\frac{0.25 \times 10}{30}=.04
$$

Referring then to the chart Fig. 117 Page 190 of the same book, we see that for a pressure drop of $.04 \mathrm{lb} / \mathrm{m}^{2}$ per 10 ft . of pipe and for a heating surface of $630 \mathrm{sq} . \mathrm{ft}$. a pipe of $13 / 4$ "say $2^{\prime \prime}$ is required, but this size is based on a pressure at the boiler of $2^{\#}$ gage. In this design less
gage pressure is to be use (one lb), therefore a larger size would be safer say $21 / 2^{\prime \prime}$.

Similarly for the larger main the pipe size is found to be

$$
\frac{0.75 \times 10}{220}=.034
$$

H.S. $=2020$ sq.f.t. a pipe size of $2.8^{\prime \prime}$ is found from the figure say $3^{\prime \prime}$, but this size will not be the same through out, because the heating surface for which steam has to be applied by the main reduces as branches (rowers) decrea. ses in number.

Thus for main one after the branches one and two the heating surface to $182 \mathrm{sq} . f \mathrm{f} .$, and as a result the size of the main for the remaining section will be $11 / 4^{\prime \prime}$.

Also for main two after the T between section 7 and 8 the heating surface to be supplied reduces 1203 and the pipe size reduces to $21 / 2$. In this way the rest of the pipe size is found out and tabulated in the following table. (The pipe size was always chosen to be the nearest larger size bacause the pressure of the boiler is lower than He. $2^{* *}$ gage:

Calculation of the risers:
Assume a pressure drop of a 1 for the risers.

Riser NO.	Heating Surface	Riser size inch	Retuer size inch
1	219	$11 / 4^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$
2	229	$11 / 4^{\prime \prime}$	$3 / 4{ }^{\text {in }}$
3	182	$1{ }^{\prime \prime}$	$3 / 4^{\prime \prime}$
4	239	$11 / 4^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$
5	137	1 n	3/4:
6	160	111	3/4
7	180	1^{10}	3/4
8	272	$11 / 4^{\prime \prime}$	3/4
9	93	$1{ }^{\prime \prime}$	3/4
10	28	1.	3/4
11	175	$1{ }^{11}$	3/4
12	143	$1^{\prime \prime}$	3/4
13	196	$1{ }^{11}$	$3 / 4$
14	42	$1{ }^{18}$	$3 / 4$
15	224	$11 / 4^{\prime \prime}$	$3 / 4$
- 16	129	$1{ }^{\prime \prime}$	3/4

Although the values of the risers diameter are obtained from the chart and are theoretically correct, it is always advisable to install some what larger sizes in practice than the values included, because there is a danger of the pipe being filled with sleet and dirt and thus decreases the inside diameter. Therefore the actual values given on the drawing are very slightly changed to suit the conditions in practiषe. These changes have been done according to table 16 on page 24 of Allen and Walker "Heating and air conditionning."

It should be noteded that although the mains are covered with insulated material such as corrugated asbestos, magnesia, or rock wool, we still have values of heat transfer and figure 92 page 169 of the above mentioned book gives values for the coefficient for insulated pipe.

If an average value of $0.5 \mathrm{B.T.U} / \mathrm{hr}$. per sq.ft. of pipe surface per ${ }^{\circ}{ }_{F}$ difference betwèn outside and inside tempec rature of pipe and air is assumed then we would have about 60 B.T.U per hr. per sq.ft. of pipe. This is not much but it will have an effect in the basement, in some rooms where long pipes pass through it, especially the corridor, the effect is quite appreciable.

Taking this into account for some of the rooms the heating surface the D.S. has been recalculated and a few section taken out from the radiators previously installed.

Selection of the Bollers:

Total heating surface $=2650$ sq.ft. an allowance of 15% to 25% should be made to include the heating surface of the mains and risers.

The direct heating surface would be:

$$
1.2 \times 2650=3180 \mathrm{sq.f.t.}
$$

From catalog. Boilers and radiators Na 1362 H.B Bmith and Co.

Page 7. The Boiler Number of section: 9 Nominal size : $34^{\prime \prime} \times 48^{\prime \prime}$ Fire heating surface: 247.5 sq.ft. Steam rating : 3200 Nominal size of Fire pot: $34^{\prime \prime} \times 48^{\prime \prime}$ Total Length Boiler: 78" Length of Fire Pot : 48" Length of Foundation: 55" Size of smoke Pipe opening: $121 / 8^{\prime \prime} \times 153 / 8$ $=14$ round.
Width at foundation: 36 !
Width of boiler : $51^{\prime \prime}$
Height of Boiler : 78"

Air Conditioning

The Split System - heating by radiator and fans used for ventilation only.

In quite a big number of mechanical systemsperhaps the majority, the heating of the building is done by radiator, and the fan system supplies air at room temperature. In such arrangement the fan system can be made use of to any degree described. In this design; the building is brought up to the temperature required by the radiator and the fans started then to heat the air and the rooms.

It was observed that the line of effective temperature at which the naximum number of people were most comfortable is $66^{\circ} \mathrm{F}$ for the winter comfort zone, and $71^{\circ} \mathrm{F}$ for the summer comfort zone, the air movement being $15-25 \mathrm{ft} / \mathrm{minute}$.

The first step in the design of a fan-system is the calculation of the quantity of air to be handled and the amount of heat which must be imparted to it.

In the case of a fan systen supplying air for ventilation only as in the "Split system" the heat which must be added to the air is that which is required to raise the temperature from the outside temperature(the minimum is considered) to the temperature of delivery to the rooms.

If Q is considered the total amount of out door air to be needed per hour, and H the amount of B.T.J.'s of heat which must be added to the air per hour then:

$$
\begin{aligned}
H=Q & D_{2} C_{p}\left(t_{2}-t_{1}\right) \\
D_{2}= & \text { density of air at } 68^{\circ} \text { in pounds } \\
= & 0.075 \text { /Cu.ft. } \\
c p= & \text { Specific heat of air at constant } \\
t_{1}= & \text { temperature of outside air } \\
t_{2}= & \text { temperature of heated air to } \\
& \text { room temperature. }
\end{aligned}
$$

In this expression the heat absorbed by the water vapor is neglected but the formula is sufficiently accurate for ordinary purposes.

Quantities of Air Desirable for Ventilation:

Computation for the required air
Sample of calculation post room (Basement)

In this manner all the rooms were calculated, note that some of the rooms I did not consider for they do not need special ventilation, also I have to mention that half the air coming from the room is recirculated and that toilets and stores air was not used in the recirculation process.

The total amount of air required was found to be 926,500 , and since we need to circulate only half of it say $500,00 \mathrm{cu} . f \mathrm{ft}$. of air then the amount of heat required is $\quad H=Q D \operatorname{cp} .\left(t_{2}-t_{1}\right)$
$=500,000 \times .075(68-32)=1,380,000 \mathrm{BITU} / \mathrm{hr}$.

The size of air ducts were calculated by the help of the formula $\quad Q=C A V \quad$ assuming $V=1100^{1} / \mathrm{min}$. $C=0.91$

Ground floor

$$
\text { surgeon room: } \begin{aligned}
A & =\frac{Q}{c v}=\frac{d^{2}}{4} \\
d & =.01265 Q \\
& =.01265 \times 51,500 \\
& =11^{11}
\end{aligned}
$$

The volume of air and size of ducts and return were calculated and tabled together in the coming table:

Basement Floor

Ground floor

Surgeons si ing Room.	5	2,020	10,100	5	5	$71 / 2$
Secretary R	8	2,010	16,080	6	6	9
Porters R.	5	1,240	6,200	4	4	6
Operating R.	12	2,660	\%32,000	8	$81 / 2$	13
Auc.and Surgeon R.	12	4,300	5,b00	11	11	16 1/
Registrar R:	8	900	7,200	4	4	6
Surgeon R.	8	1,985	15,750	6	6	9
Dressing R.	5	745	3,720	4	4	6
Waiting R.	10	5,630	56,300	11	11	$161 /$
Physician R.	10	2,240	22,400	7	7	$101 /$
Dispensary	10	1,200	12,000	6	6	9

First Floor

Room Changes/hr. Volume cu.ft./hr. Duct ri- Size re- Register ser turn

Second Floor

Women's Ward No.l.	10	13,000	130,000	17	17	$251 / 2$
Double Ward	10	3,250	32,500	$81 / 2$	$81 / 2$	$131 / 8$
Single Ward	10	1,900	19,00	7	7	$10 \mathrm{l} / \mathrm{s}$
Bath room No. 1	12	2,410	29,000	8	8	12
Bath room No. 2	12	1,950	23,400	$71 / 2$	$71 / 2$	11
Special Ward No. 1 and 2	10	3,760	37,600	9	9	13 l
Isolation Ward	10	4,600	66,000	$10 \mathrm{l} / \mathrm{R}$	$101 / 2$	16

Third Floor

Power required for moving air:
The power required for moving air through a system of duct may be calculated by the formula:

$$
A H P=\frac{a v \times 144}{12 \times 2.31 \times 33000}
$$

Page 347 of Heating and air conditioning by Allen and Walker.

Also knowing the volume to be handledu per minute from table 63 page 352 we can chose the pres.

926500 : $60=15,500 \mathrm{cu} . f \mathrm{ft} / \mathrm{min}$
for a valume of $16170^{\circ} \mathrm{cu} . \mathrm{ft} . / \mathrm{min}$.
outlet velocity 1300 ft./min.
$11 / 4^{\prime \prime}$ static pressure.

$$
\begin{aligned}
& \text { R.P.M }=564 \\
& \text { b.HP of the fan }=4.35
\end{aligned}
$$

\qquad
Heater
$Q=A V$

$$
\begin{aligned}
A & =\frac{Q}{V}=\frac{500000}{1000 \times 60} \\
& =8.35 \text { sq.f.t. }
\end{aligned}
$$

Referring to table 66 on Page 37.4 "Free Area of vento section" of Heating and Air Conditioning, we see by using 14 of the 40^{\prime} section $5^{\prime \prime}$ centers the free area will be

$$
14 \times 0.620=8.66 \mathrm{sq.ft} .
$$

Then from table 67 on Page 375 of the same book is that a heater with two stalks deep would raise the air from a temperature $30^{\circ} \mathrm{F}$ to $83^{\circ} \mathrm{F}$ or from 20 to 76 at a velocity of $1000 \mathrm{ft} / \mathrm{minute}$.

As a result we see that the heater should be of two stalks deep.

Washer

For the hospital that is being designed it is necessary to use separately any filter. The air Washer is f fairly effective in cleaning the air oi dust and also act. as a humidifier or dehumidifier as the conditions may be. In order to be able to humidify sufficiently and with
proper control in winter it is necessary to warm the spray water to a temperature depending upon the amount of humidity wanted.

The washer in any case going to handle 500,000 cu.ft. of air $/ \mathrm{hr}$. The final temperature of air going to be about 68-70 while the relative humidity is between $55-60 \%$. These last values are taken from the psychrometric charts.

$$
-0-0-0-0-0-0=
$$

Reference Books:

1.

Modern Buildings:
Their Planning, Construction, and Equipment Editted by G.A.T. Middleton A.R.I.B.A. Vol. 3.
2. Practical Steam and Hot Water Heating by

Alfred G. King
3. Heating and Air Conditioning
by
Allen and Walker.

