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ABSTRACT

ANALYSIS OF FOLDING KINETICS FOR SIMPLIFIED MODEL
- PROTEINS

The conformational stochastics of simplified model chains that show an apparent
two-state kinetics was explored. An apparent two-state kinetics refer to the occurrence of a
single exponential time evolution dominating the folding process, even though the
individual chains follow a broad ensemble of micropaths. A . fundamental question
addressed in the present analysis is to understand if the folding takes place through a
continuum of paths with no distinct on-pathway forms, or if a preferred pathway involving
subcooperative folding events can be discerned. To this aim, the complete sets of
conformations for short model chains were generated as self-avoiding walks on a square
lattice. Native-like contacts have been assigned attractive potentials, and transition rates
have been assigned on the basis of native-like contacts and root-mean-square deviations
between conformations. The time evolution of all conformational transitions has been
analyzed starting from a uniform distribution of conformations, usirig a master equation

formalism, which enabled us to capture the microscopic details of the folding kinetics.

It is found that the folding macropath can be described in terms of a particular
sequence of events in which local interactions generally preceed the more nonlocal
contacts, resembling a zippers process. The innermost contacts form k\ﬁrst. A key
conclusion from the present work is that: (i) The lack of intermediates that define two-state
kinetics does not preclude folding through a specific sequence of events. (ii) ®-value
analysis, a measure of the stability and change in folding kinetics due to mutation
performed on this exact lattice model reveals that non classical ®-values can arise from
parallel microscopic flow prdcesses. Negative @ values result when a mutation destabilizes
a slow flow channel, causing an overflow intoka faster flow channel. ®-values greater than

one occur when mutations redirect a fast flow into a slower channel.



OZET

BASIT PROTEIN MODELLERINDEKI KATLANMA KiNETIiGi
ANALIZI

Iki halli katlanma kineti§i gozlenen, basit model zincirlerinin stokastik
konformasyonel 6zellikleri incelenmistir. iki halli katlanma kinetigi, tek exponansiyel
zaman evrimini isaret etmekle birlikte, molekiiler diizeydeki kinetik proses herbir zincirin
¢ok sayida mikroskopik yoldan gegisi ile gergeklesmektedir. Bu galismada su temel soruya
yamt aranmaktadir: Protein katlanmas: gegis yollarina bagl olmaksizin, siirekli yollardan
gecerek mi ya da kooperatif katlanma olaylarindan dolay1 belirli bir yolu secerek mi.
gerceklesir? Bu amagla, kiigiik model zincirlerinin tiim konformasyonlan, kare kafes
lizerinde olusturulmustur. Dogal yapida bulunan etkilesimlere negatif enerji degeri
verilmigtir. Konformasyonlar arasindaki geeis lizi, dogal halde bulunan etkilegimlere ve
konfoxmasyonlar arasindaki ortalama karekok sapma uzunluklarina gore belirlenmigtir.
Tim konformasyonlar arasindaki gecislerin evrimi, herbir konformasyonun esit olasilikta
oldugu bir ilk konumdan baglanarak, mikroskopik ayrintilan yakalamamizi saglayan bir
temel denklem formulasyonu ile incelenmistir,

Katlanma olaylarim denetleyen makroskopik yollarin, lokal etkilesimlerin lokal
olmayan etkilesimler tarafindan izlendigi fermuar mekanizmas ile tanimlanaca@: sonucuna
varilmigtir. Zincirin {i¢ boyutlu yapisina gore en i¢ konumdaki etkilesimler &nce
olusmaktadir. Bu ¢alismadan elde edilen ana sonuglar sunlardir: (i) iki halli kinetik ve ona
kars: gelen huniyi andiran baz enerji yuzeylen katlanmanin belirli olaylar dizisi seklinde
gelismesini engellememektedlr (ii) Mutasyonlarmn kararlihga ve katlanma kinetigine
etkisini 6lgen ® degerlerinin negatif ve birden biiyiik olmas:, paralel katlanma prosesi
nedeniyle ortaya ¢ikmaktadr. Yavas katlanma kanallarim engelleyen mutasyonlar, hizl;
kanallara akimi arttirmakta ve negatif @ degeri olusumuna neden olmaktadir. Kinetigi hizh
kanaldan yavasina yonlendiren mutasyonlar ise birden biiyiik ® degerlerine yol
agmaktadir.
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1. INTRODUCTION

Understanding the process of protein folciing is one of the major challenges of
modern structural biology. The spontaneous folding of protein molecules with a huge
number of degrees of freedom into a unique three-dimensional structure that carries out a
biological function is the simplest éase of biological self-organization. Thus, protein
folding is a subject that attracts scientists from a wide range of disciplines. The protein
folding problem is generally divided into two parts. In the first part, the aim is to predict
the unique three-dimensional structure among the huge conformational space. The second
part is to understand the relation between protein sequences and folding mechanism. In
protein folding, mechanism is the distribution of microscopic pathways that connects

countless structures of the denatured state with the unique structure of the native state.

For over a quarter of a century, ideas on protein folding mechanism have been
dominated by two inter-related concepts: the Levinthal paradox, and necessity for folding
intermediates. Levinthal argued that, since there is an astronomical number of

conformations open to denatured state of a protein, an unbiased search through these would

~ take forever. It was thus a short logical step to argue that there must be defined pathways to

simplify the choices in folding.

Since Anfinsen’s original demonstration (1973) of spontaneous protein refolding,
major advances have occurred in experimental studies to determine the mechanism of
folding (Fersht et al, 1992; Baldwin, 1995; Creighton, 1995). A turning point was the idea
‘of studying small, single proteins that began with the equilibrium and kinetic experiments
on chymotrypsin inhibitor 2 (CI2). CI2 was found to fold and unfold as a simple two-state
system with no kinetic intermediates. In subsequent work, the role of individual residues in
the transition state (TS) for folding was invesﬁgated by mutational analysis, ®-value
analysis (Matouscheck et al., 1989; Matouscheck ef al., 1992). This method has been also
used by many theoreticians to understand the TS structure and the folding mechanism of
simple protein models (Lazaridis and Karplus, 1997; Klimov and Thirumalai, 1998; Li et
al., 2000; Clementi et al., 2000; Nymeyer et al., 2000). Thus this method allows us to



understand the folding mechanisms relatively and unambiguously, stimulating interactiop
between experimentalists and theoreticians (Takada, 2000).

A second major advance in experimental studies has resulted from the introductiop
of a new generation of experiments with dramatically improved time resolution. Unti] 4
few years ago the kinetics of folding have been studied using stopped-flow techniqueg
Stopped-flow experiments have yielded an enormous amount of valuable information that
provided the basis of the kinetics of folding. The fundamental limitation of this methogd
was the poor resolution that the spectroscopic changes associated with folding already
occurred within the dead time, ie. the time required for the solutions to be Mixed
(Matthews, 1993; Ptitsyn, 1995). On the other hand, the new rapid mixing techniqueg
allow us to overcome the time limit. They can be roughly classified into three categories:
photochemical triggering, temperature or pressure jump and ultrarapid mixing methods,
These new techniques have provided major insights into folding mechanisms. These
' include a much deeper understanding of the mechanism of secondary structure formation,
the introduction of the notion of an upper limit on the rate of protein folding (a “speeq
limit”), discovery of unusual kinetics suggesting that very fast folding is continuously
downhill in free energy (Gruebele, 1999; Munoz et al,, 2000).

There have been many theoretical approaches that shed light on the nature of folding
patﬁways, their transition states, and the role of intermediates in folding. One of the most
important progress in theoretical approaches was the energy landscape theory (Baldwin,
1995; Bryngelson et al, 1995; Chan and Dill, 1997) that gave us the general framework of

the folding mechanisms based on statistical physics.

So far the most important insights have come from simulations of simplified
representation of proteins in lattice and off-lattice models (Shakhnovich, 1997; Chan ang
Dill, 1998; Pande et al,, 1998; Thirumalai and Klimov, 1999; Dinner et al., 2000). Such
models provide simple examples that can help to clarify basic principles of folding
kinetics. On the other hand, all-atom molecular dynamic (MD) simulations can give the
most detailed and realistic information. These simulations have been restricted by
- computer time to one or just a few trajectories of tens of nanoseconds. They are not

capable of direct simulation of protein folding. However, the all-atom MD simulations of



unfolding trajectories of CI2 under extreme conditions (500 K and 26 atmospheres)

conducted by Daggett et al. (1996) gave insights into the nature of the TS ensemble. Under

these conditions, unfolding was accelerated by six orders of magnitude, from milliseconds

to nanoseconds, and became accessible to study. They argued that the TS should

correspond to a rapid change in the conformation of protein with time, and identified

related conformations in four unfolding trajectories as putative TS. The remarkable success

of the study was the consistency between the residues that Daggett ef al. (1996) identified

as important in the TS and those implicated by Fersht and coworkers using mutational

analysis (Otzen et al., 1994). Lazaridis and Karplus (1997) have also analyzed the

unfolding MD trajectories of CI2 to clarify the TS. They observed that the TS region for
folding and unfolding occurs early with only 25 per cent of the native contacts. Another

interesting result was that the statistically preferred unfolding pathway emerged from the

simulations. Zhou and Karplus (1999) used a discrete MD technique to study the folding of
the small three-helix bundle fragment of Protein A. In this study, two different dominant

‘trajectories (fast and slow tracks) were observed for the folding of helical proteins when

the single energy parameter (the difference between the strength of native and non-native
contacts) was changed. Dokholayan et al. (2000) investigated the protein folding nucleus

of 46-mer off-lattice protein model using MD. The simulations revealed that a few well-

defined contacts were formed with high probability in the TS that drives the protein into its

folded conformation.

Monte Carlo (MC) dynamic method has been widely used to understand the basic
folding principles of on-lattice simple protein models chains (Dinner ef al., 1996; Socci et
al., 1998; Pande and Rokhsar, 1999; Li et al., 2000; Klimov and Thirumalai, 2000). The
statistical analysis of hundreds of folding in MC trajectories of lattice model proteins
performed by Pande and Rokhsar (1999), revealed a classical dominant folding pathway
which was composed of on-pathway intermediates. Klimov and Thirumalai (1998)
investigated the TS structure and folding nuclei of 27-mer and 36-mer lattice models. The
analysis of individual trajectories showed that the polypeptide chain reaches the native
state upon the formation of critical contacts, which is consistent with the nucleation-
collapse mechanism. The effect of non-native contacts on the folding mechanism was
- analyzed by Li et al. (2000) using MC techniques. They concluded that the specific non

native interactions in the TS would give a rise to non classical ®-values (® > 0 or ® < ().



They also demonstrated that the specific residue, Ile 34 in src SH3 domain which has been
shown to be kinetically, but not thermodynamically important is, universally conserved.

The relation between evolutionary pressure‘ on folding rate and the classification of
native state has been investigated by using simple protein models. The results suggests that
topologically simple structures are expected to fold faster than the complicated structures
(Baker, 2000). Thus, the native topology is a key determinant of folding mechanisms. The
outcome of this striking result is that the basic physics underlying the protein folding
problem could be relatively simple. |

In the picture of the previous studies, the aim of the present study is to explore the
“full” kinetics of protein folding using a simple model protein. This will be achieved by
three steps:

(i) Generating the complete sets of the model chain as self-avoiding walks on a
square lattice,

(ii) Constructing the full microscopic transition matrix with respect to two criteria:
intramolecular energy barrier and frictional effect,

() The exact solution of the matrix using a master equation formalism that has been
previously used in earlier studies of folding kinetics (Leopod et al, 1992;
Zwanzig, 1995; Ye et al., 1999; Munoz et al., 1998).

Go model, which is the principal theoretical model for exploring microscopic steps
in two-state protein folding kinetics, is adopted (Ueda ef al., 1975). Thus the folding is
driven by the attractive potentials assigned to native contacts. Go models were used in
earlier folding kinetic studies (Hoang and Cieplak, 2000; Pande and Rokhsar, 1999) and
analytical methods for investigating the folding of proteins (Erman and Dill, 2000). Crucial
to the present study is the application of a general, rigorous, and unambiguous method to

identify all microtrajectories of the landscape.

The plan of the present thesis is as follows: In the following section, the classical and
new view of protein folding will be explained briefly and the basic theoretical and
experimental approaches for investigating the folding kinetics will be discussed. The



theoretical background of the master equation formalism and the model and parameters
will presented in the third Chapter. In the result section, these subjects will be discussed:
(i) time evolution of the native contacts and coupling between the native contacts,
(i) the fluxes and the transition between macroconformations (subsets of
conformations) that give insight about the folding pathway(s),
(iii) the kinetic scheme of folding,
(iv) the landscape mapping method that enables to understand the physics underlying
the energy landscape, ‘

(v) the results from ®-value analysis, and

(vi) three-dimensional energy landscape surface plots.

In the final section, conclusions and recommendations for future work will be presented.



2. PROTEIN FOLDING

2.1. Classical View: Folding Pathways

Solving how a protein folds from its denatured state to its native state poses an
intellectual challenge that is far more complex than solving classical chemical
mechanisms. In protein folding, the whole molecule changes in the structure. Thousands of
weak non-covalent interactions are made or broken, unlike in simple chemical reactions.
However the basic strategy for the analysis of protein folding is the same. That is to
characterize all the stable and metastable on and off reaction pathways and the transition

state that connects them.

Ideas about protein folding were dominated by two interrelated concepts:‘ the
Levinthal paradox and the supposed necessity of folding intermediates. Levinthal argued
that because of the astronomical conformations, it would take an absurdly long time for
even a small protein to explore all the accessible conformations for folding. Yet, many
proteins fold to their native conformations in less than a few seconds. Therefore, the
-classical view of protein folding suggests that the search for the native state through the
immensity conformations flows through the predetermined pathways defined by discrete

intermediates and barriers (Rumbley et al., 2001).

Folding pathways are explained by three basic mechanisms (Figure 2.1.). The
Jframework model (Ptitsyn and Rashin, 1975) proposed that protein foldiilg starts with the
formation of secondary structural elements independently from the tertiary elements.
These elements then assemble into tightly packed native tertiary structure by diffusion and
collision mechanism (Karplus and Weaver, 1976). In the diffusion collision mechanism, the
secondary structural elements would diffuse until they collide in order to coalesce into a
structural entity with the native conformation. The hydrophobic collapse model for protein
folding proposed that the initial event of the reactions is the collapse of the protein
molecule, mainly driven by the hydrophobic effect and then rearrangement of the stable
structures in the collapsed state (Dill, 1990). The nucleation condenstation mechanism -
argued that early formation of a diffuse folding nucleus catalyzes the folding. The nucleus



primarily consists of adjacent neighbour residues that have some correct secondary
structure interactions but it is stable with the assistance of the teniary interactions (Fersht,
1997).

Models for protein folding:
(a) Framework model!
(b) Hydrophoblc collapse model
{c) Nucleation-condensation mechanism
\ Formation of
mQ’ Assembly of
\ secondary
structure
H bic Growth ot
> (b) —LPRONE o >
collapse secondary structure
Folded
conformation
/ Hierarchical
© Nucleation- assembly
condensation
/ Folding nucleus
Unfolded
state

Figure 2.1. Schematic representation of folding mechanisms (Nolting and Andert, 2000)

A contrary view, the jigsaw modeL is that each protein folds by a different distinct
path (Harrison and Durbin, 1985). All the three mechanisms described above may . be
extended to. proteins that have intermediates and multiple transition states on their

pathways which is closer to the new landscape view (Leopold ef al., 1992).

The Levinthal paradox presupposes that the search is unbiased so that the groups on

the protein rotate around their single bonds at random without any stabilization of any



particular conformation until they are all in the right conformation. If there is a bias on the
sequence toward the correct structure, then the paradox disappears (Finkelstein and
Badretdinov, 1997).

2.2. New View: Energy Landscapes

The new view of the protein folding introduces the funnel landscape, which provides
an alternative to the classical view that there must exist a single pathway for the folding
with well-defined intermediates (Figure 2.2). Within this view, protein folding is a
collective self-organization process that generally does not occur by an obligate series of
intermediates, “a pathway” but by a multiplicity of routes down a folding funnel (Onuchic,
2000). Thus the new view envisions folding as representing the ensemble average of a

process that is microscopically more heterogenous (Chan and Dill, 1998)

Structure
formation
3 state 3 ’

y TS Error N

intermediate

N

Figure 2.2. (A) Classical pathway consisting a single path, intermediates and the transition
state structure (TS), (B) New view of folding funnel (Rumbley ef al., 2001)



In the landscape view, each individual protein molecule may follow its own
trajectory, but they all may eventually reach the same point at the bottom, the native state.
At the top of the funnel, the protein molecules exist in a large number of conformations
that have relativelyhhigh free enthalpy and entropy that is called denatured state. There is a
competition between the entropy keeping the protein as random as possible at the top and
the minimization of the enthalpy dragging the protein down the funnel. Progress down the
funnel is accompanied by an increase in native-like structﬁres, meanwhile the routes to
native state decrease. The folding can be described by a Brownian type of motion between
the conformations that are geometrically similar and follows a general drift from higher
energy to lower energy conformations. When folding or unfolding kinetics involves
transient accumulation of partially folded or unfolded intermediates then energy landscapes
are bumpy with kinetic traps. In contrast, when folding and unfolding each involve only a
2-state kinetics (denatured and native state), then energy landscapes can be represented as
" smoother funnels, with no substantive traps.

The width of the funnel in Figure 2.2 (B) represents entropy of the system. The depth
represents the energy. The molten globule (MG) state is a loosely collapsed state with
- fluctuating tertiary interactions and very weak secondary interactions. In the case of 4x3x4
cubic lattice studied by Bryngelson et al (1995) the MG state forms when 27 per cent of
the pairwise native contacts are formed. The transition state (TS) is seen when the
percentage increases to 60. There must be a single unique state of low energy state for the
folding, otherwise it gets trapped when the 70 per cent of native contact pairs is formed.
Globeally, the energy landscape theory of a folding protein is rough. The local roughness of
the funnel reflects transient traps in local energy minima. The speed of folding is
determined by the character and type of trap.

The funnel theory gives the correct solution to the Levinthal paradox. If a golfer were
blindfolded, standing at the edge of a very large golf course and was told to hit the golf ball
in a random direction, then the chances of sinking the ball in a single hole are
infinitesimally small (Figure 2.3 (A)). By the same analogy, if there is no driving force to
push the protein in the direction of folding when the protein exists in a large number of
non-native states of equal energy and has just one native state of the lowest energy, that is
the Levinthal f)aradox. However, if the golf course sloped down from all directions to the
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hole, the gravity would funnel the ball to the hole and the golfer would always score a hole
in one (Figure 2.3 (B)).

(A) (B)

Figure 2.3. The schematic representation of golf course funnel (A) and smooth
landscape funnel (B) (Chan and Dill,1998)

The energy landscapes of the new view and the pathways of the classical view can be
united by using the ideas of ensembles. The folding of small proteins have energetically
downhill folding starting from the denatured state ensemble that consists of many different
conformations to the more restricted state (the transition state) and finally the native state.
Some of the states (intermediates) that accumulate due to bumpy structure of the funnel are
determined by experimentalists.

2.3. Kinetics of Folding

The fundamental questions in protein folding concerns the kinetics of folding which
is not yet understood in detail. The discovery of the reversible denaturation of the small
proteins ribonuclease A and staphylococcal nuclease (Anfinsen, 1973) has enhanced many
experimental and theoretical approaches for understanding the mechanism of kinetic
processes. The kinetics of folding and unfolding appear to be a very complex process, but
these processes are governed by the basic rate laws. The basic principles and powerful
experimental and theoretical approaches investigating the protein folding will be discussed
in this chapter.
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2.3.1. Experimental Approaches

The folding of proteins is usually studied in vitro by first denaturating them in
solutions of urea, guanidinium chloride (GdmCl), or acid, and then diluting the denaturant.
Stopped-flow methods are the most convenient to this aim, because théy allow for
detecting changes occurring on a wide range, and they are ideal for mixing two reagents.
Fluorimetry, following the change in tryptophan fluorescence in the near ultraviolet (290-
300 nm), is used due to its sensitivity. This technique is generally used to monitor tertiary
interactions, because the fluorescence yield and the emission wavelength of tryptophan are
sensitive to its environment. Stopped-flow circular dichroism is also used for detecting the
chzinges in secondary structures, based on the fact that the polypeptide backbone is
optically active in the far ultraviolet (190-300 nm) and different secondary structures
produce a characteristic spectra. However it has an inherently poor signal to noise ratio and

requires considerably more protein than does fluorescence (Gruebele, 1999).

Helices usually form in’ a few hundred nanoseconds and B-turns in a few
microseconds in model proteins (Fersht, 1999). Short loops in proteins form with an upper
limit of about 10® s™. Thus, a lower limit for the initial collapse of a denaturated protein is
ébout 1 us. Conventional rapid mixing methods are limited to a time scale of milliseconds
and greater, but specialized continuous-flow apparatus have been used for tens of

microseconds.

The time involved in mixing places a limit on the dead time of flow techniques. The
only way to increase the time resolution is to cut out the mixing by usihg a pre-mixed
solution of reagents that can be perturbed in some way to allow a measurable reaction to
occur. A classic method from physical chemistry is flash photolysis, in which a particular
bond is cleaved by a pulse of light so that reactive intermediates are formed. An alternative
method of overcoming the time delay of mixing is to use a relaxation method. An
equilibrium mixture of reagents is preincubated and the equilibrium is perturbed by an
external influence. Then the relaxation to equilibrium is measured. The most common
procedure for this is temperature jump. A solution is incubated in an absorbency of
fluorescence cell and its temperature is raised in less than a microsecond. The system will

proceed to its new equilibrium via a series of relaxation times if the equilibrium involves
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an enthalpy change. The temperature jump method is ideal for denaturing proteins by
jumping from ambient to elevated temperatures. This method has been adopted to study
rapid events on time scales of nanoseconds to microseconds in the folding of a cold
denatured protein (Ballew et al., 1996). However, rapid mixing techniques provide a much
more dramatic change in the folding equilibrium constant, allowing detection of the full

reaction.

The diverse methods briefly discussed above provide information on folding rate,
signal the accumulation of intermediates, and give insights as the role of particular amino
acids or estimate about the average parameters of the main chain. However, hydrogen
exchaﬁge (HX) is another method that can be used to identify the structures of
intermediates in both kinetic and equilibrium modes and quantify their thermodynamic
stability. HX information defines the structure by identifying the amino acids that have
- been slowly exchanging; presumably hydrogen-bonded main chain amides. It first becaine
possible to define transiently formed submolecular structures by the use of hydrogen-
deuterium (H-D) exchange labelling together with stopped-flow methods and high
resolution proton NMR. The protein, unfolded in GdmCl and deuterated by exchange in
D30 solvent is diluted into H>O to initiate refolding. After various experimental folding
times, a brief pulse to a higher pH is used to promote fést D to H exchange and label with
H the main chain amides that are not yet protected by hydrogen bond formation. The
protein folds to its native state, trapping the H-D labelling profile imposed during the
labelling pulse, which can then be read out by two-dimensional NMR. It is also possible to
identify the MG states and secondary interactions by HX method (Rumbley et al., 2001)
Yet, HX at equilibrium cannot be used to determine pathways because equilibrium
measurements only give information on the thermodynamic properties of intermediates and
not the pathway between them (Fersht, 1999). HX measurements at equilibrium have been
related to the amplitude of fluctuations near folded state (Bahar et al., 1998).

Refolding is generally found to proceed by a series of exponential phases. Some of
these exponentials are related to the cis-frans isomerization of peptidyl-prolyl bonds. The
equilibrium constant for the normal peptide bonds in proteins favors the trans
conformation, however the peptidyl-prolyl bond assures the cis form with 2-20 per cent

probability. This exceptional character of peptidyl-prolyl bonds enables us to see the
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proline isomerization in the folding kinetics, since all the prolines in the trans
conformations in the native structure will equilibrate upon denaturation to give a mixture
of cis and trans transforms (Kyte, 1995).

2.3.2. Theoretical Approaches

There are various theoretical methods for analyzing protein folding ranging from
atomic analysis to simple model polymer chains. Molecular Dynamic (MD) simulations
are used for exploring the intermediates and transition states visited during the unfolding
process, and the energetics of folding. These simulations are based on Newton’s law of
motion for every atom including the solvent molecules (Wong et al., 2000). Such “all
atom” representation suffer from computational time and memory calculations. Generally,
experimentally détexmined structures are taken as the initial structure. So the unfolding or
. earls stage of unfolding are explored. Folding process cannot be explored by cbnventional
MD simulations.

In order to increase efficiency and ensure complete coverage of conformational
space, proteins can be more simplified into strings of beads that are arranged in two- or
three-dimensional lattices. Each bead of the string is spherical and has 1o side chains. The
specificity can be added by assigning polar or hydrophobic characters to each bead or
assuming interactions at certain bead pairs. Off-lattice simulations, on the other hand use a
coarse-grained structure of the polypeptide chain, which offer a realistic representation of
the secondary and tertiary structures. The most significant advantage of simplified models
is that folding can be started from a random coil and well-formulated qﬁestions about the
general principles of folding kinetics can be quantitatively answered (Thirumalai and
Klimov, 1999). The Monte Carlo (MC) techniques are common methods used to observe
the folding pathways starting from random coil structures. The possible moves such as tail
flip, corner flip and crankshaft are determined in a probability range by random walks.
Moves are accepted according to energy criteria. Different pathways of different
simulations are then analyzed statistically (Li ef al., 2000). Another approach is the spin
glass theory, which was 611'ginally formulated to analyze the orientation of spins of
ferromagnetics. The spins favor being antiparallel to each other even they cannot all satisfy -
this requirement. One can think of the protéins as heteropolymers having random spin
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coupling constants (Brygelson and Wolynes, 1987). A residue in a protein is frustrated if it
wants to be in more than one conformation. The most stable structure is minimally
frustrated compared with misfolded states. The- insights that héve come from these
computational methods can be summarized as: (i) Protein folding involves a serious of
structures with decreasing energy levels so that the final state has distinctly lower energy
than others, (if) Simplified models fold much better than random sequences and give

reasonable results comparable with experimental results (Fersht, 1999).

2.3.3. Transition State in Protein Folding

Since the earliest experimental work on protein folding kinetics (Ikai and Tanford,
1971; Tsong et al., 1971; Dill and Chan, 1997), experimental folding has been described by
simple mass-action kinetics models, generally involving two states unfolded (U) and native

.(N) as,

U —>N 2.1

or three states including an intermediate (I) that may be on-pathway,

A

or off-pathway,

U
n | 2.3)

I

An extension of the scheme II is the sequential transition

Vel e — =N (2.4)

The intermediate accumulation may be non-productive (2.3), or productive but acting
as a kinetic trap (2.2 or 2.4). The advantage of such a description in terms of two or more
states is its simplicity. Due to their simplicity, studies of two-state proteins have been _
widely exploited for understanding the nature of the folding transition state (TS).
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TS structure is a saddle point on the free energy surface, at a maximum of enérgy
along the reaction coordinate (Figure 2.4). For a reaction involving a series of
intermediates, the réaction of each intermediate involves a separate TS. The conventional
description is that the highest energy TS is referred to as the TS for the overall reaction.
The TS of protein folding can be described by statistical mechanics and Newton’s
equation. The TS is an ensemble of states that differ slightly from each other in energy
around the saddle point. This concept of enérgy surface can lead to TS structures
occupying at very wide and long saddle positions with many small dips in the profile. The
energy surfaces in protein folding also have very high entropy components because of the
large changes in configurational entropy and the change in the entropies of hydration
(Matouschek et al., 1989).

A
Free Energy
Energy1
TS
3 ¥
Reaction
coordinate
-~ Perpendicular
movement to
reaction coordinate
>

Reaction Coordinate
Figure 2.4. Sketch of a reaction coordinate and a saddle point (Fersht, 1999)

A simple way to derive an equation for a chemical reaction at the TS is to consider

that the TS and the ground state are in thermodynamic equilibrium. Suppose that the
difference in Gibbs free energy between the TS, X*and the ground state X is (AGi- AGD).
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Then the fractions of molecules in the transition state can be defined by using the
Boltzman equation

ﬂx = exp[(AGx —-AGp)/RT] (2.5)

[X]

where R is the gas constant and T is the temperature. Then, the folding rate will be:

ke = vk exp(—(AG® —AGD)/RT) (2.6)

v is the characteristic vibrational frequency along the reaction coordinate at the saddle

point and « is the transmission coefficient.

Equation (2.5) is occasionally used for the estimation of the barrier heights assuming
that x is 1.0 and v = kgT/h, where kg is the Bolztman constant and h is the Planck’s
constant. The main use of Equation (2.5) is however calculation of change in the energy
difference between the TS and ground state, A(AGI- AGp). In this case the front terms

vk cancel out. For example, if a mutant folds with a rate constant k¢, compared with the

folding rate of wild type kg, then the change in (AGx- AGp) upon mutation is,

A(AG*- AGp) = RT In (ks /k9) | @.7)

2.3.4. The Hammond Postulate and Brensted Theory

A uSeful guide in the analysis of TS is the Hammond postulate. It states that if there
is an unstable intermediate on the reaction pathway, the TS for the reaction will resemble
the structure of this intermediate based on the assumption that the unstable intermediate
will be in the local minimum at the top of the reaction coordinate. This helps to predict the
TS structure and the types of stabilization. It is really difficult to apply the Hammond

postulate to biomolecular reactions, since these involve two molecules condensing to form
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one transition state and a large part of the Gibbs free energy change is due to entropy.

Hammond postulate applies mainly to the energy differences, so it works best with
unimolecular structures.

Substrates, intermediates, and products can be viewed as sitting at the Bottom of U-
shaped energy wells before the reactionb occurs. The shapes at very bottom are parabolic
for small changes in the reaction coordinate. We can see the basis of the Hammond
postulate by drawing a reaction coordinate diagram as the intersection of two parabolic
curves (Figure 2.5). The energy curves of the substrate (S) and product (P) intersect at the
TS on the reaction coordinate. Destabilizing the substrate raises its energy by amount AAG.
This makes its curve shift upward so that it intersects with the product curve at a higher
energy. Thus the point of intersection moves closer to the original locus of the energy well
of the substrate and as a result, the TS is reached earlier in the reaction. Clearly, the TS
épproaches the structure of substrate. The movement along the reaction coordinate is
known as the Hammond effect (Fersht, 1999).

[ =Y P ———

-

Reaction coordinate (r)

Figure 2.5. Schematic representation of Hammond postulate (Fersht, 1999)

The change in the equilibrium energy of substrate, AAG thus leads to avchange' in the
Gibbs free energy of activation, AAG®. The value of AAGY depends on location of the

intersection and the shape of the curves. The ratio AAGY/ AAG is called Bronsted B value
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which is between 0 and 1. B-value is used as indication of the extend of bond formation

and dissociation in the TS.

2.4. Thermodynamics of Folding

The thermodynamic hypothesis says that the native conformations of proteins are
global free energy minima, and the experimental evidence of reversible folding and
unfolding reactions supports this view. Folding of a protein can be regarded as
thermodynamically driven transition from a state of high free energy (denatured state) to a
state of low free energy (native state).

Folding of a random-coil polypeptide chain into a unique conformation, which
'%nvolves a tremendous decrease in the order of the system, can be thermodynamically
viewed as a significant decrease in the entropy of the system. An entropy decrease is
thermodynamically unfavorable, so this entropy effect should be compensated by the
energy gained as a result of a redistribution of various intramolecular interactions between
the protein groups and the environment. Folded proteins can be unfolded easily by a slight
change in the environmental conditions. This indicates that the folding process must alter
only various non-covalent interactions between the protein groups. On the other hand, the
uniqueness of the native state implies that this molecule is a highly cooperative system
(Creighton, 1992; Schulz and Schirmer, 1979). |

Figure 2.6 illustrates the free energy surfaces for a hypothetical protein under
thermodynamic (A) or kinetic control (B). In reality, the free energy surface for a protein
would be an extremely high dimensional space; for simplicity a two-dimensional surface

plot is shown.

Figure 2.6 (A) depicts a situation where there is a single global energy minimum that
is accessible from any point on the energy surface. The outcome of the folding reaction is
independent of the starting configuration and the folding reaction would be under
thermodynamic control seeking out the most stable state However, a more convoluted
energy surface with multiple minima (Figure 2.6 (B)) implies that the reaction would
strongly depend on the starting point Molecules starting on the left might be trapped in the
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 local energy minimum, whereas those on the right would rapidly reach the global energy
minimum. The folding studies of different protems reveal that the free energy barriers in
polypeptide chain conformational space can have appreciable magnitude and the free
energy landscapes can be considerably more complex than the thermodynamic view of
Figure 2.6 (A) (Baker and Agard, 1994).

(A) Thermodynamic B) Kinetic
Free
Energy Free
Energy
|
Native state Local Minimum Global Minimum
Configuration Configuration

Figure 2.6. Schematic diagram of two-dimension’a_l energy surface plot contrasting
~ two extremes (A) Thermodynamic (B) Kinetic control (Baker and Agard, 1994)

Recent experimental and theoretical studies indicate that the fundamental physics
underlying folding may be simpler than previously thought, and the topology of the
protein’s native state plays a crucial role on the features of folding free energy landscape.
Thus protein folding mechanism can be predicted to some extent, using simplified models
(Baker, 2000).
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3. ANALYSIS OF FOLDING KINETICS USING THE MASTER
EQUATION FORMALISM

3.1. Master Equation Formalism

3.1.1. Previous Studies of Master Equation Formalism

The master equation formalism was used in a number of earlier studies for
classifying the states according to the actual kinetics of the underlying simple chain
models. Leapod et al. studied the folding of simple lattice chains having different
sequences by applying the master equation formulation (Leapod et al., 1992). In this study,
the transition matrix was such that only local transitions would govern the folding. They
concluded that two sequences are considered as foldable and nonfoldable because one
gives rise to a single large folding funnel leading to a native state and the other has
multiple pathways leading to several stable conformational states. A transition matrix
approach which is equivalent to the master equation formalism with a finite time
approx1mat10n was used by Chan and Dill (Chan and Dill, 1993) for analyzing the
macromolecular collapse dynamics. Their method is based on the transition probabilities at
certain time intervals. As the time unit becomes infinitesimally small, the approach reduces
to a standard master equation formalism. Chan and Dill enumerated all the conformations
of a simple lattice model and applied the transition matrix approach to explore all the
possible kinetic pathways for folding of the simple lattice model.

The folding of many proteins appears to be a two-state kinetics. A two state kinetic
model is suitable, if protein molecules rapidly equilibrate between different unfolded
conformations prior to complete folding. Zwanzig was the first to apply the master
equation formalism to describe protein folding by two-state kinetics (Zwanzig, 1995;
Zwanzig 1997). Ye et al. used the general Laplace transformation S61ution of master
equation formalism to describe the folding kinetics of small portlon of Staphyloccocal
Protein A (Ye et al., 1999) They concluded that the protein folds in a fast cooperative
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process and neither the initial state nor the number of local energy minima affect the

protein to reach the native state after a sufficiently long time.

The master éQuation for 12-monomer lattice heteropolymers has been solved
numerically by Cieplak ef al. and the time evolution of the occupancy of the native state
has been determined (Cieplak, et al., 1998).

3.1.2. Formulation of the Equation

Consider a model protein molecule having N accessible conformational states. The

time evolution of these states is controlled by the master equation
dP(t)/dt = A P(t) 3.1

where P(t) is the N-dimensional vector of the instantaneous probabilities of the N
conformations, and A is the NxN transition (or rate) matrix describing the kinetics of the
transitions between these conformations. By definition, the ijth off-diagonal element (Ay) of )
A is the rate constant for the passage from conformation j into conformation i. From the
principle of detailed balance, Aj; pi® = A;; pi%, where pi0 is the equilibrium probability of the
ith conformation. The ith diagonal element of A, on the other hand, represents the overall
rate of escape from conformation i. It is found from the negative sum of the off-diagonal

elements in the same column, i.e. A = - ; Aj; ().

Equation (3.1) represents a set of N equations, to be solved simultaneously. The

formal solution can be cast into a tractable form by decomposing A as
A=BAB-! (3.2)

where B is the matrix of the eigenvectors of A, A is the diagonal matrix of its eigenvalues A;
(A = 0 and A; < 0 for 2 <i <N) and B! is the inverse of B. The time-dependent probability
- of occurrence of the ith conformation (i.e. the ith element of P(t)) can be expressed in terms -

of the elements of B, A, B! and P(0) as
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N N _ N ‘ '
P()=Y" Y By exp(M OB 15P;(0) = 3CGist| £0)P;(0) (3.3)
_j=1k=1 j=1

where C(i,t[j,0), denotes the conditional or transition probability of conformation i at time t,
given conformation j at t = 0. For stationary processes, C(i,t]j,0) is independent of the initial
time of observation, but depends on the time interval t, only, between two successive events,
such that C(i,t2}j,t1) = C(i,t[j,0) for t = t, - t;. In matrix notation, Equation (3.3) reads

P(t) = B exp {At} B -1 P(0) = C(t) P(0) (3.4)

where exp{At} is a diagonal matrix whose ith element is exp {Ajt}, and C(t) is the
.conditional or transition probability matrix. C(t) fully controls the stochastic process of NxN

transitions. The time-delayed joint probability of conformations i at time t, and j at time t; is

found from
P(i,tp; j,t1) = C(i,t2-t1[i,0) Pj(t:) (3.5)

Combination of these probabilities in

N, Ny

PA, t;Bi)= 3. 3. CG, tr- 1fi,0) Pi(ts) \ 3.6)
i=1 j=1

yields the time-delayed joint probability P(4, tp; B, t;) of specific conformational subsets (or
macroconformations) 4 and B of interest. Ny and Ny denote the numbers of conformations

in these subsets.

It is worth noting that equitation (3.3) may be reorganized to express Pi(t) as a sum of -

exponentials
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N
Pi()= ) a, exp(-hy ) (3.7
k=1

where (-Ak) is the frequency of the kth mode of motion, and ak is the corresponding
amplitude factor. ak is an equilibrium characteristic of the kth mode; it is related to the

eigenvectors of A and the initial distribution of conformations as
N -1
ay =) By [B 1 P; (0) (3.8)
j=1

This equation follows from comparison of Equations (3.3) and (3.7). The frequencies
are usually organized in ascending order, such that A; = 0, and -A, is the frequency of the
slowest mode of conformational motion. The latter can also be viewed as the gldbal

folding mode, while the high frequency modes refer to local structure formation or

conformational fluctuations.
3.2. Model and Method
3.2.1. Models and Native Conformations

3.2.1.1. Model. In the present study, short model chains (9-mers and 16-mers) generated
on square lattices are considered. These models show apparent two-state kinetics according
to the criterion that folding and unfolding kinetics can be approximated by a single-
-exponential. These models present the advantage of exploring the time evolution of the
complete ensemble of NxN conformational transitions, thus providing exact and detailed
information on the mechanism or pathway(s) of folding. The accessible conformations
consist of all self avoiding walks generated on a square lattice, including both the extended
conformations that dominate the denatured state, and compact forms confined to 3x3 (or
| 4x4) lattices. Exhaustive enumeration yields N = 740 and 802,075 distinct conformations
for the 9-mers and 16-mers, respectively, excluding the conformers that are related by
symmetry or rigid body rotation. The analysis of the complete ensemble enables us to
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capture any microscopic detail, any sequence-kinetics relationship, or any structural aspect
of how the chains actually fold.

3.2.1.2. Native Conférmation. There exist three maximally compact conformations for a
9-mer on a square lattice (Figure 3.1(a)-(c)). Each have four intramolecular contacts,
labeled as A-D, E-G and I-L, respectively. Calculations are performed for each of these
conformations selected as the native state. The conformation (a) is analyzed in more
details, since this model involves both local (betWeen monomers i and i+3) and non-local

contacts, grouped in two sequentially separate domains.

The 16-mer, on the other hand, has 31 maximally compact conformations having
nine native contacts each (confined to 4x4 lattice). Among these, the conformation shown
in Figure 3.1(d) is selected here as the native structure. This structure may be viewed as a
simplified model for a protein comprising two domains, an o-helical and a B-sheet.
Contacts A-C are representative of helical contacts, G-I are B-strand contacts. These six
may be viewed as local and non-local intradomain contacts, while D-F are inter-domain
contacts that assemble these secondary structures. The analysis of the time evolution of
these contacts should provide insights about the hierarchical formation, if any, of different

types of contacts during the folding process.

@ (b) © @

Figure 3.1. The lattice model of the native conformation previously explored, for 9-

mer and 16-mer
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3.2.2. Energetics and Parameters

The passage from a uniform distribution of all conformations (fully denémred state)
into a predefined native conformation, i.e. the folding process, is analyzed by the master
equation formalism described in Chapter 3.1.2. The classical Go model is adopted (Ueda et
al., 1975). Folding is driven by attractive potentials assigned to pairs of monomers making
native contacts. The native contact formation is accompanied by an energy decrease €, and
its dissociation by energy increase €; all non-native contacts have zero energy, i.e. they do
not involve enthalpy change. Go models are used because they have the same large
conformational search as proteins; they have a unique lowest energy 'native' state, and they
have two-state kinetics. The full energy landscape is not yet known for more atomically
detailed models but it is possible to explore the details of the landscape using a Go model.
‘Go Models were used in earlier folding kinetic studies (Hoang and Cieplak, 2000; Pahde
and Rokhsar, 1999), and the results were comparable to those obtained with full model
(Klimov and Thirumalai, 1999).

Conformational transitions are assigned rate constants according to two criteria:
intramolecular energy barrier and frictional effect. These are reépectively enthalpic and
entropic in origin. The energy barrier slows down the transition among the different
conformations. The energy barrier height is taken as zero for passages to an equal or lower
energy conformation, which favors the transition to more native-like conformations. The
barrier is taken as the energy difference between the initial and final conformations in the
case of passages to higher energy conformations. The frictional effect, on the other hand,
accounts for geometric accessibility Between conformations. It slows down, or practically
hinders, the passage between highly dissimilar conformations. It scales with the root-mean-

square (rms) deviation between the bead positions of communicating conformations. The

rate constant A;; is therefore given by

Aj = exp {-AGy/RT} = exp{-v <(Ar®> 2} exp {-(qi - q)¢ H(qs q)/RT}  (2.9)

for q; < q;, where AG; is the free energy change accompanying the transition, qi' is the

number of native contacts occurring in conformation i, H(q, q) is the Heavyside step
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~ function, equal to one for q; > q;, and zero otherwise. <(Arij)2>l,2 is the rms deviation
betwen the conformations i and j evaluated after optimal superposition of the two
conformations, anq v is a proportionality constant dependent on the strength of the
frictional effect. In the absence of viscous effects, this parameter equates to zero. The
frictional resistance could instead be included through an inverse proportionality on
macroscopic viscosity, following Kramer's rate expression, in conformity with the
modeling of protein folding as a diffusional process (Jacob aild Schimid, 1999). But it is
chosen to resort to the present explicit form that discriminates between individual

transitions on the basis of the 3-dimensional similarities/differences of the communicating
states.

The values € = - 5 RT and v = 0.5 were adopted for the 9-mers, and g = - 2.3 RT and

v, = 1.0 for the 16-mers. Bonds have unit length. ReIatively weaker potentials and higher
' frictional resistances were used in the 16-mers due to physical and technical reasons: (i)
physically, the moderate driving potential for folding enables us to examine the time
evolution of contacts and possible accumulation of intermediates, (ii) technically, the
computational overflows arising from the exceedingly large time scale difference between

the fast and slow processes are avoided.
3.2.3. Initial Conditions and Equilibrium Distribution and Unit Time Steps

Calculations for the 9-mers are performed using a uniform distribution of all
conformations, i.e. Py(0) = 1/N = 1/740 for all i as initial conditions. This represents the
infinite temperature limit. The ensemble converges to the Boltzmann distribution at 300 K
at long times. The equilibrium probability of the native conformation (n) is Py(c0) = 0.9848
using g= - 5 RT. Therefore, the stochastic process of folding to the native state starting
from a uniform distribution of conformations is observed to investigate the different

pathways.

In the case of the 16-mers, the Boltzmann distribution at 500K is preferred over the
infinite temperature limit as the initial condition. The net effect is to reduce the high

probability of conformations having no contacts or one contact at the initiatial stage of
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folding. The equilibrium probability of the native conformation is 0.002 at T=500 K, and
0.837 at T = 300 K using € = - 2.3 RT. The equilibrium probability of the energetically
nearest conformation making eight native contacts instead of nine, contact I at chain
terminus being disrﬁpted is 0.086. Thus the total equilibrium probability of the two

conformations account for more than 92 per cent of the observed molecules at equilibrium.

Master equation formalism allows us to explore foldirig processes- occurring at
different time scales. Time steps At of different siies can be conveniently used, depending
on the time scale or the stochastic process of interest. Steps of At = 0.01 time units were
used, for example, for examining the initial folding processes in the 9-mers, while the later
stages were examined with 4-5 orders of magnitude larger time steps, consistent with the
observed distributions of frequencies (eigenvalues of A). A broader distribution spanning
about five orders of magnitude is operated in the case of 16-mers. This way, it is possible
to observe both the local structure formation and global folding processes in proteins,

which have a large time scale difference.
3.3. Reducing the Size of the Transition Rate Matrix

" In order to visualize folding mechanism, we analyze the resulfs in terms of subsets of
conformations called "macroconformations". The conformations are grouped into 13
subsets, according to their number and types of native contacts: Subset O comprises the
conformations having no native contact; subsets A, B, C, D contain those having only one
(A, B, C or D) native contact, as indicated by their name; AB, AC, BC, BD have two
native contacts; ABC and BCD have three contacts, and finally ABCD is the native

conformation (having four contacts).

The important question that is addressed is whether a reduced 13 x 13 model of
macroconformations can accurately describe the kinetic process extracted from the 740 x
740 matrix of microconformations for 9-mer. The reduced model is much faster to
compute. Reducing the size of P(t) by one order of magnitude indeed increases the

computational efficiency by two orders of magnitude, as the computation time scales with

Nz. This enables us to analyze the longer chain models, which are computationally very
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expensive. The experimental results are based on ensemble averages, so the results of the

reduced model are comparable with the experimental results.

A reduced 13 x 13 transition matrix A' is constructed, describing the rates of
passages between the macroconformations. The element of A’ accounting for the passage
from macroconformation B to A, for example, is found by double summing the elements
Ajj of A over 1 £i <Nj and 1 <j < Np, similarly to Equation (3.6). Calculations were
repeated for the reduced (13-d) probability arréy. The time evolutions of the native
structure and the native contacts identically reproduced the results obtained from the 740-d
analysis.

The calculations for the 16-mer is carried out in such a reduced space of 257
macroconformation, which includes all possible distributions of native conté,cts except for
ten having < 1 native contacts. Table 3.1 shows the total number of macroconformations and
microconformations for structures having the same number of native contacts, whereas
Table 3.2 presents the most important macroconformations and the corresponding number of

microconformations.

Table 3.1. The total number of microconformations (Wmic) and macroconformations (Wmac)

for the conformations having the same number of native contacts (m)

m wmic wmac
1 258453 9

2 81992 35
3 21024 68
4 3889 76
5 522 50
6 94 20
7 14 6

8 1 1

2 11 . . .

The rms deviation <(Arjj) > between macroconformations i and j is found on the
basis of the average radii of gyration of the conformations belonging to the two
macroconformations. This approximation is tested with the 9-mers and verified to lead to

insignificant changes in the observed results.
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Table 3.2. The dominant macroconformations having different numbers of native contacs

(m) and corresponding number (Wp;c) of microconformations

m=2 Wi m=6 Wic
1 4B 13004 1 ABCDEF 39
2 AC 10391 2 ABCGHI 7
3 AG 9545 3 BCDEHI 5
4 BC 9291 4 BCDGHI 5
5 GH 6207 5 CDEGHI 4
6 CG 5264 6 ABCDEG 3
7 BG 5189 7 ABCDEI 3
8 ABCDGI 2
m= Wi 9 ADEFGI 1
1 ABC 1867 10 ADEGHI 1
2 GHI 1558 11 CDEFHI 1
3 ABG 1405 12 ACDEHI 1
4 AGH 1241 13 ABDGHI 1
5 ACG 1139 14 ABCDGH 1
6 BCG 1025 15 DEFGHI 1
7 BCD 691 16 ACDEGH 1
17 CDEFGH 1
m=4 Wi 18 ADEFGH 1
1 BCDE 503 19 ACEFHI 1
2 AGHI 315 20 ACDFGI 1
3 ABCG 207
4 ABGH 181 =7 Waic
5 CGHI 178 1 BCDEGHI 5
6 BGHI 172 2 ABCDEFG 3
7 ACGH 141 3 CDEFGHI 1
4 ADEFGHI 1
m= Wi 5 ACEFGHI 1
1 ABCDE 51 6 ABCDEHI 1
2 ABGHI 47
3 ACGHI 71 m=8 Wi
4 BCDEG| 38 1 ABCDEFGHI 1
5 BCGHI 35
6 ABCGH 7
7 ABCDG 16
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3.4. Dispersion and Shapes of Modes from Reduced Transition Rate Matrix

The analysis of the reduced transition rate matrix A' provides the additional
advantage of visualizing the type and relative time scale of the individual modes of motion
that contribute to the folding process. The eigenvalues A’ (2 < k < 13) of A' are
representative of these modes’ frequencies, and the associated eigenvectors describe the
shapes of the individual modes. Thus the dispersion and shapes of individual modes
associated with the transitions between macroconformations can help us to understand the

folding process in more detail.
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Figure 3.2. Eigenvalue distribution of the 9-mer and the 16-mer (inset)

The decomposition of the transition rate matrix A of the 9-mer gives a trimodal
distribution that is presented in Figure 3.2. The trimodal distribution could be classified as:
(i) a burst stage at t < 0.03 time units, approximately, (ii) intermediate times 0.03 <t <2
time units, and (iii) long times t > 2 time units. At the burst stage, only the fastest modes
operate. This stage will berbserved to cor:espond to a rapid decay of the conformations
having no native contacts. At the other extreme case of long times, on the other hand, only
one mode, the slowest, effectively contributes; there is an apparent single exponential

accumulation of native conformation. At intermediates times, there is a superposition of
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multiple modes giving rise to a more complex scheme with multiexponential time

dependence.

The decomposition of the reduced transition rate matrix of 16-mer is smoother and
broader, as shown in the inset of Figure 3.2. The three regimes are not distinctive anymore.
Approximately five orders of magnitude difference ‘s observed in the time-scale of the fast
and slow processes. This is consistent with the large time scale difference between local

structure formation and global folding in proteins.

The eigenvalues A (2 <k < 13) of A’ (13 x 13) for the 9-mer represent the frequencies
of the modes in the space of macroconformations, and the eigenvectors describe the
transitions driven by that specific mode. There are 12 nonzero eigenvalues . Each element of
a given eigenvector is associated with a given macroconformation, the latter being indexed
from 1 (macroconformation 0) to 13 (ABCD) The minima or maxima indicate the

macroconformations with the highest activity (or transition probability).

The slow and fast modes of the 9-mer in the reduced space of transitions are found to
differ by 4-5 orders of magnitude in their frequencies . The dispersion obtained for the 740 x
740 transitions on the other hand, varies over 2-3 orders of magnitude. Comparison of the
two sets shows that the slowest modes (k = 2) have about the same frequencies (~ 0.28/unit
time), whereas the fastest modes differ. This difference can be explained as follows: The fast
transitions observed in the space of macroconformations reflect the cumulative contribution
from the multiple transitions, or multiple pathways of relaxation, simultaneously operating at
the initial stages of folding, in conformity with the energy landscape view of folding starting
from an ensemble of denatured conformations. For example, subset O disappears - and
subsets C and D form - by multiple mechanisms, via: transitions between several
conformations at the initial stage of the folding process, hence the apparent fast transitions

(high frequencies) observed at short times in the space of macroconformations.

Figure 3.3 illustrates the shapes of a few modes (k = 2, 4, 7, 11-13). These are simply
the eigenvectors plotted against macroconformation index. The extrema indicate the
macroconformations that are most strongly influenced by the action of a given mode.

Positive and negative values refer to changes in opposite direction, ie. one
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macroconformation being formed (or accumulated) while the other is disrupted (or
depleted). The uppermost curve (k = 2) describes the slowest mode, and the lowermost (k
= 13), the fastest. The latter reveals, for example; that the fastest mode decreases the
population of subset O, while increasing those of subsets D and C. The second fastest
mode (k = 12) describes the communication between subsets C and D. The third (k = 11)
reveals the depletion of C and D, and concurrent accumulation of 4, B, and CD. These
three modes lie all in the fast transitions regime (Figure 3.2). The curve k = 7, on the other
hand, reflects an intermediate time process, mainly an equilibration in favor of subset CD
between all subsets of conformations involving two native contacts. Finally, the uppermost
two curves reflect the increase in the population of conformations having three native
contacts (k = 4) and the stabilization of the native structure at the expense of subsets 4BC
and BCD (k =2).

Mode shapes

Figure 3.3. Modal shapes of eigenvectors
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3.5. Effect of Energy Parameters

The change in the folding condition can make changes in the folding process. It
may give rise for example, to the accumulation of some intermediates. In order to
understand the effect of energy parameter ¢, the time evolvutionk of the macroconformations
CD and BCD and the native (N) conformations of the 9-mer were computed with respect to

different € values.

The result is illustrated in Figure 3.4. Part (a) shows the accumulation of
macroconformation CD of 9-mer at short times, which is diminished at higher
temperatures or lower € values. This subset of conformations is stabilized at short times. Its
i)robability reaches the value of 0.39 during the burst stage of folding kinetics using &/RT =
-5, which is significantly higher than its original and equilibrium populations. Such a
transient accumulation might be attributed to being trapped in a local minimum along the
folding pathway. The escape from this subset is easier and faster at higher temperatures, as
expected. Likewise, the subset BCD accumulates in the intermediate time regime, as
shown in part (b), and decreasing € values give rise to an earlier and weaker tendency to
accumulate. Part (c) presents the gradual stabilization of the native state. The equlibrium

probability of the native state increases with increasing the energy parameter €.

The general conclusion deduced from the plot is that the qualitative features of the
folding kinetics do not vary with the folding conditions. The intermediates that are
accumulated during the folding process still exist even though their population is decreased
or their accumulation time is shifted. The native conformation still shows an apparent two-
state kinetics. However, it should be investigated whether the change in attractive potential

of a given native contact speeds up or slows down the folding process. This will be

discussed in Chapter 4.
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4. RESULTS AND DISCUSSION

4.1. Time Evolution of Native Contacts

The time evolution of native contacts can give us insights as to the sequence of event
during the folding process. The time evolutions of native contacts are computed for the
three different native structures of the 9-mers, that are presented in Figure 4.1 The

ordinates represent the time-dependent probabilities of contacts, P(X, t), where X

designates a given contact (4, B, C or D).

A general feature emerging from the examination of the curves in Figure 4.1 is that
the innermost local native contacts stabilize first, succeeded by the local contacts occurring
on relatively exterior regions. This qualitative observation can be consolidated by the

characteristic times t(X) for the stabilization of each contact found from the integral

1X) =] PX, 1) - PX, ©)J/[P(X, 0) - P(X, )] dt “4.1)
over 0 <t <w . The results are indicated on the figure for each type of contact.
The following simple rules can be deduced:

(i) The contact stabilized the fastest is invariably a contact made by the central site of
the 3 x3 lattice, in each of the three examined cases. This site may be viewed as the
core of the structure. Thus, core contacts exhibit the strongest tendency to be
stabilized first, amongst all native contacts, irrespective of the sequential position of
the core residues. The relatively fast formations of contact C in case (a), E and H in

(b), and L in (c) show the tendency for the core residues to be stabilized first.

(ii) Among the different native contacts that the core residue can make, the most Jocal
ones - i.e. those involving the closest monomers along the sequence - are the ones
that are most likely to form first. For example C is preferred over B in case (a), L is

preferred over K and J in case (C). In particular, a hierarchical characteristic time
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L) <(K) < t(J) is observed in the latter case, confirming the increase in time with
sequential distance.

It is interestihg to note that in part (a) the contact D shows a tendency to form
rapidly, at the burst stage of folding. This indicates the high propensity of local interactions
at chain termini at short times. However, early formation of this contact does not ensure
that it is stabilized and conducive to the native_ state. At intérmediate times D competes
with C, and the latter eventually turns out to be the most rapidly stabilized contact: 1(C) is
indeed about twice shorter than (D). We note that even the contact B is stabilized faster
than D.

This observation suggests the following third rule:

(iii) Helical contacts at chain termini, despite having a tendency to form at early stages
of folding, can be rapidly reverted (or opened) such that their effective folding (or
stabilization) time is longer than that of inner helical contacts. B-strand or
interdomain contacts, on the other hand, accumulate steadily, and may eventually
exhibit a shorter characteristic time compared to the reversible helical contacts. The
recent stopped-flow kinetic studies of B-lactoglobulin also indicate that substantially
more helices are formed at early times than is present in the final native state
(Baldwin, 2001). This is in consistency with our results that the helical contacts at

chain termini are easy to form but have marginal stability.

It is of interest to see if the rules (i)-(iii) deduced above from the 9-mers are also
applicable in the case of the 16-mers. Our analysis confirms the same hierarchical pattern
for the 16-mer structure (d) shown in Figure 3.1. The time evolution of native contacts is
shown in Figure 4.2. The long-time behavior is displayed for clarity, while the inset shows
the short-time behavior. The calculated characteristic times obey the order %(C) = (G) <

(D) < D) <7(A) < o(H) <(E) <u(B) <u(F).



t (time units)

Figure 4.1. Time evolution of native contacts for three 9-meric native structures
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The native contact that are stabilized first, C and G, are again contacts involving a
core residue which is consistent with rule (i). Here core residues ate those occupying the
four central positions of the 4x4 lattice. Actually, six contacts (C, D, E, 4, H and G)
involve (at least) one core residue. Especially C, G, 4 are the most local ones i.e. between
residues i and i+3. Thus, two of these most local contacts made by one or more core

residues appear to be formed at the earliest folding stage, that obeys rule II. The third, A, is

a local contact made at the chain terminus, which, in consistency with rule /17, can be

easily reversed, and as a result 7(4) is relatively long.
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In the inset of Figure 4.2, the short-time behavior is enlarged. The curves for contacts
C and B illustrate the high propensity of helical contacts at the burst stage (contact 4, not
shown, lies between C and B). The interdomain contacts, on the other hand, are the least
probable contacts at-the burst stage, as illustrated by the limiting curve, while B-sheet
contacts exhibit an intermediate behavior (see H). However, this order is soon reversed,
because the respective rates of accumulation obey the opposite order: B-sheet contacts
approach their equilibrium probabilities faster than the a-helical contacts, and more
strikingly, the innermost interdomain contact D Surpass both the a-helical and B-strand
contacts, suggesting that the latter is rather stable or irreversible, once formed. The
competition between the innermost o-, B- and interdomain contacts C, G and D,
respectively, can also be discerned in the uppermost curves of the main figure. On the
contrary, the surface exposed interdomain contact F is significantly more sluggish
compared to all other contacts, suggesting that F is also the first contact to be disrupted
upon unfolding. It is interesting to recall that the disruption of tertiary interactions between
the helix and a two-stranded portion of the B-sheet was the primary unfolding event in the
extensive MD study of CI2 unfolding by Lazaridis and Karplus (1997).

All these results lead to the conclusions that the folding process is a hierarchic
process in which the folding begins with the formation of local contacts of marginal
stability (Takada, 1999). Thus formation of key tertiéry native contacts forms the extended
folding nuclei (Fersht, 2000) and drives the system to the native state.

4.2, Coupling Between Native Contacts

For the 9-mer show in Figure 4.1 (a), contacts C and D are the most probable
contacts at the burst stage of folding, while 4 and B form at the later stages. It is of interest
to see which contact, 4 or B, is more readily driven by the original contacts C and D.
Figure 4.3 displays the conditional probabilities of formation of a second native contact
subject to the condition that native contacts D (part (a)) or C (part (b)) have already
formed. In both cases, there is a strong driving potential for successive or concurrent
formation of the contacts C and D. This is consistent with the scheme of Figure 3.3.
However, contact B is unambiguously seen to be the next stabilized contact, in both cases,

as also revealed in Figure 4.2. This supports the view that formation of contact B is the key
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~ native contact for the transition state and stabilization of the native conformation ABCD.
The formation of B immediately drives contact A. This was clearly seen from the

conditional probability curves for the native contacts given that the contact B has formed
(data not shown ). -
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Figure 4.3. Conditional probability curves of the native contacts for 9-mer

The latest mutational study of Vendruscolo ef al. (2001) support this view in which
three key residues of the 98 residue acylphosphates form a critical contact network in the

transition state. e
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Another question that should be answered is whether there is a set of native contacts
that accelerate the formation of native conformation. For this purpose, the conditional
probabilities of the native conformation, subject to the condition that some sets of native
contacts have formed, are computed. Figure 4.4 present the conditional probability curves
with the singlet probability of the native conformation for 16-mer. The structure of the

native conformation is shown in the inset of Figure 4.4.
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Figure 4.4. Comparision of the conditional probability curve of the native conformation

with its singlet probability curve

The conditional probability curve of the native conformation, when the helical
contacts ABC have formed a t = 0 is exactly the same as its singlet probability curve. The
conditional probability curve subject to the condition that native contacts of GHI (B-strand)
have formed also shows the same trend. The data is not shown for clarity. This result
indicates thatﬂ the earlier formation of secondary structural native contacts does not
necessarily speed up the folding process. On the other hand, the two other conditional
probability curves for the condition that-the two different sets of six native contacts have

already formed, are faster than the singlet probability curve of the native conformation.
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Comparing the two conditional probability curves, it is seen that the formation of the
helical and intra domain (tertiary) contacts drives folding faster than the formation of the
native contacts of a-helix and B-strand. One can_ask if these six native contacts are a
transition state structure/nucleus for the folding of this model protein. Klimov and
Thirumalai (2000) defined the folding nucleus as a set of native contacts that (i) include a
minimal number of stable contacts, and (ii) result in rapid assembly of the native
conformation. Fersht defines the folding nucleus as a native like structure being composed
of partly or well formed secondary structures that are stabilized by tertiary interactions
(Fersht, 2000). The presence and identity of folding nuclei in the presently investigated 16-

mer will be further explained below.

4.3. Dominant Folding Pathway

_4.3.1. Fluxes between Macroconformations

A protein quickly and reliably finds its native structure, an exponentially small
region of its total phase space. The issue that has been addressed here is whether a protein
folds via a unique pathway, or it folds through an ensemble of pathways. In a strict sense,
there cannot be a single pathway by which a protein folds. If an ensemble of denatured
proteins all must pass through a single narrow pathway in their phase space, then there
must be a large reduction in entropy upon entering this path. This step would consequently
be very unlikely and rate limiting. It is much more likely that proteins fold via many
different pathways. Such a mechanism would allow analysis of protein folding dynamics

through general equilibrium and non-equilibrium statistical mechanics.

In this picture, the transition state should be composed of a broad ensemble of
structures rather than one particular structure. This does not mean that the transition state is
completely random. The transition state may be characterized by a partial structure in the
form of stable pieces of secondary structure or partially correct backbone shape (Brooks et

al., 1998).

In the present work, a simple model is explored, which shows a 2-state kinetics, in

the sense that there are two macrostates, denatured and fully folded, predominantly



43

populate the ensemble of conformations. The folding process exhibits an apparent single
exponential time evolution that can be deduced from the time evolution of the native
conformation (P(N,t)) in Figure 4.4. The model chains follow a broad ensemble of
micropaths during the folding process and the joint probabilities (P(X, t1; Y, t2) of the
macrofonmations at various times are computed to visualize the folding pathways. These
probabilities in a way reflect the fluxes, or communications, between the states and the
diagonal terms (P(X,t;;X,t;)) reveal the important states during the folding process. By this
way, it is possible to see the dominant states that accumulate during folding. The analysis
demonstrates that there is a dominant macropathway, even though each chain may explore
a large ensemble of possible microscopic routes. The folding macropath can be described
in terms of a particular sequence of events in which local interactions generally precede
more nonlocal contacts. Figure 4.5 parts (a)-(f) indicate the following time evolutions (see
also the schematic representations next to the joint probability map): (a) Originally, the
_ensemble predominantly consists of conformations having no contact (subset 0). The
initial probability of this subset is P(O, 0) = 0.71. By the end of the time interval 0 <t < 0.1
the distribution is changed in favor of subset D and (to a lower extent) subset C, at the
expense of subset O. The flux from subset O into subset D is revealed by the off-diagonal
red region. (b) The subset D remains as the most highly populated subset, while some
exchange between subsets C and D is observable from the off-diagonal elements. More
importantly, subset CD emerges as the first subset of conformations having two native
contacts (yellow spot). The subset CD apparently grows as an extension of subset D. (c)
There is a gradual increase in the population of subset CD. (d) CD is the dominant subset
while the conformations having one native contact (subset D) practically disappear.
Interestingly, the native conformation ABCD starts to be stabilized, although ABC and
BCD are not discernible. Thus, contacts 4 and B form almost simultaneously. The extreme
cooperativity between contacts 4 and B suggests that the formation of one of them
immediately drives the other, and at the same time the complete folding into the native
structure. Although which contact initiates this cooperative mechanism cannot be
discerned in this scheme, the analysis of coupled transitions (Figure 4.3) indicates that B
precedes A, as also suggested in Figure 4.2 (a). The formation of contact B may thus be

viewed as a critical step that precipitates overall folding. (¢) A new equilibrium is reached,
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where the most probable conformation, the native conformation ABCD, coexists with
gradually decreasing amounts of subset CD, and increasing amounts of subsets ABC and
BCD. The formatiop of subset BCD can be attributed to on-pathway transitions starting
from subset CD. However, the concurrent formation of subset ABC suggests thatoccasional
off-pathway fluctuations (loss of terminal contacts) away from native conformation also

occur. (f) The native conformation is equilibrated.
4.3.2. Transitions between Macroconformations

The progress of folding for the 16-mer has been observed by examining the transition
probabilities, as presented in Figure 4.6. For clarity, the successive pairs of 'communicating'
macroconformations have been considered in each map, i.e. those exhibiting m and m+1
native contacts, where m = 2, 3, 4 and 5 in the respective maps (a), (b), (c) and (d) of the
figure. In each map, abscissa refers to the initial macroconformations (indexed as listed in
Table 3.1) and ordinate represents the final macroconformations. The colors describe the
transition probabilities between these macroconformations, using the code red-orange-
yellow-green-cyan-blue in the order of decreasing transition probabilities. Map (d)
additionally shows the results for the transitions to macroconformations exhibiting 7, 8 and
finally 9 (all) native contacts. The transitions beyond m > 6 are diéplayed in the same map,
as the completion of folding is almost spontaneously aéhievedA once the sixth contact is

made.

Let us first examine the maps shown in parts (a) and (b). The macroconformations are
assigned indices in the order of decreasing conformational entropies. Tiie smooth color
shading of the maps simply indicates that the transition probabilities conform closely with
conformational entropies: The transitions are in favor of those macroconformations having
higher conformational entropy especially among the less nativelike macroconformations. A
closer examination further reveals that most of the entropically unfavorable

" macroconformations (right portions of the maps) are not conducive to more native-like

macroconformations, i.e. the new macroconformations with higher number of native -

contacts (ordinate) are usually produced starting from the -entropically favorable

macroconformations. The dominance of conformational entropy is unambiguously seen in

maps (a) and (b). In part (b) a greater screening effect is discerned compared to part (a), i.e.
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the number of macroconformations that evolve into more native-like macroconformations is

reduced, as indicated by the broadening of the blue and thinning of the red regions.

The accessible transitions (red regions) are confined to an even smaller number of
macroconformations in the case of the passage to macroconformations héving 5 native
contacts, displayed in part (c). In the same map, some relatively probable transitions that do
not necessarily conform with the order dictated by conformational entropy can be
distinguished. For example, careful examination of the rows in the map (c) reveals that
transitions to macroconformations 2, 3 and 5 are favored. These are macroconformations in
which the B-domain is fully structured, and two helical contacts (out of 3) are made. On the
other hand, the 9th column (or macroconformation BCGH) appears to be disposed to evolve
into more native-like macroconformations. Therein the two core contacts C and G of - and

B-domains are formed, and each domain has one additional native contact.

Map (d) in Figure 4.6 illustrates the transitions of the macroconformations having five
contacts to more native-like conformations. Although macroconformations having high
conformational entropy are again favored, several macroconformations with relatively low
entropy can be distinguished which efficiently fold into native-like structures. A specificity
in the folding pathway, not necessarily dominated by conformational entropies, is thus

observed at this stage.

These results clearly show that the conformational entropy plays an important role in
the folding mechanism. The transitions involving macroconformations with the highest
number of conformational entropy are more probable, since there are many direct and

indirect kinetic microroutes to those macroconformations.

The present analysis reveals that:

(i) the demand to the lowest energy leads to macroconformations down to the funnel

where the native state is,

(ii) certain pathways are more dominant due to their high conformational entropy.
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Figure 4.6. Transition between macroconformations
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4.4. Kinetic Scheme for Folding

The most dominant macroconformations that are revealed from the transition
probabilities in Figure 4.6, are used to construct the kinetic scheme for the folding of 16-mer
model protein. Figure 4.7 illustrates the macroconformations that dominate the folding
process at various stages of folding. These are displayed at different heights of a folding
funnel, representative of the overall energy landscape. Conforrhations having the same
number of native contacts (same energy) are shown along the same row. The number of
contacts increase as it proceeds towards the bottom of the energy landscape. So, the upper
rows show the high entropy and high energy conformations and the lower rows represent
lower-energy lower-entropy conformations, deeper down the landscape. The bottom is the

_ native (N) conformation.

The originating substructures (first row) that emerge in the present analysis are those
having local contacts, such as the contacts that can initiate B-sheets or o-helices. The
originating substructures can be seen as multiple nuclei at different locations of the chain,

which initiate folding.

The macroconformations are condensed into two kinetic intermediate structures having
six native contacts (fifth row). A large number of substructures converge to the transient
structure ABCGHI, that is comprised of the fully formed a-helix and B-strand domains, in
the absence of tertiary structure. On the other hand, the other transient structure, ABCDEF,
evolves via a separate pathway, which can be verified from Table 3.1 to be the mechanism
favored by conformational entropies. Thus it is the fastest and the dominant pathway to
reach the native state. Along the dominant folding pathway, the transition state structure has
the native helix on which one of the two strands of the sheet is assembled. The first model
resembles the diffusion collision model of Karplus and Weaver (Karplus and Weaver, 1976)
and the latter reminds the nucleation collapse model of Fersht (Fersht, 1995; Fersht, 2000).

These two intermediates, and the succeeding two macroconformations having seven
contacté, exhibited a slight tendency to accumulate before complete folding, indicated by
the peaks observed in their time evolution curves at relatively long times (Figure 4.8).



Figure 4.7. Kinetic scheme for folding
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Yet, it is worth noting that the population of all conformations is significantly lower

than that of the native conformer at all times, except at the earliest stages of folding. The
~ instantaneous probability of the native structure, is inde‘ed about ten times larger than the
nearest conformation having 8 native contacts. The peaks in the probability curves for the
transient kinetic intermediates lie significantly below the instantaneous probability of the
native conformation. There is, therefore, a rapid accumulation of native structures with a
negligibly small accumulation of intermediate structures, compatible with a two-state

folding behavior on a macroscopic scale. Nonetheless, this accumulation proceeds via a

number of dominant pathways, as depicted in Figure 4.7.

0.08

0.06

0.02

Figure 4.8. Time evolution of different macroconformations as the 16-mer folds

The kinetic scheme demonstrates that folding proceeds via parallel pathways that

have different populations and different transition structures. There is not a single

bottleneck state that is responsible for the limiting rate observed for the macroscopic

process like in the classical theory. Thus the folding time to reach the native state is neither
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the same as the folding time of the longest pathway nor the same as the shortest pathway.
The experimental example of parallel flows involving a rapid helix formation and a slower
‘B-sheet formation is lysozyme (Matagne et al., 1997; Maiagne. et al., 1998). A variety of
techniques, including quenched flow, hydrogen exchange labelling, stopped-flow
absorbance and circular dichroism, has been used to investigate the refolding kinetics of
hen egg lysozyme over a temperature range from 2 °C to 50 °C and at all temperatures, the
fast (about 25 per cent) and slow (about 75 per cent) population of refolding is observed. It
is found that the rate of formation of lysozyme depends on the microscopic rate constant
and the population of the o-domain intermediates (Matagne et al., 2000). The substantial
increase in the rate constant due to an increase in temperature is offset by the decrease in
the population of the intermediate. Thus, the population of TS structures on the dominant
pathways plays an important role in the folding rate of proteins.

The important question is whether altering the populations of conformations on the
different pathways speeds up or slows down the folding process. This will be analyzed in

the next chapters.

4.5. Effect of Average Contact Order on Folding Time

It is known that it takes a shorter time to reach the native state when the folding is
initiated frorh a nativelike macroconformation. However, the average contact order of the
starting macroconformation can change the folding time(ty). Here the folding time to reach
the native state was computed starting from a series of different macroconformations at time
T = 0, in order to investigate the effect of average contact order <CO> on the folding rate.

The average contact order (<CO>) is defined as

<CO>=1/mTT(-1)8R;~d) 4.2)
ji

wheré m is the number of contacts in the particular macroconformations and, 5(R;;— d) is the
delta dirac function equal to one if Rj; = d and zero otherwise. Rj is the distance between
monomers i and j, and d is the lattice spacing, Figure 4.9 presents the plot of the average

contact order of the 257 macroconformations of 16-mer versus the folding time.
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The correlation coefficient is 0.44. The weak linear correlation points that the folding time
tends to increase with increasing contact order, although this tendency is rather weak. The
macroconformations 4BC (helix) and GHI (ﬁ-suandj exhibit relatively shorter folding times
compared to some of macroconformations having five or six native contacts. This indicates

that native contacts that are close in sequence bring the other contacts into spatial proximity.
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Figure 4.9. Correlation between the folding times and average contact order

4.6. Energy Landscape Mapping

A general computational experiment, called landscape mapping, is devised to
identify the physical meaning of dominant pathways. If one could initiate a classical
chemical reaction from any specific point along its reaction coordinate and measure the
time required to reach the product from that point, it would give an unambiguous measure
of reaction progress. By fixing molecular structures into specific conformations, then
starting the reaction and measuring the tirhe-to-product, one could map out the kinetic

distances between conformations. This approach is applied to our folding model. At time
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=0, folding is turned on with an ensemble of all the conformations having a particular set
of native or non-native contacts already formed. Then the time (ty) required to reach the

native state from that ensemble is computed. The degree to which a particular contact

reduces T, defines the degree to which that contact is a folding nucleus.

Figure 4.10 shows 1, for different starting points along specific pathways. The times
required for the passage between ‘successive macroconformations’ are calculated, and this
successive times are summed up to find the folding time to reach the native state starting
from that macroconformation and following those transitions. Two macroconformations
are ‘successive’ if they differ by one additional contact only. So a point-to-point passage
along a macropath is taken into account. For example, {GH} and {GHI} on folding
scheme of Figure 4.7 are two successive macroconformations. The conditional probability
of transition to {GHI} starting from {GH}, as a function of time is computed. The master
equation formalism allows the calculation of all transition (or conditional) probabilities,

between all pairs of macroconformations, as a function of time.

The resulting time evolution curve for each passage yields a characteristic time, say
Tmn; simply found from the best fitting single exponehtial. In principle, this time is
comparable to 1/kms. But it is not exactly equal to it, because the conditional probabilities
include all direct and indirect passages between the initial and final states, even if the
initial and final states are two successive (direct) states along the reaction scheme.
Precisely, Tma can be approximated by a series, the leading term of which is 1/kma. Suppose
the characteristic time for the passage {GH} > {GHI} is designated as 1o, the subscript
referring to the number of native contacts in the original macroconformation (7, is the
difference between the ordinate values of {GH} and {GHI}). Likewise, one can obtain the

times, T3, Ty TSp.cevrereess , 15, for all the succeeding steps along the same macropath. The

ordinate value for {CGHI} for example, is obtained by summing up T, s, 6, T7, and T3.

The sigmoidal shape of the curves indicates that the first few native contacts form
relatively quickly, as do the last few contacts. The slowest transitions occur in the

neighbourhood of the rate limiting conformations. These can be viewed as the slowest

steps along the two pathways.
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Figure 4.10. Folding time to reach the native state via specific macropathways

Consider also the elapsed time Ty, for each consecuﬁve step m = m+1. An effective
stepwise macroroute rate constant is evaluated, km = 1/1m. A stepwise activation energy
can be defined as Eact, m = -RT In kpy (see the inset of Fig.4 10). A minimum in Figure
4.10 identifies the slowest macrosteps. The rate limiting macrostates along channels I and
II are those having m = 6 and 5 native contacts, respectively. The route shown in Fig. 4.10
indeed represents a single ‘macropath’, but there are multiple micropaths contributing to
this macropath, and the rate at each step of the macropath is directly proportional to the
number N of micropaths involved in that step. N is the product of the number of

microscopic conformations in the original macroconformation with that in the succeeding

macroconformation.

The overall folding rate is faster than any individual micropath because folding
occurs along many individual micropaths in parallel. While Figure 4.10 shows the elapsed

time along a specific macropath, Figure 4.11 presents the rate to reach the native state from

a particular macrostate, now summed over all routes.
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Figure 4.11. Folding time via multiple macropathways

This is achieved by computing the characteristic time to reach the native state when
the folding is initiated from that specific macroconformation considering the all the
transitions to all other macroconformations during folding. It is observed that: the time
required to fold from open conformations (m < 4) is nearly independent of the
_ cqnformation since there are many routes downhill at the top of the funnel and starting

deeper on the funnel commits the flow to fewer and more specific routes.

These two different perspectives show that there is a kinetic barrier along the
macroroutes, even though the landscape of microroutes is funnel-like. This results from a
balance of two effects: \

(i) The microscopic transition rates increase monotonically down the landscape,

(ii) The number of microroutes diminishes down the landscape.

The product of these two factors leads to an apparent barrier. This barrier results from a
property of the landscape, not a property of a trajectory. The barrier is due to a reduction

in density of routes, not an energetic problem along any one microroute.

The analysis has revealed a broad heterogeneity: often the native state is reached

faster by some particular sets of two native contacts than by other particular sets of six
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The analysis has revealed a broad heterogeneity: often the native state is reached
faster by some particular sets of two native contacts than by other particular sets of six
native contacts. The data can be rationalized using two ideas. First, as noted by many
previous investigators ‘(Fersht, 1997; Klimov and Thirumalai, 1998; Pande et al., 1998;
Dokholoyan et al., 2000; Galzitskaya and Finkelstein, 1999; Fersht, 2000; Véndruscolo et
al., 2001), there are folding nuclei, i.e. certain sets of contacts that are relatively close to
the native structure kinetically. Second, the sequences of folding events are zippers (Fiebig
et al., 1993, Fiebig et al., 1993) the most local contaéts form first, on average, and the least
local contacts form later. The starting points that are kinetically closest to the native state
are helical turns, or B-turns. The results are also consistent with the topology of the starting
macroconformation on the folding rate that is presented in Figure 4.9. The statistical
analysis of native contact formations for lattice model was performed by Tiana and Broglie
(2001). They also found that the fast bonds are local bonds that form early in the folding
process and nonlocal bonds form later involving the interactions with the amino acids

already participating in the fast bonds.
4.7. ®-value Analysis

4.7.1. Non-classical ®-values

There have been many experimental and theoretical studies (Alexander et al., 1992;
Matthews, 1993; Kiefhaber, 1995; Kragelund et al., 1995; Laurents and Baldwin, 1998;
Englander, 2000) to identify the transition state structure (TS) which is considered as an
ensemble of structures around a saddle point in an energy surface (Figure 4.12 (a)). The TS
structures and intermediates can be analyzed by investigating the changes in the kinetics
and equilibria of folding upon mutations. A key experimental strategy originated by Alan
Fersht and his colleagues (Matouschek et al., 1989; Fersht, 1995) and currently used by
many theoreticians and experimentalists (Schindler et al., 1995; Martinez and Serrano,

1999; Ternstorm et al.,, 1999; Clementi ef al., 2000; Nymeyer et al., 2000; Klimov and
Thirumalai, 1998) is ®-value analysis (Figure 4.12 (b)).

In ®-value analysis, a particular amino acid in the protein is mutated. If the mutation

destabilizes the protein by an amount AAG (where AG = GN — GD, N and D refer to native
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and denatured states, respectively, and the first A refers to the change in stability that arises
from the mutation), and if mutation changes the stability of the folding barrier by an

amount AAGI , the ®-value is

i
® = AAG
AAG : 4.3)

The interpretation of ®-values derives ﬁoxﬁ the Brensted (B).theory and the
Hammond postulate of classical chemical reactions which was explained in Chapter 2.3.4.
The B and © are similar. Whereas B is used as an indication of bond formation or
dissociation in the transition state. F- measures the non-bonded contacts formation and

dissociation. Thus they are identical at the two extreme values of zero and one.

The rate constant for a conformational change can generally be described via

Kramer’s like equation,

k=K, exp[-AGY /RT] (4.4)

where k, depends on the reconfigurational diffusion coefficient and the geometric shape of

the barrier. If the front term is insensitive to the specific amino acid sequence, then

AGY = - RT In (Kmukwe) (4.5)

where K, and ky,; are the mutant and wild type folding rates, R is the gas constant and T

is temperature. In the same manner, the change in the stability of a protein can be found as
AAG = -RT In (Kanu/Ksn) (4.6)

where Ky, Kt are the mutant and wild type protein equilibrium constants of the folding

curve.
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= -RT In K
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Figure 4.12 The schematic representation of classical reaction coordinate (a)
and ®-value analysis (b)

A ®@-value of 0 means that the mutation affects the energy of the transition state by
the same amount that the denatured state is affected. Therefore at the mutation site, the TS
structure resembles the denatured state. A ®-value of 1 means that the free energies of the
TS and native (N) states are equally affected by the mutation, which implies that the site of
mutation assumes a native-like local conformation at the TS. According to the theory ®-

value should be between 0 and 1.

In this study, the native contacts are destabilized by reducing the corresponding
attractive potentials by 30 per cent. The folding rates of wild type and mutants are found
by the time evolution of native conformation, and the equilibrium constants of those are

calculated using equilibrium probabilities. Table 4.1 shows the ®-values of all native
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contacts. The most striking result is that all the B-sheet contacts that lead to a slower
pathway (the rate-limiting structure of partial or complete helix and the full sheet) have
negative ®-values (Figure 4.13 (a)). Within the framework of the theory, there is no model
that currently explains ®-values outside the normal range, i.e. ® < 0 or @ > 1. So when
nonclassical values are observed, they are sometimes regarded as experimental artifacts.
Yet, 10-20 per cent of the hundreds of meésured ®-values for protein folding are outside
this range (Matouscheck et al., 1992; Gay et al, 1994; Grantcharova. et al., 1998; Martinez
et al., 1998; Nolting and Andert, 2000). Negative @ -values have also been observed in

computer simulations (Daggett et al., 1996; Lazaridis et al., 1997; Li et al., 2000; Shea et
al., 2000), where they can be due to non-native contacts.

It is found that while classical ®-values are restricted to systems having a single
reaction coordinate, nonclassical ®-values can arise from parallel coupled ﬂows, for
example in funnel-shaped energy landscapes (Baldwin, 1995; Bryngelson et al., 1995;
Chan and Dill, 1997). ' |

Table 4.1. ®-values resulting from a 30 percent destabilization of native contacts

Type of ®-values
native contact

0.012
0.096
0.251
0.990
0.093
0.035
-0.357
-0.296
-0.085

T mHmYuOw >

Destabilizing the p-sheet contacts reduces the rate of B -sheet formation, causing a
backing up and redirection of flow into the dominant pathway (I) where the rate-limiting
step is when the native helix is formed and one of the two strands of the sheet is
assembled. Since this pathway has a faster flow, the destabilizing muwﬁon leads to an

increase in the folding rate, hence a negative ®-value. Figure 4.13 (b)-(c) presents the
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schematic view of the wild type and mutant landscape and the backflow to the fast channel
(I) upon destabilization of slowest pathway (T).

Figure 4.13. Schematic representation of ®-values

Correspondingly, a mutation that destabilizes the helix (site D) blocks the fast
pathway redirecting the flow into the slower pathway, decreases the overall folding rate.
This mutation has @ = 0.99. It is interesting to note that the value of @ depends also on the
strength of the mutation: a stronger mutation, say reducing the attractive potential by 50

percent, at the same site gives @ =1.38.

The increase in the folding rate was observed in the molecular dynamic (MD) study
of Ladurner ef al. (1998). In that study, it was found that the mutation on specific region of
the single helix of CI2 speeds up the folding rate but it prevents the stabilizing of tertiary
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interactions resulting in destabilization of the protein. Zhou and Karplus (1999) analyzed
the folding kinetics of helical proteins using a three helix bundle like protein model. The
MD results indicate that there are two main trajectories (fast and slow tracks) and by
varying the energy diﬂ'erence between native and non-native contacts, the folding
trajectories change from the fast to the slow track. Shea et al. (2000) found the negative O©-
values by kinetic analysis of B-barrel Honeycutt —Thirumalai lattice model. It was
observed that negative ®-values arose due to increase in the folciing rate upon mutation.
They concluded that negative ®-values are due to the stronger non-native interactions. Li
et al (2000) also concluded that non-classical ®-values are due to non-native contact by
analyzing the folding of a lattice model. However, in the present model, all the non-native

contacts are athermal (zero potential energy) and the non-classical values are observed due

to the parallel folding process.
The respective ®-values (D > C > B > E > F) are consistent with:

(i) the stabilization of the folding nucleus DCB (D is the most important contact
because it commits the beginning of the tertiary structure),

(i) the zipping and diffusive propagation from this nucleus.

Contacts D and C vyield the highest ®-values (Table 4.1), consistent with their
involvement in the folding nuclei. Their relative ®-values are in accord with a zipping
mechanism, starting from D, and propagating to C and E, and then to B. Contact A is
relatively unimportant, its formation or dissociation being inconsequential for completion
of folding, hence its relatively small ®-value. The negative ®-values for the sheet (G <H
< 1) result because G slows the overall folding by directing the flow into a slow folding

channel.

@ is often regarded as a "kinetic ruler" of the position along a reaction coordinate.
But if folding landscapes have multiple microscopic reaction coordinates, then the

interpretation of @ -values cannot be this simple. For this purpose, the relation between the
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average characteristic times of the native contacts and the ®-values of those upon

destabilization is investigated.

The time distribution function of each native contact is calculated by the time
evolution of the native contacts presented in Figure 4.2. Then the average characteristic
time <t> is found for each native contact, Figure 4.14 (a) shows the plot of the ®-values
for each native contact versus the corresponding <t>. There is no observable correlation

between <t> and ®-values.

In order to see whether ®-values show the change in rate, it is decided to calculate
the change in the average characteristic time of each native contac':tkupon mutation. The
average characteristic time of native contacts for wild type, <tur> are already computed for
Figure 4.14 (a). Then, the average characteristic time of each native contact for the mutant,
<Tmue> is computed by destabilizing the corresponding native contacts 30 per cent. Figure
4. 14 (b) presents the plot of (<Tyt>/<Tmy>) values against the ®@-values. The correlation

coefficient is 0.83.

The low correlation in Figure 4.14 (a) supports that ®-values. often do not give a
Kinetic ruler of the progress toward the native state: ®-values do not correlate with Tw.
However ®-values indicate the changes in folding rate. Sites having high positive ®-values
indicate where mutations most strongly decelerate folding and high negative d)-valﬁes
indicate where mutations accelerate folding, by redirection into a faster channels or by

destabilizing non-native contacts (Shea ef al., 2000).

Thus the ®-value for a given contact measures the change in the effective rate of
formation/stabilization of this particular contact during the folding process, rather than the
hierarchical formation of this contact along the reaction coordinate (Figure 4.14).
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4.7.2. Effect of Double Mutations

It is possible to Qetect the interaction of two native contacts by measuring the double
mutant cycle consisting of the wild type protein model, the two single mutations and the
double mutant (Horrovitz and Fersht, 1992). The pairwise coupling energy (Aszt) in the
native state (N) relative to denatured state (D) can be defined by

A2Gim(N-D) =(GN -~ GD)w - 2(GN- GD)sing]c mutants T (OGN — GD)doublemutat ~ (4.7)

The energy change between native and denatured states can be found using the

equation 15. The pairwise coupling energies in the transition states are first calculated

relative to folded state using the following equations:

AGint 0= (GD — Gt - 2(GD — G )single muams + (GD ~ Gaouplemuamt.~~ (4.8)

The coupling energies in the transition states are then found as
AzGimI = AzGim(N_D) - AZGim(D.I) 4.9

Table 4.2 shows the coupling energies for the native contact pairs where as Table 4.3
presents ®-values that are obtained by destabilizing the two native contacts pairs at the

same time.

" In Table 4.3, the ®-values for double mutations are shown with the single mutations
®-values of those pairs. Among the 36 native contact pairs, only the sixteen native contact
pairs are taken into consideration. This is due to computational overflows arising from the
éxceedingly large time scale difference between the fast and slow processes that were

caused upon decreasing the attractive potentials.
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Table 4.2. Coupling energies for native contacts

i 2
Typceo‘l)xit-z:lcattwe A Giniv, AZGE'"(D'i) AzGim‘t

AB - -0.327 0.010 -0.337
AC -0.364 0.050 -0.414
AE -0.367 0.010 -0.377
AH -0.415 : 0.080 -0.495
BD -0.366 -0.216 - -0.15
BE -0.358 -0.038 -0.32
BF -0.115 -0.069 -0.046
CD -0.633 0.030 -0.663
CG 0.006 0.148 -0.142
CI -0.386 -0.030 -0.356
EG -0.356 " 0.050 -0.406
El -0.367 -0.038 -0.329
FH -0.356 -0.180 -0.176
GH -0.533 0.116 -0.649
Gl -0.381 0.034 -0.415

The ®-value of native contéct pairs CD has a non-classical ®-value, much more
greater than 1. The native contacts C and D are key contacts for the fastest folding
pathway. Destablizing these two contacts has a disruptive effect on that pathway. Thus
blocking the fastest pathway upon mutations decreases the folding" rate. Secondly, the
extraordinary high ®-value of CD and the coupling energies indicate that native contacts
C and D work cooperatively for the folding process. On the other hand, GH has a negative
®-value of —0.461. Native contacts G and H are the core contacts 6f the B-sheet.
Decreasing the attractive potential of these contacts reduces the formation of B-sheet and
thus the flux of the pathway where the transition structure is that of a partié:lly folded a-
helix and B-sheet. Therefore destabilizing both G and H redirects the flow to the dominant
and faster pathway and increases the rate of folding, which is consistent with the single
mutations of B-sheet contacts. Those double mutants having B-sheet contacts have negative
®-values. The lowest coupling energies of GH and CD show that the native contacts,

which are close in sequence and found in the core regions work cooperatively for the

folding process.



Table 4.3. Comparison between single and double mutation
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Figure 4.15. Correlation between the ®-values of double mutations and the sum of

corresponding O -value of single mutations

Type of native | dyy- values ®@x- values Oy- values dx + Dy
contacts (XY) values
AB ~0.097 0.012 0.096 0.108
AC 0.299 0.012 0.251 0.263
AE 0.102 0.012 0.093 0.105
AH -0.071 0.012 -0.296 -0.284
BD 0.372 0.096 0.990 1.086
BE 0.089 0.096 0.093 0.189
BF 0.006 0.096 0.035 0.131
BI 0.0243 0.096 -0.085 0.011
CD 2.58 0.251 0.990 1.241
CG 0.139 0.251 -0.357 -0.106
Cl 0.080 0.251 -0.085 0.166
EG -0.145 0.093 -0.357 -0.264
El -0.082 0.093 -0.085 0.008
FH -0.439 0.035 -0.296 -0.261
GH -0.461 -0.357 -0.296 -0.653
GI -0.219 -0.357 -0.085 -0.442
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Figure 4.15 shows the correlation between the ®-values of double mutations and the
sum of the corresponding ®-values from single mutations. It is interesting to see that the
correlation coefﬁcien’g is 0.81. One can think that the ﬁ)-values are additive. However this
result might be misleading since only 16 pairs of native contacts are considered among the
total of 36 pairs. Among the 16 pairs, the strongest deviations from the correlation occurs
at the pairs BD and CD. This is consistent with the observations that these three contacts

are the folding nuclei (Vendruscolo er al., 2001; Fersht, 2000) for the fast and dominant
track of the landscape. ’

4.8. The Energy Landscape from SVD Analysis

Schematic and simulated energy surfaces enable us to compare the new view of
folding with the more conventional classical picture such as pathways, transition states and
intermediates. It is possible to visualize all these concepts in an ensemble context form by
the help of energy landscape. For this purpose, the energy surface of the whole ensemble is

analyzed by decreasing the dimensionality of the ensemble space. Each microconformation

of 16-mer is represented by a 32-dimensional vector that is composed of the spatial x-, and

y-coordinates of the individual residues in that particular microconfqmation. Thus, the M
microconformations are organized in a 32xM matrix. The singular value decomposition of
this matrix yields a new matrix of the same size, which is hothing else than the
representation of the original matrix of conformations in the new (normal) space. Each
column then designates the coordinates of a given conformation along the normal
(principal) axes of the new frame. Using the dominant two directions, i.e. the first two
rows of the M columns, the M microconformations are represented by single points in the
two-dimensional spanned by the singular vectors. This way, the microconformations are
located on a plane according to their structural similarities. The corresponding equilibrium

energies determine the energy surface.

Figure 4.16 presents the energy surface plot of 522 microconformations having five
or more native contacts. The native conformation is labelled as N on the surface. The shape
of the landscape is really corﬁplicated even for this small subset of microconformations.
This indicates that the folding cannot be described in terms of a single pathway such that

the trajectories of all the microconfonngtions are limited to a narrow region (Dinner ef al.,
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2000). We observe a deep channel, relatively further from the native state which can act as
a trap. This reminds the second slowest channel of the kinetic scheme of
macroconformation in Figure 4.7. The region next to the channel that slopes gently is

closer to the native state. This is apparently a fast pathway to reach the native state.

Figure 4.17 shows the energy surface for the microconformations having more than
five native contacts. The second minimum next to minimum of the native state corresponds
to conformation having eight native contacts, ABCDEFGH. Time evolution of this
conformation is shown in Figure 4.8 which has the second highest equilibrium probability.
The microconformations having the native contacts BCDEGHI are also seen as minima on
the energy surface next to the minimum of the native structure. The destabilization of
native contact A in the native structure also destabilizes F and forms the
microconformations having the native contacts BCDEGHI. Thus, it is reasonable to see

stuich a minimum near the native conformation.

Maxima are seen on the landscape near microconformations having three or more
native contacts (plot is not shown), which can be viewed as folding barriers. The two most
pronounced maxima correspond to the microconformations having three $-sheet contacts,
and three B-sheet contacts along with one a-helix contact. The result is consistent with the
previous ®-value analysis that the folding rate decreases when it starts from the formation

of B-sheet contacts.

Magnifying the landscape around the native conformation by considering the most
native-like microconformations, i.e. those of having seven or more native contacts (Figure
4.18), shows that the native conformation is at the global minimum and the landscape has a
smooth funnel shape. The smooth funnel shape indicates that the folding process is fast and
downhill provided that six native contacts are formed..



Figure 4.16. Energy surface map for the microconformation having more than four native contacts
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5. CONCLUSIONS AND RECOMMANDATIONS

'5.1. Conclusions

The most novel aspect of the present study is that it is th\e first to analyze the full
folding kinetics of a model protein. We study exhaustively the stochastics of NxN
conformational transitions leading to a folded structure. The analysis is achieved by applying
the master equation formalism to the complete space of N conformations accessible to the

investigated model chains.

Go model favors native contacts. Its adoption ensures the convergence of the original
uniform distribution of conformations into a new distribution strongly dominated by the
native conformation, following Boltzmann law. The original and final distributions are thus
viewed as the denatured and native states, respectively. Receht thermodynamic and kinetic
analysis of the formation of B-hairpin fragment of immunoglobulin-binding protein using
off-lattice models showed that for all properties, except refolding time, there are no
qualitative differences between the full model and the Go version (K}imov and Thirumalai,
2000). The major deficiency of the Go model appears to be its driving of the folding process
about 50 times faster that in the full model with realistic, residue-spcéiﬁc potentials. The fast
accumulation of the native structure in the present analysis is presumably also induced by
the same effect. Nonétheless, the master equation formalism permits to capture all folding

~

events by appropriate rescaling of time steps.

Clustering conformations into macroconfomations in terms of the type and number of
native contacts appear here to be a useful tool for reducing the size of the system to be
explored, and visualizing the effect of individual modes of macroconformational transitions.
Even though the model chains follow a broad ensemble of micropaths, the statistically

predominant pathway emerges when the ensemble context, “macroconformations” are taken

into consideration. Previous MD simulations of CI2 unfolding also demonstrated that a -

dominant pathway, or a certain order of events in the folding process, is discernible when

trajectories are analyzed in terms of evolution of native contacts (Lazaridis and Karplus,

1997).
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From an alternative standpoint, examination of macroconformations reveals the
existence of one or more substructures preferentially formed and stabilized at early stages, as
well as on-pathway kinetic intermediates that accumulate at later stages during the folding
process. The early forming substructures are reminiscent of secondary ‘structures, or
cooperative intradomain contacts, propagating off a contact made by a core residue. It is
possible to identify one or more critical contacts, whose formatien drives the formation of
others at different levels. Whereas C and G effectively drive the o-and B-domain formations
in the examined 16-mer, D plays a major role in stabilizing the overall 16-meric structure.
Interestingly, a large number of substructures merge into well-defined intermediate
structures. The intermediate macroconformation ABCGHI, where the two domains o—~helix
and B- strand are fully structured in the absence of interdomain contacts, illustrates this
situation. On the other hand, another intermediate, ABCDEF, where the a-helical and
interdomain contacts are fully formed, emerges by a dominant macropathway that is favored
by the conformational entropic factor. This is evident by the high W values (Table 3.2)

associated with each of the macroconformation along this macropath.

The formation of native contacts obeys a preferred order in which local interactions
generally precede more nonlocal contacts, resembling a zippers process. First, there is a
propensity of Jocal contacts at short times and among these, the core contacts are first
stabilized at early stages of folding, then these are succeeded by local contacts at chain
termini. The latter, although forming at the burst stage, exhibit a tendency to fluctuate
between open and closed conformations, which persists at long times and results in a
relatively long effective stabilization time. Second, the formation of nonlocal or tertiary
contacts are observed at intermediate and longer times. Thus folding mechanism is a
hiearchic mechanism that begins with the formation of local structures of only marginal
stability which then interact with tertiary contacts to be stabilized.

The observed hierarchy of native contact formation/stabilization suggests that the
nucleus is composed of partly or well formed of secondary structural elements (local
contacts) tﬁat are stabilized by tertiary interactions. The formation of the innermost tertiary
contact apparently plays a key role in the progress of folding (Fersht,1997; Fersht, 2000).
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The transition state is usually described as a saddle point between two minima in
two-dimensional energy maps. Here, this is a metastable state characterized by a
macroconformation having a high population of a number of native contécts, which upon
formation of an additional contact, is immediately folded into the native structure. The
macroconformation CD and the contact B appear to play this role in the dominant pathway
of the 9-mer model. Near the transition state, the ensemble of chains consists of the subset
CD in the first place, and the fully folded chains ABCD, the populations of the intermediate
subsets ABC and BCD being relatively low. The low population of these two
macroconformations persists until formation of contact B that immediately drives contact
A, and thereby leads to the completion of folding. In the case of 16-mers, the elapsed times
between successive macroconformations reveal that the rate limiting macrostates along two
dominant pathways are those having six (4BCGHI) and five (BCDEF) native contacts,
respectively. Thus, folding is a parallel process involving different pathways. These
different pathways can lead to different folding times if they are not able to efficiently
communicate. The fastest pathway or more exactly the slowest step of the fastest pathway

determines the observed folding kinetics.

There is a fast accumulation of native state, with minimal transient accumulation of
kinetic intermediates. Thus, even a slight increase in the complexity of the model leads to
an immense diversity in the routes navigated by the denatured conformers, during the
folding process, in accord with the new view of protéin folding. The rapid accumulation of
native conformation, in consistent with one dominant native basin of attraction. Such a
behavior has been pointéd to be typical of sequences having low o values, where o = (Tg -

TF)/To, To and TF being the equilibrium collapse and folding temperatures; whereas those

having moderate to large o values would obey a kinetic partitioning mechanism, i.e. a
fraction of molecules attain the native state by off-pathway processes that involve trapping
in misfolded structures (Veitshans et al., 1996). No effective trapping in intermediate
structures is detected in the present analysis, except for a transient accumulation of the
significantly structured (native-like) conformations, close to the completion of folding.
However, their population remains significantly small compared to that of fully folded

molecules.
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Experimentally observed nonclassical ®-values, i.e., ® > 0 and @ < 0 may arise from
parallel microscopic flow processes, such as in funnel-shaped energy landscapes. Negative
®-values result when a mutation destabilizes a slow flow channel, causing an overflow into
a faster flow channel. ®-values greater than one occur when mutations redirect a fast flow
into a slower channel. ®-values are not simple kinetic rulers of the progress along a reaction
coordinate, but a measure of the type and extent of ‘changes in rates’ due to mutations. Sites
having positive ®-values indicate where mutations decelerate folding and negative d-values
indicate where mutations accelerate folding. In as far as the absolute values are concerned,
|®]-values define the degree to which a contact is a gatekeeper site, controlling the folding

flow. Sites having |®] >> 0 are gatekeepers; sites with @ ~ 0 have little flow control.

Finally, the energy surface of a subset of microconformations shows that the
trajectories of different micrconformations passs through very broad regions of
C(\)nformationaI space even in this simple lattice model. The folding can be described as a
parallel folding of a set of arrows that has a tree structure: many branches at the top,

narrowing down to a few arrows at the bottom.
5.2. Recommendations

The analysis of simple model proteins whose native structure is composed of a-helix
and B-strand domains shows that (i) the dominant pathway, that is favored by
conformational entropy happens to be the fastest pathway. There are direct and indirect
microtrajectories choosing this pathway. (ii) The TS structure is composed of partially
folded a-helix and interdomain contact that reminds the TS structure of CI2 (Fersht, 1999).
It would be complimentary to analyze the folding pathways of the native structures that are
in the forms of only p-strand or o-helix. This model enables us to see the differences in the
folding processes in comparison to the differences in the structural class of native structures.

We can gain insights as to the folding times of different native structures.

Reducing the size of the system by clustering conformations into macroconfomations
in terms of the type and number of native contacts gives insight in visualizing the folding

process in an ensemble context. This approach can be applied to real proteins. The complete
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set of conformations can be generated using off-lattice models. The generated conformations

can be screened using different criteria (Ozkan and Bahar, 1998). Then the kinetic analysis

can be performed using different subsets of ensembles.

In the present study, Go models are used for analyzing the folding kinetics of simple
proteins. Go models are considered as minimally frustrated systems, unlike real proteins. In
order to understand the role of non-native contacts during the folding process, the folding
kinetics of the systems should be re-analyzed by assigning some attractive potential to non-
native contacts. The effect of the sequence of the monomer on folding can be explored by a

simple approach such as assigning a HP sequence to the monomer chain.
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