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ABSTRACT 

 

 

CONCURRENT DESIGN AND PROCESS OPTIMIZATION IN 

FORGING 

 

 

Design parameters not only affect the performance of a product, but also affect the 

feasibility, effectiveness and efficiency of manufacturing. Processing parameters, in turn, 

affect the performance of the part. For this reason, a design optimization study focusing on 

just design parameters may result in a design difficulty to manufacture or a processing 

optimization study considering just processing parameters may result in a product with 

inferior quality. Therefore, effective optimization of a product requires a joint 

consideration of all these variables. In this study, a concurrent design optimization 

methodology is proposed to minimize the cost of a cold forging process using both product 

design and process design parameters as optimization variables. An objective function is 

defined combining material cost, manufacturing cost, and post manufacturing (shearing) 

cost of the product. The part to be optimized is a simply supported I-beam under a centric 

load. Because of large number optimization variables, a two-level approach is adopted. In 

the first level, only design variables defining the geometry of the part are considered to 

optimize its shape. In the second one, all of the process variables like preform dimensions 

and fillet radii and some of the design variables are considered. Various constraints are 

imposed related to the performance of the product in working condition and the 

effectiveness of manufacturing. Nelder-Mead, a robust zero - order search algorithm, is 

used as the search algorithm and analyses are carried out using commercial finite element 

software, ANSYS. After repeated runs, results are obtained that show considerable 

improvement in the cost.  
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ÖZET 

 

 

DÖVME İŞLEMİNDE EŞZAMANLI TASARIM VE PROSES 

OPTİMİZASYONU 

 

 

Tasarım parametreleri sadece ürün performansını değil, aynı zamanda üretimin 

uygulanabilirliliğini, geçerliliğini ve verimliliğini etkiliyor. Dolayısıyla, proses 

parametreleri parça performansını da etkiliyor. Bu nedenle, sadece tasarım parametrelerine 

odaklanmış bir tasarım optimizasyonu üretimi zor olan bir tasarım ile sonuçlanabilir veya 

sadece işlem parametrelerini dikkate alan proses optimizasyon çalışması düşük kaliteli 

ürün ile sonuçlanabilir. Bu nedenle, bir ürünün optimizasyonu için hepsinin birleşimi olan 

değişkenlere ihtiyaç duyulur. Bu çalışmada, eşzamanlı tasarım optimizasyon metodu hem 

ürün hem de proses tasarım parametreleri optimizasyon değişkenleri olarak kullanılarak 

soğuk dövme işleminin maliyetini en aza indirgemek için önerilmektedir. Objektif 

fonksiyon malzeme maliyeti, üretim amliyeti ve ürünün imalat sonrası (kesme) maliyeti 

birleştirilerek tanımlandı. Optimize edilen parça merkezi bir yük altındaki basit mesnetli I-

profildir. Çok sayıdaki optimizasyon değişkenleri nedeniyle iki aşamalı yaklaşım 

benimsenmiştir. Birinci aşamada, sadece parçanın geometrisini tanımlayan tasarım 

değişkenleri şekli optimize etmek için dikkate alındı. İkinci aşamada ise, kalıp boyutları, 

kavis yarıçapları ve tasarım değişkenleri gibi tüm proses değişkenleri dikkate alındı. 

Çalışma koşullarındaki ürün perfomansına ve üretim verimliğine ilişkin çeşitli kısıtlamalar 

düzenlendi. Sıfırıncı dereceden dayanıklı bir algoritma olan Nelder-Mead arama 

algoritması kullanıldı ve analizler ticari sonlu elemanlar yazılımı olan ANSYS kullanılarak 

yapıldı. Tekrarlanan döngüler sonucunda maliyette dikkate değer gelişmeler olduğunu 

gösteren sonuçlar elde edildi. 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

 

 

ACKNOWLEDGEMENTS  ...........................................................................................       iii 

ABSTRACT  ...................................................................................................................       iv 

ÖZET  .............................................................................................................................        v 

LIST OF FIGURES  .......................................................................................................     viii 

LIST OF TABLES  .........................................................................................................        x 

LIST OF SYMBOLS  .....................................................................................................       xi 

1. INTRODUCTION  .....................................................................................................        1 

2. PROBLEM STATEMENT  ........................................................................................        6 

3. OPTIMIZATION METHODOLOGY  .......................................................................        8 

3.1. Design Variables  ................................................................................................        8 

3.2. Formulation of the Objective Function  ..............................................................      10 

3.2.1. Material Cost, mc   .....................................................................................      11 

3.2.2. Forging Cost, 
f

c   ......................................................................................      11 

3.2.3. Shearing Cost, sc   .....................................................................................      12 

3.3. Constraints and Penalty Functions   ....................................................................      13 

3.4. Optimization Procedure   ....................................................................................      15 

3.4.1. First Level Optimization   .........................................................................      16 

3.4.2. Second Level Optimization   .....................................................................      17 

3.5. Search Algorithm   ..............................................................................................      18 

3.6. Finite Element Modeling   ..................................................................................      22 

3.6.1. First Level Model  .....................................................................................      22 

3.6.2. Second Level Model  ................................................................................      24 

3.7. Structural Analysis   ............................................................................................      30 

3.7.1. Yield Strength after Forging  ....................................................................      30 

3.7.2. Residual Stress Calculations  ....................................................................      32 

3.7.3. Failure Analysis of the I-Beam during Its Use  ........................................      34 

3.7.4. Lateral Buckling  .......................................................................................      36 

3.8. Convergence Analysis  ........................................................................................      38 

3.8.1. Convergence Analysis of First Level  .......................................................      39 



vii 

 

3.8.2. Convergence Analysis of Second Level  ..................................................      40 

4. RESULTS AND DISCUSSIONS   .............................................................................      43 

4.1. First Level Optimization Results   ......................................................................      43 

4.2. Second Level Optimization Results   ..................................................................      44 

5. SUMMARY AND CONCLUSIONS   .......................................................................      48 

APPENDIX A: NELDER MEAD ALGORITHM  ........................................................      50 

APPENDIX B: FLOW CURVE DATA USED IN MISO MODEL   ............................      54 

APPENDIX C: VOLUME OF DIE CAVITY  ...............................................................      55 

APPENDIX D: LATERAL BUCKLING   .....................................................................      56 

APPENDIX E: MAXIMUM DISTORTION ENERGY THEORY   .............................      58 

REFERENCES   .............................................................................................................      61 



viii 

 

LIST OF FIGURES 

 

 

Figure 2.1.  A schema of simply supported I-beam under centric load [54].   ............    6 

Figure 2.2.  Manufacturing phases of the I-beam [53, 54].   .......................................    7 

Figure 3.1.  Cross-sectional shape of the I-beam.   ......................................................    9 

Figure 3.2.  Dimensions of quarter part of the I-beam processed by forging [54].  ....  10 

Figure 3.3.  Flow chart of the optimization process.   .................................................  21 

Figure 3.4.  SOLID95 with its 20 nodes [65].   ...........................................................  23 

Figure 3.5.  Meshed I-beam [65].   ..............................................................................  23 

Figure 3.6.  Boundary conditions applied on the I-beam [65].   ..................................  24 

Figure 3.7.  FE Model in Ansys.   ................................................................................  25 

Figure 3.8.  PLANE183 with its 8 nodes [65].   ..........................................................  25 

Figure 3.9.  Meshed FE model with contact pairs and boundary conditions.   ............  26 

Figure 3.10  Finite element results of I-beam for same geometric parameters with   

different friction coefficients.   .................................................................  28 

Figure 3.11.  MISO flow curve of SAE 1010 generated in ANSYS [65].   ..................  30 

Figure 3.12.  Expected failure locations in the I-beam.   ...............................................  31 

Figure 3.13.  Von Mises Stress distribution after loading.   ..........................................  32 

Figure 3.14.  Residual stresses in the z direction after unloading.   ..............................  33 

Figure 3.15.  Loading condition [56].   ..........................................................................  34 

Figure 3.16.  Von misses stress distribution of the part including cavity.   ...................  38 



ix 

 

Figure 3.17.  Part at the middle stage of the process.   ..................................................  41 

Figure 3.18.  Last view of animation.   ..........................................................................  41 

Figure 4.1.  The final shape of the optimum part.   .....................................................  46 

Figure 4.2.  Von Mises Stress in the optimum part.   ..................................................  47 

Figure 4.3.  Equivalent plastic strain in the optimum part.   ........................................  47 

Figure A.1.  Triangle BGW and point R and extended point E [8].   ...........................  51 

Figure A.2.  The contraction point 1C  or 2C  for Nelder-Mead method [8].   ..............  52 

Figure A.3.  Shrinking the triangle toward B [8].   .......................................................  52 

 

  



x 

 

LIST OF TABLES 

 

 

Table 3.1.  The relations between the geometric parameters and their values.   ............     9 

Table 3.2.  The upper and lower limits (in mm) on the variables in the first level.   .....   17 

Table 3.3.  The upper and lower limits (in mm) on the parameters in the second 

level.   ...........................................................................................................   18 

Table 3.4.  Maximum von Misses stresses corresponding to different element  

sizes.   ...........................................................................................................   39 

Table 3.5.  Maximum von Misses stresses corresponding to different refinement 

sizes.   ...........................................................................................................   39 

Table 3.6.  Maximum Von Misses stresses and strains corresponding to different 

element sizes.   .............................................................................................   40 

Table 4.1.  Results of the first level optimization.   ........................................................   44 

Table 4.2.  Results of the second level optimization.   ...................................................   45 

Table 4.3.  Energy and stress values for optimum part.   ...............................................   46 

Table A.1.  Logical decisions for the Nelder-Mead algorithm [8].   ...............................   50 

Table B.1.  Flow curve data used in MISO model.   .......................................................   54 

 

  



xi 

 

LIST OF SYMBOLS 

 

 

b
  

Width
 

B   Best point of the Nelder-Mead Triangle 

c
  

Distance between the neutral axis and the furthermost point
 

c   Penalty coefficient 

fc
  

Forging cost
 

mc
  

Material cost
 

sc
  

Shearing cost
 

11c   Constant used for shearing 

22c   Constant used for shearing 

1C   Contradiction point of the Nelder-Mead Triangle 

2C   Contradiction point of the Nelder-Mead Triangle 

E   Expansion point of the Nelder-Mead Triangle 

E   Modulus of elasticity 

f   Total cost function 

F   Force applied
 

crF   Critical load of lateral buckling 

lF   Flash length 

G   Shear modulus of elasticity 

G   Good point of the Nelder-Mead Triangle 

h   Flange width without web thickness 

fh   Height 

wh
  

Height of the web 

H  Half of the preform height 

wI
  

Torsion warping constant
 

yyI   Moment of inertia of the I-beam with respect to the y-axis 

zzI   Moment of inertia of the I-beam with respect to the z-axis 



xii 

 

J   Torsion constant 

ℓ  Flash Volume 

L   Half of the preform width 

bL
  

Beam length
 

o
L   Half height of web including radii 

1L   Half of web height 

2L
  

Half height of I-beam
 

M   Middle point of the Nelder-Mead Triangle 

maxM
  

Maximum bending moment 

ep
  

Local electricity price for industry
 

mp
  

Unit price of the material
 

P   Penalty function 

maxP
  

Maximum contact pressure on the punch
 

Q   First moment with respect to neutral axis of the cross section 

1r   Radius between flange and web of the I-beam 

2r   Radius of flange 

3r   Radius of flange 

4r   Radius of flange 

R   Reflection point of the Nelder-Mead Triangle 

s   Stroke 

S   Shrinking point of the Nelder-Mead Triangle 

utS
  

Tensile strength of the material
 

yS
  

Yield strength of the material
 

t   Thickness 

bt   
Half burr thickness

 

ft
  

Thickness of the flange 

wt
  

Thickness of the web
 

fU   Total strain energy of deformation of the final part 



xiii 

 

sU   Shearing energy 

V   Volume of material 

V   Shearing force 

dV
  

Volume of the die cavity
 

pV
  

Volume of the part 

w   Flange thickness without radii 

W   Worst point of the Nelder-Mead Triangle 

x
  

Optimization variable
 

x
  

Lower bound
 

ux
  

Upper bound
 

 

 

 

1   Draft angles 

2   Draft angles 

T   True strain 

ij   
Total elastic and plastic strain rates

 

f
  

Efficiency with which electricity converted to deformation energy
 

s   
Efficiency of the shearing operation 

   Density of the material 

all
  

Allowable compressive stress of the mold material
 

eq   Equivalent stress 

E   Engineering stress 

ij   Components of the stress tensor 

max
  

Maximum equivalent stress 

T   True stress 

   Shearing stress 

allow   Allowable shearing stress 

 



1 

1. INTRODUCTION 

 

 

Various manufacturing methods can be used to produce mechanical parts. A 

suitable method is chosen based on the geometry of the part, the required quality, the 

quantity to be produced, and the manufacturing cost. In this study, forging, which is one of 

the widely used manufacturing methods for metals, is considered. If the forming process 

occurs below the recrystallization temperature of the metal, the process is named ‘cold 

forging’. This has certain advantages such as high dimensional accuracy, superior 

mechanical properties and microstructure. Furthermore forging to net or near-net shape 

dimensions reduces material cost as well as post processing cost. However, because of the 

relatively high tooling and equipment costs, the process is feasible only if the part is to be 

produced in large quantities [1]. 

 

In the traditional approach, manufacturing procedure is decided based on 

experience. In most cases, values for processing parameters selected based on experience 

and intuition do not give satisfactory results. Thus, they are modified according to outputs 

of a trial-and-error-correction phase. For manufacturing processes requiring high tooling 

costs, these trial-and-error efforts drastically decrease the efficiency of the product 

development endeavors. Besides, the resulting processing conditions would be less than 

the optimum. The traditional approach has become obsolete through the developments in 

the computer technology. Numerical methods like FEM allow prediction of the effects of 

process parameters on the end product by simulating the manufacturing process. This 

reduces trial-and-error efforts dramatically. On the other hand, FEM as an analysis tool 

only provides outputs for a predetermined process; it cannot appraise these outputs and 

suggest a better process design. Integration of simulation models with optimization 

algorithms helps to determine optimum processing conditions. The forging process has a 

number of parameters that are under the control of the process designer, which can be used 

to optimize the process. By optimizing the controllable process parameters, one can 

improve the product quality and manufacturing efficiency, and decrease costs significantly. 

In a process optimization study, according to the desired optimization aim, a suitable 

objective function is constructed. Choosing the objective and constraint functions, the 

optimization variables, and search algorithm has paramount importance on the 
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effectiveness of the optimization. In the literature, different approaches were adopted in 

this respect. 

 

In the previous studies of forging process optimization, the researchers considered 

forging of cylinders produced by upsetting [2-13], H-shaped axisymmetric parts [5, 14-25], 

two-ribbed blocks [26], aerofoil blades [3, 27, 28, 29, 30], axisymmetric parts [2, 8, 31-

36], some 2D parts [10, 37, 38], 3D complex-shaped parts [39], steering links [40], wheels 

[30, 37], hubs [41, 42], spindles [43], and gears [25, 43]. In some of these studies [2, 4, 14, 

26, 27], forging process was simulated to take place as hot, in others [5, 9, 10, 16, 17, 18, 

21, 25, 28, 31, 32, 39, 41, 43] as cold. In an optimization procedure, depending on the 

quality and cost requirements on the part, a suitable objective function is chosen. In the 

previous studies, the goal was to minimize either the forming energy [2, 4, 5, 12, 19, 33, 

43, 44], total strain energy [5, 20, 24, 37], total energy [4, 5, 13, 14, 35], average elasto-

plastic strain [20], tendency for tensile fracture [34], cost [45], excess material or flash, 

which is the portion of the workpiece bulging out of the die, to obtain net shape [15, 30, 

39, 41, 46], variation in hardness distribution [6], grain size [21, 37], effective strain 

variation [17, 22, 24, 35, 36, 37, 42], force applied by the tools [39, 42, 43], forging errors 

in the component [3, 14, 27 ,29] difference between realized and desired final forging 

shapes [7-10, 12, 23, 28, 44], material use [11], initial die temperature [18] or ram velocity 

[18], the difference between maximum and minimum effective plastic strains in the final 

product [32], total deformation energy [32] and strain variance [40] or die fatigue life was 

maximized [31]. Besides, multi-objective optimization problems were considered where 

the objective was to minimize the difference between the realized and prescribed final 

forged shape and total energy [12, 47]. In some cold forging operations, deformation 

becomes so extensive that forging operations are conducted in sub-steps followed by 

annealing. Hence, in some studies [4, 5, 15, 18, 43, 25], the number of forming stages was 

optimized. In forging process optimization studies, optimization variables are chosen 

among the processing parameters that have significant effect on the objective function. 

Parameters defining die approach angles, the area reduction ratio and the number of passes 

or drafts [32], die shape [15, 16, 25, 30, 33, 34, 38, 48], preform shape [6, 9, 25, 30], 

number of forming operations [34], thickness of the flash [20], temperature [4, 18], 

velocity [18, 21, 43], friction coefficient [33, 49], load paths [49], distance between 

boundary points [44 ,48], force applied by the tools [33, 35], height [43, 46], fillet radii [6, 
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11, 20, 46], preform dimensions[21, 43, 46] were selected optimization variables in the 

optimization problems considered in the previous studies. Because the computational time 

required for simulations of metal forming processes is generally very high, only the most 

effective parameters should be chosen. In a process optimization procedure, while 

improving the objective function by modifying the optimization parameters, constraints are 

imposed on these parameters to avoid underfilling of the die cavity [5, 14, 18, 19, 21, 30, 

35, 36, 39-43 46], difference between the produced shape and the target shape [3, 4, 7-11, 

13, 14, 17, 23, 34, 37], shape errors [10], excessive flash [21, 41], structural failure of die 

[48] or to ensure dimensional accuracy [5, 16, 49], and to limit areas of die [16], effective 

stress[30], effective strain rate [19, 30, 41], and to limit temperature [4, 13, 14] and load 

[22]. 

 

In most applications, the manufacturing efficiency, manufacturability, cost, and the 

quality of the resulting product depend on both processing and design parameters. For this 

reason, integrating product design and manufacturing design phases, which is called 

concurrent design approach, enables selection of more appropriate values for these 

parameters. Accordingly, designing forged products includes not only the optimization of 

the part geometry and material but also the selection of appropriate manufacturing process 

conditions so that desired properties can be obtained (strength, tolerances, residual stresses, 

grain structure, surface properties, etc.) with minimum cost. Through the use of an 

optimization algorithm with the concurrent design procedure, both manufacturing process 

and part performance can be optimized. A concurrent design optimization scheme includes 

both design and processing parameters as optimization variables and also design and 

manufacturing constraints. Some concurrent design optimization procedures were 

previously developed by several researchers [26, 45, 50, 51] for several manufacturing 

processes. Chang and Bryant [50] minimized the cost of aircraft torque tubes, piston and 

cylinder components and the tube weight by using the part thicknesses as optimization 

variables. Virtual prototyping and rapid prototyping were employed to support both 

product and process re-engineering in a concurrent manner. The design and the processing 

were optimized concurrently to minimize 10-40 % of the volume but maintain its strength. 

Al-Ansaray and Deiab [51] minimized the total machining cost of mechanical assemblies 

including the cost of all individual machining operations by taking product design 

dimensional tolerances and machining tolerances as optimization variables. They 
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considered two mechanical systems, piston-cylinder assembly and rotor assembly, and 

optimized the tolerances of their individual parts. Janakiraman et al. [45] minimized total 

manufacturing cost and quality loss cost which is the loss of money due to a deviation 

away from targeted performance as a function of measured response. Three cost 

components; operation cost, tool cost and tool replacement cost are included in the 

objective function. Number of rough turning passes used and cutting speed, feed and depth 

of cut in each step are taken as optimization parameters and depth of cut, tolerence of 

process, upper and lower limits were set on machining parameters, cutting force, power 

and surface roughness are used as constraints. Chen and Simon [52] optimized product 

performance and welding process. Height of the beam, thickness of the beam, depth of the 

weld and length of the weld [52] were selected as the optimization variables in the 

optimization problem. Constraints on these parameters are imposed to avoid deflection, 

bending stress and buckling load [52]. 

 

In this thesis, the goal is to develop a concurrent design optimization methodology 

to minimize the overall cost of forged products by using product design parameters as well 

as processing design parameters as optimization variables. Because of their large number, a 

multilevel approach is adopted. In the first level, the material cost is minimized using the 

dimensional parameters, i.e. only design variables, as optimization variables. Side 

constraints on the height, width and thickness of the I-beam, are imposed as constraints. In 

the second level, processing parameters and also some of the design parameters are used to 

minimize the overall cost which includes the material cost, manufacturing cost and post-

manufacturing cost. Design constraints regarding failure of the part during its use as well 

as manufacturing constraints are imposed. 

 

After Öztürk’s thesis [53], this is the first study on concurrent design optimization 

of forging processes. There is only one study using a concurrent approach in forging 

process optimization [26]; however it is rather on the development of a support software 

module aimed at assisting manufacturing design decisions. This system combined 

theoretical and empirical knowledge about a variety of aspects of product design and 

manufacturing, and thus, it provided reasoning and decision-making capability for 

engineers in a way to decide on some factors like material type, lubricant, or machine type. 

In comparison to the forging optimization studies that considered a part with similar 
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geometry like the references [20], a larger number of parameters are considered as 

optimization variables and also a larger number of constraints. 
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2. PROBLEM STATEMENT 

 

 

The aim of this study is to develop a concurrent design optimization methodology 

that can solve the combined optimization problem of product design and processing design 

phases. A cold forging process was chosen as the manufacturing process to be optimized. 

 

The part to be optimized is a beam with an I-cross section simply supported and 

subjected to a centric load as the worst loading condition during its use as shown in Figure 

2.1. Beams with I-cross-sections are generally used in the industry due to their good load 

carrying capacity under bending. 

 

 

Figure 2.1. A schema of simply supported I-beam under centric load [54]. 

 

 

Manufacturing of an I-beam can be achieved either by forging or extrusion. The 

choice between extrusion and forging is made based on manufacturing cost, mechanical 

properties desired and the length of the beam. The part considered in this study is 

manufactured through forging followed by a shearing operation. As illustrated in Figure 

2.2, first the rectangular bar is forged into I-beam cross-section and this operation is 

followed by the shearing of the flashes.  
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Figure 2.2. Manufacturing phases of the I-beam [53, 54]. 

 

 

The objective is to find the optimum values of the design and processing variables 

that minimize the total cost including the material cost and the manufacturing cost. The 

optimization is subject to both behavioral and manufacturing constraints. The behavioral 

constraints include failure conditions due to static yielding and local buckling during the 

use of the beam. Satisfaction of these constraints ensures safe use of the part. The 

manufacturing constraints include die filling, the maximum allowable pressure on the die 

and limited flash out of the die. In this way, the billet fills up the die, no damage is done to 

the dies during forging, and the length of the flashes, i.e. material waste, is minimized. 

Both manufacturing and design parameters are chosen as optimization variables. Design 

variables are the dimensions of the I-beam; manufacturing variables are the fillet radii, 

thickness of the flash and preform dimensions. 
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3. OPTIMIZATION METHODOLOGY 

 

 

A typical design optimization problem is solved through the following stages: 

Formulation of the objective function to be minimized; selection of the design variables 

affecting the value of the objective function and the constraint functions; setting the 

constraints; defining penalty function, weight coefficients; selection of the search 

algorithm. 

 

 

3.1. Design Variables 

 

Effectiveness of the optimization procedure depends on the proper choice of the 

optimization variables. All the parameters having appreciable effect on the objective 

function or the constraint functions should be chosen as optimization variables. On the 

other hand, the parameters having insignificant effect should be taken as constant.  

 

Figure 3.1 shows the cross-section of the I-beam and the geometric parameters 

defining the section. Because I-beams are doubly symmetric, one of the representative 

quarters is used in the analysis as depicted in Figure 3.2. Forging is achieved by forcing the 

upper die to move a certain distance, s. The stroke, s, depends on the height of the preform, 

2H, and the thickness of the web. The parameters chosen as optimization variables are the 

thickness of the flange, ft , thickness of the web, wt , width, b, height of the web, wh , fillet 

radii, 1r , 2r , 3r , and 4r , half of the preform dimensions, H and L, and half burr thickness, 

bt . These variables include the design parameters as well as the processing parameters. 

The design parameters are the dimensions of the cross section, ft , wt , fh , b; these mainly 

affect the performance of the part. The processing parameters are the preform dimensions, 

H and L, the fillet radii, and the burr thickness, bt ; these mainly influence the effectiveness 

of manufacturing. Length of the preform, L, is not directly taken as a variable; instead the 

volume of the die cavity, dV , is calculated and L is expressed as 
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 HVL d       (3.1)
 

 

where ℓ is taken as an optimization variable. The draft angles of the flange, 1  and 2 , are 

taken as constant and equal to 3 as in the study of Khoury et al. [20]. Table 3.1 gives the 

relations between the geometric parameters of design optimization and processing 

optimization and also the values of the parameters taken constant. 

 

Table 3.1. The relations between the geometric parameters and their values. 

Width  2b H h s    

Height  3
2

f o
h L w r    

Flange Thickness 2 3f
t w r r    

Web Thickness  2
w

t H s   

Web Height 2
w f f

h h t   

Draft angles 1 2
, 3    

Beam length 200
b

L mm  

Half of web height 1 1o 1 2 1 2
L L - r - r -(h - r - r ).tan   

 

 

 

Figure 3.1. Cross-sectional shape of the I-beam.  
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Figure 3.2. Dimensions of quarter part of the I-beam processed by forging [54]. 

 

 

3.2. Formulation of the Objective Function 

 

Solution of an optimization problem first requires definition of an objective 

function that serve as a criterion for the effectiveness of a design. In this study, the goal is 

to minimize the overall cost without violating the constraints. Accordingly, the objective 

function to be minimized is expressed as 

 

cPcccf sfm 

    

(3.1) 

 

where mc  is the material cost, fc  is the cost of the forging process, sc  is the cost of the 

shearing operation, P  is the penalty, and c is the penalty coefficient. A suitable value for c 

was found to be 10. The first three terms have the same unit, which is dollar. The last term 

takes nonzero value only in case of constraint violations. The costs that are assumed to be 

independent of the design variables like labor, machinery costs are not included in the 

objective function. 
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3.2.1. Material Cost, mc  

 

The material cost in terms of dollars can be expressed as  

 

Vpc mm 

      

(3.2) 

 

where mp  is the unit price of the material in terms of dollars per kilogram,   is the 

density of the material in terms of kg/m
3
, V  is the volume of material used to produce the 

part. Considering that the volume of the material does not change with plastic deformation, 

V  can be expressed in terms of the preform dimensions as  

 

bLLHV  22

     

(3.3) 

 

where bL  is the length of the I-beam. The factor “2” appears because only one fourth of 

the preform is analyzed (Figure 3.2). 

 

3.2.2. Forging Cost, 
f

c  

 

The cost of the forging operation is related to the energy spent to deform the 

workpiece. This energy is assumed to be proportional to the total strain energy of 

deformation of the final part, fU , which can be formulated as 

 

  

t

V

ijijf dtdVU

0


    

(3.4) 

 

where ij  are the components of the stress tensor and ij  are the total elastic and plastic 

strain rates. There is sum on i and j. The expression in Eq. 3.5 is not calculated 

analytically. The strain energy values are kept in the element tables of ANSYS and they 

are used to calculate fU . 
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The cost of forging in terms of dollars as the cost of electricity spent during forging 

is expressed as 

 

ffef Upc 

     

(3.5) 

 

where ep  is the local electricity price for industry in terms of dollars/J, f  is the 

efficiency with which electricity converted to deformation energy. fU
 
is four times the 

strain energy calculated using finite elements, because one fourth of the preform is 

analyzed. 

 

3.2.3. Shearing Cost, sc  

 

The post manufacturing cost is related to the energy required to cut the flashes at 

the sides of the forged part. The shearing energy is calculated analytically using the 

following formula [55]: 

 

 
2

11 22 2s ut b bU c c S t L
    

(3.6) 

 

where 11c  is a constant equal to 0.85 for ductile materials,
 22c  is a constant equal to 0.5 for 

soft materials, bt2  is the burr thickness, and utS  is the tensile strength of the material. The 

cost of the shearing operation is expressed similar to the cost of forging as 

 

sses Upc  2

     

(3.7) 

 

where s  is the efficiency of the shearing operation. The factor ‘2’ appears because there 

is one flash at each side. 
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3.3. Constraints and Penalty Functions 

 

In typical structural design or processing design problems, a number of constraints 

need to be imposed on the variables in order to obtain acceptable solutions. This is even 

more important for design optimization problems to obtain a solution that is optimum as 

well as feasible. An arbitrary set of values for the optimization variables may not 

correspond to a feasible geometry. For example, the curvature may not be generated for a 

negative radius of curvature. The constraints define the feasible domains for the 

optimization variables. Selection of the constraint limits may be based on the process 

requirements like the limitations on the manufacturing process, or product requirements 

like strength and ergonomic considerations. If the feasible domain is arbitrarily restricted, 

better solutions may be missed. If it is selected unnecessarily large, search for the optimum 

design may require increased computational effort. 

 

In this study, constraints are imposed on the optimization variables based on the 

design or process requirements and possible numerical problems in the FE analysis. 

Behavioral constraints are used to avoid failure of the finished product during service as a 

design requirement. For the present problem, static failure in the form of yielding and local 

buckling failure are considered as behavioral constraints. The manufacturing constraints 

considered in this study are filling of the die cavity, failure of the mold, and limited flash. 

There are also side constraints like limits on the dimensions of the beam due to spacing 

requirements, or limits beyond which no feasible design is expected like very small or 

large fillet radii. 

 

If the constraints are violated, a penalty is added to the objective function. Because 

the search algorithm tries to find designs with lower objective function values, penalties 

force the optimization algorithm to search the optimum design only within the feasible 

domain, where no constraint is violated. 

 

During the optimization process, the value of the objective function is recalculated 

whenever the values of the optimization variables are changed by the search algorithm. In 

order to simulate the large deformation during forging, a non-linear FE analysis is 

performed. One of the problems that may arise is the failure of analysis. The search 
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algorithm may generate a set of variables such that for some reason FE analysis fails, e.g. 

the geometry may not be constructed due to a negative value assigned to radius of 

curvature, or analysis may not be completed due to a sharp corner or excessive 

deformation. If FE analysis fails, objective function cannot be calculated. In such a case, a 

large penalty value is assigned to the objective function. 

 

In order to avoid underfilling, the distribution of the contact pressure on the punch 

is obtained after FE analysis; if pressure is zero on some of the elements, a large penalty 

value is added to the objective function. 

 

The other constraint used in the optimization procedure is the maximum contact 

pressure on the die, which may cause permanent deformation on the die. If the maximum 

contact pressure on the punch, maxP , exceeds the allowable compressive stress of the mold 

material, all , a penalty is added to the objective function, which is calculated by 

 

all

allP
P




 max

  
   

(3.8) 

 

If the maximum equivalent stress, max , developed in the part due to the loads 

applied during its use exceeds the yield strength of the material, yS , static failure is 

predicted; then a penalty is calculated using the following equation: 

 

y

y

S

S
P




max

  
   

(3.9) 

 

As the formula implies, the higher is max  above yS , the higher is the value of the 

penalty. A similar penalty function is defined for buckling failure. 

 

Consider that for a given optimization variable, x , there is a lower and an upper 

bound denoted by x
 
and ux  respectively. The inequality constraint is expressed as 
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uxxx     
   

(3.10) 

 

If the search algorithm assigns a value to this variable outside its feasible range, a 

penalty is added to the objective function. The nature of the constraint requires that two 

penalty functions be defined. For the lower bound, the penalty function is defined as 

 





xx

xx
P

u

k



  

    

(3.11) 

 

and the penalty function for the upper bound as 

 

xx

xx
P

u

u
k




1  

    

(3.12) 

 

Because the type of the penalty functions is external, they become active if their 

corresponding constraint is violated. Otherwise, they are equal to zero. This condition is 

controlled by the operator “< >”. If the value of the term inside this operator is positive, it 

yields the same value, otherwise it yields zero. Note that all of the penalty functions are 

defined in a manner such that they become zero if their related variable takes a value 

within its feasible range. Although, burr (or flash) length, bL , is not variable, upper and 

lower limits are set to avoid underfilling or excessive material waste, and penalty functions 

are defined in a similar manner. 

 

 

3.4. Optimization Procedure 

 

Because of the large number of design variables, a multilevel optimization 

approach is adopted. In the first level, using the design variables, the part design is 

optimized. In the second level, using the processing parameters as well as some of the 

design parameters as optimization variables, the manufacturing process is optimized. After 

successive runs, product design and process design are finalized. 
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3.4.1. First Level Optimization 

 

In the first stage of optimization, the material cost is minimized. Because, the 

preform dimensions are determined in the second level, only the material used in the part, 

not the material used in the forging process, is minimized. Besides, manufacturing cost, 

which is calculated in the second level, is not included. In objective function of the first 

level the height of the web, wh , the width, b, the thicknesses of the web, wt , and the 

flange, ft , are used as design variables. To calculate material cost price of material, 

density and volume of I-beam is used in the function. 

 

PVpf pm       (3.13) 

 

where P  is the penalty, mp  is the unit price of the material,   is the density, pV  is the 

volume of the part. If pV  is expressed in terms of the geometric parameters shown in 

Figure 3.1 and substituted, the equation becomes 

 

  Pthbtpf wwfm  2      (3.14) 

 

The design parameters, ft , wt , fh , b, affecting the objective function are chosen as 

optimization variables in the first level. The behavioral constraints, static failure and 

buckling failure, as well as side constraints are used. The side constraints are the chosen 

upper and lower limits on the optimization variables. The limits are given in Table 3.2. The 

upper limits on fh  and b are chosen based on spacing requirements. The other limits are 

chosen such that beyond them no feasible solution is expected; they just serve to limit the 

search domain in order to avoid unnecessary calculations. Initially, fillet radii are taken as 

3 mm; in the next iterations, the optimum values found in the second level are used. 
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Table 3.2. The upper and lower limits (in mm) on the variables in the first level. 

20 45fh 
 

10 35b   

0.5 20ft   

0.5 20wt   

 

 

3.4.2. Second Level Optimization 

 

In second level, the total cost of the I-beam including the material, forging, and 

shearing costs is optimized. Accordingly, the expression in Eq. 3.14 is used as the 

objective function. The thickness of the flange, ft , the thickness of the web, wt , and the 

width, b, are considered as constants. Their values optimized in the first level are adopted 

in the second level. On the other hand, height of the web, wh , fillet radii, 1r , 2r , 3r , and 4r , 

half of the preform dimensions, H and L, and half burr thickness, bt  are considered as 

optimization variables in the second level. The only variable considered as optimization 

variable in both levels is the height of the web, wh , All of the aforementioned constraints 

are imposed in the second level including behavioral constraints, i.e. static failure and 

buckling failure. 

 

Table 3.3 shows the upper and lower limits on the constrained parameters. All of 

these parameters are optimization variables except   in Eq. 3.15. The range of allowable 

values limits are selected as wide as possible. Beyond the limits, difficulties in generating 

the shapes and FE solutions are observed.  
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Table 3.3. The upper and lower limits (in mm) on the parameters in the second level. 

11 7r 
 

21 7r 
 

31 7r 
 

41 7r 
 

11 19oL 
 

0.5 8bt 
 

14 24H   

0 2lF 
 

0.9 1.1    

 

 

3.5. Search Algorithm 

 

Various search algorithms were preferred in previous studies of forging process 

optimization. Chung and Hwang [15] applied to genetic algorithm, Byon and Hwang [60] 

applied to derivative-based approach and Doltsiniz et al. [64] and Zhao et al. [25] applied 

to sensivity analysis and Bonte et al. [43] applied to Sequential Approximate Optimization 

to formulate the process optimal design. 

 

One of the earliest methods, gradient based approach, used in forging optimization 

problems using Finite Element simulations. Conjugate Gradient is one of the classical 

iterative optimization algorithms in which difficulties to obtain sensitivities and avoiding 

local optima is encountered [43]. Derivatives of the objective function with respect to 

design variables are required in this method. Different methods used for the calculation of 

the derivatives which called sensitivity analysis. The sensitivity analysis can be difficult 

due to differentiation of complex equations or the discontinuity of the objective function. 

When a large number of design variables used in the optimization function more effort 

needed to be performed and complex calculations needed to be done [3]. 

 

The other common optimization algorithm is evolutionary method including 

genetic algorithm which depends on direct search approach. This method is developed with 
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the utilizing biological logic; inheritance, mutation, selection, and crossover in each 

iteration. Genetic algorithms do not require any derivatives. However FE simulations are 

applied due to the need for large number of metal forming simulations for representative 

solutions thus there will be high computaitonal cost [3]. Although this method seems 

beneficial for optimization problems, large number of finite element simulations and many 

function evaluations are needed to be done [15, 43]. 

 

Due to the difficulties of derivations and sensitivity data in gradient methods and 

the requirements for time consuming finite element simulations in genetic algorithms, 

different approximation methods such as response surface method (RSM) have been used 

for more feasible solutions [3]. In these methods there is tendency to find global optima 

and no need for sensitivities and differentiation of equations. Approximation methods 

result in computational efficiency with less number of simulations compared to genetic 

algorithm and without using derivatives which is the basic issue for gradient based 

methods. However results depend on the model and objective function [43]. Thus this 

method is only feasible for sheet metal forming and clinching forming optimization 

problems [3]. 

 

On the other hand direct search methods examine and compare less trial and 

sampling solutions before determination of the best possible search directions in the next 

iteration. Direct search methods are more preferable for metal forming processes due to the 

lack of derivations and requirement for small number of sampling [3]. 

 

In this study, Nelder-Mead algorithm, one of the direct search algorithms, is 

selected as the search algorithm because it is a robust zero-order search algorithm not 

requiring numerical derivatives of the objective function. As mentioned before, FE 

analysis fails for some configurations generated by the search algorithms. In these cases, 

objective function can not be calculated; for this reason a large penalty value is assigned to 

the objective function. Even though higher order search algorithms are more efficient, 

noting that derivatives can not be calculated for some configurations, they are not suitable 

for use in the solution of the present problem. 
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At the beginning of the optimization procedure objective function is analytically 

expressed and then variables and constraints are defined before choosing the appropriate 

search algorithm for the optimization. Weighting constants are applied to synchronize the 

units in objective function. In this thesis Nelder-Mead Algorithm in which derivation of 

equation is not required is choosen as optimization algorithm. 

 

In this algorithm n+1 set of objective function values are selected and calculated for 

a function having n variables. Assuming, a simplex is a triangle, having two variables and 

the method is a pattern search that compares function values at the three vertices of the 

triangle. Worst or biggest vertex rejected and replaced with a new vertex which has a better 

objective function value. By obtaining a new triangle search is continued. The process 

finds new triangles (which have different shapes), for which the function values at the 

vertices get smaller and smaller. The aim is to reduce the size of the triangle and to obtain 

the variable values of the minimum point. 

 

Mainly random points in feasible domain are selected by the optimization code at 

the beginning. These points are controlled after creating initial geometries to prevent finite 

element errors and failures. If errors and failure occur for these values, new ones are 

randomly selected until error-free values are obtained. Then initial geometry is created and 

loads, boundary conditions and material properties are applied on finite element model. 

Resuts of finite element analysis, mainly energy and geometric calculations are used in 

objective function calculations. To have relevant terms in objective function weight 

constant is multiplied to terms to have objective function terms which have same 

magnitude. After terms are prepared in function, penalty terms are added. Generally 

penalties are activated when variable violates the limits of feasible range, failure occurs 

under working conditions and finite element analysis fails. If desired limits are violated in 

analysis, penalty function is applied according to extention of limits. Figure 3.3 shows the 

flow chart of optimization process. 
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Figure 3.3. Flow chart of the optimization process.  
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A built-in ANSYS code is developed to integrate the finite element model and the 

algorithm. This program carries out the finite element analysis and writes the results into 

output files. Program finds new values and calculates the objective function until the 

predetermined convergence criterion is satisfied and optimum values are obtained. 

 

 

3.6. Finite Element Modeling 

 

3.6.1. First Level Model 

 

In the first level optimization 3D model is used due to design in which radii in 

flange and web takes place. During the study FE model is integrated to the optimization 

code in which values are evaluated by the Nelder-Mead algorithm. 

 

3.6.1.1. Meshing and Elements.   Selecting an appropriate element and meshing the model 

is the most important part of obtaining reliable results. Due to having radii in I-beam and 

using 3D model in the shape optimization tetrahedral option of SOLID 95 is selected as 

element type as shown in Figure 3.4. It can tolerate irregular shapes without as much loss 

of accuracy. SOLID95 elements have compatible displacement shapes and they are well 

suited to model curved boundaries. 

 

The element is defined by 20 nodes having three degrees of freedom per node: 

translations in the nodal x, y, and z directions. The element may have any spatial 

orientation. Moreover SOLID95 has plasticity, creep, stress stiffening, large deflection, 

and large strain capabilities. 
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Figure 3.4. SOLID95 with its 20 nodes [65]. 

 

 

According to the need to calculate stress in the part, I-beam is meshed as a volume. 

The amount of mesh elements are evaluated during the analysis according to the required 

time and the convergence of results. 

 

 

Figure 3.5. Meshed I-beam [65]. 
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3.6.1.2. Material Model.   In ANSYS users have ability to choose the material model due 

the needs of their studies. Designers can choose constant, isotropic, linear material 

properties from a material library available through the GUI. Young's modulus, density, 

coefficient of thermal expansion, Poisson's ratio, thermal conductivity and specific heats 

are available for 10 materials in four unit systems [65]. In this study the selected material 

model is linear elastic isotropic model. 

 

3.6.1.3. Boundary Conditions.   In the FE model, there are both displacement and force 

applied on nodes as can be seen in the Figure 3.5. In the cost optimization of material ends 

of I-beam are restrained from moving along the y axis and mid-ends are restrained from 

moving x any y axis. Force is applied on the top area at the mid nodes of I-beam as can be 

seen from Figure 3.6. 

 

 

Figure 3.6. Boundary conditions applied on the I-beam [65]. 

 

 

3.6.2. Second Level Model 

 

Selection of an appropriate element type, meshing, contact elements, boundary 

conditions, and material model in the analysis are significant for obtaining true results. In 

the cost optimization of the total cost, maximum von mises stress and maximum von mises 

strains are chosen to control result parameters. First and second level optimization differs 
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in modeling of the part in the finite element analysis. For the total cost optimization level 

2D model is designed instead of 3D model which takes more computational effort and 

time. 

 

 

Figure 3.7. FE Model in Ansys. 

 

 

3.6.2.1. Meshing and Elements.   The element type chosen for workpiece is Plane183, 

being a high order, 8-node 2D rectangular element as can be seen in Figure 3.8. Moreover 

the element should have large deflection, large strain capabilities. Therefore a high order 

element is more suitable for highly nonlinear deformation. In this thesis one of the I-beam 

dimension is significantly longer than other dimensions and I-beam is subjected to only 

lateral load. According to these dimensions and load application plain strain idealization is 

valid for I-beam case. Therefore in the second level optimization the element type chosen 

for workpiece is Plane183 using plain strain option. 

 

 

Figure 3.8. PLANE183 with its 8 nodes [65]. 
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In order to determine the mesh density a convergence analysis will be carried out 

select appropriate element size. 

 

3.6.2.2. Contact Elements.   Rigid-to-flexible and surface-to-surface contacts are used in 

this level of study. The workpiece is a deformable contact body and the dies and punch are 

defined as rigid target bodies. The boundary lines of the bodies have to be meshed in order 

to establish contact pairs. For this purpose, CONTA172 was selected for the deformable 

lines, and TARGE169 was selected for the non-deformable lines. In order to create a 

contact, the groups of nodes which probably come in contact were specified. 

 

 

Figure 3.9. Meshed FE model with contact pairs and boundary conditions. 

 

 

Figure 3.9 shows the last shape of model before stroke is applied. Contact is 

determined between lines L1 and L4 which is depicted in Figure 3.7. This contact is rigid 

to deformable. 

 

3.6.2.3. Boundary Conditions.   In the FE model, according to the boundary conditions 

there are only displacement boundary conditions and symmetry boundary condition 

applied on lines. Friction forces exist between the contacting surfaces impeding movement. 
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The punch lines are restrained from rotating and moving along the x-axis but allowed to 

move through the vertical displacement which is defined with the equation below. 

 

ss H h       (3.15) 

 

where H is height of preform and applied as a design variable limited between 14 and 24. 

 

3.6.2.4. Friction Coefficient.   After creating geometry, friction coefficient is selected 

before finite element simulations are applied. Zhao et al. [25] took 0.2 as friction factor. 

However smaller values assist die full-fillment and prevent cavities. Therefore different 

coefficients are applied for same geometries to compare occurance of cavities. Figure 3.10 

shows the finite element results for the same geometric parameters and in these analysis 

friction coefficients are 0.5, 0.05, and 0.005 respectively. According to these finite element 

results variations and die cavities in results are not observed. Therefore iterations started 

with using 0.05 as friction coefficient and for the optimum design 0.2 is applied to check 

the full-fillment according to friction coefficient. 
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Figure 3.10. Finite element results of I-beam for same geometric parameters with different 

friction coefficients.  
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3.6.2.5. Material Model.   Various material models are available for 2-D, beam, shell, brick 

and tetrahedral elements. Nonlinear material models are used when an elastic material is 

going to be loaded past the yield strength of the material. When this happens, plastic 

deformation will occur. There are two types of hardening material models available. The 

isotropic hardening model involves yielding the entire yield surface uniformly. However 

kinematic hardening in which Bauschinger effect is included involves a shifting of the 

yield surface (primarily due to a reversal of loading) and this model is preferred for 

analyses involving cyclical loading. 

 

Multilinear curve is used instead of a bilinear curve in Multilinear Isotropic 

Hardening Material Model (MISO). This model is not recommended for cyclic or highly 

nonproportional load histories in small-strain analyses. It is, however, recommended for 

large strain analyses. The MISO option can contain up to 20 different temperature curves, 

with up to 100 different stress-strain points allowed per curve. Strain points can differ from 

curve to curve. Also combining MISO with nonlinear kinematic hardening model allows 

simulating cyclic hardening or softening. However for the I-beam case there is no need for 

this combination. The part considered in this study is manufactured through forging in 

which loading and unloading the preform is applied. However these conditions should not 

be considered as cyclical loading because of performing them once. 

 

In this study, the selected material model is multi-linear isotropic hardening 

(MISO) model. MISO is a rate independent model suitable for large strain applications. In 

MISO, the stress–strain curve is described by a set of linear sub-elements instead of a 

power equation. Using the datum points from the experimental stress-strain curve, the 

stress-strain curve used in the nonlinear analysis is defined. To obtain better non-linear 

curve, more points are needed. The MISO flow curve of SAE 1010 created by ANSYS 

using the 30 datum points [66] from the materials flow curve as can be seen in the Figure 

3.11. 
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Figure 3.11. MISO flow curve of SAE 1010 generated in ANSYS [65]. 

 

 

3.7. Structural Analysis 

 

3.7.1. Yield Strength after Forging 

 

Because of work hardening of the material during the forging process, yield 

strength of the undeformed material used in forging, SAE 1010, changes. For this reason, 

the yield strength of the deformed material should be used in the failure analysis and 

design of of the part. In this study, the modified yield strength is calculated at the critical 

locations, where failure is possible, by obtaining the true stress distribution at the end of 

the forging process using finite element analysis and converting them to engineering stress 

at those locations. 
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Figure 3.12. Expected failure locations in the I-beam. 

 

 

Red lines in Figure 3.12 show the locations where failure is possible for an I-beam 

under transverse load. Top of the I-beam is a critical failure location because the maximum 

stress, /Mc I , develops in this region. The interface between the flange and the web is also 

inspected, because bending stress is combined with shear. The center of the I-beam is 

checked for possible failure due to the maximum shear stress. 

 

By simulating the forging process by FEM, equivalent stresses along these lines are 

obtained; then the averages of these values are calculated. Using the equation below the 

true stress values are converted to engineering stress. 

 

T

T

E
e



   

    

(3.16) 

 

where T  is the true stress, T is the true strain, E  is the engineering stress, which is 

used as the yield strength of the material at the corresponding line if it is larger than the 

yield strength of the undeformed material. If the maximum stress that develops at a given 

point during forging does not exceed the yield strength of the material, Sy, one may assume 

that the yield strength of the material at that point does not change. Accordingly, the yield 

strength can be taken as 305 MPa for SAE 1010 after forging. Otherwise, it should be 

taken as E . 



32 

y E E yS if S        (3.17) 

 

However, residual stresses developed in the part during forging should also be 

taken into account in the structural analysis. 

 

 

Figure 3.13. Von Mises Stress distribution after loading. 

 

 

The average true Von Mises stress at the top and bottom is obtained to be about 230 

MPa. On the other hand, the stress between the flange and the web is 290 MPa, and the 

stress on the flange is 290 MPa as can be seen from Figure 3.13. The corresponding 

engineering stress values are 188 MPa, 130 MPa, and 109 MPa respectively. 

 

3.7.2. Residual Stress Calculations 

 

Residual stresses developed during the forging process may affect the failure 

response of the beam during its use. Therefore, they should be accounted in the analysis 

and design of the beam. 

 

In order to correctly evaluate the residual stresses after the removal of the upper 

die, kinematic strain hardening rule is used instead of isotropic hardening in the finite 
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element model of the forging process. The same procedure described above is applied; but 

after the first loading, i.e. downward displacement of the punch by s, the punch is moved 

upward. After the removal of the load, the resulting stress state represents the residual 

stress state. Figure 3.14 shows the stress distribution in z direction after unloading. 

 

 

Figure 3.14. Residual stresses in the z direction after unloading. 

 

 

The residual stresses at the top and bottom are obtained to be about 120 MPa. On 

the other hand, the residual stress between the flange and the web is 160 MPa, and the 

residual stress on the flange is 120 MPa as can be seen from Figure 3.14. They are all 

compressive. Using Equation 3.17 engineering residual stress values at these points are 

calculated as 105, 137 and 105 respectively. After converting to engineering stress, the 

residual stress, r , is subtracted from the yield stress, yS , to calculate the new yield stress 

according to following equation: 

 

y y rS S         (3.1) 
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Subtracting the residual stress values from yield stress, engineering stresses are 

calculated as 200 MPa at the top and bottom points of I-beam, 200 MPa on web, 168 MPa 

between the flange and web. 

 

3.7.3. Failure Analysis of the I-Beam during Its Use 

 

If the equivalent stress, eq , developed in one region of the part during its use 

exceeds the yield stress, yS 
, at that region, static failure is predicted; then a penalty is 

added to the objective function. 

 

A structural analysis is required to predict whether static and buckling failures will 

occur in the part during its use. For this purpose, an analysis based on Bernoulli-Euler 

beam theory is carried out. The maximum normal stress, max , develops at the top and 

bottom of the beam at the section where the bending moment takes its maximum value,

maxM . max  can be calculated using the following well known formula: 

 

zzI

cM max
max       (3.2) 

 

where c  is the distance between the neutral axis and the furthermost point. The geometry 

of the cross section of the I-beam is shown in Figure 3.15. Accordingly, c is equal to / 2fh . 

 

 

Figure 3.15. Loading condition [56].  
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The maximum bending moment, Mmax, develops at the middle of the beam with a 

magnitude of 

 

4
max

bFL
M        (3.3) 

 

where F  is the force applied at the middle of the beam as the worst loading condition 

during its use. F already includes the safety factor for uncertainties regarding its 

magnitude. The area moment of inertia of the I-beam with respect to the z-axis, zzI , is 

given as 
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I
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here the fillets or draft angles are not considered. If the radii of the curvatures are taken 

into account, the formula becomes. 
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          (3.5) 

 

The shear stress at the intersection between the web and flange is calculated by 

 

zz

VQ

I t
       (3.6) 

 

where Q is given by 
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4

fw

f

th
tbQ


     (3.7) 

 

where   is the shear stress, V  is the shear force, t  is the thickness and Q  is the first 

moment with respect to neutral axis of the portion of cross section. 

 

Equivalent stress is obtained as following: 
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The shear stress in the middle region of the beam is approximately calculated as: 

 

f w

V

h t
 

     

(3.9) 

 

The allowable shear stress is calculated based on the equivalent stress. 

 

0,577allow yS   
   

(3.10) 

 

where V  is the shear force, fh  is the height of the beam, wt  is the thickness of the web, 

allow  is the allowable shear stress and yS  is the yielding strength. 

 

3.7.4. Lateral Buckling 

 

Lateral buckling may occur in beams subjected to transverse loads or bending 

moments when the critical load is exceeded. The lateral buckling is accompanied by 

twisting of the beam with respect to the principal axes of inertia. With assumption of 

lateral buckling, critical load is calculated [57]. 
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where E  is the modulus of elasticity, which is equal to 205 GPa [58], G  is the shear 

modulus of elasticity, which is equal to 80 GPa [58], wI  [55] is torsion warping constant, 

and J  is torsion constant. 
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3
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(3.13) 

 

For I-beams torsion constant is obtained as follows: 
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Moment of inertia is used in the equation above and calculated as following 
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Steel punches are limited to approximately 1200 MPa and cobalt-bonded WC 

punches are limited to approximately 3300 MPa. In this study maximum contact pressure 

on die is permitted up to 1200 MPa [59]. 
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Moreover optimization results show less flash volume results in less burr and 

energy need for shearing. Altough material loss is prevented with small flash volume, a 

cavity usually develops in the part as seen in Figure 3.16 when the flash volume is less 

than 0. 

 

 

Figure 3.16. Von misses stress distribution of the part including cavity. 

 

 

Therefore preventing cavities and thus having defectless part is a significant 

criterion in the design. To prevent the cavities, the code examines the pressure on die. 

Using the cavity examining part of the ANSYS built in code, the parts which include 

cavities are eliminated before the Nelder-Mead algorithm starts. 

 

 

3.8. Convergence Analysis 

 

Results are reliable when there is a possibility to compare them with other 

experimental results or theoritical data. In this study because of finite element model hand 

calculations are not really possible and desired. On the other hand convergence analysis 
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and comparison between results of different element sizes or substeps lead to choice of 

settings to obtain reliable results. Applying convergence analysis designer can compare 

results according to different settings and impacts of these settings on results. 

 

3.8.1. Convergence Analysis of First Level 

 

In ANSYS warning messages guide the users to find the appropriate settings. 

However in some cases solution settings such as iteration number, element size or substep 

number affect the results. In this study Maximum von Mises stress is chosen to be the 

control result parameters and the proper settings are obtained after convergence analysis. 

The analyses are repeated for mesh sizes from 6 to 2 for F=42000 N, 12ft  mm, 12wt 

mm, 40b  mm, 40fh  mm. Corresponding results are given in Table 3.4. 

 

Table 3.4. Maximum von Misses stresses corresponding to different element sizes. 

Element Size Maximum Stress 

6 308.28 MPa 

5 307.54 MPa 

4 308.48 MPa 

3 308.11 MPa 

2 308.11 MPa 

 

 

As it can be seen from the Table 3.4 the element size of 3, for which the values are 

settling, seems to be an acceptable value for FEM. 

 

Table 3.5. Maximum von Misses stresses corresponding to different refinement sizes. 

Refinement Maximum Stress 

2 308.11 MPa 

1 308.11 MPa 

 

 

Refinement can be made to obtain more proximate results. At the mid length of I-

beam volume for element size 3 an analysis for refinement size 2 and 1 are made. However 
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Table 3.5 shows that using element size 3 without any refinement is acceptable for this 

study. 

 

Moreover applying to finite element simulations in each stage of optimization 

makes the analysis time consuming. Therefore results of convergence analysis compared 

with the hand calculations for the stress values. Similiar stress values are obtained from 

hand calculations and finite element results. Due to obtaining same values finite element 

method is not applied in each iteration step. Instead of finite elements hand calculations are 

applied to provide an analysis with less time. 

 

3.8.2. Convergence Analysis of Second Level 

 

In ANSYS warning messages guide the users to find the appropriate settings. 

However in some cases solution settings such as iteration number, element size or substep 

number affect the results. In this study Maximum von Mises stress and Maximum von 

Mises strainare chosen to be the control result parameters and the proper settings are 

obtained after convergence analysis. The analysis are repeated for mesh sizes from 0.8 to 

0.2 for the parameter values 1r =3.348, 4r =2.818, bt =0.576, oL =14.031, H =17.713 used 

in the analysis. Corresponding results are given in Table 3.6. 

 

Table 3.6. Maximum Von Misses stresses and strains corresponding to different element 

sizes. 

Element  

Size 

Maximum Von  

Misses Stress 

Maximum Von  

Misses Strain 
Result 

0.8 740.40 0.13860 3.61610351 

0.7 756.51 0.15228 3.61611874 

0.6 777.39 0.11554 3.61611415 

0.5 777.87 0.13102 3.61609764 

0.4 771.33 0.13632 3.61607752 

0.3 770.21 0.14581 3.61605493 

0.2 769.86 0.15473 3.61604207 

 

 

As it can be seen from the Table 3.6 the element size of 0.4, for which the values 

are settling, seems to be an acceptable value for FEM. However in this level iterations 
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started with the element size 0.4 and after 10 iterations element size 0.2 is applied to obtain 

more accurate results. Figure 3.17 and Figure 3.18 show the forging process simulations 

using the trial value of 0.4 for element size. 

 

 

Figure 3.17. Part at the middle stage of the process. 

 

 

 

Figure 3.18. Last view of animation. 

 

 

Different substep numbers are applied to obtain error-free and less time consuming 

results. Starting from 500, different values are given for minimum and maximum substep 
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numbers. According to the deformation warnings 6000 is selected for initial, 8000 for 

maximum and 4000 is selected for minimum number of substeps for the analysis. 

 

In this study there are two stages including concurrent design and process 

optimization in forging. In the first level of optimization shape optimization of the I-beam 

is aimed. In the second level of optimization cost optimization including material cost, 

forging cost and shearing cost is aimed.  
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4. RESULTS AND DISCUSSIONS 

 

 

Optimization process is divided into two stages to foresee the effects of 

dimensional parameters in first place and then optimization is extended in which 

manufacturing and postprocess parameters included. First level optimization includes cost 

of cross-sectional area of the I-beam minimization and second level includes minimization 

of total cost of the forging process containing material cost, forging cost and shearing cost. 

After determining effect of dimensional parameters on material cost in first stage, total cost 

is minimized in second stage. 

 

Optimization is performed in two phases; material cost optimization and total cost 

optimization. Manufacturing and behavioral constraints are used to ensure safe use of I-

beam. Failure conditions due to static yielding and local buckling, die filling, maximum 

allowable pressure on die, limited flash out of die are limited to fill up the billet, prevent 

failure of dies and material waste. Dimensions of the I-beam, fillet radii, thickness of the 

flash and preform dimensions are the variables in the optimization. 

 

Steel 1010 is the material of the forging process and total cost is calculated 

including material and manufacturing cost. 

 

 

4.1. First Level Optimization Results 

 

Optimization in the first level is done for four variables; the height, and width of the 

beam and thicknesses of flange and web while the radii. The upper and lower limits are 

defined for the variables and used in the penalty function. The lower and upper limits 

defined for fh  are 20 and 45, the lower and upper limits defined for b  are 10 and 35, the 

lower and upper limits defined for ft  are 0.5 and 20, the lower and upper limits defined for 

wt  are 0.5 and 20. In the first iterations the values for radii 1r =1, 2r =1, 3r =1 and 4r =1 are 

applied. 
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Table 4.1. Results of the first level optimization. 

 fh
 

b  ft
 wt

 
Cost 

1 44.97 34.89 18.81 19.94 1.813 

2 45.00 34.99 10.43 16.19 1.392 

3 45.00 34.92 10.24 17.47 1.421 

4 45.00 32.36 17.48 7.98 1.506 

5 33.03 26.07 2.74 9.29 279.881 

6 45.00 34.43 11.70 13.31 1.358 

7 44.99 34.99 11.01 13.27 1.336 

8 44.81 34.90 12.14 12.21 1.364 

 

 

Iteration results are shown in the Table 4.1. Optimum cost is 1.336 which is 

obtained in the seventh iteration. Values for parameters in second level are taken according 

to the seventh iteration results which are 44.99 for fh , 34.99 for b , 11.01 for ft  and 13.27 

for wt . 

 

 

4.2. Second Level Optimization Results 

 

Different cases are compared in the second level optimization case. Firstly, 

optimizations are conducted for fewer variables; radii and burr thickness and half height of 

web. Then preform dimensions are also included as optimization variables due to the need 

of finding optimum preform. Besides burr thickness and burr volume are taken as 

optimization variables to avoid flash and to minimize overall cost. 

 

The range of permissible values for 1r  is from 1 to 7, for 2r  is from 1 to 7, for 3r  is 

from 1 to 7, for 4r  is from 1 to 7, for oL  is from 11 to 19, for bt  is from 0.5 to 8, for H  is 

from 14 to 24,and for  is from -0.9 to 1.1.The resulting optimal values of the variables 

are shown in the Table 4.2. 



 

 

 

 

 

 

Table 4.2. Results of the second level optimization. 

 1 2 3 4 5 6 7 8 9 10 

1r  5.018 5.38 4.617 5.306 5.075 6.783 5.019 5.208 2.778 6.194 

2r  2.854 2.486 3.265 3.419 3.998 3.844 4.526 2.245 4.636 5.034 

3r  
4.064 3.856 4.105 3.837 3.679 6.605 2.207 1.958 5.96 2.871 

4r  
3.441 3.414 2.982 3.717 4.598 3.166 5.156 3.179 5.148 1.102 

oL
 14.734 15.362 15.172 15.35 16.2 15.705 16.443 13.742 16.502 17.3 

bt  3.031 2.703 3.288 2.783 1.378 0.908 0.924 2.214 3.425 2.091 

H  22.651 21.071 21.951 21.925 20.272 16.584 21.196 22.562 16.958 21.1 

 0.413 0.415 0.35 0.429 0.17 0.355 0.021 -0.07 1.005 0.254 

Cost 1.5484 1.5666 1.5278 1.5492 1.4581 1.4156 1.4296 1.4380 1.7611 1.4559 
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As it can be seen in Table 4.2, the lowest cost is 1.4156 dollars which is obtained in 

the sixth iteration. For the optimum part, the material cost is 1.4081 dollars, the forging 

cost is 0.0031894 dollars and the shearing cost is 0.00427893 dollars. Constraints are not 

violated but lower and upper bounds of dimensions and allowable stress values restricted 

the part dimensions to avoid penalty terms in objective function. Beside cost terms of 

optimum I-beam, energy and stress values are given in the Table 4.3. 

 

Table 4.3. Energy and stress values for optimum part. 

Strain Energy 0.381042.10
5
 N.mm 

Shearing Energy 0.10224.10
6
 N.mm 

Max. Stress 0.182932.10
3
 MPa 

Max. Contact Pressure 0.11984.10
4
 MPa 

Flash Length 1,60598 mm 

 

 

The shape of the optimum part, the von Mises stress distribution in the part and 

equivalent plastic strain in the optimum part are shown in Figure 4.1, Figure 4.2 and Figure 

4.3, respectively. 

 

 

Figure 4.1. The final shape of the optimum part. 
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Figure 4.2. Von Mises Stress in the optimum part. 

 

 

 

Figure 4.3. Equivalent plastic strain in the optimum part. 
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5. SUMMARY AND CONCLUSIONS 

 

 

In this thesis, a concurrent optimization approach is adopted to minimize the total 

cost of a forged product including material cost, forging cost and post manufacturing 

(shearing) cost. 

 

There are many studies in the literature on the optimization of forging processes. 

However, in these studies design variables and design constraints were not considered; 

therefore a concurrent design approach was not adopted. In this thesis, not only a 

concurrent approach is adopted in the design optimization procedure, but also a more 

comprehensive process optimization is conducted. 

 

In this study, an I-beam under a centric load in a simply supported configuration is 

considered and its cost is minimized using both design and manufacturing parameters as 

optimization variables. The design variables are the dimensions of the I-beam; the 

manufacturing variables are the fillet radii, thickness of the flash, and preform dimensions. 

Both design and manufacturing constraints are applied. The behavioral constraints include 

failure conditions due to static yielding and local buckling during the use of the beam and 

the manufacturing constraints include die filling, the maximum allowable pressure on the 

die and limited flash out of the die. 

 

A multilevel optimization approach is adopted; in the first level, the design of the 

product is optimized; in the second level, mainly the forging process is optimized. Nelder-

Mead, which is a zero-order algorithm, is selected as the search algorithm to find the 

optimum process and product design. Because, it is a deterministic local search algorithm, 

the optimization process is repeated many times starting from randomly chosen 

configurations within the feasible domain in order to obtain the global or near global 

optimum configuration. Analysis of the cold forging process is performed and the 

optimization process is conducted in ANSYS. 

 

The proposed concurrent design optimization method proved to be effective. It not 

only ensured the manufacturability of the designed part, but also optimized the part design 
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as well as the process design. The method developed in this thesis can be applied to the 

optimization of different forged products. For different parts, only different variables and 

constraints need to be defined.  
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APPENDIX A: NELDER MEAD ALGORITHM 

 

 

The movement of the triangle is achieved by four operations; reflection, expansion, 

contraction and shrink. Algorithm starts with the calculation of reflection point which 

requires calculation of middle point. Logic of the algorithm includes comparison of new 

points with the different points of the triangle. Firstly reflection point function value is 

compared with good point value and according to this comparison next comparison takes 

place. Table A.1 shows the all steps of the Nelder-Mead algortithm and comparison 

between values of the triangle points and new points. 

 

Table A.1. Logical decisions for the Nelder-Mead algorithm [8]. 

if ( ) ( )f R f G  then 

    perform case(i) {either reflect or extend} 

        else 

        perform case(ii) {either contract or shrink} 

            begin {Case(i)} 

                if ( ) ( )f B f R  then 

                    replace W  with R  

                    else 

                        compute E  with ( )f E  

                        if ( ) ( )f E f B  then 

                            replace W  with E  

                            else 

                                replace W  with R  

                        end if 

                end if 

            end {Case(i)} 

            begin {Case(ii)} 

               if ( ) ( )f R f W  then 

                   replace W  with R  

                   compute ( ) / 2C W M    

                    or ( ) / 2C M R   and ( )f C  

               end if 

               if ( ) ( )f C f W  then 

                   replace W  with C  

                   else 

                       compute S  with ( )f S  

                       replace W  with S  

                       replace G  with M  

               end if 

            end {Case(i)} 

end if  
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For a function with two variables, formulations of new points are 

 

2

B G
M


       (A.1) 

 

( ) 2R M M W M W          (A.2) 

 

( ) 2E R R M R M          (A.3) 

 

where B is best, G is good, W is worst, M is middle, R is reflection and E is expansion 

point. 

 

 

Figure A.1. Triangle BGW and point R and extended point E [8]. 

 

 

According to the comparion of function values at good and reflection points case i 

or case ii is applied. 

 

In the case i if the function values at best point worst than reflection point 

expansion point and function values are calculated as shown in Figure A.1. 

 

In the case ii, other points must be tested which are the contradiction points as 

shown in Figure A.2 and their formulations are 

 

1
2

M R
C


       (A.4) 

 

2
2

M W
C


       (A.5) 
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where C1 and C2 are contradiction points. 

 

 

Figure A.2. The contraction point 1C  or 2C  for Nelder-Mead method [8]. 

 

 

If the function value at contradiction pointsis not less than the value at worst point, 

the points goodand worstmust be shrunk toward best pointas shown in Figure A.3 and 

formula is 

 

2

B W
S


      (A.6) 

 

where S is shrunk point. 

 

 

Figure A.3. Shrinking the triangle toward B [8]. 

 

 

The Nelder-Mead method requires the calculation of the objective function at n+1 

initial vertex for n unknowns. Basically, the method is a pattern search that compares 

function values at vertices. The worst vertex, where the function value becomes largest, is 

rejected and replaced with a new vertex. A new simplex is formed and the search is 

continued. The process generates a sequence of simplex for which the function values at 
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the vertices get smaller and smaller. Nelder-Mead algorithm does not require numerical 

derivatives of the objective function which is the main advantage of this algorithm.  
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APPENDIX B: FLOW CURVE DATA USED IN MISO MODEL 

 

 

Table B.1. Flow curve data used in MISO model. 

SAE 1010 

Number Strain Stress Number Strain Stress 

1 0 0 16 0.8 295.1 

2 0.001028 216 17 0.9 300.4 

3 1140 217 18 1 301.7 

4 0.123 232 19 1.25 305.1 

5 0.193 248 20 1.5 309.5 

6 0.24 260 21 1.75 312.8 

7 0.326 276 22 2 315.1 

8 0.3387 277 23 2.25 316.4 

9 0.3843 278 24 2.5 318.6 

10 0.4 278.9 25 2.75 320.8 

11 0.45 280.3 26 3 322.0 

12 0.5 280.9 27 3.25 324.2 

13 0.55 282.6 28 3.5 326.25 

14 0.6 285.2 29 3.75 327.6 

15 0.7 290.9 30 4 328.2 
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APPENDIX C: VOLUME OF DIE CAVITY 
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APPENDIX D: LATERAL BUCKLING 

 

 

The critical moment of the I-beam is determined by the energy method. The strain 

energy U  is composed by two parts; energy due to bending about y axis and the enrgy due 

to twisting about the x axis. Total strain energy is 
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The potential energy of the external loads for a beam subjected to concentrated load 

P at the middle of the length is 
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Combining equations total potential energy is obtained as 

 

V U W        (D.3) 

 

Both ends are simply supported and boundary conditions are applied as following 
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Suitable expressions for the buckling form are used in the equations. 
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Critical load is obtained as  
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where E is modulus of elasticity, G is shear modulus of elasticity which, 1C  is torsion 

warping constant, and J  is torsion constant. 

 

2

1
4

yy wI h
C        (D.9) 

 

31

3
i iJ m t        (D.10) 

 

For I-beams torsion constant is obtained as follows. 
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Moment of inertia is used in the equation above and calculated as following 
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APPENDIX E: MAXIMUM DISTORTION ENERGY THEORY 

 

 

For a given material failure by yielding will occur at a critical level of distortion 

energy. Therefore distortion energy is computed for a general loading and found by 

computing the total strain energy and then substracting that due to volumetric change. 

 

Normal stress x  acting on a unit cube will cause an extension in its direction 

 

x

x
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
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and extension in other directions with Poisson effect 
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Considering unit tube with principal stresses 1 , 2  and 3  acting, extensions 

become 

 

31 2

1 v v
E E E

 
         (E.3) 

 

32 1

2 v v
E E E

 
        (E.4) 

 

3 2 1

3 v v
E E E

  
        (E.5) 

 

The energy in a unit cube of material subjected to these stresses will be the work 

done during the application of the stresses. The work done by 1  is 
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and similarly for stresses 2  and 3 . Adding the work for three stresses gives 
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This equation includes work due to distortion and due to volumetric changes. 

Second term is the work which average stress acting in all three directions would do. With 

all three stresses equal to average stress becomes 
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Substracting from the total strain work W  distortion energy is obtained as 
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This expression for distortion energy is equated to known situation, tension test, at 

yielding. At that point 1 yS   and 2 3 0   . 
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Setting the two works equal, criterion for avoiding failure is 

 

     
1/ 2

2 2 2

1 2 2 3 3 1

2

2

y

eff

S

FS
             

 
   (E.11) 

Left side of equation is called the von Mises or effective stress. Most of cases work 

is in two dimensions one principal stress is zero. The principal stresses in the loading plane 

p  and q  is used in the equation. 
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For plane-stress situation, the principal stresses in equation can be written in terms 

of x , 
y  and 

xy . 

 

2 2 23
y

eff x x y y xy

S

FS
             (E.13) 

 

If there is only one tension stress x  and shear stress xy  as in bending with 

twisting equations become 
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Shear stress is calculated as 

 

zz

VQ

I t
 

 
    (E.15) 

 

 . . / 2f w f

zz w

V b t h t

I t



     (E.16) 

 

and equivalent stress becomes 
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