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ABSTRACT

AN INTEGRATED COMPUTATIONAL AND

EXPERIMENTAL APPROACH TO ALLOSTERIC

CONTROL MECHANISM OF BIOMOLECULAR

PROCESSES

Proteins are flexible and dynamic in nature and can undergo structural rearrange-

ments to perform their functions. The motivation of this thesis is to develop a novel

integrated computational and experimental approach to understand the allosteric con-

trol of conformational transitions and molecular recognition. In the first part, a novel

methodology called Collective Modes Bias Exchange Metadynamics (CM-BexMetaD)

was developed and transition and allosteric control of transition of Adenylate kinase

was investigated. In the second part, allosteric control of binding of proteins were

studied through Elastic Network Models (ENM), Molecular Dynamics (MD), in-vitro

imaging and Dynamic Force Spectroscopy (DFS) using AFM. A strong association be-

tween the hinge positions of global modes and allosteric mutations was shown by a large

scale statistical analysis. The binding behavior of pyrin domain (PYD) and assembly

formation of ASC protein was studied in-silico supported by in-vitro experiments and

the results showed that, the ASC speck is an organized structure and the interaction of

the domains are controlled via hinge residues. Further, the allosteric control of binding

have been elucidated on the kinesin- aÃ-tubulin and Rac1-PAK1 interactions by pre-

diction of hinge residues that would affect the binding behavior of proteins and then

the resulting change in the binding energy landscape were investigated by DFS and last

the mechanistic explanation of the alteration of the allosteric communication network

was studied via MD studies. Both kinesin- αβ-tubulin and Rac1-PAK1 protein com-

plexes have alternative dissociation pathways where hinge residues as mechanistically

key sites that allosterically control the binding behavior of molecules.
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ÖZET

BIYOMOLEKÜLER SÜREÇLERIN ALOSTERIK

KONTROL MEKANIZMASINA HESAPLAMALI VE

DENEYSEL ENTEGRE BIR YAKLASIM

Proteinler esnek ve dinamik yapılardır ve işlevsel yapısal değişimler gösterirler.

Bu tezin ana motivasyonu, konformasyonel geçişlerin ve moleküllerin bağlanma süreçle-

rinin alosterik kontrolünü anlamaya yönelik hesaplamalı ve deneysel entegre bir yöntem

geliştirmektir. Oncelikle, kararlı yapılar arasındaki geçişler ve serbest enerji yüzeylerini

belirlemeye yönelik, Kolektif Modlar Bayas Değişimli Metadinamik (CM-BexMetaD)

olarak adlandırılan özgün bir yöntem geliştirilmiştir. Adenilat kinaz enziminin birçok

ara yapısı belirlenmiş ve menteşe bölgelerinin alosterik etkisi gösterilmiştir. Ikinci

bölümde, ENM, moleküler dinamik (MD), in-vitro görüntüleme ve Atomik Kuvvet

Mikroskopu-Dinamik Kuvvet Spektroskopisi (AFM-DFS) yöntemleri ile proteinlerin

bağlanma mekanizmalarının alosterik kontrolu üzerine çalışılmıştır. SKEMPI verita-

banindaki mutasyonlar ile menteşe bölgeleri arasındaki kuvvetli ilişki, geniş çaplı is-

tatistiksel bir analiz ile gosterilmistir. In-silico ve in-vitro deneyler ile PYD ve ASC

proteinlerindeki menteşe bölgelerindeki mutasyonlarin bağlanma davranışı üzerindeki

etkisi çalışılmıştır. ASC zerreciklerinin en az iki seviyeli organize yapılar olduğu ve

menteşe bölgeleri aracılığı ile kontrol edildiği belirlenmiştir. Bunlara ek olarak, AFM-

DFS yöntemini kapsayan hibrit bir yaklaşım geliştirilerek, protein-protein bağlanma

mekanizmalarinin menteşe bölgeleri aracılığı ile alosterik olarak kontrol edildiği, kinezin-

αβ-tübülin ve Rac1-PAK1 etkileşimleri üzerinden ortaya konulmuştur. Alosterik haber-

leşme ağındaki değişimin mekanik izahı ise MD simülasyonları ile belirlenmiştir. Elde

edilen sonuçlar ile kinezin-αβ-tübülin ve Rac1-PAK1 kompleks yapılarının alternatif

ayrılma patikalarına sahip oldukları ve menteşe bölgelerinin bağlanma davranışlarını

alosterik olarak kontrol eden anahtar bölgeler olduğu ortaya konulmuştur.
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1. INTRODUCTION

Proteins are building blocks of essential biological processes and they interact

with other proteins and/or molecules such as small peptides, DNA, RNA, etc. to

perform their functions within the cell. The correct binding between these molecules

requires specific interaction between two or more of them through non-covalent bond-

ing, which is refereed as molecular recognition. In recent years, dynamic models of

molecular recognition are recognized rather than classical rigid lock-and-key binding

model. Induced fit and conformational selection have recently appeared as two major

models [1]. It is however now understood that the molecular recognition involves both

induced fit and conformational selection mechanism and it thus requires detailed un-

derstanding of conformational flexibility and dynamics of the biomolecules over large

time scales.

Proteins undergo local to global conformational changes to perform their func-

tions. The conformational ensemble of proteins, which is related to their free energy

landscape, needs to be explored to decipher the mechanism underlying biological func-

tion. Excursions of stable minima and the barriers in between are associated with

functional dynamics of proteins. Even though under ambient conditions most proteins

fold into three-dimensional structures (their native conformation), dynamical transi-

tions between different conformations are essential to perform specific tasks. To this,

computational and experimental techniques have evolved to explore conformational

ensemble of proteins. Both complementing each other, bridging of computational tools

with experimental techniques is still an important challenge.

Computer simulations of biomolecules have an enormous growth since the first

atomistic biomolecular simulation published in 1977 [2]. Atomistic molecular dynamics

(MD) simulations utilizing classical mechanics have great contribution to understand-

ing the dynamic nature of biomolecules. However, MD simulations have two main

limitations; despite limited time scales it has high computational cost and force fields

may not be inaccurate for large time scales [3]. The time resolution of interesting



2

biomolecular processes is significantly longer than conventional MD simulations [4].

These limitations of MD simulations has led to the development of either advanced

methods to enhance the sampling of high probability metastable states and rare events

which requires crossing of high free energy barriers [5] or coarse grained methods (such

as Elastic Network Models, ENM) to reduce the computational cost and to study large

systems [6-9].

Experimental techniques may provide direct and indirect evidences for confor-

mations of proteins and assemblies and their dynamics, such as X-ray crystallography,

Nuclear Magnetic Resonance (NMR), electron microscopy (EM) or small-angle X-ray

scattering (SAXS). However, these techniques provide rather static images of populated

conformational states or sometimes not feasible for large or highly dynamic systems

[10]. Within the last quarter of century, another experimental technique, Atomic Force

Microscopy (AFM) has come into use either to obtain topographic images of molecules

or to study the mechanics of molecular recognition. Since AFM can operate in a fluid

medium, which is very close to the physiological conditions of biomolecules, and does

not require any special treatment of biological sample such as crystallization or fixa-

tion, it makes possible to simultaneously and directly observe both the structure and

dynamics of molecules in action.

The motivation of this thesis is to develop a novel integrated computational and

experimental approach to understand the allosteric control of large conformational

transitions and molecular recognition in proteins. In the first part of this thesis, a

novel ENM driven metadynamics methodology called Collective Modes Bias Exchange

Metadynamics (CM-BexMetaD) is developed to explore the mechanism of conforma-

tional transitions between stable states by constructing the underlying free energy

landscape. As a case study, the nature of conformational transition pathways and the

determinants of the allosteric dissemination of any chemical and physical perturbation

were explored on a well-studied protein Adenylate kinase (AdK) Chapter 7. In the

second part, mutation induced allosteric control of binding mechanism of proteins were

studied by a sequence of studies involving computational and experimental means.

ENM analysis and molecular simulations provided dynamic information for prediction
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of mechanistically key sites that have an allosteric affect on binding whereas molecular

simulations provided clues to see the effect of the perturbations at these sites on the

ensemble of conformations and functional implications. On the other hand, in-vitro

imaging (via inverted fluorescent microscope and confocal microscopy), western blot-

ting, fluorescence resonance energy transfer (FRET) and Dynamic Force Spectroscopy

(DFS) using AFM experiments of both wild type and site-directed mutants required

measurement and observation of the effect of these functional sites. Specifically; a

strong association between the hinge positions of global modes and allosteric mutations

that lead to high binding affinity changes determined by alanine scanning mutagenesis

was shown by a large scale statistical analysis over the data present in the Structural

Kinetic and Energetic Database of Mutant Protein Interactions (SKEMPI) database.

The mechanism of allosteric dynamics was further analyzed by changes in local inter-

actions and global dynamics of human growth hormone (hGH). Moreover, the effect of

perturbation at a hinge site on binding behavior of pyrin domain (PYD) and assem-

bly formation of apoptosis associated speck-like protein containing CARD (ASC) was

studied in-silico and in-vitro experimentation Chapter 8. Functionally important hinge

residues that would affect the binding behavior of protein pairs were predicted via ENM

studies and the resulting change in the binding energy landscape were investigated by a

dynamic force spectroscopy (DFS) approach using AFM. The mechanistic explanation

of the alteration of the allosteric communication network was studied via molecular

dynamics studies. This hybrid protocol was applied to kinesin-tubulin Chapter 9 and

Rac1-PAK1 Chapter 10 interactions.
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2. PROTEIN STRUCTURE, FUNCTION AND

DYNAMICS

2.1. Proteins are Vital Components of Living Organisms

The estimated number of species living on Earth is in the millions with a huge

diversity of organism that are all made of cells. Alongside of being able to produce

energy, grow, divide, move, come together to build complex organizations, cells can

create a different inner environment than the outer in terms of physical and chemical

properties to confer uniqueness to the organisms they build, which makes them vital

for maintaining life [11]. Although all living organism are made of same atoms, molec-

ular compositions are different among biological cells. Cells contain large number of

highly complex macromolecules. There are four types of macromolecules: proteins,

carbohydrates, nucleic acids, and lipids, which are responsible for all life processes.

Proteins are the most abundant macromolecules within the cell and exist in large

number. Proteins are responsible from many biological processes in living organisms

such as catalysis of metabolic processes, energy transfer, gene expression, transport

of molecules/solutes between and across the cell, cellular communication, molecular

recognition, defense, etc. [11]. This numerous roles of proteins make them important

in many metabolic diseases, cancer, immunology, apoptosis, etc. Therefore, proteins

form % 80 of current pharmaceutical targets [12].

2.2. Protein Structure and Function

Proteins are polypeptide chains translated from mRNA into a linear chain of

amino acids, which is called primary structure. There are 20 natural amino acids and

their sequences are determined according to the information stored in the nucleotide

sequence of the corresponding genes. The specific sequence of amino acids creates a

unique pattern of interatomic forces that leads to folding into specific three-dimensional
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structures to carry out their functions. This functional form of the proteins called their

nativeconformations [13], i.e. the tertiary structure, where the second level of protein

structure such as helices, sheets, loops, etc. is called secondarystructures. The packing

of these local secondary structural elements into three-dimensional shapes stabilized

by hydrophobic interactions and some local bonds are called tertiarystructures. The

assembly of more than one tertiary structure that is able to function as a single protein

complex [14] is the last level of protein structure named as quaternarystructure.

Figure 2.1 shows the different level of protein structures.

Figure 2.1. The Four Hierarchical Levels of Protein Structure. The Levels are

Illustrated on the Structure of Rac1 Dimer Protein.

In addition to folding into its functional tertiary structures, proteins can undergo

structural rearrangements-conformational transitions- in response to external stimuli

and/or interaction with different binding partners such as ligand binding or allosteric

mutations. Proteins are highly dynamical objects and the detailed molecular char-

acterization of these structural changes assists further understanding the underlying

mechanisms of their functions [15]. The structure-function relation is at the center of

structuralbiology field.
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2.3. Protein Structural Dynamics

Until the middle of the twentieth century, the scientific community thought of pro-

teins as static objects, following Emil Fischer’s lock-and-key model [16]. The awareness

that proteins can undergo conformational changes to create better compliance between

their structures and those of their substrates led to the development of induced-fit [17-

18] and conformational selection[19,20]. Both induced-fit and conformational-selection

mechanisms include exploration of energy landscape that often contains multiple stable

conformational states in equilibrium. The induced-fit model describes a ligand-induced

protein flexibility, whereas the conformational-selection model describes the preexis-

tence of unbound form of the protein in an ensemble of conformations [21]. Since

proteins are highly dynamic entities, the current view of protein structural dynamics

is more complex than those suggested theories but appear as the combination of these

suggested models [22, 23]. The protein dynamics are described by the motion of a

single atom to group of several atoms within wide range of time scale (10−15-104 s),

amplitude (1-100Ã) and energy level (0.1-100 kcal/mol), as depicted in Table 2.1 and

Figure 2.2.

Protein dynamics includes many types of motion such as hinge motions, rotations,

translations, and even the folding/unfolding of some secondary structural elements.

Hinge motions are the most common movements in proteins, which occur on the 10−9

s time scale and wide range of amplitude and energy levels. Hinge motion is usually

responsible for a specific function, such as conversion of chemical energy to mechanical

energy in motor proteins, transduction of allosteric changes and opening/closing of

active sites in enzymes, opening/closing motion of channels, etc. [11].

Protein dynamics can be considered at two levels; folding kinetics and mechanisms

and the dynamics of the folded state.
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Table 2.1. Time Scales of Motions in Proteins. The data adapted from [11].

Type of Movement Example Time Scale (s)

1. Vibrations and local motions

Making and breaking of covalent bonds 10−15-10−10

Formation of hydrogen bonds 10−14-10−10

Transfer of ions between chemical groups 10−12

2. Motions of side-chains,

Proton transport 10−9-10−4

secondary elements and domains Electron tunneling 10−9-10−4

Water structure reorganization 10−8

Ligand binding 10−8-10

Local denaturation 10−5-10

Allostery 10−5-1

3. Protein Folding 10−6-104

2.4. The Mechanism of Protein Folding

The folding of proteins into their native conformations is one of the most essential

examples of conformational transitions. Understanding folding mechanisms of proteins

provide unique insights.

2.4.1. Levinthal’s Paradox and Energy Landscape Theory

Understanding molecular processes of protein folding is a challenging task for

both in terms of experimentation and theory. Studies of denaturation and folding

back to its native states by only changing the solution conditions [24, 25] provoke the

Anfinsen’s theory of a thermodynamic hypothesis [26]. These experiments proves that

not only local structures but also native three-dimensional conformations of proteins

can be obtained accurately by the information in the primary structure without any

help of a biological machinery. However, going from the unfolded state to the folded

state includes numerous intermediate states and it is unclear that how is it possible

to fold into a unique functional conformation within a timescale that ranges from

microseconds up to minutes. This suggests that there should be a bias towards the

native state. This is named as Levinthal′sParadox [27].
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Figure 2.2. Some Examples of the Protein Conformational Dynamical Movements.

These Conformational Events Can Span Times of Tens Order of Magnitudes.

The answer to this paradox relies on the idea that proteins do not sample all

possible conformations to end up with the right one. There exists a specific path-

way for folding composes of a well-defined sequence of events that follow one another

[28]. However, statistical physics poses another view describing the folding process as

a stochastic process of conformational changes where Brownian motion of protein is

coupled with random forces exerted by water medium. Proteins fold in a cooperative

manner and this cooperativity is interpreted by the EnergyLandscapeTheory [29-31].

In this theory, the folding process is described as a combined action of enthalpic and en-

tropic contributions (Figure 2.3). The free energy is expressed as the sum of enthalpic

and entropic effects as G = E(Q) + TSconf (Q), where E is the internal energy of the

protein conformation (bonded and nonbonded interactions), Sconf is the conformational

entropy described by hydrophobic interactions and Q is the conformational reaction

coordinate. The ragged walls of the funnel describe the existence of many local energy

minima separated by energy barriers that are crossed through intermediate structures

to reach the global minimum. Statistical fluctuations thus give rise to the ensemble

of pathways rather than only one towards the global minimum (folded state). From

the unfolded state to the folded state, the protein does not have to follow a specific

path, but multiple pathways, sampling various partially folded structures. Towards
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the native state, the entropy decreases and the funnel shape of the landscape reduces

possible accessible conformations and enables the protein to fold in a reasonable time.

The free energy difference between the folded and unfolded states (the difference

between the energy and entropy of two states), ∆G = ∆E − T∆Sconf , is the measure

of the protein stability. As the energy difference ∆E increases or the entropy difference

∆Sconf decreases between folded and unfolded states the folded conformation becomes

more stable and it requires significant increase in the free energy to perturb the folded

state.

Figure 2.3. Schematic Representation of the Folding Funnel of a Protein. The Funnel

Shape Reflects the Simultaneous Decrease in the Energy and Entropy as well as the

Increase in Similarity to Native State of the Protein during its Folding. Adapted from

[32].

2.5. Folded State Dynamics

Protein folding emphasizes the uniqueness of the native state and its functional

importance. However the native state is not a single functional conformation but only

the time averaged one [11] which could be influenced by an external stimuli such as

ligand binding or changes in the environmental conditions.
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2.5.1. Conformational Ensemble of Proteins

Koshland’s induced-fit theory [17] changed the consideration of proteins as static

entities that had been utilized to explain substrate/ligand induced conformational

change of proteins. However, Linus Pauling proposed a model stating that antibodies

might recognize different conformations with identical energies [33], which implied that

proteins may undergo conformational transition in the absence of ligand or substrate.

Following Pauling’s theory, Monod and co-workers proposed pre-existing equilibrium

theory [19] where it is suggested that proteins might exist in two different equilibrium

conformations in the absence of ligands. The current model [34] combined these ideas

and assumes that proteins exist in spontaneous equilibrium between many different

conformations called substates and thus in an ensembleofconformations [2, 35].

The variation between those substates might be just a different position of only

a single atom or repositioning of whole region. The timescale of the shifts between the

substates of the ensemble is different depending on the height of the energy barrier

separating them. With the inverse relation between the exponential of the free energy

∆G and the probability to exist in a certain substate (P), the protein expected to stay

longer at those substates with the least energy. Native conformation in crystallographic

structures is thus the most stable (lowest energy) one. Since the spontaneous sampling

of conformations is driven by the thermal energy, the protein stays most of the time at

its native state or in other conformations that are within +0.6 kcal/mol (value of RT

at room temperature) or less of the native state [36]. Conformations with very high

energy have almost zero probability to be sampled within the lifetime of a protein, yet

some high energy conformations could be sampled for a short period of time within

long enough timescales, which are called rare events [11].

2.5.2. Conformational Changes in Proteins

The protein function is mainly driven by its intrinsic dynamics, which can be

characterized by a multidimensional free energy landscape (FEL). Proteins can sample

a large ensemble of conformations spontaneously with the thermal energy and fluctuate
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around the average conformation in the most favorable equilibrium state. A change

in any type of external conditions such as temperature, pressure, solvent conditions

or binding of a ligand and mutation can influence the relative population of existing

substates and the kinetics between them. Protein dynamics involves any kind of time-

dependent change in atomic coordinates and the resulting formation or destruction of

chemical bonding within the system. Fluctuations observed in the protein dynamics

can be grouped into two categories: slow timescale and fast timescale motions. In slow

timescale motions, substates are separated by high free energy barriers the transitions

between which takes microseconds, milliseconds or even seconds. These slow timescales

fluctuations are usually linked to large amplitude collective motions. In fast timescale

motions, substates are separated by low energy barriers and the transition between

these state correspond to fluctuations of picosecond or nanosecond timescales that are

associated with small amplitude conformational changes [23]. An example of a well

in the free energy landscape describing the amplitude and timescales of the protein

motions is given in Figure 2.4 [37]. The shape of the landscape may be changed

upon with an external or internal perturbation and the population of the substates are

redistributed.

2.5.3. Protein Dynamics and Allostery

Allostery is the process of transmission of the effect of a perturbation (ligand

binding, mutations, etc.) at one site of a protein to another distal site, assuming the

regulatory control of a functional action. This has been referred to as “second secret

of life” [38]. It has remained a central focus in biology because of two reasons; it

is fundamental to an understanding of most biological processes and it is at play in

targeted drug discovery [19, 38, 39]. A positive allosteric effector enhances the activity

by increasing affinity while a negative allosteric effector will reduce the activity a the

distant functional site of a protein [40].

There were two dominant models for allostery; the “concerted” or MWC (Monod-

Wyman-Changeux) model [19] and the “sequential” or KNF (Koshland-Nemety-

Filmer) model [41]. The MWC model postulated the pre-existence of two end struc-
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tures (tensed (T) and relaxed (R)) in equilibrium where this equilibrium was shifted

with ligand binding to an allosteric site [19], whereas the KNF model assumed that

the binding of a substrate induces the conformational change from the T form to the

R form. The latter type of behavior was later accepted by the induced-fit theory of

substrate binding. The binding of the substrate to one subunit simplify the binding (of

another substrate) to the other subunit that makes the phenomena “sequential” [41].

Both of these two early definitions were agreed on the requirement of a conformational

change between two well defined structurally stable states [34].

Figure 2.4. Schematic Representation of a Free Energy Landscape and the Possible

Effects of Allosteric Stimuli. The Effects of any External Stimuli on the Shape of the

FEL are Also Mapped in Amplified View. Adapted From [23].

The pioneering work of Frauenfelder and co-workers [42] describes protein dy-

namics and conformational ensemble in terms of the free energy landscape, which

provided a means to explain allostery [43, 44]. Considering the equilibrium in the en-

semble of conformations and the free energy landscape, an allosteric determinant acts

through shifting the ensemble from a populated inactive state to a populated active

state, or vice versa [39]. With this, an alternative allosteric mechanism has evolved

without requiring structural switching and a ligand-induced conformational changes

as encountered in the previous models [40, 45- 48]. For example, an allosteric effector

(ligand binding, mutations, etc.) may not lead to a significant conformational change

but affect the dynamics at the binding interface [1, 49]. An example of an allosteric

effector induced population shift in the ensemble of conformations and alteration of the
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free energy landscape without any major conformational change is illustrated in Figure

2.4. This alternative mechanism has been developed as consequences of the compari-

son of apo and holo crystal structures, NMR data, and molecular dynamic simulations

[50-52].
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3. COMPUTATIONAL APPROACHES FOR STUDYING

CONFORMATIONAL TRANSITIONS AND FUNCTIONAL

DYNAMICS OF PROTEINS

Time resolved crystallography and spectroscopy techniques provide intermediate

protein conformations in the pathway of conformational change and dynamical infor-

mation along the pathways. Nevertheless, up to date experimental techniques still

have limitations such as requiring significant populations and sufficiently long time

scales to detect the conformational changes. Therefore, it is necessary to complement

experiments with computational techniques to obtain more detailed information on

conformational flexibility and transitions. A wide community of scientific researchers

uses computer simulations, so called “computer experiments”. Computer simulations

fill the gap between experimental and theoretical works.

There is a close connection between computer simulations and statistical mechan-

ics. Microscopic properties (atomic coordinates, velocities, etc.) are determined via

simulations and the corresponding properties measured by experiments are calculated

by statistical averages over sampled microscopic conformations. Two critical points in

computer simulations are:

(i) The identification of the suitable statisticalensemble

(ii) The issue of ergodicity (the equivalence of time average and ensemble average

over the phase space) [53].

First atomistic biomolecular simulation was published in 1977 by McCammon and

co-workers [2]. Since that time, computer simulations of biomolecular systems made

an adorable progress to simulation of large protein complexes in solvated environment

like tens of millions of atoms [54] and millisecond time scales [55].
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3.1. Molecular Dynamics (MD) and Related Methods

MD simulation is a technique used for an atomistic explanation of a classical

many-body system. The term classical defines the motion of the particles within the

investigated system obey to the laws of classical mechanics. In MD simulation, numer-

ical methods are used to solve Newton’s equation of motion for a series of finite time

step. It uses an empirically derived potential energy function describing all molecu-

lar interactions [56]. The generated atomistic coordinates of the system, so called

trajectory, can be considered as deterministic and reproducible given the exact initial

conditions and time.

However, even though it has very successful investigations, MD simulations have

two main limitations; despite limited time scales it has high computational cost and

the force fields are inaccurate for large time scales [3]. Unfortunately, most MD tra-

jectories are far from being ergodic which is a crucial point in molecular simulations,

because they leave unexplored regions in conformational space [57]. This is because

of the existence of high-energy barriers between high probability “metastable” confor-

mations and low-probability “transition” conformations. Recently, the development of

dedicated machines such as Anton [58], distributed computing protocols (parallel com-

puting) [59], and using GPUs for MD simulations [60], has eliminated these issues to

some extent. However, time resolution of interesting biomolecular processes and many

experimental techniques are significantly longer than conventional MD simulations [4].

The aforementioned limitations of MD simulations has led to the development of

either advanced methods to enhance the sampling of high probability metastable states

and rare events which requires crossing of high free energy barriers [5] or coarse grained

methods (namely Elastic Network Models, ENM) to reduce the computational cost and

to study large systems (6-9). Coarse-grained MD [61, 62], Accelerated MD [63], steered

MD [64], milestoning [65], transition path sampling [66], umbrella sampling [67],

replica exchange [68], metadynamics [69] and their combinations and derivatives are

among the most widely used methods to enhance conformational sampling.
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3.2. Enhanced Sampling Techniques for Studying Rare Events

MD simulations have been used for the atomistic simulation of conformational

changes in biomolecules. Large conformational changes which requires long time collec-

tive behavior and crossing over relatively higher energy barriers in the energy landscape

are usually important for the activity of proteins [3]. Although these conformational

transitions observed too fast in high-resolution experimental methods, they occur too

slowly in fully atomistic MD simulations within tolerable time of computation. These

important transition events between highly populated and long-lasting states are called

rareevents. Even with most sophisticated computational power, simulations can only

access up to millisecond timescale [70]. Therefore, developing special computational

methods that allow the crossing of high free energy barriers to enhance sampling of

conformational space became crucial to study rare events in protein dynamics.

Several sophisticated methods have been developed to study rare events and

applied to conformational transition of many proteins and complex systems, such as

coarse graining the description of the system, replica exchange molecular dynamics

(REMD), parallel tempering, metadynamics, umbrella sampling, simulated annealing,

etc.

3.2.1. Finding the Mechanism of Rare Events

Sampling timescale of rare events depends on the energy barrier or entropic bot-

tleneck that separates the ensemble into different stable states. A schematic represen-

tation of a rare event is given in Figure 3.1. This simple energy landscape has two

global minimum separated by a high energy barrier. Starting from one stable state A,

the system stays longer in state A before passing over the barrier to another stable

state B. The system stays at state B for a shorter time relative to state A. The tran-

sition time from one stable state to another is much shorter than the time at states A

or B. This transition can thus be classified as rare events and the time scale of crossing

the energy barrier is mostly impossible to access via classical MD simulations. More

sophisticated methods are needed to observe this transition.
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Transition state theory (TST) is a baseline for the development of computational

techniques to study barrier crossing, presenting a simple theoretical framework to the

rare event sampling [71]. In TST, the system has to visit some intermediate config-

urations called transition states corresponding to the saddle points on the potential

energy surface to overcome a barrier from the reactant to the product state. According

to this theory, the identification of relevant degrees of freedom describing the confor-

mational transition, so-called reactioncoordinates, is the elementary step on studying

rare events.

Figure 3.1. Schematic Representation of Two Stable States A and B on the FEL of a

Molecular System.

3.2.2. Defining Reaction Coordinates to Describe a Transition

In chemistry, a reaction coordinate is a one-dimensional coordinate that rep-

resents progress along a reaction pathway. Describing a transition of a full atomistic

molecular system containing N number of atoms in the 6N -dimensions (translation and

rotation) and momentum of the phase space has a very large number of degrees of free-

dom. The high dimensionality of large conformational change in molecules makes it dif-

ficult to interpret and analyze. It is thus necessary to reduce the degrees of freedom by

projecting a high dimensional conformational space into a few easy to track geometric

properties, which can be either analyzed individually or manipulated to control the dy-

namics. These properties are called collective variables (CVs), which refer to any mul-

tidimensional function ζ of 3N -dimensional atomic conformation r ≡ (ri|i = 1, ...3N).

The functions ζ1, ζ2, ...ζ(NCV ) map configuration r onto NCV -dimensional CV space
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where NCV is the number of reduced degrees of freedom and usually NCV � 3N [57].

CVs can be either simple geometric parameters, such as, bond angles, torsions,

distance, etc., or relatively more complicated parameters, such as Root Mean Square

Deviation (RMSD) of the whole or some part of the molecular complex, coordination

number, secondary structural content, etc. [72]. CVs should not just measure the

progress of the transition, but also should be useful to understand the dynamics.

3.2.3. Methodological Approaches to Enhance Conformational Sampling

3.2.3.1. Coarse-Graining. In order to simulate either a huge system or any systems

at longer time scales, simplification of the description of the system is required such a

coarse-grained (CG) modeling of the atomistic system [73]. There are three properties

that one should decide during designing a CG model; the basic simulation unit, the

effective CG potential function and the dynamical equations describing the time evo-

lution of the CG system [61]. There are many coarse graining methods ranging from

qualitative solvent free models to models that consider the chemical specificity with

explicit water. Special force fields for coarse-grained simulations were developed for

proteins [74-76], membrane [76, 77], nucleic acids [78], and also carbohydrates [79].

All these developed models may perform well where bulk properties dominate over

atomic details, but the major drawback is the loss of atomic details.

3.2.3.2. Accelerated Molecular Dynamics (aMD). aMD is one of the enhanced sam-

pling method where conformational sampling is accelerated by adding an energy term

to the potential energy of the system that reduces the energy barriers between different

substates [63]. This additional energy term is called boost energy (Eboost) and depends

on the difference between the potential energy of the system and a pre-determined ref-

erence energy called threshold energy (Etreshold). However, the correct value of the

Eboost can not be known a priory [80]. For example; if one selects a Etreshold lower than

the energy barrier, it will never cross it.
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3.2.3.3. Targeted and Steered Molecular Dynamics (TMD and SMD). TMD simula-

tion is a derivative of MD, developed to observe large conformational transition be-

tween two known conformations of a molecule [81-83]. An artificial restraint potential

term is added to the energy function proportional to the square of the RMSD difference

between the current conformation and the target conformation. This added potential

term forces the system to evolve to the specified state of interest. Another type of TMD

is steered molecular dynamics (SMD) where it is invented to mimic Atomic Force Mi-

croscopy (AFM) experiments [64]. It employs an external, time dependent and/or

position dependent pulling force to a pre-determined position of a protein (to a specific

atom or a fictitious point) [84]. During the simulation, all atoms in the system adjust

to the forced change in the structure and conformations along a particular pathway are

sampled. As the simulation progress, the potential energy of the system is calculated.

This calculated potential of mean force (PMF) is the interpretation of the free energy

change along the chosen reaction coordinates for the progress.

3.2.3.4. Replica-Exchange Molecular Dynamics (REMD). Systems at higher temper-

atures can overcome high energy barriers more easily compared to lower temperatures.

Therefore, elevating temperature in simulations significantly improves conformational

sampling [85]. REMD is an enhanced sampling method [86], which employs indepen-

dent (non-interacting) parallel MD simulations carried out at different temperatures

and periodically exchanging (with a specified transition probability) the coordinates of

replicas between ensembles depending on the temperature and energy difference of the

randomly chosen replicas see Figure 3.2. The replicas are swapped according to the

Monte Carlo-Metropolis acceptance criterion. Exchanging coordinates of replicas can

also be considered as exchanging temperatures. Since the selection of pair replicas to

exchange is a random process, the resulting REMD algorithms becomes stochastic and

this stochasticity enables crossing large energy barriers and therefore prevents stucking

at a local minimum [87]. This method is also referred to as parallel tempering.
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Figure 3.2. Schematic Representation of the REMD Method.

The efficiency of REMD to describe actual protein dynamics depends sensitively

on maximum temperature selected for the simulation and the effectiveness is strongly

depend on the activation energy of conformational transition [88]. Therefore, although

temperature dependent REMD (T-REMD) has many successful applications in enhanc-

ing sampling in MD, it does not guarantee better convergence. A more prevailing form

of REMD comprises exchanging Hamiltonians (sum of kinetic and potential energy)

instead of temperatures (H-REMD), where the force field or the selected force field

contributions are modified along the replicas [89]. H-REMD is now widely used and

sometimes referred to as multidimensional replica exchange molecular dynamics (M-

REMD) [80].

3.2.3.5. Umbrella Sampling (US). US is another enhanced sampling method [90],

which is related to importance sampling in statistics. In this method, the simulated

system coordinates are grouped into sets of collective variables (CVs) such as; distance

between two atoms or group of atoms, torsional/rotational angles, etc. referred as

reaction coordinates, where each set determining a separate umbrella window [91]. A

bias potential, which is usually in quadratic or harmonic form, is applied to the reaction

coordinate to restrain and pull to a targeted value of the reaction coordinate [92]. This

restrain potential determines the weighting function of a given window, where it scales

with the distance from the equilibrium state. As a result, the simulation will be biased

away from the initial conformation [91]. Since US is done in a series of windows, the
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information coming from each window is combined and converted to local probability

histograms using weighted histogram analysis (WHAM) [93]. This methodology is

readily applied to both MD and Monte Carlo (MC) simulations.

In order to improve the efficiency and convergence of this methodology, some ex-

perimental restrains such as end-to-end distances determined by fluorescent resonance

energy transfer (FRET) are used to formulate the restrain potential, which is called

“guided US” [94].

The main disadvantage of US is the requirement of apriori knowledge about the

FEL of the system of interest such as either the position of the barrier with respect to

reaction coordinate or the exact height of it.

3.2.3.6. Metadynamics. Metadynamics is yet another powerful enhanced sampling

method and construction of relative free energy landscape (FEL) developed by Laio

and Parrinello in 2002 where ergodicity is prevented by the shape of the system’s en-

ergy landscape [69]. Although based on the concept of CVs, it deviates on many

significant aspects from US by inserting memory in the sampling. Metadynamics in-

volves adding a history dependent biasing potential to overcome high energy barriers

between energetically favorable metastable states and hence to sample rare events [69].

Eventually, the FEL of the conformational ensemble is compensated by the deposited

biasing potential and can be reconstructed by using this deposited biasing potential

[95]. Darve and Phorille [96] describe this methodology as “filling the free energy

wells with computational sand” (Figure 3.3). Since metadynamics can search through

the entire FEL, it is a promising method to study many biological problems such as

protein folding [97], molecular docking [98], and conformational changes [95, 99].

A small set of (usually two or three) collective variables should be selected to

start a metadynamics simulation. The only difference between the classical MD and

metadynamics simulations is that for the latter a bias potential (a Gaussian hill) is

being added to the potential energy in regular intervals. These hills are the function of
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the CVs and accumulate along the simulation where inverse of this accumulated bias

potential hills gives the FEL. However, since there is no limitation on the accumulation

of bias potential hills, one may end-up with undesired overfilling of the energy landscape

of the system. In order to solve this issue, employing adaptive Gaussian hills was

suggested in so-called Well-Tempered Metadynamics (WTmetaD) approach [100].

Figure 3.3. A Schematic Representation of Meta Dynamics Method. The Simulation

Searches Energy well Avoiding Over Sampling Using its Memory. When the Bias

Potential Fills the First Minima, the System Goes to a Lower Energy Configuration.

3.3. Combination of MD Related Enhanced Sampling Methods

The enhanced sampling methods described above have both pros and cons. For

example, one can precisely model a certain process defined by a set of CVs and deduce

the underlying free energy landscape. However, sampling of only few number of CVs

can be actively enhanced by existing algorithms. On the other hand, one can enhance

sampling of all degrees of freedom through elevated temperatures in parallel tempering

without defining any CVs, but in parallel tempering, the number of replicas increases

as the system size increase leading to computational inefficiency. The combination of

these methods may give better results.
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Parallel tempering and metadynamics methods were successfully combined by

Bussi and coworkers in parallel tempering metadynamics [97]. In this combined

methodology, the studied system is simulated in multiple replicas at different tem-

peratures but the same bias potential according to defined CVs is applied to each

replica. As a result, the conformational sampling is enhanced both in terms of defined

reaction coordinates and also elevated temperatures. The free energy surfaces were

thus calculated at different temperatures. Successful applications of parallel tempering

metadynamics indicated that it is very efficient in simulating flexible ligand binding

or conformational change of proteins. A recently introduced well tempered ensemble

(WTE) approach [101] allows using less number of replicas in parallel tempering meta-

dynamics. In WTE, the potential energy of the system is used as CV to obtain an

efficient assessment of the probability distribution of energy at numerous temperatures

[102].

Another successful combination of aforementioned enhanced sampling methods

is called bias-exchange metadynamics, which amalgamates metadynamics and replica

exchange introduced by Piana and Laio [103]. The system is simulated again multiple

replicas where each replica is biased by a single CV at the same temperature and there-

fore subject to one-dimensional bias potential. The number of replicas is equivalent

to the number of CVs; therefore one can use numerous CVs to bias the simulation.

Replicas can periodically swap their coordinates allows the system biased along one

CV to become biased along another CV. Exchanging coordinates is according to the

Monte Carlo-Metropolis criteria and determined from the bias potentials.
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4. NORMAL MODE ANALYSIS TO PREDICT THE

CONFORMATIONAL ENSEMBLE AND FUNCTIONALLY

IMPORTANT SITES AND MOTION

Although many enhanced sampling algorithms are developed to overcome the

time and size limitations of the conventional MD in biological applications, there is

still a room for more simplified and computationally efficient methods. Normal modes

and related techniques have increasingly become popular to study protein dynamics

[104, 105].

4.1. Conformational Ensemble from NMA

4.1.1. Standard NMA

Normal mode analysis (NMA) is a powerful method used for the analysis of

collective motions in biomolecules. Classical NMA uses the same force field as used in

MD simulations, which analyzes vibrational motions around a local energy minimum.

This simplified approach assumes that the conformational energy surface around a local

minimum can be approximated by a parabola over the range of thermal fluctuations

[106]. However, this is in fact may not always be the case in proteins at physiological

temperatures [107].

A standard NMA starts with an energy minimization of the folded protein struc-

ture. Then, the so-called “Hessian” matrix which the matrix of the second derivative

of the potential energy function with respect to the mass-weighted atomic coordinates.

The last step is the determination of the vibrational modes of the system, which is the

diagonalization of the Hessian matrix and extraction of the eigenvalues and eigenvec-

tors (the “normal modes”) [106]. 3N -6 non-zero normal modes and eigenvector are

extracted form the 3Nx3N Hessian matrix for a system of N atoms [108]. In the high

frequency modes the displacements (eigenvectors corresponding to highest eigenval-
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ues) give the local fluctuations of covalently bonded atoms, whereas the low frequency

modes provides the collective movements involving large parts of the structure [109].

The diagonalization of this 3Nx3N Hessian matrix is computationally demanding, the

computational efficiency of standard NMA thus decreases as N becomes larger.

4.1.2. Elastic Network Models: ANM and GNM

Because of the computational difficulties of standard NMA, elastic network mod-

els (ENM), which is a form of coarse grained NMA have been developed [6-8]. The

hypothesis is that the lowest frequency normal modes are a global property of the

structure and shape of the proteins [105, 110- 114] and thus the elimination of inter-

atomic interactions does not affect the global motion of proteins. This approach was

first introduced by Tirion [115], where the Lennard-Jones and electrostatic interactions

were replaced by Hookean springs for atom pairs within a cutoff distance. Later, Bahar

and coworkers proposed the application of this model at the amino-acid level [7, 9].

This approach has two main advantages compared to standard NMA. There is no need

for energy minimization as the elastic connections are taken to be at their minimum

energy length and the use of residues instead of atoms that reduce the computational

time for the diagonalization of the Hessian matrix [106]. In Gaussian Network Model

(GNM), the residue fluctuations are assumed to be isotropic (same in all directions) [7,

9], whereas in the anisotropic network model (ANM) the anisotropic effect is taken into

account [6]. Through ANM, one can have information about the three-dimensional

motion of the system.

The relatively low computational cost and simplicity of ENM has provided op-

portunity to its wide application in analysis of conformational transition and dynamics

of proteins. Application of ENM to the known open and/or holo forms of proteins

have indicated that one or more low frequency normal modes highly overlap with the

conformational transition of proteins from the “apo” to the “holo” forms [116-119]. Ex-

ploration of conformations along the displacement of normal modes of a given native

structure has been used broadly for many cases.
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4.1.3. Combining NMA with Molecular Simulations to Enhance Conforma-

tional Sampling

A significant portion of recent studies employs combination of NMA and molecu-

lar simulations to improve efficiency and accuracy of conformational sampling. There

are successful applications of standard NMA combined with Monte Carlo (MC) sim-

ulations for predicting conformational transitions of gramicidin A [120], KscA K+

channel [121] and ApcT amino acid transporter [122] without providing the target

structure. Perahia and coworkers [123] used multiple minima all-atom NMA to explore

the functional motions of HIV-1 protease, where NMA on a set of energy-minimized

structures from short MD simulations were utilized to obtain a consensus covariance

matrix. Then, they concluded that collective modes correspond the biologically relevant

motion of the protease including flap opening and closing. Another hybrid approach

called ANM-MC [124, 125] integrates ANM collective modes to a form of knowledge-

based Monte Carlo (MC) simulation techniques to generate conformational transition

pathways. This methodology have both targeted and non-targeted versions. In the

targeted adaptation, the structure was iteratively deformed along the direction of the

collective mode that overlaps with the direction of conformational transition. In the

non-targeted adaptation, only the radius of gyration of the target structure was used

as input to predict the conformational transition pathway and the closed state of the

structure.

Collective molecular dynamics (coMD) [126] is an enhanced MD sampling method

where the conformational sampling is enhanced through collective dynamics of the

molecular system guided by low frequency ANM modes [6]. In this methodology, the

basic strategy is to deform both the initial and the target structures along the most

dominant collective ANM modes of each structure. In this methodology, the modes

overlapping with the direction of the initial/target transition are accepted upon a

Monte Carlo/Metropolis strategy. This stochasticity allows the system to deviate from

the shortest path from initial to target structure and to sample lower energy conforma-

tions. The ANMPathway is another approach for conformational sampling, which uses

the collective ANM modes extracted of the two end structures of the conformational
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transition [127]. Both coMD and ANMPathway methods were applied to predict the

conformational transition pathway between open-close structures of adenylate kinase

(AdK) [126, 127] and several membrane transporters [127] with a significantly lower

computational cost than the other methods [128].

Combining collective modes with the enhanced sampling algorithms also provides

computationally effective and efficient sampling of conformational space of proteins.

Vashisth and Brooks combined temperature accelerated MD with low frequency normal

modes obtained from Ca-based elastic network model (ENM) with a single parameter

potential [115] to enhance conformational sampling of maltose binding protein and

nucleotide binding domains of a maltose-transporter [129]. They concluded that single

or a combination of two to three collective modes was able to describe the open to

closed conformational transition in temperature-accelerated MD generated pathways.

Martin Zacharias incorporated ENM with H-REMD to speed up the conformational

transition of proteins [130]. In this approach, a distance-dependent penalty (flooding or

biasing) potential that derives the structure away from the current conformation along

the direction of the information extracted from ENM analysis added to the MD force

field. Later, they improved their penalty potential to accelerate the large-scale domain

motions again using the information obtained from ENM with H-REMD [131]. Wang

and coworkers [132] combined NMA in internal coordinates of all heavy atoms [133]

and umbrella sampling MD with both apo and holo form of the proteins to investigate

transition pathways and free energy profiles of adenylate kinase, calmoduline and p38α

kinase, which yielded transient conformations consistent with experimental and other

computational studies.

Kurkcuoglu-Soner and coworkers developed an ENM-based iterative methodology

called ClustENM for the sampling of entropically accessible states of a protein from a

starting structure [10]. In this methodology, the global modes were extracted from an

energetically minimized native structure using ENM, and then the native structure was

deformed along the combination of these global modes that results in new structures.

Next, these generated structures were clustered to obtain representative conformers.

Minimization-deformation along ENM modes- clustering steps was applied iteratively
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to obtain more conformers to represent conformational ensemble of a protein.

4.2. Functionally Important Sites from NMA

Interatomic interactions lead to local to global motion adopted to the function-

ality, or to the functional global motion. Hinges are the major key components of

the dynamic infrastructure and any perturbation, physical and/or chemical, at a hinge

region provide an aspect of allosteric control of both functional local fluctuations as

well as global dynamics through an impact on relative probabilities of accessible con-

formational states, i.e. on the ensemble of the conformations [48, 52].

As suggested earlier, sequential variation in the network of residues related to

the hinge bending motion of proteins results in alteration of dimerization properties

as well as specificity towards ligand binding [134]. Perturbation on a hinge regions

leads to a modification on the interatomic bonding network within the protein, which

may results in a shift in the ensemble of conformations or alteration of functional

dynamics of the protein. Importance of hinge residues on the functionally relevant

collective motion and the allosteric network that affect binding affinities of proteins

was studied on numerous numbers of proteins, such as adenylate kinase (AdK) [23],

neurolysin [135], PDZ domains [136, 137] and HIV1 protease [138]. AdK is an

enzyme that catalyzes the reversible nucleotide phosphoryl exchange within the cell.

Two distinct functional forms of this protein are open and closed forms, and great

number of intermediate structures has been captured via experimental studies. AdK

undergoes a large conformational change even at the absence of substrate molecule

[91]. Comparison of the protein dynamics of a hyperthermophilic and a mesophilic

AdK revealed that the physical origin of catalytically important collective domain

motions relies on a hinge motion that controls the conformational transition of the

enzyme [23]. In addition, Hines and coworkers discovered a potent inhibitor that

binds away from the catalytic site of neurolysin. The binding position of the inhibitor

is a hinge site suggesting that the inhibition on the enzyme was achieved by preventing

a hinge-like motion and thus reversing a substrate-associated conformational change

[135].
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In addition to low frequency fluctuating residues, the high frequency fluctuating

ones are also shown to have structural and functional importance [9, 139-142]. Since

binding sites are associated with high as well as low stability regions, the high frequency

fluctuating residues at the surface of the proteins are associated with the binding core

amino acids as they form folding core when they located at the interior of the proteins

[143-145].
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5. ATOMIC FORCE MICROSCOPY OF PROTEIN

INTERACTIONS

The mechanics of biological systems is crucial for their function. Individual pro-

teins require flexibility of secondary structures to allow microsecond conformational

changes. In the living cell, shape maintenance and structural stability is assured by

the mechanics of the cytoskeleton, adhesion complexes and the plasma membrane.

Thus, the study of the mechanics of proteins, protein complexes and the membrane is

important to understand biological processes.

Interaction between two biomolecules such as proteins DNA, RNA drug molecules

is the key phenomena in many biological processes. They recognize and bind each other

in the cell environment to conduct their function. Until recently, protein-protein inter-

actions were characterized through binding affinities and/or rate constants determined

by biochemical methods. Since these experimental methods are bulk measurements,

they can only give averaged estimates of desired properties. However, proteins exist in

an ensemble of conformations where their populations change with varying conditions,

thus. the characterization of the interaction dynamics that expose various intermediate

states or alternative reaction pathways is critical [146]. Single molecule approaches al-

low investigation of characteristics of individual interacting molecules in real time and

at similar circumstances with physiological conditions. With these attributes, they

have become essential tools for understanding of association / disassociation processes

of biomolecular complexes together with intermediate states and the underlying energy

landscape [147-151].

The quantification of forces holding protein complexes together using biophysical

methods have evolved with the development of nanotechnologies such as optical and

magnetic tweezers and the biomembrane force probe [152]. One of the most versa-

tile nanotechniques is atomic force microscopy (AFM), which enables topographical

imaging and force measurements at the nanometer scale with piconewton force reso-
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lution. Importantly, AFM works under liquid conditions allowing characterization of

biological samples. The flexible cantilever is sensitive to picometer deflection changes

and has associated a spring constant that can be as low as 5 pN/nm. Thus, it is an

excellent force sensor that allows manipulation of the sample and force application. In

force spectroscopy mode, the cantilever is moved in the vertical direction (z) to ap-

ply and measure mechanical forces by pulling or poking the sample. The quantitative

nature of force spectroscopy measurements has converted AFM into a valuable tool

in biophysics. Force spectroscopy allowed determining the forces required to unfold

protein domains and to disrupt individual receptor/ligand bonds as well as probing

the mechanical properties of normal and cancerous cells [153-156].

5.1. Atomic Force Spectroscopy (AFM) Experimentation and Principles

A flexible cantilever, a tip mounted on the far end of the cantilever, a sample

stage, a piezoelectric translator that moves the sample stage or cantilever depending

on the design, and an optical deflection system composes of a laser, a photodetector

and a signal processing unit, which records the changes in cantilever deflection are the

core components of and AFM device as shown in Figure 5.1.

Figure 5.1. Schematic Illustration of the Fundamental Components of an AFM

Device with Working Principles (a) and a Sample Cantilever (b).

AFM was developed as an imaging tool where the topographic images of the

sample are obtained by scanning the surface in the x, y plane with a flexible cantilever

[149]. A feedback controller programmed with the piezo continuously adjust the z-
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position of the cantilever during scanning to keep the deflection constant as illustrated

in Figure 5.2 [146].

Figure 5.2. Illustration of the Topographic Imaging using AFM. The Deflection of the

Laser on the Photodetector is used to Record the Position of the Cantilever and also

as a Feedback to the Controller.

The difference of the position of the deflected laser beam on the photodetector

gives the bending of the AFM cantilever due to the interaction forces between the tip

and the sample. In order to convert the deflection amount of the signal into units

of force, spring constant of the cantilever (k) and the deflection sensitivity (s) of the

cantilever must be calibrated before any measurements [146]. Different techniques are

used for the cantilever calibration, but the most popular one is Hutter and Bechhoefer

method [157]. In the latter, the cantilever is considered as a simple harmonic oscillator

and the spring constant is derived from the power spectrum of thermal fluctuations of

the cantilever.

5.2. AFM Measurement of Single Molecule Interactions

One of the applications of AFM is force scan mode to measure interaction be-

tween two pair of surfaces at the single molecule level, which is sometimes referred as
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biomolecular force spectroscopy. In a typical AFM-based force spectroscopy setup, a

flexible cantilever (spring constant 10-100 mN/m [146]) functionalized with a molecule,

is positioned close to the sample surface again functionalized with the other molecule of

interest. The thin pin AFM tip, with an average apex diameter of 10-50 nm diameter,

narrows the interacting surfaces to the limits of single molecule interactions [158].

The position of the cantilever and the corresponding photodetector signal recorded

during a typical force spectroscopy experiment is schematically shown in Figure 5.3.

In the recorded signal, y-axis represents the photodetector signal proportional to the

bending of the cantilever, which will be converted to the force applied on the cantilever

by using calibrated properties of the cantilever. The x-axis represents the time and

the distance between the base of the piezo and the stationary surface can be calculated

using the time and the velocity of the piezo. The experiment begins with positioning

of the functionalized cantilever a few microns above the sample surface as in part I in

Figure 5.3. The cantilever is then moved towards the stationary sample surface with

the help of piezo and makes contact with the sample surface as in part II. The deflection

signal is maintained at a stable baseline level via a feedback control mechanism corre-

sponding to “zero force” until the molecules attached on the tip touch to the molecules

functionalized on the stationary surface. After the tip touches to the sample surface,

the cantilever is further pushed towards the sample surface until a preset deflection

/ force is reached to ensure the formation of the bonds between the molecules. This

extra pushing causes the cantilever to bend upward that leads a positive change of the

deflection/force signal as in part III. After the peak force is reached, the cantilever

starts to move upward to its initial position. In the course of upward movement of the

cantilever, the adhesive contacts formed during the tip is in contact with the sample

surface are revealed causing a downward deflection of the cantilever (part IV). If specific

interaction is formed between the molecule functionalized on the tip and the molecule

attached on the stationary surface, the cantilever bends further downward as in part

V. In this part, further retraction movement of the cantilever from the contact point

results in a gradual increase of the tension applied to the intermolecular bond(s) until

the bond(s) are ruptured. This will cause a sharp positive change in deflection/force

signal. Then, the cantilever returns to its original constant baseline as in part VI.
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Figure 5.3. A Typical Photodetector Signal Recorded during a Biomolecular force

Spectroscopy Experiment Together with the Corresponding Situation of Cantilever

and Surface.

The liquid medium used in the AFM experimentation exerts a drag force to

the cantilever that causes a constant upward bending proportional to the velocity of

the piezo and the viscosity of the medium, which varies with temperature, during its

approach/retract cycle. This hydrodynamic effect causes a constant bias added to the

measured unbinding forces especially at high velocities [146]. Therefore, the measured

unbinding forces should be corrected taking into account this measured drag force.

Additionally, there are other factors affecting the drag force exerted on the cantilever,

such as; geometry of the cantilever, the topography of the sample, etc. [159, 160]. Thus

this viscous drag force should be determined and extracted from the measurements in

AFM force spectroscopy experiments.

Lee et al. [161] and Florin et al. [158] first used force scan mode of AFM to

measure the unbinding force of avidin-biotin interaction in 1994. Since then, many
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protein-protein interactions have been studied. Some of the recent studies and the

determined unbinding forces together with the reported Bell-Evans model parameters

are listed in Table 5.1.

Table 5.1. A Partial list of Reported Atomic force Microscope Unbinding Studies.

Molecule Pair

Loading rate Measured Barrier

Ref.interval Rupture forces width

(pN/sec) (pN) (Ã)

Aptamer/IgE 12E3-17E5 50-190 0.91, 2.54 [162]

Digoxigenin/antibody 3E1-63E3 20-80 0.35, 1.15 [163]

LFA-1/ICAM-2 5E1-6E4 20-120 0.31, 4.5 [164]

PDZ domain/peptide 38E2-14E4 40-220 0.4, 2.1 [165]

SfiI/DNA 21E2-63E4 25-100 1.8 [166]

Streptavidin-biotin 5E-2-6E4 5-170 1.2, 5 [167]

GTPase Ran/impÃ 3E2-8E4 40-90,75-160* N/A [168]

Transferrin(holo)/receptor 4E2-7E4 40-140 1.5, 9.3 [169]

Transferrin(apo)/receptor 5E2-4E4 25-40 8.1 [169]

VLA-4/VCAM-1 (WT) 3E1-2E5 15-130 1, 5.5 [170]

VLA-4/VCAM-1 (D40A) 3E2-1E5 25-70 5.9 [170]

VLA-4/VCAM-1 (Q38G) 2E2-2E5 25-100 1.7, 5.8 [170]

VLA-4/VCAM-1 (L43A) 2E2-2E5 20-100 1.5, 5.7 [170]

VLA-4/VCAM-1 (D143A) 3E2-2E5 25-140 0.95, 5.8 [170]

*Two populations of unbinding forces were reported, reflecting the

existence of two conformational states in the Ran/impβ complexes.

ICAM-2, intercellular adhesion molecules 2; IgE, immunoglobulin E;

LFA-I, leukocyte function-associated antigen-I;

VCAM-l, vascular cell adhesion molecule-I; VLA-4, very late antigen-4.

5.3. Tip and Sample Functionalization Strategies

In biomolecular AFM force spectroscopy experiments, one of the molecules (pro-

tein or ligand) is immobilized on the surface of a tip mounted at very end of the

cantilever while the other is attached to the surface. The two surfaces bring into con-

tact to make intermolecular interactions. Then the unbinding forces of the interested

molecule pair are experimentally determined from retraction curves, which is the de-

flection of the cantilever. The proper functionalization of the corresponding molecules

to the tip and surface is thus crucial for the success of this type of study. It must guar-

antee that the measured forces are specific to the studied intermolecular bonding. The

most commonly used techniques to functionalize the molecules to the cantilevers are
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physisorption [158] and chemisorption [171]. In order to provide greater mobility and

better rearrangement of the molecule functionalized on the tip to access the molecule

on the surface, a linker molecule (usually a polyethylene glycol (PEG) linker) can be

used between cantilever tip and the molecule of interest that will be functionalized on

the tip.

Similar immobilization techniques can also be used to functionalize the corre-

sponding binding partners to a suitable flat surface. Mica, polystyrene, and glass are

most common substrates used for functionalization of proteins to the surface because

they are atomically flat it is easy to obtain a perfectly clean surface by fresh cleaving.

Although both tip and surface functionalization protocols are well established,

one should be aware of that strength of functionalization depends on the types of

cantilevers or surfaces, alongside of molecules of interest. For example, if a biotin-

streptavidin interaction is going to be used in a multi-functionalization protocol of

the interested molecule to the AFM tip, one should keep in mind the range of biotin-

streptavidin interaction forces (i.e. 20-400 pN). Thus, the quality of functionalization

of both AFM tips and surfaces should be validated before performing actual force

measurements.

5.4. Energy Landscape of Biomolecular Interactions via AFM

Measurements

An AFM based biomolecular force spectroscopy measurements reveals the un-

binding forces of an individual biomolecular complexes under a constant pulling ve-

locity. The rate of change in the tension applied to break the intermolecular bond(s),

rf = df/dt, is defined as “loading rate”. The loading rate applied to intermolecular in-

teractions can be controlled experimentally by changing the retraction velocity and/or

using a different cantilever with different spring constant. It has been shown that the

unbinding of the intermolecular bond (s) is a stochastic process and the force required

to break those bonds is proportional to the logarithm of the loading rate [172]. The

relation between the measured unbinding forces and the applied loading rate can be
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used to expose the binding energy landscape of the interested molecular complex.

The effect of external pulling force on the disassociation of a biomolecular com-

plex was first formulated by Bell in 1978 [173]. Evans and Ritchie further improved

this formulation in 1997 [172]. Their approach is called Bell-Evans model, which

characterizes the relation between an external pulling force and dissociation rate of

intermolecular bond (s), which will yield the binding energy landscape. The latter

approach has been refined and generalized in recent studies[174-176]. The Bell-Evans

model is based on the typical transition-state theory, where separation of two molecules

requires overcoming an activation energy barrier. If there exists a single energy barrier

on the binding energy landscape of the biomolecular complex, the dissociation rate of

this complex can be expressed as

koff = α
kBT

h
exp

(
−∆G0

kBT

)
(5.1)

where α is a prefactor identifying the potential energy well, kB is Boltzmann’s constant,

T is the absolute temperature, h is Planck’s constant, and ∆Go is the activation energy.

When an external pulling force is applied to the complex, an energy term which is the

work done to the system by the applied pulling force, -fx, is added to the potential of

the system. This additional energy reduces the activation energy barrier by fxβ, where

xβ the barrier width between the bound complex and the activated complex. Thus,

the dissociation rate at the existence of an external pulling force becomes

koff (f) = α
kBT

h
exp

(
− (∆G0 − fxβ)

kBT

)
= koffexp

(
fxβ
kBT

)
(5.2)

where koff is dissociation rate without any external pulling force and the koff (f) is the

dissociation rate when a pulling force is applied. As can be seen from Equation 5.2, the

dissociation rate of the complex exponentially increases as the pulling force increases.

The two parameters koff and xβ characterize the binding energy landscape, where they

often referred as Bell model parameters. The height of the activation energy barrier is

characterized by koff and the width of the barrier is xβ that corresponds to the force

resistance of a molecular complex as illustrated in Figure 5.4. If a complex has small
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xβ, which means a narrow activation energy barrier, then the effect of the pulling force

on the force-dependent dissociation rate koff is small; and if it is high, fxβ will be

higher, which means the complex is more sensitive to an external force.

Figure 5.4. Free Energy Landscape of the Dissociation of a Biomolecular Complex,

Together with the Associated Bell Model Parameters.

Equation 5.2 depicts the changes in the bond dissociation under a constant exter-

nal pulling force. Since it is difficult to keep the pulling force constant in an AFM force

spectroscopy experiment, a dynamic force approach is usually used to characterize the

dissociation of a biomolecular complex under an external force [172, 177]. According

to theoretical framework, the probability density function for the forced unbinding of

a complex under constant loading rate rf is,

P (f) = koffexp

(
fxβ
kBT

)
exp

{
koffkBT

rfxβ

[
1− exp

(
fxβ
kBT

)]}
(5.3)
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Then, the most probable rupture force f* (i.e., the maximum of the probability

distribution function (∂P (f))/∂f = 0) can be obtained from Equation 5.3 as

f∗ =
kBT

xβ
ln

(
xβ

koffkBT

)
+
kBT

xβ
ln (rf ) (5.4)

Equation 5.4 shows that, there is a linear relation between the most probable

rupture force f∗and the natural logarithm of the loading rate rf . Therefore, the Bell

model parameters can be obtained from the best fitting straight line of f* versus ln(rf )

as shown in Figure 5.5, the dynamic force spectrum (DFS) of the complex [172].

Figure 5.5. The Linear Relation between the Unbinding force and the Logarithm of

the Loading Rate. Bell Parameters can be Extracted from the Slope and the

Intercept of the Linear Relation [177].

The relation given in Figure 5.5 is shown to be correct for slip bonds (bonds that

slip apart easily in the presence of an external force) only. For slip bonds the exter-

nal pulling force tilts the energy surface and decreases the activation energy barrier.

Therefore, increasing force decreases the lifetime of biological bonds. However, catch

bonds (bonds act like molecular hooks that dissociate easily in the absence of external

force but hold firm when stretched by external forces) have the opposite behavior. In

this kind of bonds, it is observed that the applied external force increases the lifetime

of the biological bonds [178, 179].
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Figure 5.6. Energy Landscape of a Molecular Complex having two Transition States

and the Corresponding DFS Results. a) Two-Barrier model in Energy Landscape b)

Corresponding two Linear Regimes. c) Dynamic force Spectra of Biotin-Streptavidin

Complex [156].

The binding energy landscape of a biomolecular complex may have more than

one activation energy barriers from bound to unbound forms as depicted in Figure

[19, 23]. Existence of multiple linear regimes with different slopes is associated with

multiple energy barriers on the dissociation reaction of a molecular complex. The

simplest case is the two-barrier model as shown in (Figure 5.6A). The energy landscape

of the complex has two transition states along the reaction coordinate, which is the

pulling direction in the absence of an external force (top). In this case, the outer

energy barrier determines the dissociation kinetics of the complex. Small external

force corresponding to the lower loading rates reduces the outer barrier and further

increase in force results in switching the main barrier from outer transition state to

the inner one. This switching in transition states results in two different linear regimes

with ascending slopes in the relation of unbinding force and the logarithm of loading

rate. The increase in slope indicates that the outer barrier has been restrained by

force and the inner barrier dominates the dissociation reaction (Figure 5.6B). Multiple

activation barriers in the energy landscape were found in a number of biomolecular

complexes, including the (strep) avidin/biotin complexes as shown in (Figure 5.1C).

The best-fitted curves (solid lines) were obtained using Equation 5.4 applied to each of

the two loading regimes. Error bars are the standard error of the mean (SEM). Other

examples of molecular pairs having multiples transition states are tabulated in Table

5.1.
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5.4.1. Interpretation of Multiple Energy Barriers along with Biomolecular

Disassociation

AFM is used to study many biomolecular pairs. Using DFS methodology, it has

been found that the dissociation of many protein complexes involves one or multiple

energy barriers where some of these studies are listed in Table 5.1. The molecular

and structural constitutes that create these energy barriers are revealed by mutating

residues and/or changing physiological conditions that considered to affect the inter-

ested biomolecular interactions.

Nevo and coworkers analyzed the interaction between the small GTP (guano-

sine triphosphate) bound GTPase Ran and its binding partner nuclear import receptor

importin β1 (impβ) to answer the question whether the change in the stability of Ran-

impβ interaction obeys induced fit or dynamic population shift models using DFS [168].

Ran regulates the association and dissociation of receptor-cargo complexes through in-

teracting with the impβ where release of Ran from impβ is induced by small effector

protein Ran-binding protein RanBP1. They found that GppNHp, which is a nonhy-

drolyzable analog of GTP, bound Ran and impβ complex has two activation energy

barriers and thus two distinct bound states (ruptured at relatively low and high un-

binding forces corresponding lower-strength and higher-strength states, respectively).

Addition of the effector protein RanBP1 into the solution abolishes the higher-strength

population and increases the population of lower-strength state. However, RanBP1 did

not change the most probable unbinding forces meaning that the strength of interac-

tion does not depend on the existence of the effector protein [180]. These observations

indicate that the allosteric regulation of GTP bound Ran and impβ by RanBP1 is ac-

complished by a dynamic shift in the pre-existing conformational states in the ensemble

of conformation of the complex where the effector protein selectively binds to the lower-

strength state. Additionally, the low affinity GDP bound Ran and impβ forms a weak

complex characterized by unimodal distribution of rupture forces in the absence of the

effector protein. Introducing RanBP1 into the solution results in the measurement of

higher rupture forces as well as increasing the probability of adhesion (the number of

unbinding events with respect to the number of approach/retract cycle). These results
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indicate that RanBP1 stimulates Ran-GDP and impβ complex formation as well as

amplifying the binding strength by inducing a conformational change in the complex

implying an induced-fit mechanism. The authors also studied the effect of the mutation

on the Ran and impβ complex. RanQ69L mutant, where it is analogous to the well-

studied and potentially oncogenic RasQ61L, considerably lowers the GTPase activity

of Ran. According to DFS results of the GDP bound RanQ69L and impβ has similar

force spectrum with the GDP bound wild-type Ran and impβ. However, the mutation

increases the unimodal distribution of rupture forces in GTP-bound RanQ69L form

compared to the wild-type Ran analog, suggesting that RanQ69L-GTP abolishes one

bound state and makes only the lower-strength state accessible that is again implying

a population-shift mechanism.

In another study, Ritco-Vonsovici et al., [181]) elucidated the relation between

the differentiation in conformational states and multifunctioning of β-catenin using

DFS and MD simulations. To test idea that whether the two main function (cell adhe-

sion and control of cell differentiation, development) of β-catenin originates from the

two molecular form of the protein or not, the interaction of β-catenin with transcrip-

tion factor Tcf4 was studied using AFM. They obtained a bimodal force distribution

in the unbinding process of β-catenin/Tcf4 complex at low loading rates, implying

two distinct populations in the ensemble of conformations of the complex where it

shifts to a single population as loading rate increases (only lower-strength state was

survived). Addition of selective inhibitor (ICAT) that prevents β-catenin/Tcf4 inter-

action reduced the probability of lower-strength state at low loading rates while the

interaction totally disappeared at high loading rates (both lower and higher-strength

states). These findings show that binding of the inhibitor either selectively inhibits one

of the states or inhibits them both implying inhibitor adapts a conformational selec-

tion mechanism. The MD simulation of apo β-catenin results indicated that there are

at least two conformers of the protein differentiating at the orientation of the flexible

regions at its binding site. Therefore, the two different population of β-catenin/Tcf4

dissociation reaction may originate from the two distinct conformational isomers of

β-catenin.
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Existence of multiple energy barriers was also found in dissociation reaction of

the iron transporter protein transferrin (Tf) and its receptor (TfR) [169]. Yersin et

al. functionalized iron-loaded Tf (holo-Tf) or iron-free Tf (apo-Tf) to the AFM tip

and TfR to the surface to study the differences in binding mechanism of both apo and

holo Tf with TfR and the effect of pH on the complex formation where holo to apo

transition is favored at low pH values. They found that the unbinding of holo-Tf from

TfR requires higher forces compared to the apo-Tf. In addition, the dissociation of

holo-Tf-TfR complex requires overcoming of two energy barriers, whereas apo-Tf-TfR

complex includes only one. Moreover, the strength of apo-Tf-TfR interaction is pH

dependent. The variation in the energy landscape of holo and apo form of the Tf-TfR

interaction could be considered as supportive argument to the idea that the holo-Tf

interacts with TfR through its two lobes, whereas apo Tf binds TfR by its one lobe

only [182].

Zhang et al., [170] employed DFS to understand the dissociation mechanism of

the α4β1 and VCAM-1 complex for both wild type and different mutants of VCAM-1.

α4β1/VCAM-1 complex can resists large shear forces induced by the blood stream.

Their results revealed that the dissociation of the α4β1/VCAM-1 complex involves at

least two energy barriers, an inner barrier and an outer barrier corresponding to larger

and smaller rupture forces, respectively. This two barriers kinetics can be considered

as reflection of the biophysical basis of two different physiological functions (i.e., cell

rolling and firm adhesion) of the α4β1/VCAM-1 interaction. D40A mutation at the

binding interface of VCAM-1 decreases the unbinding forces of α4β1/VCAM-1 com-

plex supporting the idea of stabilization of the complex by electrostatic interactions.

Other mutational studies at different structural elements of VCAM-1 provide molecular

explanation to the functional roles of these regions on α4β1/VCAM-1 interaction.
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6. MATERIALS AND METHODS

6.1. Gaussian Network Model

The fluctuation dynamics of proteins can be effectively described by coarse-

grained normal mode analysis. In the elastic network model description, carbon alpha

of each amino acid residue is taken as a node and these nodes are connected by springs

with the “neigboring nodes” (see Figure 6.1). The “neigboring nodes” are defined here

by a cut-off radius; the nodes that have distances less than the defined cut-off distance

are thought to be connected by linear springs. In this model, neither connectivity nor

residue types are taken into consideration [7]. This model is simply referred as Gaus-

sian network model (GNM) if the fluctuations are assumed to be isotropic, i.e. with no

directional preferences. The studies have shown that GNM is in accordance with X-ray

crystallographic Debye-Waller factors [7, 9], the H/D exchange free energies [183] and

the order parameters from NMR-relaxation measurements [184].

Figure 6.1. Description of the Gaussian Network model (GNM).

In the GNM, in order to calculate the harmonic potential, firstly, the fluctuation

vector should be calculated. The fluctuation vector, is simply the difference between

the instantaneous position vector of ith node, Ri, and the equilibrium position vector
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of ith node; Ro
i .

∆Ri = Ri −R0
i (6.1)

The fluctuation vector, is the squareroot of sum of squares of the difference in X,

Y and Z coordinates:

∆Ri =
√

(xi − xoi )2 + (yi − yoi )2 + (zi − zoi )2 (6.2)

The vector Rij defines the position vector from ith node to jth node; whereas ∆Rij

defines the fluctuation of this vector:

∆Rij = Rij −R0
ij = ∆Rj −∆Ri (6.3)

If the fluctuations are assumed to be isotropic and Gaussian; the potential func-

tion can be found to be as the following;

V =
γ

2

 N∑
ij

Γij
[
(∆Xi −∆Xj)

2 + (∆Yi −∆Yj)
2 + (∆Zi −∆Zj)

2
] (6.4)

In this equation, γ is the force constant for the spring; and G stands for the

symmetric Kirchoff matrix; which represents the connectivity between nodes. In order

to calculate the connectivity element of Kirchoff matrix between ith and jth residues;

the following constraints are used:

Γij =


−1ifi 6= jandRij ≤ rc

0ifi 6= jandRij ≤ rc

− ∑
i,j 6=i

Γijifi = j

(6.5)
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By using the GNM, the goal is to determine either the mean square fluctuation

of ith node (residue), or the cross-correlation between ith and jth residues.

〈
∆R2

i

〉
= 〈∆Ri.∆Ri〉 =

〈
∆X2

i

〉
+
〈
∆Y 2

i

〉
+
〈
∆Z2

i

〉
(6.6)

〈∆Ri.∆Rj〉 = 〈∆Xi.∆Xj〉+ 〈∆Yi.∆Yj〉+ 〈∆Zi.∆Zj〉 (6.7)

Using the Kirchoff matrix, the cross-correlations are determined via diagonaliza-

tion and inversion:

〈∆Ri.∆Rj〉 =
3kBT

γ

[
Γ−1

]
ij

=
3kBT

γ

[
UΛ−1UT

]
ij

(6.8)

〈∆Ri.∆Rj〉 =
3kBT

γ

∑
k

[
λ−1
k uku

T
k

]
ij

(6.9)

The matrix Λ, is the eigenvalue matrix; and represents the frequencies of the

modes. Matrix U , is the eigenvector matrix corresponding to these modes. The eigen-

value matrix will have N-1 (residue number-1) nonzero elements, and the lowest eigen-

values will correspond to the slowest modes; which represent the collective and global

motions. The highest eigenvalues however, will correspond the fastest modes. The

eigenvalues are sorted in an ascending order for convenience.

An extension of the GNM, called anisotropic network model (ANM), has been

proposed to incorporate the anisotropic effects on fluctuation dynamics [6, 7, 139]. The

large scale collective motions obtained from both GNM and ANM have been shown

to be closely related to those extracted from atomistic molecular dynamics studies for

amylase inhibitor tendamistat [114]. This lends support to the effectiveness of these

coarse-grained models in the analysis of the structure-function relationship of proteins
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and their complexes.

6.2. Anisotropic Network Model

Elastic network models are constructed based on the three-dimensional (3D)

folded structure of proteins, which have been determined by experimental techniques

such as X-ray crystallography or nuclear magnetic resonance (NMR). The total poten-

tial of a protein structure with N interaction sites, i.e. residues, is given by,

V = (γ/2) ∆RTH∆R (6.10)

where ∆R is 3N-dimensional vector of the fluctuations ∆Ri in the position vectors Ri

of the individual sites, ∆RT is its transpose, and H is the Hessian matrix composed of

the second derivatives of the potential. The force constant γ is taken to be identical

for all bonded and nonbonded interactions. Explicitly, the total potential energy can

be written a summation over all harmonic interactions of (i, j) pairs that fall within a

cutoff distance of rc.

V = (γ/2)
∑
i

∑
j

h (rc −Rij) (∆Rj −∆Ri)
2 (6.11)

Here, h(x) is the heavyside step function [h(x) = 1if ≥ x0, andzerootherwise],

Rij is the distance between sites i and j.

Hessian matrix is expressed as a function of N2 submatrices Hij of the form

Hij =


∂2V/∂Xi∂Xj∂

2V/∂Xi∂Yj∂
2V/∂Xi∂Zj

∂2V/∂Yi∂Xj∂
2V/∂Yi∂Yj∂

2V/∂Yi∂Zj

∂2V/∂Zi∂Xj∂
2V/∂Zi∂Yj∂

2V/∂Zi∂Zj

 (6.12)

where Xi, Yi and Zi are the components of Ri.
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The cross-correlations between the fluctuations of sites i and j are calculated

from

< ∆Ri.∆Rj>= (1/Zn)
∫

(∆Ri.∆Rj) exp {−V/kbT} d {∆R}

= (3kBT/γ) trbH−1cij
(6.13)

including the mean-square fluctuation amplitudes < (∆Ri)2 >. Here, kB is

the Boltzmann constant, T is the absolute temperature in degrees Kelvin, ZN is the

conformational partition function, and tr[H−1]ij is the trace of the ijth submatrix

[H−1]ij of H−1.

The dynamics of the protein around the minimum energy conformation can be

represented as a collection of 3N-6 normal modes of motion. As a result, < ∆Ri.∆Rj >

can be also expressed as < ∆Ri.∆Rj >= Σ[∆Ri.∆Rj]k where the contribution of the

kth mode is

[∆Ri.∆Rj]k0 (3kBT/γ) tr
⌊
λ−1
k uku

T
k

⌋
ij

(6.14)

here λk is the kth eigenvalue and uk is the corresponding eigenvector. The eigenvalues

represent the frequencies of the individual modes. The most important point is to

analyze the slowest modes playing a dominating role in collective dynamics of the

structure and in biological function.

6.3. Molecular Dynamics

The methodology of Molecular Dynamics Simulations is based on Newton’s sec-

ond law,

Fi = miaior

Fi
mi

= d2xi
dt2

(6.15)
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where Fi is the force exerted on the particle i, mi is its mass and αi is its acceleration.

Starting with the knowledge of the force on each atom, determination of the acceler-

ation of each atom in the system is possible. Integration of the second form of the

equation yields a trajectory that describes the positions, velocities and accelerations of

the particles as they vary with time. The method is deterministic; meaning that know-

ing the positions and velocities of each atom, prediction of the state of the system at

any time; future or past, is possible. Using this methodology, successive configurations

of the system can be generated. In intermolecular interactions, the force applied on

each particle changes whenever the particle itself of any other particle in interaction

with it changes its position. This feature is implemented to the simulation with the use

of continuous potential, in which the motions of all particles are coupled together [185].

At this stage, since molecular systems generally consist of a vast number of particles,

it becomes impossible to find the properties of such a complex systems analytically.

Therefore, MD simulation integrates the equations by using numerical methods.

The force exerted on each particle at any time during simulation, Fi is calculated

from a forcefield in MD simulations. The forcefield defines the potential energy of a

system as a function of the atomic positions/coordinates, and the Fi are obtained from

derivatives of the potential function.

(R1, . . . , RN) =
∑
bonds

ki
2

(li − li,0)2 +
∑

angles

ki
2

(li − li,0)2+

∑
torsions

Vn
2

(1 + cos (nw − γ)) +

N∑
i=1

N∑
j=i+1

(
4ij

[(
σij
rij

)12
−
(
σij
rij

)6
]

+ qiqj
4π0rij

) (6.16)

The potential energy of particle i as a function of all Rj , is defined in terms of

interactions between bonded atoms, bond angle and torsional angle potentials, and

electrostatic and van der Waals interactions between non-bonded atoms. The first term

in the equation describes the interaction of pairs of bonded atoms, where li is the bond

length. The second term is similarly the summation over all the angles in the molecule

modeled using a harmonic potential, where θi is the angle between the three successive

atoms. Torsional potential describes the change in energy when a bond rotates, and is
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depicted with the third term in the equation. The fourth contribution in the equation

is for the non-bonded atoms, which are separated by at least three atoms. The non-

bonded interactions are defined by two different potentials. The former one is the

Lennard-Jones 12-6 potential function that accounts for van der Waals interactions,

whereas the latter one is the Coulomb potential for electrostatic interactions [185].

From the potential function, the Fi are generated as:

Fi = −∇Vi (Ri, . . . , RN) = −∂V (Ri, . . . , RN)

∂Ri

(6.17)

Knowing the state of the structure at time t, the positions, velocities and acceler-

ations are approximated by Taylor series, where α is the acceleration (2nd derivative),

b is the 3rd derivative etc. (185).

r (t+ δt) = r (t) + υ (t) δt+ 1
2
α (t) δt2 + . . .

υ (t+ δt) = υ (t) + α (t) δt+ 1
2
b (t) δt2 + . . .

α (t+ δt) = α (t) + b (t) δt+ . . .

(6.18)

The most common algorithm used in integration is Verlet algorithm. Positions and

accelerations at a time t and positions from time (t-δt) are used to calculate new

positions at time (t + δt). Then the velocities can be obtained from the difference in

positions. From generated values, new positions can be obtained successively [185].

Giving the appropriate equations:

r (t+ δt) = r (t) + υ (t) δt+ 1
2
α (t) δt2; r (t− δt)

= r (t)− υ (t) δt+ 1
2
α (t) δt2

r (t+ δt) = 2r (t)− r (t− δt) + 1
2
α (t) δt2

υ (t) = r(t+δt)+r(t−δt)
2δt

(6.19)

As can be seen from the structure of the algorithm, to be able to start a MD

simulation and generate configurations of the system, the initial state should be defined.
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Either experimental or theoretical inputs can be used at this stage. In addition to the

positions of the elements of the network, the initial velocities should also be defined.

Experimental inputs are generally used for the atomistic coordinates of a struc-

ture, in the form of X-ray or NMR structure. The structure is subjected to energy

minimization before the starting the simulation.

The initial velocities are generated by theoretical methods. A commonly used

method is randomly selecting the initial velocities from a Maxwell-Boltzman distribu-

tion, for the specified temperature [185].

p (υix) =
(

mi

2πkBT

) 1
2

exp

(
−miυ

2
ix

2kBT

)
(6.20)

6.4. Metadynamics

Metadynamics is an enhanced sampling method developed by Laio and Parrinello

[69, 186] to sample rare events and reconstruct free energy landscape, where a molecular

system is simplified by means of reduced degrees of freedom. A set of variables referred

as reaction coordinates, collective variables (CVs) or order parameters, were defined.

The basic concepts of this methodology are as follows;

A system consisting of N number of particles interacts through a potential en-

ergy function V (r) as a function of conformational/configurational coordinates r, which

contributes to its free energy (E). The free energy difference (∆E) is more significant

than its absolute value (E). Calculating a difference implies the existence of at least

two different states. Often these two different states can be distinguished along a few

parameters, called reaction coordinates or collective variables (CVs). In molecular con-

formational space, these CVs, ξ = (ξ1, ξ2, . . . ξNCV ), are often time dependent functions

of configurational coordinates r and its values ζεR(NCV ) where NCV = 3N is the to-

tal number of CVs. They can be considered as degrees of freedom of the phasespace

that represents the thermodynamic state of the system. The system evolving under



52

the action of a dynamics (i.e. Molecular Dynamics) may stuck in some local minima

of V(r), if barriers are higher than the energy generated by thermal fluctuations (see

Figure 2.3). The main idea of metadynamics is to add a history-dependent potential

constructed as a sum of Gaussian distributions centered along the simulation in the

CVs space to bias the system not to sample previously visited states in the conforma-

tional ensemble. The metadynamics bias potential expressed here is implemented as

in [69, 100, 186],

VB (ξ, t) =
t′<t∑

t′ = kτG

k ∈ N

w
NCV∏
i=1

e
− [ξi−ξi(t

′)]2

2σ2
i (6.21)

where τG is the time interval of NCV -dimensional Gaussian functions deposition. The

height of the Gaussian “hills” is a user-defined energy constant w whose width is σi

and the centers of the hills are previously sampled conformations (ξ (τG) , ξ (2τG) , . . .).

A schematic representation of this deposition process is shown in Figure 6.2. The

Gaussian height w, the Gaussian width σi, and the deposition time interval τG are

the user-defined simulation parameters. Lower values of w and higher values of the

hill frequency τG provide more accurate sampling but increase the simulation time to

complete a potential of mean force (PMF) calculation.

Figure 6.2. Schematic Representation of Gaussian Functions Deposition of the

Potential energy of the system.
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By adding the metadynamics bias potential, the Hamiltonian of the system be-

comes time dependent as,

HB (r, p, t) = K (p) + V (r) + VB (ξ (r) , t) (6.22)

where, r is the conformational state (conformational/configuration coordinate) of the

system, p is the momentum, t is time, K(p) and V (r) represent kinetic and unbiased

potential energy of the system, VB(ζ, t) is the biased potential.

And the force underlying this biased dynamics, where the potential energy is the

sum of unbiased biased potentials, becomes

FB
i = −∇riV (r) −∇riVB (ξ, t) = Fi + Fmeta

i (6.23)

The explicit form of the metadynamics forces is obtained by inserting Equation

6.21 into Equation 6.22 as follows

Fmeta
i = −∇riVB (ξ, t)

= −
t′<t∑

t′ = kτG

k ∈ N

w∇ri

NCV∏
i=1

e
− [ξi−ξi(t

′)]2

2σ2
i

=
t′<t∑

t′ = kτG

k ∈ N

w

(
NCV∑
b=1

ξb−ξb(t′)
σ2
b
∇riξb

)
NCV∏
i=1

e
− [ξi−ξi(t

′)]2

2σ2
i

(6.24)

As can be seen from Equation 6.24, the metadynamics forces are re-summations

of the deposited Gaussians, scaled by the derivative ∇riξ = (∇riξ1, . . . ,∇riξNCV ) of the

CV ζ with respect to the original coordinates ri. The CV ζ should be chosen based on

the criteria that ∇riξ should be calculated analytically.
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Theoretically, the generated trajectory using metadynamics is an out-of-equilibrium

dynamics. However, if very large τG is employed, the variation of VB (ξ, t) is very slow.

Therefore, it can be considered as between Gaussian depositions, the trajectory of

the system reveal equilibrium dynamics (classical molecular dynamics). The main as-

sumption of standard metadynamics is that the bias potential is ultimately an unbiased

estimator for the free energy as a function of the reaction coordinate. This assumption

could be understood using the aforementioned slow-deposition argument as

lim
τ→+∞

VB (ξ, τ) − F (ξ) (6.25)

It has been demonstrated that, after a transient time τ , which corresponds to the

time required to fill all the relevant free energy minima of the system, VB(ζ, t) reaches a

stationary state in which it grows evenly around and average. However, this argument

is only qualitative, and there is no proof of convergence that gives Equation 6.25.

6.4.1. Well-Tempered Metadynamics

Although metadynamics has many benefits to accurate sampling of the confor-

mational ensemble, it has one main drawback. The bias potential does not converge to

the free energy but oscillate around it in a single simulation [100, 187]. This handicap

has two consequences; 1) Since the bias potential will overfill the underlying FES after

sampling all minima, it will bring the system toward non-physical high energy regions in

the CVs space. 2) It will be hard to decide when to stop the simulation. Well-tempered

metadynamics [100] emerged as a solution to these problems. In well-tempered meta-

dynamics, the height of the Gaussian function decreases as the simulation proceeds

as

w (t′) = w0e

(
−VB(ξ,t)

kBT

)
(6.26)

where w0 is he initial Gaussian height, ∆T is a scaling parameter with the dimension

of a temperature, and kB is the Boltzmann constant. With this rescaling, the bias
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potential does not fully compensate the underlying FES but it converges as in Equation

6.27 in the long time limit as

lim
τ→+∞

VB (ξ, τ) = − ∆T

T + ∆T
F (ξ) (6.27)

This rescaling provides avoiding from overfilling of FES and also reduces the

computational time when a large number of CVs are used [187].

6.4.2. Bias-Exchange Metadynamics

Accurate description of the free energy surface by metadynamics approach strongly

depends on the choice of CVs. If an important vivid parameter is missing in control-

ling the functional free energy change of the system, the resulting free energy surface

will have large fluctuations and errors. Moreover, the performance of the algorithms

rapidly decreases as the dimensionality of the CV space increases. Unfortunately,

complex reactions such as protein folding, conformational change, and biomolecular

recognition acquire high degrees of freedom. It is thus often difficult to select a pri-

ori a limited number of variables accurately describing the underlying energy surface.

The bias-exchange metadynamics (BexMetaD) [103] method allows to overcome the

abovementioned difficulties. BexMetaD appears a combination of replica exchange and

metadynamics. In this methodology, multiple metadynamics simulations at the same

temperature are performed where each replica is biased with a time-dependent poten-

tial function acting on different CVs. Exchanges between the bias potentials (exchange

of the configurations) acting on different CVs are periodically allowed according to the

Metropolis scheme with the probability,

Pab = min
(

1, eβ(V
a
B(ra,t)+V bB(rb,t)−V aB(rb,t)−V bB(ra,t))

)
(6.28)

If the attempt to exchange the biases is accepted, the trajectory that was previ-

ously biased in the direction of CV a continues its evolution biased by CV b, and vice
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versa. A relatively large number of different CVs can be used to bias the system through

this approach and a high-dimensional space can be explored after a sufficient number

of exchanges. Adding more CVs increases the computational cost of the simulation

linearly, although this happens exponentially in normal metadynamics approach.

6.4.3. Selection of Collective Variables

Effective application of metadynamics to correct sampling of conformational en-

semble and construction of underlying FES strongly depends on the choice of CVs.

Although there is no universal recipe for the selection of CVs, a good CV should

satisfy the following three points [187];

(i) They should distinguish distinct states of the system, namely; initial, final, and

all relevant intermediate states.

(ii) They should include all slow degrees of freedom related to the process of interest.

(iii) They should not exceed a limited quantity

As long as they fulfill the above criteria, every possible function of the spatial

coordinates can be selected as CVs. There are many ready to use CVs implemented

in available MD simulation tools such as distances, bond and dihedral angles, radius

of gyration, coordination number, hydrogen bonds, RMSD, the projection of atomic

coordinates on a vector, the composition of secondary structural elements, etc. For

example, distance or dihedral angle biases can be introduced into the simulation as CV

given in the following formulations. As stated by Rossetti et al., CVdistance can be in

the form as

CVdistance =
∑
ij

1− (rij/r0)8

1− (rij/r0)10 (6.29)

CVdistance can be introduced as in the above form in which rij is distance between the

selected atoms and r0 is distance parameter (distance parameter is a pre-defined value

depending on the system of interest, i.e. 6 Ã for the typical carbon-carbon distance
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(Fiorin et al., 2006) ).

CVdihedral =
∑
i

(1− cos(Ψi − 45◦) )2 (6.30)

CVdihedral can be introduced as in the above form in which ψi is the backbone dihedral

angle between consecutive N-Cα-C-N atoms (Rossetti et al., 2011).

The difficulty of choosing the right CVs describing the process of interest before

doing any calculations is not a defect of metadynamics or any CV-based methods. It is

sometimes necessary to do some trials and errors before getting the correct definition

of the reaction coordinate.

A great number of CVs have been used in the literature, but they usually de-

pend on the nature of the specific process or specific to the molecule of interest. Using

any global property defined only from intrinsic properties that will reflect large con-

formational transitions of the molecule in metadynamics simulations would be highly

beneficial in the field of computational structural biology. Collective modes of mo-

tion obtained either from the principal component analysis (PCA) of conventional MD

trajectories or from ENM are good candidates to fill this deficiency.

6.5. Collective Modes Driven well-Tempered Bias-Exchange

Metadynamics (CM-BexMetaD)

Biomolecular simulations are regularly used in molecular biology researches, how-

ever they have a limited impact on pharmaceutical and biotechnology industry with

a high computational power and time for a short incidence of the life of biomolecules.

Although MD is an important and widely used research methodology, inadequate sam-

pling limits its application. The reason of this limitation is the roughness of the energy

landscape of the biomolecular motion containing many local minima and high energy

barriers separating these minima. Hence, to understand protein dynamics and reveal

whole conformational space through constructing the energy landscape of biomolecules,

several approaches have been developed in terms of both hardware and methodological
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means. Methodological approaches characterized by enhanced sampling techniques and

coarse grained models [188]. Both of these two approaches have some strengths and

weaknesses. It will thus be effective to combine these two approaches, where hybrid

simulation methodologies are shown as successful [3, 189].

The hybrid methodology proposed in this study combines an ENM, namely

Anisotropic Network Model (ANM), with explicit solvent bias-exchange well-tempered

metadynamics simulations. This approach is named here as collective modes driven

bias exchange metadynamics (CM-BexMetaD). It uses intrinsic functional dynamics of

proteins to enhance conformational sampling and to collect parallel pathways between

metastable states by constructing a free energy landscape of the transition.. Here,

the initial conformation is biased to move along the collective ANM modes of motion,

taking advantage of the explicit solvent atomistic molecular dynamics between the of

insertion of Gaussian hills of metadynamics, which provide escaping from trapping

local minima. We employed bias exchange well-tempered metadynamics simulations,

which randomly select the replicas and exchange their biases and accept or refuse the

exchange of biases according to the Metropolis criteria. This stochastic exchange of

biases provides transition between two states via minimum energy pathway and the

system is not directly enforced to the target state [126, 190]. The bias-exchange scheme

of the approach is summarized in Figure 6.3.

The bias-exchange well-tempered metadynamics phase of the methodology begins

with N number of replicas, Rep1,..., RepN (N=5 in this Figure 6.3) each biased with a

different CVs, CV1,...,CVN. After a user-defined time step of well-tempered metady-

namics (wt-MetaD) simulation, randomly selected two replicas (Rep2 and Rep3 in this

Figure 6.3) exchange their biases (CVs) and in order to accept or reject this exchange

of biases, four wt-MetaD simulations are conducted, where two replicas with exchanged

biases and two replicas with unchanged biases. This exchange will be accepted or re-

jected according to Metropolis criteria (Equation 6.27). From the beginning of the

N replica wt-MetaD to the end of Metropolis decision is called biasexchangeattempt

within this methodology, which is a user-defined variable within the simulation.
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Figure 6.3. Flow Diagram of Bias-Exchange well-Tempered Metadynamics

(wt-MetaD) Scheme. Here, a wt-MetaD Simulations with the Replicas (Rep1, ...,

Rep5) Each Biased with a CV (CV1, ..., CV5) are Illustrated Schematically.

Since the methodology uses intrinsic properties of proteins, it can thus be applied

to any system without a priori information about the protein specific, most valuable

bias (collective variable), which will drive the simulation to any target state. The

methodology is developed in three different ways with respect to how collective variables

are utilized to bias metadynamics simulations; targeted (the highest overlapping slowest

ANM modes with the initial to target difference vector are used), non-targeted (only

a number of slowest ANM modes are used), and updating the collective modes used

to bias the simulation at certain intervals in the targeted version of the methodology.

The flowcharts of both approaches are given in Figure 6.4, Figure 6.5 and Figure 6.6.
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Figure 6.4. Flowchart of Targeted CM-BexMetaD-1 Approach.
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Figure 6.5. Flowchart of Targeted CM-BexMetaD-2 Approach.

The common (in both targeted and non-targeted versions) user-defined variables

in this hybrid approach are the number of ANM modes (also equals to number of

replicas), the cutoff radius (Rcut), Gaussian height w, the Gaussian widths σi, the

hill deposition time intervalτG, the temperature “boost” ∆T , and the number of bias

exchange attempt. RMSD value as similarity measure in clustering and the number of

simulation/clustering cycle are additional user-defined variables for the CM-BexMetaD-

1 approach.
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Figure 6.6. Flowchart of Non-Targeted CM-BexMetaD Approach.

6.5.1. Intrinsic Dynamic Modes as CVs in the Present Thesis

Eigenvector, which is practically the projection of the atomic coordinates onto a

vector in R3N , where N is the number of atoms, is a CV that is defined in ready-to-use

molecular simulation tools. The projection of atomic coordinates r onto the specified

vector is calculated using following form

p({ri (t)} ,
{
ri

(ref)
}

=

(
N∑
i=1

u2
i

)−1
N∑
i=1

ui. (U (ri (t)− rcog (t))

−
(
ri

(ref) − rcog(ref)
)) (6.31)
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Here, U is optimal rotation matrix, U
{ri(t)}→

{
r
(ref)
i

}
that best superimpose the

coordinates {ri (t)}, which is in our case transient configuration of protein, onto a set

of reference coordinates
{
r

(ref)
i

}
, which is in our case the initial conformation. rcog (t)

and rcog
(ref) are the centers of geometry of the current and the reference positions,

respectively. ui are the components of the vector for each atom, which is in our case

the eigenvector corresponding to the slowest normal modes determined from ANM.

This enhanced direction ui can be eigenvectors of the covariance matrix (essential

mode) (principal components of the motion which could be obtained from a relatively

short MD simulations).

The bias potential expressed in Equation 6.20 can be easily calculated by replacing

the ζ with the projection p

VB (p, t) =
t′<t∑

t′ = kτG

k ∈ N

w
NCV∏
i=1

e
− [pi−pi(t

′)]2

2σ2
i (6.32)

Essential coordinates derived from the PCA of a 500ns conventional MD simu-

lation was used by Deriu and coworkers [191] as CVs to explore the conformational

rearrangement of Josephin Domain and to construct the underlying free energy land-

scape characterizing the transition pathway from the open to closed conformation of

the protein. However, the collective modes of the proteins obtained from ENM, which

give the long time behavior of conformational transition have not been used as CVs

to enhance the sampling in metadynamics yet. Calculating the collective modes of

motion from ENMs reduces the required computational time to extract the essential

coordinates.

In this proposed hybrid methodology, Anisotropic Network Model (ANM), which

is a coarse grained ENM is used to extract collective modes of motion. ANM is carried
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out for the initial conformational state of the molecule by decomposing the Hessian

matrix as explained in Methods and Materials Section. For the targeted version of

the proposed approach, the determination of collective modes and the corresponding

3N-dimensional eigenvectors u of motion is followed by the calculation of the overlap

(O) between those eigenvectors and the initial to target difference vector (d) by simply

taking the dot product of the vectors as;

Oi =
|ui.d|
|ui| . |d|

; i = 1 : k (6.33)

where, k is the maximum number of slowest ANM modes that is a user-defined variable.

Before calculating the difference vector, initial and target structures are aligned to

remove the irrelevant translation and rotation between the structures. N number of

highest overlapping ANM modes are used as CVs, which is again a user-defined number.

For non-targeted version of the proposed approach, a pre-defined number of slow-

est ANM modes are used as CVs to derive the enhanced sampling along the highest

collective modes of motion.

6.5.2. Computational Details of the Simulation

NAMD 2.10 [192] with CHARMM36 [194] force field was used for both minimiza-

tion of structures and the well-tempered metadynamics simulation with 2 fs integration

time step and periodic boundary conditions. The temperature was maintained at 310

K with a Langevin damping coefficient of 1 ps−1 [195]. The pressure was kept at 101.3

kPa by means of NoseÂ´-Hoover Langevin piston pressure control. The SHAKE algo-

rithm was used to restrain the length of bonds involving hydrogen atoms for a time step

of 2 fs. The initial crystal structures were immersed in a TIP3P-type water box [196]

with at least 8Ã of padding between the solute and the edge of the box. The system

was neutralized with Cl− and Na+ ions. A nonbonded cutoff of 12AÂ◦ was used for all

Len- nard-Jones interactions with a switching function starting at 10Ã, and the long-

range electrostatics was treated according to the particle-mesh Ewald method [197].

The nonbonded pair list distance was 14Ã. All systems were energetically minimized
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by the conjugated gradient method for steric crush and crystal contact removal.

Amber Tools 14 package was used for both aligning the structures/trajectories

and clustering the trajectories.

In-house developed script in MATLAB was used to accomplish bias-exchange

procedure and ANM calculations.
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7. CONFORMATIONAL SAMPLING AND

CONSTRUCTION OF FREE ENERGY LANDSCAPE

USING CM-BEXMETAD

7.1. Introduction

Biomolecular simulations are regularly used in molecular biology researches; how-

ever they have a limited impact pharmaceutical and biotechnology industry because

of the fact that in order to simulate a short incidence from the life of biomolecules

they require a high computational power and time. Although molecular dynamics

(MD) simulation is an important and widely used research methodology, inadequate

sampling limits its application. The reason of this limitation is the roughness of en-

ergy landscapes of biomolecular motion containing many local minima and high energy

barriers separating these minima. Hence, to understand protein dynamics and reveal

whole conformational space through constructing full energy landscape of biomolecules,

several approaches have been developed in terms of both hardware and methodological

means. Methodological approaches consists of coarse grained models and enhanced

sampling techniques [188]. Both of these two approaches have some strengths and

weaknesses; therefore it will be effective to combine the two approaches where hybrid

simulation methodologies are shown as successful in recent literature [3, 189].

The methodology proposed in this study combines Anisotropic Network Model

(ANM) with explicit solvent bias exchange metadynamics simulations called collective

modes driven bias exchange metadynamics (CM-BexMetaD) to enhance conforma-

tional sampling using intrinsic dynamics of proteins and to collect parallel pathways

between functional states by constructing the underlying free energy landscape of the

transition between these states. The simulation protocol is designed not to sample

only the shortest paths between stable states of the protein, instead some energetically

unfavorable transitions which are not easy to sample via conventional molecular simu-

lation techniques are biased to favor overcoming large energy barriers, as well as giving



67

flexibility to sample a short equilibrium dynamics between addition of bias potentials.

The developed CM-BexMetaD simulations were performed for the well-characterized

exemplary case adenylate kinase (AdK), which has known open and closed conforma-

tions as well as many intermediate states determined by experimental methods. The

energetics and the structural determinants underlying its large-scale conformational

transition are also studied with many enhanced sampling methodologies, which pro-

vides comparative information to the results obtained with the present novel approach.

Using the developed protocol, it has been possible to sample some of the ex-

perimentally determined structures as intermediate states in the functional transition

of the AdK enzyme. The one-dimensional free-energy landscape along the stochastic

combination of collective modes of motion was also calculated. In addition, the effect

of a perturbation on the conformational ensemble and energetics through mutating

a hinge site that plausibly controls the functional transition of the enzyme was also

investigated.

7.2. Materials and Methods

7.2.1. CM-BexMetaD Simulations

We have performed three different simulation protocols (CM-BexMetaD-1, CM-

BexMetaD-2 and non-targeted CM-BexMetaD) between functionally stable conforma-

tion of AdK, taking the open conformation as initial structure to study open to closed

conformation of the protein. The details of each simulation protocols were given in

section X of this thesis and the summary of parameters used are listed in the following

tables.

7.2.2. Targeted with Slowest Ten Modes

This is the first version developed as CM-BexMetaD-1. In this version, only slow-

est ten modes were used as CVs, but the directions of the eigenvectors were updated
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according to the direction of the difference vector between the initial and target struc-

ture. The user-defined parameters and simulation lengths are summarized in Table

7.1.

Table 7.1. Summary of Simulation Parameters of CM-BexMetaD-1.

Gaussian Hill Height (kcal/mol) 0.5

Rcut for ANM calculations (Ã) 18

Hill Addition Frequency (ps) 1

MetaD length before Bias exchange attempt (ps) 10

# Bias exchange attempt before clustering 100

# of Clustering Cycle 8

Total Simulation Length (ns) 8

7.2.2.1. Targeted with Highest Overlapping Slowest Modes. In the second version of

the methodology, the highest overlapping collective modes were used as CVs and the

directions of the eigenvectors were updated according to the direction of the differ-

ence vector between the initial and target structure. The user-defined parameters and

simulation lengths are summarized in Table 7.2.

Table 7.2. Summary of Simulation Parameters CM-BexMetaD-1.

Gaussian Hill Height (kcal/mol) 0.5

Rcut for ANM calculations (Ã) 18

Overlap cutoff 0.5

Number of ANM modes used as CVs 10

Hill Addition Frequency (ps) 1

MetaD length before Bias exchange attempt (ps) 10

# Bias exchange attempt before clustering 200

# of Clustering Cycle 8

Total Simulation Length (ns) 16
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7.2.2.2. Targeted with Highest Overlapping Slowest Modes without Updating Modes.

In this version of the developed method, the highest overlapping collective modes were

used as CVs and the directions of the eigenvectors were updated according to the di-

rection of the difference vector between initial and target structure. The user-defined

parameters and simulation lengths are summarized in Table 7.3 and Table 7.4.

Table 7.3. Summary of Simulation Parameters of CM-BexMetaD-2 for wt-run1 and

Y171W Mutant.

wt-1 Y171W

Gaussian Hill Height (kcal/mol) 2 2

Rcut for ANM calculations (Ã) 18 18

Overlap cutoff 0.5 0.5

Number of ANM modes used as CVs 10 10

Hill Addition Frequency (ps) 0.2 0.2

MetaD length before Bias exchange attempt (ps) 10 10

# Bias exchange attempt 560 560

Total Simulation Length (ns) 5.6 5.6

Table 7.4. Summary of Simulation Parameters of CM - BexMetaD - 2 for wt - run2.

Gaussian Hill Height (kcal/mol) 10

Rcut for ANM calculations (Ã) 18

Number of ANM modes used as CVs 10

Hill Addition Frequency (ps) 0.2

MetaD length before Bias exchange attempt (ps) 10

# Bias exchange attempt 330

Total Simulation Length (ns) 3.3

7.2.2.3. Non-Targeted with Slowest Modes without Updating Modes. In this version

of the developed method, only the slowest five collective modes were taken and the

eigenvectors with both directions of each mode were also generated (simply multiply-

ing with -1). Thus, ten modes were used as CVs. The user-defined parameters and
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simulation lengths are summarized in Table 7.5.

Table 7.5. Summary of Simulation Parameters for Non-Targeted Approach.

Gaussian Hill Height (kcal/mol) 2

Rcut for ANM calculations (Ã) 18

Number of ANM modes used as CVs 10

Number of ANM modes used as CVs 5x2

MetaD length before Bias exchange attempt (ps) 10

# Bias exchange attempt 460

Total Simulation Length (ns) 4.6

7.2.2.4. Simulation Details. Metadynamics simulations were performed in explicit sol-

vent using CHARMM36 [194, 198] force field, TIP3P [196] water model and periodic

boundary conditions in NAMD 2.10 [192]. The temperature was maintained at 310

K with a Langevin damping coefficient of 1 ps−1 [195]. The pressure was kept at

101.3 kPa by means of NosÃ c©-Hoover Langevin piston pressure control. The SHAKE

algorithm was used to restrain the length of bonds involving hydrogen atoms for a time

step of 2 fs (Ryckaert et al., 1977). The system was neutralized with Cl- and Na+ ions.

A nonbonded cutoff of 12Ã was used for all Lennard-Jones interactions with a switch-

ing function starting at 10Ã, and the long-range electrostatics was treated according

to the particle-mesh Ewald method [197]. The nonbonded pair list distance was 14Ã.

Gaussian potentials are deposited every 2 picoseconds and gradually decreased on the

basis of the adaptive bias with 1500K.

7.3. Results and Discussion

7.3.1. Test Case: Adenylate Kinase (AdK)

Adenylate kinase is an enzyme coordinating different signaling pathways con-

nected to several human diseases, such as heart failure, metabolic disorders, cancer

and many neurodegenerative diseases [199, 200]. AdK enzyme regulates the ratio of
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AMP and ADP/ATP and therefore controls the cellular energy supply [201]. In or-

der to carry out its function, AdK requires a structural reorganization and collective

domain motion on the µs−ms timescale [202]. AdK consist of 214 residues and has

three domains, called CORE, LID and NMP and two distinct nucleotide binding sites

(Figure 7.1-A). In this figure, LID and NMP domains are colored in blue (residues

118-160) and red (residues 30-67), respectively. The CORE domain of the protein is

colored in light gray (residues 1-29, 68-117, 161-214) B) Eigenvectors of the slowest

two modes obtained from ANM calculations for fully-open structure are illustrated

on the fully-open conformation of the AdK. ATP binding site is between the CORE

and LID domains and AMP binding site is between CORE and NMP domains. LID

and NMP domains achieves a large conformational transition between open and closed

states where CORE domain is conformationally stable [203, 204]. Full or partial clos-

ing of LID and NMP domains upon binding of the nucleotides have been identified via

experimental studies [205-207].

In addition to experimental studies, the structural and dynamic basis of the func-

tional conformational transition of AdK was also studied via computational studies via

classical MD or other atomistic simulations [204, 208-211]. However, these simulations

are in limited timescales, where domain movements are rare event. Several µs − ms

range enhanced sampling studies in atomistic MD simulations have been also conducted

for both apo state and bound to several ligands and inhibitors [95- 132], [212-216].

Through these experimental and computational studies it has been investigated that,

there is a dynamic equilibrium between open and closed conformational states of the

apo AdK. Several mutational analysis that affects the dynamics equilibrium between

these stable states have been demonstrated [210, 217, 218]. Furthermore, kinetic ex-

periments suggested that, the conformational change of the enzyme is the rate-limiting

step of the catalytic reaction, thus its motion has functional role [202, 205, 219]. Al-

though the high global flexibility of the protein increases the possibility to sample

closed-like conformations, the existence of a significant free-energy barrier for access-

ing fully-closed conformation in which the fully-open conformation is the energetically

most favorable state have been reported via enhanced sampling simulations [95, 216].

Besides, several computational studies revealed the sequence of events in both opening
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and closing pathway of the enzyme; such that NMP domain opens first followed by

opening of LID domain [95, 216] in the holo form and closing of LID domain precedes

closing of NMP domain in apo form [208, 220].

Y171 is in the hinge site vicinity of AdK that allosterically regulates the confor-

mational transition of the enzyme 208, 218]. The altered dynamics of the enzyme has

been investigated via Y171W mutation in a recent NMR spectroscopy experiment, and

both open and closed states of the mutated enzyme was determined by X-ray crystal-

lography [218]. The kinetic stopped-flow experimental data answered the long-time

standing question, whether the enzyme obeys induced-fit or conformational selection

models of allosteric regulation. The protein obeys both of these models depending on

the existence of substrate. Since the protein is able to sample both open and closed

conformations even in the absence of substrate, the domain closure of the enzyme obeys

conformational selection model. However, in the presence of the substrate, since the

domain closure is achieved following the initial nucleotide binding, induced fit model

is more appropriate to explain conformational transition of the enzyme [216, 218].

Here we used RMSD values and LID-CORE angle (the angle between the pseudo

axes connecting the centers of geometry of the backbone and CÃ atoms of residues 179-

185 (CORE), 115-125 (CORE-LID), 125-153 (LID)) and NMP-CORE angle (calculated

similarly using residues 115-125 (CORE-LID), 90-100 (CORE) and 35-55 (NMP)) de-

fined in Beckstein et al., to represent to conformational transition of AdK [221].
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Figure 7.1. Structures and Slowest ANM Modes of AdK. a) Fully-open (PDB ID:

4AKE), Fully-closed (PDB ID: 1AKE), Closed-LID (PDB ID: 1DVR) and Closed

NMP (PDB ID: 2AK3) Structures of AdK. c) Position of Y171 is Labeled on the

Fully-open Conformation.

7.3.2. Investigation Conformational Transition of AdK via CM BexMetaD

First, CM-BexMetaD-1 approach is applied to study the conformational transi-

tion of the enzyme. In this methodology, only slowest ten global modes were used

to bias the transition and the generated conformers are clustered after a short bias-

exchange attempt period to obtain a representative closest conformation to the fully-

closed state and the collective modes were recalculated from this regenerated conformer

(see Figure 6.4). The details of the simulation parameters are given in Table 7.1. As

an illustration, the RMSD values of each replica for the cycle 1 of the simulation are

given in Figure 7.2. Since the simulation protocol is designed not to sample only the

shortest paths between stable states of the protein, the RMSD values fluctuates during

the simulation windows. The minimum RMSD values of each replica at each cycle form

the target conformation are listed in Table 7.6. Through this methodology, we were

able to approach the fully-closed conformation of the protein with a minimum RMSD

values around 3Ã (no outlier rejection during alignment) for all replicas within very

short time window. Continuing the simulation after 5th cycle seems not to achieve
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further closing transition of the conformation. Stucking around this RMSD indicates

the existence of a high-energy barrier that the protein must overcome separating the

fully-closed conformation from other transition conformations.

In the second step, the same simulation protocol except using not only the slowest

ten modes of motion but highest overlapping ten modes of motion with the open-closed

difference vector were used as CVs. The parameters used in this simulation protocol

are given in Table 7.2. Here, the number of bias-exchange attempt before clustering the

trajectory is increased to ensure better sampling of the ensemble. As an illustration,

the RMSD values of each replica for the cycle 1 of the simulation are given in Figure 7.3.

The minimum RMSD values of each replica at each cycle from the target conformation

are listed in Table 7.7. Through this methodology, we were able to approach the

fully-closed conformation of the protein with a minimum RMSD values less than 3Ã

(minimum at 2.5Ã again with no outlier rejection during alignment) at cycle 8 for

all replicas within very short time window. Continuing the simulation after 8th cycle

might decrease the RMSD but it seems not to achieve further significant closing to the

target conformation because RMSD profile of the replicas seems to reach a plateau.

The high-energy barrier separating the fully-closed conformation from other transition

conformations prevents further closing of the structure and clustering the generated

conformers draws back the initial conformation of the simulation at each cycle to the

nearest before sampled minima.

Figure 7.2. RMSD and the Biased CV Versus Simulation time of Each Replica at

Cycle 1 by CM-BexMetaD-1. Replicas 1 to 10 are given in A to J, Respectively.
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Table 7.6. Minimum RMSD Table of Each Replicas at Each Cycles to Fully blosed,

Closed LID and Closed NMP. Closest RMSD Values of Each Replica at Each Cycle

are written in bold and the Lowest RMSD is colored in red.

Cycle Cases
Replicas

1 2 3 4 5 6 7 8 9 10

1

Fully Closed 5.73 6.14 6.53 5.13 5.01 5.9 5.03 5.3 5.84 4.99

Closed LID 4.09 4.13 4.29 3 3.35 3.62 3.87 4.09 3.63 3.18

Closed NMP 2.85 2.77 3.1 3.31 3.05 3.46 2.68 2.58 2.77 2.79

2

Fully Closed 5.1 5.38 4.95 4.91 5.01 5.28 5.3 5.29 4.5 5.2

Closed LID 4.02 3.81 3.66 4 3.92 4.29 4.17 4.14 3.34 4.98

Closed NMP 2.65 2.82 2.64 1.97 2.59 2.82 2.71 2.75 2.55 2.48

3

Fully Closed 5.26 3.57 4.45 4.69 4.5 4.61 4.4 4.44 4.02 4.99

Closed LID 3.76 1.97 3.28 3.33 2.97 3.16 3.11 2.96 3.1 3.85

Closed NMP 2.56 3.18 2.56 2.88 2.53 2.53 2.86 2.82 2.83 1.92

4

Fully Closed 3.82 3.76 3.76 3.65 3.18 3.27 3.77 3.24 3.65 3.62

Closed LID 2 2.17 1.85 1.87 1.87 2.2 2.08 2.03 1.93 2.26

Closed NMP 2.97 3.47 3.29 4.09 3.31 3.89 3.42 4.08 3.9 3.56

5

Fully Closed 3.81 3.3 3.9 3.37 3.68 3.54 3.12 3.33 3.92 3.57

Closed LID 2.19 1.85 2.23 1.89 1.76 2.11 1.9 1.77 2.27 2.11

Closed NMP 3.77 4.22 3.71 3.76 3.47 2.67 4.27 4.51 3.28 4.12

6

Fully Closed 3.7 4.03 3.95 3.58 4.05 3.64 3.3 3.81 3.33 3.29

Closed LID 2.24 2.58 2.06 2.18 2.35 1.99 2.15 2.36 1.98 2.03

Closed NMP 3.16 3.71 4.08 3.95 3.34 4.42 3.67 3.82 3.98 3.99

7

Fully Closed 3.69 3.46 4.06 4.03 4.33 3.95 3.51 3.93 3.85 4.13

Closed LID 1.98 2.27 2.41 2.34 2.47 2.65 1.99 2.24 2.54 2.48

Closed NMP 3.98 4.16 3.89 4.11 3.4 3.59 2.9 3.48 3.28 3.13

8

Fully Closed 3.76 3.46 3.98 3.86 4.1 4.14 4.19 3.8 3.99 3.53

Closed LID 2.25 2.15 2.4 2.01 2.52 2.36 2.78 2.3 2.48 1.87

Closed NMP 4.35 4.26 3.12 3.25 3.57 3.38 2.99 3.81 4.24 4.17
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Figure 7.3. RMSD and the Biased CV Versus Simulation time of Each Replica at

Cycle 1. Replicas 1 to 10 are given in A to J, respectively.

Table 7.7. Minimum RMSD Table of Each Replicas at Each Cycles to Fully Closed,

Closed LID and Closed NMP. Closest RMSD values of Each Replica at Each Cycle

are written in Bold and the Lowest RMSD is colored in red.

Cycle Cases
Replicas

1 2 3 4 5 6 7 8 9 10

1

Fully Closed 4.68 4.8 5.31 5.86 4.91 6.08 5.85 5.27 4.04 5.59

Closed LID 2.97 3.82 3.38 3.81 2.48 4.36 4.12 3.2 2.31 3.81

Closed NMP 2.8 2.73 2.47 2.49 2.79 2.52 2.54 3.03 3.03 2.2

2

Fully Closed 4.01 4.09 4.23 3.86 3.83 4.48 4.56 3.62 4.4 3.83

Closed LID 2.2 2.52 2.45 2.12 3.01 3.07 2.91 2.36 2.64 2.72

Closed NMP 4.62 3.58 3.2 4.97 3.13 3.27 3.29 4.07 3.14 3.21

3

Fully Closed 3.56 3.31 3.76 3.43 3.63 3.59 3.6 3.15 3.05 3.17

Closed LID 2.2 1.95 2.28 2.03 2.09 2.23 2.32 2.08 2.18 1.99

Closed NMP 4.23 3.22 4.57 4.5 3.74 3.85 4.06 4.22 3.91 5.12

4

Fully Closed 3.4 3.15 3.3 3.01 3.16 3.18 3.97 3 3.15 3.24

Closed LID 2.13 2.26 2.15 2.43 2.45 2.13 2.54 2.58 2.09 1.96

Closed NMP 3.51 4.75 4.73 4.14 4.25 4.08 3.93 3.54 4.05 4.32

5

Fully Closed 2.89 3.11 3.06 3.01 3.01 3.17 3.24 3.42 2.94 2.93

Closed LID 2.26 1.76 2.3 1.94 2.28 2.08 2.3 2.58 1.86 2.34

Closed NMP 4.53 4.06 4.67 4.35 3.87 6.15 3.85 3.76 4.48 4.82

6

Fully Closed 3.15 3.12 3.2 3.2 3.04 3.13 3.05 2.79 3.15 3.23

Closed LID 1.86 2.22 1.95 2.01 1.8 1.97 1.88 2.36 1.83 2.01

Closed NMP 4.31 4.97 6.01 4.94 4.57 4.73 4.59 4.51 4.56 5.28

7

Fully Closed 3.05 4.43 2.79 2.75 2.93 3.02 2.59 2.87 2.76 2.62

Closed LID 2.52 3.44 2.64 2.55 2.69 2.66 2.24 2.45 2.7 2.76

Closed NMP 3.24 2.71 3.02 2.77 4.01 2.48 3.39 3.46 2.79 2.95

8

Fully Closed 2.96 3.1 4.3 2.9 2.81 2.94 3.04 2.86 2.88 2.49

Closed LID 2.77 2.84 2.68 2.56 2.61 2.03 2.72 2.8 2.33 2.9

Closed NMP 2.31 2.85 2.53 2.77 3.33 3.76 2.6 2.64 2.61 3.81
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The second version of the developed approach is CM-BexMetaD-2 where it differs

from CM-BexMetaD-1 as the trajectories generated at each replica do not clustered

to obtain a metastable state and continue the simulation with updated ANM modes.

Instead, the number of bias-exchange attempt kept high during the simulations. Three

different simulations were carried out (two wild type AdK; one with a lower Gaus-

sian hill height (wild type-1), and one with higher Gaussian hill height (wild type-2),

one Y171W AdK with same lower Gaussian hill height) with this methodology. The

parameters used in the simulations are listed in Table 7.4 and Table 7.4. RMSD val-

ues over the trajectory of each replica during the simulations are given in Figure 7.4

and Figure 7.5 for wild type-1 and Y171W, respectively and in Figure 7.6 for wild

type-2. The minimum RMSD values of each replica from the target conformation are

listed in Table 7.8 and Table 7.9 for lower and higher Gaussian hill height, respectively.

Through this methodology, we were able to approach the fully-closed conformation of

the protein with a minimum RMSD values 3.3Ã and 2.9 Ã at wild type-1 and Y171W

simulations, respectively within very short time window, where a lower Gaussian hill

height (2kcal/mol) is used.

Table 7.8. Minimum RMSD Table of Each Replicas from the Fully Closed, Closed

LID and Closed NMP of wild Type-1 and Y171W Simulations. Closest RMSD Values

are colored in red.

Cycle Cases
Replicas

1 2 3 4 5 6 7 8 9 10

w
t-

1

Fully Closed 3.29 4.4 3.79 4.85 4.3 5.05 4.1 3.45 4.81 4.15

Closed LID 2 3.02 2.35 2.45 3.39 3.62 3.4 1.92 3.2 2.65

Closed NMP 2.72 2.7 2.76 2.83 2.57 3 2.51 3.25 2.93 2.95

Y
1
7
1
W

Fully Closed 3.21 3.2 6.27 4.97 4.12 3.38 5.1 4.65 3.62 2.92

Closed LID 2.1 1.95 4.39 2.88 2.26 2.09 2.75 2.92 2.09 1.89

Closed NMP 2.85 4.05 2.64 3.01 3.1 3.36 3.08 3.17 3 2.81
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Figure 7.4. RMSD and the Biased CV versus Simulation Time of Each Replica for

wild Type-1. Replicas 1 to 10 are given in A-J, respectively.

Figure 7.5. RMSD and the Biased CV versus Simulation Time of Each Replica for

Y171W. Replicas 1 to 10 are given in A-J, respectively.
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Figure 7.6. RMSD and the Biased CV versus Simulation Time of Each Replica for

wild Type-2. Replicas 1 to 11 are given in A-K, respectively.

Since the minimum RMSD obtained is more than 3 Ã from the fully-closed con-

formation, meaning that the high energy barrier separating the fully-closed ensemble

basin from other minimum energy states is not achieved yet, another simulations was

carried out with a higher initial Gaussian hill height. Even at a shorter simulation time,

the minimum RMSD value to the fully-closed and closed-LID conformations decreased

to 3 Ã and 1.8 ÃÃ, respectively.

Table 7.9. Minimum RMSD Table of Each Replica from the Fully Closed, Closed LID

and Closed NMP of wild Type-2 Simulation. Closest RMSD Value is colored in red.

Cases
Replicas

1 2 3 4 5 6 7 8 9 10 11

Fully Closed 3 3.77 4.4 3.98 4.13 4.13 4.7 3.69 4.29 3.74 3.34

Closed LID 1.76 2.66 2.79 3.2 2.07 3.23 2.93 3.34 2.88 2.47 1.9

Closed NMP 3.21 2.21 2.81 2.38 2.65 2.65 2.73 2.35 2.58 2.65 3.06

7.3.2.1. Domain Closures are Asymmetric Processes in apo AdK. In addition to RMSD

values, the LID-CORE and NMP-CORE angles were calculated to better capturing the

transition behavior explored via CM-BexMetaD simulations. The trajectory of the an-
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gles of interest calculated over the wild type-1 simulation with the are given in Figure

7.7, the Y171W simulation in Figure 7.8, and the wild type-2 simulation are given in

Figure 7.9. The values of each angles calculated for the experimentally determined

fully-open, fully-closed and intermediate transition conformations are also labeled on

the figures [221]. Although none of the simulations sampled the fully-closed confor-

mations yet, some of the intermediate conformations corresponding to partial closing

of LID and/or NMP are sampled during the simulations. Two very recent enhanced

sampling approaches revealed that, the fully-open conformation is the global minimum

of the apo AdK [95, 216]. The results obtained in our simulation within the limited

time intervals, supports this idea as replicas spends longer time in the vicinity of the

fully-open conformation.

The generated conformers throughout the simulations cover a broader range of

calculated angles even in a few ns time-scales, which indicates the global conforma-

tional flexibility of the enzyme. This high flexibility increases the possibility of domain

closures and observation of close-like conformations even in the absence of the nu-

cleotides. Although none of the simulations converged to the fully-closed conformation

within sampling time, closure of individual domains (closed LID and closed NMP)

as well as some partially closed intermediate conformations are observed within the

simulations. In the wild type-1 simulations, none of the replicas converged to the

closed-LID conformation, but replica 5 converged to and replica 7 and 8 partially sam-

pled to the closed-NMP conformations (see Figure 7.7). In the Y171W simulation, the

conformational ensemble covers only the closed LID conformations in replicas 1, 2, 5,

6, 7, 9, and 10, but no NMP closure is observed. Increasing the sampling capacity

of the simulation by employing higher Gaussian hills in the wild type-2 simulation,

closed-LID conformation is sampled in replica 1, 2, 5, 9, 10 and 11 (see Figure 7.9).

Closed NMP conformation was also sampled in this simulation in replicas 2, 6, 8, and

10, but it is not populated. Although the transition states in the vicinity of fully-open

conformation are successfully sampled, no cooperative closure (closure of both domains

simultaneously as time evolves) of the domains are observed (see the evolution of data

points from blue to red). These results indicates that, the fully closure of the domains

is not a cooperative event, it is rather an asymmetric process (no cooperativity in the
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closure motion of domains).

Figure 7.7. Conformational Sampling of AdK in Terms of LID - CORE and NMP -

CORE Angles for the wild - type - 1 Simulation Via CM - BexMetaD - 2 Protocol

Together with experimentally determined Structures. The Angles are Color - Coded

According to the Simulation Time.
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Figure 7.8. Conformational Sampling of AdK in Terms of LID - CORE and NMP -

CORE Angles for Y171W Simulation via CM - BexMetaD - 2 Protocol Together with

experimentally determined Structures. The Angles are Color - Coded According to

the Simulation Time.
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Figure 7.9. Conformational Sampling of AdK in Terms of LID - CORE and NMP -

CORE Angles for the Wild - Type - 2 Simulation via CM - BexMetaD - 2 Protocol

Together with experimentally determined Structures. The Angles are Color - Coded

According to the Simulation Time.
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7.3.3. Free Energy Landscape of Conformational Transition of apo AdK

We have calculated the hyper-dimensional PMF as free-energy landscape (FEL)

of conformational transition of apo AdK, projected on the combination of collective

modes as given in Figure 7.10. There are significant quantitative differences in the

reported FEL underlying the conformational transition of AdK [95, 132, 216, 218].

The obtained FEL of wild type apo AdK well agrees qualitatively with the compu-

tational and experimental studies [95, 205, 216]. The vicinity of zero position in the

reaction coordinate corresponds the initial conformation of the simulation, which is

the open conformation of the enzyme in the present simulation. In accordance with

the literature, the energy basin of the open conformation is the global minimum of the

conformational ensemble of apo AdK.

Figure 7.10. FEL Along the Conformational Transition of Wild Type and Mutant

apo AdK. a) The Wild Type-1, b) Y171W, c) the Wild Type - 2.

Since none of the simulations are converged to the fully-closed state, it can be

concluded that, the energy barrier enclosing the fully-closed state is higher than the

other populated conformational states. Since simulations seem not to converged yet,

the absolute value of the transition energy can not be calculated yet.

As explained in the previous section, closed LID conformation is observed in the

wild type-2 and Y171W simulations, whereas closed NMP conformation is observed in

the wild type-1 and wild type-2 simulations. Projecting the sampling capacity of closed

LID and closed NMP conformations onto the constructed FEL along the conformational

transition of the enzyme, it can be easily observed that, the closest energy basin to
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the fully-open conformation is the closed LID state and the second basin observed in

the wild type-2 and partially in the wild type-1 belongs to the closed NMP state as

illustrated in Figure 7.10. This observation implies that along the transition of the

open to closed states, closure of the LID domain precedes the closure of the NMP

domain in accordance with the literature [208, 220].

7.3.3.1. Hinge Mutation Induces a Shift in the Conformational Ensemble of apo AdK.

Y171 is a hinge site that controls the conformational transition of the enzyme, where

the protein can still sample both conformational states, but the interconversion between

these states is altered via Y171W mutation. Therefore it can be concluded that, this

mutations affects the conformational transition via redistributing the FEL. The alter-

ation effect of Y171A mutation is observed even at the conformational transition from

open to semi-closed conformations. Effects of Y171W should be considered in both en-

tropic and enthalpic point of view. According to the Y171W CM-BexMetaD simulation

results, Y171W mutation increases the energy barrier between fully-open to closed-LID

conformational states as seen in Figure 7.10. This is the energetic effect of the Y171W

mutation. Furthermore, a steeper free-energy basin is observed via mutation where the

entropic effects control the width of the free-energy landscape as explained in section X

(tezin teori section). Therefore, it can be speculated that, the Y171W mutation redis-

tributes the FEL making the conformational transition of the enzyme from fully-open

to semi-closed states an entropically favorable but energetically unfavorable process.

Therefore the interconversion of open to closed conformation of the mutated enzyme

depends both energy and entropy of the system. Moreover, the transition state ob-

served on the right hand side of the fully-open conformation (global minimum) in the

FEL observed at the wild type simulation is distinguished with Y171W mutation. This

result indicates the restricting effect of hinge site mutation on the conformational tran-

sition of the enzyme where at least one rare, locally stable conformation could not be

sampled via mutation.

7.3.3.2. Slowest Modes are Sufficient to Sample the Transition of apo AdK. In a very

recent study, Kurkcuoglu and Doruker successfully sampled the conformational transi-
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tion of apo AdK using only slowest three modes of ANM through an unbiased approach

[222]. Therefore, we designed a non-targeted CM-BexMetaD-2 approach to sample the

conformational transition of AdK with a biased but non-targeted methodology.

Non-targeted CM-BexMetaD simulations were performed to understand whether

the slowest modes provide sufficient degree of freedom to sample the conformational

transition of AdK. Simulation parameters are summarized in Table 7.5. RMSD values

over the trajectory of each replica during the simulations are given in Figure 7.11.

The minimum RMSD values of each replica from the closed conformation are listed

in Table 7.10. Through this methodology, we were able to approach the fully-closed

conformation of the protein with a minimum RMSD values 3.9Ã within very short time

window, where a lower Gaussian hill height (2 kcal/mol) is used.

Although the conformational transition to the fully-closed state can not be sam-

pled with only the slowest five modes of motion within the simulation time window,

closed-LID conformation is partially sampled in replica 1, 6, 7, 9, and 10 with a low

probability (see Figure 7.12-A). In addition, the closed-NMP state is partially sampled

in replica 10 with a low probability. The corresponding energy landscape basins were

also observed with a very low probability (see Figure 7.12-B). It can be concluded that

the conformational transition of AdK can be sampled via slowest five modes of motion

although not the exact holo conformation was sampled yet. Indeed, we got conform-

ers closer to the holo conformations with targeted approach. The energy basins of the

semi-closed conformations (closed-LID and closed-NMP) could not be resolved as in the

targeted protocol. These observations indicates the importance of local, intradomain

bending motions in the conformational transition of AdK as suggested by Matsunaga

et al., [223] or requirement of substrate for further closing of the domains [222].
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Table 7.10. Minimum RMSD Table of Each Replicas from The Fully Closed, Closed

LID and Closed NMP of Non-Targeted Simulation of Apo AdK. Closest RMSD Value

is colored in red.

Cases
Replicas

1 2 3 4 5 6 7 8 9 10

Fully Closed 3.99 5.29 5.39 4.39 4.56 4.11 4.1 4.8 4.33 3.87

Closed LID 2.09 3.77 3.61 2.67 2.38 1.99 2.17 3.05 2.42 2.44

Closed NMP 2.61 2.38 2.26 2.2 2.21 2.34 2.8 2.87 2.98 2.02

Figure 7.11. RMSD and the Biased CV Versus Simulation Time of Each Replica for

apo AdK with Non-Targeted simulation. Replicas 1 to 10 are given in A-J,

Respectively.
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Figure 7.12. a) Conformational Sampling of AdK in terms of LID - CORE and NMP

- CORE Angles for Non-Targeted Simulation of apo AdK The Angles are

Color-Coded According to the Simulation Time. b) FEL Underlying the

Conformational Transition of the Enzyme.
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8. ALLOSTERIC CONTROL OF BINDING DYNAMICS

via HINGE RESIDUES

Binding is one of the main functions of proteins and the understanding of protein-

protein interactions is at the heart of the signaling processes occurs in the cell. The

phenomenon allostery might closely be coupled to the binding mechanism. Proteins are

potentially allosteric structures and allostery is a key process in regulation of cellular

pathways. In allosteric proteins a perturbation with a ligand (small or large molecule)

binding, may lead to a change at the substrate binding sites through conformational

change and dynamics and end up with reshaping the energy landscape. These allosteric

interactions may enhance or restrict a function such as complex formation for the signal

transduction. Knowledge of the conformational states in the native state ensemble can

provide significant information to the understanding of the fundamental rules governing

the allosteric interactions. Understanding the relation between binding and allosteric

regulation will give an opportunity to control and even interfere the mechanism that

could be very important for the targeted drug design.

To this end, in order to address the importance of the hinge residues in the

allosteric control of the binding dynamics, a detailed research is performed. It is illus-

trated that there is a significant association of allosteric mutations, which lead to high

binding affinity changes, with the hinge positions of global modes by the analysis of a

structural dataset of kinetics and energetics of mutant protein interactions (SKEMPI).

We elaborate on the mechanism of allosteric dynamics further, through exemplary case

studies on human growth hormone (hGH) and pyrin domain (PYD), that show how

the mutations at hinge regions could be instrumental to allosterically affect the bind-

ing site dynamics or dispose alternative binding modes by modifying the ensemble of

accessible conformations. This research is published in Biophysical Journal [52].

The inflammasome complexes are activated by rapid formation of ASC (Apoptosis

associated Speck-like protein containing CARD) speck which acts as an adaptor that
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bridges procaspase-1 to the receptors. The human ASC protein contains two death

domains (N-terminal Pyrin (PYD) and C-terminal CARD) and these two domains are

connected via flexible 23-residue linker (starting from residue 90 to residue [112]).

The PYD domain is composes of residues [1-89] and the CARD domain is between

residues [113-195]. The linker who connects the PYD and CARD domains has some

local structure, which leads to a back-to-back orientation of those domains. As a result

of this orientation, these domains can interact with multiple partners.

The resemblance between the ASC speck and aggresome raises the question

whether the ASC speck formation is a result of specific interactions between PYD

and CARD which both belong to the death fold superfamily or simply aggregation of

hydrophobic patches of ASC proteins. To address this question, we performed struc-

ture and dynamics based analyses on the ASC protein using Gaussian Network Model

(GNM) of PYD and CARD, and Molecular Dynamics (MD) simulations of the wild

type and in− silico mutated PYD, with the mutational analysis on the ASC structure

and its separated domains in human cells, we show that the ASC speck formation is an

organized structure based on specific homophilic but not heterophilic interactions by

PYD and CARD separately. PYD is able to use alternative interaction modes other

than type I that might be important in compaction of the ASC speck. We propose a

model in which filament formation is the first level of organization in the ASC speck

and filaments further compact in a higher organization level. This research is published

in Structure [143].
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9. MUTATION INDUCED ALLOSTERIC REGULATION

OF KINESIN - TUBULIN BINDING AFFINITY

INVESTIGATED BY AFM

9.1. Introduction

Molecular motors are key components of the cell responsible for all kinds of move-

ments to realize cellular processes in living organisms. Further understanding of the

motility and the force generating mechanisms of molecular motors requires the ability

to apply forces on them and test their response. This can be performed in great con-

trol and precision with single-molecule experiments. Advanced single-molecule spectro-

scopic and microscopic techniques have made possible the visualization and engineering

of motor proteins and led to the development of multiple theoretical approaches de-

scribing different aspects of their dynamics [224].

Atomic force microscopy (AFM) has proven to be a suitable approach to study

the intermolecular forces and dynamics controlling the protein-protein/protein-ligand

interactions, having the unique advantage over other single-molecule techniques: to

probe molecular interactions at high resolutions in combination with force sensitivity

[225]. AFM requires attaching one of the molecule pair to the AFM tip, and the other

to the substrate surface, bringing the tip into contact with the surface so as to form

a complex. Pulling the tip until the interaction bond breaks enables the estimation

of the unbinding forces and the characterization of the force-driven pathway along the

pulling direction until the bond ruptures, revealing the energy landscape of a bond

rupture.

As one of the smallest molecular nanomachines, kinesin-1 (conventional kinesin)

is a prototype of molecular motors responsible for carrying cargoes along microtubules

(MT) and regulating the microtubule dynamics. Human kinesin is a dimeric protein

containing a smaller motor/head domain (M1-T323). The functional sites of the motor
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domain are microtubule binding sites, the nucleotide-binding pocket (catalytic site),

the neck-linker (NL), which connects the motor domain to the neck-helix domain (see

Figure 9.1). ATP binding pocket of kinesin is formed by the P-loop, switch I and

II regions where a conformational change of these regions is observed with the ATP

hydrolysis.

Kinesin molecule moves along MT by adapting its conformation according to the

different nucleotide states of the motor domain, such as ATP, ADP.Pi, ADP bound

forms. ATP molecules hydrolyzed on kinesin and the energy generated are used for the

walking process of kinesin on MT. Kinesin walking on MT is an asymmetric hand-over-

hand mode, which is two head domains are alternating in the lead [226-130]. During

action, the rear head domain moves around 15 nm, whereas the other head does not

translate due to strong binding to microtubule affected by the ATP binding. This

argument was corroborated by fluorescence imaging techniques [231].

Figure 9.1. Kinesin Functional Sites are Shown on Structures.

In the absence of ATP, the kinesin molecule is with ADP bound and the two

head domains are bound to the tubulin. In this state, the NL points forward and

rearward on the trailing head and leading head, respectively. The ATP binding on the

trailing head initiates and completes the docking of NL to the leading head, rotates the

trailing head to 160 Ã forward, starts to perform a diffusional search. Then the head

tightly binds to the next tubulin, which makes it new leading head [232]. This process

completes within a few-milliseconds. During this marching process, the new trailing
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head completes the ATP hydrolysis and becomes ready for a new ATP binding. Kinesin

generates forces in the order of some piconewtons through this stepping mechanism.

However, loading kinesin bound on MT with a force, it stops its motion and eventually

dissociates from MT. The amount of force that dissociates kinesin from MT is called

the stall force.

Comparison of NL regions in the available crystal structures of kinesin motor

domains reveals the importance of NL in the force generation mechanism. A novel force-

generating mechanism has been proposed for the cover-neck-bundle (CNB) formed by

the interaction of the cover strand (M1-I9) with N332 of the NL regions. Besides,

mutagenesis studies in the NL region resulted in impaired motility while the ATPase

and MT binding activities of the motor domain stayed relatively unchanged [233, 234].

In a recent experimental study of full-length human kinesin-1 (KIF5B), mutations

were introduced on the phosphorylation site of kinesin-1 (S175D and S175A) to explore

the effect of phosphorylation on fast axonal transport (FAT). In both cases ATPase,

microtubule binding affinity and processivity were unchanged, but application of force

differs. Placement of negative charge at S175, through phosphorylation or mutation,

leads to a lower stall force and decreased velocity under a load of 1 pN or greater in

optical trap experiments [235]. Also, addition of a negative charge at S175 -at physio-

logically relevant salt concentrations- favors the compact/autoinhibited conformation

of kinesin, since the tail contains a conserved positively charged motif that binds/docks

to motor domain near residue 175 [235, 236]. Since residue 175 does not fall within the

MT- or ATP-binding domains, the effect of a modification at this position cannot be

readily inferred by its location on the motor domain. The biochemical and biophysical

effects of altering (phosphorylation, alteration of charge, etc.) residue 175 should be

thoroughly investigated [235].

Point mutations on the KIF5A neuronal kinesin motor domain leading to SPG10

disease (which is a form of the hereditary spastic paraplegia, HSP) have been detected

including D73N in rat (which is homologues to D72N in human kinesin). Majority of

these mutations are located in the P-loop, switch I and II regions [27], [238]. D72N
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is in close vicinity of the G76, which forms an H-bond with N332 and therefore forms

the major interaction between the neck linker and the motor domain. D72N mutation

results in dysfunctional kinesin motors with reduced transport velocity on microtubules

resulting in impaired axonal transport and axonal degeneration [237].

Based on the mutagenesis studies given in the literature that led neurodegenera-

tive diseases and listed in the cancer mutation database (COSMIC) [239] on kinesins

that overlaps with the hinge sites determined by Aykac et al. D72N, S175A, N332A

mutations are considered to study via AFM-DFS experiments. Kinesin’s allosteric

network underlying its mechanochemical cycle is based on the large conformational

change triggered by the hydrolysis of ATP. This network of communication probably

involves many more unidentified allosteric sites in addition to the key residues already

determined in the literature. Here, we have chosen to work on the wild type and mu-

tant (D72N, S175A, N332A mutations in human) kinesin-1 to explore their allosteric

effect in the αβ-tubulin binding, considering previously discussed molecular/functional

aspects of these residues to contribute to the understanding of the potential defective

functioning mechanism of the protein. In this respect, we have performed AFM single

molecule pulling experiments probing the unbinding force ranges of kinesin-αβ-tubulin

complexes for studying the protein allostery by mechanical signals.

9.2. Materials and Methods

9.2.1. Preparation of Molecules and AFM Setup

All the biotinylated wild type and mutant human Kinesin (family of KIF5) Heavy

Chain motor domain (will be called as Kinesin throughout this chapter) produced in a

bacterial expression system, was purchased from Cytoskeleton Inc. USA, as lyophilized

powder. The powdered form of the molecules were reconstituted and diluted to 2µg/ml

with CMW Buffer 1. The CMW Buffer 1 (containing 100 mM PIPES pH 7.0, 200 mM

KCl, 2 mM MgCl2, 1 mM DTT, and 200 µM ATP) was also purchased from Cy-

toskeleton Inc. USA in liquid form. Tubulin protein (α/β tubulin) was purchased

from Cytoskeleton Inc. USA, as white solid, which has been purified from porcine
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brain. Tubulin molecules were reconstituted and diluted to 2µg/ml with General Tubu-

lin Buffer (GTB). GTB was also purchased from Cytoskeleton Inc. USA, as white

lyophilized powder, which was reconstituted with de-ionized water to give 1X strength

buffer (80 mM PIPES, 2 mM MgCl2, 0.5 mM EGTA pH 7.0). Streptavidin molecules

were purchased as lyophilized powder from Sigma-Aldrich (St. Louis, MO, USA) and

reconstituted in PBS to have final concentration of 100 µg/ml. Bovine serum albumin

(BSA) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Mica surface was

purchased from Ted Pella Inc. Biotinylated PEG attached Si3N4 AFM probes (MLCT.

BIO, Novascan, Ames, IA, USA) were used in the experiments. The nominal spring

constants of the cantilevers used in the experiment are 0.01 and 0.1 N/m for lower and

higher velocities, respectively. A commercial AFM system (Dimension Edge, Bruker

Nano, Santa Barbara, CA, USA) was used in the experiments.

9.2.2. Immobilization of Tubulin Molecules and Functionalization of AFM

Tips with Kinesin

Prior to AFM data collection, Tubulin molecules were immobilized on a mica

surface via physical adsorption by incubating 100 µl of previously prepared Tubulin

aqueous solution on mica surface for 20 min. Tubulin molecules have high affinity for

silica, therefore they can strongly sticked to the surface. After incubation completed,

tubulin solution was pipeted and 100 µl bovine serum albumin (BSA) was dropped

onto the surface and incubated for 20 min. Then the mica surface was gently washed

with deionized (DI) water to remove loosely adhered molecules. The mica surface with

immobilized molecules was kept hydrated via GTB prior to data collection.

Streptavidin was used as a mediator to functionalize biotinylated-PEG attached

Si3N4 AFM tips with biotinylated Kinesin molecules. Biotinylated cantilevers were

first incubated with 20 µl streptavidin (100 µg/ml in PBS) for 15 minutes at room

temperature. Afterwards, AFM tips were washed two times with DI water to remove

unbound streptavidin molecules. The streptavidin-functionalized tips were dipped into

100 µl of Kinesin solution and incubated for 40 minutes at room temperature. The

kinesin functionalized AFM tips were used immediately in force measurements after
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rinsing with DI water to remove the loosely bound Kinesin molecules. Figure 9.2-

A shows the experimental setup for the kinesin-tubulin system and the multi-step

functionalization of AFM tip and surface in this experiment. The position of the

applied force on the kinesin molecule together with the predicted functionally important

residues and the ligand position are shown in Figure 9.2-B.

Multi-step functionalization of AFM tips may introduce measurement of unbind-

ing forces that do not arise from the molecules of interest. To test the existence of

such undesired unbinding events, the pulling experiments were performed using: 1)

PEG+biotin attached tip and non-treated mica surface, 2) PEG + biotin + strepta-

vidin attached tip and non-treated mica surface, 3) PEG+biotin+streptavidin attached

tip and αβ-tubulin covered mica surface, 4) PEG+biotin attached tip and αβ-tubulin

covered mica surface, 5) PEG+biotin + streptavidin + kinesin attached tip and non-

treated mica surface. No statistically significant specific adhesion was observed be-

tween biotin and mica surface, whereas specific adhesion forces were observed in all

other cases. Therefore, BSA was used as the nonreactive protein for reducing the

nonspecific adhesive forces and undesired interaction of the multi - functionalization

elements. Additionally, in order to minimize random errors such as variation in surface

coverage, the data collected were repeated at different locations on the surface, with

different cantilevers and also at different dates.

9.2.3. Evidence of Specific Interaction-Control Experiments

To confirm if kinesin functionalized on the cantilever has a specific binding ability

to αβ-tubulin immobilized on the mica surface, a control experiments was carried out,

in which kinesin functionalized cantilever was saturated with excess αβ-tubulin (incu-

bation with 100 ul tubulin solution for 20 min) prior to force-distance data collection.

9.2.4. Atomic Force Microscopy (AFM): The Experiments Performed

We have performed two different sets of AFM pulling experiments to investigate

the unbinding force distributions involved in the interactions of Kinesin -αβ -tubulin
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complexes. All force measurements were performed in fluid-phase at room temperature.

The cantilevers were calibrated using thermal noise method (Hutter and Bechhoefer,

1993). AFM pulling experiments were performed by the approach of the Kinesin at-

tached cantilevers -manipulated by a piezo- on a αβ- tubulin adsorbed onto the surface

(AFM protocol described above). The deflection signal, which gives the position of the

AFM cantilever, was recorded during the experiment. To obtain the unbinding forces

at various loading rates, force-distance data were recorded at different approach/retract

velocities -spanning three order of magnitudes- (0.5, 1, 2.5, 5, 10, 20, 50 µm/s). At

each speed, we collected sufficient force curves to obtain statistically significant number

of force curves. The trigger force was fixed to 1 nN.

The unbinding force at a specific loading rate was determined by inspecting the

force-extension curve. Figure 9.2-C shows a typical force curve (representing just re-

tract) indicating no adhesion/rupture event on the right and two successive unbinding

events between a single pair of molecules. The effective loading rates were estimated

by fitting a linear line to the force-time curve immediately before the rupture point in

each approach/retract. The effective loading rates obtained from the experiment were

equally quantized in the logarithmic space to get uniform number of most probable

rupture force vs logarithm of loading rates relation. Force distributions are plotted as

histograms for each loading rate-range- and the most probable rupture force at each

loading rate is determined by inspecting the force histograms. The most probable

rupture force of the kinesin-tubulin complex at a given loading rate interval was deter-

mined by calculating the median of the force histograms. The most probable rupture

force f*, versus the natural logarithm of the loading rate, ln(rf ), was plotted and the

Bell parameters (koff and xβ; where koff is the unbinding rate constant and xβ is the

distance from the bound state of the activated state), which are characteristic values of

the investigated molecular pair, were estimated from the slope, kBT
xβ

, and the intercept,

kbT
xβkoff

, of the fitting linear curves (See Equation 9.1).

f ∗ =
kBT

xβ

(
lnrf − ln

kBT

xβ
koff

)
(9.1)
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where kB and T are the Boltzmann constant and the absolute temperature, respectively.

9.3. Results and Discussion

9.3.1. Kinesin-Tubulin interactions via AFM experiments

Force measurements of the wild type and mutant (S175A, N332A, D72N) kinesin-

tubulin interaction were carried out using Dynamic Force Spectroscopy (DFS) via AFM

as described in Materials and Methods (Figure 9.2-A) to measure the magnitude of

unbinding forces and to explore the binding dynamics of the kinesin-tubulin complex.

Figure 9.2. Illustration of AFM Pulling Experiments with and Example Force -

Distance Curve. a) The experimental Setup. b) The Functionalization of Kinesin

Molecule c) A Typical Force Curve Exhibiting no Adhesion/Rupture Events (Left)

and an Unbinding Event (Right) with a Force Strength (Funbinding=250 pN).
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9.3.2. Confirmation of Specific Interactions

The functionalization and immobilization protocol optimization experiments re-

vealed that the intermediate agents used in the experimental setup causes some non-

specific force measurements. To reduce the probability of unbinding forces coming

from multi-functionalization agents, the wild type kinesin-tubulin experiments were

repeated by adding a nonreactive protein (BSA) on the surface to coat the uncovered

mica surface. The wild type kinesin-tubulin interaction experiment was repeated via

the updated protocol. The specificity of the measured unbinding forces between kinesin

and tubulin was checked by saturating the kinesin functionalized AFM cantilevers via

tubulin solution before collecting kinesin-tubulin unbinding data as a control experi-

ment. The probability of adhesion curves of the experiments together with the control

experiments were calculated and shown in Figure 9.3. Saturating kinesin functional-

ized AFM tip before measuring the kinesin-tubulin interaction reduces the probability

of adhesion to half of the value obtained via unsaturated experiment implying that the

specific kinesin-tubulin interaction was causing the observations in unbinding experi-

ments.

Figure 9.3. Comparison of the Probability of Adhesion of Regular Experiments with

the Control Experiment (Functionalized AFM Cantilevers Were Saturated with

Excess Tubulin Molecules before the Pulling).
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9.3.3. Kinesin Tubulin Dissociation Reaction Follows Alterative

The adhesion forces between kinesin and αβ-tubulin molecules in the wild type

and the S175A, N332A, and D72N mutants were extracted from the collected force

measurement data. Both the wild type and mutant kinesin-tubulin complexes reflect

unimodal distribution at lower loading rates. However, at higher loading rates the

dissociation process follows bimodal distribution for all cases as reflected in the force

histograms given in Figure 9.4. This bimodality suggests the existence of two distinct

states of kinesin-tubulin association where a low-strength state dissociates at lower

forces (20-120pN) and a high-strength state dissociates at higher forces (180-300pN).

The two different states may imply the existence of two distinct population of the

molecular complex in the ensemble of conformations (existence of two different con-

formational isomers or/and different dynamic behavior) where each of them has its

own force distribution. However, since kinesin molecule is in dimeric state, this two

state dissociation reaction may overlap with the binding of a single monomer and both

monomer at the same time, which gives the low-strength state and high-strength state

(at higher loading rates), respectively. Moreover, the difference in the probabilities

of these two states could be associated with the relative probabilities of the differ-

ent populations (either two distinct conformations (ensemble) of a given monomer or

two monomers) such that the low-strength state still has greater fraction compared to

high-strength state.

9.3.4. S175A and N332A mutations weakens the low-strength state of the

kinesin-tubulin complex

The most probable rupture forces of the kinesin-tubulin complex at a given load-

ing rate were determined from the histograms of measured unbinding forces. Figure 9.5

plots the most probable rupture forces against the loading rates in semilog scale for the

wild-type and for all three mutant kinesin-tubulin dissociation reaction. Within the

window of measured loading rates, the rupture force of all kinesin-tubulin complexes

showed a gradual increase with a single linear relation in both low-strength (see Figure

9.5) and high-strength (inset of Figure 9.5) states.
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As seen in Figure 9.5, the mutations do not affect the unbinding forces observed

at high-strength state for all cases (inset). However S175A and N332A mutations de-

creases the unbinding forces of low-strength state of kinesin-tubulin complex at compa-

rable loading rates whereas the D72N mutation has the similar unbinding forces with

wild-type.

Figure 9.4. Adhesion Force Histograms Obtained at Different Loading Rates. a) Wild

Type Kinesin b) S175A Kinesin c) cN332A Kinesin d) cD72N Kinesin. There is

Unimodal Distribution at Low Loading Rates and Bimodal Distribution at High

Loading Rates in All Cases.
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Figure 9.5. The Dynamic Adhesion Force Spectra of Kinesin-Tubulin Complex

Depending on the Loading Rates. The Most Probable Rupture Force vs Logarithm of

the Loading Rates Determined as Low-Strength State is given as Main Plot, whereas

the High-Strength State is given as Inset.

9.3.5. Effect of Mutations on the Binding Energy Landscape of the Complex

The observed rupture forces vs loading rates relation can also be examined in the

context of the Bell model (Bell G.I., 1978), which predicts a linear relationship between

the rupture force and the natural logarithm of the loading rate. As shown in Figure

9.6, the dynamic spectrum of both low and high-strength states in all kinesin-tubulin

binding events revealed a single linear regime within the range of the experimental

loading rates. This observation indicates that all kinesin-tubulin complexes have a

single minimum in the energy landscape of the disassociation process of the kinesin-

tubulin complex in both low-strength (shown in spheres) and high-strength (shown in

triangles) states as shown in Figure 9.6. The parameters of the dissociation energy
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landscape and kinetics of the complex obtained from the Bell’s model is calculated as

described in Materials and Methods.

The kinetic parameters calculated using the Bell’s model such as the dissociation

constant koff and the distance of the activated complex from the bound state xβ are

given in Table 9.1 and placed on the energy landscape diagram in Figure 9.6-E and F.

In addition to decreasing the mean unbinding forces, S175A and N332A mutations

also decrease the activation energy barrier of the dissociation reaction of kinesin-tubulin

complex at both low and high-strength states as shown in Figure 9.6-E and F where

the wild-type is shown in magenta, S175A is in green, N332A is in blue, and D72N is

in red together with the calculated kinetic parameters and activation energy change

with respect to wild type. The effect of N332A mutation is much effective than S175A

in terms of lowering the activation energy barrier. This result explains the importance

of neck linker in the force generation mechanism and motility of kinesin. Since neither

S175 nor N332 is at the binding sites of kinesin - tubulin interaction, the effects of

the perturbation in terms of introducing a mutation are allosterically in effect of the

kinesin-tubulin complex association.

D72N is a disease causing point mutation, which results in neurodegenerative

disorder. According to the DFS results, although this mutation does not affect the

mean rupture force, it decreases dissociation constant of both low and high-strength

states of kinesin-tubulin complex. The activation energy barrier of high-strength state

is drastically increased via D72N mutation, which indicates that dissociation of D72N

kinesin-tubulin complex is extremely difficult. These observation are in accordance

with the mutational studies in the literature as this mutation results in dysfunctional

kinesin motors with reduced transport velocity and reduced binding on microtubules

resulting in impaired axonal transport and axonal degeneration (Kawaguchi, 2013).
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Figure 9.6. DFS Results of Kinesin-Tubulin Complex. a) Wild Type Kinesin b)

S175A Kinesin c) N332A Kinesin d) D72N Kinesin. A Smooth Diagram of the

Binding Energy Landscape of the Low-Strength State of Kinesin-Tubulin Complex e)

and the High-Strength State f).
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Table 9.1. Bell Model Parameters of the Dissociation Reaction and the Difference in

the Activation Energy of the Kinesin-Tubulin Complex.

Kinesin Type xβ (nm) koff (s-1) ∆∆E (kBT)*
L

ow
-S

tr
en

gt
h Wild type 2.62E-01 1.52E+01

S175A 3.37E-01 1.71E+01 -0.11

N332A 2.67E-01 2.55E+01 -0.52

D72N 3.68E-01 6.89E+00 0.79

H
ig

h
-s

tr
en

gt
h

st
at

e

Wild type 1.08E-01 2.58E+00

S175A 5.79E-02 2.20E+01 -2.14

N332A 3.89E-02 5.21E+01 -3

D72N 4.10E-01 2.58E-08 18.42

* ∆∆E is relative to wild type kinesin-tubulin binding energy

9.3.6. Dissociation Rate of D72N kinesin has Higher Force Sensitivity

The separation between the transition state and bound state (the width of the

barrier in the energy landscape, xβ), which dictates the force-resistance of the complex,

is the largest for D72N compared to both wild type and other mutations in both low and

high-strength states and therefore the effect of pulling force on the dissociation constant

is largest (see Figure 9.6-E, F and Table 9.1). Wider energy barrier indicates the higher

number of entropically favorable microstates within the well. S175A and N332A also

increase the width of the energy barrier compared to the wild type kinesin at the low-

strength state, whereas decreases the barrier width at the high-strength state. These

two results indicate that the S175A and N332A mutant kinesin-tubulin dissociation

constants are more force sensitive than the wild-type but less force sensitive compared

to D72N at the low-strength state. On the other hand, the effect of external force

on the dissociation constant is smaller in S175A and N332A mutant kinesin-tubulin

unbinding at high-strength state compared to both wild-type and D72N.
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10. ALLOSTERIC REGULATION OF RAC1-PAK1

BINDING AFFINITY BY MUTANT RESIDUES

THROUGH MOLECULAR SIMULATIONS AFM

10.1. Introduction

Rac1 (Ras-related C3 botulinum toxin substrate 1) is a small member of Ras su-

perfamily and Rho family of GTPases, associated with the plasma membrane, acting

as a binary switch between the GTP-bound active state (ON) and the GDP-bound in-

active state (OFF) [240]. Rac1 activation is regulated by guanine nucleotide exchange

factors (GEFs), which activate Rac1 to transmit an incoming signal through catalysis

of GDP release and GTP binding via stabilizing the nucleotide-free state during the

GDP-GTP exchange, and GTPase activating proteins (GAPs) that inactivate Rac1 by

accelerating GTP cleavage [241]. Rac1 is an important GTPase, found in all eukaryotic

organisms, regulating cell responses such as cell adhesion, cytoskeleton rearrangement,

lamellipodia and membrane ruffle formation, nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase activation (for antibacterial defense) and induction of gene

expression, through binding of numerous effector proteins in its active state [242, 243].

PAK1 (p21-activated kinase 1) belongs to Pak family and it was first identified as an

interaction partner of Rac1 [244], being one of the most important downstream effec-

tors of Rac1. Paks are serine/threonine kinases interacting with multiple partners to

regulate essential cellular processes, such as cytoskeletal dynamics and actin depoly-

merization, cell polarity and motility, cell growth signaling and transformation, and

cell death and survival signaling [245].

There are four main functional sites in Rac1 protein: Insert region, p-loop, and

Switch regions (Switch I and Switch II) (Figure 10.1). Insert region (residues 124-135)

is specific to Rho subfamily and regulates mitogenesis and apoptosis [246]. p-loop

(res. 10-17) functions in binding to the phosphate groups of the nucleotide bound

to Rac1. Switch I region (res. 26-45), also called the “effector region”, is respon-
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sible for the interaction of Rac1 with downstream effectors (e.g. PAK1 and MLK3).

Whereas, Switch II region (res. 59-74) is important for the binding of GEFs or proteins

that activate Rac1 in its GTP-bound state [246]. During GAP binding, some of the

predominant contacts on Rho family GTPases were detected as Val36 and Phe37 on

Switch I and Asp63, Tyr64 and Leu67 on Switch II [247]. Hence, switch regions are

crucial for the activity of Rac1 protein, except interactions with the membrane [246].

GTP/GDP controls the positioning of Switch I and II [240] by binding to the pocket

between p-loop, Switch I (residues 28, 32, 34, 35), Switch II (residue 60), Helix 6 (H6,

residues 116, 118 and 119) and residues 158-160. The conformation of switch loops in

the GDP-bound form changes dramatically upon GTP binding; as hydrogen bonds are

formed between the γ-phosphate and residues Thr35 and Gly60 [247]. The affinity of

the protein for nucleotide binding is enhanced via the coordination of the main chain

carbonyl of Thr35 both with the Mg2+ ion and with the γ-phosphate [247]. New

interactions introduced with GTP binding thus changes the dynamics and structure of

the switch loops, which are unstructured or highly flexible otherwise, so that Switch I

gets reoriented and can interact with effector proteins [247].

From the known complex structures of Rac1-like proteins and PAK1: Rac3-PAK1

(CRIB domain) complex structure with PDB ID: 2qme; and Cdc42-PAK1 (GTPase

binding domain) complex structure with PDB ID: 1e0a, it is known that PAK1 in-

teracts with Rac mostly through Switch I region and C-terminal residues (residues

165-175) (Figure 10.1) where structurally important regions on Rac3 and Cdc42 are

shown and mutant residues analyzed in this study (T17, Q61, and Y72) are labeled.

Rac1 binds to the CRIB (Cdc42- and Rac-interactive binding, res. 75-90) domain of

its downstream effector PAK1, which is necessary but not sufficient for high-affinity

binding, whereas PBD (p21-binding domain - also called GTPase binding domain, res.

67-113) in PAK1 is responsible for the overall high-affnity binding [248-250]. The basal

kinase activity of Paks is controlled by the Inhibitory switch (IS) domain (res. 87-

136), which has common residues with PBD [250]. In its OFF state, PAK1 forms

an asymmetric homodimer through the interaction of N-terminal regulatory domain

(auto-regulatory segment, res. 70-149, including PBD/CRIB and IS domain) and C-

terminal kinase/catalytic domain (res. 249-545) [249, 250]. Activation of PAK1 takes
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place through binding of GTP-bound Rac1 to the CRIB domain in PAK1 causing

the inactive dimer to dissociate via unfolding of IS domain. Thus, the kinase domain

is unblocked for downstream signaling and the activation loop is released for auto-

phosphorylation [250].

Rac1 is shown to have a role in cancer cell migration and invasion [251-253]

and regulating tumor metastasis and progression [253-255]. Hence, problems in the

regulation of Rac1 might play crucial roles in various steps of cancer such as initiation,

progression, invasion, and metastasis [256, 257]. The Q61L mutation on Switch II

region of Rac1 keeps the protein always in the GTP-bound active state preventing

the GAP-stimulated GTPase activity (i.e. GTP hydrolysis is prevented resulting in

no GDP production) so that the mutation is accountable for a constitutively active

protein and cells with Q61L mutant Rac1 show increased multinucleation [241]. On

the other hand, T17N is a dominant-negative mutation in Rac1 that prevents GTP

binding and reduces GDP binding, hence the protein is in either nucleotide free or

inactive state [243] causing it to competitively bind to GEFs with higher affinity than

wild-type and to block GEF binding and activation of wild-type Rac1 protein [257].

Both dominant-negative and constituvely active mutants have important roles in the

relation of Rho GTPase family (of which Rac1 is a member) with oncogenesis [257].

Moreover, COSMIC (Catalogue of Somatic Mutations in Cancer) database [239] lists

Y72C mutation on Rac1 as being related to liver carcinoma. However, no publication

describing the functional effect of this oncogenic mutation is available. It is thus a

good candidate for understanding the functional effect through molecular simulations

and single molecule experiments, which is one of main aims of this study.

Being the downstream effectors for several signaling pathways (e.g. ERK, AKT

and WNT), Paks are key regulators of cell signaling networks in cancer for their ability

to amplify and propagate upstream oncogenic signals, which makes them potential

therapeutic targets [259, 260]. Overexpression or mutational activation of Pak isoforms

(mostly PAK1) by upstream elements (e.g. Rac1) have oncogenic signaling effects

in cell proliferation, survival, invasion and metastasis [259]. Although there have

been drugs targeting several oncogenic protein kinases successfully, new targets are
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needed due to the drug resistance developed. Hence, Rac1-PAK1 interaction is a

good target for studying the effects of allosteric Rac1 mutations on the interaction

with PAK1 and developing inhibitors for the cancer treatment. This study aims to

enlighten the intrinsic changes in the dynamics caused by mutations on Rac1 structure

through molecular simulations as well as verifying the allosteric effects of constitutively

active Q61L, oncogenic Y72C, and dominant-negative T17N mutations on Rac1-PAK1

binding through single molecule Atomic Force Microscopy (AFM) experiments.

Figure 10.1. Available Structures of Rac1-Like Proteins Bound to PAK1. a) Rac3 -

PAK1 (CRIB Domain) Complex Structure (PDB ID: 2qme). b) Cdc42 - PAK1

(GTPase Binding Domain) Complex Structure (PDB ID: 1e0a).
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10.2. Materials and Methods

10.2.1. Gaussian Network Model (GNM)

The GNM [9, 139] is an elastic network model in which a protein is represented as

a network of amino acids, where α-carbon atoms are nodes, and edges are the springs

(with a uniform force constant γ) combining residues within a cutoff distance (rcut).

Details about the theoretical derivation are given in Materials and Methods section

of this thesis. In the GNM calculations, rcut was taken as 10 Ã and the calculations

were done via Python 2.7 [260]. During the hinge site analysis, nearby residues with

α-carbon distances to hinge residues within 6 Ã in space were also considered.

10.2.1.1. Molecular-Dynamics (MD) Simulations. Starting structures for molecular -

dynamics (MD) simulations were the GTP-bound wild-type Rac1 (PDB ID: 3th5),

Q61L mutant Rac1 (PDB ID: 4gzl), Y72C mutant Rac1 and nucleotide free T17N

mutant Rac1 (PDB ID: 3b13). To obtain GTP-bound structures, starting coordinates

were modified by changing the β-γ bridging nitrogen atom of GNP (a non-hydrolyzable

analog of GTP) with oxygen. The in silico mutation of the wild-type Rac1 (PDB ID:

3TH5), Y72C, was created using VMD 1.9.1 [261]. The Q61L mutant Rac1 structure

(PDB ID: 4gzl) lacks residues 31 and 48 and they were modeled using the wild-type

structure (PDB ID: 3th5). A total of 0.8 µs-long MD simulations, including two parallel

runs for each case, was performed for the wild-type and mutant Rac1 structures. The

details of simulations are given in Table 10.1.

MD simulations were carried out with the all-atom CHARMM27 force field [193]

of NAMD 2.7 [192] using a 2 fs integration time step, with periodic boundary condi-

tions. The temperature was maintained at 310 K with a Langevin damping coefficient

of 1 ps−1 [195]. The pressure was kept at 101.3 kPa by means of NosÃ c©-Hoover

Langevin piston pressure control. The SHAKE algorithm was used to restrain the

length of bonds involving hydrogen atoms for a time step of 2 fs [262]. The initial

crystal structures were immersed in a TIP3P-type water box [196] with at least 10 Ã of
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padding between the solute and the edge of the box. The system was neutralized with

Cl- and Na+ ions. A nonbonded cutoff of 12 Ã was used for all Lennard-Jones interac-

tions with a switching function starting at 10 Ã, and the long-range electrostatics was

treated according to the particle-mesh Ewald method [197]. The nonbonded pair list

distance was 14 Ã. All systems were energetically minimized by the conjugated gra-

dient method for steric crush and crystal contact removal. The trajectories generated

by MD simulations were saved every 10 ps for structural and dynamic properties. The

analyses were performed using VMD 1.9.1 [261] and all additional calculations were

done using MATLAB version R2015a (The MathWorks, Natick, MA). MD trajectories

are then analyzed, including calculations of the Root Mean Square Deviation (RMSD)

and Mean Square Fluctuation (MSF) profiles and principal component analysis.

Table 10.1. The Details of the Molecular-Dynamics (MD) Simulations.

Parallel Structure Total Simulation Equilibrati

Simulation (PDB ID) Length (ns) on Time (ns)

2-Jan Rac1 wt structure (3th5) 100 - 100 4-5

2-Jan Rac1 T17N Mutant (3b13) 100 - 100 50 - 40

2-Jan Rac1 Q61L Mutant (4gzl) 100 - 100 (10-85) - 25

2-Jan Rac1 Y72C Mutant (in silico) 100 - 100 5-10

10.2.1.2. Atomic Force Microscopy (AFM). AFM single molecule pulling experiments

were performed to explore the allosteric effects of hinge-site-mutations on the Rac1-

PAK1 binding.

10.2.1.3. Preparation of Molecules and AFM Setup. The His-tagged wild-type (wt),

GST-tagged T17N, His-tagged Q61L and His-tagged Y72C mutant human Rac1 and

GST-tagged human PAK1 (p21 binding domain-PBD) molecules, produced in a bac-

terial expression system, were purchased from Creative BioMart USA, as lyophilized

powder. The powdered form of the molecules were reconstituted and diluted to 5,

1, 1, and 3 µg/ml, respectively, with regular Tris buffer. The Tris Buffer solution

(containing 50 mM Tris pH 7.5, 0.5 mM MgCl2 and 50 mM NaCl) was prepared in
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liquid form. GTP molecules were purchased as lyophilized powder from Sigma-Aldrich

(St. Louis, MO, USA). In the beginning of each experiment, wt and mutant Rac1

molecules were loaded with freshly reconstituted GTP (in deionized (DI) water to have

a final concentration of 2 mM) by preparing the following solution: 0.1-1 mg/ml Rac1,

15mM EDTA and 2mM GTP. After 30 minute incubation at room temperature, 60

mM MgCl2 (final) was added to lock Rac1 and GTP molecules.

Polyethylene glycol (PEG) and Glutathione (GSH) attached Si3N4 (silicon ni-

tride) AFM probes, as well as NTA (Nitrilotriacetic acid) and GSH covered mica

surfaces were purchased from Novascan Technologies, Inc., USA. The nominal spring

constants of the cantilevers used in the experiments are 0.01 and 0.1 N/m. The ex-

periments were performed using a commercial AFM system (Dimension Edge, Bruker

Nano, Santa Barbara, CA, USA).

10.2.1.4. Tip and Surface Coating. In all of the pulling experiments, PAK1 was func-

tionalized on AFM tip and wt/mutant Rac1 molecule was immobilized on the func-

tionalized mica surface via physical adsorption. GST is adsorbed to GSH and His is

adsorbed to NTA. Thus, GSH and NTA mica surfaces respectively were used to func-

tionalize GST-tagged T17N and His-tagged wild-type (wt), Q61L and Y72C mutant

human Rac1 (see Figure 10.2-A).

Wild-type and mutant Rac1 molecules (100 µl from each with 20 µg/ml in Tris)

were immobilized on the mica surface through a 30-minute incubation at room temper-

ature. 50 µl of EDTA and GTP (solution with deionized (DI) water) was also added

for GTP loading of Rac1 molecules, so that GTP-loaded Rac1 molecules got attached

to the mica surface. After the incubation, the mica surface was gently rinsed with DI

water to remove unbound/loosely bound molecules. The mica surface with immobilized

molecules was kept hydrated via Tris prior to data collection.

Functionalized cantilevers (GSH and PEG attached) were dipped into the 100 µl

GST-tagged PAK1 (20 µg/ml in Tris buffer) and incubated for 30 minutes at room
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temperature, then gently rinsed two times with DI water to remove unbound/loosely

bound PAK1 molecules. PAK1 functionalized AFM tips were then used immediately

in force measurements. Figure 10.2-A shows the multi-step functionalization of AFM

tip and surface in this experiment.

Multi-step functionalization of AFM tips may introduce measurement of unbind-

ing forces that do not arise from the molecules of interest. To test the existence of such

undesired unbinding events, the pulling experiments were performed using: 1) PEG +

Gluthation attached tip and NTA covered mica surface, 2) PEG + Gluthation+PAK1

attached tip and NTA covered mica surface, 3) PEG + Gluthation attached tip and

NTA+Rac1 covered mica surface. No statistically significant specific adhesion was ob-

served between multi-step functionalization elements (see Figure 10.2-B). Additionally,

in order to minimize random errors such as variation in surface coverage, the data was

collected at different locations on the surface.

10.2.1.5. Experimental Procedure. Three different sets of AFM pulling experiments

were performed to investigate the unbinding force distributions involved in the inter-

actions of Rac1-PAK1 complexes. Figure 10.2-A shows the experimental setup for the

Rac1-PAK1 systems. All force measurements were performed in the fluid-phase at room

temperature. Three different experiments were conducted to ensure the specificity of

measured forces coming from the molecules of interest. Exp.1 is the pulling experi-

ment of PEG+Gluthation attached AFM tip and NTA covered mica surface, Exp.2

is the pulling experiment of PEG+Gluthation+PAK1 attached tip and NTA covered

mica surface, Exp.3 is the pulling experiment of PEG+Gluthation attached tip and

NTA+Rac1 covered mica surface. An example of force-time data collected during the

experiment is also given in Figure 10.2-C. 100 pN unbinding force was measured dur-

ing presented approach/retract cycle. Extension of the flexible PEG linker is observed

as parabolic delay before the unbinding takes place.

Cantilevers were calibrated using thermal noise method [263]. AFM pulling ex-

periments, the multi-functionalized AFM tip coated with p21 binding domain of PAK1
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was brought in contact -manipulated by a piezo- with Rac1 adsorbed surface (immobi-

lization and functionalization details are described above). The deflection signal, which

gives the position of the AFM cantilever, was recorded during the experiment. An ex-

ample approach/retract cycle is given in Figure 10.2-C. To obtain the unbinding forces

at various loading rates, force-distance data were recorded at different approach/retract

velocities -spanning three order of magnitudes- (0.1, 0.5, 1, 2.5, 5, 10, 20, 50, 100 µm/s).

At each velocity, we collected statistically significant number of force-distance data for

further analysis. The trigger force was fixed to 2 nN.

The unbinding force at a specific loading rate was determined by inspecting the

force-extension curve. The effective loading rates were estimated by fitting a linear line

to the force-time curve immediately before the rupture point in each approach/retract.

The effective loading rates obtained from the experiment were equally quantized in the

logarithmic space to get uniform number of most probable rupture force vs logarithm

of loading rates relation [172, 173]. Force distributions are plotted as histograms for

each loading rate-range- and the most probable rupture force at each loading rate is

determined by inspecting the force histograms. The most probable rupture force of

the Rac1-PAK1 complex at a given loading rate interval was determined by calculating

the median of the force histograms. The most probable rupture force f*, versus the

natural logarithm of the loading rate, ln(rf ), was plotted and the Bell parameters

(koff and xβ; where koff is the unbinding rate constant and xo is the distance from the

bound state of the activated state), which are characteristic values of the investigated

molecular pair, were estimated from the slope, kBT
xβ

, and the intercept, kBT
xβ
koff , of the

fitting linear curves (See Equation 10.1).

f ∗ =
kBT

xβ

(
lnrf − ln

kBT

xβ
koff

)
(10.1)

where kB and T are the Boltzmann constant and the absolute temperature, respectively.
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Figure 10.2. The Design of AFM Pulling Experiments. a) Schematic Representation

of Experimental Setup. b) The Probability of Adhesion Obtained from Control

Experiments of Multi-Step Functionalization. c) An Example of Force-Time Data

Collected During the Experiment.

10.3. Results and Discussion

10.3.1. The Relation of Functional Mutations and Hinges on Rac1

Hinge positions are mechanistically key sites of the structure that have signifi-

cance in mediating cooperative dynamics in the structure. The first step in the compu-

tational part was to explore the positions of functionally important mutations in Rac1,

such as constitutively active Q61L and oncogenic Y72C mutations on Switch II region

and T17N dominant-negative mutation on p-loop with respect to global hinge regions.

Using GNM, hinge regions on the wild-type structure of Rac1 (PDB ID: 3th5) for the
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first three slowest modes of motion were identified and all these three residues (T17,

Q61, and Y72), were found to correspond to hinge or nearby residues (Table 10.2).

The mutant structures (PDB IDs: 4gzl, 3b13 and insilico Y72C mutation on 3th5)

were also investigated to see the changes in the hinge regions upon mutations. When

compared to the wild-type structure, residue position 61 on all mutant structures is no

more a hinge/nearby residue, whereas positions 17 and 72 correspond to hinge/nearby

residues in all cases (Table 10.2). For further dynamic analyses, note that residues

39 and 40 on Switch I are predicted as hinges in the second slowest mode and hence

they mainly divide Switch I into two dynamic regions. Similarly, residues 61-65, be-

ing predicted as a hinge region in the third slowest mode, divide Switch II into two

dynamic regions. Therefore, mainly two opposite behaviors are observed during the

cross-correlation analysis of the switch regions (see the next Section).

Table 10.2. Hinge and Nearby Residues Corresponding to Functionally Important

Mutations in the First Three Slowest Modes in the Wild-Type (PDB ID: 3th5), Q61L

Mutant (PDB ID: 4gzl), T17N Mutant (PDB ID: 3b13) and Y72C Mutant (in silico)

Rac1.

Mode 1 (Nearby) Mode 2 (Nearby) Mode 3 (Nearby)

wt Rac1 T17, Q61 (G12) Y72 (P73) Q61

Q61L Rac1 T17 (K16) Y72 (T75) -

T17N Rac1 N17 (K16) N17 Y72 (P69)

Y72C Rac1 T17 (K16) - C72

10.3.1.1. Molecular Simulation Results. A total of 0.8 µs-long MD simulation, includ-

ing two parallel runs for each case, is performed for the GTP-bound wild-type Rac1

(PDB ID: 3th5), Q61L mutant Rac1 (PDB ID: 4gzl), Y72C mutant Rac1 and nu-

cleotide free T17N mutant Rac1 (PDB ID: 3b13) to observe the changes in the dy-

namic behavior of functionally important regions upon mutation (10.3). The focus of

this study is on possible allosteric effects of constitutively active Q61L and oncogenic

Y72C mutations (Switch II, activation loop) and dominant-negative T17N mutation

(p-loop, GTP-binding) on Rac1 Switch I (downstream effector) that is responsible for
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the PAK1 binding. MD simulation results are based on the time frames after the equi-

libration (see Table 10.1), determined using the Root Mean Square Deviation (RMSD)

in each run (Figure 10.3). RMSD values of the structures during MD simulations are

comparably low with means below 2 Ã, whereas RMSD means of the two parallel runs

for the T17N mutant are slightly higher, which can be explained with the lack of a nu-

cleotide bound in the structure. All of the structures seem to equilibrate around 10-20

ns, with the exception of T17N mutant, whose structures equilibrate around 40-50 ns

(Table 10.1).

Figure 10.3. RMSD Profiles during Parallel MD Simulations for the Wild-Type and

Mutant Rac1 Structures.

10.3.1.2. Dynamic Analyses on Wild-Type and Mutant Rac1 Proteins. MSF profiles

and the changes in the correlation of fluctuations of dominant-negative T17N (PDB ID:

3b13), constituvely active Q61L (PDB ID: 4gzl) and oncogenic Y72C mutant (insilico

mutation) Rac1 proteins with respect to wild-type (wt) Rac1 (PDB ID: 3th5) are

analyzed in this part. The average cross correlations of two parallel runs were calculated

for each case and the differences of mutants from the wild type were analyzed to detect

the changes in the dynamic behavior with the mutations. The main focus is the changes

in the MSF values and correlations of important functional regions on Rac1 (p-loop,
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Switch I, Switch II, insert domains and C-terminus; shown in Figure 10.1-A and Figure

10.5-A) upon mutation.

10.3.1.3. The Dynamics of T17N Mutation Reveals the Effect of Nucleotide Binding.

Nucleotide-free dominant-negative mutant Rac1 (T17N) has increased fluctuations

specifically at the nucleotide binding region containing p-loop (residues 10-17) prop-

agating across Switch I (residues 26-45) compared to the wild-type and other Rac1

mutants (Figure 10.4), and this behavior can be attributed to the lack of a bound

nucleotide to stabilize those regions [240]. T17N mutation in p-loop also displays a

significant decrease in the correlation between the fluctuations of p-loop and a part of

the Switch I region (residues 26-38) (Figure 10.5-B). If we combine this observation

with the significant increase in the mobility of p-loop and Switch I, we can infer that

the lack of a bound-nucleotide in the structure disrupts the coupling of p-loop and

Switch I, which has an important role in nucleotide binding, hence regulation of the

activation of Rac1. This mutation also allosterically decreases the correlation between

Switch I and C-terminus which is important in the PAK1 binding (Figure 10.5-C).

The correlations between residues of Switch I and Switch II regions are also allosteri-

cally affected as such that the correlations between residues 59-60 and 26-38 decrease;

while the correlations between residues 68-72 and 26-38 increase (Figure 10.5-C). Note

that residues 39 and 40 on Switch I and residues 61-65 on Switch II are predicted as

hinge regions and they mainly divide the loops into two dynamic regions. Another

observation is that the highly flexible p-loop starts to positively correlate with insert

domain upon T17N mutation (Figure 10.5-B). T17N mutant is known to bind to GEFs

competitively with higher affinity than the wild-type [257] and gained correlation of

the p-loop-insert domain may have a role in stronger GEF binding.

10.3.1.4. The Mobility of Switch I Significantly Increases Upon Q61L Mutation. The

mobility of Switch I (especially between res. 31-35 which are GTP-binding residues

close to the interface for Rac1-PAK1 interaction) is increased allosterically upon the

Q61L mutation (Figure 10.4). This constitutively active mutation on Switch II is

known to prevent GAP-stimulated hydrolysis of GTP and hence the protein stays
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in the GTP-bound active form [241]. For the hydrolysis, it is important to fix the

position of Thr35, which enhances the affinity of the protein for nucleotide binding via

coordinating with the Mg2+ ion and γ-phosphate, and Val36 and Phe37 (on Switch I)

are among the predominant contacts of GAP proteins on Rac1 [247]. Therefore, the

stabilization of Switch I loop is necessary for the GAP binding and this is supported by

the MSF results such that the allosteric increase in the mobility of Switch I loop upon

Q61L mutation (Figure 10.4) may account for a shift in the Thr35 position disrupting

the metal ion coordination and not being able to perform the hydrolysis reaction so that

the protein stays in the active form (247). As such, protein staying in the active form

in the cell for longer periods of time may lead to stimulated downstream interactions,

such as the Rac1 PAK1 interaction, and the mobile Switch I may span the conformation

space with an increased probability of capturing a favorable conformation for PAK1

binding. Although Q61L mutation is allosteric for Switch I and p-loop, the structure

shows similar behavior to T17N in terms of the decrease in the correlations between

Switch I-p-loop and Switch I-C-terminus with respect to the wild-type (Figure 10.5-

D). This might be due to the increased mobility of Switch I upon both T17N and

Q61L mutations (Figure 10.4). Although T17N mutant is nucleotide-free and Q61L

mutant is GTP-bound, the alteration in the correlations of the two switch domains

is similar and two opposite behaviors are observed due to existence of hinge regions

(Figure 10.5-D and E). Oncogenic Y72C mutation, on the other hand, does not have

such a significant effect on the residue fluctuations in Switch I and on the correlations

of p-loop and C-terminus with Switch I (Figure 10.5-G) but rather Switch regions are

more positively correlated than the T17N and Q61L mutants and they act as a whole

(Figure 10.5-G and I).

10.3.1.5. Switch II Significantly Rigidifies in Y72C and Q61L Mutants. Oncogenic Y

72 C and constituvely active Q 61 L mutations have a significant rigidifying effect on

Switch II (activation region) with respect to the wild-type, whereas T17N also slightly

decreases the mobility in Switch II (Figure 10.4). This rigidity may lead to a more

stable and already entropically penalized binding site for the activators of Rac1 (such

as GEFs) and hence may give rise to over activated Rac1 mutants. An increase in



120

the correlation of Switch II region (especially residue 70) with GTP-binding residues

158-160 can be observed upon Q61L mutation, which is directly in the affected area

(Figure 10.5-F). Considering that Switch II loop becomes stabilized upon Q61L muta-

tion, it makes sense that constitutively active mutant has higher correlations between

the activation domain (Switch II) and GTP binding residues, which are responsible for

activation through GEF and GTP binding, respectively. Additionally, the most signif-

icantly increasing correlations upon Q61L mutation seem to be between GTP binding

residues-Helix 7 of insert domain and between GTP binding residues-Switch II (Figure

10.5-E and F). Helix 6 (H6) embodies GTP-binding residues 116, 118 and 119 and their

correlations with Helix 7 (H7), which is part of the insert loop, is one example where

Q61L allosterically relates GTP binding and insert domain by altering dynamics with

respect to the wild-type (Figure 10.5-E). Y72C on Switch II (activation loop), signif-

icantly increases the correlation of Switch II with the p-loop, which is responsible for

nucleotide binding (Figure 10.5-H and I). Combining this observation with the MSF

results showing the rigidifying effect of Y72C mutation on Switch II, we can infer that

a more stable and already entropically penalized binding site for the activators of Rac1

(such as GEFs) coordinating with the nucleotide binding site may give rise to over

activated Rac1 mutants leading to stimulated downstream interactions, such as Rac1

- PAK1.

Figure 10.4. MSF Profiles during Parallel MD Simulations for the Wild-Type and

Mutant Rac1 Structures. Functional Regions on Rac1: p-loop (res. 10-17,

GTP-binding), Switch I (res. 26-45, Downstream Effector), Switch II (Res. 59-74,

Activation Loop) and Insert (res. 124-135).
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Figure 10.5. a) Functional Regions and Mutations on Wild-Type Rac1. Average PCA

Cross Correlations at P-Loop and Switch I for T17N (b-c). P-Loop, Switch I, and

Switch II (d-f) for Q61L and (g-i) for GTP-Bound Y72C Mutant Rac1 (in silico).

10.3.1.6. Rac1-PAK1 Association can be characterized via AFM. AFM dynamic force

spectroscopy (DFS) is a powerful single-molecule approach to measure the binding be-

havior of two interacting molecules [265-268]. Here, we have conducted AFM pulling

experiments to measure the magnitude of binding forces as well as to determine the

force distribution/localization and the binding dynamics of Rac1-PAK1, and the ef-

fects of Rac1 mutations on these interactions. In AFM pulling experiments, GST-

tagged PAK1 GTPase binding domain is functionalized on the AFM cantilever and

His-tagged and GST-tagged Rac1 proteins are immobilized respectively on NTA and

GSH covered mica surfaces (See Figure 10.2-A).

The adhesion forces between PAK1 and Rac1 were extracted from the collected

deflection-distance data. The probabilities of adhesion (defined as the ratio of the

number of force curves showing specific unbinding events to the total number of force

curves) are 19.1, 6.4, 17.6, and 18.7% for the wild-type, T17N, Q61L, and Y72C Rac1,

respectively, as illustrated in Figure 10.6. The negative mutant (T17N) shows al-

most three-fold decrease in the probability of adhesion confirming the reliability of

experimental results as a control experiment. This indicates that we are measuring
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specifically the unbinding of Rac1-PAK1 in the experiments.

10.3.1.7. Wild-type Rac1-PAK1 Complex Dissociate Alternative Pathways. The inter-

action of the wild-type Rac1 loaded with GTP with the p21 binding domain of PAK1

was first explored. The force distributions (with normalized probabilities) at different

loading rates (LR) obtained during the unbinding process of PAK1 from the wild-

type Rac1 is given in Figure 10.7-A. The dissociation of the complex reflects uni-

modal distribution at lower loading rates but a bimodal distribution at higher loading

rates (a low-strength state which is observed at all loading rates, dissociates at lower

forces; and a high-strength state, which emerges as loading rate increases, dissociates

at higher forces). This bimodality indicates the existence of two distinct populations

of the molecular complex in the ensemble of conformation (existence of two different

conformational isomers or/and different dynamic behavior) where each of them has

its own force distribution. Moreover, the difference in the probabilities of these two

mean forces could be associated with relative probabilities of different populations as

such that the low-strength state still has greater fraction compared to high-strength

state (at all loading rate intervals that give bimodal force distribution). Presence of

two states (low and high-strength states) in the unbinding reaction of the wild-type

Rac1-PAK1 complex supports the observation of two distinct behaviors in the parallel

MD simulations of wild-type Rac1.

Figure 10.6. The Probability of Adhesion of Wild-Type, T17N, Q61L and Y72C

Rac1-PAK1 Observed in the Experiments.
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10.3.1.8. T17N Rac1 forms weak association with PAK1. Next, interaction between

the GTP loaded negative mutant (T17N) Rac1 and PAK1 was explored. T17N mu-

tation significantly reduces the probability of Rac1-PAK1 association as well as mea-

sured rupture forces (see Figure 10.7-B). The distribution of rupture forces along the

dissociation of T17NRac1-PAK1 complex were unimodal in all measured loading rates

indicating that the complex exhibits a single weak bound state. This loss of binding

capability could be associated with the observed high mobility in the p-loop and switch

I, where switch I is the PAK1 binding region with the T17N mutation as observed in

MD simulations.

Figure 10.7. Adhesion Force Histograms at Different Loading Rates GTP Loaded

Wild-Type T17N, Q61L and Y72C Rac1-PAK1 Complex are given in A-D,

Respectively.
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10.3.1.9. Mutations Disclose a New Binding State in Rac1. The Q61L mutation leads

to a constitutively active state in Rac1, although the Q61R mutation is shown to be

oncogenic. On the other hand, Q61L in Ras is an oncogenic mutation. Y72C is known

as another oncogenic mutation in Rac1. Both of these mutations are allosteric sites

and were seen to be associated with the global hinge sites of Rac1 We examined the

effect of these mutations on Rac1-PAK1 binding with respect to the wild type behavior

using DFS.

Both Q61L and Y72C mutations give rise to unimodal distribution of rupture

forces in all loading rates (see Figure 10.7Figure 10.7-C and D). The extracted most

probable rupture forces for the mutants at loading rates higher than 104 pN/s are even

lower than the ones observed at the low-strength dissociation state of the wild-type

Rac1-PAK1 (see Figure 10.8). This result indicates that both constitutively active and

oncogenic mutations induce a shift to a new population in the ensemble of conforma-

tions. The differentiation in the correlation network of residue fluctuations, specifically

between Switch I, Switch II and p-loop, by the MD simulations of the wild-type and

mutant Rac1 is consistent with the emergence of a new state via mutations.

10.3.1.10. Effect of Mutations on the Binding Free Energy Landscape of the Complex.

The most probable rupture force against the natural logarithm of loading rates for

the low-strength state of the wild-type (shown with straight line in Figure 10.9-A),

constitutively active Q61L (shown with straight line in Figure 10.9-B), and oncogenic

Y72C (shown with straight line in Figure 10.9-C) Rac1-PAK1 leads to two distinct

linear relations, whereas high-strength state of the wild-type Rac1-PAK1 has a sin-

gle linear relation (shown with dashed line in Figure 10.9-A) within the window of

measured loading rates. The rupture force of the low-strength state of the wild-type,

Q61L, and Y72C Rac1-PAK1 complexes showed an initial gradual increase, followed

by a more rapid increase with increasing loading rates. This result indicates that the

low-strength state of the wild-type, Q61L and Y72C Rac1-PAK1 complexes involves

at least two transition states along the dissociation reaction pathway and thus one

relatively stable intermediate complex structure. Here, since the reaction coordinate is
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the distance between molecular pairs, the distance between the chains of the complex

is higher at the intermediate state compared to the bound state. These mutations,

Q61L and Y72C, are not at the binding interface of the molecules, which means they

allosterically control the binding affinity of the complex. Their allosteric affect could

be the disruption or addition non-bonded / hydrogen bonds that defines a differen-

tially different bound state in between bound and unbound forms. In other words a

redistribution of contacts along changes in the dynamics.

Figure 10.8. Observed Most Probable Rupture Forces Along the Measured Loading

Rates.

The observed rupture force vs loading rate relation can also be examined in the

context of Bell and Evans model [173] which predicts a linear relationship between

the rupture force and the natural logarithm of the loading rates. The two distinct

linear relation in the most probable rupture forces against the natural logarithm of the

loading rates corresponds two activation energy barrier; an inner barrier and an outer

barrier corresponding to larger and smaller rupture forces, respectively [172], [173].
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The Bell’s parameters of the transitions of the wild-type, Q61L and Y72C Rac1-

PAK1 complexes were determined from the linear relations and tabulated in Table

10.3 where blue: wild-type Rac1-PAK1 complex green: Q61L Rac1-PAK1 complex

red: Y72C Rac1-PAK1 complex). The disassociation rate (koff ) is a function of the

activation energy (∆E) according to the transition state theory. The difference between

activation energies of the two systems, system 1 and 2, (∆∆E = ∆E2 −∆E2) can be

calculated from the ratio of the disassociation rates (i.e. k2/k1=exp −∆∆E/kBT ).

The calculated difference energies of the Q61L and Y72C Rac1-PAK1 pair relative to

the wild-type Rac1-PAK1 are also tabulated in Table 10.3 and labeled on free energy

landscape in Figure 10.9-D. Our analysis reveal that the enhanced duration of activity

of Q61L Rac1 may be attributed to a larger activation energy barrier 1.5kB T at the

rate-limiting transition. The Y72C mutation further increases the barrier height of the

rate-limiting transition with 2.4kB T.

Figure 10.9. The Dynamic Rupture Force Spectra and the Corresponding Binding

Energy Landscape of Rac1-PAK1 Complexes. Most Probable Rupture Forces of a)

Wild-Type b) Q61L c) Y72C Rac1-PAK1 Complexes. d) A Smooth Diagram of the

Binding Energy Landscape.
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Table 10.3. Bell Model Parameters and Difference in the Activation Energy of

Rac1-PAK1 Complexes.

Ligand-Receptor
Loading rate range.

xβ (nm) koff (s
−1)

∆∆E(kBT)*

(x103 pN/s)

Wild type Rac1-PAK1 0.2-190 0.11 8.45

Q61L Rac1-PAK1
0.2-30 0.44 1.22 1.93

30-120 0.05 120.98 -2.66

Y72C Rac1-PAK1
0.1-10 0.47 0.49 2.84

10-140 0.15 28.54 -1.22

* ∆∆E is relative to wild type Rac1-PAK1 binding energy

10.3.1.11. Longer Duration in Bound State makes Mutation Oncogenic. Although the

dissociation of the wild-type Rac1-PAK1 complex requires higher forces to separate the

complex even at the low-strength state than both constitutively active and oncogenic

mutations (see Figure 10.8), DFS of both Q61L and Y72C mutations resulted in lower

dissociation constant for the rate-limiting transition. The dissociation of the Y72C

Rac1-PAK1 complex is even slower than the Q61L Rac1-PAK1 complex. Although

both barriers of Y72C are higher than both barriers of Q61L, the energy difference in

the outer activation energy barrier, which is the rate-limiting step for both mutants, is

higher than the inner barrier. This difference makes the probability of the intermedi-

ate state in the ensemble of conformations of Y72C higher than the probability of the

intermediate state in the ensemble of conformations of Q61L.

10.3.1.12. Dissociation Rate of Mutants Higher Force Sensitivity. Another parameter

that characterizes the dissociation reaction of the Rac1-PAK1 complex is xβ, which is

the separation between the transition state and the closer stable state (the width of

the barrier in the energy landscape). The calculated xβ values for both wild-type and

mutants of Rac1-PAK1 dissociation are listed in Table 10.3 and projected onto the free

energy landscape on Figure 10.9-D. The wild-type Rac1-PAK1 complex has smaller

barrier width for the rate limiting transition in the low-strength state compared to
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the barrier width of the rate-limiting transition of both mutants of the Rac1-PAK1

complex, meaning that the wild type has narrower activation energy barrier and there-

fore the effect of external pulling force on the force dependent dissociation constant

is smaller. Both Q61L and Y72C mutants have wider barrier width corresponding to

higher force sensitivity of the complex to an external force. Moreover, at lower loading

rates corresponding to outer energy barrier, the dissociation kinetics of both mutants

are different in terms of barrier height but nearly identical in terms of the barrier width.

However, the width of the inner barrier in the Q61L Rac1-PAK1 dissociation reaction

is smaller than the Y72C mutant, where the height on the inner barrier is lower in case

of the Q61L mutation. These differences in the dissociation kinetics mean a lower but

steeper inner barrier in the case of the Q61L mutation.
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11. CONCLUSION

Interaction between two biomolecules such as proteins, DNA, RNA, drug molecules

is the key phenomena in many biological processes. They recognize and bind each

other in the cell environment to conduct their function. In a standard point of view

this recognition and binding are determined via their structures. However, in natural

mechanism binding of two or more than two molecules requires some conformational

and dynamical changes.. It is thus essential to disclose the underlying dynamics and

dynamic determinants of these complex systems and their functions to understand how

these molecules act to function.

The motivation of this thesis has been develop a novel integrated computational

and experimental approach to understand the allosteric control of large conformational

transitions and molecular recognition in proteins. In the first part of this thesis, a

novel hybrid methodology is called CM-BexMetaD was developed for the sampling of

rare events in the conformational transitions. In the second part, mutation induced

allosteric control of binding mechanism of proteins were studied by a sequence of studies

involving computational and experimental means.

11.1. Enhancing Conformational Sampling via Collective Modes of Motion

Timescale of computer simulations significantly increased with the recent de-

velopment in both dedicated machines and distributed computing protocols (parallel

computing). However, most of the biologically relevant conformational transitions are

still not accessible by conventional all-atom simulations methods. The dynamic be-

havior of biomolecules is characterized by a large number of molecular interactions

that makes the underlying FEL extremely rough and complex. However, in order to

understand the conformational transitions of biomolecules, one has to characterize the

FEL of the dynamic nature of molecules. Enhanced sampling methods are promising

solutions developed to overcome the limitations of conventional all-atom simulation

protocols. Metadynamics is one of the enhanced sampling methods that are able to
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provide feasible solutions for overcoming high energy barriers separating the free energy

basins of locally stable conformational states.

Here, a hybrid methodology, which combines ANM with the metadynamics sim-

ulations, is developed to sample the large conformational transition of molecules and

to deduce the underlying FEL, called CM-BexMetaD. The methodology consists ap-

plication of ANM on an energetically minimized initial conformation, and extraction

of global modes. Then, the dynamics of protein is biased with the selected number of

slowest modes of motion (as collective variables) with metadynamics simulation. Three

different protocols were applied to select the slowest modes that will be used as CVs.

First, only slowest ten modes were selected but the directions of the eigenvectors were

corrected according to the difference vector of the initial and target states. Second,

only the slowest modes overlapping the distance vector of the initial and target states

were used to bias the simulation. Third, only slowest five modes were selected but the

simulation was biased in both directions of the eigenvectors corresponding the slowest

modes. The third protocol requires only the initial structure of the protein, which is in

advantage if the target state is not known. Here, bias-exchange well-tempered meta-

dynamics approach is employed to be able to use relatively higher number of CVs and

to provide better sampling of conformational space with the stochastic combination

of the collective modes. The success of the method could be amplified if one has any

experimental data such as FRET distances, topographic images obtained via AFM,

NMR chemical shift data, or SAXS data.

The developed hybrid methodology is applied to sample the open to closed confor-

mational transition of a well-studied protein AdK in apo state. Although fully-closed

state could not be sampled within the simulation time windows, some of the transient

conformation and semi-closed states were sampled even at a very short simulation time

scale. The reason for the failure in sampling the fully-closed conformation might be

the requirement of the substrate to overcome the high energy barrier enclosing the

fully-closed conformation or insufficient number of CVs to enhance the transition. The

proposed protocol also allowed estimating the FEL underlying the conformational tran-

sition of AdK and characterizing the energetically favorable sequence of transition of
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the enzyme, where closure of LID domain precedes closure of NMP domain.

Hinge sites in the CORE domain of the enzyme allosterically regulate the domain

closure mechanism in AdK. Y171 is one of the hinge positions in the CORE domain

of the enzyme where both apo and holo structures of the Y171W mutant enzyme was

determined by x-ray crystallography. The apo form of Y171W mutant AdK was also

simulated using developed methodology to understand the effect of this mutation on

the structural dynamics and conformational transition of the enzyme. The results of

the mutant simulation indicated that, a perturbation on a hinge position via mutation

allosterically affects the domain closure dynamics and energy of the enzyme.

11.2. Allosteric Control of Biomolecular Processes via Hinge Residues

Although there are many studies indicating the allosteric control of biomolecular

process, there are limited number studies combining both computational experimental

results to elucidate the mechanism of allosteric control. A strong association between

the hinge positions of global modes and allosteric mutations that lead to high binding

affinity changes was indicated via a large scale statistical analysis over the structural

dataset of kinetics and energetics of mutant protein interactions (SKEMPI). The mech-

anism of allosteric dynamics was demonstrated on ASC protein, human growth hor-

mone (hGH) and pyrin domain (PYD) through MD simulations. The results indicate

that mutation on a hinge residue discloses alternative binding modes of the proteins.

Allosteric control of binding have been also elucidated on the kinesin- aÃ-tubilin

complex. In this study, we have presented the AFM measurements of the unbinding

forces of the wild type, S175A, N332A, and D72N kinesin-tubulin complexes. The

observed force values in all types kinesin-tubulin AFM-DFS experiment are in accor-

dance with the myosin-actin unbinding and kinesin-microtubule walking experiments

available in the literature [268].

The dissociation rates at zero force and the barrier positions of the dissociation

process of the kinesin-tubulin complex were determined by fitting the Bell’s model
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to the force spectra. According the DFS results of the kinesin-tubulin dissociation

reaction, all types of kinesin-tubulin dissociation have two distinct states, so-called low

and high strength states at higher loading rates, whereas only low-strength states of the

molecules are observed at lower loading rates. S175A and N332A mutations decrease

the unbinding forces of the low-strength state complex, whereas have no effect on the

unbinding forces of the high-strength state. Despite, D72N kinesin-tubulin complex

has similar rupture forces with wild type in both low-strength and high-strength states.

Moreover, S175A and N332A decrease the activation energy barrier of the dissociation

reaction in both observed states, whereas D72N increases the barriers (the increase is

drastic in high-strength state).

Since all these residues are associated with the hinge sites of kinesin, these results

indicate the allosteric control of kinesin-tubulin interaction through hinge residues and

emphasize the importance of the global motion in binding behavior of kinesin and

tubulin molecules.

Allosteric effects of hinge point mutations were also illustrated with Rac1-PAK1

interaction. Three different mutants (T17N, Q61L, and Y72C) and the wild-type Rac1

are used to understand mutation induced functional alteration of Rac1’s internal dy-

namics, which is investigated through MD simulations, and the effects of those mu-

tations on Rac1-PAK1 binding behavior, which is investigated via AFM-DFS experi-

ments. Q61L is on Switch II region that leads to a constitutively active protein, whereas

T17N mutation at p-loop (GTP/GDP binding site) leads to either a nucleotide free or

inactive protein. Y72 is one of the hinge residues predicted via GNM analysis. More-

over, Y72C mutation is listed as oncogenic mutations in COSMIC database. Therefore,

studying Y72C mutation in addition to T17N and Q61L provided better understanding

of the effect of oncogenic mutations on the internal dynamics and binding behavior of

Rac1.

MSF and cross correlation analysis results agree that there is an allosterically reg-

ulated interplay between important functional regions on Rac1. All of these analyzed

mutations can substantially alter the intrinsic dynamics of Rac1 with global effects
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even in the absence of the downstream binding partner PAK1. Hence, MD simulations

reveal the alterations in the intrinsic local and global dynamics of Rac1. Moreover, this

allosteric affect of these mutations on the Rac1-PAK1 binding also observed via AFM-

DFS measurements as alteration of both binding strength and free energy landscape.

It can be concluded that, mutations at a hinge position and/or nucleotide binding site

allosterically propagated to the binding interface of Rac1and PAK1 which affects the

downstream activation of the pathways.
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12. FUTURE WORK

CM-BexMetaD methodology is designed to use with many user-defined parame-

ters. Therefore one proposition for the better sampling of conformational space could

be using higher number of replicas. Since the number of replicas is associated with the

number of collective variables, this will lead to using higher indexed collective modes,

which may provide better sampling of rare events because some of the energy barriers

could be associated with the higher frequency intramolecular rearrangements.

The height of the Gaussian hills is directly proportional to the added bias poten-

tial, therefore lower hills can be used for more accurate sampling at the price of longer

simulation time. Besides, lower hill addition frequency may also provide accurate sam-

pling again at the price of longer simulation time.

Using experimental data as additional CV to the global modes might be a promis-

ing improvement to the sampling of the conformational space of molecules. Using dis-

tance and/or orientation information obtained from AFM topographic images is one

the experimental data that could easily implemented to the algorithm.
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