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ABSTRACT 

 

 

NETWORK TOPOLOGY AND DYNAMIC DATA ANALYSIS IN 

SACCHAROMYCES CEREVISIAE 

 

Biological systems which can be represented as networks and graphs are highly 

dynamic and responsive to environmental and genetic perturbations in a time dependent 

manner. These networks are hierarchically organized and consist of tightly clustered groups 

of proteins that work together as part of a biological process or a complex to achieve a 

specific function in a cell. With the emergence of high-troughput dynamic datasets, dynamic 

data analysis became a challenge in systems biology with the other challenges such as 

representation of biological systems as networks and elucidation of graph properties of these 

networks biologically and integration of multi –omics datasets in order to extract 

biologically meaningful results. The aim of this thesis is to develop a novel metric of 

centrality to identify biologically important nodes and to develop novel approaches to 

investigate dynamic datasets. In the first part, a novel global metric of centrality, weighted 

sum of loads eigenvector centrality (WSL-EC), counting all eigenvectors was proposed to 

identify essential and biologically central nodes. WSL-EC was found to outperform in 

capturing biologically central nodes, such as pathogen-interacting, HIV-1, cancer, ageing, 

and disease-related genes and genes involved in immune system process and related to 

autoimmune diseases in the human interactome compared with other metrics of centrality. 

In the second part dynamic transcriptional response of S. cerevisiae cells to doxorubicin, 

which is used as chemotherapeutic reagent in the treatment of different types of cancer, was 

monitored by quantification of RNA transcripts in cells which were grown in a chemostat 

fermenter, through microarray technology. Resulting dynamic transcriptome data were 

investigated by using different approaches and integrating interactome and regulome. The 

clustering and analysis of the transcriptomic response of S. cerevisiae cells to doxorubicin 

indicated that the genes involved in DNA replication, mismatched repair, cell cycle and base 

excision repair pathways were affected and several transcriptional factors were identified. In 

the third part the data collected from literature related to the transcriptional response of yeast 

cells to DNA damage was similarly investigated and compared with the response to 

doxorubicin.  
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ÖZET 

 

 

AĞ İLİNGESİ VE SACCHAROMYCES CEREVISIAE’DE DEVİNGEN VERİ 

ANALİZİ 

 

Ağ şeklinde de temsil edilebilen biyolojik sistemler oldukça devingen olup çevresel 

ve genetik değişikliklere karşı zamana bağlı tepki vermektedirler. Bu ağlar hiyerarşik bir 

örgütlenme içerisindedirler ve hücre içinde belirli işlevleri yerine getiren kompleks veya 

süreçlerin parçaları olarak çalışan birbirleriyle sıkı bir şekilde ilintili protein kümelerinden 

oluşurlar. Hızlı-tarama yöntemleri sonucu elde edilen devingen veri setlerinin ortaya çıkması 

ile birlikte devingen veri analizi sistem biyolojisi için önemli ve zorlu bir konu haline 

gelmiştir. Sistem biyolojisinin önündeki diğer önemli konular ise biyolojik sistemlerin ağ 

şeklinde temsil edilmesi ve ağ özelliklerinin biyolojik açıklamalarını ortaya çıkarmak ve 

çoklu –omik veri setlerinin birleştirilmesiyle biyolojik anlamlılığa sahip sonuçlara ulaşmak 

şeklindedir. Bu tezin amacı özgün bir merkeziyet ölçüsü geliştirerek biyolojik öneme sahip 

noktaları belirlemek ve devingen veri setlerini incelemek için özgün yaklaşımlar 

geliştirmektir. İlk bölümde özgün bir merkeziyet ölçüsü olarak bütün öz-yöneyleri göz 

önüne alan, biyolojik açıdan merkezi özellikte olan ve hayati noktaları belirleyebilecek 

“ağırlıklı yükler toplamı öz-yöney merkezilik (AYTÖM)” geliştirilmiştir. AYTÖM’ün insan 

protein etkileşim ağında HIV-1, kanser, yaşlanma veya hastalıklarla ilgili genleri, bağışıklık 

sistemi sürecini etkileyen genleri ve özbağışıklık hastalıklarıyla ilgili genleri tespit etme 

konusunda diğer merkezilik ölçülerinden daha iyi bir performans gösterdiği görülmüştür. 

İkinci kısımda S. cerevisiae hücrelerinin farklı kanser tiplerinin tedavisinde kullanılan bir 

kemoterapi ilacı olan doxorubicin’e devingen gen anlatım tepkisi, sürekli fermentörde 

büyütülen maya hücrelerindeki RNA miktar tayininin mikrodizi teknoloji kullanılarak 

belirlenmesiyle ölçülmüştür. Elde edilen devingen gen anlatım verisi farklı yaklaşımlar 

kullanılarak, etkileşim ve düzenleyici -omik veri tümleştirmeleriyle incelenmiştir. S. 

cerevisiae hücrelerinin doxorubicin’e gen anlatımsal tepkisinin kümelenmesi ve incelemesi 

ile DNA replikasyonu, hatalı eşleşme onarımı, hücre döngüsü ve baz çıkartarak onarım 

yolaklarının etkilendiği ve bazı gen anlatım faktörleri belirlenmiştir. Üçüncü kısımda DNA 

hasarıyla ilgili literatürden toplanan veriler benzer şekilde analiz edilmiş ve doxorubicin’e 

verilen tepkiyle karşılaştırılmıştır. 
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MIPS   Mammalian protein-protein interaction database 

MMS   Methyl methanesulfonate 

N   Number of genes 

NP   Negative/positive 

PCA   Principal component analysis 

PCC   Pearson correlation coefficient 

ppi   Protein-protein interaction 

R-AUC   Ratio of area under curve 

RNA   Ribonucleic acid 

rRNA   Ribosomal ribonucleic acid 

SC   Subgraph centrality 

SOMs   Self-organising maps 

spl   Shortest path length 

STRING  Search tool for the retrieval of interacting genes/proteins 

TAP/MS  Tandem affinity purification coupled to mass spectrometry  

TOM   Topological overlap matrix 

TF   Transcription factor 

UV   Ultra violet 

WGCNA  Weighted gene co-expression network analysis 

WSL-EC  Weighted sum of loads eigenvector centrality 

WSL-EC-HN  Weighted sum of loads eigenvector centrality hub network 

Y2H   Yeast two-hybrid 

YPD   Yeast extract-peptone-dextrose 
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1.  INTRODUCTION 

 

 

High-throughput technologies rapidly changed scientific perspectives in many fields 

leading the scientific community to a new era of data intensive age. This milestone was 

considered as important as invention of printing press (Tansley et al., 2009). Evaluating, 

modeling, summarizing mass amount of data and extracting information are the challenges 

in this new era. This looking-for-a-needle-in-a-haystack mission requires gathering of 

diverse scientists from different fields like computing, mathematics, statistics and 

engineeering in colloboration.  

 

Implications of this progress in life sciences came with systems biology as a new 

branch of biology. Systems biology is mainly an attempt to combine diverse datasets and 

analyze them at once in order to understand how pieces work in an integrated system. 

Mathematical approaches from graph theory, machine learning and statistics have beeen 

implemented on biological datasets within this context.  

 

Medical sciences, pharmacology, agricultural sciences, industrial biotechnology and 

all other life sciences resort to systems biology to develop targeted drugs, personalized 

medicines, advanced therapies, cell factories and yield in agriculture (Mustacchi et al., 

2006).  

 

The genomic complexity increases with the complexity of the organisms however the 

difference was found to be less than expected. After publication of human genome sequence 

in 2001 the estimated number of genes in human was dropped drastically (Pertea et al., 

2010). It is now known that there are many conserved genes, proteins and pathways between 

human and even single-cell organisms. That is why yeast is a well studied model organism 

which has been used as a template in almost all life sciences for projections to other 

organisms. 

 

Genome scale simultaneous high-throughput measurements of transcripts, 

metabolites, proteins, interactions and sequences provide omics datasets. Metabolomics can 

be used to infer fluxomics and outputs of the cell. Transcriptomics can be helpful in order to 
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unveil dynamics of transcriptional responses. Interactomics can be used to infer signaling 

pathways, central players or modular hierarchy. Integration of combinations of these omics 

datasets provide wide range of context-specific approaches. 

 

In this thesis, genome scale datasets were analyzed in order to unveil transcriptional 

dynamics of yeast cells in response to genotoxic agents. Methodologies and metrics related 

to network topology and dynamic data analysis were tested, compared and novel 

improvements and novel metrics were suggested.  

 

In the first part of the thesis (chapter 2), a novel metric of centrality—weighted sum 

of loads eigenvector centrality (WSL-EC)—based on graph spectra was defined and its 

performance in identifying topologically and biologically important nodes was 

comparatively investigated with common metrics of centrality in three real biological 

networks.  

 

In the following part of the thesis (chapter 3), experiments were conducted where yeast 

cells were subjected to a chemical stress by introducing a chemotherapic drug; doxorubicin. 

Transcriptional re-arrangements that take place after the introduction were analyzed by well-

established methods and some modified and developed versions of these methods. 

Integrative approaches were also utilized in order to assess depth in the response regarding 

physical interactions and regulatory associations. A commonly used existing approach for 

the identification of differentially expressed gene sets from dynamic data sets was modified 

to include a larger significant data set. 

 

In the last part of the study (chapter 4), time series microarray datasets collected after 

a genotoxic stress in Saccaromyces cerevisiae were selected from the literature. 

Differentially expressed genes were identified by E-EDGE approach which was defined in 

the previous section. Differentially expressed genes within the selected datasets were 

analyzed by the pipeline constructed in the second chapter. Deciphered transcriptional 

response to DNA damage was comparatively investigated with the transcriptional response 

to doxorubicin. 
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2.  STUDIES ON PROTEIN-PROTEIN INTERACTION NETWORK 

TOPOLOGY TO IDENTIFY BIOLOGICALLY SIGNIFICANT 

PROTEINS 

 

 

Topological centrality in protein interaction networks and its biological implications 

have widely been investigated in the past. In the present study, a novel metric of centrality—

weighted sum of loads eigenvector centrality (WSL-EC)—based on graph spectra is defined 

and its performance in identifying topologically and biologically important nodes is 

investigated in comparison with common metrics of centrality in three real networks. 

 

2.1.  Background 

 

The understanding of life at the molecular level has impressively increased in the last 

half-century owing to technological advances such as microarrays, mass spectrometry and 

next generation sequencing. In addition to these technologies, which helped in the 

identification and quantification of biological molecules at the whole-genome level, high-

throughput technologies were also developed to measure physical protein–protein, protein–

DNA or RNA, and enzyme–metabolite interactions. All these interactions can be represented 

as networks or graphs, which can provide a good basis for modelling molecular interactions, 

integrating several sets of omics data and interpreting the overall physical and functional 

landscape of cellular function. These developments have provided the scientific basis of a 

new field known as network biology, which combines systems biology, graph theory, and 

statistical and computational analysis (Barabási and Oltvai, 2004). 

 

Protein–protein interaction (ppi) networks at the whole genome level (interactome) are 

considered an important source to be investigated to obtain further information about cellular 

function. These networks are hierarchically organized and consist of tightly clustered groups 

of proteins that work together as part of a biological process or a complex to achieve a 

specific function in a cell. Protein–protein interactions were identified using yeast two-

hybrid (Y2H) screening, tandem affinity purification coupled to mass spectrometry 

(TAP/MS) and affinity capture mass spectrometry (AC/MS) in several model organisms, 
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including humans, and are deposited in publicly available databases such as the Database of 

Interacting Proteins (DIP) (Xenarios et al., 2000), Human Protein Reference Database 

(HPRD) (Peri et al., 2003), Biological General Repository for Interaction Datasets (Bio-

GRID) (Stark et al., 2006) and STRING database (Jensen et al., 2009). 

 

Graph-theoretical analysis of these networks has revealed a strong correlation between 

the topological characteristics of cellular networks and cellular function. Early studies 

indicated the scale-free topology of protein–protein interaction networks, which consisted 

of a small number of hubs with many interactions. Today, molecular interaction networks 

are considered not to be scale-free but are generally heavy-tailed, consisting of few hubs and 

many low-degree nodes (Roy, 2012; De Lomana et al., 2010).  

 

It has been reported that some nodes are more important or central than the others in 

protein-protein interaction networks and the survival of an organism depends more on the 

few highly connected central nodes (Jeong et al., 2001). This centrality-lethality relationship 

was later confirmed by several other studies in yeast and in other organisms (Batada et al., 

2006; Yu et al., 2007; Hahn and Kern, 2005).  

 

Further studies showed that the essentiality of proteins was linked to their involvement 

in the essential functional modules rather than their centrality (Zotenko et al., 2008). The 

essentiality of the high degree nodes was explained by the fact that these proteins are more 

likely to interact with essential complexes and the removal of these nodes lead to the 

disruption of these complexes (Wang et al., 2009; Ryan et al., 2013).  

 

Furthermore, the topological analysis of protein–protein interaction networks has 

provided a deeper understanding of biological systems, leading to the functional annotation 

of unknown genes or identification of drug targets or disease-related proteins and pathways 

(Wang et al., 2011; Milenković et al. 2011). It has been reported that biologically important 

proteins in aging, cardiovascular disorders, metabolic disorders, cancer and infectious 

diseases have some topological centrality in the human interactome (Ideker and Sharan, 

2008; Jonsson and Bates, 2006; Yildirim et al., 2007; Ferrarini et al., 2005; Dyer et al., 

2008).  
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A number of different metrics of topological centrality have been described to define 

the centrality of nodes, such as degree centrality (DC), which is the number of edges; 

betweenness centrality (BC), which is the fraction of shortest paths that pass through a node; 

and eigenvector centrality (EC). Although DC is the most commonly used measure of 

centrality, it can only give information about the local topology of a node. BC was used to 

determine bottleneck nodes that are low-degree but detrimental for the organism when 

removed (Yu et al., 2007). EC, as a global metric of centrality, can explain latent topology 

by not only local connectivity but also the connectivity of the neighboring nodes (Wang et 

al., 2011; McDermott et al., 2012). Although EC is not a local metric of centrality like DC, 

it is limited to the first principal of graph spectra and therefore is not a descriptive metric for 

the peripheral modules in a network (Aguirre et al., 2013).  

 

Other measures of centrality such as subgraph centrality (Estrada and Rodriguez-

Valazquez, 2005) (SC), which accounts for all graph spectra instead of only the first 

principal, have also been proposed to represent the number of short walks that start and end 

at the node of interest. The drawback of SC is that it converges to EC when the largest 

eigenvalue breaks away from the second (Benzi and Klymko, 2015).  

 

Other measures of centrality, such as coreness centrality (Wuchty and Almaas, 2005), 

bipartivity (Estrada, 2006), graphlet degree centrality (Milenković et al., 2011), node 

hierarchy (Bhardwaj et al., 2010) and linear combination of different metrics (Roy, 2012), 

have also been proposed to improve the predictability of cellular functions or biologically 

central nodes in health or disease.  

 

Different measures of centrality have been extensively used and compared for the 

topological analysis of biological networks (Filkov et al., 2009; Roy and Filkov, 2009). It 

has been observed that different metrics of centrality can be important in different instances. 

Therefore, the development and application of different metrics are considered to be 

important in the topological analysis and modelling of networks in systems biology, in order 

to improve the predictability of cellular functions or biologically central nodes in health or 

disease. 
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2.2.  Materials and Methods 

 

2.2.1.  Centrality Metrics and Network Parameters 

 

For any graph, G there is a corresponding adjacency matrix, A (Equation 2.1). 

 

 𝐴 = (𝑎𝑖𝑗)  

(𝑎𝑖𝑗) = {
1   𝑒𝑖𝑗 ∈ 𝐸(𝐺)

0   𝑒𝑖𝑗 ∉ 𝐸(𝐺)
 

(2.1) 

 

Degree centrality (DCi) is the number of direct neighbors (Equation 2.2) (Dong and 

Horvath, 2007). 

 

 

𝐷𝐶𝑖 = ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

 (2.2) 

 

where N is the number of nodes in the network. 

 

Betweenness centrality (BCi) of a node i is the ratio of shortest paths between any node 

couples that passes through node i (Equation 2.3) (Freeman, 1977). 

 

 
𝐵𝐶𝑖 = ∑

𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘𝑗≠𝑘≠𝑖
 (2.3) 

 

where 𝜎𝑗𝑘(𝑖) is the number of shortest paths between node j and k that passes through 

the node i and  𝜎𝑗𝑘 is the total number of shortest paths between node j and k.  

 

Eigenvector centrality (ECi) of a node i is the ith component of the principal 

eigenvector of the adjacency matrix A. Non-zero vectors which satisfies Equation 2.4 are 

called eigenvectors where λ values are scalar and called eigenvalues. 

 

 𝐴𝑣 = 𝜆𝑣 (2.4) 
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Then ECi can be calculated as in Equation 2.5. 

 

 𝐸𝐶𝑖 = 𝑣1(𝑖) (2.5) 

 

where 𝑣1 is the first principal component, i.e. the eigenvector corresponding to the 

largest eigenvalue (Bonacich, 1987). 

 

Subgraph centrality (SCi) of a node i is the weighted sum of closed walks starting and 

ending at the node i, where short walks have higher weights with respect to longer walks 

(Estrada and Rodriguez-Valazquez, 2005) (Equation 2.6).  

 

 
𝑆𝐶𝑖 = ∑ [𝑣𝑗(𝑖)]

2
𝑒𝜆𝑗

𝑁

𝑗=1
 (2.6) 

 

Network density can be defined as the ratio of number of links in a graph to number 

of maximum possible links (Equation 2.7) (Dong and Horvath, 2007).  

 

 
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 2

∑ ∑ 𝑎𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1

𝑁(𝑁 − 1)
 (2.7) 

 

Network centralization is a measure of network compactness and it can be defined 

based on different centrality measures (Freeman 1978). In this work it was calculated by 

using Cytoscape which bases on degree centrality (Equation 2.8) (Dong and Horvath, 2007). 

 

 
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ≌

max(𝐷𝐶) − 𝑚𝑒𝑎𝑛(𝐷𝐶)

𝑁
 (2.8) 

 

Coefficient of variation of degree distribution is defined as network heterogeneity 

(Equation 2.9) (Dong and Horvath, 2007). 

 

 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
𝜎𝐷𝐶

𝑚𝑒𝑎𝑛(𝐷𝐶)
 (2.9) 
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Characteristic path length (cpl) is the average of the shortest path lengths (spl) between 

all possible node couples (Equation 2.10) (Assenov et al., 2008). 

 

 
𝑐𝑝𝑙 = 2

∑ ∑ 𝑠𝑝𝑙𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1

𝑁(𝑁 − 1)
 (2.10) 

 

Diameter is the longest shortest path between any pair of nodes. It gives the size of the 

largest connected part of the network (Equation 2.11) (Assenov et al., 2008). 

 

 𝐷 = max (𝑠𝑝𝑙𝑖𝑗) (2.11) 

 

Clustering coefficient of a node is the ratio of links among its neighbors to the 

maximum possible number of links among its neighbors. Clustering coefficient of a network 

is the average clustering coefficient of all nodes (Equation 2.12) (Dong and Horvath, 2007). 

 

 

𝐶𝐶 =
1

𝑁
∑

2𝑙𝑖

𝐷𝐶𝑖(𝐷𝐶𝑖 − 1)

𝑁

𝑖=1

 (2.12) 

 

where 𝑙𝑖 is the number of links among the neighbors of the node i. 

 

Assortativity coefficient is the slope of the line fitted to degree correlation distribution 

(Equation 2.13) (Newman, 2002). 

 

 
𝑟 =

1

𝜎𝑞
2

∑ 𝑖𝑗(𝑒𝑖𝑗 − 𝑞𝑖𝑞𝑗)
𝑖𝑗

 (2.13) 

 

where 𝑒𝑖𝑗 is the probability of having a link between a node with degree i to another 

node with degree j, 𝑞𝑖 is the probability to have a node with degree i and  𝜎𝑞
2 is the variance 

of the degree distribution. 

 

Efficiency is the sum of reciprocal of spl between all possible node couples in a 

network (Equation 2.14) (Crucittia et al., 2004). 
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𝜀 = ∑ ∑

1

𝑠𝑝𝑙𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1
 (2.14) 

 

In this work centralities and parameters were calculated by either network analyzer 

plug-in of Cytoscape (Assenov et al., 2008) or MATLAB R2012a software.  

 

2.2.2.  Databases and the Novel Metric 

 

Global physical protein-protein interaction network of yeast (Y1) consisting of 5,891 

nodes and 76,463 bidirectional edges without self-loops was downloaded from the BioGRID 

database (version 3.1.94) (Stark et al., 2006). 

 

The human interactome, H, was downloaded from the BioGRID database (version 

3.2.108) (Stark et al., 2006). H is composed of 15,192 nodes and 126,572 physical binary 

interactions without self-loops. 

 

The functional ppi network, Y2, which consists of 1,792 proteins related to glucose 

processes and 6,919 bidirectional edges, was constructed (Yuzuak, 2012) from the STRING 

database (Jensen et al., 2009) v8.3 with a confidence score of ≥0.999 using a selective 

permeability algorithm (Arga et al., 2007), starting with 108 proteins that are associated with 

glucose metabolic process.  

 

The novel spectral measure of centrality (WSL-EC) was defined as the weighted sum 

of loads of all principals of the graph spectra. Corresponding eigenvalues were used as 

weights and absolute values of all loads and weights were considered (Equation 2.15). 

 

 
𝑊𝑆𝐿𝐸𝐶𝑖 = ∑ |𝜆𝑗|. |𝑣𝑖𝑗|

𝑁

𝑗=1
 (2.15) 

 

where N is the number of nodes in the network, 𝜆𝑗 is the jth eigenvalue of the adjacency 

matrix and 𝑣𝑖𝑗 is the load of the ith node to the jth principal of the graph spectra.  
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A total of 2417 HIV-1-interacting proteins (Fu et al., 2009), 292 ageingrelated genes 

from the Ageing Gene Database (GenAge) (Tacutu et al., 2013), 407 cancer-related genes 

collected from the Catalogue of Somatic Mutations in Cancer (COSMIC) (Forbes et al., 

2008), 506 pathogen-interacting proteins (Dyer et al., 2008), 1485 disease-related genes 

(Goh et al., 2007), 1811 genes involved in immune system process (Ashburner et al., 2000) 

and 143 genes related to autoimmune diseases (Cariaso and Lennon, 2012) were used as 

biologically important proteins.  

 

Significantly associated Gene Ontology biological process terms (p-value < 0.001) 

were determined by Gorilla (Boyle et al., 2004).  

 

Pathways that are related to the hubs were identified by KEGG release 76.0 (Kanehisa 

and Goto, 2000). 

 

2.3.  Results 

 

The new measure of centrality, weighted sum of loads eigenvector centrality (WSL-

EC), counts all eigenvectors using a different, simpler weighting strategy in order to capture 

topologically important nodes not only from the densely populated but also from the less 

densely populated and peripheral parts of the human network. The performance of WSL-EC 

in the identification of topologically important nodes that contribute to the integrity of 

network and to capture essential or biologically central nodes were tested in three real 

networks (i) yeast global protein-protein interaction network (ii) a functional subnetwork of 

yeast protein-protein interaction network and (iii) human global protein-protein interaction  

network. The performance of this newly introduced measure of centrality was compared 

with that of degree centrality (DC), betweenness centrality (BC), eigenvector centrality (EC) 

and subgraph centrality (SC). 

 

2.3.1.  Description of the Novel Metric 

 

A novel metric of centrality called weighted sum of loads eigenvector centrality (WSL-

EC) was developed. WSL-EC is designed as the weighted sum of loads of each node to each 

eigenvector. The absolute values of the loads were used as signs to indicate only the 
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direction, not the significance, of the load. Instead of exponentials of eigenvalues, eλi, 

eigenvalues themselves, λi, were used as weights to prevent dominance of the first principal. 

Then its efficiency and power to identify central proteins were analyzed and compared with 

other commonly and extensively used metrics such as degree centrality (DC), betweenness 

centrality (BC), subgraph centrality (SC) and eigenvector centrality (EC). 

 

2.3.2.  Construction and Topological Analysis of the Networks 

 

Physical protein-protein interaction network of yeast (Y1) consisting of 5,891 nodes 

and 76,463 bidirectional edges, glucose metabolism related functional protein-protein 

interaction network of yeast (Y2) consisting of 1,792 nodes and 6,919 bidirectional 

interactions and   human global protein-protein interaction network (H) consisting of 15,192 

nodes and 126,572 binary interactions without self-loops were constructed as described in 

Materials and Methods. 

 

The power law distribution, hierarchical modularity and degree correlations on 

connected nodes are parameters that are commonly used to characterize the organization of 

a biological network (Hao et al., 2012). Topological characteristics of three biological 

protein-protein interaction networks (Y1, Y2 and H) were calculated to determine the 

organization of the network (Table 2.1). All networks were found to have a degree 

distribution that fit to power law (R2 ≥ 0.844) indicating scale-free nature of the networks 

(Figure 2.1). 

 

Analysis and comparison of topological characteristics of the networks constructed in 

this study indicated that Y1 is the most compact and Y2 is the least compact networks. Y2 

is probably the most modular network when compared to Y1 and H networks. The largest 

diameter were identified in Y2 which is consisting of lower number of nodes. This may 

indicate that it is less robust than Y1 and H networks. This analysis of network parameters, 

degree distributions and spl distributions suggest that H and Y1 networks have similar 

network architecture which is slightly distinct than that of the Y2 network (Table 2.1). 
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Table 2.1. Topological characteristics of the H network. 

Network Y1 Y2 H 

Number of Nodes 5,891 1,792 15192 

Number of Edges 76,463 6,919 126,572 

Density (ρ) 0.004 0.004 0.001 

Diameter (D) 6 21 8 

Average Clustering Coefficient (CC) 0.251 0.494 0.256 

Characteristic Path Length (cpl) 2.645 7.388 2.670 

Network Centralization 0.433 0.029 0.630 

Network Heterogeneity 2.421 1.074 5.488 

 

The topological characteristics of the H network indicate that although the nodes are 

loosely connected (ρ = 0.001) and the diameter is higher than that of random networks of the 

same size and density (p-value < 0.01), the average shortest path length (cpl) is lower and 

both network centralization and network heterogeneity are higher than these characteristics 

in a randomly wired network with the same number of nodes and edges (all p-values are less 

than 0.01). Together with findings that revealed the shortest path length (spl) distribution, 

more than 99% of the spl’s are 2, 3 or 4 steps long (Figure 2.1), these numbers indicate the 

presence of super-hubs, which are nodes with off-the-scale high connectivity. In addition, 

the non-randomly high clustering coefficient (p-value < 0.01) that was observed is a sign of 

the modular organization of the network (Table 2.1). 

 

The variation of the clustering coefficient is considered to be one of the most 

commonly used parameters for identifying the hierarchical modular structure of biological 

networks and it has been shown that the existence of super-hubs and degree correlation also 

affects the variation of the clustering coefficient with degree (Pastor-Satorras et al., 2001).  
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Figure 2.1. Degree distribution (on left) and shortest path length distribution (on right) of 

Y1, Y2 and H networks. 
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In order to reveal the hierarchical architectural structure of the networks, metrics of 

assortativity and variation of the clustering coefficient with degree were investigated (Figure 

2.2).  

 

 

Figure 2.2. Correlation profiles of protein-protein interactions and clustering coefficient 

variations with degree in (A) Y1, (B) Y2, and (C) H. Corresponding average clustering 

coefficient variations were fitted to power law line on a logarithmic scale (on the right). 
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The probability of having a link between two nodes with degrees of k(i) and k(j) was 

compared with the same probability within 100 randomly rewired networks by a z-score. Z-

scores that are greater than zero indicate a positive correlation, whereas negative z-scores 

indicate a negative correlation between connectivities with respect to random networks. Z-

scores were used to create heat maps; blue indicates negative and red indicates positive z-

scores (Figure 2.2). 

 

Variation of average clustering coefficient with respect to degree and heat-map of z-

scores in Y1 network suggests that nodes with a degree of less than 20 are more likely to be 

linked with highly connected nodes which reflect scale-free nature of the network. There is 

a strong repulsion between super-hubs whereas moderately linked nodes with degree 84 to 

188 have an apparent affinity to each other pointing out the densely connected core of the 

Y1 network (Figure 2.2a). 

 

Hubs in Y2 network whose degrees are higher than 28 have strong affinity to each 

other whereas nodes with small degree are less likely to be linked to hubs compared to 

random networks. Together with apparent correlation in high connectivity it shows that Y2 

network has a modular structure with a high inter-modular connectivity (Figure 2.2b). 

 

The assortativity coefficient (Newman, 2002) of the H network was found to be 

significantly negative (r = -0.0717 with a p-value < 0.01), which implies that the network is 

dissortative. The variation of the average clustering coefficient with respect to degree and a 

heat map of z-scores in the H network suggest that nodes with low degree are more likely to 

be linked to highly connected nodes and nodes with many connections are less likely to be 

connected to each other, which also indicates the scale-free nature of the network. There is 

a strong repulsion between super-hubs, whereas moderately linked nodes with a degree of 

100 to 200 have an apparent affinity for each other, which points out the densely connected 

modules (Figure 2.2c). The variation of the clustering coefficient in the H network obeys a 

power law distribution, which is in accordance with the dissortative nature of the network 

(Figure 2.2c) and existence of super-hubs.  

 

The correlation between degree and average nearest neighbor degree is another metric 

that can determine the assortativity of a network (Pastor-Satorras et al., 2001). When average 
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nearest neighbor degree is plotted as a function of degree the distribution almost perfectly 

fitted a power law with a negative exponent, which confirms the negative assortativity of the 

human interactome (Figure 2.3). 

 

Clustering coefficient variation in Y1 and H networks obeys power-law distribution in 

parallel with the disassortative nature of the networks (Figure 2.2) and existence of super-

hubs (Figure 2.1). In Y2 network average clustering coefficient is less responsive to 

increasing connectivity but it does not imply that the network is not modular because there 

are no super-hubs (Figure 2.1) and the network is assortative (Figure 2.2).  

 

 

Figure 2.3. Average nearest neighbor degree as a function of degree. Distribution fits to 

power law with R2=0.934 (slope of the line is -0.597). 

 

2.3.3.  Network Integrity 

 

Robustness is an important property of protein–protein interaction networks, which is 

assumed to emerge by natural selection and refers to the ability of networks to maintain their 

function under perturbation (Waddington, 1942). Efficiency and diameter are the two 

important topological characteristics used to quantify the robustness of networks (Albert et 

al., 2000).  
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All the nodes in Y1, Y2 and H networks were scored using the newly described 

measure of topological centrality, WSL-EC, and nodes were then removed one by one, either 

by starting with the highest scoring nodes or randomly. Diameter and efficiency were 

recalculated after the removal of each node in each of these three biological networks. The 

results were compared with those when the removal of the nodes was scored by DC, BC, EC 

and SC (Figure 2.4).  

 

 

Figure 2.4. Change in efficiency and diameter by random and targeted node removals from 

(A) Y1, (B) Y2, and (C) H networks. 

 

The drawback of SC revealed itself at the beginning, when the ranking based on SC 

was found to be identical to the ranking that was found based on EC. The difference between 

the largest and second largest eigenvalue is more than 53, which means that the weight of 

the first eigenvector is more than e53 times the weight of the second eigenvector. Hence, the 
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results for SC will not be presented hereafter as they are identical to those for EC. Removal 

of the highest-scoring nodes one after the other was found to have more impact in decreasing 

efficiency when compared with random removal of nodes in all networks. The diameters of 

the networks were observed to become larger followed by a drastic decrease, which indicated 

collapse of the network, for targeted removal of the nodes, whereas the diameters of the 

networks remained unchanged by random removal until these collapsed (Figure 2.4). 

 

The percentage of nodes that has to be removed in a network to decrease the efficiency 

or diameter to half of its original value was calculated and is presented in Table 2.2. A 50% 

decrease in efficiency occurred after the removal of 11.7 and 12.2 percent of highest nodes 

by WSL-EC in Y1 and H networks respectively. This result indicates that the targeted 

removal of the WSL-EC nodes causes a less severe collapse in this network than the targeted 

attacks using DC, BC and EC (Table 2.2).  

 

Table 2.2. Percent of nodes removed to attain defined collapse. 

Collapse 

criteria 
Network 

Random 

removal 

WSL-EC  

targeted 

removal 

DC 

targeted 

removal 

BC 

targeted 

removal 

EC 

targeted 

removal 

50%  

drop in 

Efficiency  

Y1 26.2 11.7 5.3 4.0 7.3 

Y2 19.3 5.3 9.2 4.3 22.5 

H 17.1 12.2 0.1 0.1 0.1 

50%  

drop in 

Diameter  

Y1 75.7 42.0 46.9 23.1 70.8 

Y2 96.2 29.6 25.6 33.9 65.2 

H 97.9 43.6 45.4 46.2 83.6 

 

The efficiency drops to its half in Y2 network when 5.3%, 9.2%, 4.3% or 22.5% of 

nodes were removed by WSL-EC, DC, BC or EC targeted attack, respectively. These results 

indicate that the removal of the nodes with high WSL-EC score affect network integrity 

more than the removal of nodes having high DC or EC scores in this network. BC targeted 

attack was found to cause a fastest disintegration of the network than other targeted attacks 

in Y2 network (Table 2.2).  

 



19 
 

 
 

Diameter-based criteria, on the other hand, indicate that a targeted attack using WSL-

EC causes the fastest disintegration of the H network, which is the opposite of efficiency-

based criteria - and the second fastest attack in leading to the same extent of disintegration 

of Y1 and Y2 networks (Table 2.2).  

 

The drastic difference between these two criteria might possibly be due to the presence 

of super-hubs in Y1 and H networks and efficiency might be strongly affected by super-

hubs. The most dominant super-hub is UBC in the H network, which is connected to more 

than 63% of all nodes in the network and has by far the highest scores with respect to DC, 

BC, and EC. However, the WSL-EC ranking of UBC is only 1861, which corresponds to the 

top 12.2%, which is exactly the percentage of the nodes that need to be removed in order to 

collapse the H network in a targeted attack using WSL-EC (Table 2.2). Other than UBC, all 

the top five DC genes and four out of the top five BC and EC nodes are not even in the top 

10% of the ranking based on WSL-EC. WSL-EC seems to outperform the other metrics of 

centrality in identifying nodes that affect network diameter without being affected by the 

presence of super-hubs in the H network. The presence of super-hubs also explains the 

dominance of the first principal and consequent convergence of SC to EC. 

 

2.3.4.  Hubs 

 

Four sets that consisted of the top 10% of highest-scoring nodes using DC, BC, EC, 

and WSL-EC were identified in each network as hub sets. The networks were visualized by 

Cytoscape in order to investigate and compare the topological distribution of the hubs. The 

localization of hub sets that were identified using different metrics in the Y1 and H networks 

were not clearly distinguishable owing to the crowded nature of the networks (Figure 2.5 

and Figure 2.6).  

 

The visualization of the four hub sets in the Y2 network indicated that WSL-EC 

captures the peripheral modules together with the core of the network whereas EC highlights 

only the core of the network. Hubs that were identified by DC were also found to be localized 

at densely connected parts of the network. Hubs that were identified by BC and WSL-EC 

were distributed all over the network (Figure 2.7).  
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Figure 2.5. Red nodes are hubs defined by (A) DC, (B) EC, (C) BC and (D) WSL-EC in 

Y1 network. 

 

Because the visualization of large networks may not give satisfactory results, visually 

detected differences between the dispersions of hubs in the Y2 network were quantified by 

the topological analysis of hub networks that were constructed using known interactions 

between the hubs of the Y1 and H networks. Four hub networks, which were constructed 

using hubs identified by different metrics of centrality, were named as degree central hub 

network (DC-HN), betweenness central hub network (BC-HN), eigenvector central hub 

network (EC-HN) and WSL eigenvector central hub network (WSL-EC-HN) for all 

networks. The network densities of these networks were calculated and compared to quantify 

the dispersion of the hubs (Table 2.3). 
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Figure 2.6. Red nodes are hubs defined by (A) BC, (B) EC, (C) DC, (D) WSL-EC in the H 

network. 

 

The observation that WSL-EC-HN in all three networks has a lower network density 

than EC-HN and DC-HN indicates that the WSL-EC hubs are more dispersed than the EC 

and DC hubs, which confirms the visual observation of the hubs in the Y2 network. BC-HN 

has a lower network density than WSL-EC-HN in Y2 and H networks, which again confirms 

the visual observation that the BC hubs in Y2 are more dispersed. WSL-EC-HN was found 

to have the lowest network density in Y1 network indicating almost a similar dispersion of 

the BC and WSL-EC hubs in all over the Y1 network (Table 2.3). 
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Figure 2.7. Distribution of  the hubs defined by (A) DC, (B) EC, (C) BC, (D) WSL-EC in 

Y2 network. 

 

Table 2.3. Network properties of Hub-Networks. 

Network Hub Network Type 
Number of 

Nodes 
Number of 

Edges 
Network 
Density 

Y1 

DC-HN 589 16786 0.097 

EC-HN 589 18309 0.104 

BC-HN 589 9512 0.055 

WSL-EC-HN 589 7274 0.042 

Y2 

DC-HN 179 1657 0.104 

EC-HN 179 1408 0.088 

BC-HN 179 329 0.021 

WSL-EC-HN 179 681 0.043 

H 

DC-HN 1519 43655 0.038 

EC-HN 1519 43376 0.038 

BC-HN 1519 26106 0.023 

WSL-EC-HN 1519 39625 0.034 
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2.3.5.  Biological Investigation of Hubs 

 

The biological role of a node is reported to be strongly related to its topological 

location within an interaction network, i.e., the functions of interacting neighbors or 

processes they are involved (Zhu et al., 2007). GO biological process terms that are 

significantly associated with the four hub sets were also investigated, which consist of the 

top 10% highest-scoring nodes with the highest centralities with respect to degree centrality 

(DC), betweenness centrality (BC), eigenvector centrality (EC) and WSL eigenvector 

centrality (WSL-EC). 

 

A total of 127 hubs were found to be common in all hub sets in Y1 network. These 

hubs are significantly enriched (p-values ≤ 9.76E-4) in GO biological process terms like 

chromatin organization and its regulation, rRNA processing and regulation of gene 

expression.  

 

In Y2 network 13 hubs were identified commonly by all centrality measures and were 

found to be enriched (p-values ≤ 1.26E-4) in histone acetylation and proteasome assembly.  

 

In H network almost half of the any hub set is common to all other sets. These 747 

human genes have significant ontological associations to a wide variety of GO biological 

process terms related to (p-value ≤ 9.88E-4) communication, response, metabolism, 

catabolism, localization, development, transcription, cell cycle etc. and regulation of all 

these processes.  

 

In Y1, 256 hubs were uniquely identified by WSL-EC and found to be significantly 

enriched (p-values ≤ 1.90E-4) with ribosome biogenesis, ribonucleoprotein complex 

assembly, regulation of translation, nuclear transport, glucose catabolic process, glycolysis, 

cytoplasmic translation and rRNA processing. 102 hubs specifically described by EC were 

enriched with biological process terms (p-values ≤ 3.71E-4) such as protein-DNA complex 

subunit organization, chromosome organization, DNA repair, RNA metabolic process and 

regulation of gene expression. 31 hubs which were selectively identified by DC alone, were 

found to be significantly enriched (p-value ≤ 8.41E-4) with mRNA metabolic process, RNA 

splicing and RNA polymerase II transcriptional preinitiation complex assembly. When BC 
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was used as a centrality measure 172 hubs were specifically described and these proteins 

were found to be significantly associated (p-value ≤ 4.00E-4) with cellular response to 

stimulus, protein phosphorylation, regulation of signal transduction, regulation of DNA 

metabolic process and regulation of RNA metabolic process (Figure 2.8). 

 

In Y2, 52 hubs were uniquely identified by WSL-EC and found to be significantly 

enriched (p-value ≤ 9.66E-4) with stress granule assembly, membrane budding, transport, 

regulation of signaling, regulation of cell cycle, regulation of protein localization, growth, 

signal transduction and cell cycle checkpoint. 77 hubs specifically described by EC were 

enriched with biological process terms (p-value ≤ 6.54E-4) such as protein-DNA complex 

assembly, regulation of gene expression, RNA biosynthetic process and histone 

modification. 38 hubs which were selectively identified by DC alone, were found to be 

significantly enriched (p-value ≤ 4.14E-7) with translation, rRNA processing and ribosome 

biogenesis. When BC was used as a centrality measure 86 hubs were specifically described 

and these proteins were found to be significantly associated (p-value ≤ 2.13E-4) with 

regulation of biological process, intracellular signal transduction, growth, single-organism 

process and transport (Figure 2.8). 

 

In the H network, 53 hubs were uniquely identified by WSL-EC and found to be 

significantly enriched (p-value ≤ 8.03E-4) with the establishment of organelle localization 

and regulation of biosynthetic process. Some 285 hubs were specifically described by EC 

and were enriched with biological process terms (p-value ≤ 1.94E-6) such as gene 

expression, cellular component organization or biogenesis, organelle organization and 

mRNA transport. Twenty-six hubs were selectively identified by DC alone and were found 

to be significantly enriched (p-value ≤ 5.49E-5) with regulation of ligase activity, regulation 

of protein ubiquitination, protein catabolic process and cell cycle. When BC was used as a 

measure of centrality, 570 hubs were specifically described and these proteins were found 

to be significantly associated (p-value ≤ 6.07E-9) with response to stimulus, biological 

regulation, multicellular organismal process, signaling, immune system process, 

developmental process and establishment of localization (Figure 2.8). 

 

The top 10 highest-scoring hub sets that were identified by different metrics of 

centrality for the H network were compared in order to find individual genes that were 
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favored by specific metrics of centrality. RIOK2, which is a kinase related to the ribosome 

biogenesis process, is the top central node detected by WSL-EC. The following four nodes 

VCAM1, ITGA4, HSPA8 and HSPA5 are related to stress response and/or the immune 

system.  

 

 

Figure 2.8. Venn Diagram of Degree Central (DC), Eigenvector Central (EC) and WSL 

Eigenvector Central (WSL-EC) Hub Sets in (A) Y1, (B) Y2, and (C) H Networks. 

 

The top 10 hub sets that were identified by DC, BC and EC were found to be highly 

overlapping, whereas the top 10 hub set for WSL-EC is completely exclusive. The super-

hubs UBC and NRF1 are present in the top two for all DC, BC and EC rankings and APP, 

ELAVL1, SUMO2 and CUL3 are also present in all three top 10 hub sets. All these nodes are 

related to ubiquitination processes and/or interactions with RNA.  
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The top 10 hub sets and pathways that are related to the hubs are tabulated in the 

Appendix (Tables A2.4-A2.7). The focus of the novel metric seems to be more on immune 

system process compared with the other metrics of centrality. 

 

2.3.6.  Centrality and Lethality in Yeast 

 

As soon as genome wide studies emerged the correlation between lethality of a protein 

and its centrality in the interaction network was detected (Jeong et al., 2001). This correlation 

has led to the idea that network centrality can be used to estimate essential genes. Therefore 

in this study, identified top 10% the highest central hub sets in Y1 and Y2 ppi networks were 

also tested for the enrichment in essential genes (Giaever et al., 2002). Essential gene list in 

yeast was obtained from Database of Essential Genes (DEG) (Zhang and Lin, 2009). In Y1 

network 17.8% of all nodes are essential and ratio of essential nodes in different hub sets 

varies from 36% (identified by WSL-EC) to 44% (identified by EC) in Y1 (Figure 2.9a). 

 

 

Figure 2.9. Enrichment of essential genes within different hub sets of (A) Y1 and (B) Y2 

networks. 

A total of 662 genes out of all 1792 Y2 genes (37%) are listed as essential in Database 

of Essential Genes (DEG) (Zhang and Lin, 2009) and ratio of essential genes determined by 

different centrality measures were calculated. Hub set identified by DC includes 63% of 
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essential genes. The hub sets identified by EC, WSL-EC and BC could capture, 53%, 52% 

and 44% of essential genes present in Y2 respectively (Figure 2.9b). 

 

The percentages of essential proteins within hub sets are subject to alterations with 

changes in threshold of hub definitions. The correlation between centrality and essentiality 

was also investigated by a jackknifing method (Holman et al., 2009) based on jackknife 

resampling technique (Tukey, 1958) without limitations of thresholds. The results imply that 

essential nodes tend to be more central by means of all four centrality metrics while central 

nodes detected by DC are more likely to be essential compared to other centrality metrics in 

Y1 and Y2 networks (Figure 2.10). 

 

 

Figure 2.10. Change in number of essential genes detected by centrality ranks and random 

ranks in (A) Y1 and (B) Y2 networks by jackknifing. 

 

The relative areas under the curve (R-AUC) were calculated for the curves in Figure 

2.10. R-AUC was defined as the ratio of the area under the curve (AUC) to the area under 
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an ideal curve ranking all essential nodes on top (I-AUC) (Table 2.4). As higher R-AUC 

implies higher correlation with essentiality, DC outperforms the rest in bringing forward the 

essential nodes in both Y1 and Y2 networks (Table 2.4). 

 

Table 2.4. R-AUC values for DC, BC, WSL-EC, EC and random curves for Y1 and Y2 

networks. 

 DC BC WSL-EC EC Random 

Y1 0.7035 0.6748 0.6127 0.6736 0.5017 ± 0.0063 

Y2 0.7586 0.6934 0.7207 0.7331 0.6156 ± 0.0078 

 

All centrality based ranks correlates well with the ideal rank compared to random ranks 

implying that essential nodes have higher topological centralities than non-essential nodes. 

Correlation between WSL-EC based centrality and lethality is higher in Y2 network 

compared to Y1 network possibly due to the differences in the network architectures. 

 

The low correlation between centrality and essentiality by WSL-EC may be explained 

by the locations of high scoring nodes which are dispersed in all over the network. DC or 

EC scored nodes were visualized at the core where possibly subunits of the protein 

complexes were closely localized (Figure 2.7). 

 

  Recent studies report that not the centrality but the neighborhood of a node which is 

densely connected, biologically interrelated and enriched in essential proteins is the reason 

for essentiality of a node (Zotenko et al., 2008). It was also reported that larger protein 

complexes are more likely to be essential (Wang et al., 2009; Song and Singh, 2013). 

 

We also investigated the, enrichments of protein complexes in essential genes. 

Previously reported 430 protein complexes in yeast (Baryshnikova et al., 2010) were used 

as a template. In Y1 network 1845 proteins were found to be subunits of 429 protein 

complexes, out of which 629 proteins were essential. When the top high scoring 1845 

proteins were investigated, 638, 505, 605 and 576 essential proteins were identified out of 

1845 highest scoring nodes with DC, WSL-EC, EC and BC, respectively.  
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In Y2 network 916 proteins were detected as subunits of 244 protein complexes. 411 

protein complex subunits were detected as essential. When the top high scoring 916 proteins 

were investigated with respect to DC, WSL-EC, EC and BC the number of essential nodes 

are 457, 416, 441 and 401, respectively. These findings provided further evidence that the 

essentiality of a gene is not due to its centrality but due to the biological role of the densely 

connected neighborhood of the gene 

 

2.3.7.  Biological and Topological Centrality in the Human Interactome 

 

It has been reported that the genes involved in cancer, aging and infectious disorders 

are also topologically central (Milenković et al., 2011). Disease-related genes, genes 

involved in immune system process and genes related to autoimmune diseases also have 

biological importance. The topologically central hub sets that were identified by the four 

measures of centrality in the H network were investigated in terms of the enrichments in 

HIV-1 interacting proteins, ageing-related genes, cancer-related genes, pathogen-interacting 

(PI) proteins, disease-related genes, genes involved in immune system process and genes 

related to autoimmune diseases in order to shed light on biological differences in the metrics 

of centrality. 

 

The correlation between biological and topological centralities was investigated by a 

jackknife method (Holman et al., 2009) based on a jackknife resampling technique (Tukey, 

1958) without limitations of thresholds (Figure 2.11). The relative areas under the curve (R-

AUC) were calculated for the curves in Figure 2.11. R-AUC was defined as the ratio of the 

area under the curve (AUC) to the area under an ideal curve that ranks all biologically 

significant nodes on top (I-AUC) (Table 2.5). As a higher R-AUC implies a higher 

correlation with biological significance, analyses of R-AUC indicated that WSL-EC-based 

rankings outperform DC, BC, EC or SC-based rankings in identifying all biologically central 

node sets. The statistical significance of the differences was assessed by permutation tests 

(p-value < 0.001 for all curves).  
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Figure 2.11. Change in number of biologically significant genes detected by centrality 

ranks and random ranks in the H network.  
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GO biological process term enrichments were used to distinguish subsets of the 

biologically central nodes with higher rankings with respect to each metric of centrality. All 

subsets of biologically central node sets that were defined by seven criteria (pathogen-

interacting, HIV-1-interacting, cancer, ageing, and disease-related nodes and genes involved 

in immune system process or related to autoimmune diseases) and had the highest rankings 

in the WSL-EC order were found to be enriched in stress response-related terms, immune 

system-related terms, transcriptional terms and/or kinase activity-related terms.  

 

Table 2.5. R-AUC values for DC, BC, WSL-EC, EC and random curves for the H network. 

 DC BC WSL-EC EC Random 

Pathogen Interacting 

Genes 
77.91 77.54 78.73 71.57 

50.63 

± 1.22 

HIV-1 Related Genes 79.30 76.92 79.45 76.20 
54.26 

± 0.51 

Cancer Related Genes 77.54 75.42 77.96 71.29 
50.92 

± 1.41 

Ageing Related Genes 83.05 81.18 83.42 77.37 
49.43 

± 1.18 

Disease Related Genes 62.49 63.49 63.58 54.79 
52.32 

± 0.56 

Genes Associated with 

Immune System 

Process 

72.67 73.33 74.16 64.65 
53.53 

± 0.71 

Genes Related to 

Autoimmune Diseases 
64.69 64.84 65.75 56.11 

49.96 

± 2.84 

 

The smallest subsets for all criteria were found to consist of nodes that were favored 

by DC. The subsets are either not significantly associated with any GO term or enriched in 

transcriptional, apoptotic and cell cycle processes.  

 

The widest range of GO terms was determined for the subsets of nodes with high 

betweenness for all four criteria of biological centrality. External processes, such as 

exocytosis, endocytosis, cell motility, cell adhesion, cell migration, and cell–cell 

communication, or processes related to differentiation, such as regulation of neurogenesis 

and embryonic morphogenesis or immune system-related GO terms, are some of these. The 

nodes with the highest order in the EC ranking have the narrowest range of GO enrichments 

as they are found to be associated with only translational and carbon central metabolism-

related terms. 
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2.4.  Discussion 

 

In the present study, a novel global metric of centrality, weighted sum of loads 

eigenvector centrality (WSL-EC), counting all eigenvectors was proposed. The performance 

of WSL-EC in the identification of topologically more important nodes that contribute to the 

integrity of a network and in capturing essential or biologically central nodes was tested in 

three biological networks and compared with the performances of four other commonly used 

metrics of centrality, DC, BC, EC and SC.  

 

Topological analysis of these networks indicated a similar network architecture for 

yeast global protein-protein interaction network (Y1) and human global protein-protein 

interaction network (H) which is slightly different than that of the functional subnetwork of 

yeast protein-protein network (Y2). 

 

Topological analysis of the networks also indicated that the global human protein–

protein interaction network (H) has a dissortative and modular architecture. WSL-EC 

outperformed DC, BC, EC and SC in identifying nodes that affect network robustness in the 

human interactome. The topological distributions of hubs in the networks were found to be 

different for hub sets that were identified by different metrics of centrality. Hubs that were 

identified by BC and WSL-EC were distributed all over the network, whereas hubs that were 

identified by EC and DC were localized at densely connected parts of the networks.  

 

It was noted that different measures of centrality could specifically capture sets of hubs 

involved in different biological processes.  

 

WSL-EC and other centrality metrics outperformed in capturing essential genes in Y2 

network compared to Y1 network possibly due to the differences in the network architectures 

and the reliability of the data used in the construction of Y2. 

 

WSL-EC was found to outperform in capturing biologically central nodes, such as 

pathogen-interacting, HIV-1, cancer, ageing, and disease-related genes and genes, involved 

in immune system process and related to autoimmune diseases in the human interactome 

compared with DC, BC, EC or SC. The choice of metric of centrality is crucial, as different 
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metrics focus on different topologies and these topological differences correspond to 

different biological roles. 

 

Hubs with off-the-scale connectivity (super-hubs) create a strong bias in topological 

centrality for DC, BC, EC and SC, whereas WSL-EC does not seem to be affected by the 

presence of super-hubs. 

 

WSL-EC is an easy-to-implement metric, which does not require a special code or 

complicated computations. It is promising in the respect that it can be utilized by diverse 

researchers. 

 

2.5. Future Prospects 

 

The novel metric of centrality, WSL-EC, displays substantial biological relevance and 

further studies will be required to test the performance of this novel metric of centrality in 

complex biological networks to reveal the correlation between topology and biological 

importance.  

 

The performance of the metric in directed or weighted biological networks can also be 

studied. Furthermore, integration of other data sets with protein–protein interaction networks 

should be investigated to improve its performance across different network architectures. 
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3.  INVESTIGATION OF DYNAMIC RESPONSE OF YEAST CELLS 

TO A CHEMOTHERAPEUTIC AGENT: DOXORUBICIN 

 

 

Dynamic changes in yeast cells were investigated as a response to an impulse of widely 

used chemotherapeutic agent doxorubicin. In this chapter transcriptional re-arrangements 

that take place after introduction of chemical stress were analyzed by well-established 

methods and some modified and developed versions of these methods. Temporal 

organization and prominent patterns of the global transcriptional response were identified 

by decomposition and clustering techniques. Integrative approaches were also utilized in 

order to assess depth in the response regarding physical interactions and regulatory 

associations. Differentially expressed gene sets were investigated and novel extensions were 

provided to the methods which extracts differentially expressed genes. Resulting subsets 

were reanalyzed comparatively. 

 

3.1.  Background 

 

Chemotherapeutic agents in cancer treatment lead to severe side effects and chemo-

toxicity in long term and cancer cells may develop resistance to these drugs in time (Cheung-

Ong et al., 2013). It is crucial to fully understand cellular mechanisms affected by these 

agents. Doxorubicin is a powerful chemotherapic drug that can be used wide range of cancer 

types (Di Marco et al., 1969). It is proposed that doxorubicin interacts with DNA through 

intercalation like other anthracycline antibiotics leading to DNA damage (Fornari et al., 

1994; Anders et al., 2013). It is believed that during the transcription doxorubicin inhibits 

topoisomerase II and prevents formation of double helix (Pommier and Marchand 2012). 

Despite the considerable efforts, effect mechanisms of doxorubicin have not been 

completely enlightened.  

 

Saccharomyces cerevisiae is well defined and easy to manipulate model organism in 

order to investigate cellular response to doxorubicin in a dynamic context. The effect of 

doxorubicin dosage on vitality of S.cerevisiae and sensitivity of haploid deletion mutants of 
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S.cerevisiae to the agent have already been investigated (Xia et al., 2007) but there is no 

work in the literature investigating dynamics of doxorubicin response of S.cerevisiae. 

 

Within the era of rapidly developing experimental technologies now it is possible to 

quantify cellular responses to any stress source in time and in omics level and there is great 

efforts to analyze dynamic data efficiently but this challenge is still largely unfulfilled. 

 

The most common approaches are hierarchical clustering and principal component 

analysis not only for static transcriptomic datasets but also for dynamic datasets. Hierarchical 

clustering is in the form of linkage tree based on pairwise similarities and has been 

commonly used for microarray data analysis all along (Eisen et al., 1998). PCA might be the 

most common methodology elucidating dominating expression trends; it can summarize 

microarray data by dimension reduction (Raychaudhuri et al., 2000).  

 

Self-organizing maps (SOMs) are ideal for exploratory data analysis; they can extract 

predefined number of clusters which reflect prominent expression profiles (Tamayo et al., 

1999). 

 

Weighted gene co-expression network analysis (WGCNA) is a popular unsupervised 

approach in life sciences community (Zhang and Horvath 2005). WGCNA proposes a 

framework for soft thresholding in order to weight pairwise expression correlations to create 

a weighted co-expression network then defines node dissimilarities based on co-expression 

weights and modulates transcriptome based on the topological overlap of the dissimilarities. 

Meta-analysis of the resulting modules by eigengene networks is also possible (Langfelder 

and Horvath 2007). 

 

It has been shown that integrating multi-omics data can unveil additional information 

about biological systems (de Keersmaecker et al., 2006). Interactome or regulome can be 

integrated with transcriptome to elucidate the results. NP analysis assumes existence of 

global subnetworks specific to perturbations and uses positive and negative correlations of 

dynamic transcription profiles in order to reduce protein-protein interaction network into an 

active subnetwork (Xia et al., 2006). Dynamic regulation of cells in response to any 

perturbation can be investigated by integrating resulting transcriptome with transcriptional 
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factor (TF) -DNA interactions by using dynamic regulatory event miner (DREM) which is 

tailored for time series expression experiments (Schulz et al., 2012). 

 

Another common approach is to reduce datasets to significant subsets by identifying 

differentially expressed genes. Typically fold change can be used for this purpose for static 

datasets whereas identification of the differentially expressed genes out of time series 

transcriptome data has been problematic. Significance analysis can be carried out by a 

methodology specifically designed for dynamic datasets which is called as EDGE (Storey et 

al., 2005). The idea behind the method is to identify genes whose expression profiles 

significantly fluctuate which ensure eliminating low abundant transcripts. 

 

In this study chemostat experiments were implemented in a fermenter and 

transcriptome data were collected after a doxorubicin pulse. The dataset were analyzed by 

well-established clustering methods and integrative approaches. Differentially expressed 

subset was also identified. Existing methodologies were extended or modified wherever it is 

needed.  

 

3.2.  Materials and Methods 

 

3.2.1.  Strain, Growth Conditions, Pulse Injection and Sampling  

 

Homozygous ho∆/ho∆ strain of Saccharomyces cerevisiae diploid BY4743 

(MATa/MATΔ his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/+ met15Δ0/+ ura3Δ0/ura3Δ0) was 

used in this study. The precultures were incubated overnight in F1 media (Baganz et al., 

1997) at 30 oC and 180 rpm in an orbital shaker. 

 

Chemostat experiments were carried out in 2 L B-Braun Biostat B fermenters with 1.5 

L working volume under aerobic conditions in F1 media at a dilution rate of 0.1h-1. The 

fermentation temperature and pH were controlled at 30 0C and pH 5.5, respectively. 

Fermenters were stirred at 800 rpm which, together with constant air flow at a rate of 0.1 

vvm, provided dissolved oxygen at ≥ 80% dO2 saturation at all times during cultivation. 
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During the chemostat experiment, the oxygen and carbon dioxide concentrations in the 

off-gas, dO2, pH, temperature, and the added amounts of base + antifoam were monitored 

online. The carbon dioxide and oxygen volume fractions in dried off-gas were measured 

online with a combined carbon dioxide and oxygen gas sensor (BlueSens, Herten Germany). 

 

Samples for transcriptome were taken after spending 5 residence times at steady state. 

Samples were collected at 0 min (before the doxorubicin pulse) and then at 1, 5, 10, 15, 20, 

25, 30, 60, 90, 120 and 180 minutes after the pulse. Doxorubicin pulse was prepared to attain 

a final concentration of 20µM by solving 17.4 mg doxorubicin hydrochloride (Sigma, Cat. 

No: D1515) in water. 

 

3.2.2.  Sampling, RNA Isolation and Preprocessing the Data for Transcriptome 

Analysis  

 

For biomass determination, samples at steady-state were collected and washed twice 

with distilled water followed by centrifugation (8000 rpm, 6 min). The cell dry weight was 

obtained gravimetrically.  

 

For transcriptome analysis, a culture sample of 4 ml at each time point was withdrawn 

from the bioreactor and immediately frozen in liquid nitrogen and stored at 80 0C until RNA 

isolation. Total RNA was isolated in a robotic workstation, QIAcube (Qiagen, USA) in 

accordance with enzymatic lysis protocol which is described by Qiagen RNeasy mini kit 

(Cat no: 74106). The quantity and quality (A260/A280) of the RNA were assessed by using a 

micro-volume UV-vis spectrophotometer (NanoDrop ND-1000, Thermo Fisher Scientific 

Inc., USA) and a microfluidics-based platform Bioanalyser 2100 (Agilent Technologies). 

cDNA was synthesized, and double-stranded cDNA was synthesized from ca.100ng of total 

RNA as described in the Affymetrix GeneChip® Expression Analysis Technical Manual, 

using appropriate kits. cDNA was quantified using Nanodrop spectrophotometer. 5µg of 

aRNA was loaded onto Affymetrix Yeast2 arrays. The chips were then loaded into a fluidics 

station for washing and staining using Affymetrix Comman Console® Software (AGCC) 

3.0.1 Fluidics Control Module with Mini_euk2v3. Lastly, the chips were loaded onto the 

Agilent GeneArray scanner 3000.  
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3.2.3.  Transcriptome Data Analysis 

 

The raw data were processed with dChip software for outliers at the array level (Li and 

Wong, 2001). RMA Express software was used to normalize and log2 transform the data 

(Bolstad et al., 2003).  

 

3.2.3.1.  Identification of differentially expressed genes. Significance analysis has been 

carried out by EDGE which is specifically designed for dynamic datasets. An R software 

package with the same name “edge” (Storey et al., 2015) was used for the application of the 

methodology. Optimal discovery procedure (odp) option for statistics was used (Storey et 

al., 2007). 

 

3.2.3.2.  Principal Component Analysis. PCA has been carried out by GeneCluster 3.0 

software package (de Hoon et al., 2004). 

 

3.2.3.3.  Self-Organizing Maps. GeneCluster 2.1.7, a software package (Reich et al., 2004), 

was used to identify SOMs of the time series response of yeast cells to a doxorubicin pulse. 

 

There are algorithms to estimate optimum number of clusters to be set for SOMs. Here 

in this study in order to manage clusters manually the highest plausible number was 

determined. Typically the number of clusters can be set from 2 to √𝑁 (where N is the number 

of nodes) (Vesanto and Alhoniemi 2000). Thus, SOMs of 6 rows and 6 columns (36 clusters 

> √1150) were set. 

 

3.2.3.4.  Hierarchical Clustering. A software package, Hierarchical clustering explorer (HCE 

3.0), was used for the analysis (Seo and Shneiderman 2004). 

 

3.2.3.5.  Weighted Gene Co-expression Network Analysis (WGCNA). The effect of 

doxorubicin pulse on yeast chemostat culture was analyzed with WGCNA in R environment 

(Langfelder and Horvath 2008). 
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3.2.3.6.  NP Analysis. The initial global interaction network to a global active subnetwork 

was reduced by NP analysis as described by Xia et al, in 2006 (Xia et al, 2006) where NP 

stands for negative and positive correlations.  

 

NP analysis relies on expression correlations and anticorrelations between pairs of 

genes which are measured by Pearson correlation coefficient (PCC). PCC tresholds for 

correlation and anti-correlation were decided in each application seperately.  

 

The interactions between nodes that are neither correlated nor not anti-correlated  as 

well as the nodes with no interaction were eliminated from the PPI network. The remaining 

network is called as “NP network” and assumed to be a global active subnetwork of the 

reference global PPI network. 

 

The NP network was divided into two largest possible modules displaying opposite 

expression profiles were extracted using Hierarchical Clustering Explorer (HCE) software. 

The largest anti-correlated clusters, so that the clusters that have less than 1% intra-cluster 

anti-correlated interactions, were manually dissected.  

 

3.2.3.7.  Dynamic Regulatory Event Miner (DREM). The model DREM was used to 

integrate dynamic transcriptome data with static TF-DNA interaction data. DREM is built 

on Input-Output Hidden Markov Model (IOHMM) (Bengio and Frasconi, 1995). The details 

of the likelihood function and model learning were explained by Ernst and colleagues (Ernst 

et al., 2007). 

 

Once the probabilistic tree representing the map of regulation is constructed, DREM 

identifies master regulators by scoring transcriptional factors for each branch by using 

hypergeometric distribution. The score of  𝑇𝐹𝑥 for the path A is calculated as described in 

Equation 4.1. 

 

 

𝑠𝑐𝑜𝑟𝑒(𝑇𝐹𝑥, 𝐴) = ∑
(

𝐶𝑆

𝑖 ) (
𝑛𝑆 − 𝐶𝑆

𝑛𝐴 − 𝑖 )

(
𝑛𝑆

𝑛𝐴
)

min (𝐶𝑆,𝑛𝐴)

𝑖=𝐶𝐴

 (4.1) 
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where,  𝑛𝑆 is total number of genes before the split, 

 𝑛𝐴 is number of genes in the branch A, 

 𝐶𝑆 is total number of genes regulated by 𝑇𝐹𝑥 before the split, 

 𝐶𝐴 is number of genes in the branch A which are regulated by 𝑇𝐹𝑥 

 

The regulatory map is constructed by using TF-DNA associations that is why this score 

is not an actual p-value (Ernst et al., 2007). 

 

TF cut-off score of 0.001 was used to identify master regulators. 

 

3.2.3.8.  Functional Annotations. Gene ontology biological process term and pathway 

enrichment analysis were carried out by The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) v6.7 (Huang et al., 2009). Enrichments whose p-values were 

less than 0.01 were considered as significant. 

 

Selected GO terms lists were prepared in order to cover all identified terms based on 

a term-tree generated by using QuickGO browser (Binns et al., 2009). 

 

3.3.  Results 

 

Doxorubicin was injected to a yeast chemostat culture and both short-term and long-

term response were monitored by sampling at non-uniform time intervals, ranging from 

minutes to hours in transcriptomic landscape. Temporal organization of the global 

transcriptional response of yeast cells to a doxorubicin pulse was analyzed by using different 

approaches. Time points were clustered and then global transcriptome was analyzed by 

hierarchical clustering and principal component analysis as a first step. Self-organizing maps 

(SOMs) and weighted gene co-expression network analysis (WGCNA) were used after 

filtering whole transcriptome into significant sub-datasets. Integrative approaches were also 

used to analyze the transcriptome data. Transcriptome data was integrated with physical 

interaction network by NP analysis approach and with protein-DNA interaction network 

through dynamic regulatory event miner (DREM) approach to identify key transcriptional 

factors which regulate the dynamic response. 
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Secondly differentially expressed genes were identified by using EDGE method which 

is specifically designed for time series experiments. In order to ensure high number of true 

positives a pipeline was proposed to extend differentially expressed genes. 

 

Finally NP analysis, DREM and WGCNA methods were applied to the subset of 

differentially expressed genes identified by the extended EDGE and compared the results 

with the previous ones. Some modifications on the methods were also proposed and their 

results were discussed. 

 

3.3.1.  Temporal organization of  Global Transcriptional Response 

 

Doxorubicin was injected to a yeast chemostat culture and both short-term and long-

term responses were monitored by sampling at non-uniform time intervals, ranging from 

minutes to hours in transcriptomic landscape. Hierarchical clustering of time points of the 

transcriptome in response to a doxorubicin pulse revealed that the response was clustered 

into 3 groups (Figure 3.1). The global response of yeast cells to the impulse like addition of 

the chemical indicated that the steady state data and the transcriptomic response within first 

1 minute were clustered together and the data taken at 5th minute was connected to this first 

cluster.  

 

 

Figure 3.1. Hierarchical clustering of time points 



42 
 

 
 

This observation indicated that the cells have started to reorganize their response one 

minute after the injection of the pulse.  The data taken at 10th up to 30th minutes form another 

cluster and finally last 4 time points were grouped in a third cluster. These clusterings 

indicated that the response of yeast cells to doxorubicin may be classified into  short-term, 

mid-term and long-term responses. 

 

3.3.2.  Analysis of Global Transcriptional Response 

 

Global transcriptional response of the yeast cells was analyzed using hierarchical 

clustering and dynamic expression profiles were clustered using PCA, SOMs and WGCNA. 

The significantly associated biological process terms with each cluster were identified and 

the affected pathways were determined. 

 

3.3.2.1.  Hierarchical Clustering of Global Response. Hierarchical clustering is one of the 

most common method to analyze microarray data. Hierarchical clustering approach builds a 

tree of genes starting from the pair with the closest correlation. The global dynamic 

transcriptional response of Saccharomyces cerevisiae cells to a doxorubicin pulse consisting 

of the expression levels 5655 genes at each sampling point was hierarchically clustered using 

HCE 3.0. Minimum similarity was set to 0.8 as cutoff value by analyzing the variation of 

minimum similarity with resulting number of clusters and with the size of the largest cluster 

(Figure 3.2).   

 

 

Figure 3.2. Variation of number of clusters and size of the largest cluster with minimum 

similarity. 
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Hierarchical clustering of the expression levels of the genes was presented in Figure 

3.3. The transcriptomic data was clustered to 156 clusters. The largest cluster consists of 

1361 genes (A) and the second largest one consists of 1204 genes (B) (Figure 3.3). 

 

 

Figure 3.3. Hierarchical clustering dendrogram of dynamic response to doxorubicin in 

yeast cells. (A) is the largest cluster and (B) is the second largest cluster. 

 

The variation of the average expression profiles of the genes in clusters A and B with 

time showed that the genes in cluster A and B have an opposite tendency in the direction of 

change with time. The genes in cluster A have a down-regulating tendency whereas the genes 

in cluster B have a tendency to be up-regulated with time (Figure 3.4). 

 

 

Figure 3.4. The variation of the average normalized expression profiles of the genes in A 

and B clusters (A and B respectively). Dashed lines represents standard deviation. 

 

3.3.2.2.  Principal component analysis (PCA). Principal component analysis is a powerful 

tool in order to obtain the most prominent trend throughout the dataset. Here PCA was 

applied to the transcriptome data to get the most common expression profiles by eigenvector 

decomposition. 
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Comparative analysis of the whole dataset and of a subset of genes (with high standard 

deviation > 0.25) by PCA indicated that the selection of a sub-set of transcription profiles 

did not improve the outcomes of the analysis. Therefore, in order to avoid losing the data, 

analysis were carried on with the whole dataset. 

 

The top 4 principal components resulting from PCA represents more than 80% of the 

total variation in the dataset (Figure 3.5).  

 

The first principal (PC1) of the transcriptome data (PC1) covers 61% of the total 

variance. 1466 genes, which were positively correlated with PC1 (PCC > 0.7), display an 

up-regulation after 30 minutes. 1455 genes negatively correlated with the first principal 

(PCC < 0.7) which implies a down-regulation after 30 minutes. 

 

 

Figure 3.5. Splines of the expression profiles of the principal components identified by 

PCA. Percentages of the total variance explained by the principal components are written 

within the parenthesis. 

 

The second principal (PC2) covers 12% of total variance and represents 499 genes out 

of which 264 genes are positively correlated with PC2 and were down-regulated within the 

first 30 minutes after the pulse. A partial recovery of the transcription levels of these genes 

was observed in the following 90 minutes. Genes whose expression positively tie in the 
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component engaged to stress responsive processes and the oppositely coordinated 235 genes 

are linked to growth related biological processes and pathways.  

 

The third principal (PC3) represents 166 genes out of which 75 genes are positively 

correlated with PC and were up-regulated within the first 15 minutes, downregulated within 

the following 75 minutes and up-regulated again for the rest of the profile.  Remaining 91 

genes are negatively correlated with PC3. 

 

The forth principal (PC4) represents 39 genes of which 22 genes positively linked with 

the 4th principal whose expression profiles follow two successive valleys of down-regulation 

and subsequent up-regulation. The remaining 17 genes negatively correlated to PC4.  

 

Principal component analysis is an efficient tool to extract largest group of genes with 

similar expression profiles from the transcriptome represented with PC1. However following 

principals are inclined to be hypothetical and loosely linked to real gene expression profiles. 

For instance the highest Pearson correlation coefficient between PC4 and any gene is only 

0.834 implying that if 0.85 was chosen as similarity threshold then there would be no genes 

in the set linked to the principal. 

 

3.3.2.3.  Self-organizing maps (SOMs). In order to analyze the data in smaller groups SOMs 

were used. The number of desired clusters can be supervised in advance and the method is a 

well-established mathematical cluster analysis which has been used in microarray data 

analysis widely (Tamayo et al., 1999).  

 

A total of 1150 nodes with standard deviation more than 0.25 were used to generate 

SOMs. Time-course global transcriptome data collected after doxorubicin pulse was 

clustered into 36 clusters containing 6 to 72 genes (Figure 3.6). c0 cluster was found to be 

significantly associated with cellular amino acid biosynthetic process (p-value=5.0E-15), 

translation (p-value=1.8E-4) and oxidation reduction (p-value= 8.5E-4) processes and 

pathways related to amino acid metabolism. 5 clusters (c12, c13, c18, c19 and c24) were 

enriched in growth related terms like ribosome biogenesis (p-values ≤ 1.16E-03). Cluster 

c34 was identified to be associated with proliferation terms like sporulation (p-value=3.70E-
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03). Remaining 29 clusters have no significant enrichment with any GO term with a 

significance threshold of 0.001.  

 

In order to attain biological associations these clusters were merged. An analysis of 

the heat-map of the SOMs indicated that all clusters may be divided into two groups as up-

regulating or down regulating genes with time.  

 

In order to avoid over approximation a more stringent criteria was used for merging 

clusters. Cluster sets were merged whenever all possible pairwise correlations between 

cluster’s centroids are strong enough (r>0.90) to form a new meta-cluster and the number 

of clusters that will remain unmerged was minimized.  

 

A total of 34 clusters were merged into 6 meta-clusters leaving two outlier clusters; 

c28 and c29. Both of the outlier clusters have centroids indicating low expression profiles 

and both are not significantly associated with any biological role.  

 

The largest meta-cluster, MC1 composed of 526 genes, was formed by merging of 15 

clusters (c0-c5, c7-c11, c14, c16, c17 and c23). MC2 to MC6 consist of 8 clusters (c21, c27, 

c30-c35), 4 clusters (c18, c19, c24 and c25), 3 clusters (c6, c12 and c13), 2 clusters (c20 and 

c26) and 2 clusters (c15 and c22), respectively (Figure 3.6).  

 

Meta-cluster, MC1 accounts for processes related to amino acid metabolism, transport 

and stress response. MC2 represents reproduction processes and meta-clusters from MC3, 

MC4 and MC5 significantly related to growth of the cell. Genes of the MC6 (c15 and c22) 

are not enriched in any specific biological process or pathway.  
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Figure 3.6. SOMs of transcriptome data representing dynamic response to doxorubicin 

stress. Numbers beginning with ‘c’ are cluster IDs and the second numbers are the number 

of nodes in the clusters. Meta-clusters MC1 to MC6 were outlined by colored borders.  

 

3.3.2.4.  Weighted Gene Co-expression Network Analysis (WGCNA). Weighted gene co-

expression analysis (WGCNA) was found to one of the best approaches to construct global 

co-expression networks to analyze transcriptional profiles and for functional annotations 

(Zhang and Horvath 2005). Global transcriptome data was also analyzed by using WGCNA. 

Power function was selected as an adjacency function and parameterization of the power 

function was identified according to fitness of the resulting co-expression network to scale 
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free criteria. 6th power of the normalized Pearson correlation was assigned as weights of the 

pairwise interactions (Figure 3.7). 

 

 

Figure 3.7. Fitness to scale-free nature (A) and mean connectivity (B) as a function of 

parameterization of the power function. 

 

Resulting adjacency matrix transformed into a topological overlap matrix (TOM) and 

then dissimilarities based on TOM were hierarchically clustered by using WGCNA R 

Package. Minimum module size was set to be 30 and module pairs with higher correlation 

than 0.75 between their representative expression profiles were merged. 14 modules were 

identified representing the response of the cells to doxorubicin stress. 37 genes were 

identified as outliers; do not belong to any module (Figure 3.8). Each cluster was labeled by 

a color and module sizes were tabulated (Table 3.1). 

 

Table 3.1. Module ID’s and sizes determined by WGCNA. 

Module ID Module Size Module ID Module Size Module ID Module Size 

turquoise 2472 red 176 green-yellow 75 

blue 1008 black 174 tan 70 

brown 861 pink 111 salmon 64 

yellow 196 magenta 99 cyan 40 

green 194 purple 78 grey (outliers) 37 
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Figure 3.8. Hierarchical clustering dendrogram of 14 clusters by WGCNA. 

 

Hierarchical network and heat map of the modules based on correlations between their 

eigengene profiles provide clues about the organization of the modules (Figure 3.9). The 

brown and the pink modules with short-term induction after doxorubicin addition to the 

media are clustered together. The green module displays opposite expression behavior 

compared to the brown module. Modules co-clustered with the green module like the tan 

module has no common ontological feature.   

 

The genes within three modules; the yellow, the red and the magenta were down-

regulated first after the pulse and they recover their original expression levels after 30 to 90 

minutes. The red and the yellow modules belong to the same hierarchical branch. The 

magenta module was clustered with the cyan module. Cyan module consists of the genes 

which are not significantly associated with any biological process or pathway.  
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Figure 3.9. Meta-analysis of the modules identified by WGCNA. Hierarchical organization 

of the modules (A), splines of eigengene profiles (B) and heat-map of the modules (C).  

 

The turquoise module, the largest module which includes almost half of the 

transcriptome, shows an up-regulation with a delay of 60 minutes. The second largest 

module is the blue module whose expression profile is just the opposite of the largest one. 

The purple module is clustered with the green module. The salmon module placed next to 

the blue module in the hierarchical tree consists mostly of genes displaying little variation 

in the level of expression and genes with very low level of expression and this module was 

not found to be associated with any biological process term. The closest neighbors of the 
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green-yellow module in the dendrogram the purple, the green and the tan modules. The genes 

of the tan module alone have no significant enrichment with any biological GO process term.  

 

3.3.3.  Integrative approaches 

 

It has been shown that integrating multi-omics data can unveil additional information 

about biological systems (de Keersmaecker et. al., 2006). In order to analyze dynamic 

transcriptomic data of doxorubicin stress in yeast chemostat culture different integrative 

approaches were used to integrate transcriptomic response with interactome. 

 

3.3.3.1.  NP analysis. Integrating transcriptome with interactome is considered to be useful 

to extract both co-expressed and physically interacting group of genes/proteins. NP analysis 

maps transcriptome data onto protein-protein interaction network in order to identify large 

coordinated group of genes that mediate the dynamic response to environmental stresses 

(Xia et. al., 2006). 

 

Protein-protein interaction network of yeast consisting of 5487 proteins and 76838 

directionless edges without loops was constructed and integrated with the dynamic 

transcriptomic data collected after the doxorubicin pulse into chemostat culture using NP 

analysis.  

 

In NP analysis all edges should be labeled as positively correlated, negatively 

correlated or not correlated according to Pearson correlation coefficients (PCC) between 

expression profiles of the nodes connected by the edge. PCC values of 0.4 and -0.4 were 

described as cutoffs by the authors (Xia et. al., 2006). PCC values of 0.7 and -0.7 were used 

as cutoffs in another study conducted in our laboratory (Dikicioglu et. al., 2011).  The effect 

of the selected values of PCC on the frequency of possible gene pairs in the transcriptome 

data and the effect of selected PCC threshold on variation of number of nodes and edges in 

NP network were analyzed in order to identify an acceptable threshold which can reduce the 

size of network to an amenable size (Figure 3.10). 
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Figure 3.10. Frequency distribution of PCCs and network properties of NP network with 

respect to PCC threshold. 

 

PCC cutoff was selected intuitively in the light of Figure 3.10 as 0.8 and -0.8 for 

correlation and anti-correlation respectively in NP analysis of the present data. Resulting NP 

network consists of 3333 nodes and 12472 edges. 8490 edges connect positively correlated 

and 3982 edges connect negatively correlated node couples in this network.  

 

After hierarchical clustering of the expression profiles of the nodes present in NP 

network by HCE 3.0, modules with less than 1% intra-cluster anti-correlation edges were 

manually dissected. The network smoothly split into two modules without missing out any 

nodes and without violating the restriction defined for intra-cluster anti-correlation edges. 

Slightly larger module was named as R module with 1723 nodes and the other was named 

as B module (Table 3.2). 

 

Table 3.2. Distribution of the nodes and anti-correlated edges in NP network. 

 R module B module 

Number of nodes 1723 1610 

Percent of anti-correlated 

interactions within cluster 
0.21% 0.31% 

Percent of correlated 

interactions between cluster 
98.98% 
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These modules were further split into two sub-parts; Interface modules (RI and BI) 

consisting of nodes which interact with the opposite module and core modules (RC and BC) 

consisting of nodes which have only intra-modular interactions. 105 nodes in NP network 

was disconnected from bulk of the network. Number of nodes in the modules were tabulated 

in Table 3.3. 

 

Table 3.3. Number of nodes in 4 modules identified in NP.  

Module ID Number of nodes 

RC 561 

RI 1162 

BI 1126 

BC 484 

Total (NP) 3333 

 

Average expression profiles of the four modules identified by NP analysis were also 

plotted (Figure 3.11). The expression profiles are consistent with the expression profiles 

identified by hierarchical clustering of whole transcriptome data (Figure 3.3). 

 

Hierarchical clustering of an active sub-network (NP network) instead of whole 

transcriptome provided additional information. Upregulation of genes involved in ribosome 

biogenesis and rRNA processing with time could be detected by NP analysis which 

integrates the transcriptome data with interactome. Analysis of global transcriptome data 

alone by hierarchical clustering could not reveal this term. Similarly the stress response 

related process terms identified in BC module, implying downregulation of the associated 

genes could be identified. The genes could not be detected by hierarchical clustering of the 

whole transcriptome. 

 

3.3.4.  Transcriptional Regulation 

 

Biological systems regulate intracellular entities in a complex and dynamic way in 

response to changes in the media. Dynamic reorganization of the transcriptome in response 

to a doxorubicin pulse was investigated using DREM in order to identify key TFs involved 

in the response in time dependent manner. 
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Figure 3.11. Average expression profiles of the modules identified by NP analysis. 

 

Dynamic Regulatory Event Miner (DREM) was used in order to infer an annotated 

global temporal map of the cellular dynamic regulation. This method integrates 

transcriptome data with DNA-protein interaction network. In this study a network of 7840 

regulatory links between 118 transcriptional factors (TFs) and 5971 genes (MacIsaac et al., 

2006) was used. 

 

Expression profiles of 2299 genes out of whole transcriptome with known TF 

interactions were identified to have at least 1.5 fold change between their transcriptional 

maxima and minima. Analysis of this subset by DREM revealed that doxorubicin pulse 

triggers a complex regulatory mechanism where 11 transcription factors (TFs) drives 

transcriptome into 9 branches (Figure 3.12). 

 

Immediate split in the transcriptional response was found to be mediated significantly 

by regulators of cell cycle progression (Mbp1p) and amino acid biosynthesis (Gcn4p) 

(Figure 4.12). After a  second split occurring between 1st and 5th minutes, the most prominent 
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bifurcation took place between 5th  and 10th  minutes which is mediated by TFs regulating 

DNA replication and repair (Abf1p) and oxidative stress response (Skn7p) (Figure 3.12 - 

3.13). 

 

 

Figure 3.12. Dynamic regulatory map of yeast cells in response to doxorubicin pulse. X-

axis was arranged as uniform sample points instead of real time scale in order to prevent 

visual ambiguity. Light-green dots indicate the location of bifurcations. 

 

Green and violet branches visualized in Figure 3.13 were associated with 226 and 242 

gene expression profiles, respectively. Genes in the upregulated branch are strongly enriched 

in growth related GO terms like ribosome biogenesis (p-value=1.4E-105). Downregulated 

profiles were found to be related to stress response. These two extreme profiles do not show 

any split afterwards. 

 

After 15 minutes the grey branch undergoes a minor split under influence of 

transcriptional factors related to cell cycle (Mbp1p, Swi4p, Swi6p, Ash1p, Ace2p and 

Fkh1p) (Figure 3.12). Resulting in upper-child and lower-child branches which bifurcates 

again after 30 and 60 minutes, respectively (Figure 3.14-15). 
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Figure 3.13. Bifurcation of green and violet branches 5 minutes after doxorubicin addition 

 

322 genes of Lilac branch which upregulated after 30 minutes by heat shock 

transcriptional factor (Hsf1p) and regulator of transcription from RNA polymerase II 

(Yap6p) was found to be significantly associated with protein folding (p-value=4.7E-6) and 

regulation of protein catabolic process (p-value=8.0E-4). Brown downward branch of 429 

genes regulated by activator of amino acid biosynthesis (Gcn4p) was identified to be 

enriched in cellular amino acid biosynthetic process (p-value=1.9E-5) (Figure 3.14). 

 

Dark green branch splits at 60th minute under the control of Mbp1p which is involved 

in the regulation of cell cycle progression,  133 genes of black sub-branch was identified to 

be associated with DNA replication and repair (p-value=5.6E-11; p-value=3.7E-10). The 

red branch of 341 profiles was enriched in GO biological process terms like translational 

elongation (p-value=3.8E-5) and cellular response to stress (p-value=5.2E-4) diverges 

downwards after 60 minutes (Figure 3.15). 
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Figure 3.14. Bifurcation of the khaki branch 30 minutes after doxorubicin addition. 

 

 

Figure 3.15. Bifurcation of the dark green branch 60 minutes after doxorubicin addition. 
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The last branch separated from the rest after 1 minute splits into two branches at 30 

minutes; petrol blue branch with 329 genes progress upwards and the other branch undertake 

another bifurcation at 60 minutes inducing olive green branch displaying the highest fold 

change at the end of the experiment and reducing blue branch (Figure 3.16).  

 

 

Figure 3.16. Expression profiles of Petrol Blue, Olive Green and Blue branches.  
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Petrol Blue, Olive Green and Blue branches were found to be significantly associated 

with GO biological process terms ncRNA processing (p-value=3.4E-12), spore wall 

assembly (p-value=2.2E-11) and purine nucleoside monophosphate biosynthetic process (p-

value=2.8E-6), respectively. Off-the-chart upregulated Olive Green branch and Blue branch 

consist of 91 and 186 genes (Figure 3.16).  

 

3.3.5.  Differentially expressed genes 

 

Biological systems alter expression levels of their genes between varying biological 

conditions. It is important to identify differentially expressed genes. One of the most 

common method of significance analysis of time course datasets is EDGE approach. In this 

study differentially expressed genes were identified by EDGE and the approach was 

extended in order to enlarge the set of significant genes. Resulting significant subset were 

reanalyzed by SOMs, WGCNA, DREM and NP analysis. 

 

3.3.5.1.  Identification of Differentially and significantly expressed genes by EDGE. In order 

to identify genes whose expressions were significantly altered in a dynamic manner, EDGE 

(Extraction and analysis of differential gene expression) software package which was 

specifically designed for the analysis of time series datasets, was used (Leek et al., 2006).   

 

A total of 1658 genes was found to be differentially and significantly expressed after 

a doxorubicin pulse injected into the yeast chemostat culture (q-value<1.0E-4) by using R 

package of EDGE. The analysis of these genes revealed that 765 genes were up- and 893 

genes were down– regulated in response to the pulse. The up-regulated genes were found to 

be significantly associated with protein localization into organelle, protein import, 

siderophore-iron transport, iron assimilation by chelation and transport, iron transport, 

ncRNA processing, tRNA modification, translation and protein folding biological process 

terms. Proteasome pathway was observed to be enriched with this group of genes (Table 

3.4).  

 

The genes significantly associated with transcription and regulation of transcription, 

cellular amino acid catabolic process regulation of nitrogen compound metabolic process, 

cell wall organization, glycine, lysine, arginine biosynthetic processes, aging, intracellular 
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signaling cascade, response to unfolded protein and drug transport biological process GO 

terms were down regulated (Table 3.4). 

 

Table 3.4. Selected GO biological process terms and pathways significantly associated 

with differentially expressed genes identified by EDGE. 

up- regulated genes 

GO Biological Process Term Count P-Value 

siderophore transport 8 1.6E-05 

tRNA modification 20 6.4E-04 

ncRNA processing 62 2.2E-03 

iron assimilation by chelation and transport 5 3.3E-03 

protein targeting to membrane 16 4.4E-03 

protein import into nucleus 16 4.4E-03 

translation 110 4.4E-03 

intracellular protein transmembrane transport 22 4.7E-03 

iron ion transport 11 6.6E-03 

rRNA catabolic process 9 7.9E-03 

protein folding 24 7.9E-03 

modification-dependent macromolecule catabolic process 47 9.6E-03 

Pathway Count P-Value 

Proteasome 19 1.4E-07 

Down-regulated genes  

GO Biological Process Term Count P-Value 

positive regulation of transcription from RNA polymerase II promoter 32 5.2E-05 

cellular amino acid catabolic process 17 2.8E-04 

amine catabolic process 18 2.9E-04 

cell wall organization 60 7.6E-04 

amine biosynthetic process 38 1.1E-03 

chromatin assembly or disassembly 21 1.5E-03 

negative regulation of transcription from RNA polymerase II promoter 23 2.6E-03 

regulation of cell cycle process 28 2.8E-03 

translational elongation 74 3.3E-03 

lysine biosynthetic process via aminoadipic acid 6 3.6E-03 

nucleosome organization 19 4.1E-03 

aging 22 4.3E-03 

intracellular signaling cascade 41 6.3E-03 

arginine metabolic process 8 7.5E-03 

response to unfolded protein 12 7.8E-03 

drug transport 9 8.2E-03 

cell aging 19 8.7E-03 
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3.3.6.  Development of an extended approach to identify differentially and significantly 

expressed genes 

 

In order to include the differentially expressed genes which might be missed by EDGE 

into further analysis 1658 genes which were identified as differentially and significantly 

expressed by EDGE, 2299 genes which have at least 1.5 fold change between their maxima 

and minima used in DREM analysis and 1150 genes which have standard deviation of 0.25 

or higher used in SOM analysis were comparatively investigated. This analysis revealed that 

628 genes were commonly identified by these three approaches and a total of 2856 genes 

were identified (Figure 3.17). 

 

 

Figure 3.17. Venn diagram of significant genes identified by EDGE and used in DREM 

and SOMs analysis. 

 

Microarray datasets can carry considerable noise and it has been shown that this noise 

is inversely proportional to RNA abundance (Zeisel et al., 2010). In order to eliminate these 

false positives frequency distribution of average expression levels of the genes from 

conjugated three clusters were investigated (Figure 3.18). 
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Figure 3.18. Frequency distribution of log2 ratios of average expression levels of the 2856 

genes resides in at least one of three sets identified in EDGE, SOMs and DREM analysis. 

The curve represents normal distribution and dashed line marks p-value = 0.05. 

 

The frequency distribution of average expression levels of the 2856 genes was 

investigated and by fitting a normal distribution a threshold of 4.05 for the minimum average 

expression level which corresponds to the typical p-value of 0.05 was selected. A total of 

226 out of 2856 genes (7.9 %) were then filtered in order to remove noise. 9.2 % and 11.3 

% of the genes from the subsets originated from DREM and SOM analysis respectively, 

were removed to decrease the number of false positives. 2.4 % of the genes identified by 

EDGE was removed similarly. These results indicated that the subsets used in SOMs and 

DREM analysis carry more false positives. 

 

Remaining 2630 genes were identified as differentially expressed and this extended 

EDGE (E-EDGE) approach was used for further analysis.  

3.3.6.1.  SOMs of differentially expressed genes identified by E-EDGE. In section 4.3.2.3 

36 clusters identified by SOMs were investigated and then merged to have six meta-clusters 

for a subset of 1150 genes. In the present section manual merging was not applied and 

number of clusters was minimized to slightly higher than the number of meta-clusters 
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identified in section 4.3.2.3. The number of clusters was determined as nine, intuitively for 

SOMs of 2630 genes which were identified by E-EDGE. 

 

 

Figure 3.19. Self-organizing maps of time series transcriptome data representing dynamic 

response of differentially expressed genes identified by E-EDGE. 

 

c0 and c1 clusters display a down-regulation with a delay of 60 and 30 minutes 

respectively after the pulse. Down-regulation of c2 module takes place 5 minutes after the 

pulse (Figure 3.19). The significantly associated biological process terms and pathways are 

presented in Table 3.5.   

 

The smallest two clusters c3 and c4 have 64 and 55 genes respectively. Genes clustered 

in c3 experienced an induction in mid-term and a recovery in long-term and genes clustered 

in c4 displays the opposite behavior with the highest noise (Figure 3.19). The significantly 

associated biological process terms and pathways are presented in Table 3.6. 
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Table 3.5. Selected GO biological process terms and pathways significantly associated 

with downregulated clusters; c0, c1 and c2. The number of the genes was given in 

parenthesis. 

c0 (360) 

GO Biological Process Term Count P-Value 

amine biosynthetic process 25 2.5E-06 

arginine biosynthetic process 7 7.4E-06 

ornithine metabolic process 5 3.8E-04 

histidine biosynthetic process 5 2.9E-03 

glycerophospholipid metabolic process 12 6.8E-03 

water-soluble vitamin biosynthetic process 10 8.6E-03 

Pathway Count P-Value 

Histidine metabolism 6 8.6E-04 

Arginine and proline metabolism 7 3.9E-03 

Pyruvate metabolism 7 7.6E-03 

c1 (563) 

GO Biological Process Term Count P-Value 

cell wall organization 49 9.9E-06 

regulation of cell cycle 34 4.6E-04 

'de novo' IMP biosynthetic process 6 9.8E-04 

amine catabolic process 13 1.4E-03 

negative regulation of transcription from RNA polymerase II promoter 18 1.4E-03 

positive regulation of transcription from RNA polymerase II promoter 21 1.6E-03 

cellular amino acid catabolic process 12 2.1E-03 

regulation of cell size 21 5.3E-03 

aging 16 7.0E-03 

intracellular signaling cascade 29 8.4E-03 

response to osmotic stress 20 8.4E-03 

chromosome organization 55 9.8E-03 

Pathway Count P-Value 

Meiosis 24 7.70E-03 

c2 (314) 

GO Biological Process Term Count P-Value 

vacuolar protein catabolic process 34 8.5E-17 

cellular response to heat 41 5.1E-16 

glycoside biosynthetic process 6 6.5E-06 

trehalose biosynthetic process 6 6.5E-06 

cellular carbohydrate catabolic process 14 1.0E-04 

energy reserve metabolic process 10 2.1E-04 

response to osmotic stress 15 7.4E-04 

alcohol catabolic process 11 1.5E-03 

glucose metabolic process 13 4.6E-03 

regulation of protein kinase activity 7 6.8E-03 

Pathway Count P-Value 

Starch and sucrose metabolism 14 1.2E-08 
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Table 3.6. Selected GO biological process terms and pathways significantly associated 

with the smallest clusters c3 and c4. The number of the genes was given in parenthesis. 

c3 (64) 

GO Biological Process Term Count P-Value 

sulfur amino acid biosynthetic process 5 6.8E-04 

methionine metabolic process 5 9.2E-04 

biotin biosynthetic process 3 1.8E-03 

pyridoxine biosynthetic process 3 5.1E-03 

tRNA modification 5 6.5E-03 

Pathway Count P-Value 

Selenoamino acid metabolism 4 1.9E-03 

Cysteine and methionine metabolism 4 6.7E-03 

c4 (55) 

GO Biological Process Term Count P-Value 

histone modification 5 6.7E-03 

 

112 genes which compose cluster c5 display a sharp upregulation at 60th minute after 

a slight downregulation observed in mid-term. Cluster c8 which consists of 459 genes has 

also a striking upregulation in long-term following a half hour of steady expression after 

doxorubicin impulse.  The biological process GO terms and pathways associated with these 

two cluster was given in Table 3.7. 

 

Table 3.7. Selected GO biological process terms and pathways significantly associated 

with clusters c5 and c8 which shows an upregulation in long term. The number of the 

genes was given in parenthesis. 

c5 (112) 

GO Biological Process Term Count P-Value 

DNA repair 23 1.5E-09 

mitotic sister chromatid cohesion 10 3.4E-09 

M phase of mitotic cell cycle 15 8.9E-06 

lagging strand elongation 6 3.5E-05 

M phase of meiotic cell cycle 14 6.0E-05 

regulation of DNA replication 6 3.7E-04 

response to abiotic stimulus 17 1.1E-03 

reciprocal meiotic recombination 6 2.5E-03 

cell division 16 3.3E-03 

regulation of gene expression, epigenetic 8 5.1E-03 

gene silencing 8 5.4E-03 

premeiotic DNA synthesis 3 5.6E-03 

spindle pole body organization 4 6.8E-03 

regulation of catabolic process 6 7.0E-03 

reproductive process in single-celled organism 10 7.9E-03 
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Table 3.7. Selected GO biological process terms and pathways significantly associated 

with clusters c5 and c8 which shows an upregulation in long term. The number of the 

genes was given in parenthesis. Cont. 

regulation of cell cycle 10 8.5E-03 

Pathway Count P-Value 

DNA replication 7 8.4E-05 

Mismatch repair 6 8.7E-05 

Proteasome 7 2.1E-04 

Cell cycle 12 2.2E-04 

Base excision repair 4 9.0E-03 

c8 (459) 

GO Biological Process Term Count P-Value 

regulation of protein catabolic process 8 1.3E-03 

siderophore transport 5 2.7E-03 

ascospore formation 18 3.5E-03 

protein refolding 6 6.3E-03 

ubiquitin-dependent protein catabolic process 24 8.9E-03 

response to pheromone 16 9.7E-03 

Pathway Count P-Value 

Proteasome 13 1.4E-06 

 

Upregulation of 309 genes which come into c6 starts immediately after the pulse while 

upregulation of cluster c7 which consists of 394 genes begins with 5 minute delay. The 

biological process GO terms and pathways associated with these two cluster was given in 

Table 3.8. 

 

Table 3.8. Selected GO biological process terms and pathways significantly associated 

with the upregulated clusters c6 and c7. The number of the genes was given in parenthesis. 

c6 (309) 

GO Biological Process Term Count P-Value 

ribosome biogenesis 161 2.5E-121 

ribosomal large subunit assembly 26 1.0E-22 

rRNA modification 10 5.0E-08 

regulation of translation 31 8.1E-08 

tRNA methylation 9 2.9E-06 

ribosomal large subunit export from nucleus 8 1.4E-05 

positive regulation of transcription from RNA polymerase I promoter 7 2.4E-05 

snRNA pseudouridine synthesis 5 1.5E-04 

snoRNA 3'-end processing 7 1.2E-03 

peptidyl-diphthamide biosynthetic process from peptidyl-histidine 4 1.7E-03 

one-carbon metabolic process 13 2.1E-03 

exonucleolytic trimming during rRNA processing 6 3.7E-03 
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Table 3.8. Selected GO biological process terms and pathways significantly associated 

with the upregulated clusters c6 and c7. The number of the genes was given in parenthesis. 

Cont. 

U4 snRNA 3'-end processing 5 5.1E-03 

RNA localization 16 7.9E-03 

translational initiation 8 9.3E-03 

Pathway Count P-Value 

RNA polymerase 14 4.7E-12 

Pyrimidine metabolism 19 9.9E-12 

Purine metabolism 17 6.7E-08 

Ribosome 18 1.0E-06 

c7 (394) 

GO Biological Process Term Count P-Value 

methionine biosynthetic process 11 3.0E-05 

protein import into nucleus 14 8.0E-05 

sulfate assimilation 6 2.6E-04 

amine biosynthetic process 21 1.3E-03 

coenzyme biosynthetic process 13 2.3E-03 

ncRNA 3'-end processing 9 2.3E-03 

nonfunctional rRNA decay 6 3.2E-03 

tRNA catabolic process 6 3.2E-03 

cellular iron ion homeostasis 9 3.3E-03 

RNA transport 17 3.3E-03 

cellular metabolic compound salvage 12 3.4E-03 

protein targeting to membrane 11 4.4E-03 

regulation of translation 23 4.6E-03 

polyadenylation-dependent ncRNA catabolic process 6 5.7E-03 

snoRNA processing 8 5.7E-03 

cysteine biosynthetic process 5 6.6E-03 

tRNA wobble uridine modification 7 6.7E-03 

 

3.3.6.2.  WGCNA of differentially expressed genes identified by E-EDGE. A co-expression 

network was constructed using the subset of global transcriptome data identified by E-EDGE 

and analyzed by WGCNA.  

 

Power function was selected as an adjacency function and parameterization of the 

power function was identified according to fitness of the resulting co-expression network to 

scale free criteria. Scale free topology could not be attained for reasonably low values of β 

and it was set simply as 6 following the recommendation of the authors of the approach as 

described in the user manual of WGCNA (Langfelder and Horvath 2008) (Figure 3.20).   
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Resulting adjacency matrix transformed into a topological overlap matrix (TOM) and 

then dissimilarities based on TOM were hierarchically clustered by using WGCNA R 

Package. Minimum module size was set to be 10 and module pairs with higher correlation 

than 0.95 between their representative expression profiles were merged. 

 

Figure 3.20. Fitness to scale-free nature (A) and mean connectivity (B) as a function of 

parameterization of the power function. 

 

A total of 12 modules were identified representing the response of the cells to 

doxorubicin stress. No gene was identified as outlier; all genes belong to a module (Figure 

3.21). Each cluster was named by a color and module sizes were tabulated (Table 3.9). 

 

Table 3.9. Module ID’s and sizes of E-EDGE genes determined by WGCNA. 

Module Name Module Size Module Name Module Size Module Name Module Size 

turquoise 904 green 105 magenta 20 

blue 594 red 66 purple 19 

brown 417 black 45 green-yellow 17 

yellow 389 pink 38 tan 16 
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Hierarchical network and heat map of the modules based on correlations between their 

eigengene profiles provide clues about the organization of the modules. Modules are 

organized in three groups. The first group consists of green-yellow, brown and tan modules, 

the second group which has the closest correlation between their eigengenes consists of blue, 

red, black and yellow modules and the last group which has the weakest correlation among 

eigengene profiles of its members consists of pink, purple, magenta, green and turquoise 

modules (Figure 3.22). 

 

 

Figure 3.21. Hierarchical clustering dendrogram of 12 clusters of E-EDGE genes by 

WGCNA. 

 

Eigengene profiles were also plotted in order to visualize similarities between modules 

to get general picture about the dynamic response of different modules identified by 

WGCNA. All of the first group of modules (green-yellow, brown and tan) identified in 
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Figure 3.22 has a change in their expression levels 5th minutes after the doxorubicin pulse. 

The main expression change in the second group of modules (blue, red, black and yellow) 

took place at a mid-term between 30th to 90th minutes. The last group of modules (pink, 

purple, magenta, green and turquoise) has a common significant expression change between 

90th and 120th minutes which implies the long-term response of yeast cells to the doxorubicin 

impulse (Figure 3.23). 

 

 

Figure 3.22. Meta-analysis of the modules identified by WGCNA for E-EDGE genes. 

Hierarchical organization of the modules (A) and heat-map of the modules (B).  
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All modules were found to be significantly enriched in more than one GO biological 

process term or pathway except modules ME9-magenta, ME11-greenyellow and ME12-Tan 

consisting of less than 20 genes.  

 

 

Figure 3.23. Eigengene profiles of the modules identified by WGCNA of genes identified 

by E-EDGE (x-axis is sampling points and y-axis is fold change). 

 

The modules which are far from each other in the hierarchical eigengene tree (Figure 

3.22) may include closely correlated genes. In addition to this, biological processes and 

pathways which are enriched in a module, identified by WGCNA, can not be interpreted as 

down-regulated or up-regulated without knowing whether they are positively or negatively 

correlated with the corresponding eigengene profile. In order to overcome these obstacles 

and to improve the content of the modules, genes having positive correlations with 

eigengenes were relocated using signedKME function of the WGCNA R package. A pipeline 

to reallocate genes was developed as described in Figure 3.24. For each gene PCCs with all 

eigengenes were ranked. If the highest PCC is over 0.75 then the gene was assigned to the 



72 
 

 
 

corresponding module. If the highest PCC is less than 0.75 then the lowest PCC was 

investigated. Provided that the lowest PCC is lower than -0.75 a new module was built as 

the counterpart of the module and the gene was assigned to the new module. If it is failed to 

satisfy both of the criteria then the gene was marked as outlier (Figure 3.24).  

 

 

Figure 3.24. The pipeline of reallocation of the genes in the modules identified by 

WGCNA for E-EDGE genes. 

 

Out of 2630 genes identified by E-EDGE 2464 genes were redistributed to the 12 

modules with a positive correlation (PCC>0.75). New module IDs were indicated by an 

asterisk. Only one module which is negatively correlated with M2 has 10 or more genes and 
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identified as M2*N. 98 nodes were found to be neither positively nor negatively correlated 

with any eigengene and identified as outliers (Table 3.10).  

 

Table 3.10. Module ID’s and sizes of E-EDGE genes determined by WGCNA after 

signedKME pipeline. 

Module ID Module Size Module ID Module Size Module ID Module Size 

M1* 651 M6* 148 M11* 43 

M2* 404 M7* 81 M12* 36 

M3* 376 M8* 41 M2*N 28 

M4* 530 M9* 27   

M5* 96 M10* 31   

 

Furthermore the average expression profiles of these modules may be used to identify 

the time dependent up- or down regulated biological processes or pathways in response to 

doxorubicin pulse (Figure 3.25). 

 

 

Figure 3.25. Average expression profiles of the positively correlated modules identified by 

WGCNA of the genes identified by E-EDGE (x-axis is sampling points and y-axis is fold 

change).  
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Genes which compose clusters M1* and M5* were shown to be induced after 30th and 

60th minutes of the pulse respectively. M10* displays a similar trend with M5* in long term 

but it experiences a downregulation until the 60th minute (Figure 3.25). The biological 

process GO terms and pathways associated with these two cluster was given in Table 3.11.   

 

Table 3.11. Selected GO biological process terms and pathways significantly associated 

with clusters M1*, M5* and M10*.  

M1*  

GO Biological Process Term Count P-Value 

protein localization in organelle 34 4.1E-05 

siderophore transport 7 9.0E-05 

ascospore wall assembly 13 1.6E-03 

iron ion transport 11 1.7E-03 

protein targeting to membrane 15 2.1E-03 

mitochondrial translation 20 3.2E-03 

protein import 25 4.7E-03 

mitochondrial membrane organization 10 7.6E-03 

mRNA 3'-end processing 11 7.7E-03 

transcription initiation 15 8.4E-03 

M5*  

GO Biological Process Term Count P-Value 

ubiquitin-dependent protein catabolic process 19 1.9E-09 

DNA-dependent DNA replication 11 2.5E-06 

DNA repair 17 4.7E-06 

protein refolding 6 8.0E-06 

meiosis I 9 9.1E-05 

Pathway Count P-Value 

Proteasome 14 1.4E-13 

DNA replication 6 6.7E-04 

Mismatch repair 5 9.8E-04 

Base excision repair 4 7.7E-03 

M10*  

GO Biological Process Term Count P-Value 

cell cycle phase 16 6.0E-10 

mitotic sister chromatid segregation 8 1.3E-07 

meiosis 6 3.0E-03 

sexual reproduction 7 3.4E-03 

regulation of DNA metabolic process 4 4.4E-03 

cell cycle checkpoint 4 4.8E-03 

regulation of cyclin-dependent protein kinase activity 3 5.3E-03 

DNA replication 5 8.1E-03 

Pathway Count P-Value 

Cell cycle 11 9.9E-10 

Meiosis 7 2.3E-04 



75 
 

 
 

Major fold change in the expression levels of the genes identified in M2* takes place 

between 30 to 120 minutes after the doxorubicin stimulus. Upregulation of  the genes in 

M2*N starts with a 5 minute delay after the pulse (Figure 3.25). The biological process GO 

terms and pathways associated with these two cluster was given in Table 3.12. 

 

Table 3.12. Selected GO biological process terms and pathways significantly associated 

with clusters M2* and its negatively correlated counterpart M2*N.  

M2* 

GO Biological Process Term Count P-Value 

response to osmotic stress 24 1.2E-06 

positive regulation of transcription from RNA polymerase II promoter 20 6.3E-05 

cell morphogenesis 26 9.9E-05 

cell wall organization 36 1.4E-04 

regulation of cell size 20 2.5E-04 

nucleosome organization 14 3.3E-04 

negative regulation of transcription from RNA polymerase II promoter 16 3.4E-04 

endocytosis 18 4.8E-04 

actin cytoskeleton organization 19 5.6E-04 

response to organic substance 25 7.5E-04 

intracellular signaling cascade 25 1.6E-03 

cell surface receptor linked signal transduction 12 1.9E-03 

chromatin assembly 9 2.2E-03 

regulation of mitotic cell cycle 15 3.0E-03 

regulation of meiosis 8 3.4E-03 

establishment or maintenance of cell polarity 19 3.6E-03 

chromatin modification 25 4.9E-03 

chronological cell aging 7 6.6E-03 

GMP biosynthetic process 4 6.7E-03 

DNA repair 30 7.6E-03 

mitotic sister chromatid segregation 13 9.9E-03 

Pathway Count P-Value 

MAPK signaling pathway 15 1.6E-05 

Meiosis 18 6.1E-03 

M2*N 

GO Biological Process Term Count P-Value 

methionine biosynthetic process 4 4.2E-04 

sulfate assimilation 3 9.4E-04 

amine biosynthetic process 5 4.0E-03 

serine family amino acid biosynthetic process 3 5.5E-03 

 

Upregulation of M3* cluster and downregulation of M6* cluster occur in opposite two 

steps. Main changes in the expression levels of these genes take place between 5 to 10 

minutes and 60 to 120 minutes after the pulse in the opposite directions (Figure 3.25). The 
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biological process GO terms and pathways associated with these two cluster was given in 

Table 3.13.   

 

Table 3.13. Selected GO biological process terms and pathways significantly associated 

with clusters M3* and M6* which have opposite expression profiles.  

M3* 

GO Biological Process Term Count P-Value 

ribosome biogenesis 164 8.5E-109 

ncRNA metabolic process 169 2.6E-105 

RNA modification 56 1.2E-33 

ribosomal large subunit assembly 27 3.1E-22 

maturation of LSU-rRNA 13 1.4E-11 

tRNA methylation 11 5.7E-08 

transcription from RNA polymerase III promoter 13 9.1E-07 

one-carbon metabolic process 16 3.4E-04 

ribosomal large subunit export from nucleus 7 4.6E-04 

regulation of translational initiation 6 1.2E-03 

ribosomal small subunit assembly 6 3.5E-03 

positive regulation of transcription from RNA polymerase I promoter 5 7.1E-03 

RNA catabolic process 15 8.1E-03 

RNA localization 18 8.1E-03 

Pathway Count P-Value 

Ribosome 29 6.1E-11 

RNA polymerase 15 1.6E-10 

Pyrimidine metabolism 20 6.3E-09 

Purine metabolism 19 2.8E-06 

M6* 

GO Biological Process Term Count P-Value 

cellular response to heat 32 8.0E-20 

vacuolar protein catabolic process 25 2.8E-17 

cellular carbohydrate catabolic process 12 8.7E-07 

glycoside biosynthetic process 5 8.5E-06 

trehalose biosynthetic process 5 8.5E-06 

alcohol catabolic process 9 9.7E-05 

secondary metabolic process 7 2.3E-03 

glycogen metabolic process 5 4.4E-03 

autophagy 10 5.0E-03 

glucose catabolic process 6 5.3E-03 

nicotinamide metabolic process 6 5.3E-03 

pyridine nucleotide metabolic process 6 6.2E-03 

Pathway Count P-Value 

Starch and sucrose metabolism 11 9.8E-09 
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Genes which compose clusters M4* and M7* were shown to be downregulated after 

30th and 60th minutes of the pulse, respectively. M11* displays a similar trend with M4* in 

long term but it experiences an induction until the 30th minute (Figure 3.25). The biological 

process GO terms and pathways associated with these two cluster was given in Table 3.14.   

 

Table 3.14. Selected GO biological process terms and pathways significantly associated 

with clusters M4*, M7* and M11*.  

M4* 

GO Biological Process Term Count P-Value 

amine biosynthetic process 28 1.3E-04 

cellular amino acid biosynthetic process 26 3.2E-04 

translational elongation 50 5.9E-04 

organic acid transport 17 2.6E-03 

regulation of transcription, DNA-dependent 60 2.8E-03 

lysine biosynthetic process via aminoadipic acid 5 3.4E-03 

glycine metabolic process 5 5.7E-03 

amine catabolic process 11 5.8E-03 

glycerolipid metabolic process 16 8.3E-03 

arginine biosynthetic process 5 8.9E-03 

M7* 

GO Biological Process Term Count P-Value 

amine biosynthetic process 12 2.4E-06 

arginine biosynthetic process 4 2.7E-04 

histidine biosynthetic process 4 3.6E-04 

ornithine metabolic process 3 3.6E-03 

NAD metabolic process 4 4.4E-03 

Pathway Count P-Value 

Histidine metabolism 5 4.1E-05 

M11* 

GO Biological Process Term Count P-Value 

nitrogen compound biosynthetic process 8 7.5E-03 

 

The genes involved in DNA repair, histone acetylation and meiosis associated were 

clustered in M8* which displays the most noisy expression profile compared to the rest of 

the modules with the higest standard deviation over time. Genes in M9* cluster are 

downregulated within the first 15 minutes and recovered in long-term, The genes in volved 
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in growth within  M12* cluster were induced within the first 15 minutes (Figure 3.25). The 

biological process GO terms and pathways associated with these two cluster was given in 

Table 3.15. These clusters were not found to be associated with any pathway. 

 

Table 3.15. Selected GO biological process terms significantly associated with clusters 

M8*, M9* and M12*.  

M8* 

GO Biological Process Term Count P-Value 

DNA repair 8 1.6E-03 

histone acetylation 4 3.2E-03 

meiosis 6 9.4E-03 

M phase of meiotic cell cycle 6 9.4E-03 

M9* 

GO Biological Process Term Count P-Value 

organic anion transport 3 6.3E-04 

glycogen biosynthetic process 3 1.1E-03 

vacuolar protein catabolic process 5 1.4E-03 

response to temperature stimulus 6 1.9E-03 

glucose metabolic process 4 8.5E-03 

acetyl-CoA metabolic process 3 9.1E-03 

M12* 

GO Biological Process Term Count P-Value 

rRNA processing 15 4.1E-11 

ribosome biogenesis 16 5.7E-10 

tRNA modification 4 8.9E-03 

 

All modules (M1*- M12* and M2*N) were found to be significantly associated with 

at least one biological process GO term.  

 

3.3.6.3.  Regulation of the response to doxorubicin impulse. Expression profiles of 2580 

genes out of 2630 genes identified by E-EDGE with known TF interactions were analyzed 

by DREM. Analysis of this subset by DREM revealed that doxorubicin pulse triggers 

complex regulatory events where 17 transcription factors (TFs) drives transcriptomic 

response into 10 branches associated with 80 to 463 genes at the end of time course (Figure 

3.26).  
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Transcriptional profiles of the 2580 genes immediately splits into two branches A and 

B after doxorubicin pulse and A and B branches both underwent bifurcations after 1st minute 

yielding branches A1, A2, B1 and B2 respectively. After the second sampling point only B2 

branch splits into B21 and B22. Until the 30th minute there were no splitting in the branches 

after that A2, B1 and B21 bifurcates again. The last bifurcations took place at 60th minute 

on A22 and B212 branches. Whole branches were coded in order to fulfill the same number 

of characters. The branch codes and number of genes they cover were tabulated with driving 

TFs (Figure 3.26) (Table 3.16). 

 

 

Figure 3.26. Dynamic regulatory map of differentially expressed yeast genes identified by 

E-EDGE in response to doxorubicin pulse. X-axis was arranged as uniform sample points. 

Light-green dots indicate the location of bifurcations. Blue labels are the branch codes. 

 

 

Immediate split in the transcriptional response was found to be mediated significantly 

by three regulators. A regulator of ribosomal protein (RP) transcription Fhl1p manages the 
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upregulated branch A associated with 769 genes. The branch B of 1811 genes which were 

downregulated immediately after doxorubicin addition were found to be significantly 

regulated by two transcriptional factors Mbp1p and Mcm1p which are involved in the 

regulation of cell cycle progression from G1 to S phase and cell-type-specific transcription 

and pheromone response, respectively (Figure 3.26).   

 

Transcriptional levels of 548 genes regulated by a putative basic leucine zipper (bZIP) 

transcription factor; Yap7p remain steady for the first half hour after doxorubicin stress. 221 

genes in the A2200 branch which displays relatively unchanged transcription under the 

control of Swi6p which regulates transcription at the G1/S transition, splits into two branches 

implicating a more drastic expression change at 60th minute (Figure 3.27). 

 

Table 3.16. Number of genes in each branch and transcriptional regulators of the branches 

identified by DREM. 

Minutes 2580 genes 

0 
B (MBP1, MCM1) 

1811 genes 

A (FHL1) 

769 genes 

1 
B2000 

963 
B1000 

848 genes 

(MSN2, SKN7, 

MSN4, NRG1, 

MBP1, ACE2) 

A2000 (YAP7) 

548 genes 

A1000 

221  

genes 

5 

B2200 

207  

genes 

(SIP4, 

MAC1) 

B2100 

756 genes 

10 

15 

20 

25 

30 
B2120 

529 genes 

B2110 

227 

genes 

(RPN4, 

MBP1, 

HSF1) 

B1200 

(GCN4) 

463  

genes 

B1100 

(ABF1) 

385  

genes 

A2200 (SWI6) 

221 genes 
A2100 

327  

genes 

60 B2122 

207  

genes 

(FKH1) 

B2121 

322  

genes 

A2220 

141  

genes 

A2210 

80  

genes 

90 

120 

180 

 

Six TFs (Msn2p, Skn7p, Msn4p, Nrg1p, Mbp1p and Ace2p) which have various 

regulatory roles in cell cycle, stress response and glucose repression, keep related expression 

profiles unchanged until 30th minute after the injection of the impulse. Up-regulation of 385 
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genes under the control of Abf1p which is involved in DNA replication and DNA repair and 

down-regulation of 463 genes under the control of Gcn4p which is an activator of amino 

acid biosynthesis occur 30 minutes after doxorubicin induction.  

 

 

Figure 3.27. (A) Transcriptional profiles of A2100 (purple) and A2200 (green) branches 

and (B) two child branches of A2200; A2211 (brown) and A2212 (dark green). 

B2100 splits into two branches. B2110 consists of 227 genes which were found to be 

induced at 30th minute under the control of heat shock transcription factor; Hsf1p, cell cycle 

regulator; Mbp1p and activator of proteasome genes; Rpn4p. 207 genes compose B2122 
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branch and were observed to be sharply down-regulated at 60th minute under the control of 

Fkh1p which is regulator of cell cycle. B2122 branch includes 207 genes which were 

regulated by copper-sensing Mac1p and Sip4p which is involved in positive regulation of 

gluconeogenesis. Mac1p is reported to be involved in regulation of genes required for high 

affinity copper transport and required for the regulation of yeast copper genes in response to 

DNA-damaging agents (Jungmann et al., 1993; Dong et al., 2013).  

 

3.3.6.4.  NP analysis of the genes identified by E-EDGE. Protein-protein interactions 

between proteins encoded by the genes identified by E-EDGE was extracted from the 

network which was used in section 3.3.3.1. The constructed network consists of 2630 

proteins and 19,859 directionless edges without loops.   

 

Pearson correlation coefficients (PCC) between expression profiles of the nodes 

connected by an edge was used to label the edge as positively correlated, negatively 

correlated or not correlated. The effect of the selected values of PCC on the frequency of 

possible gene pairs in the transcriptome of 2630 E-EDGE genes was analyzed in order to 

identify an acceptable threshold which can reduce the size of network to an amenable size 

(Figure 3.28). 

 

PCC cut-off was selected to be more stringent as 0.85 and -0.85 for correlation and 

anti-correlation in NP analysis which correspond to the peaks in the Figure 3.28, 

respectively. 

 

Resulting NP network for E-EDGE dataset consists of 1765 nodes and 5736 edges of 

which 4160 edges were found to connect positively correlated and 1576 edges to connect 

negatively correlated node couples. The previous NP network identified in the section 

3.3.3.1 was about twice of the size of the new NP network considering the number of nodes 

and edges. 
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Figure 3.28. Frequency distribution of PCCs and network properties of NP network with 

respect to PCC threshold. 

 

After hierarchical clustering of the expression profiles of the nodes present in NP 

network by HCE 3.0, modules with less than 1% intra-cluster anti-correlation edges were 

manually dissected. The network smoothly split into two modules without missing out any 

nodes and without violating the restriction on intra-cluster anti-correlation edges. Slightly 

larger one was named as K module with 890 nodes and the other was named as T module 

(Table 3.17). 

 

Table 3.17. Distribution of the nodes and anti-correlated edges in NP network. 

 K module T module 

Number of nodes 890 875 

Percent of anti-correlated 

interactions within cluster 
0% 0.07% 

Percent of correlated 

interactions between clusters 
0.13% 

 

These modules were further split into two sub-parts; Interface modules (KI and TI) 

consisting of nodes which interact with the opposite module and core modules (KC and TC) 

consisting of nodes which has only intra-modular interactions. 47 nodes in NP network is 

disconnected from bulk of the network.  
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Average expression profiles of the four modules identified by NP analysis were also 

presented in Figure 3.29. Average expression profiles for the core and the interface of each 

module are almost identical. KC and KI modules display a downregulated trend similar to 

the cluster M6* which was identified by WGCNA. Genes in TC and TI modules which were 

oppositely expressed with genes in KC and KI, have an expression profile correlated with 

cluster M3* which was also identified by WGCNA. 

 

 

Figure 3.29. Average expression profiles of the modules identified by NP analysis of E-

EDGE genes 

 

Functional enrichments of the TC, TI, KI and KC modules were also investigated in 

terms of GO biological process term and pathway enrichments. 

 

297 nodes which constitute KC module were found to be enriched in proteasomal 

ubiquitin-dependent protein catabolic process, DNA-dependent regulation of transcription, 

cytokinetic process and negative regulation of gluconeogenesis. Larger sub-module of 
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downregulated K module is the interface module KI which includes 593 nodes. GO 

biological processes which were found to be significantly associated with the nodes of 

interface module KI are much more diverse; from stress responsive terms to glucose 

metabolism, amino acid metabolism and biological processes related to regulation and 

transport (Table 3.18.). 

 

Table 3.18. Selected GO biological process terms significantly associated with KC and KI 

modules.  

KC 

GO Biological Process Term Count P-Value 

proteasomal ubiquitin-dependent protein catabolic process 13 5.3E-04 

regulation of transcription, DNA-dependent 40 5.8E-04 

cytokinetic process 12 7.8E-03 

negative regulation of gluconeogenesis 4 8.2E-03 

KI 

GO Biological Process Term Count P-Value 

response to osmotic stress 27 4.7E-05 

vacuolar protein catabolic process 27 3.7E-04 

protein amino acid phosphorylation 30 4.8E-04 

cellular response to stress 86 1.3E-03 

small GTPase mediated signal transduction 20 1.3E-03 

phosphatidylcholine biosynthetic process 6 1.5E-03 

alcohol catabolic process 17 1.6E-03 

cell division 57 2.2E-03 

glucose catabolic process 14 2.6E-03 

lysine biosynthetic process 6 2.6E-03 

negative regulation of transcription, DNA-dependent 33 2.7E-03 

regulation of cell cycle process 22 2.8E-03 

purine nucleotide biosynthetic process 18 3.0E-03 

cellular carbohydrate catabolic process 18 3.5E-03 

glycoside biosynthetic process 5 4.1E-03 

trehalose biosynthetic process 5 4.1E-03 

intracellular signaling cascade 32 4.2E-03 

drug transport 8 4.4E-03 

nucleosome organization 15 5.2E-03 

aging 17 6.4E-03 

amine biosynthetic process 27 6.8E-03 

glucose transport 5 7.4E-03 

chromatin assembly 10 8.2E-03 

positive regulation of transcription from RNA polymerase II promoter 20 9.6E-03 
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Core sub-module of upregulated T module, TC, which consists of 346 nodes were 

found to be linked to growth related biological processes like ribosome biogenesis. Wider 

range of pathway enrichments were identified for the TC module compared to its biological 

process term enrichments. Ribosome pathway, proteasome, mismatch repair and DNA 

replication pathways were also found to be related to TC module. Similar to the case in K 

module, interface of the T module has more diverse biological process attachments. 529 

nodes which reside in the interface module TI were found to be significantly enriched in 

biological processes like ribosome biogenesis, protein folding, transcription initiation, 

siderophore transport, regulation of translational fidelity, RNA localization, protein targeting 

to membrane, vacuolar acidification, ascospore wall assembly and proteasome pathway 

(Table 3.19). 

 

Table 3.19. Selected GO biological process terms and pathways significantly associated 

with TC and TI modules. 

TC 

GO Biological Process Term Count P-Value 

ribosome biogenesis 117 2.1E-57 

ncRNA metabolic process 116 1.8E-50 

ribosomal large subunit export from nucleus 7 3.3E-04 

rRNA modification 7 3.3E-04 

rRNA catabolic process 8 6.1E-04 

tRNA methylation 6 4.8E-03 

positive regulation of transcription from RNA polymerase I promoter 5 5.7E-03 

Pathway Count P-Value 

Pyrimidine metabolism 18 4.6E-07 

RNA polymerase 11 5.1E-06 

Purine metabolism 17 8.1E-05 

Ribosome 17 3.0E-03 

Proteasome 8 5.3E-03 

Mismatch repair 6 5.4E-03 

DNA replication 7 9.9E-03 

TI 

GO Biological Process Term Count P-Value 

ribosome biogenesis 71 8.4E-10 

protein folding 29 5.3E-07 

transcription initiation 17 3.9E-04 

snoRNA 3'-end processing 9 6.7E-04 

protein complex assembly 40 7.2E-04 

siderophore transport 6 7.4E-04 
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Table 3.19. Selected GO biological process terms and pathways significantly associated 

with TC and TI modules. Cont. 

RNA polyadenylation 9 1.7E-03 

macromolecular complex disassembly 18 2.0E-03 

mRNA 3'-end processing 11 3.8E-03 

regulation of translational fidelity 6 5.5E-03 

RNA localization 23 6.6E-03 

protein import into nucleus 13 7.1E-03 

protein targeting to membrane 13 7.1E-03 

cellular macromolecular complex assembly 44 7.4E-03 

vacuolar acidification 8 7.7E-03 

ascospore wall assembly 11 7.8E-03 

termination of RNA polymerase II transcription 7 9.4E-03 

Pathway Count P-Value 

Proteasome 11 1.6E-03 

 

3.4.  Discussion 

 

3.4.1.  Dynamic response of Yeast cells to doxorubicin pulse  

 

The clustering and analysis of the transcriptomic response of S. cerevisiae cells to 

doxorubicin indicated that the genes involved in DNA replication, mismatched repair, cell 

cycle and base excision repair pathways were found to remain without any change in their 

expression levels within the first five minutes after the induction of doxorubicin and they 

were down-regulated until the 60th minute where they start to be up-regulated.  

 

These results are in correlation with the fact that doxorubicin interacts with DNA 

through intercalation like other anthracycline antibiotics leading to DNA damage (Fornari et 

al., 1994; Anders et al., 2013). It is also known that during the transcription doxorubicin 

inhibits topoisomerase II which has an important role in relieving torsional stress during 

replication and transcription by forming double stranded breaks (Pommier and Marchand 

2012). 

 

One set of genes involved in proteasome also behaved similarly. However the 

expression levels of another set remained unchanged for 60 minutes and then up-regulated. 

Selective inhibition of proteasomes in cancer cells is an anticancer treatment strategy whose 
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efficacy lies in blocking metabolic functions, inducing apoptosis, and sensitizing malignant 

cells and tumors to chemotherapeutic agents and radiation (Voorhees and Orlowski 2006; 

Orlowski and Kuhn 2008; Yang et al. 2009). Loss of 20S proteasome activator, BLM10 was 

reported to be downregulating genes important for genomic integrity, increasing DNA 

damage and increasing sensitivity to doxorubicin (Doherty et al., 2012). 

 

Another set of genes whose expression levels were observed to be down regulated after 

30 minutes consist of genes involved in meiosis, regulation of cell cycle, cell wall 

organization, response to osmotic stress and chromosome organization. 

 

WGCNA analysis of differentially and significantly expressed genes has also shown 

the up-regulation of the genes involved in DNA repair, DNA replication base excision repair 

and proteasome after 60th minute and supported these observations. Cell cycle phase, meiotic 

cell division, cell cycle check-point  biological processes were affected from the beginning 

and the genes involved in this processes were down regulated until 60th minute and then up-

regulated. Proteasome related genes were verified to be remained constant in their expression 

levels within the first five minutes after the induction of doxorubicin and they were down-

regulated until the 60th minute where they start to be up-regulated. 

 

DREM analysis of differentially and significantly expressed genes also indicated that 

Mbp1p and Mcm1p which are involved in the regulation of cell cycle progression from G1 

to S phase and cell type specific regulation and pheromone response were the main regulators 

of the down-regulated genes at 5th minute of the doxorubicin application. It is believed that 

doxorubicin prevents proliferation of cancer cells through inhibiting topoisomerase enzyme 

which blocks DNA replication and cause cell cycle arrest at S phase (Ichikawa et al., 2014). 

 

Rpn4p, activator of proteasome genes, was found to be upregulated one set of genes 

after 30th minute of the impulse. Relative distribution of Rpn4p to the nucleus is also known 

to be increased by DNA replication stress. DREM has also identified Abf1p which involves 

in DNA replication and repair, as a regulator of a group of upregulated genes after 30th 

minute of the pulse. 

 



89 
 

 
 

NP analysis has also indicated the verified upregulation of the genes involved in 

mismatch repair and DNA replication pathways after 60th minute. Genes which are 

significantly associated with proteasome pathway were also identified to be upregulated after 

60th minute.  

 

Induction of ribosome biogenesis and coherent down-regulation of vacuolar protein 

catabolic process were found to be overrepresented in upregulated and downregulated 

clusters, respectively. Up-regulation and down-regulation of these genes took place 

immediately after doxorubicin addition to the chemostat culture. All of the applied methods 

revealed similar results in correlation with these observations. 

 

Interestingly drugs were reported to inhibit ribosomal RNA synthesis either at the level 

of (i) rRNA transcription (e.g. oxaliplatin, doxorubicin, mitoxantrone, methotrexate), (ii) 

early rRNA processing (e.g. camptothecin, flavopiridol, roscovitine), or (iii) late rRNA 

processing (e.g. 5-fluorouracil, MG-132, homoharringtonine) (Burger et al., 2010). It has 

been also reported that genotoxic stresses can cause cell cycle arrest and then halt rRNA 

synthesis as a secondary effect in long term (Tsai and Pederson, 2014). Time interval of the 

chemostat experiment implemented in this study might not be enough to capture this 

expected inhibition of ribosome biogenesis. 

 

Analysis of the expression profiles by SOMS indicated that the expression levels of 

the genes involved in siderophore transport remained unchanged until one hour before 

sharply up regulated and the genes involved in cellular iron ion homeostasis were found to 

be up-regulated after 5th minute. 

 

WGCNA indicated that the genes involved in siderophore transport, iron ion 

homeostasis, mitochondrial translation, mitochondrial membrane organization and 

transcription initiation biological processes were also found to be up-regulated 30 minutes 

after the pulse.  

 

NP analysis was also verified that siderophore transport related genes were up-

regulated after doxorubicin impulse with a one hour delay. 
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Doxorubicin was reported to be a powerful iron chelator (Myers, 1998). It might be 

due to the iron arrest caused by doxorubin that siderophore transport linked genes were found 

to be induced in response to the doxorubicin impulse. In accordance with these observations 

it was also reported that exposure of bovine aortic endothelial cells to doxorubicin cause 

apoptosis accompanied by induction of iron uptake (Kotamraju et al., 2002). 

 

The cell cycle takes place normally if deoxyribonucleotides are available. The process 

is controlled by ribonucleotide reductase and thioredoxin (Hashemy et al., 2006). In S. 

cerevisiae thioredoxin and the metabolic pathway it is involved are regulated with 

transcription factor Yap1p (Colleman et al., 1999; Delaunay et al., 2002; Moye-Rowley, 

2003). Doxorubicin induces oxidative stress, which prolongs the G1 phase. However, for 

unknown reasons, doxorubicin increases GSH concentration in S. cerevisiae cells, probably 

due to the deregulation of deoxyribose synthesis, which, as we believe, is to block the cell 

cycle in the S phase. Another reason could be that oxidative stress was reported to enhance 

expression of sulfur assimilation genes (Riboldi et al., 2014) and consequently GSH, 

cysteine and methionine biosynthesis.  

 

SOMs and WGCNA have verified that methionine biosynthetic process and sulfate 

assimilation processes were upregulated between 5th and 90th minutes. The genes involved 

in sulfur amino acid biosynthetic process, biotin and pyridoxine biological processes were 

also found to be affected similarly. Interestingly GSH biosynthesis associated genes were 

found to be down-regulated after 60th minute. It could be a response to the accumulation of 

GSH which was caused by doxorubicin. 

 

The expression levels of genes involved in arginine and histidine biosynthetic 

processes, ornithine and glycerophopholipid metabolic processes were observed slightly 

reduced during the first 5 minutes, then remain constant before to be repressed after 60 

minutes sharply. WGCNA has also provided additional supportive information about the 

down-regulation of the genes involved in arginine and histidine biosynthesis after 60th 

minute of the impulse. 
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Individual analysis have revealed that drug transporters PDR5, AQR1, QDR3, SNQ2 

and ATR1 were found to be downregulated after 30th to 60th minutes of the pulse but the 

process could not identified to be significantly associated with any identified cluster. 

 

3.4.2.  Improvements provided by E-EDGE 

 

An extended version of EDGE was proposed in order to identify differentially 

expressed genes out of a dynamic dataset. Clustering approaches were applied to this subset 

assuming that biologically irrelevant or inactive data was eliminated which can improve 

biological associations of the resulting modules or clusters.  

 

Although size of the subset identified by E-EDGE is more than twice the size of the 

subset identified by variance filtering in SOMs analysis, biological significance of the 

resulting clusters were improved. Even after manual merging of the clusters which were 

identified in the previous SOMs analysis there were unannotated meta-clusters like MC6. 

SOMs of the genes identified by E-EDGE yielded nine clusters with distinct biological roles. 

 

WGCNA of whole transcriptome resulted in three modules without any GO biological 

process term enrichments. These modules have sizes of 40 to 70 nodes. The subset identified 

by E-EDGE is comprised of less than half of the nodes which consists whole set but still the 

largest un-annotated module identified by subordinated WGCNA was the one with 20 genes 

indicating the success in extracting the significant subset. 

 

PCC distribution of the genes identified by E-EDGE (Figure 3.28) scatters in a 

different way compared to that of whole dataset (Figure 3.10). The difference is raised from 

the low frequency of the not correlated gene pairs in the E-EDGE set which is an indicator 

of the integrity of the subset without noise.   

 

A comparison of TFs identified by DREM analysis of whole transcriptome data and 

the genes identified by E-EDGE revealed 8 common TFs among the two datasets. Analysis 

of the genes identified by E-EDGE revealed some of the stress responsive TFs (Msn2p, 

Msn4p and Mcm1p) and regulators of the processes like proteasome (Rpn4p), glucose 

metabolism (Sip4p and Nrg1p), cupper-sensing (Mac1p) and ribosome biogenesis (Fhl1p) 
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which could not be identified when the global transcriptome was used (Figure 3.12 and 

Figure 3.26). 

 

All these findings suggest that identifying differentially expressed genes by E-EDGE 

and then implementing clustering analysis on the resulting significant subset of the data can 

strengthen the results and unveil additional biological data. 

 

3.4.3.  Improvements provided by the reallocation pipeline attached to WGCNA 

 

A reallocation pipeline was also developed and proposed to improve WGCNA. The 

reallocation yielded stronger biological attachments. 91.7% of the GO biological process 

terms out of 156 terms which have been identified before and after allocation has stronger 

attachments to the modules identified by proposed reallocation in terms of p-values. 

 

3.5.  Future prospects 

 

Up-regulation of ribosome biogenesis and repression of arginine biosynthesis are 

needed to be investigated in more detail. These unexpected outcomes of the experiments 

should be verified and underlying reasons should be clarified by using deletion strains.  

 

The magnitude of the transcriptional response could be increased by repeating the 

chemostat experiments with higher doses of doxorubicin pulses. 

 

The pipeline developed in this study can be generalized for dynamic data analysis by 

implementing for other dynamic datasets. The improvements provided by E-EDGE approach 

and re-allocation process in WGCNA can also be investigated independently. 

 

Topological analysis of the weighted co-expression network which was constructed 

by WGCNA can be investigated further by using WSL-EC. Topological centrality in co-

expression networks and its biological implications may unveil additional information. 
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4.  INVESTIGATION OF DYNAMIC RESPONSE OF YEAST CELLS 

TO DNA DAMAGE IN TRANSCRIPTOMIC LANDSCAPE 

 

 

4.1.  Background 

 

DNA damage can occur in many ways like damage on bases, mismatch of bases, 

single-strand or double-strand breaks upon environmental stresses. Distinct stress agents 

may cause different damage types and there are distinct DNA repair mechanisms in order to 

fix these damages (Friedberg et al., 2005). 

 

DNA damage caused by chemical and physical stresses may lead to cancer and 

degenerative diseases (Workman et al., 2006). Cells which suffer DNA damage triggers 

mechanisms regulating transcriptional response of diverse biological processes other than 

DNA repair like cell cycle, apoptosis, catabolic processes and ribosome biosynthesis (Harper 

and Elledge, 2007; Shalem et al., 2008; Ciccia and Elledge, 2010). 

 

Saccharomyces cerevisiae is well defined and easy to manipulate model organism. As 

a matter of fact until the last two decades the most of the information on DNA damage 

response was coming from yeast (Harper and Elledge, 2007). Early knowledge was solely 

around DNA repair genes, and their interactors but high throughput transcriptional assays 

revealed many more genes with diverse functions response to DNA damage in 

transcriptional level (Jelinsky and Samson, 1999). For instance Rpn4p, which is a 

proteasome-associated protein, was reported to be linked to base excision mechanism as well 

(Jelinsky et al., 2000). 

 

Mec1p which is homolog of human ATR kinase plays a crucial role in sensing and 

signaling DNA damage in yeast. DNA damage signal triggers Chk kinases (Chk1p, Rad53 

and Dun1) and Chk kinases, in turn, activates various mechanisms like DNA repair 

machinery and cell cycle arrest (Gasch et al., 2001; Friedberg et al., 2005).  
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Carcinogen induced genotoxicity analysis of haploid S.cerevisiae deletion strains 

revealed that additional proteins of non-nuclear protective pathways in vacuole or endosome 

modulate toxicity other than known DNA repair proteins (Begley et al., 2004).  

 

Static transcriptome data collected after exposure of yeast to methyl-methanesulfonate 

(MMS) unveiled 30 DNA-damage related transcriptional factors (TF) out of which YAP1, 

ACE2, ASH1 and SWI5 were identified to be differentially expressed while either deletion 

strains or targets of the rest of the TFs were identified to be sensitive to exposure to MMS. 

These DNA-damage related TFs were reported to be regulators of biological processes like 

cell cycle, pyrimidine metabolism, ribosome biogenesis, response to heat and redox 

homeostasis (Figure 4.1) (Workman et al., 2006). Differentially expressed YAP1 is required 

for oxidative stress tolerance and the other  three TFs; ASH1, ACE2 and its paralog SWI5 

involve in regulation of G1/S transition in the mitotic cell cycle.  

 

In a wide study, 80,000 double mutant yeast strains were treated with MMS in order 

to construct static genetic maps of each condition; with or without MMS. More than half of 

the interactions within the genetic networks were reported to be condition specific. In the 

light of differential network analysis it was suggested that SLT2, BCK1 and CBF1 might 

have roles in DNA damage response (Bandyopadhyay et al., 2010). It has been also reported 

that TEL1, MEC1, LCD1, RAD9, DPB11, MRC1, CHK1 and RAD53 play important roles in 

DNA damage signaling of yeast (Polo and Jackson, 2011).  

 

Dynamic transcriptional response of yeast cells to MMS were also reported but the 

focus of the work was on mRNA degradation rather than DNA damage. It was reported that 

proteolysis related genes were induced and stabilized, growth related genes were repressed 

and destabilized and RNA processing related genes were repressed and stabilized (Shalem 

et al., 2008).  

 

Another dynamic transcriptome analysis regarding DNA damage was carried out in 

order to investigate effect of UV exposure on yeast cells. This study suggests that SNF1 and 
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RAD23 which has no previously known regulatory control role regulate UV-responsive gene 

expression. It was identified that oxidative stress response and amino and carboxylic acid 

metabolism processes related genes were up-regulated upon UV-exposure while ribosome 

biogenesis and cell cycle regulation like processes were repressed (Wade et al., 2009).  

 

In this study time series microarray datasets collected after a genotoxic stress in 

Saccaromyces cerevisiae were selected from the literature. Selected datasets were analyzed 

by well-established clustering methods and integrative approaches. Differentially expressed 

genes were identified by E-EDGE approach which was defined in the previous section. 

 

 

 

 

Figure 4.1. TF network of overlaping targets in response to MMS (Workman et al., 2006). 
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4.2.  Methods 

 

4.2.1.  Transcriptome Data 

 

Two data sets were selected from literature where the DNA damaging agent was 

methyl methane sulfonate (MMS) (Shalem et al., 2008) (1-P) (GSE12222) and exposure to 

UV (Wade et al., 2009) (2-WT) (GSE16799). 

 

4.2.2.  Transcriptome Data Analysis 

 

The dataset 1-P consists of six time points while the dataset 2-WT has four time points. 

The two satasets were added to have a single transcriptome data of 10 time points. Each of 

these two datasets was normalized before integration in order to avoid possible bias which 

might rise from differences in experimental conditions. The resulting dynamic transcriptome 

data was analyzed by following the pipeline which formed in the previous chapter (Figure 

4.2).  

 

 

Figure 4.2. The procedure for dynamic transcriptional data analysis 
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Starting with identification of differentially and significantly expressed genes by E-

EDGE and continuing with SOMs, WGCNA, reallocation in WGCNA, DREM and finally 

NP analysis. Only in NP analysis two dataset were analyzed seperately (Figure 4.2). 

 

SOMs, WGCNA, E-EDGE, DREM, NP analysis and functional annotations were 

carried out as described in the Section 3.2.3. 

 

4.3.  Results 

 

Shalem and colleauges used S. cerevisiae strain Y262 and grew cells in YPD medium. 

After treating cells in batch culture by 0.1% MMS samples were collected at 0, 30, 60, 100, 

140 and 180 minutes and mRNA abundance were measured by microarray technology. Fold-

changes were used to determine the significantly and differentially expressed genes (Shalem 

et al., 2008). The reported study focused on mRNA degradation and shortly analysed 

dynamics of the DNA damage response.  

 

Wade and colleauges used Saccharomyces cerevisiae strains derived from YPH499 

and grew cells in YPD medium. Cells were irradiated with 100 J/m2 and samples were 

collected at 0, 15, 30 and 60 minutes for RNA isolation. Hierarchical clustering based on 

Spearman correlation was used to analyze the data. The focus of the study was on differences 

between transcriptomic responses of wild type and deletion strains (snf1∆ and rad23∆) to 

UV irradiation (Wade et al., 2009).  

 

In the present study we merged these two datasets, identified differentially expressed 

genes, clustered the datset and integrated with different omics in order to get a deeper 

understanding of the dynamics of transcriptional response to DNA damage induced by 

treatment with MMS and exposure to UV. 

 

4.3.1.  Identification of differentially and significantly expressed genes by E-EDGE 

 

Differentially expressed genes out of global transcription data of 5584 genes were 

determined by using EDGE. The standard method yielded 1725 differentially expressed 

genes. Sampling time points were introduced as 0, 30, 60, 100, 140 and 180 minutes  
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corresponding  to the real sampling times of 1-P dataset and time points 195, 210, 225 and 

255 minutes were introduced corresponding to 0, 15, 30 and 60 minutes real sampling times 

within the 2-WT data set. A 15 minutes interval was artificially introduced between two data 

sets to conntect these two separate data. 

 

A total of 4344 genes that have at least 1.5 fold change between its maximum and 

minimum expression levels through the time scale were identified. In addition to that 3247 

genes were determined to have standard deviations higher than 0.25.  

 

A total of 4423 genes identified by these three approaches were then filtered as 

described in Section 3.3.6. in order to remove genes with low abundance. With this final step 

of E-EDGE 4141 genes were defined as differentially and significantly expressed and 

following analysis were applied on this subset of the transcriptome data. 

  

4.3.2.  SOMs of differentially expressed genes identified by E-EDGE 

 

Expression profiles of 4141 genes which were identified by E-EDGE were clustered 

by using SOMs and the number of clusters was intuitively determined as nine. 

 

 

Figure 4.3. Self-organizing maps of expression profiles. The first six points and following 

four points represent the transcriptomic response to DNA damage introduced by MMS and 

UV respectively. 
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c0 and c1 clusters display an immediate up-regulation after exposure to MMS or UV 

(Figure 4.3). The number of genes and significantly associated biological processes and 

pathway are presented on Table 4.1.   

 

Table 4.1. Selected GO biological process terms and pathways significantly associated 

with up-regulated clusters; c0 and c1. The number of the genes was given in parenthesis. 

c0 (148)     

GO Biological Process Term Count P-Value 

vacuolar protein catabolic process 34 1.2E-28 

cellular response to heat 34 5.1E-22 

cellular carbohydrate catabolic process 14 1.0E-08 

response to toxin 11 5.2E-08 

alcohol catabolic process 11 1.6E-06 

autophagy 13 8.4E-05 

response to oxidative stress 10 8.7E-05 

glycogen biosynthetic process 5 1.1E-04 

sporulation resulting in formation of a cellular spore 15 4.1E-04 

negative regulation of gluconeogenesis 4 8.8E-04 

trehalose metabolic process 4 1.7E-03 

glycoside metabolic process 4 2.2E-03 

pentose catabolic process 3 4.9E-03 

glucose catabolic process 6 5.3E-03 

D-xylose metabolic process 3 7.3E-03 

proteasomal ubiquitin-dependent protein catabolic process 7 9.4E-03 

Pathway Count P-Value 

Starch and sucrose metabolism 10 2.2E-07 

c1 (535)     

GO Biological Process Term Count P-Value 

vacuolar protein catabolic process 43 2.7E-16 

cellular response to heat 49 1.3E-12 

piecemeal microautophagy of nucleus 17 3.6E-09 

CVT pathway 13 1.5E-08 

cellular response to starvation 17 3.6E-07 

glucose metabolic process 21 4.4E-04 

sporulation resulting in formation of a cellular spore 36 4.7E-04 

regulation of glucan biosynthetic process 6 5.2E-04 

autophagic vacuole formation 6 5.2E-04 

ubiquitin-dependent protein catabolic process 31 8.6E-04 

glycogen metabolic process 10 8.8E-04 

retrograde transport, endosome to Golgi 8 1.2E-03 

trehalose metabolic process 6 1.6E-03 

protein modification by small protein conjugation or removal 24 1.7E-03 

glycoside metabolic process 6 2.6E-03 

cellular aldehyde metabolic process 8 9.9E-03 
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Table 4.1. Selected GO biological process terms and pathways significantly associated 

with up-regulated clusters; c0 and c1. The number of the genes was given in parenthesis. 

Cont. 

Pathway Count P-Value 

Regulation of autophagy 9 2.2E-05 

 

c3 cluster displays an up-regulation until 60th minute of the MMS addition and then 

expression levels remain unchanged while after UV exposure up-regulation takes place until 

the 30th minutes followed with a slight down-regulation. Genes which compose the largest 

cluster, c4, were induced until 100th minute of MMS pulse and after 15th minute of the UV 

exposure (Figure 4.3). The significantly associated biological process terms and pathways 

are presented in Table 4.2. 

 

Table 4.2. Selected GO biological process terms and pathways significantly associated 

with the clusters c3 and c4. The number of the genes was given in parenthesis. 

c3 (172)     

GO Biological Process Term Count P-Value 

arginine biosynthetic process 6 4.0E-06 

response to inorganic substance 10 4.4E-06 

iron-sulfur cluster assembly 7 1.4E-05 

ornithine metabolic process 5 2.1E-05 

response to toxin 9 3.8E-05 

oxidation reduction 25 4.7E-05 

response to reactive oxygen species 6 8.3E-05 

response to drug 13 1.9E-04 

cofactor biosynthetic process 11 8.6E-04 

response to arsenic 4 3.2E-03 

cellular response to heat 13 5.2E-03 

sulfur metabolic process 9 7.3E-03 

Pathway Count P-Value 

Arginine and proline metabolism 5 1.7E-03 

c4 (1133)     

GO Biological Process Term Count P-Value 

ubiquitin-dependent protein catabolic process 70 8.3E-09 

DNA repair 79 2.9E-06 

protein complex assembly 76 8.2E-06 

mitochondrion inheritance 15 1.0E-03 

post-Golgi vesicle-mediated transport 27 1.2E-03 

endosome transport 24 1.2E-03 

transcription initiation from RNA polymerase II promoter 19 1.6E-03 

protein modification by small protein conjugation 34 4.0E-03 
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Table 4.2. Selected GO biological process terms and pathways significantly associated 

with the clusters c3 and c4. The number of the genes was given in parenthesis. Cont. 

membrane fusion 25 4.8E-03 

vesicle docking during exocytosis 9 6.1E-03 

actin cytoskeleton organization 32 8.9E-03 

mRNA processing 55 8.9E-03 

histone deacetylation 12 9.2E-03 

chromatin silencing at telomere 21 9.9E-03 

Pathway Count P-Value 

Proteasome 31 2.6E-18 

 

A total of 374 genes which compose cluster c2 display expression profiles with the 

highest standard deviation. MMS addition causes an upregulation after 60th minute following 

an initial down-regulation. UV exposure has the opposite effect on expression levels. The 

expression levels of the genes were induced between 30th to 60th minutes. The biological 

process GO terms and pathways associated with this cluster was given in Table 4.3. 

 

Table 4.3. Selected GO biological process terms and pathways significantly associated 

with cluster c2. The number of the genes was given in parenthesis. 

c2 (374)     

GO Biological Process Term Count P-Value 

translational elongation 39 5.2E-04 

positive regulation of histone modification 4 2.4E-03 

spliceosome assembly 6 9.3E-03 

Pathway Count P-Value 

Spliceosome 10 3.1E-03 

 

Down-regulation of 508 genes of c5 starts immediately after the pulse and stops at 

100th minute of MMS addition while down-regulation starts at 60th minute after UV 

exposure. The biological process GO terms and pathways associated with this cluster was 

given in Table 4.4. 
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Table 4.4. Selected GO biological process terms and pathways significantly associated 

with the down-regulated cluster c5. The number of the genes was given in parenthesis. 

c5 (508)     

GO Biological Process Term Count P-Value 

protein amino acid N-linked glycosylation 16 7.7E-06 

polyadenylation-dependent ncRNA catabolic process 9 6.4E-05 

transcription from RNA polymerase III promoter 12 6.6E-05 

ncRNA catabolic process 10 1.1E-04 

tRNA catabolic process 8 2.1E-04 

RNA fragment catabolic process 6 4.7E-04 

tRNA wobble uridine modification 9 1.2E-03 

mitochondrial electron transport, cytochrome c to oxygen 6 2.4E-03 

GPI anchor biosynthetic process 9 2.7E-03 

exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from 

tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 
7 3.2E-03 

U4 snRNA 3'-end processing 6 3.6E-03 

maturation of SSU-rRNA from tricistronic rRNA transcript  

(SSU-rRNA, 5.8S rRNA, LSU-rRNA) 
16 4.9E-03 

mRNA catabolic process 16 6.9E-03 

one-carbon metabolic process 15 9.7E-03 

cell wall glycoprotein biosynthetic process 6 9.7E-03 

mannoprotein biosynthetic process 6 9.7E-03 

Pathway Count P-Value 

High-mannose type N-glycan biosynthesis 8 4.5E-05 

Pyrimidine metabolism 16 2.3E-03 

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 8 4.1E-03 

Purine metabolism 18 5.2E-03 

 

MMS impulse causes repression of the genes which compose clusters c6 and c7 for 

the entire time interval of the experiment while it causes repression of the genes reside in 

cluster c8 until 100th minute. Exposure to UV also represses the genes in clusters c6, c7 and 

c8 in a way that the repression disappears at 30th minute for cluster c6 and accelerates for 

clusters c7 and c8. The biological process GO terms and pathways associated with these 

three cluster were given in Table 4.5. 
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Table 4.5. Selected GO biological process terms and pathways significantly associated 

with the down-regulated cluster c6, c7 and c8. The number of the genes was given in 

parenthesis 

c6     

GO Biological Process Term Count P-Value 

mitochondrial translation 44 4.5E-17 

tRNA aminoacylation for protein translation 15 6.2E-05 

RNA elongation from RNA polymerase II promoter 18 2.2E-04 

nucleosome organization 17 1.3E-03 

chromatin assembly or disassembly 17 2.7E-03 

regulation of cell cycle 35 3.1E-03 

cell division 59 3.7E-03 

cytoskeleton organization 41 3.9E-03 

intracellular protein transmembrane transport 21 4.3E-03 

mitochondrial respiratory chain complex assembly 9 5.0E-03 

conjugation with cellular fusion 25 6.0E-03 

DNA packaging 14 7.8E-03 

protein targeting to mitochondrion 14 7.8E-03 

mitosis 33 8.7E-03 

Pathway Count P-Value 

Aminoacyl-tRNA biosynthesis 15 3.0E-04 

Ribosome 31 3.6E-04 

c7     

GO Biological Process Term Count P-Value 

rRNA processing 46 1.3E-09 

ergosterol biosynthetic process 9 1.9E-04 

ribosomal large subunit assembly 11 2.8E-04 

ribosomal small subunit assembly 7 6.1E-04 

regulation of translational fidelity 6 1.6E-03 

cellular metabolic compound salvage 13 1.9E-03 

Pathway Count P-Value 

Ribosome 58 1.6E-28 

c8     

GO Biological Process Term Count P-Value 

ribosome biogenesis 110 8.5E-75 

rRNA processing 93 3.6E-71 
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Table 4.5. Selected GO biological process terms and pathways significantly associated 

with the down-regulated cluster c6, c7 and c8. The number of the genes was given in 

parenthesis. Cont. 

ncRNA processing 101 1.3E-65 

rRNA modification 7 2.9E-05 

positive regulation of transcription from RNA polymerase I promoter 5 1.2E-03 

snRNA pseudouridine synthesis 4 1.3E-03 

ribosomal large subunit export from nucleus 5 3.7E-03 

cellular metabolic compound salvage 9 5.0E-03 

tRNA methylation 5 5.9E-03 

regulation of translation 16 8.3E-03 

Pathway Count P-Value 

RNA polymerase 10 2.1E-07 

Pyrimidine metabolism 13 1.6E-06 

Ribosome 14 1.3E-04 

Purine metabolism 12 1.4E-04 

 

4.3.3.  WGCNA of differentially expressed genes identified by E-EDGE 

 

A co-expression network was constructed using differentially and significantly 

expressed genes identified by E-EDGE and analyzed by WGCNA. Power function was 

selected as an adjacency function and parameterization of the power function was identified 

according to fitness of the resulting co-expression network to scale free criteria. Scale free 

topology could be attained for β = 14 (Figure 4.4).   

 

Resulting adjacency matrix transformed into a topological overlap matrix (TOM) and 

then dissimilarities based on TOM were hierarchically clustered by using WGCNA R 

Package. Minimum module size was set to be 30 and module pairs with higher correlation 

than 0.90 between their representative expression profiles were merged. 20 modules were 

identified representing the response of the cells to DNA damage stress (Figure 4.5). 

 

Hierarchical network and heat map of the modules based on correlations between their 

eigengene profiles provide clues about the organization of the modules. Modules are 

organized in five groups.  
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Figure 4.4. Fitness to scale-free nature (A) and mean connectivity (B) as a function of 

parameterization of the power function. 

 

 

Figure 4.5. Hierarchical clustering dendrogram of genes identified by E-EDGE  

 

The first group which has the closest correlation between their eigengenes consists of 

blue, pink, light-cyan and midnight-blue modules, the second group consists of green-

yellow, green, light-green, brown and tan modules, the third group consists of cyan and 

grey60 modules, the fourth group consists of purple, magenta and red modules and turquoise, 

black, yellow, royal-blue and salmon modules compose the last group. Light yellow module 
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displays the most distinct eigengene profile which is not included within any of these five 

groups (Figure 4.6). 

 

 

Figure 4.6. Meta-analysis of the modules identified by WGCNA for E-EDGE genes. 

Hierarchical organization of the modules (A) and heat-map of the modules (B).  

 

By using the re-allocation process 3750 genes were redistributed to the 20 modules 

with a positive correlation (PCC>0.75) and remaining genes were flagged as outlier (Table 
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4.6). During the re-allocation process negatively correlated new modules were also 

constructed and because of the small sizes of these newly constructed modules they were 

also treated as outlier.  

 

Table 4.6. Module ID’s and sizes of E-EDGE genes determined by WGCNA after 

signedKME pipeline. 

Module 

ID 

Module 

Size 

Module 

ID 

Module 

Size 

Module 

ID 

Module 

Size 

Module 

ID 

Module 

Size 

ME1 1437 ME6 170 ME11 78 ME16 55 

ME2 599 ME7 126 ME12 76 ME17 55 

ME3 375 ME8 99 ME13 71 ME18 52 

ME4 348 ME9 86 ME14 71 ME19 48 

ME5 194 ME10 83 ME15 68 ME20 45 

 

Furthermore the average expression profiles of these modules were used to identify 

the time dependent up- or down regulated biological processes or pathways in response to 

DNA damage stress (Figure 4.7). 

 

DNA damage stresses induce the genes in ME1 and ME6 modules. The induction in 

ME6 by MMS addition ends after one hour while the induction on account of UV exposure 

takes place between 15th and 30th minutes (Figure 4.7). The biological process GO terms and 

pathways associated with these two modules were provided in Table 4.7. 

 

The genes involved in proteasomal ubiquitin-dependent protein catabolic process, 

sporulation resulting in formation of a cellular spore, CVT pathway and cellular response to 

starvation process were clustered in the largest module, ME1 and genes in ME6 module 

involved in response to toxin, oxidation reduction, response to hydrogen peroxide and cell 

redox homeostasis  processes. Both of the modules were found to be significantly associated 

with cellular response to heat and vacuolar protein catabolic process biological process term. 

Proteasome and gluthathione metabolism pathways were identified to be linked to ME1 and 

ME6 modules, respectively (Table 4.7). 
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Figure 4.7. Average expression profiles of the positively correlated modules identified by 

WGCNA of the genes identified by E-EDGE (x-axis is sampling points and y-axis is fold 

change). 

 

Table 4.7. Selected GO biological process terms and pathways significantly associated 

with ME1 and ME6 modules.  

ME1     

GO Biological Process Term Count P-Value 

vacuolar protein catabolic process 70 3.3E-26 

cellular response to heat 72 4.8E-14 

sporulation resulting in formation of a cellular spore 66 4.3E-07 

proteasomal ubiquitin-dependent protein catabolic process 31 3.7E-06 

late endosome to vacuole transport 18 1.5E-05 

protein ubiquitination 31 1.5E-05 
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Table 4.7. Selected GO biological process terms and pathways significantly associated 

with ME1 and ME6 modules. Cont. 

CVT pathway 12 8.6E-05 

cellular response to starvation 18 2.3E-04 

vesicle docking during exocytosis 10 3.1E-04 

retrograde transport, endosome to Golgi 11 5.0E-04 

D-xylose metabolic process 6 6.1E-04 

membrane fusion 24 9.5E-04 

proteasome assembly 10 9.7E-04 

regulation of actin filament polymerization 7 1.0E-03 

negative regulation of gluconeogenesis 7 1.0E-03 

mRNA polyadenylation 10 1.6E-03 

response to osmotic stress 30 2.0E-03 

post-Golgi vesicle-mediated transport 23 2.8E-03 

pentose catabolic process 5 3.1E-03 

organelle inheritance 21 4.9E-03 

glycogen biosynthetic process 7 7.2E-03 

aldehyde catabolic process 5 8.1E-03 

autophagic vacuole formation 6 8.2E-03 

Pathway Count P-Value 

Proteasome 30 6.3E-18 

ME6     

GO Biological Process Term Count P-Value 

response to toxin 15 8.2E-10 

oxidation reduction 34 1.2E-06 

cellular response to heat 22 4.7E-06 

glutathione metabolic process 6 1.8E-04 

response to hydrogen peroxide 4 2.7E-03 

cell redox homeostasis 6 3.9E-03 

glycerol ether metabolic process 4 4.0E-03 

cofactor metabolic process 17 4.9E-03 

vacuolar protein catabolic process 12 5.2E-03 

lysine biosynthetic process 4 5.6E-03 

iron-sulfur cluster assembly 5 6.4E-03 

response to osmotic stress 11 6.4E-03 

Pathway Count P-Value 

Glutathione metabolism 5 1.8E-03 

 

The genes clustered in ME2 and ME3 were down-regulated upon MMS addition. They 

display a down-regulation with a 30 minutes delay after exposure to UV (Figure 4.7). Genes 

which compose ME2 and ME3 modules were identified to be associated with growth related 

processes. Purine and pyrimidine metabolism related pathways were found to be 

significantly linked to ME2 module and ribosome pathway was identified to be related to 

ME3 module (Table 4.8).  
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Table 4.8. Selected GO biological process terms and pathways significantly associated 

with clusters ME2 and ME3.  

ME2     

GO Biological Process Term Count P-Value 

ncRNA metabolic process 195 5.3E-81 

ribosome biogenesis 183 4.6E-80 

ribosome export from nucleus 22 5.2E-09 

transcription from RNA polymerase III promoter 19 6.8E-09 

tRNA methylation 14 7.2E-09 

cellular metabolic compound salvage 24 1.0E-06 

regulation of translation 44 1.2E-05 

one-carbon metabolic process 24 8.4E-05 

cellular macromolecular complex assembly 60 3.3E-04 

protein amino acid glycosylation 21 4.1E-04 

positive regulation of transcription from RNA polymerase I promoter 7 1.7E-03 

ribonucleoside monophosphate metabolic process 11 2.4E-03 

snRNA pseudouridine synthesis 5 2.9E-03 

exonucleolytic trimming during rRNA processing 8 5.8E-03 

ergosterol biosynthetic process 9 6.5E-03 

pyrimidine nucleotide metabolic process 7 6.7E-03 

box C/D snoRNA metabolic process 6 7.1E-03 

cell wall mannoprotein biosynthetic process 7 9.6E-03 

Pathway Count P-Value 

RNA polymerase 22 2.1E-13 

Purine metabolism 36 1.2E-10 

Pyrimidine metabolism 30 9.2E-10 

High-mannose type N-glycan biosynthesis 8 2.8E-04 

ME3     

GO Biological Process Term Count P-Value 

translation 140 2.6E-32 

ribosome biogenesis 54 7.7E-07 

ergosterol biosynthetic process 11 4.8E-06 

regulation of translational fidelity 8 1.7E-05 

rRNA export from nucleus 13 4.8E-05 

cellular metabolic compound salvage 16 7.2E-05 

tRNA aminoacylation for protein translation 11 4.3E-04 

fatty acid elongation 4 1.7E-03 

posttranslational protein targeting to membrane, translocation 5 1.9E-03 

protein amino acid N-linked glycosylation 10 9.8E-03 

Pathway Count P-Value 

Ribosome 82 2.1E-47 

 

Average expression profiles of ME4 and ME7 modules display an increase within the 

first hour of MMS addition and a decrease within the first half hour of the UV exposure 

(Figure 4.7). 
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Functional annotations of the genes which compose ME4 module are similar to the 

functional annotations determined for ME1 module while ME7 was found to be related to 

DNA repair and processes linked to cell cycle (Table 4.7; Table 4.9). 

 

Table 4.9. Selected GO biological process terms and pathways significantly associated 

with ME4 and ME7 modules. 

ME4     

GO Biological Process Term Count P-Value 

vacuolar protein catabolic process 19 7.0E-07 

cellular response to heat 17 2.3E-03 

glycogen metabolic process 6 6.3E-03 

membrane organization 20 9.2E-03 

response to inorganic substance 7 9.6E-03 

ME7     

GO Biological Process Term Count P-Value 

DNA repair 28 6.7E-07 

protein refolding 7 2.7E-05 

glutamate biosynthetic process 5 1.2E-03 

meiosis I 11 1.3E-03 

cellular response to heat 17 1.6E-03 

M phase of meiotic cell cycle 16 4.8E-03 

DNA catabolic process, endonucleolytic 5 7.8E-03 

DNA integrity checkpoint 5 9.3E-03 

coenzyme catabolic process 6 9.3E-03 

mitotic sister chromatid segregation 9 9.4E-03 

mitochondrion organization 20 9.6E-03 

Pathway Count P-Value 

Meiosis 13 3.5E-03 

Homologous recombination 5 6.2E-03 

 

Down-regulated modules ME5 and ME18 upon MMS addition display a down-

regulation until 30th minute of exposure to UV where expression levels start to slightly 

recover (Figure 4.7).  

 

Both of the modules have genes which are significantly enriched in cell cycle related 

biological processes like regulation of cell cycle and mitosis. The genes which compose 

ME5 module was also determined to be associated with cell cycle pathway (Table 4.10)  
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Table 4.10. Selected GO biological process terms and pathways significantly associated 

with ME5 and ME18 modules. 

ME5     

GO Biological Process Term Count P-Value 

regulation of transcription from RNA polymerase II promoter 19 2.1E-04 

cytoskeleton organization 17 2.5E-04 

cell cycle phase 25 2.9E-04 

regulation of cell cycle 13 2.8E-03 

chromatin modification 13 4.2E-03 

mitosis 12 7.4E-03 

cellular bud site selection 7 8.2E-03 

Pathway Count P-Value 

Cell cycle 15 1.6E-06 

ME18     

GO Biological Process Term Count P-Value 

regulation of cell cycle 11 2.3E-05 

cytoskeleton-dependent intracellular transport 4 2.1E-03 

negative regulation of DNA metabolic process 4 2.1E-03 

sister chromatid segregation 6 2.2E-03 

mitosis 8 3.3E-03 

M phase of mitotic cell cycle 8 3.6E-03 

meiotic cell cycle 8 5.1E-03 

regulation of DNA replication 4 5.4E-03 

establishment of mitotic spindle orientation 3 6.5E-03 

 

Average expression profiles of ME8 and ME9 modules show opposite trends upon 

MMS addition while they behave similarly after UV exposure (Figure 4.7).  

 

Oxidative phosphorylation pathway related genes in ME8 module were found to be 

repressed after MMS addition for an hour and then upregulated while arginine and proline 

metabolism pathway related genes in ME9 were initially induced and then repressed after 

60th minute. Both pathways display similar expression profiles after UV exposure as they 

upregulated after 15th minute and down-regulated after 30th minute (Table 4.11). 
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Table 4.11. Selected GO biological process terms and pathways significantly associated 

with ME8 and ME9 modules. 

ME8     

GO Biological Process Term Count P-Value 

rRNA processing 17 1.3E-05 

nucleobase, nucleoside and nucleotide biosynthetic process 11 2.2E-04 

tRNA modification 7 2.1E-03 

purine nucleotide biosynthetic process 7 3.4E-03 

peptidyl-diphthamide metabolic process 3 3.7E-03 

oxidative phosphorylation 6 5.8E-03 

purine salvage 3 7.6E-03 

Pathway Count P-Value 

Oxidative phosphorylation 6 9.9E-03 

ME9     

GO Biological Process Term Count P-Value 

arginine biosynthetic process 7 1.8E-11 

amine biosynthetic process 12 2.0E-09 

response to drug 7 2.1E-04 

ornithine biosynthetic process 3 3.0E-04 

Pathway Count P-Value 

Arginine and proline metabolism 5 8.4E-05 

 

Genes in ME11 module were down-regulated with a 100 minutes delay after MMS 

addition while they immediately down-regulated until 30th minute of UV exposure (Figure 

4.7). ME11 module was identified to be significantly associated with mitochondrial 

translation, regulation of exit from mitosis and mitochondrial respiratory chain complex IV 

assembly biological processes (Table 4.12). 

 

Table 4.12. Significantly enriched GO biological process terms of ME11 module. 

ME11     

GO Biological Process Term Count P-Value 

mitochondrial translation 25 1.3E-27 

mitochondrion organization 30 9.8E-22 

translation 34 1.5E-14 

regulation of exit from mitosis 5 2.6E-04 

mitochondrial respiratory chain complex IV assembly 3 8.5E-03 
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Average expression profile of the genes which compose ME12 module displays a 

continuous down-regulation which accelerates after 60th and 30th minutes of MMS addition 

and UV exposure, respectively (Figure 4.7). The genes residing in ME12 are enriched in 

nucleosome assembly, cytokinesis and cell separation during cytokinesis biological 

processes (Table 4.13). 

 

Table 4.13. Significantly enriched GO biological process terms of ME12 module. 

ME12     

GO Biological Process Term Count P-Value 

nucleosome organization 7 1.2E-04 

chromatin assembly or disassembly 7 1.7E-04 

cytokinesis, completion of separation 4 3.3E-04 

nucleosome assembly 5 3.8E-04 

cell division 14 4.6E-04 

cytokinesis 8 6.3E-04 

chromatin assembly 5 8.3E-04 

cell separation during cytokinesis 4 8.8E-04 

DNA packaging 5 4.9E-03 

 

The genes in ME13 module which responses MMS addition by induction and 

responses UV exposure by repression were found to be significantly enriched in only three 

biological process terms; regulation of transcription, regulation of DNA-dependent 

transcription and regulation of RNA metabolic process (Figure 4.7). 

 

ME14 module consists of genes related to splicesome pathway and nuclear mRNA 

splicing via splicesome process (Table 4.14). Expression profiles of these genes display a 

repression until 60th minute of MMS addition and display an induction until 30th minute of 

UV exposure (Figure 4.7). 

 

Table 4.14. Significantly enriched GO biological process terms of ME14 module. 

ME14     

GO Biological Process Term Count P-Value 

mRNA metabolic process 8 2.6E-03 

RNA splicing 6 3.1E-03 

nuclear mRNA splicing, via spliceosome 5 5.4E-03 

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 5 5.8E-03 

RNA splicing, via transesterification reactions 5 7.3E-03 

Pathway Count P-Value 

Spliceosome 4 9.8E-03 
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Cell cycle related genes which reside in ME16 were found to be down-regulated 

continuously upon UV exposure and down-regulated within the first half hour after MMS 

addition (Figure 4.7; Table 4.15). 

 

Table 4.15. Selected GO biological process terms and pathways significantly associated 

with ME16 modules. 

ME16     

GO Biological Process Term Count P-Value 

cell cycle process 17 9.8E-05 

nucleosome assembly 5 1.8E-04 

mitotic cell cycle 12 3.9E-04 

M phase 12 7.7E-04 

positive regulation of nucleobase-containing compound metabolic process 8 3.3E-03 

positive regulation of macromolecule metabolic process 8 7.5E-03 

negative regulation of transcription from RNA polymerase II promoter 5 9.0E-03 

Pathway Count P-Value 

Cell cycle 6 4.8E-03 

 

The genes which compose ME17 module were irresponsive to UV while they were 

repressed initially until 30th minute of MMS addition whereafter expression levels were 

increased. These genes do not have any significant biological process terms association 

while the only pathway statistically enriched with the genes of the module was found to be 

one-carbon-pool by folate.  

 

UV causes repression of genes which compose ME19 module for half an hour then 

transcription of the genes recovers while MMS addition leads to a slight increase and a 

recovery after 100 minutes (Figure 4.7). The module was determined to be associated with 

mitochondrion organization and translation processes and Aminoacyl-tRNA biosynthesis 

pathway (Table 4.16). 

 

Average expression profile of the last module, ME20 increases with a 30 minute delay 

after MMS addition and decreases continuously after exposure to UV (Figure 4.7). The genes 

were found to be associated with four biological process terms; regulation of DNA-

dependent transcription, regulation of RNA metabolic process, regulation of transcription 

and transcription. 
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Table 4.16. Significantly enriched GO biological process terms of ME19 module. 

ME19     

GO Biological Process Term Count P-Value 

mitochondrial translation 14 2.5E-12 

mitochondrion organization 20 4.2E-12 

translation 21 3.0E-06 

tRNA aminoacylation 6 5.4E-05 

amino acid activation 6 5.4E-05 

tRNA aminoacylation for protein translation 5 5.2E-04 

tRNA aminoacylation for mitochondrial protein translation 3 6.1E-03 

Pathway Count P-Value 

Aminoacyl-tRNA biosynthesis 6 1.9E-05 

 

ME10 and ME15 were found to be not associated with any process or pathways.  

 

4.3.4.  Regulation of the response to DNA damage  

 

Expression profiles of 4003 genes out of 4141 genes identified by E-EDGE with 

known TF interactions were analyzed by DREM. Analysis of this subset by DREM revealed 

that DNA damage triggers complex regulatory events where 22 transcription factors (TFs) 

drives transcriptomic response into 9 branches associated with 162 to 795 genes at the end 

of time course (Figure 4.8).  

 

Transcriptional profiles of the 4003 genes immediately splits into two branches. A set 

of eight regulators (Yap7p, Msn2p, Rpn4p, Cad1p, Yap1p, Msn4p, Aft2p and Hsf1p) which 

are mostly related to stress response mediate the regulation of the up-regulated branch of 

genes. These genes bifurcates at the 30th minute of MMS addition where continuously 

induced sub-branch of genes were determined to be controlled by Msn2p, Msn4p, Yap7p, 

Skn7p and Ume6p. Nuclear response regulator Skn7p drives the further induction of the 

genes which bifurcate again at the consecutive time point (Figure 4.8). 
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Figure 4.8. Dynamic regulatory map of differentially expressed genes. X-axis was arranged 

as uniform sample points. The first six points and following four points represent the 

transcriptomic response to DNA damage introduced by MMS and UV respectively. 

 

Another 10 TFs (Fhl1p, Rap1p, Swi4p, Rlm1p, Mbp1p, Swi6p, Tec1p, Ste12p, Dig1p 

and Fkh1p) which control cell cycle, mating and ribosomal proteins were identified to be 

master regulators of the down-regulated genes at the beginning. Ndd1p which is a 

transcriptional activator essential for nuclear division, Fkh2p which is the paralog of Fkh1p 

and four other TFs (Swi4p, Fhl1p, Swi6p, Rap1p) among these 10 TFs continue to play role 

in repression of a sub-branch of genes at the following split (Figure 4.8).  

 

4.3.5.  NP analysis of the DNA damage 

 

A protein-protein interaction network was constructed for NP analysis, consisting of 

physical interactions verified by more than one different experimental method or mentioned 

in more than one articles in MIPS, MINT, DIP and BIOGRID databases (Mewes et al., 2002; 

Chatr-Aryamontri et al., 2007; Xenarios et al., 2000; Stark et al., 2006). There were 5,985 
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such interactions among the 5576 proteins whose corresponding expression data is available. 

PCC cut-off was selected to be more stringent as 0.7 and -0.7 for correlation and anti-

correlation in NP analysis. NP networks for MMS addition (1-P) and UV exposure (2-WT) 

were constructed seperately using the reference ppi network of 5576 nodes and 5985 edges. 

Topological properties of the resulting NP networks are presented in Table 4.17. 

 

Table 4.17. Topological properties of NP networks. 

 1-P 2-WT 

Number of correlated edges 3025 2289 

Number of anti-correlated edges 1021 548 

Number of total edges 4046 2837 

Number of nodes 1789 1545 

 

NP networks were manually dissected into two anti-correlated clusters (R and B) so 

that each cluster has less than 1% intra-cluster anti-correlated interactions. Expression 

profiles of each cluster in time for each data set were plotted (Figure 4.9.).  

 

 

Figure 4.9. Average expression levels of R and B modules in; (A) 1-P and (B) 2-WT. 

In response to MMS addition 969 genes clustered in an upregulated module (R) out of 

physically interacting NP network while expression levels of 820 genes (B) were found to 
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be repressed (Figure 4.9a). The biological process GO terms and patways significantly 

associated with the upregulated (R) module  is  given in Table 4.18. 

 

Table 4.18. Selected GO biological process terms and pathways significantly associated 

with R module in response to MMS. 

R module (1-P)     

GO Biological Process Term Count P-Value 

ubiquitin-dependent protein catabolic process 94 2.0E-22 

protein complex assembly 96 5.9E-14 

cell cycle process 166 1.8E-12 

protein ubiquitination 46 2.3E-12 

RNA biosynthetic process 88 1.1E-11 

piecemeal microautophagy of nucleus 25 3.2E-11 

sporulation resulting in formation of a cellular spore 84 4.0E-11 

post-Golgi vesicle-mediated transport 38 1.8E-09 

DNA repair 87 2.0E-09 

actin filament organization 33 2.3E-08 

histone deacetylation 19 8.8E-08 

mRNA metabolic process 88 1.1E-07 

vesicle fusion 22 1.1E-07 

vesicle docking during exocytosis 14 1.4E-07 

protein amino acid phosphorylation 52 5.7E-07 

protein targeting to vacuole 31 6.0E-07 

cell division 104 6.8E-07 

response to nutrient levels 31 9.1E-07 

endosome transport 30 1.0E-06 

Pathway Count P-Value 

Proteasome 34 3.4E-21 

Regulation of autophagy 16 4.3E-09 

Ubiquitin mediated proteolysis 26 2.2E-07 

Cell cycle 49 2.0E-06 

Basal transcription factors 15 3.0E-05 

Homologous recombination 13 7.0E-05 

Meiosis 44 1.7E-04 

Endocytosis 16 1.2E-03 

Nucleotide excision repair 16 2.5E-03 

 

The biological process GO terms and patways significantly associated with the down-

regulated module B in respose to MMS  were tabulated in Table 4.19. 
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Table 4.19. Selected GO biological process terms and pathways significantly associated 

with B module in response to MMS. 

B module (1-P)     

GO Biological Process Term Count P-Value 

ribosome biogenesis 184 3.4E-58 

rRNA processing 142 4.8E-53 

ncRNA processing 170 9.1E-51 

RNA modification 48 1.3E-09 

cell division 100 4.9E-09 

intracellular protein transmembrane transport 39 8.4E-09 

polyadenylation-dependent ncRNA catabolic process 14 2.5E-07 

tRNA catabolic process 13 3.8E-07 

ribosome export from nucleus 22 8.7E-07 

protein import into nucleus 26 1.0E-06 

nucleus organization 30 1.3E-06 

regulation of cyclin-dependent protein kinase activity 14 1.6E-06 

RNA transport 40 1.6E-06 

cell cycle phase 107 1.9E-06 

U4 snRNA 3'-end processing 11 2.7E-06 

tRNA processing 38 3.7E-06 

regulation of translation 55 3.7E-06 

mitosis 54 4.1E-06 

nuclear mRNA splicing, via spliceosome 36 4.9E-06 

chromosome segregation 51 6.3E-06 

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 17 2.0E-05 

Pathway Count P-Value 

RNA polymerase 27 7.8E-17 

Pyrimidine metabolism 39 3.3E-12 

Purine metabolism 43 1.7E-10 

RNA degradation 32 1.8E-10 

Cell cycle 49 4.0E-08 

Spliceosome 29 8.3E-07 

 

A total of 694 genes form an up-regulated module in response to UV exposure (Figure 

4.9b). Exposure to UV induces similar pathways and biological processes but its effect on 

catabolic processes seems to be less severe when compared to MMS addition (Table 4.18; 

Table 4.20). 



121 
 

 
 

Table 4.20. Selected GO biological process terms and pathways significantly associated 

with R module in response to UV exposure. 

R module (2-WT)     

GO Biological Process Term Count P-Value 

DNA replication 58 2.1E-14 

mitochondrial translation 36 4.8E-09 

DNA repair 69 5.0E-09 

microtubule cytoskeleton organization 34 1.4E-06 

protein ubiquitination 30 1.5E-06 

reproduction of a single-celled organism 57 3.2E-06 

M phase of mitotic cell cycle 48 4.8E-06 

protein transport 105 5.2E-06 

actin filament organization 24 6.8E-06 

mitotic recombination 17 7.6E-06 

vesicle-mediated transport 83 8.0E-06 

regulation of DNA metabolic process 23 1.0E-05 

vesicle organization 23 1.4E-05 

proteasomal protein catabolic process 27 1.4E-05 

sister chromatid cohesion 17 2.6E-05 

mismatch repair 14 3.1E-05 

telomere maintenance 22 3.6E-05 

cyclin catabolic process 9 3.9E-05 

membrane organization 61 4.1E-05 

cellular protein complex assembly 35 4.4E-05 

cell cycle checkpoint 22 6.3E-05 

regulation of protein complex assembly 11 6.9E-05 

mitotic metaphase/anaphase transition 9 8.8E-05 

Pathway Count P-Value 

Proteasome 34 1.5E-24 

Cell cycle 50 2.2E-10 

Meiosis 44 3.4E-07 

DNA replication 17 3.8E-06 

Mismatch repair 13 6.3E-06 

Nucleotide excision repair 17 4.8E-05 

Homologous recombination 12 5.1E-05 

Ubiquitin mediated proteolysis 19 1.4E-04 

 

A total of 870 genes compose a down-regulated module in response to UV exposure 
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(Figure 4.9b). Exposure to UV induces the same set of pathways and similar biological 

processes related to growth as in the case of MMS addition (Table 4.19; Table 4.21). 

 

Table 4.21. Selected GO biological process terms and pathways significantly associated 

with B module in response to UV exposure. 

B module (2-WT)     

GO Biological Process Term Count P-Value 

ribosome biogenesis 175 1.1E-46 

ncRNA metabolic process 167 3.3E-33 

transcription, DNA-dependent 112 1.7E-28 

chromatin organization 91 8.9E-17 

nuclear export 53 1.3E-10 

histone modification 45 2.5E-10 

protein import into nucleus 31 1.8E-09 

nuclear import 31 1.8E-09 

RNA transport 46 1.2E-08 

ribosome export from nucleus 25 1.7E-08 

ribosome assembly 32 1.2E-07 

ATP-dependent chromatin remodeling 20 2.8E-07 

intracellular protein transmembrane transport 37 5.6E-07 

cell division 97 1.1E-06 

interphase of mitotic cell cycle 40 1.3E-06 

RNA modification 43 2.4E-06 

nuclear pore organization 19 3.0E-06 

rRNA export from nucleus 21 7.2E-06 

protein export from nucleus 19 8.7E-06 

cytoskeleton organization 63 6.1E-05 

G2/M transition of mitotic cell cycle 18 6.2E-05 

cellular protein complex disassembly 24 8.3E-05 

Pathway Count P-Value 

RNA polymerase 22 5.1E-11 

Spliceosome 32 1.2E-09 

RNA degradation 29 5.0E-09 

Purine metabolism 35 8.7E-07 

Pyrimidine metabolism 28 7.7E-06 

Cell cycle 39 1.0E-04 
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4.4.Discussion 

 

The clustering and analysis of response to DNA damage indicated that the genes 

involved in vacuolar and proteasomal ubiquitin-dependent protein catabolic processes were 

found to be induced after exposure to DNA damaging effectors. WGCNA and NP analysis 

of the same data sets provided further supportive information. These results are in good 

correlation with the fact that protein catabolism was reported to be induced by MMS addition 

(Shalem et. al., 2008). 

 

Rpn4p which stimulates expression of proteasome genes was also identified as one of 

the master regulators of up-regulated genes by DREM. RPN4 deletion strain was found to 

be MMS sensitive (Jelinsky et al., 2000) and Rpn4p was also identified as one of the DNA 

damage responsive TFs (Workman et al., 2006).  

 

One set of genes involved in cellular response to heat was also found to be induced in 

response to DNA damage. WGCNA also identified a set of genes with the same association. 

However another smaller set of genes identified by WGCNA which is also enriched in 

cellular response to heat displays up-regulation until 100th minute after MMS addition while 

exposure to UV cause down-regulation for the first half hour before induction of the genes 

associated with the same biological process.  

 

Heat shock protein Hsf1p was found to be a significant mediator of the up-regulation 

by DREM in correlation with up-regulation of cellular response to heat. It was reported that 

heat shock related genes including HSF1 significantly response to DNA damage caused by 

MMS (Workman et al., 2006). 

 

The response to drug biological process term related YAP1, ATR1, SNG1 and ROD1 

were identified to be immediately up-regulated within the first half hour of the exposure to 

both MMS and UV by SOMs and WGCNA. Yap1p was already reported to be differentially 

expressed after exposure to MMS (Workman et al., 2006). Transcription factor was also 

identified by DREM as one of the key regulators of the up-regulated genes. There are some 

other genes related to response to drug biological process (FLR1 and CIN5) whose 

expression levels were up-regulated after MMS addition but unchanged after UV irradiation. 
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FLR1 is specifically related to drug transmembrane transport that might be the reason for its 

indifference to UV. 

 

The same clusters identified by SOMs and WGCNA which were enriched in response 

to drug were also found to be enriched in arginine biosynthesis related biological processes 

and pathways. Individual investigation of arginine biosynthesis related genes in these 

clusters (ARG1, ARG2, ARG3, ARG4, ARG5,6, ARG7 and ARG11) showed that MMS 

induces transcription of these genes within the first half hour while UV irradiation dependent 

upregulation starts after 15 minute which is followed by recovery after 30th minute. It was 

reported that Candida albicans upregulates its arginine biosynthesis in response to ROS 

(Jimenez-Lopez et al., 2012) and it was also reported that arginine biosynthetic pathways 

are involved in human carcinogenesis (Lind, 2004). However the role of arginine 

biosynthetic pathway in DNA damage response is poorly understood so far. 

 

Another set of genes whose expression levels were also observed to be up-regulated 

after MMS addition were found to be related to DNA repair process. Up-regulation of this 

group after UV irradiation starts with a 15 minutes delay. NP analysis verifies exactly the 

same observations while WGCNA supports these observations with a slight difference that 

a smaller set of genes enriched in DNA repair process was induced with a 30 minutes of 

delay after exposure to UV.  

 

Nucleotide excision repair (NER) and mismatch repair (MMR) mechanisms were 

found to be activated DNA repair mechanisms in response to DNA damage. Interestingly 

base-pair excision repair (BER) mechanism could not be identified as responsive to DNA 

damage. 

 

DNA damage signaling triggers Chk kinases and Chk kinases, in turn, activates DNA 

repair machinery (Friedberg et al., 2005). The genes encoding two Chk kinases, RAD53 and 

DUN1, which were identified in these sets are known to be involved in DNA damage 

process. 

DNA packaging, nucleosome organization and chromatin assembly biological 

processes were identified to be down regulated upon exposure to both MMS and UV by all 

of the three approaches. Both Rap1p and Fkh2p can repress chromatin silencing and the both 
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were identified to be master regulators of down regulated genes by DREM. All these findings 

point out that cells try to unpack DNA in order to help DNA repair processes in response to 

DNA damage. It is commonly accepted that DNA processing events including DNA repair 

are inhibited by DNA packaging (Sancar et al., 2004). 

 

SOMs, WGCNA and NP analysis coordinately revealed that mitosis related genes 

were down-regulated upon exposure to MMS or UV. NP analysis of transcriptional response 

to MMS and UV also capture down-regulation of G2/M transition of mitotic cell cycle.  

 

Gasch and colleagues reported that MMS and irradiation arrests cell cycle at different 

stages; MMS leads to S-phase arrest while UV cause an arrest at G2/M transition in 

correlation with the observed distinction (Gasch et al., 2001).  

 

The cell cycle regulators Mbp1p, Swi6p, Ndd1p, Fkh1p and Fkh2p were identified as 

master regulators of down-regulated genes by DREM. 

 

Ribosome biogenesis and accompanying growth related processes were identified to 

be down-regulated after exposure to both MMS and UV by all of the three approaches; 

SOMs, WGCNA and NP analysis. Fhl1p which is a regulator of ribosomal protein 

transcription was also identified as one of the master controllers of down-regulated genes in 

the present study.  

 

Jelinsky and Samson reported 13 ribosomal proteins whose transcripts were repressed 

more than three-fold by MMS treatment and concluded that alkylation exposure leads to a 

slowdown of global protein production (Jelinsky and Samson, 1999). Another study supports 

also the repression of ribosome biogenesis in DNA damaged cells through irradiation (Wade 

et al., 2009). 

 

Skn7p which is a nuclear response regulator and transcription factor was reported to 

be one of the central TFs in response to oxidative stress (Kelley and Ideker, 2009) and 

deletion of SKN7 was reported to increase sensitivity to MMS (Brown et al., 2006). Skn7p 

was identified by DREM analysis as one of the significant TFs while it could not be captured 

by Workman and colleagues (Workman et al., 2006). 
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Autophagy related biological processes and regulation of autophagy pathway were 

identified to be upregulated by clustering of expression profiles. It was reported that DNA 

damage induces autophagy (Kang et al., 2009; Rodriguez-Rocha et al., 2011) and induced 

autophagy delays apoptosis (Abedin et al., 2007) in human.  

 

A striking difference between the two responses was observed to be the magnitude of 

the responses. Number of genes whose expression level changes more than two-fold was 

found to be 1989 and 216 after exposure to the MMS and UV, respectively. The difference 

supports that the magnitude of the stress caused by MMS is much more than UV-irradiation. 

In accordance with this conclusion Benton and colleauges have reported that transcriptional 

response of yeas cells to MMS and ionizing radiation is dose-dependent (Benton et al., 

2006). 

 

Processes and pathways which are responsive to DNA damage like DNA repair, 

catabolism, ribosome biogenesis, cell cycle, response to heat, autophagy or DNA packaging 

were found to be affected by MMS and UV-irradiation in a similar fashion. Meiosis was 

determined to be upregulated only after exposure to MMS by WGCNA however NP analysis 

revealed that the process was up-regulated also by UV irradiation. Supporting results with 

different methods as implemented in the presents study provides more reliable outcomes.  

 

4.5.  Future prospects 

 

The magnitude of the transcriptional responses could be synchronised by repeating 

the chemostat experiments with different doses of DNA damaging agents. As a future 

perspective, experimenting transcriptional response of yeast cells to different doses of 

doxorubicin and to different doses of DNA damaging agents under the same conditions 

following by a comprehensive and reliable data analyzing step as proposed and implemented 

in this study would bring a clearer understanding of underlying mechanisms of response to 

doxorubicin and DNA damage. 

 

Activation of basepair excision repair process upon doxorubicin pulse and 

irresponsiveness of the process to MMS and UV should be investigated further. Especially 

the role of OGG1 in this differense should be focused. 
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Topological analysis of the weighted co-expression network which was constructed 

by WGCNA can be investigated further by using WSL-EC. Topological centrality in co-

expression networks and its biological implications may unveil additional information. 
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5.  CONCLUSION 

 

 

In the first part of the thesis (chapter 2), a novel global metric of centrality, weighted 

sum of loads eigenvector centrality (WSLEC), counting all eigenvectors was proposed. The 

performance of WSL-EC in the identification of topologically more important nodes that 

contribute to the integrity of a network and in capturing essential or biologically central 

nodes was tested in three biological networks and compared with the performances of four 

other commonly used metrics of centrality, DC, BC, EC and SC.  

 

Hubs with off-the-scale connectivity (super-hubs) create a strong bias in topological 

centrality for DC, BC, EC and SC, whereas WSL-EC does not seem to be affected by the 

presence of super-hubs. 

 

WSL-EC was found to outperform in capturing biologically central nodes, such as 

pathogen-interacting, HIV-1, cancer, ageing, and disease-related genes and genes, involved 

in immune system process and related to autoimmune diseases in the human interactome 

compared with DC, BC, EC or SC. The choice of metric of centrality is crucial, as different 

metrics focus on different topologies and these topological differences correspond to 

different biological roles. 

 

In the following part of the study (chapter 3) dynamic transcriptional response induced 

by doxorubicin were measured and analyzed. Performances of different methodologies were 

investigated and several modifications were proposed wherever needed. 

 

The clustering and analysis of response to doxorubicin indicated that the genes 

involved in DNA replication, mismatched repair, cell cycle and base excision repair 

pathways were found to remain without any change in their expression levels within the first 

five minutes after the induction of doxorubicin and they were down-regulated until the 60th 

minute where they start to be up-regulated. Another set of genes involved in proteasome also 

behaved similarly. However the expression levels of the set remained unchanged for 60 

minutes and then up-regulated.  
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One set of genes whose expression levels were observed to be down regulated after 30 

minutes consist of genes involved in meiosis, regulation of cell cycle, cell wall organization, 

response to osmotic stress and chromosome organization. 

 

Induction of ribosome biogenesis and coherent down-regulation of vacuolar protein 

catabolic process were found to be overrepresented in upregulated and downregulated 

clusters, respectively. Up-regulation and down-regulation regarding these terms took place 

immediately after doxorubicin addition to the chemostat culture. All of the applied methods 

revealed similar findings which were in correlation with these observations. 

 

Analysis of the expression profiles indicated that the expression levels of the genes 

involved in siderophore transport remained unchanged until one hour before sharply up 

regulated and the genes involved in cellular iron ion homeostasis were found to be up-

regulated after 5th minute. 

 

In this chapter an extended version of EDGE was also proposed in order to identify 

differentially expressed genes out of a dynamic dataset. Clustering approaches were applied 

to this subset assuming that biologically irrelevant or inactive data was eliminated which can 

improve biological associations of the resulting modules or clusters. Identifying 

differentially expressed genes by E-EDGE and then implementing clustering analysis on the 

resulting significant subset of the data can strengthen the results and unveil additional 

biological data.  

 

Although size of the subset identified by E-EDGE is more than twice the size of the 

subset identified by variance filtering in SOMs analysis, biological significance of the 

resulting clusters were improved. SOMs of the genes identified by E-EDGE yielded nine 

clusters with distinct biological roles. 

 

Analysis of the genes identified by E-EDGE revealed some of the stress responsive 

TFs (Msn2p, Msn4p and Mcm1p) and regulators of the processes like proteasome (Rpn4p), 

glucose metabolism (Sip4p and Nrg1p), cupper-sensing (Mac1p) and ribosome biogenesis 

(Fhl1p) which could not be identified when the global transcriptome was used. 
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A reallocation pipeline was also developed and proposed to improve WGCNA. The 

reallocation process yielded stronger biological attachments for the modified modules.  

 

Under the light of these results it can be proposed to track the following pipeline for 

dynamic transcriptome data analysis (Figure 4.2); 

 

 Identify differentially expressed genes by E-EDGE which is an extended version 

of EDGE approach, 

 Determine modules which represent the dataset by WGCNA, 

 Re-allocate genes to the modules identified by WGCNA by emphasizing positive 

correlations, 

 Crosscheck the modules by using SOMs, 

 Integrate additional omics data if it is needed. DREM can be used to integrate 

regulome and NP analysis can be used in order to integrate interactome. 

 

In the last part of the thesis (chapter 4) the proposed pipeline was applied to dynamic 

transcriptomic datasets collected after exposure to DNA damage which were selected from 

the literature. The two datasets were using MMS or UV-irradiation as source of the damage. 

 

It was found that both UV-irradiation and MMS induce processes and pathways related 

to DNA repair, cellular response to heat, vacuolar and proteasomal ubiquitin-dependent 

protein catabolic processes, response to drug, arginine biosynthesis and autophagy while 

repressing cell cycle, DNA packaging and ribosome biogenesis. 

 

Doxorubicin was found to be triggering similar processes and pathways with MMS or 

UV-irradiation. The most striking difference was doxorubicin dependent activation of 

ribosome biogenesis which might be risen from the time scale of the experiment as discussed 

in the third chapter.  

There are several other differences observed between DNA damage response and 

transcriptional response to doxorubicin. 
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It was reported that UV-irradiation triggers nucleotide excision repair (NER) 

mechanism while oxidative stress or MMS triggers mainly base-pair excision repair (BER) 

mechanism (Boiteux and Jinks-Robertson, 2013). Interestingly, only mismatch repair 

(MMR) and NER were identified as responsive process or pathway after exposure to both 

MMS and UV while doxorubicin was found to be inducing all repair mechanisms; BER, 

NER and MMR. The genes responsible for this difference were identified to be OGG1 which 

specifically excises 7,8-dihydro-8-oxoguanine residues located opposite cytosine or thymine 

residues in DNA and CDC9 which is a DNA ligase involve in base excision repair. OGG1 

and CDC9 were found to be induced in response to doxorubicin whereas they were found to 

be irresponsive to both MMS and UV-irradiation.  

 

DNA damage was observed to be inducing arginine biosynthesis and this observation 

is in a good correlation with the reports that tumor cells are arginine dependent (Lind, 2004). 

Interestingly doxorubicin was identified to be repressing arginine biosynthesis in this study. 

This could be one of the mechanisms that doxorubicin inhibiting in tumor cells.  

 

Siderophore and iron ion transport processes were found to be induced after 30th 

minute of the doxorubicin addition while these processes were observed to be irresponsive 

to both MMS and UV-irradiation. It was reported that cardiotoxic effects of doxorubicin 

might be caused by mitochondrial iron accumulation (Ichikawa et al., 2014). 

 

Tumor cells were also reported to be methionine dependent (Ryu et al., 2011). 

Supportingly oxidative stress was reported to enhance expression of sulfur assimilation 

genes (Riboldi et al., 2014) and consequently GSH, cysteine and methionine biosynthesis.   

The iron-sulfur cluster assembly process was found to be induced in response to DNA 

damage whereas it was found not to be affected in response to doxorubicin. 

 

Cell wall assembly and ascopore wall assembly processes were also found to be 

induced after 30th minute of the doxorubicin addition while these processes were observed 

to be irresponsive to both MMS and UV-irradiation.  

Autophagy is another affected process by doxorubicin and DNA damage in an opposite 

fashion. ATG1 is a serine/threonine kinase which is required for autophagy in yeast and its 

transcription was observed to be induced ( > 2 fold) upon UV irradiation and drasticly 
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induced ( > 11 fold) after exposure to MMS while it was identified to be repressed two-fold 

after doxorubicin pulse in the present study. 

 

Glucose catabolic process, energy derivation by oxidation of organic compounds and 

disaccharide biosynthetic process were found to be another set of processes as irresponsive 

to MMS and UV-irradiation while they were down-regulated upon exposure to doxorubicin. 

 

Interestingly intracellular signaling cascade and cell surface receptor linked signal 

transduction processes and MAPK signaling pathway were repressed in response to 

doxorubicin whereas signaling related processes and pathways could not captured as 

responsive to MMS. 

 

DREM analysis revealed 17 master regulators of response to doxorubicin and 22 

transcriptional factors mediating response to DNA damage. Between these two TF sets 10 

regulators were identified to be common (Fhl1p, Fkh1p, Hsf1p, Mbp1p, Msn2p, Msn4p, 

Rpn4p, Skn7p, Swi6p and Yap7p). Abf1p which involves in gene silencing, DNA replication 

and repair, Ace2p which is a transcription factor required for septum destruction after 

cytokinesis, Gcn4p which is an activator of amino acid biosynthetic genes, copper-sensing 

transcription factor Mac1p, pheromone response related Mcm1p, Nrg1p which is a repressor 

of a variety of processes including filamentous growth and alkaline pH response and Sip4p 

which is a gluconeogenesis related transcription factor were found to be key regulators  of 

the transcriptomic response to doxorubicin. DNA damage specific TFs were found to be 

related to iron utilization and homeostasis (Aft2p), stress responses, iron metabolism, and 

pleiotropic drug resistance (Cad1p and Yap1p), MAPK signaling cascade (Rlm1p, Tec1p, 

Ste12p and Dig1p), nuclear division (Ndd1p), chromatin silencing and telomere length 

maintenance (Rap1p) and chromatin remodeling (Ume6p). Some DNA damage specific TFs 

were observed to be closely related to the common TFs with response to doxorubicin like 

Fkh2p which is paralog of Fkh1p, Swi4p which is another component of SBF complex with 

Swi6p. 

There was a delay of 30 to 60 minutes in the expected transcriptional response to 

doxorubicin compared to response to MMS and UV-irradiation. Number of genes whose 

expression level changes more than two-fold was found to be 402 after treatment with 

doxorubicin while expression level of 1989 and 216 genes after exposure to the MMS and 
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UV had changed more than two-fold, respectively. The delay and the difference between 

magnitudes of the transcriptional responses can be explained by dose which might be 

unequal to trigger some response mechanisms at a more obvious magnitude. Another reason 

for these differences might be the different strains which were used in these studies. It should 

also be noted that experimental design used in these studies are different. 

 

  



134 
 

 
 

REFERENCES 

 

 

Abedin, M. J., D. Wang, M. A. McDonnell, U. Lehmann and A. Kelekar, 2007, “Autophagy 

delays apoptotic death in breast cancer cells following DNA damage”, Cell Death & 

Differentiation, 14(3), pp. 500-510. 

 

Aguirre, J., D. Papo and J. M. Buldú, 2013, “Successful strategies for competing 

networks”, Nature Physics, 9(4), pp. 230-234. 

 

Albert, R., H. Jeong and A. L.  Barabási, 2000, “Error and attack tolerance of complex 

networks” Nature, 406(6794), pp. 378-382. 

 

Anders, C. K., B. Adamo, O. Karginova, A. M. Deal, S. Rawal, D. Darr, A. Schorzman, C. 

Santos, R. Bash, T. Kafri, L. Carey, C. R. Miller, C. M. Perou, N. Sharpless and W. C. 

Zamboni, 2013, “Pharmacokinetics and Efficacy of PEGylated Liposomal Doxorubicin in 

an Intracranial Model of Breast Cancer”, PLOS One, 8(5): e61359. 

doi:10.1371/journal.pone.0061359. 

 

Arga, K. Y., Z. İ. Önsan, B. Kırdar, K. Ö. Ülgen and J. Nielsen, 2007, “Understanding 

signaling in yeast: insights from network analysis”, Biotechnology and 

bioengineering, 97(5), pp. 1246-1258. 

 

Ashburner M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., 2000, “Gene Ontology: 

tool for the unification of biology”, Nature genetics, 25(1), pp. 25-29. 

 

Assenov, Y., F. Ramírez, S. E. Schelhorn, T. Lengauer and M. Albrecht, 2008, “Computing 

topological parameters of biological networks”, Bioinformatics, 24(2), pp. 282-284. 

 

Baganz, F., A. Hayes, D. Marren, D. C. J. Gardner, and S. G. Oliver, 1997, “Suitability of 

Replacement Markers for Functional Analysis Studies in Saccharomyces cerevisiae”, Yeast, 

13, pp. 1563-1573. 

 



135 
 

 
 

Bandyopadhyay, S., M. Mehta, D. Kuo, M. K. Sung, R. Chuang, et al.,  2010, “Rewiring of 

genetic networks in response to DNA damage”, Science, 330(6009), pp. 1385-1389. 

 

Barabási, A. L. and Z. N. Oltvai, 2004, “Network biology: understanding the cell's functional 

organization”, Nature reviews genetics, 5(2), pp. 101-113. 

 

Baryshnikova, A., M. Costanzo, Y. Kim, H. Ding, J. Koh, K. Toufighi, K., et al., 2010, 

“Quantitative analysis of fitness and genetic interactions in yeast on a genome scale”, Nature 

methods, 7(12), pp. 1017-1024. 

 

Batada, N. N., L. D. Hurst and M. Tyers, 2006, “Evolutionary and physiological importance 

of hub proteins”, PLoS Comput Biol, 2(7), e88. 

 

Begley, T. J., A. S. Rosenbach, T. Ideker and L. D. Samson, 2004, “Hot spots for modulating 

toxicity identified by genomic phenotyping and localization mapping”, Molecular 

cell, 16(1), pp. 117-125. 

 

Benton, M. G., S. Somasundaram, J. D. Glasner and S. P. Palecek, 2006, “Analyzing the 

dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl 

methanesulfonate and ionizing radiation”, BMC genomics, 7(1), 305. 

 

Benzi M. and C. Klymko, 2015, “On the limiting behavior of parameter-dependent network 

centrality measures”, SIAM J. Matrix Anal. Appl., 36(2), pp. 686–706. 

 

Bhardwaj, N., P. M. Kim and M. B. Gerstein, 2010, “Rewiring of transcriptional regulatory 

networks: hierarchy, rather than connectivity, better reflects the importance of 

regulators”, Science signaling, 3(146), ra79-ra79. 

 

Binns D., E. Dimmer, R. Huntley, D. Barrel, C. O’Donovan and R. Apweiler, 2009, 

“QuickGO: a web-based tool for Gene Ontology searching”, Bioinformatics, 25:22. 

 

Boiteux, S. And S. Jinks-Robertson, 2013, “DNA repair mechanisms and the bypass of DNA 

damage in Saccharomyces cerevisiae” Genetics, 193(4), pp. 1025-1064. 



136 
 

 
 

 

Bolstad, B. M., R. A. Irizarry, M. Astrand, and T. P. Speed, 2003 “A comparison of 

normalization methods for high density oligonucleotide array data based on bias and 

variance”, Bioinformatics, 19:2, pp. 185-193. 

 

Bonacich, P., 1987, “Power and centrality: A family of measures”, American journal of 

sociology, pp. 1170-1182. 

 

Boyle, E. I., S. Weng, J. Gollub, H. Jin, D. Botstein, J. M. Cherry and G. Sherlock, 2004, 

“GO:: TermFinder—open source software for accessing Gene Ontology information and 

finding significantly enriched Gene Ontology terms associated with a list of 

genes”, Bioinformatics, 20(18), pp. 3710-3715. 

 

Brown, J. A., G. Sherlock, C. L. Myers, N. M. Burrows, C. Deng, H. I. Wu et al., 2006, 

“Global analysis of gene function in yeast by quantitative phenotypic profiling”, Molecular 

systems biology, 2(1). 

 

Burger, K., B. Mühl, T. Harasim, M. Rohrmoser, A. Malamoussi, M. Orban, et al., 2010, 

“Chemotherapeutic drugs inhibit ribosome biogenesis at various levels”, Journal of 

Biological Chemistry, 285(16), pp. 12416-12425. 

 

Cariaso, M. and G. Lennon, 2012, “SNPedia: a wiki supporting personal genome annotation, 

interpretation and analysis”, Nucleic acids research, 40(D1), D1308-D1312. 

 

Chatr-Aryamontri, A., A. Ceol, L. M. Palazzi, G. Nardelli, M. V. Schneider, L. Castagnoli 

and G. Cesareni, 2007, “MINT: the Molecular INTeraction database”, Nucleic acids 

research, 35(suppl 1), D572-D574. 

 

Cheung-Ong K., G. Giaever and C. Nislow, 2013, “DNA-damaging agents in cancer 

chemotherapy: serendipity and chemical biology”, Chem. Biol., 20(5), pp. 648-59. 

 

Ciccia, A. and S. J. Elledge, 2010, “The DNA damage response: making it safe to play with 

knives” Molecular cell, 40(2), pp. 179-204.  



137 
 

 
 

 

Coleman, S. T., E. A. Epping, S. M. Steggerda and W. S. Moye-Rowley, 1999, “Yap1p 

activates gene transcription in an oxidant-specific fashion”, Molecular and cellular 

biology, 19(12), pp. 8302-8313. 

 

Crucitti, P., V. Latora, M. Marchiori and A. Rapisarda, 2004, “Error and attack tolerance of 

complex networks” Physica A: Statistical Mechanics and its Applications, 340(1), pp. 388-

394. 

 

de Hoon M. J. L., S. Imoto, J. Nolan and S. Miyano, 2004, “Open source clustering 

software”, Bioinformatics, 20:9, pp. 1453-1454. 

 

De Keersmaecker S. C. J., I. M. V. Thijs, J. Vanderleyden and K. Marchal, 2006, 

“Integration of omics data: how well does it work for bacteria?”, Molecular Biology, 62(5), 

pp. 1239-1250. 

 

De Lomana, A. L. G., Q. K. Beg, G. De Fabritiis and J. Villà-Freixa, 2010, “Statistical 

analysis of global connectivity and activity distributions in cellular networks”, Journal of 

Computational Biology, 17(7), pp. 869-878. 

 

Delaunay, A., D. Pflieger, M. B. Barrault, J. Vinh and M. B. Toledano, 2002, “A thiol 

peroxidase is an H2O2 receptor and redox-transducer in gene activation”, Cell, 111(4), pp. 

471-481. 

 

Di Marco A., M. Gaetani and B. Scarpinato, 1969, “Adriamycin (NSC-123,127): a new 

antibiotic with antitumor activity”, Cancer Chemother Rep., 53(1), pp. 33-37. 

 

Dikicioglu D., E. Karabekmez, B. Rash, P. Pir, B. Kirdar and S. G. Oliver, 2011, “How yeast 

re-programmes its transcriptional profile in response to different nutrient impulses”, BMC 

Systems Biology, 5:148. 

 

Doherty, K. M., L. D. Pride, J. Lukose, B. E. Snydsman, R. Charles, A. Pramanik, et al., 

2012, “Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates 



138 
 

 
 

genes important for genomic integrity, increases DNA damage, and selectively sensitizes 

cells to agents with diverse mechanisms of action”, G3: Genes, Genomes, Genetics, 2(8), 

pp. 943-959. 

 

Dong, J. and S. Horvath, 2007, “Understanding network concepts in modules”, BMC systems 

biology, 1(1), 24. 

 

Dong, K., S. G. Addinall, D. Lydall J. C. Rutherford, 2013, “The yeast copper response is 

regulated by DNA damage”, Molecular and cellular biology, 33(20), pp. 4041-4050. 

 

Dyer, M. D., T. M. Murali and B. W. Sobral, 2008, “The landscape of human proteins 

interacting with viruses and other pathogens”, PLoS Pathog, 4(2), e32. 

 

Eisen, M. B., P. T. Spellman, P. O. Brown and D. Botstein, 1998, “Cluster analysis and 

display of genome-wide expression patterns”, Proc. Natl Acad. Sci., 95, pp. 14863-14868. 

 

Estrada, E., 2006, “Protein bipartivity and essentiality in the yeast protein-protein interaction 

network”, Journal of proteome research, 5(9), pp. 2177-2184. 

 

Estrada, E. and J. A. Rodriguez-Velazquez, 2005, “Subgraph centrality in complex 

networks” Physical Review E, 71(5), 056103. 

 

Ferrarini, L., L. Bertelli, J. Feala, A. D. McCulloch and G. Paternostro, 2005, “A more 

efficient search strategy for aging genes based on connectivity”, Bioinformatics, 21(3), pp. 

338-348. 

 

Filkov, V., Z. M. Saul, S. Roy, R. M. D'Souza and P. T. Devanbu, 2009, “Modeling and 

verifying a broad array of network properties” EPL (Europhysics Letters), 86(2), 28003. 

 

Friedberg, E. C., G. C. Walker, W. Siede, R. D. Wood, R. A. Schultz and T. Ellenberg, 2005, 

“DNA Repair and Mutagenesis”, Second edition, American Society for Microbiology, 

Washington DC. 

 



139 
 

 
 

Forbes, S. A., G. Bhamra, S. Bamford, E. Dawson, C. Kok, J. Clements, A. Menzies, J. W. 

Teague, P. A. Futreal and M. R. Stratton, 2008, “The catalogue of somatic mutations in 

cancer (COSMIC)”, Current protocols in human genetics, 10-11. 

 

Fornari, F. A., J. K. Randolph, J. C. Yalowich, M. K. Ritke and D. A. Gewirtz, 1994, 

“Interference by Doxorubicin with DNA Unwinding in MCF-7 Breast Tumor Cells”, 

Molecular Pharmacology, vol. 45, no. 4, pp. 649-656. 

 

Freeman, L. C., 1977, “A set of measures of centrality based on betweenness”, Sociometry, 

40:1, pp. 35-41. 

 

Fu, W., B. E. Sanders-Beer, K. S. Katz, D. R. Maglott, K. D. Pruitt and R. G. Ptak, 2009, 

“Human immunodeficiency virus type 1, human protein interaction database at 

NCBI”, Nucleic acids research, 37(suppl 1), D417-D422. 

 

Gasch, A. P., M. Huang, S. Metzner, D. Botstein, S. J. Elledge and P. O. Brown, 2001, 

“Genomic expression responses to DNA-damaging agents and the regulatory role of the 

yeast ATR homolog Mec1p”, Molecular biology of the cell, 12(10), pp. 2987-3003. 

 

Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, et al., 2002, “Functional 

profiling of the Saccharomyces cerevisiae genome”, Nature, 418(6896), pp. 387-391. 

 

Goh, K. I., M. E. Cusick, D. Valle, B. Childs, M. Vidal and A. L. Barabási, 2007, “The 

human disease network”, Proceedings of the National Academy of Sciences, 104(21), pp. 

8685-8690. 

  

Greenall, A., G. Lei, D. C. Swan, K. James, L. Wang, H. Peters, et al., 2008, “A genome 

wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role 

for the NAD+ biosynthetic gene BNA2 in chromosome end protection”, Genome 

Biol, 9(10), R146. 

 



140 
 

 
 

Hahn, M. W. and A. D. Kern, 2005, “Comparative genomics of centrality and essentiality in 

three eukaryotic protein-interaction networks”, Molecular biology and evolution, 22(4), pp. 

803-806. 

 

Hao, D., C. Ren and C. Li, 2012, “Revisiting the variation of clustering coefficient of 

biological networks suggests new modular structure”, BMC systems biology, 6(1), 34. 

 

Harper, J. W. And S. J. Elledge, 2007, “The DNA damage response: ten years 

after”, Molecular cell, 28(5), pp. 739-745. 

 

Hashemy, S. I., J. S. Ungerstedt, F. Z. Avval and A. Holmgren, 2006, “Motexafin 

gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide 

reductase”, Journal of biological chemistry, 281(16), pp. 10691-10697. 

 

Holman, A. G., P. J. Davis, J. M. Foster, C. K. Carlow and S. Kumar, 2009, “Computational 

prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of 

Brugia malayi”, BMC microbiology, 9(1), 243. 

 

Huang, D. W., B. T. Sherman and R. A. Lempicki, 2009, “Systematic and integrative 

analysis of large gene lists using DAVID bioinformatics resources”, Nature Protocols, 4:1. 

 

Ichikawa, Y., M. Ghanefar, M. Bayeva, R. Wu, A. Khechaduri, S. V. N. Prasad, et al., 2014, 

“Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation”, The 

Journal of clinical investigation, 124(2), pp. 617-630. 

 

Ideker, T. and R. Sharan, 2008, Protein networks in disease”, Genome research, 18(4), pp. 

644-652. 

 

Jelinsky, S. A., L. D. Samson, 1999, “Global response of Saccharomyces cerevisiae to an 

alkylating agent”, Proceedings of the National Academy of Sciences, 96(4), pp. 1486-1491. 

 

Jelinsky, S. A., P. Estep, G. M. Church and L. D. Samson, 2000, “Regulatory networks 

revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links 



141 
 

 
 

base excision repair with proteasomes”, Molecular and cellular biology, 20(21), pp. 8157-

8167. 

 

Jensen, L. J., M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Doerks, et al., 2009, 

“STRING 8—a global view on proteins and their functional interactions in 630 

organisms”, Nucleic acids research, 37(suppl 1), D412-D416. 

 

Jeong, H., S. P. Mason, A. L. Barabási and Z. N. Oltvai, Z. N., 2001, “Lethality and centrality 

in protein networks”, Nature, 411(6833), pp. 41-42. 

 

Jiménez-López, C., J. R. Collette, K. M. Brothers, K. M., Shepardson, R. A. Cramer, R. T. 

Wheeler and M. C. Lorenz, 2013, “Candida albicans induces arginine biosynthetic genes in 

response to host-derived reactive oxygen species”, Eukaryotic cell, 12(1), pp. 91-100. 

 

Jonsson, P. F. and P. A. Bates, 2006, “Global topological features of cancer proteins in the 

human interactome”, Bioinformatics, 22(18), pp. 2291-2297. 

 

Jungmann, J., H. A. Reins, J. Lee, A. Romeo, R. Hassett, D. Kosman and S. Jentsch, 1993, 

“MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is 

involved in Cu/Fe utilization and stress resistance in yeast”, The EMBO journal, 12(13), 

5051. 

 

Kanehisa, M. and S. Goto, 2000, “KEGG: kyoto encyclopedia of genes and 

genomes”, Nucleic acids research, 28(1), pp. 27-30. 

 

Kang, K. B., C. Zhu, S. K. Yong, Q. Gao and M. C. Wong, 2009, “Enhanced sensitivity of 

celecoxib in human glioblastoma cells: Induction of DNA damage leading to p53-dependent 

G 1 cell cycle arrest and autophagy”, Molecular cancer, 8(1), 1. 

 

Kelley, R. and T. Ideker, 2009, “Genome-wide fitness and expression profiling implicate 

Mga2 in adaptation to hydrogen peroxide”, PLoS Genet, 5(5), e1000488. 

 



142 
 

 
 

Kotamraju, S., C. R. Chitambar, S. V. Kalivendi, J. Joseph and B. Kalyanaraman, 2002, 

“Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated 

apoptosis in endothelial cells role of oxidant-induced iron signaling in apoptosis”, Journal 

of Biological Chemistry, 277(19), pp. 17179-17187. 

 

Langfelder P. and S. Horvath, 2007, “Eigengene networks for studying the relationships 

between co-expression modules”, BMC Systems Biology, 1:54. 

 

Langfelder P. and S. Horvath, 2008, “WGCNA: an R package for weighted correlation 

network analysis”, BMC Bioinformatics, 9:559. 

 

Leek J. T., E. Monsen, A. R. Dabney and J. D. Storey, 2006, “EDGE: extraction and analysis 

of differential gene expression”, Bioinformatics, 22:4. 

 

Li, C. and W. H. Wong, 2001, “Model-based Analysis of Oligonucleotide Arrays: 

Expression Index Computation and Outlier Detection”, Proceedings of the National 

Academy of Sciences of the United States of America, vol. 98, no.1, pp. 31-36. 

 

Lind, D. S., 2004, “Arginine and cancer”, The Journal of nutrition, 134(10), 2837S-2841S. 

 

MacIsaac, K. D., T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo and E. Fraenkel, 

2006, “An improved map of conserved regulatory sites for Saccharomyces cerevisiae”, BMC 

Bioinformatics, 7:113. 

 

McDermott, J. E., D. L. Diamond, C. Corley, A. L. Rasmussen, M. G. Katze and K. Waters, 

2012, “Topological analysis of protein co-abundance networks identifies novel host targets 

important for HCV infection and pathogenesis”, BMC systems biology, 6(1), 28. 

 

Mewes, H. W., D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer, M. Mokrejs, et al., 

2002, “MIPS: a database for genomes and protein sequences”, Nucleic acids 

research, 30(1), pp. 31-34. 

 



143 
 

 
 

Milenković, T., V. Memišević, A. Bonato and N. Pržulj, 2011, “Dominating biological 

networks”, PloS one, 6(8), e23016-e23016. 

 

Moye-Rowley, W. S., 2003, “Transcriptional control of multidrug resistance in the yeast 

Saccharomyces”, Progress in nucleic acid research and molecular biology, 73, pp. 251-279. 

 

Mustacchi, R., S. Hohmann and J. Nielsen, 2006, “Yeast systems biology to unravel the 

network of life”, Yeast, 23(3), pp. 227-238. 

 

Myers, C., 1998, “The role of iron in doxorubicin-induced cardiomyopathy”, Seminars in 

Oncology, 25(4 Suppl 10), pp. 10-14. 

 

Newman, M. E., 2002, “Assortative mixing in networks”, Physical review letters, 89(20), 

208701. 

 

Orlowski, R. Z. and D. J. Kuhn, 2008, “Proteasome inhibitors in cancer therapy: lessons 

from the first decade”, Clinical Cancer Research, 14(6), pp. 1649-1657. 

 

Pastor-Satorras, R., A. Vázquez and A. Vespignani, 2001, “Dynamical and correlation 

properties of the Internet”, Physical review letters, 87(25), 258701. 

 

Peri, S., J. D. Navarro, R. Amanchy, T. Z. Kristiansen, C. K. Jonnalagadda, et al., 2003, 

“Development of human protein reference database as an initial platform for approaching 

systems biology in humans”, Genome research, 13(10), pp. 2363-2371. 

 

Pertea, M. and S. L. Salzberg, 2010, “Between a chicken and a grape: estimating the number 

of human genes”, Genome Biol, 11(5), 206. 

 

Polo, S. E. and S. P. Jackson, 2011, “Dynamics of DNA damage response proteins at DNA 

breaks: a focus on protein modifications”, Genes & development, 25(5), pp. 409-433. 

 

Pommier, Y. and C. Marchand, 2012, “Interfacial Inhibitors: Targeting Macromolecular 

Complexes”, Nature Reviews Drug Discovery, 11, pp. 25-36. 



144 
 

 
 

 

Raychaudhuri S., J. M. Stuart and R. B. Altman, 2000, “Principal components analysis to 

summarize microarray experiments: application to sporulation time series”, Pac Symp 

Biocomput, 455:466. 

 

Reich M., K. Ohm, M. Angelo, P. Tamayo and J. P. Mesirov, 2004, “GeneCluster 2.0: and 

advanced toolset for bioarray analysis”, Bioinformatics, 20:11, pp. 1797-1798. 

 

Schulz, M. H., W. E. Devanny, A. Gitter, S. Zhong, J. Ernst and Z. Bar-Joseph, 2012, 

“DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series 

expression data”, BMC Systems Biology, 6:104. 

 

Riboldi, G. P., C. G. Bierhals, E. P. D. Mattos, A. P. G. Frazzon and J. Frazzon, 2014, 

“Oxidative stress enhances the expression of sulfur assimilation genes: preliminary insights 

on the Enterococcus faecalis iron-sulfur cluster machinery regulation”, Memórias do 

Instituto Oswaldo Cruz, 109(4), pp. 408-413. 

 

Rodriguez-Rocha, H., A. Garcia-Garcia, M. I. Panayiotidis and R. Franco, 2011, “DNA 

damage and autophagy”, Mutation Research/Fundamental and Molecular Mechanisms of 

Mutagenesis, 711(1), pp. 158-166. 

 

Roy, S., 2012, “Systems biology beyond degree, hubs and scale-free networks: the case for 

multiple metrics in complex networks”, Systems and synthetic biology, 6(1-2), pp. 31-34. 

 

Roy, S. and V. Filkov, 2009, “Strong associations between microbe phenotypes and their 

network architecture”, Physical Review E, 80(4), 040902. 

 

Ryan, C. J., N. J. Krogan, P. Cunningham and G. Cagney, 2013, “All or nothing: protein 

complexes flip essentiality between distantly related eukaryotes”, Genome biology and 

evolution, 5(6), pp. 1049-1059. 

 



145 
 

 
 

Ryu, C. S., H. C. Kwak, K. S. Lee, K. W. Kang, S. J. Oh, K. H. Lee, et al., 2011, “Sulfur 

amino acid metabolism in doxorubicin-resistant breast cancer cells”, Toxicology and applied 

pharmacology, 255(1), pp. 94-102. 

 

Sancar, A., L. A. Lindsey-Boltz, K. Ünsal-Kaçmaz and S. Linn, 2004, “Molecular 

mechanisms of mammalian DNA repair and the DNA damage checkpoints”, Annual review 

of biochemistry, 73(1), pp. 39-85. 

 

Seo J. and B. Shneiderman, 2004, “A rank-by-feature framework for unsupervised 

multidimensional data exploration using low dimensional projections”, IEEE Symposium on 

Information Visualization 2004, pp: 65-72.  

 

Shalem, O., O. Dahan, M. Levo, M. R. Martinez, I. Furman, E. Segal and Y. Pilpel, 2008, 

“Transient transcriptional responses to stress are generated by opposing effects of mRNA 

production and degradation”, Molecular systems biology, 4(1), 4. 

 

Song, J. and M. Singh, 2013, “From hub proteins to hub modules: the relationship between 

essentiality and centrality in the yeast interactome at different scales of organization”, 9(2), 

e1002910. 

 

Stark, C., B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz and M. Tyers, 2006, 

“BioGRID: a general repository for interaction datasets”, Nucleic Acid Research, 34, D535–

D539. 

 

Storey, J. D., W. Xiao, J. T. Leek, R. G. Tompkins and R. W. Davis, 2005, “Significance 

analysis of time course microarray experiments”, Proceedings of the National Academy of 

Sciences of the United States of America, 102(36), pp. 12837-12842. 

 

Storey J. D., Y. D. James and J. T. Leek, 2007, “The optimal discovery procedure for large-

scale significance testing, with applications to comparative microarray experiments” 

Biostatistics, 8(2), pp. 414-432. 

 



146 
 

 
 

Storey J. D., J. T. Leek and A. J. Bas, 2015, “edge: Extraction of differential gene 

expression”, R package version 2.2.0. 

 

Tacutu, R., T. Craig, A. Budovsky, D. Wuttke, G. Lehmann, D. Taranukha, J. Costa, V. E. 

Fraifeld and J. P. de Magalhaes, 2013, “Human ageing genomic resources: integrated 

databases and tools for the biology and genetics of ageing”, Nucleic acids research, 41(D1), 

D1027–D1033. 

 

Tamayo P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovski and E. Lander and 

T. Golub, 1999, “Interpreting patterns of gene expression with self-organizing maps: 

methods and applications to hematopoietic differentiation”, Proc. Natl Acad. Sci., 96, pp. 

2907–2912. 

 

Tansley, S. and K. M. Tolle., 2009, “The fourth paradigm: data-intensive scientific 

discovery”, Vol. 1, Microsoft research , Redmond, WA. 

 

Tsai, R. Y. and T. Pederson, 2014, “Connecting the nucleolus to the cell cycle and human 

disease”, The FASEB Journal, 28(8), pp. 3290-3296. 

 

Tukey, J. W., 1958, “Bias and confidence in not-quite large samples”, Annals of 

Mathematical Statistics, 29:2, pp. 614-614. 

 

Vesanto J. and E. Alhoniemi, 2000, “Clustering of the Self-Organizing Map”, IEEE 

Transactions on Neural Networks, 11:3. 

 

Voorhees, P. M. and R. Z. Orlowski, 2006, “The proteasome and proteasome inhibitors in 

cancer therapy”, Annu. Rev. Pharmacol. Toxicol., 46, pp. 189-213. 

 

Waddington, C. H., 1942, “Canalization of development and the inheritance of acquired 

characters”, Nature, 150(3811), pp. 563-565. 

 



147 
 

 
 

Wade, S. L., K. Poorey, S. Bekiranov and D. T. Auble, 2009, “The Snf1 kinase and 

proteasome-associated Rad23 regulate UV-responsive gene expression”, The EMBO 

Journal, 28, pp. 2919-2931. 

 

Wang, H., B. Kakaradov, S. R. Collins, L. Karotki, D. Fiedler, M. Shales, et al., 2009, “A 

complex-based reconstruction of the Saccharomyces cerevisiae interactome”, Molecular & 

Cellular Proteomics, 8(6), pp. 1361-1381. 

 

Wang, J., G. Chen, M. Li and Y. Pan, 2011, “Integration of breast cancer gene signatures 

based on graph centrality”, BMC systems biology, 5(Suppl 3), S10. 

 

Workman, C. T., H. C. Mak, S. McCuine, J. B. Tagne, M. Agarwal, O. Ozier, et al., 2006, 

“A systems approach to mapping DNA damage response pathways”, Science, 312(5776), 

pp. 1054-1059. 

 

Wuchty, S. and E. Almaas, 2005, “Peeling the yeast protein network”, Proteomics, 5(2), pp. 

444-449. 

 

Xenarios, I., D. W. Rice, L. Salwinski, M. K. Baron, E. M. Marcotte and D. Eisenberg, 2000, 

“DIP: the database of interacting proteins”, Nucleic acids research, 28(1), pp. 289-291. 

 

Xia K., H. Xue, D. Dong, S. Zhu, J. Wang, Q. Zhang, L. Hou, H. Chen, et al., 2006, 

“Identification of the proliferation/differentiation switch in the cellular network of 

multicellular organisms”, PLOS Computational Biology, 2:11, e145. 

 

Xia L, L. Jaafar, A. Cashikar and H. Flores-Rozas, 2007, “Identification of genes required 

for protection from doxorubicin by a genome-wide screen in Saccharomyces cerevisiae”, 

Cancer Research, 67(23), pp. 11411- 11418. 

 

Yang, H., J. A. Zonder and Q. P. Dou, 2009, “Clinical development of novel proteasome 

inhibitors for cancer treatment”, Expert opinion on investigational drugs, 18(7), pp. 957-

971. 



148 
 

 
 

Yıldırım, M. A., K. I. Goh, M. E. Cusick, A. L. Barabási and M. Vidal, 2007, “Drug—target 

network”, Nature biotechnology, 25(10), pp. 1119-1126. 

 

Yu, H., P. M. Kim, E. Sprecher, V. Trifonov M. Gerstein, 2007, “The importance of 

bottlenecks in protein networks: correlation with gene essentiality and expression 

dynamics”, PLoS Comput Biol, 3(4), e59. 

 

Yuzuak, O., 2012, Functional analysis of the genes in the glucose metabolic network by a 

system based modular approach, M.S., Chemical Engineering Department, Bogazici 

University. 

 

Zeisel A., A. Amir, W. J. Köstler and E. Domany, 2010, “Intensity dependent estimation of 

noise in microarrays improves detection of differentially expressed genes”, BMC 

Bioinformatics, 11:400. 

 

Zhang B. and S. Horvath, 2005, “A general framework for weighted gene co-expression 

network analysis”, Statistical Applications in Genetics and Molecular Biology, 4:17. 

 

Zhang, R. and Y. Lin, 2009, “DEG 5.0, a database of essential genes in both prokaryotes and 

eukaryotes”, Nucleic acids research, 37(suppl 1), D455-D458. 

 

Zhu, X., M. Gerstein and M. Snyder, 2007, “Getting connected: analysis and principles of 

biological networks”, Genes & development, 21(9), pp. 1010-1024. 

 

Zotenko, E., J. Mestre, D. P. O’leary and T. M. Przytycka, 2008, “Why do hubs in the yeast 

protein interaction network tend to be essential: reexamining the connection between the 

network topology and essentiality”, PLoS Comput Biol, 4(8), e1000140. 

  

 

 




