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ABSTRACT 

PHOTOCATALYTIC HYDROGEN PRODUCTION OVER IONIC 

LIQUID COATED SEMICONDUCTORS 

The objective of this thesis is to develop active and stable dye sensitized and ionic 

liquid (IL) encapsulated photocatalysts for hydrogen production, and to investigate the roles 

of photocatalysts constituents on hydrogen production rate. First, comprehensive 

experimental datasets for photocatalytic (PWS) and photoelectrochemical (PECWS) water 

splitting were constructed from literature while a large dataset for water solubility in ILs 

were created computationally using DFT and COSMO-RS. Then, these datasets were 

analyzed by machine learning (ML); association rule mining (ARM), decision tree (DT), 

random forest (RF) and deep learning (DL) were implemented in R and Python environment. 

In PWS analysis, the clear trends and the high fitness of the models constructed, especially 

those involved the band gap, indicates that PWS over perovskites is predictable but the sound 

solutions like ion doping, use of co-catalyst, or use of sacrificial donors did not help as much 

as desired. The prediction accuracies of DL and classification accuracy of DT models for the 

water solubility in ILs were also high, and the properties of anionic parts of ILs are more 

influential for water solubility. The band gap of semiconductors used in PECWS were also 

predicted successfully even though the prediction accuracy of photocurrent density was not 

satisfactory. In the experimental part of the thesis, the enhancement of photocatalytic 

hydrogen production over 1 wt% Pt/TiO2 sensitized by N719 dye and coated by a thin layer 

of ionic liquid ([BMIM][BF4]) has been investigated; SEM-EDAX, CTEM, FTIR, XRD, 

and UV-Vis characterization of the photocatalysts, and electrochemical analysis of the 

respective photoelectrodes were performed. The IL coating increased the performance of 

1%Pt/TiO2 by providing better charge transfer between the photocatalyst and the aqueous 

reaction medium while simultaneously preventing the recombination of photogenerated 

electron-hole pairs; the improvement was much higher with the use of IL and N719 together. 

The performance of 1% Pt/SrTiO3 was also tested but the reproducible results could not be 

obtained. Finally, the factors related to the structure of the reactor and operational conditions 

(like dead volume, gas-liquid interfacial area, sweep gas flowrate and stirring speed) were 

also found to be influential over the hydrogen production rate. 
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ÖZET 

İYONİK SIVI KAPLI YARI İLETKENLER KULLANILARAK FOTO 

KATALİTİK HİDROJEN ÜRETİMİ 

Bu tez çalışmasının amacı fotokatalitik hidrojen üretiminde kullanmak üzere boya 

ile duyarlılaştırılmış ve iyonik sıvı (IL) ile kaplanmış, aktif ve dayanıklı fotokatalizörler 

üretmek ve onu oluşturan parçaların hidrojen üretim hızına etkilerini incelemektir. 

Öncelikle, suyun fotokatalitik (PWS) ve fotoelektrokimyasal (PECWS) ayrıştırılması 

alanında literatürde bulunan deneysel sonuçlardan ve suyun IL içindeki çözünürlüğü ile ilgili 

ise DFT COSMO-RS kullanılarak oluşturulan üç farklı veri tabanı yapay öğrenme 

yöntemleri ile analiz edilmiştir. Bunun için birliktelik kuralları analizi (ARM), karar ağacı 

(DT), rassal orman (RF) ve derin öğrenme (DL) gibi yöntemler kullanılmış, analizler R ve 

Python ortamında yapılmıştır. PWS analizinde modellerin veriye yüksek uyumu, 

perovskitler ile yürütülen PWS deney sonuçlarının tahmin edilebilir olduğunu göstermiş, 

ancak verimi arttırmak için yaygın olarak uygulanan iyon doplama, eş-katalizör veya yapay 

donör kullanmanın istenildiği kadar etkili olmadığı ortaya konulmuştur. Suyun IL içinde 

çözünürlüğü DL ile başarılı bir şekilde tahmin edilebilirken, DT ile yapılan sınıflandırma 

çalışmaları da başarılı olmuştur; bu modeller suyun çözünürlüğü için iyonik sıvıların 

anyonik kısmına ait özelliklerinin daha belirleyici olduğunu göstermiştir. PECWS‘de 

kullanılan yarı iletkenlerin enerji bant aralıkları yüksek doğruluk payı ile modellenmiş olsa 

da fotoakım yoğunluk değerleri iyi tahmin edilememiştir. Tezin deneysel kısmında ise, N719 

boya ile duyarlılaştırılmış ve iyonik sıvı ([BMIM][BF4]) ile kaplanmış %1 Pt/TiO2’nin foto 

katalitik hidrojen üretimine sağladığı iyileştirme araştırılmıştır. Üretilen fotokatalizörlerin 

SEM-EDAX, CTEM, FTIR, XRD, UV-Vis ve elektrokimyasal analizleri yapılmıştır. İyonik 

sıvının hem fotokatalizör ve reaksiyon ortamı arasında daha iyi yük transferi sağlayarak hem 

de foton yoluyla üretilmiş e- ve deşiğin yeniden birleşimini engelleyerek verimi arttırdığı 

gözlemlenmiştir. İyileşme, IL ve N719’un birlikte kullanıldığı durumlarda daha yüksek 

olmuştur. Aynı deneyler %1 Pt/SrTiO3 katalizörü ile de yapılmış ancak tekrarlanabilir 

sonuçlar alınamamıştır. Son olarak reaktörün yapısal özellikleri ve çalışma koşullarına ait 

faktörlerin de (reaktördeki boşluk hacmi, gaz-sıvı ara yüzey alanı, taşıyıcı gaz debisi ve 

karıştırma hızı) hidrojen üretimi üzerinde etkili oldukları görülmüştür. 
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1. INTRODUCTION 

Global energy demand has been increasing continuously with the increase in world’s 

population, and this demand is expected to be doubled by 2050. In 2018 the total energy 

supply was reported as 14,282 million tonnes of oil equivalent (MTOE) by International 

Energy Agency (IAE) (Birol, 2020b). Unfortunately, great amount of the energy demand 

was met by fossil fuels such as coal, natural gas, and oil, which are limited resources. In 

addition to their non-renewability, energy production from fossil fuel causes to the emission 

of greenhouse gas such as carbon dioxide, which has been emitted at the level of 33,513 Mt 

at 2018 (Birol, 2020b).  

Hydrogen has been considered as a promising energy carrier due to its high energy 

density (140 MJ kg-1), which is superior to fossil fuels such as gasoline (46.4 MJ kg-1) and 

coal (24.0 MJ kg-1). Hydrogen is also abundant, light, and simple element in earth (Acar and 

Dincer, 2015) but does not exist in its molecular form; the high cost of hydrogen production 

methods such as steam reforming, partial oxidation, coal gasification and water electrolysis 

and associated CO2 emission in fossil fuel-based methods (Mansilla et al., 2018) prevents 

countries from the attempt of mass production. Today, most of the hydrogen demand of oil 

refining and chemical synthesis has been supplied by fossil fuel-based methods although 

they cause approximately 830 Mt of CO2 per year (Birol, 2020a), which corresponds the 

annual CO2 emissions of the United Kingdom and Indonesia together. 

Photocatalytic hydrogen production from water is considered as a potentially cost-

efficient method to produce hydrogen fuel with little impact on the environment. The 

primary purpose is to carry out the reaction via solar energy because it is renewable, 

sustainable, and free source although most of the semiconductors investigated in the 

literature are UV-light sensitive for now. In a simple photocatalytic water splitting (PWS) 

system, a semiconducting material absorbs light from light source, if that photon energy 

exceeds the band gap of semiconductor, it leads photogenerated electrons and holes which 

act as reducing and oxidizing agent to produce hydrogen from H+ and oxygen from O2-. TiO2 

is the first examined semiconductor in the pioneering work of Fujishima and Honda 

(Fujishima and Honda, 1972). Since then, titanium-based materials have been the most 

preferred semiconductors in PWS reaction due to its reliable activity, high applicability, and 
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relatively long-term stability. Besides TiO2, over 140 metal oxides, nano-oxides, 

perovskites, and other semiconductor materials are known to catalyze the PWS reaction, that 

variety creates a massive accumulation of research in literature. 

Photoelectrochemical (PEC) water splitting to H2 and O2 is another attractive way of 

producing large scale of pure hydrogen with theoretical efficiency of 30.7% (J. J. Park et al., 

2014; Ullah et al., 2020; Zhang, et al., 2014), but typically efficiencies are below 10% in 

practical applications (Kado et al., 2012). For an effective PECWS reaction, without the 

need of an external bias, semiconductor materials should have good chemical stability, low 

cost, rapid charge transfer without recombination, suitable band gap and suitable band edge 

positions for water splitting (i.e., conduction band more negative than reduction potential 

(0V vs NHE) whereas valence band more positive than oxidation potential (1.23 V vs NHE)) 

(Das et al., 2011; Kumar et al., 2018).  If the band edges of semiconducting material do not 

overlap with the water splitting potential, an external bias should be applied to split water 

(Kim et al., Shin et al., 2011).  In addition, since visible light is a large portion of the solar 

spectrum, the photo electrodes should be able to utilize visible light rather than UV (i.e., 

have low band gap) (Cho et al., 2011; Hill et al., 2013) as in the case of PWS. To use the 

energy from sun efficiently, optimization of the photoelectrochemical cell components (i.e., 

photo electrodes and electrolyte) is crucial. The technology is still at its infancy; hence large 

number of studies have been performed to find a way to overcome the problems that limits 

the performance.  

One of the mutual problems of PWS and PECWS reactions that best performed 

semiconductors (such as TiO2) are photoactive mostly under UV irradiation, which is about 

4% of solar radiation. Thus, the possible modifications of semiconductors such as metal 

doping,(Jia et al., 2019; Kochuveedu et al., 2013; Q. Wang and Domen, 2020) surface 

modification (Chen et al., 2010; Qin et al., 2012) and dye sensitization to improve their 

visible light activity have been also investigated. Especially organic but also inorganic dye 

molecules work as light absorber which enables visible light harvesting and also make easier 

charge separation. Dye sensitization is widely used for various solar driven energy 

applications like solar cells (Hagfeldt et al., 2010), photoelectrochemical water splitting 

(photoanode modification) (Z. Yu, Li, and Sun, 2015) and photocatalytic water splitting 

(Wang and Domen, 2020; Watanabe, 2017; Zhang et al., 2016) to improve the visible light 
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sensitivity of semiconductors; the ruthenium complex dyes are the most common materials 

used for this purpose while other alternatives have been also tested (Zhang et al., 2016).  

Another challenge of PWS and PECWS systems is the high possibility of the 

recombination of photo excited electrons and holes which reduces the hydrogen yield. After 

significant amount of research, it was clearly shown that depositing promoter (co-catalyst) 

on semiconductor (Gómez-Solís et al., 2014; Su, Wang, et al., 2013; Tapan et al., 2016; 

Zhang et al., 2014) or doping element into crystal structure (Fu et al., 2014; Iwase et al., 

2009; Li et al., 2015; Senthil et al., 2016) increases the efficiency by inhibiting 

recombination and favouring hydrogen production. It is also shown that electrolytes and 

additives (with water) in the reaction solution may suppress the back reaction and increase 

the hydrogen yield; the common additives for PWS or PECWS reactions are methanol 

(Pinheiro et al., 2014) ethanol (Saadetnejad and Yıldırım, 2018), alkali solutions (Cai et al., 

2016; Yang Liu et al., 2008), solid additives (Cho et al., 2011; F. Li et al., 2014b), and ionic 

liquids (De Souza et al., 2006; Opallo and Lesniewski, 2011; Qi et al. 2013; Snyder et al., 

2010). 

The use of ionic liquids (ILs) in various fields of research has drawn great attention 

in recent years. They are basically organic salts with a variety of intermolecular interactions 

ranging from dipole-dipole interactions to hydrogen bonding, setting their affinities for 

hosting different guest molecules (Hayes et al., 2015; Olivier-Bourbigou et al., 2010). Such 

high degree of diversity in intermolecular interactions is originated from the availability of 

many cation/anion combinations with different physical and chemical properties (Gorman, 

2001; Weingärtner, 2008). The ILs have been used as catalyst, solvent, lubricant, binder, 

surface modifier, and electrolyte owing to their desired properties such as low volatility, low 

flammability, and the selective solubility/capacity for various liquids (Amarasekara, 2016; 

Khan et al., 2013; Zhang and Etzold, 2016). They also provide high ionic conductivity, and 

offer wide electrochemical windows, which make them good candidates for electrochemical 

processes as solvent, catalyst, or electrolyte (Amarasekara et al., 2019; Endres, 2010). The 

water solubility of ILs become crucial since they extensively used as electrolyte in various 

processes, such as water electrolysis (De Souza et al., 2006), photoelectrochemical water 

splitting (Opallo and Lesniewski, 2011; Snyder et al., 2010), electrochemical or 

photoelectrochemical CO2 reduction in water (Yang et al., 2020), and dye degradation (Qi 

et al., 2013).  
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By considering all these attempts to develop an efficient semiconductor it can be 

concluded that numerous ways are available to improve photocatalytic and 

photoelectrochemical hydrogen production, hence large number of papers has been 

published in recent years creating a huge accumulation of data in literature. Physical, 

chemical, optical, and electronic structure of semiconductors, synthesis method, properties 

of reaction solutions, and light specifications are the major elements that affect energy 

conversion efficiency from solar to hydrogen. Each component of the reaction is needed to 

be balanced to achieve the highest possible hydrogen yield but that requires great time, labor, 

and money. At this point, machine learning (ML) tools which were developed to extract non-

trivial, previously unknown, and potentially useful knowledge from large and complex 

literature databases, can be used for this purpose. In addition to this, almost endless number 

of ILs can be created considering that the large number of potential anions and cations are 

available (or synthesizable). Thus, machine learning tools can be also applied to synthetic 

dataset developed computationally to predict any property of an IL which is existing or non-

existing yet. In the literature, there are already examples of ML algorithm applications on 

the fields of PWS, PECWS, IL, or other chemical engineering topics (Amarasekara et al., 

2019; Can et al., 2021; Can and Yildirim, 2019a; Günay and Yıldırım, 2021; Jalal et al., 

2019; Odabaşi et al., 2014) 

In this thesis, the subject of photochemistry is studied from two different 

complementary aspects. The first goal is to analyze the experimental or computational data 

in the field of photocatalysis, photo electrochemistry, and ionic liquids to gain fundamental 

knowledge and to reveal critical factors by using machine learning tools. Several algorithms 

such as association rule mining (ARM), decision tree (DT), random forest (RF) and deep 

learning (DL) were implemented on the datasets developed in R and Python environment 

for this purpose. The enhancement of photocatalytic hydrogen production over 1 wt% 

Pt/TiO2 particulates sensitized with N719 dye (di-tetrabutylammonium cis-

bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II))  and coated by a 

thin layer of ionic liquid [BMIM][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate)  

has been also investigated experimentally. The Pt was loaded onto TiO2 surface by incipient 

to wetness impregnation while dye and ionic liquid were loaded by solvent evaporation 

method in the presence of ethanol and acetone, respectively. The photocatalytic tests were 

performed in a semi-batch glass reactor under visible light irradiation provided by a solar 
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simulator at room conditions. SEM-EDAX, CTEM, FTIR, XRD, and UV-Vis 

characterization of the photocatalysts, and electrochemical analysis of the respective 

photoelectrodes were performed. Dye sensitization or ionic liquid coating were also applied 

SrTiO3 perovskite semiconductor, but the results were not as encouraging as those of TiO2 

experiments due to the reproducibility problem. Although the effect of several factors such 

as precursors and precursor compositions of SrTiO3, doping element, promoter, preparation 

method, and post-treatment temperature were examined in detail, the problem could not be 

solved. As the final step, the effects of reactor structure and operational conditions, which 

may affect the results through mass transfer limitations and inconsistencies in measurement 

and creates difficulties in comparison of results from different works, were also investigated 

experimentally.  

In the next chapter, a literature survey about photocatalytic water splitting, 

photoelectrochemical water splitting, dye sensitization, ionic liquid applications and 

machine learning algorithms are explained. Chapter 3 includes all necessary information 

about computational works and experimental studies performed. The results obtained from 

machine learning applications and experiments were presented and discussed in Chapter 4. 

The main conclusions are declared and recommendations for future work are offered in the 

last chapter. 
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2. LITERATURE SURVEY 

2.1. Photocatalytic Hydrogen Production 

Hydrogen is considered as a promising energy carrier due to its high energy density, 

abundance in nature and cleanness; it can be used as a fuel or utilized in synthetic fuel 

production through Fisher-Tropsch type processes. However, the hydrogen is mostly 

produced via steam reforming or partial oxidation of fossil fuels (natural gas is the largest 

resource with 48%) (Dincer and Acar, 2014; Kothari et al., 2008). Since these processes 

significantly contribute to the greenhouse gas emissions, new and cleaner technologies like 

semiconductor based solar water splitting have been extensively studied in recent years. The 

ultimate goal is to use solar energy, which is clean, renewable and free of charge. Fujishima 

and Honda split water under UV as the first time in 1972; they used a photoelectrochemical 

cell made of a semiconductor photoanode, cathode and electrolyte solution (Fujishima and 

Honda, 1972). A few years later, the studies on photocatalytic water splitting (PWS) over 

particulate semiconductors also started (Y. Ma et al., 2014).  

Photocatalytic water splitting (PWS) can be investigated in 3 steps; (i) absorption of 

photons with energies exceeding the semiconductor band gap and leading to the generation 

of electron and hole pairs in the semiconductor; (ii) migration of these photo-generated 

particles (e- and h+) which resulted in charge separation; (iii) surface chemical reactions 

between these carriers and present compound (e.g., water, water-alcohol solution) (Ismail 

and Bahnemann, 2014).  

The reaction mechanism for photocatalytic water splitting can be described as  

4𝐻+ + 4𝑒− ⇋ 2𝐻2                               𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻+ (2.1) 

2𝐻2𝑂 ⇋ 𝑂2 + 4𝐻+ + 4𝑒−                 𝐴𝑛𝑜𝑑𝑒: 𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻2𝑂. (2.2) 

Water splitting reaction needs the standard Gibbs free energy change of 237 kJ/mol 

or 2.46 eV/molecule. The basic steps of water splitting process are shown in Figure 2.1 

schematically. The yellow ball stands for semiconducting material and the grey dots on the 

semiconductor represent the promoter (co-catalyst). To use promoters for reduction and/or 
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oxidation sites are not essential; some semiconductors may also provide active sites for 

hydrogen and oxygen production by themselves (without promoter). The important point 

here is to develop not a photocatalyst to reach the maximum attainable efficiency with visible 

light (sunlight) irradiation; UV-light requiring catalyst is not practical for industrial 

applications. There are several approaches for modifying the electronic structure of a 

semiconductor such as metal and non-metal doping, changing preparation conditions, or dye-

sensitization to make it visible light sensitive (detailed explanation in 2.3). On the other hand, 

the recombination of photo-excited electrons and holes before splitting water is a big 

challenge for PWS, and co-catalysts (or promoters) were used to inhibit this (Fukuzumi, 

Hong, and Yamada, 2013); Pt, Ru, Ir, and NiOx and Rh are the most common co-catalysts. 

Methanol, ethanol, or some other sacrificial agents are also added to the reaction solution to 

suppress recombination reaction. Combining semiconductors (Z-scheme), modification of 

crystal structure and changing morphology of semiconductors are also other attempts which 

hinder recombination reaction. 

 

Figure 2.1. Schematic for photocatalytic water splitting reaction. 

Over 140 metal oxides, nano-oxides, perovskites, and other semiconductor materials 

are known to catalyze the photocatalytic water-splitting reaction (Jiangtian Li and Wu, 

2015). TiO2 is the first, and still the most common semiconductor due to its low cost, high 

stability, nontoxicity, and environmental friendliness (Ge et al., 2017; Y. Ma et al., 2014). 

However, its band gap is suitable for UV light, which is only 4% of sunlight  (NREL, 2020); 

it must be modified by ion doping and sensitization for the visible light (43% of sunlight) to 

be used under visible or solar light illumination as it is mentioned before. Perovskites have 
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also gained significant attention in recent years because they can be not only synthesized in 

numerous formulations and structures, but also easily modified by various methods. 

Perovskites are compounds in a crystal structure of ABX3; A and B are two cations that often 

in different atomic sizes and X stands for anion which is generally oxygen. The detailed 

literature survey about the perovskites in photocatalytic water splitting reaction will be 

explained in the following chapter. 

Significant progress has been made in recent years about PWS efficiency. In 2019, 

Li et al., produced O2 and H2 (1:2, molar ratio) with a H2 production rate of 11,000 μmol 

g−1 h−1 by using Au/N-doped TiO2/MgO (111) as photocatalyst without any sacrificial 

reagents at 270 °C; its external quantum efficiency was measured as 81.8% at 437 nm 

(Yiyang Li et al., 2019). Then, Takata et al., claimed that they conducted the PWS reaction 

with an external quantum efficiency up to 96% at 350-360 nm by using aluminum doped 

SrTiO3 cocatalysts and selectively photo depositing cocatalyst such as Rh, Cr2O3, and 

CoOOH onto the photocatalyst (Takata et al., 2020). The three basic structures of 

photocatalytic water splitting reaction systems are given in Figure 2.2. and the real-life 

examples of those systems used in laboratories are presented in Figure 2.3. 

 

Figure 2.2. The basic structures for photocatalytic water splitting (Schwarze et al., 2013). 
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Figure 2.3. The real-life examples of PWS reaction systems. 

Nevertheless, despite the significant progress in the field, the photoconversion 

efficiency and hydrogen yield remains low even though large number of pristine or modified 

semiconductors, co-catalysts, sacrificial donor, and other elements of the process have been 

tested. Additionally, the progress in the field, in terms of the power conversion efficiency, 

hydrogen yield or any other performance measures used in the field, cannot be precisely 

assessed or compared with the previous works due to the lack of standard testing and 

reporting protocols as have been attempted in closely related field of solar cells (Khenkin et 

al., 2020; Reese et al., 2011). 

One of the most important and well-accepted sources of noncomparable results in 

the field is the uncertainties associated with the energy transferred to the photocatalytic 

systems. First, the light sources (even the same type of source with the same power like 300 

W xenon arc lamb) are not standard; the frequency interval and distribution as well as the 

intensity may differ for different brands and models. Even if the light intensity of source is 

measured and reported properly, the amount of energy absorbed by the photocatalyst is not 

always clear (Z. Chen et al., 2010; L. Yang and Liu, 2007). The solid photocatalyst, liquid 

reaction medium and glass reactor may scatter and reflect the light (Qureshi and Takanabe, 

2017) in a degree that depends on the reactor material, reactor geometry, position of light 

source, and physical/optical characteristics of photocatalyst and reaction solution (Ballari et 

al., 2010; Braslavsky et al., 2011; Kisch, 2013; Kisch and Bahnemann, 2015; Soares et al., 

2007).   

Another problem that may prevent the comparison of results obtained in different 

works is the differences in the external (among the solid photocatalyst, liquid reaction 

solution and gaseous phase) and internal (within the solid particles) mass transfer limitations 

in different experimental systems. The solid, liquid, and gas phase coexist in most of the 
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photocatalytic systems and slight changes in experimental set-up may create significant 

deviation in the performance. For instance, when the rates of mass transfer between those 

solid-liquid-gas interfaces are faster than the reaction, the yield is limited due to the fast 

recombination of photogenerated electron and holes and the back reaction to water from 

produced hydrogen and oxygen (Ipek and Uner, 2020). Indeed, these issues have been 

discussed for more than  three  decades as Escudero et al. pointed out the importance of mass 

transfer limitations in photocatalysts in 1988, (Escudero et al., 1989). Then Armenante and 

Kirwan characterized the mass transfer in microparticles with extensive experimental 

measurements in 1989 (Armenante and Kirwan, 1989). These works were followed by  

several studies focused on the limitations in heterogeneous photocatalysis trying to develop 

valid explanations and solutions for these limitations (Ballari et al., 2008; Chen et al., 2000; 

Ipek and Uner, 2020); the effects of catalyst concentration, particle size and stirring rate, 

have been discussed.  

However, the effects of mass transfer limitations could not be easily counted when 

the results from two different laboratories are compared because no one is fully reporting 

the properties of reaction system used (like the size of gas-liquid interfacial area between the 

reaction medium and empty space in reactor).  In papers mentioned, the effects of stirring 

speed, catalyst concentration, particle size, and even flow rate of sweep gas on mass transfer 

are presented. Therefore, while offering an efficient and reproducible photocatalyst for 

photocatalytic hydrogen production, the reaction system and catalyst properties should be 

well defined in a standardized manner. Although it is known that the major uncertainty arises 

from the incomplete description for the light adsorption by the photocatalyst (in terms of 

both frequency and intensity), the information that should be needed to account the mass 

transfer limitations have not been fully provided either.   

2.2. Water Splitting in Electrochemical Cell 

In a photo electrochemical cell (PEC), the light absorption, charge separation and 

migration, recombination rate, and surface reactions are still key processes as in the case of 

PWS. In PEC, there is an n-type semiconductor as the anode and a p-type semiconductor as 

the cathode; the reduction and oxidation reactions occur on cathode and anode separately 

facilitating the collections of reaction products in separate chambers (Ager et al., 2015). The 

semiconducting materials are placed on a conductive substrate, and it forms the photo anode 
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or photo cathode for PEC water splitting (Li and Wu, 2015). The minimum potential required 

to split the water is 1.23 eV at room temperature. When the possible losses are taken into 

considerations the practical potential of semiconductor should be between 1.6 and 2.0 eV. 

The detailed band edges requirements are: the conduction band edge of semiconductor 

should be lower than the EH2/H+ and valence band edge of semiconductor should be higher 

than EO2/H2O. The performance of a PEC is defined with solar-to-hydrogen (STH) conversion 

efficiency (ŋ) and the formulation is given as 

ŋ =
(1.23 𝑉)(𝐽𝑜𝑝)

𝑃𝑖𝑛
. (2.3) 

where 𝐽𝑜𝑝 is the operational photocurrent density in mA cm-2 and 𝑃𝑖𝑛 is the incident 

irradiance in mW cm-2. Since the STH efficiency is directly related with the band gap of 

semiconductor used, the wide light absorption spectral range and suitable band energetic of 

the semiconductor are significant parameters for STH efficiency of a PEC system. On the 

other hand, high charge mobility and long charge carrier diffusion length are required to 

suppress charge recombination rate as much as possible (Li and Wu, 2015). Besides the 

activity of the redox reactions in PECs, the stability is also a critical challenge for PEC 

devices as it was mentioned before. As it can be seen from the Figure 2.4 in most of the 

scientific papers it was revealed that lifetimes for overall PWS devices are 24 hours or less 

(Ager et al., 2015). That’s why increasing device longevity is a critical issue and it should 

be enhanced in PEC devices.  

 

Figure 2.4. Number of studies published vs. reported PEC lifetime (Ager et al., 2015). 
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As it was mentioned before, Fujishima and Honda have opened a new window in the 

field of solar fuel production via their light driven PEC water splitting system (Fujishima 

and Honda, 1972). As recent developments in literature are considered, the STH efficiencies 

for inorganic semiconductors are about 2.5% under AM 1.5G solar simulation due to their 

poor charge transfer abilities (Kim et al., 2016; Kim and Lee, 2019; Pihosh et al., 2015). On 

the other hand, the theoretical maximum STH efficiency for organic semiconductors in PEC 

water splitting is over 30% by considering their optical characteristics (i.e., band gap or band 

positions). However, the major drawback of organic semiconductors is their low stability in 

aqueous solutions. Yu et al., produced an organic photoelectrode and achieved solar-to-

hydrogen conversion efficiency of 4.33% with an onset potential of 0.55 V vs. RHE 

(reversible hydrogen electrode) under AM 1.5 G solar simulated light and after 10 h of 

stability test the electrode retained 90% of its initial photocurrent density (J. M. Yu et al., 

2020). To be industrially applicable, the cost of the hydrogen produced by any PEC should 

be competitive with fossil fuels. Significant progress is required to accomplish this aim, but 

all the scientific papers and the developments show us that it is possible. 

The basic components of a PEC are anode (photo) electrode, cathode (photo) 

electrode, aqueous electrolyte solution, wire connections, and light source; however, these 

components can be arranged various ways. Minggu et al.,(Minggu, Wan Daud, and Kassim, 

2010) divided the PEC systems into six groups according to their photo-electrode 

configurations as represented in Figure 2.5. If photo-electrode is n-type (electron donor), the 

hydrogen is produced over the metal electrode while the hydrogen is produced on photo-

electrode if it is p-type (electron acceptor). To maximize the light absorption, several n-type 

or p-type photo electrodes can be layered together, and it is shown in Figure 2.5 (right 

bottom). Another configuration is stacking electrodes together and to build a connection 

between them as it is given in Figure 2.5 (left bottom).  

Another classification system of PEC devices is based on their biasing methods. The 

detailed diagram of that classification is given by Figure 2.6. Although the PEC system with 

electrical bias is the easiest one to produce hydrogen, they are not feasible because the 

electricity used is provided by fossil fuels. As can be seen in Figure 2.6, another option is to 

create pH difference between anode and cathode chambers; a unit pH difference causes 0.06 

V for that PE device. In general, acid-alkali pairs are used in pH biased devices and the 

chambers are separated by ion-exchange membrane. However, the production of acid-alkali 
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pairs also based on fossil fuels and a raw material is required. Therefore, the chemical (pH) 

biased systems are also not favourable. The remaining methods are PV-biased, DSSC-

biased, or internal-biased systems, which are cheaper and more environmentally friendly 

than grid-biased or pH-biased systems (Minggu et al., 2010). The PV, DSSC, and internal 

based ones are trending topics in the field of PEC, but they require more scientific studies to 

be viable for energy. 

 

Figure 2.5. The classification of PEC systems based upon their electrode configurations 

(Minggu et al., 2010). 
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Figure 2.6. The classification of PEC systems based on their biasing methods (Minggu et 

al., 2010). 

2.3. Dye Sensitization for Visible Light Harvesting 

The band structure, bandgap value, and the positions of valence or/and conduction 

band (VB or/and CB) of a semiconductor are the key parameters that affect the photocatalytic 

activity. In theory, as it was already explained, when the energy of incident light exceeds the 

band gap value of a semiconductor, the valance electrons of that semiconductor move to the 

conduction band and leave holes in the valence band. Those photogenerated electron-hole 

pairs initiate the process of photocatalytic water splitting. That’s why the parameters 

affecting the light absorption first step has a significant role on the entire process and 

consequently on the hydrogen yield.  

As previously mentioned, the primary goal of hydrogen production by photocatalytic 

water splitting is to use sun as light source. Since sunlight is mostly in visible range, the 

attempts for visible light harvesting gain importance in that field. Dye sensitization is one of 

the effective methods in the literature to improve visible light driven photocatalytic activity.  
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The general steps of photocatalytic water splitting with a dye-sensitized 

semiconductor can be divided into four steps as follows: (i) excitation of dye molecule by 

the incident light and the migration of photogenerated electrons from highest occupied 

molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) of the dye; (ii) 

the transition of those electrons from LUMO of the dye to the CB of the semiconductor; (iii) 

the reduction of water to form hydrogen in CB of the semiconductor (or transferrin the 

electrons to co-catalyst for water reduction); (iv) the electron transfer from an electron donor 

to the dye for regeneration (Zhang et al., 2016).  

The basic diagram of dye-sensitization in PWS system is given in Figure 2.7. For an 

efficient cyclic process, LUMO level of the dye should be lower than CB of the 

semiconductor. Also, stability and cost of the dye molecules used are significant factors 

when designing a dye-sensitized PWS system. 

Dye sensitization first studied extensively in solar cell technology (Zhang et al., 

2016). The pioneering work was performed in 1980 by Graetzel and his group. They 

produced Pt and RuO2 co-deposited and Nb-doped titanium particles to be used in PWS. 

They conducted the experiments in the presence of [Ru(bpy)3]
2+ and methyl viologen [MV2+] 

and observed an enhancement in photocatalytic activity. Although ruthenium-based dyes are 

the most common alternatives in the literature, organic (Sharma et al., 2018) and metal 

complex dyes (Sharma et al., 2018) are also used for sensitization of semiconductors and 

particularly of TiO2. Dye-sensitized TiO2 particles can be used in solar cells (Hagfeldt et al., 

2010), in photoelectrochemical water splitting as photoanode (Z. Yu et al., 2015), and in 

photocatalytic water splitting as semiconductor (Watanabe, 2017; Zhang et al., 2016). Up to 

now, the Gratzel et al. reported the highest conversion efficiency from solar to electrical 

energy of 11.2%  with N719 dye (Grätzel, 2005). Although bis(tetrabutylammonium)cis-

bis(thiocyanato)bis(2,2′-bypiridine-4,4′ dicarboxylato) ruthenium (II) (i.e. N719 dye) is one 

of the most high performance dye produced to be used in solar cells, its excellent contribution 

to the photocatalytic hydrogen production was also proven in several scientific papers 

(Huang et al., 2020; Watanabe, 2017; Zhang et al., 2016). 
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Figure 2.7. The basic diagram of dye-sensitization in PWS reaction. 

2.4. Ionic Liquids and Their Applications in Chemical Engineering 

Ionic liquids (ILs) are low melting point (generally <100°C) salts. Information about 

the general properties of many ILs can be found in ILThermo database which is managed by 

the US National Institute of Standards and Technology. ILs have anionic and cationic parts 

and it is possible to design new ILs with desired properties by introducing new structural 

functionalities on those parts. By making different anion-cation combinations 

hydrophobicity, hydrophilicity, flexibility, viscosity, and stability of ILs can be changed 

(Olivier-Bourbigou et al., 2010). That’s why they are called as tuneable and multipurpose 

materials in the literature. It is claimed that origin of those unique characteristics of ILs stems 

from the various interactions between ions such as coulombic force, hydrogen bond, and 

intermolecular force (Zhang and Etzold, 2016). To provide a better visualization, images for 

a commercial ionic liquid ([BMIM][PF6]) is given in Figure 2.8. 

Many scientific papers revealed that ILs have good thermal and chemical stability 

(Amarasekara, 2016; A. Khan et al., 2013; Zhang and Etzold, 2016) due to their low 

volatility and low flammability. ILs have also low mass transport resistance and high 

solubility of several reactant gases which are desirable properties to promote the efficiency 

of fuel cells (Zhang and Etzold, 2016). In the article of Khan (Khan et al., 2013) oxygen 

solubility and diffusion coefficient of room temperature ILs (RTILs) have been found by 

using cyclic voltammetry and chronoamperometry. Their result supported the argument that 
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Figure 2.8. The image for ionic liquid [BMIM][PF6] (purchased from Sigma Aldrich). 

ILs have high solubility of oxygen (Kernchen et al., 2007; Macfarlane et al., 2014). ILs 

provide high ionic conductivity and a wide electrochemistry window so they are good 

candidates to be used in electrochemical processes as solvent or even as catalyst 

(Amarasekara et al., 2019; Endres, 2010; Macfarlane et al., 2014). Electrochemical window 

is simply related with the resistance of the cation to reduction and the resistance of the anion 

to the oxidation (Endres, 2010). As they compared with other possible electrolytes, it was 

observed that their electrochemical window (which is between 4.5-5 V) is higher than 

aqueous electrolytes but lower than organic solvents (G. R. Zhang and Etzold, 2016). It was 

also observed that conductivity of ILs have a negative relation with their viscosity so higher 

conductivity values can be reached by reducing their viscosities (Olivier-Bourbigou et al., 

2010).  By considering all those IL properties it can be said that ILs may have an effect on 

reaction pathway, thermodynamic properties of reaction, mass transportations, and surface 

characteristics (Zhang and Etzold, 2016).  It has been also proven that ILs are not easily 

biodegradable, and scientists have not come to an agreement whether ILs can be used in 

industry or not due to their possible harm to environment (Olivier-Bourbigou et al., 2010).  

Acidic ionic liquids (AILs), also called as protic ionic liquids (PILs) in literature, 

provide a great potential for proton transfer and they can form hydrogen bonds (proton donor 

or proton acceptor) (Olivier-Bourbigou et al., 2010). Due to their electrochemical properties 

mentioned, AILs are often preferred in electrocatalytic reaction systems such as PECs (G. 

R. Zhang and Etzold, 2016).  
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As mentioned before, ionic liquids have many advantages since they are open to fine-

tuning their structure in a way to enhance the selectivity, productivity, or both. However, 

handling them in an industrial application may be very difficult and catalytic reactions can 

be limited by diffusion due to their high viscosity. Also, a commercialized catalytic process 

may require a large amount of IL and their production costs are quite high for now (Skoda-

Földes, 2014). Supported ionic liquid phase (SILP) attracts attention as a solution to those 

problems. In the production process of SILPs, a thin layer of ionic liquid and a homogeneous 

catalyst are dissolved together and then that mixture is applied to the internal surface of a 

porous inert solid (support) by physisorption (Kernchen et al., 2007). That method was 

applied by many researchers and the SILPs generated used in hydrogenation reactions 

(Kernchen et al., 2007). The critical point here is to determine the right amount of ionic 

liquid because mass transfer limitation can be problem as the IL film gets thicker. SILP can 

be produced in several ways such as impregnation of IL into support, creating covalent bonds 

between IL and solid, confinement of IL in the support or copolymerisation of the IL (Skoda-

Földes, 2014). Solid catalyst with ionic liquid layer (SCILL) concept is also appealing. In 

that approach again a porous solid is coated with ionic liquid layer except that the solid is 

not inert but catalyst and the reaction system is heterogeneous. The pioneering work in the 

field of SCILL belongs to Erlebacher et al., and they produced Pt/Ni-ionic liquid composite 

electrocatalysts to be used in oxygen reduction reaction (Zhang and Etzold, 2016). In many 

scientific articles, it was observed that to use SILP and SCILL promote the effectiveness of 

photocatalyst (Kernchen et al., 2007).  There are some possible explanations of that 

improvement: The IL on catalyst particle may act as co-catalyst and creates more active sites 

for reaction. Also, it may be derived from the solubility of several liquid and gaseous 

reactants in IL, which change the effective concentrations of those intermediates (Kernchen 

et al., 2007). The possible configurations between support, ionic liquid, and catalyst are 

illustrated in Figure 2.9. 

Solubility can be calculated by estimating the activity coefficients at infinite dilution 

(IDAC) (Marciniak, 2010). The experimental estimation of IDAC is commonly carried out 

by gas/liquid chromatography (Everett, 1965; Letcher and Moollan, 1995; Soares, 2011). 

Because this approach is time consuming and it does not offer any potential for screening 

many ILs, several computational models such as Universal quasi-chemical Functional Group 

Activity Coefficients (UNIFAC), modified UNIFAC, and COnductor-like Screening MOdel 
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for Realistic Solvents (COSMO-RS) are also used for the prediction of IDAC (Diedenhofen 

and Klamt, 2010). Among these methods, COSMO-RS is considered to provide more 

accurate results compared to the others (Diedenhofen et al., 2003). COSMO-RS is the 

variant of dielectric continuum solvation method, which accounts for the electrostatic theory 

of interacting molecular surface descriptors with exact statistical thermodynamics 

methodology to predict properties (Klamt and Eckert, 2000).  

 

Figure 2.9. The illustration of possible combinations between support, ionic liquid, and 

catalyst (Van Doorslaer et al., 2010). 

The details of COSMO-RS theory can be found in literature (Eckert and Klamt, 2002; 

Gillham et al., 2006; Matheswaran et al., 2016). Because of its robust methodology, 

COSMO-RS is widely used for predicting the solubility of different components in different 

solvents (Diedenhofen et al., 2003). For instance, Matheswaran et al. (Matheswaran et al., 

2016) studied IDAC of thiophene in ILs and showed that the COSMO-RS is able to predict 

the IDAC within an acceptable error range. Similarly, Fallanza et al. (Fallanza et al., 2013), 

Klamt et al. (Klamt, 2003), and Lee et al. (Lee and Lin, 2015) performed COSMO-based 

calculations and concluded that COSMO-RS is robust in predicting the solubilities of 

hydrocarbons both qualitatively and quantitatively. Thus, the COSMO-RS calculations can 

serve as a versatile platform for quickly screening a large set of ILs  (Gao et al., 2015; Lee 

and Lin, 2015; T. Zhou et al., 2012).  
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Their high ionic conductivity and wide electrochemical window makes the ionic 

liquids good candidates for electrochemical processes as solvent, catalyst, or electrolyte 

(Amarasekara et al., 2019; Endres, 2010; Macfarlane et al., 2014). The IL-water interaction 

plays a key role in most of the applications; for example, the ILs have been extensively used 

as electrolyte in various processes, such as water electrolysis (De Souza et al., 2006), 

photoelectrochemical water splitting (Opallo and Lesniewski, 2011; Snyder et al., 2010), 

electrochemical or photoelectrochemical CO2 reduction in water (D. Yang et al., 2020), and 

dye degradation (Qi et al., 2013). The solubility of ILs in water is an important criterion for 

the selection of IL in these processes. However, there are also systems, in which the water 

solubility in ILs is more relevant; for instance, even a trace amount of water in the reaction 

medium or moisture in the air may be dissolved in IL layer coated over a solid catalyst 

(Skoda-Földes, 2014) or IL modified electrode (Safavi et al., 2006; Wadhawan et al., 2000; 

P. Yu et al., 2005) and degrades its performance significantly. The same is also true for the 

processes in which the ILs are used as the solvent or reaction medium (Wender et al., 2011). 

Additionally, the ILs have been used as solvent or agent during the synthesis of solid 

materials as electrode (Safavi et al., 2006; Wadhawan et al., 2000; P. Yu et al., 2005), 

catalyst and semiconductor catalyst (Gołabiewska et al., 2018; Hu et al., 2010; Jing et al., 

2015; Ravishankar et al., 2019; Ravishankar et al., 2017; Tan et al., 2019; Zwara et al., 

2019). The water (especially moisture from the air) dissolved in ILs may have significant 

adverse effects on such synthesis processes, and consequently on the final properties of the 

material synthesized (O’Mahony et al., 2008). Hence, the predictive models, decision rules 

or any other form of knowledge that can be used to estimate the water solubility in ILs or to 

determine the suitable cation and anion combinations for the desirable water solubility may 

make significant contributions to the research in these fields.  

The water solubility in ILs has been studied both experimentally (Boruń, 2019; 

Marcinkowska et al., 2019; Martins et al., 2015; Rieland and Love, 2020) and 

computationally (Freire et al., 2010; Paduszyński, 2017; T. Zhou et al., 2012) by various 

investigators. It was generally found that the affinity or the capacity of an IL for water was 

strongly dependent upon its structures and chemistry of constituent cation and anion as well 

as the temperature, relative humidity of air and the presence of impurities (Cao et al., 2012; 

Freire et al., 2007; Ranke et al., 2009). Cao et al. (Cao et al., 2012) studied the water 

solubility in 18 ILs experimentally and reported that the length of alkyl chain attached to the 
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imidazolium and pyrrolidinium cations was strongly related to hydrophilicity of the IL. The 

cations containing short length alkyl chains, which are more polar, have higher solubility of 

water while the long alkyl chain attached to these cations promote hydrophobicity. They also 

noticed that ILs containing halides offered a higher solubility of water compared to others. 

Similar results were also obtained in the work of Huddleston et al. (Huddleston et 

al., 2001); the halide containing ILs were miscible in any proportion; however, their 

properties changed significantly after the removal of water. The case was also similar for all 

hydrophilic ILs. On the other hand, the properties of hydrophobic ILs did not change 

significantly upon removal of water. In another work, the solubility of water in 1500 ILs 

were studied with COSMO-RS at room temperature (Zhou et al., 2012); it was found that 

the strength of hydrogen bond was crucial in determining water solubility. The ILs having 

halides in their anion part were found to be highly hydrophilic as it was also observed in 

experimental works mentioned above. However, as electronegativity of halide decreases, the 

solubility of water also decreases as [F]- > [Cl]- > [Br]- > [I]-. It was also found that the ILs 

with sulfate anion alone exhibited a high capacity of water; however, if the sulfate anion had 

an attached atom or functional group such as hydrogen sulfate or methyl sulfate or octyl 

sulfate etc. the capacity of water tended to decrease. Here, they also noticed that length of 

alkyl chain attached to sulfate ion also influences the capacity of water. For example, ILs 

with methyl sulfate as anion had a higher capacity than ILs containing octyl sulfate, and this 

difference was rationalized by the weakening of electrostatic forces due to delocalization of 

charge (Kölle and Dronskowski, 2004).  

2.5. Machine Learning in Catalysis, Photocatalysis, and Ionic Liquids 

The studies involving various materials, methods, and modifications in the field of 

photocatalytic or photoelectrochemical water splitting reactions are summarized in the above 

sections of thesis; these combinations constitute an extensive domain for PWS or PEC 

research; consequently, large number of papers has been published over years creating a 

massive accumulation of experience in literature. However, this accumulation cannot be 

effectively utilized with conventional approaches because it is too big, heterogeneous, and 

distributed among the large number of sources. Instead, the machine learning and machine 

learning tools, which were developed to extract non-trivial, previously unknown, and 
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potentially useful knowledge from large and complex databases, can be used for this 

purpose. 

Machine learning is a new branch of technology that help researchers focus on the 

most important information in the data they have collected. From industrial companies to 

the researchers in various scientific fields such as chemistry, medicine, biology and genetic, 

the machine learning has been used extensively to extract knowledge from the data in recent 

years. The machine learning tools can be divided into two main categories such as supervised 

and unsupervised learning. The detail of categorization is given in Figure 2.10, and it should 

be noted that different categorization for ML methods and several other ML tools (not shown 

in Figure 2.10) are also available. In supervised learning, algorithm creates paths connecting 

set of inputs with output and tries to predict output. By considering type of problem, the 

supervised learning can be also examined under two titles such as classification and 

regression methods.  In real life, the issue of determining an email as spam or not spam and 

detecting an electronic fund transfer as fraud or not fraud are the most common application 

areas of classification ML algorithms. Logistic regression is one of the simplest classification 

methods which can be used to assign output into binary classes based on a statistical 

approach while support vector machine is a more powerful way to classify outputs based on 

their geometrical features. Decision tree (DT) and random forest (RF) algorithms can be 

used for both classification and regression problems. DT develops selection rules and 

heuristics for desired output variable by creating several if/then statements using input 

variables. Moreover, in RF technique, a large number of decision trees are created, and the 

output variable is predicted by majority voting (if classification) or by taking average (if 

regression). On the other hand, numerous options of ML algorithms such as linear 

regression, random forest, artificial neural network (ANN), and deep learning (DL) methods 

are available for regression problem. ANN is inspired by the animal neural processing; it can 

be considered as a simplified model of the brain. In this model, the inter-connected nodes 

and weighted links are summed up to reach output value. Then it compares the output node 

with a defined threshold value, as long as the output node is bigger than that threshold value, 

iteration continues. Deep learning is also a subfield of ANN which differentiates from ANN 

by its number of nodes or depth. Deep learning algorithm is generally used to construct 

predictive models for output variable due to its strength in analysis of large datasets with 

continuous numerical descriptors.  
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Figure 2.10. The basic diagram of dye-sensitization in PWS. 

In the case of unsupervised learning, the algorithms can be divided into three 

categories such as dimensionality reduction, clustering, and association detection. In general, 

the dimensionality reduction is used in data pre-processing step of ML to reduce large 

number of input variables (dimensions) by retaining meaningful features of original data. 

Image compression and noise elimination from large dimensional images are some scopes 

of application for that algorithm. K-nearest neighbour (KNN) or k-means algorithms can be 

preferred in clustering problems. For example, IMDB website have an n dimensional space 

of movies and when someone clicks a specific movie page it offers some “related” movies 

which have common or almost common properties (cast, director, genre, or production year) 

with the main movie. It is possible to create such a recommendation machine for users with 

KNN algorithm. Finally, the most common algorithm for association detection is association 

rule mining (ARM) method that determines the effects of input factors on the output variable 

considering their restricted conditional probability distributions. The most known example 

of ARM is about customer buying behaviour; for example, it is discovered that men who 

purchase diapers for their children are also buy beers, so that type of knowledge may create 

a positive difference in supermarket shelf design. Bayesian network model is another tool to 

detect association between input variables, which also provide a graphical representation of 
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joint probability distribution. The simple visual demonstrations for algorithms mentioned 

above are given in Figure 2.11. 

 

Figure 2.11. The visual demonstration for algorithms of a) KNN, b) Decision tree, d) Deep 

learning (Can et al., 2021). 

As mentioned above these tools have been implemented in numerous subjects from 

economy and health to astronomy and biology in recent years. Up to now, the most preferred 

pattern recognition and prediction models in chemical engineering are artificial neural 

network, decision tree, random forest, and association rule mining (Günay and Yıldırım, 

2021). For example, some groups (including ours) constructed and analyzed databases from 

past publications on catalytic CO oxidation (Günay and Yildirim, 2010), water gas shift 

reaction (Odabaşi et al., 2014), steam and CO2 reforming of methane (Baysal et al., 2017; 

Şener et al., 2018), direct alcohol fuel cells (Tapan et al., 2016), photocatalysis over titania 

(Chesterfield and Adesina, 2009) oxidative coupling of methane (Kondratenko et al., 2015), 

algal biomass productivity (Coşgun et al., 2021), and electrodeposition parameters and 

materials (Kilic et al., 2021). There are some works reporting the simultaneous use of 

molecular modeling and machine learning; the examples are study of structure-activity 

relationship for CO adsorption over Au clusters (Davran-Candan et al., 2010), screening of 

perovskites for thermochemical water splitting (Emery et al., 2016), predicting the crystal 

structure of materials (Graser et al., 2018), CH4 uptake over MOFs (Gülsoy et al., 2019), 
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MOFs for gas storage and separation (Altintas et al., 2021). The ML algorithms are also 

supportive tools to work through a specific subject in a statistical way; for example, a critical 

review of perovskite solar cells (Yılmaz and Yıldırım, 2021) or reproducibility, hysteresis, 

and stability analysis of perovskite photovoltaics (Khenkin et al., 2020; Odabaşı and 

Yıldırım, 2020) are done prosperously with the help of ML tools. 

In addition to this, the ML has been employed on various dataset involving the use 

of ILs recently. For instance, the solubility of H2S in imidazolium ILs (Amedi et al., 2016; 

Shafiei et al., 2014), the solubility of CO2 in ILs at different temperatures and pressures 

(Mesbah et al., 2018; Ouaer et al., 2020) and the melting points of pyridinium in ILs (Bini 

et al., 2008) were predicted by using artificial neural network in various works. In addition, 

Venkatraman and Alsberg predicted CO2 capture of 185 ILs at different conditions using 

various ML tools and compared their results with calculations based on COnductor-like 

Screening MOdel for Realistic Solvents (COSMO-RS) predictions (Venkatraman and 

Alsberg, 2017). The most effective structural descriptors for imidazolium ILs on the 

solubility of C4-hydrocarbons was also studied via machine learning (Jalal et al., 2019). Very 

recently, Benimam et al. reported a work involving the prediction of experimental activity 

coefficients for 53 ILs using various sML tools (Benimam et al., 2020).   
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3. MATERIALS AND METHODS 

The materials and methods used in the computational and experimental studies of 

this thesis will be given in sections 3.1 and 3.2, respectively. The subsections under 3.1 and 

3.2 cover all necessary details. 

3.1. Computational Details 

The aim of the computational part of thesis was to extract previously unknown, and 

potentially useful knowledge from three different databases by using machine learning 

algorithms. The details about the databases are given in the following sections. Four different 

machine learning algorithms were examined, and the application was carried out in two 

environments: R, which is a free software for statistical computing and Python, which 

provides more general approach to machine learning. Association rule mining, decision tree, 

random forest algorithms were implemented with arules, rpart, and randomForest packages 

of R, respectively and Keras framework of Python was selected to perform deep learning 

algorithm. Some other packages of R were also used as complementary to machine learning 

algorithms. For instance, root mean squared error (RMSE) and mean absolute error (MAE) 

of models were evaluated using rmse and mae functions of hydroGOF package in R 

(Zambrano-Bigiarini, 2020) or rmse and mae functions of Metrics package in R (Frasco et 

al., 2018). The xlsx package of R was used to import the matrices from R to Excel. To check 

whether multicollinearity among the input variables was a problem or not, corrplot package 

of R was used to determine and display the correlations (Wei et al., 2021). To visualize 

decision trees better, fancyRpartplot function of the package rattle was preferred (Williams 

et al., 2020) while arulesviz (Hahsler et al., 2021) package of R was chosen for ARM 

visualization.  

The diagram, which is given in Figure 3.1 summarizes the common steps of the 

procedure that we followed in machine learning analysis. The further details about the 

application of the specific ML tools onto the specific databases are explained in the 

corresponding section.  
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Figure 3.1. Diagram for application of machine learning tools. 
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As mentioned before, the evaluation parameters of the machine learning models used 

are MAE, RMSE, R2, and loss (as given in Figure 3.1). Their equations are represented 

below. 

Mean absolute error (MAE) can be expressed as 

1

𝑁
∑|𝑟𝑖 − 𝑝̂|

𝑁

𝑖=1

. (3.1) 

Root mean square error (RMSE) can be expressed as 

√
1

𝑁
∑(𝑟𝑖 − 𝑝̂)2

𝑁

𝑖=1

. (3.2) 

R-square (R2) can be expressed as 

𝟏 −
∑(𝑟𝑖 − 𝑝̂)2

∑(𝑟𝑖 − 𝑝̅)2
 . (3.3) 

Loss can be expressed as 

∑
|𝐴 − 𝐹|

𝐴 𝑥100

𝑁
. 

(3.4) 

 

Where 𝑟𝑖 is real value, 𝑝̂ is predicted value, 𝑝̅ is mean value of r, A is for actual value, F is 

for forecast, and N is for number of observations. 

3.1.1. Computational Details for Photocatalytic Water Splitting Over Perovskites 

The database was constructed from 151 experimental papers on photocatalytic water 

splitting over perovskites published in 2005–2017; online sources including Elsevier, Wiley 

Online Library, American Chemical Society and Royal Society of Chemistry were reviewed 

(top hits in relevance sorting) and 540 instances (216 for visible; 324 for UV light) were 

extracted to form the database. The materials and methods used for photocatalyst 

preparation, properties of photocatalysts, and properties of reaction medium and light 

sources were used as input (predictor) variables while the hydrogen production rate was used 
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as the output (details in Table 3.1). In most of the articles, the hydrogen production (μmol 

g-cat-1) was reported as a function time to show the performance. However, the hydrogen 

production in all these papers increased almost linearly with time, leading a high linear 

correlation between time and hydrogen production. Consequently, the hydrogen production 

rate (μmol g-cat-1h-1) used as the input variable to eliminate time from the input list. The 

multicollinearity, which may be exist among the catalyst preparation variables and measured 

characteristic, were checked, and no significant correlation were detected.  

Datasets for experiments illuminated with visible and UV light were analyzed 

separately because their hydrogen production rates are in different range (obvious in Table 

3.2). On the other hand, the band gap (eV) of perovskite semiconductors was also predicted 

since the dataset includes predictive variables for band gap; mainly perovskite material, 

promoter and/or doping element, perovskite preparation method, and post-treatment 

conditions. Hence band gap can be seen as both input and output in Table 3.2.  For 

association rule mining and decision tree classification, each dataset (UV-light, visible-light, 

and band gap) was categorized in three classes as explained in Table 3.2, 3.3, and 3.4 below. 

This way, the number of data points in classes become approximately equal to prevent class 

imbalance problem. Class imbalance implies that the number of instances in one class is 

much higher than that of in another class (Drummond et al., 2003). If the problem exists 

between the classes generated, the training algorithm will be biased towards the class with 

higher number of instances, so the model will fail to predict the output class correctly in 

testing step. Therefore, the number of instances in each class, as can be seen from tables 

below, were adjusted to prevent that issue.    

The 4-fold cross validation (CVal) procedure was applied in both decision tree and 

random forest analysis; the dataset was divided into four smaller sets, and the model was 

built with three subsets (training) and tested with the remaining subset (testing). This 

procedure rotated four times and the average testing error was used to evaluate the fitness of 

the model (successful in classifying or predicting the unseen data, and valid for the entire 

range).For each method, the root mean square error for testing (RMSE) was calculated for 

various models with varying complexity and the model giving the minimum average RMSE 

for testing was selected as the best model.  
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Table 3.1. Input variables included into the dataset and their ranges. 

Variable Name 
Ranges for continuous or identities for discrete 

variables 

Input Variables 

Elements Used in A site of Perovskite 

(including both host and doped elements) 

(ABX3) 

Ag, Ba, Bi, Ca, Ce, Co, Cr, Cu, Ga, H, In, K, La, Li, Mn, 

Na, Ni, Sb, Sm, Sn, Sr, Ta, Y, Yb, Zn 

Elements Used in B site of Perovskite 

(including both host and doped elements) 

(ABX3) 

Bi, Cd, Co, Cr, Cu, Fe, Ga, In, K, Nb, Ni, Rh, Sb, Sn, Ta, 

Ti, Zr 

Elements Used in X site of Perovskite 

(including both host and doped elements) 

(ABX3) 

N, O, S 

Weight Percent of A site 0.070 - 0.770 

Weight Percent of B site 0.050 - 0.770 

Weight Percent of X site 0.053 - 0.540 

Perovskite Preparation Methods 

Co-precipitation (co-pre), electrospinning (ES), flux-type, 

hydrothermal (HT), ion-exchange (IE), novel, 

polymerized complex (PC), Pechini-type process (PTP), 

sol-gel, (SG), solid state reaction (SSR) 

Calcination Temperature (K) maximum 1773 

Calcination Time (hour) maximum 72 

Promoter Loading Methods Impregnation, photo-deposition (PD) 

Elements Used as Promoters Ag, Au, Cu, IrO2, Ni, NiO, Pt, Rh, Ru, RuO2 

Weight Percent of Promoter maximum 8 

Crystal Structure 
amorphous, cubic, hexagonal, monoclinic, octahedral, 

orthorhombic, polyhedron, rhombohedral, tetragonal 

Band Gap (eV) 1.27 -5.85 

Surface Area (m2/g) 0.3 -206.5 

Catalyst Weight (g/L) 0.2 -12.5 

Percent of Alcohol in Reaction Solution 0 -100 

Sacrificial Agents Used in Reaction Solution 

AgNO3, CH2O, CH3COOH, C3H8O CH4, FeCl3, H2SO4, 

NaI,  

KNO3, HCOOH, KOH, Na2S, Na2SO3, Na2SO4, NaNO2, 

NaOH 

Light Types halogen, Hg lamp, UV, visible, Xe lamp 

Power of Light (W) 8 - 1000 

Minimum Wavelength of Light (nm) 200 - 440 

Output Variables 

Band Gap (eV) 1.27 -5.85 

Hydrogen Production Rate (μmol g-cat-1h-1) 0.001-36750 
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Table 3.2. Number of instances in each class of visible dataset (in the case of PWS). 

Visible 
Lower Limit 

(μmol gcat-1 h-1) 

Upper Limit 

(μmol gcat-1 h-1) 
Number of Instances 

low 0.08 30 73 

medium 30 350 71 

high 350 21318 72 

Table 3.3. Number of instances in each class of UV dataset (in the case of PWS). 

UV 
Lower Limit 

(μmol gcat-1 h-1) 

Upper Limit 

(μmol gcat-1 h-1) 
Number of Instances 

low 0.001 130 109 

medium 130 550 106 

high 550 36750 109 

Table 3.4. Number of instances in each class of bandgap dataset (in the case of PWS). 

Band Gap 
Lower Limit 

(eV) 

Upper Limit 

(eV) 
Number of Instances 

visible 1.27 3.1125 143 

UV_A 3.1125 3.89 120 

UV_BC 3.89 6.3 109 

 

As mentioned before the package of rpart, which can handle both categorical and 

continuous variables, was used to construct classification trees (Therneau et al., 2018). The 

complexity of the decision tree models was adjusted by changing minsplit, that is the 

allowable minimum number of instances in a node before splitting, and/or cp which is the 

complexity parameter (cp) which is used to control the size of the tree by evaluating the cost 

of adding another branch or depth to decision tree, if that cost is above the value of cp, then 

algorithm stops building tree. The trees became bigger, and model became more complex 

with decreasing minsplit number (or cp). For this dataset, the minsplit number and cp values 

arranged in a way that the DT model with the highest accuracy for high and low classes and 

with the simplest structure (easy to follow heuristics for future works) could be obtained. 
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The accuracy of high class is important to learn what to do while that of low class serves to 

determine what to avoid for high hydrogen production rates.  

Since random forest creates decision trees using variables and instances randomly 

selected, it is not possible to produce exactly same model in even consecutive runs. 

Therefore set.seed function in R was used for pseudo-random number generation and 

reproduce same models (Lawson et al., 2021). The complexity of the random forest models 

was adjusted by changing ntree (the number of trees in the forest) and nodesize (the 

minimum allowable number of instances in a terminal node). As ntree increases and/or 

nodesize decreases, model become more complex. The testing and training errors were 

evaluated with the increasing algorithm complexity (decreasing nodesize and/or increasing 

ntree number) to prevent over-prediction, but it was checked, and over-prediction was not 

observed in the scanned interval of model parameters. Therefore, the ntree and nodesize 

values which gave the highest R2 and lowest rmse were recorded for each dataset and then 

the ultimate models were developed by using those ntree and nodesize values.  

3.1.2. Computational Details for Photoelectrochemical Water Splitting  

A comprehensive database was constructed by scanning hundreds of scientific papers 

on photoelectrochemical water splitting published between 2007 and 2020 at 13 different 

online sources including Elsevier, American Chemical Society, Royal Society of Chemistry, 

Wiley Online Library, Springer etc. After a detailed review (top hits in relevance sorting) 

10560 instances (584 experiments different from each other) from 180 experimental articles 

were included in the database. 

The chemical compounds forming electrodes and their preparation process, 

specifications of electrochemical cell, details about reaction solution and light source, were 

chosen as input variables while band gap (eV) of the working electrode and photocurrent 

density obtained (mA/cm2) were defined as the output variables. In the prediction of 

photocurrent density, band gap was also used as input variable. The complete list of input 

and output variables with their ranges (for numeric variables) and sub-categories (for 

categorical variables) can be found in Table 3.5.  

Association rule mining (ARM) was used to identify the effective input variables on 

the band gap of working electrode and high photocurrent density. To apply ARM algorithm, 
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the numeric input variables were discretized in ten levels (for details see Appendix B). The 

output variables of band gap and photocurrent density were also divided into three classes 

in a way that all classes have approximately equal number of instances to be used in ARM; 

the details are given in Table 3.6 and Table 3.7. The collected data from literature have some 

missing (78 out of 479 non-duplicated instances) band gap values; those missing values were 

predicted using random forest (RF) algorithm with a very high accuracy from the given 

values in the dataset (details in Results section). 

Table 3.5. The details for input and output variables in PECWS dataset. 

Variable Names Ranges for numeric or sub-categories for categoric varibles 

Input Variables 

BOTTOM 

BiVO, BiWO, CdS, CdSnO, composite, CuWO, FeO, g-C3N4, GaN, 

GaO, InO, LaFeO, LaTaON, MoS, NaNbO, NbO, other, PbTiO, SbO, Si, 

SiO, SnO, SrTiO, TaN, TaO, TiO, VO, WO, YFeO, ZnCuInS, ZnO 

Dop.Bottom 
B, C, Cl, Co, Cr, Cs, double dop, Fe, K, Li, Mn, Mo, N, Nb, other, P, Pt, 

Sb, Si, Sn, Ta, Ti, undoped, W 

Co.cat.Bottom Au, CdS, CePi, Co(OH), CoPi, Ni/NiO, NiO, NP, other, Pt, RuO 

MIDDLE 
BiOCl, BiOI, BiS, BiVO, CdSe, CuInS, CuO, ErO, FeO, FeOH, g-C3N4, 

InGaN, LaCoO, LaFeO, NiOH, NP, other, RGO, SnO, TiO, ZnO, ZnSe 

Dop.Middle Co, Ga, Mo, NP, Ti 

TOP Au, BiVO, CQD, FeOH/NiOOH, NP, other 

Method.I 

AlRed, anodization, chemDep, chemGro, chemSolR, comm, electrodep, 

etching, flameOxi, HT, hydrolysis, MBE, MOD, NP, other, 

polymerization, pyrolysis, SG, solvoT, spinC, sprayC, sputtering, SSR, 

VD 

CalcT.I 25-1300°Celcius 

CalcTime.I 0-30 hours 

CalcCond.I air, Ar/H2, H2, N2, NH3, NP, O2, other 

Method.II 
AlD, chemDep, chemSolR, comm, dipC, electrodep, HM, HT, imp, NP, 

other, photoDep, photoRed, SG, SILAR, solvoT, spinC, sputtering  

CalcT.II (°Celcius) 25-623 

CalcTime.II (hours) 0-4 
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Table 3.5. The details for input and output variables in PECWS dataset. (cont.) 

Variable Names Ranges for numeric or sub-categories for categoric varibles 

Input Variables 

CalcCond.II air, N2, NP 

Method.III chemDep, chemRed, electrodep, NP, other, photoRed, solvoT 

CE Pt, Pt-Ti, Pt coil, Pt foil, Pt gauze, Pt plate, Pt wire, unknown 

RE Ag/AgCl, Hg/HgO, RHE, SCE, unknown  

WEarea (cm2) 0.014-14 

CEarea (cm2) 0.005-15 

Substrate AZO, FTO, ITO, Nb, other, Pt/Ti, Si, Ssteel, Ta, Ti, W, Zn 

CoatingMeth.I 
dep, dipC, doctorB, dropCast, electrodep in-situ, spinC, sprayC, 

sputtering 

CoatingMeth.II dep, dipC, dropCast, electrode, imp, in-situ, NP, other, spinC  

CoatingMeth.III dropCast, in-situ, NP, spinC 

LasCalcT (°Celcius) 25-900 

LastCalcTime 

(hours) 
0-24 

LastCalcCond Air, Ar, N2, NH3, NP, O2 

Type Hg, Laser, Led, NP, W, Xe 

Power (W) 35-1000 

Wavelength (nm) 299-520 

Intensity (mW/cm2) 1-1000 

AM1.5G 0 and 1 

ElectrolyteType 

B4K2O7, borateBuf, H2SO4, H2SO5, H3PO4, HBr, HClO4, K2HPO4, K3PO4, 

KBr, KH2PO4, KHCO3, KOH, Na2S, Na2SO3, Na2SO4, NaCl, NaClO4, 

NaNO3, NaOH, NaS, other, phosphateBuf  

E.Molarity (M) 0.01-5 

Additive 
C2H5OH, C2H6O2, CH3OH, H2O2, H3PO4, Na2SO3, Na2SO4, NaOH, NP, 

other, PBS, phosphateBuf 

A.Molarity (M) 0-5 

pH 0-14 

Crsytal.I.1 
anatase, cubic, hexagonal, monoclinic, NP, orthorhombic, rhombohedral, 

rutile, tetragonal, triclinic 
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Table 3.5. The details for input and output variables in PECWS dataset. (cont.) 

Variable Names Ranges for numeric or sub-categories for categoric varibles 

Input Variables 

Crystal.I.2 hexagonal, monoclinic, NP, orthorhombic, rutile, tetragonal 

Crystal.II 
Amorphous, anatase, cubic, hexagonal, monoclinic, NP, rhombohedral, 

tetragonal 

Crystal.III Hexagonal, monoclinic, NP, rutile 

Bias (V) -1.2 - +2.5 

Output Variables 

Band Gap (eV) 1.16 -4.37  

Photocurrent 

Density (mA/cm2) 
0-47.9 

In the prediction process of band gap by using RF, 5-fold CVal was applied and the 

instances with unknown band gap values excluded from the procedure. The remaining 401 

instances was divided into three parts as testing, training, and validation data, 100 instances 

(%25, 100 out of 401) were determined as testing subset. Then the 80% of remaining (60%, 

241 out of 401) was used to construct the model which is called as training subset and 20% 

of remaining (15%, 60 out of 401) of remaining was used for validation in five rotations. 

Then the model with optimum parameters, which was determined from the results of 5-fold 

CVal procedure, was tested with testing data. In the dataset, photocurrent density values 

were collected at various bias values, therefore in testing-training-validation set separation, 

all the data coming from the same experiment were grouped together in order to prevent data 

leakage. The evaluation criteria for RF algorithm were selected as the mean absolute error 

(MAE), root mean squared error (RMSE), r-squared (R2) as in the previous case. The 

predictions of band gap values in testing set were recorded and used for the ARM and DT 

analysis of photocurrent density. 

In addition to prediction of band gap and photocurrent density, decision tree (DT) 

analysis was applied to extract heuristic rules leading high photocurrent density and extract 

unknown relations between input and output variables of both band gap and photocurrent 

density. A wide range of the parameters of ntree (number of trees in forest) and nodesize 

(number of instances in a terminal node of a tree) were scanned and the results were 
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evaluated to find the model with minimum complexity and highest prediction accuracy. The 

same limits for classes mentioned above for ARM were also used in DT analysis. The 

complexity parameter (explained in 3.1.2.) was chosen as the optimization criteria in DT 

algorithm; the decision trees with the highest accuracy and minimum complexity were 

determined as optimum. At this point accuracy can be associated with the purity of terminal 

nodes.  

Table 3.6. Number of instances in each class of PEC dataset. 

PEC Lower Limit (mA/cm2) Upper Limit (mA/cm2) 
Number of 

Instances 

A 1.23 47.9 3521 

B 0.80 1.23 3382 

C 0.00 0.80 3656 

Table 3.7. Number of instances in each class of bandgap dataset (in the case of PEC). 

Bandgap Lower Limit (eV) Upper Limit (eV) 
Number of 

Instances 

3high 3.00 4.37 135 

2medium 2.40 3.00 138 

low 1.16 2.40 128 

 

3.1.3. Computational Details for Water Solubility in ILs 

The dataset consisting of 16137 ILs were constructed from the most encountered 163 

different cations (in nine groups) and 99 different anions by Ahsan Jalal (PhD in Chemical 

Engineering, Koc University, Istanbul); the water solubility/capacity, which were used 

interchangeably. The water solubility of ILs were estimated by COSMO-RS calculations 

using COSMOThermX version C30_1601 (“COSMOlogic GmbH and Co. KG,” 2021) at 

298 K with TZVP parameterization. For this purpose, the cations, anions, and water 

molecule were obtained from COSMO-RS default database and COSMObaseIL. For the 

calculations of solubility, the Ionic Liquid Screening module was employed. Solvent 

capacity was calculated as 
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𝐶∞ =
1

𝛾𝑖,𝑗
∞

 (3.5) 

where 𝐶∞was the solvent solubility/capacity at infinite dilution for water in the 

corresponding IL while 𝛾∞ was the activity coefficient of water at infinite dilution in the IL. 

No scaling was applied. The structure of database is summarized in Table 3.8. The structural 

descriptors were calculated through geometrical optimization using Spartan'14 Parallel Suite 

(Wavefunction Inc., Version 1.1.4) installed on a computer equipped with an Intel Core i5-

4310UX CPU @ 2 GHz and 8 GB of RAM. The geometries of cations and anions were 

optimized separately using the default convergence criteria set for PM3 semi-empirical 

method. The details of ten cation descriptors and ten anion descriptors for each dataset are 

given in Table 3.9 and Table 3.10, respectively (further explanation in Appendix C). They 

were used in all analyses without any attempt to eliminate correlations or reduce the 

dimensionality because the set of 20 descriptors is sufficiently small for more than 16000 

data, and all of three ML technique used here are robust against cross-correlations. The 

cations and anions are respectively labelled as [C#]+ and [A#]-, where # represents the index 

number of the corresponding component and given in the Appendix C.  

The data subsets for the cation groups, as well as the entire dataset as whole, were 

analyzed using ARM, DT, RF, and deep learning (DL). ARM algorithm was used to identify 

the anion and cation properties for low water solubility. Since our descriptor variables are 

numerical, they were discretized in ten levels (see Appendix C). The datasets were divided 

into three classes in terms of output variable (solubility) as A (low solubility), B (intermediate 

solubility), and C (high solubility) in a way that all classes included approximately equal 

number of ILs to avoid problem of class imbalance (Drummond et al., 2003). Consequently, 

the class A contained the ILs with the solubility lower than or equal to 1.5 mol/mol, while 

class C had the ILs with a water solubility of higher than 15 mol/mol; the ILs with the 

solubility values within these limits were placed in class B.  The number of ILs in each class 

are given in Table 3.11.  

Decision tree analysis, aimed to extract heuristic rules leading to the cation and anion 

properties for low solubility. The output variable (solubility) was divided into three classes; 

the same limits mentioned above for ARM were also used in DT analysis to have the 

consistency in the meaning of low, intermediate, and high solubility in the results obtained 
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in two methods. Again, the complexity parameter was used to optimize the tree structures 

for individual cation groups and entire dataset; if the extracted knowledge from decision 

trees with decreasing minsplit (increasing complexity) was not changed, the decision tree 

with higher minsplit (i.e., lower complexity) was selected. Additionally, the presence of 

branches with high number of ILs and high fraction of class A, was also taken into account 

in selection because the accuracy of class A is more critical than the other two (class C, i.e., 

high solubility, may be also important in some applications as well). To perform the decision 

tree analysis, as similar to previous cases, each dataset studied was divided into subsets; first, 

25% of data were randomly selected and separated from the rest as testing data. Then the 

remaining 75% was used to construct the model by employing 5-fold cross validation; 60% 

of data was used for training, while the remaining 15% is used for validating in five 

rotations. The optimum model, which was selected from the results of 5-fold cross validation 

procedure, was tested with 25% data already separated for testing at the beginning. MAE, 

RMSE, R2, and class accuracies of validation subsets were used as the evaluation criteria of 

the models. The equations for MAE, RMSE, and R2 are given in Section 3.1. 

Table 3.8. Summary of ionic liquid groups and their representation in dataset. 

Cation groups 
Number of 

Cations 

Number of 

Anions 

Number of 

Instances (IL) 

Range of Solubility 

(mol/mol at 293K) 

Ammonium 33 99 3267 0.02 - 7989.21 

Choline 1 99 99 0.44 - 1198.12 

Functionalized 

Imidazolium 
21 99 2079 0.03 - 2189.68 

Imidazolium 41 99 4059 0.02 - 4195.33 

Phosphonium 19 99 1881 0.01 - 17004.40 

Piperidinium 7 99 693 0.02 - 4970.40 

Pyridinium 21 99 2079 0.03 - 3247.40 

Pyrrolidinium 15 99 1485 0.02 - 7079.86 

Sulfonium 5 99 495 0.03 - 3693.42 

Total 163 99 16137 0.01 - 17004.40 

 



 

 

Table 3.9. The cation descriptors and their ranges for each dataset. 

  

Cation 

Molecular Wt. 

(amu) 

Cation E 

HOMO 

(eV) 

Cation E 

LUMO 

(eV) 

Cation 

Dipole 

(debye) 

Cation 

CPK Area 

(Å²) 

Cation 

CPK 

Ovality 

Cation 

Polarizability 

Cation 

HBD 

Count 

Cation 

HBA 

Count 

Cation ZPE 

(kJ/mol) 

Ammonium 

avg 174.7 -14.4 -4.4 8.3 253.4 1.4 57.4 0.2 1.4 878.4 

max 368.7 -12.3 -4.1 33.4 533.5 1.8 78.8 2.0 3.0 1954.3 

min 62.1 -18.5 -5.1 0.0 99.6 1.2 44.8 0.0 1.0 289.1 

Choline 

avg 104.2 -15.7 -4.4 2.2 153.5 1.2 49.3 1.0 2.0 494.7 

max 104.2 -15.7 -4.4 2.2 153.5 1.2 49.3 1.0 2.0 494.7 

min 104.2 -15.7 -4.4 2.2 153.5 1.2 49.3 1.0 2.0 494.7 

Func.Imidazolium 

avg 202.7 -13.3 -4.9 13.8 274.9 1.5 58.8 0.6 3.1 784.9 

max 325.5 -12.3 -4.6 37.1 449.1 1.7 71.4 2.0 4.0 1395.9 

min 122.2 -15.3 -5.4 3.5 163.8 1.3 50.3 0.0 2.0 349.8 

Imidazolium 

avg 183.0 -13.7 -5.0 15.3 267.1 1.4 58.2 0.3 2.0 811.4 

max 363.7 -12.0 -4.7 49.1 521.5 1.8 77.3 1.0 2.0 1746.9 

min 83.1 -15.2 -5.2 0.3 120.5 1.2 47.0 0.0 2.0 282.5 

Phosphonium 

avg 346.3 -13.5 -4.4 6.5 487.3 1.7 75.3 0.0 0.1 1681.8 

max 511.9 -12.1 -3.6 20.6 730.4 2.0 93.5 0.0 1.0 2592.7 

min 217.4 -15.1 -4.6 0.4 306.3 1.5 61.5 0.0 0.0 1020.3 

Piperidinium 

avg 155.0 -14.8 -4.3 3.5 209.6 1.3 54.4 0.1 1.7 729.3 

max 172.3 -13.5 -4.2 5.0 231.3 1.4 56.3 1.0 2.0 807.5 

min 139.2 -15.9 -4.8 2.2 181.9 1.2 52.3 0.0 1.0 572.8 

Pyridinium 

avg 149.1 -14.5 -5.8 8.2 206.0 1.3 54.0 0.1 1.3 569.9 

max 224.3 -12.7 -5.6 24.7 315.8 1.5 62.5 1.0 3.0 987.8 

min 80.1 -15.8 -6.2 0.4 114.0 1.1 46.9 0.0 1.0 257.9 

Pyrrolidinium 

avg 151.0 -14.7 -4.2 4.2 213.5 1.3 54.5 0.1 1.3 741.9 

max 240.5 -13.2 -4.1 14.4 342.3 1.5 64.4 1.0 2.0 1237.4 

min 100.2 -16.0 -4.9 0.0 150.6 1.2 49.3 0.0 1.0 500.4 

Sulfonium 

avg 121.6 -14.9 -5.7 2.9 168.4 1.3 51.0 0.0 1.0 451.6 

max 153.3 -13.8 -5.4 3.8 200.1 1.3 53.8 0.0 1.0 513.1 

min 91.2 -15.8 -5.9 2.2 139.1 1.2 48.2 0.0 1.0 366.0 



 

 

Table 3.10. The anion descriptors and their ranges for each dataset. 

  

Anion 

Molecular Wt. 

(amu) 

Anion E 

HOMO 

(eV) 

Anion E 

LUMO 

(eV) 

Anion 

Dipole 

(debye) 

Anion 

CPK Area 

(Å²) 

Anion 

CPK 

Ovality 

Anion 

Polarizability 

Anion 

HBD 

Count 

Anion 

HBA 

Count 

Anion ZPE 

(kJ/mol) 

Ammonium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Choline 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Func.Imidazolium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Imidazolium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Phosphonium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.1 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Piperidinium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Pyridinium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Pyrrolidinium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.0 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 

Sulfonium 

avg 172.2 -5.5 4.7 7.4 157.4 1.3 49.5 0.2 3.1 251.4 

max 745.1 0.4 13.5 41.8 447.6 1.7 73.0 3.0 9.0 1250.2 

min 19.0 -9.9 -0.9 0.0 28.8 1.0 41.6 0.0 0.0 0.0 
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Table 3.11. Number of instances in class A, class B, and class C for each dataset. 

Datasets 
Number of 

 Instances in class A 

Number of  

instances in class B 

Number of  

instances in class C 

All 5747 5299 5091 

Ammonium 1085 1160 1022 

Choline 32 33 34 

Functionalized Imidazolium 737 828 514 

Imidazolium 1499 1288 1272 

Phosphonium 805 411 665 

Piperidinium 236 213 244 

Pyridinium 670 771 638 

Pyrrolidinium 513 442 530 

Sulfonium 170 153 172 

 

A multilayer fully connected neural network, as the deep learning algorithm, was 

used to construct the predictive models for water solubility in ILs considering its strength in 

analysis of large datasets with continuous numerical descriptors. As mentioned before the 

analysis was performed on Python by using Keras (Nain et al., 2021) as the deep learning 

framework while tensorflow (Abadi et al., 2016) was used for backend. Before modelling, 

the data were standardized first to prevent any inverse effects of the large differences in the 

numerical ranges of descriptors, and then, they were shuffled for randomization to prevent 

the processing of similar materials consequently. The number of hidden layer and number 

of neurons were determined by minimizing the validation loss using greedy search while the 

grid search was used to decide the activation function. Various optimizers were also tested 

through grid search, and Adamax (Kingma and Ba, 2015) was chosen for the final model, 

which had three hidden layers (with 4096, 128, 4096 neurons in three hidden layers 

respectively for both imidazolium and entire dataset); the activation functions were also 

chosen as ReLU (rectified linear unit) (Nwankpa et al., 2018) in the first two hidden layers 

and SOFTMAX (Nwankpa et al., 2018) in the last hidden layer while tanh (Nwankpa et al., 

2018) was utilized in the output layer.  The optimum learning rate was found to be 0.01 while 

number of epochs was chosen as of 8000. Dropout Regulation Technique (Mele and 

Altarelli, 1993) was used in each layer to prevent over-fitting. As the search procedure, two 

hidden layer network structures were constructed using various combinations of 
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hyperparameters, and then, the options for the third hidden layer were searched based on six 

two-layer structures having the smallest (happen to be also very similar) validation lost. The 

optimum model hyperparameters found are given in below in Table 3.12. 

Table 3.12. The hyperparameters of the ultimate DL model for both imidazolium and 

entire dataset. 

Learning rate Number of nodes for the 2nd hidden layer 

0.01 4096 

Number of epochs The activation function for input layer 

8000 relu 

Number of hidden layer The activation function for the 1st hidden layer 

3 relu 

Number of nodes for input layer The activation function for the 2nd hidden layer 

4096 softmax 

Number of nodes for the 1st hidden layer The activation function for the output layer 

128 tanh 
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3.2. Details About Experimental Work 

3.2.1. Materials 

The details of the chemicals used in this work were given in Table 3.13. All materials 

were used without further treatment except [BMIM][BF4], [BMIM][PF6], and 

[EMIM][N(Tf)2] which were kept under vacuum at 60 °C for one day. 

Table 3.13 The details of chemicals used. 

Chemical Formula Source 

1-Butyl-3-metylimidazolium tetrafluoroborate [BMIM][BF4] Sigma-Aldrich 

1-Ethyl-3-methyl-bis(trifluoromethylsulfonyl)imide [EMIM][N(Tf)2] Sigma-Aldrich 

1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] Sigma-Aldrich 

Gold (III) chloride trihydrate HAuCl4.3H2O Sigma-Aldrich 

Aluminium oxide Al2O3 Merck Millipore 

Acetone (for analysis, ≥99.8%) C3H6O Merck Millipore 

Dichloromethane (DCM) CH2Cl2 Merck Millipore 

Ethanol (for analysis, ≥99.9%) C2H5OH Merck Millipore 

Ethylene glycol C2H6O2 Merck Millipore 

Fluorine doped tin oxide glass FTO Teknoma 

Methanol CH3OH Zag-Kimya 

N719 dye C58H86N8O8RuS2 Ossila 

Sodium sulfide Na2SO3 Zag-Kimya 

Strontium carbonate SrCO3 Alfa Aesar 

Strontium carbonate SrCO3 Sigma-Aldrich 

Stronsiyum nitrat Sr(NO3)2 ACROS 

Tetraaminplatinum(II) hydroxide hydrtae Pt(NH3)4(OH)2·xH2O Sigma-Aldrich 

Tetraaminplatinum(II) nitrate(≥50.0% Pt) [Pt(NH3)4](NO3)2 Sigma-Aldrich 

Ti-nano oxide D/SP paste TiO2 Solaronix 

Titanium (IV) dioxide TiO2 Honeywell 

Titanium (IV) dioxide (≥99.5%) TiO2 Sigma-Aldrich 

Titanium butoxide Ti(OCH2CH2CH2CH3)4 Sigma-Aldrich 

Triethanolamine (extra pure) C6H15NO3 Tekkim Kimya 
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3.2.2. Catalyst and Photoelectrode Preparation 

3.2.2.1. Preparation of Pt/SrTiO3 and [BMIM][BF4]:Pt/SrTiO3 with solid state reaction 

Two preparation methods with several different parameters were tried to produce 

SrTiO3 with the aim of finding the best semiconductor structure for photocatalytic water 

splitting reaction. In the first method, which is solid state reaction, the SrCO3 and TiO2 were 

mixed and then kept at 1000oC for 10 hours. After SrTiO3 cooled down to room temperature, 

1 wt% Pt/SrTiO3 photocatalyst was prepared by simple incipient to wetness impregnation. 1 

g of SrTiO3 was mixed ultrasonically under vacuum for 15 mins while 0.02 g of 

tetraammineplatinum(II) nitrate was dissolved in 1 ml of distilled water by using ultrasonic 

mixer. Then, the solution was impregnated onto the strontium titanate, and it was rested for 

15 mins under vacuum. The sample was dried at 100 °C overnight. 

The ionic liquid coating onto the Pt/SrTiO3 was carried out by simple mixing method. 

Two grams of ionic liquid was dissolved in five ml of dichloromethane (DCM) and that 

solution was dropped slowly onto the five grams of Pt/SrTiO3 particles. During ionic liquid 

deposition, solid Pt/SrTiO3 particles were vacuumed and mixed ultrasonically. After 

deposition, that sludge which involves ionic liquid, DCM, and Pt/SrTiO3 was kept under 

dark and air free conditions for one week. In that way it was aimed that ionic liquid could 

penetrate the pores of Pt/SrTiO3. As the last step, the ionic liquid coated Pt/SrTiO3 was dried 

at 60°C for (at least) 6 hours to evaporate and remove the remaining DCM solution or any 

moisture from photocatalyst. 

3.2.2.2. Preparation of Pt/SrTiO3 and [BMIM][BF4]:Pt/SrTiO3 with hydrothermal method 

As the second method, the procedure in the paper of Zwara et. al (Zwara et al., 2019) 

was employed and SrTiO3 was synthesized by hydrothermal reaction. In this method two 

precursor mixtures were prepared. One of them comprises of 6.8 gr titanium butoxide and 

100 ml of ethylene glycol, while the other one contains 4.2 gr of Sr(NO3)2 and 40 ml of 

distilled water. Those solutions were mixed at a medium stirring speed separately for about 

15 minutes and then they were mixed in one beaker. If it was aimed to produce ionic liquid 

coated SrTiO3, the step ionic liquid should be also added to the beaker at this step by ensuring 

the molar ratio of 1:2 between ionic liquid and titanium butoxide is realized. Since the final 

solution becomes a very viscous fluid within seconds, all solutions (titanium butoxide 
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solution, strontium nitrate solution and ionic liquid if it is the case) should be mixed 

simultaneously and quickly. That viscous mixture was placed in an autoclave reactor and 

that autoclave was kept at 180°C for 24 hours. After 24 hours, the autoclave was stored in a 

safe place until it reaches to room temperature. Then, the mixture was washed several times 

with pure ethanol and distilled water, and it was maintained at 60°C until it was fully dried. 

The procedure for 1%Pt impregnation onto the SrTiO3 was exactly the same as that 

explained in previous section. if 1%Pt was deposited onto the [BMIM][BF4]/SrTiO3 

semiconductor, the amount of Pt nitrate salt was measured by considering only the amount 

of SrTiO3 in [BMIM][BF4]/SrTiO3; the weight of [BMIM][BF4] was not considered because 

it does not act as a semiconductor. The drying temperature after Pt impregnation was also 

set to 60°C for [BMIM][BF4]/SrTiO3 (not to 100°C as for SrTiO3 alone) in considering that 

the high temperature might cause to the thermal degradation of ionic liquid.  

3.2.2.3. Preparation of Pt/TiO2  

1 wt% Pt/TiO2 photocatalyst was prepared by simple incipient to wetness 

impregnation method. 1 g of TiO2 was mixed ultrasonically under vacuum for 15 mins while 

0.02 g of tetraammineplatinum(II) nitrate was dissolved in 2.5 ml of distilled water by using 

ultrasonic mixer. Then, the solution was impregnated onto the titanium dioxide, and it was 

rested for 15 mins under vacuum. The sample was dried at 100 °C overnight. 

3.2.2.4. Dye sensitization of Pt/TiO2  

The Pt/TiO2 samples were ground before the dye sensitization process. 1 g of Pt/TiO2 

was suspended into 0.1 mM N719 dye solution (10 mL of ethanol and 0.001188 g of dye). 

The mixture was stirred gently for 72h at dark condition and then dried at 60 °C overnight. 

The dye sensitized particles are referred to as Dye:Pt/TiO2. 

3.2.2.5. Ionic liquid coating of dye sensitized Pt/TiO2  

The ionic liquid deposition was carried out in glove box under nitrogen atmosphere; 

the procedure was similar to the study of Babucci et al.(Babucci et al., 2015) 1 g of Pt/TiO2 

photocatalyst (dye sensitized or not) and 0.2 g of ([BMIM][BF4]) were dissolved in 4 grams 

of acetone. They were mixed for 1 hour (at dark if dye-sensitized samples were used) and 

then dried in vacuum oven for one day at 60 °C. Pt/TiO2 and dye sensitized Pt/TiO2 particles 

coated with ionic liquid are referred to as IL:Pt/TiO2 and IL-Dye:Pt/TiO2, respectively. 
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3.2.2.6. TiO2, IL:TiO2, and IL-Dye:TiO2 photoelectrode preparation  

FTO glass substrates were washed several times with distilled water and dried before 

deposition. Ti-nanoxide D/SP paste was stirred well before use to obtain a smooth layer on 

FTO. The titania paste was deposited on FTO glass by simple doctor blade method and then 

substrates were heated to 475 °C with a ramping rate of 30°C/min and they were kept at 475 

°C for 30 mins. The calcined substrates were left in furnace to cool down to 120°C to avoid 

thermal shock before any further treatment. The pictures belong to the different steps of 

photoelectrode preparation was given below by Figure 3.2. To prepare dye sensitized 

photoanode, the TiO2 coated FTO glasses were submersed into N719 solution (0.5mM 

ethanol sol.) while they were still warm (ca. 60 °C) and kept at dark for 24 h. IL coating was 

performed by solvent evaporation method. The TiO2 or dye sensitized TiO2 photoanodes 

were immersed in [BMIM][BF4]: acetonitrile solution (1:20, v: v) and the solvent was 

evaporated under vacuum at 60°C for 12-15 hours.  

 

Figure 3.2. Different steps of TiO2 based photoelectrode preparation a) Coating of FTO 

with Ti-nanoxide D/SP paste with doctor blade method, b) After coating, c) After drying at 

475 °C, d) Dye sensitized and plain TiO2 electrodes in [BMIM][BF4]: acetonitrile solution, 

e) IL coated TiO2 electrode. 
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3.2.3. Characterization  

X-Ray powder diffraction analysis of photocatalysts were carried out by Rigaku 

D/MAX-Ultima+ with monochromated Cu-Kα radiation (40 kV, 40 mA). The 

morphologies, particle sizes, and particle distributions of samples were analyzed by high 

contrast transmission electron microscopy (CTEM, FEI Tecnai G2 Spirit BioTwin) and 

scanning electron microscope (FEI Philips XL30 ESEM-FEG) equipped with energy 

dispersive X-ray analysis unit (SEM-EDAX). Infrared spectra of the samples were observed 

with a DRIFT FT-IR Jasco 6100 spectrometer with a resolution of 1cm-1. The samples were 

mixed with dry KBr in the ratio of 1:1 (w:w) prior to analysis. UV-Vis diffuse reflectance 

spectra of the samples were obtained using Shimadzu UV-2600 with integrating sphere 

attachment unit. The reflectance and absorbance data were processed by the Kubelka-Munk 

function to obtain band gap values of particles. XRD and SEM-EDAX measurements were 

performed by Boğaziçi University Advanced Technologies Research Center while CTEM 

analysis was carried out by Middle East Technical University Central Laboratory; the other 

tests were performed in-house.   

3.2.4. Photocatalytic Measurements 

A simple illustration for the photocatalytic reaction system was given in Figure 3.3. 

The photocatalytic activities of Pt/TiO2, IL:Pt/TiO2, Dye:Pt/TiO2, and IL-Dye:Pt/TiO2 were 

tested by measuring hydrogen production using gas chromatography in a semi-batch reaction 

system. A custom-made 620 mL glass volumetric flask was used, and the dead volume was 

kept constant in each experiment. The ratio of photocatalyst weight to reaction solution was 

constant at 2 g/L in all experiments; 1.2 g of photocatalyst was suspended in 600 mL reaction 

solution which contained 10% triethanolamine (TEOA) and 90% distilled water (v/v). Since 

IL coated particles involve 0.2 g of IL per one g of active Pt/TiO2, 1.44 g of photocatalyst 

(assumed to contain 0.24 g of IL and 1.2 g of Pt/TiO2) was used in the experiments that 

contain IL; the contribution of dye to the weight of dye sensitized particles were negligible 

(0.0014 gr dye per 1.2 gr Pt/TiO2). The reaction tests were conducted at room conditions. 

Prior to irradiation, the system was bubbled by Ar gas at 30 mL/min for an hour; the Ar flow 

also continued during the experiment under light irradiation with the same flowrate to carry 

the hydrogen produced to GC. ScienceTech IPS-300 (300 W) solar simulator was used as 

the light source. Shimadzu GC-2014 gas chromatography equipped with a thermal 
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conductivity detector and Teknokroma TR-GC1462010 packed column (4.6 m x 1/8’’ up to 

330°C) were used under the flow of Argon as the carrier gas. The amount of hydrogen 

produced was measured at one-hour intervals. 

3.2.5. Photoelectrochemical Measurements 

The photoelectrochemical experiments were performed in a three electrode assembly 

where TiO2, IL:TiO2, or  IL-Dye:TiO2 photoelectrode, platinum counter electrode, and 

saturated calomel  reference electrode (SCE, 3M KCl) were used. The active area of the 

working electrode was kept constant at 1cm2. Aluminum wire for connection was attached 

to the edge of FTO substrate (outside the photoactive area) with conductive aluminum tape 

and sealed with epoxy resin.  A 0.1 M Na2SO3 solution (in 10%TEOA aqueous solution by 

volume) was used as electrolyte.  The electrochemical tests were carried out using a 

potentiostat (Biologic Sp-300 Science Instruments) in both dark and illuminated condition. 

ABET 1.5 G solar simulator was used as the light source with the intensity of 100 W/m2. 

Cyclic voltammetry (CV) measurements were performed in the potential range -1 V to 1 V 

at a scan rate of 20 mV/s as three sets of five CV cycles with ~30 min waiting time between 

sets.  

 

Figure 3.3. The simple illustration of our photocatalytic reaction system. 

3.2.6. Critical Factors in Reactor Design and Operations  

In the study of critical factors which are effective on photocatalytic water splitting 

through mass transfer limitations and measurement errors, Pt/TiO2 was used as 

semiconductor and the preparation procedure was given in 3.2.2.3.  
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The basic structure of the glass reactor and reaction system in general are presented 

in Table 3.14 and the pictures of reactors are given in Figure 3.4. To test the effect of dead 

volume and gas-liquid interfacial area eight custom-made glass reactor configuration were 

used to be able to keep one these two variables constant while changing the other (see Table 

3.14. The catalyst concentration (gr catalyst per liter of reaction solution) was also kept 

constant at 2 g/L while the experiments for interfacial area were also repeated at 3g/L to see 

the effect of catalyst concentrations. The reaction solution contained 20% methanol (MeOH) 

and 80% distilled water (v/v) in all experiments and conducted under room condition and 

the rotating speed of 420 rpm; the effect of rotation speed was also analyzed by changing its 

value as 200, 300, 420 and 450 rpm. Prior to illumination, the system was purged by argon 

gas for an hour; the Ar flow also continued during the experiment. The Ar flow rate was kept 

constant at 30ml/min while the effects of other variables were investigated; however, it is 

the effects of Ar flowrate was also investigated (performing tests at 15 ml/min, 30 ml/min 

and 45 ml/min). Shimadzu GC-2014 gas chromatography equipped with a thermal 

conductivity detector and 4.6 m x 1/8’’ Teknokroma TR-GC1462010 packed column was 

used to analyze the product gases; the argon was used as the carrier gas. ScienceTech IPS-

300 Class ACA solar simulator (250-2000 nm, 1 Sun, without UV filter) was used as the 

light source. The experiments were conducted for six hours, and hydrogen production data 

was recorded at one-hour intervals. 

 

Figure 3.4. The pictures of reactors R1, R2, R3, R4, R5, R6, R7, and R8. 
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Table 3.14. Eight different custom-made glass reactors used. 

Form of Reactor and 

Name of Reactor 

Cross-sectional Area of 

Reactor (cm2) 

Total Volume of 

Reactor (ml) 

 

 

30 cm2 

(same through the tube for all 

of them) 

R1: 745 ml 

R2: 510 ml 

R3: 385 ml 

R4: 350 ml 

R5: 330 ml 

 

 

 

 

42 cm2 (while dead volume is 

150 ml) 

540 ml 

 

 

 

 

72 cm2 (while dead volume is 

150 ml) 

 

475 ml 

 

 

90 cm2 (while dead volume is 

150 ml) 

 

620 ml 

 



51 

 

4. RESULTS and DISCUSSION 

The computational and experimental results are given and discussed in this section, 

respectively. Machine learning analysis of each dataset with a detailed review of the 

corresponding topic is given under separate subsections. The results of experiments are 

discussed chronologically to establish a comprehensible cause effect relationship between 

our actions. 

4.1. Machine Learning in Photocatalytic Hydrogen Production Over Perovskites 

Literature 

Scientific articles included in the dataset are reviewed in detail before the using 

machine learning tools analysis to determine some previously unknown relations between 

input variables of PWS using simple statistical tools; this way the interpretation of ML 

results may become easier. The results examined in this section 4.1 was published as a paper 

(Can and Yildirim, 2019b) and revised for this thesis. 

4.1.1 Perovskite Materials 

The perovskites are the metal oxides with the general formula of ABX3; A and B 

symbolize large and small cation respectively while X usually denotes oxygen (or 

occasionally halogens and S). The classification of perovskites by B-site is a common 

practice and it is also suitable for PWS (X. Chen et al., 2010; Liu et al., 2007). The hydrogen 

evolution performances of the most common perovskites (based on B-sites) are given in 

Figure 4.1a. The bubble sizes (and nearby numbers) indicate the frequency of perovskites in 

database containing those materials in their B-sites while the y-axis represents their average 

hydrogen evolution rate. The data obtained with UV (blue balls) and visible (red balls) light 

are presented separately. Since the number of datapoints in database is sufficiently large, the 

analyses presented below should represent the entire literature reasonably well.  

Tantalates (Ta in B-site) are the most common perovskites in database; about 40 % 

of data (216 of 541 cases) were in this class. They are followed by titanates (Ti containing), 

which forms 24 % data (128 cases), niobates (Ni containing), which constitutes 18% of data 
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(96 cases) and indium containing perovskites (8% corresponding to 42 cases). As expected, 

the hydrogen production rates are higher under UV. The tantalates and niobates perform 

much better under UV while the visible light performance of tantalates is also high. The 

average visible light activity of In catalysts is higher than their average UV performance 

because S containing perovskites (AInS) are used for visible light while AInOs are used 

under UV.  

Figure 4.1b shows the frequency and performance of the most common perovskites 

according to A-sites; only perovskites having more than 10 cases with same A are presented 

in Figure 4.1b for better generalizations. If A and B sites are brought together, it can be easily 

seen that the most common five perovskites are NaTaOs (92 cases), SrTiOs (71 cases), 

BiTaOs (33 cases), NaNbOs (33 cases) and KTaOs (25 cases). Here, ABO symbolizes the 

general structure (not stoichiometric formula) including all bare and doped ABO3 as well as 

the layered perovskites. More than two third of NaTaOs (66 of 92 points) were tested under 

UV and resulted much higher average hydrogen production rate than that under visible light. 

For SrTiOs, however, 47 of 71 cases were obtained under visible light (only 24 UV cases). 

No visible light data was available for BiTaOs while NaNbOs were investigated under both 

UV (11 cases) and visible light (22 cases).  

NaTaOs are not only the most common but also one of the most effective perovskites 

in the database (Figure 4.1b). As the most common material of the group, NaTaO3 has a 

cubic crystal structure, which is believed to generate nano-step morphology and enhances 

the hydrogen production (Gómez-Solís et al., 2014; Liu et al., 2007) while its high 

crystallinity improves PWS by inhibiting electron-hole recombination (Gómez-Solís et al., 

2014). Additionally, its high surface area contributes to PWS activity by increasing active 

sites (Gómez-Solís et al., 2014). Their bond angle of 160°-180° may be also increasing the 

effectiveness of tantalates because the ideal bond angle of B-O-B in perovskite was found 

to be 180°, which is the best for its luminescent property (Li et al., 2008; Liu et al., 2007; 

Obee and Brown, 1995). SrTaO3, BiTaO3 and KTaO3 follow NaTaO3 in hydrogen 

production with decreasing order. These perovskites have been also modified with ion 

doping (Iwase et al., 2009; Li and Wu, 2015; Nikolaidis and Poullikkas, 2017). They also 

have been modified with use of co-catalyst (Hu and Teng, 2010; Iwase et al., 2009; Li and 

Wu, 2015; Nikolaidis and Poullikkas, 2017; Zieliñska et al., 2008) and modifying the 

preparation methods (Gómez-Solís et al., 2014; Li et al., 2008) as discussed below.  
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SrTiOs are overwhelmingly the most common (55%) titanates in PWS; although 

their performances are not comparable to NaTaOs, they were frequently studied probably 

because Ti is more abundant. Besides, the band gap, surface area, particle size and 

crystallinity of SrTiOs can be easily tuned (Yang Liu et al., 2008). For example, Puangpetch 

et al. obtained a red-shift in absorption spectra of SrTiO3 with co-catalysts like Au, Ag, Pt, 

Ni, Fe, and Ce and enhanced hydrogen yield (Au was the best) under UV (Puangpetch, et 

al., 2010). Au/SrTiO3 was also found to be effective (under visible light) by Saadetnejad and 

Yildirim (Saadetnejad and Yıldırım, 2018). CaTiOs, ZnTiOs, SnTiOs, KTiOs, BiTiOs and 

less common titanates like A2Ti2O7 (A=Ga, La, Y) (Abe, Higashi, Sayama, Abe, and 

Sugihara, 2006b) were also investigated. Inserting nitrogen to oxygen site of ATiO3 was also 

tested by Naik et al. with a red-shift in absorption spectrum (Naik et al., 2011). 

As tantalates, the niobates also have high conduction band levels, which were 

reported to improve hydrogen production by facilitating reduction (Gómez-Solís et al., 2014; 

Iwase et al., 2009; Liu et al., 2007). The band gaps of niobates were lower than those of 

tantalates; hence, they are more suitable for visible-light harvesting (Liu et al., 2007). Na is 

the most frequently used A-site element even though the hydrogen production rates over 

KNbOs and LaNbOs are higher. The indium based photocatalysts also have considerable 

hydrogen production rates although the number of articles involving this class is rather 

limited. ZnInSs are the most common (and effective) In perovskites in database with low 

toxicity, high visible-light activity, and stability. For example, Li et al., synthesized and 

tested ZnIn1.5S3.2575, which kept its activity for 150 hours; Ag doping to A-site (up to certain 

loading) further improved the activity under visible light (Li et al., 2014b). These results 

were also verified over ZnIn2.3S4 (Song et al., 2015).  
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Figure 4.1. Average hydrogen production rates based on a) common B-site elements and b) 

common A-site elements (solid balls are for UV; dashed balls are for visible light).   

4.1.2. Ion Doping for Band Gap Modification  

Ion doping is a common and effective way to tune the band gap of perovskites. 

Doping changes the valence or conduction bands so that visible light harvesting may be 

possible (Chen et al., 2010). Borgarello et al. studied ion doping in 1982 for the first time 

and found that Cr doped TiO2 produced more hydrogen under visible light than bare TiO2 

(Chen et al., 2010). Since then, the metal and non-metal doping to semiconductors have been 

extensively studied. Indeed, 260 data points out of 540 (48%) in database were obtained over 

doped perovskites (31% A-site, 27% B-site). There were also works involving both A and 

B sites doping (about 10%) and doping one site with two elements; X-site doping (for 

oxygen) were also recorded. 
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4.1.2.1. A-site doping  

 For A-site doping, 18 elements were identified in the database; La (38 times) and Ca 

(32 times) were the most common elements followed by H (20 times), K (13 times), Br and 

Sr (10 times each). Ca, La, K, and H were the most frequent choices for tantalates; for 

example, 25 out of 32 cases of Ca doping involved tantalates while each of La, K and H 

appeared 12 times. However, La was overwhelmingly the most preferred element (20 times 

in database) for titanates while the other dopants were rarely used. H, Ca and La doped 

niobates were almost equally present (8, 7 and 6 times respectively); we had only Ag doping 

examples for In perovskites. Further details for the doping to common perovskites are given 

in Table 4.1. 

Table 4.1. Frequency of A and B doping for the most commonly used perovskites (i.e., 

complete list of dopants for most common perovskites). 

 Total 
A-Single 

Doped 

A-Double 

Doped 

B-Single 

Doped 

B-

Double  

Doped 

A and B Co-

doped 

X-

Single  

Doped 

Tantalates 200 43 23 32 0 17 7 

BaTaO 6 Ni (1) 0 Zr (1) 0 0 0 

BiTaO 33 
Ca (6), Ba (6), 

Sr (1) 
K-La (5) Cu (4) 0 0 0 

CaTaO 8 0 0 Zr (7) 0 0 N (6) 

InTaO 3 Ni (1) 0 0 0 0 N (1) 

KTaO 25 0 Ca-Sr (18) Zr (1) 0 La-Bi (1) 0 

LaTaO 12 K (1), H(1) 0 Al (7) 0 0 0 

NaTaO 92 

Ba (1), Bi (1), 

Ca (1), Ce (2), 

K (6), La (9), Sr 

(2), Y (2), Yb 

(2) 

0 
Bi (6), 

Nb (6) 
0 

La-Co (1), La-

Cr (1) 
0 

SrTaO 21 Bi (1), H (1) 0 0 0 
H-Nb (10), Bi-

Ce (4) 
0 

Titanates 109 13 0 17 7 22 2 

BaTiO 3 0 0 0 0 La-Cr (2) 0 

BiTiO 7 Na (6) 0 0 0 0 N (1) 

CaTiO 11 0 0 0 0 La-Cr (8) 0 

CrTiO 1 0 0 Ta (1) 0 0 0 

KTiO 7 Sn (1) 0 0 0 0 0 

NaTiO 8 La (1) 0 Zr (2) 0 0 0 

SmTiO 1 0 0 0 0 0 S (1) 

SrTiO 71 
Ag (1), Cr (2), 

La (1), Na (1) 
0 

Al (13), 

Fe (1) 
Rh-Sb (7) 

La-Cr (8), Cr-

Sb (1), Bi-Fe 

(1), Cr-Ta (1), 

Ni-Ta (1) 

0 

Niobates 89 20 0 25  11 0 

BaNbO 6 Ni (1), Zn (2) 0 
Co (1), Ta 

(1) 
0 0 0 
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Table 4.1. Frequency of A and B doping for the most commonly used perovskites (i.e., 

complete list of dopants for most common perovskites). (cont.) 

 Total 
A-Single 

Doped 

A-Double 

Doped 

B-Single 

Doped 

B-

Double  

Doped 

A and B Co-

doped 

X-

Single  

Doped 

BiNbO 9 
Ba (1), Ca (1), 

Sr (1) 
0 0 0 La-Al (6) 0 

CoNbO 3 
Ba (1), Ca (1), 

Sr (1) 
0 0 0 0 0 

InNbO 3 
Ba (1), Ca (1), 

Sr (1) 
0 0 0 0 0 

KNbO 18 0 0 Zr (6) 0 0 0 

LaNbO 13 H (1) 0 Ta (5) 0 H-In (5) 0 

NaNbO 33 Ca (4) 0 In (11) 0 0 0 

SrNbO 4 H (3) 0 Al (1) 0 0 0 

Indium- 

based 
22 5 0 6 0 0 0 

BaInO 1 0 0 Ta (1) 0 0 0 

CuInS 7 0 0 Ga (5) 0 0 0 

ZnInS 14 Ag (5) 0 0 0 0 0 

Others        

ZnCdS 15 Cu (5) 0 0 0 0 0 

SrSnO 9 Ba (1) 0 0 0 0 0 

Although NaTaOs are the most effective photocatalysts for PWS, they lose their 

activity fast; hence, they are usually doped to suppress deactivation. About 30% of NaTaOs 

(28 out of 92) were doped in A-site with La and K or other less frequent elements. Various 

investigators reported that nickel co-catalyst and La dopant, together or separately, decreased 

electron-hole recombination and prolonged life of NaTaOs by creating new active sites 

(Husin et al., 2017; Husin et al., 2011; Iwase et al., 2009; Kato et al., 2003; Kudo and Kato, 

2000). Doping generally expands surface area (more active sites) and decreases particle size 

(shorter distance for photogenerated electrons to travel). For example, Lax:NayTaO3 resulted 

in much higher hydrogen production rate than bare NaTaO3 under UV light (Husin et al., 

2017, 2011; Kato et al., 2003; Kudo and Kato, 2000). Kudo et al. and Kato et al. also 

observed that solid-state reaction method created unique step structures on Lax:NayTaO3 

particles and promoted hydrogen yield by generating new active sites (Kato et al., 2003; 

Kudo and Kato, 2000). The same group also studied Ca, Ba and Sr doped NaTaO3 

perovskites and obtained similar results (Iwase et al., 2009). Jana et al. doped rare elements 

(Y, La, Ce, and Yb) on NaTaO3, and found that Y: NaTaO3 and La:NaTaO3 had best 

performances (Y:NaTaO3 was better) (Jana et al., 2014a). The performances of A-site doped 

NaTaOs are shown in Figure 4.2a as an example. La doping slightly improved average UV 

and visible light performances; however, Ba and Ca were more effective. The performance 
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with other dopants was close to that of bare NaTaOs. The other tantalates are also doped 

frequently. For example, almost 50% of BiTaOs, the second most common tantalates, were 

mostly doped with Ba, Ca, and K; however, only the less frequently used Sr produced better 

result than undoped BiTaOs (Chen et al., 2014); the average performances of Ba, Ca and K 

doped, and undoped BiTaOs were almost the same.  

Double metal or nonmetal doping to tantalates were also investigated. For example, 

Takayama et al., tested KCaSrTa5O15 with several promoters (NiO, Ni, Cu, Ru, Rh, Ag, Pt, 

and Au), and obtained the highest performance with NiO under UV (Takayama et al., 2014); 

Chen et al. reached to a similar result over K0.5La0.5Bi2Ta2O9 (Chen et al., 2012). Shimizu 

et al. compared the activity of H2La2/3Ta2O7, K2La2/3Ta2O7, and H2SrTa2O7 with KTaO3; H 

doping improved hydrogen production by facilitating the transfer of photogenerated 

electrons and holes (Shimizu et al., 2005). Similarly, Huang et al. compared the efficiency 

of HSr2TaNb2O10 with the perovskites doped with K; although they had nearly the same 

surface area, band gap and interlayer distance, H-doped perovskites provided better 

production rates (Huang et al., 2011). 

 

Figure 4.2. The frequencies and average hydrogen production rates for a) A-site doped 

NaTaOs, b) B-site doped NaTaOs c) A-site doped SrTiOs, and d) B-site doped SrTiOs. 
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A-site doping for SrTiOs was generally used to make these perovskites visible light 

active. However, the doping seemed to fail to improve activity in average; only few examples 

involving Ag and Ni produced better results than bare perovskites (Figure 4.2c). For example 

Ag doping produced the hydrogen production rate of 648 μmol gcat-1 h-1 compared to the 

average of 243 μmol gcat-1 h-1 for bare SrTiO3 (Ishii et al., 2004). However, La doping, 

which appeared in nine cases from three articles (Cai et al., 2015; Lu et al., 2017; Luo et al., 

2008) in database, did not produce the same improvement.  In one of these works (Cai et al., 

2015), Luo et al. doped La to A-site of SrTiO3 and obtained the hydrogen production rate of 

67 μmol gcat-1 h-1; the other two groups (Lu et al., 2017; Luo et al., 2008) were also doped 

Cr in B site but they could not obtain improvement either. The hydrogen production rate 

over Cr (Wang et al., 2010) and Na (Takata and Domen, 2009) doped SrTiO3 was also lower 

than the bare catalyst under UV.  

The other titanates were also doped by their A-sites. For example, Li et al. 

synthesized Sn:KTiO and achieved a red shift in absorbance spectrum (the band gap was 2.8 

eV while it was 3.5 eV for bare KTiO); the average hydrogen production rate was 257 μmol 

gcat-1 h-1 (Li et al., 2011). A-site of NaTiO3 was also doped with La and its performance was 

compared with La and Cr co-doped (A and B site) NaTiO perovskite (Shi et al., 2011). 

La:NaTiO  did not results in significant hydrogen production rate; however, unlike to 

La,Cr:SrTiO discussed above (Lu et al., 2017; Luo et al., 2008), a sharp increase in the 

hydrogen production rate was observed when Cr is co-doped to B site of La:NaTiO3.  

It was difficult to make generalization for the A-site doping for niobates because the 

number of cases is limited (12 out of 96) while the number of dopants is high (nine different 

elements) in the database. The notable ones are H doping to SrNbO3 and LaNbO3 (Li et al., 

2009; Natarajan et al., 2017) and Ca doping to NaNbO3, BiNbO3, CoxNbyO3, and InNbO3 

perovskites (Li et al., 2009; Takayama et al., 2014; Wei et al., 2009). H2.33Sr0.67Nb5O14.335 

performed better than H2LaNb2O7 (even better than H-In co-doped LaNbO3) under UV. In 

both of those works (Li et al., 2009; Wei et al., 2009), Pt was used as promoter, and their 

band gap values are similar to each other but H2.33Sr0.67Nb5O14.335 had larger surface area, 

which may be the reason of its better activity. In another work, Yin et al. tested Ca, Sr, and 

Ba doping to In0.5Nb0.5O3 and Co1/3Nb2/3O3 under UV in two separate articles (Yin et al., 

2003a, 2003b); the performances of doping agent were in the order of Ca > Sr > Ba for 

InNbO3 while the order were as Ba > Ca > Sr for CoxNbyO3.  Li et al. prepared Ca, Sr, Ba, 
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and K0.5La0.5 doped Bi2Nb2O9, and observed a red-shift in the doped catalysts compared to 

bare Bi2Nb2O9. Sr-doped catalyst was the best while Ca and Ba-doped had worse 

performances under UV (Li et al., 2010). 

4.1.2.2. B-site doping  

 Examples containing 16 metals and transition metals doped for B-site were recorded 

in database. Doping of transition metal was reported to change donor-acceptor levels of 

perovskites so that band gap tuning was possible (Chen et al., 2010). The tantalates were 

mostly doped by Nb (16) while Cr (18 cases) and Al (13 cases) doping were more common 

in titanates. The dominant choice for niobates was In with 16 cases even though Al, Ta and 

Zr were also used. Indium containing catalysts were B-doped less frequently (only 7 out of 

42 data points).  

NaTaOs were the most commonly B-doped tantalates in the database. For example, Bi 

doped Pt/NaTaO3 was investigated by two groups in 2012. Kang et al. prepared 

Pt/Bi:NaTaO3 by spray pyrolysis method while Kanhere et al. used solid state reaction (SSR) 

(Kang et al., 2012; Kanhere et al., 2012). The former group claimed that unique surface 

morphology and large surface area increased the photocatalytic activity under visible light. 

The latter group, however, observed that their synthesis condition increased hydrogen yield 

by narrowing the bandgap (Kang et al., 2012; Kanhere et al., 2012). Wang et al. doped Nb 

to B-site of NaTaO3 at various ratios (M. Wang et al., 2017), and NaNb0.5Ta0.5O3 showed 

3.8 times higher hydrogen production than bare NaTaO3 under visible light; this difference 

attributed to the lower band gap and defects generated by Nb. However, despite of these 

positive results, the average performance of Bi and Nb doped NaTaOs were worse than the 

bare perovskites (Figure 4.2b); this was also true for the other dopants.  

B doping was also applied to other tantalates. For example, Huang et al. produced 

HSr2TaNb2O10 with SSR and obtained 11 times higher hydrogen production rate than TiO2. 

They argued that HSr2TaNb2O10 possessed a stable and special structure, which enabled 

separation of photogenerated electron–hole pairs (Huang et al., 2011). Senthil et al. studied 

Bi (A-site) and Ce (B-site) doped SrTaO3, and found that, with Bi3+ and Ce4+ doping, the 

dipole moment was created; this improved the photocatalytic activity by enhancing charge 

separation (Senthil et al., 2016). Li et al. prepared La2AlTaO7 by SSR and studied under 

UV; Al doping lowered the conduction band, and the hydrogen production was succeeded 
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even without a co-catalyst (Li et al., 2009b). Zhang et al. prepared BiTa1-xCuxO4 with 

different amount of Cu (Zhang et al., 2009); the best performance under UV light was 

obtained over BiTa0.98Cu0.02O4. Since all particles showed similar light diffuse reflectance 

spectra, the differences in activity were attributed to surface area change (Zhang et al., 2009). 

Ishihara et al., investigated the effects of Zr doping to KTaO3, and obtained much higher 

activity than bare KTaO3 under UV (Ishihara et al., 1999). 

SrTiO3 is the most commonly B-doped perovskites, not only in titanates but also in the 

entire database (33 data points out of 71). Asai et al., studied Rh-doped and Rh-Sb co-doped 

SrTiO3 in the presence of Ir co-catalyst, and they obtained the highest hydrogen yield over 

Rh,Sb:SrTiO3 under UV. They argued that the doped metal ions worked as recombination 

centers unless another metal cation was co-doped to maintain the charge balance (Asai et 

al., 2014). Recently, Ham et al. synthesized Al:SrTiO3 by flux-mediated method and SSR. 

For pure SrTiO3, the higher surface areas and enhanced crystallinity were obtained by flux-

mediated method; the activity was also more than that obtained with SSR. However, in both 

case, the activity first increased with the increasing Al loading and then decreased with 

further increase of Al content (Ham et al., 2016). Luo and Maggard synthesized Fe doped 

SrTiO3 with hydrothermal method (HT); however, they obtained no significant improvement 

compared to the bare SrTiO3 (Luo and Maggard, 2006).  

Co-doping of two elements to A and B sites of SrTiO3 was also tested; Kang et al. co-

doped Ta to B-site and Cr or Ni to A-site; they obtained very large surface area and unique 

surface morphology that enhanced the photocatalytic activity under visible light (Ni gave 

better result); it was attributed that Ni and Ta ions created a charge balance around Ti and 

made the surface morphology more suitable for PWS (Kang et al., 2012; Kang and Park, 

2011). In another work, Kato and Kudo studied Cr doping to A-site and Sb doping to B-site 

of SrTiO3; they achieved much higher visible light activity than those over single doped or 

undoped catalysts (Kato and Kudo, 2002b). However, despite all these examples, the overall 

average performances of B doped SrTiOs were not better than plain perovskite (Figure 4.2d).  

The B-site doping was also implemented to other titanates. Huerta et al. observed an 

improvement in the activity of Zr doped Na2Ti6O13 compared to bare catalyst and attributed 

this to the different bond lengths and charge distribution of doped and bare samples. They 

also argued that Zr acted as an electron trap, which inhibited the recombination of electron-
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hole pairs (Huerta-Flores et al., 2017). Wang et al. and Lu et al. synthesized La, Cr co-doped 

CaTiO3, and both observed red shift in the band gap making this perovskite suitable for 

visible light (Lu et al., 2017; Rajeshwar et al., 2015).  

The niobates were also B-doped (but less frequently than tantalates and titanates). For 

example, Lv et al. produced In doped NaNbO3 particles with co-precipitation and observed 

surface area increase; however, the hydrogen production showed a plateau behavior 

indicating that improvement may be due to the better charge separation, not the surface area 

(Lv et al., 2010). Iwakura et al. doped B-site of SrNbO3 by Al, and changed the ordered and 

disordered material ratio in SrAl0.5Nb0.5O3 by changing calcination time; the disordered 

SrAl0.5Nb0.5O3 gave better hydrogen production rates under UV than ordered perovskites 

(Iwakura et al., 2010); Li et al. investigated Cu doping to LaNiO3; they claimed that Cu 

doping created a redox cycle of Cu2+/Cu+ over the pre-reduced Cu:LaNiO3, and promoted 

photocatalytic activity. They also found that pre-reduction treatment affected activity by 

changing electron-hole recombination rate, interfacial charge transfer and electronic 

structure (Li et al., 2010).  

Co-doping in niobates was also investigated. For example, Li et al. co-doped La on A-

site and Al on B-site of Bi2NbO7 (Li et al., 2009); they observed that La doping enhanced 

the activity under UV by changing electronic structure and optical absorption. Similarly, 

Wei et al. compared the performances of co-doped; they observed that H,In:LaNbO3 was 

one of the best due to its larger surface area and lower band gap (Wei et al., 2009). In another 

work, Li et al. studied ALaTax/3Nb2−x/3O7 (A = K, H; x = 0, 2, 3, 4 and 6), and obtained the 

best performance over 1%Pt/HLaTa2/3Nb4/3O7. They claimed that Ta caused a new and more 

stable HLaNb2O7 form and created an electronic structure that helped the separation of 

photo-generated electron-hole pairs (Li et al., 2010). 

4.1.2.3. Doping effects on band gap 

 As presented above, there are numerous successful applications of doping in the 

literature; however, the average performance does not change significantly for most dopants. 

This can happen only if there are both high and low performances with the same dopant 

indicating that the other factor may be inflating or overshadowing the doping effects. In 

successful applications, the improvements were usually attributed to the shift in band gap, 

increase in surface area and decrease in particle size. Consequently, the effects of doping on 
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these properties (if there are any) were also analyzed. No definitive conclusion could be 

drawn for the surface area and the particle size; however, there seems to be some patterns 

for band gap (Figure 4.3) even though they cannot be generalized because they are unique 

for the perovskite and the dopants.  

  

Figure 4.3. Effects of doping on band gap of most commonly used perovskites. 

4.1.3. Preparation Methods for Perovskites 

The solid-state reaction (SSR) is the most common perovskite preparation method 

(188 cases in database); this followed by hydrothermal synthesis (HT) with 148 cases. 

Methods like polymerized-complex (PC), sol-gel (SG), ion-exchange (IE), electro-spinning 

(ES), Pechini-type process (PTP), flux-type and co-precipitation are also utilized. Figure 

4.4a shows the frequency distribution of cases for the preparation methods together with the 

average hydrogen production. There are also novel and rarely used methods that are not 

included to Figure 4.4 (58 cases). Data for UV and visible light are presented separately; 
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although the light source has no direct effects on catalyst preparation, it influences the 

method selection due to the band gap considerations.  

Only HT and IE outperform SSR in average hydrogen production; although the 

superiority of HT against SSR is known (Li et al., 2008), having similar performance with 

SSR, SG and PC is surprising because the last two are also known to be better. For example, 

Jeong et al. reported that NiO/Sr3Ti2O7 prepared by PC gave 1.33 times higher yield than 

SSR catalyst under UV due to its higher surface area and purity; PC method also prolonged 

the lifetime of catalyst (Jeong et al., 2006). Hu and Teng produced orthorhombic and cubic 

NaTaO3 using SSR and SG respectively; SG-catalyst provided 23 times higher hydrogen 

production rates, and this was attributed to higher surface area, smaller particle size and high 

crystallinity due to lower calcination temperatures of SG (about 500°C against 1200°C for 

SSR) (Hu and Teng, 2007). The results for NiO/InTaO4 are also consistent with the results 

of previously mentioned article (Chiou et al., 2009); SG catalysts had smaller particle sizes, 

higher surface areas and enhanced photocatalytic activities. These examples indicate that SG 

and PC methods are superior as long as they provide the desired physical properties 

described above, and apparently, this does not always happen as will be discussed later.  

The HT method was also compared with SSR and PC in production of NaNbO3 (Li 

et al., 2008) HT provided twice-higher yield than SSR while PC resulted in more than six 

times higher yield under UV if the calcination temperature was 600oC; however, the yield 

was only 50% higher when the calcination temperature was 900oC. The authors claimed that 

smaller catalyst size by PC (at 600oC) may have shortened the diffusion distances of 

photogenerated electrons and increased the number of electrons reached to the active sites. 

Additionally, HT caused rectangular and cubic samples while SSR method resulted in 

spherical particles. The authors argued that the edges of HT catalysts may act as active sites. 

Hu et al. observed that UV activity of KTaO3 prepared by SG was twice higher than that 

prepared by HT (Hu et al., 2013). The higher surface area and advantageous crystalline 

structure of SG catalyst facilitated charge separation via more flattened Ta-O-Ta bond. New 

approaches were also tested and compared with conventional methods. For example, Liu et 

al. produced SrTiO3 using PC, SSR and milling assistant method (Li et al., 2008); PC 

catalysts were the best due to their smaller size and uniformity of their components while 

the milling assistant method caused catalyst agglomeration and degradation. Similarly, Lee 

et al. synthesized SrSnO3 by simple wet chemical reaction and compared the results with 
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SSR; the catalysts obtained via the former method resulted in smaller particle size, better 

crystalline structure and five to ten times higher hydrogen production rate under UV (Lee et 

al., 2012).  

As clearly seen in Figure 4.4a, the average production rates are not in agreement with 

the examples above. HT delivered slightly higher average yield than SSR under UV while 

its visible light performances were much higher. Surprisingly, the average UV and visible 

light performances of HT are also close to each other.  

Researchers generally explain the effects of preparation methods through changes in 

particle size, surface area, crystal structure or band gap. Consequently, the dependence of 

those properties on the preparation methods was analyzed in more details. The surface area 

distributions with the most common methods are given in Figure 4.4b. (IE was also added 

due to its high performance). SSR clearly produced surface areas in the lower side of 

distribution while SG did just the opposite; however, this difference did not seem to affect 

PWS activity. On the other hand, HT, which provides better hydrogen production rates, 

exhibits no clear trend in surface area. Only IE and PC exhibit some correlation between the 

surface area and performance; both surface area and hydrogen production rates are high for 

IE while both are relatively low for PC.  

To analyze the effects of preparation method on bad gaps, the data were classified 

into three groups by this variable as 1.27-3.11 eV (700-400 nm) representing visible, 3.11-

3.89 eV (400-320 nm) representing UV-A and 3.89-6.30 eV (320-290 nm) for UV-B and 

UV-C. The correlation between the band gap and preparation methods was undisputable for 

SSR and HT, (Figure 4.4c); SSR usually produces UV sensitive perovskites while HT 

resulted in lower band gaps explaining its higher visible light activity. The results are not 

conclusive for SG and PC while IE resulted in higher bandgaps, which agrees with the fact 

that IE catalysts are tested under UV. 

Figure 4.4d presents the crystal structures obtained by different methods. Both SSR 

and HT produce mostly orthorhombic and cubic structures while SSR also result in 

octahedral perovskites. To check the effect of this difference, the average performance of 

octahedral and the remaining SSR catalysts (orthorhombic and cubic) were compared. 

Indeed, the hydrogen production rate on octahedral structure (from 13 articles) was 866.5 

μmol gcat-1 h-1 while it was 1079 μmol gcat-1 h-1 for remaining SSR data (orthorhombic and 
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cubic from 38 articles). The crystal structure may also explain the results reported for PC 

perovskites. As Figure 4.4d shows, significant portion of PC perovskites are tetragonal 

although the remaining cases are cubic and orthorhombic as HT and SSR suggesting that the 

low average performance of PC may be due to tetragonal samples. Again, the average 

hydrogen production rate was found to be 256 μmol gcat-1 h-1 for tetragonal samples while 

it was 1650 μmol gcat-1 h-1 for the remaining data. However, it should be note that the 

tetragonal samples are from the same source even though they contain various perovskites 

(Bi2Ta2O9, Bi2K0.5La0.5Ta2O9, Bi2CaTa2O9 and Bi2BaTa2O9) (Chen et al., 2014). 

  In summary, there are indeed correlations between the preparation methods and the 

perovskite properties like surface area, crystal structure and band gap. However, the direct 

impact of these properties on the average hydrogen production could not be established in 

this section but some patterns emerged in more detailed analyses in Section 4.  

4.1.4. Co-Catalyst for Charge Separation 

 One of the most effective ways to achieve charge separation in PWS is the use of co-

catalysts; 424 instances out of 540 in the database were involved the use of a co-catalyst, 

which are usually transition metals and their oxides (Figure 4.5) as it also stated in various 

reviews (Kato et al., 2002; Kudo and Miseki, 2009; Ran et al., 2014; Shi and Guo, 2012). Pt 

is overwhelmingly the most common co-catalyst (178 data points), which was used with 

tantalates, niobates and titanates, and reported to improve hydrogen production (Chen et al., 

2010). However, Pt increased the hydrogen production up to a certain loading, and then it 

reduced photocatalytic activity due to shielding effect (Chen et al., 2014; Kanhere et al., 

2012a; Wang et al.,2012; Zhang et al., 2013); the optimal loading is depended on the 

perovskite. In general, Pt does not change morphological properties such as XRD pattern, 

surface area, pore characteristics and crystallite size (Chen et al., 2014; Kanhere et al., 2012; 

Kato and Kudo, 2002b; Li et al., 2009; Wang and Wang, 2012); it can slightly alter the band 

gap (Li et al., 2008; Li et al., 2009; Puangpetch et al., 2010a). The photo deposition is the 

most common method (124 data points) for Pt loading; this is followed by impregnation (45 

data points). Arney et al. compared these two methods and concluded that, while 

impregnation increased the activity by increasing surface area, the photo deposition 

contributed to the activity by smaller particle size and larger number of stepped surfaces 

(Arney et al., 2013). In another work, the hydrogen production over the loaded (by photo 
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deposition) and bare NaTaO3 particles were analyzed, and it was noticed a delay in hydrogen 

production with the presence of Pt. It was suggested that the photogenerated electrons were 

used for the Pt photo deposition first and then PWS starts (Jana et al., 2014b). The common 

result from all mentioned articles was that Pt enhanced the photocatalytic activity; it enabled 

charge separation, suppressed recombination, and provided active sites for hydrogen 

formation. However, the results in Figure 4.5 do not support these results; average 

performance with Pt co-catalyst is lower than the average performance of bare 

semiconductors; apparently there are also low performance cases with Pt co-catalyst.   

Rh was also used as co-catalyst. For example, Ham et al. impregnated Rh on SrTiO3 

and tested for PWS under visible light (Ham et al., 2016); they proposed that Rh blocked the 

reverse reaction. Yoshida et al. studied Rh/KTiO3 under visible light and found that different 

Rh loading was required for different preparation methods (Yoshida et al., 2014). However, 

Takayama et al. studied several co-catalysts on KCaSrTa5O15, and they found that Rh was 

one of the less effective under UV (Takayama et al., 2014). As Pt, the average performance 

of Rh is also lower than the average obtained without a co-catalyst (Figure 4.5).  

Ru is a co-catalyst that was used with perovskite like SrTiO3, ZnIn1.5S3.2575, 

Ag:ZnInS, or KCaSrTa5O15 (Asai et al., 2014; F. Li et al., 2014a; Takayama et al., 2014); it 

was loaded by photo deposition in all those cases. Ru had the highest visible light activity in 

the database (Figure 4.5); however, there are also works that showed its ineffectiveness. For 

example, Takayama et al. tested Rh, NiO, Ag, Au, and Pt as co-catalyst and Ru gave the 

minimum activity under UV (Takayama et al., 2014).  
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Figure 4.4. Properties of perovskites prepared by the most commonly used perovskites 

average a) hydrogen production rates, b) surface area, c) band gap, and d) crystal structure.  
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Figure 4.5. Promoters used in the database vs. number of instances. 

Although there are only few cases in the database, Ag seems to be effective as co-

catalyst. Shi and Guo photo deposited Ag over KTaO3 and NaTaO3 and found that the 

behavior of Ag was very similar to Pt; it did not create changes in XRD pattern, particle size 

or surface area but broadened the light absorption capabilities. While hydrogen production 

rate was directly proportional to Ag loading until some point, the excessive loading lowered 

the catalytic activity (Shi and Guo, 2012). There were also examples of Au, Cu, and Ni 

loading on several photocatalysts (Puangpetch et al., 2010; Takayama et al., 2014; Xu et al., 

2015).  

NiOx is the most preferred co-catalyst among transition metal oxides (71 cases; 

second after Pt). It was used with several perovskites and worked particularly well with 

tantalates and niobates (Chen et al., 2014; Kato et al., 2008; Lee et al., 2012; Li et al., 2009b, 

2009a; Liu et al., 2008). It has the highest average hydrogen production in the database 

(under UV). Since conduction band level of tantalates and niobates are generally higher than 

that of NiOx, the photogenerated electrons in the conduction band of host perovskite can 

easily move to NiOx providing charge separation (Asai et al., 2014; Huang et al., 2011; Ran 

et al., 2014; Shi and Guo, 2012). Like Pt, NiOx loading versus hydrogen production rate 

generally exhibited a volcanic shape; initial increase in rate is followed by a decline (Asai et 

al., 2014; Dincer and Acar, 2014; Gómez-Solís et al., 2014; Kothari et al., 2008; Takayama 

et al., 2014; Zhang et al., 2009; Zhang et al., 2016; Zhou et al., 2009). Li et al. explained 

this as the fact that the perovskite and NiOx formed p-type and n-type semiconductors 
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respectively; they had to be in optimum ratio to operate properly (Li et al., 2009a). When 

NiO was loaded to tantalates, some Ni particles were reported to settle on the surface creating 

a core (Ni)-shell (NiO) structure providing selective diffusion of hydrogen and hydroxide 

ions. While hydrogen ion diffused to NiO and reduced, hydroxide could not; this prevents 

recombination of photogenerated oxygen and hydrogen (Zhou et al., 2009). In most cases, 

there was no obvious change in surface area, crystal size and absorption band with NiOx 

loading (Lee et al., 2012; Li and Wu, 2015; Zhou et al., 2009).  

 RuOx was also used due to its lower conduction band with respect to H+/H energy 

level (Arai et al., 2008); it works as electron trap to inhibit the recombination of 

photogenerated electron-hole pairs, facilitate oxygen production and suppress back reactions 

under visible light (Gómez-Solís et al., 2014; Kim et al., 2012; Zhang et al., 2009). The 

activity generally increased with RuOx loading first and reached a plateau; further increase 

of Ru loading gradually decreased the UV activity (Gómez-Solís et al., 2014; Torres-

Martínez et al., 2010; Zhang et al., 2009). Torres-Martinez et al. had similar results with 

those of previously mentioned articles; they synthesized La:NaTaO3 with SG method, which 

provided high surface area, and loaded with ruthenium oxide nanoparticles. High specific 

surface area enhanced RuO2 dispersion and increased UV activity (Torres-Martínez et al., 

2010). However, the surface area and crystal structure did not significantly change by RuO2 

loading itself (Li et al., 2008).  

4.1.5. Thermal Treatment 

Calcination is a common thermal treatment that may affect morphological properties; 

it was applied in 351 data points (out of 540) in database. Various researchers showed that 

calcination temperature and time had a direct influence on particle size and surface area (Abe 

et al., 2006a; Ham et al., 2016; Hu and Teng, 2007; Iwakura et al., 2010; Jeong et al., 2006; 

Li et al., 2008; Zielińska et al., 2012). Generally, the particle size increases while the surface 

area decreases with increasing calcination temperature. The increase in particle size was 

attributed to the sintering (Zeng et al., 2015). Abe et al. found that La3TaO7 prepared by PC 

had a volcanic relation between its surface area and calcination temperature (Abe et al., 

2006a). Crystallinity, purity, and sometimes band gap was also influenced by calcination 

temperature; usually, increasing calcination temperature increased the crystallinity and 

purity (Abe et al., 2006a; Hu and Teng, 2007; Jeong et al., 2006; Zielińska et al., 2012). The 
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crystallinity affected electrochemical conductivity and the mobility of photogenerated 

electron-hole pairs; the higher mobility implied higher probability of those pairs reaching to 

active sites (Abe et al., 2006a). Consequently, high calcination temperature may enhance the 

activity through increasing crystallinity (Iwakura et al., 2010; Li et al., 2008; Obee and 

Brown, 1995; Zeng et al., 2015). However, particle size, surface area, crystallinity, and band 

gap act on together; hence, there is an optimum combination of calcination temperature and 

time for high photocatalytic activity (Iwakura et al., 2010).  

No clear patterns identified to link the calcination temperature to the surface area, 

particle size and crystal structure in database. However, the band gap seems to be correlated 

with calcination temperature; to see that, the band gap is divided into three classes (visible, 

UV-A and UV-B + UV-C) as in Section 3.1.3, and the average calcination temperature of 

perovskites, which have the band gap in these intervals, were calculated based on the method 

used during their preparation. The band gaps of perovskite prepared by HT, PC and SG were 

increased with increasing average calcination temperature; there was no clear trend for SSR. 

For example, the average calcination temperatures were respectively 993.8 K, 1123 K, and 

1225.3 K for visible, UV_A and UV_BC class perovskites prepared by PC method. The class 

division and results for other methods are presented in Table 4.2.  

Table 4.2. The average calcination temperature of the samples prepared using different 

methods*. 

 Average Calcination Temperature Number of Instances 

 Visible UV_A UV_BC Visible UV_A UV_BC 

 1.27-3.11 eV 3.11-3.89 eV 3.89-6.3 eV 1.27-3.11 eV 3.11-3.89 eV 3.89-6.3 eV 

SSR 1284.6 1166.2 1297.3 43 61 84 

HT 273.28 401.29 534.6 88 38 20 

PC 993.83 1123 1225.3 12 17 22 

SG 984.82 1008 1075.9 11 10 17 

 

*Calcination temperature was taken as 273 K if no calcination was employed. 
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4.1.6. Sacrificial Agents and Additives  

 Some chemicals are added to the reaction medium to improve hydrogen yield by 

acting as electron donors or acceptors and reducing back reaction of photogenerated 

electrons (Chen et al., 2010). There are both organic and inorganic sacrificial agents; some 

are photodegradable while the others are not. Photodegradable industrial pollutants (like 

oxalic acid, formic acid and formaldehyde) are clearly more preferred to clean the 

environment while producing hydrogen (Ni et al., 2007); however, if this is not intended, the 

sacrificial agent should be non-photodegradable for a long time.  

4.1.6.1. Organic sacrificial agents 

 Methanol is the most common sacrificial agent (60% of data in the database) (Li et 

al., 2008; Saadetnejad and Yıldırım, 2018; Shibli et al., 2015; Singh et al., 2008; Wu et al., 

2014; Zeng et al., 2015); there were also examples involving ethanol, propanol, formic acid 

and formaldehyde. Puangpetch et al. compared the performances of pure water, solution of 

methanol, ethanol, and propanol for PWS; methanol provided highest enhancement under 

UV (Puangpetch et al., 2010). The improvement was significant with 0-20 % methanol; then, 

it slowed down at higher percentages.  Saadetnejad and Yildirim also verified this over 

Au/SrTiO3; however, isopropyl alcohol was more effective if Al was doped on the catalyst 

(Saadetnejad and Yıldırım, 2018).   

Methanol degradation was also checked by previously mentioned articles, and found 

to be negligible (Li et al., 2008; Li et al., 2009b; Puangpetch et al., 2010; Shibli et al., 2015; 

Z. Wu et al., 2014; Zeng et al., 2015); this confirmed that methanol acted as hole scavenger 

and recombination blocker, but not hydrogen source (Puangpetch et al., 2010). There were 

also other articles verifying this result (Arai et al., 2008; Kim et al., 2012; Li et al., 2008; Li 

et al., 2009b; Takata and Domen, 2009).  

Methanol, propanol, formic acid, acetic acid, and formaldehyde were tested with 

SrTiO3 under UV (Hu and Teng, 2010); and the formic acid had the best performance. 

Stepwise reactions involving intermediates occurred with all sacrificial agents except formic 

acid; the competition between those intermediates with valence band holes inhibited 

hydrogen evolution. However, the reaction occurred in single step with formic acid 

promoting hydrogen evolution. The same group also found that average hydrogen 

production increases with formic acid concentration. There are also other works in which 
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formaldehyde, formic acid, acetic acid and propanol were used as sacrificial agents 

indicating that the process could be also used to clean environment (Li, et al., 2010; Juanjuan 

et al., 2010; Zhou et al., 2009; Zielińska et al., 2012). 

The data indicated that the alcohol (mostly methanol) concentration used with UV 

and visible light were quite similar; the ratio of the data with 20 % or below is 85 % in visible 

data while it was 83 % for UV.  

4.1.6.2. Inorganic sacrificial agents 

 Inorganic compounds were also used as sacrificial agents, additives to aqueous 

methanol solution, cut-off filters for light or to adjust pH of solution. Na2S-Na2SO3 pair was 

commonly used due to their good hole scavenger performances (Fan et al., 2010; Li et al., 

2014a; Song et al., 2015; Yu et al., 2014; Zhang et al., 2009). NaNO2 was also used 

frequently together with the other agents to cut-off UV light (Huang et al., 2011; Naik et al., 

2011; Zhang et al., 2009; Zhao et al., 2014). Xu et al. used NaOH to adjust the pH; the 

hydrogen evolution under visible light was the best in neutral solution (Lu et al., 2017). Kato 

and Kudo utilized H2SO4 and NaOH to arrange pH; they obtained the maximum UV activity 

with NaOH (pH was 10.5) (Kato and Kudo, 2001). Lee et al. used KOH, NaOH, H2SO4, 

CH3COOH and Na2SO4 as sacrificial agents; the UV performance of CH3COOH was much 

lower than the others (Lee et al., 2013); the alkali solutions fastened the electron transfer 

between valence and conduction band ( Liu et al., 2008). There were also works in which 

AgNO3 (Ham et al., 2016; Jana et al., 2014b; Jeong et al., 2006; Kang et al., 2012; Yang Liu 

et al., 2008; Puangpetch et al., 2010; Shi et al., 2012), FeCl3 (Jana et al., 2014b), KNO3 (Kato 

and Kudo, 2002a), KOH (Saadetnejad and Yıldırım, 2018), or NaI (Li et al., 2009) were 

used. 

 As different from the organics, the inorganic additives were usually used for visible 

light experiments; while 37% of visible light instances in the database were obtained with 

inorganic additives, this number dropped to 8% for UV. Indeed, Na2S-Na2SO3, which was 

the most common choice, improved the average visible light activity from about 400 to 3000 

μmol gcat-1 h-1 while NaOH was effective under UV. The results for other common inorganic 

agents are given in Figure 4.6. 
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4.1.7. Light Sources 

The main purpose of PWS is to utilize the sunlight; hence, the use of UV light may 

not be rational because it constitutes only 4% of sunlight. However, most of the well-

established photocatalysts (like TiO2) work better under UV because of their high band gap. 

Although these materials are usually modified for visible light harvesting, they are also 

studied with UV as part of the efforts to understand PWS.  

About 66 % of data (324 data points) in the database were obtained under UV (mostly 

Hg lamb); the remaining 34 % (158 data points) were generated under visible light (mostly 

Xe arc lamb). The average hydrogen production rate under UV was 1532.6 μmol gcat-1 h-1 

while it was 846.6 μmol gcat-1 h-1 with visible light. Additionally, the hydrogen production 

rate was lower than 100 μmol gcat-1 h-1 in 46% of instances for visible light whereas this 

ratio was only 28% for UV. The ratios of data with the rate higher than 1000 μmol gcat-1 h-

1 were 15 % and 24 % for visible and UV lights respectively.  

 

Figure 4.6. Effects of inorganic sacrificial agents on average hydrogen production rates for 

visible and UV light conditions. 
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4.1.8. Stability of Perovskites 

 The stability of the perovskites used in PWS was also analyzed using the data from 

53 papers reporting stability tests. Although, most of the factors discussed may affect the 

stability, only the effects of perovskites and dopants could be analyzed using available data. 

Even this could be done partially due to non-standard testing procedures; in these tests, the 

experiment is usually shut down after certain run time and re-started for a new run for the 

same time interval several times; the change of activity compared to the first run is used as 

the indicator of stability. Since the initial activity and duration of experiment changes from 

paper to paper, only the percent activity loss could be compared. Figure 4.7 shows the results 

for tantalates; similar results for other perovskites are presented in Figure 4.8, 4.9, and 4.10. 

Clearly, these results are not sufficient to deduce definitive conclusions; however, they 

provide some general idea for the effects of doping. For example, as two works at the bottom 

of Figure 4.7 indicate, bare NaTaO3 had significant loss in its stability after the first run, and 

Sr doping (third example from bottom) did not provide enhancement. However, La doping 

(fourth, five and sixth entries from bottom) improved the stability significantly (La and Cr 

co-doping even increased the performance in the second and third runs).  

4.1.9. Association Rule Mining for Factor Effects on Hydrogen Production 

 Association rule mining was used to determine the variables that may have 

significant effects on hydrogen production. The dataset (UV or visible) was divided into 

three performance classes (low, medium and high performance) as explained in Section 

3.1.1. The analyses were restricted to the one-factor associations to determine simple and 

easy to follow deductions. Table 4.3 shows the top 10 factors (based on lift values) leading 

to high hydrogen production; the list of remaining important factors is presented in Appendix 

A (Table A.1, A.2, A.3, and A.4). 

The highest lift ratio (3.00) for high hydrogen production class for visible light 

belongs to ZnCdSs indicating that this is the most definitive way to have high hydrogen 

production rate. However, all 15 cases with ZnCdSs are already in high class; hence this 

factor is not suitable to appreciate the benefit of the method; instead, a more complicated 

case, for which the data distributed among all three classes, would be more suitable. 
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Figure 4.7. Stability of some tantalates. For each perovskite, bottom bar is the first run, the 

others are repeats in increasing order; *duration of test; **rate in first run (Can and 

Yildirim, 2019). 
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Figure 4.8. Stability of some titanates. For each perovskite, bottom bar is the first run, the 

others are repeats in increasing order;* duration of test;**rate in first run (Can and 

Yildirim, 2019).   
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Figure 4.9. Stability of some niobates. For each perovskite, bottom bar is the first run, the 

others are repeats in increasing order;* duration of test;**rate in first run (Can and 

 Yildirim, 2019). 
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Figure 4.10. Stability of some indium-based perovskites. For each perovskite, bottom bar is 

the first run, the others are repeats in increasing order;* duration of test;**rate in first run 

(Can and Yildirim, 2019). 
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For example, the support of 0.13 (or 13 %) for Na2S as sacrificial agent indicates that 

the fraction of data used Na2S and resulted high hydrogen production under visible light is 

28, which is 13% of total data (28/216). There are total 72 data points with high hydrogen 

production; hence the confidence is 28/72=0.39; i.e. 39% of data having high hydrogen 

production rate involve Na2S. If this ratio was also 39% in entire database, the use of Na2S 

would not favor any class.  However, there are 37 cases with Na2S in entire data base; the 

ratio is 37/212= 0.17, which is much lower than 0.39 % for high class; then the lift is 

0.39/0.17=2.27. This can be also stated as fraction of data with Na2S in high class is 2.29 

times higher than the entire database; this is a strong indicator for the benefit of Na2S.  

As the above example shows, higher lift indicates higher probability for intended 

result while higher support shows higher reliability because the number of data supporting 

this argument is large; we considered the results with the support higher than or equal to 

0.05, which corresponds more than 11 and 16 data point for visible and UV datasets, for 

better generalization. Similar analysis can be also done for the other factors. However, the 

novel preparation methods (second in Table 4.3) denote the collection of more than one 

method; hence, the rule should be interpreted as the new approaches for catalyst preparation 

are somehow paid off.   

The distribution of a data among three classes for a given alternative of a factor can 

be also determined using association rule mining; this can provide further evidence for the 

analysis performed in Section 4.1.1. For example, such an analysis for NaTaOs indicates 

that 63% of data containing these perovskites have high hydrogen production under visible 

light while this value is 30 % and 7 % for medium and low classes respectively. This clearly 

shows that NaTaOs are good choices for visible data. Similar results for the common factors 

are presented in are Appendix (Table A.1, A.2, A.3, and A.4). 
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Table 4.3. Major factors leading high hydrogen production rate. 

LHS       
Production 

rate level 

RHS 

This feature was used in PWS 
belonging to production rate 

levels in LHS  

Support 
This is fraction of all data 
belonging to class in LHS 

and has feature in RHS 

Confidence 
This fraction of 
data in LHS has 

feature in RHS 

Lift  
(This fraction of data in LHS 
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Undoped perovskite name 

=ZnCdS 
0.07 0.21 3.00 

Preparation method 

=novel 
0.13 0.39 2.33 

Sacrificial agent 

=Na2S +Na2SO3 
0.13 0.39 2.27 

Surface Area=  

between 50 and 200 m2/g 
0.07 0.22 2.09 

Calcination time 

=2 hours 
0.05 0.15 1.94 

Undoped perovskite name 

=NaTaOs 
0.08 0.24 1.89 

Promoter 

= no promoter 
0.17 0.51 1.73 

Calcination time 

=no calcination 
0.19 0.57 1.60 

Crystal 

=hexagonal 
0.06 0.18 1.56 

Calcination temperature 

= no calcination 
0.14 0.43 1.48 
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Sacrificial Agent 

=NaNO2 
0.06 0.19 2.33 

Alcohol%= 

 between 10 and 20 % 
0.14 0.43 1.83 

Surface area= 

 between 10 and 15 m2/g 
0.05 0.16 1.46 

Undoped perovskite name 

=NaTaOs 
0.10 0.29 1.45 

Calcination temperature 

=between 1400 and 1500 

K 

0.08 0.25 1.42 

Calcination time  

= no calcination 
0.07 0.22 1.36 

Calcination temperature  

= no calcination 
0.07 0.22 1.36 

Crystal structure 

=octahedral 
0.07 0.20 1.22 

Calcination time =  

between 7 and 10 hours 
0.06 0.17 1.21 

Calcination time  

= 2 hours 
0.07 0.20 1.20 

 



81 

 

4.1.10. Decision Tree Analysis to Determine Conditions for High Hydrogen 

Production 

 Decision tree classification (DT) was applied to UV and visible light data to develop 

potential guidelines and heuristics for future works. The model for visible light is discussed 

below while the model for UV is presented in Appendix (Figure A.1).   

The classification accuracy of the model (Figure 4.11) was found to be 82%, which 

is quite high: the model correctly classified 82 % of data (177 out of 216). The accuracy for 

high, medium and low classes were 76%, 82% and 88% respectively. More detailed 

information on accuracies is given in Appendix (Table A.5). As it will be apparent soon, the 

accuracy of individual branches is also important for rule deduction.  

DT should be read from top to the terminal nodes through branches; the data 

satisfying condition stated in the node are sent to the left branch while the remaining data go 

to right.  In Figure 4.11, DT first divided the dataset by calcination time. Then the data with 

low calcination time were divided again by catalyst preparation method creating the leftmost 

terminal nodes containing 17% of data (37 out of 216) labeled as high with 86% accuracy; 

32 of these 37 data indeed belong to high class (covers 44% of entire data in high class). 

This simple and statistically reliable result should be considered as a heuristic for the future 

studies. Appearance of novel methods in the conditions leading high production rate was 

expected since a similar conclusion was also obtained with association rule mining above.  

If SSR or novel methods were not used for perovskite preparation, the tree further 

divided the data by promoter suggesting that Au and Ag promoted catalyst would perform 

well. Then the divisions continued with A site elements and calcination conditions.  

On the right side, the tree divided the data by A-site of perovskite followed by crystal 

structure and reached the rightmost terminal node containing 24 % data (52 out of 216), and 

labeled it as low performance with a remarkably high accuracy of 92 % (48 of these 52 data 

belongs to low class). This is again a very strong sign that may be used as a heuristic for 

future studies.  Similar analysis can be performed for the branches leading to the other 

terminal nodes with sufficiently large number of data points and accuracy.  
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Figure 4.11. The optimal decision tree for visible light data. 

4.1.11. Random Forest Analysis to Predict Hydrogen Production 

Random forest (RF) regression was used to predict the hydrogen production rate, and 

the predicted versus real rates for training and testing for visible light are presented in Figure 

4.12a and 4.12b respectively; each color in testing plot represents one set in 4-fold cross 

validation. The RMSE and R2 for training were 558.1 and 0.95 for training. However, the 

true indicators for the predictive power are RMSE (1194) and R2 (0.79) for testing, in which 

the model is forced to predict the data not seen before; these values are quite high for a 

dataset constructed form 151 different sources. Although such a model may not be sufficient 

for high accuracy predictions, it can be used for initial assessments. The model for UV data 

was also given in Appendix (Figure A.2). 
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Figure 4.12. Predicted versus actual hydrogen production for random forest model 

for visible light data a) training b) testing. 

4.1.12. Analysis And Modeling of Band Gaps  

 A new dataset (372 data points) was constructed from papers containing the band 

gaps of semiconductors as the output and the predictive variables affecting the material only; 

then it was analyzed using decision tree and random forest methods.  

For decision tree analysis, the dataset was divided into three classes by band gaps as 

visible, UV_A and UV-BC. The confusion matrix is given in Table 4.4 while the optimum 

tree found is in Figure 4.13. The classification accuracy was 78 %, which is quite good, 

while it was 89 %, 56 % and 75% for low, medium, and high classes respectively. Details 

for accuracy levels are also presented in Table 4.4 below. 

The data was first divided by B-site of perovskite, and then the left branch was 

divided by A-side reaching to the leftmost terminal node containing 20% of the data (48% 

of visible light data). Both the number of data and the purity of the node (92%) are 

remarkably high so that this branch can be used as a heuristic for material selection. After 

the first division in the left, the model used B-side doping, and generates the second leftmost 

terminal node with 100% purity covering 5 % of the data; the rule described in this branch 

can be also safely used for the future works.  
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Table 4.4. Confusion matrix for band gap data. 

Actual Data Predictions Prediction  

Class # of data VISIBLE UV_A UV_BC Accuracy % 

VISIBLE 143 127 9 7 88.8% 

UV_A 120 30 69 21 57.5% 

UV_BC 109 4 23 82 75.2% 

On the right, the tree proceeds with further refinement with B-side doping (with type 

and then loading). The first division separated the visible region from the others while the 

second divided UV_A and UV_BC. The purity (79 %) and the reliability (30 % of data, 77 

% of UV_BC data) of the rightmost node is also significantly high.  

Random forest regression was used to predict the band gap from input variables; the 

predicted versus real band gap plots for the optimal model are presented in Figure 4.13b and 

4.13c for training and testing respectively (colors characterizes subsets in cross validation). 

The RMSE and R2 values for training were 0.24 and 0.94 respectively while the average 

results for the testing were 0.51 for RMSE and 0.61 for R2.  Even though model may not be 

sufficient for precise predictions, it has some prediction ability, which can be further 

improved with the addition of new data and used for initial assessment in band gap 

modifications (Irfan et al., 2017; Modak and Ghosh, 2016; Molak and Pilch, 2016; Takata 

and Domen, 2017).  

Models correlating the band gap and the hydrogen production rate were also tested 

but the model fitness was not sufficient. 

4.2. Machine Learning in Photoelectrochemical Water Splitting Literature 

Similar to machine learning analysis of PWS, a comprehensive review of articles 

about photoelectrochemical water splitting was also done by using ML tools. In the 

following sections (from 4.2.1 to 4.2.4), a literature survey for the effective variables in 

PECWS reaction, statistical analysis of data using association rule mining (4.2.5), and the 

random forest prediction of band gap (4.2.6) for semiconducting materials used in PEC are 

presented (BU PhD student Burcu Oral also contributed to the data collection and ML 

analysis). 
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Figure 4.13. Results of the analysis of band gaps a) decision tree constructed for band gaps, 

b) training results of random forest analysis, c) testing results of random forest analysis.  
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4.2.1. Materials for PECWS 

For photoelectrochemical water splitting, light active materials should be used as 

electrodes. Semiconductors are employed as photo electrode materials for 

photoelectrochemical activity.  The position of the valence and the conduction bands of the 

semiconductor determines whether it can be used in reduction or oxidization reactions 

(Zhang et al., 2018).  

Semiconductors can be classified as n-type or p-type according to their majority carrier 

types; p-type semiconductors are hole abundant and generally suitable for reduction of water 

(hydrogen generation) whereas electron abundant n-type semiconductors are suitable for 

oxidation (oxygen generation) (Kment et al., 2017). In our dataset, only the studies on n-

type materials (photo-anodes) were used. 

To enhance the water splitting performance of photo-electrodes, ion-doping, co-catalyst 

loading, nanoparticle/quantum dot sensitization, heterojunction structures and thermal 

treatments are some methods used to change the band gap, electron transport properties, 

crystal structure or band edge structure of the semiconductors (H. Li et al., 2017).  

Metal oxides are the most studied photoanodes due to their good chemical stability 

and low cost (Hassan et al., 2012; Hu et al., 2015; Wang et al., 2013).  Aside being the first 

semiconductor to split water photo electrochemically, TiO2 has been the most studied photo 

anode throughout history (Das et al., 2011). In our dataset 47 different articles, around 29% 

of data (167 instances out of 584), studied TiO2.  It is environmentally friendly, abundant, 

and chemically stable but its large band gap (around 3.2 eV) makes it UV active and the 

band edge structure of TiO2 is not suitable for both hydrogen and oxygen evolution; 

therefore, it requires an external bias to perform overall water splitting (Iwase and Kudo, 

2010). In order to increase the TiO2 activity for photoelectrochemical water splitting; doping, 

co-catalyst loading, sensitization, thermal treatment, composite structures and layer 

structures have been studied. In our dataset, TiO2 is mostly doped with carbon that lowered 

the band gap to 2.7 eV and a mid-gap around 1.6 eV was observed (Shaban and Khan, 2007, 

2008; Xu et al., 2007). Rani et al. doped TiO2 by Fe, Ce and La and showed that the band 

gap of ~2.65 eV could be achieved by Fe doping but the highest improvement in 
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photocurrent density was due to La doping. Other doped ions are Cr (Momeni and Ghayeb, 

2016; Tsai and Teng, 2008), Li (Sánchez-Tovar et al., 2017), Ta (Altomare et al., 2013), Si 

(Dong et al., 2018), W (Jia et al., 2019) and Nb (Das et al., 2011), and they resulted in band 

gap reduction and performance enhancement. Hydrogen doping in the study of Xu et al. 

(Chen Xu et al., 2013), resulted in reduction of TiO2 and created oxygen vacancies, therefore 

improvement in the photocurrent density was observed. In Figure 4.14, it is seen that 

especially carbon and chromium doping had a significant effect on the band gap and 

photocurrent density values on TiO2 compared to undoped TiO2.  

 

Figure 4.14. Effect of doping elements for TiO2 on average band gap.  

As the co-catalyst, Au (Jiang et al., 2018; Wang, et al., 2013; Subramanian et al., 

2017; Zhang et al., 2014), Pt (Ahn et al., 2018; Wang et al., 2012) and Ru (Roy et al., 2011) 

are often used with TiO2 in order to promote charge separation. Graphene oxide (GO) 

(Subramanian et al., 2017), CdS (Su et al., 2013; Wang et al., 2011) CdSe (Ji et al., 2012) 

and g-C3N4 (Liu et al., 2018) nanoparticle decoration of TiO2 was also proved to be effective 

for band gap reduction and better charge separation. It was reported that, when TiO2 was 

coupled with BiVO4 to form a composite structure, the performance was improved by 5 folds 

in the visible region due to effective charge separation (Ho-Kimura et al., 2014). Hybrid 

nanostructures were also shown to improve the performance (Lee et al., 2014). ZnO layer 

over TiO2 resulted in lowering the band gap (Momeni and Ghayeb, 2016) and high efficiency 
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due to better charge separation (Ji et al., 2012; Momeni and Ghayeb, 2016; Sánchez-Tovar 

et al., 2020). W-doped TiO2 coupled with BiVO4 (Jia et al., 2019) showed visible light 

activity and high photoelectrochemical performance due to better charge separation; when 

BiOCl was used, the stability and the performance of TiO2 also increased due to formation 

of p-n junction (Fan et al., 2014). In addition, different phases of TiO2, anatase and rutile, 

were coupled in a core-shell structure in literature, where almost 20 times increase in the 

photocurrent compared to anatase phase was observed due to enhanced charge separation 

(verma Atul, 2018). Thermal treatment and treatment atmosphere play important role in the 

performance of TiO2 photo electrodes. Annealing at the temperatures above 400°C 

(Altomare et al., 2013; Das et al., 2011; Mohajernia et al., 2017; Zhen et al., 2013) showed 

increased conductivity and lower band gap due to rutile presence in the structure. In 

literature, effect of annealing on the crystal structure and the photoelectrochemical 

performance was investigated and it was reported that bi-phased TiO2 nanotube arrays 

increased the performance (Chahrour et al., 2020). Thermal treatment under argon and 

hydrogen (Mohajernia et al., 2017) or ammonia (G. Liu et al., 2012) flow increased light 

absorption and resulted in better PEC performance due to reduction of TiO2.   Other 

treatments such as Al reduction (Cui et al., 2014), H2O2 treatment (Jiang et al., 2015) and 

NaBH4 treatment (Q. Kang et al., 2013) showed improvement in light absorption and charge 

carrier properties of TiO2 anodes.  

Fe2O3 is the second most studied semiconductor in our dataset by 17% data (98 

instances out of 584 from 33 different articles). Its band gap is suitable for visible light 

absorption (2.1 eV) but it has slow charge transfer and high recombination rate (Jun et al., 

2012; Mao, Han, and Park, 2010). In order to overcome the charge transfer problems, Al 

(Fu, Jiang, Zhang, et al., 2014), P (Bu, Gao, Zhang, and Tian, 2019), Pt (Yong-sheng Hu et 

al., 2008), Sn (J. Cai et al., 2016; Ling, Wang, Wheeler, Zhang, and Li, 2011; Natarajan et 

al., 2017), Ti (Fu, Jiang, Liu, et al., 2014; Qian Li et al., 2015; Stanescu et al., 2020; Q. Sun, 

Cheng, Liu, and Qi, 2020; Z. Sun et al., 2020; Yuan et al., 2016) and Zn (W. He, Wu, Li, 

Chen, and Lu, 2020) ions were doped to Fe2O3. Heterostructure formation is another 

approach to increase the charge transfer properties of Fe2O3. SiO2 under layer in Fe2O3 photo 

anode suppressed electron hole recombination hence improved the performance (Kang and 

Kang, 2015). Coating of Fe2O3 by Au (Carraro et al., 2017), FeOOH, LaFeO3 (Fang et al., 

2017), NiO (Bemana and Rashid-Nadimi, 2019), NiOOH (Qiu et al., 2020) and TiO2 
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(Atabaev and Atabaev, 2016; Carraro et al., 2017) layers showed improved charge 

separation and photoelectrochemical performance. As in TiO2, thermal treatment 

temperature and atmosphere affects the performance of Fe2O3 photo anode (Bosso et al., 

2021; Ling et al., 2011; Ramachandran et al., 2020; Wang et al., 2013).  

ZnO is another widely studied semiconductor for PEC water splitting. It has large 

band gap like TiO2, but it has suitable band edge and properties for overall water splitting 

(Ye et al., 2014). It has been studied in 22 different articles corresponding to 10% of the data 

(60 instances out of 584).  It is mostly used in heterojunction structures rather than being 

doped or loaded by co-catalyst. However, doping by carbon (Kochuveedu et al., 2013), 

cobalt (Khan et al., 2019) and lithium (Lee et al., 2016) ions reduced its band gap to visible 

light region as well, and decreased rate of combination due to separation of charges. 

Sensitization by carbon quantum dots (Xiao et al., 2017), Au nanoparticles (Zhang et al., 

2018) and AgSbS2 (Han et al., 2015) also increased the PEC performance due to change in 

band gap and charge separation properties.  Thermal treatment is also important for ZnO 

performance (Sharma et al., 2014); Liu et.al, investigated the effect of annealing between 

350-550 C, and showed that annealing at 450°C could increase the efficiency up to 7.5 times 

compared to unannealed ZnO (Liu et al., 2019). In addition to thermal treatment, the 

treatment environment is also important for developing high performance ZnO photo 

electrodes; it is reported that the structure of ZnO changes with addition of nitrogen gas to 

argon environment during synthesis.   Heterojunction by CuO and Ag, Au metals (Kwon et 

al., 2018), core-shell structure with TiO2 (Ji et al., 2012), ZnFe2O4 (H. Jiang et al., 2020), or 

Ga-ZnO (Xiao et al., 2017) were employed to increase charge separation and visible light 

absorption of ZnO photo anodes.  

BiVO4 is another semiconductor of interest in PEC water splitting applications. Our 

dataset contains 21 articles and 58 instances (10%of total data) of BiVO4 photoelectrode. 

Like ZnO, it is mostly used in heterostructure forms.  It is used with TiO2 (Ho-Kimura et al., 

2014; Jia et al., 2019), WO3 (Saito et al., 2012) and reduced graphene oxide (N. A. Mohamed 

et al., 2020; Subramanyam, Khan, Neeraja Sinha, Suryakala, and Subrahmanyam, 2020) to 

overcome charge transfer problems and increase PEC performance. It is mostly doped with 

higher valence metal ions like Mo (Berglund et al., 2012; Luo et al., 2013; Park et al., 2014; 

Pilli et al., 2011) and W (Berglund et al., 2012; W. Luo et al., 2013) to improve the charge 

separation. Luo et, al. compared doping to Bi3+ and V5+ sites of BiVO4 and reported that 
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doping to V5+ site improved the performance better than doping to Bi3+ site (Luo et al., 

2013).  

WO3 is another attractive candidate for PEC water splitting due to its stability and 

low band gap (~2.6 eV) but it suffers from fast recombination of charges (Kalanur et al., 

2013; Marsen et al., 2007). In our dataset 20 different articles, with 55 instances (9% of the 

data), reported WO3 as photo anode. It is reported that, in high concentration of nitrogen 

doping, PEC performance of WO3 increased (Marsen et al., 2007). Co-catalyst loading of 

PtOx and RuO2 were shown to offer more reduction and oxidation sites for ions and hence 

increase the PEC performance (Ma et al., 2012). Heterojunction composite formation was 

used in order to enhance PEC performance of WO3 by lowering the need for external bias 

and increasing the charge transfer properties. Other than doping, co-catalyst loading (Ahn et 

al., 2018; Han et al., 2015); treatment of WO3 with hydrogen (Wang et al., 2012) and alcohol 

vapour (Hsiao et al., 2011) increased photocurrent density due to formation of oxygen 

vacancies and increased charge transfer rate. WO3 is mostly coupled with BiVO4 since 

BiVO4 can absorb more portion of the solar spectrum and photo generated charge transfer 

from BiVO4 to WO3 increased the PEC efficiency (Hong et al., 2011; Saito et al., 2012; 

Zhang et al., 2012). WO3 was also coupled with reduced graphene oxide (Lin et al., 2013), 

g-C3N4 (Li et al., 2017), TiO2 (Liu et al., 2013) and BiOI (Shi et al., 2018). Optimization of 

thermal treatment temperature was proved to be effective in increasing the photocurrent 

density (Ding and Kim, 2016; Kalanur et al., 2013; Marsen et al., 2007; Qin et al., 2012). 

Besides these photo electrode materials, ~25% of data is composed of various 

semiconductors such as oxides (Qamar et al., 2015; Weng et al., 2014), nitride and 

oxynitride compounds (Alotaibi et al., 2013), perovskites (Ahn et al., 2018; Pinheiro et al., 

2014) and chalcogenides (Bosso et al., 2021; Li et al., 2009; Lu, et al., 2013). 

In Figure 4.15, the effect of top layer for some of the frequently used bottom materials 

is investigated. The average current densities values are obtained from 1 V vs NHE external 

bias condition since it is the most frequently used bias in our dataset. For Fe2O3, it is seen 

that, using TiO2 as a second layer showed improved photocurrent densities compared to 

other types of materials. Similarly, rGO seems to increase the performance when it is used 

with BiVO4, but the data set contains only one case, which is not sufficient to make reliable 

conclusions.  Instead of depositing another layer, some researchers employed co-catalyst for 
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performance enhancement. Semiconductor and co-catalyst pairing with their average 

photocurrent density comparison is given in Figure 4.16. It is seen that the the co-catalysts 

do not seem to be effective for TiO2 and WO3 but provide some increase in performance of 

FeO and ZnO. RuO2 and some other co-catalyst types are effective for ZnO whereas Au 

increased the photocurrent density for Fe2O3. 

4.2.2.  Methods For Semiconductor Synthesis and Electrode Fabrication 

The preparation method affects physical properties of the semiconductors such as 

surface area, band gap, crystal structure etc. The effect of synthesis methods on the band gap 

is analysed by ARM in section 3.2. In our dataset, hydrothermal method is most used 

semiconductor preparation method with 29% data (168 instance out of 584) followed by 

anodization 13% (77 instance), electrodeposition 13% (76 instance), solvothermal method 

7%, sol-gel synthesis 6%, and many other methods with less than 5% data. By hydrothermal 

synthesis, it is possible to obtain nanostructures of TiO2 (Fei et al., 2010; X. Huang et al., 

2020) and porous WO3 (Hou et al., 2016). Qin et, al., synthesized WO3 by hydrothermal 

synthesis, and by varying reaction time, they obtained different length and thickness WO3-

flakes; they observed that thicker flakes showed stronger visible light absorption (Qin et al., 

2012). Optimization of hydrothermal time is important to synthesize the best performing 

semiconductor; some novel materials such as Cu2In2ZnSn3 (Hong et al., 2016), CaBi2O4 

(Wang et al., 2017) and NaInSn2 (Chen et al., 2018) were synthesized this way and showed 

remarkable PEC performance.  
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Figure 4.15. The effect of top layer for some of the frequently used materials in middle 

layer a) ZnO, b) BiVO4, c) WO3, and d) Fe2O3. 

 

Figure 4.16. Effect of co-catalyst using on the photoelectrochemical performance of 

frequently used bottom materials. 

Anodization is used to obtain metal oxide structures from metal foils in our dataset, 

and it is used to prepare Fe2O3, TiO2, Ta2O5 (Zhang et al., 2020) and NbO (Hu et al., 2016; 



93 

 

Shaheen et al., 2016) semiconductors.  Self-assembled titania nanotube arrays (Altomare et 

al., 2013; Mahajan et al., 2008) and nanotube photonic crystal TiO2 (Liu et al., 2017) 

synthesized by anodization showed enhanced PECWS performance and good stability. 

Lucas-Ganados et, al. showed that other than anodization time, rotation speed of the 

electrode was important for the thickness and structure of Fe2O3 (Lucas-Granados et al., 

2017).  

Electrodeposition/electrochemical deposition is similar to anodization, but this time 

precursor solution is deposited on a substrate by applying a potential difference. Chou et al. 

compared the performance of Fe2O3 prepared by electrodeposition and Fe-oxidation. They 

observed that electrodeposition resulted in hematite structure with good light absorption but 

low photocurrent density due to slow charge transfer; however, the oxidation resulted in 

better photocurrent density while its light absorption capacity was low because of the 

magnetite structure, (Chou et al., 2013).  Shi et, al. employed a modified synthesis approach 

using electrodeposition in order to increase the PEC performance; they electrodeposited 

Fe2O3 precursor on polystyrene colloids, and by this way, they could tune thickness by 

electrodeposition time and geometry (Shi et al., 2013).  Zhang et, al. reported that, it was 

also possible to control the amount of nanoparticle decoration or doping percent by adjusting 

the electrodeposition time (Zhang et al., 2018).  

In the synthesis of semiconductors, the ratio of precursors and additional agents are 

important in the result. For example, it was possible to obtain and tune the structure of 

biphasic Cd2SnO4 by addition of urea in different amounts; the junction of crystal structures 

improved PEC performance by reducing surface recombination of electron and holes 

(Deshpande et al., 2014). Similarly, changing the acid type, optimizing the concentration 

and reaction time resulted in performance improvement of BiVO4 photo anode (Iwase and 

Kudo, 2010). 

In Figure 4.17, the effect of synthesis method on the crystal structure and band gap 

energies are given for the most frequent bottom materials used in the dataset. It is seen that 

BiVO4 was used mostly in the monoclinic form and only sol-gel method resulted in different 

crystal structure, tetragonal. The lowest band gap value was observed for tetragonal structure 

of BiVO4 synthesized by sol-gel method. Overall, BiVO4 had the average band gap value of 

2.42 eV, but sol-gel method resulted in average of 2.19 eV. Fe2O3 was used in hexagonal 

and rhombohedral crystal structures in the dataset and lowest band gap value (1.85 eV) was 
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achieved with hexagonal Fe2O3 prepared by hydrothermal method while the overall band 

gap for Fe2O3 was 2.19 eV. For TiO2, mostly anatase phase was utilized (around 60%). It is 

seen that rutile phase had generally lower band gap than anatase.  For WO3, lowest band 

gaps were observed in monoclinic crystal structure prepared by sol-gel synthesis and 

chemical solution route.  The average band gap for all WO3 bottoms in the dataset was 2.57 

eV. ZnO was mostly in hexagonal structure in the dataset; Its average band gap value of ZnO 

is 2.94 eV and electrodeposition method gave the lowest average band gap of 2.63 eV with 

rhombohedral crystal structure.  Figure 4.19 gives more general perspective to the discussion 

above. The colours of bubble represent a certain class (range) of bandgap while their sizes 

show the fraction of data corresponds to that class. For instance, when chemical deposition 

is used in the synthesis of bottom layer, it resulted in medium class band gap (between 2.4-

3 eV). However, the electrodeposition gave mostly lower band gap. Some synthesis methods 

gave only one class of band gap because they were utilized for specific materials. For 

example, the etching is only used for Si material, and it only gives low class band gap 

because Si has the band gap around 1.5 eV. 

In addition to the synthesis of semiconductors, the methods used in the electrode 

fabrication are also important. It is possible to fabricate electrodes in-situ; the conductive 

substrate will be coated as the semiconductor is synthesized. In our dataset 70% of the 

experiments (412 instance) used in-situ fabrication using methods like hydrothermal, sol-

gel, chemical deposition, vapour deposition and electrodeposition. When in-situ is not 

preferred, spin coating (Hsiao et al., 2011; Kochuveedu et al., 2013; Liu et al., 2013; Luo et 

al., 2013; Pilli et al., 2012, 2011; Saito et al., 2012) (50 instance), dip coating (Lin et al., 

2013; Pinheiro et al., 2014; Y. Wang et al., 2017; J. Wei et al., 2018) (15 instance), doctor 

blade (Deshpande et al., 2014; Kelkar et al., 2012; Sfaelou et al., 2016) (14 instance) and 

electrodeposition (Fang et al., 2015; Guo et al., 2017; L. Zhang et al., 2014) (14 instance) 

are used to prepare electrodes from previously synthesized semiconductors. In spin-coating 

and dip coating, the thickness of the coating layer can be controlled via cycle number 

whereas the deposition time plays an important role in methods like electrodeposition as 

explained above. 
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4.2.3.  Light Properties 

Photo electrodes absorb sun light and use the photo-excited electrons for redox 

reactions in water splitting (Bosserez et al., 2015).  The spectrum of sunlight mainly consists 

of visible light (Cho et al., 2011), hence it is important to utilize visible light portion of 

spectrum for high efficiency. In the dataset, different wavelengths and intensities of light are 

used. Increasing the light intensity resulted in photocurrent increase since more photons were 

involved in the excitement of electrons (Hu et al., 2008; Shen et al., 2013; Zhang et al., 

2016). Cut-off filters were used to investigate the performance of photo electrodes under 

different wavelengths, and the improvements in the visible light region were reported using 

such filters (Kitano et al., 2007; Reddy et al., 2019; Y. Sun et al., 2008; Zhao et al., 2007). 

The widely used type of light is Xe lamp with 487 instances (82%) in the dataset. The 

intensity varies between 0.06 mW/cm2 and 1000 mW/cm2, and mostly 100 mW/cm2 is used 

(404 instance, 69%). The use of AM 1.5G filter, which is a standard used to simulate solar 

light on the earth’s surface (Gueymard et al., 2002), was reported in 376 instances (64%). 

4.2.4.  Electrolyte Properties 

For a good photoelectrochemical performance, the choice of electrolyte is important 

since reaction on the catalyst surface is affected by the concentration, pH and type of ions 

(Ding et al., 2017). Electrolytes are the media for ion transfer that can also prevent electron-

hole recombination (Abe, 2010). Ion types in the electrolyte is important for the water 

splitting performance of electrodes. For TiO2, the photoelectrochemical performance was 

highest for Li+ containing alkaline electrolytes compared to the that of Na+ and K+ 

containing alternatives (C. Ding et al., 2015); however, when Li+ was used instead of Na+, 

the injection of Li+ ions to mesostructure was easier and resulted in electrochromism on WO3 

electrodes (Sfaelou et al., 2016). Oxidation/reduction potentials of ions are important to 

achieve effective water splitting. For example, anions like iodine and bromide are oxidized 

easier than water, therefore they should not be used in electrolytes to have water oxidation 

reaction; however, the chlorine ions can be used because they have higher oxidation potential 

than water (Crawford et al., 2009). For ZnO, it was reported that using Na2SO3 electrolyte 

instead of NaSO4 resulted in 6 times higher water splitting performance due to consumption 

of holes by SO3
2- ions, which promotes electron-hole separation (Guo et al., 2018).  In Figure 

4.18, it is clearly seen that, in order to maximize the performance of the photo electrodes, 
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different electrolytes must be used depending to the electrolyte material type; WO3 gave 

better results in acidic conditions whereas for TiO2 similar results were obtained in basic 

solutions. As well as concentration, pH of the electrolyte is important since the gas evolution 

reactions and the rate determining steps depend on pH (Jozwiak et al., 2020).  Yourey et, 

al., used electrolytes with different pH values (7, 3, and 1) for CuWO4, and observed that, 

as the pH of buffered solution decreases, current decreases (Yourey and Bartlett, 2011).  

Additives can also be used in electrolytes to promote photoelectrochemical 

performance of the electrodes. These additives work as electron donors (hole scavenger) or 

acceptors and prevent electron-hole recombination. For example, methanol is widely used 

as electron donor in both photocatalytic and photoelectrochemical water splitting (Pinheiro 

et al., 2014). Yourey and Bartlett used methanol as additive since it is a strong electron 

donor, and doubled the photocurrent achieved by CuWO4 photoelectrode (Yourey and 

Bartlett, 2011). Similarly, ethanol is employed as additive for photoelectrochemical system 

with WO3 photoelectrode and photocurrent was increased (Sfaelou et al., 2016). H2O2 is 

another type of additive that can be used to increase the photocurrent (Bohra and Smith, 

2015; Bu et al., 2019; Hill and Choi, 2013; L. Zhang et al., 2014), but not preferred due to 

its corrosive nature (Kuo and Klabunde, 2012). Other additives used in the dataset are 

ethylene glycol (Momeni et al., 2020; Chen Xu et al., 2013) and EDTA (J. Cai et al., 2016). 

Na2S and Na2SO3 additives were mostly used as hole scavenger to promote sulphide 

oxidation on the working electrode (Berglund et al., 2012; Cho et al., 2011; Hong et al., 

2016; Park et al., 2014; Zhang et al., 2014; Zhang et al., 2016). 

In our dataset, NaOH is the most dominant electrolyte with 169 instance (29%), 

followed by Na2SO4 with 147 instance (25%) and then KOH with 111 instance (19%); other 

electrolyte types are less than 5% of the overall dataset. For additives, 481 instances did not 

use any additive in the electrolyte and 38 instances out of 102 (37%) used Na2SO3 as 

additional electrolyte/hole scavenger. 
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Figure 4.17. The effect of synthesis method on the crystal structure and band gap are 

given for the most frequent bottom materials, a) TiO2, b) WO3, c) Fe2O3, d) BiVO4, and e) 

ZnO. 
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Figure 4.18. The effect of electrolytes for different semiconductors, a) TiO2 and b) WO3. 

4.2.5. Association Rule Mining 

Association rule mining (ARM) helps to reveal the previously unknown or frequently 

occurring if-then relations between input and output variables within a large dataset. ARM 

algorithm is appropriate for only categorical dataset and if there are continuous variables in 

the dataset they should be discretized in a meaningful way. For this study, the details of 

discretization were explained in Section 3.1.2. The terms related with ARM should be 

clarified to interpret the rules created. At the beginning two variables (possibly relatable) 

should be determined as antecedent (left hand side – LHS) and consequent (right hand side 

– RHS); antecedent and consequent can be considered as “if” and “then” part of the 

statement, respectively. In the rule below, the preparation method of anodization for the first 

layer of the semiconductor was selected as LHS and the band gap class of “3high” was 

chosen as RHS. By that rule, it was aimed to learn if the high band gap value of 

semiconductor is related with the preparation method of anodization or not; if there is a 

relation, the probability of seeing together in the population compared to the probability of 

seeing them individually can be calculated as 
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{𝑀𝑒𝑡ℎ𝑜𝑑. 𝐼 = 𝑎𝑛𝑜𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛} → {𝐵𝑎𝑛𝑑𝐺𝑎𝑝𝐶𝑙𝑎𝑠𝑠 = 3ℎ𝑖𝑔ℎ} 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡: 0.095 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 0.72  𝑙𝑖𝑓𝑡: 2.25. 

For qualitative interpretation, the terms of support, confidence, and lift should be 

clarified. The support is the probability of instances that meet both conditions in RHS and 

LHS in the population. For example, the number of instances in which anodization was 

selected as the bottom layer preparation method and the band gap value of synthesized 

semiconductor is higher than 3 eV is 38. Hence, the support value of 0.095 can be found by 

dividing 38 to 401 (total number of instances). The confidence is the ratio of the number of 

instances that meet the conditions defined in RHS and LHS to the number of instances that 

meet the condition in only LHS. In the given example below the first number is 38 as 

explained before, and the number of instances used anodization is 53 in total; so, the 

confidence 0.72 equals to 38 over 53. In ARM, the minimum support (0.0001) and 

confidence (0.0001) values were specified to eliminate the rare and irrelevant association 

rules. The algorithm gives also lift for each rule developed to make a comparison. The lift 

equals to the division of confidence with the fraction of instances meet the restriction in 

RHS. In the previous example the lift value of 2.25 can be calculated by dividing 0.72 (the 

confidence) to the fraction of instances have low band gap value in population (128/401) 

which is 0.32.  In general, lift of one indicates no relation between the conditions defined in 

RHS and LHS while the lift larger (smaller) than one implies a positive (negative) relation 

between the conditions in RHS and LHS. Therefore, by considering the example above, it 

can be concluded that if anodization is selected as the preparation method for the bottom 

layer of the semiconductor, it is more likely (2.25 times more likely than being in population) 

to get a semiconductor having band gap value greater than 3 eV. In the Figure 4.19, the x 

axis represents bottom layer preparation method, y axis stands for the band gap classes, and 

the bubble size is correlated with the lift value of the association rule in which x-coordinate 

represents LHS and y-coordinate represents RHS.  

The red, yellow, and purple colors refer to the band gap classes of 1low, 2medium, 

and 3high, respectively. The effect of different bottom layer preparation methods on band 

gap value of semiconductor synthesized can be observed and compared by investigating 

Figure 4.19. For example, if the first layer is prepared by chemGro, that semiconductor tend 

to have a band gap value smaller than 2.40 eV (1low class), since the radius of red bubble is 

bigger than the radius of yellow and purple bubbles. 
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Figure 4.19. The effect of bottom layer preparation method on the band gap value of that 

semiconductor. 

4.2.6. Band Gap Prediction by Random Forest Algorithm 

Band gap can be assumed as one of the key factors in photo active reactions. 

However, band gap values of working electrodes were missing for some of the articles (78 

out of 479 unique experiments) in the dataset. Those missing values were predicted by using 

random forest algorithm successfully. The input variables were selected as electrode 

materials, preparation methods, treatment conditions and calcination specifications, which 

are known as effective on band gap of a semiconductor. As explained in the Computational 

Details section, several ntree and nodesize values were tested to find the optimum RF model 

with the highest accuracy and lowest complexity. The 5-fold cross validation procedure was 

applied on 401 instances with known band gap values; 100 instances (out of 401) were 

defined as testing subset while 301 instances (out of 401) were divided into five subsets to 

be used in 5-fold CV. By evaluating the results of 5-fold CV procedure, the ntree and 

nodesize were determined as 20 and 5, respectively. The average validation (average of 5 

folds) error, RMSE, and R2 were calculated as 0.20, 0.31 and 0.61; while the testing error, 

RMSE, and R2 were evaluated as 0.12, 0.17, and 0.87, respectively. In Figure 4.20 the 

predicted versus real band gap values were given for validation and testing.  
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Figure 4.20. Predicted versus real band gap values by using random forest model for a) 

validation set, b) testing set. 

In Figure 4.21a and Figure 4.21b the input variables vs the reduction in sum of 

squared errors (IncNodePurity), and the percentage increase in mean square error 

(%IncMSE) were given, respectively. Those IncNodePurity and %IncMSE values can be 

considered as their relative importance or contribution to the model improvement (see 

Appendix B for details). As can be seen from both Figure 4.21a and Figure 4.21b, the 

material used, the doping element and the preparation method for the bottom layer is very 

effective on the band gap prediction of the semiconductor used in PEC studies. 

4.2.7. Band Gap Classification by Decision Tree Algorithm 

As explained in Section 3.1.2, several DT models were created by changing the cp 

(complexity parameter) in a way that the minimum validation error with the simplest tree 

could be obtained. In Figure 4.22 the optimum decision tree for band gap classification with 

a cp value of 0.1 was given. It should be noted that the given tree developed by using the 

instances except those in testing subset. 
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Figure 4.21. The input variables vs a) the reduction in sum of squared errors 

(IncNodePurity) and b) the percentage increase in mean square error (%IncMSE). 
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Figure 4.22. The decision tree for band gap classification. 

The regular testing accuracy of the model is 72%, and the balanced testing accuracy 

(explained in Appendix B) is computed as 75%; the small difference between those values 

implies the distribution of the instances through classes are well balanced. The model 

predicted the instances in class 1low, 2medium, and 3high with the accuracies of 60%, 70%, 

and 95%, respectively (the confusion matrix given in Appendix Table B.3 with details).  

In Figure 4.22, the nodes containing instances with mostly low band gap values (class 

1low) are colored as red while those having mostly high band gap values (class 3high) are 

purple; the nodes contain instances with medium band gap values are indicated as green. The 

colors of the nodes become darker from root to the leaf nodes, i.e., with increasing size of 

the tree. The first line in a node indicates the band gap class of that node which is determined 

with majority voting. The second line gives the real fractions of each band gap class in that 

node and the last line is the percentage of the instances existed in that node among total 

instances. For example, in Figure 4.22, the band gap class of first node is decided as 3high 

since it includes 38% instances belonging 3high class. Then the branching starts with the 

first rule of whether the bottom layer includes some definite semiconductors or not; and if 

those specified semiconductors are in the bottom layer, then the tree continues to grow 

leftward, if not then it goes to the rightward. The decision tree should be followed like this 

from roof to the leaf (terminal) nodes. As explained before in the terminal node the first line 

represents the band gap class. For example, in node 4 the tree indicates that if the previous 

statements are answered as “yes” then the band gap of semiconductor obtained will be in 

1low class. The accuracy of that decision equals to the real fraction of the instances in 1low 

class in node 4, which is 0.85. The reliability of that rule can be also evaluated with the 
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number of instances meeting that condition; in node 4 it is declared that 26% (78 out of 301) 

of instances meet those conditions (rules).  

4.2.8. Photocurrent Density at Bias of 1 V Classification by Decision Tree Algorithm 

Due to photocurrent density results being a large dataset, a reliable regression model 

for photocurrent density prediction could not be developed. Therefore, the dataset was 

simplified by only taking one bias value (1 V vs RHE since it is the most repeated one); 438 

instances correspond to this filtering. In the development of random forest regression model, 

the same steps explained in the computational details were followed. The optimum 

parameters were found to be 68 for number of trees and 18 for nodesize with validation error, 

RMSE and R2 of 0.60, 1.07 and 0.70 and testing error, RMSE and R2 of 1.3, 1.67 and 0.50. 

When Figure 4.23 is investigated, it is seen that in training data model tends to predict lower 

photocurrent density values.  

4.2.9. Photocurrent Density Classification  

In classification of photocurrent density values, both random forest and decision tree 

algorithms were utilized. Details about RF classification is given in Appendix Table B.4. 

The model has high accuracy in validation set and good predictive power for high 

photocurrent density class (class A). Lower prediction power of class B is expected because 

middle classes tend to have leaks to other classes. From variable importance graph it is seen 

that in classification of photocurrent density, bias value, pH and molarity of the electrolyte 

and band gap are important decision variables.  

Since RF algorithm is a black box model, it only gives insights about important 

variables but fails to return heuristics for achieving high photocurrent density values. 

Therefore, a decision tree model is also developed. In Table 4.5, the confusion matrix for 

decision tree model of the photocurrent density is given. When recall and precision values 

are analyzed, it is seen that model fails to predict medium class (B) correctly, which is 

usually the case due to the leaks from both sides, but the prediction of high and low classes 

(A and C respectively) are reasonably well. 
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Figure 4.23. Predicted versus actual photocurrent values by using random forest model for 

a) validation sets, b) testing set. 

Table 4.5. The confusion matrix for decision tree model for photocurrent density prediction. 

 
Overall 

Accuracy 

Real 

Class 

Total 

number 

Predicted Class Class Accuracy 

(Recall) A B C 

Validatio

n 
0.61 

A 2671 
197

7 
438 256 0.74 

B 2623 908 
106

3 
652 0.40 

C 2622 326 469 
182

7 
0.70 

 Precision 0.62 0.54 0.67  

Test 0.54 

A 865 543 187 135 0.63 

B 909 276 348 285 0.38 

C 869 129 222 518 0.60 

 Precision 0.57 0.46 0.55  
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In Figure 4.24, the optimum decision tree model is given (cp=0.01). When the rules 

are read from top node to the bottom, some general trends can be observed for the high 

performance (if the number of data and the purity of the node are high). For example, it can 

be said that if the applied bias is less than 0.99 V and the molarity of the electrolyte is greater 

than 4 M, the tree results in class A (representing high class) with 0.92 purity suggesting that 

these combinations can be considered as a reliable rule to follow. It can be inferred that the 

bottom material of the photo anode, its synthesis method and electrolyte choice are important 

decision variables in producing high photocurrent densities. 

 

Figure 4.24. The decision tree for current density classification. 
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4.3. Machine Learning for Predicting Water Solubility in Ionic Liquids 

The dataset for water solubility in ionic liquids was built computationally by Ahsan 

Jalal (PhD in Chemical Engineering, Koc University, Istanbul); the water solubility in ILs 

was computed by COSMO-RS while the molecular descriptors for the individual cations and 

anions were determined by semi-empirical PM3 method. Then the dataset was analyzed with 

machine learning tools, and the information extracted from ML models was compared with 

the literature to verify the models developed (BU undergraduate student İrem Gülçin 

Zırhlıoğlu also contributed to the development of deep learning models). The results given 

in Section 4.3 has been published as a scientific article (Can et al., 2021) and revised for this 

thesis. 

4.3.1. Pre-analysis of Data  

Before implementing the ML algorithms mentioned above, some simple descriptive 

statistics were used to understand the data structure better and identify some basic patterns 

if there were any. For this purpose, the data were divided into certain groups using the range 

of descriptors, and the average solubility in each group were monitored against the bin 

average of descriptors so that the effects of each specific descriptor could be seen clearly 

(see Table C.3 in Appendix for the bin ranges). The change of average solubility is presented 

as the function of bin average of cation descriptors in Figure 4.25; the ball colors represent 

individual cation groups as given at the bottom of the Figure 4.25 while the corresponding 

sizes of the balls represent the number of ILs in that group with the given bin average. Figure 

4.25 indicates that the water solubility in phosphonium group ILs is generally higher than 

the ILs in other groups while the lower LUMO energy, higher dipole, higher HBD and higher 

HBA count seem to promote lower water solubility. We also analyzed the dataset to see 

whether the values of some cations descriptors significantly differ in cations groups in a way 

that it may explain the patterns observed in Figure 4.25. Indeed, the range of seven 

descriptors (MW, CPK ovality, Polarizability, HBA count, HBD count, CPK Area and ZPE) 

are clearly distinguishable (lower or higher) for phosphonium group ILs, which dissolve 

water more compared to others. However, high LUMO energy level, low dipole, low HBA 

count and HDB count, which seem to be good for lower water solubility, are not clearly 

assignable to any specific cation groups (see Figure C.1 in Appendix). Hence, it may be 

concluded from the pre-analysis that the descriptors seem to account the differences in the 
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water solubility in ILs with different cation groups even though they cannot be directly 

related to any functional cations groups (such as alky groups, halogens etc.) as mentioned in 

Introduction. This result is probably because the ILs under the same cation groups have 

significant differences in their behavior depending on the properties of specific cation and 

anion as well as their combined effects; the ARM and decision tree analysis in the following 

section are more suitable to determine such specific effects.  

4.3.2. Analysis of Descriptor Effects by Association Rule Mining  

ARM was used to analyze the relations between the IL descriptors and the 

corresponding water solubility in the entire dataset as well as the subsets for the individual 

cation groups (i.e., IL families). The water solubility values (i.e., output) were divided into 

three classes as described in Computational details (class A for instances with 1.5 mol/mol 

and lower solubility, class C for instances with 15 mol/mol and higher solubility and class 

B for remaining data). The numerical cation and anion descriptors were also discretized in 

10 categories as it was already discussed above (and presented in the Table C.3 in Appendix). 

The results obtained for the dataset consisting of the imidazolium family is given in Table 

4.6 together with the values of the corresponding support, confidence, lift and count, which 

are the major parameters in ARM. Only the descriptor values having a lift value higher than 

one is given here because this level is a critical indicator as it will be apparent below; the 

complete list of factors for all IL families were given in supplementary material file of our 

article published recently (Can et al., 2021). Here, support shows the fraction of instances 

that meet the conditions in the second (descriptors) and the third (performance class) 

columns in the dataset. For example, there are 205 ILs meeting the conditions that anion 

LUMO is greater than or equal to 1 eV and less than 2 eV, and solubility is in low class (less 

than 1.5 mol/mol); this result leads to the support values of 205/4059=0.0505 (4059 is the 

total number of imidazolium ILs as given in Table 3.8) as shown in first raw in Table 4.6.  

The confidence is the fraction of instances that meet the conditions in the second column (1 

eV ≤ anion LUMO<2 eV) and the third column (low solubility) to total number of data 

having 1 eV ≤ anion LUMO< 2 eV in entire imidazolium dataset. Then, the confidence is 

205 / 205 = 1.00 indicating that water solubility is low in all ILs with this LUMO  
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Figure 4.25. Effects of cation descriptors on average water solubility for various IL groups 

(See Table C.3 in Appendix for the range of bins used for the average values of 

descriptors). 

level. Finally, the lift is calculated by dividing the confidence with the fraction of instances 

meeting the performance in column 3 (i.e., fraction of low solubility ILs in entire 

imidazolium dataset as given in Table 3.8 as 1495/4059=0.368). Hence, the lift can be 

calculated for 1 eV ≤anion LUMO< 2 eV as 1/0.368 =2.72 (205/205)/(1495/4059). This 

result means that the probability of having low water solubility is 2.72 times higher in ILs 

with 2 eV > anion LUMO ≥ 1 eV than all ILs in the imidazolium dataset; hence, having an 

anion with this LUMO range is favorable for low water solubility. As can be clearly seen 

from this example, the factors having the positive impact on the desired outcome will have 

the lift value of higher than one, and the higher values are better. Similar discussion can be 

carried out for all entries in Table 4.6.  
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Table 4.6 clearly indicates that the anion properties are much more influential for 

water solubility in imidazolium ILs; this inference was also found to be the case for the other 

cation groups as well (see Supplementary Material file of the related article (Can et al., 

2021)). Hence, we also tested whether anion effects can be generalized to the entire dataset 

without dividing into cation groups, and obtained the results given in Table 4.7. Although 

the exact order is not the same (for example, instead of anion LUMO, anion HOMO has the 

highest lift here); the dominance of the anion characteristics is also quite clear in the entire 

dataset.  

Then, we inspected the results further, and noticed that, regardless of the cation used, 

about one-third of the anions result in ILs with mostly low (and rarely medium but never 

high) solubility while approximately one-third gave ILs with mostly high (and rarely 

medium but never low) solubility. The remaining one third form mostly moderate water 

solubility (and rarely low or high but never both). The results are presented in Figure 4.26 

for all solubility levels; the ball sizes denote the number of ILs synthesized with that anion 

so that the relative frequency of these anions in the dataset can be also seen (not all anions 

formed IL with all cations; hence, they are not represented in equal numbers in the database).  

As explained in Computational details, the low, moderate, and high solubility 

subsets, which were obtained by dividing into three equal parts based on solubility; this class 

structure seems to also divide the anions approximately the same way as the further indicator 

for the deterministic role of anions for solubility. The presence of small fraction of ILs in 

the neighbors of the dominant class for an anion in Figure 4.26 merely indicates that the low, 

medium, and high solubility ranges for individual anions are not exactly the same as the 

entire set (but they are quite close; hence only small fractions of data may be placed to a 

neighboring classes).   

The anions that form ILs with low water solubility have relatively higher molecular 

weights, lower HOMO, lower LUMO, and lower dipole values than the other ILs in the 

dataset. This inference can be explained using Koopman’s theorem stating that the negative 

HOMO and the negative LUMO energies are directly related to ionization potential and 

electron affinity respectively (Zhan et al., 2003). According to Shriver and Atkins, if a 

molecule has a very high electron affinity and/or very high ionization energy, that molecule 

is also highly electronegative (Atkins and Paula, 2006). Consequently, it can be deduced that 
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negative HOMO and negative LUMO energies are positively correlated with the 

electronegativity. It should be also considered that the polarity of a molecule could be 

derived and IUPAC labels all polar compounds as hydrophilic while nonpolar compounds 

are classified as hydrophobic (Galvert, 1990). Hence, we posit that negative HOMO and 

negative LUMO energies can be also directly linked to hydrophilicity. Similarly, the dipole 

moment is also a measure of the polarity and therefore hydrophilicity (Blaber, 2014) while 

the electronegativity decreases with the increasing size of the atoms as can be also clearly 

observed in the periodic table; consequently, the molecular weight should also affect the 

hydrophilicity positively. Finally, it is also known that the anion part is effective in the 

hydrophobic or hydrophilic behavior of the IL (Ranke et al., 2009), and the ILs with a 

hydrophilic anion has relatively higher water solubility than those with hydrophobic anions 

(Boruń, 2019; Isosaari et al., 2019; Lawal et al., 2019; Marcinkowska et al., 2019; Nawała 

et al., 2018; Sajid, 2019; Verma et al., 2019). Indeed, most of the anions in Figure 4.26 upper 

panel are hydrophobic while the anions in Figure 4.26 lower panel have hydrophilic 

character explaining the corresponding capacity of resulting IL toward water. As the result, 

our finding related to the desired anion properties for low water solubility (or high solubility 

as well) are in close agreement with the theoretical and experimental evidence reported in 

literature. 

4.3.3. Heuristics for Cation/Anion Pairing by Decision Tree  

As explained in the Section 3.1.3, the datasets were divided into three classes in water 

solubility: 0-1.5 mol/mol (including 1.5 mol/mol) as class A, 1.5-15 mol/mol (including 15 

mol/mol) as class B, and higher than 15 mol/mol as class C. According to this division, the 

imidazolium data set contained 1499 instances in class A, 1288 instances in class B and 1272 

instances in class C (see Table 3.8). Since the number of instances in classes are quite close 

to each other, we did not have any precaution (like random sampling) for class imbalance 

problem (Bramer, 2008) during tree construction; however, we calculated the balanced 

accuracy for the optimum model to verify that the class imbalance problem was indeed not 

serious (given below). Before starting the analysis, 25% of the data was randomly selected 

as the test set while the remaining 75% was used for model construction; the 5-fold cross 

validation procedure (i.e., 60% of data was used for training and 15% as validation), as 

explained in Section 3.1.3. After all the model parameters were decided trough 5-fold cross 
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validation procedure (i.e., after the model was fully constructed), the classification accuracy 

of the model was tested using the 25% testing data, which was not seen by the model during 

construction. 

Table 4.6. Association rules leading class A (low solubility) for imidazolium dataset. 

LHSa RHSb Supportc Confidenced Lifte Countf 

{2 eV>Anion.E.LUMO ≥1 eV} 

C
la

ss
 A

 (
so

lu
b
il

it
y
 <

 1
.5

 m
o
l/

m
o
l)

 

0.05 1.00 2.72 205 

{-9 eV>Anion.E.HOMO} 0.05 1.00 2.72 205 

{-7eV>Anion.E.HOMO≥-8 eV} 0.09 1.00 2.72 369 

{3 debye>Anion.Dipole≥1 debye} 0.10 0.91 2.48 412 

{Anion.CPK.Area>260 Å²)} 0.09 0.85 2.30 348 

{300 amu>Anion.MW≥250 amu} 0.06 0.78 2.13 225 

{Anion.HBA.Count=0} 0.16 0.77 2.09 630 

{1 debye>Anion.Dipole} 0.20 0.74 2.02 794 

{3 eV>Anion.E.LUMO≥2 eV} 0.07 0.70 1.90 287 

{50 kJ/mol>Anion.ZPE} 0.12 0.64 1.73 469 

{140 Å²)>Anion.CPK.Area≥120 Å²} 0.08 0.62 1.69 332 

{-6 eV>Anion.E.HOMO≥-7 eV} 0.12 0.60 1.63 469 

{1 eV>Anion.E.LUMO} 0.05 0.60 1.62 220 

{120 Å²>Anion.CPK.Area≥100 Å²} 0.07 0.55 1.48 291 

{49>Anion.Polarizability≥46} 0.12 0.53 1.44 501 

{5 eV>Anion.E.LUMO≥4 eV} 0.07 0.49 1.33 281 

{220 Å²>Anion.CPK.Area≥180 Å²} 0.05 0.47 1.29 214 

{55>Anion.Polarizability≥52} 0.05 0.47 1.27 211 

{Cation.CPK.Ovality≥1.6} 0.06 0.44 1.20 262 

{Anion.HBD.Count=0} 0.36 0.44 1.19 1475 

{Cation.E.HOMO≥-12.5 eV} 0.06 0.43 1.17 255 
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Table 4.6. Association rules leading class A (low solubility) for imidazolium dataset. 

(cont.) 

LHSa RHSb Supportc Confidenced Lifte Countf 

{100 kJ/mol>Anion.ZPE≥50 kJ/mol} 

 

0.06 0.43 1.16 245 

{Anion.HBA.Count=4} 0.11 0.42 1.14 432 

{200 amu>Anion.MW≥150 amu} 0.09 0.39 1.07 371 

{1.24>Anion.CPK.Ovality≥1.18} 0.08 0.39 1.05 333 

{1250 kJ/mol>Cation.ZPE≥1000 kJ/mol} 0.06 0.39 1.05 229 

{-12.5 eV>Cation.E.HOMO≥-13 eV} 0.07 0.39 1.05 267 

{65>Cation.Polarizability≥60} 0.07 0.38 1.03 300 

{350 Å²>Cation.CPK.Area≥300 Å²} 0.07 0.38 1.03 300 

{250 amu>Cation.MW≥200 amu} 0.07 0.38 1.03 300 

{Cation.HBD.Count=0} 0.27 0.38 1.02 1077 

{15 debye>Cation.Dipole≥10 debye} 0.05 0.37 1.01 222 

{-4.75 eV>Cation.E.LUMO≥-5 eV} 0.25 0.37 1.01 998 

a The  features of anion or cation which gives high solubility in related dataset 
b Solubility level 

c This is the fraction of all data belonging to class in RHS and has feature in LHS 
d This fraction of data in RHS has feature in LHS 

e This fraction of data in RHS has a feature in LHS )/ (this fraction of data in all data has a feature in LHS 
f The # of instances having the factors in LHS and belonging to the efficiency class in RHS 
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Table 4.7. Association rules leading class A (low solubility) for entire dataset. 

LHS RHS Support Confidence Lift Count 

{-7 eV>Anion.E.HOMO≥-8 eV} 

C
la

ss
 A

 (
so

lu
b

il
it

y
 <

 1
.5

 m
o

l/
m

o
l)

 

0.09 0.97 2.73 1421 

{3 debye>Anion.Dipole≥1 debye} 0.10 0.88 2.48 1581 

{Anion.CPK.Area>260 Å²} 0.08 0.83 2.32 1345 

{300 amu>Anion.MW≥250 amu} 0.05 0.76 2.12 862 

{Anion.HBA.Count=0} 0.15 0.74 2.09 2414 

{1 debye>Anion.Dipole} 0.19 0.72 2.02 3035 

{3 eV>Anion.E.LUMO≥2 eV} 0.07 0.68 1.92 1114 

{50 kJ/mol>Anion.ZPE} 0.11 0.61 1.72 1788 

{140 Å²>Anion.CPK.Area≥120 Å²} 0.08 0.60 1.70 1280 

{-6 eV>Anion.E.HOMO≥-7 eV} 0.11 0.58 1.63 1793 

{1 eV>Anion.E.LUMO} 0.05 0.58 1.62 846 

{120 Å²>Anion.CPK.Area≥100 Å²} 0.07 0.53 1.49 1119 

{49>Anion.Polarizability≥46} 0.12 0.52 1.46 1939 

{5 eV>Anion.E.LUMO≥4 eV} 0.07 0.47 1.31 1065 

{220 Å²>Anion.CPK.Area≥180 Å²} 0.05 0.45 1.27 808 

{Cation.CPK.Ovality≥1.6} 0.07 0.42 1.20 1177 

{Anion.HBD.Count=0} 0.35 0.42 1.19 5667 

{100 kJ/mol>Anion.ZPE≥50 kJ/mol} 0.06 0.42 1.17 948 

{Anion.HBA.Count=4} 0.10 0.41 1.15 1658 

{-4.25 eV>Cation.E.LUMO≥4.5 eV} 0.08 0.38 1.08 1252 

{200 amu>Anion.MW≥150 amu} 0.09 0.38 1.07 1424 

{1.24>Anion.CPK.Ovality≥1.18} 0.08 0.38 1.06 1289 

{-13.5 eV>Cation.E.HOMO≥-14 eV} 0.07 0.37 1.04 1135 

{Cation.HBD.Count=0} 0.29 0.37 1.03 4646 

{65>Cation.Polarizability>=60} 0.06 0.36 1.02 932 

{-4.75 eV>Cation.E.LUMO≥-5 eV} 0.10 0.36 1.01 1562 
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Figure 4.26. Distribution of anions leading various solubility classes. Upper panel shows 

high water solubility class (class C) while middle and lower panels indicate intermediate 

(class B) and low water solubility (class A) classes respectively (A# represents the 

individual anions; the list of anions corresponding the index number # is given in 

Appendix C). 

Various DT models were created by changing cp (the complexity parameters) in a 

way that the minimum validation error could be obtained. The DT model given in Figure 

4.27, with a cp value of 0.011, was found to be optimum for the imidazolium dataset. The 

testing accuracy of the model is 92.2%, which is incredibly high indicating the high 

predictive power of the model. The balanced accuracy (see Appendix B for details) was 

computed as 92.0%, which is quite close to testing accuracy indicating that we do not have 

a serious class imbalance problem. The model predicted the instances in class A with the 

accuracy of 94.3% while the B and C classes were predicted with an accuracy of 88.3% and 

93.6% respectively; it is expected to have a lower accuracy for class B because of the 

misplaced data from both A and C sides. The confusion matrix, which contains the class 

recalls (fraction of data in class X that was correctly classified as class X) and class 

precisions (fraction of actual class X cases in the data that were classified as class X) are 

presented in Table C.4-C.11 in Appendix. The higher prediction accuracy for the class A is 
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more desirable because we would like to have heuristic rules for this class (if one is interested 

in high solubility, the accuracy of class C is also remarkably good). The purity of a terminal 

node in class A (i.e., high fraction of class A data in that specific node) is also important. 

Since the tree split the data using majority voting, the high purity of a terminal node in 

desired class indicates that the criteria (rules) used for splitting the data through the branch 

are identified correctly to promote that class performance (meanwhile the lower fraction of 

other classes will be incorrectly placed to that node). Consequently, if a node has higher 

purity in class A, the rules that will be deduced from that branch will be more reliable. As 

can be seen from Figure 4.27, and as will be more apparent below, the purity of the terminal 

nodes containing class A ILs is very high.  

In Figure 4.27, the nodes containing mostly class A ILs are colored as green while 

those having mostly class C instances are red; the nodes with class B majority are marked 

as yellow. The colors of the nodes become darker with increasing depth (of the tree because 

purity increases). The first line in a node indicates the index for the majority class while the 

second line shows the fraction of class A, B, and C in that node respectively; the percentage 

in the last line represents the fraction of data obeying the rules described in that branch from 

top to down up to that node. The statement just below the node refers to the conditions used 

for splitting after that node; the branch on the left-hand side contains the data obeying the 

rule, while the data on the right do just the opposite.  

The first node has the total imidazolium dataset, which is labelled as A because this 

class has the highest number of ILs (37%, 1499/4095) in the entire dataset. The branching 

starts with the value of anion HOMO (eV) and continues to the left if anion HOMO is lower 

than -6.3 eV followed by the anion ZPE reaching to the left most terminal node (node 4) if 

the anion ZPE is smaller than 509 kJ/mol. This node contains 25% of data, which are all 

class A (100% pure); thus, we can deduce that if the anion HOMO is lower than -6.3 eV and 

ZPE is lower than 509 kJ/mol, the water solubility in the resulting IL will be low (lower than 

1.5 mol/mol). This inference can be considered as a reliable heuristic rule for low water 

solubility because large fraction of the class A data obeys this rule without any false 

classification from the other classes.  It should be also noted that the model reaches to 96% 

accuracy in the first division (node 2) based on anion HOMO value; hence, a fairly correct 

selection can be made by just checking the anion HOMO energy without even considering 

the anion ZPE value. Such rules can constitute a guideline for a researcher to synthesize ILs 
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with low water solubility or to avoid producing ILs with high water solubility by just 

computing HOMO energy for the potential anions. In this respect, calculating the related 

descriptors at a semi empirical PM3 level offers a significant flexibility as these calculations 

can even be performed on freely available software. Indeed, when the dataset is closely 

inspected, it can be found that there are 25 anions (see Appendix C for details) out of 99 

leading to node 4 and these anions usually offer a low (and rarely medium) water solubility 

as it was also detected in ARM analysis in previous section 4.3.2.  

A similar analysis can be also performed for the other branches. For example, the 

branches leading to the terminal nodes of 12 and 16 may be also used to deduce some other 

heuristics for low water solubility; although the numbers of instances are low compared to 

node 4, the purity of the nodes are still 100% indicating the reliability of these results. The 

terminal node 14 is also rich in class A; however, the rules described by the branches that 

lead to this node is not as strong as the first three discussed above, because both the number 

of instances (61 ILs) and purity of the node (76 %) are relatively lower (there are 61 ILs 

obeying these rules and 46 is class A). It should be noted that, however, even such accuracy 

and purity may be considered as high in DT applications in many other fields.  

As clearly seen from Figure 4.27, the tree mostly created branches according to the 

properties of anion with minor contributions form cation properties verifying the results 

obtained with ARM. The same is also true for the other IL groups as presented in Figure 

C.2- C.8 in Appendix; the low water solubility always depends on the anion properties for 

all cation groups. Considering that mostly anions determine the water solubility in ILs, and 

some anions are good candidate for most of the cation groups, we also tested the possibility 

of developing a single DT model from the entire dataset to deduce common rules that are 

applicable to all IL families. The same class structure and the 5-fold cross-validation 

procedure that were employed for the individual cation groups were also used for the entire 

dataset. Figure 4.28 represents the optimum decision tree with the cp of 0.011; the testing 

accuracy was 92.2%, which is quite high as it was the case for the models for the individual 

cation groups while the balanced accuracy was 92.1%. The accuracy rates for the individual 

classes are also given as the confusion matrix in Appendix C. Such high accuracy rates 

indicate that even a single model constructed without considering the presence of different 

cation groups is sufficient to represent the data; this is also evident from the tree structure 

showing that the anion properties are also dominant in this model. For example, the leftmost 
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branch that led to the terminal group (node 4) with the low solubility instances (class A); 

again, the division is based on anion HOMO and then ZPE values as in the case of 

imidazolium dataset. Such similarities also exist in all branches in tree indicating the 

sufficiency of the single model; the conditions from top down to the terminal nodes with the 

significant number of low solubility data and high purity can be treated again, as heuristics 

to obtain ILs that dissolves the water in low levels.  

4.3.4. Predictive Models for Water Solubility by Deep Learning  

A multilayer fully connected neural network was used to develop predictive models 

(see Section 3.1.3 for details of deep learning model). As in the decision tree analysis, 25% 

of data was randomly selected for testing while the remaining 75% was used for model 

building in a 5-fold cross validation (i.e., 60% for training and 15% for validation in rotation) 

for each cation groups. For each dataset, a detailed grid search was employed to optimize 

the model hyperparameters for maximum validation accuracy (or minimum validation loss) 

with smallest possible model. The optimum values of these parameters were found to be the 

same for the individual cation groups, which have sufficiently large number of data and 

entire dataset (DL models were not built for the small IL families in the dataset).   

The plot of actual versus predicted water solubility for testing (for the data not seen by the 

model) is given in Figure 4.29a while the relative importance of the descriptors is presented 

in Figure 4.29b. The model predictions are quite high with the testing accuracy rate of 89%; 

however, it is also clearly seen from the Figure 4.29a that the model predictions for higher 

solubility are less accurate. In fact, the model failed to predict the water solubility values 

higher than 250 mol/mol for 78 ILs (out of 4059, see Table 3.8) accurately. These cases were 

not included to Figure 4.29a even though they were not removed from the training data to 

prevent information leak (meaning that information obtained after testing would be used 

back in training to correct the model and diminish the independence of testing step). It was 

turned out that the cause of the problem was inaccurate COSMO-RS predictions because the 

experimental solubility values for some of these 78 ILs were actually low (see Section 4.3.5 

for model verification). We could not identify the reasons for such unexpectedly high 

COSMO-RS results for these ILs and decided that such high predictions by the model should 

be used with cautions because any problems associated with the nature of COSMO-RS 

calculations also affect the model. However, the model predictions for the remaining ILs 
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(low to moderate solubility cases) seem to be quite reliable as the corresponding RMSE and 

R2 for the predicted versus computed solubility plot after removal of data for these 78 ILs 

(Figure 4.29a) are 5.0 and 0.99, respectively (as also verified by the experimental results in 

Section 4.3.5). In addition to more accurate COSMO-RS predictions in low solubility, the 

higher frequency of the data in low and moderate solubility range (1/3 and 2/3 of ILs have 

lower solubility than 1.5 mol/mol and 15 mol/mol, respectively) also influenced the model 

hyperparameters more causing that the model represents the low and moderate solubility 

cases better.  

The high prediction accuracy (hence, low error) also indicates that the model 

identified the significant relations between the descriptors and output variable (water 

solubility); this result may be used to determine the relative importance of descriptors, and 

this information may be utilized in the selection of anions and cations for a low water 

solubility. We used the permutation feature importance method, which randomly shuffles 

the values of one descriptor (so that its relationship with output is broken), and then measure 

of the changes in the validation loss. By repeating this analysis for each descriptor, the 

relative importance of descriptors, which indicates percent changes in response with the 

change of the value of a descriptor, can be established as presented in Figure 4.29b for 

imidazolium dataset. The anion descriptors, starting from Anion ZPE and Anion HOMO are 

also dominant here as in the case of decision tree analysis. 



 

 

 

Figure 4.27. Optimum decision tree structure for imidazolium dataset. 



 

 

 

Figure 4.28. Optimum decision tree structure for entire dataset. 
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However, the cation descriptors are also placed at the top of the list here. Apparently, 

the anion descriptors are not sufficient for themselves for point prediction, which is more 

difficult than decision tree classification, which can be considered as interval prediction for 

water solubility. Considering the high accuracy of the DL model discussed above and the 

success obtained in developing a decision tree model for entire data set, a single DL model 

was also developed from the entire data set to predict the water solubility of ILs from any 

cation groups. The same 5-fold cross validation procedure, with the same ratio of data for 

training, validation, and testing; the same hyperparameters were also used in the model 

development. The model predictions for high solubility cases were, again, not as accurate as 

the low solubility ILs probably for the same reasons discussed above. The model was quite 

successful with an accuracy level of 89 %, which is quite similar to those for the imidazolium 

dataset. Again, the model predictions (higher than 400 mol/mol solubility) for 313 ILs (out 

of 16137 in total) were not included in the analysis even though they used in the training (to 

prevent information leak). After removal of these cases, the DL predicted versus the 

COSMO-RS computed solubility plot in Figure 4.30a resulted in the RMSE and R2 values 

of 23.4 and 0.84, respectively; the RMSE is clearly larger than the imidazolium case, but it 

is still low enough to consider the model as successful.  

The list of the significant descriptors (Figure 4.30b) is also close to those obtained 

for imidazolium data. However, the contributions of cation descriptors are more apparent 

here as expected; although the anion properties are more significant for water solubility in 

general, the cation properties are also needed to show the difference between water solubility 

in ILs belonging to different cation groups.  

As the last set of analysis, we developed DL models using smaller fractions of data 

(for training and validation) to test the remaining larger portions to see whether the model is 

going to be still significant as the indicator of extendibility. We randomly separated 50% of 

the data for testing and constructed a model with the remaining 50% data (for training and 

validation), and the accuracy decreased only to 88% (error increased only 1%). Then, we 

proceeded further, and constructed a model using 4000 data (25% of total) for training and 

validation and tested the model with the remaining approximately 12000 data; the accuracy 

was still about 82%. This result indicates that the model is likely to predict the new data as 

long as it is one of the ILs families used in the dataset. 
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Figure 4.29. Testing results of optimum deep learning model developed for imidazolium 

dataset. (a) Predicted versus computed solubility for testing, (b) relative importance of 

descriptors (see Section 3.1.3 for model hyperparameters). 
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Figure 4.30. Testing results of optimum deep learning model developed for entire dataset. 

(a) Predicted versus computed solubility for testing, (b) relative importance of descriptors 

(see Section 3.1.3 for model hyperparameters). 
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4.3.5. Verification of Models Using Experimental Data from Literature  

It is known that COSMO-RS can predict the solubility with an order of magnitude 

accuracy and can provide qualitative comparison among the alternative materials if their 

solubility is also computed in the same way; the low-cost semi-empirical methods used for 

the calculation of descriptors should also make significant contribution to the error in the 

dataset. Although the error associated with the ML techniques should be also considered, 

they seem to be not high in the present case considering that all the models seem to represent 

the experimental data quite accurately.  

In order to verify the decision tree and deep learning models, we extracted 49 

experimental solubility data from 13 articles from the literature (detailed information about 

those 49 ILs were given in Appendix C); although we cannot claim that this is an exhausted 

list, it seems unlikely that we can find sufficient number of experimental data for training 

the models or modifying the computational dataset. However, this number should be 

sufficient to verify the models already developed by the computational data. First, we tested 

the decision tree model from entire data set and found that the model correctly classified 46 

of 49 data points corresponding to 93% accuracy, which is remarkably high. Then, we tested 

the deep learning model with the same experimental data; however, since the experimental 

data are mostly accumulated in the low solubility region (mostly less than 1 mol/mol) and 

the COSMO-RS predictions are generally reliable within an order of magnitude, the direct 

comparison would not be realistic. Hence, we used logarithmic scale to compare the 

experimental data with corresponding COSMO-RS calculations and deep learning 

predictions using the model developed for entire data set. As it is clearly seen in Figure 4.31, 

the COSMO-RS computed solubility (and consequently DL predictions) values are generally 

in agreement with most of the experimental solubility data (the same 46 of 49 IL came out 

in decision tree tests) in logarithmic scale. Some DL predications could not be presented in 

the plot (due to the logarithmic scale) because the model assigned zero or very small negative 

values (within the error range) for the solubility of ILs whose COSMO-RS computed, or 

experimental solubility values were very close to zero. However, the predictions for few ILs 

are much higher compared to the experimental results (the points that are close to zero in x-

axis, and higher than 10 in y-axis). These data points happen to be among those over-

predicted by COSMO-RS and already discussed in previous section. From these results, it 
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can be concluded that, except for a small fraction of ILs (with no apparent similarity) for 

which the COSMO-RS computes unrealistically high solubility, the ML predication for the 

overwhelming majority of ILs are sufficiently accurate.  

 

Figure 4.31. Experimental versus computed (by COSMO) and predicted (by multilayer fully 

connected network) solubility for various ILs. (see Appendix C for the experimental dataset). 

4.4. Experimental Studies Using SrTiO3 as Photocatalyst in PWS Reaction 

The initial aim of our experimental work was to improve the performance of 

perovskites in PWS reaction with dye sensitization and then to increase the stability and 

further improve the activity of dye sensitized perovskite with ionic liquid coating. As the 

first attempt, the perovskite of SrTiO3 was preferred because it is one of the most common 

perovskites used for PWS reaction; additionally, the physical and optical characteristics of 

SrTiO3 can be easily tuned (see Section 3.1.1). The series of experiments were carried out 

by changing precursors and precursor compositions of SrTiO3, doping element, promoter, 

preparation method, and post-treatment temperature to determine the most appropriate 

strontium titanate form for dye sensitization and ionic liquid coating. 
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 The commercial SrTiO3 was tried in PWS reaction, but no hydrogen production was 

observed during the reaction. As the beginning, SrTiO3 was prepared with the simplest and 

well-known method, which is solid state reaction (SSR). The reactants were kept at 1000°C 

to produce SrTiO3 and 1%Pt (Pt nitrate salt as precursor) was impregnated onto the 

semiconductor and ionic liquid was deposited as explained in Section 3.1. At the first stage, 

no calcination was applied to the semiconductor between the steps of promoter impregnation 

and IL deposition. In those experiments, one ml of ionic liquid dissolved in five ml of 

dichloromethane or just one ml of ionic liquid (without DCM solvent) was impregnated onto 

five grams of semiconductor. The experiments were conducted in 20% (by volume) aqueous 

methanol reaction solution under solar light simulator. The results given in Figure 4.32 

indicates that all ionic liquids ([BMIM][BF4], [BMIM][PF6], and [EMIM][N(Tf)2]) 

improved the photoactivity of semiconductor and the direct impregnation of IL (without the 

use of solvent DCM) appeared as more effective than impregnation of IL dissolved in DCM. 

Also, as can be seen from Figure 4.32, the activity of Pt/SrTiO3 photocatalyst (without any 

IL) starts to decrease after 3rd hour and it became zero at 5th or 6th hours of experiment; at 

the same time, dark spots were observed on the surface of reactor (shown in Figure 4.33). 

Since IL coated particles did not suffer from activity loss during PWS reaction. the ratio 

between volume of ionic liquid and weight of semiconductor was changed (ie. 0.75ml/5g, 

1ml/5g, and 1.5ml/5g) and their photocatalytic performances were compared to observe 

whether the amount of IL is influential on that loss or not. In those experiments only 

[BMIM][BF4] was used as the representative of ionic liquids due to its better performance 

than the other ILs (see Figure 4.32).  As can be seen from Figure 4.34, the best ratio between 

IL and SrTiO3 is determined as 1ml over 5g to be used in the rest of SrTiO3 experiments. 

The favorable impact of IL coating on Pt/SrTiO3 is understood from these experiments but 

the problem of sudden decrease in the photocatalytic performance of plain Pt/SrTiO3 could 

not be explained without additional experiments. 
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Figure 4.32. The hydrogen production vs time for ionic liquid coated and plain 

1%Pt/SrTiO3 (preparation method: SSR, preparation temperature: 1000°C, Pt precursor: Pt 

nitrate salt, no calcination after impregnation). 

 

Figure 4.33. The images of darkening spot on the reactor through reaction. 
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Figure 4.34. The effect of ratio between ionic liquid and semiconductor on hydrogen 

production (catalyst: Pt/SrTiO3, ionic liquid; [BMIM][BF4], preparation method: SSR, 

preparation temperature: 1000°C, Pt precursor: Pt nitrate salt, no calcination after 

impregnation). 

4.4.1. Structural Modifications of SrTiO3  

 One of the most common modifications is to use A and B precursors in an unbalanced 

molar ratio while producing AxB2-xO3±y type perovskites, which can have different properties 

and photocatalytic performance that ABO3. In the literature, it was seen that those 

modifications might be effective on visible light harvesting and photocatalytic activity of 

related semiconductor (Lee et al., 2013; Wang et al., 2012). So, the molar ratio between 

precursors (SrCO3 and TiO2) of SrTiO3 was changed from 1:1 to 2:3 leading Sr4Ti6Oy 

semiconductor. The procedure for 1% Pt impregnation and reaction conditions were exactly 

the same with the previous experiments. The performances of Pt/Sr4Ti6Oy and Pt/SrTiO3 are 

compared in Figure 4.35. Although there is a slight increment in the hydrogen production of 

Pt/Sr4Ti6Oy with respect to Pt/SrTiO3, the problem of activity loss after 3rd hour continued.  
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Figure 4.35. The comparison of Pt/Sr4Ti6Oy and Pt/SrTiO3 semiconductors in PWS 

reaction (preparation method: SSR, preparation temperature: 1000°C, Pt precursor: Pt 

nitrate salt, no calcination after impregnation). 

Before continuing with ionic liquid coating and/or dye sensitization, the issue of 

unexpected activity loss for uncoated (in the absence of IL) strontium titanate particles was 

focused. To understand the reason of the problem several process variables such as quality 

and condition of precursors (i.e., purity or humidity and the brand of precursors), production 

method, and light source were reviewed, and several experiments were conducted by 

changing those variables. In the end, the problem was solved by applying post calcination to 

Pt/SrTiO3 after Pt impregnation at 400°C for four hours; the results are shown in Figure 4.36. 

Since the problem was solved, the experiments were continued with another structure 

modification, which is element doping into the lattice structure of perovskite. The detailed 

review and statistical analysis of literature over perovskites in PWS has been already 

discussed. By considering the knowledge extracted from literature (see Section 3.1.2), the 

elements of La and Al, which are two of most common doping elements for A and B sites 

respectively, were determined as doping agents to SrTiO3. Al or La doped strontium titanate 

particles were prepared by solid state reaction; required amount of Al2O3 or La2O3 (so as 

molar ratio between Al:Sr or La:Ti is 0.01:0.99) were mixed with the precursors of SrTiO3 

and heated in a muffle furnace. The performances of Pt/Sr4Ti6Oy, Pt/Al:Sr4Ti6Oy, and 

Pt/La:Sr4Ti6Oy photocatalysts are compared in Figure 4.37; Al or La doping failed to 

improve hydrogen production.  
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Figure 4.36. The performance of calcined and not calcined Pt/Sr4Ti6Oy semiconductors in 

PWS reaction (catalyst: Pt/SrTiO3, preparation method: SSR, preparation temperature: 

1000°C, Pt precursor: Pt nitrate salt). 

 

Figure 4.37. The performance of Pt/Sr4Ti6Oy, Pt/Al:Sr4Ti6Oy, and Pt/La:Sr4Ti6Oy 

semiconductors in PWS reaction (preparation method: SSR, preparation temperature: 

1000°C, Pt precursor: Pt nitrate salt, calcination: 400°C and 4 hours). 

It was decided to move on with undoped photocatalyst since doping has no positive 

effect on hydrogen production. On the other hand, the little improvement that was achieved 
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by changing precursor ratio of SrTiO3 fell short of the expectations. As a result, since doping 

or changing precursor ratio are not as effective as expected, it was not preferred to take the 

risk of complications due to those modifications, so plain SrTiO3 was determined as 

photocatalyst for following experiments.  

4.4.2. The Effect of Synthesis Temperature for SrTiO3 

As the first step, the synthesis temperature of SrTiO3 by solid state reaction was 

determined as 1000 C, which is the most common temperature in literature (Can and 

Yildirim, 2019b), but a higher synthesis temperature such as 1100°C was also tried to see 

how it effects hydrogen production  (Ham et al., 2016; Liu et al., 2008). Figure 4.38. 

demonstrates the comparison of hydrogen production of semiconductors synthesized at two 

different solid state reaction temperatures. The hydrogen production is only slightly higher 

for semiconductor synthesized at 1100°C than that synthesized at 1000°C. Since 1100°C is 

too close to the maximum applicable temperature of muffle furnace in our laboratory. It was 

determined to continue with 1000°C as synthesis temperature of SrTiO3 in the case of solid 

state reaction. 

 

Figure 4.38. The performance of Pt/SrTiO3 synthesized at two different temperatures 

(1000°C and 1100°C) in PWS reaction (catalyst: Pt/SrTiO3, preparation method: SSR, Pt 

precursor: Pt nitrate salt, calcination: 400°C and 4 hours). 
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4.4.3. The Effect of Calcination Temperature After Pt Impregnation onto SrTiO3 

As it was mentioned above, the problem of activity loss for plain Pt/SrTiO3 has been 

solved by calcining Pt impregnated SrTiO3 particles at 400°C for 4 hours; thus, the impact 

of calcination on hydrogen production is confirmed. By considering this, the effect of 

calcination temperature on the hydrogen production was also studied and several 

experiments were conducted in the presence or absence of ionic liquid coating. Figure 4.39. 

shows the hydrogen productions of ionic liquid coated and uncoated Pt/SrTiO3 

semiconductors calcined at four different conditions (no calcination, 200°C, 300°C, and 

400°C). The optimum calcination temperature was decided as 400°C for Pt/SrTiO3 

semiconductor after those experiments. However, in contrast to the previous tests, it was 

observed that the ionic liquid photocatalysts performed worse than uncoated photocatalysts.  

 

Figure 4.39. The performance of Pt/SrTiO3 calcined at different conditions (catalyst: 

Pt/SrTiO3, preparation method: SSR, synthesis temperature: 1000°C, Pt precursor: Pt 

nitrate salt, IL: [BMIM][BF4]). 

 

The experiments above were repeated by using Pt hydrate salt instead of Pt nitrate 

salt and the results are given in Figure 4.40. Since there is almost no difference between 
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performances of semiconductors impregnated with different Pt salts and Pt hydrate salt is 

more sensitive to ambient conditions (i.e., humidity), the Pt nitrate salt was used for 

impregnation for the rest of experiments.  

 

Figure 4.40. The performance of Pt/SrTiO3 calcined at different conditions (catalyst: 

Pt/SrTiO3, preparation method: SSR, synthesis temperature: 1000°C, Pt precursor: Pt 

hydrate salt, IL: [BMIM][BF4]). 

4.4.4. The PWS Experiments with Au as Promoter 

The Au/SrTiO3 semiconductor was already used in photocatalytic hydrogen 

production reaction and the details can be found in the study of Saadetnejad and Yildirim 

(Saadetnejad and Yıldırım, 2018). As the last step of experiments related with promoter, the 

best performed IL, which was [BMIM][BF4] coated onto 1%Au/SrTiO3 and then the 

performance of semiconductor produced was tested in PWS reaction. The Au deposition 

procedure was imitated from the work of Saadetnejad and Yildirim. The results shown in 

Figure 4.41. indicates that Pt favors hydrogen production more than Au in the presence of 

IL.  

After all these tests, Pt was selected as promoter, and the nitrate salt of Pt was found 

as more practical than hydrate due to its stability and resistances to environmental 
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conditions. Calcination after impregnation was proved as an obligatory step for Pt/SrTiO3 

photocatalyst and 400°C and 4 hours are determined as the best calcination temperature and 

time for Pt/SrTiO3, respectively.  

 

Figure 4.41. The performance of Au/SrTiO3 and IL:Au/SrTiO3 in PWS reaction (catalyst: 

Au/SrTiO3, preparation method: SSR, synthesis temperature: 1000°C, Au precursor: Au 

chloride salt, IL: [BMIM][BF4]). 

4.4.5. The Effect of Production Method for SrTiO3 

 Zwara et al. recently synthesized SrTiO3 particles using hydrothermal method, and 

they investigated the effect of imidazolium ILs on the morphology of semiconductor (Zwara 

et al., 2019). That procedure was repeated to produce Pt/SrTiO3, and the performances of 

Pt/SrTiO3 photocatalysts produced by SSR and this method are compared in Figure 4.42. 

Since a significant improvement was obtained with the use of new method, the effect of 

coating with ILs on PWS reaction was also examined and presented in Figure 4.43. It was 

observed that two ionic liquids of [BMIM][BF4] and [EMIM][N(Tf)2] favored hydrogen 

production when they were coated on Pt/SrTiO3 (produced with hydrothermal method). 

Although the samples (with or without IL) synthesized by using hydrothermal method 

performed much better than those synthesized with solid state reaction, two important 

problems were encountered. One of them is the decrease of hydrogen production in the case 

of ionic liquid coated semiconductors (see Figure 4.43). The other important issue is that the 
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results (shown in Figure 4.43) were unrepeatable. Those experiments were repeated for 

several times under exactly same conditions, and it was expected to see the hydrogen 

production would be higher when [BMIM][BF4] and [EMIM][N(Tf)2] coated Pt/SrTiO3 

were used with respect to plain Pt/SrTiO3. However, the ionic liquid coated particles, not 

only [BMIM][PF6] (as in Figure 4.43) but also [BMIM][BF4] and [EMIM][N(Tf)2] coated 

particles, performed worse than plain Pt/SrTiO3, which means the results shown in Figure 

4.43 are unrepeatable. 

 

Figure 4.42. The performance of Pt/SrTiO3 produced with two different methods (catalyst: 

Pt/SrTiO3, SSR temperature: 1000°C, Pt precursor: Pt nitrate salt). 
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Figure 4.43. The performance of plain and IL coated Pt/SrTiO3 in PWS reaction (catalyst: 

Pt/SrTiO3, synthesis method: hydrothermal, Pt precursor: Pt nitrate salt). 

In conclusion, the hydrogen production rate over SrTiO3 photocatalysts could not be 

repeated at different times, and the causes of this problem could not be identified. Hence, 

the experiments involving dye sensitization and ionic liquid coating were continued with 

TiO2, which is a well-known semiconductor in the field of photocatalysis. 

4.4.6. The Characterization of SrTiO3 Prepared by Solid State Reaction 

The SrTiO3 photocatalysts prepared by solid state reaction are characterized with 

SEM, UV-Vis, XRD, and FTIR methods. Since the photocatalysts prepared with 

hydrothermal method has a reproducibility problem, only samples (IL coated and uncoated) 

prepared by solid state reaction, whose performances are given in Figure 4.32 were 

characterized and discussed below.  

Figure 4.44 shows SEM images of Pt/SrTiO3 and [BMIM][BF4]+Pt/SrTiO3. In 

Figure 4.44a, the cubic particles may represent the unreacted precursor SrCO3, and the 

spherical ones may come from the unreacted precursor TiO2. The brighter and smaller 

particles in both images (Figure 4.44a and Figure 4.44b) represents Pt since it has higher 

atomic number than Sr and Ti metals; Pt region looks brighter in those SEM images.  
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In Figure 4.44b, which indicates SEM result of [BMIM][BF4]+Pt/SrTiO3, the images 

become blurred, and this may be attributed to the presence of IL layer on those particles; 

however, no information about IL layer thickness or clear evidence indicating presence of 

IL could be extracted from SEM results.  

The band gap energies of Pt/SrTiO3 and [BMIM][BF4]+Pt/SrTiO3 semiconductors 

are determined as 3.43 eV and 3.40 eV by UV-Vis spectrophotometry measurements. The 

[BMIM][PF6]+Pt/SrTiO3 and [EMIM][N(Tf)2]+Pt/SrTiO3 particles also have the same band 

gap with [BMIM][BF4]+Pt/SrTiO3 as shown in Figure 4.45. Hence, it can be concluded that 

ILs are not very influential on the band gap energies of SrTiO3 semiconductor. 

 

Figure 4.44. SEM images of SrTiO3 photocatalysts produced with solid state reaction a) 

Pt/SrTiO3 b) [BMIM][BF4]+Pt/ SrTiO3. 

In FTIR analysis, Pt/SrTiO3, [BMIM][BF4]+Pt/SrTiO3, and [EMIM][N(Tf)2]+Pt/ 

SrTiO3 photocatalysts were investigated since [BMIM][BF4] and [EMIM][N(Tf)2] were the 

best performed ILs in PWS experiments. The FTIR analysis of empty sample containers 

were also performed, and their images were subtracted from the FTIR images of actual 

samples. As explained before, the particles studied in FTIR analysis are the photocatalysts 

used in the first experiments (for results see Figure 4.32) having stability problem; The 

primary aim of this analysis was to identify the activity loss of uncoated Pt/SrTiO3 catalyst 

when compared to IL coated ones. Figure 4.46 demonstrates FTIR results of Pt/SrTiO3, 

[EMIM][N(Tf)2]+Pt/SrTiO3, and [BMIM][BF4]+Pt/ SrTiO3 before and after reaction. In 

these figures, the specific peaks belong to SrTiO3 or ILs are identifiable, but FTIR images 



139 

 

of IL coated particles (see Figure 4.46) are different before and after reaction indicating that 

IL could not hold on to the surface of semiconductor through the reaction. This was another 

reason (in addition to reproducibility problem) to switch the tests to TiO2 as the 

semiconductor.  

Figure 4.47a and 4.47b demonstrates XRD analyses of Pt/SrTiO3 before and after the 

reaction. It can be deduced that the crystallography of Pt/SrTiO3 did not change during 

reaction and the crystal structure of Pt/SrTiO3 calculated by XRD is consistent with the 

literature (H. Yu et al., 2011). There are peaks belong to TiO2 and SrCO3 because there may 

be unreacted precursors as observed by SEM analysis. In addition to the peaks of SrTiO3, 

TiO2, and SrCO3, there are also peaks that correspond to TiO2 (rutile phase), SrCO3, 

Sr(OH)2.H2O, Sr2TiO4, and Sr4Ti3O10 Pt impregnation did not cause any change in the 

crystal structure of SrTiO3 as it was expected. By looking at Figure 4.47c it can be deduced 

that crystal structure of ILs coated Pt/SrTiO3 catalysts are very similar to that of uncoated 

Pt/SrTiO3. Moreover, there is no obvious differences between the crystal structures of 

semiconductors before and after reaction. However, in Figure 4.47c there is a wider peak 

around 2Θ equals to 10-20°, and that peak disappears in Figure 4.47d indicating the 

possibility for degradation of IL coating on the surfaces of semiconductor. That indication 

coincides with the results of FTIR analysis. 

4.5. Experimental Studies Using TiO2 as Photocatalyst in PWS Reaction 

Up to this point, are two main challenges: the reproducibility problem in PWS 

reaction when SrTiO3 is used as photocatalyst and uncertainty about the stability of IL 

coating on the SrTiO3 surface. Those problems directed us to find a new photocatalyst 

material and methods for IL coating onto surface of a photocatalyst. Hence, a well-known 

semiconductor of TiO2 was decided as photocatalyst to be used in following reactions to 

eliminate problems related with complicated perovskite structure. 
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Figure 4.45. Band gaps of Pt/SrTiO3, [EMIM][N(Tf)2]+Pt/SrTiO3, 

[BMIM][BF4]+Pt/SrTiO3, and [BMIM][PF6]+Pt/ SrTiO3 (converted to absorbance using 

Kubelka-Munk function) 

 

Figure 4.46. FTIR analysis of semiconductors before and after reaction for a-b) Pt/SrTiO3, 

c-d) [EMIM][N(Tf)2]+Pt/ SrTiO3, and e-f) [BMIM][BF4]+Pt/ SrTiO3, respectively. 
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4.5.1. Physical and Chemical Characterization 

The morphologies of Pt/TiO2, Dye:Pt/TiO2, and IL-Dye:Pt/TiO2 particles were 

determined by using SEM-EDAX and Contrast Transmission Electron Microscopy (CTEM), 

which is more suitable for materials containing organic compounds as our last two samples.  

As can be seen from Figure 4.48a, which shows CTEM image of IL-Dye:Pt/TiO2,  the 

photocatalyst particles are almost spherical, and their size varies between 20 and 40 nm 

indicating that the shape of TiO2 nanopowder was preserved through the catalyst preparation 

procedure involving Pt, dye loading and IL coating steps. Although it was not possible to 

detect the Pt particles conclusively due to the resolution limitation of CTEM, the small (less 

than 5 nm) and darker particles marked with purple circles, likely represent Pt considering 

its atomic density difference from the other ingredients and the contrast between the color 

of these particles and the others. The effects of the dye and ionic liquid could not be observed 

in the CTEM images. However, the SEM-EDAX image, presented in Figure 4.48b clearly 

indicates that both dye loading and IL coating on Pt/TiO2 particles were successful; 

homogenously dispersed F and Ru atoms are attributable to [BMIM][BF4] ionic liquids and 

N719 dye respectively since they are the only sources for these elements in the medium. Pt 

seems to be dispersed well while its fraction found by EDAX analysis is also consistent with 

its loading. 

The XRD patterns of TiO2, Pt/TiO2, Dye:Pt/TiO2, IL:Pt/TiO2, and IL-Dye:Pt/TiO2 

presented in Figure 4.49 indicate that the phase structure of TiO2 did not change during the 

photocatalyst preparation as the patterns for all samples mentioned above are essentially the 

same. The peaks at 25.3°, 37.9°, 49.0°, 54.0°, and 55.1° correspond to the anatase phase 

(JCPDS Card no.99-0008) while the peaks at 27.4°, 54.4°, and 62.8° refer to the rutile phase 

(JCPDS Card no.87-0710) indicating Pt/TiO2 involves both anatase and rutile phase as 

expected because the nanopowder TiO2 was in P25 form.  This is an expected result because 

the calcination temperature of 400° C (which was applied after Pt impregnation) was not 

sufficiently high to change the phase structure of TiO2
 (Mohamed et al., 2014; Wetchakun 

et al., 2012)while dye sensitization and IL coating were not expected to have any impact as 

well.  



 

 

 

Figure 4.47. XRD analysis of semiconductors a) Pt/SrTiO3 before reaction, b) Pt/SrTiO3 after reaction, c) IL coated semiconductors 

before reaction, and d) IL coated semiconductors after reaction
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Figure 4.48. a) CTEM of IL-Dye:Pt/TiO2, b) SEM-EDAX analysis of IL-Dye:Pt/TiO2. 

 

Figure 4.49. XRD of TiO2, Pt/TiO2, Dye:Pt/TiO2, IL:Pt/TiO2 and IL-Dye:Pt/TiO2. 

 The UV-visible absorbance spectrum of the dye (N719) is presented in Figure 4.50a 

while UV-Vis absorbance spectra expressed as Kubelka-Munk unit of TiO2, Pt/TiO2, 

Dye:Pt/TiO2, IL:Pt/TiO2, and IL-Dye:Pt/TiO2 are given in Figure 4.50b; the band gap 

energies of all four photocatalysts are determined by using Kubelka-Munk function as shown 
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in Figure 4.50c. Figure 4.50a shows that the maximum absorption wavelengths of N719 dye 

are 320, 485 and 540 nm, which are in visible region consistent with the literature (Toor et 

al., 2016; Xiaohu et al., 2012). As can be seen from Figure 4.50b, the absorbance by the 

photocatalysts increases with the use of dye even though the patterns in pure N719 spectrum 

are not clearly observable probably due to the low dye concentration. Only a small peak at 

500-600 nm is noticeable for the dye containing photocatalysts (Dye:Pt/TiO2, and IL-

Dye:Pt/TiO2). The band gap value of 3.56 eV for pure TiO2 (without any treatment) 

decreased to 3.45 eV after Pt impregnation and measured as 3.49 eV after dye sensitization; 

this slight increase after dye loading may be due to experimental error considering that 

Pt/TiO2, IL:Pt/TiO2 and  IL-Dye:Pt/TiO2 have the same band gap value of 3.45 eV (Al-

Shomar, 2020). We concluded from these measurements that dye sensitization and IL 

coating does not change the band gap of Pt/TiO2 (Mora-Seró et al., 2010), while Pt 

impregnation lowers it slightly. However, Figure 4.50b depicts that, as expected, the 

absorbance was higher for Dye:Pt/TiO2 while IL coating decreased it slightly.   

FTIR spectra of the synthesized photocatalysts are given in Figure 4.51. The FTIR 

spectra of TiO2 and Pt/TiO2 particles are nearly the same indicating that Pt impregnation did 

not affect the physical state of TiO2 as it was expected (Ahmed et al., 2014; Wang et al., 

2020). The broad peak between 500 and 1000 cm-1 is due to the Ti-O and Ti-O-Ti stretching 

modes (Kuvarega et al., 2014; Yu et al., 2006). Peaks at 1630 cm-1 and the wider peak 

arou3300 cm-1 were attributed to the H-OH bending and the O-H stretching of the hydroxyl 

group, respectively. Those hydroxyl groups on the surface of P25, and water adsorbed by 

the surface enhance the photocatalytic water splitting since they prevent recombination 

reaction and promote charge transfer by acting as molecular adsorption and hole scavenging 

sites (Ao et al., 2009; Du et al., 2008; Kuvarega et al., 2014; Yu et al., 2007; Zhou et al., 

2012); the peaks at 1630 cm-1 and 3300 cm-1 are also apparent in other photocatalysts.  
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Figure 4.50. a) UV-Vis absorbance spectra of N719 dye, b) Kubelka-Munk diffuse 

reflectance absorption spectra of TiO2, Pt/TiO2, Dye:Pt/TiO2, IL:Pt/TiO2, IL-Dye:Pt/TiO2, 

c) Band gap energies TiO2, Pt/TiO2, Dye:Pt/TiO2, IL:Pt/TiO2, IL-Dye:Pt/TiO2. 

The peaks appear between 1400 and 1700 cm-1 in the spectrum of Dye:Pt/TiO2 (but 

not in the spectrum of plain P25) correspond to the stretching C=O groups of carboxylic acid 

in dye molecule (Arifin et al., 2017; Wei et al., 2015). The presence of tetrabutylammonium 

(TBA) counter-ions and carboxylate groups (C-O) in N719 dye also reveal themselves with 

the peaks around 1550 and 1650 cm-1. The characteristic peak at 2104 cm-1 representing 

thiocyanato (NCS group) and several peaks between 1250 and 1750 cm-1  belonging to 

carboxylic acid group in the spectrum of N719 did not appear in the spectra of dye containing 

photocatalysts indicating that these groups enabled the chemisorption of N719 to the surface 

of TiO2 (Cai et al., 2015; L. Wei et al., 2015).  Similarly, all characteristic sharp peaks of 

N719 between 1400 and 1700 cm-1 become broader when dye anchored to TiO2 surface (Cai 
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et al., 2015). In the spectrum of IL coated samples, the broad peak in the range of 3130 – 

3200 cm-1 is due to quaternary amine salt formation with tetrafluoroborate, which is the 

anion part ([BF4]
-) of ionic liquid used for coating (Karakaya and Ucun, 2016); the peaks at 

1450, 2890, and 2970 cm-1 belong to the aliphatic C-H stretching in the cation part 

([BMIM]+) of IL while peaks at 1570 and 1170 cm-1 are for C-N stretching and C-H bending 

vibration (W. Sun and Xu, 2016). Finally, the wider peak between 970 and 1000 cm-1 

corresponds to the methyl groups in the cation part of [BMIM][BF4]. The IL coating seems 

to dominate the spectrum of IL-Dye:Pt/TiO2 photocatalyst and make the signs of dye 

unobservable as the spectrum of  IL:Pt/TiO2 and IL-Dye:Pt/TiO2 are nearly the same.  

4.5.2. Photocatalytic Activity of Pt/TiO2, Dye:Pt/TiO2,  IL-Dye:Pt/TiO2  

In Figure 4.52, the hydrogen production rates over Pt/TiO2, Dye:Pt/TiO2, IL:Pt/TiO2, 

and IL-Dye:Pt/TiO2  are given as a function of time. The catalyst weight to reaction solution 

ratio was kept constant at 2 grams of catalyst (gcat) per liter of solution in all experiments; 

10% 

 

Figure 4.51. FTIR of (blue) TiO2, (red) Pt/TiO2, (pink) Dye, (yellow) Dye:Pt/TiO2, 

(purple) IL:Pt/TiO2, and (green) IL-Dye:Pt/TiO2. 
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TEOA was also present in the water as the sacrificial donor. The weight contribution of the 

dye loaded was negligible; hence, it was not counted during reaction.  On the other hand, the 

weight ratio of ionic liquid to TiO2 was 1:5 (corresponding to 0.4 g/L), which is not 

negligible if IL is contributing to the function of TiO2. Hence, the photocatalytic activity of 

IL:Pt/Al2O3 was also tested under the same conditions; since Al2O3 is not an active 

semiconductor, any activity observed would be attributed to IL ([BMIM][BF4]). However, 

no hydrogen production was observed; therefore, the weight of IL was not taken into account 

in calculating the amount of catalyst. Only the weight of Pt/TiO2 was considered and kept 

constant at 2 g/L in all experiments regardless of the presence or absence of the dye or ionic 

liquid (i.e., the hydrogen production rates were computed as μmol/hour per gram 1% 

Pt/TiO2) so that the results obtained under different formulations would be comparable.  

As seen in Figure 4.52, hydrogen production first increases with time and 

subsequently stabilizes after the four hours. In the stabilized rate region, the lowest (about 

20-22 μmol/h.gcat) hydrogen production was observed over Pt/TiO2; this value is low 

compared to the results reported in literature under UV because we used visible light solar 

simulator to be able to see the use of ionic liquid in more realistic conditions. The rate slightly 

increased (about 20%) with dye sensitization (Dye:Pt/TiO2) while the IL coating without 

dye (IL:Pt/TiO2,) resulted in much higher enhancement (about three times) reaching to the 

production rate of about 60 μmol/h.gcat. The highest performance was observed with the IL 

coating of the dye-sensitized photocatalyst (IL-Dye:Pt/TiO2) with a further 20% increase 

(exceeding 70 μmol/h.gcat). Generally speaking, the N719 dye sensitization favors hydrogen 

production because it has a wider absorption spectrum in visible range than TiO2 leading 

more photon absorption (this is also evident from Figure 4.50b). Additionally, the LUMO 

energy of N719 is more negative than that of TiO2 while its HOMO level is lower (Toyao et 

al., 2013); this enables easy transfer of photogenerated electrons from N719 dye to the TiO2 

enhancing the photocatalytic activity. This explains the small increase in hydrogen 

production in Figure 4.52 even though the enhancement is much less than to be significant 

(or expected) (Chen et al., 2021; Latorre-Sánchez et al., 2012; Peng et al., 2008). It is likely 

that the dye molecules were removed from the surface as the result of stirring, and they could 

not contribute as much as they normally would as it was evident from the tests involving IL 

coated catalyst.  
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Figure 4.52 also shows that IL coating of the Pt/TiO2 catalyst resulted in much higher 

enhancement in hydrogen production. As discussed in Section 3.1, neither the crystal 

structure nor the band gap of Pt/TiO2 were affected by the IL coating (Figure 4.49 and 4.50); 

hence, IL coating could not contribute to the photocatalytic activity; the experiments with 

IL:Pt/Al2O3 mentioned above indicate that IL could not contribute to the role of 

semiconductor either. Additionally, we tested the performance of Pt/TiO2 with the same 

amount of IL added to the reaction solution instead of coating over the photocatalyst to see 

whether the IL acts as an electron donor as well. No improvement was observed in the 

performance of Pt/TiO2, ruling out this possibility. Hence, we concluded that the 

performance enhancement with IL coating should be the result of its ability to facilitate the 

charge transfer between photocatalyst and aqueous solution, and from its ion pairing 

structure, which inhibits the recombination of photogenerated electron-hole pairs (Gusain et 

al., 2016; Jing et al., 2015; Opallo and Lesniewski, 2011; Safavi et al., 2006; Zwara et al., 

2019). The maximum enhancement was obtained when the photocatalyst was coated with IL 

after dye sensitization. This indicates that the IL keeps the dye molecules on the TiO2 surface 

enabling them to sensitize the photocatalyst more effectively while making its own 

contribution as discussed above. The improvement provided by the dye sensitization can be 

still considered low (compared to the effect of IL). However, our primary focus was to 

demonstrate the effect of IL encapsulation; we did not attempt to optimize the sensitization 

conditions (such as the use of other dyes, testing different dye concentrations or testing 

different sacrificial agents) that may result in better photocatalytic performances. 
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Figure 4.52. Hydrogen production of Pt/TiO2, Dye:Pt/TiO2, IL:Pt/TiO2, and  IL-

Dye:Pt/TiO2 under 300W solar light illumination in TEOA solution 10% (600 ml reaction 

solution, 2g active catalyst/L). 

As it is also seen from Figure 4.52, the hydrogen production rate increased sharply 

at the beginning when Pt/TiO2 or IL:Pt/TiO2 were used as catalysts while it started to 

increase with a concave upward trend when Dye:Pt/TiO2 or IL-Dye:Pt/TiO2 were used. This 

is attributable to the fact that Pt nanoparticles absorb oxygen from air easily after 

impregnation process delaying the activation of catalyst to produce hydrogen about one hour. 

Such delay was not observed in dye containing photocatalysts because the hydrophilic N719 

dye provides better interaction of the photocatalyst with the aqueous reaction solution 

(Manfredi et al., 2016).  

The performance of IL-Dye:Pt/TiO2 photocatalyst was also monitored for 48 hours 

as an initial indicator of its stability even though neither this period was sufficient nor the 

other conditions were suitable for a realistic stability test. As demonstrated in Figure 4.53, 

the activity of that photocatalyst slightly decreased (especially after 35 hours) indicating that 

the viscous hydrophobic ionic liquid coating of dye-sensitized Pt/TiO2 has a potential to 

improve the photocatalytic activity in a stable manner.  
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Figure 4.53. Stability test for hydrogen production of IL-Dye:Pt/TiO2 under 300W solar 

light illumination in TEOA solution 10% (600 ml reaction solution, 2g active catalyst/L). 

4.5.3. Electrochemical Analysis of TiO2, IL:TiO2 and IL-Dye:TiO2 Photoelectrodes  

The performance of photoelectrodes can be evaluated by measuring the photocurrent 

density and photoconversion efficiency as the photocurrent is proportional to the 

hydrogen/oxygen evolution rate (Jiang et al., 2018; Liu et al., 2013; Shi et al., 2015). 

Photoelectrochemical measurements were performed on TiO2, IL:TiO2 and IL-Dye:TiO2  

photoelectrodes to further elucidate the role of the IL on photocatalytic activity. TiO2 and 

IL:TiO2 photoelectrodes were stable, and no degradation of the electrodes was observed in 

long times (three sets of five CV cycles with ~30 min waiting time between the sets).  

Meanwhile, the IL-Dye:TiO2 photoelectrode  exhibited some degradation after each test. 

Figure 4.54a shows the cyclic voltammetry profiles of the photoelectrodes in the third CV 

cycle of the third set. Although some degradation occurred in IL-Dye:TiO2 photoelectrode, 

it exhibited the highest anodic vertex current density at 1 V (3.3 mA/cm2).  

Figure 4.54b depicts the linear sweep voltammograms of the photoelectrodes in the 

range -0.95 V to 0.6 V. The current density increased significantly in the presence of the 

ionic liquid coating; and was further enhanced when the TiO2 photoelectrode was coated 

both by the dye sensitizer and the ionic liquid. We could not properly measure the 

performance of the TiO2 photoelectrode coated only with dye due to the fast deterioration of 

the dye layer in the absence of the IL. IL:TiO2 exhibited a photocurrent density of 0.99 

mA/cm2 at 0.5 V while IL-Dye:TiO2 was at 1.14 mA/cm2 compared to 0.33 mA/cm2 

obtained with TiO2 electrode at the same conditions. We also calculated the photoconversion 

efficiencies of the photoelectrodes using 
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ƞ% = [
 𝐽𝑃(𝐸𝑟𝑒𝑣

0 − 𝐸𝐵𝑖𝑎𝑠)

𝐼𝑜
] 𝑥100. (4.1) 

where  𝐽𝑃 is the photocurrent density (mA/cm2), 𝐼0 is the incident light (100 mW/cm2), 

𝐸𝑟𝑒𝑣
0is the standard reversible potential for water splitting (1.23 V) and 𝐸𝐵𝑖𝑎𝑠 is the applied 

potential given by 𝐸𝑚𝑒𝑎𝑠 −  𝐸𝑜𝑐  where 𝐸𝑚𝑒𝑎𝑠 and 𝐸𝑜𝑐  are the electrode potential (vs SCE) 

and the open circuit potential (vs SCE), respectively.  As given in Figure 4.54c, the 

maximum photoconversion efficiency of 0.74% at -0.72V (vs SCE) was reached with the 

dye-sensitized and IL coated TiO2 photoanode (IL-Dye:TiO2). The maximum 

photoconversion efficiencies of IL-TiO2 and TiO2 photoanodes were measured as 0.61% and 

0.35% at -0.7 V (vs SCE) and -0.58 V (vs SCE), respectively. These results are in good 

agreement with the results and discussions presented in Section 3.2 regarding the 

performance improvements provided by the ionic liquid ([BMIM][BF4]) coating, which 

enhanced the charge transfer between photoelectrode and electrolyte, and inhibited the 

recombination of photogenerated electron-hole pairs. The current density and efficiency of 

the IL-Dye:TiO2 photoelectrode was further enhanced due to the light harvesting capability 

of the dye-sensitized photoelectrode.  

4.6. Study Of Critical Factors Affecting the Hydrogen Evolution Via Mass Transfer 

Limitations 

In photocatalytic reactions, determining the amount of energy adsorbed and utilized by the 

photocatalyst and calculating the efficiency or any other performance measures in 

comparable manner are quite difficult for various reasons. To begin with, most of the time 

the description of the light sources such as 300 W xenon arc lamb is not sufficient because 

the fraction of UV photons emitted from such lamb changes even among the models 

produced by the same company. A certified solar simulator may solve the problem related 

the source; however, the differences in distance and angle of light as well as the reflection, 

transmission and absorption characteristics of reactor materials and reaction medium will 

affect the amount of energy reaching to the catalyst surface. 
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Figure 4.54. a) Photoelectrochemical profile of the TiO2, IL:TiO2 and IL-Dye:TiO2 

photoelectrodes (cyclic voltammetry profiles are recorded in a TEOA/Na2SO3 aqueous 

solution), b) variation of the photocurrent density as a function of measured potential, c) 

photoconversion efficiency as a function of measured potential. 

Researchers generally agree that the quantum yield, which is an indicator of the 

number of photons absorbed by the catalyst and/or the photonic yield, which is related to the 

number of photons reached to the internal surface of photocatalyst, should be measured to 

evaluate the true performance of photocatalytic reactions (Braslavsky et al., 2011; Buriak et 
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al., 2014; Kisch and Bahnemann, 2015; Melchionna and Fornasiero, 2020; Qureshi and 

Takanabe, 2017; Rajeshwar et al., 2015; Serpone et al., 2016). However, it is not easy to 

calculate these measures accurately for several reasons. For example, the scattering of the 

light is a major problem because it has highly negative impact on the number of photons 

reached on the catalyst surface, therefore on the photonic yield (Braslavsky et al., 2011; 

Kisch and Bahnemann, 2015; Kočí et al., 2008; Rajeshwar et al., 2015); consequently, the 

reactor geometry (Serpone et al., 1996),  catalyst loading (Buriak et al., 2014; Kočí et al., 

2008; Melchionna and Fornasiero, 2020; Serpone et al., 1996), catalyst surface area 

(Braslavsky et al., 2011; Buriak et al., 2014; Dong et al., 2009; He and Que, 2013; He et al., 

2011; Ho et al., 2006; Peng et al., 2010), particle radius or thickness of catalyst film (Ballari 

et al., 2010, 2008; Buriak et al., 2014; Chen et al., 2000; Dingwang et al., 2001), reaction 

media (Kisch and Bahnemann, 2015; Melchionna and Fornasiero, 2020), temperature 

(Melchionna and Fornasiero, 2020; Serpone et al., 1996), and pH of solution (Serpone et al., 

1996), which all have strong impact on light scattering, inevitably affect the quantum or 

photonic efficiency as well. Since it is nearly impossible to control all those factors, the 

quantum or photonic yield measured are (or should be) reported as apparent or incident yield 

rather than true yield (Kisch and Bahnemann, 2015; Melchionna and Fornasiero, 2020), and 

it should not be used for comparison. Another option would be the use of excess light (sun 

is free anyway) and just focus on the other problematic issues in the process as we discussed 

below; however, the excess energy may increase the temperature and inversely effect the 

photocatalytic yield indirectly while it may also influence the mass transfer limitations 

(Yang and Liu, 2007). 

These problems involving the source and system properties affecting the light 

utilization efficiency have been well known and discussed in various publications for many 

years. However, there are other factors, especially those have high impact on mass transfer 

limitations, are usually overlooked.  

As the last step of this thesis, we investigated the influence of the dead volume, in 

which the gas products bubbled from the reaction medium are collected before the analysis 

and the interfacial area between the reaction solution and dead volume on the hydrogen 

evolution rate. The gas phase concentration in a static process depends on the total volume 

in the gas phase.  In a dynamic process in which gas phase is swept by an inert carrier gas, 

on the other hand, the residence time of the carrier gas (the flow rate of gas/ dead volume) 
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becomes important in determining the gas phase concentration. In addition to the possible 

effect of gas phase concentration to the mass transfer limitation from liquid to gas phase, the 

long residence times may cause erroneous measurements especially in the early stage of 

process in which the hydrogen production rate changes with time; the detection of the change 

in the hydrogen production by the measurement device may be delayed.  Although the effects 

of these factors on the mass transfer from liquid to gas and therefore the measurement of 

hydrogen production are well-known, they are not usually treated (even reported) as a 

parameter; they are usually imposed by the geometry of the reactor making erroneous 

comparison of results obtained in two different works. We also studied the other factors, 

which may be influential, such as the sweep gas flow rate, stirring speed, and catalyst 

concentration. 

4.6.1. Effect of Dead Volume 

Clearly, the size of the dead volume should be important in the batch reactors because 

it may affect the reaction yield by affecting the mass transfer limitations in gas-liquid 

interface; the increasing hydrogen partial pressure and total pressure may affect the 

equilibrium and mass transfer resistances in the gas-liquid interface. Although this problem 

should be in lesser extend in semi-batch systems, a certain dead volume is still required to 

collect and carry the product gases to the GC (He and Que, 2013; Schwarze et al., 2013; 

Takata et al., 2015; Teixeira et al., 2020), and it may affect the measurements through 

residence time especially in early stage of the reaction, in which the hydrogen production 

rate changes with time.  It may also have some other effects such as changing the interfacial 

area and distance between the light source and the liquid gas interface.  

In this part of the work, we repeated the experiments under five different dead 

volumes (15, 45, 75, 190, and 425 ml) under the constant liquid volume (310±10 ml) and 

interfacial area (30 cm2) using the reactor geometry given in Table 3.14 (R1, R2, R3, R4, 

and R5). The hydrogen production rates as a function of time are given in Figure 4.55 while 

the amount of hydrogen produced (cumulatively), which was calculated from the rates given 

in Figure 4.55a, are presented in Figure 4.55b.  As Fig 4.55a indicates, the measured 

hydrogen production rates decrease with increasing dead volume (or decreasing residence 

time) even though the other factors such as light source, liquid to gas mass transfer area, 

catalyst type, etc. were exactly same. More interestingly, the hydrogen production rates 
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obtained with different dead volumes are still different from each other even after they 

became constant at the 4th -5th hours, in which some researchers stop measurements. 

Consequently, the cumulative hydrogen production also increases with decreasing dead 

volume (or residence time). These differences observed in the rate of hydrogen production 

or total amount of hydrogen up to a certain time may be, at least, indicating the possibility 

of different level of error in hydrogen measurements at different dead volumes. The 

residence time is much higher for higher dead volumes; hence, the change in the hydrogen 

production between two measurements may not be captured correctly. 

4.6.2. Effect of Liquid to Gas Mass Transfer Area 

Figure 4.56a exhibits the effect of gas-liquid interfacial area on hydrogen production 

rate while Figure 4.56b exhibit total hydrogen production; the three different interfacial areas 

as 42 cm2, 72 cm2, and 90 cm2 using reactors R6, R7, and R8 respectively, were tested with 

2 g/L catalyst concentration.  Considering that the interfacial area may influence the mass 

transfer limitation and gas-liquid hydrogen equilibrium, which also depend on hydrogen 

concentration, we also repeated the experiments with 3 g/L catalyst concentrations, which 

should normally result in higher amount of hydrogen production. Different catalyst 

concentrations may also influence the internal mass transfer limitation between solid particle 

and liquid reaction media, which is also highly important for photocatalytic reactions as 

emphasized by Ipek and Uner (Ipek and Uner, 2020).  
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Figure 4.55. a) The effect of dead volume in semi-batch reactors on hydrogen production, 

b) The relationship between cumulative hydrogen production and dead volumes (mass 

transfer area: 72 cm2, catalyst concentration: 2g/L, stirring speed: 420 rpm, N2 flow rate: 

30 ml/min, under Science-Tech solar simulator). 

The lowest hydrogen production rate (per gram catalyst) was obtained at 42 cm2, and 

the rate at 2 g/L was significantly higher than that at 3 g/L. Hydrogen production was almost 

doubled when liquid to gas interfacial area increased from 42 cm2 to 72 cm2; in contrast to 

the case at 42 cm2, the hydrogen production rate at 2 g/L and 3 g/L was very close to each 

other (the rate at 3 g/L was even slightly higher) when the interfacial area was 72 cm2. 

Further increase of interfacial area to 90 cm2, on the other hand, resulted in decreasing 

hydrogen production rate slightly suggesting that there is an optimum interfacial area; 
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additionally, the difference between the rates at 2 g/L and 3 g/L catalyst became more 

apparent again.  

The results summarized above clearly indicate that the change of gas-liquid 

interfacial area affects the hydrogen production rate; the difference continues even after the 

5th hour, at which the rates become constant (as many researchers stop measurements).  

Although the change in mass transfer limitation may be a plausible explanation, some other 

factors associated with the reactor shape may be also influential. For example, the shape of 

R6 (erlenmeyer) is significantly different than the other two (balloon), and the mixing in R6 

(especially at lower edges) may not be as good as that in R7 and R8.  Even the conditions 

for R7 and R8 are not the same; in addition to the difference in mixing patterns due to 

difference in diameters, even the light absorbance (due to the difference in light exposure 

area and the distance to the light source) in two reactors may be different. It is not possible 

to draw the definitive conclusions about the dominant cause at this stage; however, it is clear 

that the effect of interfacial area (and other factor related to reactor shape) affects the 

hydrogen production rate making the comparison of the results from different works 

impossible.  

4.6.3. Effect of Sweep Gas Flow Rate 

In most of the photocatalytic water splitting reactions studied in the literature, the product 

gases are analyzed by using gas chromatography as in our reaction system. The flow rate of 

the sweep gas should be sufficient to bubble reaction solution and push product gases 

dissolved in reaction solution to GC. Qureshi and Takanabe emphasized the importance of 

reporting the flow properties for sweep gas in heterogeneous photocatalytic reactions 

because different flow rates caused to different partial pressures of product gases (Qureshi 

and Takanabe, 2017). A similar study with different results was published by Hernandez et 

al. in 2013; they demonstrated that higher flow rates of sweep gas increase the oxygen yield 

because the O2 (the product for that system) saturation in the reaction media becomes lower 

and reaction is no more limited by mass transfer (Hernández et al., 2014). We only saw the 

positive effects of flowrate at the initial stage of reaction (see 4.57a), at which the hydrogen 

production rates are slow and increases with time; it is likely that the increasing hydrogen 

production (and increasing H2 concentration in liquid phase) is felt in the gas phase faster if 

the sweep gas flowrate is higher. Indeed, the trend disappeared after three hours; the 
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hydrogen production at the sweep flowrate of 15 ml/min was slightly higher. As the result, 

it can be said that the change in gas flow rate was not as influential on the hydrogen 

production as the dead volume and the interfacial area discussed above. The differences 

become less noticeable when the total hydrogen production was plotted against time as given 

in Figure 4.57b. 

 

Figure 4.56. a) The effect of liquid to gas mass transfer area at two different catalyst 

concentration in semi-batch reactors on hydrogen production, b) The relationship between 

cumulative hydrogen production and liquid to gas mass transfer area (dead volume: 150 

ml, stirring speed: 420 rpm, N2 flow rate: 30 ml/min, under Science-Tech solar simulator). 
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4.6.4. Effect of Stirring Speed 

The catalyst suspension was mixed during the reaction at constant stirring speed 

using magnetic stirrer. The situation is similar for most of the photocatalytic hydrogen 

production systems reported in literature (Schwarze et al., 2013; Takata et al., 2015; Teixeira 

et al., 2020); researchers decide on a stirring rate to provide sufficient mixing for physical 

interaction between catalyst, light, and reaction solution enabling photocatalytic reaction. 

The necessity of good mixing in heterogeneous reactions is stated in several studies 

(Braslavsky et al., 2011; Ipek and Uner, 2020; Kočí et al., 2008) due to its strong impact on 

the elimination of mass transfer limitations. However, in most of the scientific papers, the 

stirring speed is still not reported neglecting its importance on photocatalytic efficiency. In 

Figure 4.58a and Figure 4.58b the effect of stirring speed on hydrogen production was 

demonstrated; some stirring rates are repeated to show that the differences are hydrogen 

production rate are not merely experimental error. It is clear that 200 rpm is not sufficient to 

mix the catalyst suspension and reaction solution; the hydrogen production rates are 

significantly lower than those obtained at high stirring rates indicating that the higher stirring 

rates decreases the mass transfer limitations at the solid-liquid interface. However, the 

hydrogen production rate does not always increase after certain speed was reached. Most 

likely, the vortex formed at high speeds brings up new complications to the reaction and 

make it hard to see the relation between speed and hydrogen production rate clearly (it may 

even affect the reproducibility). These results support Ballari et al. stating that the perfect 

mixing is one of the simple and most essential factors to eliminate mass transfer limitations 

in slurry photocatalytic reactors (Ballari et al., 2010).  Consequently, the stirring rate should 

be at least reported and preferably similar to make comparison easier; however, it may not 

be easy to achieve this because the optimum stirring rate may be different for different works 

due to the differences in reactor structure.  
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Figure 4.57. a) The effect of sweep gas flow rate in semi-batch reactors on hydrogen 

production, b) The relationship between cumulative hydrogen production and sweep gas 

flow rate (dead volume: 75 ml, mass transfer area: 30 cm2, catalyst concentration: 2g/L, N2 

flow rate: 30 ml/min, stirring speed: 420 rpm, under Science-Tech solar simulator). 
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Figure 4.58. a) The comparison of hydrogen production at different stirring rates with 

repeated experiments, b) The relationship between cumulative hydrogen production and 

stirring speed (dead volume: 150 ml, mass transfer area: 72 cm2, catalyst concentration: 

2g/L, N2 flow rate: 30 ml/min, under Science-Tech solar simulator). 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The major objective of this research is to develop active and stable dye sensitized 

semiconductor encapsulated by an ionic liquid (IL) to be used in photocatalytic hydrogen 

production and to clarify the roles of each constituent of the photocatalyst. The conclusions 

drawn from this work will be presented in five parts. The first three parts involve 

implementation of machine learning (ML) tools such as association rule mining (ARM), 

decision tree (DT), random forest (RF), and deep learning (DL) for knowledge extraction 

from databases established on the topic of photocatalytic water splitting (PWS), 

photoelectrochemical water splitting (PECWS), and water solubility in ionic liquids. The 

motivation of the fourth part is to design an effective N719 dye sensitized 1%Pt/SrTiO3 and 

1%Pt/TiO2 semiconductors coated by three acidic imidazolium based ionic liquids 

([EMIM][N(Tf)2], [BMIM][BF4], and [BMIM][PF6]). In the last part, the critical factors 

affecting the hydrogen evolution via mass transfer limitations over Pt/TiO2 was studied. 

At first, the past 151 publications on PWS over perovskites using ML algorithms were 

analyzed to assess the present status, identify the major trends and patterns in past works; 

the conclusions drawn can be summarized as follows: 

• The most common perovskites in PWS are tantalates followed by titanates, niobates 

and indium-based perovskites. NaTaOs are the most frequently studied tantalates, 

and they are especially effective under UV light. The most common titanates are 

SrTiOs, which are also better under UV-light, but they are mostly tested under visible 

light.  

• About half (48%) of perovskites in database are doped to A-site (31%) and/or B-site 

(27%). The effect of doping on band gap is observable; however, only some portion 

of doped catalysts had better PWS activity than plain perovskites. The doping also 

improves stability in some cases.  
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• Solid-state reaction, hydrothermal synthesis, polymerized-complex and sol-gel are 

the most common methods for perovskite preparation; their average performances 

are similar for UV tests despite the reports claiming the limitations of solid-state 

reaction. However, hydrothermal synthesis clearly performs better in average under 

the visible light. Effects of preparation method on surface area, band gap and crystal 

structure are also observable; the last two partially explain the hydrogen production 

rates as well.  

• Approximately 80% of cases contain co-catalyst (Pt is the most common). There are 

various successful applications; however, in overall, only some fraction of co-

catalyst results in higher performance than the bare perovskites.  

• The methanol (20 % or less) is used as sacrificial agent in about 80% of the tests 

(both UV and visible light) and found to be beneficial; some other organic sacrificial 

agents are also used. The inorganics additives, on the other hand, are usually used in 

visible light tests.  

• Association rule mining clearly identifies the most influential factors for high 

hydrogen production, and verifies the conclusions obtained from the review of 

literature. However, no single factor dominates the result; large number of factors 

affect the performance.  

• Decision tree analysis provides some simple and easy to follow selection rules and 

heuristics for both hydrogen production and band gap. The selection rules seem to be 

clearer for the band gap; the doping (especially in B site) is the most determining 

factor for the band gap as intended.  

• Random forest models for hydrogen production (especially for visible light) are quite 

successful in predicting the data not seen before; hence, they can be used for initial 

estimates even though they are not sufficient for the high accuracy predictions. The 

same is also true for band gap prediction. The random forest model for the band gap 

prediction is also very successful; however, a model directly correlating the band gap 

with the hydrogen production rate could not be established.  

Considering the clear trends in analyses and the high fitness of the models 

constructed using the data from 151 different sources, it can be concluded that PWS over 

perovskites is predictable. However, non-standard testing procedure makes the 

generalization harder (especially for the stability photocatalysts).  
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It is hard to identify few significant factors that may be fine-tuned and improve PWS; 

many factors seem to be effective, and the improvement obtained is always limited. The 

sound solutions like ion doping to change band gap, use of co-catalyst for change separation 

or use of additives as sacrificial agents help to improve the results but not as much as it is 

desired; there seems to be a need for new approaches. 

In the second computational study, a comprehensive database for PECWS is 

constructed with 180 scientific articles and then analyzed by using ARM, RF, and DT. The 

main results are given as follows: 

• The association rules revealed the effect of material, preparation method and post-

treatment conditions on the band gap of the electrode produced.  

• The band gap was predicted successfully with the testing error, RMSE, and R2 values 

of 0.12, 0.17, and 0.87, respectively.  

• The RF algorithm failed to predict the photocurrent density; in best, a model could 

be developed for single bias value 1 V vs RHE with the testing error, RMSE, and R2 

values of 1.3, 1.67 and 0.50, respectively.  

• Both random forest and decision tree models were developed for photocurrent 

density classification; the random forest model had poor predictive power for high 

photocurrent density class. Even though overall performance of the decision tree 

model was not very good, it could be used in deducing some rules that leads to high 

photocurrent density.  

• The results of band gap prediction can be a guide to researchers to foresee the 

possible band gap of photo anode to be produced. Similarly, ARM and DT algorithms 

may be helpful to determine optimum photo anode specifications and reaction 

conditions to reach the band gap value (in intended interval) and high photocurrent 

density. 

As the last step of machine learning applications, the water solubility data (prepared 

by Ahsan Jalal, Ph.D in Koc University) of 16137 ILs from most commonly used 163 cations 

(in nine groups) and 99 anions were analyzed using ML tools of ARM, DT and DL 

algorithms. The major conclusions obtained from the analysis are summarized below.  
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• The accuracy of all models was remarkably high. The association rule mining 

analysis was clearly identified the descriptors leading low water capacity of IL while 

the decision tree analysis provided information to develop rules for cation and anion 

pairing to form ILs with low water capacity. The prediction accuracy of fully 

connected neural network models were also remarkable high. 

• The decision tree and neural network models constructed from the entire data set had 

almost the same accuracy level with the models formed for each individual cation 

group indicating that the cationic and anionic descriptors represent the water 

solubility in these groups of ILs sufficiently well. This result was also supported by 

the fact that even a small fraction of data (about 4000 out of 16137) was sufficient to 

develop a model that can predict the water solubility in other ILs in the database.     

• Preliminary analysis using simple descriptive statistics indicated that the water 

capacity for the phosphonium group ILs were generally higher than that for others 

while the value of cationic descriptors for this group was also distinguishably 

different. No other distinct pattern was observed in the dataset without the detailed 

ML analysis.  

• Analysis using all three machine learning tools clearly showed that the anionic 

descriptors were much more influential than the cationic counterparts in determining 

the water capacity of ILs. For example, all decision tree models start to split the data 

based on anion HOMO energy; the anion properties such as ZPE, dipole and LUMO 

also used through the branches as the most influential descriptors; the association 

rule mining and deep learning models also have similar results.   

• It was observed that if an anion forms ILs with low water capacity, it is most likely 

that the same anion does the same even if the cation was changed; the same is also 

true for the anions leading to high water capacity ILs.  

• All ILs that are resulted from anions A25 (bis[1,2-benzenedolato]borate) and A26 

(bisbiphenyldiolatoborate) have low water while anions A46 (fluoride) and 

A81(sulfate) produced ILs having high water solubility only with all the cations 

tested. 

• The predictive powers of decision tree and deep learning models were also verified 

by the experimental water solubility of 49 ILs from 13 published articles in literature.  
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The prediction of experimental solubility data was accurate within an order of 

magnitude, consistent with known accuracy level of COSMO-RS, and usually 

sufficient for the rough estimate of water solubility in ILs.  

In the fourth part of this study, the photocatalytic hydrogen production over 1 wt% 

Pt/TiO2 sensitized with N719 dye (di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-

bipyridyl-4,4′-dicarboxylato) ruthenium(II))  and coated by a thin layer of ionic liquid 

[BMIM][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate)  was investigated.  The 

conclusions are summarized below.  

• SEM-EDAX analysis demonstrated that the ionic liquid coating after dye 

sensitization was successful as indicated by the homogenous distribution of Ru and 

F atoms representing the N719 dye and [BMIM][BF4]
 ionic liquids, respectively. 

• The crystal structure of TiO2 did not change with Pt, dye or IL loading as expected.  

• The band gap of TiO2 slightly decreased upon Pt loading apparently because of 

calcination after Pt impregnation; no further change was observed after dye loading 

or IL coating.  

• The hydrogen production rate increased about 15-20 % (from ~20-22 to 27 µmol 

/h.gcat) with dye sensitization while [BMIM][BF4] coating alone improved the 

hydrogen production three times (to approximately 60 µmol/h.gcat). The ionic liquid 

coating after the dye, on the other hand, further improved the performance to 

approximately 70 µmol/h.gcat.   

• Electrochemical analysis of the respective photoelectrodes further verified the 

performance enhancement by dye and IL coatings as demonstrated by current density 

and photoconversion efficiency profiles.    

These findings demonstrate that coating with ionic liquid increased the performance 

of the catalyst by providing better charge transfer between the photocatalyst and the aqueous 

reaction conditions and preventing the recombination of the photogenerated electron-hole 

pairs.  

It should be also noted that as the initial attempt of fourth part, Pt/SrTiO3 

photocatalysts produced with various methods were also coated with three ILs mentioned. 

However, the minor differences in the components of that photocatalytic process had a major 
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effect on the efficiency creating reproducibility problems. Unfortunately, those critical 

variables, which are so effective on the reaction, could not be determined exactly.  

The fifth and final part focused on the effects of factors related to reactor structure 

(liquid to gas mass transfer area and dead volume) and operational conditions (flow rate of 

sweep gas and and stirring speed of reaction media) on photocatalytic hydrogen production 

efficiency by using Pt/TiO2 as catalyst in aqueous methanol (20% by volume) solution. The 

conclusions can be drawn as follows: 

• The dead volume may affect the measured hydrogen production rate especially at the 

initial period of reaction; the rate is higher at lower dead volumes at constant sweep 

gas flowrate and decreases with the increasing dead volume.  One possible cause of 

this is that the long residence times at high dead volumes causes measurement errors 

because the measured rate may not represent the actual rate on the solution due to lag 

time. There may be also changes in mass transfer limitations.  

• The same is also true for the sweep gas flowrate because it also changes the residence 

time (in opposite way with dead volume); however, the effects of this variable on 

total hydrogen production seems to be insignificant.   

• The gas liquid interfacial area is also influential on the hydrogen production rate 

probably through liquid-gas mass transfer limitation. 

• The stirring rate seems to affect the rate increasing the solid-liquid interactions.  

• These variables seem to be also correlated directly (like dead volume and sweep gas 

flowrate through residence time) or indirectly due to the limitations in reactor 

geometry (like interfacial area and dead volume).  

• Any changes in these variables change the reactor structure and may change the light 

absorption characteristics due to the change in the distance and angle between the 

light source and reaction medium.  

 

Due to all these uncertainties and well-known (and well discussed) uncertainty in 

determining the amount and characteristics of light absorbed by the reaction solution, it is 

almost impossible to compare the results obtained from different works unless some standard 

measurement and testing protocols (like in solar cells) are developed.  
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5.2. Recommendations 

By considering the challenges and limitations encountered in both computational and 

experimental parts of this study, the following works can be proposed as recommendations 

for the future studies. 

• Structural, thermodynamic, electronic, optical, and mechanical characteristics of 

energy materials are obtained and stored in some databases such as the Cambridge 

Structure Database (CSD) (Kennard, 1965) and the Inorganic Crystal Structure 

Database (ICSD) (Bergerhoff and Brown, 1978). Those properties of semiconductors 

can be included to the database developed from experimental articles in the context 

of PWS and PECWS aiming to describe the material better and to enhance the 

learning ability of the machine learning algorithms in related topics.   

• The inconsistencies and incomparable results from different articles on PWS and 

PECWS create a very noisy dataset, and the simplest way to overcome this problem 

is to expand the dataset by scanning a larger portion of the literature.   

• Gradient Boost algorithm and AdaBoost algorithm are the most promising tree-based 

algorithms developed recently. They can be used for both classification and 

regression problems instead of standard decision tree and random forest models when 

DT and RF fail to identify patterns in data or to predict the output successfully as in 

the case of photocurrent density prediction by using PECWS dataset.  

• The rate slightly enhanced (about 20%) with dye sensitization (Dye:Pt/TiO2) and also 

the influence of dye sensitization on the UV-Vis absorption spectra of photocatalyst 

could not be observed. Although the amount of dye loading was decided by literature 

research, to investigate the impact of dye loading on hydrogen yield could be 

beneficial. 

  



169 

 

• N719 is the most popular dye in solar cell applications but it may not be the best 

sensitizer for PWS or PECWS photocatalysis. Other ruthenium based dyes such as 

Z907 ([cis-Bis(isothiocyanato)(2,2′-bipyridyl-4,4′-dicarboxylato) (4,4′-di-nonyl-

2′bipyridyl) ruthenium(II)]) can be also tested for future research. 

• The surface charge density of photocatalysts can be evaluated by measuring point of 

zero charge with changing pH. That information helps to understand the mechanisms 

of IL functionalization or dye sensitization on photocatalyst surface better. 

• The electrochemical impedance spectroscopy can be carried out on photoanodes 

fabricated to reveal their electron transport and recombination characteristics 

exhaustively. 

• Photoluminescence emission spectroscopy and Mott Schottky analysis on electrodes 

can provide an insight about the photocatalytic activity by considering recombination 

rate of photo excited charge carriers. 

• Onset potential, over potential, open circuit potential, and Tafel slope of photoanode 

(if it is stable) can be reported to express its photoelectrochemical specifications 

thoroughly.  

• Besides all those issues, the standardized reporting in photocatalytic hydrogen 

production is an absolute necessity to be able to compare the results with those 

published in the literature; a consensus to develop some standard measurement, 

testing and reporting protocols should be sought for this purpose. 
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APPENDIX A: ADDITIONAL INFORMATION FOR ANALYSIS OF 

PWS DATABASE 

Table A.1. Distribution of data points among the performance classes for significant 

variables (visible light dataset). 

LHS  RHS Support Confidence Lift  

{Undoped_Perovskite=NaTaO} {ProdRate=HIGH} 0.079 0.630 1.889 

{Undoped_Perovskite=NaTaO} {ProdRate=MEDIUM} 0.009 0.074 0.225 

{Undoped_Perovskite=NaTaO} {ProdRate=LOW} 0.037 0.296 0.877 
     

LHS  RHS Support Confidence Lift  

{Undoped_Perovskite=SrTiO} {ProdRate=HIGH} 0.04 0.16 0.47 

{Undoped_Perovskite=SrTiO} {ProdRate=MEDIUM} 0.13 0.55 1.67 

{Undoped_Perovskite=SrTiO} {ProdRate=LOW} 0.07 0.29 0.87 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=SSR} {ProdRate=HIGH} 0.03 0.15 0.44 

{Prep_Meth=SSR} {ProdRate=MEDIUM} 0.07 0.33 1.01 

{Prep_Meth=SSR} {ProdRate=LOW} 0.12 0.52 1.54 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=HT} {ProdRate=HIGH} 0.12 0.34 1.03 

{Prep_Meth=HT} {ProdRate=MEDIUM} 0.15 0.42 1.28 

{Prep_Meth=HT} {ProdRate=LOW} 0.08 0.24 0.70 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=PC} {ProdRate=HIGH} 0.00 0.00 0.00 

{Prep_Meth=PC} {ProdRate=MEDIUM} 0.01 0.20 0.61 

{Prep_Meth=PC} {ProdRate=LOW} 0.03 0.70 2.07 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=SG} {ProdRate=HIGH} 0.01 0.30 0.90 

{Prep_Meth=SG} {ProdRate=MEDIUM} 0.00 0.00 0.00 

{Prep_Meth=SG} {ProdRate=LOW} 0.03 0.60 1.78 
     

LHS  RHS Support Confidence Lift  

{Promoter=Pt} {ProdRate=HIGH} 0.09 0.21 0.63 

{Promoter=Pt} {ProdRate=MEDIUM} 0.18 0.41 1.25 

{Promoter=Pt} {ProdRate=LOW} 0.17 0.38 1.12 
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Table A.1. Distribution of data points among the performance classes for significant 

variables (visible light dataset). (cont.) 

LHS  RHS Support Confidence Lift  

{Promoter=NAN} {ProdRate=HIGH} 0.17 0.58 1.73 

{Promoter=NAN} {ProdRate=MEDIUM} 0.06 0.22 0.67 

{Promoter=NAN} {ProdRate=LOW} 0.06 0.20 0.60 
     

LHS  RHS Support Confidence Lift  

{Crystal=cubic} {ProdRate=HIGH} 0.12 0.30 0.91 

{Crystal=cubic} {ProdRate=MEDIUM} 0.12 0.30 0.92 

{Crystal=cubic} {ProdRate=LOW} 0.16 0.40 1.17 
     

LHS  RHS Support Confidence Lift  

{Crystal=orthorombic} {ProdRate=HIGH} 0.10 0.48 1.43 

{Crystal=orthorombic} {ProdRate=MEDIUM} 0.09 0.43 1.32 

{Crystal=orthorombic} {ProdRate=LOW} 0.02 0.09 0.26 

LHS  RHS Support Confidence Lift  

{Alcohol%=NAN} {ProdRate=HIGH} 0.18 0.42 1.26 

{Alcohol%=NAN} {ProdRate=MEDIUM} 0.11 0.25 0.75 

{Alcohol%=NAN} {ProdRate=LOW} 0.14 0.33 0.99 
     

LHS  RHS Support Confidence Lift  

{Alcohol%=20} {ProdRate=HIGH} 0.08 0.33 1.00 

{Alcohol%=20} {ProdRate=MEDIUM} 0.06 0.24 0.73 

{Alcohol%=20} {ProdRate=LOW} 0.11 0.43 1.26 
     

LHS  RHS Support Confidence Lift  

{SacAgent1=Na2S} {ProdRate=HIGH} 0.13 0.76 2.27 

{SacAgent1=Na2S} {ProdRate=MEDIUM} 0.04 0.22 0.66 

{SacAgent1=Na2S} {ProdRate=LOW} 0.00 0.00 0.00 

 

Table A.2. Distribution of data points among the performance classes for 

significant variables (UV dataset). 

LHS  RHS Support Confidence Lift  

{Undoped_Perovskite=NaTaO} {ProdRate=HIGH} 0.10 0.48 1.45 

{Undoped_Perovskite=NaTaO} {ProdRate=MEDIUM} 0.07 0.35 1.08 

{Undoped_Perovskite=NaTaO} {ProdRate=LOW} 0.03 0.17 0.49 
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Table A.2. Distribution of data points among the performance classes for 

significant variables (UV dataset). (cont.) 

LHS  RHS Support Confidence Lift  

{Undoped_Perovskite=SrTiO} {ProdRate=HIGH} 0.03 0.38 1.13 

{Undoped_Perovskite=SrTiO} {ProdRate=MEDIUM} 0.02 0.33 1.03 

{Undoped_Perovskite=SrTiO} {ProdRate=LOW} 0.02 0.29 0.85 

LHS  RHS Support Confidence Lift 

{Prep_Meth=SSR} {ProdRate=HIGH} 0.13 0.30 0.90 

{Prep_Meth=SSR} {ProdRate=MEDIUM} 0.11 0.26 0.79 

{Prep_Meth=SSR} {ProdRate=LOW} 0.19 0.44 1.29 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=HT} {ProdRate=HIGH} 0.07 0.31 0.92 

{Prep_Meth=HT} {ProdRate=MEDIUM} 0.08 0.35 1.07 

{Prep_Meth=HT} {ProdRate=LOW} 0.08 0.35 1.01 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=PC} {ProdRate=HIGH} 0.03 0.27 0.80 

{Prep_Meth=PC} {ProdRate=MEDIUM} 0.06 0.49 1.50 

{Prep_Meth=PC} {ProdRate=LOW} 0.03 0.24 0.71 
     

LHS  RHS Support Confidence Lift  

{Prep_Meth=SG} {ProdRate=HIGH} 0.05 0.57 1.71 

{Prep_Meth=SG} {ProdRate=MEDIUM} 0.03 0.32 0.99 

{Prep_Meth=SG} {ProdRate=LOW} 0.01 0.11 0.31 

LHS  RHS Support Confidence Lift  

{Promoter=Pt} {ProdRate=HIGH} 0.08 0.33 0.98 

{Promoter=Pt} {ProdRate=MEDIUM} 0.11 0.42 1.30 

{Promoter=Pt} {ProdRate=LOW} 0.06 0.25 0.74 
     

LHS  RHS Support Confidence Lift  

{Promoter=NAN} {ProdRate=HIGH} 0.15 0.35 1.06 

{Promoter=NAN} {ProdRate=MEDIUM} 0.13 0.29 0.90 

{Promoter=NAN} {ProdRate=LOW} 0.15 0.35 1.04 
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Table A.2. Distribution of data points among the performance classes for 

significant variables (UV dataset). (cont.) 

LHS  RHS Support Confidence Lift  

{Crystal=cubic} {ProdRate=HIGH} 0.07 0.26 0.77 

{Crystal=cubic} {ProdRate=MEDIUM} 0.09 0.32 1.00 

{Crystal=cubic} {ProdRate=LOW} 0.12 0.42 1.22 

LHS RHS Support Confidence Lift 

{Crystal=orthorombic} {ProdRate=HIGH} 0.08 0.33 0.98 

{Crystal=orthorombic} {ProdRate=MEDIUM} 0.05 0.21 0.66 

{Crystal=orthorombic} {ProdRate=LOW} 0.11 0.46 1.35 
     

LHS  RHS Support Confidence Lift 

{Alcohol%=NAN} {ProdRate=HIGH} 0.12 0.22 0.67 

{Alcohol%=NAN} {ProdRate=MEDIUM} 0.19 0.37 1.14 

{Alcohol%=NAN} {ProdRate=LOW} 0.21 0.41 1.20 
     

LHS  RHS Support Confidence Lift  

{Alcohol%=20} {ProdRate=HIGH} 0.14 0.61 1.83 

{Alcohol%=20} {ProdRate=MEDIUM} 0.04 0.17 0.52 

{Alcohol%=20} {ProdRate=LOW} 0.05 0.22 0.64 
     

LHS  RHS Support Confidence Lift  

{SacAgent1=Na2S} {ProdRate=HIGH} 0.00 0.00 0.00 

{SacAgent1=Na2S} {ProdRate=MEDIUM} 0.02 0.22 0.69 

{SacAgent1=Na2S} {ProdRate=LOW} 0.06 0.78 2.33 

 

  



 

 

Table A.3. Results of association rule mining for visible light data for production rate class high. 

LHS RHS Support Confidence Lift 

H
IG

H
 

3
5

0
 (

μ
m

o
l/

g
ca

t.
h

) 

 a
n

d
 a

b
o

v
e 

{Undoped_Perovskite=ZnCdS} 0.07 0.21 3.00 

{Prep_Meth=novel} 0.13 0.39 2.33 

{SacAgent1=Na2S} 0.13 0.39 2.27 

{SacAgent2=Na2SO3} 0.13 0.39 2.27 

{SurfaceArea=9} 0.07 0.22 2.09 

{Calctime=2} 0.05 0.15 1.94 

{Undoped_Perovskite=NaTaO} 0.08 0.24 1.89 

{Promoter=NAN} 0.17 0.51 1.73 

{Calctime=NAN} 0.19 0.57 1.60 

{Crystal=hexagonal} 0.06 0.18 1.56 

{CalcT=NAN} 0.14 0.43 1.48 

{Crystal=orthorombic} 0.10 0.31 1.43 

{Prom_Meth=NAN} 0.19 0.58 1.38 

{CalcT=5} 0.07 0.22 1.33 

{Alcohol%=NAN} 0.18 0.54 1.26 

{SurfaceArea=4} 0.16 0.49 1.15 

{B_1stdoped=NAN} 0.21 0.63 1.05 

{B_2nddoped=NAN} 0.33 1.00 1.03 

{Prep_Meth=HT} 0.12 0.36 1.03 

{Alcohol%=2} 0.08 0.25 1.00 

{A_2nddoped=NAN} 0.33 1.00 1.00 

 



 

 

Table A.4. Results of Association rule mining for UV light data for production rate class high. 

LHS RHS Support Confidence Lift 
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{SacAgent1=NaNO2} 0.06 0.19 2.33 

{Alcohol%=2} 0.14 0.43 1.83 

{SurfaceArea=6} 0.05 0.16 1.46 

{Undoped_Perovskite=NaTaO} 0.10 0.29 1.45 

{CalcT=8} 0.08 0.25 1.42 

{Calctime=NAN} 0.07 0.22 1.36 

{CalcT=NAN} 0.07 0.22 1.36 

{Crystal=octahedral} 0.07 0.20 1.22 

{Calctime=7} 0.06 0.17 1.21 

{Calctime=2} 0.07 0.20 1.20 

{Prom_Meth=PD} 0.09 0.28 1.16 

{Promoter=NAN} 0.15 0.46 1.06 

{Prom_Meth=NAN} 0.15 0.46 1.06 

{A_2nddoped=NAN} 0.32 0.96 1.04 

{SacAgent2=NAN} 0.33 1.00 1.00 

{Promoter=NiO} 0.06 0.18 1.00 

{B_2nddoped=NAN} 0.33 1.00 1.00 



 

 

 
 

Figure A.1.  Optimal decision tree for UV light data.  

 

 



227 

 

Table A.5. Confusion matrix for visible light data*. 

Actual Data Predictions Prediction 

Class # of data LOW MEDIUM HIGH Accuracy % 

LOW 73 64 8 1 87.67 

MEDIUM 71 6 58 7 81.69 

HIGH 72 2 15 55 76.39 

*First column on the right shows the actual number of data in each classes. The columns 

labelled as “prediction” indicate the classes in which the data placed. For example, there are 

73 data points in high classes and tree accurately placed 64 of them while it placed 8 into 

medium and 1 into low classes. Consequently the prediction accuracy for high classes is 

(64/73)*100 = 87.67  

 

Figure A.2. Predictions by random forest model for UV a) testing set and b) training set. 
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APPENDIX B: ADDITIONAL INFORMATION FOR ANALYSIS OF 

PECWS DATABASE 

Table B.1. Discretization of the numeric input in ten levels. 

 

CalcT.I CalcTime.I CalcT.II 

intervals given name intervals given name intervals given name 

0-100 0 0-1 0 0-100 0 

100-400 1 1-2 1 100-400 1 

400-500 2 2-3 2 400-500 2 

500-600 3 3-4 3 500-600 3 

600-700 4 4-5 4 600-700 4 

700-800 5 5-6 5 700-800 5 

800-900 6 6-7 6 800-900 6 

900-1000 7 7-8 7 900-1000 7 

1000+ 8 8+ 8 1000+ 8 

CalcTime.II LastCalcT LastCalcTime 

intervals given name intervals given name intervals given name 

0-1 0 0-100 0 0-1 0 

1-2 1 100-400 1 1-2 1 

2-3 2 400-500 2 2-3 2 

3-4 3 500-600 3 3-4 3 

4-5 4 600-700 4 4-5 4 

5-6 5 700-800 5 5-6 5 

6-7 6 800-900 6 6-7 6 

7-8 7 900-1000 7 7-8 7 

8+ 8 1000+ 8 8+ 8 

Power.W Wavelength.nm Intensity.mW.cm2 

intervals given name intervals given name intervals given name 

00-100 0 0-300 0 0-10 0 

100-150 1 300-400 1 10-50 1 

150-200 2 400-410 2 50-75 2 

200-250 3 410-420 3 75-100 3 

250-300 4 420-450 4 100 4 

300-350 5 450-500 5 100+ 5 

350-400 6 500+ 6  

400-450 7 
 450-500 8 

500+ 9 

Table B.1. Discretization of the numeric input in ten levels. (cont.) 

E.Molarity.M A.Molarity.M pH 
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intervals given name intervals given name intervals given name 

0-0.1 0 0-0.1 0 0-1 1 

0.1-0.25 1 0.1-0.25 1 1-2 2 

0.25-0.5 2 0.25-0.5 2 2-3 3 

0.5-1 3 0.5-1 3 3-4 4 

1-1.25 4 1-1.25 4 4-5 5 

1.25-1.5 5 1.25-1.5 5 5-6 6 

1.5-2 6 1.5-2 6 6-7 7 

2-3 7 2-3 7 7-8 8 

3+ 8 3+ 8 8-9 9 

  

9-10 10 

10-11 11 

11-12 12 

12-13 13 

13-14 14 

 

Evaluation criteria for Variable Importance 

IncNodePurity: This term is the abbreviation for the phrase of “increase in node purity”. In 

the process of random forest application, several trees were developed by using subset of the 

input variables and subset of the instances at each time. Therefore, the algorithm can 

calculate the change in purity of the nodes by evaluating the models formed in the absence 

and presence of a definite input variable. That change can be considered as the contribution 

of that input variable to the accuracy of random forest model.  

%IncMSE: This term is the abbreviation for the phrase of “increase in mean square error”. 

Similar to previous one, for each tree, the prediction error on the out-of-bag subset through 

the dataset is recorded during RF application. Then the error value represents the importance 

of that input variable in the prediction of output variable. 

The difference between regular accuracy and balanced accuracy 

The regular accuracy and balanced accuracy are the same thing if the number of 

instances in each class are well balanced. However, in a classification task if there is a class 

imbalance problem and it cannot be solved, then balanced accuracy should be reported. Here 

are the equations for regular and balanced accuracy. 
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Table B.2. The confusion matrix for sample subset. 

  Predicted values 

  A B 

Real values 
A 3 5 

B 4 8 

 

𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
3 + 8

3 + 5 + 4 + 8
= 0.55 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
3

3 + 5
+

8

8 + 4
)/2 = 0.38 

 

Table B.3. The confusion matrix for bandgap testing subset (PECWS). 

Optimum parameters: nodesize=5   ntree=20 

   Predicted Class 

Recall    1low 2medium 3high 

Overall 

Accuracy 

0.72 

Real Class 

1low 21 9 5 0.60 

2medium 3 31 10 0.70 

3high 1 0 20 0.95 

Precision 0.84 0.78 0.57  
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Table B.4. The confusion matrix for photocurrent density testing and validation 

subsets (PECWS). 

Optimum parameters: nodesize=6   ntree=166 

 Confusion 
Overall Accuracy Real Class Total number 

Predicted Class 

 Matrix A B C 

Validation 0.89 A 2671 2489 176 6 

B 2623 303 2222 98 

C 2622 76 196 2350 

   Precision 0.87 0.86 0.96 

Test 0.60 A 865 734 87 44 

B 909 357 432 120 

C 869 121 262 486 

   Precision 0.60 0.55 0.75 
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APPENDIX C: ADDITIONAL INFORMATION FOR ANALYSIS OF 

WATER SOLUBILITY IN ILs DATABASE 

Explanation for the descriptors included in the datasets  

In this study, we selected 10 descriptors for each cation and anion. These descriptors are 

explained briefly as follows; 

Molecular weight (MW): the summation of atomic masses forming anion/cation in grams. 

HOMO and LUMO energies (EHOMO, ELUMO): the energy of highest occupied and lowest 

unoccupied molecular orbital for each specie in eV. 

Dipole (μ): the charge separation within the specie in Debye. 

CPK-Area (A): the area as determined by space filling model where, CPK are second name 

initals of chemists who developed this model in Å2. 

CPK Ovality (O): the measure of sphericity of the specie as determined by space filling 

model. 

Polarizability (P): the ability of cation/anion for inducing dipole in m3. 

Hydrogen bond donor count (HBD) and hydrogen bond acceptor count (HBA): the number 

of hydrogen bond donor and acceptor atoms, respectively.  

ZPE: the vibrational energy of nuclei at 0 K in kJ/mol. 

Table C.1. Full names of cations. 

Cation Full Name Abbreviation 

butyl-diethanolammonium_cation CAmm1 

hexyltrimethylammonium_cation CAmm10 

methyl-trioctyl-ammonium_cation CAmm11 

n-hexyl-n,n,n-triethylammonium_cation CAmm12 

octyltrimethylammonium_cation CAmm13 

tetra-ethylammonium_cation CAmm14 

tetra-methylammonium_cation CAmm15 
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Table C.1. Full names of cations. (cont.) 

Cation Full Name Abbreviation 

tetra-n-butylammonium_cation CAmm16 

tetradecyltrimethylammonium_cation CAmm17 

tetrapropylammonium_cation CAmm18 

tributylmethylammonium_cation CAmm19 

butyltrimethylammonium_cation CAmm2 

triethylheptylammonium_cation CAmm20 

triethyloctylammonium_cation CAmm21 

triethylpentylammonium_cation CAmm22 

trimethylethylammonium_cation CAmm23 

dimethyl-tetradecyl-benzylammonium_cation CAmm24 

cyanomethyl-dimethyl-ethylammonium_cation CAmm25 

dodecyl-dimethyl-3-sulfopropylammonium_cation CAmm26 

dodecyl-dimethyl-benzylammonium_cation CAmm27 

ethyl-(3-hydroxypropyl)-dimethylammonium_cation CAmm28 

ethyl-(3-methoxypropyl)-dimethylammonium_cation CAmm29 

decyl-dimethyl-benzylammonium_cation CAmm3 

ethyl-dimethyl-2-methoxyethylammonium_cation CAmm30 

(2-ethoxyethyl)-ethyl-dimethylammonium_cation CAmm31 

2-hydroxyethyl-ammonium_cation CAmm32 

bis(2-methoxyethyl)ammonium_cation CAmm33 

diethanolammonium_cation CAmm4 

diethyl-methyl-propylammonium_cation CAmm5 

dimethylethanolammonium_cation CAmm6 

ethyl-dimethyl-butylammonium_cation CAmm7 

ethyl-dimethyl-propylammonium_cation CAmm8 

heptyltrimethylammonium_cation CAmm9 

Choline_cation Cch1 

1,3-didecyl-2-methyl-imidazolium_cation CIm41 

1,3-diethylimidazolium_cation CIm14 

1,3-dihexyl-imidazolium_cation CIm17 
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Table C.1. Full names of cations. (cont.) 

Cation Full Name Abbreviation 

1,3-dipentyl-imidazolium_cation CIm16 

1,3-methyl-imidazolium_cation_ CIm13 

1-butyl-2-3-methyl-imidazolium_cation CIm34 

1-butyl-3-ethylimidazolium_cation CIm38 

1-butyl-3-methyl-imidazolium_cation CIm20 

1-butyl-imidazolium_cation CIm4 

1-decyl-3-ethyl-imidazolium_cation CIm40 

1-decyl-3-methyl-imidazolium_cation CIm26 

1-dodecyl-3-methyl-imidazolium_cation CIm27 

1-ethyl-2-3-methyl-imidazolium_cation CIm31 

1-ethyl-3,4-dimethylimidazolium_cation CIm32 

1-ethyl-3-hexyl-imidazolium_cation CIm39 

1-ethyl-3-methyl-imidazolium_cation CIm18 

1-ethyl-3-propylimidazolium_cation CIm37 

1-heptyl-3-methyl-imidazolium_cation CIm23 

1-hexadecyl-2-3-methyl-imidazolium_cation CIm36 

1-hexadecyl-3-methyl-imidazolium_cation CIm29 

1-hexyl-2-3-methyl-imidazolium_cation CIm35 

1-hexyl-3-methyl-imidazolium_cation CIm22 

1-methyl-3-nonylimidazolium_cation CIm25 

1-octadecyl-3-methyl-imidazolium_cation CIm30 

1-octyl-3-methyl-imidazolium_cation CIm24 

1-pentyl-3-methyl-imidazolium_cation CIm21 

1-propyl-2-3-methyl-imidazolium_cation CIm33 

1-propyl-3-methyl-imidazolium_cation CIm19 

1-tetradecyl-3-methyl-imidazolium_cation CIm28 

3-decyl-imidazolium_cation CIm10 

3-dodecyl-imidazolium_cation CIm12 

3-ethyl-imidazolium_cation CIm2 

3-heptyl-imidazolium_cation CIm7 
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Table C.1. Full names of cations. (cont.) 

Cation Full Name Abbreviation 

3-hexyl-imidazolium_cation CIm6 

3-methyl-imidazolium_cation CIm1 

3-nonyl-imidazolium_cation CIm9 

3-octyl-imidazolium_cation CIm8 

3-pentyl-imidazolium_cation CIm5 

3-propyl-imidazolium_cation CIm3 

3-undecyl-imidazolium_cation CIm11 

dibutylimidazolium_cation CIm15 

1,3-bis[(heptyloxy)methyl]-imidazolium_cation CIm42 

1-benzyl-3-methyl-imidazolium_cation CIm43 

1-butoxymethyl-3-propoxymethylimidazolium_cation CIm44 

1-isobutenyl-3-methylimidazolium_cation CIm45 

1-methyl-3-(3-oxobutyl)-imidazolium_cation CIm46 

1-methyl-3-heptoxymethylimidazolium_cation CIm47 

1-methyl-3-nonoxymethylimidazolium_cation CIm48 

1-propenyl-boronic-acid-3-decyl-imidazolium_cation CIm49 

1-propenyl-boronic-acid-3-methyl-imidazolium_cation CIm50 

1-propenyl-boronic-acid-3-octyl-imidazolium_cation CIm51 

2-methyl-1-(phenylmethyl)-3-propylimidazolium_cation CIm52 

3-(3-carboxypropyl)-1-methyl-imidazolium_cation CIm53 

3-(3-methoxypropyl)-1-methyl-imidazolium_cation CIm54 

3-(4-hydroxybutyl)-1-methyl-imidazolium_cation CIm55 

3-(7-carboxyheptyl)-1-methyl-imidazolium_cation CIm56 

3-(butoxymethyl)-imidazolium_cation CIm57 

3-(cyanomethyl)-1-methyl-imidazolium_cation CIm62 

3-[(dodecyloxy)methyl]-imidazolium_cation CIm61 

3-[(heptyloxy)methyl]-imidazolium_cation CIm59 

3-[(hexyloxy)methyl]-imidazolium_cation CIm58 

3-[(octyloxy)methyl]-imidazolium_cation CIm60 

benzyl-triphenyl-phosphonium_cation CPhos1 
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Table C.1. Full names of cations. (cont.) 

Cation Full Name Abbreviation 

butyl-trihexyl-phosphonium_cation CPhos2 

decyl-trihexyl-phosphonium_cation CPhos3 

dodecyl-trihexyl-phosphonium_cation CPhos19 

ethyl-trihexyl-phosphonium_cation CPhos16 

heptyl-trihexyl-phosphonium_cation CPhos17 

hexadecyl-trihexyl-phosphonium_cation CPhos18 

methyltris(2-methylpropyl)phosphonium_cation CPhos15 

tetrabutyl-phosphonium_cation CPhos14 

tetrahexyl-phosphonium_cation CPhos13 

tributyl-ethyl-phosphonium_cation CPhos10 

tributylmethylphosphonium_cation CPhos12 

tributyl-tetradecylphosphonium_cation CPhos11 

trihexyl(methoxymethyl)phosphonium_cation CPhos4 

trihexyl-2-propen-1-ylphosphonium_cation CPhos5 

trihexyl-octyl-phosphonium_cation CPhos6 

trihexyl-propyl-phosphonium_cation CPhos7 

trihexyl-tetradecyl-phosphonium_cation CPhos8 

triisobutyl-methyl-phosphonium_cation CPhos9 

1-(2-methoxyethyl)-1-methylpiperidinium_cation Cpip1 

1-(3-hydroxypropyl)-1-methylpiperidinium_cation Cpip2 

1-(3-methoxypropyl)-1-methylpiperidinium_cation Cpip3 

1-(cyanomethyl)-1-methylpiperidinium_cation Cpip4 

1-(ethoxymethyl)-1-methylpiperidinium_cation Cpip5 

1-butyl-1-methylpiperidinium_cation_ Cpip6 

1-methyl-1-propylpiperidinium_cation_ Cpip7 

1-(2-ethoxyethyl)pyridinium_cation CPyr11 

1-(2-hydroxyethyl)pyridinium_cation CPyr10 

1-(cyanomethyl)pyridinium_cation CPyr12 

1-(ethoxymethyl)pyridinium_cation CPyr13 

1-[(heptyloxy)methyl]-3-hydroxypyridinium_cation CPyr21 
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Table C.1. Full names of cations. (cont.) 

Cation Full Name Abbreviation 

1-butyl-pyridinium_cation CPyr14 

1-decylpyridinium_cation CPyr15 

1-ethyl-3-methylpyridinium_cation_ CPyr20 

1-ethyl-pyridinium_cation CPyr16 

1-hexyl-3-methyl-pyridinium_cation CPyr17 

1-hexyl-4-methyl-pyridinium_cation CPyr18 

1-hexyl-pyridinium_cation CPyr19 

1-methyl-pyridinium_cation_ CPyr9 

1-octyl-pyridinium_cation CPyr1 

1-pentylpyridinium_cation CPyr2 

1-propylpyridinium_cation CPyr3 

1-tert-butyl-pyridinium_cation_ CPyr4 

4-methyl-n-butylpyridinium_cation CPyr5 

n-(3-hydroxypropyl)pyridinium_cation CPyr6 

n-(3-sulfopropyl)pyridinium_cation CPyr7 

pyridinium_cation_ CPyr8 

1-(2-hydroxyethyl)-1-methylpyrrolidinium_cation CPyrr12 

1-(2-methoxyethyl)-1-methylpyrrolidinium_cation CPyrr11 

1-(3-hydroxypropyl)-1-methylpyrrolidinium_cation CPyrr13 

1-(3-methoxypropyl)-1-methylpyrrolidinium_cation CPyrr14 

1-(cyanomethyl)-1-methylpyrrolidinium_cation CPyrr15 

1,1-dihexylpyrrolidinium_cation CPyrr3 

1,1-dimethyl-pyrrolidinium_cation_ CPyrr1 

1,1-dipropyl-pyrrolidinium_cation CPyrr2 

1-butyl-1-ethyl-pyrrolidinium_cation CPyrr6 

1-butyl-1-methyl-pyrrolidinium_cation CPyrr5 

1-ethyl-1-methyl-pyrrolidinium_cation CPyrr4 

1-hexyl-1-methyl-pyrrolidinium_cation CPyrr9 

1-methyl-1-pentylpyrrolidinium_cation CPyrr8 

1-methyl-1-propylpyrrolidinium_cation CPyrr7 
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Table C.1. Full names of cations. (cont.) 

Cation Full Name Abbreviation 

1-octyl-1-methyl-pyrrolidinium_cation CPyrr10 

diethyl-methylsulfonium_cation Csulf1 

dimethyl-phenylsulfonium_cation Csulf4 

ethyl-dimethylsulfonium_cation Csulf2 

ethyl-phenyl-methylsulfonium_cation Csulf5 

triethylsulfonium_cation Csulf3 

 

Table C.2. Full names of anions. 

Anion Full Name Abbreviation 

(2r,3r)-2,3-dihydroxybutanedioate_anion A1 

1-butanesulfonate_anion A2 

1-hexanesulfonate_anion A3 

2-(2-methoxyethoxy)ethylsulfate_anion A4 

2-hydroxy-1,2,3-propanetricarboxylate_anion A5 

2-hydroxyacetate_anion A6 

2-hydroxybutanedioate_anion A7 

acesulfamate_anion A8 

acetate_anion A9 

alaninate_anion A10 

argininate_anion A11 

hexafluoroarsenate_anion A12 

asparaginate_anion A13 

aspartate_anion A14 

tetrachloroborate_anion A15 

chlorotrifluoroborate_anion A16 

benzoate_anion A17 

tetrafluoroborate_anion A18 

bis(2,4,4-trimethylpentyl)phosphinate_anion A19 

bis(2-methyllactato)borate_anion A20 
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Table C.2. Full names of anions. (cont.) 

Anion Full Name Abbreviation 

bis(fluorosulfonyl)imide_anion A21 

bis(pentafluoroethylsulfonyl)amide_anion A22 

bis(trifluoromethyl)imide_anion A23 

bis(trifluoromethylsulfonyl)methane_anion A24 

bis[1,2-benzenediolato]borate_anion A25 

bisbiphenyldiolatoborate_anion A26 

bismalonatoborate_anion A27 

bisoxalatoborate_anion A28 

bis-pentafluoroethyl-phosphinate_anion A29 

bissalicylatoborate_anion A30 

bromide_anion A31 

butanedioate_anion A32 

butanoate_anion A33 

butylsulfate_anion A34 

chloride_anion A35 

chlorate_anion A36 

decanoate_anion A37 

dibutylphosphate_anion A38 

dicyanamide_anion A39 

diethylphosphate_anion A40 

dihydrogen-phosphate_anion A41 

dimethylphosphate_anion A42 

dodecylsulfate_anion A43 

ethoxyethylsulfate_anion A44 

ethylsulfate_anion A45 

fluoride_anion A46 

formate_anion A47 

glutamate_anion A48 

glutaminate_anion A49 

glycinate_anion A50 
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Table C.2. Full names of anions. (cont.) 

Anion Full Name Abbreviation 

heptafluorobutanoate_anion A51 

histidinate_anion A52 

hydrogencarbonate_anion A53 

hydrogensulfate_anion A54 

iodide_anion A55 

triiodide_anion A56 

imidodiphosphorylfluoride_anion A57 

isoleucinate_anion A58 

lactate_anion A59 

leucinate_anion A60 

lysinate_anion A61 

methanesulfonate_anion A62 

methioninate_anion A63 

methoxyethylsulfate_anion A64 

methylcarbonate_anion A65 

methylsulfate_anion A66 

nitrate_anion A67 

octylsulfate_anion A68 

pentafluoroethyltrifluoroborate_anion A69 

perfluorobutanesulfonate_anion A70 

perfluorooctanesulfonate_anion A71 

hexafluorophosphate_anion A72 

phosphonate_anion A73 

prolinate_anion A74 

propanedioate_anion A75 

propanoate_anion A76 

saccharinate_anion A77 

salicylate_anion A78 

hexafluoroantimonate_anion A79 

serinate_anion A80 
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Table C.2. Full names of anions. (cont.) 

Anion Full Name Abbreviation 

sulfate_anion A81 

sulfamate_anion A82 

tetrachloroaluminate_anion A83 

tetrachlorogallate_anion A84 

tetrachloroindium_anion A85 

tetracyanoborate_anion A86 

tf2n_anion A87 

thiocyanate_anion A88 

threoninate_anion A89 

toluene-4-sulfonate_anion A90 

tricyanomethane_anion A91 

trifluoroacetate_anion A92 

trifluoromethane-sulfonate_anion A93 

trifluoromethyltrifluoroborate_anion A94 

trifluorotris(perfluoropropyl)phosphate_anion A95 

tris(nonafluorobutyl)trifluorophosphate_anion A96 

tris(pentafluoroethyl)trifluorophosphate_anion A97 

tris(trifluoromethylsulfonyl)methide_anion A98 

valinate_anion A99 
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Table C.3. Discretization of the numeric input in ten levels. 

Cation molecular weight (amu) Cation E.HOMO (eV) 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <100 990 1 <-16.5 198 

2 100≤ <150 4950 2 -16.5≤ <-16 99 

3 150≤ <200 4554 3 -16≤ <-15.5 1485 

4 200≤ <250 2574 4 -15.5≤ <-15 1584 

5 250≤ <300 792 5 -15≤ <-14.5 2772 

6 300≤ <350 1188 6 -14.5≤ <-14 1782 

7 350≤ <400 693 7 -14≤ <-13.5 3069 

8 400≤ <450 99 8 -13.5≤ <-13 1683 

9 450≤ <500 198 9 -13≤ <-12.5 1881 

10 500≤ 99 10 -12.5≤ 1584 

Cation E.LUMO (eV) Cation dipole (debye) 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <-6 198 1 <5 7425 

2 -6≤ <-5.75 1584 2 5≤ <10 3168 

3 -5.75≤ <-5.5 594 3 10≤ <15 1980 

4 -5.5≤ <-5.25 297 4 15≤ <20 990 

5 -5.25≤ <-5 1782 5 20≤ <25 1188 

6 -5≤ <-4.75 4356 6 25≤ <30 495 

7 -4.75≤ <-4.5 990 7 30≤ <35 396 

8 -4.5≤ <-4.25 3267 8 35≤ <40 198 

9 -4.25≤ <-4 2970 9 40≤ <45 198 

10 -4≤ 99 10 ≤45 99 

Cation CPK area (Å²) Cation CPK ovality 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <150 990 1 <1.2 495 

2 150≤ <200 4059 2 1.2≤ <1.25 1386 

3 200≤ <250 3861 3 1.25≤ <1.3 1980 

4 250≤ <300 2376 4 1.3≤ <1.35 2475 

5 300≤ <350 1782 5 1.35≤ <1.4 2475 

6 350≤ <400 693 6 1.4≤ <1.45 1089 

7 400≤ <450 693 7 1.45≤ <1.5 1287 

8 450≤ <500 693 8 1.5≤ <1.55 1386 

9 500≤ <550 396 9 1.55≤ <1.6 792 

10 ≤550 594 10 ≤1.6 2772 

Cation polarizability Cation ZPE (kJ/mol) 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <45 99 1 <45 0 

2 45≤ <50 1386 2 45≤ <50 2871 

3 50≤ <55 6138 3 50≤ <55 5346 

4 55≤ <60 2871 4 55≤ <60 3168 

5 60≤ <65 2574 5 60≤ <65 2079 

6 65≤ <70 792 6 65≤ <70 891 

7 70≤ <75 1188 7 70≤ <75 891 

8 75≤ <80 495 8 75≤ <80 297 

9 80≤ <85 297 9 80≤ <85 297 

10 ≤85 297 10 ≤85 297 
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Table C.3. Discretization of the numeric input in ten levels. (cont.) 

Anion molecular weight (amu) Anion E.HOMO (eV) 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <50 489 1 <-9 815 

2 50≤ <100 3423 2 -9≤ <-8 326 

3 100≤ <150 4727 3 -8≤ <-7 1467 

4 150≤ <200 3749 4 -7≤ <-6 3097 

5 200≤ <250 1141 5 -6≤ <-5 3749 

6 250≤ <300 1141 6 -5≤ <-4.5 1141 

7 300≤ <350 163 7 -4.5≤ <-4 3912 

8 350≤ <400 489 8 -4≤ <-3 1141 

9 400≤ <450 326 9 -3≤ <-2 163 

10 ≤450 489 10 ≤-2 326 

Anion E.LUMO (eV) Anion dipole (debye) 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <-1 1467 1 <1 4238 

2 1≤ <2 815 2 1≤ <3 1793 

3 2≤ <3 1630 3 3≤ <6 1956 

4 3≤ <4 2608 4 6≤ <9 2445 

5 4≤ <5 2282 5 9≤ <12 2119 

6 5≤ <6 1956 6 12≤ <15 1630 

7 6≤ <7 2934 7 15≤ <18 815 

8 7≤ <8 1793 8 18≤ <21 326 

9 8≤ <9 489 9 21≤ <24 326 

10 ≤9 163 10 ≤24 489 

Anion CPK area (Å²) Anion CPK ovality 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <60 652 1 <1.06 815 

2 60≤ <80 815 2 1.06≤ <1.12 652 

3 80≤ <100 2119 3 1.12≤ <1.18 1956 

4 100≤ <120 2119 4 1.18≤ <1.24 3423 

5 120≤ <140 2119 5 1.24≤ <1.3 2934 

6 140≤ <160 1793 6 1.3≤ <1.36 2608 

7 160≤ <180 2282 7 1.36≤ <1.42 1304 

8 180≤ <220 1793 8 1.42≤ <1.48 978 

9 220≤ <260 815 9 1.48≤ <1.54 652 

10 ≤260 1630 10 ≤1.54 815 

Anion polarizability Anion ZPE (kJ/mol) 

Category # Intervals Number of Instances Category # Intervals Number of Instances 

1 <43 1304 1 <50 2934 

2 43≤ <46 3749 2 50≤ <100 2282 

3 46≤ <49 3749 3 100≤ <150 1467 

4 49≤ <52 3423 4 150≤ <200 978 

5 52≤ <55 1793 5 200≤ <300 2445 

6 55≤ <58 652 6 300≤ <400 3260 

7 58≤ <61 489 7 400≤ <500 1304 

8 61≤ <64 326 8 500≤ <600 489 

9 64≤ <67 326 9 600≤ <700 326 

10 ≤67 326 10 ≤700 652 



 

 

 

Figure C.1. The distribution of input variables for cations in the entire dataset.
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Table C.4. Confusion matrix for imidazolium dataset. 

 

  ACTUAL  

  A B C precision 
P

R
E

D
 

A 324 32 4 0.90 

B 22 279 16 0.88 

C 0 5 333 0.98 

 recall 0.94 0.88 0.94  

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
324 + 279 + 333

324 + 32 + 4 + 22 + 279 + 16 + 0 + 5 + 333
= 0.922  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  0.922 

 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ( 
324

324 + 22 + 0
+

279

32 + 279 + 5
+

333

4 + 16 + 333
) /3  

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.920 

 

Table C.5. Confusion matrix for ammonium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 237 41 5 0.84 

B 19 248 24 0.85 

C 0 10 233 0.96 
 recall 0.92 0.83 0.89  

 

Table C.6. Confusion matrix for functionalized imidazolium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 90 12 0 0.88 

B 41 203 10 0.80 

C 0 1 163 0.99 
 recall 0.69 0.94 0.94  
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Table C.7. Confusion matrix for phosphonium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 176 2 0 0.99 

B 2 104 3 0.95 

C 0 1 182 0.99 
 recall 0.99 0.97 0.98  

 

Table C.8. Confusion matrix for piperidinium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 51 7 0 0.88 

B 8 46 6 0.77 

C 0 1 54 0.98 
 recall 0.86 0.85 0.90  

 

Table C.9. Confusion matrix for pyridinium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 159 31 1 0.83 

B 0 137 4 0.97 

C 0 9 179 0.95 
 recall 1.00 0.77 0.97  

 

Table C.10. Confusion matrix for pyrrolidinium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 141 16 0 0.90 

B 0 90 2 0.98 

C 0 0 122 1.00 
 recall 1.00 0.85 0.98  
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Table C.11. Confusion matrix for sulfonium dataset. 

  ACTUAL  

  A B C precision 

P
R

E
D

 A 41 8 0 0.84 

B 4 28 2 0.82 

C 0 1 40 0.98 
 recall 0.91 0.76 0.95  

 

 

The list of 25 anion out of 99 leading to node 4 in the decision tree (Figure 4.27) for 

imidazolium dataset 

 

A12-hexafluoroarsenate A79- hexafluoroantimonate 

A18- tetrafluoroborate A83-tetrachloroaluminate 

A21- bis(fluorosulfonyl)imide A84- tetrachlorogallate 

A22-bis(pentafluoroethylsulfonyl)amide A85- tetrachloroindium 

A24- bis(trifluoromethylsulfonyl)methane A86- tetracyanoborate 

A27-bismalonatoborate A87- tf2n 

A28- bisoxalatoborate A93- trifluoromethane-sulfonate 

A29- bis-pentafluoroethyl-phosphinate A94- trifluoromethyltrifluoroborate 

A36-chlorate A95-trifluorotris(perfluoropropyl)phosphate 

A69- pentafluoroethyltrifluoroborate A96- tris(nonafluorobutyl)trifluorophosphate 

A70- perfluorobutanesulfonate A97-tris(pentafluoroethyl)trifluorophosphate 

A71-perfluorooctanesulfonate A98- tris(trifluoromethylsulfonyl)methide) 

A72- hexafluorophosphate  
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Figure C.2. Optimum decision tree structure for ammonium dataset. 
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Figure C.3. Optimum decision tree structure for functionalized imidazolium dataset. 
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Figure C.4. Optimum decision tree structure for phosphonium dataset. 
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Figure C.5. Optimum decision tree structure for piperidinium dataset. 



252 

 

 

Figure C.6. Optimum decision tree structure for pyridinium dataset. 
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Figure C.7. Optimum decision tree structure for pyrrolidinium dataset. 
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Figure C.8. Optimum decision tree structure for sulfonium dataset. 

 



 

 

Table C.12. Detailed information about the 49 ILs. 

Cation Anion 
Cation 

Code 

Anion 

Code 

Experimental solubility 

values found in literature 
REFs 

methyl-trioctyl-ammonium_cation tf2n_anion CAmm11 A87 0.03 S1 

tributylmethylammonium_cation tf2n_anion CAmm19 A87 0.11 S1 

butyltrimethylammonium_cation tf2n_anion CAmm2 A87 0.23 S1 

1,3-diethylimidazolium_cation tf2n_anion CIm14 A87 0.29 S2 

1,3-dihexyl-imidazolium_cation tf2n_anion CIm17 A87 0.14 S3 

1-butyl-2-3-methyl-imidazolium_cation hexafluorophosphate_anion CIm34 A72 0.18 S4 

1-butyl-2-3-methyl-imidazolium_cation tf2n_anion CIm34 A87 0.21 S2 

1-butyl-3-ethylimidazolium_cation tf2n_anion CIm38 A87 0.22 S5 

1-butyl-3-methyl-imidazolium_cation acetate_anion CIm20 A9 76.92 S6 

1-butyl-3-methyl-imidazolium_cation tetrafluoroborate_anion CIm20 A18 1.00 S5 

1-butyl-3-methyl-imidazolium_cation bromide_anion  CIm20 A31 22.22 S6 

1-butyl-3-methyl-imidazolium_cation chloride_anion  CIm20 A35 40.00 S6 

1-butyl-3-methyl-imidazolium_cation iodide_anion  CIm20 A55 0.46 S7 

1-butyl-3-methyl-imidazolium_cation methanesulfonate_anion  CIm20 A62 10.31 S6 

1-butyl-3-methyl-imidazolium_cation hexafluorophosphate_anion CIm20 A72 0.25 S4 

1-butyl-3-methyl-imidazolium_cation tf2n_anion CIm20 A87 0.24 S4 

1-butyl-3-methyl-imidazolium_cation thiocyanate_anion CIm20 A88 3.31 S6 

1-butyl-3-methyl-imidazolium_cation tricyanomethane_anion CIm20 A91 0.85 S4 

1-butyl-3-methyl-imidazolium_cation trifluoroacetate_anion CIm20 A92 7.52 S6 

1-butyl-3-methyl-imidazolium_cation trifluoromethane-sulfonate_anion CIm20 A93 1.07 S6 

1-butyl-3-methyl-imidazolium_cation tris(trifluoromethylsulfonyl)methide_anion CIm20 A98 0.14 S5 

1-decyl-3-methyl-imidazolium_cation tf2n_anion CIm26 A87 0.15 S3 

1-ethyl-3-methyl-imidazolium_cation tf2n_anion CIm18 A87 0.26 S4 

1-heptyl-3-methyl-imidazolium_cation tf2n_anion CIm23 A87 0.18 S4 

1-hexyl-2-3-methyl-imidazolium_cation tf2n_anion CIm35 A87 0.21 S8 



 

 

Table C.12. Detailed information about the 49 ILs. (cont.) 

Cation Anion 
Cation 

Code 

Anion 

Code 

Experimental solubility values found in 

literature 

REF

s 

1-hexyl-3-methyl-imidazolium_cation hexafluorophosphate_anion CIm22 A72 0.20 S4 

1-hexyl-3-methyl-imidazolium_cation tf2n_anion CIm22 A87 0.20 S4 

1-methyl-3-nonylimidazolium_cation tf2n_anion CIm25 A87 0.16 S3 

1-octyl-3-methyl-imidazolium_cation hexafluorophosphate_anion CIm24 A72 0.20 S5 

1-octyl-3-methyl-imidazolium_cation tf2n_anion CIm24 A87 0.19 S9 

1-pentyl-3-methyl-imidazolium_cation tf2n_anion CIm21 A87 0.22 S10 

1-propyl-3-methyl-imidazolium_cation tf2n_anion CIm19 A87 0.26 S10 

trihexyl-tetradecyl-phosphonium_cation 
bis(2,4,4-

trimethylpentyl)phosphinate_anion  
CPhos8 A19 0.89 S11 

trihexyl-tetradecyl-phosphonium_cation bromide_anion  CPhos8 A31 0.68 S11 

trihexyl-tetradecyl-phosphonium_cation chloride_anion  CPhos8 A35 0.82 S11 

trihexyl-tetradecyl-phosphonium_cation decanoate_anion CPhos8 A37 0.86 S11 

trihexyl-tetradecyl-phosphonium_cation dicyanamide_anion CPhos8 A39 0.51 S11 

trihexyl-tetradecyl-phosphonium_cation tf2n_anion CPhos8 A87 0.09 S5 

trihexyl-tetradecyl-phosphonium_cation tricyanomethane_anion CPhos8 A91 0.51 S5 

1-butyl-1-methylpiperidinium_cation_c0.cosmo tf2n_anion Cpip6 A87 0.17 S12 

1-methyl-1-

propylpiperidinium_cation_c0.cosmo 
tf2n_anion Cpip7 A87 0.23 S2 

1-butyl-pyridinium_cation tf2n_anion CPyr14 A87 0.27 S2 

1-hexyl-pyridinium_cation tf2n_anion CPyr19 A87 0.25 S2 

1-octyl-pyridinium_cation tf2n_anion CPyr1 A87 0.22 S2 

4-methyl-n-butylpyridinium_cation tf2n_anion CPyr5 A87 0.24 S13 

1-butyl-1-methyl-pyrrolidinium_cation tf2n_anion CPyrr5 A87 0.23 S2 

1-methyl-1-propylpyrrolidinium_cation tf2n_anion CPyrr7 A87 0.25 S2 

diethyl-methylsulfonium_cation tf2n_anion Csulf1 A87 0.25 S1 

triethylsulfonium_cation tf2n_anion Csulf3 A87 0.20 S1 
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About Figure 2.5 and Figure 2.6 
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About Figure 2.9 

 

 

 

 

 

 




