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Boğaziçi University

2015



iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Pemra Doruker

for her guidance and support throughout my PhD thesis. The words cannot describe

the thankfulness that I would like to express, it was an honour to work with her. She

always encouraged me to explore knowledge whenever it is possible; throughout the

courses, scientific meetings or by gathering with people who are experts in the field.

I would also like to thank Prof. Canan Atilgan, Prof. Mehmet C. Camurdan,

Prof. Turkan Haliloglu and Assoc. Prof. E. Demet Akten Akdogan for sparing their

time to read and comment about my thesis. Their valuable suggestions and discussions

contributed a lot to this study. Many thanks to Assist. Prof. Bulent Balta for his

contributions to molecular dynamics studies.

It was a great pleasure for me to collaborate with Prof. Ivet Bahar who has such

an inspiring personality. Her remarkable comments and suggestions shaped in a great

extent this thesis.

I would like to acknowledge the financial support from TÜBİTAK BİDEB 2210-
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ABSTRACT

ELASTIC NETWORK MODEL BASED APPROACHES

FOR CONFORMER GENERATION AND DOCKING

APPLICATIONS

The dynamic nature of proteins poses challenging problems in computational bi-

ology, especially in terms of conformational sampling and transitions. In this thesis, an

Elastic Network Model (ENM)-based computational method, namely ClustENM, was

developed for sampling large conformational changes of biomolecules with various sizes

and oligomerization states. ClustENM is an iterative method that combines ENM with

energy minimization and clustering steps. It is an unbiased technique, which necessi-

tates only an initial structure of the biomolecule as input but no information on target.

To test the performance of ClustENM in conformational sampling, it was applied to six

systems, namely adenylate kinase (AK), calmodulin, p38 MAP kinase, HIV-1 reverse

transcriptase, triosephosphate isomerase (TIM), and supramolecule 70S ribosome. The

generated atomistic conformers were found to be in agreement with experimental data

(971 structures) and molecular dynamics (MD) simulations. ClustENM was used to

model the trigger factor-50S subunit of ribosome complex, leading to structures consis-

tent with the data from cryo-EM. Additionally, ligand effects on TIM conformational

dynamics were investigated based on MD simulations of its apo form and complexes

with an inhibitor or its substrate. Generated conformers from ClustENM were further

used in docking applications for AK, LAO-binding protein, dipeptide binding protein

and biotin carboxylase. Close-to-native ligand binding poses were obtained especially

in the first three cases. Thus, ClustENM emerges as a computationally efficient method

applicable to extremely large systems or transitions. Its utility relies on the generation

of a manageable number of atomistic conformers that are entropically accessible to a

folded starting structure, which can also assist ligand docking applications.
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ÖZET

KONFORMASYON TARAMASI VE YERLEŞTİRME

UYGULAMALARI İÇİN ELASTİK AĞ YAPI MODELİ

TABANLI YAKLAŞIMLAR

Proteinlerin dinamik yapısı, hesaplamalı biyolojide, özellikle konformasyonel

örnekleme ve geçişler açısından zorlu problemler oluşturmaktadır. Bu tezde Clus-

tENM adında Elastik Ağ Yapı Modeli (ENM) bazlı bir metot, özellikle büyük yapısal

değişiklik geçiren, çeşitli boyutlarda ve oligomerik haldeki biyomoleküllere uygulan-

mak üzere geliştirilmiştir. Enerji minimizasyonu, kümelenme ve ENM’yi birleştiren

ClustENM, iteratif bir yöntemdir. Girdi olarak sadece biyomolekülün deneysel bir

yapısına gereksinim duyan, tarafsız bir tekniktir. ClustENM’nin performansını kon-

formasyonel örneklemede sınamak için altı sistem kullanılmıştır: adenilat kinaz (AK),

kalmodulin, p38 MAP kinaz, HIV-1 ters transkriptaz, triosefosfat izomeraz (TIM) ve

bir süpramolekül olan 70S ribozom. Bu yöntemle üretilen atomistik çözünürlükteki

yapıların, mevcut deneysel veriler (971 yapı) ve moleküler dinamik (MD) simülasyonları

ile uyumlu olduğu gözlemlenmiştir. ClustENM, ribozomun 50S altbirimi ve tetik-

leyici faktör kompleks yapısına da uygulanmış olup, üretilen yapıların kriyo-elektron

mikroskobundan elde edilen verilerle tutarlı olduğu görülmüştür. Ayrıca, bir inhibitor

ve substratın TIM dinamiğine olan etkisini gözlemlemek amacıyla bağımsız MD ver-

ilerine detaylı bir inceleme yapılmıştır. ClustENM ile yaratılan yapılar, dört farklı

protein için yerleştirme uygulamalarında kullanılmıştır: AK, LAO bağlayıcı protein,

dipeptit bağlayıcı protein ve biyotin karboksilaz. Özellikle ilk üç sistem için kristal

yapılardaki ligand konumlanmasına yakın sonuçlar elde edilmiştir. Böylece, Clus-

tENM’in çok büyük sistemler veya geçişler için kullanılabilecek verimli bir yöntem

olduğu görülmüştür. Yöntem, başlangıç yapısını kullanarak entropik açıdan erişilebilir

yapıları üretmektedir ve bu yapılar yerleştirme çalışmalarında kullanılabilmektedir.
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1. INTRODUCTION

Proteins may undergo small or large conformational changes in order to perform

their cellular functions, such as binding, catalysis, switching and serving as structural

elements of living organisms. The conformational flexibility of proteins poses one of

the challenging problems in molecular biology. Efficient computational algorithms are

necessary to sample protein conformations for more accurate prediction of binding sites

and affinities in docking studies and also for studying the structure-dynamics-function

relationship of proteins.

There are experimental techniques, such as X-ray crystallography and Nuclear

Magnetic Resonance (NMR) spectroscopy, which provide information about the struc-

ture and functional dynamics of proteins, but these techniques generally provide static

pictures of populated states but not intermediates or have applicability problems for

large systems [1]. In this respect computational techniques complement experiments

by providing more detailed information on conformational transitions. Among atom-

istic computational techniques, molecular dynamics (MD) simulations are commonly

used for studying protein motion. Normal mode analysis (NMA) based on classical

force fields is another computational tool for studying conformational dynamics of pro-

teins. However as the system sizes increases, both of these atomistic techniques suffer

from computational cost [2]. Elastic network models (ENM), which are coarse-grained

approaches employing pair-wise harmonic interactions, are computationally efficient

tools that can provide insight about the vibrational dynamics of supramolecular sys-

tems [3–5]. The fact that collective ENM modes of the system are highly correlated

with the conformational transition directions has encouraged their usage for facilitating

standard conformational search algorithms. Similarly, ENMs have also become popular

in generating multiple conformers for drug design studies.

This thesis describes a new ENM-based methodology called ClustENM, which

can be used in sampling of large conformational changes of proteins and/or extremely

large complexes, such as the ribosome. These conformers can further be utilized in
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protein-ligand docking studies. This iterative method integrates ENM with energy

minimization and clustering in order to generate atomistic conformers. Basically, the

native structure is deformed along the linear combinations of slowest normal modes,

which are related with the global motions of the protein. Generated structures are

clustered and conformers taken from these clusters are energetically minimized using

implicit solvent model in order to obtain relaxed structures. The procedure is repeated

for several cycles so that large conformational changes along the collective directions

can be sampled using this computational efficient algorithm.

In the first part of the thesis, applicability of ClustENM in conformational search

for structures with various size and oligomeric states will be illustrated using six dif-

ferent systems: adenylate kinase (AK), calmodulin (CAM), human immunodeficiency

virus-1 reverse transcriptase (HIV1-RT), triosephosphate isomerase (TIM), mitogen-

activated protein (MAP) kinase p38 and supramolecule 70S ribosome. The generated

conformers will be compared with the available experimental data and MD simulations

(Chapter 4). Additionally, the method will also be applied on the complex of 50S sub-

unit of ribosome and trigger factor (TF, a chaperone binding to the nascent peptide

exit tunnel of the ribosome) to shed light onto the dynamics of this complex, which

has not been studied yet (Chapter 5).

The thesis also contains a separate chapter for TIM (Chapter 6), describing the

dynamics extracted from the generated conformers and also from MD simulations.

Moreover, the effect of an inhibitor bound to the interface region of this dimeric enzyme

will be revealed by detailed analysis of six independent 100 ns-long MD simulations

of apo enzyme and inhibitor bound complex. The impact of the inhibitor presence on

collective and catalytic loop dynamics, as well as specific interactions (e.g. aromatic,

hydrogen bonding) will be explained in detail. Simalarly, the effect of TIM substrate

bound to catalytic site on collective and local dynamics will be summarized.

Finally, the application of ClustENM in small ligand docking will be shown for

four proteins expressing hinge-bending type motion: adenylate kinase, lysine-arginine-

ornithine binding protein, dipeptide binding protein and biotin carboxylase. The gener-
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ated conformers starting from apo structure will be used in docking to reveal the ligand

positioning, which will be compared with the available crystal structure of ligand-bound

complex (Chapter 7).

A general review of experimental and computational techniques used in confor-

mational sampling and studying protein dynamics will be given in the following chapter

(Chapter 2). Methods Chapter consists of the detailed description of ClustENM pro-

cedures and the list of systems, on which the methodology is applied. After Methods,

results will be presented and the thesis will be concluded by Conclusions and possible

applications of the methodology as Future Work.
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2. CONFORMATIONAL SEARCH TECHNIQUES FOR

PROTEIN STRUCTURE AND DYNAMICS

2.1. Energy Landscape

Energy landscape of a protein is a multidimensional surface, which may be de-

scribed as a function of collective variables. It contains the information about the

free energy required to change the thermodynamic state of the system [6]. The ability

of a protein to sample alternate conformations, the probability of the sampling are

examples of information that can be extracted from the energy landscape [7].

The energy landscapes for proteins are highly rugged or rough, and there are

multiple minima on the surface, which correspond to stable states of the system [7–10].

A transition on the surface is possible from one minimum to another, by passing through

a saddle point. This process is equivalent to conformational change of the protein. If

a minimum is deep, it means that it is thermodynamically stable. The height of the

energy barrier that surrounds the minima defines the kinetic stability of the protein.

A deep minimum surrounded by high barriers may be highly populated during folding

[11, 12]. It may also belong to ensemble of states under a particular condition, such

as pH, temperature, concentration of partners (e.g. ligand). Sampling alternate stable

conformations is vital for a protein to execute its function such as binding to partners

and allosteric regulation. However, there can be also chance for creating dysfunctional

interactions with partners upon visiting the alternative conformations [7].

The changes on the energy landscape are illustrated in Figures 2.1 to 2.3 [7].

Figure 2.1 shows the stabilization of a near-native state upon ligand binding. In another

example shown in Figure 2.2, energy surface indicates that the protein may sample

alternative conformations with equal energy. However one of these states may have

higher affinity for a certain partner, and this may lead to further stabilization upon

interaction with partner.
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Figure 2.1. A schematic representation of the change on the energy landscape upon

ligand binding.

Figure 2.2. A state among many states with equivalent energy can be stabilized upon

interaction with the partner.
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Figure 2.3. Reduced energy barrier between two states due to environmental effects

such pH, temperature etc.

The environmental changes such as pH, temperature can also induce alternations

on the energy surface; such as the reduction of high energy energy barrier between two

states, as shown in Figure 2.3.

It is not easy to visualize the energy landscape of a protein. For a system of N

atoms, the energy is a function of 3N -6 internal and 3N Cartesian coordinates [10].

However, it is possible to reduce the complexity of this multidimensional space into a

lower dimensional one by using “collective variables”, which can be selected for example

heuristically, by trial and error or by choosing essential variables extracted from the

methods like normal mode analysis or principal component analysis, etc. [6].

2.2. Experimental Techniques for Determination of Protein Structure and

Conformational Changes

As a conventional technique in protein structure determination, X-ray crystal-

lography provides atomic-resolution picture of macromolecules and gives information
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about the mobility of the protein by means of temperature factors [13]. Advances

in crystallographic methods lead to crystal structure isolation of structures as large

as 80S eukaryotic ribosome complex (with molecular mass about 3.2 MDa) with 3.0

Å resolution [14]. Still, obtaining high resolution structure becomes difficult with in-

creasing molecular size, using this technique [13]. Moreover, crystallography provides

only the average conformation for a specific crystallographic condition, thus gives a

limited knowledge about the conformational space of the protein [1, 13]. Nucleic mag-

netic resonance (NMR) spectroscopy is another experimental technique that provides

information about the functional dynamics of the proteins providing tens of conforma-

tions [15]. However, conventional solution NMR is limited with proteins of relatively

small in size, up to 50 kDa [1, 15, 16]. The problem lies in the deterioration of both

sensitivity and resolution of solution NMR spectra due to the line broadening of peaks

as the molecular weight of the studied structure increases. To overcome this issue,

NMR techniques such as transverse relaxation-optimized spectroscopy, magic-angle

spinning solid-state NMR can be employed to gather information about the structure

and the dynamics of larger systems [16]. The structures determined by these experi-

mental techniques are deposited in Protein Data Bank [17], which currently holds over

100,000 entries including membrane proteins.

Structures of large assemblies such as molecular chaperones and ribosome can

be visualized using cryo-electron microcopy (cryo-EM). The molecular structure is

determined from the three dimensional (3D) density maps obtained from cryo-EM

experiments [18]. Depending on the map resolution, the data obtained from cryo-

EM can be further investigated using rigid-body fitting of atomic coordinates from

X-ray crystallography or NMR, segmentation algorithms, ab initio model building.

The resolution of 3D cryo-EM reconstruction has been constantly improved over the

years and currently, 2908 maps of resolution ranging from 80 to 2.8 Å are deposited in

EMDataBank [18].

Small angle solution X-ray and neutron scattering can be used as a complemen-

tary technique in structural biology, in terms of revealing oligomeric states and do-

main organizations in solution. It has also applications in low-resolution shape model-
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ing, intrinsic disorder, protein-protein or protein-nucleic acid assembling processes [19].

There are also other techniques for studying protein conformational changes; namely

hydrogen-deuterium exchange, time-resolved X-ray crystallography, fluorescence spec-

troscopy, inelastic neutron scattering [1].

2.3. Computational Techniques for Conformational Sampling and

Transitions

2.3.1. Molecular Dynamics (MD) and Related Methods

MD is a valuable tool for investigating protein’s behavior in a solvent (explicit or

implicit) and sampling its conformations in atomistic resolution. It uses molecular me-

chanics force field, i.e. an empirically derived potential energy function that describes

all molecular interactions [20]. Protein’s motion with respect to time is determined by

numerically solving Newton’s equation of motions for a system of interacting particles.

One drawback of this atomistic approach is that classical MD simulations still have

high computational cost; typically months are needed for conducting a standard, “long

enough” MD simulation, together with the need of significant time for analysis of the

massive data generated [2].

The use of graphical processing units (GPU) resulted in accelerations between 10-

and 1000-fold over central processing units-only implementations [20]. Still, the general

purpose GPU-accelerated MD simulations do not provide a match to Anton, a special-

purpose machine, which is designed and constructed to run MD simulations, resulting in

great acceleration in simulation times [21]. For example, by conducting MD simulations

using Anton, it was possible to reach millisecond level of simulated biological time for

bovine pancreatic trypsin inhibitor with 58 residues [22]. Moreover, the ability of MD

force fields to reproduce the true potential energy surfaces of proteins is still questioned,

and additional refinements of parameters are needed in order to increase the accuracy

of current force fields in describing long term structural dynamics of proteins [2,20,23].

Another issue is that, classical MD may provide limited conformational sampling
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due to slow crossing of energy barriers [24, 25]. To overcome this problem, enhanced

sampling methods are developed to increase the efficiency of MD. Targeted MD simu-

lation is one of these methods, driving the protein from one structure (conformation)

to another one by an external force [26]. Accelerated MD [27], metadynamics [28],

replica-exchange MD [29] are among the methods that smooth the energy landscape

with a biasing potential.

Coarse-grained MD (CG MD) is another tool to study the dynamics of especially

large biomolecules. Using this method, it is possible to simulate mesoscopic systems for

longer time scales [30]. CG MD models are based on the representation of the system

as pseudo-atoms. For example, in MARTINI force field [31], the structure is modeled

as one pseudo-atom for four heavy atoms. Then the dynamics is simulated using a

potential function (simulation or experimental data based). The microsecond dynamics

of viral capsids [32], protein-induced membrane bending by six N-BAR molecules [33]

and the ribosome [34] are among the systems that are studied by CG MD. However,

parametrization of CG MD potential and also the ability of this model to capture

pairwise interactions are still questioned [30].

MD trajectories can also be used to create an ensemble through pharmacophore

modeling, which have been proved to be successful in discriminating known HIV-1 in-

hibitors from drug-like non-inhibitors in docking studies [35]. In Zacharias’ study,

principal component analysis (PCA) is applied on MD trajectory and during lig-

and–receptor docking, the protein is allowed to relax in the direction of the soft modes

obtained from PCA [36].

2.3.2. Normal Mode Analysis (NMA) and Related Techniques

Although the timescale reached by MD is biologically significant to describe pro-

tein folding phenomena (e.g. millisecond scale) for proteins having residues less than

100, there is still room for simplified and computationally efficient methods. This is

especially important for studying large system sizes and systems undergoing large con-

formational changes, which take place in longer time scales [2]. For this purpose, the
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popularity of normal modes and related techniques is still increasing in the study of

biological macromolecular dynamics [2, 37].

2.3.2.1. Classical NMA. Classical NMA is a full-atom approach that analyzes vibra-

tional motions of the native structure around a local energy minimum. In classical

NMA, any atomistic empirical potential energy function can be represented as a sum

of the quadratic terms in the displacements to describe the system. The assumption

is that, the system displays solid-like behavior, which is in fact the case for proteins

at 100-200 K [38–40]. After performing a thorough energy minimization of the folded

protein structure, vibrational modes of the system are determined by solving eigen-

value problem for the force constant matrix together with atomic masses, resulting in

3N atoms-6 non-zero normal frequencies and eigenvectors for a system of N atoms in

this harmonic regime [2, 41]. In the high frequency modes, the displacements occur

mostly in covalently bonded atoms (local motions), conversely low frequency modes

yield the collective movements involving large parts of the structure [42]. However, the

computational efficiency of classical NMA decreases as N becomes larger [2].

Miloshevsky and Jordan employed normal mode following technique [43] com-

bined with a Monte Carlo (MC) scheme on gramicidin A [44], KcsA K+ channel [45]

and ApcT amino acid transporter [46] for investigating conformational transitions with-

out providing the closed structure. The technique uses all-atom normal modes and

CHARMM22 potential energy.

Perahia and coworkers explored the functional motions of HIV-1 protease (ho-

modimer with 198 residues) by defining consensus normal modes, from multiple-minima

NMA [47]. NMA is applied on a set of energy-minimized structures obtained from short

MD simulation. A new consensus covariance matrix is obtained from averaging all indi-

vidual covariance matrices and the modes and their frequencies are extracted from this

matrix. They reported that low frequency consensus modes yield robust description of

biologically relevant motions upon the binding of inhibitors.
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In another study [48], transition pathway and free energy profile of adenylate

kinase, calmoduline and p38α kinase are investigated using the combination of NMA in

internal coordinates [49] and umbrella sampling MD [50,51] in the presence and absence

of the ligands. Using this method, it was possible to obtain transient conformations,

consistent with previous experimental and computational studies. Moreover, calculated

free energy profiles reveal the intrinsic flexibility of adenylate kinase and calmodulin

without obvious energy barriers.

2.3.2.2. Coarse-Grained NMA. Coarse grained models of proteins suggested that the

lowest frequency normal modes remain robust despite the elimination of interatomic

interaction details within a protein, meaning that they are a global property of the

structure and shape [2, 52–57]. Following the pioneering work of Tirion [58], in which

Lennard-Jones and electrostatic interactions are replaced by Hookean springs for atom

pairs within a cutoff distance, the elastic network model (ENM) [3–5] has been in-

troduced as a coarse-grained approach for studying protein dynamics. Due to coarse-

graining that can be applied at hierarchical levels [57], the computational cost can

be significantly reduced compared to classical NMA so that application to very large

complexes, i.e. supramolecules, becomes possible. In standard or residue-based ENM,

the α-carbons of the residues are taken as nodes and the node pairs that fall within a

specified cutoff distance are connected by harmonic springs with a uniform force con-

stant. If the residue fluctuations are assumed to be isotropic, the model is Gaussian

Network Model (GNM) [3, 59]. If the anisotropic effect is taken into account, one can

have information about the three dimensional character of the system, thus this model

is known as the anisotropic network model (ANM) [5].

The simplicity of the ENM has given rise to its wide application in analysis of

conformational dynamics and transitions. Examination of proteins with known open

and ligand bound-forms [60–63] have revealed that one or a few low-frequency normal

modes largely overlap with the motion of protein occurring during the transition from

the unbound to the ligand-bound state. Inspired from these results, selecting the

native structure as a starting point and searching for possible conformations along the
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displacement of normal modes has been extensively studied for many cases.

In a study by Ahmed et al. [64], directional information obtained from ENM was

incorporated into a geometric simulation algorithm to explore biologically relevant con-

formational transitions in proteins. In this method, graph theoretical approach Floppy

Inclusions and Rigid Substructure Topography (FIRST) [65], was used to determine the

rigid and flexible regions of the protein. From the resulting coarse grained representa-

tion of the structures, the low frequency ENM modes were obtained. In the generation

of new conformations, rigid parts of the protein were allowed only in rigid body motion,

whereas links between them were fully flexible. Backbone motions were biased toward

the direction of random linear combination of low frequency modes and side chains

were moved according to experimental rotamer information. By this method, in 7 out

of 8 cases, conformations similar to the ligand bound structures (with RMSD less than

3.1 Å) were able to be sampled starting from the initial structure by applying multiple

unbiased runs, which results in numerous produced conformers. If the information of

the target structure is known, that can be also included into the simulation. In this

work, the largest protein was cytrate synthase having 860 residues and the smallest one

was calmodulin with 148 residues. Calmodulin was the unsuccessful case in unbiased

sampling.

For large conformational changes, Jimenez-Roldan et al. [66] combined ENM,

rigidity analysis of FIRST and geometric simulation of protein motion. They explored

conformational change along normal mode vectors by modeling the protein structure as

a coarse grained simple harmonic network to produce an eigenvector for low frequency

motion. Using FIRST rigidity analysis, non-covalent interactions were identified and

the protein’s rigid and flexible parts were labeled. Finally, geometric simulation was

used to explore conformational space using a low frequency normal mode and rigidity

information. They applied the method on a set of six proteins with different sizes

(from 58 to 1605 residues) and structural characteristics and they have showed that

the method identified intrinsic motion specific to the protein and its amplitude limits.

Large amplitude motions can be explored until these are limited by bonding or steric

constraints.
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Low frequency normal modes obtained from residue-based ENM was used to

enhance conformational sampling of maltose binding protein and nucleotide binding

domains of a maltose-transporter in temperature-accelerated molecular dynamics [25].

Single or a combination of two to three collective modes were found enough to describe

the conformational transition in temperature-accelerated MD generated pathways.

Normal modes are also used in targeted sampling, once the end conformers are

available. For example, Kim et al. introduced elastic network interpolation (ENI) [67]

and its extension rigid-cluster ENI [68] to generate transition pathways between two

end states. The method was based on a coarse-grained ENM and generated intermedi-

ate structures by interpolating the distance of connected residues between two distance

values specified by end conformations, by using a simple quadratic cost function. In

rigid-cluster ENI, point masses were replaced by rigid cluster in order to reduce com-

putational cost. ENI was also used in Feng et al.’s work [69] for generating transition

pathway between adenylate kinase open and closed form, and the steric clashes in the

intermediate structures were removed using CHARMM energy minimization. Using

this method, it was possible to obtain intermediates close to the available experimental

structures (such as the intermediate structure where LID domain is closed and NMP

domain is open).

Plastic network model [70] is another method developed for studying conforma-

tional transition between two end states, following lowest elastic energy path. The

method was an extension of ENM since it adapted a free energy function based on

elastic theory, introduced by Tirion [58]. The method was applied to adenylate kinase

by taking open and closed states of the protein as end points. Along the transition

pathway, LID domain closure preceded NMP domain closure and the intermediates

close to experimental structures were generated (again, closed LID-open NMP domain

structures).

Zheng and Brooks introduced an ENM based method for predicting conforma-

tional changes of proteins by using a starting structure and distance constraints of the

end state [71,72]. In this method, a perturbation was given to the harmonic Hamilto-
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nian that additionally included pairwise distance constraints. As a result, the predicted

conformational change, which was a linear combination of multiple low-frequency nor-

mal modes, was computed as a response displacement induced by the perturbation.

For most of the 22 test cases, the transition from initial to end states was successful.

The method was extended in a following study [73], to accurately predict both the

direction and amplitude of the conformational change. The conformational search was

driven by iterative minimization of the error of fitting the distance constraints and

enforcing the restraint of low elastic energy. The method was tested on 16 pairs of

protein structures and structures near to native end state were obtained (RMSD 1-2

Å).

Another hybrid methodology called ANM-MC [74,75] combines collective moves

obtained from ENM and local moves via knowledge-based MC simulation for generat-

ing transition pathways. In the targeted version of the algorithm, the structure was

iteratively deformed along the direction of the collective mode that overlaps with the

conformational transition direction and minimization of conformational energy was

performed using MC simulation. The method successfully approached the target and

produced intermediates for a set of 10 proteins undergoing large hinge-bending type

motions [75]. Moreover, the unbiased version of ANM-MC, which uses only the radius

of gyration of the target as input, was successful in predicting the closed state for eight

(out of 10) of these hinge-bending proteins.

Kirillova et al. [76] and Al-Bluwi et al. [77] used NMA as a bias in the conforma-

tion exploration by motion planning based ‘Rapidly-exploring Random Tree’ algorithm

to compute a conformational transition path for a large amplitude conformational tran-

sition. Coarse-grained representation of the protein (one bead per tripeptide) is used

for further reducing computational cost. The method is tested on ten proteins including

adenylate kinase and GroEL.

Collective molecular dynamics (coMD) is another method combining ENM and

MD, introduced by Gur et al. [78] for generation of transition pathways between two

end points. The method is based on deforming the structure along the collective modes
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predicted by ENM that are selected by Monte Carlo/Metropolis algorithm from the

pool of all accessible modes. Then, the energetics are provided by means of full-

atomic MD simulation protocol. The method is applied for exploring adenylate kinase

conformational transition, using open and closed states of the enzyme as end points.

Das et al. also developed a method called ANMPathway [79] that uses a simple

two-state anisotropic network model for constructing an energetically favorable path-

way between two endpoints of a conformational transition. The endpoints are known

experimental structures, which are labeled as stable states of the system. The ENM

representation of these end states is used in the construction of two-state potential,

which has a cusp hypersurface in the configuration space. Linear interpolation be-

tween two end states is performed in order to identify a structure which has equal

energy values according to both surfaces. This structure is treated as the transition

state. Starting from this transition state, steepest descent algorithm is applied on both

surfaces and obtained conformers constitute the transition pathway. The method is

applied on adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter

and glutamate transporter, yielding good agreement with other similar methods and

MD.

2.3.2.3. Applications of ENM in Small Ligand-Protein Docking. One of the challeng-

ing problems in drug design studies is the incorporation of flexible nature of proteins.

ENM has gained recognition for solving this problem, in both protein-small ligand and

protein-protein docking for including especially backbone flexibility into docking appli-

cations. In this section, we will only focus on usage of ENM in small ligand docking.

One of the earlier examples was Cavasotto et al.’s work of protein-ligand docking,

where receptor flexibility was incorporated through deforming the receptor structure

along a combination of “relevant” modes which are related with the selected regions

of interest [80]. These relevant modes were not necessarily the low-frequency modes.

In their method, the original structure was deformed along the combination of rele-

vant normal modes, and the receptor ensemble was complexed with known binders.
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This was followed by global energy minimization for the side chain optimization us-

ing flexible ligand-flexible side chain approach, employing biased probability Monte

Carlo method. Finally, the validation procedure consisted of receptor ensemble docking

against the generated multiple receptor conformers. Using this methodology, Cavasotto

et al. reported the increase in the docking accuracy in cAMP-dependent protein kinase

dockings and the enhancement of the discrimination between binders and nonbinders.

However, Dietzen et al. [81] have shown that application of ENM does not signifi-

cantly improve the docking performance in the case of local ligand-specific induced fit

movements. In their work, they used “binding pocket restricted” normal modes for

reconstructing the holo structures of 433 proteins from apo structures.

In May and Zacharias’ protein-ligand docking work in 2008, ENM was used for

accounting receptor global backbone flexibility, by means of relaxation in a few pre-

calculated soft modes [82]. In 2011, Leis and Zacharias included receptor backbone

flexibility obtained from ENM in grid-based protein-ligand docking [83], and imple-

mented the method in protein-ligand docking software AutoDock [84, 85]. The basic

idea was that instead of dealing with one input structure for the receptor, the code

was modified to include the structural information obtained from several deformations

along a slow (soft/low frequency) normal mode. The method was tested on apo protein

kinase A (PKA) dockings, which indicated significant improvement compared to rigid

PKA docking [83].

Rueda et al. used ENM on heavy atoms of residues within a distance of 10,

15, 20 Å from the cognate ligand for generating multiple receptor conformations to

be used in docking studies [86]. The ENM normal mode space (slowest 100 modes)

was used for the generation of Cartesian displacement using Metropolis MC algorithm

with a Hamiltonian. At each iteration, one of the 100 modes was displaced randomly

following Metropolis criteria. Their algorithm focused on equilibrium conformations of

2 Å RMSD near the original crystallographic structure. An RMSD-based clustering

was performed on the side-chains of heavy atoms of the generated structures, using

thresholds ranging between 0.5-1 Å. As a result, in a benchmark containing 28 proteins,

their method predicted near native ligand poses 20% more efficiently compared to single
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receptor docking.

In another study by Akten et al. [87], a reverse-mapping technique was used on

cyclophilin A (CypA) by applying ENM at different resolutions (atomistic and coarse-

grained). The original structure was deformed along each of the seven lowest frequency

modes, both in negative and positive directions. Generated conformers were energeti-

cally minimized using implicit solvent method in order to eliminate steric clashes and

then used for ensemble docking. Realistic conformations with energies comparable to

the crystal structure were generated and further used in docking, which lead to the

prediction of correct binding modes.

2.3.3. Other Techniques for Conformational Search

Apart from MD and NMA, there are other computational methods that explore

the conformational space. One example is the CONCORD method, which is based on

the geometrical description of a given protein structure [88,89]. Geometrical description

of the protein consists of topological constraints such as bonds, angles and noncovalent

constraints e.g. hydrogen bonds, salt bridges and hydrophobic clusters. Using these

constraints, the structures are iteratively built starting from random coordinates, until

all constraints are satisfied [89]. This method is also used in Seeliger et al.’s study in

2010 [90] for the prediction of holo structure using the knowledge of apo structures,

the ligand and the radius of gyration (RG) of the holo structure. the algorithm uses

CONCORD methodology for generation of structures, AutoDock VINA [91] for ligand

docking and MD for refinement. The method is tested on ten proteins with confor-

mational arrangement up to 7 Å. In 8 out of 10 cases, close-to-native ligand binding

poses were obtained. One limitation of the protocol was that it was unable to predict

a change in the secondary structure between apo and holo states, where a helix refolds

into a loop in one case.

Yesylevskyy et al. employs hierarchical clustering of correlation patterns tech-

nique for domain identification and treat these domains as rigid-body like clusters.

Then the clusters are allowed to rotate relative to the other for simulating slow pro-
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tein dynamics in globular proteins [92]. It is applied on ten hinge-bending proteins to

blindly search for their closed states, resulting in realistic closed conformation for 8 out

of 10 cases.

Another study concerning the prediction of ligand binding motions in hinge-

bending proteins describes the conformation explorer technique [93]. Starting from

open monomeric structure, holo structures are predicted for five different proteins by

first identifying the hinges in the structure, then applying Euler rotation to one of

the domains about the hinge and finally applying short MD for equilibrating protein-

ligand complex and scoring the generated structures using a fitness function, which

favors closed or holo structures. Before the application of short MD, the ligand is

docked using AutoDock software.

Perturbation-response scanning technique (PRS, [94]) introduced by Atilgan and

coworkers is used together with MD to display conformational motions experienced

by various proteins such as hinge-bending, shear, allosteric [95, 96]. Based on linear

response theory, PRS consists of the systematical application of forces at singly selected

residues, and then measuring the linear response of the whole protein by means of

the magnitude and directionality of the displacements that the residues exhibit [94].

Application of the method on a set of 25 proteins revealed that in some proteins binding-

induced conformational change may be the consequence of the perturbation of residues

confined in a specific region and in others the ensemble of residues can be located

on different regions on the protein. Moreover, PRS-calculated atomic displacement

vectors are overlapping with the ones obtained from experimental data.

Recently, Gipson et al. have introduced a hybrid method for rapid large scale con-

formational analysis, called as Structured Intuitive Move Selector [97]. The method is

applied for determination of active residues for cyanovirin-N, exploring conformational

changes of ribose binding protein and transient conformational state of maltose-binding

protein.
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2.3.4. Computational Techniques Used for Investigating Ribosome Confor-

mational Search and Dynamics

The supramolecular assembly ribosome (with mass above 2 MDa), which synthe-

sizes proteins using the genetic information of messenger ribonucleic acid (mRNA) in

the translation process, is a macromolecular machine of interest and widely studied by

experimental and computational means. Although available experimental data such

as cryo-EM and x-ray crystallography reveal functionally important conformational

changes during translation (e.g. ratchet-like relative rotation of two subunits namely

50S and 30S or large displacement of L1 stalk region in bacterial ribosome [98–101]),

these data mostly provide static pictures of this large assembly. Computational meth-

ods combined with experimental data provide a complementary approach for under-

standing the intermediates and dynamics of ribosome during the translation process.

One of the earliest studies that employ computational techniques for studying

ribosome dynamics is performed by Tama et al. [102] using ENM analysis, rotation-

translation block method [52], cryo-EM and x-ray crystallographic data. In this work,

coarse grained ENM analysis (based on alpha carbons and phosphate atoms) revealed

that lowest-frequency normal modes correspond to functionally important motions. For

example, lowest mode describes the motion of L1 stalk and third mode corresponds to

ratchet-like rearrangement of subunits, which is experimentally observed in response

to the binding of elongation factor G [99]. The results hint to the robustness of func-

tionally important motions, which is intrinsically accessible to ribosomal structure.

Wang et al. also reported the global motions of 70S ribosome, revealed by

ENM [103]. Their results agree with Tama et al. [102] especially for large domain

motions. However, several modes are also identified that facilitate the exit (E)-transfer

RNA (tRNA) exiting from the assembly. Also, the adenine (A)-site tRNA and peptidyl

(P)-site tRNA are described to be positively correlated, hinting that their transloca-

tion occurs simultaneously, whereas E-site tRNA translocation possibly does not occur

simultaneously.
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ENM is also used for investigating the dynamics of 70S with and without tRNA,

elongation factor Tu and the ribosomal proteins [104]. The results revealed the ratchet-

like rotational motions of the subunits, head rotation of small subunit and L1-L7/L12

stalk movements are among the global motions of the ribosome, which are present even

in the absence of the ribosomal proteins, suggesting that these are topology-inherited

motions.

Collective dynamics of ribosomal nascent polypeptide exit tunnel is also investi-

gated using ENM by examining the individual lowest-frequency modes and the linear

combination of these modes [105]. The entrance, the neck and the exit domains of the

tunnel exhibits different domain motions; entrance and exit domains moving in the

exit direction whereas neck domain displaying rotational motion. The analysis also

revealed the anti or non-correlated motions of L4 and L22 proteins located at the nar-

rowest region of the tunnel, which may have an important role in polypeptide gating

mechanism.

The global motions of 70S ribosome is also explored by performing 500 ns of

coarse-grained molecular dynamics, using a low resolution anharmonic network model

[34]. Simulation revealed the anticorrelated motion of L7/L12 and L1 lateral stalks,

widening of the tRNA cleft and the rotation of the small subunit together with the

movement of L1 stalk.

Targeted MD simulations that were used together with available experimental

data shed light onto the movement of tRNA through the ribosome [106, 107]. More-

over, excited states of ribosome translocation such as P/E-A/P* and P/E-A/P posi-

tioning of two tRNAs in the presence of elongation factor G were investigated via MDfit

methodology [108], which employs modified MD simulations to generate configurations

of excited states integrated with information obtained from x-ray crystallography, cryo-

EM and biochemical data.

Ribosome dynamics is also studied by Seo et al. using hybrid elastic network

model (HENM, [109]). In this coarse grained method, all representative atoms are
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connected via harmonic springs like in the case of classical ENM, then the rigid clusters

are identified (such as secondary structures), and finally flexible regions (e.g. hinges and

loops) are left as point masses. Besides extracting the slow modes such as ratchet-like

motion, L1 stalk movement using HENM, hybrid elastic network interpolation (HENI)

based on the modes from HENM were used for simulating the transition pathway of

ribosome,by taking reference the two-step mechanism for translocation proposed by

Frank and Agrawal [99]. In this proposition, first step is the rotation of 30S subunit

with respect to 50S, accompanied by the motion of tRNA as well as mRNA towards

P and E sites from A and P sites, respectively. Second step is the sole rotationof 30S

back to initial position.
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3. MATERIALS AND METHODS

3.1. Anisotropic Network Model (ANM)

The anisotropic network model [5, 56, 57, 60] is an ENM based on inter-residue

contact topology of native conformations of proteins, which are obtained from exper-

imental techniques such as x-ray crystallography, nuclear magnetic resonance (NMR)

or cryo-electron microscopy. This coarse-grained method incorporates the anisotropy

of residue fluctuations in three dimensions, giving information on both the magnitude

and the direction of collective motions using normal mode analysis.

In ANM, the structure is represented as a network of nodes, generally coarse-

grained at one-node-per-residue level. Node pairs that fall within a specified cutoff

distance are connected via harmonic springs of uniform force constant. The nodes are

commonly located at the Cα atoms of amino acids and the P atoms of nucleotides

[5, 103], resulting in a coarse-grained representation of the structure.

ANM potential energy for the system of N nodes is the summation of all harmonic

interactions in the structure:

VANM =
γ

2

∑
i

∑
j

h(Rc −Rij)(Rij −R0
ij)

2 (3.1)

In Eqn 3.1, γ is force constant, Rij and R0
ij are the instantaneous and equilibrium

distances between nodes i and j, respectively (where i, j = 1. . .N). Based on the cutoff

distance Rc, the heavyside step function h(Rc − Rij), is equal to one if Rc ≥ Rij and

zero, otherwise.
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The potential energy in Eqn 3.1 can be also expressed in the following form:

VANM =
1

2
∆RTH∆R (3.2)

Where ∆R is the positional fluctuation vector for N nodes (3N -dimensional), H

is the (3N by 3N) Hessian matrix, whose elements are determined from the second

derivative of the potential energy with respect to mass weighted coordinates. The mass

of each node is taken as unity in classical ANM. Each “super element” ’ of H is defined

as:

Hij =



∂2Vij
∂xi∂xj

∂2Vij
∂xi∂yj

∂2Vij
∂xi∂zj

∂2Vij
∂yi∂xj

∂2Vij
∂yi∂yj

∂2Vij
∂yi∂zj

∂2Vij
∂zi∂xj

∂2Vij
∂zi∂yj

∂2Vij
∂zi∂zj


(3.3)

It can be expanded as:

Hij =
−γ
R2

ij


(xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)

(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)

(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)

 (3.4)

To extract normal modes of elastic network, symmetric H matrix is diagonalized

into the form:

STHS = Λ (3.5)

Λ is (3N by 3N) diagonal matrix with diagonal elements are the squared normal

mode frequencies; S is an orthogonal matrix with its columns being the normalized



24

eigenvectors that give the directions (or shape) of normal modes. The orthogonal

transformation of H matrix results in 3N − 6 internal normal modes together with

three translational and three rotational modes. The eigenvalues for translational and

rotational modes are equal to zero. Thus, overall motion can be expressed as the

summation of 3N − 6 internal normal modes. Diagonalizing H for large systems such

as ribosome can be computationally exhaustive. To overcome this issue, the eigenvalue

problem can be solved using software package BLZPACK [110] with block Lanczos [111]

algorithm, which is efficient especially for sparse matrices like H.

The mean-square fluctuation of ith node based on the kth normal mode is obtained

from the following expression:

〈
∆R2

i

〉
k

=

(
kBT

γ

)
(uik)2

λk
(3.6)

Where kB is the Boltzmann’s constant, T is the absolute temperature, uik is the kth

eigenvector for ith node and λk is the kth eigenvalue.

In this thesis, we employ a modified version of standard ANM, which is named

as the mixed-resolution ENM [112]. In this version, the structure can be modelled as a

mixture of low and high resolution regions. In the low-resolution regions, the nodes are

placed at the residue centroid coordinates, whereas heavy atoms represent the nodes in

the high resolution region. The force constants of the springs connecting any two coarse-

grained nodes are scaled based on the total number of atomistic pairwise interactions

between residue pairs (bonded or non-bonded) that are within an atomistic cut-off

radius of 10 Å for proteins (13 Å for ribosome). The eigenvectors and eigenvalues of H

are extracted using software package BLZPACK using the block Lanczos algorithm. In

this thesis, we only use low-resolution nodes that correspond to amino acid or nucleotide

residues. However, we included this version in the ClustENM methodology, for future

possible applications to cases like ligand bound complex structures, where ligand or

region of interest can be modeled as high resolution region and the rest of the structure

in low resolution.
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3.2. ClustENM-I for Conformational Sampling

We developed a new iterative methodology called ClustENM for generating atom-

istic conformers with possible application to large protein complexes and/or conforma-

tional changes. Each cycle or generation of the iterative methodology consists of the

following steps:

(i) Energy minimization with implicit solvent model is applied on the starting struc-

ture (and each representative conformer at successive iterations). For the min-

imization, AMBER12 [113] is used with ff03 force field parameters for proteins

[114] and ff10 [113] for ribosome. Pairwise generalized Born model [115, 116] is

used for the minimization with implicit solvent using 16 Å (30 Å for ribosome)

cutoff for non-bonded interactions. Using a modified generalized Born theory

based on the Debye-Hückel limiting law for ion screening of interactions [117],

the concentration of 1-1 mobile counterions in solution is set to 0.1 M. For pro-

teins, 500 cycles of steepest descent are followed by conjugate gradient with a

convergence criterion for the energy gradient (drms) set to 0.01 kcal/mol/Å. For

ribosome, instead of setting drms value, maximum step for minimization is set to

1000 to save computational time due to large system size.

(ii) ENM is applied to energetically minimized conformer(s) to extract the slowest

modes. The nodes are placed at the residue centroid coordinates (whole structure

is modelled as low resolution).

(iii) Eigenvectors uj of the m slowest modes extracted from ENM, scaled based on

their frequency λ
1
2
j and are linearly combined using three coefficients aj [105]:

Vi =
∑
j

ajuj

λ
1
2
j

(3.7)

First m slowest modes are taken into account up to the point, where a significant

increase (jump) is observed in the eigenvalues of the initial structure.

(iv) Native structure is deformed along the direction vectors di obtained from the

combination of slow modes (Vi), by taking V1 (where all m modes are present)
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as reference with a specified deformation RMSD (DF ):

di =
DF

N
1
2

(
Vi

|V1|

)
(3.8)

with N being the total number of nodes. For each residue, the deformation of

its centroid is applied on its backbone and side chain atoms, thereby generat-

ing new atomistic conformers (resulting in 3m new conformers based on starting

conformer).

(v) Generated conformers are clustered using kclust module of MMTSB toolset [118],

based on mutual RMSD values. RMSD cut-off for clusters is set to 0.75*DF .

(vi) Conformer with the lowest RMSD to the average structure of each cluster is

selected as the representative conformer.

The above procedure, starting with Step 1, is repeated for each representative structure

in subsequent cycles/generations. In Step 5, the clustering is applied on all generated

conformers belonging to generation “g” (where g is equal to zero for the cycle of starting

structure, one for first iteration, etc.-see Figure 3.1). Thus, at each iteration, number

of clusters grows due to increased number of generated conformers. In the final gener-

ation, the weight of each representative conformer is calculated based on the number

of elements in its cluster over the total number of generated conformers before clus-

tering. It is assumed that each representative conformer represents a conformational

state with the assigned weight.

During the generation of conformers, the case where aj = 0 (Eqn 3.7) for all

eigenvectors results in the presence of “parent” (initial structure on which the procedure

is applied) among the generated conformers. The parent conformer(s) is (are) clustered

together with deformed conformers along di, and representatives are selected from

all of the clusters, including the parent(s)’s. Thus, the information of parents (i.e.

representative structures in earlier generations) is kept in the final generation.

ClustENM Procedure I is applied on a dataset of six diverse structures. Hinge

bending proteins adenylate kinase (AK) and calmodulin (CAM) are monomeric; and
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Figure 3.1. Flowchart of ClustENM Procedure I.
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HIV1 reverse transcriptase (HIV1-RT) is a heterodimeric protein. Triosephosphate

isomerase is a homodimeric enzyme with a catalytic loop and p38 kinase present com-

paratively localized motions. Finally, 70S ribosome is a supramolecule with diverse

global motions. These structures are selected due to available experimental and com-

putational data and to show the applicability of the method to diverse in terms of

size and topology. Experimental structures for comparison are chosen based on 90%

sequence similarity to starting structures.

The list of these structures (seen in Figure 3.2) and system properties are given

in Table 3.1. For AK, the number of experimental structures that have 90% sequence

similarity to 4ake/1ake equals to nine. But except 4ake, all of these structures are fully

closed and similar to 1ake. Even though we use only two of the AK’s crystal structures

for our purpose here, AK’s conformational transitions have been extensively studied

by experimental and computational means, therefore we will compare our results with

available data in the literature.

Table 3.1. Structures used in ClustENM-I.

Structure N DF m
No of

g
Initial No of exp.

(Å) conformers structure structures

AK 214 2 3

71 5 4ake

2
226 5 1ake

222 5 closed-NMP

113 5 closed-LID

CAM 144 3 3 195 5 1cll 550

HIV1-RT 958 2 5 50 2 1rtj 155

P38 345 1 5 41 2 1p38 221

TIM 497 1 3 24 2 1tcd 16

70S Ribosome 11336 3 5 101 2 4kdk-4kdj 27
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Figure 3.2. Structures used in the application of ClustENM Procedure I.
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3.3. ClustENM-II for Docking Applications

A variation of ClustENM is applied on four proteins undergoing large conforma-

tional changes for docking applications. Minimization-deformation-clustering scheme

is similar to Procedure I, with following modifications:

(i) Same as Procedure I-Step 1.

(ii) Same as Procedure I-Step 2.

(iii) Same as Procedure I-Step 3.

(iv) Similar to Procedure I-Step 4 with a slight modification: Fixed DF of 2 Å is

applied without scaling based on V1.

(v) Similar to Procedure I-Step 5 with a slight modification: RMSD cutoff is set to

2 Å.

(vi) Similar to Procedure I-Step 6 with a modification: clusters containing parent

structure(s) are excluded. Representative structures are chosen from clusters

different than parent structure(s) in order to sample as many distinct conformers

as possible.

The above procedure, starting with Step 1, is repeated for each minimized rep-

resentative structure in subsequent stages/iterations, as seen in the flowchart given in

Figure 3.3.

The procedure starts by performing ENM on the minimized native unbound

protein conformation. In consequent iterations (or generations) ENM is performed on

each representative structure of the generated clusters if the blind search mode (without

any filtering or constraints) is used. If an energy criteria is considered (energy-based

selection), in Step 6, representative conformers that have lower energy compared to

minimized open/unbound protein (starting structure) are selected for the generation of

next cycle conformers. At the end of the procedure, additional post-filtering criteria can

be applied. For example, we use RG of the apo structure for filtering out the structures

having RG larger than the apo, since our dataset consists of hinge-bending proteins

which undergo conformational transition from open to closed structure. ClustENM
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Figure 3.3. Flowchart of ClustENM Procedure II.
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Procedure II is applied on proteins listed in Table 3.2. Additionally, the open and

closed (ligand bound) states of the structures are shown in Figure 3.4

Table 3.2. Proteins and their ligands used in ClustENM-II.

Protein PDB id

Number RMSD between

Ligandof open and closed

residues structure (Å)

AK 4ake (open) 214 7.1 Bis(adenosine)-5’-

pentaphosphate

(AP5) (in 1ake)

Lysine-arginine-

ornithine-

binding protein

(LAO)

2lao (open) 238 4.77 Lysine (1lst)

Dipeptide-

binding protein

(DBP)

1dpe (open) 507 6.5 Glycyl-leucine

(1dpp)

Biotin Carboxy-

lase (BC)

1dv1 (open) 894 4.1/4.6

(monomeric

/ dimeric)

Adenosine triphos-

phate (ATP)

(1dv2)

3.4. Molecular Dynamics Simulations

MD simulations in explicit solvent are carried out for TIM, p38 and HIV1-RT in

order to compare the conformational space explored by MD and ClustENM Procedure

I. Inhibitor bound TIM complex simulations are also performed in order to investigate

the effect of the ligand on conformational dynamics of the enzyme.

Three independent 100 ns apo TIM and three independent 100 ns inhibitor-

bound TIM simulations are performed with the ff03 force field [114]; one 100 ns and

one 50 ns p38 kinase; and two 100 ns hiv1-rt runs with ff10 force field parameters in
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Figure 3.4. Open (left) and ligand bound (right) conformers of proteins used in

application of ClustENM Procedure II.
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AMBER12 [113]. The force field parameters for the inhibitor, which is a benzothia-

zole derivative 2-2(2-(4-aminophenyl) benzothiazole)-6-methylbenzothiazole-7-sulfonic

acid, sodium salt, are obtained using antechamber module of AMBER, after determin-

ing RESP partial charges using Gaussian03 [119] at the B3LYP/6-31+G** level.

In all runs, energy minimization is performed starting with 500 cycles of steepest

descent algorithm, followed by conjugate gradient with a convergence criterion for RMS

gradient per atom set to 0.01 kcal/mol/Å. Initial velocities are assigned according to

Maxwellian distribution at 10 K, then the temperature is gradually increased to 300

K. All runs are carried out as NPT simulations with isotropic scaling at 300 K and 1

atm, using Langevin dynamics for first 1 ns with collision frequency 1 ps-1 in order to

homogenously dissipate the heat, then switched to the weak-coupling algorithm [120]

for both temperature and pressurefor the rest of the simulation, with default relaxation

time constants of 1 ps each. The truncated octahedron periodic box is filled with

TIP3P water molecules [121] and neutralized with counter ions (Cl- for all proteins

except p38 MAP kinase). A time step of 2 fs is used due to the application of SHAKE

algorithm [122]. Ewald summation technique with the particle-mesh method [123] is

applied with a cutoff distance of 9 Å for long-range electrostatic interactions. MD

details for all systems are summarized in Table 3.3.

3.5. Ensemble Analysis

For ClustENM Procedure I, ProDy [125] is used to superimpose experimental

structures which have 90% sequence similarity to starting structure (Table A.1), prior

to principal component analysis (PCA). The alignment of the generated conformers

onto these structures is also performed using this software. This procedure is carried

on for CAM, p38 kinase, HIV1-RT and TIM.

PCA is performed on the generated conformers by using Cα coordinates for pro-

teins and Cα and P coordinates of ribosome. Aligned experimental and MD data are

projected onto the subspace generated by conformers PCs, in order to observe whether

the subspace spanned by the PCs includes these data.
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Table 3.3. MD simulations system details for TIM, HIV1-RT and p38 kinase.

MD runs

Total Number of Box Initial

number of water dimensions structure

atoms molecules (Å)

Apo TIM MD1 54980 15753 89 1tcd

Apo TIM MD2 54830 15711 89 2 ns of TIM MD1

Apo TIM MD3 57554 16611 90 11 ns of TIM MD3

Complex TIM MD1 59274 17170 91 7 ns of Apo1, in-

hibitor docked [124]

Complex TIM MD2 61282 17842 92 13.5 ns of Apo1, in-

hibitor docked [124]

Complex TIM MD3 59848 17364 91 0.5 ns of Complex2

HIV1-RT MD1 134615 39541 128 1rtj

HIV1-RT MD2 152405 45471 128 5 ns of HIV1-RT

MD1

P38 MD1 45462 13267 90 1p38

P38 MD2 44202 12847 90 50 ns of P38 MD1
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3.6. Softwares and Parameters Used for Protein-Ligand Docking

In ClustENM Procedure II, docking of the ligands onto generated receptor con-

formers is performed using AutoDock [84, 85] and HADDOCK [126] softwares. For

peptide dockings, we preferred HADDOCK since its scoring function and minimiza-

tion protocol is suitable for amino acids. For the remaining ligands we selected to

perform dockings using AutoDock.

In ligand dockings onto AK an BC, both the receptor and the ligands are prepared

using AutoDockTools [85]. The ligands are kept almost rigid for AK (2 out of 22 bonds

are active in AP5 ligand) and completely rigid for ATP in BC case. 100 runs are

performed using the Lamarckian genetic algorithm of AutoDock v4.0 to explore the

conformational space3. Each run consists of 25x106 energy evaluations. Grid box is

located at the binding site of the ligand, covering receptor residues interacting with

the ligand. The box dimensions are 64 x 72 x 80 with 0.375 Å spacing for AK and 80 x

80 x 80 with 0.375 Å spacing for BC. Results of all runs are clustered using an RMSD

cut-off of 2 Å.

For peptide dockings onto LAO and DBP proteins, HADDOCK web server Easy

Interface is used with default parameters. Residues interacting with the ligand in the

complex crystal structure are selected as active residues.

3.7. Mean Square Fluctuations

Mean square fluctuations for MD runs and generated conformers are calculated

based on the following formula:

MSF =
1

T

T∑
t=1

(Ri(t)− R̄)2 (3.9)

where T is number of snapshots, Ri(t) is the position of the Cα atom of ith residue
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at tth snapshot and R̄ is the average (mean) position of Cα atom of ith residue. For

generated conformers, weigth of the representative conformers are taken into account.
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4. CONFORMATIONAL SAMPLING USING

CLUSTENM-I FOR STRUCTURES UNDERGOING

LARGE CONFORMATIONAL CHANGES

Proteins and nucleic acid complexes undergo local or domain-wise transitions

between stable states in order to perform their function such as binding, catalysis,

switching and serving as structural elements of living organisms [127]. It is essential

to understand such transitions in order to elucidate protein function. We applied

ClustENM Procedure I described in Methods, on the dataset of structures given in

Table 3.1 to reveal the accessible states for a given initial state (e.g. determined

from x-ray crystallography). This chapter will summarize results on the first four

proteins (AK, CAM, HIV1-RT, and P38), whereas conformational sampling of TIM

and ribosome will be discussed in the following chapters.

4.1. Adenylate Kinase

AK is a protein that is widely studied by many experimental and computational

studies concerning large scale conformational transitions (a recent review about AK

is in [6]). It is a phosphotransferase enzyme that plays an important role in cellular

energy homeostasis; catalyzing the interconversion of ATP and AMP into two ADP

molecules within the cells. AK consists of three domains: the LID domain where ATP

molecule binds, the NMP domain also called the AMP-binding domain and the CORE

domain. The LID and NMP domains undergo large conformational changes (about 7

Å from fully open to fully closed state) around the CORE domain, to provide solvent

free environment for the substrates. In fact, the open and closed states of AK are

accessible even in the absence of ligand, as suggested by experimental single-molecule

Förster resonance energy transfer (FRET) studies [128,129].

ClustENM-I is applied on AK to explore its conformational space, starting from

four different states of the enzyme. Two of these are crystal structures that represent
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Figure 4.1. Starting structures for AK.

the fully-open state with open LID and NMP domains (pdb id: 4ake) and the fully-

closed state with both domains closed (pdb id: 1ake). The other two structures, which

correspond to closed-LID (open NMP), and closed-NMP (open LID) are selected among

the generated structures in order to have same sequence as 4ake and 1ake. Although

there are crystal structures that represent closed-LID and closed-NMP states such as

1dvr and 2ak3, respectively, we could not use these since their sequence identity to

1ake and 4ake are below 50%. The starting structures are presented in Figure 4.1.

We used LID-CORE and NMP-CORE angles defined in Beckstein et al.’s work

[130] to describe the inter-domain conformational degrees of freedom of AK. The angles

are calculated based on the definition given in the same study (shown in Figure 4.2a),

where angle LID-CORE is formed from the centers of geometry (blue dots) of the

backbone and Cβ atoms in residues 179-185 (CORE), 115-125 (CORE-LID) and 125-

153 (LID). NMP-CORE is calculated similarly but for residues 115-125 (CORE-LID),

90-100 (CORE) and 35-55 (NMP).

In Figure 4.2b, the clusters from the fifth generation are shown for each distinct

starting structure on the angle space. Representative conformer of each cluster corre-

sponds to a dot with its diameter proportional to the cluster size (weight). Even though

each independent simulation preferentially samples the quadrant closer to its starting

structure, there is a large overlapping region sampled by multiple runs. These inde-

pendent samplings are merged into a single graph (Figure 4.2c), which is color-coded
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Figure 4.2. Conformational sampling of AK. (a) LID-CORE and NMP-CORE angles.

(b) Independent samplings based on four distinct starting structures (squares). (c)

Representative surface that merges four distinct simulations (in panel b) into a single

one.
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according to overall weights obtained for the four runs. The generated conformers cover

a broader range of NMP-CORE and LID-CORE angles than the free energy surface

reported for AK by Beckstein et al. [130], where the respective ranges were 40-75o and

100-155o. More interestingly, the highly populated regions in our surface correspond

to the lowest free energy regions in the mentioned study.

Figure 4.2c also reveals that the region around the fully-open state (NMP-CORE:

74o, LID-CORE: 146o) is not highly populated. This is in agreement with studies

stating that fully-open state of the apo enzyme is not energetically favorable [69, 74,

130–134]. Beside the closed-LID, closed–NMP intermediate states, there is an addi-

tional half open/half-closed state, which is highly populated (NMP-CORE: 55-60o,

LID-CORE: 115-120o) in Figure 4.2c. This state is observed in both experimental and

computational studies [6], which claim it as an intermediate state in the transition

pathway between open and closed conformations of the enzyme.

The sampled regions in Figure 4.2c are also in agreement with the transition

pathways studies. For example, ANMPathway [79] and coMD [78] report the closing

of LID, followed by NMP closure in the transition from fully-open to fully-closed state.

Same behavior is reported in the studies of Daily et al. [132], Matsunaga et al. [135],

Beckstein et al. [130], Uyar et al. [75]. In the reverse direction, again the dominance

of LID opening followed by NMP opening is observed in coMD [78], Beckstein et al.’s

work [130]. In numerous computational studies [74, 130, 133, 135–137], it is reported

that LID domain movement of apo AK occurs on a relatively flat energy surface. LID

motion is also dominantly observed in small-angle X-ray scattering [138]. The sampled

regions in our results shows that LID domain angle can have values between 105-135o

when the NMP is open (65o), and between 90-125o when the NMP domain is closed

(45o). However, we also observe NMP movement in our generated conformers, which

is reflected from the highly populated region on Figure 4.2c where NMP angle changes

between 45-65o when LID angle is around 120o.

While analyzing the different conformers on the surface, we observed that com-

monly used LID-CORE and NMP-CORE angles do not uniquely describe the inter-
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domain flexibility of AK. Specifically two conformers falling on same spot of the con-

formational space may represent quite distinct structures, such as those shown in the

Figure 4.3. In the figure, the fully-open crystal (4ake) structure and one generated con-

former are shown, which are close to each other on the angle space but have an overall

RMSD of 8 Å. The difference stems from the LID positioning, inducing a chirality

(both have LID-CORE angle of 147o). Thus, angle metric is inadequate to distinguish

such conformational differences. Still we employed this representation in order to com-

pare our results with the available free energy surface [130] and angle-based results

presented in other computational studies [75, 78, 79]. For the other proteins analyzed

in this thesis, however, we will base our results on PCA.

Besides the angle analysis, we calculated the RMSD of the cluster representatives

with fully-open, fully-closed, closed-LID and closed-NMP states for each simulation, in

order to investigate the closeness of the representative structures of the final generation

to these states. The lowest RMSDs to the specific states are reported in Table 4.1. In

parenthesis, the number of conformers that have RMSD less than 3 Å in parenthesis

are given (see Figure 4.4 for detailed RMSD analysis as histograms).

Table 4.1. RMSD table of representative conformers to the four states.

Starting Sampled states

structure Fully-open Fully-closed Closed-LID Closed-NMP

Fully-open - 2.2 (2) 1.4 (15) 4.6

Fully-closed 4.6 - 2.7 (6) 1.2 (21)

Closed-LID 1.4 (8) 2.0 (17) - 3.9

Closed-NMP 4.3 1.0 (14) 3.1 -

According to our results, starting from the fully-open state, it is possible to reach

the closed-LID and fully-closed states, but not the closed-NMP state at the end of fifth

generation. From the fully-closed state in reaching closed-LID and closed-NMP, but

not fully-open. From closed-LID, it is possible to obtain both fully-closed and open

structures, and structures which are closed-NMP-like (RMSD 3.9 Å). Interestingly,
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Figure 4.3. NMP-CORE and LID-CORE angles cannot distinguish fully-open crystal

structure and a generated conformer that have an RMSD of 8 Å.
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Figure 4.4. RMSD histograms for AK conformers to different states, using starting

conformer as (a) fully-open, (b) fully-closed, (c) closed-LID, (d) closed-NMP.
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Figure 4.5. Accessible states when the starting structure is selected as fully-open,

fully-closed, closed-LID or closed-NMP (LID domain is shown as blue, NMP as red).

starting from closed-NMP results in fully-closed and closed-LID-like (RMSD 3.1 Å),

but not fully-open. Figure 4.5 summarizes these findings based on accessible states

from each starting structure. Filled arrows are drawn between the starting states if

any of the generated conformers have an RMSD less than 3 Å to a specific state (tip

of the arrow). Empty arrows imply a similar situation, but with an RMSD between

3-4 Å. It should be stated that each arrow implies that such a conformational change

is realizable within five generations, but does not describe the transition pathway. For

example, our analysis cannot answer the following question: Does the transition from

fully-open to fully-closed state pass through half closed states or the closed-LID state

or both?
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4.2. Calmodulin

Calcium binding protein CAM functions as a multipurpose intracellular Ca2+

receptor that is expressed in all eukaryotic cells. CAM consists of a single polypeptide

chain with four Ca2+ binding sites (two on each lobe). It has 148 residues which

constitute three distinct regions in the structure: N-lobe consists of residues 1-68, C-

lobe residues are 92-148 and the remaining residues form the linker which is helical

as seen in Figure 4.6. CAM may undergo large conformational transition, such as the

change from the extended state to the fully collapsed state is about 15 Å (shown in

Figure 4.6). Having an important role in calcium signaling pathways, it can bind to

various target proteins in the cell to alter their activity.

We used the extended conformer of CAM (pdb id: 1cll) as the starting structure

for exploration of its conformational space. At the end of fifth generation, 195 clusters

(i.e. representative conformers) were generated and later used for PCA. Subsequently,

550 experimental structures, including NMR models and crystal structures, were pro-

jected onto the subspace spanned by the first three PCA modes in Figure 4.7a. Inter-

estingly, the horse-shoe shaped distribution of the generated structures closely overlaps

with that spanned by experimental data. Thus, the topology-driven modes have effec-

tively guided the conformational space search for CAM. The highly populated region

that is not sampled by generated conformers corresponds to the ligand-bound fully-

collapsed state of CAM (closest generated structure has an RMSD of 9.1 Å, starting

with initial RMSD of 15 Å). We should note that the helical structure of the linker

is generally preserved in the generated conformers although a slight bending is also

observed. The end-to-end linker distance defined in Aykut et al.’s work [139], (which

corresponds to the distance between carbon alpha atoms of residues 69 and 91) changes

between 30-34 Å range. This range is far from the bent linker end-to-end distance which

is equal to 22 Å in fully closed state. We suppose that more generations are needed to

be performed in order to observe pronounced bending of the linker.

Due to the availability of experimental data describing the distinct states of CAM

(including intermediates), we also calculated and compared mean square fluctuations
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Figure 4.6. Extended and closed states of CAM, wheren N-lobe (blue), linker (green)

and C-lobe (red) are shown.
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Figure 4.7. Conformational sampling for CAM. (a) Projection of experimental data

(blue) onto the subspace spanned by the first three PCs of generated conformers

(red) of CAM. (b) MSF for generated conformers and experimental data.

based on the ensembles of generated and experimental conformers as seen in Figure

4.7b. The trend for both data is similar, except residues 1-20 which seem more mobile

in experimental data. As seen from the figure, N-lobe and C-lobe fluctuation scale is

different, although CAM is a symmetric structure. This may stem from the overall

alignment of the structures.

We wanted to observe how close our conformers get to the NMR ensemble (pdb

id: 2k0e) reported for apo CAM [140], which contain 160 models. In Figure 4.8, two

distributions are compared: blue histogram plots each NMR model’s RMSD from the

initial extended structure, whereas the red one reports the lowest RMSD value between

each NMR model and the generated conformers. The initial RMSD range of 7-15 Å

decreases to 3-10 Å, as the generated conformers that lie closest to NMR models are

considered. Three of these conformers are shown in Figure 4.7a.
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Figure 4.8. Initial/final RMSD range of the starting structure/generated conformers

to the NMR models of 2k0e (blue).

4.3. Mitogen-activated protein kinase p38

Mitogen-activated protein kinase p38 has an important role as a signal transduc-

tion mediator and it is activated in response to extracellular stimuli such as osmotic

shock, ultraviolet light, growth factors. Its link to inflammation, cell cycle, cell death,

tumorigenesis in specific cell types has been reviewed elsewhere (Zarubin and Han, Cell

Research, 2005).

Like in the case of CAM, PCA is applied on the generated representative con-

formers (41 structures) of p38 kinase. Before projecting experimental data onto the

subspace spanned by PCs of generated conformers, experimental structures are itera-

tively aligned, based on the alpha carbons of residues 5 to 31, 36 to 114, 122 to 169,

185 to 351, which are resolved in at least 90% of the dataset [141], using ProDy soft-

ware. Although 155 experimental structures are projected onto the subspace spanned

by the first two PCs of generated conformers, the data still tend to accumulate within

a narrower region compared to generated conformers and two independent 50-100 ns

MD runs (Figure 4.9a, MD1 is 100 ns and MD2 is 50 ns long). The “grid-like” trend

of the generated conformers stems from the persistent selection of a specific direction,



50

Figure 4.9. p38 MAP kinase. (a) Projection of generated conformers (red),

experimental (blue) and MD (black and green) data onto subspace spanned by the

first two PCs of generated conformers (red). (b) MSF for generated (red) and MD

(black) data.

which can be also observed from Figure 4.10c (red conformers). Nevertheless, Figure

4.9a shows the drift of MD data to the regions occupied by the generated conformers.

Moreover, the trends in MSF (Figure 4.9b) for generated conformers and MD

runs show consistency in overall. We observe higher fluctuations in MD compared to

generated conformers only for residue index 100-115 region which corresponds to the

loop indicated by an arrow on Figure 4.10.

Figure 4.10 shows the dynamics from experimental data with mostly localized

motions (blue), generated conformers (red) with global motions and MD (green), which

is a combination of both. In this figure, the loop which do not reflect fluctuation in

experimental data belong to a region left out from the alignment (residues 170-184),

but it is present in both MD and generated conformers.

4.4. HIV1-Reverse Transcriptase

Reverse transcriptase enzyme is essential for retrovirus HIV to convert its viral

RNA to a double stranded DNA during the infection process of the host cell. Being
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Figure 4.10. p38 MAP kinase conformers from x-ray (blue), generated clusters (red)

and MD (green) data. In all cases, the opaque structure corresponds to the starting

structure.
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Figure 4.11. HIV1-RT. (a) Projection of generated conformers (red), experimental

data (blue) and MD data (black and green) onto subspace spanned by the first two

PCs of generated conformers (red). (b) MSF for generated (red) and MD (black)

data.

a target in anti-HIV drug development, HIV1-RT is an asymmetric heterodimer com-

posed of p66 and p51 subunits. The structure has four domains named as “fingers”,

“palm”, “thumb” and “connection” [142] and p66 has a COOH-terminal RNase H.

Both polymerase and RNase active sites are located on p66 subunit

Figure 4.11a shows the PC subspace spanned by generated conformers, which

covers most of the experimental and MD data. Even though two independent MD

runs (100 ns each) mostly sample the right-hand side of the conformational space

(PC1 > 0), some of the snapshots are observed on the left-hand side that is sampled

by the generated conformers, similar to p38 case. One cluster of experimental data

(located about PC1 = 50, PC2 = -100), which is not sampled by either the generated

clusters or the MD snapshots, corresponds to the closed state of the clamp (observed

in Figure 4.12a). MSF for generated conformers, MD and experimental data indicate

a satisfactory level of correspondence, even though the experimental data cluster in

a more confined region in the Figure 4.11b. High peaks on MSF figure corresponds

either chain ends or the loop motions in subunit B, showed with arrows in Figure 4.12.

Although the clamp motion is emphasized in the dynamics from experimental data

in Figure 4.12 (blue); generated (red) and MD (green) structures express more global
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Figure 4.12. HIV1-RT conformers from x-ray (blue), generated clusters (red) and MD

(green) data. In all cases, the opaque structure corresponds to the starting structure.

motions and behave similarly.
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5. APPLICATION OF CLUSTENM TO BACTERIAL

RIBOSOME

5.1. 70S Ribosome

Ribosome is a supramolecular machine that performs protein synthesis in all living

cells. 70S bacterial ribosome is formed by the association of small (30S) and large (50S)

subunits, which in total contain more than 50 different ribosomal proteins and several

ribosomal RNAs. Protein synthesis is accompanied by several conformational changes

of the ribosome, which are challenging to observe by classical MD. The translocation

process still needs clarification in terms of molecular mechanism [107, 143]. Several

methods have been used to investigate ribosome dynamics including ENM [102–105,

109], coarse-grained MD [34] and MD using a multi-basin structure-based model [107].

In order to demonstrate the applicability of our sampling method (ClustENM-I)

to supramolecules, we used a recently reported crystal structure of 70S bacterial ribo-

some complexed with elongation factor G, which is trapped in an intermediate state of

translocation [144], called “chimeric pe*/E” state (pdb id: 4KDK (50S)-4KDJ (30S)).

The complex contains 50 ribosomal proteins, mRNA, tRNA and EF-G besides the 23S,

16S and 5S RNA. Using the minimized 70S structure, we generated 101 representative

conformers in the second cycle.

Due to the missing chains and/or residues in experimental structures, we cal-

culated mutual RMSDs (among experimental data or between experimental and gen-

erated structures) based on P atoms of the common chains 23S and 16S only, using

PyMOL software [145]. Accordingly, available 27 experimental structures of 70S in-

cluding the initial structure fall into five major clusters (Figure 5.1).

Comparison of generated conformers with experimental structures indicates that

almost half of the conformers approach towards one of the clusters other than the initial
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Figure 5.1. Mutual RMSD for 70S ribosome x-ray structures, based on P atoms of

16S and 23S only.

structure’s cluster. In in Figure 5.2, the starting structure’s RMSD to experimental

structures is subtracted from the generated conformer’s RMSD to the same structures,

to observe the closeness/farness of the generated conformers. Red-orange colored re-

gions correspond to structures that are closer to crystal structures than the starting

structure (colorbar on the right shows RMSD). Clusters of experimental structures are

separated by dashed lines. Cluster no.5 contains the initial structure 4kdj-4kdk.

Moreover, Figure 5.3a indicates that the starting RMSD range (of initial structure

with experimental structures) shifts to lower values for the generated conformers (lowest

RMSD for each generated structure is used in the histogram).

PCA is applied on generated 70S ribosome structures and the distribution of

conformers on the subspace spanned by PC1 and PC2 can be observed in Figure

5.3b. PC1 and PC2 describe the ratchet motion of subunits and the 30S head motion,

respectively, including high mobility of L1, consistent with previously reported results

in numerous studies [34,102–105,107,109,143]. These motions and the mobility of the

complex can be depicted in Figure 5.4.
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Figure 5.2. Closeness/farness of the generated conformers (columns) to crystal

structures for 70S ribosome (rows).

Figure 5.3. 70S ribosome (a) Initial/final RMSD histogram. (b) PCA of generated

conformers.
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Figure 5.4. The dynamics of 70S from 32 generated structures with higher weights.

In generated conformers, high mobility of tRNA is apparent together with L1

stalk, as seen in Figure 5.5. tRNA also has the tendency to move towards to the exit

site, i.e. away from the P site. We can speculate that this may due to the presence of

EF-G, which accelerates the translocation in forward direction [108]. To further analyze

this situation, new generations can be created without EF-G, and the differences in

the dynamics of tRNA can be investigated in more detail.

Ribosomal tunnel on 50S subunit, through which the nascent polypeptide chain

exits, is shown with nearby proteins L4, L22, L23, L24 and L29 in Figure 5.6. In our

previous study regarding ribosomal nascent polypeptide exit tunnel, we observed L4

and L22 anti- or non-correlated motions at the narrowest and important region of the

tunnel [105]. In this work we also observe the flexibility of L4 and L24 in generated

conformers, however L22-23 and L29 exhibit mostly rigid-body type translations. In-

creasing DF in the generation of conformers for such a complex may lead to more

detailed observation of the these proteins’dynamics, which is local.
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Figure 5.5. Mobility of tRNA together with L1 stalk.
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Figure 5.6. Close-up view of protein dynamics located at the exit tunnel of 70S

ribosome.
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5.2. 50S ribosome-Trigger Factor (TF) Complex

Bacterial TF binds to the exit tunnel of ribosome [146–150] and acts as a chap-

erone facilitating the folding of newly synthesized proteins, emerging from this tun-

nel [151, 152]. E. coli TF with 432 residues consists of three domains; namely the

ribosome-binding domain (residues 1-112, “tail” domain), the peptidyl prolyl isomerase

domain (residues 150-246, “head” domain) and the C-terminal domain, which is the

core domain (residues 113-149 and 247-432 where “arms” are located). TF binds in

monomeric form to the ribosome, whereas unliganded TF can also exits in monomeric

and dimeric form, in the solution ( 100 kDa).

In this study, we applied ClustENM methodology (Procedure II) on 50S ribosome-

TF complex, in order to shed light on the dynamics of such a complex. Currently, the

intact structure of ribosome-TF complex is not available in Protein Data Bank. How-

ever, three crystal structures of 50S ribosome, containing a portion of TF binding

domain are present. One of them is from Haloarcula Marismortui (pdb id: 1w2b),

which has whole 50S unit together with ribosomal proteins; however this structure has

only 35 residues of the TF binding domain. The other is from Deinococcus Radiodurans

(pdb id: 2aar), which carries a coarse-grained but longer part of the binding domain

(113 Cα atoms) on 50S ribosome, however this structure lacks most of the ribosomal

proteins (only L23 and L29 are present). Another is again from Deinococcus Radio-

durans (pdb id: 2d3o) at 3.35 Å resolution, which contains TF N-terminal binding

domain (112 residues) in complex with 50S subunit, where L24, L29 proteins are also

available. To obtain a 50S ribosome structure with all ribosomal proteins and maxi-

mum number of TF domain residues, we aligned 2aar and 1w2b structures on top of

each other using PyMOL. Then, we extracted a TF conformer from MD simulations of

a previous study [153], performed with ionic strength of 150 mM. We selected the bind-

ing domain of this conformer and aligned this region on top of 113 Cα atoms-binding

domain of TF from 2aar. At the end, we obtained an atomistic 1w2b-TF complex.

Resulting 50S ribosome-TF complex, which has 156,991 atoms in total (corresponding

to 7023 residues), was subjected to energy minimization using implicit solvent with

parameters described in Methods. The minimized complex shown in Figure 5.7, is
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Figure 5.7. Energetically minimized 50S ribosome-TF complex structure (side and

top views).

used as starting structure in ClustENM. As seen from the figure, TF (orange) binding

domain is next to the L23 (light blue) ribosomal protein. Other proteins surrounding

the ribosomal exit tunnel, namely L3 (blue), L4 (cyan), L22 (magenta), L24 (green)

and L29 (violet) are also shown on 50S ribosome (gray) in the same figure.

ClustENM-II is applied on the energetically minimized complex with DF of 2

Å, using first five slowest modes in the blind conformational search. 17 distinct rep-

resentative structures are obtained in total from two generations. The structures are

superimposed in Figure 5.8, revealing high mobility of head domain. The binding do-

main and the arms located at C domain remain relatively stable on ribosomal exit

tunnel, which is contrary to their significant mobility observed in previous MD simu-

lations of monomeric apo TF in solution, at different ionic strengths [153–156]. This

supports the view that N-terminal tail and C-terminal arms provide a protected folding

space for the nascent polypeptide chain [147]. Moreover, high mobility of head domain

is in conformity with crystal and cryo-EM data, which indicate the necessity of the

rotation of head domain by 24 degrees towards the C-terminal arms in order to fit the
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Figure 5.8. 50S ribosome-TF complex dynamics from generated conformers using

ClustENM.

density [150].

We also aligned four of the generated structures on this cryo-EM map (EMDB

map 1499) using Chimera, which has also one aligned experimental structure of TF

(pdb: 2vrh), shown as red in Figure 5.9. The generated structures (shown in blue

colors) are in conformity with the experimental structures; binding and core domains

are relatively stable and head domain is flexible.
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Figure 5.9. 50S ribosome-TF generated conformers (blue) aligned onto cryo-EM map

(surface) and experimental TF structure (red).
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6. TRIOSEPHOSPHATE ISOMERASE

CONFORMATIONAL DYNAMICS

6.1. Application of ClustENM-I on TIM

TIM is a crucial enzyme in the glycolytic pathway, catalyzing the interconversion

of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (GAP) by

isomerization reaction. It is active in dimeric form, although each identical subunit

possesses its own catalytic site. Each subunit is composed of 251 residues (in TIM

from Trypanosoma cruzi, TcTIM) adopting the TIM-barrel topology. The active site is

located at the C-terminal end of the β-barrel. There are four catalytic residues, namely

Asn12 and Lys14 on loop 1, His96 on loop 4 and Glu168 on loop 6, which are shown on

one subunit of the X-ray structure 1tcd [157] in Figure 6.1. Catalytic loop 6 (Glu168-

P178), loop 7 (Gly212-Lys218) and loop 8 (Gly235-Lys240) also contribute to the active

site geometry via H-bonding interactions with the substrate [158]. Interdigitating loop

3 (Gln66-Val79) plays a crucial role in the stability of the dimer by interacting with

other subunit [159–161]. Allostery or cooperativity has not been observed between the

identical active sites [162], located on both subunits.

The available experimental structures of TIM reveal the relatively localized open-

ing/closure motion of loop 6. This functional loop 6 (residues E168-P181 in 1tcd) closes

over the active site and protects the substrate from solvent during the reaction. How-

ever, it is also known that loop 6 opening/closure is not ligand-gated and takes place

in the apo state, as well as when substrate is bound [163–165]. There are also crystal

structures (e.g 1tsi, 1lzo) where the loop 6 is in open conformation despite the presence

of the ligand on the catalytic site.

Several MD simulations and ENM studies have stressed the presence of collec-

tive motions in TIM, such as counter-rotation or bending of the subunits, which are

coupled to loop 6 dynamics but not evident in experimental structures [164–169]. In
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Figure 6.1. TIM structure from Trypanosoma cruzi.

conformity with these findings, the conformers generated here using first three collec-

tive modes cover a wider space in comparison to the projected experimental structures

(blue squares), which tend to cluster in a confined region of the PC subspace, as seen in

Figure 6.2a. We also projected the MD snapshots obtained from three independent 100

ns runs onto the same PC subspace, which indicate similar subspaces being sampled

with the generated conformers.

High correlation is observed in residue MSF between generated conformers and

MD simulations as seen in Figure 6.2-b. However the fluctuations of loop 6 indicated

by the circles on the figure are more pronounced in MD runs. The dynamics from

experimental, generated and MD data can be visualized in Figure 6.3, where only the

catalytic loop motion (opening/closure) is observed in x-ray (blue), but global dynamics

is present in both generated (red) and MD (green) structures.
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Figure 6.2. TIM PCA and MSF. (a) Subspace spanned by the first two PCs of

generated conformers (red) with projected experimental data (blue) and MD data

(black, green and yellow) (b) MSF for generated (red) and MD (black) conformers.
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Figure 6.3. X-ray (blue), generated (red), MD (green) conformers of TIM.
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Figure 6.4. Inhibitor bt10 structure.

6.2. Inhibitor effect on TIM global dynamics and its specific interactions

with the enzyme

In drug design studies against the parasitic diseases, subunit interfaces of oligomeric

enzymes including TIM may serve as species-specific drug target sites, since they are

generally less conserved than the active site [159,170,171]. Several benzothiazole deriva-

tives have been reported as drug candidates against the Chagas disease by inhibiting

TcTIM’s activity [160, 171, 172]. One such example is an inhibitor named as bt10

(Figure 6.4) that binds to the specific tunnel region at TcTIM’s interface [160, 171].

Previous works [124,173,174] have revealed that bt10 interacts with the aromatic clus-

ters formed by Phe75 of one subunit and Tyr102-103 of the other subunit on the

interface in the so-called tunnel region formed by dimerization. Our previous blind

docking study [124], has indicated that bt10 binds selectively to the tunnel region in

dimer, whereas its specificity for the interface decreases in the monomer. However, the

specific inhibitory mechanism of this derivative is still not clear. One proposition on

this issue has been the destabilization of the interface upon binding and subsequent

dissociation into monomers [173, 174]. However, our MD simulations as will be pre-

sented here show that the interface region occupied by bt10 enhances the network of

interactions and at the same time modifies the overall dynamics of the protein. As

such, there seems to be an allosteric effect on the catalytic site and loop 6.



69

Figure 6.5. Dimeric and monomeric RMSD profiles for MD runs of TIM.

6.2.1. Root Mean Square Deviation and Mean Square Fluctuations for Apo

and bt10-Bound MD Runs

To understand the inhibitor effect on the enzyme, we performed six independent

100 ns-long MD simulations. Three of these simulations involved the apo enzyme and

the rest correspond to bt10-bound complex. The RMSDs of MD snapshots with respect

to the minimized initial structure of each run (heavy-atom based) are confined within

2.5 Å, indicating stability over 100 ns (Figure 6.5). Based on RMSD profiles of dimer

and monomers, first 10 ns of each run were discarded as equilibration period from

further analysis.

To analyze the inhibitor effect on TIM dynamics, first we calculated residue MSF

for apo and bt10-bound TIM, and shown in Figure 6.6 for each run. Two-way ANOVA

is applied on residue-based MSFs, with null hypothesis that ligand has no effect on

residue MSF. The null hypothesis is rejected with p-value of 0.0185 (less than 0.05).
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We show the change in MSF values upon ligand binding in Figure 6.7. If the MSF of

any residue in the complex increases (decreases) by more than 20% with reference to

the apo runs, it is shown in red (blue) based on the average over three runs. In the

presence of bt10, the residue mobility increases in subunit A, whereas it decreases in

subunit B. This effect is due to the asymmetric shape of bt10.

6.2.2. Specific interactions

In order to gain insight on intra- and inter-molecular interactions, we analyzed π

stacking and H-bonding in the presence and the absence of the ligand bt10. We first

concentrated on two identical aromatic clusters (Figure 6.8) at the interface formed by

Phe75 of one subunit and Tyr102, 103 of the other subunit, which have been stated to

be important for the stability of the dimer [171,173,174]. These clusters are located at

the ends of the tunnel-shaped region in the interface (Figure 6.8). It has been proposed

that benzothiazole inhibitors bound to this region destabilize the aromatic clusters,

eventually leading to disruption of the dimer and inactivation of the enzyme [173,174].

The inhibitor bt10 interacts with the aromatic clusters throughout our MD runs.

Contrary to the disruption hypothesis, our π-π distance analysis indicates that binding

of the ligand enhances stability of the aromatic clusters. Table 6.1 summarizes the

percentages of intact π-π interactions within these clusters during simulations. Here the

criterion for interaction is taken as the distance between two aromatic rings’ centroids

being less than 7 Å [175]. π stacking is enhanced more in cluster 1. A slight decrease is

observed between Tyr102 (A) - Tyr103 (A) (cluster 2), but still both aromatic clusters

are stable when the ligand is bound. Tyr103 of both subunits predominantly interacts

with the ligand as seen in Figure 6.8.

The total number of H-bonds between subunits A and B, which is calculated

as an average over all snapshots, increases from 6 ± 2 in apo to 7 ± 2 in complex

runs. There are 1 ± 1 additional H-bonds between the inhibitor and interface residues

in each snapshot. Specifically, SO3- group of bt10 mostly interacts with Arg71 (A),

Lys113 (A) and Tyr103 (B) shown as green in Figure 6.9. These findings also confirm
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Figure 6.6. MSF of apo and complex TIM for each run.



72

Figure 6.7. Blue (red) residues’ MSFs decrease (increase) upon bt10 binding by more

than 20% compared to apo runs.

Figure 6.8. Aromatic interactions on bt10-bound tunnel region in TIM interface.
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Table 6.1. Percentage of intact π − π interactions in apo and complex runs.

Aromatic cluster π − π pair Apo Complex

1 Phe75 (A)-Tyr102 (B) 43 95

1 Phe75 (A)-Tyr103 (B) 95 90

1 Tyr102 (B)-Tyr103 (B) 22 66

2 Phe75 (B)-Tyr102 (A) 79 96

2 Phe75 (B)-Tyr103 (A) 85 91

2 Tyr102 (A)-Tyr103 (A) 70 53

the stability of dimeric structure in the presence of ligand.

We further investigated changes in the H-bonding network of the enzyme upon

ligand binding. If the occurrence of H-bonds between any two residues changes by

more than 15%, those residues are colored as red (increase by 20%), orange (increase

by 15%), cyan (decrease by 15%) and blue (decrease by 20%) in the Figure 6.9 and

summarized in Table 6.2. Especially, H-bonding between the subunits are influenced,

whose effect propagates towards loop 6 of both subunits. H-bonds are enhanced mostly

towards subunit B, which may explain the reduced MSF values of the same subunit.

Three loop 3 residues (Thr76, Gly77, Glu78) of subunit A exhibit increased H-

bonds with their partners from subunit B, when bt10 is bound (shown in bold in

Table 2). It has been stated each Thr76 contributes to the H-bonding network of

the other subunit’s active site [158]. Inter-subunit H-bonding between Thr76 and cat-

alytic residue Asn12 is present in about 10% of the snapshots and we do not observe

a significant change in the complex. Instead there is an enhancement in H-bonding

between Thr76 (A) and Glu98 (B). As for the catalytic loop 6, the H-bonding occur-

rence increases for Ser97-Glu168 pair on subunit B and decreases for Thr171-Trp175

on subunit A. H-bonding pairs were extracted using VMD Hydrogen Bonds analysis,

where the default criterion of 3 Å distance between donor and acceptor and 20 degrees

supplementary angle is used.
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Table 6.2. Occurrence % of H-bonding residue pairs differing more than 15%.

Donor Residue Acceptor Residue Apo Complex Color

Glu19 (B) Main Asp86 (A) Side 37 13 Blue

Cys40 (A) Main Lys60 (A) Main 7 24 Orange

Thr45 (B) Side Glu78 (A) Main 12 44 Red

Thr45 (A) Side Glu78 (B) Main 35 12 Blue

Thr52 (B) Side His48 (B) Main 35 51 Orange

Thr52 (A) Side His48 (A) Main 31 53 Red

Thr76 (A) Side Glu98 (B) Side 55 81 Red

Gly77 (A) Main Gln66 (B) Side 28 46 Orange

Ser97 (B) Side Glu168 (B) Side 38 57 Orange

Arg99 (B) Side Glu105 (B) Side 43 6 Blue

Lys113 (B) Side Glu105 (B) Side 26 42 Orange

Thr131 (A) Side Glu134 (A) Side 49 14 Blue

Thr131 (B) Side Glu134 (B) Side 36 16 Cyan

Arg139 (A) Side Glu134 (A) Side 17 44 Red

Arg139 (B) Side Glu134 (B) Side 24 39 Orange

Thr175 (A) Side Trp171 (A) Main 35 17 Cyan
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Figure 6.9. Change in H-bonding interactions upon bt10 binding to the interface.

Overall, the increase in both the number of inter-subunit π−π interactions and H-

bonds indicate a stronger interaction network, i.e. a constrained region at the interface,

which also affects the collective dynamics significantly.

6.2.3. Collective and Loop 6 Dynamics

We applied PCA on each trajectory to extract the essential anharmonic motions

(PCs) of both apo and complex enzyme. In previous MD and ENM studies [164–166,

169], counter-rotation of the subunits (Figure 6.10) has appeared as a common, global

mode driving loop 6 opening/closure over the active site in apo TIM of two different

species, namely chicken and Trypanosoma cruzi. In current work, this mode can also be

detected among the first three or four PCs of the apo and complex runs (Figure 6.10).

Another common PC is the bending of the subunits. Details of PCA are summarized

in Figure 6.10 and Table 6.3.

As it can be observed from pairwise overlap of PCs, although there are overlap

values as high as 0.75, our 100 ns runs are not long enough for the convergence of

collective motions extracted from PCA, since different regions of the conformational
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Figure 6.10. PCA on TIM runs: (a) PC overlap matrices with reference to Apo1 PCs,

(b)PC1 and PC2 for Apo1.
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space is sampled (see Figure 6.2). To solve this issue, we also applied ENM on the

average structure of each run, and calculated the overlap between PCs and ENM modes,

which describe long-term global dynamics of the system. We observed reasonable

similarity between lowest frequency ENM and PCs, indicating that global vibrational

modes are in fact present in our simulations.

Table 6.3. Individual and cumulative contributions of PCs to total motion.

MD runs PC1 PC2 PC3 PC4 PC5 Cumulative con-

tribution of first

5 PCs

# of PCs that

explain 90% of

motion

Apo1 36.5 9.5 7.5 3.6 3.0 60 100

Apo2 17.0 15.6 6.6 5.0 4.0 48 139

Apo3 19.9 13.7 9.1 5.3 4.2 52 122

Complex1 21.2 14.5 6.0 3.9 3.0 49 134

Complex2 17.6 9.0 7.1 5.4 3.9 43 153

Complex3 27.2 10.5 6.6 5.1 4.0 53 109

Moreover, residue orientational cross-correlation maps are extracted based on the

cumulative action of the first five PCs, and also more than 100 PCs that contribute

to 90% of total motion in Figure 6.11a, Figure 6.11b and Figure 6.11c, Figure 6.11d,

respectively. The figures indicate that strength of correlations for both intra- and

inter-subunits decrease in the presence of bt10.

We also investigated the effect of the ligand on catalytic loop dynamics. We

extracted the cross-correlations of the loop 6 tip residues, namely I173-G174-T175

with other regions on the enzyme. As seen in loop 6 cross-correlation plots in Figure

6.12, the presence of inhibitor occludes the cooperativity of the catalytic loop. Below

the graphs, the structure is colored based on the correlation values of the catalytic

loop, in the presence and absence of the inhibitor. Especially, the positive correlations

of loop 6 with loops 7 and 8, emphasized in terms of functional relevance in a recent

study by Katebi and Jernigan [176], decrease in the complex.
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Figure 6.11. Residue-residue orientational cross-correlations based on the cumulative

action of first five PCs for (a) apo, (b) complex and more than 100 PCs contributing

to 90% of total motion for (c) apo and (d) complex, reported as averages over three

independent runs.
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Figure 6.12. Loop 6 orientational cross-correlations based on tip residues

I173-G174-T175 for subunit A (a, c, e) and subunit B (b, d, f).
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Figure 6.13. Loop 6 opening and closure observed in the monomers based on the

distance between loop’s tip residue G174 and a relatively immobile residue Y211.

To assess the effect of the inhibitor presence on loop 6 opening/closure event, the

distance between alpha-carbons of loop 6 tip residue (Gly174) and a relatively immobile

residue Tyr211 at the beginning of loop 7 [164, 165, 177] is calculated throughout the

simulations. In our current apo and complex runs, multiple opening and closure events

of the loop are observed during 100 ns (Figure 6.13). Figure 6.14a gives normalized

distributions for Gly174-Tyr211 distance, which indicate a wider range (9.5-21 Å) being

sampled in complex runs, compared to 13-20 Å in apo.

We assessed the flexibility of loop 6 by calculating its pseudo-dihedral angles in

apo and complex runs. The ith pseudodihedral angle connecting residues i and i+ 1 is

calculated based on the Cα$coordinatesofresiduesi-1,i,i i+1 and i+2. Both curves in

Figure 6.14b give RMS fluctuations of pseudo-dihedral angles averaged over chains A
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Figure 6.14. (a) Loop 6 opening/closure event from G174-Y211 distance histogram in

apo and complex. (b) RMSF for pseudodihedral angle in apo and complex runs.

and B. Previously, N- and C-terminal residues (P169-W171, K177-A179 respectively,

shown in the figure) have been detected as hinges that drive the rigid lid closure

upon binding of the substrate, based on comparison of one apo and one bound crystal

structure [178]. However here, the loop flexibility in the apo state is apparent in the

tip and C-terminal residues, in conformity with previous computational and NMR

studies [164,165,176,177,179]. In the presence of the inhibitor, the loop’s tip residues

(especially Ile173, Gly174, Thr175) become even more flexible.

Moreover, solvent accessible surface area values of the catalytic residues Asn12,

His96 and Glu165 reduce in the presence of inhibitor and also sample less number of

conformational states in the presence of ligand (results not shown). This is in line with

the constraining effect of the inhibitor observed from the MSF.

Stabilization of the aromatic clusters at the interface and enhancement of inter-

subunit H-bonds indicate an allosteric effect of the inhibitor, rather than destabilization

of the dimeric structure. Inhibitor also modifies collective dynamics of the enzyme, as

well as the catalytic loop’s dynamics, flexibility and correlations, and solvent exposure

of catalytic residues.
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6.3. Substrate DHAP effect on TIM global and catalytic loop dynamics

The opening/closure of the catalytic loop 6 over the active site in apo TIM has

been previously shown to be coupled with the global motions of the enzyme, specifically

the counter rotation of the subunits [164, 166–169, 180]. We investigated at which

extent DHAP presence in the catalytic site affects this coupling and TIM dynamics,

by analyzing independent apo and DHAP-bound chicken TIM MD simulations. We

carried out two apo and two complex simulations where DHAP is present at one or

both catalytic sites (60 ns each).

Residual MSF profiles for the apo and complex shown in Figure 6.15 reflect the

constraining of the enzyme overall mobility in the presence of the DHAP. Interestingly,

this effect is not apparent in residues that are in close contact with DHAP (see inset

in Figure 6.15). In contrast, mobility of relatively distant residues that include the

interface between subunits and some outlying helices (shown in blue in the inset) are

effectively reduced. Specifically, only three residues (shown in red) that are located on

loop 6 exhibit higher MSF in the complex: P166 at the N-terminus (23% increase in

MSF), T175 and A176 at the C-terminus ( 45%).

In all simulations, multiple opening/closure events of loop 6 take place even in the

presence of DHAP. The distances between the catalytic loop tip residues I170, G171,

T172 and residue Y208 reach higher values when DHAP is bound, meaning that the

loop adopts more open positions compared to the apo enzyme, as seen in Figure 6.16.

Moreover, the average pseudodihedral RMSF shows that the conformational flexibility

of the loop 6 is increased in the complex, especially toward the C-terminus.

We also carried our PCA to reveal dominant global motions in the simulations.

We reported the findings in the work of Kurkcuoglu and Doruker [165]. Basically, PCA

indicate that in apo enzyme, the dominant mode is the counter rotation of subunits

that drives the opening/closure of the catalytic loop, in conformity with our previous

findings [164, 166, 169]. In contrast, this mode is suppressed in the complex and the

bending of the subunits appears in the dominant PCs coupled to loop opening/closure.
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Figure 6.15. Residue MSF for apo and DHAP complex simulations.

Furthermore, the normalized orientational cross-correlations are altered into two anti-

correlated blocks, as a result of ligand binding. Moreover, the correlations of the loop

with the rest of the enzyme are also affected to a great extent.

In summary, the specific interactions of DHAP modify the global and loop dy-

namics to a certain extent, which have not been observed in previous studies based on

purely entropic ENM [169]. In another MD study, the frequencies of intra-minimum

motions based on short MD runs have been shown to be altered in the presence of

DHAP [180]. Still our simulations indicate that multiple loop opening/closure events

are present and coupled to the global motions of the enzyme, both in apo and complex

form. Therefore, entropic effects seem to have a significant role in the mechanisms of

DHAP binding/release in TIM.
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Figure 6.16. Distance histograms for I170-Y208, G171-Y208 and T172-Y208 apo and

complex simulations.
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7. CLUSTENM-II: APPLICATION IN SMALL LIGAND

DOCKING

The flexible nature of proteins is one of the challenging problems in drug design

studies since even small conformational changes can affect the nature of ligand-protein

interactions [181]. Thus, efficient computational algorithms are necessary to sample

protein conformations for more accurate prediction of binding sites and affinities in

docking studies. Accounting for the backbone flexibility is still challenging for small

ligand-protein docking, as well as for the protein-protein and protein-DNA/RNA cases.

We applied ClustENM Procedure II to four proteins undergoing large conformational

changes, namely AK, LAO binding protein, DBP and BC, to assess the usage of gener-

ated conformers in small ligand docking applications, as well as to consider the protein

flexibility in docking. As explained in Methods, the main difference in Procedure II is

the exclusion of parent structures in order to sample as many distinct states as possible.

7.1. Adenylate kinase

Energetically-minimized open structure of AK (4ake) was used for generating the

first cycle of protein conformers. Conformational search of AK was initially performed

using blind search approach, i.e. without any filtering criteria. In the first generation,

three distinct atomistic conformers were obtained. Then, the procedure was repeated

until the completion of seven generations. The closeness of distinct conformers gen-

erated at each cycle to ligand bound crystal structure is reported in Table 7.1, based

on their backbone RMSD. As the number of iterations increases, closer structures to

complex are obtained, but the total number of generated conformers also increases.

For example at the 7th iteration, there are 8 conformers relatively closer to the bound

structure (RMSDs < 4 Å) among 149 conformers. At the same time, we get 100 con-

formers at this final iteration that lie farther away from the ligand-bound structure

than the starting apo form (initial RMSD of apo structure is 7.2 Å). We will refer to

these conformers as “outliers” in this text.
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In an alternative conformational search, we applied the energy-based selection

by comparing the energy values (obtained from minimization in implicit solvent) of

the minimized structures to the energy of the minimized open crystal structure. The

conformers having lower energy than apo structure were selected as parent conformers

for creating the next generation and those with higher energy were discarded. Again,

RMSD values with respect to the closed structure are reported in Table 7.1 (on the

right-hand side of each cell). At the 7th iteration, we obtain 7 structures out of 38 with

RMSDs < 4 Å.

Table 7.1. Number of AK conformers from blind search/energy-based selection.

Generation/ Total number Number of conformers within specific

cycle of conformers RMSD range to closed structure (Å)

in each cycle 2− 3 3− 4 4− 5 5− 6 6− 7.2 > 7.2

1 3/3 0/0 0/0 0/0 0/0 1/1 2/2

2 10/9 0/0 0/0 0/0 2/2 1/1 7/6

3 18/9 0/0 0/0 4/3 1/0 3/2 10/4

4 35/13 0/0 4/1 2/3 4/1 3/4 22/4

5 55/22 1/1 4/2 3/5 1/3 10/3 36/8

6 102/27 3/2 3/4 8/6 7/3 12/5 69/7

7 149/38 2/1 6/6 10/6 12/6 19/7 100/12

All cycles 372/121 6/4 17/13 27/23 27/15 49/23 246/43

At the end of 7th cycle of the blind search, the structure with closest RMSD value

to bound structure has an RMSD of 2.8 Å and this value is 2.4 Å in the energy-based

search. However in 5th and 6th cycles of both search algorithms, structures in the range

of 2.7-2.8 Å are also obtained. At the end, total number of distinct conformers obtained

from the blind search and energy-based selection are 372 and 121, respectively. Most

of the outliers are eliminated when the energy criterion is applied and 14% of distinct

conformers have an RMSD < 4 Å to complex (compared to 6% in blind search).

Furthermore, RG of the apo structure can be used as a post-filtering criterion in
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Figure 7.1. RG vs RMSD correlation for AK (energy-based search).

order to eliminate conformers with larger RGs. Application of RG filtering on energy-

based search discards 29 conformers, all being outliers, and increases the percentage of

close-to-bound conformers to 18%.

In fact, when RG vs. RMSD-to-closed crystal structure values are plotted for the

generated conformers of energy-based search, a direct correlation is observed meaning

that as the conformer gets closer to the bound structure, there is a reduction in its

RG. Figure 7.1 shows this direct correlation, which is consistently observed for all

four proteins undergoing large hinge-bending type motion, used in this study. Thus,

discarding conformers with larger RG than the apo form seems to be reasonable if one

is interested in conformers closer to the bound structure or the intermediate states

between open and closed forms. Moreover, the conformer with lowest RG value can be

used as a starting point for docking, which is explained below.

For the docking of inhibitor AP5 on the generated AK conformers, we selected

the conformer from 7th cycle of energy-based search with the lowest RG (gen7) among

all conformers and traced back its parents up to the first generation (gen6, gen5,...,

gen1). We performed dockings on this sequence of conformers (shown in Figure 7.2a, b)

together with apo structure, and the results are summarized in Table 7.2. The RMSD
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of the docked ligand with respect to its positioning on closed crystal structure (1ake)

is reported for the first cluster of docking, which has the highest score, meaning the

lowest binding energy value. Total number of poses is equal to 100 in one docking run.

in Table 7.2, number of elements in lowest energy cluster and total number of clusters

are also given in the table. Figure 7.2 shows docking poses for gen1, gen4 and gen7,

aligned on ligand bound crystal structure (the ligand positioning in crystal structures

is shown in magenta stick).

Table 7.2. Docking results for AK using AutoDock v4.

Backbone Ligand Binding Number of Number

Conformer RMSD (Å) RMSD (Å) energy elements/ of

to complex RMSD (Å) (kcal/mol) poses clusters

apo 7.1 7.4 -2.96 100 1

gen1 6.3 7.8 -2.96 100 1

gen2 5.0 4.8 -2.49 98 2

gen3 4.1 3.4 -3.97 100 1

gen4 4.2 2.9 -7.06 100 1

gen5 3.5 6.5 -1.23 100 1

gen6 2.7 15.6 -3.24 45 6

gen7 2.4 5.1 -2.71 95 2

alt1 4.2 2.6 -6.05 100 1

alt2 2.8 5.3 -2.55 100 1

alt3 2.8 5.3 -5.11 8 2

Even though the conformer gen7 obtained in the last cycle lies close to the bound

receptor structure, the docked ligand RMSD is 5 Å. We traced back the parents of gen7

and performed dockings on all of them, including apo structure, to see whether lower

ligand RMSDs could be obtained. Interestingly, the highest docking score obtained in

gen4 at the same time corresponds to a pose with satisfactory ligand RMSD of 2.9 Å.

As opposed to the bound crystal structure with fully closed LID and NMP domains,

gen4 resembles the closed-LID state where the LID domain is partially closed and
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Figure 7.2. AK docking results. Docking poses are shown for (c) apo, (d) gen1, (e)

gen4, (f) gen7.
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NMP domain is open. In order to check the consistency of these results, we performed

additional dockings on three other conformers (denoted as alt1, alt2 and alt3 in Table

7.2). Alt1 that is similar to gen4 leads to successful results with low ligand RMSD and

high docking score. The ligand RMSDs for alt2 and alt3 that are closer to the bound

structure are found to be around 5 Å, consistent with gen7 results.

Our conformer generation procedure leads to successful docking poses especially

for ‘in-between’ AK state with a partially closed LID and open NMP (closed-LID

state) and average success for fully closed domains. As explained in the ClustENM

Procedure I AK results, closed-LID state is one of the highly populated intermediate

states observed in AMP/ATP binding to AK. Receptor residues interacting with the

ligand in gen4 are mainly located on the CORE domain (H-bonds with Gly10, Gly12,

Gly14 and Lys200; ionic interactions with Arg167) and one residue on LID domain

(Arg123, making hydrogen and ionic bonds).

7.2. Lysine-arginine-ornithine-binding protein

LAO and DBP, which will be discussed in the next section, both belong to the

periplasmic binding protein (PBP) superfamily. PBPs serve to transport a wide variety

of sugars, amino acids, peptides and inorganic ions into bacteria. Both PBPs consist

of two domains connected by a hinge region at the interface, where the ligand binding

site is located. Large bending motion around the hinge facilitates the alternation

between open/apo and closed/ligand-bound conformations [182]. Specifically, LAO

exhibit open-to-closed structural rearrangements amounting to 4.7 Å.

Same procedure was applied starting with the minimized apo crystal structure

of LAO binding protein using blind and energy-based search. The results including 7

cycles are summarized in Table 7.3.

At the end of the blind and energy-based searches, the conformer closest to the

bound structure has an RMSD of 2.2 Å and 1.7 Å, respectively. In the energy-based

selection, the search stops at the 6th cycle because all generated conformers at the 7th
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Table 7.3. Number of LAO conformers from blind search/energy-based selection.

Generation/ Total number Number of conformers within specific

cycle of conformers RMSD range to closed structure (Å)

in each cycle 1− 2 2− 3 3− 4.7 > 4.7

1 4/2 0/0 0/0 0/0 4/2

2 8/3 0/0 0/0 0/0 8/3

3 17/6 0/0 0/0 1/1 16/5

4 26/3 0/0 0/0 3/1 23/2

5 45/3 0/0 1/1 7/1 37/1

6 75/4 0/1 3/2 13/0 59/1

7 114/0 0/0 3/0 15/0 96/0

All cycles 289/21 0/1 7/3 39/3 243/14

cycle have higher energy values compared to open crystal structure. Energy screening

reduces the total number of distinct conformers from 289 (in blind search) to 21 and

eliminates most of the outliers. As a result, 19% of conformers in energy-based search

have an RMSD < 3 Å to the closed structure (compared to 2% in blind search).

Application of further RG filtering on energy-based conformers reduces the number of

conformers to eight with four having RMSD < 3 Å. RG-RMSD correlation is given in

Figure 7.3, displaying direct correlation.

In the case of LAO, energy-based search is more effective than the blind search

in various respects: (i) the number of outliers is excessively reduced, (ii) the structures

with closest RMSD values to the closed form are obtained sooner than the blind search,

and (iii) energy-based selection imposes a “stop criterion” to the conformational search.

For the docking study of LAO binding protein, we again selected a conformer

with low RG and traced back its parents throughout the generations. The results for

the dockings of lysine on apo, gen1 to 6 structures are summarized in Table 7.4 (details

are given in Table A.2). Some of these conformers (gen1 (green), gen4 (orange), apo
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Figure 7.3. RG vs RMSD correlation for LAO binding (energy-based search).

(blue), (b) gen6 (magenta), ligand-bound form (gray)) and docking poses (ligand in

cyan stick) for apo, gen1, gen4 and gen6 are shown in Figure 7.4.

In Table 7.4, HADDOCK score and number of elements are only reported for the

cluster with the highest score. Total number of docked poses (elements) is equal to

200. Detailed results for all clusters are given in Table A.2.

The conformers closer to the closed structure (gen5 and 6 with backbone RMSD

≤ 2.7 Å) yield highest scores (at the same time most populated clusters) and close-to-

native ligand binding poses, i.e. low ligand RMSDs. Moreover, the number of clusters

in last three dockings is reduced compared to apo, gen1-3. So peptide binding to LAO

seems to be facilitated by almost-full domain closure in the apo state in contrast to

the previous case of AK.

7.3. Dipeptide Binding Protein

In the first generation of DBP (which undergoes a conformational change 6.5

Å between open and closed states), three distinct conformers were obtained and en-
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Figure 7.4. LAO binding protein conformers used in HADDOCK: (a) gen1, gen4,

apo, (b) gen6, ligand-bound form (gray). LAO docking poses are shown for (c) apo,

(d) gen1, (e) gen4 and (f) gen6.
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Table 7.4. HADDOCK docking results for LAO conformers (summary).

Backbone Ligand HADDOCK Number of Number

Conformer RMSD (Å) RMSD (Å) score elements/ of

to complex poses clusters

apo 4.7 4.2 -28.6±1.8 41 8

gen1 6.4 5.6 -33.5±4.8 30 8

gen2 7.0 8.3 -33.5±6.1 46 8

gen3 5.3 4.4 -38.1±6.7 43 8

gen4 3.8 2.1 -37.2±0.6 116 3

gen5 2.7 2.2 -46.2±0.7 200 1

gen6 1.7 2.0 -48.5±1.8 122 3

ergetically minimized. However, the energy value of each new conformer was higher

compared to that of minimized open crystal structure, therefore energy-based selection

was not possible. So we applied only blind search for five generations producing a

total number of 100 conformers. If we select conformers having an RG less than apo

RG, 37 conformers remain and most of the outliers (61 structures having an RMSD

> 6.5 Å) are discarded. RG filtering increases the percentage of the conformers close

to ligand-bound conformation (RMSD < 4 Å) from 11% (pure blind search) to 30%.

Two closest conformers at the end of the 5th cycle have RMSD values of 1.5 and 1.9

Å. Total number of conformers in each cycle and number of conformations in RMSD

intervals are reported in Table 7.5 for blind search.

For the docking of ligand glycyl-leucine, we again selected the conformer with

the lowest RG from the last cycle and traced its parents to the beginning (gen1-5, RG

vs RMSD plot is shown in Figure 7.5). Docking results for are summarized in Figure

7.6 and Table 7.6. Docking to gen5 conformer, which is closest to the closed crystal

structure, yields the highest score and the lowest ligand RMSD (1.5 Å). Thus, in the

case of both periplasmic binding proteins, as the conformer gets closer to the ligand-

bound form, higher docking scores are obtained and ligand positioning becomes closer
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Table 7.5. Number of DBP conformers obtained using blind search.

Generation/ Total number Number of conformers within specific

cycle of conformers RMSD range to closed structure (Å)

in each cycle 1− 2 2− 3 3− 4 4− 5 5− 6.5 > 6.5

1 3 0 0 0 1 0 2

2 8 0 0 0 1 2 5

3 17 0 1 1 1 4 10

4 24 0 1 2 0 4 17

5 48 2 0 4 1 5 36

All cycles 100 2 2 7 4 15 70

to the native form.

7.4. Biotin Carboxylase

In fatty acid synthesis, BC catalyzes ATP-dependent carboxylation of biotin. It

has a homo-dimeric structure with each subunit having its own catalytic site. Each

subunit consists of three domains; namely A, B, C, where B domain is the ATP grasp

domain closing over the globular section formed by A and C domains (undergoing a

conformational change of 4 Å). Open and closed forms of BC are shown in Methods

section.

The first generation of BC consists of three distinct conformers. We applied blind

and energy-based search for four generations, which resulted in the generation of same

conformers (i.e. there are no discarded structures in the case of energy-based selection).

At the end of both procedures, we obtained a total of 35 distinct conformers. 26 of these

conformers have more open structures than the starting conformer in both subunits.

At the end of the fourth generation, we obtain conformers closed to the bound structure

(lowest RMSDs are 2.3 Å for subunit A, 1.7 Å for subunit B, respectively).
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Figure 7.5. RG vs RMSD correlation for DBP protein.

Table 7.6. HADDOCK docking results for DBP.

Backbone Ligand HADDOCK Number of Number

Conformer RMSD (Å) RMSD (Å) score elements/ of

to complex RMSD (Å) poses clusters

apo 6.5 6.1 -19.1±3.3 195 1

gen1 4.9 4.9 -19.1±1.5 199 1

gen2 4.2 3.8 -21.0±1.3 198 1

gen3 3.0 2.2 -20.2±1.9 198 1

gen4 2.5 3.2 -24.9±1.6 200 1

gen5 1.4 1.5 -31.4±2.6 193 2
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Figure 7.6. DBP conformers used in HADDOCK (a) gen 1 (green) and gen3 (orange)

aligned on apo (blue), (b) gen5 (magenta) aligned on closed form (gray). DBP

docking poses (purple) for (c) apo, (d) gen1, (e) gen3 and (f) gen5 aligned on closed

crystal structure (gray). Ligand in crystal structure and docking pose is shown in

magenta and cyan stick representation, respectively.
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Moreover, if we filter the generated conformers based on their monomeric RG, 12

conformers remain for subunit A with 3 of them being outliers, and 9 conformers for

subunit B with 1 outlier. Thus, post-filtering using RG results in elimination of outliers

like in previous cases. Total number of conformers and their RMSD range based on

the bound structure are given separately for subunits A and B in Table 7.7 and 7.8,

respectively. RG-RMSD plot in Figure 7.7 reflects direct correlation.

Table 7.7. Number of BC conformers from blind search (monomer A).

Generation/ Total number Number of conformers within specific

cycle of conformers RMSD range to closed structure (Å)

in each cycle 1− 2 2− 3 3− 4.1 > 4.1

1 3 0 0 0 3

2 7 0 0 1 6

3 8 0 2 1 5

4 17 0 3 2 12

All cycles 35 0 5 4 26

Table 7.8. Number of BC conformers from blind search (monomer B).

Generation/ Total number Number of conformers within specific

cycle of conformers RMSD range to closed structure (Å)

in each cycle 1− 2 2− 3 3− 4.1 > 4.1

1 3 0 0 1 2

2 7 0 1 1 5

3 8 0 1 0 7

4 17 3 0 2 12

All cycles 35 3 2 4 26

We selected the conformer with lowest RG (for subunit B) among the generated

conformers and traced back its parents for gathering the conformers to be used in ATP

docking to BC subunit B. The conformers are shown in Figure 7.8, together with apo
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Figure 7.7. RG vs RMSD correlation for BC protein.

and closed structures. Conformers from gen3 and gen4 yield the lowest ligand RMSD,

which correspond to most populated clusters, as seen in Table 7.9 (an additional cluster

with ligand RMSD of 4.9 Å is also present in gen4 dockings, but it is not populated).

Docking poses for all conformers are given in Figure 7.9, indicating that as the B domain

closes over the A-C domain, ligand positioning closer to bound structure is observed.

Like in the case of peptide binding proteins LAO and DBP, closed conformers yield

ligand poses closer to bound structure.

In the current study, we aimed to assess the performance of our ENM-based

conformer generation method in small ligand docking, specifically for proteins under-

going large conformational changes (such as AdK, LAO and DBP). Using this method,

we were able to obtain conformers close to ligand-bound forms. The method has the

advantage of requirement of only the apo structure and the ligand, not the target struc-

ture. Beside the low computational cost of the method explained in Conclusions, the

number of conformers generated to be used in docking is manageable; one can perform

the docking to all generated conformers.
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Figure 7.8. BC conformers used in ATP docking (a) apo (blue), gen1 (green), gen2

(orange), (b) gen3 (yellow), gen4 (magenta), ligand-bound form (grey).
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Figure 7.9. Ligand poses for (a) apo cluster 1, (b) gen1 cluster1, (c) gen2 cluster 1,

(d) gen3 cluster 4 and (e) gen4 cluster 2 aligned on ligand-bound complex (grey).

Ligand positioning in crystal and docked structures is shown in magenta and cyan

stick representation, respectively.
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Table 7.9. BC binding protein docking results details.

Backbone RMSD Conformer Binding Number of Ligand

(Å) of to complex clusters energy elements/ RMSD

(monomeric/dimeric) (kcal/mol) poses (Å)

Apo 4.1/4.6

Cluster 1 -3.00 72 15

Cluster 2 -2.59 2 16

Cluster 3 -2.27 20 10

Cluster 4 -2.12 6 9.8

Gen 1 4.2/5.7

Cluster 1 -3.50 98 15

Cluster 2 -3.31 1 15

Cluster 3 -2.42 1 15

Gen 2 3.2/5.3

Cluster 1 -3.10 84 15

Cluster 2 -2.71 2 15

Cluster 3 -2.43 1 16

Cluster 4 -2.32 13 6.9

Gen 3 2.3/6.1

Cluster 1 -2.61 12 15

Cluster 2 -2.58 4 17

Cluster 3 -2.43 6 16

Cluster 4 -2.42 78 5.0

Gen 4 1.9/5.3

Cluster 1 -3.76 2 18

Cluster 2 -3.04 69 7.4

Cluster 3 -3.03 5 16

Cluster 4 -2.97 2 16

Cluster 5 -2.70 5 15

Cluster 6 -2.25 10 8.8

Cluster 7 -2.13 2 12

Cluster 8 -2.09 5 4.9
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8. CONCLUSIONS

In this thesis, an ENM-based iterative methodology called ClustENM is developed

for the sampling of states that are entropically accessible from a starting structure

and to generate atomistic conformers for supramolecules or proteins undergoing large

conformational changes. The methodology consists of the application of ENM on an

energetically minimized native structure and extraction of the global modes; then the

deformation of the native structure along the combination of these modes and obtaining

new structures; clustering these structures and selecting representative conformers from

these clusters. These representatives constitute a “generation”. Minimization-ENM-

deformation-clustering steps are applied iteratively on the generations, producing new

offsprings.

8.1. Conformational sampling using ClustENM

ClustENM is applied for conformational sampling of seven systems, expressing

local to large conformational changes and consisting of 140-residues (CAM) to 11,000-

residues (supramolecule 70S ribosome). The assessment of generated conformers is

performed by comparison with experimental and MD data, using PCA, MSF analysis

and angle-based collective variables in the case of AK. Although in p38 MAP kinase

and HIV1-RT cases, there are regions where MD and experimental data do not exist,

but sampled from ClustENM, still these representative conformers have comparable

energy values (obtained from energy minimization in implicit solvent) to the starting

structure’s. So, we can speculate that these states are entropically accessible by the

initial structure, but high energy barriers may exist between these states and the

starting state.

Moreover, generated atomistic conformers give insight about the dynamics of

70S ribosome, for which classical MD simulations cannot be performed. The results

are consistent with the previously observed ribosomal subunits motions. Therefore,

the method can be successfully applied on supramolecules, for which classical MD sim-
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ulations cannot be efficiently performed. In all seven systems, we obtained conformers

that are consistent with the experimental and MD data.

We also applied ClustENM on 50S ribosomal subunit-TF complex. The dynamics

of this complex still needs the clarification, and the generated conformers revealed that

TF head domain is highly mobile when it is bound onto the ribosome, and its core and

binding domains are relatively stable. This is in contrast to monomeric apo TF high

flexibility in explicit solvent MD simulations.

Beside the comparison between generated conformers, experimental and MD

data, we also investigated the effect of an inhibitor, bound to TIM interface, on global

and catalytic loop dynamics of the enzyme. We also analyzed the changes in the

specific interactions like aromatic and H-bonding due to inhibitor presence in order

to clarify the inhibition mechanism. The inhibitor constrains the overall dynamics of

TIM, modifies catalytic loop dynamics, enhances aromatic interactions in the tunnel

region of the interface and induces changes in H-bonding network.

8.2. Docking applications

The methodology is also used in generation of conformers for docking applications

(Procedure II). Four proteins displaying large hinge-bending type motions are utilized

as test cases. During generation of conformers, clusters containing parent conformers

are discarded in order to sample as many distinct conformers as possible. Two type of

exploration techniques, namely blind and energy based search are employed and their

performances are compared. Open apo conformers are used as initial structure for the

generations, and the post-filtering based on apo RG is also applied in order to eliminate

conformers more open than the starting structure, which turned to be successful in all

four cases. Lowest RG conformer along its parent conformers are used in small ligand

docking, resulting in close-to-native bound ligand poses. AK-AP5 dockings have not

been performed before, as to our knowledge.
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8.3. Computational efficiency

ClustENM is a computationally efficient methodology, which can be applied on

various systems with different oligomerization states and conformational changes. It

does not require a target conformation, and produces relatively manageable number of

structures, as a result of the clustering steps.

The time required for generation of conformers depends basically on the system

size and number of generations. For example, for AK fully-open state’s fifth generation

in Procedure I, production of 71 representative conformers (resulted from clustering of

1134 conformers, 42*33 conformers) completes in 34 minutes using 3 nodes, where each

node holds 2 Intel Xeon X5670 CPU’s, each having 6 cores. Most of this time is spent

for the minimization of the structures (32 minutes).

For the supramolecule 70S ribosome however, this time drastically increases. For

the second generation, ENM and creation of 2430 conformers (from 10 conformers of

first generation, 10*35 conformers are produced) completes in 7 hours, clustering them

completes in 3 hours using one node. Finally, the minimization of 101 representa-

tive structures is finished in 17 days using 8 nodes (approximately 4 hours for each

structure). Still, the computational cost is significantly cheaper than the classical MD

simulations.

8.4. Choice of parameters in ClustENM

The parameters such as number of modes to be used (m) and number of gen-

erations (g) which are determined by the user also affect the time required for the

simulations. For example, one can specify m as 10 modes, leading to the number of

conformers per initial structure produced in one generation being 310 (equal to 59049),

which is a computationally demanding number of conformers for clustering and mini-

mization, especially for large molecules. Therefore, in this study, the decision on m is

based on the jump between the eigenvalues of slowest modes, in order to incorporate

global modes as many as possible with low computational cost. “g” is another user-
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defined parameter which extends the simulation time. Moreover, criteria for the energy

minimization in implicit solvent can be relaxed in order to reduce the time spent for

minimization.

Another issue is the choice of DF, which is also user-dependent and can differ

according to system type. For example, taking into account the large conformational

change of adenylate kinase, DF can be set accordingly to 2 Å and g can be set to 5.

Setting DF to smaller values may result in exploring a smaller area on conformational

space. On the other hand, TIM expresses relatively localized motions, therefore DF is

set to 1 Å and g can be as low as 2. Using very large DF in this case, may introduce

large scale distortions, which may not be optimized using minimization. Another

option for determining DF for the systems that the user is unfamiliar with, can be

investigating the dynamics of the system (initial structure) using ANM, in order to

have an idea about the type of motion (local or large scale) that the structure may

express potentially, depending on its topology.

8.5. Advantages/Limitations of ClustENM

One of the major advantages of ClustENM is that the method requires only a

starting structure and is able to perform unbiased sampling. This sampling basically

results in the entropically accessible states of a starting structure, since ENM is purely

topological model. Another advantage is the applicability of the method for generating

atomistic structures, from systems of one hundred residues to supramolecules like ribo-

some. Low computational cost of the method is another benefit. As for the limitations,

DF and g are user-dependent and it is not always easy to guess these parameters as

explained above. For example in CAM case, five generations with 3 Å DF was not

enough to reach fully collapsed state.
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9. FUTURE WORK

One proposition about the future application of ClustENM may be the usage of

generated conformers as a starting point for various MD simulations. Explicit solvent

simulations can be performed using different states of the protein as an initial structure,

and energy landscape of the system can be extracted.

Application of mixed-coarse grained ENM on ligand-bound systems can be also

performed by modeling the ligand in high resolution (atomistically) and the protein in

low resolution (coarse-graining) to sample the conformations of such a system. TcTIM-

bt10 structure can be used as a test for this purpose.

The performance of generated conformers using ClustENM can be evaluated in

protein-protein or protein/nucleic acid docking using available softwares like HAD-

DOCK.

Moreover, instead of using only few number of conformers in docking, the ligand

can be docked on all of the generated conformers. The conformers used in the docking

can be specified based on post-filtering criteria like RG, FRET distances or constraints

obtained from NMR studies for example.
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APPENDIX A: LIST OF PDB STRUCTURES USED IN

ENSEMBLE ANALYSIS AND DETAILED DOCKING

RESULTS FOR LAO BINDING PROTEIN

Table A.1. PDB ids of proteins used in ensemble analysis,

selected based on 90% sequence similarity.

Structure PDB Codes

AK 4ake, 1ake

CAM 1cdl, 1s26, 1y6w, 2r28, 3bya, 3g43, 4dck, 2k61,

2moj(NMR, 20), 1cll, 1sk6, 1yr5, 2v01, 3dve, 3hr4,

4gow, 2kne(NMR, 20), 2mok(NMR, 20), 1ctr, 1wrz,

1zuz, 2v02, 3dvj, 3j41, 4l79, 2l7l, 2m55(NMR, 20), 1iwq,

1xfu, 2be6, 2vay, 3dvk, 3oxq, 2jzi(NMR, 20), 2l53(NMR,

20), 2mg5(NMR, 20), 1l7z, 1xfv, 2f3y, 2w73, 3dvm, 3sui,

2k0e(NMR, 160), 2lgf, 1lvc, 1xfy, 2f3z, 2wel, 3ewt, 4bw7,

2k0f(NMR, 160), 2ll6(NMR, 20), 1pk0, 1xfz, 2lv6, 2y4v,

3ewv, 4bw8, 2k0j, 2ll7(NMR, 20)

TIM 1ag1, 1iig, 1kv5, 1tcd, 1tsi, 2j27, 4hhp, 5tim, 6tim, 1ci1,

1iih, 1sux, 1tpf, 2j24, 3tim, 4tim
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Table A.1. PDB ids of proteins used in ensemble analysis,

selected based on 90% sequence similarity (continued)

Structure PDB Codes

p38 1a9u, 1wbt, 2okr, 3fi4, 3gfe, 3kf7, 3nnx, 3s3i, 4eh3, 1bl6,

1wbv, 2onl, 3fkl, 3gi3, 3kq7, 3nww, 3s4q, 4eh4, 1bl7,

1wbw, 2oza, 3fkn, 3ha8, 3l8s, 3o8p, 3tg1, 4eh5, 1bmk,

1wfc, 2puu, 3fko, 3hec, 3l8x, 3o8t, 3u8w, 4eh6, 1di9,

1yw2, 2qd9, 3fl4, 3heg, 3lfa, 3o8u, 3uvp, 4eh7, 1ian,

1ywr, 2rg5, 3fln, 3hl7, 3lfb, 3obg, 3uvq, 4eh8, 1kv1, 1zyj,

2rg6, 3flq, 3hll, 3lfc, 3obj, 3uvr, 4eh9, 1kv2, 1zz2, 2y8o,

3fls, 3hp2, 3lfd, 3oc1, 3zs5, 4ehv, 1lew, 1zzl, 2yis, 3flw,

3hp5, 3lfe, 3ocg, 3zsg, 4ewq, 1lez, 2baj, 2yiw, 3fly, 3hrb,

3lff, 3od6, 3zsh, 4f9w, 1m7q, 2bak, 2yix, 3flz, 3hub, 3lhj,

3ody, 3zsi, 4f9y, 1ouk, 2bal, 2zaz, 3fmh, 3huc, 3mgy,

3odz, 3zya, 4fa2, 1ouy, 2baq, 2zb0, 3fmj, 3hv3, 3mh0,

3oef, 4a9y, 4geo, 1ove, 2ewa, 2zb1, 3fmk, 3hv4, 3mh1,

3p4k, 4aa0, 4ka3, 1oz1, 2fsl, 3bv2, 3fml, 3hv5, 3mh2,

3p5k, 4aa4, 4kin, 1p38, 2fsm, 3bv3, 3fmm, 3hv6, 3mh3,

3p78, 4aa5, 4kip, 1r39, 2fso, 3bx5, 3fmn, 3hv7, 3mpa,

3p79, 4aac, 4kiq, 1r3c, 2fst, 3c5u, 3fsf, 3hvc, 3mpt, 3p7a,

4dli, 4l8m, 1w7h, 2gfs, 3ctq, 3fsk, 3iph, 3mvl, 3p7b, 4dlj,

4loo, 1w82, 2ghl, 3d7z, 3gc7, 3iw5, 3mvm, 3p7c, 4e5a,

4lop, 1w83, 2ghm, 3d83, 3gcp, 3iw6, 3mw1, 3pg3, 4e5b,

4loq, 1w84, 2gtm, 3ds6, 3gcq, 3iw7, 3new, 3qud, 4e6a,

1wbn, 2gtn, 3e92, 3gcs, 3iw8, 3nnu, 3que, 4e6c, 1wbo,

2i0h, 3e93, 3gcu, 3k3i, 3nnv, 3rin, 4e8a, 1wbs, 2npq,

3fc1, 3gcv, 3k3j, 3nnw, 3roc, 4eh2
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Table A.1. PDB ids of proteins used in ensemble analysis,

selected based on 90% sequence similarity (continued)

Structure PDB Codes

HIV-1 RT 1bqm, 1hqe, 1lw0, 1rth, 1tkz, 2opr, 3dlg, 3isn, 3lp1,

1bqn, 1hqu, 1lw2, 1rti, 1tl1, 2ops, 3dlk, 3ith, 3lp2, 1c0t,

1hvu, 1lwc, 1rtj, 1tl3, 2rf2, 3dm2, 3jsm, 3m8p, 1c0u,

1hys, 1lwe, 1s1t, 1tv6, 2rki, 3dmj, 3jyt, 3m8q, 1c1b,

1ikv, 1lwf, 1s1u, 1tvr, 2vg5, 3dok, 3kjv, 3mec, 1c1c,

1ikw, 1n5y, 1s1v, 1uwb, 2vg6, 3dol, 3kk1, 3med, 1dlo,

1ikx, 1n6q, 1s1w, 1vrt, 2vg7, 3drp, 3kk2, 3mee, 1dtq,

1iky, 1qe1, 1s1x, 1vru, 2wom, 3drr, 3kk3, 3meg, 1dtt,

1j5o, 1r0a, 1s6p, 2b5j, 2won, 3drs, 3kle, 3nbp, 1eet, 1jkh,

1rev, 1s6q, 2b6a, 2ykm, 3dya, 3klf, 3qip, 1ep4, 1jla, 1rt1,

1s9e, 2ban, 2ykn, 3e01, 3klg, 3qo9, 1fk9, 1jlb, 1rt2, 1s9g,

2be2, 2zd1, 3ffi, 3klh, 1fko, 1jlc, 1rt3, 1suq, 2hmi, 2ze2,

3hvt, 3kli, 1fkp, 1jle, 1rt4, 1sv5, 2i5j, 3bgr, 3i0r, 3lak,

1hmv, 1jlf, 1rt5, 1t03, 2iaj, 3c6t, 3i0s, 3lal, 1hni, 1jlg,

1rt6, 1t05, 2ic3, 3c6u, 3ig1, 3lam, 1hnv, 1jlq, 1rt7, 1tkt,

2jle, 3di6, 3irx, 3lan, 1hpz, 1klm, 1rtd, 1tkx, 2opp, 3dle,

3is9, 3lp0

70S

Ribosome-50S

1vsa, 2wdl, 3d5d, 3ms1, 3pyt, 4kbu, 4kd2, 4kdh, 4kfl,

1vsp, 2wro, 3f1f, 3pyo, 3pyv, 4kbw, 4kd9, 4kdk, 4l6j,

2j01, 3d5b, 3mrz, 3pyr, 4jux, 4kcz, 4kdb, 4kfi, 4l6l

70S

Ribosome-30S

2ow8, 2wdk, 3d5c, 3mr8, 3pys, 4kbt, 4kd0, 4kdg, 4kfk,

2qnh, 2wrn, 3f1e, 3pyn, 3pyu, 4kbv, 4kd8, 4kdj, 4l6k,

2j00, 3d5a, 3ms0, 3pyq, 4juw, 4kcy, 4kda, 4kfh, 4l6m
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Table A.2. LAO binding protein docking results details

from HADDOCK software.

Conformer HADDOCK Number of Ligand

clusters score elements RMSD Å

Apo

Cluster 2 -28.6±1.8 41 4.2

Cluster 3 -28.3±2.0 37 4.0

Cluster 4 -28.1±2.5 31 5.0

Cluster 6 -27.3±3.9 14 2.4

Cluster 1 -25.8±1.5 48 4.4

Cluster 5 -24.3±6.5 15 3.7

Cluster 7 -18.7±4.9 9 4.9

Cluster 8 -16.1±3.8 5 5.0

Gen 1

Cluster 4 -33.5±4.8 30 5.6

Cluster 3 -26.0±1.1 35 4.8

Cluster 1 -25.2±2.2 46 5.7

Cluster 5 -24.4±2.7 22 6.1

Cluster 2 -23.0±2.4 41 6.3

Cluster 6 -17.6±6.0 11 5.2

Cluster 7 -8.4±2.9 7 5.5

Cluster 8 -8.3±7.0 5 5.1

Gen 2

Cluster 1 -33.5±6.1 46 8.3

Cluster 5 -31.6±1.8 18 5.7

Cluster 2 -30.3±1.5 39 5.4

Cluster 3 -29.8±4.6 38 5.3

Cluster 4 -29.1±1.7 28 5.2

Cluster 8 -29.1±9.6 6 5.6

Cluster 7 -25.9±3.4 9 4.3

Cluster 6 -19.8±4.1 13 4.9
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Table A.2. LAO binding protein docking results details

from HADDOCK software (continued)

Conformer HADDOCK Number of Ligand

clusters score elements RMSD Å

Gen 3

Cluster 2 -38.1±6.7 43 4.4

Cluster 1 -33.6±4.6 50 5.4

Cluster 3 -33.3±2.7 32 4.5

Cluster 4 -31.8±3.2 29 4.4

Cluster 7 -27.8±2.0 13 4.3

Cluster 6 -27.6±4.3 14 4.0

Cluster 5 -26.1±4.1 14 4.3

Cluster 8 -9.5±5.5 4 4.2

Gen 4

Cluster 2 -37.2±0.9 78 3.3

Cluster 1 -37.2±0.6 116 2.1

Cluster 3 -21.7±6.8 5 3.4

Gen 5 Cluster 1 -46.2±0.7 200 2.2

Gen 6

Cluster 1 -48.5±1.8 122 2.0

Cluster 2 -47.4±2.3 67 1.9

Cluster 3 -29.0±6.4 7 5.5
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