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ABSTRACT 

 

COMPUTATIONAL INVESTIGATION OF NON-ISOTHERMAL 

LID-DRIVEN FLOW IN ARC-SHAPE CAVITIES 

 

This thesis is concerned with the numerical analysis of laminar unsteady flow and 

heat transfer in lid-driven arc-shape cavities with different aspect ratios for which the top 

lid, maintained at lower temperature, is driven at a uniform speed and the bottom stationary 

wall is maintained at higher temperature. The buoyancy force resulted by the temperature 

difference across the wall and the lid of the cavity is controlled by Richardson number, 

whereas Reynolds number represents the strength of inertia generated by the shear force 

along the lid. In order to reveal the effects of temperature difference and lid motion on 

flow pattern and thermal distribution, wide ranges of Reynolds and Richardson numbers 

are selected and the results are plotted in terms of streamlines and isotherms. Governing 

equations are discretized based on finite difference technique and these equations are 

applied to computational grids generated by body fitted coordinate transformation method. 

Aspect ratio effects on flow and thermal behavior are also investigated. Moreover, heat 

transfer performance and shear stress are demonstrated in terms of local and average 

Nusselt numbers and local friction factor, respectively. 
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ÖZET 

 

KAPAK TAHRİKLİ YAY ŞEKİLLİ OYUKLARDA İZOTERMAL 

OLMAYAN AKIŞIN SAYISAL İNCELEMESİ 

 

Bu tez, kapak tahrikli yay geometrili oyuklarda laminer ve durağan olmayan akış ve 

ısı transferinin sayısal analiziyle ilgili olup, düşük ısıda tutulan üst kapak sabit bir hızla 

soldan sağa doğru hareket ettirilmekte ve alt duvar yüksek sıcaklıkta tutulmaktadır. Kapak 

ve duvar arasındaki ısı farkından kaynaklanan kaldırma kuvveti Richardson sayısıyla 

kontrol edilmektedir. Reynolds sayısı ise kayma kuvvetinden kaynaklanan eylemsizlik 

şiddetini ifade etmektedir. Isı farkının ve kapak hareketinin akış yapısı ve ısı dağılımına 

etkisini göstermek için Reynolds ve Richardson sayıları geniş bir çerçevede seçilmiş ve 

sonuçlar akış çizgileri ve eşsıcaklık eğrileriyle anlatılmıştır. Sistem denklemleri sonlu 

farklar tekniğiyle ayrıklaştırılmış ve bu denklemler şekle oturan koordinat 

transformasyonuyla yaratılan sayısal ağlara uygulanmıştır. Yaya bakan açı oranının akış 

alanı ve ısı davranışı üzerindeki etkileri araştırılmıştır. Ayrıca, ısı transfer performansı ve 

kayma gerilmesi, sırasıyla, Nusselt sayısı ve lokal sürtünme faktörü cinsinden gösterilmiş 

ve hesaplanmıştır. 
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1. INTRODUCTION 

 

Inertia and buoyancy induced flow inside enclosures have been investigated in the 

past due to its extensive use in industrial applications and in engineering devices like 

lubrication systems [1-3], solar collectors [5], evaporators [6] and flow channels [4]. 

Meanwhile, currents due to mixed convection in lakes are the examples for occurrence of 

this event in nature. These physical phenomena have been idealized in the past mostly by 

the square geometry with a driven or stationary lid. Even this idealization was complex 

enough to numerically investigate the problem, further studies showed that the real cases 

actually are not pure square cavities and the temperature is not unique through the cavity. 

That is why researchers realized the necessity of new implementations. Figure (1.1) shows 

an example of lid-driven cavity flow inside a lubrication device.  

 

 

Figure 1.1. Physical model represented by an air-gap lubrication device [19] 

 

 

First investigations were the experimental studies related with the inertia effects on 

flow behavior of the fluid in square or rectangular enclosures. In some other investigations 

researchers have preferred to study the simplest and most classical case of square cavity 

problem numerically in which the upper wall is moving with a steady velocity and other 

walls are stationary, for the validation of their computational schemes. The traditional lid-

driven cavity flow problem has been the topic of interest since the time in which the fluid 

and thermal problems have been solved and lead by the computational approach and this 

goes back to the pioneering work of Ghia et al [8]. Ghia et al have produced one of the 

benchmark data. They have studied high Reynolds number solution for incompressible 

flow using the vorticity-stream function formulation of the two-dimensional Navier-Stokes 

equations and then they have validated their scheme on a lid driven square cavity. 
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Theodossiou and Sousa [7] have developed an efficient algorithm for an incompressible 

flow in which they have chosen square lid-driven cavity flow as the test case for the 

Reynolds numbers ranging from 100 to 1000. The results were in good agreement when 

compared with the previous works. 

 

The flow in lid driven enclosures keeps its importance as one of the interesting 

research problems for which many aspects are yet to be explored in more detail. In 

literature review section (1.1) some of the significant experimental and numerical studies 

on cavity flow are provided comprehensively. 

 

 

1.1. Literature Survey 

 

1.1.1. Experimental Studies 

  

Experimental studies provide the range of data to compare the computational results 

and to develop the numerical schemes beyond the previously generated classical 

techniques. Heat transfer due to laminar free convection in vertical slots or vertical walls of 

an enclosure has been investigated extensively in sixties. For example, the article published 

by Eckert et al [12] has focused on the measurement of the flow pattern and thermal field 

for the rectangular cavity with temperature differences across the side walls. For large 

Grashof numbers and small aspect ratios, thermal boundary layers were observed along the 

surface of the enclosure where the major part of the heat transfer took place. Temperature 

at the center was observed to be uniform in the horizontal direction. They have also 

verified the average heat transfer data. A similar study has been conducted by Elder [13] 

on laminar free convection in vertical slots with different aspect ratios where the heat 

transfer took place mostly by conduction. Moreover, the resulting heat transfer has caused 

the formation of weak circulation. According to Elder, large temperature gradients near 

walls and uniform vertical temperature gradients in interior parts were generated when 

103< Rayleigh number <105. In addition, in the interior regions of primary vortex 

secondary flow was observed when Rayleigh number got closer to 105. 
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In 1993 Mohammad and Viskanta [15] have performed the experimental 

investigation to visualize the effects of buoyancy and inertia forces inside the shallow 

rectangular enclosures. Ethylene Glycol and water have been chosen as the working fluids 

for the Reynolds number in the range of 170 to 2500. Using liquid crystal technique and 

aluminum particles the flow and thermal fields have been visualized. They observed that 

when the Richardson number approached unity the flow field became more complex. 

 

Prasad and Koseff [14] have reported some experimentally obtained data for 

convection dominated flows. Liquid crystal technique and heat flux measurements have 

been performed by Prasad and Koseff under different flow and thermal conditions. They 

found that the buoyancy effect was important when the Richardson number approached 

unity and it became dominant when the Richardson number was larger than unity. Their 

report contains the evidence that shows the effect of the Richardson number is not as 

stronger as the effects of the Reynolds number and the aspect ratio in cavity flow.  

 

Semi-circular, rectangular and square industrial machined or molded cylindrical 

cavity shapes were studied and compared in the time domain by Migeon and Texier [9], 

[10]. They gave particular attention to the vorticity propagation and primary and secondary 

eddy formations. In this unsteady, experimental study they focused mainly on influence of 

the cavity shape on the initial phase of the flow establishment. They studied the cavity 

which was translated downward along a vertical lid. It was recorded that during the first 

time stages the cavity geometry had a significant effect on flow structure development. 

Meanwhile, it was observed that among three different cases the semi-circular results were 

more homogenous with no secondary eddies. Also, another investigation was performed by 

the same researchers three years later which considered three dimensional effects in square 

and rectangular cavities. Existence of end wall effects resulted in end wall vortices and for 

the first time in the investigation of lid driven cavities, corner vortices were detected 

experimentally.  

 

Until the beginning of the last decade only the cavity with a rectangular geometry 

has been studied thoroughly and a complete understanding of the flow and heat transfer 

mechanism in a complex-shape cavity was relatively lacking. Between 1999 and 2006 

Chen and Cheng [18-22] have focused on numerical and experimental studies of flow and 
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thermal behaviors inside arc-shape enclosures. In some of these studies, experimental 

investigations along with the numerical methods were performed. Finally, the comparison 

between the numerical and the experimental data was made for validation. They have 

investigated flow patterns, thermal effects, shear stresses and heat transfer performances 

for a wide range of Reynolds and Grashof numbers which are represented in section 

(1.1.2.2) in detail. 

 

 

1.1.2. Computational Studies 

 

1.1.2.1. Computational Studies in Plane Geometries 

 

The change in flow and heat transfer parameters have been investigated by numerical 

studies of Vahl Davis et al [23-25] for laminar free convection in rectangular enclosures 

where vertical side walls were maintained at different temperatures. A thin boundary layer 

was observed near the walls when Rayleigh number increased and strong vorticity 

generated near the walls was able to maintain the weak return motion at the outer part of 

the boundary layer. Reverse motion was also observed near the center of enclosure. They 

have found that temperature profile was linear at Rayleigh number below 103 and heat 

transfer within the cavity mainly occurred due to conduction. Their series of studies have 

provided the benchmark data for future researches on side heated cavity. 

 

Mixed convection in cavities which is the combination of free convection due to the 

buoyancy force generated by the hot bottom wall and forced convection resulted by the 

shear force due to the moving top lid has been reported by some researchers during the last 

decades. In 1992, Moallemi and Jang [26] have numerically investigated the mixed 

convection phenomenon in a square cavity. Numerical simulations have been performed 

for two dimensional laminar flow regime in which the Reynolds number ranged from 100 

to 2200 and Prandtl numbers varied from 0.01 till 50. Different Grashof numbers also have 

been used in order to observe the buoyancy effects within the cavity. They have discretized 

the governing equations by the control volume approach and they have used non-uniform 

grids near the cavity walls. Moallemi’s results have shown that the effects of Prandtl 

number for the fixed Grashof and Reynolds numbers are more noticeable at higher values.  
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Luo and Yang [27] have presented a numerical method to calculate flow and thermal 

fields in a two sided lid-driven cavity with a fixed aspect ratio of 1.96. Both the isothermal 

and non-isothermal cases were studied. For the non-isothermal study, the hot bottom lid 

was considered as moving from right to left whereas the colder top lid was assumed 

moving in the opposite direction, from left to right. Flow patterns were demonstrated by 

streamlines. 

  

Khanafer and his research group [11] have numerically studied a mechanical sliding 

lid which was set to oscillate horizontally in a sinusoidal fashion. The natural convective 

effect was sustained by keeping the bottom and top walls at the higher and lower 

temperatures, respectively. They have investigated the effects of Reynolds and Grashof 

numbers along with the lid frequency by fixing two parameters at a time.  

 

 

1.1.2.2. Computational Studies in Curved Geometries 

 

Most of the previous studies on cavity flow were restricted to the analysis of fluid 

motion and heat transfer phenomenon in rectangular cavities. For problems concerning the 

fluid motion and heat transfer inside an enclosure of irregular shape, the cavity was usually 

simplified to be a rectangular one, which, undoubtedly results in incorrect demonstration 

and evaluation of the data. 

 

Arc shape cavity flow investigation was carried out for the first time in 1999 by the 

article published by Chang and Cheng [17]. Following this study, a series of numerical and 

experimentally supported investigations were published by Cheng and Chen. In all of the 

studies the main concentration was on the buoyant and inertial effects exerted on the fluid. 

Fluid properties were assumed to be constant with the exception of the variation of density 

in the buoyancy term in momentum equation. The first of these studies [17] was concerned 

with the 1/3 aspect ratio lid driven cavity flow which was heated by the lid and cooled by 

the stationary arc shape wall. Flow in this study was considered to be steady. In this article, 

Chang and Cheng have studied various Richardson numbers and Reynolds numbers along 

with different inclination angles. In the later stages of the same study, they have assumed 

the flow to be unsteady to determine the periodic cases, if they exist. They have found a 
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periodic pattern when Reynolds and Richardson numbers are both 100 and while the hotter 

lid was placed at the bottom of the cavity in which the inclination angle ( )δ  was equal to 

π .  

 

In another study, Chen and Cheng [18] have worked on the same cavity shape with 

the same aspect ratio. However in this case, they have assumed the lid as stationary and 

they have changed the cooling and heating directions of the cavity, such that, unlike the 

investigation of Cheng and Chang [17], the cavity was heated by the wall and cooled by 

the lid. Inclination angle was analyzed in detail. Also, they developed an experimental 

system to validate the numerically obtained data. The range of Grashof number considered 

in their investigation was up to 107 and the inclination angle was varied from 0 to π . The 

flow was considered as steady; therefore the periodic flow was not investigated. Various 

inclination angles were considered and they visualized the effects of Grashof and Reynolds 

numbers on flow and thermal patterns. Their results revealed that only when Grashof 

number was higher than 105 the increase in natural convection became appreciable and 

also the strength of the vortex was found to be strongly dependent on the angle of 

inclination. Moreover, they have found a close agreement between numerical and 

experimental results. 

 

In their next study, Chen and Cheng [19] have tried to find the periodic flow patterns 

generated by the buoyancy force for a cavity oriented horizontally. Therefore, the 

inclination effect was no longer investigated. Reynolds and Grashof numbers applied in 

this study were in the range from 100 to 2000 and from 0 to 107, respectively. They found 

the periodic flow pattern at Reynolds numbers of 100, 200 and 500, for Richardson 

numbers within the ranges 10030 ≤≤ Ri , 505.12 ≤≤ Ri  and 4020 ≤≤ Ri , respectively. 

According to their results, when the Reynolds number and the Richardson number are set 

within a certain regime, the flow pattern and the thermal field values are repeated 

continuously at the same frequency, however outside of this periodic regime the flow and 

thermal fields eventually approach a steady state condition. Once more in 2005, Chen and 

Cheng [21] have continued their periodic pattern investigation. This time they investigated 

aspect ratios of 1/2, 1/3 and 1/4 and different geometries, namely triangular, circular and 

rectangular. For all cases considered, the Reynolds number and the Richardson number 

were fixed at 100 and 50, respectively. In a rectangular cavity, for the specified Reynolds 
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and Richardson numbers the periodic phenomenon was only obtained at 1/4 aspect ratio 

while for the circular case periodic patterns were observed at 1/3 and 1/4 aspect ratios and 

for the triangular one it was noticed at 1/3 aspect ratio. In their next article in 2004, Chen 

and Cheng [20] have repeated the numerical and experimental investigation of buoyancy 

and inertia induced flow for various Reynolds and Richardson numbers. This research 

contained some of the results obtained in previous studies and did not include newer 

geometries or aspect ratios. 

 

The latest article represented by Cheng and Chen [22] included the cavities of small 

aspect ratios, but unlike the previous cases, thermal effects were considered without 

including the buoyant force in the governing flow equations. They have looked for 

strongest vortex flow among the triangular, circular and rectangular cavities of small 

aspect ratios. The results revealed that for the fixed Reynolds and Prandtl number, the 

rectangular cavity produces the strongest vortex flow, while the triangular one generates 

the weakest. 

 

 

1.2. Statement of the Problem 

 

Flow inside the arc shape cavity is induced mainly by the shear force due to the 

upper moving lid and it is induced also by the buoyancy force generated by thermal 

difference across the bottom stationary wall and the top moving lid. The cavity is enclosed 

at the top by the lid that moves across the enclosure from left to right with a constant 

speed. The bottom wall is considered as rigid and stationary. The end wall effects are 

ignored. Therefore, flow and thermal effects are analyzed independent of the orthogonal 

direction. The bottom stationary wall and the moving lid result in impermeable, no-slip 

boundary conditions. The top and the bottom surfaces are maintained at constant 

temperatures LT  and HT , respectively. The fluid is considered to be incompressible and the 

flow is taken to be laminar and unsteady. Fluid properties are assumed constant except for 

the change in density in the buoyancy force term of the momentum equation in vertical 

direction, which is represented with the Boussinesq approximation.  
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The effects of fluid inertia resulted by the shear force due to lid motion, and the 

buoyancy generated by the temperature difference between the cold top moving lid and the 

hot bottom stationary wall is investigated in detail in terms of Reynolds and Richardson 

numbers, respectively. Aspect ratio is also investigated to include the impact of geometry 

on fluid flow and temperature distribution within the cavity. Flow and heat transfer are 

simulated in terms of streamlines and isotherms, respectively. Meanwhile, local Nusselt 

number and local friction factor along the lid surface are studied for various values of 

Reynolds and Richardson numbers. 

 

Fluid flow, heat transfer and diffusivity in an arc shape cavity as a result of mixed 

convection is controlled by the main non-dimensional parameters; Reynolds number (Re), 

Richardson number (Ri) and Prandtl number (Pr). Inertia effect is directed by the change in 

Reynolds number and Richardson number introduces the effect of buoyancy force. Aspect 

ratio is another vital geometrical consideration that together with flow and thermal 

parameters affects the results. It differentiates the flow regime and thermal field for the 

same main shape.  Large aspect ratio means that flow occurs in a deep cavity, and a small 

one indicates fluid flow in a shallow cavity.  

 

In this thesis, the effects of aspect ratio together with the inertia and the buoyancy 

forces are investigated in detail. Different values for each parameter are selected 

thoroughly. By fixing the parameters one at a time, their contributions to the flow and heat 

patterns are studied. Reynolds number within the range of 200 to 1500 and Richardson 

numbers from 0.01 to 100 are examined together with the aspect ratios of 1/2 and 2/3. 

Prandtl number is assigned to the fixed value, 0.71. Flow pattern is represented in the form 

of streamlines and heat convection is displayed as isotherms. 
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Figure 1.2. Physical configuration of the cavity [19] 

 

 

The arc profile of the enclosure which is represented in figure (1.2) is expressed by, 

 

 ( ) ( ) 222
rqypx =−+− ,      (1.1) 

 

 where the equation (1.1) denotes a circle of radius r with a center located at point 

( )qp, . x  and y  define the horizontal and vertical directions in Cartesian coordinates and 

L  represents the width of the moving lid. In this thesis two aspect ratios 2/1  and 3/2  are 

considered. For 2/1  aspect ratio geometry, rp / , rq /  and Lr /  are fixed at 1, 1 and 2/1  

and for 3/2  aspect ratio the fractions are fixed respectively at 2/3 , 2/1 and 3/1 .  

 

It is crucial to mention that throughout the thesis, aspect ratio represents the ratio of 

arc angle to π2 , not the ratio of height to length. 
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2. FORMULATIONS OF PHYSICAL LAWS IN CARTESIAN 

COORDINATES 

 

The physical laws governing the fluid motion and heat transfer in Cartesian 

coordinates ),( yx  are expressed in terms of two-dimensional velocity components 

),( υυ u=  by continuity, momentum and energy equations in figures (2.1)-(2.4). Density, 

ρ , of the fluid inside the cavity is assumed to be constant.  

 

Continuity 
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y-Momentum 
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  (2.4) 

 

k  is the thermal conductivity and PCρ  is defined as the volumetric heat capacity. µ  

and ν  denote the absolute and kinematic viscosities, respectively. T  is the temperature 

and P  stands for the pressure term. β  is the coefficient of thermal expansion which is 

defined as 
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tconsT tan

1

=∂

∂
−=

ρ

ρ

ρ
β .       (2.5) 

 

The Boussinesq approximation is used to emphasize the effect of buoyancy force in 

the y component of momentum equation. It states that density differences are sufficiently 

small to be neglected, except where they are multiplied by g, the acceleration due to 

gravity. Meanwhile, viscous dissipation function, Φ , which characterizes the irreversible 

conversion of energy in mechanical form into a thermal form, is neglected. Therefore, the 

constant density energy equation without viscous dissipation function is simplified to 
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T
u

t

T
αυ ,     (2.6) 

 

where the thermal diffusivity,α  is expressed as 

 

PC

k

ρ
α = .          

 

The coupling between heat transfer and fluid flow takes place through the buoyancy 

force included as an external source term in the momentum equation (2.3). Temperature 

boundary conditions are specified such that to generate the buoyancy effect by the 

temperature gradient across the stationary bottom wall and the moving top lid of the cavity. 

That is why the stationary arc shape bottom wall is maintained at the higher temperature, 

HT , while the upper moving lid is maintained at the lower temperature, LT .  

 

For the solid wall boundaries, velocity components are prescribed by impermeable, 

no slip boundary conditions. Since no fluid passes through the wall, impermeable boundary 

condition requires that the velocity component normal to the wall must be zero. Thus, if n  

represents outward normal vector at a solid wall, impermeability condition states that 

 

0. =nυ . 
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Furthermore, the lid driven cavity is idealized with no slip boundary condition which 

indicates that tangential velocity component for the stationary bottom wall is zero and it is 

equal to the specified lid speed at the top. Then, no-slip boundary condition requires that 

 

wallUs =.υ , 

 

where s  denotes the tangent vector at a solid wall. wallU  is zero at the bottom 

stationary wall and at the top it is specified with a constant speed, LU . 

 

Equations (2.1)-(2.4) are written in primitive variable form where P  and ),( υυ u=  

are the primitive variables. However, the numerical scheme developed to solve the lid 

driven cavity flow can be simplified by using the new governing equations derived from 

the classical Navier-Stokes and continuity equations. These simplifications will result in 

elimination of pressure term which is one of the unknowns together with the velocity term 

in Navier stokes equations. Therefore, in this investigation instead of primitive velocity-

pressure approach, vorticity-stream function formulation is conducted. This formulation is 

mainly used in two-dimensional applications due to the definition of stream function which 

exists only for two-dimensional flow. Besides the advantage of vorticity-stream function 

formulation the difficulty emerges when dealing with vorticity boundary conditions. As a 

result, the new vorticity boundary conditions for the specified geometry in curvilinear 

coordinates are presented and the derivations are written thoroughly in section (4). 

 

 

2.1. Vorticity-Stream Function Formulation 

 

Vorticity-stream function formulation as an alternative for the primitive variable 

form of Navier-Stokes equations presents useful insights into the behavior of the fluid. 

This formulation has been used frequently in numerical techniques. However, the vorticity-

stream function formulation has some disadvantages. For example, boundary data are 

usually available in terms of primitive variables. The resultant boundary conditions of the 

vorticity are not readily obtained. On the other hand, its main advantage is the removal of 

pressure term from the governing equations.  
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For a two-dimensional flow field, velocity components, ),( υυ u= , can be 

introduced in terms of stream function, ϕ , as 

 

y
u

∂

∂
=

ϕ
  

x∂

∂
−=

ϕ
υ ,      (2.7) 

 

while, vorticity, ω , is defined by 

 

y
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Insertion of equation (2.7) into equation (2.8) shows that 

 

ω
ϕϕ

−=
∂

∂
+

∂

∂

yx
2

2

2

2

,       (2.9) 

 

where, equation (2.9) is known as the stream function equation. It is a Poisson type 

elliptic equation. Cross-differentiation of equation (2.2) with respect to y  and equation 

(2.3) with respect to x  and subtracting from each other yields 
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and after some re-arrangements equation (2.10) appears as 
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Finally, by replacing equation (2.8) into equation (2.11), vorticity-transport equation 

emerges as 

 

( ) ( )
x
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By using the vorticity-stream function formulation, due to the change of variables, 

the mixed parabolic-elliptic Navier-Stokes equations are separated into one parabolic 

equation and one elliptic equation. 

 

 

2.2. Non-Dimensionalization of Governing Equations 

 

In this study because of the theoretical advantages and computational benefits, non-

dimensional forms of the governing equations are derived and used. The variables in 

equations (2.9) and (2.12) are non-dimensionalized using following definitions. 
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The non-dimensional control parameters are defined as 

 

( )

L
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LTTg
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LU −
===

β
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ν

ν
PrRe .   (2.14) 

 

In equation (2.14) Reynolds number, Re ,  denotes the ratio of inertial forces to 

viscous forces while Prandtl number, Pr , is the ratio of viscosity to thermal diffusivity and 

Richardson number, Ri , is another parameter that signifies the effect of thermal 

convection and represents the importance of natural convection relative to forced 

convection. 
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Using equations (2.13) and (2.14), vorticity, energy and stream function equations 

can be represented in non-dimensional configurations. Then, the non-dimensional 

vorticity-transport equation emerges as 
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While energy equation which is simplified in equation (2.6) can be rewritten as 
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Then, the dimensionless energy equation yields 
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Finally, by applying equations (2.13) and (2.14) into the equation (2.9), the non-

dimensional stream function equation appears as 
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3. NUMERICAL GRID GENERATION 

 

Grid generation techniques as a result of mapping from the complex physical domain 

to the rectangular computational domain are mainly introduced to overcome the difficulties 

emerging by the complexity of geometry. Meanwhile, this mapping has some other 

advantages. For example, body surface can be selected as a boundary in the computational 

plane permitting easy application of surface boundary conditions. Moreover, 

transformation leads to uniformly spaced grids in the computational rectangular plane 

instead of unequally spaced nodes in the complex physical plane. In order to achieve a 

suitable mesh, mapping must be one to one and grid lines should be smooth such that 

continuous transformation derivatives are provided.  

 

 

Figure 3.1. Mapping from physical to computational plane and vice versa [16] 

 

 

3.1. Metrics of Transformation 

 

The general transformation [30] from the physical plane ( )yx ,  to the transformed 

computational plane ( )ηξ ,  is defined as 

 

),( yxξξ =         (3.1) 

),( yxηη = .        (3.2) 
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Similarly, the inverse transformation yields 

 

),( ηξxx =         (3.3) 

),( ηξyy = .        (3.4) 

 

By the chain rule applied for the partial differential equations one can obtain 
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where xξ , yξ , xη  and yη  are the  transformation derivatives which are defined as 

the metrics of transformation. The metric symbolizes the ratio of arc length in the 

computational space to the arc length in the physical space [31]. Then from the relations 

given in equations (3.1) and (3.2) the following definitions are achieved.  

 

dydxd yx ξξξ +=        (3.7) 

dydxd yx ηηη +=        (3.8) 

 

Equations (3.7) and (3.8) can be represented in a matrix form as 
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By defining the inverse transformation which is expressed in equations (3.3) and 

(3.4), we can get 

 

ηξ ηξ dxdxdx +=        (3.10) 

ηξ ηξ dydydy += .       (3.11) 
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While, equations (3.10) and (3.11) can be given in a matrix form as 
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Using equations (3.9) and (3.12) it can be stated that 

 

1−












=













ηξ

ηξ

ηη

ξξ

yy

xx

yx

yx
.      (3.13) 

 

Then, the transformation metrics emerge as 

 

J
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x

ηξ =          (3.14) 

J
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J
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J

x
y

ξη =  ,        (3.17) 

 

where, J  is the Jacobian of transformation which is the ratio of the areas in the 

physical space to that of the computational space and it is expressed as 

  

ξηηξ yxyxJ −= .       (3.18) 

 

Derivatives of the metrics of transformation have to be defined to identify the 

governing equations in curvilinear coordinates and to generate computational grids. Then 

the derivatives of metrics can be derived from their definitions which are given in equation 

(3.14)-(3.17). Then the derivatives of transformation metrics are obtained as  
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3.2. First and Second Derivatives in Computational Domain 

 

By replacing the metrics of transformation into the equations (3.5) and (3.6) for any 

variable f , one can obtain the first derivatives as [31] 
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Now, the second derivatives need to be derived based on the already obtained first 

ones.  
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By replacing the metrics of transformation, equation (3.29) emerges as 
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Replacement of the derivatives of metrics obtained in equations (3.19), (3.21), (3.23) 

and (3.25), into the equation (3.30) yields 
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While the same procedure is applied for
2

2

y

f

∂

∂
 and it emerges as 
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3.3. Elliptic Grid Generation 

 

Solution of partial differential equations without selection and application of proper 

grid system for the specified geometry is undoubtedly impractical. It may results in lack of 

convergence and numerical instabilities during the iterations and the character of the 

solution definitely will change. On the other hand in the partial differential systems the 

defined boundary conditions are significantly dominant on the solution character. That is 

why the grid points not coincident with the boundaries results in inaccurate representation 

in the region of greatest sensitivity. 

 

Elliptic grid generation method is conducted where the mapping is controlled by 

Laplace’s equation and it is constructed by the desired grid points on the boundary of 

physical domain [29]. Then the curvilinear coordinates are generated by solving 

 

0=+ yyxx ξξ         (3.33) 

0=+ yyxx ηη .        (3.34) 
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Replacement of ξ  and η  in equations (3.31) and (3.32) in place of f  yields the 

following set of equations. 
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Insertion of equations (3.35) and (3.37) into equation (3.33) shows that 

 

( ) ( ) ( ) 02 2222 =+++−+ ηηξξξηηξηξξξηη xyxxyyxxxyx  .  (3.39) 

 

While, placing of equations (3.36) and (3.38) into equation (3.34) yields 

 

( ) ( ) ( ) 02 2222 =+++−+ ηηξξξηηξηξξξηη yyxyyyxxyyx  .  (3.40) 

 

Finally, the resulted transformed equations are 

 

02 =+− ηηξηξξ γβα xxx       (3.41) 

02 =+− ηηξηξξ γβα yyy ,      (3.42) 
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where, γβα ,,  are the coordinate transformations coefficients represented by the 

following equations. 
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       (3.43) 

 

The differential equations of (3.41) and (3.42) are more complicated than equations 

(3.33) and (3.34). However, the boundary conditions of equations (3.41) and (3.42) are 

specified on straight boundaries with the rectangular computational domain. Therefore, the 

problem of simple equations with complex boundaries turns into the problem with complex 

equations but simple boundaries [29]. 
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4. FORMULATIONS OF PHYSICAL LAWS IN CURVILINEAR 

COORDINATES 

 

Based on the derivatives obtained in previous section and regarding specified 

dimensionless forms of the governing equations, a new set of governing equations for the 

curvilinear computational domain have to be obtained. Therefore, substitution of equations 

(3.31) and (3.32) into equation (2.21) and some simplifications yield 

 

( ) Ω−=+− ηηξηξξ ψγψβψα 2
1

2
J

.     (4.1) 

 

Equation (4.1) is the stream function equation in curvilinear coordinates. 

Furthermore, energy and vorticity-transport equations are provided according to the 

derivatives obtained in section (3.2) and they are represented by the following equations.  
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Since there are no specifically defined boundary conditions for the vorticity, the 

boundary conditions for the computational plane must be created.  The vorticity-transport 

and stream function equations can be summarized on a simply connected domain with no 

slip and no penetration boundary conditions as 

 

0=
∂

∂

s

ψ
         (4.4) 

WallU
n

=
∂

∂ψ
,        (4.5) 
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where, s  symbolizes the tangential direction and n  represents the normal direction. 

WallU  denotes the tangential velocity which is prescribed as LU  along the moving lid and it 

is zero elsewhere. For the stationary wall the prescribed velocity components are 
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∂
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Y
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While, for the moving lid equations (4.6) and (4.7) can be stated as 
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Then, equation (4.9) yields 
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Insertion of equation (4.10) into equation (4.8) shows that 
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Therefore, for the moving lid 
η

ψ

∂

∂
 emerges as 
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ψ
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∂
.        (4.12) 

 

Now, the Taylor series expansion of stream function values for the horizontal 

boundaries in computational domain is represented as 
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While the Taylor series expansion of stream function values for the vertical 

boundaries in computational domain can be written as 
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Along the bottom and top surfaces of the cavity the stream function values are 

constant. Then for these surfaces it can be given that 
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Therefore, considering the bottom stationary wall, the stream function equation of 

(4.1) is reduced to 
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J

ηηψ
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Rearranging equation (4.13) yields 
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Substitution of equation (4.17) into equation (4.16) gives the vorticity boundary 

condition for the bottom stationary wall. 
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Taylor series expansion for the lid can be expressed as 
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Insertion of equation (4.12) into equation (4.19) yields 
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By considering equation (4.15), substitution of equation (4.20) into equation (4.1) 

results in formation of the vorticity boundary condition for the top moving lid as 
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5. NUMERICAL METHOD 

 

5.1. Discretization of Governing Equations 

 

Governing partial differential equations of fluid flow and heat convection need to be 

discretized and it is performed by replacing the derivatives of differential equations by 

numerically solvable finite difference approximations. This method provides a large 

algebraic set of equations instead of differential equations. Then, the dependent variables 

are assumed to exist only at discrete points and transformed governing equations can be 

solved by specific iteration techniques applied for every grid points. In this thesis forward 

time-centered space finite difference scheme is used for the discretization of the vorticity-

transport, stream function and energy equations and the resulted formulations are 

represented below, respectively. 
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  (5.3) 

 

These three equations of fluid flow and heat transfer have to be solved by appropriate 

numerical techniques. Parabolic energy and vorticity equations are solved via the Adams-

Bashforth third order method. On the other hand, the stream function equation is an elliptic 

Poisson equation which is iterated by the successive over relaxation (SOR) method. 

Furthermore, Chebyshev acceleration is adopted within the SOR algorithm for faster 

convergence of stream function values.  

 

 

5.1.1. Time Integration Algorithm 

 

The explicit Adams-Bashforth third order discretization, which is a predictor method, 

applied for the governing parabolic unsteady energy and vorticity-transport equations. It 

provides an efficient way for time stepping. The Buoyancy term in the vorticity equation 

results in smooth coupling between the temperature and the vorticity equations. To 

demonstrate this scheme, consider the Nth order Adams-Bashforth approximation to the 

ordinary differential equation  
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which, has the form 
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In this equation ic  is a constant that can be obtained by substituting the Taylor series 

expansion for φ  and ( )φf  into the equation (5.5) and choosing the ic  such that all the 

terms less than ( )N
t∆  are cancelled. nλ  is the numerical approximation to ( )tn ∆φ .  

Equation (5.4) can be represented as an equivalent integral equation as 
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Equation (5.6) would be approximated by Adams-Bashforth scheme as 
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For the first order Adams-Bashforth scheme the constant is 10 =c  and for the second 

order it is given as 
2

3
0 =c  and 

2

1
1 −=c . Finally, the third order Adams-Bashforth scheme 

yields 
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5.1.2. Space Integration Algorithm 

 

The Successive Over Relaxation (SOR) is a relaxation method which is mostly used 

for the solution of elliptic partial differential equations and it is applied to solve the 

Poisson stream function equation. Recall stream function equation (2.21) which is derived 

for Cartesian coordinates as 
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where, centered space discretization yields 
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Assume, ∆=∆=∆ yx . Then equation (5.9) yields 
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Therefore, the iterative procedure is defined by solving equation (5.10) for ji,ψ  as 
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Using the residual value at any stage which is obtained by 
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the new stream function, new

ji ,ψ  can be solved by iteration represented as 
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where w  is called the over-relaxation parameter and the successive over relaxation 

method is convergent only for 0< w <2 [28], while the optimal value can be achieved by 
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For this optimal choice the spectral radius for SOR is, 
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where, for our problem on a rectangular grid of LJ × , Jacobiρ  is represented as 
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Equation (5.11) shows that the odd points only depend on the even meshes and vice 

versa. Hence, we can divide the meshes into even and odd ordering and iteration continues 

by performing half-sweep to update the even points and then performing the other half-

sweep to update the odd ones with the new even values. In this thesis the SOR method is 

used along with the Chebyshev acceleration which changes w  at each half-sweep 

consistent with the following formulation. 
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Where, ∞= ,...,1,2/1n . 
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5.2. Code Validation 

 

Validation of the algorithm written for the investigation of inertia and buoyancy 

induced flow for lid-driven arc shape cavity is performed by comparing the results 

obtained by the numerical procedure used in this study and the results of most recent 

investigations of Chen and Cheng [19], [20]. Based on these comparisons it can be stated 

that the results obtained via the algorithm written for this thesis is in close agreement with 

the previous works’ results for the same geometry, flow and thermal conditions. 

 

In their studies Chen and Cheng mainly have worked on small aspect ratio cavities. 

Therefore their 1/3 aspect ratio cavity is selected and adapted to the algorithm to validate 

the results. The computational domain is discretized as described in previous chapters by 

61x61 grids which is demonstrated in figure (5.1). 

 

 

 

Figure 5.1. 61x61 elliptic grid generated for 1/3 aspect ratio 

 

 

 

The test cases are selected such that to provide the diversity among the results. 

Therefore, one of the test cases is chosen as Re =1000 and Ri =10 which represents 

moderate Richardson number along with high Reynolds number, while Re =2000 and Ri 

=2.5 is selected as another test case to investigate high Reynolds number with small 

Richardson number and the third condition is chosen as an inverse condition of second 

one, namely it is selected such that to characterize the buoyancy dominated flow regime 

with small Reynolds number and large Richardson number, Re =400 and Ri =62.5. Stream 
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function patterns and temperature fields for each flow condition are given in proceeding 

figures in terms of streamlines and isotherms, respectively. In order to have a quantitative 

comparison the minima and maxima of stream functions and temperature values are 

provided for each compared case.  

 

 

 

 

 

Streamlines     Isotherms 

 

   

Minψ = - 0.080612     MinT =0 

maxψ = 0.0209513     MaxT =1 

(a) 

 

 

Minψ = - 0.0814965     MinT =0 

maxψ = 0.0190141     MaxT =1 

(b) 

 

Figure 5.2. Comparison of the streamline and isotherm values at Re = 1000 and Ri = 10 

obtained by (a) present numerical method (b) previous study [20] 
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Streamlines     Isotherms 

 

      

Minψ = - 0.0656013     MinT =0 

maxψ = 0      MaxT =1 

(a) 

 

 

Minψ = - 0.0651572     MinT =0 

maxψ = 0      MaxT =1 

(b) 

 

Figure 5.3. Comparison of the streamline and isotherm values at Re = 2000 and Ri = 2.5 

obtained by (a) present numerical method (b) previous study [19] 
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Streamlines     Isotherms 

 

    

Minψ = - 0.163595     MinT =0 

maxψ = 0.122976     MaxT =1 

(a) 

 

 

Minψ = - 0.16955     MinT =0 

maxψ = 0.122861     MaxT =1 

(b) 

 

Figure 5.4. Comparison of the streamline and isotherm values at Re = 400 and Ri = 62.5 

obtained by (a) present numerical method (b) previous study [19] 
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6. RESULTS AND DISCUSSION 

 

Numerical investigations have been conducted to study the combined effects of 

buoyancy and inertia on heat transfer and flow characteristic for mixed convection flow 

inside the lid driven arc shape cavities of 2/1  and 3/2  aspect ratios. The computational 

domain is discretized by 81x81 equi-spaced grids for flow regimes with small to moderate 

values of Reynolds and Richardson numbers and it is discretized by 101x101 equi-spaced 

grids for flows which are induced by higher values of Reynolds and Richardson numbers. 

Beyond a grid size of 81x81 grid independent results are achieved. However for large 

Reynolds number values numerical instabilities are observed for grid size 81x81 and to 

overcome this instability higher resolution is adapted for these flows.  

 

Reynolds and Richardson numbers are the controlling parameters for fluid flow and 

convection. Reynolds numbers 200, 400, 800 and 1500 are considered along with 

Richardson numbers 0.01, 0.1, 1, 2.5, 5, 10, 25 and 100. In order to concentrate on 

buoyancy and inertia effects Prandtl number is fixed and assigned to be 0.71.  
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(a) 

 

 

(b) 

 

Figure 6.1. 81x81 Elliptic grid generated for (a) 2/1  aspect ratio, (b) 3/2  aspect ratio 
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6.1. Streamlines and Isotherms 

 

In figures (6.2), (6.4) and (6.6) the effects of inertia and buoyancy forces on flow 

patterns and thermal fields for 3/2  aspect ratio cavity are investigated. Reynolds numbers 

200, 400 and 800 are demonstrated in these figures for several Richardson numbers in the 

range of 0.01< Ri <100. Isotherm values are given at the left and streamlines are 

represented at the right part of the pages. For negligible Richardson numbers only a shear 

driven clockwise vortex is observed where the vortex core is located toward the right side 

of the cavity center and it gets closer to the center when Richardson number reaches unity. 

On the other hand, increasing the Richardson number which is the measure for the 

buoyancy effect, results in the formation of another vortex at the lower part of the main 

clockwise vortex and it is driven in counter-clockwise direction.  After the formation of 

buoyancy induced vortex at the lower part, the shear driven vortex core moves to the upper 

left region of the cavity and it gets smaller as the buoyant force achieves the higher values.  

 

Again in figures (6.2), (6.4) and (6.6) at small Richardson numbers, shear driven 

vortex motion produces an extended convection region near the top right corner and it is 

obviously seen that this region gets smaller and vanishes as Richardson number gets closer 

to moderate values. Formation of buoyancy induced vortex at the bottom leads to the 

growth of new convection regions that emerge at the center of the lid and near the bottom 

right corner. The extensions of these regions are elongated by increasing the Richardson 

number. Indeed, isotherm lines reveal these buoyancy and inertia related formations. 

Particularly when Richardson number reaches close to the value of 2.5 the isotherm lines 

starts to separate in two parts of almost equal strength but different flow directions. 

Especially in figure (6.2) where Reynolds number is at relatively low value, the formation 

of two eddies of almost equal sizes at Richardson number of 2.5 demonstrates the balance 

between inertia and buoyancy forces. When Richardson number is around 5 the buoyancy 

induced vortex pushes the inertia induced vortex to the top left region and due to the shear 

force of the lid the prolongation is formed on the region adjacent the lid. Furthermore, in 

buoyancy dominated flows where Richardson number is above 5 the counter clockwise 

vortex starts getting bigger and finally the main shear driven vortex occupies just a small 

region near the top left corner of the cavity. However, a small secondary shear driven 
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vortex appears at the top right region which is formed within the prolongation of the main 

shear driven vortex and it vanishes as Richardson number attains larger quantities. 

 

Another crucial observation that can be made by isotherm lines is the heat transfer 

performance and it can be clarified by observing the temperature gradients adjacent the lid 

and the stationary wall. For small Richardson values this temperature gradient occurs near 

the bottom right corner and the top left corner at 2/3 aspect ratio cavities. However as 

Richardson number becomes larger, temperature gradient near the left corner of the 

stationary wall together with the temperature gradients at the two corners of the moving lid 

become denser which indicates higher heat transfer rate in these regions.  

 

The similar effects can be summarized based on the results obtained for 1/2 aspect 

ratio cavities in figures (6.3), (6.5) and (6.7), and the comparison can be stated by 

considering aspect ratio effects on isotherms and streamlines. Again for small Richardson 

numbers the center of the shear driven eddy is observed at the right side of the cavity 

center and gradually by increasing the Richardson number it moves to the left, until it 

reaches almost to the center of the enclosure when the Richardson number reaches 2.5. It is 

crucial to mention that, in 2/3 aspect ratio cavity flow the vortex core set near the 

centerline when Richardson number is around 1. There is no doubt that the delay in vortex 

core placement at the center of the cavity from Richardson number of 1 to 2.5 is only due 

to the aspect ratio effect. Inertia and buoyancy forces’ strengths on flow and thermal fields 

are primarily affected by changing the aspect ratio. For this reason reducing the aspect 

ratio from 2/3 to 1/2 causes less buoyant force effects and higher inertia force effects.  

Inertia induced vortex produces an extended convection region on the right side of the lid 

and it gets larger till Richardson number attains the value of 2.5. After Richardson number 

of 2.5 the convection region generated by the shear vortex motion gets smaller and 

gradually this region turns into the high dense heat transfer area. On the other hand, at 

larger Richardson numbers the extended convection regions develop at right and left sides 

of the wall and almost at center of the moving lid. Moreover, for buoyancy dominated 

flows the high dense temperature areas are found to be placed nearby the corners at the top 

and almost at the center of the stationary wall.  

 



41  

In 1/2 aspect ratio cavity when the Richardson number attains values higher than 5 

the buoyancy effects start dominating the flow regimes and thermal fields. Unlike the 

vortex formation of 2/3 aspect ratio cavity where the buoyancy induced eddy pushes the 

inertia induced eddy toward the left corner, in 1/2 aspect ratio, by increasing the 

Richardson number, buoyancy induced eddy pulls the inertia induced eddy toward the 

centerline of the cavity and finally when the Richardson number reaches its largest value, 

two vortices are placed at the left and right regions symmetrically and their strengths are 

almost equalized. Shear driven clockwise vortex flows at the left and the buoyancy induced 

counterclockwise vortex circulates at the right region.  

 

In figures (6.7) and (6.9) negligible Richardson number 0.01 in first lines, represent 

inertia dominant flows in 1/2 aspect ratio cavity where Reynolds numbers are 800 and 

1500, respectively. Different than the previous cases, in 1/2 aspect ratio cavity, beside the 

primary eddy generated due to the shear force exerted by the lid, a second inertia induced 

vortex formation is observed near the left corner in small Richardson number values. 

Moreover, the size and strength of this secondary inertial eddy strongly depends on the 

value of Reynolds number. As the flow becomes inertial dominant a second vortex 

occupies more space within the cavity. This can be observed when Reynolds number 

increases from 800 to 1500. The second inertial eddy which is formed in Richardson 

number 0.01 in figure (6.9) is bigger than that in figure (6.7) and even it does not disappear 

when Richardson number reaches 0.1, yet only gets smaller. However, for the same 

Richardson number, in figure (6.7) second inertial vortex is not noticed any longer. 

 

Figure (6.8) demonstrates the streamlines and isotherms for 2/3 aspect ratio cavity 

where Reynolds number is 1500. Unlike the 1/2 aspect ratio case, secondary shear induced 

eddy is not observed in small Richardson numbers for the same Reynolds number. 

Nonetheless, another interesting future in 2/3 aspect ratio is observed which is the structure 

of streamline and isotherm patterns formed in Richardson number 1. It can be observed 

that, unlike the other cases buoyancy induced eddy is already developed and even it 

attained strong streamline values that pushes the shear induced vortex to the right corner. 

Furthermore, it is noticeable that, unlike the other streamline patterns, the shear driven 

vortex is pushed toward the right corner by the buoyancy induced eddy instead of the left 
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corner. By increasing the Richardson number further than 1 almost the same patterns are 

observed in comparison with the smaller Reynolds number flows.  

 

Figure (6.10) is given to emphasize the consequences of variation of Reynolds 

number for the fixed Richardson number and aspect ratio when both inertia and buoyancy 

induced eddies are formed together. Richardson number is fixed to 2.5 and Reynolds 

number varies from 200 till 1500. This figure is important due to the change in vortex 

structures within the cavity. The isotherms and streamlines are plotted in the same order as 

previously specified. As mentioned before, at Richardson number 2.5 and Reynolds 

number 200 the inertial vortex driven by the moving lid is deformed due to the opposing 

action of buoyancy induced vortex generated by the stationary wall. Based on the 

streamline figures it can be stated that, increasing the Reynolds number from 200 to 400 

causes a smaller shear driven vortex and a larger buoyancy induced vortex. Although the 

ratio of inertia over the buoyancy gets larger, the vortex structure behaves on opposite way, 

such that the inertial vortex gets smaller while the buoyant related vortex gets larger. It 

may be attributed to horizontal application of the shear force generated by the motion of 

the lid. Further increasing of Reynolds number from 400 to 800 results in formation of two 

secondary eddies of almost equal strength inside the upper primary eddy driven by the 

moving lid and when Reynolds number reaches 1500 the downstream eddy within the 

shear driven vortex vanishes and the upstream eddy becomes larger. For the fixed 

Richardson number 2.5, the strongest inertial vortex motion is observed at Reynolds 

number of 200 and the weakest inertial vortex is found at Reynolds number of 800, 

whereas the strongest buoyancy induced vortex motion is obtained at Reynolds number of 

1500 and the weakest buoyancy induced vortex is found at Reynolds number of 200. 

 

Tables (6.1) and (6.2) provide minimum and maximum values of streamlines for a 

quantitative comparison of 2/3 and 1/2 aspect ratio cases, respectively. At inertial 

dominated flows the strength of inertia induced eddy is larger in 2/3 aspect ratio cavity 

when compared with 1/2 aspect ratio cases. On the other hand, at buoyancy dominated 

flows the strength of inertia induced eddy is larger while the strength of buoyancy induced 

eddy is smaller in 1/2 aspect ratio cavity when compared with 2/3 aspect ratio cavity 

results. For all of the flow and thermal conditions the isotherm values ranges within 0 and 
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1. That is why minimum and maximum values of isotherms for each case are not 

mentioned in tables separately.  

 

In figures (6.12)-(6.19) the transient variations of stream functions and temperature 

values at a specific point for various Richardson numbers are demonstrated to clarify the 

required time steps to reach the steady solution. Another reason of providing these figures 

is to observe periodic patterns, if they exist. When periodic flow pattern occurs the 

transient variation of stream function and temperature exhibit different nature compared to 

a steady case. According to Chen and Cheng [19] the periodicity is detected in 1/3 aspect 

ratio cavity when Reynolds number is 200 and Richardson number is within the range of 

12.5 and 50. Nevertheless, in this research for the specified range of Richardson number 

and at Reynolds number of 200 all of the obtained results are steady. Indeed, in this study 

no periodicity is observed for the investigated parameters. Chen and Cheng claim that 

when buoyancy and inertia forces are of approximately equal strength can the periodic 

flow pattern be observed. However based on the examined conditions and results it can be 

concluded that this assumption is not applicable for 2/3 and 1/2 aspect ratio cavities. 

 

The convergence of the results to steady state is checked by calculating the relative 

error norm at every 103 time steps. The required time steps for convergence is strongly 

dependent upon values of Richardson and Reynolds numbers and the convergence can be 

monitored in figures (6.12)-(6.19). Relative error norm is expressed as 
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Effects of aspect ratio on fluid flow and heat transfer is demonstrated in figure 

(6.11). In shallow cavity with small aspect ratio of 1/6, vortex core is located toward the 

right corner. Isotherms are almost smooth and the convection region is not generated yet. 

By increasing the aspect ratio, center of the inertia induced vortex moves toward the center 

of the cavity and convection region develops at the right side of the lid. When aspect ratio 

becomes 1/2, fluid circulates almost symmetrically inside the cavity and this symmetry 

feature is also observed in temperature distribution. Further increase in aspect ratio reveals 
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buoyancy effects more than smaller aspect ratio cavities. Thermal boundary layers are 

separated due to the convection region which is generated by the buoyancy force and the 

buoyancy induced eddy is already formed as a result of thermal boundary layer separation 

and even it is stronger than the shear driven top eddy. Then it can be concluded that the 

buoyancy effects are stronger and apparent in large aspect ratio flows when compared with 

smaller aspect ratio ones. 

 

 

Isotherms     Streamlines 

Ri =0.01  

Ri = 0.1  

Ri = 1  

 

Figure 6.2. Flow patterns and thermal fields for 2/3 aspect ratio cavity at Re=200 



45  

Isotherms     Streamlines 

Ri = 2.5  

Ri = 5  

Ri = 10  

Ri = 25  

 

Figure 6.2. (Continued) 
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Isotherms     Streamlines 

Ri = 0.1  

Ri = 1  

 Ri = 2.5  

Ri = 5  

Ri = 10  

Ri = 25  

Figure 6.3. Flow patterns and thermal fields for 1/2 aspect ratio cavity at Re=200 
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Isotherms     Streamlines 

Ri = 0.01  

Ri = 0.1  

Ri = 1  

Ri = 2.5  

 

Figure 6.4. Flow patterns and thermal fields for 2/3 aspect ratio cavity at Re=400 
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Isotherms     Streamlines 
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Figure 6.4. (Continued) 
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Isotherms     Streamlines 
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Figure 6.5. Flow patterns and thermal fields for 1/2 aspect ratio cavity at Re=400 
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Isotherms     Streamlines 
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Figure 6.5. (Continued) 
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Isotherms     Streamlines 
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Figure 6.6. Flow patterns and thermal fields for 2/3 aspect ratio cavity at Re=800 
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Isotherms     Streamlines 
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Figure 6.6. (Continued)  
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Isotherms     Streamlines 
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Figure 6.7. Flow patterns and thermal fields for 1/2 aspect ratio cavity at Re=800 
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Isotherms     Streamlines 
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Figure 6.7. (Continued)  
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Isotherms     Streamlines 
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Figure 6.8. Flow patterns and thermal fields for 2/3 aspect ratio cavity at Re=1500 
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Isotherms     Streamlines 
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Figure 6.8. (Continued)  
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Isotherms     Streamlines 
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Figure 6.9. Flow patterns and thermal fields for 1/2 aspect ratio cavity at Re=1500 
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Isotherm     Streamlines  

Re = 200  

Re = 400  
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Figure 6.10. Flow patterns and thermal fields for 2/3 aspect ratio cavity at Ri = 2.5 
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Isotherm     Streamlines  

AR=1/6  

MinT =0     Minψ = - 0.0202896 

MaxT =1     maxψ = 0 

AR=1/3  

MinT =0     Minψ = - 0.0588739 

MaxT =1     maxψ = 0 

AR=1/2  

MinT =0     Minψ = - 0.117634 

MaxT =1     maxψ = 0 

AR=2/3  

MinT =0     Minψ = - 0.0502841 

MaxT =1     maxψ = 0.10737 

 

Figure 6.11. Flow patterns and thermal fields for Ri = 2.5 and Re = 800 at different aspect 

ratios 
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Table 6.1. Minimum and maximum Streamline values for 2/3 aspect ratio cavity 

 

Re  Ri  minψ  maxψ  

200 0.01 -0.0115164 0 

  0.1 -0.119042 0 

  1 -0.150475 0 

  2.5 -0.0973186 0.0501829 

  5 -0.0803557 0.130784 

  10 -0.0945955 0.226915 

  25 -0.128888 0.409977 

        

400 0.01 -0.119713 0 

  0.1 -0.124799 0 

  1 -0.160928 0 

  2.5 -0.059355 0.0870982 

  5 -0.0837559 0.144814 

  10 -0.0971211 0.239022 

  25 -0.132069 0.429054 

  100 -0.225231 0.940456 

        

800 0.01 -0.122538 0 

  0.1 -0.128772 0 

  1 -0.168277 0 

  2.5 -0.0502841 0.10737 

  5 -0.0907617 0.15533 

  10 -0.102711 0.248506 

  25 -0.132453 0.436107 

  100 -0.234749 0.933673 

        

1500 0.01 -0.122788 0 

  0.1 -0.131093 0 

  1 -0.0614548 0.0712648 

  2.5 -0.0901788 0.101854 

  5 -0.0954714 0.160093 

  10 -0.102727 0.237343 

  25 -0.135307 0.417475 
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Table 6.2. Minimum and maximum Streamline values for 1/2 aspect ratio cavity 

 

Re  Ri  minψ  maxψ  

200 0.1 -0.0728814 0 

  1 -0.0816241 0 

  2.5 -0.0968641 0 

  5 -0.119081 0 

  10 -0.082022 0.0739569 

  25 -0.15694 0.167777 

        

400 0.01 -0.0760284 0 

  0.1 -0.0775592 0 

  1 -0.0913537 0 

  2.5 -0.109816 0 

  5 -0.133973 0 

  10 -0.100833 0.0923461 

  25 -0.169767 0.168955 

  100 -0.369456 0.35819 

        

800 0.01 -0.0783889 0 

  0.1 -0.0807151 0 

  1 -0.097896 0 

  2.5 -0.117634 0 

  5 -0.0996522 0.0387173 

  10 -0.11819 0.0921667 

  25 -0.1849772 0.166587 

  100 -0.404006 0.340149 

        

1500 0.01 -0.0782496 0.00218801 

  0.1 -0.0817088 0.0005701 

  1 -0.102065 0 

  2.5 -0.122717 0 

  5 -0.121308 0.0351329 

  10 -0.125954 0.0870923 

  25 -0.21268 0.172194 
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Figure 6.12. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.65), for Re = 200 and 2/3 aspect ratio 
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Figure 6.13. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.375), for Re =200 and 1/2 aspect ratio 
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Figure 6.14. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.65), for Re = 400 and 2/3 aspect ratio 
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Figure 6.15. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.375), for Re =400 and 1/2 aspect ratio 
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Figure 6.16. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.65), for Re = 800 and 2/3 aspect ratio 
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Figure 6.17. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.375), for Re =800 and 1/2 aspect ratio 
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Figure 6.18. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in ( 0.5,0.65), for Re=1500 and 2/3 aspect ratio 
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Figure 6.19. Transient variation in stream function and temperature values for various Ri 

numbers at a point which is located in (0.5,0.375) for Re=1500 and 1/2 aspect ratio 
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6.2. Nusselt Number Variation along the Lid Surface 

 

As mentioned in section (6.1), heat transfer performance can be evaluated based on 

the temperature gradients along the surface of the cavity. Thickness of thermal boundary 

layers over the surface is the measure for the heat transfer performance and moreover this 

condition may be further assessed by the numerically obtained temperature data for the lid. 

Then, Nusselt number which quantifies convective heat transfer from the surface is 

investigated to determine the heat transfer characteristic for the range of Richardson and 

Reynolds numbers along the lid surface. Local Nusselt number along the moving lid 

surface is defined by 
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where, xh  is the local convective heat transfer coefficient and k  is the thermal 

conductivity of the fluid and L represents the characteristic length. 

 

In curvilinear coordinates equation (6.2) is expressed as 
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Besides, average Nusselt number on the lid surface would be obtained by integration 

of local Nusselt numbers along the lid. 

 

∫=
1

0

dXNuNu x         (6.4) 

 

The distribution of local Nusselt number along the moving lid surface is 

demonstrated for different values of Richardson numbers in figures (6.20)-(6.27). 

According to these results, the values of Nusselt number increase in magnitude with the 

increase of Richardson number. As mentioned previously small Richardson numbers 
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indicate inertia dominated flows, whereas, small Reynolds numbers along with large 

Richardson numbers lead to buoyancy dominated flows. In inertia dominated flows, high 

heat transfer areas only emerge at the left side of the lid and in buoyancy dominated flows 

where the heat transfer separates the thermal boundary layers from the right side of the 

wall, the peak points can be detected in the vicinity of right corner and as the Richardson 

number and Reynolds number increase these peak points at two corners attain higher 

values. Therefore the heat transfer performance along the moving lid surface is affected not 

only by magnitude of buoyancy force but also by the magnitude to inertial force. Based on 

the comparison of the local and the average Nusselt number data between two aspect ratios 

any obvious relation can not be stated for the effect of aspect ratio on heat transfer 

performance.  

 

Transient variations in average Nusselt numbers along the lid surface for various 

Richardson numbers at Reynolds numbers 200, 400, 800 and 1500 are demonstrated in 

figures (6.36)-(6.39). These figures show the behavior of Nusselt number in time domain. 

Furthermore, it can be observed that like the temperature and stream function transient 

variations demonstrated in figures (6.12)-(6.19), no periodicity observed within the range 

of studied parameters. 

 

 

6.3. Shear Stress Distribution along the Lid Surface 

 

Fluid flow inside the cavity is mainly induced by the shear force which is generated 

due to the motion of the lid. Therefore, the shear stress over the viscous fluid is 

investigated in term of the local friction factor distribution along the lid surface as 
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Where xσ  is the local shear stress along the moving lid and LU  is the lid velocity. 

Transformation of equation (6.5) from cartesian to curvilinear coordinates yields 
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Local friction factor over the lid surface for Reynolds numbers of 200, 400, 800 and 

1500 with the range of various Richardson numbers are shown in figures (6.28)-(6.35). In 

2/3 aspect ratio cases it is noticed that an increase in Richardson number results in a 

decrease in local friction factor in the left side of the lid yet a larger and more extended 

increase in the right side. Moreover in 1/2 aspect ratio cavities with higher Richardson 

number values anti-symmetric behaviors for local friction factor are observed. Especially, 

for Reynolds number of 400 the anti-symmetric characteristic occurs almost at the center 

of the lid. This feature may be attributed to the cavity shape and the formation of two 

eddies of almost equal strength at elevated Richardson numbers.  

 

From tables (6.1) and (6.2) it can be concluded that for a fixed Reynolds number and 

aspect ratio the strength of both inertial and buoyant induced vortices gets larger as 

Richardson number increases, except an interval in which the buoyant induced eddy forms 

and develops to some extent. Therefore, the fluid traveling along the lid surface with 

inertial vortex would be accelerated not only by the inertia but also by the buoyancy. Since 

the fluid velocity near the lid can get faster than that of the lid, then this feature can be 

attributed to the negative values obtained for friction factor at the left side of the lid where 

the shear driven vortex circulates at high Richardson number.  
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Figure 6.20. Local Nusselt number distribution along the moving lid at 2/3 aspect ratio 

cavity and Re = 200 
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Figure 6.21. Local Nusselt number distribution along the moving lid at 1/2 aspect ratio 

cavity and Re = 200  
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Figure 6.22. Local Nusselt number distribution along the moving lid at 2/3 aspect ratio 

cavity and Re = 400  
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Figure 6.23. Local Nusselt number distribution along the moving lid at 1/2 aspect ratio 

cavity and Re = 400 
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Figure 6.24. Local Nusselt number distribution along the moving lid at 2/3 aspect ratio 

cavity and Re = 800 
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Figure 6.25. Local Nusselt number distribution along the moving lid at 1/2 aspect ratio 

cavity and Re = 800 
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Figure 6.26. Local Nusselt number distribution along the moving lid at 2/3 aspect ratio 

cavity and Re = 1500 
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Figure 6.27. Local Nusselt number distribution along the moving lid at 1/2 aspect ratio 

cavity and Re = 1500 
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Table 6.3. Average Nusselt number values along the lid surface 

Average Nusselt Number Values 

Re Ri AR=2/3 AR=1/2 

200 0.01 8.91 8.96 

  0.1 9 9.15 

  1 9.58 9.42 

  2.5 8.3 9.8 

  5 8.63 10.2 

  10 10.5 10.02 

  25 13.38 13.44 

        

400 0.01 11.71 11.3 

  0.1 11.92 11.94 

  1 12.89 12.62 

  2.5 9.93 13.56 

  5 11.39 13.3 

  10 13.98 17.88 

  25 18.07 24.19 

  100 25.68 29.31 

        

800 0.01 16.09 14.37 

  0.1 15.71 14.56 

  1 17.94 15.96 

  2.5 12.87 17.08 

  5 15.35 17.99 

  10 18.6 15.75 

  25 24 23.48 

  100 34.18 33.05 

        

1500 0.01 21.62 18.47 

  0.1 22.2 18.83 

  1 15.88 21.5 

  2.5 20.44 23.2 

  5 22.52 22.32 

  10 25.18 25.49 

  25 32.22 31.67 
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Figure 6.28. Local friction factor distribution along the moving lid at 2/3 aspect ratio cavity 

and Re = 200 



83  

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

x/L

L
o

c
a
l 

fr
ic

ti
o

n
 f

a
c
to

r

Ri=0.1

Ri=1

Ri=2.5

Ri=5

Ri=10

Ri=25

 

Figure 6.29. Local friction factor distribution along the moving lid at 1/2 aspect ratio 

cavity and Re = 200 

 



84  

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

x/L

L
o

c
a
l 

fr
ic

ti
o

n
 f

a
c
to

r
Ri=0.1

Ri=1

Ri=2.5

Ri=5

Ri=10

Ri=25

Ri=100

 

Figure 6.30. Local friction factor distribution along the moving lid at 2/3 aspect ratio cavity 

and Re = 400 



85  

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x/L

L
o

c
a
l 

fr
ic

ti
o

n
 f

a
c
to

r
Ri=0.1

Ri=1

Ri=2.5

Ri=5

Ri=10

Ri=25

Ri=100

 

Figure 6.31. Local friction factor distribution along the moving lid at 1/2 aspect ratio cavity 

and Re = 400 
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Figure 6.32. Local friction factor distribution along the moving lid at 2/3 aspect ratio cavity 

and Re = 800 
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Figure 6.33. Local friction factor distribution along the moving lid at 1/2 aspect ratio cavity 

and Re = 800 
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Figure 6.34. Local friction factor distribution along the moving lid at 2/3 aspect ratio cavity 

and Re = 1500 
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Figure 6.35. Local friction factor distribution along the moving lid at 1/2 aspect ratio cavity 

and Re = 1500 
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Figure 6.36. Transient variation in average Nusselt number values for various Ri numbers 

at a point which is located in (0.5,0.65) for Re =200  
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Figure 6.37. Transient variation in average Nusselt number values for various Ri numbers 

at a point which is located in (0.5,0.65) for Re =400  
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Figure 6.38. Transient variation in average Nusselt number values for various Ri numbers 

at a point which is located in (0.5,0.375) for Re =800  
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Figure 6.39. Transient variation in average Nusselt number values for various Ri numbers 

at a point which is located in (0.5,0.375) for Re =1500 
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7. CONCLUSION 

 

Computational study of buoyancy and inertia inside a cavity with a driven lid is 

performed. In order to include the geometry effect on flow and thermal properties, 

different aspect ratios are investigated. Non-dimensional, parabolic vorticity-transport and 

elliptic stream function formulations are adopted along with parabolic energy equation. 

Body fitted coordinate transformation technique is conducted to generate computational 

grids. The governing equations are discretized by forward time-centered space finite 

difference scheme. Adams-Bashforth 3rd order method is applied to iterate the unsteady 

vorticity-transport and energy equations, whereas the successive over relaxation method 

with Chebyshev acceleration is adopted to solve the Poisson type stream function equation. 

 

The algorithm first is validated by comparing the stream function and temperature 

values with the results obtained from previous studies and then the new aspect ratios are 

given along with various control parameters. The test cases reveal that the results obtained 

by the code written for this study are in close agreement with the results found by Chen 

and Cheng in their related articles [19], [20].  

 

Wide range of Richardson and Reynolds numbers are selected to investigate the 

buoyancy and inertia effects. According to the data obtained the shear driven clockwise 

vortex appears in all of the demonstrated flow conditions but buoyancy related 

counterclockwise vortex only appears when Richardson number reaches a certain value 

and this critical value primarily affected by aspect ratio. As aspect ratio gets larger the 

effect of buoyancy increases while the inertial impact on flow behavior decreases 

seriously.  

 

Heat transfer performances are studied in terms of Nusselt number and the results are 

demonstrated in table (6.3). Based on the average and local Nusselt number data any 

obvious relation can not be stated between the aspect ratio and heat transfer performance. 

However, based on the average Nusselt number data Chen and Cheng [22] have claimed 

any reduction in aspect ratio results in an increase in Nusselt number values. Nonetheless, 

this statement is not applicable for the aspect ratios examined in this thesis.  

 



95  

In inertia dominated flows no buoyancy induced eddy is observed and the vortex 

core is nearly located at the center of the cavity. However in buoyancy dominated flow 

conditions primary inertial eddy is not disappeared completely. In 2/3 aspect ratio, inertia 

induced eddy is pushed to the left corner by the buoyancy formed eddy and occupies a 

small region there even in high Richardson numbers, yet in 1/2 aspect ratio cavity in 

buoyancy dominated flows the two eddies are placed symmetrically adjacent to each other 

in different flow directions but with almost equal strengths. 

 

Second inertia induced eddy is observed in 1/2 aspect ratio cavity in inertia 

dominated flows at high Reynolds numbers. However in 2/3 aspect ratio no secondary 

eddy is observed. Furthermore, the size and strength of the secondary inertial eddy strongly 

depends on the value of Reynolds number. 

 

Resulted shear stress along the moving lid is investigated in terms of friction factor. 

In cavities with 2/3 aspect ratio an increase in Richardson number results in a decrease in 

local friction factor in the left side of the lid but leads to a large and extensive increase in 

the right side. On the other hand, in cavities with 1/2 aspect ratio an increase in Richardson 

number results in almost anti-symmetric formation of local friction factor and this 

condition may be attributed to the symmetric feature of the 1/2 aspect ratio cavity flow at 

high Richardson number values. 
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