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ABSTRACT

COUPLED ANALYSIS OF TURBOMACHINERY BLADES

Three-dimensional analysis of fluid flow over turbomachinery blades and the

deformation of the blades under aerodynamic loads are modeled and simulated using

computational techniques. Decomposition into computational sub-domains and using

multi-level partitioning hierarchy characterize the procedure of solving the non-linear

set of governing partial differential equations. Grid generation techniques and various

formulations of Navier-Stokes equations are studied. These equations are linearized

using Newton’s method, and the resulting system of equations are solved using matrix-

free implementations of the preconditioned Krylov techniques.

Pressure values determined as a result of fluid analysis are implemented as bound-

ary conditions into ANSYS environment. Displacements are found after solid analysis

performed by ANSYS and transferred into fluid analysis to update the geometry. The

computations were carried out for different Reynolds numbers and the results of the

numerical simulations are discussed and compared.
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ÖZET

TURBOMAKİNA KANATLARININ BAĞLAŞIMLI

ANALİZİ

Turbomakina kanatları arasındaki akışın üç boyutlu analizi ve kanatların aero-

dinamik yükler altındaki deformasyonu nümerik teknikler kullanılarak modellenmiş

ve sunulmuştur. Farklı ağ oluşturma teknikleri ve Navier-Stokes denklemlerinin farklı

formülasyonları üzerinde çalışılmıştır. Bu denklemler Newton yöntemiyle doğrusal hale

getirilmiş ve sonunda açığa çıkan doğrusal sistem iyileştirilmiş Krylov çözücülerinin ma-

trissiz uygulamalarıyla çözülmüştür. Farklı Reynolds sayılarının akış ve basıncı nasıl

etkilediği gözlemlenmiş ve sonuçlar karşılaştırılmıştır.

Akış analizinden elde edilen sonuçlar turbomakina kanatları üzerindeki basınç

dağılımını elde etmede kullanılmıştır. Basınç değerleri ANSYS programında kanat

üzerine uygulanmış ve kanatın deformasyonu izlenerek kaydedilmiştir. Daha sonra

ANSYS programında elde edilen şekil değiştirme vektörleri akış analizini yapmak için

geliştirilen koda aktarılmış ve problemin çözüm alanı güncellenmiştir.

Newton yöntemi farklı Krylov çözücüleriyle birleştirilerek kullanılmıştır. Ayrıca

Jacobi, simetrik Gauss-Seidel (SGS) ve tamamlanmamış matris ayrıştırma (ILU(l)) iy-

ileştiricileri kullanılarak bunların Krylov yöntemlerininin çözüme ulaşma performansları

üzerindeki etkileri incelenmişir. ILU(l) iyileştiricisinin diğerlerine göre daha etkili

olduğu gözlenmiştir. Ancak bu iyileştiricinin matrissiz metodlara uygulanamamasın-

dan SGS iyileştiricili yaklaşık Newton yöntemi hem düşük hafıza kullanımıyla hem de

kod yazım süresinin kısalığıyla daha uygun bir çözücü olarak gözükmektedir.
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1. INTRODUCTION

Pumps and turbines (sometimes called fluid machines) are used in a wide variety

of areas. In general, pumps add energy to the fluid -they do work on the fluid; turbines

extract energy from the fluid -the fluid does work on them. The term pump will be

used to generically refer to all pumping machines, including pumps, fans, blowers,

and compressors. Fluid machines can be divided into two main categories: positive

displacement machines (denoted as the static type) and turbomachines (denoted as the

dynamic type).

Positive displacement machines force a fluid into or out of a chamber by changing

the volume of the chamber. The pressures developed and the work done are a result

of essentially static forces rather than dynamic effects. Typical examples shown in

Fig. 1.1 include the common tire pump used to fill bicycle tires, the human heart, and

the gear pump. In these cases the device does work on the fluid (the container wall

moves against the fluid pressure force on the moving wall). The internal combustion

engine in a car is a positive displacement machine in which the fluid does work on the

machine, the opposite of what happens in a pump. In the car engine the piston moves

in the direction of the fluid pressure force acting on the piston face during the power

stroke. Turbomachines, on the other hand, involve a collection of blades, buckets, flow

channels, or passages arranged around an axis of rotation to form a rotor. Rotation

of the rotor produces dynamic effects that either add energy to the fluid or remove

energy from the fluid. Energy is either supplied to the rotating shaft (by a motor,

for example) and transferred to the fluid by the blades (a pump), or the energy is

transferred from the fluid to the blades and made available at the rotating shaft as

shaft power (a turbine). Briefly, A group of blades moving with or against a lift force

is the essence of a turbomachine.

The fluid used can be either a gas (as with a window fan or a gas turbine engine)

or a liquid (as with the water pump on a car or a turbine at a hydroelectric power

plant). While the basic operating principles are the same whether the fluid is a liquid
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Figure 1.1. Typical Positive Displacement Pumps: (a) tire pump, (b) human heart,

(c) gear pump [2]
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or a gas, important differences in the fluid dynamics involved can occur. For example,

cavitation may be an important design consideration when liquids are involved if the

pressure at any point within the flow is reduced to the vapor pressure. Compressibility

effects may be important when gases are involved if the Mach number becomes large

enough.

Turbomachines are classified as axial-flow, mixed-flow, or radial-flow machines

depending on the predominant direction of the fluid motion relative to the rotors axis

as the fluid passes the blades (see Fig. 1.2). For an axial-flow machine the fluid main-

tains a significant axial-flow direction component from the inlet to outlet of the rotor.

For a radial-flow machine the flow across the blades involves a substantial radial-flow

component at the rotor inlet, exit, or both. In other machines, designated as mixed-flow

machines, there may be significant radial- and axial-flow velocity components for the

flow through the rotor row. Each type of machine has advantages and disadvantages

for different applications and in terms of fluid-mechanical performance. Examples of

Figure 1.2. (a) A radial-flow turbomachine, (b) An Axial-flow turbomachine
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turbomachine-type pumps include simple window fans, propellers on ships or airplanes,

squirrel-cage fans on home furnaces, axial-flow water pumps used in deep wells, and

compressors in automobile turbochargers. Examples of turbines include the turbine

portion of gas turbine engines on aircraft, steam turbines used to drive generators at

electrical generation stations, and the small, high-speed air turbines that power dentist

drills.

Turbomachines serve in an enormous array of applications in our daily lives and

thus play an important role in modern society. These machines can have a high power

density (large power output per size), relatively few moving parts, and reasonable

efficiency.

Figure 1.3. GE 90 propulsion system [2]

The conversion of total energy into shaft work or vice versa, can also be estab-

lished with simple reciprocating (piston-cylinder) engines. Why should a turbomachine

be applied? The answer to this question involves the limitation of power and mass flow

associated with the reciprocating engines. The reciprocating engine, which works en-

tirely on the displacement principle, is not able to transfer large amount of mass flow

or mechanical energy. The largest operating Diesel engine has a power output of about

20 MW, whereas a large steam power plant may produce up to 1300 MW [2]. Unlike

the reciprocating engines the working principle of a turbomachine is based on exchange

of momentum between the blading and the working fluid.

Although this is by no means intended as a comprehensive review, it is nec-
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essary to highlight a few important studies. A considerable amount of work has

been performed on aerodynamic analysis of turbomachinery blades by using the di-

rect and/or the inverse approach. For example, Denton [5] has numerically solved the

three-dimensional Euler equations of motion and Dawes [6] and Hah et al. [14] have

solved the 3D Navier-Stokes equations. Such methods are of substantial value to the

designer, who can use them to investigate the flow conditions along vanes and blades.

Xu and Chen [15] investigated sweep effects in a three-dimensional modern airfoil de-

sign. In addition to these studies, Carstens, Kemme and Schmitt [16] presented a

technique which analyses the flutter behavior of turbomachinery bladings in the time

domain. Moffatt and He [17] developed fully-coupled methods for blade forced response

prediction based on the nonlinear harmonic method. Another fluid-structure interac-

tion analysis was performed by Kamakoti and Shyy [18]. They used AGARD 445.6

wing to illustrate their problem and determined the flutter boundary for the AGARD

wing geometry.

In this thesis, three-dimensional analysis of fluid flow over turbomachinery blades

and the deformation of the blades under aerodynamic loads are modeled and simulated

using computational techniques. Decomposition into computational sub-domains and

using multi-level partitioning hierarchy characterize the procedure of solving the non-

linear set of governing partial differential equations. Grid generation techniques and

various formulations of Navier-Stokes equations are studied. These equations are lin-

earized using Newton’s method, and the resulting system of equations are solved using

matrix-free implementations of the preconditioned Krylov techniques. Pressure values

determined as a result of fluid analysis are implemented as boundary conditions into

ANSYS environment. Displacements are found after solid analysis performed by AN-

SYS and transferred into fluid analysis to update the geometry. The computations were

carried out for different Reynolds numbers and the results of the numerical simulations

are discussed and compared.
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2. NUMERICAL METHODS

2.1. Components of the Numerical Solution Method

The starting point of any numerical method is the mathematical model, i.e. the

set of partial differential equations and boundary conditions. After choosing an ap-

propriate model for the target application (incompressible, inviscid, turbulent; two- or

three-dimensional, etc.), a solution method is designed for the simplified set of equa-

tions. More detailed information about the mathematical modeling of this study is

presented in Chapter 3.

After selecting the mathematical model, we have to choose a suitable discretiza-

tion method,i.e. a method of approximating the differential equations by a system of

algebraic equations for the variables at some set of discrete locations in space and time.

There are many approaches, but the most important of which are: finite difference,

finite volume and finite element methods. Each type of method yields the same solu-

tion if the grid is very fine. However, some methods are more suitable to some classes

of problems than others. The preference is often determined by the attitude of the

developer. In this study finite difference approach is used.

2.1.1. Solution Methods

Discretization yields a large system of non-linear algebraic equations. The method

of solution depends on the problem. For unsteady flows, methods based on those used

for initial value problems for ordinary differential equations (marching in time) are used.

At each time step an elliptic problem has to be solved. Steady flow problems are usually

solved by pseudo-time marching or an equivalent iteration scheme. Since the equations

are non-linear, an iteration scheme is used to solve them. These methods are successive

linearization of the equations and the resulting linear systems are almost always solved

by iterative techniques. In this study, the governing equations are linearized using

Newton’s method, and the resulting system of equations are solved using matrix-free
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implementations of the preconditioned Krylov techniques.

2.1.1.1. Newton’s Method. The discretization of the non-linear differential equations

results in nonlinear system of equations. In order to solve them using linear system

solvers they have to be linearized. Newton’s method is one of the most widely used

methods in this manner.

Newton’s algorithm is given below. Here f is a vector composed of the nonlinear

equations aroused from the discretization of the governing equations with respect to

the nodes in the computational domain and J is the Jacobian matrix composed of the

partial derivatives of the equations with respect to all unknowns. And k indicates the

number of the Newton step.

1. Guess a solution vector

2. Solve the linearized equation system below for ∆xk+1

J(xk)∆xk+1 = −f(xk) (2.1)

3. xk+1 = xk + ∆xk+1

4. Continue until norm of the f vector drops below the tolerance

Ji,j =
∂fk

i

∂xk
j

(2.2)

To solve the linearized system of equations linear system solvers must be used. A

broad range of solvers of this kind can be found in the literature. In this work only

Krylov sub-space solvers are used. Brief information about them will be given in

the next section. All these solvers require Jacobian matrix vector multiplications.

And Newton’s method can be grouped into two main categories with respect to the

computation of this multiplication. In the exact Newton’s method the Jacobian matrix
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is written analytically in the code, stored in the memory and multiplied with the desired

vector when necessary. The main drawback of the exact Newton approach is the large

memory requirements for storage of the Jacobian matrix. This generally limits the use

of such methods to small-scale problems unless a large memory machine is available.

Moreover, multiplications with vectors are also time consuming due to the large sizes of

the Jacobian matrices. However, preconditioners can be easily applied in this method

due to the storage of the Jacobian matrix in the memory.

Second approach is called inexact Newton’s method. In this method the matrix

vector multiplications are carried out using the f vector and the directional differencing

technique without computing the Jacobian matrix analytically and storing it in the

memory. This approach reduces the memory requirement considerably and also speeds

up the matrix vector multiplications by a great extent. However, preconditioners which

require the Jacobian matrix explicitly cannot be applied in this method.

Jv =
f(x + εv)− f(x)

ε
(2.3)

The selection of the value of ε has a crucial importance. There are several formula for

the computation of ε. In the present double-precision computations, an effective choice

for ε was found to be

ε = σ1/2/‖x‖ (2.4)

when ‖x‖ 6= 0, and if ‖x‖ = 0, the result of the matrix vector product is set identically

to zero. Here, σ is taken to be 10−14 [11].

There are also other methods for dealing the non-linear equation systems with.

Although Newton’s method is one of the most widely used methods it has also some

drawbacks beside the advantages it has.

Advantages:
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• Quadratically convergent from good starting guesses if J is non-singular.

• Exact solution in one iteration for an affine f (exact at each iteration for affine

component functions of f)

Disadvantages:

• Not globally convergent for many problems.

• Requires J at each iteration.

• Each iteration requires the solution of a system of linear equations that may be

singular or ill conditioned.

2.1.1.2. Krylov Sub-Space Solvers. Frequently iterative methods are preferred in CFD

applications due to the surplus of the arithmetic operations in the direct methods such

as Gaussian elimination, which makes them too costly by means of computation time.

The term iterative method refers to a wide range of techniques that use successive

approximations to obtain more accurate solutions to a linear system at each step. There

are two types of iterative methods. Stationary methods such as Jacobi, Gauss-Seidel,

Successive over-relaxation (SOR) are older, simpler to understand and to implement

but usually not as effective due to their slow convergence behavior[12].

On the other hand, non-stationary methods are a relatively recent development,

their analysis is usually harder to understand but they can be highly effective. The

non-stationary methods presented here are based on the idea of sequences of orthogonal

vectors. Some of the well-known methods are Conjugate Gradient (CG), Generalized

Minimal Residual (GMRES), Bi-Conjugate Gradient (BiCG), Bi-Conjugate Gradient

Stabilized (BiCGSTAB), Quasi Minimal Residual (QMR), Conjugate Gradient Squared

(CGS) Method. These methods are called Krylov sub-space methods, because they

project the original set of equations onto a so called Krylov sub-space. Each of the

Krylov sub-space solvers have their own characteristics. Choosing the most appropriate

solver according to the type of the problem enables faster convergence. On the other

hand, in some cases choosing an inappropriate method may even lead to divergence.
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For instance, CGS can be applied to non-symmetric matrices but CG can not.

In this work BiCGSTAB and GMRES methods are used. These are among the

fastest and robust iterative solvers for a wide variety of applications. All of them are

applicable to the non-symmetric matrices which is the case in the thesis problem. A

brief summary of the properties of these methods is given below [12].

Bi-conjugate Gradient Stabilized (BiCGSTAB):

• Applicable to nonsymmetric matrices.

• Computational costs per iteration are similar to BiCG and CGS but the method

doesn’t require the transpose matrix.

• An alternative for CGS that avoids the irregular convergence patterns of CGS

while maintaining about the same speed of convergence; as a result we often

observe less loss of accuracy in the updated residual.

Generalized Minimal Residual (GMRES):

• Applicable to nonsymmetric matrices.

• GMRES leads to the smallest residual for a fixed number of iteration steps but

these steps become increasingly expensive.

• In order to limit the increasing storage requirements and work per iteration step

restarting is necessary. When to do so depends on A and the right-hand side; it

requires skill and experience.

• GMRES requires only matrix vector products with the coefficient matrix.

• The number of inner products grows linearly with the iteration number up to the

restart point. In an implementation based on a simple Gram-Schmidt process

the inner products are independent so together they imply only one synchro-

nization point. A more stable implementation based on modified Gram-Schmidt

orthogonalization has one synchronization point per inner product.
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2.1.2. Preconditioning

The convergence rate of iterative methods depends on the spectral properties of

the coefficient matrices. Preconditioners transform the linear system into one that has

the same solution but into which the linear solvers can be more efficiently applied.

The need for preconditioners arouses because problems in the fluid mechanics usually

give rise to matrices with undesired spectral properties especially at high Reynolds

numbers.

Preconditioners increase the amount of operations per iteration. However, the

additional time spent to produce the preconditioner matrix and to carry out the ad-

ditional operations at each iteration is compensated by the reduction in the number

of iteration steps. So they provide a decrease in the computation time on overall.

Moreover, they can make a solver converge whereas a solver could diverge without the

implementation of a preconditioner [12].

Accordingly, a preconditioner must be similar to the coefficient matrix as close

as possible and also the preconditioner system Mx = p must also be easy to solve.

Taking the preconditioner matrix equal to the coefficient matrix A would enable the

solver to converge in a single iteration. However, the time required for solving the

system Mx = p would be equal of solving the real system Ax = b. On the other

extreme, taking the preconditioner matrix equal to the identity matrix so that the

system Mx = p can be easily solved would not result in any reduction in the number

of iteration steps. So the ideal preconditioner must be between the two extreme cases.

The preconditioners are divided into three groups according to the application of

the preconditioner matrix. These are left, right and split preconditioning.

In left-preconditioning the preconditioner matrix M is applied to the original

equation (Ax = b) from left hand sides. The Krylov methods are then applied to the
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new equation system.

M−1
leftAx = M−1

leftb (2.5)

The spectral properties of the preconditioned system (M−1
leftA) may be more favorable

than the original one (A).

It is also possible to transform the system with right preconditioning, as given by

the equation (2.6),

AM−1
righty = b where x = M−1

righty (2.6)

The transformed system is first solved for y, and then, the unknown vector x is com-

puted by the relation given in the equation (2.6).

In the case of left-preconditioning the preconditioner is applied directly to the

residual vector so it may cause the algorithm stop prematurely or with delay [10].

Because of this reason right-preconditioning is preferred in this work.

The other option, split-preconditioning can be used if the preconditioner matrix

is of the form

M = LU (2.7)

According to this option

L−1AU−1y = L−1b where x = U−1y (2.8)

In this work three different kinds of preconditioners are used. These are Jacobi,

Symmetric Gauss-Seidel (SGS) and ILU(l). The preconditioner matrices of each of

these methods are given below.
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-E

-F

D

Figure 2.1. Initial partitioning of matrix A [10]

2.1.2.1. Jacobi. This method is also called diagonal scaling, since each row is scaled

with respect to the entries in the diagonals.

M = D (2.9)

2.1.2.2. Symmetric Gauss-Seidel(SGS). In this method the preconditioner matrix is

composed of the product of a lower triangular matrix with an upper triangular matrix.

M = (D − E)D−1(D − F ) (2.10)

In order to solve the system Mx = p the factorized form of the preconditioner matrix

is utilized instead of taking the inverse of the matrix. The solution procedure is given

below.

• Solve (D − E)D−1y = p for y by forward substitution.

• Solve (D − F )x = y for x by backward substitution

2.1.2.3. Incomplete LU decomposition(ILU). As it can be understood from its name

the Jacobian matrix is partially decomposed into upper and lower triangular matrices
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in this method. Inaccurate factorization improves the spectral properties of the matrix

and provides faster convergence. The exact LU factorization would require similar

amount of operation like Gaussian elimination and would be therefore an inefficient

solution method. Because of this reason this factorization is carried out only at some

locations in the matrix. ILU has also some versions based on the accuracy of the

factorization. For ILU(0),the zero in the parenthesis indicate that the zero pattern of

the decomposed matrices precisely fit the zero pattern of the Jacobian matrix and the

LU factorization is carried only at the non-zero elements of the original matrix.

M = LU (2.11)

In this method the system Mx = p is solved using the factorized structure of the

preconditioner matrix. The solution algorithm is given below.

• Solve Ly = p for y by forward substitution.

• Solve Ux = y for x by backward substitution

2.1.2.4. Implementation to matrix-free algorithms. As mentioned above precondition-

ers can have an important effect on the convergence behavior of the Krylov sub-space

solvers especially when the forming matrices are ill-conditioned, which is usually the

case for the flow problems at high Reynolds numbers. However, some of the precon-

ditioners require the coefficient matrix explicitly such as ILU. Therefore these type of

preconditioners cannot be adapted into a fully matrix free algorithm. On the other

hand, preconditioners such as Jacobi or symmetric Gauss-Seidel (SGS) can be used

in the matrix-free methods [9]. In order to apply SGS the forward and backward al-

gorithms must be modified so that they can be carried out in a column by column

manner instead of row by row. The algorithm of the matrix-free version of the back-

ward substitution is given in Fig. 2.2 and the forward substitution algorithm in Fig.

2.3.
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for i=1:n

v(n+1-i,1)=1

Av=(f(x+eps*v)-f(x))/eps

v(n+1-i,1)=0

x(n+1-i,1)=p(n+1-i,1)/Av(n+1-i,1)

for j=i:n

p(n+1-j,1)=p(n+1-j,1)-Av(n+1-j,1)*x(n+1-i,1)

end

end

Figure 2.2. Backward substitution

for i=1:n

v(i,1)=1;

Av=(f(x+eps*v)-f(x))/eps

v(i,1)=0;

x(i,1)=p(i,1);

for j=i:n

p(j,1)=p(j,1)-Av(j,1)*x(i,1)/Av(i,1);

end

end

Figure 2.3. Forward substitution
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The application of the SGS preconditioner to the matrix free algorithms increases

the operation load considerably. However, this load can be decreased combining the

matrix free algorithm with the compressed column storage (CCS) scheme. In this

method the Jacobian matrix is computed column by column using the directional

differencing technique and stored via the CCS storage scheme. For example, using the

vector with 1 only at the first entry and zeros at the remaining ones the first column

of the Jacobian matrix is obtained. Continuing this process and storing every time

the non-zero elements in the columns of the Jacobian matrix using CCS the matrix

can be stored in a compressed manner. Using this matrix and adapting backward and

forward substitutions for SGS according to the storage scheme the operation load of

the algorithm is decreased considerably. This modification in the matrix free algorithm

only affects the operations related with the preconditioner. The Jacobian matrix vector

multiplications in the solvers are carried out matrix free. Although this modification

increases the memory load it is far below than the load the exact Newton method

brings.

2.1.3. Compressed Storage Schemes

The Jacobian matrices arousing from the discretization of the partial differential

equations have characteristic sparsity patterns. Instead of storing each element of the

matrix storing only the non-zero elements of the matrix using one of the compressed

storage schemes decreases the memory load of the computer considerably. Also defin-

ing the matrix vector multiplications required for the linear solvers accordingly faster

convergence can be achieved. There are various kinds of compressed storage schemes.

One of them is compressed column storage (CCS). According to this scheme the non-

zero elements of the matrix are stored column by column in a vector. The row number

of each element is written at another vector. And a third vector indicates at which

element a new column starts. In this work matrix free algorithms are modified using

the CCS scheme in order to apply SGS preconditioner in a fast way to the matrix free

methods.
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2.2. Properties of the Numerical Solution Method

The solution method should have certain properties. In most cases we analyze

the components of the method rather than analyzing the complete solution method.

One of the most important properties is expressed in detail below.

A numerical method is said to be convergent if the solution of the discretized

equations tends to the exact solution of the differential equation as the grid spacing

tends to zero. For non-linear problems which are strongly influenced by boundary

conditions, the convergence of a method are difficult to demonstrate.There are different

ways of deciding for convergence. In this study the two norm of the residual vector is

monitored which is a frequently used way of concluding the convergence. There are

two types of residual vectors in this work. These are the residual of the linear system

J4x = −f and the non-linear residual f .

As mentioned above the discretized form of the governing equations have a non-

linear character and they are linearized by the Newton’s method in order to be solved

by the linear solvers. So in each Newton step a linear system has to be solved. At

each step the reduction of the two norm of the linear residual vector is monitored with

respect to the norm of the initial residual vector.

‖b− Axk‖
‖b− Ax0‖ < tol (2.12)

Moreover, a maximum number iteration steps is also set at each Newton step. If the

linear system does not converge in the given number of iteration steps then a different

solver is used or the same solver combined with a more efficient preconditioner is tried.

After deciding for convergence at a Newton step and making the necessary corrections

in the solution vector the procedure continues with the next Newton step. After each

Newton step the two norm of the f vector (nonlinear residual) is checked and compared

with the user specified convergence tolerance.

‖f‖ < tol (2.13)
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3. COMPUTATIONAL MODELING

3.1. Problem Statement

There are two main approaches to the problem of aerodynamic analysis of tur-

bomachinery blades, the direct and the inverse approach. In the direct approach the

flow is computed for a given blade geometry, while in the inverse approach the required

flow distribution is specified and the corresponding blade geometry is computed.

In recent years, as a result of development in computational fluid dynamics, consider-

able progress has been made in the numerical solution of the direct problem of turboma-

chinery design. For example, Denton [5] has numerically solved the three-dimensional

Euler equations of motion and Dawes [6] and Hah et al. [14] have solved the 3D Navier-

Stokes equations. Such methods are of substantial value to the designer, who can use

them to analyze the flow conditions along vanes and blades. Ideally, it should then be

possible to modify the blade shape if the flow conditions are not those required. In

practice, however, there are difficulties in determining the degree and direction of any

modifications, which difficulties are compounded by the fact that a change of blade

shape at any location affects the flow at other parts of the blade.

This study is concerned with the development of both two- and three-dimensional

direct analysis of steady, incompressible flow over turbomachinery blades. For two-

dimensional case simplification of the actual case and the problem domains are shown

in Fig. 3.1, 3.3 and 3.2, respectively.

For three-dimensional analysis, the blade surfaces do not vary along the z-direction

which produces a symmetry as can be observed in Fig. 3.5. This approach is basically

similar to the analysis of 2-D case except the fact that the length of the blades is

also considered as a parameter and adapted into the problem. Grid is generated using

three-dimensional transfinite interpolation and composed of 21× 21× 21 nodes.
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Figure 3.1. Simplification of the problem in two-dimensional analysis (1 : Inlet,

2 : Outlet)
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Figure 3.2. Problem domain in two-dimensional case (Algebraic grid generation)

Figure 3.3. Problem domain in two-dimensional case (Elliptic grid generation)
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Figure 3.4. Problem domain in two-dimensional case (Solid Analysis)

3.2. Grid Generation

One of the first steps in computing a numerical solution to the equations that

describe a physical problem is the construction of a grid. When the equations are

expressed in terms of cartesian co-ordinates, a standard numerical method of solution is

through finite differences, where a uniform rectangular grid of regularly-arranged points

is constructed to cover the physical region of space (more precisely, its mathematical

representation) and the partial derivatives in the equations are approximated in terms

of the differences between values of the field quantities at adjacent points of the grid.

A well constructed grid greatly improves the quality of the solution, and conversely, a

poorly constructed grid leads to a poor result. In many applications, difficulties with

numerical simulations can be traced to poor grid quality. For example, the lack of

convergence to a desired level is often a result of poor grid quality. In this study, two

techniques for generating grids using structured approach are applied, algebraic and

differential equation methods. Algebraic and differential equation techniques can be

used on complicated three-dimensional problems and of the structured methods, these

have received the most use. Transfinite interpolation method for algebraic technique

and elliptic grid generation for differential equation method are applied in this study.
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Figure 3.5. Problem domain in three-dimensional case
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Figure 3.6. Problem domain in three-dimensional case (Solid Analysis)

Figure 3.7. Grid generation in three-dimensional case
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In Fig. 3.3 and 3.2 two different grids which are generated using algebraic and elliptic

methods explained below are presented.

3.2.1. Differential Equation Method

One of the most highly developed techniques for generating acceptable grids is

the differential equation method. If a differential equation is used to generate a grid,

we can exploit the properties of the solution of the grid generating equation in produc-

ing the mesh. Laplace’s and Poisson’s equations have been extensively used for this

purpose. The choice of Laplace’s equation can be better understood by considering the

solution of a steady heat conduction problem in two dimensions with Dirichlet bound-

ary conditions. The solution of this problem produces isotherms which are smooth

(continuous) and are nonintersecting. The number of isotherms in a given region can

be increased by adding a source term. If the isotherms were used as grid lines, they

would be smooth, nonintersecting and could be densely packed in any region by con-

trol of the source term. Thompson et al. [13] have worked extensively on using elliptic

PDE’s to generate grids. This procedure is similar to that used by Winslow [13] and

transforms the physical plane into the computational plane where the mapping is con-

trolled by a Poisson equation. This mapping is constructed by specifying the desired

grid points (x, y) on the boundary of the physical domain. The distribution of points

on the interior is then determined by solving

g22
∂2x

∂ξ2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
= 0 (3.1)

g22
∂2y

∂ξ2
− 2g12

∂2y

∂ξ∂η
+ g11

∂2y

∂η2
= 0 (3.2)
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In these equations we have x and y as functions of ξ, η with g11, g12 and g22 given by




g11 g12 g13

g21 g22 g23

g31 g32 g33


 =




x2
ξ + y2

ξ xξxη + yξyη 0

xξxη + yξyη x2
η + y2

η 0

0 0 1


 (3.3)

Equations 3.1 and 3.2 are called the Winslow equations and used in this study to

generate elliptic grid between two turbomachinery blades. The Winslow equations are

in general non-linear and coupled in x and y through the coefficients gij.

3.2.1.1. Control Functions. Sometimes it may be desirable to introduce some variation

of grid spacing. For example, where we expect large gradients in fluid flow variables

in a boundary-layer region, we may seek a higher grid density there. If we simply

use Equations 3.1 and 3.2 to generate the grid, we have no control of grid density in

the interior of a physical domain R, and boundary layers cannot be properly resolved.

A standard method for controlling grid density is to vary the Winslow equations by

adding user-specified ’inhomogeneous’ terms so that the equations become

g22
∂2x

∂ξ2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
= −g

(
P

∂x

∂ξ
+ Q

∂x

∂η

)
(3.4)

g22
∂2y

∂ξ2
− 2g12

∂2y

∂ξ∂η
+ g11

∂2y

∂η2
= −g

(
P

∂y

∂ξ
+ Q

∂y

∂η

)
(3.5)

where g = g11g22 − g12g12 and P (ξ, η), Q(ξ, η) are suitably selected control functions

(or forcing functions). It is referred as the TTM Method (Thompson, Thames, and

Mastin [13]) A set of possible control functions was proposed by Thompson, Thames,

and Mastin [13] as follows

P (ξ, η) = −
N∑

n=1

an
(ξ − ξn)

|ξ − ξn| e
−cn|ξ−ξn| −

I∑
i=1

bi
(ξ − ξi)

|ξ − ξi| e
−di[(ξ−ξi)

2+(η−ηi)
2]

1
2

(3.6)
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Q (ξ, η) = −
N∑

n=1

an
(η − ηn)

|η − ηn| e
−cn|η−ηn| −

I∑
i=1

bi
(η − ηi)

|η − ηi| e
−di[(ξ−ξi)

2+(η−ηi)
2]

1
2

(3.7)

Here N is the number of lines (co-ordinate lines ξ = ξn and η = ηn) and I the number

of points (with ξ = ξi, η = ηi, 0 ≤ ξi, ηi ≤ 1) to which the grid is to be attracted,

and an, cn, bi, di are positive parameters. The first term in the expression for P (ξ, η)

has the effect (with typical ’amplitude’ an) of attracting ξ-lines (curves on which ξ is

constant) towards curves ξ = ξn in the physical domain, while the second term (with

amplitude bi) attracts ξ-lines towards points (and similarly for Q(ξ, η)). In each case

the attractive effect decays with distance in computational space from the line or point

in question according to the ’decay’ parameters cn, di.

The functions (ξ− ξn)/|ξ− ξn| and (η− ηn)/|η− ηn| are functions which can take

only the values ±1, and are present to ensure that the attraction takes place on both

sides of ξn-lines and ηn-lines and in the entire neighborhood of points (ξi, ηi). Taking

the amplitudes to be negative turns the attractive effects into repulsive ones.

3.2.2. Algebraic Method

3.2.2.1. Two-Dimensional TFI (Projectors and bilinear mapping). Suppose there ex-

ists a transformation r = r(ξ, η) (or x = x(ξ, η), y = y(ξ, η)) which maps the unit

square 0 < ξ < 1, 0 < η < 1 onto the interior of the region ABDC in the xy (phys-

ical) plane (Fig. 3.8), such that the edges ξ = 0, 1 map to the boundaries AB, CD,

respectively, which we can formulate as r(0, η) and r(1, η), the boundaries AC, BD

being similarly given by r(ξ, 0), r(ξ, 1). We can write down another transformation Pξ

, called a projector, which maps points in computational space to points (or position

vectors) in physical space, defined by

Pξ (ξ, η) = (1− ξ) r (0, η) + ξr (1, η) (3.8)

The sides ξ = 0, 1 are mapped onto AB, CD respectively, and the sides η = 0, 1 are

mapped onto the straight lines AC, BD. Furthermore, co-ordinate lines of constant η
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are mapped into straight lines rather than co-ordinate curves in the physical plane.

Similarly we can define the projector

Figure 3.8. Mapping unit square onto curved four-sided figure

Pη(ξ, η) = (1− η)r(ξ, 0) + ηr(ξ, 1) (3.9)

which maps the unit square onto a region which preserves the boundaries AC, BD,

but replaces the boundaries AB, CD with straight lines (Fig. 3.9). We can form the

Figure 3.9. Projector Pη

composite mapping PξPη, such that

Pξ (Pη (ξ, η)) = Pξ ((1− η) r (ξ, 0) + ηr (ξ, 1))

= (1− ξ) [(1− η) r (0, 0) + ηr (0, 1)] + ξ [(1− η) r (1, 0) + ηr (1, 1)]

= (1− ξ) (1− η) r (0, 0)

+ (1− ξ) ηr (0, 1) + ξ (1− η) r (1, 0) + ξηr (1, 1)

(3.10)

This bilinear transformation has the property that the four vertices A, B, C, D are

preserved, but the boundaries are all replaced by straight lines; that is, the unit square

is mapped onto a quadrilateral ABDC (Fig. 3.10). Moreover, straight lines ξ = const.

and η = const. in computational space are mapped onto straight lines in physical space.

It is easy to show that this composition of projectors, often referred to as the tensor

product of Pξ and Pη, is commutative; that is,

PξPη = PηPξ (3.11)
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Note also that we can form the composite map PξPξ ; we obtain

Pξ (Pξ (ξ, η)) = Pξ [(1− ξ) r (0, η) + ξr (1, η)]

= (1− ξ) r (0, η) + ξr (1, η) = Pξ (ξ, η)
(3.12)

Hence we can write

PξPξ = Pξ (3.13)

which is the usual defining property of projection operators. Let us now consider the

Figure 3.10. Bilinear transformation PξPη

various mappings of the side η = 0 of the unit square. Under Pξ it is mapped to the

straight line AC ; under Pη it is mapped to the curved boundary AC; finally under PξPη

it is mapped to the straight line AC. Similar considerations applied to each side of the

unit square show that the composite map (Pξ + Pη − PξPη) is a transformation which

maps the entire boundary of the unit square onto the entire curved boundary ABDC.

This map is called the Boolean sum of the transformations Pξ and Pη, and denoted by

Pξ ⊕ Pη. Thus

Pξ ⊕ Pη = Pξ + Pη − PξPη (3.14)

It is clear that Pξ ⊕ Pη = Pη ⊕ Pξ. The complete formulation is

(Pξ ⊕ Pη) (ξ, η) = Pξ (ξ, η) + Pη (ξ, η)− PξPη (ξ, η)

= (1− ξ) r (0, η) + ξr (1, η) + (1− η) r (ξ, 0) + ηr (ξ, 1)

− (1− ξ) (1− η) r (0, 0)− (1− ξ) ηr (0, 1)

− (1− η) ξr (1, 0)− ξηr (1, 1)

(3.15)
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This transformation is the basis of transfinite interpolation (TFI) in two dimensions.

A grid will be generated by Equation 3.15 by taking discrete values ξi , ηj of ξ and η

with

0 ≤ ξi = i−1
I−1

≤ 1

0 ≤ ηj = j−1
J−1

≤ 1

i = 1, 2, ..., I,j = 1, 2, ..., J

(3.16)

for some choice of I and J. Transfinite interpolation is the most common approach to

algebraic grid generation. It can produce excellent grids quickly in situations where

other methods would be difficult to apply, and it also allows for direct control of

the location of grid nodes. Many two-dimensional regions are easy to grid accurately

using TFI. However, there are some geometries, such as the airfoil, backstep, and

C-grids, where TFI proves to be unsatisfactory. The main disadvantages are (1) a

lack of smoothness in the generated grids, with any discontinuities in gradient in the

boundary curves tending to propagate into the interior, and (2) a tendency to fold

when the geometries are complex.

The method can be extended in many ways. For example, the physical region

can be divided into several parts, with grids being generated in each separate part

and then matched together at the interfaces. This results in discontinuities of slope at

the interfaces, and Hermite polynomial interpolation may be exploited to match slopes

and thus remove the discontinuities. It is also possible to use TFI with higher-order

polynomials as blending functions.

3.2.2.2. Numerical Implementation Of TFI. We write Equation 3.15, with reference

to Fig. 3.11, as

r (ξ.η) = (1− ξ) rl (η) + ξrr (η) + (1− η) rb (ξ) + ηrt (ξ)

− (1− ξ) (1− η) rb (0)− (1− ξ) ηrt (0)− (1− η) ξrb (1)− ξηrt (1)
(3.17)

where the abbreviations l, r, b, t stand for left, right, bottom, top. At the four vertices
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Figure 3.11. Mapping of boundary curves

of the physical domain we need the consistency conditions

rb (0) = rl (0)

rb (1) = rr (0)

rr (1) = rt (1)

rl (1) = rt (0)

(3.18)

Equation 3.17 is equivalent to the two component equations

x (ξ.η) = (1− ξ) xl (η) + ξxr (η) + (1− η) xb (ξ) + ηxt (ξ)

− (1− ξ) (1− η) xb (0)− (1− ξ) ηxt (0)− (1− η) ξxb (1)− ξηxt (1)
(3.19)

and

y (ξ.η) = (1− ξ) yl (η) + ξyr (η) + (1− η) yb (ξ) + ηyt (ξ)

− (1− ξ) (1− η) yb (0)− (1− ξ) ηyt (0)− (1− η) ξyb (1)− ξηyt (1)
(3.20)

These equations can be discretized and evaluated through a nested DO loop. Suppose

we choose (m+1) grid nodes on the bottom and top boundaries in the computational

plane, with equal increments ∆ξ = 1/m in ξ between nodes; similarly, (n + 1) nodes

on left and right, with equal increments ∆η = 1/n in η. We need the boundary data

for the functions rb, rt , rl , rr , i.e. the values of the (x, y) co-ordinates at the selected

points corresponding to the chosen values of ξ and η on each part of the boundary.

This data can be made available to the main routine through a data-file. Or, if the

boundaries can be calculated according to some analytical expression, then this can be

done in a subroutine. A basic program with a double loop to compute Equations 3.19

and 3.20, setting ξ = s, η = t, ∆ξ = dX = 1/m, ∆η = dY = 1/n, would then take the
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form:

DO J=2:n

t=(J-1)*dY

DO 2 I=2:m

s=(I-1)*dX

X(I,J) = (1.0-s)*X_l(J)+s*X_r(J)+(1.0-t)*X_b(I)+t*X_t(I)

-(1.0-s)*(1.0-t)*X_b(1)-(1.0-s)*t*X_t(1)

-s*(1.0-t)*X_b(m+1)-s*t*X_t(m+1)

Y(I,J) = (1.0-s)*Y_l(J)+s*Y_r(J)+(1.0-t)*Y_b(I)+t*Y_t(I)

-(1.0-s)*(1.0-t)*Y_b(1)-(1.0-s)*t*Y_t(1)

-s*(1.0-t)*Y_b(m+1)-s*t*Y_t(m+1)

2 Continue

1 Continue

Figure 3.12. Numerical implementation of TFI in 2D

3.2.2.3. Three-Dimensional TFI. A simple approach to TFI in three dimensions is

through the extension of the definition of projectors to 3D. Suppose that we have a

mapping r(ξ, η, ζ) from the unit cube 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1 to a six-sided

volume R of physical space. The opposite planar faces of the cube given by ξ = 0, 1

map onto the (in general, curved) opposite faces r(0, η, ζ), r(1, η, ζ) of R. On these

faces there are curvilinear co-ordinate systems with η and ζ as co-ordinates. Edges

of the cube such as that given by η = ζ = 0 (with 0 ≤ ξ ≤ 1) map into edges of R

such as r(ξ, 0, 0), which is a ξ -co-ordinate curve. Using linear Lagrange polynomials

as blending functions, the following projectors may be defined:

Pξ (ξ, η, ζ) = (1− ξ) r (0, η, ζ) + ξr (1, η, ζ) (3.21)
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Pη (ξ, η, ζ) = (1− ξ) r (ξ, 0, ζ) + ηr (ξ, 1, ζ) (3.22)

Pζ (ξ, η, ζ) = (1− ξ) r (ξ, η, 0) + ζr (ξ, η, 1) (3.23)

Now the projector Pξ still maps the opposite faces ξ = 0, 1 of the cube onto the

opposite faces r(0, η, ζ), r(1, η, ζ) of R. It also maps all the vertices of the cube, (0, 0, 0),

(1, 0, 0), etc., onto the vertices r(0, 0, 0), r(1, 0, 0), etc., of R. However, the four edges

of the cube which connect opposite vertices of the faces ξ = 0 and ξ = 1 are mapped

onto straight lines connecting corresponding vertices of R. For example, (ξ, 0, 0) →
(1− ξ)r(0, 0, 0)+ ξr(1, 0, 0), 0 ≤ ξ ≤ 1. Clearly the other projectors Pη, Pζ have similar

properties. Moreover they all satisfy the basic projection property given by Equation

3.13. If we started out with only two opposite faces of R specified and were able to

construct curvilinear co-ordinate systems on these surfaces with η and ζ as coordinates

Fig. 3.13, we could then have a grid on these faces corresponding to discrete values ηj

, ζk with

0 ≤ ηj = j−1
J−1

≤ 1

0 ≤ ζk = k−1
K−1

≤ 1

j = 1, 2, ..., J,k = 1, 2, ..., K

(3.24)

for some J, K. We could then use Pξ, through Equation 3.21, to interpolate a grid

between these faces, taking discrete values of ξ also, with 0 ≤ ξi = i−1
I−1

≤ 1, i =

1, 2, ..., I. The bilinear tensor product PξPη may be expressed in full as

Figure 3.13. Surface grid
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PξPη (ξ, η, ζ) = (1− ξ) (1− η) r (0, 0, ζ) + (1− ξ) ηr (0, 1, ζ)

+ξ (1− η) r (1, 0, ζ) + ξηr (1, 1, ζ)
(3.25)

The effect of this transformation on the unit cube is to map all four straight edges

parallel to the ζ direction onto the corresponding four curved edges r(0, 0, ζ), etc.,

of R. Between these curved edges we then have linear interpolation in both ξ and η

directions. This map could be used for linear interpolation if we started with just those

four edges of R. The other bilinear products have similar properties, and are given by

PηPζ (ξ, η, ζ) = (1− η) (1− ζ) r (ξ, 0, 0) + (1− η) ζr (ξ, 0, 1)

+η (1− ζ) r (ξ, 1, 0) + ηζr (ξ, 1, 1)
(3.26)

PξPζ (ξ, η, ζ) = (1− ξ) (1− ζ) r (0, η, 0) + (1− ξ) ζr (0, η, 1)

+ξ (1− ζ) r (1, η, 0) + ξζr (1, η, 1)
(3.27)

Clearly these products all have the property of commutativity. We can also formulate

the trilinear transformation PξPηPζ , which may be expressed in full as

PξPηPζ = (1− ξ) (1− η) (1− ζ) r (0, 0, 0)

+ξ (1− η) (1− ζ) r (1, 0, 0) + (1− ξ) η (1− ζ) r (0, 1, 0)

+ (1− ξ) (1− η) ζr (0, 0, 1) + ξη (1− ζ) r (1, 1, 0)

+ξ (1− η) ζr (1, 0, 1) + (1− ξ) ηζr (0, 1, 1) + ξηζr (1, 1, 1)

(3.28)

This trilinear interpolant maps the unit cube onto a region of physical space with the

same vertices as R but with straight lines connecting the vertices. The Boolean sum

Pξ⊕Pη⊕Pζ may be formulated in terms of the above mappings by successively applying

the definition Equation 3.14. We have

Pξ ⊕ (Pη ⊕ Pζ) = Pξ ⊕ (Pη + Pζ − PηPζ)

= Pξ + Pη + Pζ − PηPζ − PξPη − PξPζ + PξPηPζ

(3.29)
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It is straightforward to show that the same result emerges from evaluating (Pξ ⊕ Pη)⊕
Pζ , which means that Boolean summation is associative. Putting ξ = 0 in the expres-

sions Equations 3.21, 3.22, 3.23, 3.25, 3.26, 3.27 and 3.21, and combining the results

according to the vector sums in Equation 3.29 shows that the face ξ = 0 of the unit

cube maps onto the curved face r(0, η, ζ) of R under the Boolean sum Equation 3.29.

In fact each face of the cube maps onto a face of R.

From the above discussion it is clear that, in terms of projectors, the product

PξPηPζ is algebraically minimal, in that it is the weakest member of the set of projectors

to generate a grid (based on TFI) in R, given that it interpolates only from the eight

vertices of R. The Boolean sum Pξ⊕Pη⊕Pζ , on the other hand, is algebraically maximal

and the strongest member of the projector set. To use it we need boundary data on

all six faces of R (including the twelve edges and eight vertices). Then Equation 3.29

will generate a grid within R by trilinear interpolation, taking discrete values of ξ, η, ζ.

In practice, however, we may not have a complete set of boundary data. Suppose, for

example, that we have only boundary data pertaining to the twelve edges of the physical

region R. Since Equation 3.25 showed that the product PξPη interpolates linearly from

four edges of R, we might expect the appropriate grid generation formula to be given

by the Boolean product PξPη ⊕ PηPζ ⊕ PζPξ. This can be easily evaluated in terms of

the tensor products above with use of commutativity and the basic projection property

Equation 3.13. We have

PξPη ⊕ (PηPζ ⊕ PζPξ) = PξPη ⊕ (PηPζ + PζPξ − PηPζPζPξ)

= PξPη ⊕ (PηPζ + PζPξ − PηPζPξ)

= PξPη + (PηPζ + PζPξ − PηPζPξ)

−PξPη (PηPζ + PζPξ − PηPζPξ)

= PξPη + PηPζ + PζPξ − PηPζPξ

−PξPηPζ − PξPηPζ + PξPηPζ

= PξPη + PηPζ + PζPξ − 2PξPηPζ

(3.30)

An explicit expression for this transfinite interpolation (based on twelve edges of bound-

ary data) may be written down by combining Equations 3.25, 3.26, 3.27 and 3.28 ac-
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cording to 3.30 which is used in this study to generate three-dimensional grid between

turbomachinery blades.

3.3. Solution Algorithm

This study is concerned with the coupled fluid-structure analysis of turboma-

chinery blades. At first, geometry of the problem is generated in an aerodynamic

code and blade points are transferred into ANSYS. Exact points on the blade surface

are determined by using ANSYS considering the blade geometry and the number of

points on the blade which are specified earlier by user. Then, new grid values on the

blade are given as the boundary conditions to generate the grid between two blades

and on this domain the fluid flow is analyzed so that the velocity, vorticity and pres-

sure field are computed by using an aerodynamic code (solving discretized form of

the Navier-Stokes with the assumption of steady, incompressible flow). By solving the

Navier-Stokes equations fluid analysis of the first step is completed and pressure values

determined as a result of this analysis are implemented as boundary conditions into

ANSYS environment. Displacements are found as a result of solid analysis performed

by ANSYS and transferred into fluid analysis so that the boundary conditions of the

grid generators are updated. With storing displacements, the first step of FSI analysis

is completely carried out and second step is started by solving the governing equations

on the new physical domain which is different from the first one because of deforma-

tion. Since the geometry of the problem is changed, the velocity, vorticity and pressure

fields are also changed and fluid analysis is performed again to achieve new results of

fluid flow between deformed blades. It can be concluded that fluid and solid analysis

are performed separately at each step of the solution procedure and the convergence

is decided by monitoring the difference between the successive displacement vectors.

Two norm of the resulting vector is checked to finish FSI analysis as

∥∥dk − dk−1
∥∥ < tol (3.31)
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3.4. Discretization of the Governing Equations

3.4.1. Two-Dimensional Analysis Using Velocity-Vorticity Formulation

The vorticity at a fluid point can be defined as follows

−→
Ω = 2−→ω = ∇×−→V (3.32)

In this equation ω refers the angular velocity and for a two dimensional flow the equa-

tion is reduced to

Ωz =
∂v

∂x
− ∂u

∂y
(3.33)

For the flow of incompressible Newtonian fluids the governing equations in Cartesian

coordinates can be written as

Conservation of mass :

∂u

∂x
+

∂v

∂y
= 0 (3.34)

Conservation of momentum :

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
(3.35)

∂u

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
(3.36)

In order to derive the vorticity transport equation, the pressure is eliminated

from the momentum equations by cross-differentiation. If we differentiate Equation
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3.35 with respect to y we have an expression as

∂2u

∂y∂t
+

∂u

∂y

∂u

∂x
+ u

∂2u

∂x∂y
+

∂v

∂y

∂u

∂y
+ v

∂2u

∂y2
= − ∂2p

∂x∂y
+ ν

(
∂3u

∂y∂x2
+

∂3u

∂y3

)
(3.37)

and if we differentiate Equation 3.36 with respect to x an expression will be reached as

∂2v

∂x∂t
+

∂u

∂x

∂v

∂x
+ u

∂2v

∂x2
+

∂v

∂x

∂v

∂y
+ v

∂2v

∂x∂y
= − ∂2p

∂x∂y
+ ν

(
∂3v

∂x3
+

∂3v

∂x∂y2

)
(3.38)

Subtracting Equation 3.38 from Equation 3.37 we finally obtain

∂

∂t

(
∂u

∂y
− ∂v

∂x

)
+ u

∂

∂x

(
∂u

∂y
− ∂v

∂x

)
+ v

(
∂u

∂y
− ∂v

∂x

)
+

(
∂u

∂x
+

∂v

∂y

)(
∂u

∂y
− ∂v

∂x

)

= ν

[
∂2

∂x2

(
∂u

∂y
− ∂v

∂x

)
+

∂2

∂y2

(
∂u

∂y
− ∂v

∂x

)]

(3.39)

By using continuity we note that the fourth term on the left-hand side will be zero.

Substituting the vorticity defined by Equation 3.33 into Equation 3.39, we will obtain

∂Ω

∂t
+ u

∂Ω

∂x
+ v

∂Ω

∂y
= ν

(
∂2Ω

∂x2
+

∂2Ω

∂y2

)
(3.40)

Equation 3.46 is known as the vorticity transport equation and is classified as a

parabolic equation with the unknown being the vorticity Ω .

In order to derive the equations for the components of velocity we need to work

further with the conservation of mass and the definition of the vorticity. If we differ-

entiate Equation 3.34 with respect to x, Equation 3.33 with respect to y and make

necessary arrangements we obtain an expression as follows

∂2u

∂x2
+

∂2u

∂y2
= −∂Ω

∂y
(3.41)

Similarly differentiating Equation 3.34 with respect to y, Equation 3.33 with respect
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to x and making necessary arrangements will yield

∂2v

∂x2
+

∂2v

∂y2
=

∂Ω

∂x
(3.42)

Equations 3.41 and 3.42 will be used for the x and y component of velocity, respectively.

The vorticity transport and velocity equations can be expressed in nondimensional

forms by using the nondimensional quantities as follows

t∗ =
tu∞
L

x∗ =
x

L
y∗ =

y

L
(3.43)

u∗ =
u

u∞
v∗ =

v

u∞
Ω∗ =

ΩL

u∞

Re =
ρ∞u∞L

µ∞

where L is a characteristic length, ρ∞ and u∞ are the reference (freestream) density

and velocity, respectively. The nondimensional forms of the velocity and the vorticity

transport equations can be written by using the nondimensional quantities defined

above as

∂2u∗

∂x∗2
+

∂2u∗

∂y∗2
= − ∂Ω

∂y∗

∗
(3.44)

∂2v∗

∂x∗2
+

∂2v∗

∂y∗2
=

∂Ω

∂x∗

∗
(3.45)

∂Ω∗

∂t∗
+ u∗

∂Ω∗

∂x∗
+ v∗

∂Ω∗

∂y∗
=

1

Re

(
∂2Ω∗

∂x∗2
+

∂2Ω∗

∂y∗2

)
(3.46)

3.4.1.1. Transformation of the Governing Equations. We will transform the indepen-

dent variables in physical space (x,y) to a new set of independent variables in trans-

formed space (ξ,η). If we define the relations between the physical and computational
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spaces, we obtain the following expressions

ξ = ξ (x, y)

η = η (x, y)
(3.47)

Equations 3.47 represent the transformation. In the above relations the transformation

is written in generic form; for an actual application the transformation must be given

as some type of specific analytical relation or some times a specific numerical relation.

The chain rule for partial differentiation yields the following expressions

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
(3.48)

∂

∂y
=

∂ξ

∂y

∂

∂ξ
+

∂η

∂y

∂

∂η
(3.49)

In the following discussion the partial derivatives will be denoted using subscripts,

ξx = ∂ξ/∂x. In Equations 3.48 and 3.49 terms such as ξx, ξy, ηx and ηy appear.These

transformation derivatives are defined as the metrics of transformation or simply as

the metrics. The interpretation of the metrics is obvious considering the following

expression

ξx =
∂ξ

∂x
∼= ∆ξ

∆x
(3.50)

This expression indicates that the metrics represent the ratio of arc lengths in the

computational space to that of the physical space. From Equations 3.47 the following

differential expressions are obtained

dξ = ξxdx + ξydy (3.51)

dη = ηxdx + ηydy (3.52)
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which are written in a compact form as


 dξ

dη


 =


 ξx ξy

ηx ηy





 dx

dy


 (3.53)

Reversing the role of independent variables as

x = x (ξ, η)

y = y(ξ, η)
(3.54)

The following can be written

dx = xξdξ + xηdη

dy = yξdξ + yηdη
(3.55)

In a compact form they are written as


 dx

dy


 =


 xξ xη

yξ yη





 dξ

dη


 (3.56)

Comparing Equations 3.53 and 3.56, it can be concluded that


 ξx ξy

ηx ηy


 =


 xξ xη

yξ yη



−1

(3.57)

from which

ξx = 1
J
yη

ξy = − 1
J
xη

ηx = − 1
J
yξ

ηy = 1
J
xξ

(3.58)



41

where

J = xξyη − yξxη (3.59)

or as a matrix form

J =




∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η


 (3.60)

and is defined as the Jacobian of Transformation. For a successful transformation, the

Jacobian must be non-singular. Namely, one should be able to invert it, which requires

that determinant of J never vanishes.

Also, in many applications, the transformation may be more conveniently ex-

pressed as the inverse of Equations 3.47; that is

x = x(ξ, η)

y = y(ξ, η)
(3.61)

If we consider an arbitrary dependent variable such as , the chain rule for partial

differentiation of the variable gives the following expression

∂p

∂ξ
=

∂p

∂x

∂x

∂ξ
+

∂p

∂y

∂y

∂ξ
(3.62)

∂p

∂η
=

∂p

∂x

∂x

∂η
+

∂p

∂y

∂y

∂η
(3.63)

In order to obtain the two unknowns ∂p/∂x and ∂p/∂y we solve the system of Equations
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3.62 and 3.63 using Cramer’s rule

∂p

∂x
=

∣∣∣∣∣∣

∂p
∂ξ

∂y
∂ξ

∂p
∂η

∂y
∂η

∣∣∣∣∣∣
∣∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣

(3.64)

The denominator in the above equation is defined as the Jacobian determinant such as

J ≡ ∂ (x, y)

∂ (ξ, η)
≡

∣∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣
(3.65)

If we expand the numerator determinant we can write Equation 3.64 as follows

∂p

∂x
=

1

J

[
∂p

∂ξ

∂y

∂η
− ∂p

∂η

∂y

∂ξ

]
(3.66)

∂p

∂y
=

1

J

[
∂p

∂η

∂x

∂ξ
− ∂p

∂ξ

∂x

∂η

]
(3.67)

Comparing the system of Equations 3.48, 3.49 and Equations 3.66, 3.67 we can con-

clude that substituting the metrics of transformation identified by Equations 3.58 into

Equations 3.48 and 3.49 gives the same result as Equations 3.66 and 3.67. To complete

the transformation we need to obtain the second and mixed derivatives of the arbitrary

variable p = p(x, y) with respect to ξ and η . The following expressions are derived

using the simple rule for differentiation of a product of two terms

∂2p

∂ξ2
=

∂

∂ξ

[
∂p

∂x

∂x

∂ξ
+

∂p

∂y

∂y

∂ξ

]

=
∂p

∂x

∂2x

∂ξ2
+

∂x

∂ξ

∂2p

∂ξ∂x
+

∂p

∂y

∂2y

∂ξ2
+

∂y

∂ξ

∂2p

∂ξ∂y

(3.68)

The second and fourth terms in the above equation involve differentiation with respect
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to one variable in the (x, y) system and another variable in the (ξ, η) system. Since

this is not appropriate for the coordinate transformation we need to work further with

these terms

∂2p

∂ξ∂x
=

∂

∂ξ

(
∂p

∂x

)
(3.69)

Using the chain rule for ∂/∂ξ term, we have

∂2p

∂ξ∂x
=

(
∂x

∂ξ

∂

∂x
+

∂y

∂ξ

∂

∂y

)
∂p

∂x
(3.70)

∂2p

∂ξ∂x
=

∂2p

∂x2

∂x

∂ξ
+

∂2p

∂y∂x

∂y

∂ξ
(3.71)

Similarly

∂2p

∂ξ∂y
=

∂2p

∂y2

∂y

∂ξ
+

∂2p

∂y∂x

∂x

∂ξ
(3.72)

Substituting Equations 3.71 and 3.72 into 3.68 and following the same steps explained

above for the second derivative with respect to y and mixed derivative, we finally obtain

the system of Equations as

∂2p

∂ξ2
=

∂p

∂x

∂2x

∂ξ2
+

∂p

∂y

∂2y

∂ξ2
+

∂2p

∂x2

(
∂x

∂ξ

)2

+
∂2p

∂y2

(
∂y

∂ξ

)2

+ 2
∂2p

∂x∂y

∂x

∂ξ

∂y

∂ξ
(3.73)

∂2p

∂η2
=

∂p

∂x

∂2x

∂η2
+

∂p

∂y

∂2y

∂η2
+

∂2p

∂x2

(
∂x

∂η

)2

+
∂2p

∂y2

(
∂y

∂η

)2

+ 2
∂2p

∂x∂y

∂x

∂η

∂y

∂η
(3.74)

∂2x

∂ξ∂η
+

∂p

∂y

∂2y

∂ξ∂η
+

∂2p

∂x2

∂x

∂ξ

∂x

∂η
+

∂2p

∂y2

∂y

∂ξ

∂y

∂η
+

∂2p

∂x∂y

(
∂x

∂η

∂y

∂ξ
+

∂x

∂ξ

∂y

∂η

)
(3.75)

If we solve the system of Equations 3.73, 3.74 and 3.75 for the three unknowns ∂2p/∂x2,
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∂2p/∂y2 and ∂2p/∂x∂y using Cramer’s rule and replace the terms ∂p/∂x and ∂p/∂y

with Equations 3.66 and 3.67 we obtain the ultimate expressions for the coordinate

transformation as follows

∂2p

∂x2
=

(
1

J

∂y

∂η

)2
∂2p

∂ξ2
+

(
1

J

∂y

∂ξ

)2
∂2p

∂η2
− 2

1

J2

∂y

∂ξ

∂y

η

∂2p

∂ξ∂η

+
1

J3

[
∂y

∂ξ

(
∂2x

∂ξ2

(
∂y

∂η

)2

+
∂2x

∂η2

(
∂y

∂ξ

)2

− 2
∂y

∂η

∂y

∂ξ

∂2x

∂ξ∂η

)]
∂p

∂η

− 1

J3

[
∂x

∂ξ

(
∂2y

∂ξ2

(
∂y

∂η

)2

+
∂2y

∂η2

(
∂y

∂ξ

)2

− 2
∂y

∂ξ

∂y

∂η

∂2y

∂ξ∂η

)]
∂p

∂η

+
1

J3

[
∂x

∂η

(
∂2y

∂ξ2

(
∂y

∂η

)2

+
∂2y

∂η2

(
∂y

∂ξ

)2

− 2
∂y

∂η

∂y

∂ξ

∂2y

∂ξ∂η

)]
∂p

∂ξ

− 1

J3

[
∂y

∂η

(
∂2x

∂ξ2

(
∂y

∂η

)2

+
∂2x

∂η2

(
∂y

∂ξ

)2

− 2
∂y

∂ξ

∂y

∂η

∂2x

∂ξ∂η

)]
∂p

∂ξ

(3.76)

∂2p

∂y2
=

(
1

J

∂x

∂η

)2
∂2p

∂ξ2
+

(
1

J

∂x

∂ξ

)2
∂2p

∂η2
− 2

1

J2

∂x

∂ξ

∂x

η

∂2p

∂ξ∂η

+
1

J3

[
∂y

∂ξ

(
∂2x

∂ξ2

(
∂x

∂η

)2

+
∂2x

∂η2

(
∂x

∂ξ

)2

− 2
∂x

∂η

∂x

∂ξ

∂2x

∂ξ∂η

)]
∂p

∂η

− 1

J3

[
∂x

∂ξ

(
∂2y

∂ξ2

(
∂x

∂η

)2

+
∂2y

∂η2

(
∂x

∂ξ

)2

− 2
∂x

∂ξ

∂x

∂η

∂2y

∂ξ∂η

)]
∂p

∂η

+
1

J3

[
∂x

∂η

(
∂2y

∂ξ2

(
∂x

∂η

)2

+
∂2y

∂η2

(
∂x

∂ξ

)2

− 2
∂x

∂η

∂x

∂ξ

∂2y

∂ξ∂η

)]
∂p

∂ξ

− 1

J3

[
∂y

∂η

(
∂2x

∂ξ2

(
∂x

∂η

)2

+
∂2x

∂η2

(
∂x

∂ξ

)2

− 2
∂x

∂ξ

∂x

∂η

∂2x

∂ξ∂η

)]
∂p

∂ξ

(3.77)



45

∂2p

∂x∂y
= − 1

J2

∂x

∂η

∂y

∂η

∂2p

∂ξ2
− 1

J2

∂x

∂ξ

∂y

∂ξ

∂2p

∂η2
+

1

J2

(
∂x

∂ξ

∂y

∂η
+

∂x

∂η

∂y

∂ξ

)
∂2p

∂ξ∂η

+
1

J3

[
∂x

∂ξ

(
∂2y

∂ξ2

∂x

∂η

∂y

∂η
+

∂2y

∂η2

∂x

∂ξ

∂y

∂ξ
− ∂2y

∂ξ∂η

(
∂x

∂ξ

∂y

∂η
+

∂x

∂η

∂y

∂ξ

))]
∂p

∂η

− 1

J3

[
∂y

∂ξ

(
∂2x

∂ξ2

∂x

∂η

∂y

∂η
+

∂2x

∂η2

∂x

∂ξ

∂y

∂ξ
− ∂2x

∂ξ∂η

(
∂x

∂ξ

∂y

∂η
+

∂x

∂η

∂y

∂ξ

))]
∂p

∂η

+
1

J3

[
∂y

∂η

(
∂2x

∂ξ2

∂x

∂η

∂y

∂η
+

∂2x

∂η2

∂x

∂ξ

∂y

∂ξ
− ∂2x

∂ξ∂η

(
∂x

∂ξ

∂y

∂η
+

∂x

∂η

∂y

∂ξ

))]
∂p

∂ξ

− 1

J3

[
∂x

∂η

(
∂2y

∂ξ2

∂x

∂η

∂y

∂η
+

∂2y

∂η2

∂x

∂ξ

∂y

∂ξ
− ∂2y

∂ξ∂η

(
∂x

∂ξ

∂y

∂η
+

∂x

∂η

∂y

∂ξ

))]
∂p

∂ξ

(3.78)

Now, recalling the velocity Equations 3.44, 3.45 and vorticity transport Equation 3.46,

if we substitute Equations 3.66, 3.67, 3.76, 3.77 and 3.78 into Equations 3.44, 3.45, 3.46

and make necessary arrangements we obtain the transformed form of the governing

equations in the new coordinate system (ξ, η) as follows

∂u

∂η

[
∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)
− ∂x

∂ξ

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)]

+
∂u

∂ξ

[
∂x

∂η

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)
− ∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)]

+
∂2u

∂ξ2
Jα +

∂2u

∂η2
Jβ − 2

∂2u

∂ξ∂η
Jγ = J2

(
∂Ω

∂ξ

∂x

∂η
− ∂Ω

∂η

∂x

∂ξ

)

(3.79)

∂v

∂η

[
∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)
− ∂x

∂ξ

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)]

+
∂v

∂ξ

[
∂x

∂η

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)
− ∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)]

+
∂2v

∂ξ2
Jα +

∂2v

∂η2
Jβ − 2

∂2v

∂ξ∂η
Jγ = J2

(
∂Ω

∂ξ

∂y

∂η
− ∂Ω

∂η

∂y

∂ξ

)

(3.80)
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u

(
∂Ω

∂ξ

∂y

∂η
− ∂Ω

∂η

∂y

∂ξ

)
J2Re+v

(
∂Ω

∂η

∂x

∂ξ
− ∂Ω

∂ξ

∂x

∂η

)
J2Re =

∂2Ω

∂ξ2
Jα+

∂2Ω

∂η2
Jβ−2

∂2Ω

∂ξ∂η
Jγ

+
∂Ω

∂η

[
∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)
− ∂x

∂ξ

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)]

+
∂Ω

∂ξ

[
∂x

∂η

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)
− ∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)]

(3.81)

where

α =
(

∂x
∂η

)2

+
(

∂y
∂η

)2

β =
(

∂x
∂ξ

)2

+
(

∂y
∂ξ

)2

γ = ∂x
∂ξ

∂x
∂η

+ ∂y
∂ξ

∂y
∂η

J = ∂x
∂ξ

∂y
∂η
− ∂y

∂ξ
∂x
∂η

(3.82)

The system of equations derived above is the ultimate form of the transformed govern-

ing equations in (ξ, η) space and is used in this study.

3.4.1.2. Boundary Conditions. In order to solve the velocity-vorticity equations we

must supply appropriate boundary conditions for the new coordinate system. In the

following discussion boundary conditions are classified into three groups: inflow, solid

surface and outflow.

Inflow:

At the inflow ξ component of velocity is constant, i.e.u = constant and η compo-

nent of velocity is zero.

u = cons.

v = 0
(3.83)

Two different vorticity boundary conditions are implemented and the effects of them

on the results are investigated in this study. Pressure and deformation distributions are
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calculated by using two specifications of vorticity conditions for the inflow boundaries

and the outputs are presented separately. First approach is vorticity-free case at the

inflow that Pao and Dogherty [3] used in their study. This application is also mentioned

in [1] and specified as an alternative approach.

Ω = 0 (3.84)

Second approach is the application of the definition of the vorticity defined in Equation

Figure 3.14. Boundary conditions in 2D

3.88. Using Equations 3.83 yields

Ω =
1

J

(
∂v

∂ξ

∂y

∂η
+

∂u

∂ξ

∂x

∂η

)
(3.85)

Solid Surface:
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For the solid surface, no-slip and no-penetration conditions yield the following

expressions

u = 0

v = 0
(3.86)

The vorticity is defined as the following in Equation 3.33

Ω =
∂v

∂x
− ∂u

∂y
(3.87)

If we transform this equation to the new coordinate system we have an expression as

Ω =
1

J

(
∂v

∂ξ

∂y

∂η
− ∂v

∂η

∂y

∂ξ
− ∂u

∂η

∂x

∂ξ
+

∂u

∂ξ

∂x

∂η

)
(3.88)

The velocity components vanish along the solid boundaries, therefore

∂u
∂ξ

= 0

∂v
∂ξ

= 0
(3.89)

By using the above expressions Equation 3.88 reduces to

Ω = − 1

J

(
∂v

∂η

∂y

∂ξ
+

∂u

∂η

∂x

∂ξ

)
(3.90)

where J is defined in Equation 3.59.

Outflow :

In this study the values of the velocity components and the vorticity at the outflow

are extrapolated from the interior solution.
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3.4.2. Two-Dimensional Analysis Using Stream Function-Vorticity Formu-

lation

For a two dimensional, incompressible flow a function which relates the velocities

can be defined as

u =
∂ψ

∂y
(3.91)

v = −∂ψ

∂x
(3.92)

then the continuity equation is identically satisfied. Such a function is known as the

stream function. From a physical point of view, the lines of constant ψ represent

stream lines that are everywhere tangent to the velocities and the difference in the

values of ψ between two streamlines gives the volumetric flowrate between the two.

If we substitute Equations 3.91 and 3.92 into the definition of vorticity expressed in

Equation 3.33, one can reach

∂2ψ

∂x2
+

∂2ψ

∂y2
= −Ω (3.93)

This equation is known as the stream function equation and is classified as an elliptic

PDE. The unknown is the stream function ψ, whose Ω is provided from the solution

of the Vorticity Transport Equation. Once the stream function has been found, the

velocity components may be determined from Equations 3.91 and 3.92. By using the

nondimensional quantities defined in the previous chapter the vorticity transport and

stream function equations can be expressed in a nondimensional form as

∂2ψ∗

∂x∗2
+

∂2ψ∗

∂y∗2
= −Ω∗ (3.94)

∂Ω∗

∂t∗
+

∂ψ∗

∂y∗
∂Ω∗

∂x∗
− ∂ψ∗

∂x∗
∂Ω∗

∂y∗
=

1

Re

(
∂2Ω∗

∂x∗2
+

∂2Ω∗

∂y∗2

)
(3.95)
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The vorticity-stream function formulation has the following characteristics

• Since the velocity components are expressed in terms of the stream function in

such a way that the continuity equation is identically satisfied, the latter does

not need to be considered.

• The pressure term does not appear in the vorticity-stream function formulation

which is highly practical. Therefore, the velocity components are obtained ini-

tially and if we had to solve for the pressure field, we would have to apply the

Poisson equation for pressure.

• By using the vorticity-stream function approach the incompressible Navier-Stokes

equations are decoupled into one elliptic equation and one parabolic equation

which can be solved sequentially.

• In the vorticity-stream function formulation we employ the no-penetration and

no-slip boundary conditions in a sequential instead of simultaneous way. The

no-penetration condition is applied during the solution for the stream function

and the no-slip condition is applied during the derivation of boundary conditions

for the vorticity.

• The vorticity-stream function formulation is not practical in three dimensions

because of lackness of a simple stream function in three dimensions.

3.4.2.1. Transformation of The Governing Equations. If we use the derivation of the

coordinate transformation explained in the previous chapter we can write the trans-

formed form of the governing equations using stream function-vorticity formulation as

the following
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Stream Function Equation

∂ψ

∂η

[
∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)
− ∂x

∂ξ

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)]

+
∂ψ

∂ξ

[
∂x

∂η

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)
− ∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)]

+
∂2ψ

∂ξ2
Jα +

∂2ψ

∂η2
Jβ − 2

∂2ψ

∂ξ∂η
Jγ = −J3Ω

(3.96)

Vorticity Transport Equation

Re
∂ψ

∂η

∂Ω

∂ξ
J

(
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

)
+ Re

∂ψ

∂ξ

∂Ω

∂η
J

(
∂x

∂η

∂y

∂ξ
− ∂y

∂η

∂x

∂ξ

)
=

+
∂Ω

∂η

[
∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)
− ∂x

∂ξ

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)]

+
∂Ω

∂ξ

[
∂x

∂η

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)
− ∂y

∂η

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)]

+
∂2Ω

∂ξ2
Jα +

∂2Ω

∂η2
Jβ − 2

∂2Ω

∂ξ∂η
Jγ

(3.97)

where α, β, γ and J are defined in Equations 3.82. The system of equations derived

above is the ultimate form of the transformed governing equations in (ξ, η) space and

is used in this study.

3.4.2.2. Boundary Conditions. In order to solve the stream function and the vortic-

ity transport equations we must supply appropriate boundary conditions for the new

coordinate system. In the following discussion boundary conditions are classified into

three groups: inflow, solid surface and outflow.

Inflow:

At the inflow the stream function is defined considering ξ component of velocity

is constant, i.e. u=constant and η component of velocity is zero. This assumption
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yields a linearly changing stream function at the inflow, therefore

u =
∂ψ

∂η
= const. (3.98)

v = −∂ψ

∂ξ
= 0 (3.99)

Two different vorticity boundary conditions are implemented and the effects of them

on the results are investigated in this study. Pressure and deformation distributions are

calculated by using two specifications of vorticity conditions for the inflow boundaries

and the outputs are presented separately. First approach is vorticity-free case at the

inflow that Pao and Dogherty [3] used in their study. This application is also mentioned

in [1] and specified as an alternative approach.

Ω = 0 (3.100)

Second approach is the application of the stream function equation defined by 3.96.

By using 3.98 we can derive that

∂2ψ

∂η2
= 0 (3.101)

Second derivative of stream function with respect to ξ and mixed derivative are derived

as follows

ψ2,j = ψ1,j +
∂ψ

∂ξ

∣∣∣∣
1,j

∆ξ +
∂2ψ

∂ξ2

∣∣∣∣
1,j

(∆ξ)2

2
+ ... (3.102)

At the inflow

v1,j = − ∂ψ

∂ξ

∣∣∣∣
1,j

= 0 (3.103)
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Therefore

ψ2,j = ψ1,j +
∂2ψ

∂ξ2

∣∣∣∣
1,j

(∆ξ)2

2
+ O (∆ξ)3 (3.104)

from which

∂2ψ

∂ξ2

∣∣∣∣
1,j

= 2
(ψ2,j − ψ1,j)

(∆ξ)2 + O (∆ξ) (3.105)

Mixed derivative is defined as

∂

∂ξ

(
∂ψ

∂η

)
=

(
∂ψ
∂η

)
2,j
−

(
∂ψ
∂η

)
1,j

∆ξ
(3.106)

∂

∂ξ

(
∂ψ

∂η

)
=

ψ2,j+1 − ψ2,j−1 − ψ1,j+1 + ψ1,j−1

2∆η∆ξ
(3.107)

If we substitute Equations 3.98 to 3.107 into Equation 3.96, we will obtain the ultimate

expression for the vorticity boundary condition at the inflow as the following

∂ψ

∂η

[
∂y

∂ξ

(
∂2x

∂ξ2
α +

∂2x

∂η2
β − 2

∂2x

∂ξ∂η
γ

)
− ∂x

∂ξ

(
∂2y

∂ξ2
α +

∂2y

∂η2
β − 2

∂2y

∂ξ∂η
γ

)]

+
∂2ψ

∂ξ2
Jα− 2

∂2ψ

∂ξ∂η
Jγ = −J3Ω

(3.108)

where α, β, γ and J are defined in Equations 3.82.

Solid Surface:

Since a solid surface can be considered as a stream line and therefore the stream

function is constant, its value may be assigned arbitrarily. For the solid surface, no-slip
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and no-penetration conditions yield the following expressions

u =
∂ψ

∂η
= 0 (3.109)

v = −∂ψ

∂ξ
= 0 (3.110)

∂2ψ

∂ξ2
= 0 (3.111)

For the upper solid surface

∂2ψ

∂η2
=

2 (ψi,nξ−1 − ψi,nξ)

(∆η)2 (3.112)

For the lower solid surface

∂2ψ

∂η2
=

2 (ψi,2 − ψi,1)

(∆η)2 (3.113)

And mixed derivative is obtained as follows

∂

∂ξ

(
∂ψ

∂η

)
=

(
∂ψ
∂η

)
i+1

−
(

∂ψ
∂η

)
i−1

2∆ξ
= 0 (3.114)

Substituting Equations 3.109, 3.110, 3.111, 3.112, 3.113 and 3.114 in Equation 3.96 we

have

∂2ψ

∂η2
J

[(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2
]

= −J3Ω (3.115)

where J is defined in Equation 3.82.

Outflow:
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In this study the values of the stream function and the vorticity at the outflow

are extrapolated from the interior solution.

3.4.3. Three-Dimensional Analysis Using Velocity-Vorticity Formulation

In this part we discuss only the ultimate form of the transformed governing

equations and boundary conditions in 3-D. Detailed derivations and explanations are

presented in appendix A.

For the flow of incompressible Newtonian fluids the governing equations for the

velocity-vorticity formulation in 3-D Cartesian coordinates can be written as

x-component of velocity :

∇2u =
∂Ωy

∂z
− ∂Ωz

∂y
(3.116)

y-component of velocity :

∇2v =
∂Ωz

∂x
− ∂Ωx

∂z
(3.117)

z-component of velocity :

∇2w =
∂Ωx

∂y
− ∂Ωy

∂x
(3.118)

vorticity transport :

∇. (uΩ)− (Ω.∇) u− 1

Re
∇2Ω = 0 (3.119)
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In expanded form the governing equations can be expressed as the following

x-component of velocity :

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

∂Ωy

∂z
− ∂Ωz

∂y
(3.120)

y-component of velocity :

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
=

∂Ωz

∂x
− ∂Ωx

∂z
(3.121)

z-component of velocity :

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
=

∂Ωx

∂y
− ∂Ωy

∂x
(3.122)

x-component of vorticity transport :

u
∂Ωx

∂x
+ v

∂Ωx

∂y
+ w

∂Ωx

∂z
− Ωx

∂u

∂x
− Ωy

∂u

∂y
− Ωz

∂u

∂z

− 1

Re

(
∂2Ωx

∂x2
+

∂2Ωx

∂y2
+

∂2Ωx

∂z2

)
= 0

(3.123)

y-component of vorticity transport :

u
∂Ωy

∂x
+ v

∂Ωy

∂y
+ w

∂Ωy

∂z
− Ωx

∂v

∂x
− Ωy

∂v

∂y
− Ωz

∂v

∂z

− 1

Re

(
∂2Ωy

∂x2
+

∂2Ωy

∂y2
+

∂2Ωy

∂z2

)
= 0

(3.124)
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z-component of vorticity transport :

u
∂Ωz

∂x
+ v

∂Ωz

∂y
+ w

∂Ωz

∂z
− Ωx

∂w

∂x
− Ωy

∂w

∂y
− Ωz

∂w

∂z

− 1

Re

(
∂2Ωz

∂x2
+

∂2Ωz

∂y2
+

∂2Ωz

∂z2

)
= 0

(3.125)

where

Ωx = ∂w
∂y
− ∂v

∂z

Ωy = ∂u
∂z
− ∂w

∂x

Ωz = ∂v
∂x
− ∂u

∂y

(3.126)

3.4.3.1. Transformation of the Governing Equations. Transformation of the governing

equations in three-dimensional velocity-vorticity formulation is derived in Appendix A.

3.4.3.2. Boundary Conditions. The numerical implementation of the boundary con-

ditions discussed in this part is similar to that in two dimensions with some extensions

to three dimensions.

Inflow:

For inflow boundaries it is appropriate to specify the velocity field. In this study

the velocity field is defined in 3-D as follows

u = const.

v = 0

w = 0

(3.127)
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Figure 3.15. Boundary conditions in 3D
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At the inflow vorticity-free boundary conditions are considered.

Ωx = 0

Ωy = 0

Ωz = 0

(3.128)

Solid Surface:

At solid surfaces boundary conditions for the velocity field are given by no-slip

and no-penetration,

u = 0

v = 0

w = 0

(3.129)

and for the vorticity

i) Surface x=constant:

Ωx = 0

Ωy = −∂w
∂x

Ωz = ∂v
∂x

(3.130)

ii) Surface y=constant:

Ωx = ∂w
∂y

Ωy = 0

Ωz = −∂u
∂y

(3.131)
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iii) Surface z=constant:

Ωx = −∂v
∂z

Ωy = ∂u
∂z

Ωz = 0

(3.132)

Outflow:

At outflow Neumann boundary conditions for the velocity components and vor-

ticity are specified.

3.4.4. Pressure Calculation for Two-Dimensional Analysis

Since we analyze the deformation of the turbomachinery blades under aerody-

namic loads, it is not necessary to solve the Poisson equation over the entire flow field.

Instead, a simpler equation can be solved for the wall pressures. This equation is

obtained by applying the tangential momentum equation to the fluid adjacent to the

wall surface. For a wall located at y = 0 in a Cartesian coordinate system the steady,

tangential momentum equation (x momentum equation) reduces to

∂p

∂x

)

wall

=
1

Re

∂2u

∂y2

)

wall

(3.133)

or by taking the y derivative of the vorticity and substituting into Equation 3.133

∂p

∂x

)

wall

= − 1

Re

∂2Ω

∂y2

)

wall

(3.134)

which can be discretized as

pi+1,1 − pi−1,1

2∆x
= − 1

Re

(−3Ωi,1 + 4Ωi,2 − Ωi,3

2∆y

)
(3.135)
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In order to apply Equation 3.135, the pressure must be known for at least one point on

the wall surface. The pressure at the adjacent point can be determined using a first-

order, one-sided difference expression for ∂p/∂x in Equation 3.134. Then, Equation

3.135 can be used to find the pressure at all other wall points.

3.5. Code Development and Validation

Both stream function-vorticity and velocity-vorticity formulations are applied to

the channel flow and lid-driven problems to calculate pressure on the walls. At the

inflow two boundary conditions are used as elaborated in 3.4.1.2 and the resulting

effects are monitored. Pressure distribution on the wall is calculated by using the

approach explained in 3.4.4 in detail. The solutions are achieved for two values of

Reynolds number, Re=50 and Re=100 using a fine uniform grid mesh. In the test cases,

different solvers and preconditioners are also applied to demonstrate and performances

of numerical methods.
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4. RESULTS AND DISCUSSION

4.1. Two-Dimensional Analysis

4.1.1. Stream function-vorticity formulation

4.1.1.1. Effect of the Physical Parameter: Reynolds Number. Stream function-vorticity

formulation with four different values of Reynolds number (Re=100, Re=300, Re=400

and Re=500) are applied to the problem and the results are presented below. At the

inflow, the definition of vorticity derived in 3.108 is used as the vorticity boundary

condition. The computational domains consist of 161x121 grid nodes.

(a) Re: 100 (b) Re: 300

Figure 4.1. Stream function contours
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(a) Re: 400 (b) Re: 500

Figure 4.2. Stream function contours

(a) Re: 100 (b) Re: 300

Figure 4.3. Vorticity contours
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(a) Re: 400 (b) Re: 500

Figure 4.4. Vorticity contours

4.1.2. Velocity-vorticity formulation

Velocity-vorticity formulation with two different Reynolds numbers (Re=100,

Re=300) and vorticity-free boundary condition at the inflow [3] is applied to the prob-

lem and the results are presented in the following.
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(a) Re: 100 (b) Re: 300

Figure 4.5. Streamtrace contours

(a) Re: 100 (b) Re: 300

Figure 4.6. Vorticity contours
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4.1.3. Pressure Distribution and Blade Deformation Under Aerodynamic

Loads

4.1.3.1. Effect of the Physical Parameter: Reynolds Number. Pressure distribution on

the blade surface is calculated by using the approach explained in 3.4.4 thoroughly.

Figure 4.7. Pressure distribution with vorticity bc at the inflow: definition of

vorticity (Re=100)

Figure 4.8. Pressure distribution with vorticity bc at the inflow: definition of

vorticity (Re=300)
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Figure 4.9. Pressure distribution with vorticity bc at the inflow: definition of

vorticity (Re=100)

Figure 4.10. Pressure distribution with vorticity bc at the inflow: definition of

vorticity (Re=300)
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Figure 4.11. Pressure distribution with vorticity bc at the inflow: vorticity-free

(Re=100)

Figure 4.12. Pressure distribution with vorticity bc at the inflow: vorticity-free

(Re=300)
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Figure 4.13. Pressure distribution with vorticity bc at the inflow: vorticity-free

(Re=100)

Figure 4.14. Pressure distribution with vorticity bc at the inflow: vorticity-free

(Re=300)
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4.2. Three-Dimensional Analysis

4.2.1. Velocity-vorticity formulation

Streamtrace and vorticity contours from three-dimensional analysis are presented

below.

Figure 4.15. Streamtrace contours (Re=10)

Figure 4.16. Streamtrace contours (Re=10)
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Figure 4.17. Vorticity contours (Re=10)

Figure 4.18. Vorticity contours (Re=10)
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4.2.2. Blade Deformation Under Aerodynamic Loads

4.2.2.1. Results of the first step of FSI. In this section, deformation of the blade un-

der aerodynamic loads is shown. As mentioned earlier after achieving the pressure

field, the pressure values are applied as boundary conditions in ANSYS and result-

ing displacements are transferred to fluid analysis in order to update the geometry of

the problem. This procedure is perpetuated until two norm of the difference of two

successive displacement vectors is less than the user specified tolerance.

Figure 4.19. X-Component of displacement on the blade

Figure 4.20. Y-Component of displacement on the blade
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Figure 4.21. Z-Component of displacement on the blade

Figure 4.22. Deformed shape with undeformed edge

Figure 4.23. Vector plot of translation
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4.2.2.2. Results after the convergence of displacement vectors. After last step of FSI,

the results are demonstrated as the final shape of the blade.

Figure 4.24. X-Component of displacement on the blade

Figure 4.25. Y-Component of displacement on the blade
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Figure 4.26. Z-Component of displacement on the blade

Figure 4.27. Deformed shape with undeformed edge

Figure 4.28. Vector plot of translation
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4.3. Comparison of The Computational Parameters

The variation of the non-linear residual with respect to the number of Newton

steps is given in the Fig.4.29. Zero vector is used as the initial guess both for two- and

three-dimensional cases. Different from the linear residual absolute non-linear residual

is monitored and the tolerance is set to 1×10−6. In the Fig.4.30 the convergence behav-

Figure 4.29. 2-norm of the non-linear residual vs. Newton steps

ior of the solvers and the effect of the preconditioners on this behavior are visualized.

Three different preconditioners namely Jacobi, SGS and ILU(l) are combined with two

different Krylov sub-space methods such as BiCGSTAB and GMRES.Relative residual

is checked to decide for convergence and is taken as 1×10−5. Since ILU needs Jacobian

explicitly, it can not be applied to the matrix-free algorithms. In order to compare its

effect with the effects of Jacobi and SGS, exact Newton algorithm is used and this

algorithm is adapted to the compressed column storage(CCS) scheme. Otherwise the

grid density in the problem would lead to high computational costs. The residual of

the linear system is evaluated relative to the initial residual of the system. That’s why

the residuals equal to unity at the beginning of the iterations. GMRES is the one with

the most regular convergence pattern. Iterations in GMRES are restarted after 100
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Figure 4.30. Comparison of the preconditioners

Table 4.1. Comparison of the solvers and preconditioners by means of iteration

number and computation time

Method # of iterations per Time

Newton Step (average) (sec.)

Jacobi-BiCGSTAB 490.5 25.7

SGS-BiCGSTAB 108.8 23.1

ILU(6)-BiCGSTAB 16.2 21.2

Jacobi-GMRES(100) 313.6 26.1

SGS-GMRES(100) 97.7 22.7

ILU(6)-GMRES(100) 12.5 20.4
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iterations. The accumulated data are cleared and the intermediate results are used as

the initial data for the next 100 iterations. In GMRES the residual of the linear system

always decreases as iteration continues which is not the case at BiCGSTAB. However,

it requires more iteration steps in the sample problem than BiCGSTAB requires to

converge. On the other hand, the robust and stable character of GMRES can be used

at the ill-conditioned matrices where the other solvers may diverge.

Preconditioners have a significant effect on the convergence of the solvers such

that Jacobian matrix solvers without preconditioners could not make the solvers con-

verge in the prescribed iteration limit. Some methods even diverge when used without

a preconditioner.

Jacobi is one of the most easily applicable preconditioners however it does not

play an important role on the convergence behavior of the solvers. On the other hand,

SGS and ILU(l) methods greatly enhance the convergence behavior of all two methods

not only in the number of iteration steps but also in computation time. Looking

to the graphs it is understood that ILU(l) preconditioned methods have a superior

convergence character to the SGS preconditioned ones.
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5. CONCLUSIONS

In this study, both two- and three-dimensional fluid-solid interaction analysis of

turbomachinery blades are investigated. For the fluid analysis part of the solution

procedure, discretized form of the governing equations are solved and for solid analysis

ANSYS is applied. As mentioned earlier, both exact and inexact Newton’s method are

used to linearize the non-linear governing equations and matrix-free implementations

of the preconditioned Krylov techniques are implemented to solve the resulting linear

equations. Two different solvers, BiCGSTAB and GMRES, and three preconditioners,

SGS, JACOBI and, are chosen as solution methods.

While stream function-vorticity and velocity-vorticity formulations are applied in

two-dimensional analysis, only velocity-vorticity approach is used in three-dimensional

analysis.

After achieving the velocity and vorticity field, pressure distribution is calculated on the

blade surface. For solid analysis ANSYS is implemented to compute the deformation

of the blades under the acquired conditions. Different Reynolds numbers are chosen to

study their effects on the results of FSI analysis and two boundary conditions for the

inflow are defined to monitor the changes on the flow field and solid deformation. Both

algebraic and elliptic grid generation methods are performed to obtain a desirable grid

for the physical domain to achieve more accurate numerical results.

Transformation of governing equations is preferred to be the fundamental idea

behind the fluid analysis in both two- and three-dimensional cases since the geometry

of turbomachinery blades is highly complex. Due to the high level of complexity of

the transformed form of the equations and computational memory for data storage

especially in three-dimensional case, computation time increases considerably. This

fact causes coarser grid density in three dimensional case which produces less accurate

results. In order to avoid this difficulty a more powerful and expensive computational

facility is required since it is beyond the capability of numerical methods. Putting aside

this disadvantage, it can be concluded that the FSI analysis enables to demonstrate
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the complex interaction between the fluid flow and blade structure accurately.

As mentioned earlier, both two- and three-dimensional analysis can be modified

by using numerical implementations since especially the fluid analysis requires the

major part of time spent to complete one cycle of FSI. Some of these applications are

summarized in the following part as domain decomposition, nonlinear preconditioning,

parallel computing, multigrid/multilevel techniques.

Domain decomposition methods are based on a partitioning of the domain of the

physical problem. These methods typically involve independent system solution on the

subdomains, and some way of combining data from the subdomains on the separator

part of the domain. Since the subdomains can be handled separately, such methods

are very attractive for coarse-grain parallel computers. On the other hand, it should

be stressed that they can be very effective even on sequential computers. Generally,

there are two kinds of approaches depending on whether the subdomains overlap with

one another (Schwarz methods) or are separated from one another by interfaces (Schur

Complement methods, iterative substructuring). Both of the approaches can be very

practical in the manner of FSI analysis of turbomachinery blades since the geometry is

highly complex and the fluid flow between the blades is three-dimensional with some

particular difficulties.

Another way which may also be linked with domain decomposition phenomena

is parallel computing. Since the iterative methods share most of their computational

kernels, inner products, vector updates, matrix-vector products and preconditioner

solves can be easily parallelized. On distributed-memory machines these basic time-

consuming schemes then have to be sent to other processors to be combined for their

global procedures.

Multigrid and multilevel methods are also extremely efficient for especially simple

iterative methods (such as the Jacobi method) which tend to damp out high frequency

components of the error fastest. Multigrid techniques are based on the following heuris-

tic: 1- Perform some steps of a basic method in order to smooth out the error. 2-
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Restrict the current state of the problem to a subset of the grid points, the so-called

”coarse grid”, and solve the resulting projected problem. 3- Interpolate the coarse

grid solution to the original grid, and perform a number of steps of the basic method

again. Steps 1 and 3 are called ”pre-smoothing” and ”post-smoothing” respectively;

by applying this method recursively to step 2 it becomes a true ”multigrid” method.
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APPENDIX A: Transformation of the Governing Equations

in 3-D

In this chapter coordinate transformation of the governing equations for the

velocity-vorticity formulation expressed in the Cartesian coordinate system (x, y, z)

from physical space to computational space (ξ, η, ζ) is investigated. Time derivatives

in the equations are neglected since only the steady state solution of the problem is

considered. The governing equations are transformed from the physical space (x, y, z)

to the computational space (ξ, η, ζ) by the following relations

ξ = ξ (x, y, z)

η = η (x, y, z)

ζ = ζ (x, y, z)

(A.1)

In the following discussion the partial derivatives will be denoted using subscripts,

ξx = ∂ξ/∂x. The chain rule of partial differentiation provides the following expressions

for the Cartesian derivatives

∂
∂x

= ξx
∂
∂ξ

+ ηx
∂
∂η

+ ζx
∂
∂ζ

∂
∂y

= ξy
∂
∂ξ

+ ηy
∂
∂η

+ ζy
∂
∂ζ

∂
∂z

= ξz
∂
∂ξ

+ ηz
∂
∂η

+ ζz
∂
∂ζ

(A.2)

From Equations A.2, it is obvious that the value of the metrics ξx, ηx, ζx, ξy, ηy,

ζy, ξz, ηz and ζz must be provided in the same fashion. In most cases the analytical

determination of the metrics is not possible and, therefore, they must be computed

numerically. Since the stepsizes in the computational domain are equally spaced, ξx,

ξy, ξz, etc., can be computed by various finite difference approximations. Thus, if the

metrics appearing in Equations A.2 can be expressed in terms of these derivatives, the

numerical computation of metrics is completed. To obtain such relations, the following
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differential expressions are considered :

dx = xξdξ + xηdη + xζdζ

dy = yξdξ + yηdη + yζdζ

dz = zξdξ + zηdη + zζdζ

(A.3)

Equations A.3 are expressed in a matrix form as




dx

dy

dz


 =




xξ xη xζ

yξ yη yζ

zξ zη zζ







dξ

dη

dζ


 (A.4)

Reversing the role of the independent variables,

dξ = ξxdx + ξydy + ξzdz

dη = ηxdx + ηydy + ηzdz

dζ = ζxdx + ζydy + ζzdz

(A.5)

which are expressed as




dξ

dη

dζ


 =




ξx ξy ξz

ηx ηy ηz

ζx ζy ζz







dx

dy

dz


 (A.6)

Comparing Equations A.4 and A.6, one concludes that




ξx ξy ξz

ηx ηy ηz

ζx ζy ζz


 =




xξ xη xζ

yξ yη yζ

zξ zη zζ




−1

(A.7)
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From which,

ξx = 1
J

(yηzζ − yζzη)

ξy = 1
J

(xζzη − xηzζ)

ξz = 1
J

(xηyζ − xζyη)

ηx = 1
J

(yζzξ − yξzζ)

ηy = 1
J

(xξzζ − xζzξ)

ηz = 1
J

(xζyξ − xξyζ)

ζx = 1
J

(yξzη − yηzξ)

ζy = 1
J

(xηzξ − xξzη)

ζz = 1
J

(xξyη − xηyξ)

(A.8)

where J is the Jacobian of transformation defined by

J =
∂ (ξ, η, ζ)

∂ (x, y, z)
= xξ (yηzζ − yζzη)− xη (yξzζ − yζzξ) + xζ (yξzη − yηzξ) (A.9)

To complete the transformation we need to obtain the second and mixed derivatives

of any arbitrary variable with respect to ξ, η, ζ. Let x-component of velocity u be

the dependent variable such as u = u(x, y, z), where x = x(ξ, η, ζ), y = y(ξ, η, ζ)

and z = z(ξ, η, ζ). The following expressions are derived using the simple rule for

differentiation of a product of two terms

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
+

∂u

∂ζ

∂ζ

∂x

)

=
∂2u

∂ξ∂x

∂ξ

∂x
+

∂u

∂ξ

∂2ξ

∂x2
+

∂2u

∂η∂x

∂η

∂x
+

∂u

∂η

∂2η

∂x2
+

∂2u

∂ζ∂x

∂ζ

∂x
+

∂u

∂ζ

∂2ζ

∂x2

(A.10)

The first, third and fifth terms in the above equation involve differentiation with respect

to one variable in the (x, y, z) system and another variable in the (ξ, η, ζ) system. Since

this is not appropriate for the coordinate transformation we need to work further with
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these terms

∂2u

∂ξ∂x
=

∂

∂x

(
∂u

∂ξ

)

=

(
∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
+

∂

∂ζ

∂ζ

∂x

)
∂u

∂ξ

(A.11)

Expanding the above yields

∂2u

∂ξ∂x
=

∂2u

∂ξ2

∂ξ

∂x
+

∂2u

∂ξ∂η

∂η

∂x
+

∂2u

∂ξ∂ζ

∂ζ

∂x
(A.12)

Similarly

∂2u

∂η∂x
=

∂2u

∂ξ∂η

∂ξ

∂x
+

∂2u

∂η2

∂η

∂x
+

∂2u

∂ζ∂η

∂ζ

∂x
(A.13)

∂2u

∂ζ∂x
=

∂2u

∂ξ∂ζ

∂ξ

∂x
+

∂2u

∂ζ∂η

∂η

∂x
+

∂2u

∂ζ2

∂ζ

∂x
(A.14)

If we rewrite Equation A.10 by substituting Equations A.12, A.13 and A.14

∂2u

∂x2
=

∂u

∂ξ

∂2ξ

∂x2
+

∂u

∂η

∂2η

∂x2
+

∂u

∂ζ

∂2ζ

∂x2
+

∂2u

∂ξ2

(
∂ξ

∂x

)2

+
∂2u

∂η2

(
∂η

∂x

)2

+
∂2u

∂ζ2

(
∂ζ

∂x

)2

+ 2
∂2u

∂ξ∂η

∂ξ

∂x

∂η

∂x
+ 2

∂2u

∂ξ∂ζ

∂ξ

∂x

∂ζ

∂x
+ 2

∂2u

∂ζ∂η

∂ζ

∂x

∂η

∂x

(A.15)
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By using the same approach explained above for the partial derivatites ∂2u/∂y2, ∂2u/∂z2,

∂2u/∂x∂y, ∂2u/∂x∂z and ∂2u/∂y∂z we have the following expressions

∂2u

∂y2
=

∂u

∂ξ

∂2ξ

∂y2
+

∂u

∂η

∂2η

∂y2
+

∂u

∂ζ

∂2ζ

∂y2
+

∂2u

∂ξ2

(
∂ξ

∂y

)2

+
∂2u

∂η2

(
∂η

∂y

)2

+
∂2u

∂ζ2

(
∂ζ

∂y

)2

+ 2
∂2u

∂ξ∂η

∂ξ

∂y

∂η

∂y
+ 2

∂2u

∂ξ∂ζ

∂ξ

∂y

∂ζ

∂y
+ 2

∂2u

∂ζ∂η

∂ζ

∂y

∂η

∂y

(A.16)

∂2u

∂z2
=

∂u

∂ξ

∂2ξ

∂z2
+

∂u

∂η

∂2η

∂z2
+

∂u

∂ζ

∂2ζ

∂z2
+

∂2u

∂ξ2

(
∂ξ

∂z

)2

+
∂2u

∂η2

(
∂η

∂z

)2

+
∂2u

∂ζ2

(
∂ζ

∂z

)2

+ 2
∂2u

∂ξ∂η

∂ξ

∂z

∂η

∂z
+ 2

∂2u

∂ξ∂ζ

∂ξ

∂z

∂ζ

∂z
+ 2

∂2u

∂ζ∂η

∂ζ

∂z

∂η

∂z

(A.17)

∂2u

∂x∂y
=

∂u

∂ξ

∂2ξ

∂x∂y
+

∂u

∂η

∂2η

∂x∂y
+

∂u

∂ζ

∂2ζ

∂x∂y
+

∂2u

∂ξ2

∂ξ

∂x

∂ξ

∂y
+

∂2u

∂η2

∂η

∂x

∂η

∂y
+

∂2u

∂ζ2

∂ζ

∂x

∂ζ

∂y

+
∂2u

∂ξ∂η

(
∂ξ

∂y

∂η

∂x
+

∂ξ

∂x

∂η

∂y

)
+

∂2u

∂ξ∂ζ

(
∂ξ

∂y

∂ζ

∂x
+

∂ξ

∂x

∂ζ

∂y

)
+

∂2u

∂ζ∂η

(
∂η

∂y

∂ζ

∂x
+

∂η

∂x

∂ζ

∂y

)

(A.18)

∂2u

∂x∂z
=

∂u

∂ξ

∂2ξ

∂x∂z
+

∂u

∂η

∂2η

∂x∂z
+

∂u

∂ζ

∂2ζ

∂x∂z
+

∂2u

∂ξ2

∂ξ

∂x

∂ξ

∂z
+

∂2u

∂η2

∂η

∂x

∂η

∂z
+

∂2u

∂ζ2

∂ζ

∂x

∂ζ

∂z

+
∂2u

∂ξ∂η

(
∂ξ

∂z

∂η

∂x
+

∂ξ

∂x

∂η

∂z

)
+

∂2u

∂ξ∂ζ

(
∂ξ

∂z

∂ζ

∂x
+

∂ξ

∂x

∂ζ

∂z

)
+

∂2u

∂ζ∂η

(
∂η

∂z

∂ζ

∂x
+

∂η

∂x

∂ζ

∂z

)

(A.19)
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∂2u

∂y∂z
=

∂u

∂ξ

∂2ξ

∂y∂z
+

∂u

∂η

∂2η

∂y∂z
+

∂u

∂ζ

∂2ζ

∂y∂z
+

∂2u

∂ξ2

∂ξ

∂y

∂ξ

∂z
+

∂2u

∂η2

∂η

∂y

∂η

∂z
+

∂2u

∂ζ2

∂ζ

∂y

∂ζ

∂z

+
∂2u

∂ξ∂η

(
∂ξ

∂z

∂η

∂y
+

∂ξ

∂y

∂η

∂z

)
+

∂2u

∂ξ∂ζ

(
∂ξ

∂z

∂ζ

∂y
+

∂ξ

∂y

∂ζ

∂z

)
+

∂2u

∂ζ∂η

(
∂η

∂z

∂ζ

∂y
+

∂η

∂y

∂ζ

∂z

)

(A.20)

As mentioned in the beginning of this chapter if the transformation, Equations

A.1, is given analytically, then it is possible to obtain analytic values for the metric

terms. However, sometimes, the transformation is given numerically, hence the metric

terms are calculated as finite differences.

Also, the transformation may be expressed as the inverse of Equations A.1, then

we may have available the inverse transformation

x = x (ξ, η, ζ)

y = y (ξ, η, ζ)

z = z (ξ, η, ζ)

(A.21)

In Equations A.21, ξ, η and ζ are the independent variables. However, in the derivative

transformations given by Equations A.2 to A.20, the metric terms are partial derivatives

in terms of x, y and z as the independent variables. Therefore, in order to calculate

the metric terms in these equations from the inverse transformation in Equations A.21,

we need to relate ∂ξ/∂x, ∂η/∂y, etc., to the inverse forms ∂x/∂ξ, ∂y/∂η, etc. Let us

proceed to find such relations

∂2ξ

∂x2
=

∂

∂x

(
∂ξ

∂x

)
=

(
∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
+

∂

∂ζ

∂ζ

∂x

)[
1

J

(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)]
(A.22)
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∂2ξ

∂x2
=

∂ξ

∂x

∂

∂ξ

[
1

J

(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)]
+

∂η

∂x

∂

∂η

[
1

J

(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)]

+
∂ζ

∂x

∂

∂ζ

[
1

J

(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)]

(A.23)

ξxx = ξx
1

J2
[(yηξzζ + yηzξζ − yζξzη − zξηyζ) J − (yηzζ − yζzη) Jξ]

+ ηx
1

J2
[(yηηzζ + yηzηζ − yζηzη − zηηyζ) J − (yηzζ − yζzη) Jη]

+ ζx
1

J2
[(yηζzζ + yηzζζ − yζζzη − zζηyζ) J − (yηzζ − yζzη) Jζ ]

(A.24)

We can derive other relations by using the same fashion expressed above as the following

ξyy = ξy
1

J2
[(xζξzη + xζzξη − xηξzζ − zξζxη) J − (xζzη − xηzζ) Jξ]

+ ηy
1

J2
[(xζηzη + xζzηη − xηηzζ − zηζxη) J − (xζzη − xηzζ) Jη]

+ ζy
1

J2
[(xζζzη + xζzζη − xηζzζ − zζζxη) J − (xζzη − xηzζ) Jζ ]

(A.25)

ξzz = ξz
1

J2
[(xηξyζ + xηyξζ − xζξyη − yξηxζ) J − (xηyζ − xζyη) Jξ]

+ ηz
1

J2
[(xηηyζ + xηyηζ − xζηyη − yηηxζ) J − (xηyζ − xζyη) Jη]

+ ζz
1

J2
[(xηζyζ + xηyζζ − xζζyη − yζηxζ) J − (xηyζ − xζyη) Jζ ]

(A.26)
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ηxx = ξx
1

J2
[(yζξzξ + yζzξξ − yξξzζ − zξζyξ) J − (yζzξ − yξzζ) Jξ]

+ ηx
1

J2
[(yζηzξ + yζzηξ − yξηzζ − zηζyξ) J − (yζzξ − yξzζ) Jη]

+ ζx
1

J2
[(yζζzξ + yζzζξ − yξζzζ − zζζyξ) J − (yζzξ − yξzζ) Jζ ]

(A.27)

ηyy = ξy
1

J2
[(xξξzζ + xξzξζ − xζξzξ − zξξxζ) J − (xξzζ − xζzξ) Jξ]

+ ηy
1

J2
[(xξηzζ + xξzηζ − xζηzξ − zηξxζ) J − (xξzζ − xζzξ) Jη]

+ ζy
1

J2
[(xξζzζ + xξzζζ − xζζzξ − zζξxζ) J − (xξzζ − xζzξ) Jζ ]

(A.28)

ηzz = ξz
1

J2
[(xζξyξ + xζyξξ − xξξyζ − yξζxξ) J − (xζyξ − xξyζ) Jξ]

+ ηz
1

J2
[(xζηyξ + xζyξη − xξηyζ − yηζxξ) J − (xζyξ − xξyζ) Jη]

+ ζz
1

J2
[(xζζyξ + xζyξζ − xξζyζ − yζζxξ) J − (xζyξ − xξyζ) Jζ ]

(A.29)

ζxx = ξx
1

J2
[(yξξzη + yξzξη − yηξzξ − zξξyη) J − (yξzη − yηzξ) Jξ]

+ ηx
1

J2
[(yξηzη + yξzηη − yηηzξ − zηξyη) J − (yξzη − yηzξ) Jη]

+ ζx
1

J2
[(yξζzη + yξzζη − yηζzξ − zζξyη) J − (yξzη − yηzξ) Jζ ]

(A.30)
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ζyy = ξy
1

J2
[(xηξzξ + xηzξξ − xξξzη − zξηxξ) J − (xηzξ − xξzη) Jξ]

+ ηy
1

J2
[(xηηzξ + xηzηξ − xξηzη − zηηxξ) J − (xηzξ − xξzη) Jη]

+ ζy
1

J2
[(xηζzξ + xηzζξ − xξζzη − zζηxξ) J − (xηzξ − xξzη) Jζ ]

(A.31)

ζzz = ξz
1

J2
[(xξξyη + xξyηξ − xηξyξ − yξξxη) J − (xξyη − xηyξ) Jξ]

+ ηz
1

J2
[(xξηyη + xξyηη − xηηyξ − yηξxη) J − (xξyη − xηyξ) Jη]

+ ζz
1

J2
[(xξζyη + xξyηζ − xηζyξ − yζξxη) J − (xξyη − xηyξ) Jζ ]

(A.32)

where

Jξ = xξξ (yηzζ − yζzη) + xξ (yηξzζ + zζξyη − yζξzη − zηξyζ)

− xξη (yξzζ − yζzξ)− xη (yξξzζ + zζξyξ − yζξzξ − zξξyζ)

+ xξζ (yξzη − yηzξ) + xζ (yξξzη + zηξyξ − yηξzξ − zξξyη)

(A.33)

Jη = xηξ (yηzζ − yζzη) + xξ (yηηzζ + zζηyη − yζηzη − zηηyζ)

− xηη (yξzζ − yζzξ)− xη (yξηzζ + zζηyξ − yζηzξ − zξηyζ)

+ xηζ (yξzη − yηzξ) + xζ (yξηzη + zηηyξ − yηηzξ − zξηyη)

(A.34)
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Jζ = xζξ (yηzζ − yζzη) + xξ (yηζzζ + zζζyη − yζζzη − zηζyζ)

− xζη (yξzζ − yζzξ)− xη (yξζzζ + zζζyξ − yζζzξ − zξζyζ)

+ xζζ (yξzη − yηzξ) + xζ (yξζzη + zηζyξ − yηζzξ − zξζyη)

(A.35)

and ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz and J are defined in Equations A.8 and A.9.
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