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ABSTRACT 

 

 

KNOWLEDGE EXTRACTION FOR ORGANOMETALLIC PEROVSKITE 

SOLAR CELLS FROM PUBLISHED DATA IN LITERATURE 

 

 

Orgonolead halide perovskite solar cells (PSCs) have been attracted great attention in 

recent years. This rapid progress is due to excellent light absorption and charge-carrier 

mobilities of the perovskite materials besides its low-cost and easy processing conditions. In 

addition to high power conversion efficiency (PCE), reproducibility, hysteresis and long-

term stability of perovskite solar cells are major factors to be solved before 

commercialization of this technology . The objective of this dissertation is to extract useful 

knowledge from literature to improve the overall performance of this technology for 

commercialization.  The extensive datasets for PCE, reproducibility, hysteresis and long-

term stability of PSCs were constructed from the published papers in literature and analyzed 

using machine-learning tools to determine the effects of materials and perovskite deposition 

methods employed during cell manufacturing. The evolution of PCE with time was 

statistically analyzed under different circumstances (i.e. using different materials types or 

perovskite deposition methods). Then, the databases for PCE, hysteresis and long-term 

stability were modeled using random forest, association rule mining and decision tree 

methods to detect the most effective variables and combinations leading to high 

performance. For reproducibility, pooled variances of different factors were calculated and 

compared. The mixed cation perovskites, doped mesoporous TiO2 (second electron transfer 

layer) and LiTFSI+TBP+FK209 (additive to hole transfer materials) were found to promote 

high efficiency, reproducibility and stability while they lowered the hysteresis; SnO2 

(compact ETL), DMF+DMSO (solvent) and diethyl ether (anti-solvent) also had positive 

effects on these cell characteristics except hysteresis.  Hence, it was concluded that the 

common factors which leaded high PCE, also leaded high reproducibility, low hysteresis 

and long-term stability.   Additionally, our findings were in a reasonable aggrement with the 

literature showing that the data mining and statistics can be used effectively to derive general 

results and detect trends, which can not be seen by naked eyes.  
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ÖZET 

 

 

ORGANOMETALİK PEROVSKİT GÜNEŞ HÜCRELERİ İÇİN 

LİTERATÜRDEN BİLGİ ÇIKARIMI 

 

 

Organometalik perovskit güneş hücreleri son yıllarda büyük ilgi görmüş, bu hızlı 

gelişmeyi, mükemmel ışık absorpsiyonu, yük taşıyıcı hareketlilikleri sahip olmaları, düşük 

maliyetleri ve kolay işlenebilir olmaları sağlamıştır. Tekrarlanabilirlik, akım-voltaj gecikimi 

ve uzun süreli kararlılığın sağlanamaması, verimi arttırmanın yanında ticarileşmenin 

önündeki diğer engellerdir. Tezin amacı, bu teknolojinin gelişmesi ve ticarileşmesi için 

literatürden yararlı bilgi çıkarımı yapmaktır. Verimlilik, tekrarlanabilirlik, gecikim ve uzun 

süreli kararlılıkla ilgili yayınlar kullanılarak kapsamlı veri tabanları oluşturulmuş ve yapay 

öğrenme yöntemleri kullanılarak hücre üretiminde kullanılan malzeme ve perovskit kaplama 

yöntemlerinin etkileri analiz edilmiştir. Öncelikle verimlilik analizinde, güç dönüşüm 

verimliliğinin çeşitli koşullar altında (örneğin, değişik malzeme veya perovskit kaplama 

yöntemleri) zamana göre değişimi istatistiksel olarak analiz edilmiştir. Daha sonra, 

verimlilik, tekrarlanabilirlik, gecikim ve uzun süreli kararlılık için oluşturulan veri tabanları, 

yüksek performans için en etkili değişkenleri ve kombinasyonlarını saptamak üzere 

rastlantısal orman, birliktelik kural çıkarımı ve karar ağaçları yöntemleriyle modellenmiştir. 

Tekrarlanabilirlik analizinde ise değişik faktörlerin toplu varyansları hesaplanmış ve 

birbiriyle karşılaştırılmıştır. Birden fazla katyon içeren perovskitler, katkılı gözenekli TiO2 

(ikinci electron taşıyıcı katman) ve LiTFSI+TBP+FK209’un (deşik taşıma katmanı için 

katkı) gecikimi azaltırken, yüksek verimi, çoğaltılabilirliği ve kararlılığı arttırdığı 

bulunmuştur; SnO2 (kompakt elekron taşıma katmanı), DMF+DMSO (çözücü) ve dietil 

eterin (anti-çözücü) ise gecikim dışındaki faktörler üzerinde olumlu etkisi olduğu 

saptanmıştır. Sonuç olarak, ortak faktörlerin hem yüksek güç dönüşümünü sağladığı hem de 

yüksek tekrarlanabilirlik, uzun süreli kararlılık ve düşük gecikime de neden olduğu sonucuna 

varılmıştır. Ayrıca, bulguların literatürle büyük ölçüde uyumlu olması, yapay öğrenme 

yöntemlerinin ve istatistiğin çıplak gözle görülemeyen genel sonuçları ve eğilimleri 

saptamada etkin olarak kullanılabileceğini göstermektedir. 
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1.  INTRODUCTION 

 

 

The metal halide perovskite solar cells (PSCs) have been among the most popular 

research topics in recent years; the power conversion efficiency rose to 23.7% in a few years 

making this potentially low cost device a serious alternative for the current solar 

technologies[1]. This remarkable success came from the contributions of hundreds of 

researchers around the world, then in return attracted more attention creating a virtuous 

cycle. Indeed, the number of research articles listed by Web of Science was exceeded 10000 

within a decade (with the keyword search of perovskite solar in topic segment on 

16.01.2019), and these efforts seem to be continued in the future since there are still 

significant obstacles to overcome to commercialize this promising technology. 

 

Perovskite based solar cells have emerged from the dye sensitized solar cells; first 

perovskite solar cells were created with a motivation to find better absorbers than 

conventional dyes. Organolead perovskite materials have a suitable band gap, high light 

absorption coefficient, long electron and hole diffusion lengths, easy processing conditions 

and low cost[2]; these properties made the perovskite solar cells the most promising solar 

technology of recent years. 

 

However, the challenges in long term stability remained unsolved preventing the 

commercialization of this promising technology; consequently, there has been a 

considerable shift in research focus to stability, which has been also improved, in recent 

years. For example, Grancini et al.[3] achieved stability of solar modules more than 10000 

hours without PCE loss using 2D/3D perovskites. Additionally, the hysteresis, which 

complicates PCE measurement, and reproducibility, which is essential for large-scale 

fabrication, should be also understood because all these three cell characteristics are affected 

from the morphology of the cells and crystallization process that are highly dependent on 

materials and deposition methods[4-6]; hence, they may be linked. Indeed, Saliba et al.[7] 

argued that the hysteresis, which has significant effects on efficiency measurement, may also 

influence the reliability of aging tests, may also influence the reliability of aging tests (i.e. 
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test for long term stability) suggesting a new testing protocol involving maximum power 

point tracking.   

 

When the huge amount of experimental research on organic solar cells is considered, 

it can be concluded that a significant amount of knowledge has been accumulated in the 

literature over the years. However, this accumulation is difficult to be utilized effectively by 

naked eyes because it was distributed over a very large number of publications and different 

parameters were studied in each publication. Hence, some data mining tools can be used in 

order to extract knowledge from these data and feed the results to the experimental works to 

help to develop more effective solar cells. Data mining can help to have a better 

understanding of results by discovering patterns and make useful predictions; the functions 

like classification, clustering, description, estimation and prediction can be performed using 

data mining tools. Some of the common data mining tools are multiple linear regression, 

multiple logistic regression, decision trees, random forests, association rule mining and 

artificial neural networks.  

 

In this dissertation, the power conversion efficiency (PCE), reproducibility, hysteresis 

and long-term stability aspects of perovskite solar cells are analyzed using various data 

mining methods. Evolution of PCE and factors affecting PCE are given in the first part of 

Literature Survey (Section 2.1). The developments on long-term stability  as well as some 

remarks on cell reproducibility and hysteresis are introduced in the second part of Literature 

Survey (Section 2.2). A general information on data mining methods are also presented in 

Section 2.3. In Section 3, all detailed procedures for analyses are explained including 

database construction, analysis and computational methods.   

 

The analysis of power conversion efficiency is presented in the first part of Results 

and Discussion (Section 4.1). The difference between stabilized and best efficiencies 

reported in articles are compared in a statistical point of view in Section 4.1.1. Section 4.1.2 

presents a review and statistical analysis of a database containing 1921 solar cell device 

performance data points extracted from 800 publications on the organo-lead halide 

perovskite solar cell published between 2013-2018. The aim is to review the literature to 

capture the major patterns in cell performance in the past and compare the effect of factors 

affecting efficiency. In Section 4.1.3, Section 4.1.4 and Section 4.1.5, the database is 
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analyzed using machine learning tools to develop heuristics and models to predict the cell 

performance. The maximum efficiencies reported each year were also modelled using 

logistic growth curve to check if the PCE evolution obeyed the classical logistic curve 

behavior, which is common in the development of new technologies.  

 

In Section 4.2, the reproducibility dataset having 838 cases (samples) containing 

24142 cells from 439 papers was analyzed to compare factors affecting cell reproducibility 

using pooled variances.  The hysteresis data for 387 cells from 194 papers and stability 

profiles (power conversion efficiency versus time plots) for 404 cells from 181 papers were 

analyzed using random forest, association rule mining and decision trees similar to PCE 

analysis to determine the effects of materials and perovskite deposition methods employed 

during cell manufacturing and their results are given in Section 4.3 and Section 4.4, 

respectively.  
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2.  REVIEW OF THE LITERATURE 

 

 

The metal halide perovskite solar cells (PSCs) have been among the most popular 

research topics in recent years since perovskite based solar cells were selected as one of the 

Breakthrough of the Year by both Science and Nature magazine in 2013. The power 

conversion efficiency rose to 23.7% in less than 10 years [1]. In this short period of time, the 

number of research articles listed by Web of Science was exceeded 10000 as given in Figure 

1a (with the keyword search of perovskite solar in topic segment on 16.01.2019); Figure 1b 

shows the number of papers reporting stabilized efficiencies (with the keywords of 

perovskite solar and stabilized efficiency or steady state efficiency) as it will be discussed 

later.  

 

  

Figure 2.1. Number of publications on (a) perovskite solar cells (b) perovskite solar cells 

reporting stabilized efficiencies. 

 

These efforts seem to be continued in the future since there are still significant 

obstacles to overcome to commercialize this promising technology. The main bottlenecks of 

the perovskite solar cell technology are long-term stability and degradation. Many factors 

such as environmental conditions and the defects on the surfaces might increase degradation 

and reduce the stability; hence a great amount of publications have been published in the 

literature to solve these issues. Although, there is a significant improvement on perovskite 

stability, this issue is still unsolved for the commercialization of this technology.  
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2.1.  Review of Perovskite Solar Cell Performance 

 

Originally, perovskite solar cells emerged from dye-sensitized cells in the pursuit of 

finding better absorbers. MAPbI3 and MAPbBr3 were initially employed with liquid 

electrolyte cell replacing dyes, and their initial efficiencies were found as 0.4% and 2.2%[8], 

[9]. Although MAPbI3 initially resulted in lower conversion efficiency than MAPbBr3, it was 

proven to be better in later works. Progress in the field had continued and Im et al. reached 

to the PCE of 6.5% in 2011 [10]. However, the perovskite was degraded by the liquid 

electrolyte and this problem was solved by replacing it with a solid-state hole conducting 

material, spiro-OMeTAD, which was a turning point in the field. Kim et al. has reached to 

the PCE of 9.7% in solid state cell by depositing perovskite on mesoporous TiO2 layer and 

using spiro-OMeTAD as hole conducting layer [11]; a cell with typical mesoporous structure 

was shown in Figure 2.2a. In the same year, Lee et al. reached to 10.9 % efficiency using 

MAPbI3-xClx; they also replaced mesoporous TiO2 with mesoporous Al2O3, which acts as a 

scaffold to perovskite (not an electron transfer layer) [12]. The PCE of 15.0% (14.1% 

certified) was achieved by introducing a sequential deposition of perovskite film instead of 

one step solution based coating; this was reported to prevent the uncontrolled precipitation 

of perovskite and non-homogenous surface morphology [13]. Later, the mesoporous layer 

was eliminated, and a simple planar architecture perovskite solar cell (Figure 2.2b) with PCE 

of 15.4% was introduced by Liu et al. by depositing perovskite layer by two-source thermal 

evaporation method that is suitable to deposit highly uniform films [14]. Jeon et al. obtained 

a highly uniform and dense perovskite layer with improved PCE of 16.2% by solvent 

modifications in 2014 [15]. In the same year, Zhou et al. reached to the PCE of 19.3% in 

planar configuration with yttrium doped compact TiO2 layer [16]. The hysteresis also started 

to be considered in characterization of cells in 2014, and since then, the stabilized power 

conversion efficiencies has been also reported in some publications [10,11]. The 20.0 % 

limits for PCE was reached in 2015; Yang et al. obtained a PCE of 20.2 % using 

formamidinium based solar cells and improving perovskite crystallization [18]. Saliba et al. 

reported a PCE value for 21.1% using a more stable triple cation perovskite by adding cesium 

[19]. The PCE was further improved to 22.1% by forming the perovskite by intramolecular 

exchanging process [20]. Afterwards, the highest power conversion efficiency of 22.7% and 

23.3% were published by NREL[1]; recently, Jeon et al. also reported a best efficiency of 

23.2% under reverse scan with a steady state efficiency of 22.85% by employing a fluorene-
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terminated hole-transporting material [21]. Lastly, Oxford PV set last record to 23.7% using 

a tandem perovskite-silicon architecture[1]. 

 

Although regular structure is the first and still the most commonly used PSC design 

(the record efficiencies also belong to this structure), the inverted structure cells (Figure 2.2c) 

had also attracted attention since 2013 due to their potential lower processing cost and 

flexibility. These cells are prepared starting from the transparent front electrode, and they 

are deposited in the order of HTL-Perovskite-ETL layers as opposite to the regular cells; 

their materials are cheaper, have lower sintering temperatures, and more convenient for the 

flexible substrates [22]. 

 

 

Figure 2.2. Commonly studied perovskite cell structures in literature (a) regular 

mesoporous, (b) regular planar, (c) inverted cell. 

 

The first study on inverted cells achieved a PCE of 3.9% by Jeng et al. using the most 

common HTL, PEDOT:PSS, and a fullerene derivative ETL [23]. Liang et al. reached a PCE 

of 11.8% by using additives in perovskite precursor solution, which enhanced crystallization 

[24]; the efficiency was improved to 15.4% in the same period by depositing the perovskite 

layer using interdiffusion method [25]. In another study in 2014, PCE reached to 16.3% with 

the application of two-step spin coating of perovskite again between an optimized 

PEDOT:PSS and PCBM layer [26]. In 2015, the morphology of the perovskite was improved 

further by using solution processed hot casting technique and a pinhole free perovskite layer 

with millimeter scale grains was synthesized; the efficiency was 17.7% [27]. Bi et al. also 

synthesized large grain sized perovskite layer using a non-wetting hole transport layer, and 

PCE was improved to 18.3% [28]. Then, by employing SnO2 as an effective electron transfer 

layer and a robust barrier for oxygen and moisture, Zhu et al. fabricated a high efficiency 
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inverted type cell (PCE of 18.8%) with high stability [29]. In the same year, Rao et al. 

synthesized an inverted cell with the efficiency of 19.0% by employing Cl incorporation 

during the MAPbI3−xClx preparation with CuOx as HTL [30]. In 2017, the efficiency of 

20.2% was achieved by employing dual source precursor solution for mixed cation 

perovskite by Luo et al.[31]. Recently, Luo et al. achieved 20.9% certified efficiency in 

inverted cells by proposing a solution-processed secondary growth method which reduced 

nonradiative recombination [32]. 

 

The first PSC design, which is usually called as mesoporous regular structure, involved 

the deposition of an electron transport layer (ETL) over a transparent front electrode 

followed by perovskite active layer, hole transport layer (HTL) and metal back electrode; 

some other cell structures (like planar and inverted cells) have been also evolved with time. 

There are numerous options for the materials, solvents and deposition methods used for each 

layer creating a vast experimental domain involving large number of factors. For example, 

the perovskite layer has been improved through the past five years by modifying the 

perovskite structure itself by doping or replacing the halide, metal and organic parts with 

various options, improving the deposition strategies and techniques (one-step, two-step, spin 

coating, dip coating vapor deposition and so on) and testing numerous solvent combinations, 

anti-solvents and additives.  The situation is not any different for ETL and HTL. If all options 

for the material and the methods are considered, the number of configurations one can use 

to create a PSC is almost endless.  This wide and versatile experimental domain is one of the 

main reasons for the remarkable progress in the performance, which is usually measured by 

power conversion efficiency (stability has been also attracting more attention in recent 

publications), and inconceivable number of paper published in last few years creating a 

massive accumulation of experience in the literature. 

 

2.1.1.  Effect of Perovskite Type  

 

Perovskite were named by Lev Perovski who first characterized its unique AMX3 

structure. In organolead halide perovskites, A is an organic cation (mostly organic 

methylammonium (MA), formamidinium (FA) or inorganic Cs), M represents a smaller 

cation (mostly Pb2+) and X site is halide part (typically I, Br, or Cl) (Figure 2.3). As 

mentioned above, MAPbBr3 performed better in the initial trials; however, MAPbI3 took the 
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lead in a short time, and since then it has been the most commonly studied perovskite. A 

simple search in Web of Science (09.06.2018) using keywords of perovskite solar and names 

of the most commonly used perovskites with various possible names and synonyms (like 

perovskite solar CH3NH3PbI3, perovskite solar MAPbI3, or perovskite solar 

methylammonium lead iodide) revealed that 64 % of the articles published in this subject 

involved the use of MAPbI3. The remaining 36% was shared by MAPbI3-xClx (5%), 

MAPbBr3 (6%), Cs based cells (9%), formamidinium cells (8%) and mixed cation cells (4%) 

and lead-free cells (4%). Although the performance with all these perovskites increased with 

time because the skills and experience of the researchers as well as the material and 

deposition methods have been improved, some perovskites still resulted higher average 

efficiencies than the others did. 

 

 

Figure 2.3. 3D AMX3 perovskite structure; A: large cation, B: smaller metal cation, 

X: anion[33]. 

 

The Cl- addition in perovskite cells was first studied by Lee et al. in 2012, and the 

performance was reached to 10.9 % in mesoporous cells; they claimed that Cl- addition made 

the perovskite a better light absorber and more stable than MAPbI3 [12].  Stranks et al. also 

tested MAPbI3-xClx in planar structure, and they obtained a PCE of 12.0% higher than PCE 

of 4.0% obtained with MAPbI3 perovskite. They reported that the electron-hole diffusion 

length of MAPbI3-xClx was exceeding one micrometer which was 10 times higher than 

MAPbI3 as the cause of higher efficiency [34]. Some efforts on changing or modifying the 

deposition method of MAPbI3-xClx layer further improved the efficiency[30,31]. There have 

been also several other attempts to improve the performance of MAPbI3-xClx by using 

different precursors like Pb(Ac)2 as Pb source[37] and modifications involving solvents. 

However, there is also reports suggesting that Cl only play a role during film formation 
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leading to a better film morphology and hence opto-electronic properties of MAPbI3 but to 

a different structure [38]. 

 

Replacing MA with FA was another effective modification as introduced in 2014; in 

general, the efficiency seemed to be higher than those obtained over MA based cells; this 

was attributed to its band gap of 1.43 eV, which was lower than MAPbI3 [39].  In 2014, 

Eperon et al. showed that the performance could reach to 14.2% using FAPbI3 absorber[40]. 

Later, Wang et al., improved PCE to 17.5% by replacing PbI2 in formamidinium halide 

perovskite with a new precursor, HPbI, in one step spin coating process, and they obtained 

more uniform and thermally more stable FAPbI3 perovskite[41]. Yang et al. has reached 

PCE of 20.2% by depositing high quality layer of FAPbI3 via intramolecular exchange[18]. 

The power conversion efficiencies for FA/MA mixed cation perovskites were also tested and 

reported to be superior to single cation perovskites[42], [43]. 

 

Since the perovskites degraded mostly because of their organic parts, some researchers 

studied the doping or replacing that part to improve stability as well as the performance. One 

of the most common modifications for this purpose has been the partial or complete 

replacement of MA by Cs. Although the Cs-based cells have not resulted as high power 

conversion efficiencies as MA or FA based perovskites, their stability was reported to be 

significantly better[44-46].  However, the partial replacement of the organic cation with Cs 

was found to improve the performance as well as the photo-stability and moisture resistance 

of the perovskite film[47], [48].  Indeed, the cells with the mixed Cs-FA-MA cations showed 

the best average efficiency due to the shift of tolerance factor to a cubic phase region and 

eliminating the yellow phase impurities in perovskite films. Additionally, the higher thermal 

stability and humidity resistance was also reported [49],[50].  Incorporating Cs with FA 

cation only was more beneficial than doping MA only due to its narrower band gap and a 

more stable perovskite phase than FAPbI3 alone [51], [52]. The FA-MA cations, which is 

quite common combination in the literature, also improved performance; for example, 

MAPbBr3 incorporation in FAPbI3 was reported to increase the performance and prevent the 

phase instability of FAPbI3 [43].   

 

In order to improve the performances and the stability f 3D perovskites, 2D perovskite 

materials such as ammonium valeric acid (AVA)[53] or phenyl ethyl ammonium (PEA)[54] 
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were also employed. 2D/3D perovskite engineering enabled more moisture resistant 

perovskite cells by acting of 2D layer as a protective window while the 3D layer supports 

the high charge transport. Although the average performances of 2D-3D mixed perovskites 

are slightly lower than other mixed cation perovskites, they are promising due to their high 

stability. 

 

With the consideration that the solar cell is supposed to be an environmentally friendly, 

some researchers have been working on replacing the lead in perovskite with a less toxic 

alternative such as Sn2+. Initially, lead-free perovskite cells were employed by replacing Pb2+ 

with Sn2+, which is also a group 14 element. However, the chemical stability and the power 

conversion efficiency of MASnI3 based cells have been always lower than those containing 

Pb [55], [56]. Partial insertion of Sn2+  to Pb2+  resulted more stable material and provided 

wider light absorbance range; however the PCE obtained was still lower than that of MAPbI3 

[57].   Bi+2, Ge2+, Ca2+ and Sr2+ were also used for replacing Pb2+ but the performance was 

still much lower than the cells with Pb2+ [58-61].   

 

2.1.2.  Effect of Perovskite Deposition  

 

Morphological properties (such as film thickness, surface coverage, crystallinity etc.) 

of the perovskite layer are highly dependent on the preparation procedures, which have to 

be optimized. The solvents types and ratios, other additives, experimental variables and 

conditions during deposition process (like spinning rate and time, any extra treatments, 

humidity etc.) and pre/post treatment steps (like annealing temperature and time, additional 

treatments after deposition etc.) may have significant effects on PCE through morphological 

properties. As the result, significant amount of efforts has been devoted to improve the 

procedures and methods to control the morphology of the perovskite films.  

 

The most important distinction in perovskite deposition procedure is whether the 

process was implemented in one or two steps. First and still the most common method is 

one-step spin coating, which is a low cost and easily applicable method; however, it was not 

easy to control the crystallization and obtain homogenous perovskite films with this method. 

Hence, many researchers have studied to improve the procedure, and these efforts leaded to 

two major directions: (1) replacing it with two-step process, and (2) improving it by 



11 

 

optimizing the solvent and anti-solvent use (as some named as solvent engineering). These 

efforts seem to be paid off. The two-step deposition procedure, which involves the sequential 

deposition of Pb and MA precursors, was developed to control of the crystallization and 

precipitation of perovskites. This technique was first introduced in 2013 by Burschka et al. 

[13]; they first coated the lead halide by spin coating and they dipped the lead halide coated 

surface into MAI solution; hence the perovskite was formed within the pores of TiO2. The 

power conversion efficiency achieved was as high as 15.0%, which was among the highest 

at that time. Since then, various investigators have implemented this technique. It was argued 

that the perovskite coated with sequential deposition had stronger absorption capacity and 

higher performance [39], [62].  The perovskite penetration could also be controlled through 

optimizing factors like the solution concentrations and the dipping time. Although the most 

common way of implementing this process is spin-dip configuration, the spin-spin 

configuration was also tested and found to be a good candidate for perovskite deposition[63]. 

There are also other modifications of two-step process such as pre-heating of substrate before 

PbI2 deposition, depositing PbO film instead of PbI2, vapor treatment of coated PbI2 films 

with various organic solvents such as toluene or chlorobenzene[64].  

 

One-step procedure has also been improved much better in later years. The major cause 

of this change should be the efforts involving the more effective use of solvent and anti-

solvent in this approach.The most common solvent types for perovskite deposition are 

dimethylformamide (DMF), γ-butyrolactone (GBL) and dimethyl sulfoxide (DMSO); DMF 

was utilized more than any other listed. Mixtures of these solvents were also used. For 

example, Kim et al. used the mixture of DMF and GBL to increase the surface coverage and 

uniformity of MAPbI3 and the performance has increased[65].  Similarly, Jeon et al. used 

mixed solvent of GBL and DMSO for MAPbI3-xBrx with toluene treatment afterwards, and 

obtained a dense and uniform perovskite layer with a power conversion efficiency of 16.2% 

without any hysteresis[15]. In another work, the solution of PbI2, DMF, DMSO and MAI 

was spin coated (accompanied with diethyl ether dripping) and the power conversion 

efficiency has reached to 19.7% with average efficiency of 18.3%[66]. Some additives such 

as 1,8-diiodooctane (DIO)[24], poly(ethylene glycol) (PEG)[67],  low volatility components 

such as FACl and MACl [68], HI[69] and Pb(SCN)2 [70] were also used. Similar solvents 

were also utilized in in two-step processes. 
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The role of the anti-solvent treatment is to reduce the solubility of perovskite in 

precursor solution and to speed up the crystallization and nucleation. For example, Xiao et 

al. employed various anti-solvents to control the grain growth and nucleation of MAPbI3. 

They reported that the performance improved significantly from 1.5% to 13.9% by 

employing chlorobenzene; a high-quality film without any grain boundaries and defects was 

formed. Benzene, xylene and toluene were also observed to give uniform grain morphologies 

[71]. In another study, Jung et al. revealed that chlorobenzene was superior to 

dichlorobenzene and toluene. They observed that the high temperature annealing process 

became less necessary to obtain highly crystalline and uniform structure if optimum anti-

solvents were employed[72]. Later, diethyl ether was found to be superior to chlorobenzene 

and toluene[66]. Some other anti-solvents such as acetonitrile in chlorobenzene also used 

and found to be effective[73]. 

 

Thermal annealing of perovskite after deposition also has an effect on performance. 

The aims of thermal annealing are to facilitate perovskite formation, evaporate residual 

solvent and improve crystallization [6]. Various researchers have investigated the effects of 

annealing variables such as temperature, time and ambience; however, the annealing 

conditions differ for different perovskite and cell types [74–76] and the optimum annealing 

conditions may also depend on the annealing environment [77]. 

 

The annealing temperature has a strong effect on morphology and grain size. Su et al. 

showed that, as annealing temperature increased, the grain size of MAPbI3 film also 

increased. However, when the temperature exceeded 120 oC, the perovskite decomposed to 

PbI2 [78]. During thermal annealing, the evolution of secondary phase plays an important 

role; it was found that pure perovskite phase without secondary phase formation resulted 

better performance [79], [80]. Chen et al. investigated the annealing temperature (80-140 

oC) in MAPbI3 based inverted cells for five minutes and revealed that annealing perovskite 

at 100 oC extend the exciton lifetime and performance[81].  

 

It was reported in the literature that the annealing environment has also profound effect 

on performance; an improved morphology with larger grains was observed when the 

perovskite film annealed in a moisture environment with relative humidity of 30-40%. 

However, degradation occurs at high humidity levels greater than 80%[82], [83]. It was also 
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reported by various investigators that annealing in air environment produced higher 

efficiencies than in glovebox [82], [84], [85]. 

 

In contrary to the common belief that perovskite decompose at higher annealing 

temperatures than 120 oC[78], [86], Kim et al. proposed another approach involving very 

high temperature and short time annealing process. For example, the annealing at 400 oC for 

four seconds also caused a larger grain formation of perovskite and more uniform 

morphology than that could be obtained at lower temperatures[87]. Cao et al. also reported 

grain coarsening and reduced recombination with increasing annealing temperature from 

100 oC to 250 oC [88]. 

 

2.1.3.  Effect of Electron Transfer Layer 

 

Basically, the perovskite active layer is sandwiched between electron transport layer 

(ETL) and hole transport layer (HTL). When the active layer is excited by photon energy in 

the sunlight, electron-hole pair occurs.  The electrons are injected to electron transfer layer 

and then transferred to electrode. The first criteria that both ETL and HTL should obey is 

the band gap alignment of the solar cells that electron could pass through easily. Different 

materials which satisfy the band gap alignment with perovskite could be employed as ETL 

and HTL (such as metal oxides, organic and inorganic materials).   

 

As the perovskite solar cells were first derived from dye sensitized solar cells in which 

mesoporous TiO2 structure was employed as a scaffold for electron transfer, it has been a 

common practice to employ the same mesoporous TiO2 layer in the early perovskite cell as 

well [89]. The porous structure of the ETL provides a larger surface area for the absorber 

material resulting in more incident light absorption. However, nearly at the same period, 

mesoporous TiO2 was replaced with an insulating mesoporous Al2O3 which acted just as a 

passive scaffolds [6]  for the perovskite rather than an ETL; in this design, perovskite 

behaved as both absorber and electron transfer material. The power conversion efficiency 

was improved from 8.0% to 10.9% by replacing mesoporous TiO2 with Al2O3, and it was 

found that the electron transfer in perovskite layer was faster than TiO2 [12]. Later, Ball et 

al. achieved even higher PCE (above 12.0%) by lowering the annealing temperature of 

Al2O3. The same group also designed a cell by removing mesoporous scaffold and using a 
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thin porous compact Al2O3 layer, and they obtained the power conversion efficiency of 9.1% 

with an internal quantum efficiency of nearly 100% [90]; this was also the introduction of 

planar configuration in perovskite solar cells. 

 

The performance of the cells with the mesoporous structure has been continued to 

improve with various modifications. For example, various forms of TiO2 structures (such as 

nanorods) were also investigated through years[91]. Doping TiO2 with various dopants such 

as such as Al, Mg and reduced graphene oxide were also used [92–94]. In other works, TiO2 

was completely replaced by new materials such as SrTiO3 [95], ZnSnO4 [96] and SnO2 [68]; 

similarly, the other passive mesoporous scaffold such as ZrO2 [62]  and SiO2 [97] were also 

tested as replacement of Al2O3, and they were found to be effective.   

 

The compact layer, which is deposited before the mesoporous layer for blocking the 

electrons and avoiding the contact between front electrode and perovskite, does not only 

improve the performance of mesoporous cells, but also serves as the electron transfer layers 

in planar cells. The compact TiO2 has been the first and the most commonly used material, 

and it has been studied and modified through years in various ways. For example, doping of 

compact TiO2 with some of dopants like yittrium [98],  zirconia[99]  and niobium[100] were 

reported to improve morphology and electron transfer. ZnO was employed as another 

compact layer material in planar solar cell to reduce the high processing temperature of TiO2. 

The required thickness was also thinner than TiO2 and no sintering was required. Some 

modifications were reported to improve the performance of ZnO compact layer as well 

[101].  Other alternatives such as C60[102], [103],  Nb2O5 [104], CdS [105], WOx [106] and 

SnO2 [107] were also reported. Additionally, the complete elimination of ETL is an 

increasing trend in literature to simplify the structure further[108]. 

 

The fullerene derivatives were the most commonly used ETL material for the inverted 

cells due to their high electron mobility and room temperature processability; among them 

the phenyl-C61-butyric acid methyl ester (PCBM) is the most widely used. In some studies, 

doping of PCBM with various materials (such as oleamide[109], reduced graphene 

oxide[110] or polystyrene[111]) were also tested to improve morphology and electron 

transfer of PCBM layer. 
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The C60, which is another fullerene derivative, was also tested as ETL in inverted cells 

and found to be effective; its higher electron mobility, higher performance, better 

conductivity, and lower price has made it more preferable than PCBM[112]. Other fullerene 

derivatives and organic materials such as ICBA[113], tris(2,4,6-trimethyl-3-(pyridin-3-

yl)phenyl) borane (3TPYMB)[114] and azaacene derivatives[115], [116] were also 

employed. 

 

2.1.4.  Effect of Hole Transfer Layer  

 

The initial studies on perovskite solar cells have employed liquid electrolyte as a hole 

transporting material until 2012[10], [117]. However, the instability, leakage problems and 

dissolution of perovskite in liquid electrolyte have limited the performance of this new solar 

cell technology. Spiro-OMeTAD was used as a solid state hole conductor to solve these 

limitations [11]. Due to its suitable energy levels, high hole conductivity, high mobility and 

possibility of use without any post annealing process, the spiro-OMeTAD has been the most 

commonly used hole transport material in regular cells. 

 

The spiro-OMeTAD had become the preferred HTL as the result of some additives; 

otherwise its pristine form actually had low conductivity and hole mobility. Lithium 

bis(trifluoromethylsulfonyl)- imide salt (LiTFSI) and 4-tert-butylpyridine (TBP) together 

are the most commonly used additives; they increase the conductivity and improve the 

properties of HTL[118]. In addition, Co(III) complexes such as tris(2-(1H-pyrazol-1-

yl)pyridine) cobalt(III) (FK102)[119], tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) 

cobalt(III) tris-(bis(trifluoromethylsulfonyl)imide)) (FK209)[120], [121] and tris[2-(1H-

pyrazol-1-yl)pyrimidine]cobalt(III) tris [bis(trifluoromethylsulfonyl)- imide] (MY11)[122] 

were also used together with LiTFSI+TBP. Using some additional novel dopants such as Ir 

complex or Cu(bpcm)2 have also resulted higher efficiency[123], [124]. 

 

The structure of spiro-OMeTAD has been also modified to make it cheaper and more 

efficient. For example the methoxy groups (OMe), which plays an important role in 

controlling the electronic properties of HTL, was substituted with its derivative o-OMe and 

was reported to result higher performance by lowering series resistance and increasing fill 

factor[125]. Similarly the spirobifluorene core, which is an expensive material due to its 
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highly complex synthetic process, was replaced by cheaper alternatives as pyrene[126],  

triptycene [127], 1,3,5-triazine [128], a fused quinolizino arcidine[129] and 

triphenylamine[130].  

 

Some cheaper polymeric alternatives for spiro-OMeTAD have been also studied. For 

example, poly-3-hexylthiophene (P3HT) is another common polymeric hole transport 

material used in regular cells. Even though P3HT based devices could not reach to the high 

efficiencies of spiro-OMeTAD based devices in the literature, they are still investigated as 

cheaper and convenient alternative[128], [131]. The performance of P3HT was also 

improved through the use of some additives like D-TBP[132], Au nanoparticles[133] and 

tetrafluoro-tetracyano-quinodimethane (F4TCNQ)[134]. LiTFSI+TBP is also used with 

P3HT as additive similar to spiro-OMeTAD. A polymeric hole conductor, poly-triarylamine 

(PTAA) is another polymeric HTL resulting high efficiencies. PTAA was found to be 

superior to other polymeric HTLs and quite compatible with spiro-OMeTAD[135]. 

However, its high production cost (due to its complex synthesis procedure) constitutes a 

major drawback. PEDOT was employed as another high conductivity polymeric HTL due 

to its promising efficiency, simple synthesis steps and low price; however, its stability is an 

issue to be solved[136], [137]. Other polymeric alternatives such as  PDPPDBTE[138], 

DR3TBDTT[139], TFB[140] and PNBA[141] for HTL were also reported.  

 

Additionally, some inorganic materials have been also gained attention as HTL due to 

their simpler nature, easier synthesis procedure, low cost, durability and stability. For 

example, cupric oxide (CuO), cuprous oxide (Cu2O), copper iodide (CuI), and thiocyanate 

(CuSCN) were widely implemented inorganic HTLs[142–144]. 

 

Finally, hole transport layer free cells have been also studied in recent years due to 

their simpler structure, improved stability and lower cost [145]. Etgar et al. first introduced 

HTL-free cells with PCE of 5.5%using a gold back contact[146]. Although the work function 

of gold is well matched with perovskite and gold has a high conductivity, its high cost and 

complex deposition method (thermal evaporation) are not feasible[147]. Hence, carbon back 

contact was also studied for HTL-free cells by various researchers because of its low cost, 

suitable work function, high conductivity and moisture resistance[148–150]. 
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The HTLs used in inverted structure can be divided into two groups as organic and 

inorganic materials. The PEDOT: PSS is the most commonly used organic polymeric HTL 

because of its excellent conductivity, suitable band gap alignment, low temperature 

annealing process and suitability for flexible devices; it is usually used with PCBM as the 

ETL layer. It was initially reported by Chen et al. with the PCE of 3.9%[23]. Then, Docampo 

et al. improved the PCE to 10% by sandwiching MAPbI3-xClx perovskite between 

PEDOT:PSS and PCBM while the same configuration resulted 6.3% efficiency on flexible 

substrate[151]. In the same year, the efficiency reached to 17.1% by annealing perovskite in 

a mild environment using PEDOT:PSS as HTL and PCBM as ETL[82]. In 2015, the PCE of 

18.1% had already achieved by controlling the perovskite morphology with 

PEDOT:PSS[152]. Some modifications have been also performed on PEDOT:PSS to 

improve its low work function; for example, Tae-Woo et al. increased the work function of 

PEDOT:PSS by using a perfluorinated ionomer (PFI) layer [153]. Doping with GeO2[154], 

Ag-nanoparticles[155] or GO[156] also improved the hole conductivity of PEDOT:PSS. 

 

Beside its lower work function, PEDOT: PSS could also slightly decompose in 

perovskite precursor solution (especially in DMF or DMSO) in the presence of water or 

humidity. Hence, some novel polymeric alternatives with simple synthesis procedures were 

also employed; the examples are polythiophene (PT), poly(p-phenylene) (PPP), poly(4,4′-

bis(N-carbazolyl)-1,1′-biphenyl)(PPN), poly[N,N′-bis(4-butylphenyl)-N,N′-

bis(phenyl)benzidine] (Poly-TPD), and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] 

(PTAA) [28], [157], [158]. PTAA appears to be an effective organic material as HTL gaining 

more interest in recent years[32], [159], [160]. 

 

Inorganic HTLs were also employed because of their high chemical stability, 

durability, wide band gap, high hole mobility and low fabrication cost. NiOx, as the most 

common inorganic HTL, was initially introduced by Docampo et al.[151] with a very poor 

efficiency (lower than 0.1%). Later, Hu et al. improved perovskite film morphology on NiOx 

by employing two step dipping technique and improved PCE to 7.6%[161].  Li et al. further 

improved PCE to 13.6% by employing a one-step fast crystallization-deposition method for 

perovskite[162].  Later, Park et al. introduced an inverted cell with pulse laser deposited 

NiOx layer and achieved a PCE of 17.3%[163]. Doping of NiOx layer with highly conductive 
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metal ions such as Cu, Li and Mg was reported to enhance the conductivity and performance 

significantly[162], [164], [165].   

 

The other inorganic materials like CuSCN [166], CuI [167] and graphene oxide (GO) 

[168] were also employed in inverted structures. Additionally, similar to regular cells, HTL 

free inverted structure were also studied to reduce cost and fabricate simpler devices with 

comparable efficiencies [166], [169]. 

 

2.1.5.  Effect of Back Contact  

 

Au is the most common back contact material and it was also found to be optimum 

among Pt, Ag, Cu, Ni and Cr. Besides, Pt was also found to be better due to its low internal 

resistance between HTL and high stability. Although Ag also leaded compatible 

performance with Au, its photodecomposition is a major drawback[170].  Due to being a 

low cost and abundant material, carbon could be a good alternative as a back electrode 

especially for HTL-free cells. Direct preparation of carbon electrode requires high 

temperature but the perovskite absorber is sensitive to high temperatures. Hence, Zhou et al. 

developed a fully low temperature and solution processed method for TiO2/MAPbI3 

structured cell with carbon back electrode and PCE was measured as 9% with a good 

stability . Implementing low temperature solution method reduced the cost and simplified 

the process[171]. The limitation of carbon back electrodes in HTL-free cells is the poor 

contact at perovskite/carbon interface. Hence, perovskite with such a good morphology 

should be fabricated to prevent good contact with carbon electrode[172], [173].  

 

2.1.6.  Reproducibility  

 

Besides the efforts on performance improvement, reproducibility also plays an 

important role on commercialization of this technology for large scale production. Many 

efforts have been made in literature to overcome the reproducibility problem. Perovskite 

morphology and crystallization, which were determined by perovskite type and deposition 

conditions, play an important role on cell reproducibility. Wu et al.[174] and Ahn et al. [66] 

produced reproducible and pin-hole free perovskite cells employing DMSO which formed a 

Lewis base adduct with PbI2 and retarded crystallization. Employing a sequential spin 
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coating method also reported to increase the quality of perovskite layer, its morphology and 

reproducibility[175]. Liu et al. reported that spin coating of MAPbI3-xClx with high 

concentration also leaded reproducible cells with better uniformity and coverage[176].  

Besides perovskite morphology, some other modifications also studied to enhance the 

reproducibility. For example, Pae et al. [177] produced reproducible cells using e-beam 

evaporation technique for low-temperature deposition of uniform charge transport layers. 

Higgings et al. reported that including Ag nanoparticles at low concentration in PCBM in 

inverted cells also improved reproducibility[178].  

 

2.1.7.  Hysteresis 

 

Hysteresis, which is the difference between forward and reverse scan during J−V 

characterization, is a drawback of this technology for fabricating commercial cells and 

complicates the determination of the actual performance of the solar cells enormously. 

Although the origin of J-V hysteresis is still unknown, there are some hypotheses on the 

mechanism of hysteresis such as ion migration, charge trapping, capacitive effects or 

ferroelectric polarization[2], [60]. The hysteretic behavior depends on various parameters 

such as scan rate, scan direction, voltage range and perovskite morphology and solar cell 

architecture[2]. Kim et al. reported that the hysteresis decreased in the presence of 

mesoporous layer and perovskite with larger crystal size[179]. Some modifications on 

charge transport layers also decreased hysteresis due to enhanced charge transport from 

perovskite whereas the absence of charge transport layers such as TiO2 compact layer as 

ETL or spiro-OMeTAD as HTL was reported to increase hysteresis in regular cells[180-

183].  

 

As the hysteresis complicates the actual performance measurement of a solar cell, 

stabilized power conversion efficiencies were reported in some publications since 2014 as 

better measures of the real performance because they are more representative of the steady-

state performance of perovskite solar cells, as J-V measurements are strongly influenced by 

the transient effects[2], [17]. The hysteresis should be eliminated to report stabilized 

efficiencies.  Measuring at slow scan rates were suggested for this purpose, as well as 

adjsuting scan range with different initial biases. However, a more standard protocol is 

needed to measure stabilized PCE such as maximum power point(MPP) tracking using a 
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perturb and observe method[184]. Maximum power point tracking is the most reliable 

method to measure stabilized efficiencies of hysteretic cells[185]. Perturb and observe 

method is a control process that is used for adjusting operating voltage to obtain maximum 

power. Once, maximum power is reached, the voltage is adjusted again to keep the cell stable 

at this point. The maximum power oscillates around the maximum power value until it 

stabilizes.  

 

2.2.  Review of Long-term Stability of Perovskite Solar Cells  

 

Although the efficiency of perovskite solar cells has been increased remarkably in a 

few years, the long term cell stability is still a challenge that prevents the commercialization 

of this technology. Consequently, the research focus seems to be shifted to this issue in recent 

publications due to the fact it became the bottleneck after the efficiency reached top a certain 

level. Indeed, not only the number of research articles involving the stability increased as 

evident from Figure 2.4 (from Web of Science search with the keyword search of perovskite 

solar and stability in topic segment on 16.01.2019), but also there has been some 

considerable progress in the field. 

 

 

Figure 2.4. Number of publications on stability of perovskite solar cells.  

 

Most of the studies have concentrated on the stability of regular type cells[186]; some 

recent articles that reported cells with high stability, have also employed regular structured 

cells as well[3], [187], [188]. On the other hand, Heo et al. reported that the inverted 

ITO/PEDOT:PSS/MAPbI3/PCBM/Au cell was more stable than regular 
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FTO/TiO2/MAPbI3/PTAA:tBP + LiTFSI/Au cell due to better electron transfer capacity and 

hydrophobicity of PCBM than TiO2 and lack of corrosive additives of HTL[152].  

 

2.2.1.  Effect of Ambient Conditions  

 

The moisture, oxygen, ambient temperature and light were found to affect the device 

stability by various investigators. It is well known that the perovskite layer is very sensitive 

to moisture because its alkylammonium salts are hygoscopic[189]; even this is sufficient to 

say that moisture may have significant impact on stability. Tai et al. stated that the intrinsic 

stability of the perovskite material was more dominant than the morphology of the films in 

air under high relative humidity[190]. Indeed, there are numerous works on testing and 

commenting on the effects of humidity in the ambient air on cell stability.  For example, it 

was reported that a regular type cell with MAPbI3 perovskite was stable more than 10 days 

at the RH of 50% and below, whereas the same cell could resist for maximum four days at 

the RH of 80% and above[191]. In another study, a significant decay in performance of 

MAPbI3 based cell was observed after exposure to RH of 55%[192]. In accordance with 

Leguy et al.[193] suggested that the band gap of the perovskite could change upon high RH 

exposure (70%); the reason was attributed to the transformation of the perovskite to 

monohydrate (MAPbI3.H2O).  Although the monohydrate phase could return to its initial 

structure at dry atmosphere, the reaction became irreversible upon longer humidity exposure. 

Christians et al. reported that the cells were stable at RH 0% and 50% in dark, whereas 

decomposition occurred at high RH of 90%. They also investigated the stability under 

illumination and revealed that illumination caused additional decomposition under the 

humid conditions indicating that there are also interactions among the ambient related 

factors[194]. Rajan Jose et al. also investigated the effect of humidity and light exposure 

together, and they found that perovskite showed a minor degradation under dark condition 

with a humidity level above 70% whereas upon light exposure, the degradation rate 

increased significantly[195]. The interactions among various ambient factor were also 

confirmed by the work of Ashgar et al.[196]; no significant decay in performance was 

observed if the perovskite cells were stored in dark and dry air because oxygen cannot 

degrade the perovskite cell under dark. The oxygen was reported to cause photo-oxidation 

in the presence of light[197], [198].  
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 The ambient temperature is also influential and interacting with the other factors. 

Misra et al.[199] exposed encapsulated MAPbI3 devices to 100 suns for 60 min at different 

temperatures; the cell stored at 45-55 oC degraded and caused PbI2 crystallization while the 

cell stored at 25 oC hasn’t showed any degradation. It was found that the degradation 

occurred by photoinduced decomposition was thermally enhanced. Changing temperature 

causes some structural phase transitions in perovskites[200]. Brunetti et al.[201] studied the 

thermal and thermodynamic stability of MAPbX3(X=I, Cl or Br) perovskites in inert 

atmosphere and found out that all these perovskites decomposed to solid lead (II) halide, 

gaseous methylamine and hydrogen halide even at moderate temperatures of 60 oC. On the 

other hand, MAPbI3 was found to be more resistant to temperature of 90 oC, which is the 

temperature of the solar cell reach at harsh conditions. Beside the ambient temperature, 

temperature-annealing was also found to accelerate decomposition in the presence of 

humidity[202].  

 

As the result, different decomposition pathways might occur under different sets of 

ambient conditions. For example, the perovskite was detected to decompose to elemental 

lead and iodine and might form PbI2 agglomeration on FTO surface under inert conditions 

at high temperatures whereas the elemental species were seen to diffuse from perovskite to 

HTL in air[203]. Abdelmageed et al.[204] conducted another study and revealed that 

MAPbI3 perovskite started to degrade at 75 oC under light to elemental Pb and PbI2 and 85 

oC under dark to PbI2. Consequently, the effects of these entire factors as well as their 

interactions should be investigated together to see the whole picture.  

 

2.2.2.  Effect of Perovskite Type  

 

Perovskite composition is another factor that strongly affects the stability. It was 

reported that the stability of MAPbI3, which is the most commonly used perovskite, can be 

enhanced by replacing I with Cl or Br, Pb with Sn or organic part (MA) with inorganic Cs 

was reported to enhance stability[205]. MAPbI3 perovskite showed cubic to tetragonal phase 

transition approximately at 57 oC; however, no phase transitions were observed for 

MAPbBr3 and MAPbCl3 perovskites in the temperature range of -40 oC to 85 oC[206]. 

Consequently, these perovskites could be regarded as structurally more stable than MAPbI3 

at the temperatures up to 85 oC [196]; actually MAPbBr3 perovskite was found to be more 
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stable than MAPbI3, and this was attributed to the differences in bond strengths and 

crystalline forms[199], [207]. Even, MAPb(I1–xBrx)3 perovskite (with x=0.2 or 0.29) showed 

better stability than MAPbI3 under high humidity conditions with its compact and stable 

structure[192]. MAPbI3–xClx was also found to be more thermally stable than MAPbI3 

because no phase transition occurred between 25-100 oC unlikely to MAPbI3 (50 oC) [208].  

 

Replacing cation part with FA also affected stability. Due to higher phase transition 

temperature of FAPbI3 (at 150 oC), FAPbI3 was found to be more stable than MAPbI3 in air. 

However, FAPbI3 degraded at moist atmosphere at a rate similar with MAPbI3 [40], [209]. 

Cesium was another cation replaced with MA and studies have already confirmed their 

enhanced thermal stability, humidity resistance, and photostability due to its inorganic nature 

[44], [210].  

 

Incorporating two or more cations together was also found to improve the stability 

significantly. For example, employing MA and FA cations together improved both 

performance, thermal and long-term and stability[211]. In another study, doping of FAPbI3 

with MABr or Cs resulted better stability than FAPbI3 alone[48], [212], [213]. However, 

using triple cation perovskite (including MA, FA and Cs cations together) was found to 

improve stability much more by hindering yellow phase impurities and forming uniform 

perovskite grains[19].  

 

2.2.3.  Effect of Perovskite Deposition  

 

Perovskite deposition procedure (more specifically one or two step deposition) 

influence the quality, homogeneity and surface coverage of the perovskite film, and 

consequently may played a significant role in stability in air by resisting the moisture in the 

environment[6], [214], [215]. The two-step deposition technique has been considered as the 

one that result in stable cells since it was introduced by Burschka et al.[13]. For example, 

Yang et al.[216] stated that layer by layer vacuum deposition of perovskite (PbI2 and MAI 

were coated separately) provided a cell with a good stability in air due to uniform 

morphology with full surface coverage and controlled environment provided a pure 

perovskite layer that is more robust to moisture. A good stability using two-step deposition 

method was also provided by adding DMF solvent to MAI/FAI cation solution of FAxMA1–
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xPbI2.55Br0.45 perovskite[217]. One-step deposition was also used in cells with high stability. 

For example, the modules which were stable more than 10 000 hours, were prepared by one-

step deposition. Koushik et al.[187] and Arora et al.[188] also employed one-step deposition 

to produce stable cells in their studies.  

  

The technique employed for deposition may be also influential. Different from the 

most common spin coating technique, some other deposition techniques were also found to 

be effective on high stability. For example, Kim et al. [214] found that blade coating resulted 

more homogenous perovskite layer with large and compact crystalline domains which acted 

like an air-protection barrier, and leaded to high stability cells while the cell prepared by spin 

coating degraded in air. Even Deng et al.[218] modified this technique by adding a small 

amount of surfactant to perovskite solution and enhanced stability.  Similarly, chemical 

vapor deposition is another technique to deposit high quality perovskite layer with high 

stability. This promising stability was related to evaporation of the excess MAI and 

incorporated water at temperatures above 160 oC during deposition[219]. Vacuum 

deposition of perovskite was found to be another technique to produce stable cells [216], 

[220].  

 

Perovskite precursor solution has also effect on stability because the composition and  

structure of the precursor solution directly affects the perovskite morphology and 

crystallization[221]. For example, employing different lead source[222], type of 

solvents[223] or using additives into conventional precursor solutions such as water [224] 

PDMS–urea (a hydrophobic polymer) [225], polyethylene glycol (PEG) [226], 

polyvinylpyrrolidone (PVP) [227], polyvinyl alcohol (PVA)[228] or C70 fullerene[229] 

were found to affect stability of the perovskite cells. Similarly, anti-solvent treatment has an 

effect on stability as well due to the similar reasons with precursor solution[230–234].   

 

Another modification to improve stability was adding extra layer on top of the 

perovskite layer to protect the perovskite film. For example, Koushik et al.[187] coated an 

ultra thin Al2O3 layer and reduced hysteresis beside enhanced long term stability in air. 

Similarly, Su et al.[235] employed poly-N-vinylcarbazole (PVK) which is a hydrophobic 

and conductive polymer between perovskite and HTL. This interlayer not only enhanced 

stability and protected the perovskite layer from moisture and degradation, but also reduced 
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recombination within the cell. Li et al.[236] improved light and moisture stability using 

hydrophobic alkyl bisphosphonic molecules on perovskite layer in inverted type cell.  

 

2.2.4.  Effect of Electron Transfer Layer  

 

Charge transport layers in perovskite cells also affect the stability. In regular cells, in 

order to investigate the effect of TiO2 architecture as ETL, Fakharuddin et al.[237] employed 

planar and  nanorod TiO2, and it was found that although planar cells gave higher initial 

efficiency, using a scaffold provided longer term durability. The reason was attributed to 

larger exposure area of the planar devices to ambient atmosphere where perovskite interacted 

with moisture faster. Hence, it was reported that stability of the cells was also affected by 

the morphology, porosity and the chemical stability of the electron transport layer. However, 

in another work, the stability of mesoporous or planar architectures were compared and they 

were found to be comparable with each other[6]. They argued that there was no superiority 

among the architectures; the perovskite solar cell performance was reported to be 

independent from the device architecture (mesoporous, planar, regular, inverted etc.) and 

highly dependent on film morphology that affected by deposition method, material 

composition, additives and film treatment. On the other hand, mesoporous TiO2 was also 

considered unstable due to light-induced desorption of surface-adsorbed oxygen when the 

cell was encapsulated in nitrogen environment, and numerous solutions were implemented 

to  overcome this limitation such as the pacification of the TiO2 surface in the solid state, 

prevention of the mesoporous TiO2 from the UV light during operation or removal of the 

mesoporous TiO2[238]. In order to passivate the TiO2 surface, a uniform CdS shell was 

coated onto the surface of a TiO2 layer and the light stability of the cell improved 

significantly[239]. When CdS layer was employed as ETL and TiO2 was eliminated, the 

photostability was reported to be enhanced. The cell with CdS layer conserved its 90% of 

the initial efficiency under continuous illumination while the cell with TiO2 conserved only 

18%[240]. Using interlayers such as CsCl[241], CsBr[242] or aminoacids[243] between 

ETL and perovskite was also beneficial for stability. Interlayers could reduce the reactivity 

of TiO2, defect density at the interface and improve the surface coverage of the perovskite. 

Doping of mesoporous TiO2 layer with Al or Nd also passivated the surface defects and 

contributed stability[92], [244]. Different structures of TiO2 such as nanocolumnar 
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structures[245], nanorods[237], [246] and nanotubes[247] were also reported to enhance 

stability.  

 

The other alternative like SnO2 was also employed as ETL to replace TiO2 due to its 

wide band gap, high electron mobility and low chemical and photocatalytic reactivity. An 

improved stability was observed in most of the studies[248–251]. The improved stability 

was attributed to the remnant PbI2 between SnO2 and perovskite interface which passivated 

the surface. Besides, SnO2 was reported to be less hygroscopic than TiO2 that might 

contribute to improve stability[252]. Liu et al.[248] employed a mesoporous layer of SnO2 

nanosheets above compact SnO2 layer and the stability was improved to a higher level than 

compact SnO2 alone.  The hierarchical SnO2 layer provided an excellent charge transport 

pathway besides inhibited the degradation of the perovskite from moisture in air. ZnO is 

another type of ETL which has higher conductivity, lower cost and simpler synthesis besides 

requiring lower temperatures for processing  than conventional TiO2. However, it was found 

that the stability of MAPbI3 perovskite was lower on ZnO than on TiO2 layer under ambient 

conditions. The reason was attributed to the heat treatment of perovskite layer (110 oC, 5 

minutes), after the heat treatment of perovskite, it was seen that MAPbI3 was degraded 

rapidly on ZnO layer whereas no degradation was observed on TiO2 layer[253]. However, 

an insertion of an ultra-thin Al2O3 insulating layer between ZnO and perovskite enhanced 

both efficiency, thermal stability and suppress the photocatalytic degradation of 

perovskites[254], [255]. Aluminum doping of ZnO was reported to synthesize 

extraordinarily thermally stable perovskite layers by hindering the Lewis acid–base chemical 

reaction between perovskite and ETL[256]. Hence, more simplified cell structure was 

obtained. In another study, triple cation perovskite, Cs6(MA0.17FA0.83)94Pb(I0.83Br0.17)3, with 

the annealing temperature of 95 °C,was found to be stable on low temperature processed 

ZnO as ETL[257]. Excess PbI2 was reported to passivate the traps in perovskite layer and 

fabricated ZnO based perovskite cell showed excellent durability and photostability.  

 

Although the PCBM is the most commonly used ETL in inverted cells, it was reported 

to have low solubility in toluene and chlorobenzene; hence it was difficult to fabricate a 

uniform PCBM film without pin holes on perovskite layer by one-step spin coating method. 

Besides, the crystallinity and morphology of PCBM layer was found to change with aging 

time. Hence, the stability of PCBM cells were quite low.  To overcome this problem, Heo et 



27 

 

al. employed N,N′-bis(phenylmethyl)naphthalene-1,4,5,8-tetracarboxylic diimide (NDI-

PM)-based electron transporting material which was a more stable and robust ETL; the 

improved thermal stability was attributed to much stronger hydrogen bonds in the NDI-PM 

molecular crystals than the PCBM crystals[258]. Kim et al. used edged-selectively fluorine 

(F) functionalized graphene nanoplatelets (EFGnPs-F) as ETL which has superhydrophobic 

properties and a robust material that protected perovskite layer from air degradation[259]. 

Doping of PCBM with reduced graphene oxide[110] or with surfactant CTAB[260] 

improved the stability of the devices in ambient air. Coating an extra layer on PCBM layer 

such as ZnO[261], TiOx[151], ZrOx[262] and Cr2O3[263] also enhanced air stability of the 

device. A highly crystalline SnO2 was also reported to enhance stability as an ETL in 

inverted cells in ambient air due to its stable and robust structure[264]. 

 

2.2.5.  Effect of Hole Transfer Layer 

 

As mentioned in previous sections, the most common HTL was spiro-MeOTAD. 

However, according to Sanchez et al.[265], one of the main limiting factor for long term 

stability of the perovskite solar cells was the photo-oxidation of spiro-MeOTAD under inert 

or air environment. Even, using dopants (LiTFSI and tBP) with spiro-MeOTAD and the 

presence of any contact with the ETL (TiO2) contributed to degradation. In addition, as spiro-

MeOTAD is one of the organic semiconductors, it was reported that the carbon-carbon 

double bonds tended to break up upon exposure to long term illumination in oxygen 

environment, hence the conductivity of the material decreases resulting decaying 

performance. Although employing dopants such as Li-TFSI and tBP was reported to improve 

hole conductivity of spiro-MeOTAD, Li-TFSI requires oxygen from the air even in 

encapsulation or N2 environment which can lead degradation. Besides, Li-TFSI was reported 

to be highly hygroscopic, hence water molecules could penetrate into HTL and then to 

perovskite surface which causes degradation[266]. In order to improve stability, Li-TFSI 

was replaced with some non-hygroscopic dopants such as Ag-TFSI[267] and F4-

TCNQ[268] or some dopant free HTLs were employed such as tetrathiafulvalene derivative 

(TTF-1: 4-(4-(bis(4-(4-(dibutylamino)styryl)phenyl)-amino)styryl)-N,N-dibutylaniline) 

[269],  triphenylamine (TPA)-based HTL (Z1011)[270] or N2,N2,N2′,N2′,N7,N7′N7’-

octakis(4-methoxyphenyl)-10-phenyl-10H-spiro[acridine-9,9’-fluorene]-2,2′7,7‘-

tetraamine (SAF-OMe)[271]. 
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P3HT is a widely used alternative for spiro-OMeTAD with its dopant free structure 

and easier synthesis[272], [273]. The stability of a P3HT based cells were found to be better 

than conventional spiro-OMeTAD[274]. As parallel to this case, Kim et al.[275] reported 

that the device stability was improved moisture stability by using mixed spiro-OMeTAD 

and P3HT as HTL. PTAA is another polymeric HTL used and it was reported that the 

stability also enhanced by replacing spiro-MeOTAD with PTAA[276].  

 

Using a hydrophobic semiconductor material as HTL could protect the perovskite 

layer from moisture and water-induced degradation.  Polymer-functionalized single-walled 

carbon nanotubes (SWNTs) embedded in an insulating polymer matrix[277], 7-(9,9′-

spirobifluorene-2-yl)-N-(7-(9,9′-spirobifluorene-2-yl)-9,9-dioctyl-9H-fluoren-2-yl)-N-(4-

(9H-carbazol-9-yl)phenyl)-9,9-dioctyl-9H-fluoren-2-amine(CzPAF-SBF)[278], an 

oligothiophene derivative named DR3TBDTT[139], 4,4′-(4,8-bis((2-

ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl) bis(N,N-bis(4-methoxyphenyl) 

aniline) (OMeTPA-BDT)[279] and poly[2,5-bis(2-decyldodecyl)pyrrolo[3,4-c]pyrrole-

1,4(2H,5H)-dione-(E)-1,2-di(2,2′-bithiophen-5-yl) ethene] (PDPPDBTE)[138] were some 

of the hydrophobic HTLs that improved long term stability.  Inorganic HTLs such as 

CuI[280] were also employed to eliminate the disadvantages of using organic compounds as 

HTL and improved long term stability. 

 

PEDOT:PSS is the most common HTL type used in inverted perovskite cells due to 

its high conductivity and good transparency in the visible range. However, its inability to 

block electrons, the hygroscopic and acidic nature of PEDOT:PSS limits the stability of the 

inverted cells[281]; hence some modifications were made to improve the device stability of 

PEDOT:PSS based cells. For example, Huang et al. doped PEDOT:PSS with dopamine and 

the stability of the device enhanced by reducing the acidity of PEDOT:PSS[282]. Changing 

pH or using and organic solvent to enhance morphology also reported to improve the 

stability of the cell[283], [284]. 

 

The replacing PEDOT:PSS with metal oxide NiOx  and CuSCN as the hole transport 

layer can also improve the stability as well as the the hole extraction capacity of the cell[285–

287]. Graphene oxide is another stable HTL synthesized with a simple solution-based 

process and with cost-effective raw materials. Yang et al.[288] studied the light soaking and 
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shelf-lifetime stabilities of GO and PEDOT:PSS, and the stability was reported to enhance 

by using GO due to its higher work function and formation of larger perovskite crystals 

above; the hole extraction capacity was also reported to be has enhanced.  

 

2.2.6.  Effect of Back Contact 

 

Au, Al and Ag are the most commonly used back contact materials. However, the 

diffusion of Au through HTL causes degradation. Besides, the high cost of Au makes this 

material completely unpromising. Ag, which is a cheaper alternative for back contact, also 

causes degradation by reacting with halide ions in humid environment. Low cost Cu was 

found to be a promising alternative for high stability as no reaction occured between Cu and 

perovskite and high PCE was achieved[289]. Another promising alternative is low cost 

carbon back contact. Mei et al.[290] achieved excellent stability using carbon as back contact 

in a fully printable perovskite solar cell. Carbon layer was found to protect the perovskite 

from moisture. Single walled carbon nanotube was also employed as back contact and 

showed negligible degradation under high temperature and illumination[291]. Carbon back 

contact also found to be suitable for large area deposition. Priyadarshi et al.[292] obtained 

high stability and a moderate PCE (10.74%) in large area (70 cm2) module using carbon back 

contact. 

  

2.3.  Data Mining and Methods 

 

According to Hand et al.[293], “Data mining is the analysis of (often large) 

observational data sets to find unsuspected relationships and to summarize the data in novel 

ways that are both understandable and useful to the data owner.” Another definition is, “Data 

mining is an interdisciplinary field bringing together techniques from machine learning, 

pattern recognition, statistics, databases and visualization to address the issue of information 

extraction from large data bases.”[294]. As the large amount of data is being generated in 

research and business area, data mining becomes an important field of research in order to 

have a better understanding of data by discovering patterns and make useful predictions. 

Some of the applications of data mining that is used for prediction are flooding, speech 

recognition, machine learning and pattern recognition[295]. 
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Data mining is an application of machine learning to large databases; there are various 

methodologies to extract knowledge from the databases. These methods can be analyzed in 

four main categories: classification, clustering, regression and association. Classification is 

used to separate data into predefined groups or classes. It can be referred as a supervised 

learning because the classes should be determined before examining the data. Clustering is 

a machine learning technique used to place data elements into related groups without 

advance knowledge of the group definitions. It is an unsupervised learning technique 

because the groups are not predefined but rather defined by the data themselves. The 

grouping is accomplished by finding similarities between data points according to 

characteristics found in actual data [295]. The groups are called clusters and the similar data 

are grouped into the same clusters. Popular clustering techniques include k-means clustering 

and expectation maximization (EM) clustering. Regression is a statistical tool for the 

investigation of relationships between variables. The aim is to fit the target data into some 

known type of function that is created from a known data. It deals with estimation of an 

output value based on input values. Assocaiton rule mining determines the most frequent 

patterns, combinations and associations in database which can not be seen by naked eyes 

using statistics.  

 

2.3.1.  Association Rule Mining 

 

Association rule mining is used to determine frequent combinations, patterns, rules 

and associations. Association rule mining creates associations between item sets (i.e. A and 

B) in a form of if A, then B (A=>B) where A is antecedent and B is consequent.  There are 

three parameters that are used to interpret and make decision in this technique: support, 

confidence and lift. Support indicates the frequency of the occurrence of two item sets 

together in database (Equation 2.1). Confidence defines the ratio of number of data points in 

which two item sets are found together to number of data points in item set A (Equation 2.2).  

This value provides information on the validity of this combination in item set A. Lift is the 

ratio of how much an item set B is found with item set A over item set A to the ratio of the 

frequency of item set B in overall database, hence we understand if the occurrence of B with 

A is more frequent than its occurrence in overall database; hence, lift value is greater than 

one if the occurrence of these two item sets together is significant(Equation 2.3). 
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support =

number of data points containing both A and B

total number of data points
 

(2.1) 

 
confidence =

number of data points containing both A and B

number of data points containing A
 

(2.2) 

 

lift =

number of data points containing both A and B
number of data points containing A
number of data points containing B

total number of data points

 
(2.3) 

 

A priori algorithm is used in association rule mining which narrows down the search 

space by determining priori properties. Hence, computation of this method gets easier. This 

algorithm assumes that if an item set Z is not frequent alone, so adding another item set A to 

Z will not make neither Z nor A and Z together frequent; hence any combination containing 

Z will not be frequent. Then, Z is not considered in association analysis according to a priori 

algorithm[296].  

 

2.3.2.  Decision Trees  

 

Decision trees method is one of the most used data mining technique that extracts rules 

from the database. It is a supervised method that classify or predict data according to the 

rules derived.  The rules are easy to understand and help user to have a better idea on the 

dataset. It provides conditional control statements and give a tree-like structure. The rules 

are decided by purifying data using nodes and branches.  

 

A decision tree is a composed of a collection of decision nodes, connected by branches 

(Figure 2.5). Related class or value is located at the end of each branch.  A decision tree 

starts from the root node and branches out. Attributes are tested and the possible outcome is 

calculated[296]. 

 

The main issue is to decide how to split a root to branches, or a branch to other sub-

branches. Two branches are created in each decision node. A database should contain enough 

data points and the boundaries should be clear. The classification and regression trees 

(CART) method is one of the main algorithms for decision tree construction. The data is 

separated in order to give the similar outputs at the final node. The CART algorithm selects 
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the optimum split for tree construction by evaluating all possibilities (all variables and 

splitting values). 

 

The optimum split is selected upon which split maximizes the goodness of  split 

(Equation 2.4)[296] 

 

 

Goodness of Split = 2PLPR ∑ |P(j|tL) − P(j|tR)|

# classes

j=1

 (2.4) 

 

where tL = left child node, tR = right child node, 

 

 

  

Figure 2.5. Decision tree model. 

 

Another main algorithm used in decision trees is C4.5 algorithm. In C4.5 algorithm, 

the concept of entropy reduction is used to select the optimal split. First several candidate 

splits are created and a variable X having k possible values have probabilities of p1, p2, …,pk 

and the entropy of X is defined as:[296]  

 

PL =
number of data points at tL

number of data points in database
 

, 
PR =

number of data points at tR

number of data points in database
 

P(j ∣ tL) =
number of class j at tL 

number of data points in tL
 

, 
P(j ∣ tR) =

number of class j at tR 

number of data points in tR
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H(X) = − ∑ pjlog2(pj)

j

 (2.5) 

 

The candidate split S, which divides the training set into T subsets (T1, T2,…,Tk) has 

a total entropy calculated as: 

Hs(T) = ∑ Pi

k

i=1

Hs(Ti) 
(2.6) 

where Pi represents the proportion of the records in subset i and the main aim is find an 

optimum split that minimizes Hs. 

 

Various values of the minimum number of split (the minimum number of data needed 

in each split to continue dividing into rules), depth of the tree (maximum length of the 

branches) and complexity parameter (the measure of the minimum increase of R2 to model 

continue splitting,) are used to represent the data best with the maximum prediction 

accuracy. These parameters should be adjusted carefully to prevent overfitting as much as 

possible to detect generalizable rules.  

 

2.3.3.  Random Forests  

 

Random forest is another common supervised method used for both classification and 

regression. It creates an ensemble of decision trees (CART model) to produce more accurate 

predictions. The combination of various learning models increases the performance of the 

method. This method adds randomness to the model while training using a random subset of 

variables each time, which is called bootstrap aggregation or bagging (Figure 2.6). Then, 

best split is decided among them for each tree; hence, random forest usually prevents 

overfitting of the data. 

 

2.3.4.  Data Mining in Field of Solar Energy  

 

Data mining techniques have been used in the field of solar energy for many years by 

various researchers to extract valuable information from the experimental data.  Different 

techniques have been applied to various areas in solar energy. For example, prediction of 
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solar radiation and solar power using data-mining tools is a quite popular field and many 

publications were published in the literature[297–300]. 

 

 

Figure 2.6. Bootstrapping and learning ensembles. 

 

Almonacid et al.[301] predicted the electrical characteristics of Si-crystalline modules 

using module temperature and irradiance values as input. Evans et al.[302] studied multi-

crystalline silicon cells to understand the effects of manufacturing conditions and material 

quality variations on the cell performance using data-mining approach. 

 

Data-mining approach was also studied in organic cells. The preparation conditions 

such as materials’ concentration in the absorber solution and the spin coating speed of the 

absorber solution of organic solar cells were analyzed and the effects of them were 

investigated[303]. In another study, Sue et al. [304] constructed various machine learning 

models successfully to predict efficiency of organic solar cells using microscopic properties 

of organic materials. There are also some studies on dye sensitized cells. New classes of 

dyes were tried to be predicted using data-minnig tools[305], [306]. 

 

There are not much publications on data-mining in perovskite solar cell field recently, 

however, this field is becoming more popular. For example, Kim et al.[307] published a 

dataset of hybrid organic-inorganic perovskites to be used in data-mining efforts. Other study 

was conducted by Li et al.[305], in which they investigated the development trends of 

perovskite solar cell technology based on patent analysis and Twitter data mining. Recently, 

Odabaşı and Yıldırım investigated the factors affecting efficiency of perovskite solar cells 
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using various data-mining methods and determined the material and perovskite deposition 

types leading high efficiency cells[308]. 
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3.  METHODS 

 

 

3.1.  Database Construction 

 

The database for PCE analysis was constructed using 800 articles published in various 

journals from ACS, Elsevier, Wiley and RSC databases as well as Nature and Science in 

2013 and 2018 (until May 31 of 2018) and 1921 experimental data from these articles were 

extracted (Table 3.1). The articles were selected based on relevance search for “perovskite 

solar” as a topic; we tried to take the number of papers from each database as proportional 

to total publications as possible. Although the relevance sorting may not be the best way to 

rank the papers based on the quality of results, it is the only practical option to extract random 

data from large number of publications; the results should represent the literature well 

considering that the sample size (800 papers) is quite large. Hence, the number of articles 

used in database is 10% of the articles according to Web of Science search (with the keyword 

search of “perovskite solar” in topic segment at 16.07.2018).   

 

The datasets for reproducibility, hysteresis and long-term stability were also created 

from research articles published in various journals from ACS, Elsevier, Wiley and RSC 

databases as well as Nature Group and Science; between 2015-2018 for reproducibility and 

hysteresis, and 2016-2018 for stability because it had been studied more frequently in these 

years (all until August 2, 2018). The keywords of perovskite solar for reproducibility and 

hysteresis, perovskite solar and stability for stability were used to list the related papers by 

relevance. 

 

For PCE analysis, total 1407 data points from 585 articles belonged to regular structure 

(n-i-p) cells while 514 data points from 216 articles were involved inverted structure (p-i-n) 

cells (one paper had both regular and inverted cell data). The data belonging to flexible cells 

were not taken because this design is not well established yet; the papers published before 

2013 were also excluded because the efficiencies of that time do not represent the same level 

of expertise of the later years. We manually extracted the data from the papers as they were 

given in the text or tables.   We used best and stabilized PCE values to evaluate performance 

of the cells. 
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Table 3.1. Details of the Databases Used in Analyses. 

 

PCE analysis 

 Stabilized PCE 

Data number 

Best PCE 

Data number 
 Articles Data number Articles Data number 

Regular (n-i-p) 153 249 585 1407 

Inverted (p-i-n) 59 74 216 514 

Reproducibility analysis 

 Articles Data number Sample 

size 

 

Regular (n-i-p) 292 547 15446  

Inverted (p-i-n) 147 291 8696  

Hysteresis analysis 

 PCE≥10% Without PCE restriction 

 Articles Data number Articles Data number 

Regular (n-i-p) cells with scan rate≤0.05 V/s 64 110 67 129 

Inverted (p-i-n) cells with scan rate≤0.05 V/s 18 35 18 35 

Regular (n-i-p) cells 137 245 145 294 

Inverted (p-i-n) cells 47 91 49 93 

Stability Analysis 

 PCE≥10% Without PCE restriction 

 Articles Data number Articles Data number 

Regular (n-i-p) cells stable more than 15 days 115 232 130 288 

Regular (n-i-p) cells stable more than 30 days 106 203 122 253 

Regular (n-i-p) cells stable more than 60 days 96 166 111 211 

Inverted (p-i-n) cells stable more than 15 days 47 99 51 116 

Inverted (p-i-n) cells stable more than 30 days 44 92 48 108 

Inverted (p-i-n) cells stable more than 60 days 42 77 47 91 

 

For the reproducibility analysis of regular cells, 547 samples containing 15446 cells 

from 292 articles were used while these numbers were 291 samples containing 8696 cells 

from 147 articles for inverted cells. The analyses for hysteresis were performed on a data set 

containing 295 regular cells from 146 articles and 93 inverted cells from 49 articles. The 

long-term stability was analyzed using the performance (% PCE) versus time (days) plots. 

However, in some articles, the stability has not been observed until the PCE decreased to 

80% of its initial PCE (selected as stability criterion); in such cases, we used the data for 

only the period in which it operated (for example, if test stopped in 35th days even though 

PCE was not decrease to %80 of its initial value yet, we used that for 15 days and 30 days 



38 

 

data but not for 60 days because we could not be sure if it will reach to 60th day). For the 

largest data set, which was for 15 days, we used 288 stability plot from 130 papers for regular 

cells and 116 plots from 51 papers for inverted cells. For the PCE values, we considered the 

best PCE values reported in publications. However, if it was not reported, we considered 

average PCE or initial PCE shown in plots. More details for the data sets used were given in 

Table 3.1.  

 

478 data points from 185 articles were collected for stability analysis between 2016 

and 2018 (until August 2nd of 2018) with the keywords of  perovskite solar and stability on 

topic section based on relevance search using various journals (ACS, Elsevier, Wiley and 

RSC databases as well as Nature and Science). However, the cells which were encapsulated 

(40 data points) or stored under extreme conditions such as illumination (63 data points) or 

higher temperatures than 30 oC  (43 data points) were eliminated to prevent complexity of 

the model. In some articles, cell storage temperature, ambiance and humidity values were 

not reported. We assumed the cells were stored at room temperature (25 oC) if the 

temperature was not reported and represent it with ‘na’ sign in Data files. We also eliminated 

the data points where stored humidity values were not reported. If the environment where a 

cell was stored not determined clearly, we assumed they stored under room-light in analysis 

and represent them as not specified (‘ns’ sign). In order to check if there is any significant 

stability difference between storing the cells under dark or room-light, we compared the 

trend of average of normalized efficiencies of the cells. (Figure 3.1) We limit this comparison 

for the cells which were stored under zero-humidity and maximum temperature of 30 oC.  

As we cannot see any significant difference between room-light and dark conditions, we 

continued our analysis using both of them.  

 

The data points were collected manually as they were given in the text, tables or the 

plots in which the data were extracted using Digitizelt software[309]. Most of the works in 

the literature have focused on increasing the power conversion efficiency (PCE) as the 

measure of progress; hence, this variable was taken as the output (performance) variable in 

analyses. The pooled variance, hysteresis index and the period in which the cell preserved 

more than 80% of its initial PCE were used as the output variables for reproducibility, 

hysteresis and stability, respectively. The type of the major materials in all layers 

(perovskite, ETL, HTL and back contact) as well as perovskite deposition techniques (one 
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or two-step deposition procedures and techniques used during the deposition), which affect 

the performance of the cell (PCE, hysteresis, stability and reproducibility), were used as the 

input variables as they are clearly reported in publications (Table 3.2). These are categorical 

variables that are key to describe the cell, hence they are decided first in research and clearly 

communicated in publications; most of the times, they have clear, standard and comparable 

meanings; hence, we used these as the input variables in our analysis.   The variables used 

in the analyses and their most common alternatives are presented in Table 3.2. 

 

 

Figure 3.1. Comparison of different cell storage conditions (each point represents 

average of minimum five data points).  

 

There are also continuous variables like speed and duration of coating, concentration 

of materials, temperature and time of annealing and so on. These variables also affect the 

performance significantly. However, the available data related to these variables are not 

always suitable for modeling because they are not always comparable due to the small 

variations in implementation. Indeed, our initial attempts showed that no reliable models 

could be developed from these variables with the data from many different sources. Hence, 

we omitted these variables from our analysis (with the expense of information loss on their 

effects) so that we can develop reliable models for the major categorical variables. Various 

values (levels) of omitted variables will be evenly distributed over the entire experimental 

domain, and their effects on the categorical variables will be balanced due to the large 

number of data points (like large number of experiments in statistical experimental design).  

 



40 

 

Table 3.2. Categorical Variables (Factors) Used in Machine Learning Analyses.  

 

Factor Alternatives 

Perovskite type 

MAPbI3, MAPbBr3, MAPbBr3-xClx, MAPbI3-xBrx, MAPbI3-xClx, MASn1-

xPbxI3, FA based, Cs based, Sn based, mixed cation, mixed halide 

perovskites 

(MA=CH3NH3, FA=CH(NH2)2) 

 

Perovskite deposition procedure 
one-step, two-step 

 

Perovskite  deposition method 

spin, spin 2-3, spin-dip, spin 2-3-dip, dip coating, VASP, CVD, 

evaporation-spin, spin-spray, spray, spin-dripping 

 

Precursor solution 

DMF, DMA, DMF+DMSO, DMF+CHP, DMF+DIO, DMF+GBL, 

DMF+H3P, DMF+HI, DMSO, DMSO+GBL, DMSO+SnF2, GBL,  

2-methoxyethanol+CHP 

 

Anti-solvent treatment 

chlorobenzene, toluene, diethyl ether, trifluorotoluene, ethyl acetate, 

ethanol, without anti-solvent treatment 

 

ETL   

Regular: (as compact layer) C60, SnO2, TiO2, TiO2-doped, ZnO, ZnO-

doped, Fe2O3, graphene, PCBM, without ETL 

Inverted: PCBM, doped PCBM, C60, PCBM+C60, ZnO, without ETL 

 

Second layer of ETL/ETL interlayer 

(ETL-2) 

 

Regular: C60, PCBM, mTiO2, doped mTiO2, mAl2O3, TiO2-ns, ZnO-ns, 

without ETL-2 layer 

(m-mesoporous, ns-nanostructure) 

Inverted: ZnO, TiOx, PEI, LiF, Ca, Bphen, BCP, Ba, AZO 

 

HTL 

Regular: spiro-OMeTAD, CuSCN, P3HT, PEDOT, PTAA, SWNT, 

without HTL 

Inverted: PEDOT:PSS, PEDOT:PSS-doped, CuSCN, GO, NiOx, doped 

NiOx, PTAA, without HTL 

 

Second layer of HTL (HTL-2) 

(for inverted cells only) 

 

Inverted: mAl2O3, polyTPD, without HTL-2 

 

 

HTL additive (for regular cells only) 

LiTFSI+TBP, LiTFSI+TBP+FK102, LiTFSI +TBP+FK209, LiTFSI, 

LiTFSI +2,6lutidine, without additive 

 

Back contact Carbon, Au, Ag, Al 
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Consequently, the analyzing and modelling the effects of the major categorical variables will 

be still possible. 

 

On the other hand, the effects of thermal annealing seem to be too vital to exclude 

from such an analysis; hence, we also reviewed and analyzed the effects of annealing 

temperature, time and environment on PCE. Although this attempt helped to extract some 

valuable information on this issue, it also verified the difficulties dealing with such variables 

with data from multiple sources.  

 

As early as 2014, it was highlighted that reported power conversion metrics might be 

strongly afflicted by a discrepancy in current-voltage measurements in different scan 

directions (hysteresis)[2], [17], and since then, the stabilized power conversion efficiencies 

has been also reported in some publications. There are 323 cases (17% of entire data) 

reporting stabilized efficiencies while the others report only the initial efficiencies as a single 

value for a single cell or the average and/or the best initial efficiencies of more than one cell 

prepared at the same conditions. Normally, the stabilized efficiencies should represent the 

actual performance more realistically than the initial efficiencies (even though the way to 

measure the stabilized efficiencies are not yet fully standardized). However, the number of 

papers reporting the stabilized efficiencies is still lower even though it also increases with 

time as it is given in Figure 2.1. Hence, the use of entire dataset for the review may give a 

better picture for the progress in the field because it will also cover the changes before 2014 

and hundreds of works that may still contain valuable information even though they do not 

contain information for hysteresis. To decide for the course of action, we first analyzed and 

compared the dataset with stabilized efficiencies and the entire set with the best initial 

efficiencies (Section 4.1.1).  

 

The “na” sign in data points represents the absence of any information in related 

publication. We represented the less commonly used material types or addtitives as others 

to simplify the databases. For the variable of perovskite deposition step, two-step deposition 

was defined to generalize the all deposition methods where halide part (ie. PbI2) and cation 

part (MAI) were deposited seperately and perovskite form on the surface. One-step 

deposition was used for the perovskite deposition methods where the perovskite was formed 

first in a different place, then deposited on substrate. As considering the deposition methods, 
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some abbreviations for vapor-assisted solution process and chemical vapor deposition were 

written as VASP and CVD, respectively. Spin 2-3 represents multi times spin coating of 

perovskite, generally two or three times repeatedly in single-step procedure. For two-step 

deposition methods, the steps of deposition were written with using “-” between such as 

spin-spray, spin-dip or spin-spin. In some rare cases, the halide part was deposited multiple 

times before spinning of cation part or dipping into cation solution. 

 

For the perovskite type, in the case of perovskite contains more than one cation, it was 

called as mixed cation perovskite. In the case of a one cation perovskite contains more than 

two halides, it was called as mixed halide perovskite. If a perovskite contains Sn and does 

not have any Pb, it was called Sn based perovskite.  One cation perovskites which have FA 

or Cs cation were called as FA or Cs based perovskites. The perovskites synthesized using 

lead (II) thiocyanate (Pb(SCN)2) as a precursor solution were named as “MAPb(SCN)xI3-

x“ [190], [310], on the other hand, in some other studies, Pb(SCN)2 was mentioned as a 

precursor solution additive[70], [311]; hence we used the exact names given in publications 

in PCE analysis. However, we named them as MAPbI3 to prevent complexity in other 

analyses.   

 

For regular structure, in order to identify the mesoporous structures in ETL-2 (second 

layer of ETL), “m” was written at the beginning of the material names such as mAl2O3, 

mTiO2 etc. For determining the structures of nanorod(nr), nanowire(nw), nanocone(nc), 

nanoflower(nfl), nanoflake(nfl), nanocolumnar(ncl), nanosheet(ns), nanotubes(nt) and 

nanofiber(nf),  we named them as nanostructures (ns) (TiO2-ns, ZnO-ns etc. ) for 

generalization. For ETL (compact layer), ETL-2, HTL and HTL-2, some variables were 

defined as “0” or “no”. 0 was used to represent the absence of one of those whereas no were 

used for the absence of entire layer (like HTL free cells). Some of the most common ETL or 

HTL materials were doped with various dopants to improve performance. Instead defining 

all these variables as a new variable, we gave a common name such as TiO2-doped to 

simplify the database for analysis. For the other materials except TiO2 in PCE analysis, the 

name of the material was used only in ETL or ETL-2 columns even they were doped or not, 

because we had less data points for other ETL materials (ZnO-doped was used for entire 

dataset modeling because we had enough data points for this variable, but it was named as 

ZnO for modelling of stabilized database). For the hysteresis analysis of inverted cells only, 
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all PTAA containing cells (doped or not) in were labeled as  PTAA due to the low number 

of cases. Similarly, in reproducibility analysis, there was only one data point for doped P3HT 

as HTL in regular cells, and we also labeled this point as P3HT in our analysis. For ETL and 

ETL-2 in inverted and regular cells, we took all C60 derivetives (except PCBM) as C60; we 

labeled PCBM as seperately due to its frequent use.  

 

For inverted cells, PEDOT:PSS and NiOx were separated as doped or undoped in HTL 

column. Although we had data points using doped PTAA, we did not consider it as another 

variable to have enough data points. For the second layer of HTL, “m” was written at the 

beginning of the mesoporous materials similar . Similar to PTAA, data points with doped 

mNiOx were not indicated as “doped” due to lack of enough data points.   

 

Some common HTL additives were named as following: Lithium 

bis(trifluoromethylsulfonyl)-imide salt (Li), 4-tert-butylpyridine (TBP), Co(III) complexes 

such as tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) (FK102), 106 tris(2-(1H-pyrazol-1-yl)-

4-tert-butylpyridine) cobalt(III) tris-(bis(trifluoromethylsulfonyl)imide)) (FK209) and 

tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)- imide] 

(MY11). In two articles, the exact structure of Co(II)TFSI was not indicated (as FK102, 

FK209 etc); hence we also used Co(II)TFSI for his material as in the articles. In 

reproducibility, hysteresis and long-term stability analyses, we named all inorganic materials 

as inorganic HTL. 

 

We represented all carbon containing back contact types (such as graphene, graphite) 

or different carbon structures (such as nanotubes, porous structure, cloth) as carbon. In 

inverted cells, Ag nanowire (Ag-nw) also assumed as Ag back contact material.  

 

For the annealing conditions, one-step deposited MAPbI3 based perovskite cells were 

considered only.  

 

In reproducibility analysis, some articles did not contain the exact number of cells of 

which the standard deviation was calculated, instead they mentioned “more than xx”; we 

used xx as the sample size in pooled standard deviation analysis. If any article reports the 

cell number is between two numbers, we took the average of it.  
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In stability analysis, the ambient humidity was divided into three parts, 0-30% RH, 30-

60% RH and humidity above 60% RH. The temperature was assumed to be room 

temperature (25 oC) if the publications did not report the ambient temperature where 

perovskite cells were stored. The data of the cells stored in extreme conditions (under 

illumination, at high temperatures or in special encapsulation) or if the storage conditions 

are not clearly explained were not used in analysis.  

 

3.2.  Analysis and Computational Methods 

 

Descriptive statistical analysis was conducted on Excel. Data mining analyses were 

performed using R Studio software[312]. Random forest regression was performed using 

randomForest package[313], association rule mining analyses were performed using arules 

package[314] where apriori algorithm was employed and decision trees were built using 

rpart package[315] of RStudio where CART algorithm was employed.  Random sampling 

of classes was implemented using dplyr package[316] of RStudio. 

 

3.2.1.  Analysis of Power Conversion Efficiency 

 

3.2.1.1. Descriptive Statistical Analysis. First, the data were analyzed using simple 

descriptive statistics like annual change in average (mean) efficiencies and distribution of 

data among the efficiency levels for each specific factor so that the change of trends with 

time could be seen in Section 4.1.2. The data range (0-23.3%) was divided into five equal 

parts (0%-4.5%, 4.5%-9.0%, 9.0%-13.5%, 13.5%-18.0%, 18.0%-23.3%; efficiencies equal 

to exactly 4.5%, 9.0%, 13.5% and 18.0% were put into the lower classes) creating five 

subsets to draw distribution of data to make sure that the averaging efficiencies are 

meaningful (i.e. whether the data distributed normally around its own mean or not). It should 

be noted that the record efficieny of perovskite solar cells was 23.3% when the analysis was 

made, but it increased to 23.7% in later works[1]. Although there are some slightly skewed 

distributions in Section 4.1.2, almost all distributions are quite close to normal; hence, the 

arithmetical mean was used as the indicator of the average performance for simplicity.   

 

The ball size (and the numbers) in Figure 4.4 (perovskite materials) shows the number 

of publications found in Web of Science search involving the perovskite material in a given 
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year. However, in other figures in Section 4.1.2, the ball size shows the fraction of data 

points in our database for the material or method of interest because an accurate search in 

Web of Science for other variables could not be possible. Considering the large size of the 

database, these fractions can be assumed to reflect the actual status in literature reasonable 

well. The plots for the time changes for the variables (like Figure 4.3a) were constructed 

with minimum five data points for each year (20-25 in total) while the distribution plots (like 

Figure 4.3b) were constructed only the variables having more than 20 data points.  If the 

average of two alternatives of a variable were compared (like Figure 4.5), minimum 10 data 

points for each were required. However, the number of cases in database for less frequently 

used but promising factors (like Cs based perovskites, some of mixed cation perovskites, 

some inorganic and some organic HTLs) were not sufficient for statistical analysis (as the 

consequence of random data extraction process). Hence, the additional data points were 

extracted to calculate the averages for these variables if the number is close to the limits 

described above. However, the new data points were not used in other analyses to keep the 

randomly created structure of the database.  

 

The certified record efficiencies reported by NREL were also modelled using S shaped 

logistic growth curve presented in Equation 3.1,  

 

PCE

(PCE)limit
=

1

1 + ae−bt
 (3.1) 

 

(PCE)limit is the  upper limit of efficiency and assumed to be 27%[317] (31 % could be 

also used without changing the result significantly[318]), a and b are constant to be 

determined while t represent time as years.  The equation was linearized first as  

 

ln (
1 − PCE (PCE)limit⁄

PCE (PCE)limit⁄
) = ln(a) − bt (3.2) 

 

Then, constants ln(a) and (b) were  determined from  ln (
1−PCE (PCE)limit⁄

PCE (PCE)limit⁄
)  versus time 

t plot as 848.35 and 0.4213 respectively with the R2 value of 0.98. 
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3.2.1.2.  Random Forest Regression. The random forest regression model was built to test 

the predictability of power conversion efficiency; the root mean square error (RMSE) was 

used as the indicator of the prediction capacity of the model. Basically, random forest model 

is an ensemble method that creates multiple decision trees and predicts a new data point by 

the majority vote. The number of the trees was optimized by 5-fold cross validation. The 

dataset was divided into 5 equal parts and different number of trees were implemented for 

each fold. Then, the average RMSE value of each tree number within each fold was listed, 

the tree number with the minimum average RMSE was considered in model. 110 and 30 

trees were used for stabilized dataset of regular and inverted cells whereas 600 and 250 

number of trees were generated for the entire dataset of regular and inverted cells.  

 

3.2.1.3.  Association Rule Mining. Association rule mining is used to determine frequent 

combinations, patterns, rules and associations. There are three parameters that are used to 

interpret and make decision in this technique: support, confidence and lift. Support indicates 

the frequency of the occurance of two itemsets together. Confidence is the ratio of how much 

a specific item found with another specific item. Lift is the ratio of how much a specific item 

found with another specific item to the ratio of this specific item found in overall database, 

hence it shows if the occurance of this item with another specific item is significant and more 

frequent. An example was given in Section 4.1.4 to understand these terms better. The lift 

value was used for the detection of any patterns or rules in this part. Support value was 

adjusted as any condition should fulfill at least 5 data points. 5 data points may be slightly 

low but we wanted to extract any less common patterns as well. Confidence values were set 

to 0.1. The rule deduction was performed only for the highest efficiency class (above 18.0%) 

for each dataset since one usually seeks to know what to do to achieve high efficiency. We 

selected this limit considering both number of data points and decision tree classification 

which gave us the best split.  

 

3.2.1.4.  Decision Tree Analysis. The decision tree analysis was performed by using rpart 

package in RStudio. Database was classified into three groups as high (A), intermediate (B) 

and low (C) efficiency groups for regular structure. In decision tree analysis, the database 

should be normally divided into certain number of approximately equal size classes to 

prevent the class imbalance problem may occur (even the small fraction of incorrectly 

classified data from large classes may reduce the accuracy rate of neighbouring small 
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classes). If three equal size classes were created from our databases, the minimum level for 

the high efficiency class would be 16.5% for stabilized ; 14% for entire datasets of regular 

and inverted cells. However, in order to extract rules compatible with association rule mining 

analysis, the limits of the highest (18.0%) and the lowest (4.5 %) groups used in distribution 

plots were selected to represent Class A and Class C considering that one really prefer to 

know the rules and conditions for significantly high conversion such as 18.0%. However, 

the stabilized efficiency dataset is much smaller and the data are mostly located at higher 

efficiencies; there are only 5 data points at 4.5% and below for the regular cells, which is 

clearly not sufficient for the decision tree analysis (there are only 2 cases for inverted cells).  

Hence, we had to change the limits of low (C) class from 4.5% to 9 % (also covering the 

second lowest parts in distribution analysis) for regular and inverted cells (number of data 

points for C classes increased to 25 for regular cells, which were sufficient). Even this change 

was not sufficient for the stabilized efficiency dataset for the inverted cells; consequently, 

we decided not to perform decision tree analysis for this set. 

 

We had only 38 data points (111 data points in entire dataset) in Class A and 25 data 

points (411 data points in entire dataset) in Class C while the remaining 186 data points (885 

data points in entire database) remained in class B in regular stabilized database; this is 

definitely a class imbalance situation. In such situations, the data points in small classes are 

duplicated by random sampling until they reach the size of large sample if the number of 

data points in small sample is large enough to have a similar statistical distribution with its 

enlarged version. In regular cells, the number of data points in Class A and C are sufficiently 

large to apply random sampling; hence the data points in Class A were replicated for 4.9 

times to have 186 data points (8 times to have 888 data points in entire dataset) and data in 

class C for 7.4 times to have 185 data points (2.2 times to have 904 data points) to have a 

balanced class structure. Similarly, in the entire dataset of inverted case, the number of data 

points in Class A and Class C were 37 and 123, respectively and they were replicated for 9.6 

and 2.9 times (355 and 356 data points were obtained for Class A and C, respectively).   

 

Various values of the minimum number of split, depth of the tree and complexity 

parameter were tested with the class structure described above. 5 fold cross validation 

procedure was employed to optimize the minimum number of split, depth of the tree and 

complexity parameter. Then, the parameters were fine-tuned to have a tree not only with the 
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highest classification accuracy but also to with reasonable generalizable results in the 

terminal nodes. 

 

The performance of the classification of decision tree model was evaluated using two 

measures. First, the overall classification accuracy of the model (ratio of correctly classified 

data points to the total number of data points in database) was considered. Second measure 

was the precision of each class. (ratio of the correctly classified data points which belonged 

to Class A to number of the data points predicted as Class A) Although the accuracy (ratio 

of the correctly classified data points which belonged to Class A to total data number of 

Class A) is also an important measure for classification, this measure was more important 

for us than accuracy of each class because we tried to get the purest branches and nodes to 

implement better rules. The most of the data predicted as Class A should be pure as much as 

possible. Hence, the model should not predict other classes as A.   

 

As mentioned before, for the stabilized dataset of regular cells, the low efficiency 

upper limit was changed to 9% for decision tree modelling due to lack of enough data points 

below 4.5%. Hence, this case should be taken in account while interpreting the rules. 

 

3.2.2.  Analysis of Reproducibility  

 

 The standard deviations for sample (batches) were obtained from the papers or 

calculated from Equation (1) using the PCE distribution given for that batch:  

 

𝑆 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̄)2

𝑁

𝑖=1

 
(3.3) 

 

where N is total number of data points in sample while xi and and x̄ are the individual PCEs 

and their sample mean respectively. Then, the pooled standard deviation (Sp) or variance 

(Sp
2), which can be used as the measure of reproducibility[319], was computed for the 

samples containing the same factor (material or method): 
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𝑆𝑝 = √
(𝑛1 − 1)𝑆1

2 + (𝑛2 − 1)𝑆2
2 + ⋯ + (𝑛𝑘 − 1)𝑆𝑘

2

(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 − 𝑘
 

(3.4) 

 

 The F-test was performed for pairwise comparison of Sp
2 to assess whether the 

differences in pooled variances are statistically significant or not for the use as the measure 

of reproducibility[319]; the confidence level was taken as  % 95. 

 

 We used only the batches having minimum five cells in reproducibility calculations 

to capture the variability in each work sufficiently. We also considered material types and 

techniques reported by minimum five publications. 

 

3.2.3.  Analysis of Hysteresis 

 

 Hysteresis index (HI) as performance measure for analysis was  calculated from 

Equation 3.5 [320] 

 

HI =
|PCEreverse − PCEforward| 

PCEreverse
 (3.5) 

 

where PCEforward and PCEreverse are the power conversion efficiencies obtained using forward 

and reverse scan respectively. Mostly, the higher efficiency values are obtained under 

reverse scan conditions[60] while the efficiency under forward scan can be also higher in 

some cases; hence, we took the absolute value of (PCEforward - PCEreverse). Although some 

other HI formulations were also proposed for more accurate representation of 

hysteresis[179]; the one in Equation 3.5 was chosen for its simplicity for the construction 

and interpretation of the model.  

 

3.2.3.1.  Random Forest Regression. Since the scan rate has a significant impact on hysteresis 

measurements and it should be as low as possible for accurate measurement, we used only 

the data obtained under maximum scan rate of 0.05 V/s for regression. The number of trees 

generated was optimized using entire dataset using 5 fold cross validation. 15 and 10 trees 

were generated for regular  (n-i-p) and inverted (p-i-n) cells, respectively. 5-fold cross 
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validation was implemented to check the reliability of the model.  Average RMSE of training 

and testing were considered. The analysis was performed by using rpart package in RStudio.  

 

3.2.3.2.  Association Rule Mining. In order to detect the most significant factors for low 

hysteresis, we again used the data measured under the maximum scan rate of 0.05 V/s. We 

also performed the analysis covering all scan rates for comparison. The analyses for 

hysteresis was performed for HI ≤ 0.01 as the criterion for low hysteresis; the analysis was 

also repeated for HI ≤ 0.05 for additional information because the results may be slightly 

more reliable for this case due to the larger number of data points. We also restricted our 

analysis to the cells having PCE ≥ 10 % to capture the hysteresis trends for high PCE cells 

but again we also provided the results for entire data set.  

   

 The association rule mining was used to analyze the impact of input variables and 

find the most frequently used factors leading low hysteresis cells. Three parameters were 

used for the analysis; support, confidence and lift; all are explained in Section 3.2.1.3 and 

Table 4.1; while the lift was also discussed in detail in Results and Discussion (Section 

4.1.4). 

 

3.2.3.3.  Decision Tree Analysis. We splitted the the dataset into three classes; the cells with 

HI≤0.01 (Class A),  0.01< HI≤0.1 (Class B) and HI>0.1 (Class C). We performed analysis 

with the cells which have PCE ≥ 10 % because we are not just looking for factors leading 

low hysteresis but also cells with a considerable PCE. The number of classes in database of 

regular cells  are 18, 54 and 38 for Class A, B and C, respectively. Hence, the data points 

were randomly sampled to prevent class imbalance (Class A and C were sampled three and 

1.4 times, respectively).  For the inverted cells, there were no cells which have HI larger than 

0.1, hence database was divided into two classes. The minimum split number, maximum 

depth and complexity parameter were optimized as explained in Section 3.2.1.4. We also did 

same analyses without considering PCE limitation. 

 

3.2.4.  Analysis of Long –term Stability 

 

 The PCE versus time values were extracted from the stability plots in the papers for 

15, 30 and 60 days period using Digitizelt software[309]. The performance measure was 
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selected as the number of days in which cell can preserve more than 80% of its initial PCE. 

Normalized PCE values were used in the analyses.  

 

3.2.4.1.  Random Forest Regression. Random forest regression was employed to predict the 

exact time when the cells have dropped to 80% of their initial PCE. The number of trees 

generated was optimized using entire dataset using average RMSE of 5 fold cross validation. 

65 and 20 trees were generated for regular  (n-i-p) and inverted (p-i-n) cells, respectively. 

The models were checked by using 5-fold cross validation and average RMSE of training 

and testing were considered.    

 

3.2.4.2.  Association Rule Mining. Association rule mining was performed to capture the 

most effective factors for long-stability. We repeated the analysis for 15 days, 30 days and 

60 days cumulatively (15 days data covers 30 and 60 days while 30 days data covers 30 and 

60 days). However, considering that the absolute value of PCE is also important to see the 

potential of the cell, we also performed the same analyses covering only the cells having the 

initial PCE ≥ 10 %. The y-axis of bubble plots represents the lift values and bubble size gives 

the number of data points provides this condition. These numbers were also written on 

bubbles whereas the numbers in parenthesis represents how many of them have initial PCE≥ 

10 %.  In bubble plots, we included the variables which have at least 5 data points in analysis 

of 15 days. However, the analysis for all cases can be seen in Appendix D.  

 

3.2.4.3.  Decision Tree Analysis. In order to determine the heuristics for high stability, the 

data was divided into three classes; cells stable more than 60 days (Class A), cells degraded 

within 7-60 days (Class B) and cells degraded within 6 days (Class C). This division (except 

Class A) was decided depending on data distribution. We divided the remaining data from 

Class A into two equal part. One can use different class limits and do the same analysis as 

well. For regular cells, we performed random sampling of Class A to prevent class imbalance 

(Class A was sampled 3.5 times). In database of inverted cells, we did not have enough data 

points for Class A for both PCE≥10 (only 8 in 77 data points) and without PCE consideration 

(only 8 in 91 data points),  we could not construct a decision tree.  
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4.  RESULTS AND DISCUSSION 

 

 

4.1.  Analysis of Power Conversion Efficiency 

 

4.1.1.  Comparison of Stabilized Efficiency Dataset with Entire Database 

 

As mentioned in computational details, the hysteresis was taking into consideration, 

and the stabilized efficiencies have been reported in some of the articles since 2014. The 

stabilized efficiencies are better measures of the real performances because they are usually 

lower than the initial efficiencies, which are directly computed from J-V curves. As the 

result, we also analysed the dataset containing only the data extracted from these article to 

see if there are significant differences in the patterns of this subset form the entire database. 

Figure 4.1 shows the change of average efficiencies computed from the entire database and 

stabilized efficiency subset for three cell structures through the years starting from 2015 to 

2017.  The data belonging to these years were used in both dataset; 2014 excluded due to the 

insufficient number of stabilized efficiency data while 2018 was not taken because it is not 

yet completed. It should be also noted that the entire database contained stabilized 

efficiencies as well because the other data points in the database do not necessarily have 

hysteresis; simple, they are not checked for that. Surprisingly, the averages of stabilized 

efficiencies are slightly higher than those for entire database for all three structures but they 

seem the follow exactly same trend with the entire dataset; the difference is slightly higher 

for the inverted cells in recent years. 

 

To understand the differences between the stabilized efficiencies only and the entire 

databases better, we also plot the distribution of data in two groups for all three cell designs. 

As seen in Figure 4.2, the distributions for the stabilized efficiencies are narrower and shifted 

to the higher efficiency sides with very small fractions (even none) in the very low 

efficiencies. Probably, these differences come from the fact that the experienced groups, 

whose initial efficiencies are also higher than the average, report the stabilized efficiencies 

more often. The analyses presented in Section 4.1.3 also seem to support this argument; the 

statistical fitness of the models developed by the stabilized efficiencies are also higher 

(indicating higher reproducibility) than the models from the entire database. Consequently, 
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we built and presented our machine learning models derived from the stabilized efficiencies 

in Section 4.1.4 and Section 4.1.5 while occasionally comparing them with the models of 

entire dataset.  

 

  

 

Figure 4.1. Change in average efficiencies for three cell structure through years (a) regular 

mesoporous (b) regular planar (c) inverted (blue symbols are overall average for best cell 

efficiencies, red symbols are for stabilized efficiencies and black symbols are for best cell 

efficiencies of the cells which the stabilized efficiencies were given).  

 

On the other hand, the stabilized efficiencies data are not sufficient to appreciate the 

progress in the field because it does not contain the works before 2014, and only partially 

cover the results reported since 2014. Considering that the papers in which the hysteresis is 

not checked, are also the valuable parts of the experience in the field, and the two datasets 

follow similar trends (see Figure 4.1 and association rule mining results in Section 4.1.4); 

we decided to use the entire database in the part of Section 4.1.2 for the review of progress. 



54 

 

  

 

Figure 4.2. Distribution (fractions) of efficiencies in database for three cell structures (a) 

regular mesoporous (b) regular planar (c) inverted; blue columns show the distribution for 

entire dataset, red columns are for stabilized efficiencies only, green columns are best cell 

efficiencies of stabilized data points. 

 

4.1.2.  Descriptive Statistical Analysis of Power Conversion Efficiency 

 

Although the popularity of inverted structure has been increased in recent years, the 

number of data points in regular structure (sum of planar and mesoporous) is still larger 

(73 % of total data in database). Figure 4.3a shows the average efficiencies (y-axis), which 

were obtained from the averaging the data for regular (mesoporous and planar) and inverted 

structures in the database. Although, our database contains data points for the inverted cells 

in 2013 with the average efficiency of 3.4%, which is consistent with the annual efficiency 

trend, the average was not included in Figure 4.3a, because the data points were less than 

five.  
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The average efficiency obtained with regular planar structure has been generally 

higher than mesoporous and inverted structure slightly. However, the gap seems to be closed 

in recent years. Figure 4.3b shows the distribution of data points among the efficiency levels. 

The data for the regular mesoporous and inverted structures are almost normally distributed 

while the curve for regular planar cells is slightly shifted to the right; although the 9.0-13.5% 

efficiency range has the highest fraction of data points for planar mesoporous and inverted 

cells, the most crowded group for regular planar cells is 13.5-18.0% data range.  

 

  

Figure 4.3. Performance of common cell structures through years (a) change of 

average efficiencies (ball size shows fraction of data in each year) (b) distribution of data 

over the efficiency levels. 

 

4.1.2.1.  Effect of Perovskite Type. In Figure 4.4, the bubble size (with number in the same 

color) indicates the number of publications involving that perovskite in Web of Science 

search while the y-axis indicates the average efficiencies, which is computed from our 

database (we could not do that from Web of Science data). However, as we mentioned above, 

our database contains sufficiently large number of points; hence, the averages computed 

from our data should represent the entire literature reasonable well. 

 

As Cl- addition to the most common MAPbI3 perovskite reported to improve 

performance[12], [34], [36], the average efficiencies obtained with this perovskite seems to 

be also slightly higher than MAPbI3. On the other hand, the study of Stone et al.[38] should 

also be considered which reported that Cl addition only enhanced morphology of the 

MAPbI3 perovskite but did not take part in the structure; this case is also possible due to 

similar average efficiencies and trends of these two perovskites. Also, Figure 4.4 seems to 
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verify the claims that FA based and mixed cation perovskite solar cells are generally more 

efficient than MAPbI3 and MAPbI3-xClx. Although, our database also contains data points 

for mixed cation in 2014 with average efficiency of 10.2%, we did not plot it in Figure 4.4 

because we had four data points (<five data points) for this year.  

 

 

Figure 4.4. Comparison of number of papers published (ball size) and average 

efficiencies (y-axis) obtained with various perovskites through years. 

 

The highest average efficiencies in Figure 4.4 belongs to mixed cation cells, which are 

made of perovskites with the combinations of two or three different cations. Hence, the 

performances of individual combinations were also analyzed separately so that the best 

combinations could be identified. 

 

The cells with the mixed Cs-FA-MA cations showed the best average efficiency in 

Figure 4.5 due to the shifted tolerance factor to a cubic phase region and eliminated yellow 

phase impurities in perovskite films[50]. Incorporating Cs with FA cation was found to 

perform second best option due to its narrower band gap and a more stable perovskite phase 

than FAPbI3 alone[51], [52]. The FA-MA cations have also a high average efficiency of 15% 

(even though it is not the highest); this combination was reported to increase the performance 

and prevent the phase instability of FAPbI3 alone[43].  Although the average performances 

of 2D-3D mixed perovskites (AVA-MA, PEA-MA) are slightly lower than other mixed 

cation perovskites, they are promising due to their high stability[53], [54]. 
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Figure 4.5. Comparison of average efficiencies of mixed cation perovskites. 

 

Although the average efficiencies presented in Figure 4.4 provide valuable information 

for the performance of perovskite material, inspection of the efficiency distribution in the 

entire range of 0% to maximum 23.3% may also provide some additional information 

(Figure 4.6). For the regular structure (Figure 4.6a), the data points for MAPbI3 and MAPbI3-

xClx almost normally distributed around the mean efficiency values by covering the entire 

range of literature. The efficiencies of FA based and mixed cation perovskite, on the other 

hand, distributed to narrower (and higher) ranges, and they negatively skewed indicating that 

the high efficiency cells with these perovskites are more probable.  

 

The pattern for inverted cell (Figure 4.6b) is quite similar to regular cell for MAPbI3 

and MAPbI3-xClx in both shape and the location of the average distribution. However, the 

number of mixed cation cells are small to have generalization (even though they show some 

pattern); the data for FA based cells were even smaller to show a distribution in the figure.  

 

Then we analyzed regular structure in more detail by separating data for mesoporous 

and planar structure (Figure 4.6c and Figure 4.6d). The average efficiency for MAPbI3 and 

MAPbI3-xClx are same in mesoporous cell structure whereas the average was slightly better 

for MAPbI3 in planar structure; the highest number of cells were obtained in 13.5-18.0 % 

efficiency range in planar cells while this range was 9.0-13.5% in mesoporous cells.  Shi et 

al. reported that MAPbI3 gave higher performance in mesoporous cells while MAPbI3–xClx 

is better in planar structures[321]; however, the distribution curves in Figure 4.6c and Figure 

4.6d shows that both perovskites (especially MAPbI3) performed better in planar structure.  
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Figure 4.6. Distribution of efficiency in database obtained with different common 

perovskites in three cell structure (a) regular (n-i-p), (b) inverted (p-i-n), (c) regular (n-i-p) 

mesoporous, (d) regular (n-i-p) planar. 

 

4.1.2.2.  Effect of Perovskite Deposition. Perovskite deposition procedure (one or two step 

deposition) has an effect on performance because it affects the perovskite morphology. First 

and the most common method is one-step spin coating (64.7% of experimental data points 

in our database were obtained with this method). However, two step procedure is employed 

because of the challenges in controlling the crystallization and obtaining homogenous 

perovskite films using one-step method. As Figure 4.7a shows, the average efficiency 

obtained with both procedures continuously increased with time; the two-step procedure 

indeed resulted in better power conversion efficiencies in early years (Figure 4.7a). On the 

other hand, one-step procedure has been improved much better in later years as it is clearly 

observable from Figure 4.7a because of the efforts involving the more effective use of 

solvent and anti-solvent in this approach. In Figure 4.7b, the trends in various version of spin 

coating methods for perovskite deposition were also given. Similar to Figure 4.7a, one-step 
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deposition methods (spin and spin 2-3) were seemed to result higher efficiencies in recent 

years.  

 

  

Figure 4.7. Comparison of different perovskite deposition methods (a) change of 

average efficiencies with one-step (1S) and two-step(2S) procedures through years (b) 

variation of spin coating methods (spin-spin and spin-dip show sequences in 2S; spin2-3: 

2-3 times spin in 1S)  

 

The distribution of the data points among various efficiency levels for different cell 

structure verifies this argument (Figure 4.8). In regular structure (Figure 4.8a), the one-step 

method has been implemented more often especially at high efficiency cells while the two-

step method has been also used significantly; however, one-step method was 

overwhelmingly more preferred than two-step procedures in inverted cells (Figure 4.8b).  

The difference between two deposition methods becomes more obvious if the regular cell 

data are divided into mesoporous and planar structures (Figure 4.8c and Figure 4.8d). The 

one-step procedure has been clearly more preferred for the planar cells while both methods 

seems to be used almost equally in mesoporous structure; this may be due to the belief that 

two-step procedure aids the perovskite penetrate to the pores of mesoporous structure. 

However, one-step procedure seems to result in higher average efficiencies in both types of 

regular cell.  
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Figure 4.8. Distribution of data in database for one and two step deposition procedure 

for various cell structures (a) regular (n-i-p), (b) inverted (p-i-n), (c) regular (n-i-p) 

mesoporous, (d) regular (n-i-p) planar. 

 

The effects of solvents and anti-solvents were also analyzed in detail since various 

sources in the literature have been discussed the importance of this issue for the better control 

of crystallization. Figure 4.9a shows the frequency of the solvents and average efficiencies 

obtained (in both one-step and two-step procedures). DMF is the most common solvent used 

in both method (although it gives the fourth highest average efficiency); DMSO or DMSO 

addition to other solvents also improved the efficiency. For example, DMF+DMSO mixture 

seems to be the most effective solvent; this was attributed to the fact that DMSO coordinates 

PbI2 with covalent bonds and forms PbI2-DMSO complex for MAPbI3 coating; then, by the 

interaction of this complex with MAI, a flat and homogenous films occur by an 

intramolecular exchange and retarded crystallization of PbI2 in DMF[322]. Besides the 

controlled crystallization of the perovskite by DMF+DMSO, the surface coverage better than 

using DMSO alone was also provided. The role of DMSO was found to retard crystallization 

whereas DMF was found to improve surface coverage by increasing the surface tension of 

the solution and decreasing the polarity[323]. When employing GBL as the solvent, a rapid 
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crystallization of perovskite was observed; this resulted inhomogeneous surface structure and 

poor coverage of perovskite. However, when GBL solvent was used with DMSO, an intermediate 

phase occurred (MAI–PbI2–DMSO) and the crystallization was slowed down. As a result, a 

homogenous flat surface of perovskite was formed[15].  

 

The distribution of data among the efficiency levels is also given in Figure 4.9b; all the 

solvents (except GBL) exhibited almost normal like distribution around their own means 

(DMSO, DMF+DMSO and DMSO+GBL showed higher frequencies at high efficiencies 

verifying their superiority as discussed above). We also tried to distinct the situations in one and 

two-step procedure, but we could not; the most common solvent (DMF) resulted almost the 

same average in both procedure, and there were not sufficient number of data to compare 

the others. 

 

  

Figure 4.9. Comparison of efficiencies resulted by use of different solvents (a) 

average efficiencies of solvents (b) distribution of data among efficiency ranges. 

 

The average efficiencies obtained with three most commonly used anti-solvent were 

compared with the results obtained without any in Figure 4.10a. The data of diethyl ether in 

2015 and chlorobenzene in 2014 were not included because the data points were less than 

five. Diethyl ether and chlorobenzene have the highest positive effect on average efficiency 

as reported by various investigators while the average efficiency obtained with toluene was 

comparable lower. As Figure 4.10b shows, the data for all anti-solvents are well distributed 

their own means. 
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Figure 4.10. Comparison of the performance of various anti-solvents used (a) 

average efficiencies obtained with each anti-solvent (b) distribution of data among 

efficiency ranges. 

 

The conditions of thermal annealing of perovskite layer and consequently film 

formation kinetics may vary depending on the laboratory, in which the samples are prepared. 

This was also apparent from the fact that the analysis performed for thermal treatment was 

less conclusive than the other factors. Therefore, we will just summarize some major results 

that we found together with some experimental results reported in the literature. 

 

We analyzed the effects of annealing temperature for all three cell types 

(mesoporous/planar regular cells, inverted cells) by fixing the perovskite to MAPbI3 and 

coating method to one-step; this way we obtained sufficiently high number of data points 

(31.2% of all data) to see the temperature effect. The average efficiencies obtained at 100 oC 

seems to be higher than those at lower and higher temperatures. The 100 oC was also reported 

as the optimum by Chen et al.[81] investigated the annealing temperature (80-140 oC) in 

MAPbI3 based inverted cells for five minutes and revealed that annealing perovskite at 100 

oC extend the exciton lifetime and performance. Then, we analyzed the effect of annealing 

time by fixing the temperature at 100 oC for MAPbI3 cells (Figure 4.11). The most frequently 

employed period for all three cell structure is 10 minutes. The efficiency increases with 

increasing annealing time in regular planar cells while it seems to be almost constant in 

inverted cells; no specific trend could be observed in regular mesoporous cells.  
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Figure 4.11. Average efficiencies of MAPbI3 based cells (coated in one-step) for 

different thermal annealing conditions (a,b) mesoporous, (c,d) planar, (e,d) inverted cells.   

 

We also analyzed the database to test the generalizability of these reports and found 

that the cells annealed in glovebox produced higher average efficiencies for regular cells 

while the ambient conditions seem to be better for inverted cells. For example, for 

mesoporous MAPbI3 cells, the average efficiency for the cells annealed in glovebox (64 

cases) is 10.7 % while this value is 7.2 % for the cells annealed in the air (24 cases). The 

cells annealed in dry air conditions also show higher efficiencies but their frequency in the 
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database are quite small for generalization compared to the cases with ambient air or 

glovebox conditions.  

 

Then we tried to analyze the possible advantages or disadvantages of multi-step (MS) 

thermal annealing procedure, which is a common modification of annealing process to 

deposit more uniform and well crystallized perovskite films[324], [325]. The average 

efficiencies of the cells annealed in multi-steps were indeed higher than one-step annealed 

cell for MAPbl3; the average PCEs of planar regular cells were 16.8% and 12.6% if they 

were annealed in multi and single steps respectively. These values were 13.3% for multi-

step and 10.9% for single step in mesoporous regular cells, and 13.8% and 12.2% 

respectively for the inverted cells.  

 

Lastly, we compare the high temperature-short time annealed cells with conventional 

annealing (100 oC); we found that high temperature-short time annealing indeed produced 

cells with higher efficiencies (Figure 4.12).  

 

Figure 4.12. Efficiencies values of cells annealed at high temperatures for short time; 

data obtained from four papers. 

 

4.1.2.3.  Effect of Electron Transfer Layer. Investigating the ETL in regular cells, 

mesoporous TiO2 was found to be the dominant ETL choice in literature (84.2% of regular 

mesoporous cells and 50.9% of entire regular cells) and it is more effective than most of the 

other materials (Figure 4.13a); the only alternative that leads higher average efficiency is 

still TiO2 doped by various metals or using various forms. The efficiencies for all alternative 
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presented are almost normally distributed around their own mean with (Figure 4.13b) while 

the distribution of mAl2O3 does not seems to be normal. 

 

The average performance of the most common compact layer material and distribution 

of efficiencies are given in Figure 4.13c and Figure 4.13d, respectively. Although TiO2 was 

also found to be the most commonly used material as compact layer (83.6% of data points in 

the database of regular cells), SnO2 seems to result in higher performances; the cells with 

ZnO and without any ETL also have performances comparable to TiO2.  

 

  

  

Figure 4.13. Comparison of ETL materials in regular (n-i-p) cells, (a) average 

efficiencies for mesoporous layer (b) distribution of data for mesoporous layer (c) average 

efficiencies for compact layer for both mesoporous and planar cells; (d) distribution of data 

for compact layer compact layer for both mesoporous and planar cells. 

 

The performance of ETL in inverted cells was investigated in Figure 4.14a, the 

performance of cells made of PCBM, C60 or both PCBM and C60 have been increased 

through years. The average performance of PCBM and C60 are quite close, and the 
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performance becomes higher when they are employed together. The available data for the 

other ETL materials were not sufficient to have a statistical analysis. As Figure 4.14b 

indicates, the PCBM data were normally distributed while C60 and PCBM+C60 seems to 

shift slightly to the right as their average was also high. 

 

  

Figure 4.14. Comparison of ETL materials in inverted (p-i-n) structure (a) average 

efficiencies, (b) distribution of data (PCBM+C60 shows that mixture of two materials was 

used). 

 

4.1.2.4.  Effect of Hole Transfer Layer. The performance analysis of HTL in regular cells is 

presented in Figure 4.15. Due to its suitable energy levels, high hole conductivity, high 

mobility and possibility of use without any post annealing process, the spiro-OMeTAD has 

been the most commonly used hole transport material in regular cells. Poly-3-

hexylthiophene (P3HT) is another common polymeric hole transport material used in regular 

cells. Even though P3HT based devices could not reach to the high efficiencies of spiro-

OMeTAD based devices in the literature, they are still investigated as cheaper and 

convenient alternative. Poly-triarylamine (PTAA) is another polymeric HTL resulting high 

efficiencies. PTAA was found to be superior to other polymeric HTLs and quite compatible 

with spiro-OMeTAD[135]; this is also evident from Figure 4.15a. 

 

Although inorganic HTL materials were initially studied for their high stability, their 

performances have been also improved through years. The time change of average efficiency 

of inorganic materials was compared with the performance of spiro-OMeTAD in Figure 

4.15a; the plot for inorganic materials is presented as line (not ball graphs) because the 

additional data were collected to compute the averages and these data were not added to the 
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database as explained in Section 3.1.2; hence the ball graph representation will not be 

meaningful. As Figure 4.15a shows, the curve for the inorganic HTLs follow almost the 

same trend with sprio-OMeTAD, and their performance seems to be catching up. The 

average efficiency obtained with CuSCN is found to be 8.7 % while this was 7.8% for CuI.  

Rajeswari et al.[326] also showed that the CuSCN has better performance than CuI in their 

review covering 2012-2016. Although, the average efficiencies are relatively low, the 

maximum PCEs in the database for CuSCN and CuI are 17.1 %[144] and 17.6%[143] 

respectively, and these performance levels are high enough to make these materials 

promising alternatives.    

 

There are less number of cases containing CuO and Cu2O, and some of these cases 

involved doping by various elements; hence, their performances cannot be generalized at 

this stage. However, there are works reporting high performance with these materials (or 

their derivatives); for example, 15.7 % efficiency was obtained with CuOxNy [327]. The cell 

with CuGaO2 as HTL, also resulted high efficiency (18.5%)[328]. Additionally, Cu2O was 

computationally found to be a more promising HTL than CuSCN and CuI[329]. Yu et al. 

also reported that the hole mobility of Cu2O was higher than CuSCN and CuI[330]. Finally, 

Rajeswari et al.[326] stated that CuOx has the highest performance among the inorganic 

HTLs in their previously mentioned review. 

 

 

Figure 4.15. Comparison of common HTLs for regular (n-i-p) cells (a) change of 

average efficiencies through years, (b) distribution of data (points/lines for inorganic HTL 

are just for average, not for frequency). 
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Finally, hole transport layer free cells have been also studied in recent years due to 

their simpler structure, improved stability and lower cost[145]; although their average 

performance is also low, they have been improved continuously as it is seen in Figure 4.15a. 

 

As presented in Figure 4.16, the use of all these additives improved the performance 

(especially cobalt complexes) of cells containing spiro-OMeTAD.  The cells that used 

FK209 dopant with the commonly used LiTFSI+TBP gave the highest average performance.  

 

 

Figure 4.16. Comparison of common HTL additives in regular (n-i-p) cells (a) 

average efficiencies, (b) distribution of data (+ sign in entries shows that the mixture of 

these material was used). 

 

The average efficiencies and distribution of data points among the efficiency levels for 

HTL materials in inverted cells are given in Figure 4.17a and Figure 4.15b. PTAA appears 

to be an effective organic material as HTL gaining more interest in recent years; and it has 

the highest average in 2017 (the previous years and the distribution could not be presented 

because of insufficient number of data points in database). As shown in Figure 4.17a, the 

average efficiencies obtained over NiOx are considerably higher than PEDOT:PSS in recent 

years. 

 

The average efficiency of PEDOT:PSS and NiOx were also compared with other less 

common but still significant HTL (including plain and doped PTAA) materials in Figure 

4.17c. The plain and doped PTAA gave the highest average PCE; the average for the plain 

PTAA was computed to be higher even though the doping reported to improve device 
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efficiency[331], [332]. Doping of PEDOT:PSS leaded better performance than PEDOT:PSS 

evident from Figure 4.17b and Figure 4.17c.  

 

  

 

Figure 4.17. Comparison of HTLs for inverted (p-i-n) cells (a) change of average 

efficiencies of common HTLs through years, (b) distribution of data for common HTLs, 

(c) comparison of average efficiencies of HTLs including less common materials. 

 

4.1.2.5.  Effect of Back Contact. The averages and performance distribution of different back 

contacts were also compared. Au is the most commonly used back contact material in regular 

cells whereas it also gives higher average performance than Ag and carbon (Figure 4.18a). 

Au was also found to be the optimum back contact[170]. In inverted cells, Ag and Al were 

found to be used  in common and their average performances are compatible. (Figure 4.18c) 

 

4.1.2.6.  Evolution of Maximum Efficiency. The limits of maximum achievable power 

conversion efficiencies for perovskite cells have been determined using different models in 

the literature. Sha et al.[318] predicted the limit for MAPbI3 perovskite solar cells as 31.0% 

by using a detailed balance model. Later, Grånäs et al.[317] reported the theoretical 
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performance limit for metal halide perovskite cells as in the range of 25.0-27.0 % by using 

first-principles calculations and thermodynamic modelling. Considering that the certified 

efficiencies reported by NREL seems to obey S shaped logistic growth curve presented in 

Equation 3.1, we fitted the NREL data and tried to explain the pattern with the guide of 

results presented in Section 4.1. The upper limit of efficiency and assumed to be 27% (31 % 

could be also used), a and b are constant to be determined while t represent time as years.  

 

  

  

Figure 4.18. Comparison of back contact materials (a) change of average efficiencies 

of common back contact materials through years for regular cells,(c) for inverted cells; (b) 

distribution of data for common back contact materials for regular cells, (d) for inverted 

cells. 

 

As can be clearly seen in Figure 4.19a, the evolution of PCE efficiency for regular 

cells follow the classical logistic curve behavior, which is common in the development of 

new technologies; R2 of linearized model is 0.98, which is quite satisfactory for a dataset 

collected from various sources. In such curve, the initial slow progress, which may be 

attributed to the problems and difficulties of early years, is replaced by a fast growth phase 

together with accumulation of knowledge and experience as well as contributions of 
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increasing number of researchers and funds as the result of growing interest in the field. 

Then the progress slows down again as the technology is approaching to its theoretical limits 

because not only the increase of performance become more difficult, but also some 

researchers and fund migrate to new areas; this phase is generally known as maturity.  These 

patterns seem to be also true for organolead perovskite cells at the initial and the growth 

phase. If the current progress continues, the limits seems to be approached in the next few 

years. 

 

However, a closer inspection of experimental data also reveals some local S-curve 

patterns; the data from 2007-2015, and 2014-2017 seems to form two overlapping S-shape 

curves themselves as illustrated in Figure 4.19b, which is the same curve with narrower time 

frame. The data points in 2012-2014 seems to form the maturity of phase of first curve (blue) 

while they also represent the initial stage of the second curve (red). This behavior is also 

observed occasionally in the development of new technologies; S-shape development cycle 

repeats itself a few times as one is completed while the new one is started (due to some major 

changes in design, material or methods) until it reaches to the final limits. The growth phase 

of the first curve was in 2012-2014 and appears to be result of serious developments such as 

the use spiro-OMeTAD as HTL, two step perovskite deposition and modifications in 

perovskites. The second acceleration started in 2015, and the analysis in Section 3 and 4 

suggests that the major factors were the effective utilization of solvents and anti-solvents in 

this new trend.  

 

  

Figure 4.19.  Evolution of efficiency for regular (n-i-p) structure (a) Logistic growth 

model (blue points from Ye et al. [333]; red data from NREL[1] , (b) successive local s 

curve structures in data (use of different colors is just to highlight two curve. 
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4.1.3.  Predicting the Stabilized Efficiency by Random Forest Analysis  

 

First, the predictability of stabilized PCEs was checked by constructing and testing a 

model using random forest techniques. The stabilized efficiency data for regular and inverted 

cells were modelled using random forest regression to test the predictability of performance 

and use the results to deduce some conclusions if it is possible. The stabilized PCE was used 

as the performance variable while the cell properties given in Table 3.1 were used as input 

variables. The 5-fold cross validation procedure was implemented; the database was 

randomly divided into five parts; the four parts (80% of data) was used for training (model 

building) and remaining set (20% of data) set was used for testing. This was repeated five 

times to cover the entire dataset to see the strength of model in full data range.  

 

The plot of actual versus predicted stabilized power conversion efficiencies for 

training and testing of regular and inverted cells are presented in Figure 4.20. The average 

root mean square error (RMSE) for training and testing were 1.70 and 3.29 for regular, 1.51 

and 2.91 for the inverted cells respectively. The model fitness for training is sufficiently high 

for both regular and inverted cells to conclude that the data can be modelled, and the 

variation in efficiencies can be explained by the change of input variables in Table 1. 

However, the true indicator of the predictive strength of the model is its performance in 

testing in which the model is forced to predict the data unseen before. As Figure 4.20b and 

Figure 4.20d indicate, both models have some predictive power; nevertheless, the goodness 

of the fit is not sufficient for both of them to be used for the practical purposes like planning 

an experiment.  

 

When the models were built using the best efficiencies of entire database (including 

the cases in which the hysteresis was not considered), the RMSE became 2.46 (training) and 

3.56 (testing) for regular cells while they were 2.26 (training) and 3.38(testing) for inverted 

cells. The plots for these models are given in Figure 4.21. Although, the statistical fitness of 

models for stabilized efficiencies are slightly higher (indicating better reproducibility of 

data), the differences (especially in testing) are not significant indicating that the basic 

natures of the datasets are the same; this will be more apparent and informative in the 

association rule mining analysis in next section. 
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Figure 4.20. Actual versus predicted performances by random forest model for 

stabilized efficiencies (a) training and (b) testing for regular (n-i-p) cells; (c) training and 

(d) testing for inverted cells; training plots for predictions of data used in model, testing 

plots for predictions of data not seen before. 

 

 It can be concluded from above results that predicting the efficiency with a practical 

accuracy level was not possible at this stage. We decided to construct classification-based 

models to predict the possible range of efficiency as presented in the following sections; this 

way, a less accurate but more reliable models could be build.  
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Figure 4.21. Actual versus predicted performances by random forest model for entire 

dataset of regular cells (a) training (RMSE=2.46) (b) testing (RMSE=3.56); for entire 

dataset of inverted cells (c) training (RMSE=2.26) (d) testing (RMSE=3.48). 

 

4.1.4.  Analysis of Factor Effects on Power Conversion Efficiency by Association Rule 

Mining 

 

Association rule mining was implemented to determine the key variables (if there are 

any) leading to high efficiency in perovskite cells; the one-factor associations were studied 

to obtain simple easy to follow rules. The efficiency levels were divided into five equal 

classes as used in Section 4.1.2 for distributions, and the conditions leading to the highest 

efficiency class (named as class A to use the same notation in decision tree analysis in next 

section) were analyzed; since there are no physical reasons behind this choice, one can repeat 

the same analysis by changing the limits. However, increasing upper limit too much may 

decrease the number of data points in class A in a way that the results may not be generalized. 

The opposite of this, on the other hand, will make the distinction harder (this is more 

important for decision tree as will be apparent in the next section.  
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The results of one-factor associations are given in Table 4.1 for stabilized efficiencies 

datasets of regular and inverted cells. There are three parameters that are used to interpret 

and make decision in this technique: support, confidence and lift; all are explained in Table 

4.1 as well as through examples below.  

 

As seen from Table 4.1, the highest lift ratio (3.09) was obtained for the mixed cation 

perovskites for high efficiency class (A); this indicate that the use of mixed cations is the 

best way to obtain a cell that has higher than 18.0% stabilized efficiency. Support of this 

factor is (25/249) = 0.10 meaning that 25 out of total 249 data points have the efficiency 

values higher than 18.0% and they were produced using mixed cation perovskites (higher 

support means higher reliability to generalize the effect of that factor) The total number of 

data points in class A is 38. Then the confidence is (25/38) =0.658; in another word, 65.8 % 

of high efficiency regular cells are produced with mixed cation perovskites (higher 

confidence also means higher reliability). If the ratio of mixed cation perovskite cells in the 

total database was also about 65.8 %, we would conclude that the use mixed cation has no 

effect on efficiency (lift value would be one). However, this is not the case; the fraction of 

the cells containing mixed cation perovskites in the entire database is only 21.3 % 

(53/249=0.213) indicating that this material indeed tendency to give high efficiency cells. 

Then the lift value for mixed cation perovskites can be computed as 65.8/21.3=3.09, which 

can be also stated as the fraction of mixed cation perovskites containing cells in class A is 

3.09 times higher than that in the entire database.  

 

It is clear from the above example that the lift value should be minimum one, and 

higher values shows higher probability to obtain high class cells with that factor; 

consequently, only the factors having the lift values higher than one are presented in Table 

4.1, and only the ones that have significantly higher lifts are discussed. The support (fraction 

of A class cells made with that factor in total data) and confidence (fraction of cells made 

with that factor in A class) should be as high as possible for high reliability but they should 

be low enough to capture the less frequently used but effective items. Usually, minimum 

values for support and confidence are defined, and the list of factors are ranked by the lift. 

We set the minimum support to 0.02 (2% of 249 corresponding to five cells) and the 

confidence to 0.1 (10% of 38 corresponding four cells) for stabilized dataset of regular cells.  

We did not present the factors with lower support and confidence values than these values 
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(even if their lifts are high) because the reliability of the such result would be too low; the 

most of the factors with the lift value higher than one already have higher supports and 

confidence than those minimums.   

 

Table 4.1. Association Rule Mining for PCE > 18.0% for Regular (n-i-p) and 

Inverted (p-i-n) Cells. 

 

 

The lift value of 3.09 for mixed cation perovskites is a strong indicator for the positive 

effects of this factor; however, it is rather predictable from the discussion in Section 4.1.2. 

This is simply because there are many cases (the fraction of mixed cation cells in A class is 

66 percent). This may be also the case for DMF+DMSO in the fifth rank (and partially for 

chlorobenzene in the fourth rank) because both support and confidence values are also high. 

However; the results found for HTL additive of LiTFSI +TBP+FK209 and two or three time 

Antecedent  

We are interested in 

these performance 

criteria  

Consequent 

This feature was used in 

cells belonging to 

efficiency levels in A 

Support  

This is fraction 

of all data 

belonging to 

class in A  and 

has feature in B   

Confidence 

This fraction of 

data in A has 

feature in B   

Lift  

(This fraction 

of data in A has 

feature in B) 

/(This fraction 

of data in all 

data has feature 

in B) 

Data count  

Number of data 

points provides 

this condition 

PCE>18% 

For regular  

(n-i-p) cells 

(Support=0.02, 

Confidence= 0.1) 

 

Perovskite=mixed cation 0.10 0.66 3.09        25 

HTL additive=  

LiTFSI+TBP+FK209 

0.03 0.21 2.76                8 

Perovskite deposition 

method=spin 2-3 

0.05 0.34 2.37 13 

Anti-solvent 

treatment=chlorobenzene 

0.06 0.39 1.79 15 

Perovskite solution = 

DMF+DMSO 

0.07 0.47 1.55 18 

ETL= SnO2 0.02 0.13 1.17 5 

Perovskite deposition 
procedure= one-step 

0.12 0.82 1.14 31 

ETL-2= 0 0.07 0.45 1.10 17 

HTL= spiro-OMeTAD 0.13 0.87 1.07 33 

ETL= TiO2 0.11 0.74 1.03 28 

      

PCE>18% 

For inverted  

(p-i-n) cells 

(Support= 0.05 

Confidence=0.1) 

HTL= PTAA 0.05 0.44 3.65 4 

Perovskite=mixed cation 0.05 0.44 3.29 4 

ETL-2= BCP 0.08 0.67 1.70 6 

Anti-solvent treatment= no 0.07 0.56 1.08 5 

Perovskite deposition 
method=spin 

0.08 0.67 1.07 6 
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spinning in one-step procedure, both of which have high lift ratios, were less obvious in a 

first look. For example, there are 8 A class cases with LiTFSI+TBP+FK209 and they form 

21% of all A class cells; however, the total data set has 19 such cases corresponding to 8% 

(19/249), which is much smaller fraction showing the high potential of this factor for high 

efficiency.  Similarly, the appearance of SnO2 as a potential ETL is also important (lift value 

of 1.17 is low but still notable because the number of cases involving this material is also 

low).     

 

There are also factors with high support and confidence but low lift in the table. For 

example, 33 of 38 A class cases (confidence of 33/38=0.87, which is remarkably high) was 

produced with spiro-OMeTAD; however, this ratio is almost the same in the total data 

(0.87/1.07= 0.81) showing that high fraction of B and C class cells were also produced with 

spiro-OMeTAD. As the results, the support, confidence and lift values should be treated 

together to benefit from the techniques like association rule mining.  

 

We repeated the same analysis for the stabilized inverted cells and presented in Table 

4.1. We had to decrease the support for this analysis in a way that the minimum number of 

data points required for the rule to be reliable from five to four due to the relatively smaller 

size of this database. The use of PTAA as the HTL, mixed cation as the perovskite and BCP 

as ETL interlayer appeared as the most significant factors for high efficiencies with the lift 

values of 3.65, 3.29 and 1.70 with the relatively high confidence values.   

 

Most of the factors appeared in association rule mining analysis in Table 4.1 strengthen 

the analysis presented in Section 4.1.2 and they are in accordance with the suggestions 

recently made by Saliba et al.[334] for high efficiency cells. We also compared the 

association rule mining results for stabilized efficiencies set and entire dataset for both 

regular and inverted cells as well. The stabilized efficiencies are naturally lower than the 

best efficiencies of the same cells, and the entire database contains only the best efficiencies. 

Consequently, we compared the models for the best efficiencies of the cells in stabilized 

efficiencies dataset and the best efficiencies in the entire database. Similarities between the 

results of stabilized efficiencies subsets and the entire database for both structures were 

remarkable (Table 4.2 and Table 4.3). Although the numerical values of support, confidence 

and lift are different as expected (different sets with different sizes), the most influential 



78 

 

factors are similar in two sets This is the strongest evidence for the fact that two sets have 

similar characters and the review in Section 3 and models in Section 4 can complement each 

other reasonably well. 

 

Table 4.2. Association Rule Mining for PCE > 18% for Regular Cells; Comparing 

the Results for Best Efficiencies of Stabilized and Entire Dataset. 

 

 

 

 

 

 

 

 

Antecedent Consequent Support (%)  Confidence Lift  Data Count 

PCE>18% 

 

for stabilized 

efficiency 

database with best 

cell efficiencies 

(Support= 0.02, 

Confidence=0.1) 

ETL=TiO2-doped 0.03 0.11 4.08 7 

Perovskite=mixed cation 0.13 0.52 2.46 32 

Perovskite deposition method=spin 2-

3 

0.07 0.28 1.88 17 

Perovskite solution = DMF+DMSO 0.14 0.56 1.83 34 

HTL additive= Li+TBP+FK209 0.03 0.13 1.72 8 

Antisolvent treatment= diethyl ether 0.03 0.13 1.72 8 

Antisolvent treatment=chlorobenzene 0.09 0.36 1.63 22 

ETL= SnO2 0.04 0.18 1.60 11 

HTL= spiro-OMeTAD 0.22 0.92 1.13 56 

Perovskite deposition procedure = 

one-step 

0.20 0.80 1.12 49 

HTL additive= LiTFSI+TBP 0.19 0.77 1.04 47 

ETL-2= 0 0.10 0.41 1.01 25 

      

PCE>18% 

 

for entire database 

with best cell 

efficiencies 

(Support= 0.0035, 

Confidence=0.1) 

Perovskite=mixed cation 0.04 0.51 5.20 57 

ETL= SnO2 0.01 0.17 4.82 19 

ETL-2= mTiO2-doped 0.01 0.13 4.23 14 

Perovskite solution = DMF+DMSO 0.05 0.60 3.84 67 

Antisolvent treatment= diethyl ether 0.01 0.11 2.93 12 

Antisolvent treatment=chlorobenzene 0.03 0.32 2.82 36 

HTL additive= Li+TBP+FK209 0.02 0.20 2.73 22 

Perovskite deposition method =spin 2-

3 

0.02 0.30 2.10 33 

Perovskite deposition procedure = 

one-step 

0.06 0.81 1.37 90 

HTL= spiro-OMeTAD 0.07 0.89 1.25 99 

Perovskite deposition method =spin 0.05 0.62 1.11 69 

ETL-2= 0 0.03 0.35 1.07 39 

HTL additive= LiTFSI+TBP 0.05 0.68 1.07 76 
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Table 4.3. Association Rule Mining for PCE > 18% for Inverted Cells; Comparing 

the Results for Best Efficiencies of Stabilized and Entire Dataset. 

 

 

 

Antecedent Consequent Support (%)  Confidence Lift  Data Count 

PCE>18% 

for stabilized 

efficiency database 

with best cell 

efficiencies 

(Support= 0.05, 

Confidence=0.1) 

ETL= others 0.05 0.24 2.49 4 

Perovskite=mixed cation 0.07 0.29 2.18 5 

HTL= PTAA 0.05 0.24 1.93 4 

ETL= PCBM+C60 0.05 0.24 1.45 4 

Perovskite solution = 

DMSO+GBL 

0.05 0.24 1.45 4 

Antisolvent treatment=toluene 0.05 0.24 1.45 4 

Perovskite deposition 

method=spin 2-3 

0.09 0.41 1.27 7 

ETL interlayer= BCP 0.11 0.47 1.20 8 

Antisolvent treatment= 
chlorobenzene 

0.07 0.29 1.09 5 

HTL-2= 0 0.22 0.94 1.02 16 

 
     

PCE>18% 

 

for entire database 

with best cell 

efficiencies 

(Support= 0.008, 

Confidence=0.1) 

HTL= PTAA 0.01 0.19 5.72 7 

ETL=others 0.02 0.22 3.59 8 

Perovskite=mixed cation 0.02 0.22 3.47 8 

Perovskite solution = 

DMF+DMSO 

0.02 0.32 2.53 12 

HTL= others 0.01 0.14 1.83 5 

Perovskite deposition method 

=spin 2-3 

0.02 0.32 1.68 12 

ETL interlayer= BCP 0.03 0.41 1.65 15 

ETL= PCBM+C60 0.01 0.16 1.57 6 

Antisolvent treatment= 
chlorobenzene 

0.02 0.22 1.52 8 

Perovskite solution = 
DMSO+GBL 

0.01 0.19 1.52 7 

HTL= NiOx 0.01 0.19 1.52 7 

Antisolvent treatment= toluene 0.02 0.22 1.37 8 

Perovskite deposition 

procedure= one-step 

0.06 0.81 1.02 30 
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4.1.5.  Developing Heuristics for High Power Conversion Efficiency by Decision Tree 

Analysis  

 

The decision tree analysis, which is an effective classification method, was performed 

to identify the factors and conditions leading high efficiency cells and develop some 

heuristics if it is possible. The database was split into three classes as Class A (high 

efficiency), Class B (intermediate efficiency) and Class C (low efficiency). As explained in 

Section 3.1.5, the limits of the low class were set as 9.0% while the high efficiency class (A) 

was made of the cells with efficiencies higher than 18.0%; this way the results for high 

efficiency (A) class should be comparable with those in association rule mining analysis and 

reviews in Section 3.  

 

The database should be normally divided into approximately equal size classes in 

decision tree (not required in association rule mining), otherwise class imbalance problem 

may occur (even the small fraction of incorrectly classified data from large classes may spoil 

and reduce the accuracy rate of neighboring small classes). However, if three equal size 

classes were created from our database, the low and high performance classes would lose 

their meaning because the vast majority of the data points are in intermediate efficiencies. 

In such situation, one can create unequal size classes, and then implement random sampling 

method to avoid class imbalance problem involving the duplicating the data points of small 

classes to the level of large classes[335]; however, the present number of data points should 

be still large enough to make a reliable sampling. This is definitely the case for the entire 

dataset considering that the number of data points for A and C classes are 111 and 411 for 

the regular cells (885 data points in B class) respectively while they are 37 and 123 for the 

inverted cells (354 data points in B class). The number of data points in the stabilized 

efficiencies dataset for the regular cells were also sufficient for sampling; the data points for 

A, B and C classes are 38, 186 and 25, respectively. The number of data points in the 

stabilized efficiency dataset for inverted cells, however, was not even sufficient for sampling 

(only 9 data points for A class and 3 data points for C class); hence, we did not construct a 

decision tree for this subset.     

 

The decision tree constructed for the stabilized efficiencies of regular cells is presented 

in Figure 4.22 (minimum split number=10, maximum depth=5, complexity parameter=0). 
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The classification accuracy of the tree was found as 83% (tree classified 83% of the data 

points correctly) which is quite high. The accuracies for individual classes (as confusion 

matrix) are given in Table 4.4. 

 

The percentage at the bottom of each node in Figure 4.22 shows the fraction of total 

data obeying that rule while the fractions in the middle line, from left to right, represent the 

fractions of A, B and C in that node respectively; the letter at the top of the node simply 

denotes the class with the highest fraction. The percentage written inside the first node is 

100% because it is the root node and the fractions of classes are equal. As splitting the tree 

from root node, the percentages inside the nodes decreases and the class fractions increases 

in the sake of the dominant class for purification. To have a reliable rule or heuristics, the 

number of cases in a terminal node (bottom percent) should be sufficiently large and the 

purity of the node (i.e. fraction of one class) should be as high as possible. 

 

 

Figure 4.22. Decision tree model for stabilized regular (n-i-p) cells. Percentage at the 

bottom of nodes is fraction of total data obeying rules imposed up to that point; numbers in 

middle line are fraction of A, B and C in that node respectively; letter at the top of the node 

simply denotes class with the highest fraction.  
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One can increase the size (complexity of the tree) to have better classification and high 

purity nodes; however, the number of data points in these nodes would be too small for 

generalization. On the other hand, the tree can be reduced to have larger number of data 

points in the terminal nodes for better generalization; nevertheless, the purity of the nodes 

will be lower this time decreasing the reliability of the rules deduced. The tree presented in 

Figure 4.22 was optimized to have not only the highest classification accuracy but also to 

have reasonable generalizable results in the terminal nodes. 

 

Table 4.4. Confusion Matrix of Regular Stabilized Dataset. 

 

  Actual Class  

  Class A Class B Class C Precision  

Predicted Class 

Class A 173 26 0 87% 

Class B 13 134 31 75% 

Class C 0 26 154 86% 

Accuracy  93% 72% 83%  

Overall accuracy  83%   

 

The tree divided the data by perovskite first and sent the cells containing mixed cation 

perovskites to the left branch, which lead to the leftmost node in the second line; this node 

contains 31% of data (557x0.31=173 data points), and 80% of them (173x0.80=138 cases) 

are A class cells. Then, the tree purified this node further based on HTL additive, ETL-2 and 

precursor solution used during perovskite coating; the leftmost terminal nodes at the bottom 

contains 24% (557x0.24=134 data points) of the data with 93% purity A (remaining 7 

percent is B). In other words, 24% of the data are obeying the line of rules descried in the 

leftmost branch, and 93 % of them are A class cells. This is a highly reliable result that can 

be generalized as a heuristic, and the rules set by the tree for high efficiencies. 

 

If the perovskite is other than one of those mixed cation structures (69 % of the data), 

tree continues on right to make the further discrimination based on HTL type, and separates 

17% of cases (557x0.17= 95 cases). Then it further proceeds with the preparation procedure 
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reaching to the rightmost terminal node. The rules described by these two steps can be also 

used as a heuristic (to avoid low efficiency cells) considering that 10% of the data are 

obeying them with 95 % probability of obtaining C class cell.   

 

Similar analysis can be repeated by all branches, and the rules and the heuristics can 

be developed as long as the number of data points and the purity of one class are sufficiently 

high in terminal nodes. There are also nodes with large number of data points and high purity 

in B; they are, in principle, also eligible for generalization. However, there may not be any 

practical value of knowing the conditions for intermediate efficiencies considering that one 

usually need to know the rules or heuristics for high performance to follow or for low 

performance to avoid. The entry named as others in the tree represents the collection of cells 

that were built with rarely employed alternatives (like HTL material) having less than three 

instances each; these data were not eliminated because they also contained information for 

other variables. Similarly, the variables with (*) sign has small number of points in database 

(due to the random sampling). Consequently, the results related to these two types of factors 

in the tree cannot be generalized.  

 

The decision tree for the regular and inverted cells were also built using the entire 

database and presented in Figure 4.23 and Figure 4.24; their confusion matrices were given 

in Table 4.5 and Table 4.6, respectively. 
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Figure 4.23. Decision tree model of entire regular type cells (minimum split number=10, maximum depth=6, complexity parameter=0).
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Table 4.5. Confusion Matrix of Regular Entire Dataset. 

 
  Actual Class 

  Class A Class B Class C Precision  

Predicted Class 

Class A 791 106 17 87% 

Class B 97 672 383 58% 

Class C 0 107 504 82% 

Accuracy  89% 76% 56%  

Overall accuracy  73%   

 

 

 

Figure 4.24. Decision tree model of entire dataset of inverted cells(minimum split 

number=30, maximum depth=5, complexity parameter=0). 
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Table 4.6. Confusion Matrix of Inverted Entire Dataset. 

 

  Actual Class 

  Class A Class B Class C Precision  

Predicted 

Class 

Class A 318 56 3 84% 

Class B 23 169 39 73% 

Class C 14 129 314 69% 

Accuracy 90% 48% 88%  

Overall accuracy  75%    

 

4.2.  Analysis of Reproducibility 

 

The papers on the efficiency of PSCs usually report the best and/or average PCE from 

large number of cells manufactured in the same batch (sample) together with the distribution 

or standard deviation of PCEs for that batch. We computed pooled variances (Sp
2) for each 

material or deposition method using the variances of batches in all papers, in which that 

material or method was used (see Section 3.2.2). Then, we compared Sp
2 for alternative 

materials (or method) used for the same purpose as the measure of reproducibility of process 

when that alternative was utilized. Although the materials for all cell layers are changing in 

all samples, the difference in Sp2 of two data subsets containing two different alternatives 

for the same layer will reflect the difference between the effects of these two materials 

because all the other factors will be distributed in two subsets randomly, and their effects 

will be balanced due to the large number of random repeats. 

In overall, the inverted (p-i-n) cells were found to have lower pooled variance (0.78) 

than regular (n-i-p) structure (1.14). We did not observe a statistically significant difference 

in reproducibility of mesoporous and planar structures of regular (n-i-p) cells; they resulted 

in Sp
2 of 1.16 and 1.13, respectively. Sp2 values for individual factors are presented in Table 

4.7 for the regular (n-i-p) cells while F-test performed to check the significance of Sp2 

differences are given in Appendix. (Table B.1, Table B.2, Table B.3 and Table B.4); the 

results for inverted (p-i-n) cells are also shown in Table 4.9.  
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Table 4.7. Reproducibility Analysis of Regular Cells. 

 
Factor name  # of articles # of samples # of cells Sp

2 Sp 

Perovskite MAPbI3-xBrx 5 6 108 0.46x 0.68 

Cs based 6 8 129 0.48x 0.69 

mixed cation 52 87 2190 0.75 0.87 

MAPbI3 174 320 9112 1.00 1.00 

FA based 17 26 843 1.59 1.26 

MAPbI3-xClx 51 97 2918 1.86 1.36 

Deposition steps two-step planar 47 81 2421 0.83 0.91 

two-step mesoporous 66 116 3182 0.96 0.98 

one-step planar 111 204 5742 1.26y 1.12 

one-step mesoporous 82 146 4101 1.31y 1.14 

Deposition method spin-spin (two-step) 37 71 2173 0.54 0.73 

spin 2-3 (one-step) 61 108 3179 1.05z 1.03 

vasp (two-step) 6 8 244 1.10z 1.05 

spin-dip (two-step) 49 91 2170 1.11 z 1.05 

spin (one-step) 125 237 6499 1.39 1.18 

Precursor solution DMF+DMSO+others* 9 9 315 0.56k 0.75 

DMSO+GBL 13 24 471 0.59k 0.77 

DMF+DMSO 50 91 2538 0.60k 0.78 

DMSO 15 22 559 0.71 0.84 

GBL 9 19 875 0.96 0.98 

DMF 157 281 7231 1.40 1.18 

DMF+others** 22 34 1416 1.90 1.38 

Anti-solvent 

treatment 

diethyl ether 17 27 848 0.65 0.81 

toluene 14 24 693 0.76l 0.87 

chlorobenzene 51 100 2058 0.78l 0.88 

w/o anti-solvent 209 375 11214 1.30 1.14 

ETL SnO2 22 39 1283 0.55m 0.74 

w/o ETL 6 8 119 0.57m 0.75 

doped-TiO2 7 8 577 0.74 0.86 

ZnO 14 20 666 1.17n 1.08 

TiO2 237 421 11596 1.20n 1.10 

Second layer of 

ETL/ETL 

interlayer  

(ETL-2) 

PCBM 13 19 596 0.81p 0.90 

TiO2-ns 12 23 931 0.86p 0.92 

doped-mTiO2 12 23 655 0.90 p 0.95 

mTiO2 116 205 5137 1.01 1.01 

ETL-2=0 139 239 6776 1.11 1.06 

HTL P3HT 8 11 190 0.68 0.82 

PTAA 15 24 817 0.82 0.91 

w/o HTL 18 29 699 1.02 1.01 

spiro-MeOTAD 234 420 12396 1.20r 1.10 

inorganic HTL 11 16 384 1.25r 1.12 

HTL additive LiTFSI+TBP+FK102 9 17 291 0.27 0.52 

LiTFSI+TBP+FK209 29 45 1285 0.56 0.75 

LiTFSI+TBP 196 354 10345 1.18 1.09 

w/o additive 109 63 3001 1.41 1.19 
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As it is shown in Table 4.7, Cs based perovskites and MAPbI3-xBrx have the lowest 

pooled variance (difference between two is not statistically significant). These are followed 

by mixed cation perovskites, which can be also considered as reproducible if the most 

commonly studied MAPbI3 is taken as reference; FAPbI3 and MAPbI3-xClx resulted in higher 

pooled variances. Cs based perovskites are already known to be stable[210], which may be 

linked to reproducibility; similarly MAPbI3-xBrx and mixed cation perovskites are also 

reported to be reproducible[19],[336]. However, the high pooled variance for MAPbI3-xClx 

was somehow unexpected because the film morphology and reproducibility was reported to 

be improved with Cl- addition[176]. In a more detailed analysis, MAPbI3-xClx was found to 

have lower Sp
2 in planar structures (still higher than others) while the other perovskites 

performed better in mesoporous cells (Table 4.8).  

 

Table 4.8. Reproducibility Analysis of Perovskite Types with Different Cell 

Structures (Mesoporous/Planar) in Regular Cells. 

 
Factor name  # of articles  # of samples # of cells Sp

2 Sp F Fcritical 

 

 

Perovskite 

type 

mixed cation-

mesoporous 

28 49 987 0.64 0.80 

1.34 1.11 

mixed cation-planar 24 38 1203 0.85 0.92 

MAPbI3-mesoporous 92 165 4743 0.98x 0.99 
1.03 1.05 

MAPbI3-planar 88 155 4369 1.01x 1.01 

MAPbI3-xClx- 

mesoporous 

18 30 960 2.94 1.72 

2.22 1.10 

MAPbI3-xClx-planar 38 67 1958 1.32 1.15 

FA based-

mesoporous 

4 5 310 0.54 0.73 

4.11 1.18 

FA based-planar 13 21 533 2.21 1.49 

x The difference is not significant according to F-test.   

 

Table 4.7. Reproducibility Analysis of Regular Cells(cont.). 

 
Factor name  # of articles # of samples # of cells Sp

2 Sp 

Back contact carbon 24 41 817 0.85 0.92 

 

Au 198 365 10475 0.95 0.98 

 Ag 67 130 3843 1.69 1.30 

x, y, z, k, l, m, n, p, r   The differences are not significant according to F-test. 

*others: terephthalic acid (TPA), IPA, N-methyl-2-pyrrolidone (NMP), LiI,  poly-vinylpyrrolidone (PVP), thiourea, SnF2-pyrazine, 
Pb(SCN)2 

**others: H2O, HCl, HI, HP, IPA, NH4SCN, HBr, TBP,  tert-butyl substituted copper phthalocyanine (CuPc(tBu)4), polyacrylic acid 

(PAA), PDMS-urea, PEG, PEI, PVP, carbon nanotubes (CNT), 4-methylbenzenesulfonic acid (4-MSA), thiourea,  IPA/Cyclohexane 
(CYHEX) 
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Two-step perovskite deposition seems to produce slightly more reproducible cells in 

both planar and mesoporous structure probably due to controlled precipitation of 

perovskite[13] (however, the one-step procedure had lower pooled variance for inverted 

cells as given in Table 4.9). Among the techniques used in two step deposition, the spin-spin 

configuration was slightly better as it was also reported by Shen et al.[63]. Multiple spin 

coating (spin 2-3) technique has the lowest Sp2 among one-step deposition methods. The 

perovskite precursor solutions containing DMSO were more reproducible than the others, 

and this can be attributed to better morphology by slow crystallization of perovskite in the 

presence of DMSO[337],[338]; DMSO was also better for PCE in our previous work[308]. 

The use of all major anti-solvents decreased Sp2 indicating their positive effects on 

reproducibility; indeed, Xiao et al.[71] attributed high reproducibility obtained with 

chlorobenzene treatment to the improved morphology of the perovskite layer. 

 

Compact SnO2 was found to be the most reproducible ETL as it was first introduced 

by Dong et al.[339] for the same reason while the cell without compact layer were also 

reproducible; the doping of compact TiO2 enhances the reproducibility as well. PCBM 

insertion between the compact layer and perovskite was observed to increase reproducibility, 

which may be linked to enhancement of performance, charge transfer and lower hysteresis 

as reported by Chen et al.[340]. The use of porous TiO2 (nanostructured TiO2, doped and 

un-doped mesoporous TiO2) as the second ETL is also better than using none (i.e. planar 

structure) for higher reproducibility. This may be due to the difficult control of crystal size 

of perovskite on planar surface[338].   

 

P3HT and PTAA have smaller Sp2 (more reproducible) than spiro-OMeTAD, which 

is the most common HTL; HTL-free cells also resulted smaller Sp2. The HTL additives of 

LiTFSI+TBP+FK102 and LiTFSI+TBP+FK209, which enhanced PCE[308], also improved 

the reproducibility of cell that are manufactured with spiro-OMeTAD as it was also reported 

by Ye et al.[341].  

 

Finally, carbon back contact was found to result more reproducible cells (lower Sp2) 

as Hashmi et al.[342] reported while Sp2 of Au was also low. Ag, on the other hand, has the 

highest variation; however, Ag is more reproducible in inverted cell (Supplementary Table 

3).  
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Different than regular structure, although MAPbI3-xClx based perovskite solar cells are 

seemed to be less reproducible in regular structure, it was found to be the most reproducible 

perovskite type in inverted cells; as Cl addition was reported to improve the perovskite 

morphology[343].(Table 4.9) In inverted cells, using PCBM with C60 as ETL and 

employing an ETL interlayer also found to be in more reproducible for inverted cells. As 

investigating the reproducibility of the HTL in inverted structure, doped PEDOT:PSS 

resulted best reproducibility. Liu et al.[344] reported that doping of PEDOT:PSS with F4-

TCNQ increased performance, stability, reproducibility and reduced hysteresis with a better 

conductivity, favorable energy level alignment and reduced charge accumulation.  

 

To conclude, the pooled variance of PCE for the cells manufactured with some 

materials (or methods) are significantly lower than those for the other alternatives used for 

the same purpose; although these results may not be exactly valid for large scale applications, 

they can be used as initial indicators for the relative reproducibility of the process when these 

materials or methods are used.  

 

Table 4.9. Reproducibility Analysis of Inverted Cells. 

 
Factor name   # of articles  # of samples # of cells Sp

2 Sp 

Perovskite MAPbI3-xClx 44 79 2716 0.69x 0.83 

MAPbI3-xBrx 6 10 327 0.71x 0.84 

mixed cation 17 24 649 0.74x 0.86 

MAPbI3 90 161 4482 0.85 0.92 

Deposition steps one-step 122 240 7238 0.72 0.85 

two-step 29 51 1463 1.10 1.05 

Deposition method spin-spin (two-step) 17 34 908 0.51y 0.72 

spin 2-3 (one-step) 34 66 2133 0.55y 0.74 

Spin (one-step) 86 168 4846 0.75 0.87 

spin-dip (two-step) 6 7 281 2.96 1.72 

Precursor solution DMF+DMSO 33 48 1377 0.61z 0.78 

DMSO 7 13 382 0.63z 0.80 

DMSO+GBL 22 49 1335 0.68z 0.83 

DMF 70 130 3980 0.86 0.93 

DMF+others* 17 27 742 1.00 1.00 

Anti-solvent 

treatment 

toluene 29 57 1211 0.43 0.65 

chlorobenzene 30 62 1857 0.66 0.81 

w/o anti-solvent 83 159 5238 0.88 0.94 

diethylether 8 11 347 1.08 1.04 

ETL PCBM+C60 9 19 417 0.53 0.73 

C60 29 40 1148 0.67 0.82 
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Table 4.9. Reproducibility Analysis of Inverted Cells (cont.). 

 

Factor name   # of articles  # of  samples # of cells Sp
2 Sp 

ETL PCBM 108 213 6588 0.81 0.90 

Second layer of 

ETL/ETL interlayer 

(ETL-2) 

ZnO 6 12 395 0.39 0.62 

PEI 5 13 381 0.70 0.84 

BCP 39 66 1806 0.84 0.92 

ETL-2=0 71 135 4213 0.91 0.95 

HTL doped-PEDOT:PSS 7 10 356 0.44k 0.66 

w/o HTL 5 7 194 0.53k 0.73 

PEDOT:PSS 99 187 5487 0.68l 0.82 

NiOx 23 40 1067 0.69l 0.83 

PTAA 5 6 365 0.98 0.99 

inorganic HTL 

(including NiOx) 

37 62 1807 1.17 1.08 

HTL-2 present 144 270 8081 0.75 0.87 

absent 17 21 615 1.15 1.07 

Back contact Ag 88 183 5231 0.72 0.85 

Al 47 87 2916 0.80m 0.89 

Cu 6 8 392 0.88m 0.94 

Au 6 11 108 2.91 1.70 

x,y,z,k,l,m  The differences are not significant according to F-test. 

*others:tetraphenylphosphonium iodide (TPPI), 1,8-diiodooctane (DIO), V2Ox, H2O, HI, F4TCNQ, PbAc2+H2O, GO, NH4Cl, PVP, 

hypophosphorous acid (HPA), PCBM 

 

4.3.  Analysis of Hysteresis 

 

Hysteresis complicates the characterization of solar cells, and it is generally lower at 

slow scan rates (or long delay times). As the starting point, we computed the hysteresis index 

(HI) as defined in Equation 3.5 using the data obtained with the low scan rates (≤ 0.05 V/s) 

for low hysteresis (HI ≤ 0.01) and analyzed using random forest, association rule mining and 

decision tree techniques; we also restricted our analysis to the cells with PCE ≥ 10 % to 

capture the factors leading to low hysteresis with a reasonable cell performance.  As can be 

expected, every restriction (low scan rate, low HI and high PCE) decreases the number of 

available data and reduced the reliability of the analyses. Hence, we performed hysteresis 

analysis also for all combinations of HI (≤ 0.01 or 0.05), PCE (higher than 10% or all values) 

and scan rates (low or all values).  We observed that all these analyses suggest almost the 

same materials for low hysteresis with some minor changes in their ranking.  
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4.3.1.  Predicting the Hysteresis Index by Random Forest Analysis 

 

Similar to PCE analysis (Section 4.1.3.), the predictability of hysteresis index was 

checked using random forest technique. The data measured at the low scan rates (≤ 0.05 V/s) 

was modeled to check if data have some predictive power for low hysteresis (HI ≤ 0.01). 

The 5-fold cross validation procedure was again implemented. The overall actual versus 

predicted hysteresis index values for five folds were plotted for regular and inverted cells 

and presented in Figure 4.25. The average RMSE for training and testing for regular cells 

are 0.07 and 0.12 for regular structure; 0.01 and 0.02 for inverted structure, respectively. 

Although, these models were seemed to have some predictive power, they are not sufficient 

to estimate the exact hysteresis index of the cells. Hence, classification will be more reliable 

in this case.  

 

  

  

Figure 4.25. Actual versus predicted hysteresis index by random forest model for (a) 

training and (b) testing for regular (n-i-p) cells; (c) training and (d) testing for inverted 

cells. 
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4.3.2.  Analysis of Factors Effects on Hysteresis by Association Rule Mining 

 

We summarized the results of HI ≤ 0.01 and HI ≤ 0.05 for regular and inverted cells 

with PCE ≥ 10% tested under low scan conditions in Table 4.10, Table 4.11, Table 4.13 and 

Table 4.14, respectively. All the other analyses as well as the detailed version of the tables 

given in this section (without restriction of minimum data count) are given in Appendix B 

with their full details.  

 

As explained in Table 4.1 (in headings), the higher lift in association rule mining shows 

the higher positive impact of a factor. For example, in Table 4.10, the lift of cells having 

doped-mTiO2 (m: mesoporous) as second layer of ETL is 2.52 for HI ≤ 0.01. There are 17 

cells made of doped-mTiO2 in the dataset containing 110 cells; while 18 of 110 cells have 

HI ≤ 0.01, this number is seven out of 17 for the doped-mTiO2 cells. Then, the lift 

is (7/18)/(17/110) = 2.52 meaning that the fraction of doped-mTiO2 cells with HI ≤ 0.01 

is 2.52 times higher than the fraction of the doped-mTiO2 in the entire database; this is a 

strong indicator that doped-mTiO2 favors lower hysteresis. On the other hand, only five cells 

out of 46 prepared with undoped mTiO2 has HI ≤ 0.01 resulting the low lift 

of (5/18)/(46/110) = 0.66; consequently we can conclude that doping to mTiO2 

generally reduces hysteresis. 

 

Although the lift is a good indicator for the factor effect, it is not sufficient because 

there should be certain number of cells supporting the lift for reliable conclusion (see for the 

parameter support and confidence in Table 4.10). For example, if a material tested only twice 

and resulted PCE ≥ 10% and HI ≤ 0.01, its lift would be (2/18)/(2/110) = 6.11, which is 

quite high. However, there are only two cases meeting these conditions; hence, this result is 

not statistically reliable. On the other hand, new but promising materials will also initially 

appear like this. Hence, one should rely on the factors with high support for reliable 

generalization while carefully watching the factors with high lift for possible early warnings 

for new alternatives even though their support is low. Here, we restrict our discussion with 

the materials and methods having both high lifts and sufficiently high number of cells. We 

took minimum five cells for HI ≤ 0.05 to have an acceptable generalization and listed the 

same factors for HI ≤ 0.01 for continuation in Table 4.10 even if the number decreased; we 

also considered ZnO (ETL) and PTAA (HTL) because both have high lifts for HI≤ 0.05 
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(ZnO also has the highest HI ≤ 0.01), and both have four data points, which is close to our 

limit of five. We presented the number of data points (satisfying the conditions) for each 

factor in the last column of Table 4.10 and Table 4.11 because it is much easier to follow 

number of data points than support and confidence.  

 

The mixed cation perovskites were the only perovskites with high lift (1.25) as they 

also reported to cause less hysteresis in literature[19],[345]; Jacobsson et al.[346] also stated 

that changing cation and halide ratios affect hysteresis. Indeed, six out of eight mixed cation 

perovskite are Cs-FA-MA perovskites in Table 4.10 (10 out 18 for HI ≤ 0.05) while the 

effect of changing halide ratio was not observable in our work. Two-step perovskite 

deposition procedure also has better lift (1.58) than one step (0.68) probably due to easier 

control of crystallization[13],[63]; this is more apparent in the cells prepared with spin-spin 

configuration (lift is 2.35).  DMF seems to be the best solvent for low hysteresis; we could 

not see the positive effect of DMSO containing solvents even though it was suggested so by 

Seo et al.[347].  The anti-solvent treatment was also found to suppress hysteresis as 

suggested (by improving film morphology)[348],[349], and the trifluorotoluene (lift=2.35) 

was found to lead the lowest hysteresis in accordance with Paek et al.[348].  

 

Although Cai et al.[350] and Kim et al.[351] reported that doped compact TiO2 

lowered hysteresis, we did not observe such results (it may be due to the small number of 

cases). ZnO appeared with a high lift (although there are only four cells); a similar results 

were also reported for ZnO in literature with the explanation that it has longer charge carrier 

lifetime and higher electron conductivity than compact TiO2[352],[353]. We could not 

obtain any conclusive results for SnO2, which was the most reproducible ETL. For the 

second ETL, we found that doped mesoporous TiO2 reduced hysteresis significantly (highest 

lift for HI ≤ 0.05) as the doping was reported to passivate the electronic trap states or defects 

that causes hysteresis [354],[355].  

 

The best HTL materials for HI ≤ 0.01 were found to be various types of diphenylamine 

substituted carbazole fragments linked by a nonconjugated methylenebenzene unit studied 

by Magomedov et al.[356] which labeled as others in Table 4.10 with the lift of 1.39. The 

lift of spiro-OMeTAD, which is the most common material, is 0.76 indicating that it does 

not favor low hysteresis even though Salado et al. stated otherwise; they found it better than 
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PTAA[357]. However, although PTAA did not appear in a HI ≤ 0.01 analysis, it was found 

to be much better than spiro-OMeTAD in our analysis for HI ≤ 0.05 (with four cases). For 

HI ≤ 0.05, the positive effects of other HTLs were also conclusive (details are given in Table 

4.11). 

 

 

Additives to HTL also seem to have large impact on hysteresis. For example, 

LiTFSI+TBP was reported to increase hysteresis due to Li+ ion migration [358],[359] as we 

also found in our analysis (lift is 0.73); the cells without HTL additive were found to be 

Table 4.10. Association Rule Mining for HI≤ 0.01 and PCE ≥10% for Regular 

(n-i-p) Cells with Scan Rate≤ 0.05 V/s. 

 
Antecedent  Consequent Support  

 

Confidence 

 

Lift  
 

Data count  
 

HI ≤ 0.01 

PCE ≥10%  

Scan rate ≤ 

0.05 V/s 

 

 

 ETL=ZnO 0.04 0.22 4.07 4 

 ETL-2=doped-mTiO2  0.06 0.39 2.52 7 

 Deposition method=spin-spin  0.05 0.28 2.35 5 

 Anti-solvent 

treatment=trifluorotoluene  

0.05 0.28 2.35 5 

 HTL additive=no  0.03 0.17 1.83 3 

 Deposition procedure=two-step  0.06 0.39 1.58 7 

 HTL additive= 

LiTFSI+TBP+FK209  

0.06 0.39 1.53 7 

 HTL=others*  0.05 0.28 1.39 5 

 Precursor solution=DMF  0.07 0.44 1.29 8 

 Perovskite=mixed cation  0.07 0.44 1.25 8 

Back contact=Ag  0.05 0.33 1.22 6 

 Anti-solvent treatment=no  0.09 0.56 1.18 10 

 HTL=PTAA 0.01 0.06 1.02 1 

 Perovskite=MAPbI3  0.08 0.50 0.95 9 

 Deposition method=spin  0.07 0.44 0.94 8 

 Precursor solution=DMF+DMSO  0.06 0.39 0.86 7 

 Preparation=one-step  0.10 0.61 0.81 11 

 ETL=TiO2  0.10 0.61 0.77 11 

 HTL=spiro-OMeTAD  0.09 0.56 0.76 10 

Back contact=Au  0.08 0.50 0.75 9 

 HTL additive=LiTFSI+TBP  0.07 0.44 0.73 8 

 ETL-2=mTiO2  0.05 0.28 0.66 5 

 Deposition method=spin 2-3  0.03 0.17 0.63 3 

 ETL-2=0  0.04 0.22 0.58 4 

*others: Diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V946) 
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better (with lift of 1.83) even though there are only three such cases. However, adding FK209 

to LiTFSI+TBP decreased hysteresis significantly (lift is 1.53), and this may be attributed to 

the increasing conductivity of HTL by FK209 addition[341]. 

 

Finally, Ag back contact seems to decrease hysteresis slightly (lift is 1.22) while the 

effect of Au was found to be negative (0.75). No sufficient data were available for the carbon 

back contact, which was found to be the most reproducible materials in previous section. 

  

Table 4.11. Association Rule Mining for HI≤ 0.05 and PCE ≥10% for Regular (n-

i-p) Cells with Scan Rate≤ 0.05 V/s. 

 
Antecedent  Consequent Support   Confidence Lift  Data count  

HI ≤ 0.05 

PCE ≥10%  

Scan rate ≤ 

0.05 V/s 

 

 

 ETL-2=doped-mTiO2  0.13 0.34 2.21 14 

 Anti-solvent 

treatment=trifluorotoluene  

0.09 0.24 2.06 10 

 HTL=PTAA 0.04 0.08 1.79  4 

 ETL=ZnO 0.04 0.10 1.79  4 

 Deposition method=spin-spin  0.07 0.20 1.65  8 

 HTL=others* 0.11 0.29 1.46 12 

 HTL 

additive=LiTFSI+TBP+FK209  

0.14 0.37 1.44 15 

 HTL additive=no  0.05 0.12 1.34  5 

 Perovskite=mixed cation  0.16 0.44 1.24 18 

 Anti-solvent treatment=no  0.21 0.56 1.19 23 

 Deposition procedure=two-step  0.10 0.27 1.09 11 

 Precursor solution= DMF  0.14 0.37 1.06 15 

 Back contact= Au  0.25 0.68 1.03 28 

 ETL=TiO2  0.30 0.80 1.02 33 

 Deposition method=spin  0.17 0.46 0.98 19 

Deposition procedure=one-step  0.27 0.73 0.97 30 

 Deposition method=spin 2-3  0.09 0.24 0.93 10 

 Precursor solution=DMF+DMSO  0.15 0.41 0.91 17 

 Back contact=Ag  0.09 0.24 0.89 10 

 Perovskite=MAPbI3  0.17 0.46 0.88 19 

 HTL additive=LiTFSI+TBP  0.18 0.49 0.80 20 

 HTL=spiro-OMeTAD  0.21 0.56 0.77 23 

 ETL-2=0  0.11 0.29 0.77 12 

 ETL-2=mTiO2  0.12 0.32 0.76 13 

*others: poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole) (PPDT2FBT), 

a novel N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap materials (DPIO), Dimethoxydiphenylamine-substituted 

dispiro-oxepine derivative 2,2′,7,7′-tetrakis-(N,N′-di-4-methoxyphenylamine)dispiro-[fluorene-9,4′-dithieno[3,2-c:2′,3′-e]oxepine-
6′,9′′-fluorene] (DDOF), Diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V928, V931,V946, 

V957, V1039) 
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It is also possible to analyze multi factor associations to find the possible combinations 

of factors leading low hysteresis with a feasible PCE; such combinations may not only offer 

a good starting point to manufacture low hysteresis cells, but may also provide some 

evidences for the presence of interactions (factors enhancing the effects of each other) and 

confounding (causing insignificant factors to appear significant because they happen to be 

used together with significant factor).  Indeed, we found only one combination having nine 

factors with high lifts as given in Table 4.12. There are also some derivatives of these 

combinations obtained by removing one or two factors but we did not discuss them because 

they do not contain additional information.  

 

 

This combination represents five of 18 cells with HI ≤ 0.01; the common high lift 

elements are mixed cations perovskites (eight counts), doped mTiO2 (seven counts), 

trifluorotoluene (five counts), diphenylamine substitutes as HTL (five counts) and 

LiTFSI+TB+FK209 (seven counts) as given Table 4.10. The lift indicates the fraction of 

cells having this seven factors with low hysteresis is 3.04 times higher than their fraction in 

entire dataset. Such results should be inspected more carefully for the potential risks of 

interaction and confounding among the factors because the five cells are coming from the 

same source[356], and all of HTL materials and most of the other high lift materials seem to 

be used in these cells;  we cannot know whether all these factors are indeed effective or just 

happen to be used with effective materials for low hysteresis. However, these five factors 

are actually utilized in large number of cells in other papers as well, and they resulted in high 

Table 4.12. Multiple Factor Associations for Regular Cells with HI ≤ 0.01 and 

PCE ≥ 10%. 

 
Antecedent   Consequent Support  Confidence  Lift  Data count 

HI ≤ 0.01 

PCE ≥10%  

Scan rate≤ 

0.05 V/s 

 

ETL=TiO2,  

ETL-2= doped-mTiO2,  

Perovskite=mixed cation,  

Deposition procedure=one-step,  

Deposition method=spin,  

Anti-solvent treatment=trifluorotoluene, 

Precursor solution=DMF+DMSO,  

HTL=others*, 

HTL additive= LiTFSI+TBP+FK209,  

Back contact = Au 

0.05 0.56 3.40 5 

*others: Diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V946) 
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lifts for HI ≤ 0.05 (Table 4.11); this indicates that they may be also effective by themselves. 

Although the HTL materials (diphenylamine substitutes) seems to be too specific for 

generalization, there are some other new HTL alternatives in others group in Table 4.11 

indicating that search for a new and better HTL alternatives seems to work. Consequently, 

we can use this combination as a good starting points while we can still make generalization 

for the individual effects of involving factors.  

 

The result of hysteresis analysis for inverted cells were given in Table 4.13 and Table 

4.14. Different than the regular structure, multiple spin coating of perovskite (spin 2-3) 

which is a one-step deposition procedure has the highest lift in inverted structure and the 

anti-solvent treatment with toluene was found to be present in cells with less hysteresis. 

Toluene was also found to lead more reproducible cells in Section 4.2. Although we could 

not observe the positive effect of mixed cation perovskite due to less number of data points 

in inverted cells compared to regular structure, the lift of four cells with HI ≤ 0.01 and PCE 

≥ 10 % was found to be 1.72. (Table C.10). Using PCBM as ETL, and an ETL interlayer 

(such as BCP, PEI or LiF) were found to reduce hysteresis. Heo et al.[152] reported the 

advantages of using a PCBM as ETL; i) good electron transfer from perovskite to ETL due 

to high electron conductivity of PCBM,  ii) better charge injection/separation efficiency 

between MAPbI3 and iii) increased resistance to air and humidity due to hydrophobic nature 

of PCBM. The reduced hysteresis in the presence of PCBM was attributed to balanced 

electron and hole flux and reduced trap states. This property of PCBM was also confirmed 

by Xu et al.[360], even they employed PCBM directly in perovskite layer. However, 

although using BCP as an ETL interlayer was found to cause less hysteresis, Yoon et al.[103] 

observed more hysteresis in the presence of BCP due to unnecessary trap states causing 

hysteresis besides decreased performance.  NiOx was found to be a good HTL material for 

low hysteresis which was also suggested by Yin et al. [361].  Lastly, similar to 

reproducibility analysis, Ag back contact was found to lead the cells with less hysteresis.  
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Table 4.13. Association Rule Mining for HI ≤ 0.01 and PCE ≥ 10 % for Inverted (p-

i-n) Cells with Scan Rate≤ 0.05 V/s (PCE≥10% for All Cells). 

 

 

Table 4.14. Association Rule Mining for HI ≤ 0.05 for Inverted (p-i-n) Cells with 

Various Scan Rates (All cells except two have PCE ≥10%). 

 

 

 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.01 

PCE ≥10%  

Scan rate ≤ 

0.05 V/s 

 

 Deposition method=spin2-3 0.23 0.47 1.65 8 

Anti-solventtreatment=toluene 0.26 0.53 1.43 9 

HTL=NiOx 0.17 0.35 1.24 6 

Perovskite=MAPbI3 0.34 0.71 1.18 12 

ETL=PCBM 0.40 0.82 1.15 14 

Deposition procedure=one-step 0.46 0.94 1.14 16 

ETL-2=BCP 0.17 0.35 1.12 6 

BC=Ag 0.31 0.65 1.08 11 

Back contact=Al 0.17 0.35 0.95 6 

Precursor solution=DMF+DMSO 0.17 0.35 0.95 6 

HTL-2=0 0.37 0.76 0.92 13 

HTL=PEDOT:PSS 0.20 0.41 0.85 7 

ETL-2=0 0.20 0.41 0.80 7 

 Deposition method=spin 0.20 0.41 0.80 7 

Anti-solventtreatment=no 0.17 0.35 0.69 6 

*masp: meniscus asisted spin coating 

**DEA: diethanolamine 

***PN4N: polymeric interfacial modification layer to improve the cathode interface 
****DIO: 1,8-diiodooctane 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

PCE ≥10%  

Scan rate ≤ 

0.05 V/s 

 

 Anti-solvent treatment=toluene  0.14 0.48 1.95 13 

 ETL-2=BCP  0.10 0.33 1.72 9 

 Deposition method=spin 2-3  0.11 0.37 1.72 10 

 Scan rate=0-0.05 V/s 0.18 0.63 1.67 17 

 Precursor solution=DMSO+GBL  0.09 0.30 1.62 8 

 HTL-2=others (mNiOx-Cu, PEDOT:PSS, 

DEA***) 

0.08 0.26 1.61 7 

 ETL-2=others**** 0.08 0.26 1.42 7 

 ETL=PCBM  0.23 0.78 1.29 21 

 Back contact=Ag  0.23 0.78 1.17 21 

 HTL=NiOx  0.09 0.30 1.15 8 

 Deposition procedure=one-step  0.28 0.96 1.12 26 

 Scan rate=0.05-0.1 V/s 0.06 0.22 1.09 6 

 Perovskite=MAPbI3  0.19 0.67 1.02 18 

 Precursor solution=DMF+DMSO  0.11 0.37 1.01 10 

 HTL=PEDOT:PSS  0.14 0.48 1.00 13 
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Table 4.14. Association Rule Mining for HI ≤ 0.05 for Inverted (p-i-n) Cells with 

Various Scan Rates (All cells except two have PCE ≥10%) (cont.). 

 

 

For the inverted structure, we could detect only one combination with five of 17 cells 

(from three different publications) [362–364] (Table 4.15). All factors are high lift elements; 

NiOx (six counts), MAPbI3 (12 counts), one-step (16 counts), spin 2-3 (eight counts), toluene 

(nine counts), PCBM (14 counts) and Ag (11 counts). Except MAPbI3, these seven factors 

are actually utilized in large number of cells in other papers as well, and they resulted in high 

lifts for HI ≤ 0.05 (Table 4.14). Hence, this combination can also be used as a good starting 

point while we can still make generalization for the individual effects of involving factors. 

 

 

To summarize, the materials causing the low hysteresis could be identified in general 

using association rule mining. The number of data points was not as large as those for 

reproducibility; hence, only the most effective factors could be identified for low hysteresis 

in contrast to reproducibility analysis in which all the alternatives could be compared.  

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

PCE ≥10%  

Scan rate ≤ 

0.05 V/s 

 

 HTL-2=0  0.22 0.74 0.88 20 

 Deposition method=spin  0.16 0.56 0.88 15 

 Perovskite=MAPbI3-xClx  0.05 0.19 0.82 5 

 Back contact=Al  0.06 0.22 0.74 6 

 Anti-solvent treatment=no  0.08 0.26 0.69 7 

 ETL-2=0  0.12 0.41 0.65 11 

*masp: meniscus asisted spin coating 

**others:  2-aminoethanesulfonamide hydrochloride (ASCI), Ag 
***DEA: diethanolamine 

****others: polymeric interfacial modification layer to improve the cathode interface (PN4N), TiOx,  LiF,rhodamine 101/LiF, 

aluminium-doped ZnO (AZO)/SnOx, PEI) 

Table 4.15. Multiple factor associations for inverted (p-i-n) cells with HI ≤ 0.01 

and PCE ≥ 10%. 

 
Antecedent  Consequent Support  Confidence Lift  Data count  

HI ≤ 0.01 

PCE ≥10%  

Scan rate≤ 0.05 V/s 

HTL=NiOx,  

Perovskite=MAPbI3,  

Deposition procedure=one-step,  

Deposition method=spin 2-3,  

Anti-solvent treatment=toluene, 

ETL= PCBM, 

Back contact = Ag 

0.14 0.83 1.72 5  
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However, most of our findings are in agreement with the literature, and they may still 

contribute to the efforts to minimize the hysteresis in perovskite cells.  

 

4.3.3.  Developing Heuristics for Low Hysteresis by Decision Tree Analysis  

 

The decision tree classification was employed to develop heuristics for low hysteresis 

if it is possible. The HI limit for low hysteresis was again taken as maximum of 0.01 (Class 

A) and the cells which have HI>0.1 were considered as high hysteresis cells (Class C). We 

wanted to analyze the cells with PCE ≥10% as well as low hysteresis because we are also 

seeking the rules for the cells with considerable PCE. Unfortunately, we could not built a 

successful decision tree model for inverted structure for this case. For regular cells, the 

accuracy of the decision tree was 78% and the confusion matrix was given in Table 4.16. As 

we are seeking rules for low hysteresis (Class A), the precision is quite high (91%) as well 

as accuracy (80%). We also built decision tree without PCE restriction for regular cells. The 

details were given in Appendix C (Figure C.1. and Table C.11).  

 

Table 4.16. Confusion Matrix of Regular Cells Dataset. 

 

  Actual Class    

  Class A Class B Class C Precision  

Predicted 

Class 

Class A 43 4 0 91% 

Class B 9 37 7 70% 

Class C 2 13 46 75% 

 Accuracy  80% 69% 87%  

Overall accuracy  78%   

 

The decision tree model for regular (n-i-p) cells was presented in Figure 4.26. The root 

node was splitted by HTL type selection followed by perovskite deposition method.This rule 

leaded to Node 8 that contains only Class A cells. In addition to these rules, HTL additive 

selection was also founded to lead low hysteresis cells (Node 14). Another rule for low 
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hysteresis was based upon HTL type, ETL type and perovskite deposition method and this 

final node (Node 10) also contains completely Class A cells.  

 

 

Figure 4.26. Decision tree model for regular (n-i-p) cells in hysteresis analysis 

(minimum split number=5, maximum depth=4, complexity parameter=0). 

 

4.4.  Analysis of Long-term Stability 

 

 In this part of the communication, we present our analysis on the long-term stability 

of perovskite solar cells manufactured using different materials and procedures. We used 

number of days passed for a cell to reach to 80% of its initial PCE as the stability criterion. 

Firstly, we employed random forest regression to see whether the number of days which the 

PCE dropped to its 80% could be predicted. Then, we performed the association rule mining 

analysis for three periods leading three stability criteria: stable more than 15 days, stable 

more than 30 days and stable more than 60 days; these criterias were defined cumulatively 

(for example, more than 15 days class also covers 30 and 60 days data); the analyses for 15 

and 30 days were used to follow the trends in time and obtain some additional evidences to 

back up the analysis for 60 days, which was the longest practical period that we could 

analyze. We also constructed decision trees to deduce rules for the cells stable more than 60 

days with a considerable initial PCE (PCE≥10%).  
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4.4.1.  Predicting the Degradation by Random Forest Analysis 

 

The random forest regression was performed to predict the number of days when the 

PCE has dropped to its 80%. The RMSE of training and testing was found to be 15.6 and 

37.4 for regular cells; 6.1 and 11.4 for inverted cells, respectively. Although RMSEs of the 

models were quite high (especially for testing), we detected that the model has some 

predictive power similar to PCE and hysteresis analysis (Figure 4.27). Hence, we continued 

to our analysis by classifying our output into various ranges.  

 

  

  
Figure 4.27. Actual versus predicted hysteresis index by random forest model for (a) 

training and (b) testing for regular (n-i-p) cells; (c) training and (d) testing for inverted 

cells. 

 

4.4.2.  Analysis of Factor Effects on Stability by Association Rule Mining  

 

 We presented the lift versus time plots in Figure 4.28; the x-axis represents the days 

(as 15, 30 and 60) for stable operation whereas the y-axis shows the lift values for individual 

factors with the same definition used in hysteresis analysis above. The size and the adjacent 
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numbers shows the number of cases fulfilling the time requirement stated in x-axis. The 

numbers in parenthesis are for the cells with the initial PCE of more than 10% to show both 

efficient and stable cells. As Figure 4.28a shows, the most stable cells were found to be made 

of mixed cation perovskites (mostly with MA-FA cations, as the most common combination, 

together with few Cs-MA-FA, MA or FA cations and perovskites with 2D structures); the 

lift of 1.42 for the stability criterion for 15 days states that the probability of having stable 

mixed cation perovskite cell for more than 15 days has 1.42 times higher than the probability 

of finding a mixed cation cell in entire database. The lift of mixed cation perovskite cells 

increases with the increasing time period (1.58 and 1.73 for 30 and 60 days, respectively) as 

a clear indicator of stability. This result is also consistent with the literature[365]. Although 

the number of stable cells made of MAPbI3 is still higher than those made of mixed cation 

cells, its lift is lower because the number of unstable cells made of this perovskite is much 

larger. MAPbI3-xClx was stated to be thermally more stable than MAPbI3 because no phase 

transition occurred between 25-100 oC[208], and this hypothesis is supported by the 

enhanced crystallinity and morphology of MAPbI3-xClx[343]. However, we found that this 

perovskite is less stable than MAPbI3 even though the number of instances involving 

MAPbI3-xClx is rather small for a definitive conclusion (there are also reports stating that Cl- 

addition does not necessary result in a different composition than MAPbI3[38]).  

 

 The morphology and crystallinity of the perovskite film, which were highly 

dependent on the deposition procedures, plays an important role on both performance and 

stability[6],[215],[366],. One-step procedure appears to be slightly more stable in Figure 

4.28b (the difference diminishes at 60 days); however, a more significant difference occurs 

in the selection of specific deposition techniques as it is given in Figure 4.28c. Most of the 

stable cells, produced using one-step procedure, were made by multiple spinning (spin 2-3) 

of the perovskite solution. The solvent used during perovskite deposition were also stated to 

affect the stability through morphology[367]. Indeed, the DMF+DMSO mixture (themselves 

of together with some additives such as benzoquinone[368]) improves stability significantly 

(Figure 4.28d). The use of anti-solvent also seems to affect the stability of the cell (Figure 

4.28e). The chlorobenzene, especially with some additives (such as acetonitrile[73] or some 

p-type polymers[369]) and diethyl ether (only for 15 days data), seems to improve stability 

as it was reported and attributed to the improving the crystallization and morphology 
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[234],[370] while the toluene was found to decrease stability even though the numbers of 

cases are rather small to be conclusive. 

 

 Only the SnO2 appears as a more stable alternative to the commonly used TiO2 as the 

ETL compact layers for the 15 and 30 days data. (Figure 4.28f); Jiang et al.[371] also 

reported that SnO2 was much more stable than TiO2 under ambient conditions and 

illumination. Our analysis was not conclusive for ZnO due to the small number of cases. The 

effects of second ETL materials seems to be more significant, even though no significant 

difference observed between the cells without second ETL layer (planar) and with 

mesoporous TiO2 as the most definitive trend in Figure 4.28g. Doped-mTiO2, PCBM 

insertion and some other ETL interlayer materials (like [6,6]-phenyl-C61-butyric acid 

(PCBA)[372], passivated tin oxide (PTO)[373] and mesostructured ZnO[374]) seem to 

enhance the stability. 

 

 We found that HTL-free cells and cells with inorganic HTLs were more stable than 

spiro-OMeTAD even though their numbers in Figure 4.28h are low. HTL-free cells not only 

have simpler structures but they may also decrease the probability of negative effect of 

(organic) HTL materials on stability; for example, the most common HTL, spiro-OMeTAD, 

was found to play role in degradation of the cell at high temperatures[375]. However, all of 

three cells stable more than 60 days (four of five HTL-free stable more than 30 days) in 

Figure 4.28h also have carbon back contact confounding the effects of these two variables)  

 

 The most common HTL dopant, Li-TFSI, oxidizes HTL material in the presence of 

light and air which also causes degradation[376] whereas Lee et al.[377] attributed this 

behavior to the hygroscopic nature of Li-TFSI. A chemical interaction between oxidized 

HTL and TBP was also found to cause degradation[378]. However, LiTFSI+TBP+FK209 

combination (Figure 4.28i) resulted in more stable cells; apparently, FK209 dopant has 

strong positive effect on the stability. The cells without HTL additives were also found to be 

stable than those used LiTFSI+TBP, which is the most common additive. F4CQN addition 

also appears to increase stability as consistent with the in results reported literature[268].  
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Figure 4.28. Association rule analysis for regular (n-i-p) type cells for (a) perovskite 

type, (b) deposition procedure, (c) deposition method, (d) precursor solution, (e) anti-

solvent treatment, (f) ETL, (g) ETL-2, (h) HTL, (i) HTL additive, (j) back contact (k) 

stored humidity, (l) stored condition. 
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 The cells with carbon back contact appear to be more stable (Figure 4.28j). However, 

as mentioned above, three of four cells stable more than 60 days are also HTL-free (four out 

of five for 30 days); hence it is not clear whether this effect comes from the carbon back 

contact or HTL-free structure. The silver back contact based cells were detected to be less 

stable probably due to silver oxidation to silver iodide as a result of the reaction with iodine 

in perovskite[379].   

 

 The moisture, oxygen, temperature and light were reported to affect the device 

stability by various investigators. Different decomposition pathways might occur under 

different sets of ambient conditions[203],[204]. Unfortunately, the analysis of all cell storage 

conditions in full details was not possible. Hence, we removed the cells stored in extreme 

conditions (under illumination, at high temperatures or in special encapsulation); we also 

excluded the data if the storage conditions are not clearly explained. At the end, we could 

only analyze the effect of humidity and oxygen. Our analysis for the humidity effect was 

quite conclusive; as it is clearly seen from Figure 4.28k, storing the cells under low humidity 

conditions (RH of 0-30%) clearly enables longer cell lifetime (27% of the cells in this groups 

actually tested under zero humidity condition). However, we could not obtain any conclusive 

results for oxygen probably due to the small number of data obtained under zero oxygen 

level (Figure 4.28l) even though the presence of oxygen and light together were reported to 

be the main reason of cell degradation, and the oxygen degradation was reported to be the 

dominant factor in long term stability rather than moisture degradation[380]. 

 

We also performed multiple factor association for the same purpose discussed for 

hysteresis (to find good combinations as starting points and check possible interactions or 

confounding). The four combinations of factors (one with eight factors and three with seven 

factors) for high stability (with PCE≥10%) are originated from the various combinations of 

five articles[144], [368], [381–383] (usually three or four papers are common in all while 

one or two are changed from case to case) and given in Table 4.17. The one-step deposition, 

multiple spin (spin 2-3), chlorobenzene as anti-solvent and low humidity conditions as the 

test environment are the four common high lift elements. However, there are much larger 

number of cases involving all these factors (15 for one step, 11 for multiple spin, seven for 

chlorobenzene and 18 for low humidity) for 60 days data set and much more for 30 and 15 

day with high lift; consequently, we can use these combinations as good starting points for 
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high stability cells, and we can also assume that these factors are effective themselves as 

well.  

 

Table 4.17.  Multiple Factor Associations for the Regular (n-i-p) Cells Stable More 

Than 60 Days with PCE≥10%. 

 

 

 Different than the regular cells, long term stability of MAPbI3-xClx was found to be 

superior to MAPbI3 for inverted structures according to Figure 4.29. Although, this 

hypothesis is correct due to enhanced crystallinity and better morphology of MAPbI3-

xClx[343], it is advised to be cautious because MAPbI3-xClx contains less data points than 

others. Besides, the difference in stability between MAPbI3 and MAPbI3-xClx may support  

 

Antecedent Consequent Support  Confidence  Lift  Data count  

Stable more than 60 days 

 

PCE≥10% 

ETL=TiO2,  

Perovskite=MAPbI3,  
Deposition procedure=one-

step,  

Back contact=Au, 
O2 exists=yes,  

Stored condition= room-light,  

Stored humidity=0-30% RH 

0.04 0.60 4.74 6 

ETL=TiO2,  
Perovskite=MAPbI3,  

Deposition procedure=one-

step,  
HTL=spiro-OMeTAD,  

Back contact=Au, 

O2 exists=yes,  
Stored condition= room-light,  

Stored humidity=0-30% RH 

0.03 0.56 4.39 5 

ETL=TiO2,  
Deposition procedure=one-

step,  

Deposition method=spin 2-3, 
Anti-solvent 

treatment=chlorobenzene, 

HTL=spiro-OMeTAD,  
Back contact=Au, 

O2 exists=yes,  

Stored humidity=0-30% RH 

0.03 0.42 3.29 5 

ETL=TiO2,  

ETL-2=0, 

Deposition procedure=one-
step,  

HTL=spiro-OMeTAD,  

Back contact=Au, 

O2 exists=yes,  

Stored condition= room-light,  

Stored humidity=0-30% RH 

0.03 0.38 3.04 5 
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Figure 4.29. Association rule analysis for inverted (p-i-n) type cells for (a) perovskite type, 

(b) deposition procedure, (c) deposition method, (d) precursor solution, (e) anti-solvent 

treatment, (f) ETL, (g) ETL-2, (h) HTL, (i) back contact, (j) stored humidity, (k) stored 

condition. 
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that the presence of Cl ion in MAPbI3-xClx perovskite despite the opponent publications 

[384], [385]. 

 

We could not detect any strong result for material type selection for ETL and HTL in 

order to achieve long term stability. However, PCBM with C60 as ETL and PTAA as HTL 

seem to lead more stable cells. Besides, using BCP as an interlayer between ETL and back 

contact was found to enhance stability as well as performance[386].  

 

For the inverted type cells, the stability of the cells that employed Al was detected to 

be better than Ag despite to its unstable interfacial contact[387]. Regarding the data number 

of Al based cells, this result may not be strongly considered.   

 

The humidity has also a significant effect on performance. For inverted cells, non-

humid conditions were dominant for long term stability. Yang et al. [191] studied the 

dependence of relative humidity on degradation rate and found out that the perovskite layer 

degraded faster at higher humidity rates. The MAPbI3 perovskite transforms into MAI and 

halide in the presence of humidity[366].The lift value of the cells stored under inert 

conditions are quite high for inverted cells as expected. Bryant et al. also found that MAPbI3 

perovskite cells degrade in the presence of oxygen under dark in the presence of an external 

bias whereas no degradation occurs in the inert condition[380].  

 

 Multiple factor association was performed for inverted cells which were stable more 

than 60 days with initial PCE ≥ 10% (Table 4.18). Seven factors were detected from five of 

21 cells with high stability (from three different publications[363], [388], [389]). The 

common high lift elements are PCBM (eight counts), Ag (seven counts), no O2 condition 

(seven counts), stored humidity 0-30% RH (eight counts), room-light condition (eight 

counts). Although, the numbers of high lift factors aren’t much greater than five, it is 

questionable to indicate their effects on long term stability individually. However, using 

these factors together was found to be common for high stability.  
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  As the result, the stability trends for most of the materials and methods are quite 

clear; if the lift is high for a factor (favoring the stability) for 15 days, it usually increases 

with increasing time period to 30 and 60 days. Considering these trends and the large number 

of data supporting the analysis, it can be concluded that the results obtained may be quite 

reliable, and they may be used to improve long-term stability of the perovskite cells. 

 

4.4.3.  Developing Heuristics for High Stability by Decision Tree Analysis 

 

Decision tree classification was used to obtain set of rules leading high stability of the 

cells. For this purpose, the data was divided into three classes; cells stable more than 60 days 

(Class A), cells degraded within 7-60 days (Class B) and cells degraded within 6 days (Class 

C). We could not construct decision tree for inverted structure due to less data points of Class 

A.  Hence, we constructed decision tree for stable regular (n-i-p) cells with initial PCE≥10%. 

The accuracy of the decision tree for regular cells was found to be 78% and the precision of 

Class A was 83% (Table 4.19). However, we had slightly less data points for this case than 

stability analysis without PCE consideration. Hence, we also gave the decision trees and 

confusion matrices for all data points (Figure D.1 nad Table D.7), because one may want to 

look at the rules for high stability only. 

 

As presented in Figure 4.30, the first split was made upon the stored humidity of the 

cells. Then, the cells provide low humidity conditions again divided based on HTL additive 

type (Node 2). Although, the dopants for the most common HTL, LiTFSI and TBP, improve 

PCE, they found to lead degradation because of hygroscopic nature of LiTFSI[266]. 

Table 4.18. Multiple Factor Associations for Inverted (p-i-n) Cells Stable More 

Than 60 Days with PCE ≥ 10%. 

 
Antecedent Consequent Support Confidence Lift  Data count 

Inverted (p-i-n) 

cells stable 

more than 60 

days 

PCE ≥10%  

HTL-2=0,  

Perovskite=MAPbI3,  

ETL= PCBM, 

Back contact = Ag,  

O2 exists=no, 

Stored humidity=0-30% RH, 

Stored condition=room-light 

0.065 0.45 4.38 5  
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Table 4.19. Confusion Matrix of Regular Cells Dataset 

 

  Actual Class    

  Class A Class B Class C Precision  

Predicted 

Class 

Class A 66 10 4 83% 

Class B 7 56 18 69% 

Class C 0 9 48 84% 

 Accuracy  90% 13% 6%  

Overall accuracy  78%   

 

Hence, using HTL without dopants are preferred for high stability. Although the cells 

with F4TCNQ additive in Node 4 were reported in only one paper (not generalizable), 

F4TCNQ was reported to enhance stability significantly[268]. Beside stored humidity and 

HTL additive type, ETL type selection leaded a pure Class A node (Node 8); doping of TiO2 

and ZnO improves performance. Another heuristics is splitted based on stored humidity, 

perovskite type and HTL additive type (Node 14). 
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Figure 4.30. Decision tree model for regular (n-i-p) cells in stability analysis (minimum 

split number=5, maximum depth=6, complexity parameter=0). 
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5.  CONCLUSION 

 

 

The database (and the literature) has many non-comparable (even erroneous) data 

points due to the nonstandard testing procedures; this may even be true for stabilized 

efficiencies or maximum power point tracking of long-term stability, which have been 

reported in recent publications as the better measure of true performance due to the hysteresis 

consideration.  However, as the benefit of having a large database, even the simple statistical 

analysis showed the effects of different materials and methods in statistically more 

significant way while the analysis of data with machine learning tools provided more 

detailed heuristics and models for high performance.  

 

In PCE analysis, it was clearly seen that the average efficiencies obtained with MAPbI3 

and MAPbI3-xClx were nearly the same while FA based and mixed cation cells gave higher 

efficiency. Similarly, the data showed that, although the use of two-step deposition method 

had initially increased the average efficiency, the one-step procedure has been improved 

better in recent years with the improvements in solvent and anti-solvent treatments. 

Additionally, the potential of some rarely used materials (like Cs containing triple cation 

perovskites), inorganic HTLs and PTAA as HTL alternative for both regular and inverted 

cells were also emerged in simple statistical analysis. The association rule mining analysis 

of the stabilized efficiencies of regular cells revealed that the factors such as mixed cation 

perovskites, DMF+DMSO as solvent, chlorobenzene as anti-solvent and two or three times 

spinning as the one-step coating technique emerged as the effective ways of obtaining cells 

with PCE higher than 18.0%. Similarly, relatively less frequently used factors like 

LiTFSI+TBP+FK209 as HTL additive and SnO2 as ETL layer were also detected as the 

alternatives for the high efficiency cells. The use of PTAA as HTL, mixed cation perovskite 

and BCP as ETL interlayer also appeared as the significant factors for high efficiency in 

inverted cells. The significance of factors mentioned above were also verified by the decision 

tree analysis; for example, the statistically most significant route leading to the high 

efficiency regular cells are separated from the others with the selection of perovskite, some 

alternatives for HTL additives, ETL, and precursor solution. The maximum efficiencies 

reported by NREL was also analyzed, and it was found that the evolution of maximum 

efficiency obeyed S-shape logistic pattern.  
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 In reproducibility analysis, the samples were sufficiently large and differences 

among the pooled variances of factors are statistically significant in general; hence, the 

results should be quite reliable. Mixed cation perovskites, Cs based perovskits and MAPbI3-

xBrx perovskites were found to be more reproducible than other perovskites. Two step spin 

coating method (also multi-spin coating as one-step method) with use of DMSO containing 

precursor solutions and antisolvent treatment(diethyl ether, toluene, chlorobenzene) 

increased reproducibility.  In regular structure, employing SnO2 and doped TiO2 as ETL 

compact layer; PCBM, TiO2-nanostructure and doped mesoporous TiO2 as second layer of 

ETL; P3HT, PTAA as HTL ot HTL-free structure; HTL dopants especially FK209 and 

FK102 with LiTFSI+TBP and carbon back contact were found to favored high 

reproducibility. For inverted structure, employing PCBM and C60 together as ETL; using 

an ETL interlayer (ZnO, PEI, BCP); doping of PEDOT:PSS or HTL-free cells and Ag as 

back contact were found for high reproducibility.  

 

 In hysteresis analysis, although the dataset for HI ≤ 0.01 (due to the scan rate and 

PCE constraints) was relatively small creating difficulties in isolating individual factor 

effects for hysteresis, the analysis for HI ≤ 0.05 also provided some additional evidence to 

resolve those difficulties. Associating rule mining results justified that mixed cation 

perovskites; two-step spin coating of perovskite, multiple spin coating as one-step coating; 

BCP as ETL interlayer; PTAA as HTL; using LiTFSI+TBP+FK209 as HTL dopant also 

reduced hysteresis as they were found to increase reproducibility. Besides, employing 

trifluorotoluene as anti-solvent treatment, DMF as precursor solution, ZnO as compact ETL 

layer and cells without anti-solvent treatment were also found to be effective to suppress 

hysteresis in regular cells. In inverted structure, using toluene as anti-solvent (similar to 

reproducibility), PCBM as ETL, NiOx as HTL and Ag as back contact were found to 

suppress hysteresis. Decision tree analysis supported the findings given above for both 

regular and inverted structure.  

 

In the dataset for stability (even for the 60 days) was sufficiently large; additionally, 

plotting the lifts for 15, 30 and 60 days together made the trend more apparent and helped to 

make reliable generalizations. Association rule mining revelaed that mixed cation 

perovskites, multi-spin coating method as one-step deposition, DMF+DMSO as precursor 
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solution, LiTFSI+TBP+FK209 as HTL additive were found to have a positive effect on  

stability similar to reproducibility and hysteresis in regular structure. Besides, using 

chlorobenzene as anti-solvent, SnO2 as ETL compact layer, PCBM as second ETL, HTL-

free cells and carbon as back contact were common with reproducibility in regular structure. 

Employing inorganic HTLs and F4TCNQ as HTL dopant were found to improve stability. 

In inverted cells, mixed cation perovskites, two-step spin coating of perovskite, BCP 

interlayer, PTAA as HTL were found to be common effective elements for stability, 

reproducibility and hysteresis. Using PCBM and C60 together was also found to have a 

positive effect on high stability similar to high reproducility; whereas, using NiOx as HTL 

were found to be in common for high stability and low hysteresis. Apart from these results, 

employing DMF and some novel additives( such as N-cyclohexyl-2-pyrrolidone or GO) as 

perovskite precursor solution and not using an anti-solvent may also resulted high stability 

in inverted cells. Storing cells at low humidity, under O2 free and dark conditions were found 

to be significant for high stability as expected.   In addition to the factors mentioned above, 

using doped TiO2 or doped ZnO as compact layer also improved stability of regular cells 

according to decision tree analysis for high stability.  

 

 We summarized the most effective factors for high PCE, reproducibility, hysteresis 

and stability for regular and inverted cells in Table 5.1 and Table 5.2, respectively. The 

materials leading to high efficiency, high reproducibility, low hysteresis and long term 

stability were quite similar while high PCE, reproducibility and stability seem to have more 

common elements than they have with low hysteresis. In regular cells, the mixed cation 

perovskites, doped mesoporous TiO2 as second ETL layer and HTL additive of 

LiTFSI+TBP+FK209 have the positive effects on all; SnO2 compact layer, one-step multiple 

spin coating (spin 2-3), DMF+DMSO solvent and diethyl ether anti-solvent are also common 

for all except hysteresis. Spin-spin coating of perovskite was detected to be useful for 

reproducibility and low hysteresis.  For inverted cells, the results were slightly less 

conclusive. Using a second ETL layer (especially BCP) has the positive effects on all; the 

mixed cation perovskites, chlorobenzene as anti-solvent, PCBM+C60 as ETL are found to 

be in common for all except hysteresis. One-step multiple spin coating of perovskite is useful 

for all except stability. Although it is not presented in Table 5.1, the low humidity is also 

clearly required for high stability. 
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Table 5.1. Comparison of Materials and Methods Leading to High PCE, Reproducibility 

and Stability as well as Low Hysteresis for Regular Cells. 

 
Material/method Efficiency Reproducibility  Hysteresis* Stability** 

     

Perovskite Mixed cation (also 

FA based perovskites) 

MAPbI3-xBrx (also Cs 

based & mixed cation 

perovskites)  

Mixed cation  Mixed cation 

Perovskite 

Deposition 
One-step: spin 2-3 Two-step: spin-spin 

(also one-step: spin 2-

3) 

 

Two-step: spin-spin One-step: spin 2-3 

Solvent  DMF+DMSO 

(also DMSO & 

DMSO+GBL) 

DMF+DMSO+others+ 
(also DMSO+GBL, 

DMF+DMSO& 

DMSO)  

DMF DMF+DMSO+others++ 

(also DMF+DMSO)  

Anti-solvent Diethyl ether, 

chlorobenzene 

Diethyl ether (also 

toluene 

&chlorobenzene) 

Trifluorotoluene (or 

without anti-solvent 

treatment) 

Chlorobenzene 

+others+++ 

(also chlorobenzene 

 & diethyl ether) 

ETL SnO2 (also doped-

TiO2) 

SnO2 (also doped-

cTiO2, without ETL) 
ZnO SnO2 

ETL second 

layer/interlayer  

doped mTiO2 (also 

TiO2-ns) 

PCBM (also TiO2-ns 

& doped-mTiO2) 
doped-mTiO2 PCBM (also doped-

mTiO2 ) 

HTL PTAA  P3HT (also PTAA, 

HTL-free) 

PTAA (for HI 0.05 

only) (also 

diphenylamine 

substituted carbazole 

based HTLs ) 

Inorganic HTLS (and 

HTL-free) 

HTL addtive LiTFSI+TBP+FK209 
(also 

LiTFSI+TBP+FK102) 

LiTFSI+TBP+FK102 
(also 

LiTFSI+TBP+FK209) 

LiTFSI+TBP+FK209 F4TCNQ (also  

LiTFSI+TBP+FK209 & 

no HTL additive) 

Back contact Au (also Ag) Carbon Ag Carbon  
*for HI ≤ =0.01) withscan rates ≤ 0.05 V/s and PCE ≥ 10 %; **For cells stable more than 60 days 

+others include Pb(SCN)2, SnF2-pyrazine, thiourea, polyvinylpyrrolidone (PVP), LiI, N-Methyl-2-Pyrrolidone (NMP), IPA, terephthalic acid (TPA) 

++others include benzoquinone (BQ) for 60 days, 2-pyridylthiourea, N-Methyl-2-Pyrrolidone (NMP), Pb(SCN)2 for 30 days 

+++others include acetonitrile for 60 days, toluene, p‐type polymer with or without (w/wo) molecular fluorination (PF‐0, PF‐1), n‐type polymer w/wo molecular 

fluorination (N2200, F‐N2200) for 30 days 

 

Finally, this work revealed that this type of analysis may be beneficial to review and 

understand the literature better, see the overall picture and draw some valuable conclusions 

for the future works. This type of analyses will be likely more reliable in the future with the 

increasing number of data points and with a better standardization of procedures and 

parameters for cell preparation, characterization and reporting. However, it should be 

remembered that these methods were designed to draw generalizable conclusions from the 

large data sets, and in some sense, convert the experiences of large groups into 

comprehensible knowledge. Hence, by their nature, they may not capture the emerging 

promising alternatives due to their insufficient number of data points or lower initial 

(immature) performances against the more established competitors. Some additional 

analysis may be needed as we did for Cs based cells, individual combinations of mixed 

cations cells and some HTL materials in performance analysis.  
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Table 5.2. Comparison of Materials and Methods Leading to High PCE, Reproducibility 

and Stability as well as Low Hysteresis for Inverted Cells. 

 
Material/method Efficiency Reproducibility  Hysteresis* Stability** 

     

Perovskite Mixed cation (also 
FA based 

perovskites) 

MAPbI3-xBrx, 

MAPbI3-xClx & mixed 

cation perovskites) 

MAPbI3 Mixed cation (also 
MAPbI3-xClx) 

Perovskite Deposition One-step: spin2-3 One-step: spin 2-3 
(also two-step: spin-

spin) 

One-step: spin 2-3  Spin-spin  

Solvent  DMF+DMSO 

(also all DMSO 
containing solvents 

or DMSO, 

DMSO+GBL) 

 DMF+DMSO 

(also DMSO & 
DMSO+GBL) 

DMSO+GBL 

 (for HI ≤ 0.05) 

DMF+others 

Anti-solvent Diethyl ether, 

chlorobenzene 

Toluene (also 

chlorobenzene) 
toluene Without anti-solvent 

(also chlorobenzene) 

ETL PCBM+C60 PCBM+C60 PCBM PCBM+C60 

ETL second 

layer/interlayer 
BCP  ZnO (also PEI & BCP) BCP BCP 

HTL PTAA  doped-PEDOT:PSS 
(or HTL free) 

NiOx PTAA (also NiOx) 

HTL-2 Not applicable present -- -- 

Back contact Ag, Al Ag (also Al and Cu) -- Cu, Al 
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4085–4088 (2014) 

H101 Edri, E. et al., J. Phys. 

Chem. Lett. 4, 897–902 
(2013) 

PDI 

Kulbak, M. 
et al., J. 

Phys. 

Chem. Lett. 
6, 2452–

2456 

(2015) 

CBP Lv, S. et al., Chem. 
Commun. 50, 6931 

(2014) 

HTL1 Kwon, Y. S. et al., 
Energy Environ. Sci. 7, 

1454 (2014) 

PDPPDBTE 

Li, M. et 

al., 

ChemSusC
hem 9, 

2862–2869 

(2016) 

Chl-1 Lv, S. et al., Chem. 

Commun. 50, 6931 

(2014) 

HTL2 Wang, Z. et al., Org. 

Electron. physics, Mater. 

Appl. 33, 142–149 (2016) 

PDTSTTz 

Li, M. et 
al., 

ChemSusC

hem 9, 
2862–2869 

(2016) 

Chl-2 Wu, F. et al., Dye. 
Pigment. 143, 356–360 

(2017) 

JY5 Wang, Z. et al., Org. 
Electron. physics, Mater. 

Appl. 33, 142–149 (2016) 

PDTSTTz-4 

Bashir, A. 

et al., 

Nanoscale 
10, 2341–

2350 

(2018) 

Co3O4 Rakstys, K. et al., J. 

Am. Chem. Soc. 137, 

16172–16178 (2015) 

KR122 Ryu, S. et al., Energy 

Environ. Sci. 7, 2614–

2618 (2014) 

PF8-TAA 

Guo, J. J. et 

al., Synth. 
Met. 220, 

462–468 

(2016) 

CoPcNO2-

Oph 

Rakstys, K. et al., J. 

Am. Chem. Soc. 137, 
16172–16178 (2015) 

KR131 Zhu, Z. et al., Adv. Funct. 

Mater. 24, 7357–7365 
(2014) 

PFB 

Nagarjuna, 
P. et al., 

Electrochim

. Acta 151, 
21–26 

(2014) 

Copolymer 
P 

Rakstys, K. et al., J. 
Am. Chem. Soc. 137, 

16172–16178 (2015) 

KR133 Zhu, Z. et al., Adv. Funct. 
Mater. 24, 7357–7365 

(2014) 

PFO 

Nejand, B. 
A. et al., 

ChemSusC

hem 9, 
302–313 

(2016) 

Cu2O Rakstys, K. et al., J. 
Am. Chem. Soc. 137, 

16172–16178 (2015) 

KR145 Liu, X. et al., 
ChemSusChem 10, 968–

975 (2017) 

Ph-TPM 
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 Article 
name 

Instance Article name Instance Article name Instance 

Others6 Huangfu, 

M. et al., 
Appl. Surf. 

Sci. 357, 

2234–2240 
(2015) 

CuI Sun, M. et al., Appl. 

Surf. Sci. 416, 124–
132 (2017) 

Me-

BPZTPA 

Xiao, J. et al., RSC Adv. 

4, 32918 (2014) 

PNBA 

Sepalage, 

G. A. et al., 

Adv. Funct. 
Mater. 25, 

5650–5661 

(2015) 

CuI Krishnamoorthy, T. et 

al., J. Mater. Chem. A 

2, 6305–6309 (2014) 

KTM3 Ryu, S. et al., Energy 

Environ. Sci. 7, 2614–

2618 (2014) 

PIF8-TAA 

Lv, M. et 

al., ACS 

Appl. 
Mater. 

Interfaces 

7, 17482–
17488 

(2015) 

CuInS2 Chen, H. W. et al., Sci. 

Rep. 6, 34319 (2016) 

MEH-

PPV 

Cheng, M. et al., Chem. 

Mater. 27, 1808–1814 

(2015) 

POZ2 

Lv, M. et 

al., ACS 
Appl. 

Mater. 

Interfaces 
7, 17482–

17488 

(2015) 

CuInS2/Zn

S 

Sun, M. et al., Appl. 

Surf. Sci. 416, 124–
132 (2017) 

Me-

QTPA 

Cheng, M. et al., Chem. 

Mater. 27, 1808–1814 
(2015) 

POZ3 

Sfyri, G. et 

al., Appl. 

Surf. Sci. 
360, 767–

771 (2016) 

CuMePc Liu, Z. et al., Dalt. 

Trans. 44, 3967–3973 

(2015) 

mNiO Lee, J.-W. et al., 

ChemPhysChem 15, 

2595–2603 (2014) 

PTB-BO 

Cheng, N. 
et al., 

Electrochim

. Acta 246, 
990–996 

(2017) 

CuPc Liu, Z. et al., J. Mater. 
Chem. A 5, 6597–6605 

(2017) 

NiOx Lee, J.-W. et al., 
ChemPhysChem 15, 

2595–2603 (2014) 

PTB-DCB21 

Torabi, N. 
et al., Org. 

Electron. 

48, 211–
216 (2017) 

CuPC Nejand, B. A. et al., 
ACS Appl. Mater. 

Interfaces 7, 21807–

21818 (2015) 

NiOx Grisorio, R. et al. ACS 
Energy Lett. 2, 1029–

1034 (2017) 

PTZ1 

Guo, J. J. et 

al., Sol. 
Energy 155, 

121–129 

(2017) 

CuPcNO2-

Oph 

Choi, H. et al., Chem. 

- A Eur. J. 20, 10894–
10899 (2014) 

OMeTP

A-FA 

Grisorio, R. et al. ACS 

Energy Lett. 2, 1029–
1034 (2017) 

PTZ2 

Yuan, M. et 
al., 

Electrochim
. Acta 215, 

374–379 

(2016) 

CZTSe-QD Choi, H. et al., Chem. 
- A Eur. J. 20, 10894–

10899 (2014) 

OMeTP
A-TPA 

Cheng, H. et al., Journal 
of Energy Chemistry 

(2017), 
doi:10.1016/j.jechem.201

7.08.007 

PTZDPP-2 
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 Article 

name 
Instance Article name Instance Article name Instance 

Others6 Gong, G. et 

al., Org. 

Electron. 
physics, 

Mater. 

Appl. 35, 
171–175 

(2016) 

DEPT-SC Xiao, M. et al., J. Am. 

Chem. Soc. 139, 

3378–3386 (2017) 

P3DT Zong, X. et al., 

Tetrahedron 73, 3398–

3405 (2017) 

Q221 

Gong, G. et 
al., J. 

Mater. 

Chem. A 4, 
3661–3666 

(2016) 

DHPT-SC Xiao, M. et al., J. Am. 
Chem. Soc. 139, 

3378–3386 (2017) 

P3OT Zong, X. et al., 
Tetrahedron 73, 3398–

3405 (2017) 

Q222 

Bi, D. et 
al., J. Phys. 

Chem. Lett. 

4, 1532–
1536 

(2013) 

DEH Xiao, M. et al., J. Am. 
Chem. Soc. 139, 

3378–3386 (2017) 

P3DDT Jeon, N. J. et al., J. Am. 
Chem. Soc. 135, 19087–

19090 (2013) 

Py-C 

Gong, G. et 

al., J. 
Mater. 

Chem. A 4, 

3661–3666 
(2016) 

DOPT-SC Zhang, M.-D. et al., 

Dye. Pigment. 146, 
589–595 (2017) 

PARA1 Wang, H. et al., ACS 

Photonics 2, 849–855 
(2015) 

R01 

Liu, X. et 
al., 

ChemSusC

hem 10, 
968–975 

(2017) 

DPA-TPM Gaml, E. A. et al., Sol. 
Energy Mater. Sol. 

Cells 168, 8–13 (2017) 

PBDTT-
FTTE 

Luo, Q. et al., J. Mater. 
Chem. A 3, 15996–16004 

(2015) 

RGO-1 

Jeon, S. et 
al., Org. 

Electron. 

physics, 
Mater. 

Appl. 37, 

134–140 
(2016) 

DPIE Etgar, L. et al., J. 
Mater. Chem. A 2, 

11586–11590 (2014) 

PbS QDs Luo, Q. et al., J. Mater. 
Chem. A 3, 15996–16004 

(2015) 

RGO-2 

Jeon, S. et 

al., Org. 
Electron. 

physics, 

Mater. 
Appl. 37, 

134–140 

(2016) 

DPIO Edri, E. et al., J. Phys. 

Chem. Lett. 4, 897–
902 (2013) 

PCBM Luo, Q. et al., J. Mater. 

Chem. A 3, 15996–16004 
(2015) 

RGO-3 

Zheng, L. et 
al., Chem. 

Commun. 

50, 11196–
11199 

(2014) 

DR3TBDT
T 

Bi, H. and Zhang, Y., 
Mater. Lett. 161, 767–

769 (2015) 

PCBM Kang, M. S. et al., ACS 
Appl. Mater. Interfaces 7, 

22213–22217 (2015) 

SGT-409 

Zheng, L. et 

al., Chem. 

Commun. 
50, 11196–

11199 

(2014) 

DR3TBDT

T-PDMS 

Cai, B. et al., Energy 

Environ. Sci. 6, 1480 

(2013) 

PCBTD

PP 

Kang, M. S. et al., ACS 

Appl. Mater. Interfaces 7, 

22213–22217 (2015) 

SGT-410 
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 Article 

name 

Instance Article name Instance Article name Instance 

Others6 Paek, S. et 

al., Adv. 

Mater. 29, 
1606555 

(2017) 

FA-CN Heo, J. H. et al., Nat. 

Photonics 7, 486–491 

(2013) 

PCDTB

T 

Su, P. Y. et al., 

Electrochim. Acta 209, 

529–540 (2016) 

SP-01 

Christians, 

J. A. et al., 
Nat. Energy 

3, 68–74 

(2018) 

EH44 Pratyusha, T. et al., 

Mater. Today Proc. 4, 
6820–6826 (2017) 

PCDTB

T 

Kang, M. S. et al., ACS 

Appl. Mater. Interfaces 7, 
22213–22217 (2015) 

SGT-411 

Su, P. Y. et 

al., 
Electrochim

. Acta 209, 

529–540 
(2016) 

SP-01-Co Cheng, H. et al., 

Journal of Energy 
Chemistry (2017), 

doi:10.1016/j.jechem.2

017.08.007 

TPADPP

-2 

Magomedov, A. et al., 

Adv. Funct. Mater. 28, 
1704351 (2018) 

V911 

Su, P. Y. et 
al., 

Electrochim

. Acta 209, 
529–540 

(2016) 

SP-02 Edri, E. et al., J. Phys. 
Chem. Lett. 4, 897–

902 (2013) 

TPD Magomedov, A. et al., 
Adv. Funct. Mater. 28, 

1704351 (2018) 

V928 

Zhang, M.-

D. et al., 
Dye. 

Pigment. 

146, 589–
595 (2017) 

SYN1 Do, K. et al., Chem. 

Commun. 50, 10971–
10974 (2014) 

Triazine-

Ph-
OMeTP

A 

Magomedov, A. et al., 

Adv. Funct. Mater. 28, 
1704351 (2018) 

V931 

Krishna, A. 

et al., 
Chem. Sci. 

5, 2702–

2709 
(2014) 

T101 Do, K. et al., Chem. 

Commun. 50, 10971–
10974 (2014) 

Triazine-

Th-
OMeTP

A 

Magomedov, A. et al., 

Adv. Funct. Mater. 28, 
1704351 (2018) 

V946 

Krishna, A. 

et al., 
Chem. Sci. 

5, 2702–

2709 
(2014) 

T102 Cao, J. et al., J. Am. 

Chem. Soc. 137, 
10914–10917 (2015) 

TSHBC Magomedov, A. et al., 

Adv. Funct. Mater. 28, 
1704351 (2018) 

V957 

Krishna, A. 

et al., 

Chem. Sci. 
5, 2702–

2709 

(2014) 

T103 Liu, J. et al., Energy 

Environ. Sci. 7, 2963–

2967 (2014) 

TTF-1 Wu, F. et al., Dye. 

Pigment. 143, 356–360 

(2017) 

X51 

Zhu, Z. et 

al., Adv. 

Funct. 
Mater. 24, 

7357–7365 

(2014) 

TFB Magomedov, A. et al., 

Adv. Funct. Mater. 28, 

1704351 (2018) 

V1039 Zhang, F. et al., Nano 

Energy 41, 469–475 

(2017) 

Z25 

Huckaba, 
A. J. et al., 

Small 

Methods 1, 
1700250 

(2017) 

TiS2 Magomedov, A. et al., 
Adv. Funct. Mater. 28, 

1704351 (2018) 

V885 Zhang, F. et al., Nano 
Energy 41, 469–475 

(2017) 

Z26 
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Others6 Paek, S. et al., 

Adv. Mater. 

29, 1606555 
(2017) 

TPA-CN Magomedov, A. et al., 

Adv. Funct. Mater. 28, 

1704351 (2018) 

V908 Liu, Z. et al., Dalt. Trans. 

44, 3967–3973 (2015) 

ZrO2 

Liu, X. et al., 

ChemSusChe

m 10, 968–
975 (2017) 

TPA-

TPM 

Magomedov, A. et al., 

Adv. Funct. Mater. 28, 

1704351 (2018) 

V886 Guo, J. J. et al., Sol. 

Energy 155, 121–129 

(2017) 

ZnPcNO2-Oph 

Cheng, H. et 
al., Journal of 

Energy 

Chemistry 
(2017), 

doi:10.1016/j.

jechem.2017.
08.007 

TPADPP
-1 

    

 Article name Instance Article name Instance Article name Instance 

Others7 Badia, L. et 
al., APL 

Mater. 2, 

081507 

(2014) 

Ir Koh, T. M. et al., 
ChemSusChem 7, 

1909–1914 (2014) 

MY11 Wang, H. et al., ACS 
Photonics 2, 849–855 

(2015) 

MY11 

Chen, C. et 

al., ACS 

Energy 
Letters 2, 

497–503 

(2017) 

Cu(bpcm

) 

Liu, Q. et al., 

ChemSusChem 10, 

3098–3104 (2017) 

BPO   

 Article name Instance Article name Instance Article name Instance 

Others8 Zhang, H. et 

al., Chem. 

Commun. 50, 
5020 (2014) 

BuPyIm-

TFSI 

Gong, G. et al., Org. 

Electron. physics, 

Mater. Appl. 35, 171–
175 (2016) 

F4TCN

Q 

Lee, S. J. et al., J. Am. 

Chem. Soc. 138, 3974–

3977 (2016) 

lutidiene+TBP 

Li, M. et al, 
Adv. Energy 

Mater. 6, 

1601156 
(2016) 

CuI Mahmud, M. A. et al., 
Phys. Chem. Chem. 

Phys. 19, 21033–

21045 (2017) 

F4TCN
Q 

Nguyen, W. H. et al.,  J. 
Am. Chem. Soc. 136, 

10996–11001 (2014) 

spiro(TFSI)2+T
BP 

Li, M. et al, 

Adv. Energy 
Mater. 6, 

1601156 

(2016) 

CuSCN Cao, J. et al., J. Am. 

Chem. Soc. 137, 
10914–10917 (2015) 

graphene  Edri, E. et al., J. Phys. 

Chem. Lett. 5, 429–433 
(2014) 

TBP 

Gaml, E. A. 
et al., Sol. 

Energy 

Mater. Sol. 
Cells 168, 8–

13 (2017) 

DIO Noel, N. K. et al., 
Energy Environ. Sci. 

7, 3061–3068 (2014) 

H:TBP Habisreutinger, S. N. et 
al., Adv. Energy Mater. 

7, 1601079 (2017) 

TBP 

Guo, Y. et al., 
J. Mater. 

Chem. A 2, 

13827–13830 
(2014) 

D-TBP Guarnera, S. et al., J. 
Phys. Chem. Lett. 6, 

432–437 (2015) 

H-
TFSI:Et4

N-TFSI 

Huang, J. et al., RSC 
Adv. 6, 55720–55725 

(2016) 

TFSI+TBP 

Christians, J. 

A. et al., Nat. 
Energy 3, 68–

74 (2018) 

EH44-

ox:TBP 

Guarnera, S. et al., J. 

Phys. Chem. Lett. 6, 
432–437 (2015) 

H-

TFSI:Et4
N-

TFSI+Al

2O3 
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 Article 

name 

Instance Article name Instance Article name Instance 

Others9 Amini, M. 

et al., J. 
Mater. 

Chem. A 6, 

2632–2642 
(2018) 

P123-ib Hu, Q. et al., ACS 

Nano 8, 10161–10167 
(2014) 

Cs2CO3 Liu, J. et al., J. Mater. 

Chem. A 3, 11750–11755 
(2015) 

CdS 

Bera, A. et 

al., ACS 

Appl. 

Mater. 

Interfaces 
7, 12404–

12411 

(2015) 

Zn2SnO4 Hu, W. et al., J. Mater. 

Chem. A 5, 1434–1441 

(2017) 

α-Fe2O3 Liu, J. et al., J. Mater. 

Chem. A 3, 11750–11755 

(2015) 

ZnS 

Chang, S. et 

al., ACS 

Appl. 
Mater. 

Interfaces 

8, 8511–
8519 

(2016) 

IBF-Ep Hu, W. et al., J. Mater. 

Chem. A 5, 1434–1441 

(2017) 

In2S3 Shin, S. S. et al., J. Phys. 

Chem. Lett. 7, 1845–

1851 (2016) 

Zn2SnO4 

Chen, T.-P. 

et al., Adv. 
Energy 

Mater. 8, 

1701722 
(2018) 

2D titania Huang, J. et al., Sol. 

Energy 133, 331–338 
(2016) 

FPDI Song, J. et al., Sol. 

Energy Mater. Sol. Cells 
144, 623–630 (2016) 

ZnO-SnO2 

Duan, J. et 

al., Int. J. 
Energy Res. 

40, 806–

813 (2016) 

TiO2/ZnO/

TiO2 

Huang, Y. T. et al., 

Electrochim. Acta 236, 
131–139 (2017) 

Nb2O5 Song, S. et al., Nano 

Energy 28, 269–276 
(2016) 

PEIE 

Eze, V. O. 
et al., Org. 

Electron. 

physics, 
Mater. 

Appl. 46, 
253–262 

(2017) 

Wox Jiang, J. et al., J. 
Mater. Chem. A 5, 

9514–9522 (2017) 

ITIC Sun, C. et al., J. Alloys 
Compd. 722, 196–206 

(2017) 

BaSnO3 

Fernandes, 

S. L. et al., 
Mater. Lett. 

181, 103–

107 (2016) 

Nb2O5 Juarez-Perez, E. J. et 

al., J. Phys. Chem. 
Lett. 5, 680–685 

(2014) 

CdS Tong, G. et al., RSC Adv. 

7, 19457–19463 (2017) 

CdS 

Guerrero, 

A. et al., J. 

Phys. 
Chem. C 

120, 8023–

8032 
(2016) 

Nb2O5 Lee, W. et al., Org. 

Electron. 51, 404–409 

(2017) 

PEIE-

LiQ 

Wang, K. et al., J. Phys. 

Chem. Lett. 6, 755–759 

(2015) 

Wox 

Guo, Y. et 

al., ACS 

Appl. 
Energy 

Mater. 

acsaem.8b0
0094 

(2018). 

doi:10.1021
/acsaem.8b

00094 

IL Lee, Y. et al., J. Mater. 

Chem. A 5, 12729–

12734 (2017) 

TiO2-

SnO2 

Xie, X. et al., Org. 

Electron. 44, 120–125 

(2017) 

PFN  
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 Article 

name 

Instance Article name Instance Article name Instance 

Others9 Guo, Y. et 
al., ACS 

Appl. 

Energy 
Mater. 

acsaem.8b0

0094 
(2018). 

doi:10.1021

/acsaem.8b
00094 

IL/PCBM Li, D. et al., Chem. 
Sci. 8, 4587–4594 

(2017) 

PFN-
2TNDI  

Yin, X. et al., ACS Appl. 
Mater. Interfaces 8, 

29580–29587 (2016) 

TiZn2O4 

Ha, S.-J. et 

al., J. 
Mater. 

Chem. A 5, 

1972–1977 
(2017) 

PS Zheng, L. et al., ACS 

Appl. Mater. Interfaces 
9, 14129–14135 

(2017) 

PTEBS Yoon, H. et al., Energy 

Environ. Sci. 9, 2262–
2266 (2016) 

BCP 

Hou, Y. et 

al., Adv. 

Funct. 
Mater. 27, 

1700878 

(2017) 

TiO2-SnO2 Liu, D. et al., RSC 

Adv. 7, 8295–8302 

(2017) 

Cd2SnO4 Zhang, H. et al., J. Mater. 

Chem. A 4, 8724–8733 

(2016) 

PDI 

 Article 

name 

Instance Article name Instance Article name Instance 

Others10 Ye, J. et al., 

Sol. Energy 
136, 505–

514 (2016) 

acetonitrile Li, F. et al., Adv. 

Funct. Mater. 28, 
1706377 (2018) 

N2200 Li, F. et al., Adv. Funct. 

Mater. 28, 1706377 
(2018) 

PF1 

Han, F. et 

al., Appl. 

Surf. Sci. 
408, 34–37 

(2017) 

DMSO Li, F. et al., Adv. 

Funct. Mater. 28, 

1706377 (2018) 

PF0 Guo, J. J. et al., Sol. 

Energy 155, 121–129 

(2017) 

toluene 

Li, F. et al., 

Adv. Funct. 
Mater. 28, 

1706377 

(2018) 

F-N2200     

 Article 

name 

Instance Article name Instance Article name Instance 

Others11 Cheng, N. 
et al., J. 

Power 

Sources 
319, 111–

115 (2016) 

IPA Yu, Y. et al., ACS 
Appl. Mater. Interfaces 

9, 23624–23634 

(2017) 

n-hexane Zhang, M. et al., Sol. 
RRL 2, 1700213 (2018) 

methoxybenzen
e 

Wang, L.-
Y. et al., 

Nanoscale 

9, 17893–
17901 

(2017) 

di-
isopropyl 

ether 

Sidhik, S. et al., J. 
Phys. Chem. C 121, 

4239–4245 (2017) 

anhydro
us 

ethoxyet

hane 

  

 Article 

name 

Instance Article name Instance Article name Instance 

Others12 Cao, K. et 

al., Nano 

Energy 17, 
171–179 

(2015) 

infiltration-

dip 

Gao, L.-L. et al., J. 

Mater. Chem. A 5, 

1548–1557 (2017) 

spin-

MAK 

Nejand, B. A. et al., J. 

Phys. Chem. C 120, 

2520–2528 (2016) 

sprayroll 
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Others12 Chen, H. et al., 

Nano Energy 
15, 216–226 

(2015) 

electrod

epositio
n-dip 

Razza, S. et al., J. 

Power Sources 277, 
286–291 (2015) 

blade-

dip 

Kim, W. et al., 

Electrochim. Acta 245, 
734–741 (2017) 

dip-spin 

Raminafshar, 

C. et al., 

Electrochim. 

Acta 276, 261–

267 (2018) 

dripping Kavadiya, S. et al., 

Adv. Energy Mater. 7, 

1700210 (2017) 

spin-

electrosp

ray 

Bansode, U. et al., J. 

Phys. Chem. C 119, 

9177–9185 (2015) 

pulsed laser 

deposition 

Zhang, M. et 
al., Chem. 

Commun. 51, 

10038–10041 
(2015) 

blowdry Matteocci, F. et al., 
ACS Appl. Mater. 

Interfaces 7, 26176–

26183 (2015) 

blade-
dip 

Mathies, F. et al., ACS 
Appl. Energy Mater. 

acsaem.8b00222 (2018). 

doi:10.1021/acsaem.8b00
222 

printed 

Hwang, K. et 

al., Adv. 

Mater. 27, 
1241–1247 

(2015) 

slot-die Kosta, I. et al., 

Electrochim. Acta 246, 

1193–1199 (2017) 

electrode

position-

dip 

Zheng, J. et al.,  Sol. 

Energy Mater. Sol. Cells 

168, 165–171 (2017) 

blowdry 

He, M. et al., 
Nat. Commun. 

8, 16045 

(2017) 

meniscu
s 

assisted 

spin 

    

 Article name Instance Article name Instance Article name Instance 

Others13 Tavakoli, M. 

M. et al., J. 

Phys. Chem. C 
120, 19531–

19536 (2016) 

2D-

graphen

e 

Yu, X. et al., J. Power 

Sources 325, 534–540 

(2016) 

mSiO2 Zuo, L. et al., Nano Lett. 

17, 269–275 (2017) 

PA-SAM 

Zhang, W. et 

al., Nano Lett. 
13, 4505–4510 

(2013) 

Au@Si

O2 

Li, Y. et al., RSC Adv. 

5, 28424–28429 
(2015) 

mSnO2 An, Q. et al., Nano 

Energy 39, 400–408 
(2017) 

PCBA 

Ye, Q.-Q. et 

al., ACS 
Energy Lett. 3, 

875–882 

(2018) 

bis-

PCBM 

Bera, A. et al., J. Phys. 

Chem. C 118, 28494–
28501 (2014) 

mSrTiO3 Li, Y. et al., J. Am. 

Chem. Soc. 137, 15540–
15547 (2015) 

PCBB-2CN-

2C8 

Ye, Q.-Q. et 

al., ACS 

Energy Lett. 3, 

875–882 
(2018) 

bis-

PCBM-

DMC 

Aeineh, N. et al., ACS 

Appl. Mater. Interfaces 

9, 13181–13187 

(2017) 

mTiO2 Cheng, Y. et al., ACS 

Appl. Mater. Interfaces 7, 

19986–19993 (2015) 

PEI 

Zuo, L. et al., 

J. Am. Chem. 
Soc. 137, 

2674–2679 

(2015) 

C3-

SAM 

Bera, A. et al., ACS 

Appl. Mater. Interfaces 
7, 12404–12411 

(2015) 

mZn2Sn

O4 

Chen, B.X. et al., J. 

Mater. Chem. A 4, 
15662–15669 (2016) 

polystyrene 

Guo, Y. et al., 
Sol. Energy 

Mater. Sol. 

Cells 178, 
186–192 

(2018) 

CdS Mahmood, K. et al., 
Nanoscale 6, 9127 

(2014) 

mZnO Tavakoli, M. M. et al., J. 
Phys. Chem. C 120, 

19531–19536 (2016) 

reduced 
graphene 

scaffolds 

Gu, Z. et al., 
Sol. Energy 

Mater. Sol. 

Cells 140, 
396–404 

(2015) 

CdS-nr Lei, Y. et al., J. Mater. 
Chem. A 4, 5474–5481 

(2016) 

mZnO Kırbıyık, Ç. et al., Appl. 
Surf. Sci. 423, 521–527 

(2017) 

SAM 
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Table A.3 Explanation for the Term of “others” in Figure 4.23. 

 

 Article name Instance Article name Instance Article name Instance 

Others1 Liu, D. et al., 

Adv. Sci., 5, 

1700484 (2018) 

H2O Zhang, J. et al., 

Adv. Energy 

Mater., 8, 
1701981 (2017) 

LiI Qing, J. et al., Org. Electron. 

physics, Mater. Appl. 38, 

144–149 (2016) 

MACl 

Liu, C. et al., 

Nanoscale, 9, 

13967–13975 
(2017) 

C60     

 Article name Instance Article name Instance Article name Instance 

Others2 Wu, W.-Q. et 
al., Nat. 

Commun., 9, 

1625 (2018) 

F4TCNQ Chung, C.-C. et 
al., J. Mater. 

Chem. A 5, 

13957–13965 
(2017) 

GO Ran, C. et al., J. Mater. Chem. 
A, 4, 8566–8572 (2016). 

PCBM 

Wu, C.-G. et al., 

Energy Environ. 

Sci. 8, 2725–
2733 (2015) 

H2O Chang, C.-Y. et 

al., J. Mater. 

Chem. A, 6, 
4179–4188 

(2018) 

5F-

PC61BM 

Zuo, C. and Ding, L., Adv. 

Energy Mater. 7, 1601193 

(2017) 

NH4Cl 

Jošt, M. et al., 
ACS Photonics 

4, 1232–1239 

(2017) 

HPA Xia, Y. et al.,  J. 
Mater. Chem. A 

5, 3193–3202 

(2017) 

PbAc2+H2O Gong, X. et al., Adv. Funct. 
Mater. 25, 6671–6678 (2015) 

H2O 

Chang, C.-Y. et 
al., J. Mater. 

Chem. A, 6, 

4179–4188 
(2018) 

3F-PC61BM Chen, Y. et al., 
Chem. Mater. 27, 

1448–1451 

(2015) 

NH4Cl Sun, C. et al., Small 11, 
3344–3350 (2015) 

TPPI 

Alsari, M. et al., 

Sci. Rep., 8, 
5977 (2018) 

HPA Ling, L. et al., 

Adv. Funct. 
Mater. 26, 5028–

5034 (2016) 

PbAc2+H2O   

 Article name Instance Article name Instance Article name Instance 

Others3 Bao, X. et al., J. 
Power Sources 

297, 53–58 

(2015) 

NMP Chen, Q. et al., 
Nano Lett. 17, 

3231–3237 

(2017) 

Ag Han, C. et al., J. Mater. Chem. 
C (2018). 

doi:10.1039/C8TC01033A 

ITIC 

Chen, Q. et al., 

Nano Lett. 17, 

3231–3237 
(2017) 

Ag Chen, W. et al., 

Org. Electron., 

58, 283–289 
(2018) 

ASCl  Liu, X. et al., Nano Energy 

30, 417–425 (2016) 

DFC60 

 

 

 

Table A.2 Explanation for the Term of “others” in Figure 4.22 (cont.). 

 

 Article name Instance Article name Instance Article name Instance 

Others13 Jiang, J. et al., 

J. Mater. 

Chem. A 5, 
9514–9522 

(2017) 

ITIC Raminafshar, C. et al., 

Electrochim. Acta 276, 

261–267 (2018) 

mZrO2 Zhou, P. et al., Sol. 

Energy 137, 579–584 

(2016) 

SnO2-ns 

Luo, Q. et al., 

Adv. Funct. 
Mater. 27, 

1702090 

(2017) 

m-α-

Fe2O3 

Bi, D. et al., RSC Adv. 

3, 18762 (2013) 

mZrO2 Hou, X. et al., Sol. 

Energy Mater. Sol. Cells 
149, 121–127 (2016) 

ZnGa2O4 

Mahmood, K. 

et al., 

Nanoscale 6, 
9127 (2014) 

m-Al-

ZnO 

Guo, Y. et al., ACS 

Appl. Energy Mater. 1, 

2000 (2018).  

Nb2O5 Gao, C. et al., Chem. 

Eng. J. 325, 378–385 

(2017) 

ZnO-SnO2-ndt 
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Table A.3 Explanation for the Term of “others” in Figure 4.23(cont.). 

 

 Article name Instance Article name Instance Article name Instance 

Others4 Chen, Q. et al., 

Dye. Pigment., 

147, 113–119 
(2017) 

TTA Lou, Y.-H. and 

Wang, Z.-K., 

Nanoscale, 9, 
13506–13514 

(2017) 

V2O5 Wang, C. et al., RSC Adv. 7, 

29944–29952 (2017) 

rub 

Chen, W.-Y. et 
al., J. Mater. 

Chem. A 3, 

19353–19359 
(2015) 

CuI Lou, Y.-H. and 
Wang, Z.-K., 

Nanoscale, 9, 

13506–13514 
(2017) 

MoO3 Wang, J. M. et al., ACS Appl. 
Mater. Interfaces, 9, 13240–

13246 (2017) 

TS–CuPc 

Ge, J. et al., J. 

Mater. Chem. A 
5, 2920–2928 

(2017) 

Cu2BaSnS4 Lou, Y.-H. and 

Wang, Z.-K., 
Nanoscale, 9, 

13506–13514 

(2017) 

GeO2 Xu, X. et al., J. Power 

Sources 360, 157–165 (2017) 

polyTPD 

Igbari, F. et al., 
J. Mater. Chem. 

A 4, 1326–1335 

(2016) 

CuAlO2 Lou, Y.-H. and 
Wang, Z.-K., 

Nanoscale, 9, 

13506–13514 
(2017) 

CrO3 Yan, W. et al., RSC Adv. 4, 
33039 (2014) 

polythiophen
e 

Kang, J. S. et 

al., Advanced 
Energy 

Materials 8, 

1703114 (2018) 

CoN Niu, G. et al., J. 

Mater. Chem. A , 
6, 4721–4728 

(2018) 

NiMgLiO Yao, X. et al., Org. Electron. 

physics, Mater. Appl. 47, 85–
93 (2017) 

Vox 

Kim, B. S. et 
al., Org. 

Electron. 

physics, Mater. 
Appl. 17, 102–

106 (2015) 

MoO3 Niu, G. et al., J. 
Mater. Chem. A , 

6, 4721–4728 

(2018) 

NiMgLiO Yeo, J.-S. et al., Nano Energy 
12, 96–104 (2015) 

RGO 

Kim, J. et al., 
Sci. Rep. 6, 

27773 (2016) 

NGO-NR Rao, H. et al., 
Nano Energy 27, 

51–57 (2016) 

CuOx Yu, J. C. et al., Sci. Rep. 8, 
1070 (2018) 

PEDOT:GO 

Li, J. et al., 
Nano Energy, 

46, 331–337 

(2018) 

P3CT-K Sun, W. et al., 
Nanoscale 8, 

10806–10813 

(2016) 

CuOx Yu, W. et al., J. Power 
Sources 358, 29–38 (2017) 

PEDOT:SAF 

Lin, Q. et al., 
Adv. Opt. 

Mater., 5, 

1600819 (2017) 

PCDTBT Sun, W. et al., 
Nanoscale 8, 

15954–15960 

(2016) 

CuI Yu, W. et al., Nanoscale 8, 
6173–6179 (2016) 

Cu2O 

Lin, Q. et al., 

Interfaces, 9, 

9096–9101 
(2017) 

1 Tseng, Z. L. et 

al., Sol. Energy 

139, 484–488 
(2016) 

MoOx Yusoff, A. R. bin M. et al., 

ChemSusChem,  9, 1736–

1742 (2016) 

DNA-CTMA 

Liu, Z. et al, 

Nano Energy, 

28, 151–157 
(2016) 

P3HT Tseng, Z. L. et 

al., Sol. Energy 

139, 484–488 
(2016) 

WOx   

 Article name Instance Article name Instance Article name Instance 

Others5 Malinkiewicz, 

O. et al., Adv. 
Energy Mater. 

4, 1400345 

(2014) 

3TPYMB Wang, N. et al., 

Adv. Energy 
Mater. 7, 

1700522 (2017) 

HATNT Karuppuswamy, P. et al., Sol. 

Energy Mater. Sol. Cells 169, 
78–85 (2017) 

PDI-C60 

Erten-Ela, S. et 

al., New J. 

Chem. 40, 
2829–2834 

(2016) 

BAFB Jeng, J. Y. et al., 

Adv. Mater. 25, 

3727–3732 
(2013) 

ICBA Akbulatov, A. F. et al., Adv. 

Energy Mater., 7, 1700476 

(2017) 

PDI-EH 

Qing, J. et al., 
ACS Appl. 

Mater. 

Interfaces 7, 
23110–23116 

(2015) 

BCP Wang, Q. et al., 
Energy Environ. 

Sci. 7, 2359–2365 

(2014) 

ICBA-C60 Wang, W. et al., ACS Appl. 
Mater. Interfaces 7, 3994–

3999 (2015) 

PNDI2OD-
TT 
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Table A.3 Explanation for the Term of “others” in Figure 4.23(cont.). 

 

 Article name Instance Article name Instance Article name Instance 

Others5 Liu, J. et al., 

ChemPhysChem 

18, 617–625 
(2017) 

BCP Lin, Y. et al., 

Adv. Mater., 29, 

1700607 (2017) 

ICBA-

tran3-C60 

Wang, W. et al., ACS Appl. 

Mater. Interfaces 7, 3994–

3999 (2015) 

PNVT-8 

Dai, S.-M. et al., 

Inorganica 

Chim. Acta 468, 
146–151 (2017) 

BDNC Gil-Escrig, L. et 

al., Org. Electron. 

37, 396–401 
(2016) 

IPH 

(fullerene) 

Kaltenbrunner, M. et al. , Nat. 

Mater. 14, 1032–1039 (2015) 

PTCDI 

Xue, Q. et al., 

Adv. Energy 
Mater. 7, 

1602333 (2017) 

C60(CH2) Chiang, Y.-H. et 

al., J. Mater. 
Chem. A, 5, 

25485–25493 

(2017) 

IZO Mohd Yusoff, A. R. bin et al., 

Nanoscale 8, 6328–6334 
(2016) 

Ru(acac)  

Zheng, X. et al., 
Nat. Energy, 2, 

17102 (2017) 

choline 
chloride-C60 

Wang, W. et al., 
ACS Appl. 

Mater. Interfaces 

7, 3994–3999 
(2015) 

N2200 Liu, C. et al., J. Am. Chem. 
Soc., 140, 3825–3828 (2018) 

ZnO+C60 

Chen, S. et al., 

J. Power 
Sources 353, 

123–130 (2017) 

CoSe+PCBM  Heo, J. H. et al., 

J. Mater. Chem. 
A, 5, 20615–

20622 (2017) 

NDI-PM Mohd Yusoff, A. R. bin et al., 

Nanoscale 8, 6328–6334 
(2016) 

Zr(acac)  

Dai, S.-M. et al., 

Inorganica 
Chim. Acta 468, 

146–151 (2017) 

EDNC Karuppuswamy, 

P. et al., Sol. 
Energy Mater. 

Sol. Cells 169, 

78–85 (2017) 

PDI-C60   

 Article name Instance Article name Instance Article name Instance 

Others6 Xie, J. et al., 

Nano Energy 
28, 330–337 

(2016) 

PCBDAN Kakavelakis, G. 

et al., Adv. 
Energy Mater. 7, 

1602120 (2017) 

PFN Sun, C. et al., Small 11, 

3344–3350 (2015) 

TPPI  

Xia, Y. et al.,  J. 

Mater. Chem. A 
5, 3193–3202 

(2017) 

FPI-PEIE Sun, C. et al., 

Small 11, 3344–
3350 (2015) 

TPPI  Khatiwada, D. et al., J. Phys. 

Chem. C 119, 25747–25753 
(2015) 

rhodamine 

Kim, G. H. et 
al., Nano Lett., 

17, 6385–6390 

(2017) 

EFGnPs-F Fu, G. et al.,  Sol. 
Energy Mater. 

Sol. Cells 165, 

36–44 (2017) 

TIPD Sun, K. et al., ACS Appl. 
Mater. Interfaces 7, 15314–

15320 (2015) 

rhodamine/C
60/BCP/rhod

amine/LiF 

Mamun, A. et 
al., Phys. Chem. 

Chem. Phys. 19, 

17960–17966 
(2017) 

carbon Chen, W. et al., J. 
Phys. Chem. Lett. 

8, 591–598 

(2017) 

ZrAcAc Kakavelakis, G. et al., Adv. 
Energy Mater. 7, 1602120 

(2017) 

PFN 

Min, J. et al., 

Chem. Mater. 
27, 227–234 

(2015) 

PDINO Xia, Y. et al.,  J. 

Mater. Chem. A 
5, 3193–3202 

(2017) 

FPI-PEIE   

 Article name Instance Article name Instance Article name Instance 

Others7 Yao, X. et al., 
Org. Electron. 

physics, Mater. 

Appl. 47, 85–93 
(2017) 

APPA Xue, Q. et al., 
Adv. Energy 

Mater. 6, 

1502021 (2016) 

HSL2 Park, I. J. et al, J. Phys. Chem. 
C 119, 27285–27290 (2015) 

PEDOT:PSS 

Chen, W. et al., 

J. Phys. Chem. 
Lett. 8, 591–598 

(2017) 

BPQDs Xue, Q. et al., 

Adv. Energy 
Mater. 6, 

1502021 (2016) 

HSL2 Igbari, F. et al., J. Mater. 

Chem. A 4, 1326–1335 
(2016) 

PEDOT:PSS 

Bai, Y. et al., 

Adv. Funct. 
Mater. 26, 

2950–2958 

(2016) 

DEA Chen, W. et al., 

Energy Environ. 
Sci. 8, 629–640 

(2015) 

mAl2O3 Lee, D.-Y. et al., Nanoscale 8, 

1513–1522 (2016) 

PEDOT:PSS 
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Table A.3 Explanation for the Term of “others” in Figure 4.23(cont.). 

 

 Article name Instance Article name Instance Article name Instance 

Others7 Li, D. et al., 

Sol. Energy 
131, 176–182 

(2016) 

GO Chen, Y. et al., 

ACS Appl. 
Mater. Interfaces 

7, 4471–4475 

(2015) 

mTiO2 Liu, H. et al., Org. Electron. 

physics, Mater. Appl. 47, 
220–227 (2017) 

PSSNa  

Xue, Q. et al., 
Adv. Energy 

Mater. 6, 

1502021 (2016) 

HSL1 Kim, B. S. et al., 
Org. Electron. 

physics, Mater. 

Appl. 17, 102–
106 (2015) 

NPB Wang, C. et al., RSC Adv. 7, 
29944–29952 (2017) 

rub 
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APPENDIX B: ADDITIONAL INFORMATION ON ANALYSIS OF 

REPRODUCIBILITY 

 

 

Table B.1. F-test of Pooled Standard Deviations of Perovskite Layer Related Factors 

in Regular (n-i-p) Cells. 

 

Perovskite 
Cs based mixed cation MAPbI3 FA based MAPb3-x Clx  

F Fcritical F Fcritical F Fcritical F Fcritical F Fcritical   

MAPbI3-xBrx 1.03 1.36 1.63 1.28 2.16 1.27 3.43 1.29 4.02 1.28   

Cs based   1.58 1.25 2.09 1.25 3.33 1.26 3.89 1.25   

mixed cation     1.32 1.06 2.10 1.10 2.46 1.07   

MAPbI3       1.59 1.09 1.86 1.05   

FA based         1.17 1.10   

             

Deposition 

procedure 

two-step 

mesoporous 

one-step planar one-step 

mesoporous 

      

F Fcritical F Fcritical F Fcritical       

two-step planar 1.16 1.06 1.52 1.06 1.58 1.06       

two-step 

mesoporous 

  1.31 1.05 1.36 1.06       

one-step planar     1.04 1.05       

             

Deposition 

method 

spin 2-3 vasp  spin-dip spin      

F Fcritical F Fcritical F Fcritical F Fcritical     

spin-spin 1.96 1.07 2.05 1.16 2.07 1.07 2.60 1.06     

spin 2-3   1.04 1.16 1.05 1.07 1.32 1.05     

vasp     1.01 1.18 1.27 1.17     

spin-dip       1.26 1.06     

             

Precursor 

solution 

DMSO+GBL DMF+DMSO DMSO GBL  DMF DMF+others 

F Fcritical F Fcritical F Fcritical F Fcritical F Fcritical F Fcritical 

DMF+DMSO+

others 

1.04 1.19 1.08 1.15 1.26 1.18 1.72 1.17 2.49 1.15 3.38 1.16 

DMSO+GBL   1.03 1.13 1.20 1.16 1.64 1.14 2.38 1.12 3.24 1.13 

DMF+DMSO     1.17 1.11 1.60 1.09 2.31 1.06 3.14 1.08 

DMSO       1.37 1.14 1.98 1.11 2.69 1.13 

GBL         1.45 1.09 1.97 1.11 

DMF           1.36 1.07 
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Table B.1. F-test of Pooled Standard Deviations of Perovskite Layer Related 

Factors in Regular (n-i-p) Cells (cont.). 

 

Anti-solvent 
toluene chlorobenzene w/o anti-solvent       

F Fcritical F Fcritical F Fcritical       

diethy lether 1.17 1.13 1.20 1.10 1.99 1.09       

toluene   1.02 1.11 1.70 1.10       

chlorobenzene     1.66 1.06       

 

 

Table B.2. F-test of Pooled Standard Deviations of Other Layers in Regular Cells. 

 

ETL 

w/o ETL doped-TiO2 ZnO TiO2 

F Fcritical F Fcritical F Fcritical F Fcritical 

SnO2 1.04 1.24 1.36 1.12 2.15 1.12 2.20 1.07 

w/o ETL   1.31 1.28 2.06 1.28 2.12 1.26 

doped-TiO2     1.58 1.14 1.62 1.11 

ZnO       1.03 1.10 

         

ETL-2 

TiO2-ns doped-mTiO2 mTiO2  ETL-2=0  

F Fcritical F Fcritical F Fcritical F Fcritical 

PCBM 1.06 1.13 1.11 1.14 1.26 1.11 1.38 1.11 

TiO2-ns   1.05 1.13 1.18 1.09 1.30 1.09 

doped-mTiO2     1.13 1.10 1.24 1.10 

mTiO2       1.10 1.04 

         

HTL 

PTAA w/o HTL spiro-MeOTAD inorganic 

F Fcritical F Fcritical F Fcritical F Fcritical 

P3HT 1.22 1.21 1.51 1.22 1.78 1.20 1.85 1.24 

PTAA   1.24 1.13 1.46 1.09 1.52 1.15 

w/o HTL     1.18 1.10 1.23 1.16 

spiro-MeOTAD       1.04 1.12 

         

HTL additive 

LiTFSI+TBP+FK209 LiTFSI+TBP w/o additive   

F Fcritical F Fcritical F Fcritical   

LiTFSI+TBP+FK102 2.09 1.17 4.42 1.15 5.27 1.16   

LiTFSI+TBP+FK209   2.11 1.07 2.52 1.08   

LiTFSI+TBP     1.19 1.05   



184 

 

 

Table B.2. F-test of Pooled Standard Deviations of Other Layers in Regular Cells 

(cont.). 

 

Back contact 

Au Ag     

F Fcritical F Fcritical     

carbon 1.13 1.09 1.99 1.10     

Au   1.77 1.04     

 

Table B.3. F-test of Pooled Standard Deviations of Perovskite Related Factors in Inverted 

Cells 

 

Perovskite 
MAPbI3-xBrx mixed cation MAPbI3  

F Fcritical F Fcritical F Fcritical   

MAPbI3-xClx 1.02 1.14 1.07 1.11 1.23 1.06   

MAPbI3-xBrx   1.05 1.17 1.21 1.15   

mixed cation     1.15 1.11   

         

Deposition 

procedure 

two-step        

F Fcritical       

one-step 1.53 1.07       

         

Deposition 

method 

spin 2-3  spin  spin-dip   

F Fcritical F Fcritical F Fcritical   

spin-spin 1.08 1.10 1.47 1.90 5.78 1.17   

spin 2-3   1.36 1.06 5.35 1.15   

spin     3.93 1.15   

         

Precursor 

solution 

DMSO  DMSO+GBL DMF  DMF+others  

F Fcritical F Fcritical F Fcritical F Fcritical 

DMF+DMSO 1.04 1.14 1.13 1.09 1.42 1.08 1.65 1.11 

DMSO   1.08 1.15 1.36 1.14 1.58 1.16 

DMSO+GBL     1.26 1.08 1.47 1.11 

DMF       1.17 1.10 

         

Anti-solvent 

chlorobenzene  w/o anti-solvent 

treatment 

diethyl ether   

F Fcritical F Fcritical F Fcritical   

toluene 1.54 1.09 2.07 1.08 2.52 1.15   

chlorobenzene   1.35 1.07 1.64 1.14   

w/o anti-solvent 

treatment 

    1.22 1.13   
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Table B.4. F-test of Pooled Standard Deviations of Other Layers in Inverted Cells. 

 

ETL 
C60 PCBM       

F Fcritical F Fcritical       

PCBM+C6

0 
1.26 1.14 1.52 1.13       

C60   1.21 1.08       

           

ETL-2 
PEI BCP ETL-2=0     

F Fcritical F Fcritical F Fcritical     

ZnO 1.81 1.18 2.18 1.14 2.35 1.13     

PEI   1.21 1.14 1.30 1.14     

BCP     1.07 1.07     

           

HTL 
w/o HTL PEDOT:PSS NiOx PTAA 

inorganic (NiOx is 

included) 

F Fcritical F Fcritical F Fcritical F Fcritical F Fcritical 

doped-

PEDOT:PS

S 

1.21 1.23 1.55 1.14 1.58 1.16 2.24 1.19 2.69 1.15 

w/o HTL   1.28 1.20 1.31 1.21 1.85 1.24 2.22 1.20 

PEDOT:PS

S 
    1.02 1.08 1.44 1.13 1.73 1.06 

NiOx       1.42 1.15 1.70 1.09 

PTAA         1.20 1.15 

           

HTL-2 
present          

F Fcritical         

absent 1.53 1.10         

           

Back 

contact 

Al Cu Au     

F Fcritical F Fcritical F Fcritical     

Ag 1.11 1.05 1.21 1.13 4.01 1.24     

Al   1.10 1.13 3.63 1.24     

Cu     3.31 1.28     
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APPENDIX C: ADDITIONAL INFORMATION ON ANALYSIS OF 

HYSTERESIS 

 

 

Table C.1. Association Rule Mining for HI ≤  0.01 and PCE ≥10% for Regular (n-i-

p) Cells with Scan Rate≤0.05 V/s. 

  
Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.01 

PCE ≥10%  

Scan rate ≤ 
0.05 V/s 

 

 

Back contact=others (IZO*) 0.01 0.06 6.11 1 

HTL=no 0.02 0.11 6.11 2 

ETL=ZnO 0.04 0.22 4.07 4 

 Precursor solution=GBL 0.01 0.06 3.06 1 

ETL=0 0.01 0.06 3.06 1 

 Precursor solution=DMF+others (HI) 0.01 0.06 3.06 1 

ETL=others (Nb2O5, PCBM) 0.02 0.11 3.06 2 

ETL-2=others (ZnO-nanorod, ZnO-N-nanorod) 0.02 0.11 3.06 2 

ETL-2=doped-mTiO2 0.06 0.39 2.52 7 

Back contact=carbon 0.02 0.11 2.44 2 

 Deposition method=spin-spin 0.05 0.28 2.35 5 

 Anti-solvent treatment=trifluorotoluene 0.05 0.28 2.35 5 

HTL additive=no 0.03 0.17 1.83 3 

Deposition procedure=two-step 0.06 0.39 1.58 7 

HTL additive=LiTFSI+TBP+FK209 0.06 0.39 1.53 7 

HTL=others ** 0.05 0.28 1.39 5 

 Precursor solution=DMF 0.07 0.44 1.29 8 

Perovskite=mixed cation 0.07 0.44 1.25 8 

Back contact=Ag 0.05 0.33 1.22 6 

Anti-solvent treatment=no 0.09 0.56 1.18 10 

HTL=PTAA 0.01 0.06 1.02 1 

 Deposition method=spin-dip 0.02 0.11 1.02 2 

Perovskite=MAPbI3 0.08 0.50 0.95 9 

 Deposition method=spin 0.07 0.44 0.94 8 

 Precursor solution=DMF+DMSO 0.06 0.39 0.86 7 

Deposition procedure=one-step 0.10 0.61 0.81 11 

ETL=TiO2 0.10 0.61 0.77 11 

HTL=spiro-OMeTAD 0.09 0.56 0.76 10 

 Anti-solvent treatment=toluene 0.01 0.06 0.76 1 

  Precursor solution=DMSO+GBL 0.01 0.06 0.76 1 

Back contact=Au 0.08 0.50 0.75 9 

HTL additive=LiTFSI+TBP 0.07 0.44 0.73 8 

ETL-2=mTiO2 0.05 0.28 0.66 5 

 Deposition method=spin 2-3 0.03 0.17 0.63 3 

ETL-2=0 0.04 0.22 0.58 4 

Perovskite=MAPbI3-xClx 0.01 0.06 0.56 1 

Anti-solvent treatment=chlorobenzene 0.02 0.11 0.45 2 

*IZO: sputtered amorphous indium zinc oxide 

**others:  Diphenylamine‐substituted carbazole‐based derivatives(V885, V886, V908, V911, V946) 
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Table C.2. Association Rule Mining for HI ≤  0.05 and PCE ≥10% for Regular (n-i-

p) Cells with Scan Rate≤0.05 V/s. 

 

 

  

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

PCE ≥10%  

Scan rate ≤ 
0.05 V/s 

 

 

 Deposition method=spin-meniscus asissted 0.01 0.02 2.68 1 

 Precursor solution=DMSO+GBL+HaHc* 0.01 0.02 2.68 1 

 Anti-solvent treatment=ethylacetate 0.01 0.02 2.68 1 

Back contact=others (IZO**) 0.01 0.02 2.68 1 

 Precursor solution=GBL 0.02 0.05 2.68 2 

HTL=no 0.02 0.05 2.68 2 

ETL-2=doped-mTiO2 0.13 0.34 2.21 14 

Anti-solvent treatment=trifluorotoluene 0.09 0.24 2.06 10 

HTL=PTAA 0.04 0.10 1.79 4 

ETL=ZnO 0.04 0.10 1.79 4 

 Deposition method=spin-spin 0.07 0.20 1.65 8 

HTL=others*** 0.11 0.29 1.46 12 

HTL additive=LiTFSI+TBP+FK209 0.14 0.37 1.44 15 

ETL=0 0.01 0.02 1.34 1 

 Precursor solution=DMF+others (HI) 0.01 0.02 1.34 1 

ETL=others (Nb2O5, PCBM) 0.02 0.05 1.34 2 

ETL-2=others (ZnO-nanorod, ZnO-N-nanorod) 0.02 0.05 1.34 2 

HTL additive=no 0.05 0.12 1.34 5 

Perovskite=mixed cation 0.16 0.44 1.24 18 

Anti-solvent treatment=no 0.21 0.56 1.19 23 

Deposition procedure=two-step 0.10 0.27 1.09 11 

Back contact=carbon 0.02 0.05 1.07 2 

 Precursor solution=DMF 0.14 0.37 1.06 15 

Back contact=Au 0.25 0.68 1.03 28 

ETL=TiO2 0.30 0.80 1.02 33 

 Precursor solution=DMSO 0.03 0.07 1.01 3 

 Deposition method=spin 0.17 0.46 0.98 19 

Perovskite=MAPbI3-xClx 0.04 0.10 0.98 4 

Deposition procedure=one-step 0.27 0.73 0.97 30 

 Deposition method=spin 2-3 0.09 0.24 0.93 10 

 Precursor solution=DMF+DMSO 0.15 0.41 0.91 17 

ETL=SnO2 0.01 0.02 0.89 1 

HTL additive=others (BCF****) 0.01 0.02 0.89 1 

Back contact=Ag 0.09 0.24 0.89 10 

Perovskite=MAPbI3 0.17 0.46 0.88 19 

HTL additive=LiTFSI+TBP 0.18 0.49 0.80 20 

HTL=spiro-OMeTAD 0.21 0.56 0.77 23 

ETL-2=0 0.11 0.29 0.77 12 

ETL-2=mTiO2 0.12 0.32 0.76 13 

Anti-solvent treatment=toluene 0.02 0.05 0.67 2 

 Precursor solution=DMSO+GBL 0.02 0.05 0.67 2 

 Deposition method=spin-dip 0.03 0.07 0.67 3 

Anti-solvent treatment=chlorobenzene 0.04 0.10 0.40 4 

Anti-solvent treatment=diethyl ether 0.01 0.02 0.38 1 
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Table C.3. Association Rule Mining for HI ≤  0.01 for Regular (n-i-p) Cells with Scan 

Rate≤ 0.05 V/s (without PCE restriction) 

  

Table C.2. Association Rule Mining for HI ≤  0.05 and PCE ≥10% for Regular 

(n-i-p) Cells with Scan Rate≤0.05 V/s (cont.). 

 

*HaHc: hydroxylamine hydrochloride 
**IZO: sputtered amorphous indium zinc oxide 

***others: poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole) 

(PPDT2FBT), a novel N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap material (DPIO), 
Dimethoxydiphenylamine-substituted dispiro-oxepine derivative 2,2′,7,7′-tetrakis-(N,N′-di-4-methoxyphenylamine)dispiro-

[fluorene-9,4′-dithieno[3,2-c:2′,3′-e]oxepine-6′,9′′-fluorene] (DDOF), Diphenylamine‐substituted carbazole‐based derivatives 

(V885, V886, V908, V911, V928, V931,V946, V957, V1039) 
****BCF: tris(pentafluorophenyl)borane 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤  0.01  

Scan rate≤ 

0.05 V/s 

 

ETL=ZnO 0.03 0.20 4.30 4 

HTL=no 0.02 0.15 3.87 3 

ETL=0 0.01 0.05 3.23 1 

Back contact=others (IZO*) 0.01 0.05 3.23 1 

ETL=others (Nb2O5, PCBM) 0.02 0.10 3.23 2 

ETL-2=others (ZnO-nanorod, ZnO-N-nanorod) 0.02 0.10 3.23 2 

ETL-2=doped-mTiO2 0.05 0.35 2.66 7 

Anti-solvent treatment=trifluorotoluene 0.04 0.25 2.30 5 

  Precursor solution=GBL 0.01 0.05 2.15 1 

  Precursor solution=DMF+others (HI) 0.01 0.05 2.15 1 

Back contact=carbon 0.02 0.10 2.15 2 

Deposition method=spin-spin 0.05 0.30 2.15 6 

HTL additive=no 0.04 0.25 2.02 5 

Deposition procedure=two-step 0.06 0.40 1.47 8 

HTL=others** 0.05 0.30 1.43 6 

 HTL additive=LiTFSI+TBP+FK209 0.05 0.35 1.37 7 

Perovskite=mixed cation 0.06 0.40 1.29 8 

Precursor solution=DMF 0.07 0.45 1.24 9 

Back contact=Ag 0.05 0.30 1.21 6 

Anti-solvent treatment=no 0.09 0.55 1.09 11 

HTL=PTAA 0.01 0.05 1.08 1 

Deposition method=spin 0.07 0.45 1.02 9 

Perovskite=MAPbI3-xClx 0.02 0.10 0.99 2 

  Precursor solution=DMF+DMSO 0.06 0.40 0.94 8 

Perovskite=MAPbI3 0.08 0.50 0.93 10 

Deposition method=spin-dip 0.02 0.10 0.86 2 

Deposition procedure=one-step 0.09 0.60 0.82 12 

 Anti-solvent treatment=diethyl ether 0.01 0.05 0.81 1 

 Anti-solvent treatment=toluene 0.01 0.05 0.81 1 

Back contact=Au 0.09 0.55 0.81 11 

ETL=TiO2 0.10 0.65 0.79 13 

  Precursor solution=DMSO+GBL 0.01 0.05 0.72 1 

ETL-2=mTiO2 0.05 0.35 0.72 7 

HTL=spiro-OMeTAD 0.08 0.50 0.71 10 

HTL additive=LiTFSI+TBP 0.06 0.40 0.69 8 
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Table C.4. Association Rule Mining for HI ≤  0.05 for Regular (n-i-p) Cells with Scan 

Rate≤ 0.05 V/s (without PCE restriction) 

  

Table C.3. Association Rule Mining for HI ≤  0.01 for Regular (n-i-p) Cells with Scan 

Rate≤ 0.05 V/s (without PCE restriction) 

 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤  0.01  

Scan rate≤ 

0.05 V/s 
 

ETL-2=0 0.03 0.20 0.59 4 

Deposition method=spin 2-3 0.02 0.15 0.55 3 

Anti-solvent treatment=chlorobenzene 0.02 0.10 0.42 2 

*IZO: sputtered amorphous indium zinc oxide 
**others: Diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V946), a novel N-phenylindole-

diketopyrrolopyrrole-containing narrow band-gap material (DPIE) 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

Scan rate≤ 

0.05 V/s   

 
 

 Deposition method=spin-meniscus asissted 0.01 0.02 2.69 1 

  Precursor solution=DMSO+GBL+HaHc* 0.01 0.02 2.69 1 

 Anti-solvent treatment=ethylacetate 0.01 0.02 2.69 1 

Back contact=others (IZO**, NbS2) 0.02 0.04 2.69 2 

ETL-2=doped-mTiO2 0.11 0.29 2.21 14 

HTL=no 0.03 0.08 2.15 4 

Anti-solvent treatment=trifluorotoluene 0.09 0.23 2.11 11 

  Precursor solution=GBL 0.02 0.04 1.79 2 

HTL=PTAA 0.03 0.08 1.79 4 

ETL=ZnO 0.03 0.08 1.79 4 

HTL additive=no 0.07 0.19 1.51 9 

Deposition method=spin-spin 0.08 0.21 1.49 10 

HTL additive=LiTFSI+TBP+FK209 0.14 0.38 1.47 18 

HTL=others*** 0.11 0.29 1.39 14 

Perovskite=FA based 0.01 0.02 1.34 1 

ETL=0 0.01 0.02 1.34 1 

ETL=others (Nb2O5, PCBM) 0.02 0.04 1.34 2 

ETL-2=others (ZnO-nanorod, ZnO-N-nanorod) 0.02 0.04 1.34 2 

Back contact=carbon 0.02 0.06 1.34 3 

Perovskite=mixed cation 0.15 0.40 1.28 19 

Deposition procedure=two-step 0.12 0.31 1.15 15 

 Anti-solvent treatment=no 0.21 0.56 1.12 27 

Precursor solution=DMSO 0.03 0.08 1.08 4 

Perovskite=MAPbI3-xClx 0.04 0.10 1.03 5 

  Precursor solution=DMF 0.14 0.38 1.03 18 

ETL=TiO2 0.31 0.83 1.01 40 

Back contact=Au 0.26 0.69 1.01 33 

  Precursor solution=DMF+DMSO 0.16 0.42 0.98 20 

Deposition procedure=one-step 0.26 0.69 0.94 33 

 Deposition method=spin 0.16 0.42 0.94 20 

 Deposition method=spin 2-3 0.09 0.25 0.92 12 

HTL additive=others (BCF****) 0.01 0.02 0.90 1 

Precursor solution=DMF+others (HI) 0.01 0.02 0.90 1 

ETL=SnO2 0.01 0.02 0.90 1 
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Table C.5. Association Rule Mining for HI ≤ 0.01 and PCE≥10% for Regular (n-i-p) Cells 

with Various Scan Rates. 

 

  

Table C.4. Association Rule Mining for HI ≤  0.05 for Regular (n-i-p) Cells with Scan 

Rate≤ 0.05 V/s (without PCE restriction) (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

Scan rate≤ 
0.05 V/s   

 

 Deposition method=spin-dip 0.04 0.10 0.90 5 

Perovskite=MAPbI3 0.18 0.48 0.90 23 

ETL-2=mTiO2 0.16 0.42 0.85 20 

Back contact=Ag 0.08 0.21 0.84 10 

HTL=spiro-OMeTAD 0.20 0.54 0.77 26 

ETL-2=0 0.09 0.25 0.73 12 

HTL additive=LiTFSI+TBP 0.16 0.42 0.72 20 

 Anti-solvent treatment=diethyl ether 0.02 0.04 0.67 2 

 Anti-solvent treatment=toluene 0.02 0.04 0.67 2 

  Precursor solution=DMSO+GBL 0.02 0.04 0.60 2 

 Anti-solvent treatment=chlorobenzene 0.04 0.10 0.43 5 

*HaHc: hydroxylamine hydrochloride 
**IZO: sputtered amorphous indium zinc oxide 

***others:poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole) 

(PPDT2FBT), novel N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap materials (DPIE, DPIO), 
Dimethoxydiphenylamine-substituted dispiro-oxepine derivative 2,2′,7,7′-tetrakis-(N,N′-di-4-methoxyphenylamine)dispiro-

[fluorene-9,4′-dithieno[3,2-c:2′,3′-e]oxepine-6′,9′′-fluorene] (DDOF), 5,10,15-trihexyl-3,8,13-trimethoxy-10,15-dihydro-5H-

diindolo[3,2-a:3′,2′-c]carbazole (KR122), diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V928, 
V931, V946, V957, V1039) 

****BCF: tris(pentafluorophenyl)borane 

Antecedent Consequent Support Confidence Lift Data count 

HI ≤ 0.01 

PCE≥10%  
 

 

Back contact=others (IZO*)  0.00 0.05 5.57 1 

HTL=no 
0.01 0.09 4.45 2 

 Anti-solvent treatment=trifluorotoluene 
0.02 0.23 4.28 5 

ETL=ZnO 0.02 0.18 4.05 4 

ETL=0 
0.00 0.05 3.71 1 

ETL=others (PCBM, PTEBS**, Nb2O5) 
0.01 0.14 3.34 3 

ETL-2=doped-mTiO2 
0.03 0.32 3.00 7 

Precursor solution=GBL 
0.00 0.05 2.78 1 

Back contact=carbon 
0.01 0.09 2.78 2 

 Deposition method=spin-spin 0.02 0.27 2.39 6 

ETL-2=TiO2-ns 
0.00 0.05 2.23 1 

HTL=others*** 0.02 0.23 1.99 5 

HTL additive=LiTFSI+TBP+FK209 0.03 0.36 1.98 8 

Perovskite=mixed cation 0.04 0.45 1.95 10 

Scan rate=1-20V/s 0.00 0.05 1.86 1 

Precursor solution=DMF+DMSO+others 

(KI) 

0.00 0.05 1.86 1 

HTL=PTAA 0.00 0.05 1.86 1 

Scan rate=0.005-0.05V/s 0.07 0.82 1.82 18 

ETL-2=others (ZnO-nanorod, ZnO-N-

nanorod) 

0.01 0.09 1.71 2 

HTL additive=no 0.01 0.14 1.67 3 

Back contact=Ag 0.03 0.32 1.34 7 
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Table C.6. Association Rule Mining for HI ≤ 0.05 and PCE≥10% for Regular (n-i-p) Cells 

with Various Scan Rates. 

  

Table C.5. Association Rule Mining for HI ≤ 0.01 and PCE≥10% for Regular (n-i-p) 

Cells with Various Scan Rates (cont.). 

 

Antecedent Consequent Support Confidence Lift Data count 

HI ≤ 0.01 
PCE≥10%  

 

Deposition procedure=two-step 0.04 0.41 1.27 9 

Precursor solution=DMF 0.04 0.45 1.11 10 

Precursor solution=DMF+DMSO 0.03 0.36 1.02 8 

ETL-2=mTiO2 
0.03 0.32 0.94 7 

 Anti-solvent treatment=no 0.05 0.55 0.93 12 

 Deposition method=spin 2-3 0.02 0.18 0.91 4 

 Deposition method=spin 0.04 0.41 0.88 9 

Deposition procedure=one-step 0.05 0.59 0.87 13 

Perovskite= MAPbI3 
0.04 0.50 0.86 11 

Precursor solution=DMF+others (HI) 0.00 0.05 0.86 1 

 Deposition method=spin-dip 0.01 0.14 0.84 3 

ETL=TiO2 
0.06 0.64 0.81 14 

Back contact=Au 0.05 0.55 0.78 12 

HTL=spiro-OMeTAD 0.06 0.64 0.76 14 

 Anti-solvent treatment=toluene 0.00 0.05 0.74 1 

HTL additive=LiTFSI+TBP 0.04 0.50 0.74 11 

 Anti-solvent treatment=chlorobenzene 0.01 0.14 0.71 3 

Precursor solution=DMSO+GBL 0.00 0.05 0.66 1 

ETL-2=0 0.02 0.23 0.52 5 

 Anti-solvent treatment=diethylether 0.00 0.05 0.48 1 

Scan rate=0.05-0.1V/s 0.01 0.09 0.37 2 

Perovskite=MAPbI3-xClx 
0.00 0.05 0.30 1 

Scan rate=0.1-0.5V/s 0.00 0.05 0.19 1 

*IZO: sputtered amorphous indium zinc oxide 

**PTEBS: polythiophene derivative sodium poly[2-(3-thienyl)ethyloxy-4-butylsulfonate]  
***others: diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V946) 

Antecedent Consequent Support Confidence Lift  Data count  

 

 
 

 

HI ≤ 0.05 
PCE≥10% 

 

 

 Anti-solvent treatment=ethylacetate  0.00 0.01 3.36 1 

 Anti-solvent treatment=ethoxyethane  0.00 0.01 3.36 1 

Precursor solution=DMSO+GBL+HaHc* 0.00 0.01 3.36 1 

 Deposition method=spin-meniscus asissted  0.00 0.01 3.36 1 

Precursor solution=GBL  0.02 0.05 3.36 4 

 Anti-solvent treatment=trifluorotoluene  0.04 0.14 2.58 10 

 HTL=PTAA  0.02 0.05 2.24 4 

 ETL-2=doped-mTiO2 0.07 0.23 2.19 17 

 HTL=no  0.01 0.04 2.01 3 

 ETL-2=TiO2-ns  0.01 0.04 2.01 3 

 ETL-2=others (ZnO-nanorod, ZnO-N-nanorod, 

mZn2SnO4, Rgs**, SiO2, C60)  

0.03 0.10 1.81 7 

Precursor solution=DMF+DMSO+others 

(KI,Pb(SCN)2)   

0.01 0.04 1.68 3 

 HTL=others*****  0.06 0.19 1.68 14 
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Table C.6. Association Rule Mining for HI ≤ 0.05 and PCE≥10% for Regular (n-i-p) 

Cells with Various Scan Rates (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count  

 

HI ≤ 0.05 

PCE≥10% 
 

 Back contact=others (IZO***)  0.00 0.01 1.68 1 

ETL= doped-SnO2 0.00 0.01 1.68 1 

 HTL additive=others (BCF****, 

LiTFSI+TBP+Co(II)TFSI)  

0.01 0.03 1.68 2 

 Deposition method=spin-spin  0.05 0.16 1.44 12 

 Perovskite=mixed cation  0.10 0.33 1.41 24 

 ETL=others (PCBM, PTEBS******, Nb2O5, 

Zn2SnO4)   

0.02 0.05 1.34 4 

 HTL additive=no  0.03 0.11 1.34 8 

 HTL additive=LiTFSI+TBP+FK209  0.07 0.25 1.34 18 

 Back contact=carbon  0.01 0.04 1.26 3 

 Scan rate=0.005-0.05 V/s 0.17 0.56 1.25 41 

 Deposition method=spin 2-3  0.07 0.25 1.23 18 

 ETL= ZnO  0.02 0.05 1.22 4 

 ETL=0  0.00 0.01 1.12 1 

 ETL-2= PCBM 0.01 0.03 1.12 2 

 Anti-solvent treatment=toluene  0.02 0.07 1.12 5 

 Back contact=Ag  0.08 0.26 1.10 19 

Deposition procedure=one-step  0.21 0.71 1.05 52 

Precursor solution=DMF+DMSO  0.11 0.37 1.04 27 

 ETL=TiO2 0.24 0.81 1.03 59 

 Anti-solvent treatment=diethyl ether  0.03 0.10 1.02 7 

 Scan rate=0.05-0.1 V/s 0.07 0.25 0.99 18 

Precursor solution=DMSO+GBL  0.02 0.07 0.99 5 

 Deposition method=spin  0.13 0.45 0.97 33 

 Anti-solvent treatment=no  0.17 0.56 0.96 41 

 Back contact=Au  0.20 0.67 0.96 49 

 Perovskite=MAPbI3 0.16 0.55 0.95 40 

 ETL=SnO2  0.01 0.04 0.92 3 

 Precursor solution=DMSO  0.01 0.04 0.92 3 

 HTL additive=LiTFSI+TBP  0.18 0.62 0.91 45 

Precursor solution=DMF  0.11 0.37 0.91 27 

Deposition procedure=two-step  0.09 0.29 0.89 21 

 ETL-2=mTiO2 0.09 0.29 0.85 21 

 HTL=spiro-OMeTAD  0.21 0.71 0.85 52 

 Back contact=Ag-Al  0.00 0.01 0.84 1 

Precursor solution=DMF+others (HI, Al, 
4MSA*******)  

0.01 0.04 0.77 3 

 Scan rate=0.5-1 V/s 0.01 0.03 0.75 2 

 Perovskite=MAPbI3-xClx 0.03 0.11 0.73 8 

 ETL-2=0  0.09 0.32 0.72 23 

 Deposition method=spin-dip  0.03 0.11 0.67 8 

 Scan rate=0.1-0.5 V/s 0.04 0.15 0.63 11 

 Anti-solvent treatment=chlorobenzene  0.03 0.11 0.57 8 

 Scan rate=1-20 V/s 0.00 0.01 0.56 1 

 Deposition method=vasp  0.00 0.01 0.56 1 

 Perovskite=FA based  0.00 0.01 0.48 1 

 ETL= doped-TiO2 0.00 0.01 0.42 1 
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Table C.7. Association Rule Mining for HI ≤ 0.01 for Regular (n-i-p) Cells with 

Various Scan Rates (without PCE restriction). 

 

 

Table C.6. Association Rule Mining for HI ≤ 0.05 and PCE≥10% for Regular (n-i-p) 

Cells with Various Scan Rates (cont.). 

 

*HaHc: hydroxylamine hydrochloride 

**Rgs: Reduced graphene scaffold 
***IZO: sputtered amorphous indium zinc oxide 

****BCF: tris(pentafluorophenyl)borane 

*****others: poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole) 
(PPDT2FBT), a novel N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap material (DPIO), Dimethoxydiphenylamine-

substituted dispiro-oxepine derivative 2,2′,7,7′-tetrakis-(N,N′-di-4-methoxyphenylamine)dispiro-[fluorene-9,4′-dithieno[3,2-c:2′,3′-

e]oxepine-6′,9′′-fluorene] (DDOF), diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908,V911, V928, V931, 
V946, V957, V1039), 4,40 

-(10-(4-methoxyphenyl)-9,9-dimethyl-9,10-dihydroacridine-2,7-diyl)bis(N,Nbis(4-methoxyphenyl)aniline) (ACR-TPA), a novel 
carbazole-based HTL including extended π-conjugated central core+hexyloxy flexible group ( SGT-410) 

******PTEBS: polythiophene derivative sodium poly[2-(3-thienyl)ethyloxy-4-butylsulfonate]  

*******4MSA: 4-methylbenzenesulfonic acid 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.01 
 

 

 

 Anti-solvent treatment=trifluorotoluene 0.02 0.20 4.20 5 

ETL=0 0.00 0.04 3.92 1 

Back contacy=others (IZO*) 0.00 0.04 3.92 1 

ETL= ZnO 0.01 0.16 3.62 4 

ETL=others (PCBM, PTEBS**, Nb2O5)  0.01 0.12 3.53 3 

Back contact=carbon 0.01 0.12 3.21 3 

ETL-2= doped-mTiO2 0.02 0.28 3.05 7 

HTL=no 0.01 0.12 2.94 3 

ETL-2=TiO2-ns 0.00 0.04 2.35 1 

Precursor solution=GBL 0.00 0.04 2.35 1 

 Deposition method=spin-spin 0.02 0.28 2.29 7 

HTL=others*** 0.02 0.28 2.22 7 

Perovskite=mixed cation 0.03 0.40 1.99 10 

Precursor solution=DMF+DMSO+others (KI) 0.00 0.04 1.96 1 

HTL additive=no 0.02 0.24 1.91 6 

HTL additive=LiTFSI+TBP+FK209 0.03 0.32 1.88 8 

Scan rate=0.005-0.05 V/s 0.07 0.80 1.82 20 

ETL-2=others (ZnO-nanorod, ZnO-N-nanorod) 0.01 0.08 1.81 2 

Scan rate=1-20V/s 0.00 0.04 1.68 1 

HTL=PTAA 0.00 0.04 1.31 1 

Back contact=Ag 0.02 0.28 1.19 7 

Precursor solution=DMF+DMSO 0.03 0.36 1.13 9 

Deposition procedure=two-step 0.03 0.40 1.12 10 

Precursor solution=DMF 0.04 0.48 1.06 12 

 Deposition method=spin 0.04 0.44 1.01 11 

Anti-solvent treatment=diethyl ether 0.01 0.08 0.98 2 

ETL-2=mTiO2 0.03 0.36 0.94 9 

Deposition procedure=one-step 0.05 0.60 0.93 15 

Perovskite=MAPbI3 0.04 0.52 0.92 13 

Anti-solvent treatment=no 0.05 0.56 0.91 14 

ETL=TiO2 0.06 0.68 0.84 17 
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Table C.8. Association Rule Mining for HI ≤ 0.05 for Regular (n-i-p) Cells with Various 

Scan Rates (without PCE restriction). 

  

Table C.7. Association Rule Mining for HI ≤ 0.01 for Regular (n-i-p) Cells with 

Various Scan Rates (without PCE restriction) (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data 

count  

HI ≤ 0.01 
 

 Deposition method=spin 2-3 0.01 0.16 0.81 4 

Back contact=Au 0.05 0.56 0.80 14 

Precursor solution=DMF+others (HI) 0.00 0.04 0.78 1 

 Anti-solvent treatment=toluene 0.00 0.04 0.78 1 

HTL=spiro-OMeTAD 0.05 0.56 0.70 14 

HTL additive=LiTFSI+TBP 0.04 0.44 0.67 11 

 Anti-solvent treatment=chlorobenzene 0.01 0.12 0.63 3 

 Deposition method=spin-dip 0.01 0.12 0.61 3 

Precursor solution=DMSO+GBL 0.00 0.04 0.59 1 

ETL-2=0 0.02 0.24 0.59 6 

Perovskite=MAPbI3-xClx 0.01 0.08 0.51 2 

Scan rate=0.05-0.1 V/s 0.01 0.12 0.44 3 

Scan rate=0.1-0.5V/s 0.00 0.04 0.17 1 

*IZO: sputtered amorphous indium zinc oxide 

**PTEBS: polythiophene derivative sodium poly[2-(3-thienyl)ethyloxy-4-butylsulfonate]  

***others: Diphenylamine‐substituted carbazole‐based derivatives (V885, V886, V908, V911, V946), a novel N-phenylindole-
diketopyrrolopyrrole-containing narrow band-gap material (DPIE), CuI 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

 
 

 Anti-solvent treatment=ethylacetate 0.00 0.01 3.34 1 

  Precursor solution=DMSO+GBL+HaHc* 0.00 0.01 3.34 1 

 Anti-solvent treatment=ethoxyethane 0.00 0.01 3.34 1 

 Deposition method=spin-meniscus asissted 0.00 0.01 3.34 1 

  Precursor solution=GBL 0.01 0.05 2.67 4 

Anti-solvent treatment=trifluorotoluene 0.04 0.13 2.63 11 

HTL=PTAA 0.02 0.08 2.60 7 

Perovskite=Cs based 0.02 0.06 2.39 5 

Back contact=others (IZO**, NbS2) 0.01 0.02 2.23 2 

ETL-2= doped-mTiO2 0.06 0.19 2.10 17 

ETL-2=TiO2-ns 0.01 0.03 2.00 3 

ETL-2=other (ZnO-nanorod, ZnO-N-nanorod, 

mZn2SnO4, Rgs***, SiO2, C60) 

0.02 0.08 1.80 7 

Perovskite=MAPbBr3 0.00 0.01 1.67 1 

ETL=doped-SnO2 0.00 0.01 1.67 1 

HTL additive=others (BCF****, 

LiTFSI+TBP+Co(II)TFSI) 

0.01 0.02 1.67 2 

  Precursor solution=DMF+DMSO+other 

(KI,Pb(SCN)2) 

0.01 0.03 1.67 3 

HTL=no 0.02 0.07 1.67 6 

HTL additive=no 0.06 0.19 1.54 17 

HTL=others***** 0.06 0.19 1.54 17 

Back contact=carbon 0.02 0.06 1.52 5 

Perovskite=mixed cation 0.09 0.28 1.42 25 
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Table C.8. Association Rule Mining for HI ≤ 0.05 for Regular (n-i-p) Cells with 

Various Scan Rates (without PCE restriction) (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.05 

 

HTL additive=LiTFSI+TBP+FK209 0.07 0.24 1.40 21 

ETL=others (PCBM, PTEBS******, Nb2O5, 

Zn2SnO4) 

0.01 0.05 1.34 4 

 Deposition method=spin-spin 0.05 0.16 1.30 14 

Scan rate=0.005-0.05V/s 0.16 0.55 1.24 48 

 Deposition method=spin 2-3 0.07 0.23 1.15 20 

ETL=0 0.00 0.01 1.11 1 

ETL-2=PCBM 0.01 0.02 1.11 2 

 Anti-solvent treatment=toluene 0.02 0.06 1.11 5 

 Anti-solvent treatment=diethyl ether 0.03 0.09 1.11 8 

  Precursor solution=DMF+DMSO 0.10 0.34 1.07 30 

Scan rate=0.05-0.1V/s 0.09 0.28 1.04 25 

ETL=TiO2 0.25 0.84 1.04 74 

ETL=ZnO 0.01 0.05 1.03 4 

Precursor solution=DMSO 0.01 0.05 1.03 4 

Deposition procedure=two-step 0.11 0.36 1.02 32 

ETL-2=mTiO2 0.12 0.39 1.01 34 

Deposition procedure=one-step 0.19 0.64 0.99 56 

 Deposition method=spin-dip 0.06 0.19 0.98 17 

 Anti-solvent treatment=no 0.18 0.60 0.98 53 

Back contact=Au 0.20 0.68 0.98 60 

 Back contact=Ag  0.07 0.23 0.97 20 

Precursor solution=DMF  0.13 0.43 0.95 38 

 Perovskite=MAPbI3 0.16 0.52 0.92 46 

Deposition method=spin 0.12 0.40 0.91 35 

 Precursor solution=DMSO+GBL 0.02 0.06 0.84 5 

ETL=SnO2 0.01 0.03 0.84 3 

 HTL additive=LiTFSI+TBP 0.16 0.55 0.83 48 

 HTL=spiro-OMeTAD 0.20 0.66 0.82 58 

 Scan rate=0.5-1 V/s 0.01 0.02 0.74 2 

 Perovskite=FA based 0.01 0.02 0.74 2 

 Back contact=Ag-Al 0.00 0.01 0.67 1 

 Precursor solution=DMF+others (HI, Al, 

4MSA*******) 

0.01 0.03 0.67 3 

 ETL-2=0 0.08 0.27 0.67 24 

 Perovskite=MAPbI3-xClx 0.03 0.10 0.65 9 

 Scanrate=0.1-0.5 V/s 0.04 0.14 0.58 12 

 Deposition methods=vasp 0.00 0.01 0.56 1 

Anti-solvent treatment=chlorobenzene 0.03 0.10 0.54 9 

ETL-2=mAl2O3 0.00 0.01 0.48 1 

 Scan rate=1-20 V/s 0.00 0.01 0.48 1 

ETL= doped TiO2 0.00 0.01 0.42 1 
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Table C.9. Association Rule Mining for HI ≤ 0.01 and PCE ≥ 10 % for Inverted (p-i-

n) Cells with Scan Rate≤ 0.05 V/s (PCE≥10% for All Cells) 

 

  

Table C.8. Association Rule Mining for HI ≤ 0.05 for Regular (n-i-p) Cells with 

Various Scan Rates (without PCE restriction) (cont.). 

 

*HaHc: hydroxylamine hydrochloride 
**IZO: sputtered amorphous indium zinc oxide 

***Rgs: Reduced graphene scaffold 

****BCF: tris(pentafluorophenyl)borane 
*****others: poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole) 

(PPDT2FBT), a novel N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap material (DPIO), 

Dimethoxydiphenylamine-substituted dispiro-oxepine derivative 2,2′,7,7′-tetrakis-(N,N′-di-4-methoxyphenylamine)dispiro-
[fluorene-9,4′-dithieno[3,2-c:2′,3′-e]oxepine-6′,9′′-fluorene] (DDOF), diphenylamine‐substituted carbazole‐based derivatives 

(V885, V886, V908,V911, V928, V931, V946, V957, V1039), 4,40 

-(10-(4-methoxyphenyl)-9,9-dimethyl-9,10-dihydroacridine-2,7-diyl)bis(N,Nbis(4-methoxyphenyl)aniline) (ACR-TPA), a novel 
carbazole-based HTL including extended π-conjugated central core+hexyloxy flexible group ( SGT-410), 5,10,15-trihexyl-3,8,13-

trimethoxy-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-c]carbazole (KR122), CuI  

******PTEBS: polythiophene derivative sodium poly[2-(3-thienyl)ethyloxy-4-butylsulfonate]  
*******4MSA: 4-methylbenzenesulfonic acid 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.01 

 

PCE ≥ 10 % 
 

Scan rate≤ 0.05 

V/s 
 

 

Precursor solution=DMSO+GBL+others (Ag) 0.03 0.06 2.06 1 

 Deposition method=masp* 0.03 0.06 2.06 1 

HTL=doped-NiOx 0.03 0.06 2.06 1 

 Deposition method=spin2-3 0.23 0.47 1.65 8 

Anti-solventtreatment=toluene 0.26 0.53 1.43 9 

ETL=PCBM+C60 0.06 0.12 1.37 2 

Precursor solution=DMSO+GBL 0.11 0.24 1.37 4 

HTL-2=others (mNiOx-Cu, PEDOT:PSS, 

DEA**) 0.11 0.24 1.37 4 

ETL-2=others (TiOx, PN4N***, LiF)  0.11 0.24 1.37 4 

HTL=NiOx 0.17 0.35 1.24 6 

Perovskite=MAPbI3 0.34 0.71 1.18 12 

ETL=PCBM 0.40 0.82 1.15 14 

Deposition procedure=one-step 0.46 0.94 1.14 16 

ETL-2=BCP 0.17 0.35 1.12 6 

BC=Ag 0.31 0.65 1.08 11 

Precursor solution=DMF 0.09 0.18 1.03 3 

HTL=PTAA 0.03 0.06 1.03 1 

HTL=others (P3HT) 0.03 0.06 1.03 1 

Anti-solventtreatment=chlorobenzene 0.06 0.12 1.03 2 

Perovskite=mixed cation 0.06 0.12 1.03 2 

Scan rate=0-0.05 V/s 0.49 1.00 1.00 17 

Back contact=Al 0.17 0.35 0.95 6 

Precursor solution=DMF+DMSO 0.17 0.35 0.95 6 

HTL-2=0 0.37 0.76 0.92 13 

Perovskite=MAPbI3-xClx 0.09 0.18 0.88 3 

HTL=PEDOT:PSS 0.20 0.41 0.85 7 

Precursor solution=DMF+others (HI, 

DIO****) 0.06 0.12 0.82 2 

ETL-2=0 0.20 0.41 0.80 7 

Deposition method=spin 0.20 0.41 0.80 7 
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Table C.10. Association Rule Mining for HI ≤ 0.01 for Inverted (p-i-n) Cells with 

Various Scan Rates (all cells except two have PCE ≥10%). 

  

Table C.9. Association Rule Mining for HI ≤ 0.01 and PCE ≥ 10 % for Inverted 

(p-i-n) Cells with Scan Rate≤ 0.05 V/s (PCE≥10% for All Cells) (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.01 
 

PCE ≥ 10 % 

 
Scan rate≤ 0.05 

V/s 

 
 

Anti-solvent treatment=no 0.17 0.35 0.69 6 

HTL=doped-PEDOT:PSS 0.03 0.06 0.69 1 

Precursor solution=DMSO 0.03 0.06 0.69 1 

ETL=C60 0.03 0.06 0.51 1 

Deposition method=spin-spin 0.03 0.06 0.34 1 

Deposition procedure=two-step 0.03 0.06 0.34 1 

*masp: meniscus asisted spin coating 

**DEA: diethanolamine 

***PN4N: polymeric interfacial modification layer to improve the cathode interface 
****DIO: 1,8-diiodooctane 

Antecedent Consequent Support Confidence Lift  Data count  

HI ≤ 0.01 
 

 

 
 

 Deposition method=masp* 0.01 0.04 3.44 1 

 Anti-solvent treatment=diethyl ether  0.02 0.07 2.30 2 

 Anti-solvent treatment=toluene  0.14 0.48 1.95 13 

 ETL-2=BCP  0.10 0.33 1.72 9 

 Precursor solution=na  0.01 0.04 1.72 1 

 Anti-solvent treatment=chlorobenzene+others 
(ITIC)  

0.01 0.04 1.72 1 

 Precursor solution=DMSO+GBL+others** 0.02 0.07 1.72 2 

 Perovskite=mixed cation  0.04 0.15 1.72 4 

 Deposition method=spin 2-3  0.11 0.37 1.72 10 

 Scan rate=0-0.05 V/s 0.18 0.63 1.67 17 

 Precursor solution=DMSO+GBL  0.09 0.30 1.62 8 

 HTL-2=others (mNiOx-Cu, PEDOT:PSS, DEA***) 0.08 0.26 1.61 7 

 ETL-2=others**** 0.08 0.26 1.42 7 

 ETL=PCBM  0.23 0.78 1.29 21 

 Back contact=Ag  0.23 0.78 1.17 21 

 Precursor solution=DMSO  0.01 0.04 1.15 1 

 Precursor solution=DMF+others (HI, DIO) 0.02 0.07 1.15 2 

 HTL=NiOx  0.09 0.30 1.15 8 

 HTL=doped-NiOx  0.03 0.11 1.15 3 

 Deposition procedure=one-step  0.28 0.96 1.12 26 

 Scan rate=0.05-0.1 V/s 0.06 0.22 1.09 6 

 Perovskite=MAPbI3  0.19 0.67 1.02 18 

 Precursor solution=DMF+DMSO  0.11 0.37 1.01 10 

 HTL=PEDOT:PSS  0.14 0.48 1.00 13 

 HTL-2=0  0.22 0.74 0.88 20 

 Deposition method=spin  0.16 0.56 0.88 15 

 HTL=doped-PEDOT:PSS 0.01 0.04 0.86 1 

 Perovskite=MAPbI3-xClx  0.05 0.19 0.82 5 

 ETL=C60  0.02 0.07 0.77 2 

 Back contact=Al  0.06 0.22 0.74 6 

 HTL=PTAA  0.01 0.04 0.69 1 
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Figure C.1. Decision tree model for regular (n-i-p) cells in hysteresis analysis without PCE 

restriction (minimum split number=5, maximum depth=6, complexity parameter=0). 

 

 

Table C.10. Association Rule Mining for HI ≤ 0.01 for Inverted (p-i-n) Cells with 

Various Scan Rates (all cells except two have PCE ≥10%) (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count  

 

 Anti-solvent treatment=no  0.08 0.26 0.69 7 

 ETL-2=0  0.12 0.41 0.65 11 

 ETL=PCBM+C60  0.04 0.15 0.63 4 

 Scan rate=1-10 V/s 0.01 0.04 0.57 1 

 HTL=others (P3HT) 0.01 0.04 0.57 1 

 Anti-solvent treatment=chlorobenzene  0.04 0.15 0.48 4 

 Precursor solution=DMF  0.03 0.11 0.43 3 

 Scan rate=0.1-0.5 V/s 0.03 0.11 0.40 3 

 Deposition method=spin-spin  0.01 0.04 0.31 1 

 Deposition procedure=two-step  0.01 0.04 0.26 1 

*masp: meniscus asisted spin coating 

**others:  2-aminoethanesulfonamide hydrochloride (ASCI), Ag 

***DEA: diethanolamine 
****others: polymeric interfacial modification layer to improve the cathode interface (PN4N), TiOx,  LiF,rhodamine 101/LiF, 

aluminium-doped ZnO (AZO)/SnOx, PEI) 



199 

 

Table C.11. Confusion Matrix of Hysteresis Analysis of Regular Cells without PCE 

Restriction 

 
  Actual Class    

  Class A Class B Class C Precision  

Predicted Class 

Class A 54 9 5 79% 

Class B 6 44 15 68% 

Class C 0 9 41 82% 

 Accuracy  90% 71% 67%  

Overall accuracy  
76%   

 

Table C.12. Explanation for the Term of “others” in Figure 4.25. 

 

 Article name Instance  Article name Instance  Article name Instance  

Others1 Li, M. et al., 
ChemSusChem 9, 

2862–2869 (2016) 

Chl-1 Rakstys, K. et al., J. 
Am. Chem. Soc. 137, 

16172–16178 (2015) 

KR145 Magomedov, 
A. et al., 

Adv. Funct. 

Mater. 28, 
1704351 

(2018) 

V908 

Cheng, N. et al., 
Electrochim. Acta 

246, 990–996 (2017) 

CuPc Koh, C. W. et al., 
ACS Appl. Mater. 

Interfaces 9, 43846–

43854 (2017) 

PPDT2FBT-BCF Magomedov, 
A. et al., 

Adv. Funct. 

Mater. 28, 
1704351 

(2018) 

V911 

Rakstys, K. et al., J. 
Mater. Chem. A 4, 

18259–18264 (2016) 

DDOF Paek, S. et al., Adv. 
Mater. 29, 1606555 

(2017) 

TPA-CN Magomedov, 
A. et al., 

Adv. Funct. 

Mater. 28, 

1704351 

(2018) 

V928 

Jeon, S. et al., Org. 

Electron. physics, 
Mater. Appl. 37, 

134–140 (2016) 

DPIO Liu, X. et al., 

ChemSusChem 10, 
968–975 (2017) 

TPA-TPM Magomedov, 

A. et al., 
Adv. Funct. 

Mater. 28, 

1704351 
(2018) 

V931 

Paek, S. et al., Adv. 

Mater. 29, 1606555 
(2017) 

FA-CN Liu, X. et al., 

ChemSusChem 10, 
968–975 (2017) 

TPA-TPM Magomedov, 

A. et al., 
Adv. Funct. 

Mater. 28, 

1704351 
(2018) 

V946 

Mahmud, M. A. et 

al., 19, 21033–21045 

(2017) 

FDT Magomedov, A. et al., 

Adv. Funct. Mater. 28, 

1704351 (2018) 

V1039 Magomedov, 

A. et al., 

Adv. Funct. 
Mater. 28, 

1704351 

(2018) 

V957 
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Table C.12. Explanation for the Term of “others” in Figure 4.25 (cont.). 

 

 Article name Instance  Article name Instance  Article name Instance  

Others1 Rakstys, K. et al., J. 
Am. Chem. Soc. 137, 

16172–16178 (2015) 

KR131 Magomedov, A. et al., 
Adv. Funct. Mater. 28, 

1704351 (2018) 

V885   

Rakstys, K. et al., J. 

Am. Chem. Soc. 137, 

16172–16178 (2015) 

KR133 Magomedov, A. et al., 

Adv. Funct. Mater. 28, 

1704351 (2018) 

V886   

 Article name Instance  Article name Instance  Article name Instance  

Others2 Fernandes, S. L. et 
al., Mater. Lett. 181, 

103–107 (2016) 

Nb2O5 Upama, M. B. et al., 
Org. Electron. 50, 

279–289 (2017) 

PCBM Luo, Q. et 
al., Adv. 

Funct. 

Mater. 27, 
1702090 

(2017) 

α-Fe2O3 

Hu, W. et al., J. 

Mater. Chem. A 5, 
1434–1441 (2017) 

In2S3     

 

Table C.13. Explanation for the Term of “others” in Figure C.1. 

 

 Article name Instance  Article name Instance  Article name Instance  

Others1 Fernandes, S. L. 

et al., Mater. 

Lett. 181, 103–

107 (2016) 

Nb2O5 Upama, M. 

B. et al., Org. 

Electron. 50, 

279–289 

(2017) 

PCBM Luo, Q. et al., 

Adv. Funct. 

Mater. 27, 

1702090 

(2017) 

α-Fe2O3 

Hu, W. et al., J. 

Mater. Chem. A 

5, 1434–1441 

(2017) 

In2S3     

Others2 Heo, J. H. and 

Im, S. H., 

Nanoscale 8, 

2554–2560 

(2016) 

HI Dar, M. I. et 

al., Adv. 

Funct. Mater. 

27, 1701433 

(2017) 

HBr Chen, H. Bin et 

al., ACS Appl. 

Mater. 

Interfaces 10, 

2603–2611 

(2018) C60/o-DCB 

Others3  Jiang, H. et al., 

ACS Appl. 

Energy Mater. 1, 

900–909 (2018) 

HaHc   
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APPENDIX D: ADDITIONAL INFORMATION ON ANALYSIS OF 

LONG-TERM STABILITY 

 

 

Table D.1. Association Rule Mining for Regular (n-i-p) Cells with PCE≥10% Stable 

More Than 15 Days . 

  
Antecedent Consequent Support Confidence Lift  Data count 

Stable more 

than 15 days 
 

 

ETL-2=PCBM 0.02 0.04 2.18 5 

Anti-solvent treatment=ethylacetate 0.00 0.01 2.18 1 

Anti-solvent treatment=IPA 0.00 0.01 2.18 1 

ETL=doped-ZnO 0.00 0.01 2.18 1 

HTL=doped-P3HT 0.00 0.01 2.18 1 

Deposition method=dip-spin 0.00 0.01 2.18 1 

ETL=others (Ti0.94Li0.03Mg0.03O2 , Cd2SnO4) 0.01 0.02 2.18 2 

ETL= doped-TiO2 0.01 0.02 2.18 2 

ETL=α-Fe2O3 0.01 0.03 2.18 4 

Anti-solvent treatment=chlorobenzene+others*  0.03 0.06 2.18 8 

HTL=inorganic 0.03 0.07 1.96 9 

HTL=no 0.04 0.08 1.85 11 

Precursor solution=DMF+DMSO+others**  0.04 0.09 1.75 12 

Deposition method=spin-drip 0.01 0.02 1.64 3 

HTL=PTAA 0.01 0.02 1.64 3 

ETL-2=others***  0.02 0.05 1.53 7 

ETL-2=doped-mTiO2 0.03 0.08 1.45 10 

Back contact=carbon 0.03 0.08 1.45 10 

Perovskite=mixed cation 0.16 0.36 1.42 47 

HTL additive=F4TCNQ 0.02 0.04 1.36 5 

Stored humidity=0-30% RH 0.30 0.66 1.36 87 

Precursor solution=DMF+others****  0.04 0.09 1.31 12 

Precursor solution=DMSO+GBL 0.02 0.05 1.27 7 

ETL=SnO2  0.03 0.06 1.25 8 

HTL additive=no 0.15 0.33 1.25 44 

Anti-solvent treatment=diethyl ether 0.03 0.07 1.23 9 

Deposition method=spin 2-3 0.15 0.33 1.20 44 

Precursor solution=DMF+DMSO 0.17 0.37 1.17 49 

Anti-solvent treatment=chlorobenzene 0.13 0.28 1.15 37 

Back contact=Au 0.36 0.78 1.10 103 

Deposition method=vasp 0.02 0.05 1.09 6 

HTL additive=LiTFSI+TBP+FK209 0.06 0.13 1.09 17 

Perovskite=Cs2AgBiBr6  0.00 0.01 1.09 1 

Anti-solvent treatment=polystyrene 0.00 0.01 1.09 1 

Perovskite=Cs based 0.00 0.01 1.09 1 

Perovskite=MAPbI3-xBrx 0.00 0.01 1.09 1 

Precursor solution=na 0.00 0.01 1.09 1 

Deposition procedure=one-step 0.33 0.71 1.07 94 

O2 =no 0.05 0.11 1.06 15 

Stored condition=dark 0.21 0.45 1.04 60 
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Table D.1. Association Rule Mining for Regular (n-i-p) Cells with PCE≥10% 

Stable More Than 15 Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data 

count 

Stable more 
than 15 days 

 

ETL=ZnO 0.02 0.05 1.02 7 

ETL-2=0 0.18 0.39 1.00 51 

O2=yes 0.41 0.89 0.99 117 

Deposition method=spin 0.17 0.38 0.97 50 

Perovskite=FA based 0.01 0.03 0.97 4 

Stored condition=room-light 0.25 0.55 0.97 72 

HTL=spiro-OMeTAD 0.32 0.69 0.96 91 

ETL-2=mTiO2 0.20 0.43 0.95 57 

ETL=TiO2 0.38 0.82 0.95 108 

Perovskite=MAPbI3 0.24 0.53 0.91 70 

HTL additive=LiTFSI+TBP 0.22 0.48 0.90 64 

Anti-solvent treatment=no 0.24 0.53 0.88 70 

HTL=others*****   0.05 0.11 0.87 14 

Deposition procedure=two-step 0.13 0.29 0.86 38 

Deposition method=spin-spin 0.05 0.11 0.82 15 

Precursor solution=DMF 0.15 0.33 0.77 44 

Stored humidity=30-60% RH 0.14 0.30 0.75 39 

Deposition method=spin-dip 0.05 0.10 0.75 13 

Precursor solution=GBL 0.00 0.01 0.73 1 

Precursor solution=DMSO+others (Pb(SCN)2) 0.00 0.01 0.73 1 

HTL additive=other (LiTFSI+2‐
amylpyridine+FK102, Cu(bpcm) 0.01 0.02 0.73 2 

Anti-solvent treatment=toluene 0.02 0.04 0.68 5 

Precursor solution=DMSO 0.02 0.04 0.68 5 

Back contact=Ag 0.06 0.14 0.64 18 

Perovskite=MAPbI3-xClx 0.03 0.06 0.51 8 

ETL-2=TiO2-ns 0.00 0.01 0.44 1 

Stored humidity=above 60% RH 0.02 0.05 0.37 6 

HTL=P3HT 0.01 0.02 0.36 3 

Back contact=Ag-Al 0.00 0.01 0.31 1 

ETL-2=C60 0.00 0.01 0.22 1 

* others: acetonitrile, toluene, p‐type polymer with or without (w/wo) molecular fluorination (PF‐0, PF‐1), n‐type polymer w/wo 

molecular fluorination (N2200, F‐N2200) 

**others: benzoquinone (BQ), 2-pyridylthiourea, N-Methyl-2-Pyrrolidone (NMP), Pb(SCN)2, terephthalic acid (TPA) 
***others: mZnO, ZnO-SnO2-nanotube array, Passivated Tin Oxide (PTO),m-α-Fe2O3, polystyrene (PS) 

****others: thiourea, caprolactam (CPL), PCBM+PEG, PEI, C60/1,2-dichlorobenzene(o-DCB), PDMS-urea, 1,2-
dichlorobenzene(o-DCB), 4-TBP 

*****others: a novel arylamine-based hole transporting materials with an anthracene p-linker (A102), 2,9,16-triphenoxy-23-

nitrophthalocyaninatocobalt (CoPcNO2-Oph), crosslinked 4,4′,4″‐tris(N‐carbazolyl)triphenylamine (TCTA-BVP), 2,2′,7,7′-tetrakis-
(N,N′-di-4-methoxyphenylamine)dispiro-[fluorene-9,4′-dithieno[3,2-c:2′,3′-e]oxepine-6′,9′′-fluorene] (DDOF), 2´,7´-bis(bis(4-

methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b´]dithiophene-4,9´-fluorene] (FDT), poly[bis(4-phenyl)(2,5,6-

trimentlyphenyl)amine (PTAA),5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3´,2´-c]carbazole 
(HMPDI), a benzothiadiazole unit incorporated into the biphenyl core (JY5), p-π conjugated structure that are built up by electron-

rich piperazine derivates N-bridge connecting triarylamine donors (Me-QTPA),  octamethyl-substituted palladium(II) 

phthalocyanine (PdMe2Pc), a novel dopant‐free TPA‐based butterfly‐shaped HTL (Z1011), two novel thiophene-based HTLs (Z25, 

Z26), metallophthalocyanine with different metal core 2,9,16-triphenoxy-23-nitrophthalocyaninatozinc (ZnPcNO2-Oph) 
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Table D.2. Association Rule Mining For Regular (n-i-p) Cells Stable More Than 30 

Days. 

  
Antecedent Consequent Support Confidence Lift  Data count 

Stable more 

than 30 days 

 
 

Anti-solvent treatment=ethylacetate 0.00 0.01 3.51 1 

Deposition method=dip-spin 0.00 0.01 3.51 1 

ETL=others (Cd2SnO4) 0.00 0.01 3.51 1 

ETL=doped-ZnO 0.00 0.01 3.51 1 

ETL=doped-TiO2 0.01 0.03 3.51 2 

ETL-2=PCBM 0.01 0.04 3.51 3 

ETL=α-Fe2O3 0.01 0.04 3.51 3 

HTL=inorganic 0.02 0.07 2.93 5 

HTL=PTAA 0.01 0.04 2.64 3 

Anti-solvent treatment=chlorobenzene-others* 0.02 0.08 2.64 6 

Deposition method=spin-drip 0.01 0.03 2.34 2 

HTL=no 0.02 0.07 2.20 5 

Precursor solution=DMF+DMSO+others**  0.03 0.10 2.05 7 

ETL-2=others***  0.02 0.06 2.01 4 

HTL additive=F4TCNQ 0.02 0.06 2.01 4 

Back contact=carbon 0.02 0.07 1.76 5 

Perovskite=Cs2AgBiBr6  0.00 0.01 1.76 1 

Precursor solution=na 0.00 0.01 1.76 1 

Perovskite=Cs based 0.00 0.01 1.76 1 

Perovskite=MAPbI3-xBrx  0.00 0.01 1.76 1 

Perovskite=mixed cation 0.11 0.38 1.58 27 

ETL-2=doped-mTiO2  0.02 0.06 1.56 4 

Anti-solvent treatment=chlorobenzene 0.10 0.36 1.47 26 

ETL=SnO2  0.02 0.07 1.46 5 

Deposition method=spin 2-3 0.12 0.42 1.44 30 

Stored humidity=0-30% RH 0.19 0.67 1.39 48 

Precursor solution=DMF+DMSO 0.13 0.44 1.39 32 

HTL additive=no 0.09 0.31 1.25 22 

Precursor solution=GBL 0.00 0.01 1.17 1 

Perovskite=FA based 0.01 0.04 1.17 3 

Precursor solution=DMSO+GBL 0.02 0.06 1.17 4 

Stored condition=dark 0.15 0.53 1.17 38 

Back contact=Au 0.23 0.82 1.16 59 

Deposition procedure=one-step 0.21 0.75 1.15 54 

HTL additive=LiTFSI+TBP+FK209 0.04 0.13 1.13 9 

O2=yes 0.27 0.94 1.04 68 

Precursor solution=DMF+others****  0.02 0.07 1.03 5 

ETL-2=mTiO2 0.13 0.44 0.97 32 

HTL=spiro-OMeTAD 0.20 0.71 0.95 51 

ETL=TiO2 0.23 0.82 0.94 59 

ETL-2=0 0.11 0.38 0.93 27 

Deposition method=spin 0.09 0.33 0.92 24 

Anti-solvent treatment=diethyl ether 0.01 0.04 0.88 3 

HTL additive=LiTFSI+TBP 0.14 0.50 0.88 36 

Stored condition=room-light 0.13 0.47 0.86 34 

HTL=others*****  0.03 0.10 0.85 7 

Perovskite=MAPbI3 0.13 0.47 0.82 34 



204 

 

 

 

Table D.3. Association Rule Mining for Regular (n-i-p) Cells Stable More Than 60 

Days. 

  

Table D.2. Association Rule Mining For Regular (n-i-p) Cells Stable More Than 

30 Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 
than 30 days 

 

 

Anti-solvent treatment=no 0.14 0.49 0.79 35 

Stored humidity=30-60% RH 0.09 0.31 0.77 22 

Deposition method=spin-spin 0.03 0.11 0.76 8 

Deposition procedure=two-step 0.07 0.25 0.72 18 

HTL additive=others (LiTFSI+2‐
amylpyridine+FK102) 

0.00 0.01 0.70 1 

ETL-2=TiO2-ns 0.00 0.01 0.70 1 

Precursor solution=DMF 0.08 0.28 0.64 20 

Deposition method=vasp 0.01 0.03 0.64 2 

O2=no 0.02 0.06 0.59 4 

Perovskite=MAPbI3-xClx 0.02 0.07 0.55 5 

Precursor solution=DMSO 0.01 0.03 0.54 2 

Deposition method=spin-dip 0.02 0.07 0.50 5 

Back contact=Ag 0.03 0.11 0.49 8 

ETL-2=C60 0.00 0.01 0.35 1 

ETL=ZnO 0.00 0.01 0.29 1 

Anti-solvent treatment=toluene 0.00 0.01 0.27 1 

Stored humidity=above 60% RH 0.01 0.03 0.22 2 

HTL=P3HT 0.00 0.01 0.21 1 

* others: acetonitrile, toluene, p‐type polymer with or without (w/wo) molecular fluorination (PF‐0, PF‐1), n‐type polymer without 
molecular fluorination (F‐N2200) 

**others: benzoquinone (BQ), 2-pyridylthiourea, N-Methyl-2-Pyrrolidone (NMP), Pb(SCN)2 

***others: mZnO, Passivated Tin Oxide (PTO) 
****others: thiourea, caprolactam (CPL), PCBM+PEG, C60/1,2-dichlorobenzene(o-DCB), PDMS-urea 

*****others: crosslinked 4,4′,4″‐tris(N‐carbazolyl)triphenylamine (TCTA-BVP), 2,2′,7,7′-tetrakis-(N,N′-di-4-

methoxyphenylamine)dispiro-[fluorene-9,4′-dithieno[3,2-c:2′,3′-e]oxepine-6′,9′′-fluorene] (DDOF), poly[bis(4-phenyl)(2,5,6-
trimentlyphenyl)amine (PTAA),5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3´,2´-c]carbazole 

(HMPDI), a novel dopant‐free TPA‐based butterfly‐shaped HTL (Z1011), a novel thiophene-based HTL (Z26), 

metallophthalocyanine with different metal core 2,9,16-triphenoxy-23-nitrophthalocyaninatozinc (ZnPcNO2-Oph) 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 
than 60 days 

 

ETL= doped-ZnO 0.00 0.04 8.44 1 

ETL= doped-TiO2  0.00 0.04 8.44 1 

HTL=PTAA 0.01 0.08 5.63 2 

Deposition method=spin-drip 0.01 0.08 5.63 2 

HTL=inorganic 0.01 0.08 5.63 2 

Perovskite=Cs based 0.00 0.04 4.22 1 

HTL=no 0.01 0.12 4.22 3 

Back contact=carbon 0.02 0.16 3.75 4 

HTL additive=F4TCNQ 0.01 0.08 3.38 2 

ETL-2=others*  0.01 0.08 3.38 2 

Anti-solvent treatment=chlorobenzene+others 
(acetonitrile) 

0.00 0.04 2.81 1 

Precursor solution=GBL 0.00 0.04 2.81 1 

Precursor solution=DMF+DMSO+others**  0.01 0.08 2.41 2 

ETL-2=doped-mTiO2  0.01 0.08 2.41 2 
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Table D.4. Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 15 

Days. 

  

Table D.3. Association Rule Mining for Regular (n-i-p) Cells Stable More Than 60 

Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 
than 60 days 

 

Anti-solvent treatment=diethyl ether 0.01 0.12 2.11 3 

Precursor solution=DMF+DMSO 0.07 0.56 1.82 14 

Deposition method=spin 2-3 0.06 0.48 1.75 12 

Perovskite=mixed cation 0.04 0.36 1.73 9 

Stored humidity=0-30% RH 0.09 0.76 1.71 19 

HTL additive=LiTFSI+TBP+FK209 0.02 0.20 1.69 5 

HTL additive=no 0.04 0.32 1.41 8 

Anti-solvent treatment=chlorobenzene 0.03 0.28 1.28 7 

Stored condition=dark 0.06 0.48 1.13 12 

Back contact=Au 0.09 0.72 1.07 18 

ETL=SnO2 0.00 0.04 1.06 1 

Perovskite=FA based 0.00 0.04 1.06 1 

O2=yes 0.11 0.92 1.03 23 

ETL-2=mTiO2 0.06 0.48 1.02 12 

Deposition procedure=one-step 0.08 0.64 1.02 16 

Deposition method=spin-dip 0.02 0.16 0.99 4 

Deposition procedure=two-step 0.04 0.36 0.96 9 

ETL=TiO2  0.10 0.84 0.95 21 

Perovskite=MAPbI3  0.07 0.56 0.93 14 

Stored condition=room-light 0.06 0.52 0.91 13 

HTL=spiro-OMeTAD 0.08 0.68 0.90 17 

ETL-2=0 0.04 0.36 0.88 9 

Anti-solvent treatment=no 0.07 0.56 0.87 14 

Deposition method=vasp 0.00 0.04 0.84 1 

O2=no 0.01 0.08 0.77 2 

ETL=ZnO 0.00 0.04 0.70 1 

HTL additive=LiTFSI+TBP 0.05 0.40 0.69 10 

Precursor solution=DMF+others***  0.00 0.04 0.60 1 

Precursor solution=DMF 0.03 0.28 0.60 7 

Deposition method=spin-spin 0.01 0.08 0.54 2 

Stored humidity=30-60% RH 0.02 0.20 0.49 5 

Back contact=Ag 0.01 0.12 0.48 3 

Deposition method=spin 0.02 0.16 0.46 4 

HTL=others****  0.00 0.04 0.37 1 

Stored humidity=above 60% RH 0.00 0.04 0.27 1 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 

than 15 days 

Back contact=carbon 0.01 0.02 2.64 1 

Precursor solution=GBL 0.02 0.05 2.64 2 

ETL=others (SnO2, indium-doped zinc oxide 

(IZO)) 0.02 0.05 2.64 2 

Back contact=Cu 0.05 0.14 2.64 6 
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Table D.4. Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 

15 Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 

than 15 days 

HTL=PTAA 0.05 0.14 2.26 6 

ETL=PCBM+C60 0.04 0.11 2.20 5 

Precursor solution=DMF+others* (CHP, PVP, 
GO, V2Ox) 0.04 0.11 1.88 5 

Deposition method=blade coat 0.02 0.05 1.76 2 

Perovskite=mixed cation 0.06 0.16 1.68 7 

O2=no 0.20 0.52 1.64 23 

Back contact=Al 0.08 0.20 1.48 9 

Stored humidity=0-30% RH  0.27 0.70 1.46 31 

ETL-2=BCP 0.14 0.36 1.41 16 

Perovskite=MAPb0.5Sn0.5(I0.8Br0.2)3 0.01 0.02 1.32 1 

Precursor solution=na 0.01 0.02 1.32 1 

HTL=GO 0.03 0.07 1.32 3 

HTL-2=others**  0.03 0.09 1.32 4 

Perovskite=MAPbI3-xClx 0.09 0.23 1.32 10 

Precursor solution=DMF+DMSO 0.12 0.32 1.27 14 

Anti-solvent treatment=no 0.18 0.48 1.26 21 

Deposition method=spin-spin 0.05 0.14 1.22 6 

HTL=others***  0.05 0.14 1.22 6 

ETL=C60 0.04 0.11 1.20 5 

ETL-2=others****  0.06 0.16 1.15 7 

HTL= doped-PEDOT:PSS 0.03 0.07 1.13 3 

Deposition procedure=two-step 0.05 0.14 1.05 6 

Stored condition=room-light 0.30 0.80 1.05 35 

Deposition method=spin 0.22 0.57 1.01 25 

Deposition procedure=one-step 0.33 0.86 0.99 38 

HTL-2=0 0.34 0.91 0.99 40 

HTL=NiOx 0.07 0.18 0.96 8 

Precursor solution=DMF 0.13 0.34 0.94 15 

Precursor solution=2 methoxy ethanol+CHP 0.01 0.02 0.88 1 

HTL=doped-NiOx 0.02 0.05 0.88 2 

Stored humidity=above 60% RH 0.03 0.09 0.88 4 

Anti-solvent treatment=chlorobenzene 0.09 0.23 0.88 10 

Deposition method=spin 2-3 0.09 0.25 0.88 11 

ETL=PCBM  0.28 0.73 0.88 32 

Anti-solvent treatment=toluene 0.10 0.27 0.88 12 

ETL-2=0 0.18 0.48 0.87 21 

Stored condition=dark 0.08 0.20 0.85 9 

Perovskite=MAPbI3 0.22 0.59 0.83 26 

Back contact=Ag 0.24 0.64 0.82 28 

HTL=PEDOT:PSS 0.14 0.36 0.78 16 

O2=yes 0.18 0.48 0.70 21 

Precursor solution=DMF+DMSO+others 
(ascorbic acid) 0.01 0.02 0.66 1 

Precursor solution=DMSO+GBL 0.03 0.09 0.56 4 

Precursor solution=DMSO 0.01 0.02 0.53 1 

stored humidity=30-60% RH  0.08 0.20 0.49 9 
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Table D.5. Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 30 

Days. 

  

Table D.4. Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 

15 Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count 

 
Anti-solvent treatment=diethyl ether 0.01 0.02 0.44 1 

*others:  N-cyclohexyl-2-pyrrolidone (CHP), polyvinylpyrrolidone (PVP), GO, V2Ox 

**others:diethanolamine (DEA), Al2O3, mNiOx-Cu, mNiOx-Li 

***others: CuOx, CoOx, electropolymerized by targeted monomer M1 tethered bifunctional carbozolyl moieties (PAF-86), polyTPD, 
NiMgLiO, poly(3,4-ethylenedioxythiophene):sulfonated acetone-formaldehyde (PEDOT:SAF) 

****others: phenyl-C61-butyric acid 2-((2-(dimethylamino)ethyl) (methyl)amino) ethyl ester (PCBDAN), polyethylenimine (PEIE),  

amino-functionalized polymer (PN4N), LiF, PDIN, AZO/SnOx 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 
than 30 days 

O2=no 0.18 0.68 2.09 19 

Precursor solution=GBL 0.01 0.04 1.93 1 

Perovskite=MAPb0.5Sn0.5(I0.8Br0.2)3 0.01 0.04 1.93 1 

ETL=PCBM+C60 0.02 0.07 1.93 2 

Back contact=Cu 0.02 0.07 1.93 2 

Stored humidity=0-30% RH 0.22 0.86 1.75 24 

Precursor solution=DMF+others* (CHP,PVP, 
GO) 

0.03 0.11 1.65 3 

HTL= doped-PEDOT:PSS 0.03 0.11 1.65 3 

HTL=PTAA 0.02 0.07 1.54 2 

Perovskite=mixed cation 0.03 0.11 1.45 3 

Deposition method=spin-spin 0.04 0.14 1.40 4 

Back contact=Al 0.05 0.18 1.38 5 

Deposition method=blade coat 0.01 0.04 1.29 1 

HTL=GO 0.02 0.07 1.29 2 

HTL-2=others** 0.02 0.07 1.29 2 

HTL=doped-NiOx 0.02 0.07 1.29 2 

Perovskite=MAPbI3-xClx 0.06 0.21 1.29 6 

Precursor solution=DMF 0.12 0.46 1.22 13 

Anti-solvent treatment=chlorobenzene 0.08 0.32 1.20 9 

Deposition procedure=two-step 0.04 0.14 1.19 4 

HTL=NiOx 0.06 0.21 1.16 6 

ETL-2=BCP 0.07 0.29 1.14 8 

Anti-solvent treatment=no 0.10 0.39 1.09 11 

ETL-2=0 0.16 0.61 1.07 17 

ETL=C60 0.03 0.11 1.05 3 

HTL=others*** (NiMgLiO, CoOx, CuOx) 0.03 0.11 1.05 3 

Stored condition=dark 0.06 0.25 1.00 7 

Stored condition=room-light 0.19 0.75 1.00 21 

HTL-2=0 0.24 0.93 0.99 26 

Deposition procedure=one-step 0.22 0.86 0.97 24 

Precursor solution=DMF+DMSO 0.06 0.21 0.96 6 

Precursor solution=DMF+DMSO+others 

(ascorbic acid) 

0.01 0.04 0.96 1 

Deposition method=spin 2-3 0.07 0.29 0.96 8 
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Table D.6. Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 60 

Days. 

  

Table D.5.  Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 

30 Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count 

 

Deposition method=spin 0.14 0.54 0.96 15 

ETL=PCBM  0.21 0.82 0.96 23 

Back contact=Ag 0.19 0.75 0.93 21 

Perovskite=MAPbI3 0.17 0.64 0.87 18 

ETL-2=others****  0.03 0.11 0.83 3 

Anti-solvent treatment=toluene 0.06 0.25 0.79 7 

Precursor solution=DMSO 0.01 0.04 0.77 1 

HTL=PEDOT:PSS 0.09 0.36 0.74 10 

Anti-solvent treatment=diethyl ether 0.01 0.04 0.64 1 

Precursor solution=DMSO+GBL 0.03 0.11 0.64 3 

O2=yes 0.08 0.32 0.48 9 

stored humidity=30-60% RH  0.04 0.14 0.34 4 

*others:  N-cyclohexyl-2-pyrrolidone (CHP), polyvinylpyrrolidone (PVP), GO 

**others:diethanolamine (DEA), mNiOx-Cu 
***others: CuOx, CoOx, NiMgLiO 

****others: phenyl-C61-butyric acid 2-((2-(dimethylamino)ethyl) (methyl)amino) ethyl ester (PCBDAN), polyethylenimine (PEIE),  

amino-functionalized polymer (PN4N) 

Antecedent Consequent Support Confidence Lift  Data count 

Stable more 

than 60 days 

Precursor solution=DMF+others*  0.02 0.25 3.79 2 

O2=no 0.08 0.88 3.06 7 

HTL-2=others**  0.01 0.13 2.28 1 

Stored humidity=0-30% RH 0.09 1.00 2.28 8 

ETL-2=BCP 0.04 0.50 1.98 4 

HTL=GO 0.01 0.13 1.90 1 

Perovskite=MAPbI3-xClx 0.02 0.25 1.63 2 

Deposition method=spin-spin 0.01 0.13 1.42 1 

Anti-solvent treatment=no 0.04 0.50 1.42 4 

HTL=NiOx 0.02 0.25 1.34 2 

Precursor solution=DMF 0.04 0.50 1.34 4 

Stored condition=room-light 0.09 1.00 1.28 8 

HTL=PEDOT:PSS 0.05 0.63 1.21 5 

Deposition method=spin 2-3 0.03 0.38 1.18 3 

Deposition procedure=two-step 0.01 0.13 1.14 1 

ETL=PCBM  0.09 1.00 1.14 8 

Back contact=Ag 0.08 0.88 1.06 7 

Back contact=Al 0.01 0.13 1.03 1 

Anti-solvent treatment=chlorobenzene 0.02 0.25 0.99 2 

Deposition procedure=one-step 0.08 0.88 0.98 7 

Perovskite=MAPbI3 0.07 0.75 0.96 6 

ETL-2=others***  0.01 0.13 0.95 1 

HTL-2=0 0.08 0.88 0.94 7 



209 

 

 

 

 

 

Figure D.1. Decision tree model for regular (n-i-p) cells in stability analysis without PCE 

consideration (minimum split number=5, maximum depth=6, complexity parameter=0). 

 

 

 

 

 

Table D.6. Association Rule Mining for Inverted (p-i-n) Cells Stable More Than 

60 Days (cont.). 

 

Antecedent Consequent Support Confidence Lift  Data count 

 

Deposition method=spin 0.04 0.50 0.91 4 

Anti-solvent treatment=toluene 0.02 0.25 0.73 2 

Precursor solution=DMSO+GBL 0.01 0.13 0.71 1 

ETL-2=0 0.03 0.38 0.68 3 

Precursor solution=DMF+DMSO 0.01 0.13 0.60 1 

O2=yes 0.01 0.13 0.18 1 

*others:  N-cyclohexyl-2-pyrrolidone (CHP), GO 

**others:diethanolamine (DEA) 
***others: amino-functionalized polymer (PN4N) 
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Table D.7. Confusion Matrix of Regular Cells Without PCE Consideration. 

 
  Actual Class 

  Class A Class B Class C Precision  

Predicted Class 

Class A 87 15 4 82% 

Class B 5 68 35 63% 

Class C 0 9 55 86% 

 Accuracy  95% 16% 4%  

Overall accuracy  76%   

 

Table D.8. Explanation for the Term of “others” in Figure 4.29. 

 

 Article name Instance  Article name Instance  Article name Instance  

Others1 Yu, Y. et al., 

ChemSusChem 9, 

3288–3297 (2016) 

Pb(SCN)2 Hou, X. et al., 

ACS Appl. 

Mater. 
Interfaces 9, 

35200–35208 

(2017) 

TPA Wang, S. et 

al., Sol. RRL 

2, 1800034 
(2018) 

thiourea 

Guo, J. J. et al., 
Sol. Energy 155, 

121–129 (2017) 

NMP Yu, W. et al., 
Nano Energy 

45, 229–235 

(2018) 

BQ   

 Article name Instance  Article name Instance  Article name Instance  

Others2 Mahmud, M. A. et 
al., Electrochim. 

Acta 222, 1510–

1521 (2016) 

TBP Wei, J. et al., 
Nano Energy 

26, 139–147 

(2016) 

PCBM Liu, C. et al., 
J. Phys. Chem. 

C 121, 6546–

6553 (2017) 

TBP 

Chen, H. Bin et 

al., ACS Appl. 

Mater. Interfaces 

10, 2603–2611 

(2018) 

C60/o-DCB Xiang, W. et 

al., J. Mater. 

Chem. A 5, 

5486–5494 

(2017) 

PDMSurea Fei, C. et al., 

Adv. Energy 

Mater. 7, 

1602017 

(2017) 

thiourea 

Chen, H. Bin et 
al., ACS Appl. 

Mater. Interfaces 

10, 2603–2611 
(2018) 

o-DCB Zhao, Y. et al., 
Nat. Commun. 

7, 10228 

(2016) 

PEG   

 

Table D.9. Explanation for the Term of “others” in Figure D.1. 

 
 Article name Instance  Article name Instance  Article name Instance  

Others1 Hou, X. et al., 

Sol. Energy 

Mater. Sol. 

Cells 149, 121–

127 (2016) 

ZnGa2O4 Dang, V. Q. et 

al., Org. 

Electron. 

physics, Mater. 

Appl. 50, 247–

254 (2017) 

ZnO-nanorod Lee, Y. et al., 

Adv. Sci. 5, 

1800130 (2018) 

passivated SnO2 
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Table D.9. Explanation for the Term of “others” in Figure D.1.(cont.). 

 

 Article name Instance  Article name Instance  Article name Instance  

 Lei, Y. et al., J. 

Mater. Chem. A 

4, 5474–5481 

(2016) 

mZnO Gao, C. et al., 

Chem. Eng. J. 

325, 378–385 

(2017) 

ZnO-nanorod   

 

 

 




