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ABSTRACT

MODELING CRACKS IN NONLINEAR VISCOELASTIC

MEDIA SUBJECTED TO THERMAL LOADING

This thesis study deals with the crack initiation and propagation analyses in

finitely deforming viscoelastic media. The main goal of the study is to obtain a method-

ology for crack propagation analyses in bulk material and interface debonding using

Extended Finite Elements (XFEM) and Cohesive Zone Modeling (CZM). Firstly sev-

eral benchmark analyses were performed using CZM, XFEM and conventional crack

propagation method based on J integral and the results were evaluated. Then using

an analog rocket motor from literature, stress analyses were performed for bore crack-

ing and debonding under monotonic temperature loading. The results were compared

qualitatively and quantitatively with the test results of related studies from literature

to verify the model to be used for propagation analyses. Finally, crack propagation

was analyzed under cyclic temperature loadings for several initial defect sizes and crack

growth was calculated as a function of loading. It is concluded that, XFEM and CZM

are efficient and appropriate methods for crack propagation analysis in nonlinear vis-

coelastic media.
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ÖZET

ISIL YÜKLEMEYE MARUZ KALAN DOĞRUSAL

OLMAYAN VİSKOELASTİK ORTAMLARDA ÇATLAK

MODELLEMESİ

Bu tez çalışması sonlu şekil değişimi gösteren viskoelastik ortamlardaki çatlak

başlangıcı ve çatlak ilerlemesi analizlerini konu almaktadır. Çalışmanın temel amacı

Extended Finite Elements (XFEM) ve Cohesive Zone Model (CZM) yöntemini kulla-

narak malzemedeki çatlak ilerlemesi ve arayüzeydeki ayrılma analizleri için bir metodoloji

geliştirmektedir. İlk önce CZM, XFEM ve J ingegral tabanlı konvansiyonel yöntem kul-

lanılarak bazı karşılaştırmalı değerlendirme (benchmark) çalışmaları gerçekleştirildi.

Daha sonra literatürden alınan katı yakıtlı analog roket motorunda yakıt iç yüzeyinde

çatlak ve arayüzeyde ayrılma durumları için soğuma ısıl yüklemesi altında gerilme

analizleri gerçekleştirildi. Öngörülerin literatürdeki sonuçlarla nicel ve nitel olarak

karşılaştırılması yapılarak çatlak ilerleme analizinde kullanılacak model doğrulandı.

Son olarak çevrimsel sıcaklık yüklemesi altında çeşitli başlangıç çatlak boyları için

çatlak analizleri gerçekleştirildi ve çatlak ilerlemesinin yükleme ile değişimi hesaplandı.

Analizlerin sonunda, XFEM ve CZM’ nin doğrusal olmayan viskoelastic ortamlardaki

çatlak ilerleme analizleri için etkin ve pratik yöntemler olduğu sonucuna varıldı.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

Crack propagation studies have always been an important part of engineering

problems since the majority of failures in machinery is due to a sudden propagation

of an existing crack or propagation of micro cracks due to high cycle fatigue. While

the later one is important for durability issues and can be foreseen before final failure

using various fatigue theories like Miner’s rule [8], the former one is important in order

not to cause any catastrophe or functionality problems since it may occur all in a

sudden. Therefore, crack initiation and crack growth predictions are important but

equally difficult parts of failure analysis. The main objectives of crack analyses are

to detect potential crack initiations to foresee the path of possible propagation and to

determine the speed of the propagation. These parameters are important for deciding

the service life of a component and taking precautions before failure.

Conventional Crack propagation analyses are mostly based on stress intensity fac-

tor or J integral approach [9–14]. Stress intensity factor is defined for a linear material

and its critical value is called fracture toughness. It is specific to the material and is

related to the energy needed for crack growth. The main principle underlying fracture

toughness based crack analysis is that when the stress intensity factor (SIF) exceeds a

critical value, then the crack starts to propagate. Beside stress intensity factor, another

important quantity for crack analysis is the J integral value. J integral is a path inde-

pendent integral which can be used like stress intensity factor [1] and contrary to SIF

approach, J integral can also be used for nonlinear materials. J integral is equivalent

to the amount of energy needed to generate unit area of crack surface [12]. Critical

J values for growing cracks are obtained in laboratory environment following some of

the standardized experimental procedures, such as ASTM E1820 [14, 15]. In addition

to these test methods, there are many applications in the literature dealing with the

calculation of J integral based on Finite Elements Method (FEM) [9,12,13]. Although

FEM make the calculation of stress intensity factors and J integral easier, propagation

analysis with conventional methods are still cumbersome for complex geometries since

determining the path of the propagation is computationally expensive.
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The particular problem of interest in this study is the simulation of crack initiation

and crack growth in solid rocket motors subjected to thermal loading. Challenges

associated with this problem are discussed below along with some literature review.

A useful and relatively new method related to crack propagation in rocket motors

is a test based crack monitoring system also called as health monitoring systems [16,17].

In health monitoring systems the defects in the motor are detected based on bond stress

measurements along the bondline. There are many studies dealing with the simulation

of these monitoring techniques based on FEM procedures [6,18–20]. Anhduong et al. [6]

applied the finite element method to investigate the effect of delamination on the radial

stress distribution at the bondline during the cooling process of a solid rocket motor

consisting of propellant, insulation, and casing. A relationship is established among

the debond angle, the number of sensors, and the required sensor accuracy. According

to the study, increasing the number of sensors improves the detectability, however this

also increases the cost and the complexity of the health monitoring system.

Another study [20] deals with the experimental investigation of the effect of de-

fects on the radial stress distribution along the circumference. Similar to [6], a cooling

process is applied to the rocket motor and changes in the radial stress reading of the

sensors are observed. The process is also simulated using commercially available FEM

software ABAQUS. At the end of the study, the bond stress sensors have proven to

be very valuable for gaining better understanding of the stresses and especially the

mechanical ageing of a solid propellant rocket motor. One drawback of this study is

that, in the FEM part of the study, linear viscoelastic (LVE) propellant material is

used.

A similar work on health monitoring systems is the study performed by Miller

et al. [18]. In this study, similar to the above studies, stress transducers are mounted

between the case wall and the propellant in order to monitor the debondings. This

study concludes that with the number and sensitivity of sensors, the location and size

of the crack, and the type and magnitude of the applied load, all affect the overall

system capability.
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The above studies are significant for detecting the existing cracks in SRMs but

they do not address the propagation of the present cracks. The crack propagation

analysis of SRMs, which is the subject matter of the current thesis study, has various

challenges associated with it. In the following a review of previous studies concerned

with these challenges is presented.

LEFM models are not directly appropriate to SRM like structures due to vis-

coelasticity effects. Ho et al. [21] modified the classical formulation of LEFM and

developed a method that accounts for bulk inelastic behaviour in the calculation of

a critical strain energy release rate. The method is sufficiently accurate in predicting

the thermal stresses in an end-burning rocket motor. Reasonably good agreement be-

tween the stresses measured using miniature normal stress sensors embedded in the

propellant grain and the predicted von Mises stresses were obtained. However, the

effect of previous loading histories and, therefore, possible damage in the material,on

the relaxation modulus have been neglected in the study.

Liu [22] studied the local behavior near the crack tip and the crack growth be-

havior in a composite solid propellant under various loading conditions and revealed

the effect of these conditions on several factors. Experimental results indicate that the

time-dependent damage process is a contributing factor to the time-dependent fracture

behavior near the crack tip. He also indicates that the near tip mechanisms (blunt-

ing, voiding, coalescing and growing) are the same over the range of test conditions,

differing only in a quantitative sense.

Schapery developed a method [23] for predicting the time-dependent size and

shape of cracks in linearly viscoelastic, isotropic media, and demonstrated by applying

the theory to crack growth end failure of unfilled and particulate filled polymers. The

study of Rao [24] presents relevant information for the development of a fracture crite-

rion for solid propellant grains. Determination of the crack tip stress intensity factor,

evaluation of fracture toughness and establishment of the crack growth rate equation

through fracture properties are discussed.
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In William’s study [21], the work of Griffith on crack initiation is extended analyt-

ically to linear viscoelastic materials using thermodynamic approach. Then formulation

is used with a cyclic sinusoidal loading to see if the nature of the theoretical predictions

seems to be in accordance with expectations. Although correlation is established with

the expectations, the resulting model has to be tested with experimental results for

practical situations.

Alternative technique which can be used for the crack propagation analysis of

non-linear viscoelastic propellants is the cohesive zone model (CZM). Cohesive zone

of a crack is the portion of the crack in which the crack is initiated but the crack

faces are not fully separated. Pioneering works in CZM are due to Needleman and

his co-workers [25,26], and Camacho and Ortiz [27]. Xu and Needleman [26] proposed

a potential-based cohesive zone model in which cohesive elements are inserted into a

finite element mesh [2].

The name CZM mostly stands for the damage model called traction-separation

law which represents the fracture process zone [4]. In crack propagation procedure

based on CZM the separation of two bonded faces is managed by traction-separation

properties of the adhesive material or the bonded interface.

CZM is a good method for separation analysis of bonded surfaces. One potential

use of this procedure that could compromise the reliability and long-term durability is in

solid rocket motors where the bond-line is quite a complex system that involves layers

of primer, adhesive, insulator and liner between the case and propellant. CZM can

reduce this system to a single traction-separation curve between two faces. Liechti et

al [28] investigated a rate-dependent traction-separation law for modelling quasi-static

debonding between propellant and the case. In this study, the traction-separation law

were extracted on the basis of measurements of load, crack length and crack opening

displacements in an opening mode experiment at one applied displacement rate.

Diehl [29] demonstrated the use of a penalty methodology for utilizing cohesive

elements to simulate flexible and inelastic peal arm deformation problems. Accuracy
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of the method is demonstrated by comparing simulation results to experimental data

of epoxy bonded aluminum arms being peeled at different angles from a rigid sub-

strate. This work addresses significant complexities in the analysis that arise due to

the inelastic deformation of the aluminum peel arms.

Lucas et al. [29] used a cohesive model for fatigue crack initiation. Cohesive ele-

ments are placed at the boundary between adjacent standard volume finite elements to

model fatigue damage that leads to fracture at the separation of the element boundaries

per the cohesive law.

One major drawback of CZM in crack propagation problems is that the path

of the propagation has to be known. Han et al. [4] used CZM in mixed mode crack

propagation analysis of a double edge notched specimen. Since the crack direction

and path are not predefined, cohesive elements are inserted to all surfaces between

normal elements. This is computationally intensive, making CZM attractive mostly

for predefined-path crack problems, such as that of interface debonding.

For undefined-path crack analysis, one of the most powerful analysis method is

the Extended Finite Elements Method (XFEM). XFEM enables the accurate approxi-

mation of fields that involve jumps, kinks, singularities, and other non-smooth features

within elements. This is achieved by adding additional terms—the enrichments—to

classical finite element approximations. These terms enable the approximation to cap-

ture the non smooth features independently of the mesh [30].

XFEM can be used with LEFM and traction - separation models; predefined-

path and undefined-path crack propagation analyses can be performed using XFEM.

XFEM is not a common method for crack analysis of viscoelastic media. Toolabi et

al. [31] used XFEM to analyse a 2-D cracked body made of a viscoelastic orthotropic

material. The cracked body has a stationary edge crack and can be assumed a double

cantilever beam (DCB). The method was used to capture modal stress intensity factors

and the J-integral for viscoelasticity. The dynamic mixed mode stress intensity factors

and the dynamic J-integral were compared with the results obtained from FEM and
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a good correlation was established. In this study, however, only linear viscoelasticity

was considered.

Zhang et al. [32] applied XFEM to solve crack problems in linear viscoelastic

materials. Deformations such as crack opening and sliding displacements in a cracked

viscoelastic body are numerically investigated by the XFEM. The solution is carried out

directly in time domain with a mesh not conforming to the crack geometry. Numerical

examples show that the crack opening displacement and crack sliding displacement are

calculated satisfactorily. This study was carried out with linear viscoelastic materials.

Nonlinearity was not taken into account.

1.1. Objectives of the Study

The main goal of this thesis study is to provide an efficient and appropriate

analysis methodology for crack analyses of nonlinear viscoelastic media under temper-

ature loading. First objective is to understand crack propagation analysis methods

and procedures that can be performed within the finite element framework. The sec-

ond objective is to apply XFEM and CZM to bore crack and debonding problems,

respectively, in solid rocket motor. To this regard, firstly the effects of bore crack and

debonding defects on the stress distribution along the bond line as a result of motor

cooling are to be evaluated. Following this, crack growth analysis is performed, and a

relation between the crack length and bond stress values is determined.

Although there are several mechanical loads the rocket motor is subjected to, such

as pressurization during ignition, acceleration during storage and launch, the focus of

this study is to consider loads that have the greatest effect on the service life, namely

thermal loads.

The material model representing the propellant is a non-damaging nonlinear vis-

coelastic model. Although the most appropriate model for the propellant should include

the damage evolving in the material as it is subjected to various loads, the study is

mainly concerned with the exploration of computational techniques suitable for crack
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analysis. The consequences of not accounting for damage are stated along with the

discussion of results.

In Chapter 2, several benchmark analyses are presented. Sensitivities of XFEM

and CZM are studied and the results are compared with the results of conventional

method based on J Integral. In Chapter 3, stress analysis for stationary bore crack

problem is presented and the results are compared with a related study from literature.

In addition, crack propagation of a bore crack using XFEM with traction-separation

damage model is described. In Chapter 4, the stress and propagation analysis for

debonding case using CZM are performed. Conclusions and future work are presented

in Chapter 5.
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2. BENCHMARK STUDIES

2.1. An Introduction to Benchmark Studies

In this section, a brief summary of crack propagation methods that are consid-

ered in this study is given. The application of the methods within the finite element

framework is emphasized and the related literature survey is presented.

2.1.1. Standard Method Based on Contour Integral Evaluation

The standard finite element method for simulation of crack propagation is based

on modeling the existence of a crack and its propagation trajectory. Various crite-

ria can be used to determine growth of the crack. Linear elastic fracture mechanics,

LEFM, approach defines crack growth in terms of critical stress intensity factor which

is based on singular stress field at the crack tip. In nonlinear materials considerable

mathematical difficulties accompany the determination of concentrated strain fields

near notches and cracks. Therefore the criterion most widely used for crack growth

of large deformation materials is the critical tearing energy criterion. For a nonlinear

elastic material the tearing energy is equal to the reduction in strain energy per unit

area of crack growth. It is also equivalent to Rice’s J integral. Rice [1] applied defor-

mation plasticity to the analysis of a crack in a nonlinear material and showed that the

nonlinear energy release rate could be written as a path independent contour integral.

The approach is first to identify a line integral which has the same value for all integra-

tion paths surrounding a class of notch tips in two-dimensional deformation fields of

linear or nonlinear elastic materials. The choice of a near tip path directly relates the

integral to the locally concentrated strain field. In that, the J-integral characterizes

crack tip stress and strain in nonlinear materials and can be viewed as both an energy

parameter and stress intensity parameter. JIc, the critical value of J-integral at the

onset of ductile crack extension, is a material parameter which can be used to judge

the toughness of elasto-plastic materials.
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Figure 2.1. Flat surfaced notch in two dimensional deformation field. Γ is any curve

surrounding the notch tip, Γ1 denotes the curved notch tip [1].

The J-Integral around a crack tip is frequently expressed as

J :=

∫
Γ

(
Wdx2 − t.

∂u

∂x1

ds

)
(2.1)

where W(x1,x2) is the strain energy density, x1,x2 are the coordinate directions, σ is

the Cauchy stress tensor, and u is the displacement vector. The strain energy density

is given by

W =

∫ ε

0

σ : dε; (2.2)

In finite element analysis, the calculation of J-integral is a post-processing operation.

In this study J-integral was evaluated in ABAQUS for various patches of elements

surrounding the crack tip. The calculated value of J-integral was compared to the

critical value of J to advance the crack.

2.1.2. Cohesive Zone Modeling

Cohesive zone modeling, CZM, offers an alternative approach to the LEFM. The

latter assumes the existence of an infinitely sharp crack leading to singular crack tip

fields. CZM assumes the existence of a fracture cohesive zone, called cohesive zone in

which the crack is initiated but the crack faces are not fully separated. That is, the
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compression force between the crack faces is not zero. The representation of cohesive

zone is given in Figure 2.2. In this method the processes occurring within the cohesive

zone are accounted for only through a traction-separation relation.

Cohesive zone modeling has gained considerable attention over the past decade,

as it represents a powerful yet efficient technique for computational fracture studies.

Although the early conceptual works related to the cohesive zone model (CZM) date

back to the early 60s, during the 90s, leaps were made as a result of the pioneering

works by Needleman and his co-workers [25, 26], and Camacho and Ortiz [27]. Xu

and Needleman [26] proposed a potential-based cohesive zone model in which cohesive

elements are inserted into a finite element mesh [2].

Figure 2.2. Schematic representation of cohesive zone at the crack tip [2, 3].

CZM has evolved as a preferred method to analyze fracture problems in mono-

lithic and composite material systems not only because it avoids the singularity but

also because it can be easily implemented in a numerical method of analysis as in finite

element or boundary element method. CZMs have been used to simulate the fracture

process in a number of material systems including polymers, metallic materials, etc [3].

In this study, we utilize the surface based cohesive zone modeling capability of
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ABAQUS. In the classical chesive zone method, cohesive elements are used between

the surfaces of crack path and crack propagation is simulated with separation of the

nodes of these elements and deletion of these elements according to traction separation

rule. In surface based cohesive zone method, however, upper and lower surfaces of

the uncracked potions of crack path are glued together using bond contact property.

The separation of these bonded surfaces is managed by traction-separation rule. The

traction-separation model of ABAQUS consists of a stiffness matrix which relates the

traction (t) to the displacement (u) at the crack tip.


tn

ts

tt

 =


Knn

Kss

Ktt



dn

ds

dt

 (2.3)

The terms Knn, Kss, Ktt are calculated based on the elastic properties for the

cohesive section. Specifying the elastic properties of the material in an enriched region

is sufficient to define both the elastic stiffness and the traction-separation behavior.

For the latter initial behaviours is assumed to be linear elastic until the initiation of

damage. The evolution of damage can be modeled as linear or nonlinear as shown in

Figure 2.3.

In this study the CZM is to be explored for debonding at the interface between

the case and the grain.

2.1.3. Extended Finite Element Method (XFEM)

The extended finite element method (XFEM) is developed to accurately approx-

imate fields that involve jumps, kinks, singularities, and other non-smooth features

within elements. This is achieved by adding terms, called the enrichments, to classi-

cal finite element approximations. These terms enable the approximation to capture

the non smooth features independently of the mesh. The XFEM has shown its full

potential for applications in fracture mechanics [33].
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Figure 2.3. (a) Linear and (b) non-linear traction separation model.

Applications with cracks involve discontinuities across the crack surface and sin-

gularities (or general steep gradients) at the crack front in case of LEFM. In the

standard FEM, a suitable mesh has to be provided and maintained which accounts

for these features; this is particularly cumbersome for crack propagation in three di-

mensions. The XFEM, however, can treat these type of problems on fixed meshes and

models crack propagation by a dynamic enrichment of the approximation. In other

words, using XFEM has various advantages. First of which is that no initial crack is

required. Once the crack initiates the path of the propagation does not need to be

specified. The finte element code decides the direction of the crack growth according

to the stress state at the crack tip. Another important advantage is that remeshing is

not necessary for crack propagation analysis. Recent developments in the XFEM, are

described in [34]; and an overview of the XFEM is given in Fries and Belytschko [35].

XFEM method can be used with both LEFM and cohesive zone (traction - sepa-

ration) damage models. In benchmark problems analyzed in this thesis both methods

are studied.
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2.2. Benchmark Study 1

This benchmark problem deals with the study of crack propagation methods em-

ploying Extended Finite Element (XFEM), Cohesive Zone Method (CZM) and stan-

dard method using contour integral around the crack tip (J integral). For XFEM case,

damage is modeled with two different ways: traction – separation method and linear

elastic fracture mechanics method (LEFM).

2.2.1. Problem

Crack propagation of an edge crack in a linear elastic plate subjected to uniaxial

tension is analyzed. The geometry shown in Figure 2.4 consists of 3m x 3m sheet with

0.3 m edge crack.

Figure 2.4. Benchmark geometry.

The finite element mesh consists of 1161 linear quadrilateral plane strain elements
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(CPE4) as seen in Figure 2.5.

Figure 2.5. Benchmark FE model.

2.2.1.1. Material Model. The sheet material is steel modeled as linear elastic with

Young’s modulus of 210 GPa and Poisson ratio of 0.3.

2.2.1.2. Boundary Conditions and Loading. Uniaxial displacement of 0.001m is ap-

plied to the upper and the lower sides of the sheet. In this problem, symmetry boundary

condition was not used since for XFEM, the crack propagates inside elements.

2.2.1.3. Damage Parameters. As mentioned above two different crack evolution mod-

els are used in this benchmark. The first one is the traction – separation model, the

other is the LEFM. In both models, energy criterion is used for damage evolution. For

traction – separation model, maximum stress criteria is used. The maximum stress

and fracture energy parameters are given in Table 2.1.
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Table 2.1. Damage parameters for traction - separation model.

Max Stress (MPa) Critical Energy Release Rate (N/m)

220 42200

2.2.2. Finite Element Analysis Results

In this section crack propagation solutions using different techniques are presented

and the results are evaluated.

2.2.2.1. Standard Method Using J Integral. In conventional method, for a given load

and crack configuration, J integral value is calculated and compared to the critical value

given in Table 2.1. When J reaches Jc, crack growth value ∆a and growth direction

are chosen and J integral value is again calculated for the new crack size (a + ∆a).

The J integral value gives the amount of energy needed to increase the crack by ∆a for

a unit thickness. Therefore, multiplying ∆a by J value, we get the dissipated energy

when the crack propagates with a length of ∆a. That is, the change in total strain

energy (∆U) per crack elongation (∆a) and J integral have to be identical.

Figure 2.6 shows the comparison of J integral and ∆U/∆a. As can be seen, they

are reasonably close for various crack sizes.

Figure 2.7 is the applied displacement vs. crack size graph obtained from crack

propagation analysis with J integral approach. From Figure 2.7, propagation starts

when the applied displacement is 0.00058m and total propagation of the crack is com-

pleted when the displacement is 0.00067m. From Figure 2.7, it can be concluded that

after the propagation is initiated, the entire propagation occurs very quickly.

2.2.2.2. XFEM Solution with LEFM. The XFEM method is used with two different

damage models. The first one is the linear elastic fracture mechanics (LEFM) model.
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Figure 2.6. Comparison of J integral values and total strain energy with increasing

crack length.

Figure 2.7. Time vs. Crack size (Conventional J Integral Method).
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Figure 2.8 is the applied displacement vs. crack size graph of XFEM with LEFM

method. In this method propagation starts when the applied displacement is 0.00052m

and total propagation of the crack lasts when the applied displacement is 0.00065m

as shown in Figure 2.8. That is, for LEFM based XFEM solution, the propagation

of the crack initiates earlier than conventional method and thus total propagation is

completed earlier.

Figure 2.8. Applied displacement vs. Crack length (XFEM w/ LEFM).

2.2.2.3. XFEM Solution with Traction - Separation. In this analysis, XFEM is used

with a traction separation damage model is used. As shown in Figure 2.9 the propa-

gation starts when the applied displacement is 0.00059m and total propagation of the

crack is completed when the applied displacement is 0.00065m. The crack propagation

history of this method is very close to that of conventional method.

2.2.2.4. Solution with CZM. The cohesive zone method used in this study is surface

based cohesive segment method of ABAQUS. This method is applied using bonded

contact property of ABAQUS. The crack path is initially bonded. Cohesive and damage

properties of the cohesive layer are defined for the contact region. Using this method

propagation starts when the applied displacement is 0.00050m and total propagation
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Figure 2.9. Applied displacement vs. Crack length (XFEM w/ Traction - Separation).

of the crack stops when the applied displacement is 0.00063m as shown in Figure 2.10.

The propagation of the crack starts earliest among these four methods discussed here.

Figure 2.10. Applied displacement vs. Crack length (CZM Solution).

2.2.2.5. Evaluation of Results. Comparing the methods used for crack propagation

analysis it is concluded that the history of the crack propagation profiles as a function
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of applied displacements are similar for all of the methods except for slight differences

in the initiation instants. When analysis procedure is XFEM, no matter if the damage

model is traction-separation or LEFM, the results are very close to each other for the

current problem. The most distinct results are for CZM and conventional method.

Since both the conventional and LEFM methods are similar in principle (That

is, they use only energy principle), the results of the two methods are not too far to

each other. The tabular and graphical comparisons of the results are shown in Figure

2.11 and Table 2.2. From the table, it can be seen that start and stop times of crack

initiation and propagation are very close to each other. However, since the LEFM

is known to be applicable to linear materials, for the rest of the analyses traction

separation damage model will be used.

In order to evaluate the viscoelastic effects on the results the next benchmark

study deals with the XFEM with traction – separation applied to linear viscoelastic

media.

Table 2.2. Crack propagation histories for the four methods.

Start of Propagation (m) End of Propagation (m)

J Integral 0.00058 0.00067

XFEM w/ LEFM 0.00052 0.00065

XFEM w/ T- S 0.00059 0.00065

CZM 0.00050 0.00063

2.3. Benchmark Study 2

This benchmark study deals with the application of extended finite elements

method to viscoelastic materials. The material model which is used in this study was

taken from literature [4] and traction separation damage model was used in XFEM. The

results obtained from the analysis are correlated with the reference test and analysis.



20

Figure 2.11. Plots of crack propagation histories for the four methods.

2.3.1. Problem

The benchmark model shown in Figure 2.12 is a double edge cracked specimen

made of viscoelastic HTPB propellant material.

The model dimensions are W=30mm, H=70mm, B=5mm, a=10mm, d=20mm.

The finite elements model is prepared using 2100 quadrilateral linear plane strain ele-

ments.

2.3.1.1. Material Model. The material of this problem is represented with a linear

viscoelastic model. Relaxation modulus is represented with Prony Series as given in

Table 2.3.

2.3.1.2. Boundary Conditions and Loading. The model is fixed at the bottom and

pulled from the top with a rate of 20 mm/min. Boundary conditions are shown in

Figure 2.12.
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Figure 2.12. Benchmark geometry and boundary conditions [4].

Table 2.3. Benchmark linear viscoelastic material model (E0 = 20MPa) [4].

i Ei(MPa) τi(s)

1 8.37 0.592

2 1.80 1.148

3 1.56 12.081

4 0.734 55.579

5 0.431 217.588
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2.3.1.3. Damage Parameters. The damage parameters for the problem were taken

from the literature [4] which is an experimental study and are given in Table 2.4.

Table 2.4. Damage parameters for crack propagation [4].

Loading Rate (mm/min) Fracture Energy (N/mm) Strength (MPa) Critical Separation Distance (mm)

20 1.007 0.548 3.22

2.3.2. Finite Element Analysis Results

This section contains the comparison of results obtained using XFEM method

and the results of the literature [4].

Figure 2.13 shows Mises Stress contour plots of XFEM solution, CZM solution

and the test result at time 27 sec. The plots of CZM solution and test result were

taken from the literature [4]. As can be seen XFEM analysis is in a good correlation

with the CZM result and the test result.

Figure 2.13. Comparison of von mises stress contours and deformation shapes of

XFEM and the results taken from the literature [4].
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Figure 2.14 shows the comparison of reaction force histories for XFEM solution

calculated in this study and CZM solution and test result taken from the literature [4].

XFEM solution stopped at time 34sec because of convergence problems.

Figure 2.14. Reaction force vs. time: comparison of analysis results with the

reference.

Based on the comparison with test results and CZM solution, it is verified that

XFEM works successfully with linear viscoelastic material model.

2.4. Benchmark Study Conclusions

In this chapter, XFEM, CZM and conventional J integral methods were studied.

Both traction - separation and LEFM damage models were employed. As a result of

the comparison it is observed that the initiation and propagation times are similar for

all of the methods. For traction - separation damage model, however, initiated crack

faces are not fully separated, that is, the compression force between the crack faces

is not zero. This is the likely case when the material is viscoelastic. Therefore, in

this thesis study, as the material of interest is of nonlinear viscoelastic type, traction -

separation damage model is selected to be more suitable than that of LEFM.

As was mentioned before, traction - separation model can be used with both

CZM and XFEM depending on the problem. In this thesis study, we analyze two



24

different crack propagation problems in nonlinear viscoelastic media: bore crack and

debonding. For bore crack, it is convenient to use XFEM since the crack trajectory is

not known. For debonding case, however, CZM is appropriate since the crack is known

to propagate along the interface between the case and the propellant.
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3. BORE CRACK

3.1. Problem Description

In Chapter 2, different crack propagation analysis methodologies and crack zone

damage models were studied. In Chapters 3 and 4, crack propagation analyses using

XFEM and CZM will be applied to an analogue solid propellant motor whose geometry

and material model are stated below. The geometry and material models will be used

for both bore crack and debonding analyses.

3.2. Geometry

The analogue motor, SRM, has a cylindrical structure with a circular cross section

[5]. It consists of a solid propellant, the grain, enclosed in a composite case. The cross

sectional dimensions are shown in Figure 3.1.

Figure 3.1. Analogue motor geometry for crack propagaiton analysis (φ: diameter).
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3.3. Material Models

The SRM consists of two different materials. The grain is a nonlinear viscoelastic

material and the case is a FRP (fiber reinforced plastic) material. The case is modeled

as a linear elastic material with Young’s modulus, E, Poisson’s ratio, ν, thermal ex-

pansion coefficient, α, and stress-free temperature, Θ0 whose values are given in Table

3.1.

Table 3.1. FRP case material properties [7].

E (MPa) ν α (mm/C) Θ0 (◦C)

4615.3 0.33 2.30E-6 20

The constitutive model for the propellant was taken from the literature [7] and

is prosented in detail in Section 3.3.1.

3.3.1. Nonlinear Viscoelastic Material Properties

Realistic representation of the mechanical behavior of solid propellants requires

nonlinear viscoelastic constitutive theories. The nonlinear viscoelastic model used in

this study combines viscoelasticity with a hyperelastic model. The hypereleasticity is

defined using strain energy function U in Yeoh form [36].

U =
[
3.7694× 10−1(I1 − 3) + 1.3243× 10−1(I1 − 3)2 − 1.8037× 10−1(I1 − 3)3

]
+

[
1100

2
(Jel − 1)2

]
kg

mm2
(3.1)

where I1 is the first deviatoric strain invariant and Jel is the elastic volume ratio.

The coefficients of U are found by fitting the constitutive model to a uniaxial constant

strain rate test data with superimposed pressure corresponding to the highest pressure

the propellant is exposed to. This test is assumed to represent the material response

without damage.
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The viscoelastic material property is defined by a relaxation function expressed

as a Prony series in the dimensionless form

gR(t) = 1 −
N∑
i=1

gPi (1 − e−t/τ
G
i )

where gPi and τGi are material constants given in Table 3.2.

Table 3.2. Normalized Prony series for NLVE material [7].

N gPi τGi (min)

1 0.3168635 1.00E-06

2 0.36025936 1.00E-05

3 0.16311863 1.00E-04

4 0.07820935 1.00E-03

5 0.02805517 1.00E-02

6 0.01822964 1.00E-01

7 0.00957705 1

8 0.00535763 1.00E+01

9 0.00041825 1.00E+02

10 0 0.0019107 1.00E+03

The equilibrium and instantaneous shear moduli are G∞ = 1.17 × 10−1kg/mm2,

G0 = 6.507kg/mm2, respectively.

The dependence of viscoelastic properties on temperature is defined by a shift fac-

tor determined from several relaxation test data of the propellant. The shift function,

aT , is represented in Williams–Landel–Ferry form as [18]

logaT = − 10.60(θ − 20)

235.58 + (θ − 20)
(3.2)
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The coefficient of thermal expansion for the propellant is αpro = 0.87 × 10−41/◦C and

the reference is θ0 = 20◦C.

3.3.2. Damage Model for Crack

For the propagation analysis, traction - separation damage model was used. For

the traction separation model two parameters are important: first one is the maximum

stress value which determines the crack initiation, the other is the fracture energy

which is the energy needed for complete separation of the new crack faces. Figure 3.2

shows the traction – separation behavior of the propellant material of interest. The

fracture energy value was taken from [4]. The critical traction value is determined so

that the crack growth can be observed clearly during the crack propagation analyses

for several initial crack sizes. tc and Gc stand for critical traction and critical fracture

energy respectively.

Figure 3.2. Traction - Separation curve of the propellant [4].

3.4. Effects of Bore Crack on Stress Distribution

In this section the effects of bore cracks on stress distribution over the cross-

section were investigated for several crack sizes. Thermal loading was considered as

described in Section 3.4.1.1. The results of the analysis were compared with the results

from the literature [5]. The comparison was carried out qualitatively since the material
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model of the referenced article is not known and probably different from the one used

in our study.

3.4.1. Finite Element Model

In order to see the change in the bond stress along the 180 degree bond line, half

of the cross section was used for the analysis. The analysis model consists of 13311

linear quadrilateral plane strain elements (CPE4). The FE mesh is shown in Figure

3.3.

Figure 3.3. Finite element mesh for the bore crack analysis.

3.4.1.1. Boundary Conditions and Loading. Both ends of the half model are con-

strained in hoop (circumferential) direction of cylindrical coordinate system which is

located at the center of the model. The loading is prescribed as decrease from 60◦C to

20◦C with a rate of 20 C/h.

3.4.1.2. Mesh Convergence. In order to determine a proper mesh size for the analyses,

mesh convergence study was performed on the bore crack model (Figure 3.3). For the

convergence study, 16mm, 8mm, 4mm and 2mm element sizes were employed using the
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boundary conditions described above.

Figure 3.4 shows a convergence study result as a function of element size, h.

The horizontal axis of the graph, 1/h, is proportional to the total element number.

According to Figure 3.4, 4mm element size is determined as the converged mesh. For

XFEM analysis, however, the smaller the element size is, the more sensitive the crack

propagation calculation is. Therefore 2mm element size was used for all the analyses

given in Sectin 3.4.2. The final mesh consists of 13311 bilinear quadrilateral plane

strain elements (CPE4) and is shown in Figure 3.3.

Figure 3.4. Mesh convergence plot.

3.4.2. Finite Element Analysis Results

Six different crack sizes were considered: 2mm, 4mm, 8mm, 16mm, 32mm, 64mm.

For these cracks sizes, first, bond stress change along the circumference was calculated,

second, the dependence of the difference between the maximum and minimum bond

stress values along the bond line on the crack size was established.
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3.4.2.1. Radial Stress Change. For all of the crack lengths, the radial stress along the

bond line was plotted as shown in Figure 3.6. It was observed that, as the crack size

is increased, the stress drop along the bond line also increases and far from the crack

location the stress converges to a base value. These behaviors of the stress change

play an important role on sensor systems that is used to monitor the crack presence in

motors. Figure 3.5a shows such a sensor system that aims to determine the location

and size of the bore crack using the readings at bond line. Figure 3.5b shows the bond

stress distribution as predicted from finite element analysis [5], assumed to have used

linear elastic material model at 20◦C.

Figure 3.5. Location of sensors (a); Radial stress distribution along bond line for

5mm crack case (b) [5].

Comparing Figure 3.5b with Figure 3.6 qualitatively, it is observed that stress

change along bond lines are similar. Since the dimensions of analogue motors of the

referenced study and the current study are different, circumferential location of maxi-

mum drop is different and the maximum stress drop shown in Figure 3.5 (5mm crack

case of referenced study) is almost identical to that in Figure 3.6 for 32mm crack.

Figure 3.10 shows that, the stress curves of the materials of the current study and the

referenced study are similar at 20◦C. Therefore the difference between current and the

referenced study is due mainly to the differences in geometry of two analogue motors.
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Figure 3.6. Radial stress distribution along bond line (current study).

The maximum stress drops along the bond line is given in Table 3.3 and plotted

in Figure 3.7. It is concluded that the stress drop along the bond line is almost linearly

proportional to crack length after 16 mm. Based on this curve, the crack size in the

motor can be predicted using the sensor readings of any health monitoring systems.

Table 3.3. Maximum stress drop along bond-line for different bore crack sizes.

Crack Length (mm) Percent Stress Drop

2 0.13

4 0.60

8 2.29

16 8.11

32 25.16

64 67.45

An example of stress distributions in radial and circumferential direction are

shown in Figures 3.8 and 3.9 for 32mm crack case.
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Figure 3.7. Crack length vs. bond stress.

Figure 3.8. Contour plot of S11 for 32mm crack.
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Figure 3.9. Contour plot of S22 for 32mm crack.

3.4.2.2. Uni-axial Tension Test. The uni-axial tension behavior of the propellant ma-

terial was simulated. The load was applied at the strain rate of 0.7291min−1 at several

temperatures. Figure 3.10 shows the material responses predicted by the nonlinear vis-

coelastic material model used in the current study, test data from the referenced study

and the LVE prediction of the referenced study [5]. Comparing the LVE response and

the test data, it is clear that LVE prediction is poor after stain of 0.02. When the com-

parison is made between the test data and the NLVE material model of the current

study, it can be concluded that the stiffnesses of the current material and the material

of the referenced study are similar at 60◦C and 20◦C. At −40◦C, however, the current

material is stiffer.

3.4.2.3. Cyclic Temperature Loading. The temperature loading shown in Figure 3.12

was applied to the motor and results were compared with those in the referenced study.

The applied temperature profile represents the measured temperatures shown in Figure

3.11. The measurements from the sensors of the referenced study is shown in Figure

3.11. Radial stress calculated in the analysis is shown in Figure 3.13.

As a result of the comparison, it is concluded that the peak stress value is de-

creasing in the proceeding cycles as a result of the viscoelastic properties of the mate-

rial.The stress drop is not as noticeable as the referenced document since the nonlinear

viscoelastic model used in the current analysis does not account for the softening of
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Figure 3.10. Material responses for uniaxial tension at constant strain rate of

0.7291min−1 [5].

Figure 3.11. Measured temperature profile and the measured bond stresses during

mechanical aging test of the motor [5].
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Figure 3.12. The temperature profile of the FEA.

Figure 3.13. Bond stress history of the current study.
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the propellant as seen in Figure 3.10. The decay in the peak stress values is shown in

Table 3.4. Ratios in the table are relative to the stress value of the first cycle.

Table 3.4. Peak stresses corresponding to loading cycles in Figure 3.12.

Load (C) cycle Ratio % (Test) Ratio % (Analysis)

20 a 100.0 100.0

20 b 72.0 98.8

-20 c 100.0 100.0

-20 d 87.0 97.7

-20 e 79.0 92.0

3.5. Bore Crack Propagation

The propagation of bore cracks in an analog motor as a result of cyclic temper-

ature was analyzed using XFEM. Several initial crack sizes were examined. For each

crack configuration, crack growth and stress distribution were calculated.

3.5.1. Finite Element Model

In the analysis, half of the circular cross section of analog motor is used. Since

XFEM in ABAQUS does not support quadratic elements, 4-node plane strain full

integration elements were used. The mesh consists of 13311 elements as shown in

Figure 3.14.

3.5.1.1. Boundary Conditions and Loading. Since half of the cross section is modelled,

at both ends symmetry boundary condition was applied in hoop direction of the cylin-

drical coordinate system whose origin is at the center of motor. The initial crack was

located at 90◦ position.

The temperature profile is shown in Figure 3.15. The motor starts cooling from
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Figure 3.14. Analysis model.

60 C which is the stress free temperature. Then the temperature decreases to 20 C, 0

C, -20 C, -40 C and then increases in the reverse order with 2 hours of waiting between

each temperature level and at the rate of 20 C/h. This cycle is repeated three times.

Figure 3.15. Cyclic temperature loading.

3.5.2. Using XFEM in Bore Crack Problem

3.5.2.1. Element Size. Crack propagation using XFEM occurs in somewhat discrete

manner. That is, crack propagates throughout the element and it does not stop inside
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an element. Therefore, the sensitivity of a growing crack is limited to the element size

of the crack domain. For example, consider a crack of length 12 mm. If the element

size is 2mm, then the crack increases as 12mm, 14mm, 16mm and so on. If the element

size is 4mm, then the crack size would be 14mm, 16mm, 18mm and son on. In order to

observe how the propagation history differs for different element sizes, 2mm and 4mm

element were employed for a 12mm crack with the loading profile shown in Figure

3.16. The resulting propagation history is presented in Figure 3.17. It is observed

that, although the curves are almost overlapping with each other, final status of the

crack is different for the two cases. For 2mm mesh, propagation of the crack stopped

at 26mm at the end of the load step while for 4 mm crack, the final crack size is 28mm.

Because of this difference, 2mm mesh was used in this study.

Figure 3.16. Loading profile for sensitivity analysis.

3.5.3. Finite Element Analysis Results

Six different crack sizes were analyzed under cyclic temperature loading shown

in Figure 3.15. The initial crack lengths were 2mm, 4mm, 8mm, 12mm, 16mm and

32mm.
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Figure 3.17. Crack propagation history for two different element sizes.

3.5.3.1. Cooling from 60 C to -40 C. The temperature profile consisted of cooling from

60 C to -40 C in the manner shown in Figure 3.15. The calculated crack propagation

histories for different initial crack lengths are shown in Figure 3.18.

It is observed that crack is dependent on the initial crack size. That is up to

some initial crack length (in this case 24 mm crack length), the crack growth increases

with increasing initial crack length, after this point, crack growth decreases as shown

in Figure 3.19.

Figure 3.20 shows the tangential stress distribution after crack growth. The blue

regions in Figure 3.20 are the zero – stress regions which indicate the portions that

reached to final separation (B point in Figure 3.2). The remaining portions of the

cracks are still in the cohesive zone and require additional traction for full separation.

3.5.3.2. J Integral Solution for 4mm Initial Crack Size. The XFEM solution of the

propagation analysis is compared with J integral approach. Figure 3.22 is energy
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Figure 3.18. Crack propagation histories for various initial crack lengths.

Figure 3.19. Increase in the crack size vs. initial crack size.



42

Figure 3.20. Circumferential stress distribution for various crack growth analyses

(time t = 780 minutes).

Figure 3.21. Representation of the cohesive zone.
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dissipation plot of XFEM solution of 4mm initial crack size case. The first propagation

from 4mm initial crack size to 6mm occurs at 458th minute. The dissipated energy per

unit area at that point is 0.45E-3 N/mm.

Figure 3.22. Energy dissipation resulting from XFEM solution.

Figure 3.23 is the change of J integrals of 4mm and 6mm crack sizes under the

same loading conditions as the XFEM analysis upto the first propagation time (458th

minute).

It is observed that, the XFEM solution is in good correlation with the J integral

approach. While the dissipated energy during the first propagation step of XFEM

solution (from 4mm to 6mm) is 0.45E-3, the J integral difference at that time of

stationary analysis is 0.47E-3 N/mm.

3.5.3.3. Cyclic Loading. For cyclic loading of the models it is observed that for all of

the cases, crack propagation occurred only during the cooling part of the first cycle.

Since neither damage accumulation was modeled nor fatigue calculation was included

in the analysis, crack did not propagate in the proceeding cycles. Similarly the peak

stress reached at each cycle remained the same. This can be seen in Figure 3.24 which
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Figure 3.23. J integrals for 4mm and 6mm stationary crack analysis.

shows the circumferential stress history at the crack tip for cyclic loading and 4mm

initial crack length.
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Figure 3.24. Circumferential stress change at the crack tip during the cyclic loading

(4mm initial crack case).
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4. DEBONDING

4.1. Effects of Debonding on Bond Stress Distribution

Debonding along the grain-case interface is one of the major failure modes of solid

propellant rocket motors. As the temperature varies during cooling or heating, because

the thermal expansion coefficients are different for the case and the propellant, thermal

strain which these two materials experience will be different. This difference causes

tension in radial direction at the bond line. When this stress exceeds the strength of

the insulation material or propellant material, crack initiation (namely debonding) will

take place which, in turn, will alter stress distribution along the bond line. The profile

of this stress change along the bond line is important for detection of these defects. An

important objective would be [6] to establish a relationship between the radial stresses

and the debonding. This relationship is used to decide if debonding is present in the

motor depending on the sensor readings.

In this part of the study, using an analogue motor geometry crack propagation

analyses were performed for 5◦, 10◦, 15◦, 20◦ initial debonding angles. The geom-

etry, applied temperature profile and initial debonding angles were taken from the

literature [6]. In the referenced study, the analysis was performed using linear elastic

material model as the propellant material. The analysis was repeated for the material

of the current study using linear elastic, nonlinear elastic and nonlinear viscoelastic

material models. Firstly, linear elastic solution of our material was compared with the

linear elastic solution of the referenced study. Then, linear elastic and non-linear elastic

material models are employed to model the propellant, stress analyses were performed

and the results were compared. Finally, using the same model, the time and temper-

ature dependent viscoelastic and hyperelastic material model (non-linear viscoelastic)

is employed to see the effect of non-linear viscoelastic behavior of the propellant.
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4.1.1. Finite Element Model

The analogue motor geometry is shown in Figure 4.1. Because of the symmetry,

a quarter - model is used. The mesh is shown in Figure 4.2 and consists of 6528 bilinear

quadrilateral plain strain elements with 2mm element.

Figure 4.1. The analogue motor geometry [6].

Figure 4.2. Finite Elements Mesh model.

4.1.1.1. Material Model. The SRM consists of two different materials. The grain is a

nonlinear viscoelastic material and the case is a FRP (fiber reinforced plastic) material.

The details for case material are given in Chapter 3, and material parameters are

stated in Table 3.1. The propellant was represented with a linear elastic, nonlinear
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elastic and nonlinear viscoelastic models, in order to see the effect of nonlinearity and

viscoelasticity. The nonlinear viscoelastic material parameters are stated in Section

3.3.1. For nonlinear elastic model the energy function given in Section 3.3.1 was scaled

by the instantaneous modulus. Linear elastic model consisted of the instantenous

modulus and Poisson’s ratio 6.05 kg/mm2 and 0.49, respectively.

Before comparison of different material models firstly a uniaxial tension analysis

is performed to compare stress-strain behaviours of the material models. In order for

the comparisons made in Sections 4.1.2.1 and 4.1.2.2 to be meaningful, we expect that

the linear portions of stress strain curves of the material models are identical in the

elastic region. The uniaxial tensile response of four different material models (Linear

Elastic, Nonlinear Elastic, Linear Viscoelastic, Nonlinear Viscoelastic) at strain rate of

10−4min−1 is shown in Figure 4.3. From Figure 4.3, it is seen that initial portions of

the stress strain curves of four different material models are identical as expected.

Figure 4.3. Stress - Strain curves as a result of uniaxial tension analyses for different

material models.
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4.1.1.2. Boundary Conditions and Loading. Because of the symmetry, a quarter -

model is used. Both ends of the quarter model is applied symmetry boundary condition

in circumferential direction. That is, both ends of the quarter model are constrained

in circumferential direction. The problem is cooling of motor from 60 C to -40 C at

the rate of 10 C/min. As mentioned above, as the rocket motor and the case undergo

this cooling process, propellant shrinks more than the case which results in tension

in radial direction along the bond line. The stress distribution of the propellant was

calculated for four different debonding angles which are 5◦, 10◦, 15◦ and 20◦.

4.1.2. Finite Element Analysis Results

Figure 4.4 shows the radial stress distribution for 20◦ debonding case of reference

study and the current study. As shown in Figure 4.4, radial stress fields are qualitatively

similar for both studies. The radial stress change along bond line for the reference study

and the current study using linear elastic model is shown in Figure 4.5. According to

Figure 4.5, it can be concluded that the stiffness of the current material is higher than

that of the reference study since the stress values as a result of the same cooling history

is higher for the current study. In Sections 4.1.2.1 and 4.1.2.2, the effect of nonlinearity

and viscoelasticity are investigated comparing the bond-stress profile along the bond-

line.

4.1.2.1. Effect of Nonlinearity in Bond-stress. Firstly linear elastic and non-linear elas-

tic material models were used as the propellant material and bond-stresses were com-

pared. Radial stress along the bond line for different debonding cases (5◦, 10◦, 15◦,

20◦), is plotted in Figure 4.6 for linear elastic and non-linear elastic material models

and the stress values are shown in Table 4.1. Looking at the curves in Figure 4.6, it can

be seen that for linear elastic material model, bond-stress experiences a drop from 15◦

to 30◦ far from the crack tip (tip point of debonding), then again increases and finally

converges to a value which is the defect-free stress. Defect-free bond-stress of nonlinear

elastic material is similar to that of linear elastic one. The percent stress drops with

respect to the defect-free stresses is more meaningful for comparison purposes. The
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Figure 4.4. Radial Stress Distribution at -40 C of 20 deg debonding case of

Referenced study [6] and the current study.

Figure 4.5. Stress change along the bond line for the linear elastic material model of

the referenced study (left) and current study (right).
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stress drop percentages given in Table 4.1 lead to the conclusion that slight difference

is observed in predictions of linear and nonlinear models. From this result and the

stress-strain curves in Figure 4.3, it can be concluded that the material response as

a result of the applied temperature loading is in the linear region of Figure 4.3. The

percentages of stress drops for different material models are compared in Figure 4.7.

Figure 4.6. Radial stress changes along the bond for linear elastic and nonlinear

elastic cases.

Table 4.1. Tabular representation of stress drops for the debonding cases (Linear

elastic: Reference Study and Nonlinear elastic: Current Study).

Linear Elastic Nonlinear Elastic

Unflawed Stress (kPa) 1350 1353

Min Stress (kPa) % Drop Min Stress (kPa) % Drop

5 deg 1367 0.2 1350 0.2

10 deg 1348 0.6 1331 1.6

15 deg 1312 4.2 1296 4.2

20 deg 1257 8.2 1242 8.2

4.1.2.2. Effect of Viscoelasticity. Nonlinear elastic and nonlinear viscoelastic analysis

results were compared. Figure 4.8 shows nonlinear elastic and nonlinear viscoelastic

analysis results for cooling from 60◦C to −40◦C at 10◦C/min cooling rate. The defect-
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Figure 4.7. Percent stress drops for linear elastic, nonlinear elastic and nonlinear

viscoelastic material types.

free radial stress decreases from 1350 kPa to 60 kPa when viscoelastic material model

is used instead of elastic material model as the propellant material. This decrease

in the bond-stresses is expected since the response of a viscoelastic material is rate

dependent and thus changes as the cooling rate changes. Therefore, time dependent

viscoelastic properties are necessary in order to properly model the rate dependence of

non-linear viscoelastic propellant material. When bond-stress drops are compared as

in Section 4.1.2.1 using the values given in Table 4.2, it is observed that percent stress

drops are similar for the two material models as shown in Figure 4.7. Nevertheless, the

nonlinear elastic material model, only approximately represent the propellant material

and using nonlinear viscoelastic material model would be more suitable to represent

material characteristics better.

4.2. Crack Propagation for Debonding

This section studies the debonding in solid rocket motors (SRMs) under cyclic

temperature loading. The method used for the analysis is a CZM, in particular the

surface based cohesive segment method which is based on bond contact of interface
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Figure 4.8. Radial stress changes along the bond for nonlinear elastic and nonlinear

viscoelastic cases.

Table 4.2. Tabular representation of stress drops for the debonding cases (NonLinear

elastic and Nonlinear Viscoelastic).

NonLinear Elastic NonLinear Viscoelastic

Unflawed Stress (kPa) 1353 65

Min Stress (kPa) % Drop Min Stress (kPa) % Drop

5 deg 1350 0.2 64 1.5

10 deg 1331 1.6 64 1.5

15 deg 1296 4.2 63 3.1

20 deg 1242 8.2 61 6.2
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surfaces and the traction – separation damage rule. The details of this method is

introduced in Chapter 3. For the analysis several initial debond angles were used

to study the effect of initial debonding. For each of the cases the amount of the

propagation versus analysis time was calculated.

4.2.1. Finite Element Model

For the analysis quarter slice of the entire cross section of the SRM is used as

described in Section 4.1.1. The analysis model consists of 6528 bilinear quadrilateral

plane strain elements (CPE4) as shown in Figure 4.9.

Figure 4.9. Analysis model.

4.2.1.1. Boundary Conditions and Loading. Since quarter of the cross section is used

for the analysis, both ends of the quarter slice were applied symmetry boundary condi-

tion in hoop direction of the cylindrical coordinate system whose origin is at the center

of motor. The initial crack was located at top-end of the quarter model as shown in

Figure 4.9.
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Applied temperature profile is shown in Figure 4.10. The stress free temperature

is 60 C. That is, the model starts cooling from 60 C when there are no stresses through-

out the model. Then the temperature drops to 20 ◦C, 0 ◦C, -20 ◦C, -40 ◦C respectively

and heated up in the reverse order with at the rate of 20 ◦C/h with 2 hours of waiting

between each temperature level. This cycle is repeated three times.

Figure 4.10. Analysis model.

4.2.2. Using CZM in Debonding Problem

The surface based cohesive segment method is based on the separation of the con-

tact surfaces according to traction-separation damage model. The two bonded surfaces

are initially in a contact at non-deboneded regions of the interface. As separation load

is applied, the bonded surfaces are separated according to the damage model. That is,

in this method, damage model is not a material property but the separation rule of the

bonded contact. Since XFEM seems to pose difficulties when applied to the interface

crack problems, CZM was chosen for the current problem.
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4.2.2.1. Damage Model. Traction – Separation behavior of the material contains the

information about the crack initiation and propagation conditions and the crack sepa-

ration after the initiation. The traction - separation damage model was introduced in

Chapter 2 and the traction separation curve is repeated in Figure 4.11.

Figure 4.11. Traction - Separation curve of the propellant.

4.2.3. Finite Element Analysis Results

For the present study five different initial debond angles were studied. These are:

5◦, 10◦, 15◦, 20◦ and 25◦.

4.2.3.1. Cooling from 60 ◦C to -40 ◦C. Firstly only the cooling part (60 ◦C to -40 ◦C)

of the temperature loading is applied to the model and crack propagation histories for

different initial debonding angles are plotted as shown in Figure 4.12.

Surface based cohesive segment method allows easy post processing of the regions

where the initiation occurs along the bond-line. The red regions in Figure 4.13 show

elements where debonding has initiated.

Figure 4.14 shows the change of total propagation versus initial debonding angle.



57

Figure 4.12. Crack size vs. Time plot.

Figure 4.13. Enriched regions along the bond-line.
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The dependence of the propagation size on the initial crack size shows parabolic be-

havior. As in the bore crack case, the propagation of debonding increases up to some

initial debonding angle.

Figure 4.14. Increase in the crack size vs. initial crack size.

In Figure 4.15, the final state of the crack propagation and the radial (S11 of

cylindrical coordinate system) stress distribution are shown. The blue regions are the

zero – stress regions which indicate the portions of the cracks that reached to final

separation (B point in Figure 4.11). The other portions of the cracks are still in

cohesive zone and need additional energy for full separation as shown in Figure 4.16.

4.2.3.2. Cyclic Loading. For temperature cyclic loading it is observed that for all of

the analysis cases, crack propagation occurred only during the cooling part of the first

cycle. As an example, Figure 4.17 shows the radial bond stress history during the

cyclic loading of 15◦ initial debonding case.
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Figure 4.15. Final states of the propagation.

Figure 4.16. Representation of the cohesive zone.



60

Figure 4.17. Stress history during the cyclic loading (15 deg initial debonding case).

4.2.4. Debonding Study Conclusions

In this chapter, one of the major failure cases of SRMs, namely interface debond-

ing, was studied. In the first part of the chapter, stress analyses were performed to

investigate the effect of debonding on bond-stress distribution along bond-line. It is

observed that bond-stress experiences a drop 15◦ to 30◦ far from the crack tip (tip point

of debonding), then increases and finally converges to a value which is the defect-free

stress. This part of the study mainly focused on the effect of the material model on

the defect-free stress and the decrease of the stress beyond the crack tip. As a result

of the comparison, it is concluded that it is important to use nonlinear material model

for correctness of the stress profile along the bond-line and time dependent viscoelastic

properties together with hyperelasticity are also needed in order to properly model rate

dependence of viscoelastic propellant material.

In the second part of this chapter, surface based CZM is employed for analysis of

propagation of debonding along the bond-line. In surface based CZM, only traction-

separation rule is added to standard contact definition of the two surfaces. Therefore,

no additional modelling effort is required in implementation of this method. At the end

of the analyses it is concluded that, CZM is an easy and effective method for analysis

of crack propagation between two different media.
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5. CONCLUSION

This study was concerned with the crack propagation analysis in nonlinear vis-

coelastic propellants. Firstly benchmark studies dealing with the application of crack

propagation methods to some problems were performed. In the first benchmark study,

conventional method based on J integral, XFEM and CZM methods were used for

the crack propagation analysis of an edge cracked specimen. Comparing the methods

used in this benchmark study, it is concluded that the history of the crack propagation

profiles as a function of applied displacements are similar for all of the methods except

for slight differences in the initiation instants. When analysis procedure is XFEM, no

matter if the damage model is traction-separation or LEFM, the results are very close

to each other for the analyzed problem. The most distinct results are of CZM and

conventional method. From the propagation histories obtained from the analysis with

different methods, it is seen that the timings of crack initiation and propagation are

very close to each other. However, since the LEFM is appropriate to linear materials,

throughout the thesis study, traction separation model was used.

In the second benchmark study XFEM method was applied to linear viscoelastic

double-edge-cracked specimen and results were compared with the experimental and

CZM results of the literature [4]. As a result of the comparison, it is concluded that

crack propagation path and the reaction forces obtained with XFEM method are in a

good correlation with those of the experimental results and CZM solution. Therefore,

it is verified that XFEM works successfully with linear viscoelastic material model.

Upon verification of XFEM and CZM through benchmark problems, the methods

were applied to analysis of SRM. Firstly bore crack problem of nonlinear viscoelastic

SRMs were studied. The effects of bore cracks on stress distribution along the bondline

were investigated for several crack sizes and results are compared with the related

studies from literature. It can be seen from literature that bond stress experiences a

drop at the angular position of the bore crack along circumference. This stress drop is

used in some test based defect monitoring systems to predict the location and length
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of the defect. The stress analyses for various sizes of bore cracks also revealed this

stress change at the angular position of the bore crack and the relation between the

bore crack length and stress change is obtained. It is therefore suggested that crack

length in the motor can be predicted using the sensor readings of health monitoring

systems.

The bore cracked analogue motor was then subjected to cyclic temperature load-

ing representing the aging of the motor, and bond stress history was compared with

the actual test results. This analysis shows that peak stress value decreases in the

proceeding cycles as a result of the viscoelasticity effect. However, the decrease in the

peak stresses is not as much as the experimental results. This is because the damaging

effect was not introduced to the material model and we see only the decrease resulting

from the viscoelasticity.

The propagation of bore cracks in an analog motor as a result of cyclic tempera-

ture loading was analyzed using XFEM. Firstly, for 4mm initial crack case, the amount

of dissipated energy were compared with the amount of required energy calculated us-

ing J integral in order to verify FE model. It is observed that the amount of dissipated

energy as a result of XFEM analysis is almost the same as the energy calculated with J

integral method. Then several initial crack lengths were analyzed and the crack prop-

agation histories were obtained. It is observed that although up to some initial crack

length the crack growth increases with increasing initial crack length, after this point,

crack growth decreases.

A second failure case studied for SRMs is that of interfacial debonding. Stress

analyses were performed for 5◦, 10◦, 15◦, 20◦ debonding angles. Bond stress profiles

were compared with the results from the referenced study. It is seen that bond-stress

experiences a drop from 15◦ to 30◦ far from the crack tip (tip point of debonding),

then again increases and finally converges to a value which is the defect free stress.

In the referenced study, analysis is performed using linear elastic material model and

in the current study the analysis was repeated for nonlinear elastic and nonlinear

viscoelastic material models. Comparing the stress profile along the bond line for the
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material models used, it is observed that defect-free stress does not change when the

nonlinearity is introduced to the material model if the stresses are in the elastic region.

when the viscoelasticity is introduced to the material model, however, defect-free stress

decreases. This fact strongly suggests the nonlinear viscoelastic material model in the

analyses of SRMs in order to get realistic results.

Finally, crack growth analysis of initially debonded SRM was performed using

CZM and crack propagation histories (increase in the debonding angle in this case)

were obtained for several initial debonding angles. The relation between the initial

debonding angle and the final debonging angle was obtained. Similar to bore crack

case, it is observed that although up to some initial debonding angle the crack growth

increases with increasing initial debonding angle, after this point, debonding decreases.

For both failure cases of SRMs, bore crack and debonding, crack propagation

occurs only in the cooling part of the first cycle of cyclic loading. In the proceeding

cycles, the tip stress value is decreasing because of the viscoelasticity effect and crack

does not propagate. In the real situation, crack length increases as the number of

cycle is increased. This situation is commonly known as fatigue of the material. In

order to observe this effect in crack propagation analysis, it is required to account for

evolving the damage of the materials. This fact was also concluded in the analysis of

analogue motor when subjected to cyclic temperature loading representing the aging

of the material (Section 3.4).

As a general conclusion to this study, it can be suggested that FEM, XFEM and

CZM are effective and suitable techniques for crack initiation and propagation analysis

in nonlinear viscoelatic media such as solid rocket motors. In particular, XFEM is more

appropriate for bulk material crack propagation where the crack path is not known a

priori. For the interface debonding problem where crack path is known, CZM provides

an easy and effective methodology. Another important conclusion concerns material

model selection. In order to get more realistic results from such analyses, nonlinearity

and viscoelasticity should be accounted for, because the results are dependent on the

material behaviour.
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For future work related to this thesis study, damaging properties of the material

can be introduced into the material model in order to see the effect of the cyclic

loading on crack growth. This would be more realistic for cyclic loading situations.

Furthermore, although this study contains some verifications based on the experimental

studies from literature, the results of crack propagation analysis have to be verified

with experiments with the geometry and loading conditions described here. Therefore,

experimental studies for the verification of the methodologies described here can be

considered as another future work related to this thesis study.
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