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ABSTRACT

K-DOMINANT REGION IN 2-D FUNCTIONALLY

GRADED MATERIALS UNDER MIXED MODE LOADING

The extent of K-dominant region around the crack tip of a functionally graded

plate under mixed mode loading is investigated. A center cracked plate is used for the

study. The stress intensity factors and T-stresses are calculated using mode extraction

and J-integral method. Stress fields near the crack tip are calculated by using finite

elements and the results are compared to two different asymptotic stress field results

available in literature. Deviations of the asymptotic solutions from finite element so-

lutions are shown in terms of contour plots around the crack tip to show the extent of

K-dominant region. Effects of the material nonhomogeneity, crack size and crack angle

on the extent of K-dominant region are examined. Stress contours and error contours

are plotted.
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ÖZET

KARMA TİP YÜK ALTINDA FONKSİYONEL

DERECELENDİRİLMİŞ MALZEMELERİN İKİ BOYUTLU

K-BASKIN BÖLGE ANALİZİ

Malzeme özellikleri fonksiyonel olarak deǧişken dikdörtgen plakalarda çatlak

etrafındaki K-baskın bölgenin büyüklüǧ karma tip yük altında incelenmiştir. Çalışmada

merkez çatlaklı plaklar kullanılmıştir. Tip 1 ve Tip 2 gerilim yoǧunluk faktörleri ile

T-gerilimi hesaplanmıştır. Çatlak ucu civarındaki sonlu elemanlar programı ile hesap-

lanan gerilme alanı ile literatür yer alan iki farklı asimtotik gerilme alanı karşılaş-

tırılmıştır. Asimtotik gerilme alanlarının, sonlu elemanlar ile hesaplanan gerilme alan-

larından sapması çatlak ucu civarındaki eş sapma eǧrileri ile gösterilmiştir. K-baskın

bölgenin büyüklüǧü belirlenmişi oldu. Homojen olmayan malzeme özellik- lerinin,

çatlak uzunluǧunun ve çatlak açısının K-baskın bölge üzerindeki etkisi araştırılmıştır.

Sonuçlar daha detaylı analizler için grafiǧe dökülmüştür.
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1. INTRODUCTION

1.1. General

To meet demands of new high technologies new materials with better perfor-

mances are needed. One direction of work has been the creation of nonhomogeneous

materials by joining different materials, to take advantage of their respective favorable

properties. In high temperature applications discretely nonhomogeneous materials such

as metals coated by ceramics or ceramic metal bonded materials have shortcomings of

poor interfacial bonding, high residual and thermal stresses and low toughness.

A composite material of a different kind, namely functionally graded material

(FGM) was proposed in 1984 by Japanese material scientists to prepare thermal barrier

coatings using a heat resistant material on high temperature side, and a tough mate-

rial inside with a gradual composition variation in between, from ceramic to metal.

FGMs are continuously non-homogeneous materials because the volume fractions of

their composite constituents vary continuously in space [1].

Generally, these are ceramic/metal graded mixtures that exploit the beneficial

properties of both metals (toughness, thermal conductivity, ductility, etc.) and ce-

ramics (hardness, heat and corrosion resistance, etc.), while enhancing bond strength

and reducing residual stresses when compared to metal/ceramic interfaces.For instance,

partially stabilized zirconia (PSZ) shows a high resistance to heat and corrosion, and

CrNi alloy has high mechanical strength and toughness, which is shown in Figure 1.1

[2]. FGMs were initially conceived as thermal protections systems for aerospace ap-

plications, but are also being considered in applications such as energy conversion,

military, microelectronics, biomedical and machining [3].

However, manufacturing of FGMs are expensive and difficult. Functionally graded

coating can be produced by plasma spraying techniques using gas-injection tubes. An-

other method can be considered by melt processing. Gradient formation is achieved
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by transporting a refractory material in the molten state of the metal. A special pro-

duction method is electrochemical gradation used to introduce porosity gradients in

materials such as bronze and copper [4]. Powder metallurgy, combustion synthesis, self

propagating high temperature synthesis, reactive infiltration, diffusion treatments and

sedimentation are also used in fabrication of FGMs for structural applications.

Progress in implementing FGM designs has been slower than initially expected,

not only because of the difficulty in manufacturing such materials, but also because of

a lack understanding of their mechanical response [5]. Although FGMs do not contain

sharp interfaces to start a crack or discontinuities that cause high residual and thermal

stress, which are the main reasons of cracking and failure, one important issue in the

design, optimization and engineering applications of FGMs is concerned with their

fracture and fatigue properties, which are essential to their integrity, reliability and

durability [6].

However, the equations of fracture mechanics used for homogeneous materials

can not be used directly for FGMs since some of the fracture mechanics parameters

are affected by material gradients.

In linear elastic fracture mechanics, the fracture parameters describing the crack

tip fields include stress intensity factors (SIFs). In FGMs the material gradation does

not affect the order of singularity and the angular functions of the crack-tip fields but

does affect the stress intensity factors. The mixed-mode SIFs in FGMs are functions

of material gradients, external loading, crack length and geometry. Stress intensity

factors are needed for asymptotic equations.

Asymptotic equations were derived to find the near tip stress fields in homoge-

neous materials and they are valid in a region defined as K-dominant region. Thus, in

FGMs because of the change of stress intensity factors there is a change in K-dominant

region. The aim of this study is to identify the extent of K-dominant region when

material nonhomogeneity is present.
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Figure 1.1. Micrograph illustrating graded transition region between CrNi alloy and

PSZ [2]

1.2. Literature Review

Analytical work on nonhomogeneous materials begins as early as 1960 when soil

was modeled as a non-homogeneous material by Gibson [7]. In his study due to the

complexity, a linear functional form of the material property variation was assumed.

Works on fracture mechanics of FGMs come later. Assuming an exponential

spatial variation of the elastic modulus Delale and Erdogan [8] studied crack problem

with Mode I deformation with a modulus parallel to crack line. They showed that

the crack tip inverse square-root singularity should not be affected by material non-

homogeneities as long as Young’s modulus and Poisson’s ratio are sufficiently smooth

functions of spatial position. Erdogan [9] further showed that square-root singular-

ity of a crack tip should also apply to materials with continuous but only piecewise

differentiable properties.

Eischen [10] studied mixed-mode conditions in non-homogeneous materials using

finite element method (FEM) and he showed that stress singularities at the crack tip

in an FGM are exactly of the same order as those of a homogeneous material. This

result was reconfirmed by Jin and Noda [11] for materials with piecewise differentiable
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property variations as shown below:

σij(r, θ) =
KI√
2πr

F I
ij(θ) +

KII√
2πr

F II
ij (θ) (1.1)

where functions F I
ij(θ) and F II

ij (θ) are the same as those in the expression for a homo-

geneous material, with the coordinate system attached to the crack tip, and KI and

KII are the mode I and mode II stress intensity factors respectively.

In a homogeneous material J-integral is path independent. However, material

nonhomogeneity of FGMs affects J-integral and it is not path independent. Eischen

[10] generated a quasi-path-independent integral for nonhomogeneous materials. He

showed relation of the integral with G, KI , KII .

Konda and Erdogan [12] studied mixed mode problem in an infinite plane where

the crack is arbitrarily oriented with respect to the direction of property gradient. They

approximated the shear modulus an exponential function, µ(x, y) = µ0e
βx+γy and the

poisson’s ratio ν of the medium was assumed to be constant. Mode I and mode II SIFs

were calculated analytically. They derived asymptotic stresses near the crack tip as;

σij(r, θ) = er(βcosθ+γsinθ)[
KI√
2πr

F I
ij(θ) +

KII√
2πr

F II
ij (θ)]. (1.2)

Togho et al. [13] used finite element analysis to investigate the fracture strength

of FGMs. They showed the effect of material property change on stress intensity factors

and plastic zone around the crack tip.

Later, Erdogan and Wu [14] presented a Mode I study of a cracked finite width

plane made of a FGM with three different loading conditions, namely fixed grip, mem-

brane loading, and bending applied to the layer away from the crack region.

Gu and Asaro [15] considered a semi-infinite crack in a FGM strip under edge

loading in an interlayer between two dissimilar materials, and they calculated mixed
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mode stress intensity factors in plane. The effect of material gradients on intensity

factors were determined. It was seen that the size of the K-dominant region decreases

as the nonhomogenity increases.

Jin and Batra [16] gave a simple estimate on the effect of the material property

gradient on the dominance of the crack tip singular field. They studied the K-dominant

region where the asymptotic stress field is valid. They obtained some formulas giving

the dimension of the region roughly. Their theoretical results was confirmed by the nu-

merical study of Marrur and Tippur [17]. The results showed that fracture parameters

of FGMs approach to the fracture parameters of bimaterial as the material gradient is

increased. Also numerical stress were compared with those of asymptotic solution.

Gu et al. [18] presented a simplified method for calculating the crack-tip field of

FGMs using the equivalent domain integral technique. They evaluated J-integral in a

small region around the crack tip to calculate SIFs. In Anlas et al. [19] tried to explore

the extent and the shape of the K-dominant zone in a continuously nonhomogeneous

materials in Mode I. The range of dominance is sensitive to material gradient and

uncracked ligament length. Stress intensity factors were calculated directly from the

classical J-integrals.

Kim and Paulino [20] evaluated mixed-mode fracture parameters in FGMs using

FE analysis with three different methods; path-independent J∗k -integral method, mod-

ified crack-closure integral method, and displacement correlation technique. Results of

the SIFs were compared with the ones founded theoretically by Konda and Erdogan

[12].

Dolbow and Gosz [21] used a new interaction energy integral method for com-

putation of mixed-mode stress intensity factors at tips of arbitrarily oriented cracks

in FGMs. They obtained good agreement between numerical results and analytical

solutions for stress intensity factors in all cases.

Recently, Shim and Paulino [22] investigated the extent of K-dominant region for
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FGM fracture specimens by comparing actual stress field with Williams’ asymptotic

stress field under mode I loading. They concluded that the extent of K-dominance

yields a curve with a peak point at a certain material gradation. Results of this study

provide valuable insight into the K-dominance of FGMs.

Although in previous works SIFs for FGMs are calculated analytically and numer-

ically, detailed study of the K-dominant region is not considered especially in the case of

mixed mode loading. In this study, the extent and the shape of the K-dominant region

in FGMs will be studied for different crack types, crack size and material gradients.
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2. PROBLEM DESCRIPTION AND NUMERICAL

PROCEDURES

2.1. Objective

The aim of the study is to investigate the extent of K-Dominant region near the

crack tip in FGMs within the limits of linear-elastic fracture mechanics. K-dominant

region controls the behavior of the crack as long as the plastic zone remains small

compared to the specimen size. For this purpose, different models are used to in-

vestigate the effects of material gradient, external loading, geometry and crack size

on K-dominant region. The extent of K-dominant region is determined by comparing

crack-tip stress field calculated using finite element with the Williams asymptotic stress

field.

2.2. Analysis

Assuming linear elastic material behavior, the eigenfunction expansion technique

proposed by Williams [23] has been widely used to investigate the nature of the near-

tip fields in a cracked body. Although these expressions were derived for homogeneous

materials, Eischen [10] used an extension of this procedure to establish a general form of

the stress and displacement field near a crack tip in a non-homogeneous material where

the elastic moduli vary with position (x ) such that the Young’s modulus E = E(x)

and Poisson’s ratio ν = ν(x) are continuous, bounded, and differentiable. This result

was further confirmed by Jin and Noda [11] for materials with piecewise differentiable

property variations. Figure 2.1 shows a crack in a two dimensional FGM elastic body

with applied traction and specified displacements on the boundary resulting in a state

of generalized plane stress or plane strain [20].

Local Cartesian and cylindrical co-ordinates are fixed at the crack tip, body forces

are neglected, and crack faces are assumed to be traction-free. The asymptotic stress
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field ahead of a crack tip for mode I and mode II is given by;

σxx = [
KI√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
)]− [

KII√
2πr

sin
θ

2
(2 + cos

θ

2
cos

3θ

2
)] + T + O(r), (2.1)

σyy = [
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
)] + [

KII√
2πr

(sin
θ

2
cos

θ

2
cos

3θ

2
)] + O(r), (2.2)

σxy = [
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
] + [

KII√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
)] + O(r) (2.3)

where KI and KII are modes I and mode II stress intensity factors (SIFs) respectively.

T is the constant nonsingular stress term. O(r) are higher order terms which can

be considered as negligible near the crack tip. The SIFs are functions of material

gradients, external loading and geometry. The material gradients do not affect the

order of singularity and the angular functions of the crack tip fields, but do effect the

SIFs. It also significantly affects the extent of K-dominant region. Thus, although

this asymptotic equations give the stress field near the crack tip, the range of their

applications should be determined. To demonstrate the extent of K-dominant region,

Figure 2.1. Cartesian and polar coordinate systems at the crack tip [20]

the actual elastic-tip stress fields are needed. Nodal stress values taken from finite

element program are presumed to be an accurate presentation of the actual stresses.
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2.3. Finite Element Model

To calculate stress intensity factors and to get the stress field around the crack

MSC Marc Mentat 2001 Finite Element Program is used. In all finite element mod-

els, two dimensional 4-node quadrilateral plane stress elements are used. These are

isoparametric quadrilateral 2-D continuum elements with straight edges and bilinear

interpolation. The node numbering is counterclockwise as shown in Figure 2.2. These

elements use a four-point Gaussian integration scheme. In average, 10000 elements are

used.

Figure 2.2. Four node quadrilateral element

The crack-tip region is modeled using a refined circular mesh to obtain crack-tip

stress and displacement fields and fracture parameters. In the outer region, rectangu-

lar mesh is used. A transition region from the circular mesh to rectangular mesh is

needed in which elements do not have a definite shape. Triangular elements involving

degenerate nodes are also allowed with the same element formulation. Figure 2.3 shows

the mesh detail around the crack tip.

The edge and center cracked plate geometries are shown in Figure 2.4 (a, b). In

the case of edge cracked plate, the height of the plate is twice its width, and the crack

is on the x -axis with a length a. In the center cracked case, a square plate is used and

the crack has a length 2a. These geometries are chosen to compare the results with

the results available in literature. In both models, cracks are inclined with an angle α,
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and the crack is under mixed-mode loading.

Figure 2.3. Mesh around the crack tip

2.3.1. Material Property Gradient in the Finite Element Model

In this study, it is assumed that Poisson’s ratio ν is constant (ν = 0.3) and the

modulus of elasticity E is changing exponentially along the x -axis as shown below;

E(x) = Eeβx (2.4)

where β is the material nonhomogeneity parameter and it denotes an intrinsic length

scale. E represents the elastic modulus at the origin of the coordinate system. For the

edge cracked plate, E is taken as E1, which is the elastic modulus of left edge of the

plate. However, for the center cracked plate E0 represents the modulus at the center

of the crack, x = 0. The exponential change of the material property is discretized in
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Figure 2.4. Geometry of edge and center cracked plates

finite element program. To every node of the element a discrete value of E is aspired.

2.3.2. Accuracy of Finite Element Solution

As mentioned in the previous part, approximately 10000 elements for each model

are used. The number of elements is selected to provide sufficiently good numerical

results with reasonable CPU time. The calculated mode I stress intensity factors are

compared to the analytical and numerical ones available in literature for the model

with different number of element. The difference is calculated as the error percentage.

The models with 400 and 1600 elements do not give accurate results. The errors

are 2.7 and 0.6 percent respectively. If a refined mesh of 10000 elements is used the

error reduces to 0.37 percent. If the geometry is discretized with a much refined mesh

of 40000 elements, only 0.04 error occurs. Obviously solution for 40000 elements takes

6.39 times more CPU time than that of 10000 elements. Thus, it is suitable to select
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approximately 10000 elements mesh in this study. Although it is not mentioned in this

simple example, using circular mesh around the crack tip reduces the error percentage.

The figure given below shows the CPU time and the error percentage of different mesh

types briefly.

Figure 2.5. The CPU time and error percentage for different element numbers

2.4. Determination of Stress Intensity Factors

To analyze the influence of material gradient variation on SIFs, to check the accu-

racy of our finite element model, and to use the asymptotic equations SIFs are needed.

A large number of techniques to calculate SIFs have been presented in the literature.

Techniques fall into one of two categories; direct approaches, which correlate SIF’s with

FEM results directly, and energy approaches, which first compute energy release rate.

In general, energy approaches are more accurate and are used preferentially. In this

study, one of the energy approach; a J-integral method is used to calculate SIFs.
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2.4.1. J-integral

The J-integral is a well known nonlinear fracture parameter. Using a crack coor-

dinate system where the x1 axis is tangential and the x2 axis is perpendicular to the

crack in a two dimensional body, the J-integral is defined as

J =

∫

Γ

(Wn1 − σijni
∂uj

∂x1

)ds (2.5)

where Γ is any path beginning at the bottom crack face and ending on the top crack

face, W is the strain energy density, σ is the stress tensor, n is the unit outward normal

to the contour, u is the displacement vector.

Figure 2.6. Definition of J-integral

2.4.1.1. Homogeneous material. For homogeneous materials, the contour integral can

be shown to be path independent providing no body forces inside the integration area,

there are no thermal strains and no tractions on the crack surface. In addition to that,

the J-integral can be interpreted as equivalent to energy release rate, J = G. The

energy release rate is the change in energy per unit crack extension per unit thickness

[10]. It is denoted as

G =
dU

dA
(2.6)
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where U is the strain energy and A is the crack surface area. Stress intensity factors

are related to the energy relase rate for mixed mode loading as

G =
K2

I

E ′ +
K2

II

E ′ (2.7)

where for plane strain

E ′ =
E

1− v2
(2.8)

and for plane stress

E ′ = E. (2.9)

Thus, first G should be calculated using J-integral to find stress intensity factors.

In finite element program, Marc Mentat, J-integral can be evaluated. The J-integral

evaluation in Marc Mentat is based upon the area integration as described in Equation

2.5.

The nodes along the crack front, the shift vector, and the nodes of the rigid

region are required to evaluate the J-integral in Marc Mentat. The program makes

an automatic search for the nodes of the rigid region where a number of regions of

increasing size are found. The first region consists of the nodes of all elements connected

to the crack tip node. The second region includes of all nodes in the first region and

the nodes of all elements connected to any node in the first region and so on for a given

number of regions. This way, contours of increasing size are determined. Since the

mesh is circular around the crack tip the elements within a region are certain radius

apart from the crack tip. In this study, eight different regions are used in finite element

program to evaluate J-integral.

For mixed-mode loading, separate calculation of the stress intensity factors is

difficult. J-integral is calculated numerically and it is assumed that J-integral is a sum
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of symmetric and antisymmetric parts as

J = J1 + J2 (2.10)

where

J1 =
K2

I

E ′ (2.11)

and

J2 =
K2

II

E ′ . (2.12)

In Equations 2.11 - 2.12, J1 and J2 are needed separately to determine KI and K2.

Mattheck and Moldenhauer [25] present a mode extraction technique to subdivide the

J-integral. This technique extracts mode I from mixed mode by applying the following

constraint

ui = uj (2.13)

to all node pairs (i, j) on the free surface. Preventing relative motion in x -direction,

only opening of the crack remains. Similarly, mode II is extracted from mixed mode

by applying

vi = vj (2.14)

This time, nodes only slide on the x -direction which result in mode II.

Since the J-integral is calculated on eight paths around the crack tip the con-

straints are applied to eight pairs of nodes on crack free surfaces to calculate J1 and J2

separately. In Marc Mentat, the LINKS menu is used to define constraint equations
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Figure 2.7. Explanation of the filter technique based on superposition and crack

closure

between nodes. For determining JI , nodal ties are set to eight pairs of nodes and the

first degree of freedom (u direction) is eliminated from the system. In the same way,

the second degree of freedom (v direction) is reduced for the nodes pairs to determined

the JII .

For an inclined center crack in a homogeneous plate subjected to far-field biaxial

or uniaxial constant traction as shown in Figure 2.9, closed-form solutions for SIFs and

T-stress are given by [30];

KI = σ
√

πa(λcos2α + sin2α), (2.15)

KII = σ
√

πa(1− λ)sinαcosα, (2.16)

T = σ(1− λ)cos2α. (2.17)
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x

y

Figure 2.8. Presentation of double nodes on free crack surface

Figure 2.9. An inclined center crack in a biaxially loaded homogeneous plate

However, the closed-form solution is valid for the case of a finite plate if the crack

length is small enough relative to the width of the plate. If the crack length increases

the boundary effect can occur.
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2.4.1.2. Nonhomogeneous material. For nonhomogeneous materials, J-integral is not

path independent, G 6= J . Thus J values changes with contour. An example of a

center crack plate under mode I case is given in Table 2.1 to compare J values for

homogeneous material and FGM. The contour numbers represent contours around the

crack tip.

Table 2.1. J-integral values for a center cracked homogeneous and FGM with mode I

J-integral values

Contour Number Homogeneous FGM

1 3.13 4.79

2 3.17 4.89

3 3.18 4.94

4 3.18 4.98

5 3.19 5.02

6 3.19 5.05

7 3.19 5.09

8 3.19 5.13

The J-integral value can not be used directly for FGMs in calculation of stress

intensity factors. Gu et al. [27] show that the J-integral obtained from finite element

program is sufficiently accurate when applied to nonhomogeneous materials if a very

fine mesh (like r → 0) is used. The drawback of this method is that it needs sufficiently

fine mesh which means higher CPU time.

Anlas et al. introduced a simple method that uses relatively coarse mesh to

calculate the stress intensity factors directly from classical J-integrals [28]. With this

method, finding J-integral value as Γ → 0 using the standard J-integral algorithm

and without using very fine mesh is possible. Path dependent J-integral values are

calculated along many contours around the crack tip and every path gives different

J-integral values. The values are plotted versus contour numbers. Then a polynomial

is fitted to data points , and a value for Γ → 0 can be obtained. Γ → 0 is approximated

numerically as the intercept of the polynomial curve with J-axis. It is seen that the
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limiting value of J is approximately equal to the energy release rate, G.

In this study, J-integrals are calculated along eight contours using Marc Mentat.

First and the last contours’ results are omitted to reduce the error. To obtain a limiting

value for J, a linear curve is fit to data and the point where the line crosses the vertical

axis is the limiting value of the J-integral. Figure 2.10 shows the six data points and

the linear curve fit for the data given in Table 2.1. For mixed mode loading J1 and J2

integrals are extracted by applying a mode extraction technique as described in Section

2.4.1.1. Similarly, J1 and J2 values are determined by finding a limiting value for J1

and J2 integrals obtained directly from finite element program.

After J1 and J2 values are obtained, stress intensity factors are calculated by

using Equations 2.11 - 2.12. However, because there is a material gradient instead of

E’, the young modulus at the crack tip, E ′
tip is used.

Figure 2.10. Linear curve fit for J-integral values
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2.5. Calculation of K-dominant Region

Once the asymptotic stress fields are calculated by using Equations 2.1 - 2.3 and

finite element stress fields are obtained, the extent of K-dominant region is defined as

the deviation of symptotic stress field from finite element stress field. Lee and Rosakis

[24] define the stress deviation quantity, e, as follows;

e =
‖σF

ij − σA
ij‖

‖σA
ij‖

(2.18)

where σF
ij and σA

ij denote stress components of the finite element solution and the

asymptotic field solution respectively and Einstein’s summation convention is applied

to the repeated subscripts. The subscripts i and j range from x to y. In the definition

of error parameter, Frobenius norms which are commonly used in matrix algebra to

calculate the norms of matrices are used. In Equation 2.18, the nondimensional posi-

tive scalar parameter, e, is given as the ratio of the norm of the matrix formed from the

differences of the stress calculated by finite element analysis and by asymptotic equa-

tions to the norm of the matrix formed from the stresses calculated by the asymptotic

equations. The error parameter is a measure of the difference between the two stress

fields in brief.

2.6. Verification of Finite Element Model

An inclined crack of length 2a located of a center crack in a finite two-dimensional

FGM plate is studied in this section for the verification of the finite element model. The

geometry is shown in Figure 2.12, upper and lower edges are loaded by σyy = εE0e
βx

which is a result of a uniform strain εyy = ε.

The Poisson’s ratio, ν, is constant (ν = 0.3) and the Young’s modulus, E, is

changing exponentially along x -axis and given as;
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E(x) = E0e
βx (2.19)

   a   -a

    y

    x

    E(x)/E
o

   0

  4

  2

  6

Figure 2.11. The variation of the Young’s modulus E = E0e
βx [12]

E0 is the elastic modulus at x = 0 and β is a measure of the length scale of the

material gradient. The variation of the elastic modulus is given in Figure 2.11. E1 is

the elastic modulus of the left edge of the plate, and E2 is the elastic modulus of the

right edge of the plate and between the two edges the modulus varies exponentially; β

can be determined as follows;

β =
1

H
ln(

E2

E0

) (2.20)

or

β =
1

H
ln(

E0

E1

). (2.21)
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In this study, a/W = 0.1; H/W = 1.0; E0 = 1.0; α = 0o, 18o, 36o, 54o; βa =

0.25, 0.5; ε = 1.0 are used, and a plane stress assumption is made to compare the

results to those of Konda and Erdogan [12] who investigated the mixed mode center

crack problem in a unbounded nonhomogeneous elastic medium considering generalized

plane stress. The stress intensity factors are compared with the SIFs of closed-form

solutions that are available only for homogeneous center cracked plate

Figure 2.12. FGM plate with an inclined crack of angle α

2.6.1. Stress Intensity Factors

Stress intensity factors under mixed mode loading are calculated using the meth-

ods described in Section 2.4.1.1 and all stress intensity factors are normalized as shown

below;
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kI,II =
KI,II

εE0

√
πa

(2.22)

Using Equations 2.11 - 2.12 with Equation 2.22, kI and kII can be rewritten as;

kI,II =

√
JI,IIEtip

ε2E2
0πa

(2.23)

Before considering the nonhomogeneous case, stress intensity factors for homo-

geneous center cracked plate, β = 0, are calculated under uniaxial loading, σyy = 1,

for two different crack lengths of a/h = 0.05 and a/h = 0.1. The results are compared

to closed form solutions. The closed form solutions for SIFs can be obtained by using

Equations 2.15 - 2.17. The loading is uniaxial, and λ is taken as 0.

It is seen that SIFs for a/h = 0.05 are very close to closed form solutions that are

given for an infinite plate because in the case of a/h = 0.05 the boundary effect is small.

However, it can be said that the results obtained for a/h = 0.1 are also adequate, see

Table 2.2. A crack length of a/h = 0.1 is used to model crack in an infinite plate in

subsequent calculations.

Table 2.2. Normalized stress intensity factors for βa = 0 with σyy = εE0e
βx

a/h = 0.05 a/h = 0.1

Method α/π kI(a) kII(a) kI(−a) kII(-a) kI(a) kII(a) kI(−a) kII(−a)

0 1.000 0 1.000 0 1.000 0 1.000 0

0.1 0.905 −0.294 0.905 −0.294 0.905 −0.294 0.905 −0.294

Closed form solution 0.2 0.655 −0.476 0.655 −0.476 0.655 −0.548 0.655 −0.476

0.3 0.345 −0.476 0.345 −0.476 0.345 −0.532 0.345 −0.476

0 0.998 0 0.998 0 1.004 0 1.004 0

0.1 0.906 −0.294 0.906 −0.294 0.908 −0.294 0.908 −0.294

Present study 0.2 0.653 −0.475 0.653 −0.475 0.656 −0.472 0.656 −0.472

0.3 0.343 −0.474 0.343 −0.474 0.357 −0.470 0.357 −0.470



24

For the nonhomogeneous case, the analytical solution of this problem is obtained

by Konda and Erdogan [12]. Later, Kim and Paulino [20] solved the same problem

and compared the SIFs results using different numerical methods: They used modi-

fied crack-closure integral method (MCC), path-independent J∗k -integral method, and

displacement correlation technique (DCT). Analogous studies have also been made by

Dolbow and Gosz [21] using an extended finite element method (X-FEM). The results

of those studies are tabulated in Table 2.3 for βa = 0.25 and 0.5 for various angles α/π.

Present results are compared to the analytical results of Konda and Erdogan [12] and

the numerical results of Kim and Paulino [20] and Dolbow and Gosz [21]. It is seen

that sufficient quantitative agreement is provided. Maximum error in the calculations

is less than five percent. The values are also as good as the numerical ones presented

by Kim and Paulino [20] and Dolbow and Gosz [21].

Table 2.3. Normalized stress intensity factors for βa = 0.25 and βa = 0.5 with

σyy = εE0e
βx

βa = 0.25 βa = 0.5

Method α/π kI(a) kII(a) kI(−a) kII(-a) kI(a) kII(a) kI(−a) kII(-a)

0 1.196 0 0.825 0 1.424 0 0.674 0

0.1 1.081 −0.321 0.750 −0.254 1.285 −0.344 0.617 −0.213

Konda and Erdogan [12] 0.2 0.781 −0.514 0.548 −0.422 0.925 −0.548 0.460 −0.365

0.3 0.414 −0.504 0.290 −0.437 0.490 −0.532 0.247 −0.397

0 1.221 0 0.827 0 1.458 0 0.664 0

0.1 1.101 −0.325 0.752 −0.250 1.310 −0.353 0.608 −0.207

Kim and Paulino [20] 0.2 0.789 −0.519 0.549 −0.416 0.933 −0.558 0.454 −0.355

(MCC) 0.3 0.414 −0.507 0.291 −0.432 0.487 −0.536 0.244 −0.386

0 1.220 0 0.840 0 1.446 0 0.679 0

0.1 1.106 −0.315 0.769 −0.239 1.306 −0.341 0.628 −0.195

Kim and Paulino [20] 0.2 0.810 −0.494 0.582 −0.390 0.944 −0.534 0.488 −0.329

(J∗k -integral) 0.3 0.404 −0.523 0.297 −0.439 0.461 −0.563 0.256 −0.392

0 1.235 0 0.854 0 1.461 0 0.693 0

0.1 1.140 −0.312 0.775 −0.248 1.315 −0.333 0.633 −0.209

Kim and Paulino [20] 0.2 0.802 −0.499 0.565 −0.412 0.943 −0.529 0.469 −0.356

(DCC) 0.3 0.423 −0.489 0.297 −0.425 0.498 −0.512 0.249 −0.384

0 1.218 0 0.838 0 1.445 0 0.681 0

0.1 1.099 −0.329 0.761 −0.257 1.303 −0.353 0.623 −0.213

Dolbow and Gosz [21] 0.2 0.788 −0.524 0.557 −0.424 0.930 −0.560 0.467 −0.364

0.3 0.415 −0.512 0.295 −0.439 0.488 −0.540 0.251 −0.396

0 1.209 0 0.830 0 1.448 0 0.680 0

0.1 1.087 −0.319 0.760 −0.258 1.303 −0.340 0.628 −0.217

Present study 0.2 0.780 −0.526 0.554 −0.419 0.927 −0.559 0.479 −0.365

0.3 0.404 −0.513 0.297 −0.437 0.474 −0.535 0.251 −0.395
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2.6.2. Calculation of the crack tip stress fields

The stress fields around left and right crack tips are plotted by using both finite

element method results and asymptotic equations. The finite element solution gives the

two dimensional stress fields at every node. Asymptotic stress values can be calculated

at the same coordinates using Equations 2.1 - 2.3.

The global coordinate system is at the center of the plate as shown in Figure 2.12.

However, since the stress contours around the crack tip is examined, the coordinate

system is transformed to one of the crack tip which is under investigation (left or

right crack tip) and the stress values are calculated by using the new coordinates of

each node. By changing the coordinate system, the crack is assumed to be flat and

the change of E is adjusted to get the effect of the crack angle. By transforming the

x -coordinate Equation 2.19 becomes;

E(x) = E0e
βx = E0e

β(x1cos(α)−y1sinα+acosα) (2.24)

Figure 2.13. The region where stress contours are calculated for the right crack tip
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In Figures 2.14 - 2.16 stress contours of σxx, σxy and σyy are plotted for α = 0o

with βa = 0.25 to compare finite element (FE) and the asymptotic equation (ASY)

results. The plots cover x/h by y/h region which is the new coordinate system used

at the crack tip and the crack tip is located at x/h = 0.

The stress contours obtained using finite element data has the same trend as

those of asymptotic solutions. σyy values are much higher than the other stress values

as expected. Since there is a geometrical symmetry, the compressive stresses and shear

stresses are lower.

The stress contours are not sufficient to find the extent and shape of the K-

dominant region around the crack tip in a linearly elastic two dimensional domain.

The difference between finite element results and those of the asymptotic equations

can be calculated at each node in the field by using an error parameter, e, given by

Equation 2.18. Then, error contours are plotted. In Figure 2.17, error contours for

α = 0o with βa = 0.25 are given. The error parameter, e, gets smaller as the crack tip

is approached; as expected the asymptotic solution gives good results near the crack

tip.

The analysis of the model given in Figure 2.4 (b) is done by Yilmaz [29] for pure

mode I. A uniform rectangular mesh is used in ANSYS. The stress intensity factors

are calculated using the j-integral technique given by Anlas [28]. Figures 2.18 - 2.19

shows the comparison of error contours of present study and the results of Yılmaz [29]

for E2/E1 = 10 (β = 0.1151) and a/h = 0.3. The normalized stress intensity factor,

k1 is taken as 1.2291 as given by Erdogan and Wu [14]. There are some differences in

error parameter e because in the present study, a finer mesh is used, and the analysis

is carried out by using a different finite element program. In Figures 2.20 - 2.21, finite

element (FE) results of σyy and the σyy values obtained from asymptotic equations

(ASY) are plotted on the symmetry axis between the crack tip and the right edge of

the plate. The results again match well.
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Figure 2.14. σyy contours for α = 0o and βa = 0.25 around right crack tip
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Figure 2.15. σxx contours for α = 0o and βa = 0.25 around right crack tip
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Figure 2.16. σxy contours for α = 0o and βa = 0.25 around right crack tip
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Figure 2.17. Error contours for α = 0o and βa = 0.25 around right crack tip
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Figure 2.18. Error contours for α = 0o, E2/E1 = 10, a/h = 0.3 by Yılmaz [29]

Figure 2.19. Error contours for α = 0o, E2/E1 = 10, a/h = 0.3



30

Figure 2.20. Normalized σyy for α = 0o, E2/E1 = 10, a/h = 0.3 by Yılmaz [29]

Figure 2.21. Normalized σyy for α = 0o, E2/E1 = 10, a/h = 0.3
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3. MIXED MODE K-DOMINANCE FOR CENTER

CRACKED FGM PLATE

3.1. General

In this chapter, a plate made of FGM with a center crack is analyzed with the

numerical procedure outlined in Chapter 2. However, this time the upper and lower

edges of the plate are loaded by a uniform traction, σ0 and the crack angle is α, as

shown. The new model is given in Figure 3.1.

Figure 3.1. The model of center crack plate of FGM
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3.2. Stress Intensity Factors

Normalized stress intensity factors are calculated for different crack lengths of

a/h = 0.2, 0.3, 0.4 with E2/E1 = 1, 2, 5, 10, 20 and crack angle as α = 0o, 15o, 30o, 45o

and 60o. Results for both right and left crack tips are tabulated in Tables 3.2, 3.3 and

3.4. Since the loading is uniform the stress intensity factors are normalized by dividing

KI and KII by σo

√
πa instead of εE0

√
πa given in Equation 2.22.

In the previous section, material gradient is expressed in terms of β. Thus, β can

be calculated using E2/E1 values. The β values are given in Table 3.1. The related

equation is E2/E1 = eβH .

Table 3.1. β values used for center cracked FGM plate

E2/E1 β

1 0

2 0.0347

5 0.0847

10 0.1151

20 0.1498

As it was discussed in the previous chapter, kI values decrease as α increases and

kII values increase as α increases in each model. However, kII values start to increase

after the crack angle, α, becomes 45o. Besides, an increase in E2/E1 ratio leads to an

increase in mode I stress intensity factors and a decrease kII for right crack tip and

opposite behavior for left crack tip. It is also noted that increasing the crack length

causes the increase in both kI and kII values. Figure 3.2 and Figure 3.3 are examples

that show the change in stress intensity factors for the models with crack angle a/h =

0.2 at right crack tip.
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Table 3.2. Normalized stress intensity factors for a/h = 0.2

a/h=0.2

E2/E1 α kI(a) kII(a) kI(−a) kII(-a)

0o 1.051 0 1.051 0

15o 0.976 0.270 0.976 0.260

1 30o 0.784 0.446 0.784 0.446

45o 0.528 0.521 0.528 0.521

60o 0.263 0.460 0.263 0.460

0o 1.075 0 1.036 0

15o 0.999 0.244 0.977 0.250

2 30o 0.802 0.447 0.774 0.443

45o 0.537 0.520 0.527 0.514

60o 0.272 0.460 0.263 0.457

0o 1.114 0 1.043 0

15o 1.074 0.244 0.975 0.236

5 30o 0.848 0.434 0.770 0.424

45o 0.579 0.519 0.527 0.510

60o 0.311 0.460 0.267 0.458

0o 1.221 0 1.060 0

15o 1.099 0.243 0.974 0.212

10 30o 0.896 0.418 0.790 0.398

45o 0.626 0.518 0.524 0.491

60o 0.357 0.459 0.266 0.454

0o 1.236 0 1.061 0

15o 1.149 0.195 0.971 0.169

20 30o 0.939 0.375 0.770 0.347

45o 0.671 0.486 0.529 0.464

60o 0.416 0.457 0.262 0.453
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Table 3.3. Normalized stress intensity factors for a/h = 0.3

a/h=0.3

E2/E1 α kI(a) kII(a) kI(−a) kII(-a)

0o 1.119 0 1.119 0

15o 1.042 0.278 1.042 0.278

1 30o 0.835 0.467 0.835 0.467

45o 0.553 0.537 0.553 0.537

60o 0.276 0.463 0.276 0.463

0o 1.153 0 1.091 0

15o 1.074 0.263 1.019 0.249

2 30o 0.863 0.467 0.825 0.461

45o 0.575 0.536 0.548 0.536

60o 0.297 0.461 0.275 0.462

0o 1.227 0 1.077 0

15o 1.144 0.236 1.005 0.215

5 30o 0.923 0.448 0.822 0.442

45o 0.627 0.529 0.544 0.526

60o 0.309 0.460 0.270 0.449

0o 1.295 0 1.074 0

15o 1.215 0.221 1.004 0.189

10 30o 0.973 0.405 0.820 0.399

45o 0.679 0.516 0.553 0.511

60o 0.420 0.458 0.269 0.448

0o 1.360 0 1.069 0

15o 1.268 0.163 1.005 0.186

20 30o 1.032 0.404 0.818 0.387

45o 0.698 0.483 0.558 0.465

60o 0.504 0.449 0.267 0.442
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Table 3.4. Normalized stress intensity factors for a/h = 0.4

a/h=0.4

E2/E1 α kI(a) kII(a) kI(−a) kII(-a)

0o 1.210 0 1.210 0

15o 1.130 0.290 1.130 0.290

1 30o 0.905 0.496 0.905 0.496

45o 0.601 0.576 0.601 0.576

60o 0.302 0.490 0.302 0.490

0o 1.276 0 1.174 0

15o 1.171 0.287 1.120 0.289

2 30o 0.956 0.503 0.882 0.491

45o 0.637 0.576 0.586 0.566

60o 0.324 0.492 0.302 0.486

0o 1.414 0 1.152 0

15o 1.270 0.283 1.120 0.286

5 30o 1.063 0.502 0.875 0.478

45o 0.722 0.575 0.585 0.552

60o 0.390 0.491 0.307 0.478

0o 1.567 0 1.146 0

15o 1.383 0.280 1.114 0.284

10 30o 1.181 0.499 0.873 0.467

45o 0.816 0.572 0.580 0.541

60o 0.466 0.483 0.305 0.469

0o 1.760 0 1.139 0

15o 1.527 0.270 1.150 0.281

20 30o 1.331 0.497 0.872 0.458

45o 0.935 0.561 0.578 0.527

60o 0.563 0.470 0.304 0.457
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Figure 3.2. Mode I SIFs vs α for a/h=0.2 at right crack tip
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Figure 3.3. Mode II SIF vs α for a/h=0.2 at right crack tip
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3.3. Calculation of K-dominant Region

After calculating the stress intensity factors, K-dominant region is studied in

three steps. First, the effect of material nonhomogeneity on K-dominance is examined.

Then, the extent of K-dominant region with change in crack length is analyzed. Last,

the effect of mode mixity on K-dominance is studied by changing the crack angle.

The coordinate system of the model is shifted to the crack tip, and the results

of the finite element solution and the results of asymptotic equations are recalculated

using this new coordinate system. As a result of this coordinate transformation, the

crack is flat and the elastic modulus is changing with x and y, as shown in Figure 2.13.

In all steps, the first analysis is the calculation of the stress field in y-direction;

σyy values obtained from the finite element solution (FE), and σyy values obtained from

asymptotic equations (ASY) are plotted along the crack tip, on θ = 0 direction between

the crack tip and the edge of the plate. This stress is called the opening stress.

Second, a two dimensional visualization of the K-dominant region is made possible

by comparing the finite element stress field to asymptotic stress field. The analysis is

done by plotting the stress distribution directly ahead of the crack. Because the plate

is subjected to tensile loading in y-direction only, use of σyy is sufficient for the analysis.

Last, the error parameter which is given in Equation 2.18 is calculated in a region

around the crack tip. The extent of K-dominant region is plotted via error contours.

In error contours all stress components are considered. The size of K-dominant region

is investigated for the model of crack lengths of a/h = 0.2, 0.3, 0.4 with E2/E1 = 1, 2,

5, 10, 20 and crack angles α = 0o, 15o, 30o, 45o and 60o.

3.3.1. Effect of Material Nonhomogeneity on Extent of K-dominant Region

The change of K-dominance with material nonhomogeneity is studied in this

section. Initially, σyy/σo versus x/h plots are given. The coordinate system is located
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at the right crack tip, x/h = 0, the crack lies along the negative x-axis. The finite

element solution (FE) and asymptotic solution (ASY) are obtained for E2/E1 > 1.

Crack lengths used are a/h = 0.3 and the crack angles are α = 15o, 30o, 45o and 60o.

In Figures 3.4 - 3.7, FE curves are given for a/h = 0.3. It can be seen that

σyy values get larger as r→ 0, the highest value occuring for E2/E1 = 20. Thus,

increasing the nonhomogeneity from E2/E1 = 2 to E2/E1 = 20 increases the stress

level. Figures 3.8 - 3.11 show ASY curves for the same cases. These curves are in

agreement with FE curves. However, the ASY values are lower than the FE values.

In all graphs plotted, the curves almost overlap. Thus, a log-log graph is plotted to

magnify difference between the curves. An example of log-log curve is given in Figure

3.12 for α = 15o and a/h = 0.3 around the right tip.
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Figure 3.4. FE results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 15o for

different E2/E1 ratios
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Figure 3.5. FE results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 30o for
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Figure 3.6. FE results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 45o for

different E2/E1 ratios
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Figure 3.7. FE results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 60o for

different E2/E1 ratios

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

3

4

5

6

7

x/h

σ yy
/σ

o

E
2
/E

1
=2

E
2
/E

1
=5

E
2
/E

1
=10

E
2
/E

1
=20

Figure 3.8. ASY results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 15o for
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Figure 3.9. ASY results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 30o for
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Figure 3.10. ASY results for σyy/σo vs distance from crack tip, a/h = 0.3, α = 45o for
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Up to now plots of opening stress, σyy, are considered. However, the plots of σyy

alone are not sufficient to find the extent and shape of the K-dominant region around

the crack tip with different material nonhomogeneity. K-dominant region can only be

found by comparing the asymptotic stress field around the crack tip to FE solutions.

As a result, stress contours of σyy are plotted on two dimensional domain (x/h by

y/h) near the right crack tip. Figures 3.13 - 3.28 show σyy stress contours for a/h

= 0.2 with α = 15o, 30o, 45o and 60o for different E2/E1 values. Each contour plot

contains several contours for FE solution and ASY solution. Extent of K-dominant

region increases when contours of FE and ASY solutions get closer to each other.

For the right tip of the crack, the material nonhomogeneity is increasing in the

crack propagation direction. Thus, it is seen that the stress contours become larger

for both finite element solution and asymptotic equation solution when the material

nonhomogeneity increases. As a result, K-dominant region increases as the material

nonhomogeneity increases for a/h = 0.2 and α = 15o, 30o, 45o and 60o.

As it seen that FE curves are fluctuating at some points and they are not smooth.

The reason for that is the finite elements’ nodes are not always in line and sometimes

they are spread since FE mesh does not have a definite shape in some region in the

plate.
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Figure 3.13. Contour plots of σyy for E2/E1 = 2, α = 15o and a/h = 0.2 around right

crack tip

x/h

y/
h

2

1.5

10.5

0.5

1 1.5

2

 

 

0.5

1

1.5

1.5

2

1

0.5

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

FE

ASY

Figure 3.14. Contour plots of σyy for E2/E1 = 5, α = 15o and a/h = 0.2 around right

crack tip
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Figure 3.15. Contour plots of σyy for E2/E1 = 10, α = 15o and a/h = 0.2 around

right crack tip
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Figure 3.16. Contour plots of σyy for E2/E1 = 20, α = 15o and a/h = 0.2 around

right crack tip
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Figure 3.17. Contour plots of σyy for E2/E1 = 2, α = 30o and a/h = 0.2 around right

crack tip
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Figure 3.18. Contour plots of σyy for E2/E1 = 5, α = 30o and a/h = 0.2 around right

crack tip
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Figure 3.19. Contour plots of σyy for E2/E1 = 10, α = 30o and a/h = 0.2 around

right crack tip
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Figure 3.20. Contour plots of σyy for E2/E1 = 20, α = 30o and a/h = 0.2 around

right crack tip
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Figure 3.21. Contour plots of σyy for E2/E1 = 2, α = 45o and a/h = 0.2 around right

crack tip
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Figure 3.22. Contour plots of σyy for E2/E1 = 5, α = 45o and a/h = 0.2 around right

crack tip
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Figure 3.23. Contour plots of σyy for E2/E1 = 10, α = 45o and a/h = 0.2 around

right crack tip
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Figure 3.24. Contour plots of σyy for E2/E1 = 20, α = 45o and a/h = 0.2 around

right crack tip
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Figure 3.25. Contour plots of σyy for E2/E1 = 2, α = 60o and a/h = 0.2 around right

crack tip
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Figure 3.26. Contour plots of σyy for E2/E1 = 5, α = 60o and a/h = 0.2 around right

crack tip
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Figure 3.27. Contour plots of σyy for E2/E1 = 10, α = 60o and a/h = 0.2 around

right crack tip
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Figure 3.28. Contour plots of σyy for E2/E1 = 20, α = 60o and a/h = 0.2 around

right crack tip



52

A further analysis of the extent of K-dominant region can be better done by using

error contours. Although differences between stress values of both solutions can be seen

from figures of stress contours the difference and therefore the K-dominant region can

be quantified at each point in the field by an error parameter [24];

e =

√
(σF

ij − σA
ij)(σ

F
ij − σA

ij)

σA
ijσ

A
ij

(3.1)

For error contours the plots cover x/h by y/h region, and the crack tip is located

at x/h = 0. Figure 3.30 gives error contour for α = 0o and a/h = 0.2 around right

crack tip. It can be easily seen that K-dominant region is changing with changing

nonhomogeneity. The error contours cover the smallest area for the homogeneous

case and as E2/E1 increases contours cover larger area. Thus, as it is discussed with

the stress contours K-dominant zone gets larger as material nonhomogeneity increases

for the right crack tip. Similar observation are made for α = 15o, 30o which are

given in Figures 3.30 - 3.31. Again the K-dominant region grows as the material

nonhomogenenity increases.

In all models, the elastic modulus increases in the crack propogation direction.

It means that the right edge is stiffer than the left edge of the plate. The case where

the elastic modulus decreases in the crack propogation direction is not given in this

study. However, it can be said that investigating the behaviour around left crack tip

can simulate such behavior. Thus, similar error contours are plotted for left crack

tip in Figures 3.32 - 3.34. As it is expected, this time, the error contour is larger

for homogeneous case, E2/E1 = 1, and the area covered diminishes as the material

nonhomogeneity increases.

It can be concluded that if nonhomogeneity increases in the crack propogation

direction, and if the material gradient is high near the crack tip, K-dominant region

increases with increasing nonhomogeneity.
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Figure 3.29. Error contours for different E2/E1 ratios, a/h = 0.2 and α = 0o around

right crack tip
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right crack tip
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Figure 3.31. Error contours for different E2/E1 ratios, a/h = 0.2 and α = 30o around

right crack tip
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Figure 3.32. Error contours for different E2/E1 ratios, a/h = 0.2 and α = 0o around

left crack tip
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Figure 3.33. Error contours for different E2/E1 ratios, a/h = 0.2 and α = 15o around

left crack tip
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Figure 3.34. Error contours for different E2/E1 ratios, a/h = 0.2 and α = 30o around

left crack tip



56

3.3.2. Effect of Crack Angle on Extent of K-dominant Region

The opening stress, σyy, along the crack is analyzed for different crack angles.

FE and ASY stress curves are plotted separately from α = 15o to α = 60o for a/h =

0.3 with E2/E1 = 2, 5, 10, 20 in Figures 3.35 - 3.42. Both left and right crack tips are

considered. The origin seen on the graphs is the common origin for the left and right

halves of the domain, and it represents both of the two crack tips. From ASY and

FE results, it is understood that as the crack angle increases σyy decreases. In all the

plots, ASY stress values underestimate FE stress values. Besides, stress values along

right crack tip to right edge of the plate are higher than the values along the left crack

tip to left edge of the plate.
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Figure 3.35. FE results for σyy/σo vs. distance from crack tip, a/h = 0.3, E2/E1 = 2

for different crack angles
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Figure 3.36. ASY results for σyy/σo vs. distance from crack tip, a/h = 0.3,

E2/E1 = 2 for different crack angles
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Figure 3.37. FE results for σyy/σo vs. distance from crack tip, a/h = 0.3, E2/E1 = 5

for different crack angles
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Figure 3.38. ASY results for σyy/σo vs. distance from crack tip, a/h = 0.3,

E2/E1 = 5 for different crack angles
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Figure 3.39. FE results for σyy/σo vs distance from crack tip, a/h = 0.3, E2/E1 = 10

for different crack angles
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Figure 3.40. ASY results for σyy/σo vs. distance from crack tip, a/h = 0.3,

E2/E1 = 10 for different crack angles
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Figure 3.41. FE results for σyy/σo vs. distance from crack tip, a/h = 0.3, E2/E1 = 20

for different crack angles
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Figure 3.42. ASY results for σyy/σo vs. distance from crack tip, a/h = 0.3,

E2/E1 = 20 for different crack angles

Second, the stress contours are plotted to investigate the effect of angle change

on K-dominant region. Figures 3.43 - 3.74 show stress contours for a/h = 0.3 with

E2/E1 = 2, 5, 10, 20 for different crack angle values. The graphs are plotted for stress

fields around the right and left crack tips separately.

It is seen that as the crack angle increases stress contours of FE and ASY solution

stress curves are getting closer to each other. The extent of K-dominant region increases

as the crack angle increases for each E2/E1 value. Beside that the shape of the stress

contours for both ASY and FE solutions change. The shape of the stress contours get

narrow and rotate slightly while α increases. The stress contours around right and left

crack tip have similar trend.
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Figure 3.43. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 15o around right

crack tip
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Figure 3.44. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 30o around right

crack tip
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Figure 3.45. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 45o around right

crack tip

x/h

y/
h

0.25

0.5

0.5

1

0.25

 

 

0.5

0.5

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

FE

ASY

Figure 3.46. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 60o around right

crack tip
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Figure 3.47. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 15o around left

crack tip
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Figure 3.48. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 30o around left

crack tip
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Figure 3.49. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 45o around left

crack tip
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Figure 3.50. Contour plot of σyy for E2/E1 = 2, a/h = 0.3 and α = 60o around left

crack tip
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Figure 3.51. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 15o around right

crack tip
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Figure 3.52. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 30o around right

crack tip
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Figure 3.53. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 45o around right

crack tip
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Figure 3.54. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 60o around right

crack tip
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Figure 3.55. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 15o around left

crack tip
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Figure 3.56. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 30o around left

crack tip
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Figure 3.57. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 45o around left

crack tip
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Figure 3.58. Contour plot of σyy for E2/E1 = 5, a/h = 0.3 and α = 60o around left

crack tip
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Figure 3.59. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 15o around right

crack tip
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Figure 3.60. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 30o around right

crack tip
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Figure 3.61. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 45o around right

crack tip
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Figure 3.62. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 60o around right

crack tip
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Figure 3.63. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 15o around left

crack tip
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Figure 3.64. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 30o around left

crack tip
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Figure 3.65. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 45o around left

crack tip
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Figure 3.66. Contour plot of σyy for E2/E1 = 10, a/h = 0.3 and α = 60o around left

crack tip
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Figure 3.67. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 15o around right

crack tip
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Figure 3.68. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 30o around right

crack tip



74

x/h

y/
h

0.25

0.5

1

1

1

1.5

0.5

0.25

 

 

0.25
0.5

1

1

1.5

0.5

0.25

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

FE

ASY

Figure 3.69. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 45o around right

crack tip
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Figure 3.70. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 60o around right

crack tip
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Figure 3.71. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 15o around left

crack tip
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Figure 3.72. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 30o around left

crack tip
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Figure 3.73. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 45o around left

crack tip
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Figure 3.74. Contour plot of σyy for E2/E1 = 20, a/h = 0.3 and α = 60o around left

crack tip
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After the stress contours are plotted, the extent of K-dominant region with the

change of crack angle is investigated by using error contours. Error contours are plotted

for a/h = 0.3 and E2/E1 = 2, 5, 10 with α = 0o, 15o, 30o in Figures 3.75 - 3.80. Both

right and left crack tips are considered separately.

It is seen that the area covered by error contour increases dramatically as the

crack angle increases. It means that the K-dominant region is larger for higher crack

angle values (α = 30o) around both left and right crack tip. Furthermore, the contours

around the right crack tip cover larger areas. That means extent of K-dominance is

better around the right crack tip.
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Figure 3.75. Error contours for a/h = 0.3 and E2/E1 = 2 with different crack angles

around right crack tip
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Figure 3.76. Error contours for a/h = 0.3 and E2/E1 = 5 with different crack angles

around right crack tip
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Figure 3.77. Error contours for a/h = 0.3 and E2/E1 = 10 with different crack angles

around right crack tip
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Figure 3.78. Error contours for a/h = 0.3 and E2/E1 = 2 with different crack angles

around left crack tip
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Figure 3.79. Error contours for a/h = 0.3 and E2/E1 = 5 with different crack angles

around left crack tip
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Figure 3.80. Error contours for a/h = 0.3 and E2/E1 = 10 with different crack angles

around left crack tip

3.3.3. Effect of Crack Length on Extent of K-dominant Region

First analysis is to investigate the stress field in y-direction along the crack for

different crack lengths. The analysis is done for E2/E1 = 2 with α = 15o, 30o, 45o, 60o.

FE and ASY solution of σyy are given separately. The results are plotted in Figures

3.81 - 3.86 for the right crack tip.

It is seen that as crack length increases both finite element and asymptotic stress

values increase. For all the crack lengths, FE stress values are higher than ASY stress

values. Besides, for longer crack the opening stress is higher at the crack tip and drops

dramatically towards the right edge. In other words, the stress curve has high-slope.

The reason is that there are more compressive stresses near the right edge form for

longer cracks.
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Figure 3.81. FE results for σyy/σo vs x/h, α = 15o, E2/E1 = 2 for different crack

lengths
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Figure 3.82. ASY results for σyy/σo vs x/h α = 15o, E2/E1 = 2 for different crack

lengths
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Figure 3.83. FE results for σyy/σo vs x/h, α = 30o, E2/E1 = 2 for different crack

lengths
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Figure 3.84. ASY results for σyy/σo vs x/h, α = 30o, E2/E1 = 2 for different crack

lengths
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Figure 3.85. FE results for σyy/σo vs x/h, α = 45o, E2/E1 = 2 for different crack

lengths
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Figure 3.86. ASY results for σyy/σo vs x/h, α = 45o, E2/E1 = 2 for different crack

lengths
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Figure 3.87. FE results for σyy/σo vs x/h, α = 60o, E2/E1 = 2 for different crack

lengths
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Figure 3.88. ASY results for σyy/σo vs x/h, α = 60o, E2/E1 = 2 for different crack

lengths
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Besides, a comparison between FE solution and ASY solution is done by plotting

FE and ASY curves on the same graph. In Figure 3.89, the plot is given for a/h = 0.2,

α = 15o and E2/E1 = 2. FE solution gives higher stress values than ASY for this crack

length and σyy value decreases towards the right edge because compressive stresses are

formed. As the crack length increases to a/h = 0.3 and a/h = 0.4 with fixed crack

angle (α = 15o), both FE and ASY stress values increase. As crack length gets longer,

compressive effect becomes dominant and it causes ASY and FE curves to get closer

to each other so they agree well. Similar graphs are plotted in Figures 3.92 - 3.94 for

α = 30o. Same behavior is also seen here.
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Figure 3.89. σyy/σo vs x/h for a/h = 0.2, α = 15o and E2/E1 = 2 around right crack

tip
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Figure 3.90. σyy/σo vs x/h for a/h = 0.3, α = 15o and E2/E1 = 2 around right crack

tip
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Figure 3.91. σyy/σo vs x/h for a/h = 0.4, α = 15o and E2/E1 = 2 around right crack

tip
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Figure 3.92. σyy/σo vs x/h for a/h = 0.2, α = 30o and E2/E1 = 2 around right crack

tip
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Figure 3.93. σyy/σo vs x/h for a/h = 0.3 α = 30o and E2/E1 = 2 around right crack

tip
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Figure 3.94. σyy/σo vs x/h for a/h = 0.4 α = 30o and E2/E1 = 2 around right crack

tip

In sections 3.3.1 and 3.3.2, the stress contours for a/h = 0.2 and 0.3 are given for

E2/E1 = 2, 5, 10, 20 with α = 15o, 30o, 45o. The stress contours for a/h = 0.4 are given

in Figures 3.95 - 3.106 around right crack tip. The effect of crack length on σyy can

be investigated on the K-dominant region. Observation of the figures shows that both

FE and ASY stress values increase as the crack length increases. Since compressive

stresses become more effective at the longer crack lengths, σyy for FE can not increase

as much as ASY solution. Thus, the stress contours get closer to each other as the

crack length increases which means that K-dominant region increases with an increase

in the crack length.
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Figure 3.95. Contour plot of σyy for E2/E1 = 2, a/h = 0.4 and α = 15o around right

crack tip
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Figure 3.96. Contour plot of σyy for E2/E1 = 5, a/h = 0.4 and α = 15o around right

crack tip
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Figure 3.97. Contour plot of σyy for E2/E1 = 2, a/h = 0.4 and α = 15o around right

crack tip
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Figure 3.98. Contour plot of σyy for E2/E1 = 20, a/h = 0.4 and α = 15o around right

crack tip



91

x/h

y/
h

0.5 1

1.5

1.5

1

0.5

2

0.5

1

1.5

2

1

1

0.5

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

FE

ASY

Figure 3.99. Contour plot of σyy for E2/E1 = 2, a/h = 0.4 and α = 30o around right

crack tip
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Figure 3.100. Contour plot of σyy for E2/E1 = 5, a/h = 0.4 and α = 30o around right

crack tip
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Figure 3.101. Contour plot of σyy for E2/E1 = 10, a/h = 0.4 and α = 30o around

right crack tip
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Figure 3.102. Contour plot of σyy for E2/E1 = 20, a/h = 0.4 and α = 30o around

right crack tip
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Figure 3.103. Contour plot of σyy for E2/E1 = 2, a/h = 0.4 and α = 45o around right

crack tip
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Figure 3.104. Contour plot of σyy for E2/E1 = 5, a/h = 0.4 and α = 45o around right

crack tip
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Figure 3.105. Contour plot of σyy for E2/E1 = 10, a/h = 0.4 and α = 45o around

right crack tip
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Figure 3.106. Contour plot of σyy for E2/E1 = 20, a/h = 0.4 and α = 45o around

right crack tip
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The error contours are plotted to understand the difference between ASY and FE

stress fields. The error contours for E2/E1 = 5 with α = 15o, 30o are given for different

crack lengths in Figure 3.107 - 3.108. Again, one of the smallest error value is selected

to plot for different crack lengths in the same figure. In each crack angle value, it can

be seen easily that K-dominant region increases with an increase in the crack length.

This result is in accordance with the result concluded from the stress contours given

previously.
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Figure 3.107. Error contours with α = 15o and E2/E1 = 5 for different a/h ratios

around right crack tip
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Figure 3.108. Error contours with α = 30o and E2/E1 = 5 for different a/h ratios

around right crack tip

3.3.4. Extent of K-dominant Region with Asymptotic Stress Equations De-

rived by Konda and Erdogan [12]

Up to now asymptotic stress fields are calculated using the asymptotic formulation

given by Equations 2.1 - 2.3. These expressions are derived for homogeneous materials

by Williams [23]. Konda and Erdogan [12] derived the asymptotic stress field near the

crack tip for nonhomogeneous material. They assumed the change of shear modulus

as µ(x, y) = µ0e
βx+γy and the poisson’s ratio, ν, as constant. The explicit form of

Equation 1.2 are rewritten below. The two set of equations for the asymptotic stress

fields are compared, it can be seen that the only difference between them is the influence

of the nonhomogeneity er(βcosθ).

σxx = er(βcosθ)([
KI√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
)]− [

KII√
2πr

sin
θ

2
(2 + cos

θ

2
cos

3θ

2
)]), (3.2)
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σyy = er(βcosθ)([
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
)] + [

KII√
2πr

(sin
θ

2
cos

θ

2
cos

3θ

2
)]), (3.3)

σxy = er(βcosθ)([
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
] + [

KII√
2πr

(cos
θ

2
(1− sin

θ

2
sin

3θ

2
)]). (3.4)

To see the difference between the two asymptotic stress calculations (ASY and

ASY NEW) and finite element solution (FE), σyy/σo curves are plotted on the symme-

try axis in Figures 3.109 - 3.120. The plots are given for a/h = 0.2 and 0.3, crack angles

α = 15o, 30o, material nonhomogeneities E2/E1 = 2, 5, 10 for stress fields around the

right crack tip. The effects of crack length, material nonhomogeneity and crack angle

are studied.

In general it is seen that ASY NEW give better results than the ASY probably

becuse it contains the effect of nonhomogeneity in the asymptotic expression. As E2/E1

increases from 2 to 10 the difference between ASY and ASY NEW stress values get

higher and ASY NEW values are much closer to FE results when the effect of crack

angle change is studied, the difference between ASY and ASY NEW reduces as the

crack angle increases. Thus, ASY NEW is more accurate when compared to FE results

for α = 15o than for α = 30o. Last, if stress fields are compared for different crack

lengths, ASY NEW values are closer to FE than ASY values for all crack lengths.
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Figure 3.109. σyy/σo vs x/h for α = 15o, E2/E1 = 2 and a/h = 0.2
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Figure 3.110. σyy/σo vs x/h for α = 15o, E2/E1 = 5 and a/h = 0.2
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Figure 3.111. σyy/σo vs x/h for α = 15o, E2/E1 = 10 and a/h = 0.2
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Figure 3.112. σyy/σo vs x/h for α = 30o, E2/E1 = 2 and a/h = 0.2
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Figure 3.113. σyy/σo vs x/h for α = 30o, E2/E1 = 5 and a/h = 0.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x/h

σ yy
/σ

o

FE
ASY
ASY NEW

Figure 3.114. σyy/σo vs x/h for α = 30o, E2/E1 = 10 and a/h = 0.2
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Figure 3.115. σyy/σo vs x/h for α = 15o, E2/E1 = 2 and a/h = 0.4
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Figure 3.116. σyy/σo vs x/h for α = 15o, E2/E1 = 5 and a/h = 0.4
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Figure 3.117. σyy/σo vs x/h for α = 15o, E2/E1 = 10 and a/h = 0.4
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Figure 3.118. σyy/σo vs x/h for α= 30o, E2/E1=2 and a/h=0.4
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Figure 3.119. σyy/σo vs x/h for α = 30o, E2/E1 = 5 and a/h = 0.4
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Figure 3.120. σyy/σo vs x/h for α = 30o, E2/E1 = 10 and a/h = 0.4



104

Opening stress plots are not sufficient for the comparison of the two asymptotic

stress fields since σyy/σo are only given on symmetry axis. Error contours of the two

fields are also plotted. To plot less crowded figures, only some error contours near the

crack tip are used.

First, error contours for α = 15o, a/h = 0.2 and E2/E1 = 5 and 10 are given in

Figures 3.121 - 3.122. It is seen that ASY NEW error contours cover larger area than

contour plots obtained using ASY at this crack length and as material nonhomogeneity

increases ASY NEW and ASY contours become closer to each other. Second, error

contours for a/h = 0.2 and E2/E1 = 2 with α = 0o, 15o and 30o are plotted in Figures

3.123 - 3.125. ASY NEW and ASY are very close to each other in α = 0o. While

the crack angle grows to α = 30o, the difference between two stress field increases.

Last, the error contours for a/h = 0.4 and E2/E1 = 2 with α = 0o, 15o and 30o are

plotted in Figures 3.126 - 3.128. These plots are given to investigate the extent of

K-dominant region for different crack lengths. The plots show that ASY NEW results

are better for short crack but the case is not true for longer cracks. For example, high

nonhomogeneity value together with longer crack is given and ASY NEW solution is not

better than ASY solution in Figure 3.128. Although there is no geometric unsymmetry

in center-cracked plate compressive stresses can form in case of longer cracks with high

material nonhomogeneity. Because of these compressive stresses K-dominant region

for asymptotic field ASY NEW decreases.
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Figure 3.121. Error contours around crack tip for α = 15o, E2/E1 = 5 and a/h = 0.2
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Figure 3.122. Error contours around crack tip for α = 15o, E2/E1 = 10 and a/h = 0.2
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Figure 3.123. Error contours around crack tip for α = 0o, E2/E1 = 2 and a/h = 0.2
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Figure 3.124. Error contours around crack tip for α = 15o, E2/E1 = 2 and a/h = 0.2
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Figure 3.125. Error contours around crack tip for α = 30o, E2/E1 = 2 and a/h = 0.2
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Figure 3.126. Error contours around crack tip for α = 0o, E2/E1 = 2 and a/h = 0.4
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Figure 3.127. Error contours around crack tip for α = 15o, E2/E1 = 2 and a/h = 0.4
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Figure 3.128. Error contours around crack tip for α = 30o, E2/E1 = 2 and a/h = 0.4
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3.3.5. Effect of T-stress on K-dominant Region

Up to now, asymptotic stress equations are used including only r terms. However,

T-stress which is the nonsingular stress has a significant influence on crack tip. T-stress

is shown in Equations 2.1 - 2.3.

3.3.5.1. Calculation of T-stress. There are numbers of methods to calculate T-stress

for a variety of loading conditions and geometries. For mixed mode loading, stress

equations show that only σxx contains T. Using Equations 2.1 - 2.3 T can be determined

by calculating σxx - σyy along the crack on θ = 0. In this study, σxx and σyy values are

calculated using FE on nodes along θ = 0. Then, numerical T values are obtained for

same nodes. T values are plotted versus the distance from the crack tip and a linear

curve is fitted to T data. The intercept of the curve fit is approximated as the single

T-stress value.

To check the accuracy of the model and the method used, T-stresses are calculated

for the geometry given in Figure 2.12 with βa = 0, 0.25 and 0.5. For the homogeneous

case (βa = 0), calculated T stresses are compared with the results of closed form

solution given in Equation 2.17 for both a/h = 0.05 and 0.1. The results are tabulated

in Table 3.5. It is seen that although the results for a/h = 0.05 are much closer to the

closed form solution values, a/h = 0.1 results are also sufficiently good to use.

For the nonhomogeneous material, T stresses calculated using the method de-

scribed above are compared with the results of Kim and Paulino [30] in Table 3.6. Kim

and Paulino [30] evaluated T-stresses in FGMs using interaction integral in conjunction

with FE. It is seen that there is a reasonably good agreement between the results of

present study and their results.

After the method is verified, T-stress values are calculated using the model given

in Figure 3.1 for different crack lengths of a/h = 0.3, 0.4 with E2/E1 = 2, 5, 10, 20

and α = 15o, 30o, 45o and 60o. The results for both right and left crack tip are given
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Table 3.5. T-stress values for βa = 0 (homogeneous) with σyy = εE0e
βx

a/h = 0.05 a/h = 0.1

Method α/pi T (a) T (a)

0 −1.000 −1.000

0.1 −0.809 −0.809

Closed form solution 0.2 −0.309 −0.309

0.3 0.309 0.309

0 −0.999 −1.001

0.1 −0.812 −0.815

Present solution 0.2 −0.313 −0.319

0.3 0.297 0.298

Table 3.6. T-stress values for βa = 0.25 and βa = 0.5 with σyy = εE0e
βx

βa = 0.25 βa = 0.5

Method α T (a) T (−a) T (a) T (−a)

0 −1.0079 −0.8984 −0.9341 −0.8250

15 −0.8658 −0.8323 −0.7847 −0.7691

Present study 30 −0.4978 −0.5001 −0.4416 −0.4523

45 −0.0067 −0.0084 0.0122 0.0094

0 −0.9589 −0.9430 −0.8878 −0.8606

15 −0.8310 −0.8191 −0.7655 −0.7494

Kim and Paulino [30] 30 −0.4790 −0.4763 −0.4288 −0.4371

45 −0.0077 −0.0019 0.0391 0.0109

in Table 3.6. For both crack tips (a,−a), these results show that T-stress changes sign

when crack angle ' 45o.

First, σxx contours are plotted for E2/E1 = 2 and a/h = 0.3 for different crack

angles of α = 15o, 30o and 45o. The σxx contours of the value 1 are only plotted. In

Figures 3.129 - 3.131, it is seen that stress contours cover larger area as the crack angle

increases. In each plot stress contours including T-stress are closer to the FE stress

values than the ones without T-stress. It can be concluded that T-stress effects the

extent of K-dominant region. For crack angle of α = 15o the difference between ASY

stress values and ASY (T-stress) is high, and ASY (T-stress) is closer to FE. However,

for α = 45o ASY and ASY (T-stress) are very close to each other. Because as it is seen

in Table 3.7, the value of T-stress is approximately 0 for α = 45o.
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Table 3.7. T-stress values for a center cracked FGM plate
a/h = 0.3 a/h = 0.4

E2/E1 α T (a) T (−a) T (a) T (−a)

15 −0.9428 −1.0638 −1.0170 −1.1382

30 −0.5727 −0.6416 −0.6529 −0.7218

2 45 −0.0669 −0.072 0.1147 −0.1198

60 0.4532 0.4855 0.4227 0.455

15 −0.8453 −1.1244 −0.8769 −1.1561

30 −0.5110 −0.669 −0.5628 −0.7258

5 45 −0.0522 −0.0655 −0.0827 −0.0960

60 0.4368 0.4904 0.4041 0.4577

15 −0.7563 −1.1591 −0.7471 −1.1499

30 −0.4513 −0.681 −0.4695 −0.6992

10 45 −0.0333 −0.0547 −0.0433 −0.0647

60 0.4248 0.5294 0.3951 0.4997

15 −0.6509 −1.1708 −0.5903 −1.1102

30 −0.3776 −0.6842 −0.3575 −0.6614

20 45 −0.0081 −0.0391 00016 0.0323

60 0.414 0.5496 0.3927 0.5283
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Figure 3.129. σxx for α = 15o, E2/E1 = 2 and a/h = 0.3 around right crack tip with

and without T stress
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Figure 3.130. σxx for α = 30o, E2/E1 = 2 and a/h = 0.3 around right crack tip with

and without T stress

σxx contours are also plotted for α = 30o and E2/E1 = 5 with a/h = 0.3 and

0.4. As it is seen in Figures 3.132 - 3.133, an increase in the crack length causes all

stress values to increase. K-dominant region is extended by increasing the crack angle

since compressive stresses occurs at the larger crack lengths. Again, ASY (T-stress)

solutions are closer to FE stress values than ASY solution in each plot.

Last, the effect of T-stress on σxx with changing material nonhomogeneity is

investigated. Figures 3.134 - 3.136 show σxx contours for α = 15o and a/h = 0.3

with E2/E1 = 5, 10 and 20 around right crack tip. It is seen that ASY (T-stress)

stress values are again closer to FE stress values than ASY. However, as the material

nonhomgeneity increases the deviation between FE and ASY (T-stress) for the same

stress contour gets higher. The same graphs are plotted for left crack tip and given in

Figures 3.137 - 3.139. The stress contours around left crack tip have similar trend like

right crack tip.
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Figure 3.131. σxx for α = 45o, E2/E1 = 2 and a/h = 0.3 around right crack tip with

and without T stress
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Figure 3.132. σxx for α = 30o, E2/E1 = 5 and a/h = 0.3 around right crack tip with

and without T stress
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Figure 3.133. σxx for α = 30o, E2/E1 = 5 and a/h = 0.4 around right crack tip with

and without T stress

x/h

y/
h

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

FE
ASY
ASY(T−stress)

1

1
1

Figure 3.134. σxx for α = 15o, E2/E1 = 5 and a/h = 0.3 around right crack tip with

and without T stress
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Figure 3.135. σxx for α = 15o, E2/E1 = 10 and a/h = 0.3 around right crack tip with

and without T stress

x/h

y/
h

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

FE
ASY
ASY(T−stress)

1

1

1

Figure 3.136. σxx for α = 15o, E2/E1 = 20 and a/h = 0.3 around right crack tip with

and without T stress
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Figure 3.137. σxx for α = 15o, E2/E1 = 5 and a/h = 0.3 around left crack tip with

and without T stress
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Figure 3.138. σxx for α = 15o, E2/E1 = 10 and a/h = 0.3 around left crack tip with

and without T stress
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Figure 3.139. σxx for α = 15o, E2/E1 = 20 and a/h = 0.3 around left crack tip with

and without T stress
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4. SUMMARY AND CONCLUSION

The aim of this study is to analyze the extent of K-dominant region in a func-

tionally graded plate under mixed mode loading. Poisson’s ratio, ν, of the medium

is assumed to be constant and the elastic modulus varies exponentially along x -axis,

E = E0e
βx, with the x -coordinate parallel to the crack. The shape and the extent of

K-dominant region is investigated by comparing asymptotic stress fields to stress field

calculated using finite elements around right and left crack tips separately.

Before analyzing the K-dominant region, to verify the method, stress intensity

factors and T-stresses for a center cracked plate are determined for both homogeneous

and functionally graded materials. Results are compared to the results of Konda and

Erdogan [12]. It is seen that a sufficient agreement exists when the present method is

used in all cases.

Stress intensity factors and T-stresses are determined for a center cracked plate

under uniform loading are shown in Figure 3.1. The effect of material nonhomogeneity,

crack angle and crack length on the extent of K-dominant region is studied. Three

different ratios of crack length to plate width namely 0.2, 0.3, and 0.4 are examined.

For crack angle, α, five different values are used, namely 00, 150, 300, 450, 600. A wide

range of material nonhomogeneity, E2/E1, varying from 1, 2, 5, 10 to 20 is used. The

elastic modulus increases in the crack propagation direction when the right crack tip is

studied and decreases in the crack propagation direction for the left crack tip (softening

case).

In chapter 3, K-dominance analysis is done for different α, E2/E1 and a/h values.

Results in forms of graphs are discussed in detail. A summary of the results may be

given as follows: First, the behavior of K-dominant region for different E2/E1 ratios

is studied for a center cracked plate. Change of nonhomogeneity in crack propagation

directions of two crack tips is different. One tip goes into a hardening, the other tip

goes into a softening region. As a result, the behavior of the K-dominant zone around
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two crack tips is different. For the right crack tip, K-dominant region gets larger as the

material nonhomogeneity increases. As it is expected, for the left crack tip, the extent

of K-dominant region is larger for the homogeneous case, E2/E1 = 1, and diminishes

as the material nonhomogeneity increases.

Then, the effect of mode mixity is investigated by changing crack angle,α. It is

understood that as the crack angle increases σyy values decrease for both asymptotic

(ASY) and finite element (FE) results and ASY stress values underestimate the FE

stress field. An example graph is given for α = 15o and 45o in Figure 4.1. Besides,

the opening stress values along right crack tip are higher than the values along the

left crack tip. From the error contours, it is seen that K-dominant region increases

dramatically as the crack angle increases.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0
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σ yy
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α=15o, ASY

α=45o, FE

α=45o, ASY

Figure 4.1. σyy/σo for E2/E1 = 5, a/h = 0.2 and α= 15o, 45o

Lastly, the effect of crack length on K-dominant region shows that an increase

in the crack length causes FE and ASY stress values to increase. Because compressive
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stresses become more effective for longer cracks, FE results of σyy do not increase as

much as those of ASY solution. Stress contours get closer as the crack length increases

which means that K-dominant region increases with an increase in the crack length.

The different asymptotic field derived by Konda and Erdogan[12] is used to study

two asymptotic solutions (ASY and ASY NEW). Graphs are plotted for different mode

mixities, E2/E1 and a/h ratios. ASY NEW results are better than ASY results since

ASY NEW contains the effect of nonhomogeneity in the asymptotic expression. How-

ever, this is not valid for long cracks. For example, high nonhomogeneity values to-

gether with long crack are given in Figure 3.128 and ASY NEW solution does not

yeild a better result than ASY solution. Although there is no geometric unsymmetry

in center-cracked plate, compressive stresses form for long cracks in the case of high

material nonhomogeneity. Because of these compressive stresses, K-dominant region

when asymptotic field ASY NEW is used decreases.

T-stress is an important parameter and it effects the extent of K-dominant re-

gion. Asymptotic σxx fields including T-stress are compared to finite element results in

Figures 3.132 - 3.139 . In each graphs, it is seen that stress contours including T-stress

are closer to the FE stress values than the ones without T-stress. However, for α = 45o

the ASY and ASY (T-stress) become closer to each other since the value of T-stress is

approximately 0 for α = 45o.

Overall, some difficuites are encontered while calculating the results. One of them

is that since the mesh does not have a definite shape, the curves for finite element results

are fluctuating at some points in the graphs. Last, only the stress fields around the

crack tips are considered. A larger area may also be considered. Besides, the error

parameter defined by Lee and Rosakis [24] is used. Another error parameter may be

considered to investigate the extent of K-dominant region.
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