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ABSTRACT 

 

 

INVESTIGATION OF THE EFFECT OF PLASTICITY ON THE PREDICTION 

OF GENETIC INTERACTIONS AND PHENOTYPES IN SACCHAROMYCES 

CEREVISIAE 

 

Prediction of phenotype from genome-scale high-throughput network and component 

information still remains a challenge for systems based approaches in biological research. 

The enhancement of our power of prediction of phenotype information would help unravel 

the complete quantitative genetic interaction network, which in turn would provide the link 

between genotype and phenotype, enabling to reach deductions about phenotype just with 

the knowledge of genotypic information on functional relationships and in return, this 

might set a milestone for the construction of quantitative genetic interaction networks of 

higher organisms including Homo sapiens as well as providing clues as to the open reading 

frames encoding human genetic disorders through the use of their homologues in a model 

organism. The aim of this thesis was to identify the effect of plasticity on the prediction of 

novel genetic interactions leading to a decrease in fitness and causing synthetic sickness or 

lethality within the network of yeast in a quantitative manner. In this study, systems-based 

information on various components and interaction levels was used for the prediction and 

identification of novel interactions leading to phenotypes. For this purpose, the yeast model 

organism was investigated under carefully controlled environments. The applicability of 

flux balance analysis for the prediction of epistasis was investigated in conjunction with 

the effect of biomass composition and environmental perturbations on metabolism in order 

to enhance the predictive power of metabolic flux analysis. Flux balance analysis was 

concluded to be suitable for the prediction of phenotypic information and genetic 

interactions through implementation of regulatory information and plasticity information 

provided from the response of organisms to environmental perturbations.   
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ÖZET 

 

 

SACCHAROMYCES CEREVISIAE’DA GENETİK ETKİLEŞİMLERİN VE 

FENOTİPİN BELİRLENMESİNDE PLASTİSİTE ETKİSİNİN İNCELENMESİ 

 

 

Genom-boyutlu çoklu platform ağyapıları ve hücresel birim bilgisinden fenotip 

belirlenmesi, biyolojik araştırmalarda sistem bazlı yaklaşımlar için bir sorun 

oluşturmaktadır. Fenotip bilgisini tahmin gücünün geliştirilmesi tamamlanmış kantitatif 

genetik etkileşim ağyapısının belirlenmesine ve buna bağlı olarak genotip ve fenotip 

arasındaki bağlantıyı sağlayarak işlevsel bağıntılar üzerinden sadece genetik bilgi ile 

fenotip hakkında çıkarımlar yapılmasına olanak sağlayacaktır. Böylelikle Homo sapiens‟in 

de içinde bulunduğu evrimin yüksek aşamasında bulunan organizmalarda kantitatif genetik 

etkileşim ağyapılarının belirlenmesinde bir kilometre taşı olacak ve model 

organizmalardaki homolog genler üzerinden insandaki genetik hastalıkları kodlayan açık 

okuma çerçeveleri hakkında ipuçları sağlayacaktır. Bu tezin amacı, maya ağyapısı 

içerisinde sentetik hastalık/ölümcüllük fenotipine yol açan yeni genetik etkileşimlerin 

belirlenmesinde plastisite etkisinin sayısal olarak tahmin edilebilmesini sağlamaktır. Bu 

çalışmada, çeşitli hücresel birimler ve etkileşim seviyeleri hakkında sistem bazlı bilgiler, 

farklı fenotiplere yol açan yeni etkileşimlerin tahmin edilmesi ve belirlenmesinde 

kullanılmıştır. Bu amaçla maya model organizması kontrollü ortamlarda incelenmiştir. 

Epistatik etkileşimlerin belirlenmesinde akı denge analizinin uygulanabilirliği, metabolik 

akı analizinin tahmin gücünü iyileştirebilme amacı ile biyokütle bileşenlerinde ve çevresel 

faktörlerdeki değişikliklerin metabolizma üzerindeki etkisi ile birlikte incelenmiştir. Akı 

denge analizi, metabolizma düzenleyicilere ait bilgilerin ve organizmaların çevresel 

değişkliklere verdiği tepkileri içeren plastisite bilgisinin birlikte kullanımı ile fenotip 

bilgisi ve genetik etkileşimlerin belirlenmesi için uygun bir araç olarak belirlenmiştir.  
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1 

1. INTRODUCTION 

 

 

The emergence of novel technology platforms in biological research has enabled vast 

amounts of data to be made available to the scientific community. Making sense of piles of 

accumulated data, extracting information, and finding connections and links between 

bundles of newly acquired information has been the most challenging legacy of these 

technological developments. The need for handling and managing the available 

information has required the development of novel techniques or the novel application of 

already known techniques in order to integrate several data sets of similar or disparate 

types. The study of biological entities using a systems-based approach aims to obtain a 

comprehensive level of understanding of the whole entity, not just of its parts. An 

understanding of the synergetic functioning of the parts may only be obtained through an 

integrative and quantitative study of the whole system. Only then will applications such as 

novel drug design and personalized medicine, as well as advanced therapies for treating 

complex human disorders, be developed and the design of advanced cell factories for the 

production of fuels, chemicals, food ingredients and pharmaceuticals be achieved [1]. In 

addition to its role in the food and beverage industries, yeast has also been extensively used 

as a relatively simple but still relevant model in systems-based studies. The yeast genome 

is well studied with whole-genome sequence data being available for many natural and 

industrial strains [2-4]. Most high throughput genomic techniques have first been 

developed for yeast and then applied to other organisms. The ease of genetic manipulations 

and the ability of yeast to be grown under carefully controlled conditions make yeast an 

ideal toolbox for eukaryotic cells. Additionally, many fundamental processes are conserved 

among eukaryotes, making yeast a suitable organism for the study of many human 

disorders [1]. 

 

High-throughput information on all types of cell components can be provided 

through omics data sets; genomics, transcriptomics, proteomics, metabolomics, 

interactomics, fluxomics and phenomics. These data provide priceless information on 

biological systems but also impose challenges that are characteristic to information-rich 

environments. Phenomics and fluxomics are both categorized as functional states data 

since they provide an integrated readout of all omics data types by revealing the overall 
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cellular phenotype. High-throughput determination of cellular fitness in response to 

environmental or genetic perturbations is termed phenomics. Phenotype arrays, 

chemogenomics and RNAi technologies enable the investigation of cellular phenotype. 

Integration of the various types of omics data to yield predictions for cellular fitness is yet 

another challenge for systems-based studies to be overcome [5]. 

 

In this study, systems-based information on various components and interaction 

levels was used for the prediction and identification of novel interactions leading to 

phenotypes. For this purpose, the yeast model organism was investigated under carefully 

controlled environments.  

 

In the first part of the study, the application of flux balance analysis for the 

prediction of epistasis was investigated. The effect of biomass composition and 

environmental perturbations on metabolism were analysed in order to enhance the 

predictive power of metabolic flux analysis for the identification of metabolic epistasis.  

 

In the second part of the study, yeast cells were subjected to perturbations leading to 

changes in nutrient availability and the dynamic transcriptional and metabolomic responses 

of yeast cells were investigated. The transient data on transcript and metabolite levels were 

then integrated with metabolic pathway information, protein-protein interaction data, and 

protein-gene interaction data to build a model for the prediction of novel epistatic 

interactions.  

 

In the last part of the study, genetically manipulated yeast strains, namely drug 

resistance mutants, were grown under nutrient limitation and the steady state 

transcriptional and metabolomic responses were investigated. A chemogenomics approach 

was used to predict lethal drug-gene interactions as a measure of fitness using drug 

treatment as bait to replace the QDR family genes and the deletion mutants of two drug 

resistance families; QDR and PDR, were screened against these drugs. Novel fitness 

defects were identified among drug-mutant pairs. 
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2. STUDIES ON METABOLIC NETWORKS FOR IMPROVING THE 

PERFORMANCE OF METABOLIC FLUX ANALYSIS FOR THE PREDICTION 

OF EPISTATIC INTERACTIONS 

 

 

This chapter of the study investigates the use of flux balance analysis in predicting 

epistatic interactions among metabolic genes. In the first section of the chapter, the quasi 

steady state approximation to predict the flux distributions at the mid-exponential phase of 

batch fermentations of wild type yeast cells is presented. Although the quasi-steady state 

approach for predicting flux distributions were not within a sufficiently acceptable range of 

the experimentally observed values, the individual predictions using metabolic snapshots 

along the exponential phase were. The distribution of fluxes indicated an increased flux 

activity on amino acid production and utilization pathways. The metabolic genes in amino 

acid production and utilization pathways were selected as the query genes for the in silico 

prediction of metabolic epistasis. In the second section of this chapter, the fitness 

evaluation of synthetic mutants in terms of lethality is presented. The in vivo fitness of the 

single deletion mutants in terms of lethality were incorrectly predicted by the in silico 

predictions in 11% of the viable mutants and 20% of the lethally sick mutants, which 

would have led to as much as 40% error in the predictions for double mutants. In order to 

enhance the predictive capability of flux balance analysis, the effect of composition of the 

biomass constituents; mainly the amino acid constituents, on flux distributions was 

investigated under different nutritional conditions in the last section of this chapter. 

 

2.1. Quasi-steady state flux balance analysis applications for in silico determination of 

query genes for the prediction of synthetic lethality 

 

2.1.1.  Background 

 

The quantitative description of biological systems for accurate predictions of 

genotype-phenotype relationships is a major goal of post-genomic biology. While the 

completion of genome sequences for many species has triggered a phase of systematic 

analysis of gene function [6-9], the Human Genome Project and sequencing of model 

organisms resulted in the annotation of many genes. Although genome-scale models of the 
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metabolic networks of model organisms such as E. coli [10] or S. cerevisiae [11, 12] have 

been shown to have remarkable predictive power [13], new methods are still required to 

reduce the dimensionality of the large parametric space encompassed.  Metabolomics is the 

level of functional genomic analysis that is closest to function and, therefore, a practical 

approach to overcome system complexity and the use of metabolic “snapshots” may be 

used to provide clues as to the relationships between the activities of gene products and 

their resultant phenotypes [14].  

 

Flux balance analysis (FBA) is a mathematical method for computing whole cell 

metabolic fluxes and growth rates based on steady state and optimality assumptions. Two 

fundamental steps in FBA are the use of linear constraints to define a space of feasible 

reaction fluxes for the network and an optimization step, aimed at finding the set of fluxes 

in this space that maximize a given linear objective function, using linear programming.  

The major set of constraints stem from mass conservation and reaction stoichiometry. 

Exchange reactions, maintenance and growth reactions are included in the stoichiometric 

information. Organism specific biomass compositions as well as simulated environmental 

settings are also included to set a more realistic ground for the simulations [15]. 

 

 Flux balance analysis (FBA) was used to predict metabolic phenotypes under 

different conditions, such as substrate and oxygen availability, by simply constraining the 

appropriate fluxes [16, 17]. FBA could be applied to genome-scale constraint-based 

models of the metabolic network to predict a particular flux distribution using linear 

optimization [17, 18]. The predicted growth or by-product secretion rates were found to be 

consistent with the experimental data in cases where E. coli was grown on acetate or yeast 

was grown on glucose [13, 19]. However, in other cases, FBA predictions may be 

inconsistent with experimental data, even after the adaptation to a particular environment, 

as in the case of some E. coli strains bearing deletions in metabolic genes [20]. 

Identification of a physiologically relevant objective function is important and methods 

have been developed for constraint-based models to identify such objective functions [21, 

22]. 

 

In this study, quasi-steady state flux balance analysis was used as a computational 

tool initially for the confirmation of the method for the prediction of metabolic flux 
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distributions within the cell. The genes, which were associated with a specific pathway, 

catalysing the reactions, through which the fluxes were distinctively high or low, were 

selected for further analyses. These genes would make the refined set of query genes to be 

used in the prediction of genetic interactions based on computationally determined fitness 

effects.  

 

2.1.2.  Methods 

 

2.1.2.1. Medium and growth conditions. Wild type BY4743 (MATa/MATα his3Δ/his3Δ 

leu2Δ/leu2Δ LYS2/lys2Δ MET15/met15Δ ura3Δ/ura3Δ; [23]) was cultivated in 2L 

fermenters (Sartorius Stedim Biotech) with 1L working volume under aerobic conditions 

in F1 media [24] operated in batch mode. Temperature and pH were controlled to 30
o
C and 

pH 4.5, respectively. Fermenters were stirred at 800 rpm which, together with constant air 

flow at a rate of 0.1 vvm, provided dissolved oxygen at ≥ 80% dO2 saturation at all times 

during cultivation. Fermentations were carried out in triplicates. 

 

2.1.2.2. Sampling, quantification of biomass, glucose, and extracellular metabolites. 

Samples taken from the fermenter at regular intervals during exponential phase during the 

period of steady growth were centrifuged at 8 000 rpm for 6 minutes (Eppendorf 5415C, 

Germany) to determine substrate utilization and extracellular product formation and 

metabolite concentrations. The dry weight was determined gravimetrically using triplicate 

samples collected during the exponential phase of growth. Extracellular glucose, 

ammonium, ethanol and glycerol concentrations during exponential phase of growth were 

determined enzymatically using Boehringer – Mannheim kits. 

 

 2.1.2.3. Determination of growth parameters. Maximum growth rate (max) and saturation 

constant (Ks) were calculated from the biomass concentration and the glucose 

concentration based on Monod kinetics. 

 

2.1.2.4. Flux Balance Analysis (FBA). The comprehensive genome-scale model (GSM) 

iFF708 [12] was employed using the maximization of biomass production as the objective 

function. Glucose and ammonium consumption, glycerol and ethanol production fluxes 

were introduced to the system as constraints. The simulations were carried out via 
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TOMLAB run under MATLAB 7.0. Alternate optima were eliminated using the method of 

Mahadevan and Schilling [25]. Among the remaining possibilities of flux distributions, the 

set leading to the highest amount of biomass production was selected for analysis since 

synthetic sickness or lethality was the key parameter in this analysis.   

 

2.1.3.  Results and discussion 

 

2.1.3.1. Properties of the model fermentations. Wild type yeast cells were grown in defined 

medium under carefully controlled batch fermentations. The biomass and metabolite 

concentrations were determined from the samples, which were collected throughout the 

exponential phase, during which steady growth was assumed. The sampling frequency was 

adjusted such that the difference between samples would be close enough to assume a 

quasi-steady state condition.    

 

Variation in the optical densities throughout the exponential phase, where 

intracellular steady state was assumed, is provided in Figure 2.1. 

 

 

Figure 2.1. Variations in cell optical density in exponential phase 
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The biomass values that were gravimetrically determined from the samples collected 

at the exponential phase, which was determined based on optical densities, are provided in 

Table 2.1 for the replicate fermentations (B1, B2 and B3). 

Table 2.1. Biomass (BM) concentrations at time from inoculation during exponential phase 

Time (h) 
BM  B1 

(g/L) 
Time (h) 

BM  B2 

(g/L) 
Time (h) 

BM B3 

(g/L) 

10.0 0.6 10.5 0.5 9.5 0.4 

11.0 0.9 12.5 1 10.5 0.5 

12.0 1.0 13.5 1.1 11.5 0.6 

13.0 1.1 14.5 1.2 12.5 0.7 

14.0 1.8 15.5 1.3 13.5 0.8 

15.0 2.5 16.5 1.4 14.5 0.9 

16.0 2.9 17.5 1.5 15.5 1.1 

17.0 3.0 18.5 2.3 16.5 1.3 

    17.5 1.5 

 

The remaining glucose and ammonium that were not utilized by the cells as well as 

the excreted ethanol and glycerol concentrations that were enzymatically determined are 

presented in Figure 2.2. The growth parameters of the wild type were determined from the 

concentrations of biomass produced and glucose consumed (Figure 2.3). These parameters 

are provided in Table 2.2 for all three replicates (B1, B2 and B3).  

 

Table 2.2. Growth parameters of replicate batch fermentations (B1, B2 and B3) 

 max (h
-1

) Ks (g/L) 

B1 0.2344 2.697 

B2 0.1529 2.007 

B3 0.1603 2.376 

Mean 0.1825 2.360 

Standard Deviation 0.0451 0.345 
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Figure 2.2. Remaining glucose and ammonium concentrations, produced ethanol and 

glycerol concentrations at exponential phase 

 

2.1.3.2. Prediction of flux distributions using quasi-steady state flux balance analysis. The 

range of the exponential phase was determined during the determination of the Monod 

kinetic parameters. The flux distributions at each point in the exponential phase were 

determined using a quasi-steady state assumption. The experimentally determined 

metabolite concentrations at the initial point of exponential phase were used as constraints 

only at the first time point. The predictions obtained from the flux distributions at this time 

point were used as the constraints in calculating the flux distributions at the following time 

point. For the next time point, the simulation results from the previous time point would be 

used until the last sampling point within the mid-exponential phase. However, using this 

methodology, the predictions could not be improved to achieve less than 50% difference 

with the experimentally determined biomass values (data not shown). Therefore, the quasi-

steady state assumption was discarded and individually determined concentrations were 

used as constraints in the predictions. 
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Figure 2.3. Determination of the maximum specific growth rate and the saturation constant 

 

Since flux balance analysis assumed that a dynamic equilibrium existed within the 

biological system at a particular snap-shot, each time point along the exponential phase of 
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the batch fermentation could be assumed to be at equilibrium, theoretically at individual 

steady states. The exponential phase metabolite concentrations (M2-M9) from the triplicate 

batch fermentations (B1-B3) were thus used in flux balance analysis. The metabolite 

concentrations were used to represent fluxes through the utilization of specific growth rates 

() and all fluxes were calculated in terms of mmol / g biomass · h (Table 2.3).  

 

Table 2.3. Metabolite fluxes in mmol/g biomass · h for the samples in exponential phase 

Sample 
Ethanol 

flux 

Glucose 

flux 

Ammonium 

flux 

Glycerol 

flux 

Biomass 

flux 

B1 M2 8.3460 19.4721 67.3416 1.7131 12.6263 

B1 M3 3.2549 5.6893 18.2869 0.4745 3.7879 

B1 M4 3.1039 4.9795 15.1302 0.3815 3.4435 

B1 M5 10.2779 21.8286 39.5575 1.0055 14.7306 

B1 M6 5.8889 12.1758 20.5174 0.5272 10.6061 

B1 M7 2.6199 5.2391 8.7269 0.2218 5.2247 

B1 M8 1.0622 1.1175 1.8577 0.0474 1.2626 

B2 M2 6.2595 10.9336 90.1980 2.3343 18.9394 

B2 M3 2.2762 5.5647 16.4079 0.4305 3.7879 

B2 M4 2.2762 5.5459 13.7413 0.3751 3.4435 

B2 M5 2.2470 5.5847 11.6303 0.3008 3.1566 

B2 M6 5.9261 5.3538 10.8602 0.2197 2.9138 

B2 M7 7.1537 5.0241 10.0955 0.2552 2.7056 

B2 M8 65.7407 40.0724 75.4409 1.9153 20.2020 

B3 M2 7.0106 16.2319 71.9010 1.8463 7.5758 

B3 M3 8.3460 12.2051 49.9660 1.2888 6.3131 

B3 M4 6.1317 10.6316 36.7450 1.0869 5.4113 

B3 M5 6.6507 9.4143 28.1546 0.7362 4.7348 

B3 M6 7.7278 7.5569 22.4893 0.5835 4.2088 

B3 M7 16.554 10.1969 30.1223 0.7939 6.8871 

B3 M8 13.9264 12.184 21.5924 0.5570 5.8275 

B3 M9 12.0182 9.4927 16.2260 0.4124 5.0505 
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The fluxes for glucose and ammonium consumption and for ethanol and glycerol 

production at each time point along the exponential phase, which were obtained from the 

enzymatic determination of the metabolite concentrations, were used as constraints in the 

dimension reduction of the convex space in flux balance analysis (FBA). The objective 

function was selected as the optimization of biomass production since fitness effects would 

be investigated in further analyses, which would use the results from this study. The 

gravimetrically determined biomass concentrations were used for the comparison of the 

experimental results with the results from in silico flux predictions. 

 

Flux balance analysis was carried out at each time point using these flux values with 

objective function being the maximization of biomass production [12]. The flux 

distributions at each point at exponential phase were thus determined. The biomass fluxes 

that were determined as predictions were compared with the experimentally determined 

values in order to evaluate the predictive power of the model (Table 2.4). 

 

Investigation of the mean values of the repetitions indicated that the model had a 

prediction success of more than 90% for the mid-exponential phase except for the early- 

and late-exponential phase. 

 

The investigation of the flux distributions indicated that non-zero fluxes were mainly 

concentrated around amino acid production and utilization pathways (Appendix A). The 

distribution of fluxes regarding amino acid production and utilization at a particular 

snapshot of M5 is provided in Figure 2.4. It has been previously suggested that as a 

parameter for evolutionary selection of an organism in terms of fast growth, the overall 

intracellular flux distribution could be minimized since organisms prefer to maximize 

enzymatic efficiency through the course of evolution [26]. The non-zero fluxes in amino 

acid and utilization pathways could indicate that the enzymes taking role in these pathways 

would be more sensitive to the alterations leading to phenotypes that could be attributed to 

reduced fitness.  Therefore, these active pathways were selected for providing candidate 

query genes in metabolic flux analysis applications for the prediction of epistatic 

interactions. 

 



 
 

12 

Table 2.4. Evaluation of the predictive power of the model using flux balance analysis 

Sample 
Experimental BM Flux 

(g / g biomass · h) 

Predicted BM Flux 

(g / g biomass · h) 

Prediction Error 

Per cent (%) 

B1 M2 0.33 0.45 - 

B1 M3 0.10 0.14 - 

B1 M4 0.09 0.10 - 

B1 M5 0.39 0.42 - 

B1 M6 0.28 0.34 - 

B1 M7 0.14 0.14 - 

B1 M8 0.03 0.01 - 

B2 M2 0.50 0.24 - 

B2 M3 0.10 0.08 - 

B2 M4 0.09 0.04 - 

B2 M5 0.08 0.09 - 

B2 M6 0.08 0.05 - 

B2 M7 0.07 0.04 - 

B2 M8 0.53 0.17 - 

B3 M2 0.20 0.47 - 

B3 M3 0.17 0.18 - 

B3 M4 0.14 0.17 - 

B3 M5 0.12 0.12 - 

B3 M6 0.11 0.11 - 

B3 M7 0.18 0.18 - 

B3 M8 0.15 0.13 - 

M2 Avg. 0.34 0.38 12 

M3 Avg. 0.12 0.13 8 

M4 Avg. 0.11 0.10 6 

M5 Avg. 0.20 0.21 5 

M6 Avg. 0.16 0.17 7 

M7 Avg. 0.13 0.12 6 

M8 Avg. 0.24 0.11 56 
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Figure 2.4. Metabolic flux distributions in amino acid production and utilization pathways 

at M5 

 

2.1.4.  Study conclusions 

 

Both the experimentally determined and the computationally predicted values of 

biomass fluxes indicated that the growth properties and physiological structure of the three 

batch fermentations were within acceptable limits of being replicates during the mid-

exponential phase, during which steady state conditions were assumed. The outliers of 

either the experimental or the predicted data were no longer outliers once the replicate 

values were averaged out and the mean values would be accepted as data points, indicating 

the necessity for parallel replicate runs during experimentation. The prediction of 

metabolic flux distributions from the analysis were consistent with the experimentally 
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obtained values with less than only 10% discrepancy, only for the mid-exponential phase, 

during which a quasi-steady state would be assumed, but not for the early or the late 

exponential phase. The distribution of fluxes during this period of fermentation indicated 

that amino acid production and utilization pathways would be a suitable choice for 

monitoring fitness through manipulations in metabolic fluxes since most of the non-zero 

fluxes were through the enzymes belonging to these pathways. The non-zero fluxes; 

possible cases of inefficient enzyme utilization during biomass production were selected as 

possible candidates for further investigation of fitness defects. 

 

2.2.  Prediction of lethality as phenotype in the amino acid production and utilization 

pathways using flux balance analysis  

 

2.2.1. Background 

 

As genome sequencing is being accomplished for many organisms, one of the major 

challenges has become the extraction of biologically meaningful information from the 

available data [27]. Saccharomyces cerevisiae genome was the first eukaryotic genome to 

be sequenced [2]. Yeast genome is compact and simple in comparison to other eukaryotic 

genomes and it has short non-coding regions and only less than 7% of its genes contain 

introns [28]. Nature of this genome makes it less complex than other eukaryotic genomes 

and this feature helps simplify functional analyses [27].  

 

Together with the advent of whole genome sequencing, emergence of high 

throughput experimental technologies provided large-scale data sets that need to be 

interpreted to derive fundamental and applied biological information about whole systems 

[5]. With the knowledge of interactions affecting one another as well as co- and counter-

acting behaviour of these biological entities provide clues to the functioning of the 

metabolism but still, obtaining a deep insight into the regulation mechanisms of the 

organism as a whole and how entities function as parts of a complete network are yet 

challenges to be overcome. 

 

Genetic interactions are used to describe interactions occurring between genes 

themselves, not their products. In contrast to designation of physical interactions by the 
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method with which the interaction is detected, genetic interactions are named according to 

the strength and method of the effect they impose on the organism. The resulting 

interaction causes a phenotype, which can be observed and measured in several different 

ways. Several types of genetic interactions are categorized as phenotypic enhancement, 

phenotypic suppression, dosage rescue, synthetic rescue, dosage growth defect, synthetic 

growth defect, dosage lethality and synthetic lethality. In genetic interactions, bait/query is 

the starting strain or the construct and the gene participating in the interaction is called the 

hit [29]. 

 

Random mutations that are not neutral to the phenotype are more likely to impair 

biological functions rather than improving them. This is considered as a simple 

consequence of a long era of natural evolution. It is generally accepted that natural 

evolution has already fixed practically most of the beneficial mutations [30]. Mutations, 

especially null mutations also tend to be recessive. This recessivity results from the 

dynamics of the metabolic pathways. Metabolic pathways have a safety margin allowing 

them to function despite small changes in the component enzymes. According to the 

metabolic control theory, most enzymes have little influence on the flux through a pathway 

unless their activity level decreases to become limiting. Therefore, although the absence of 

an enzyme might be problematic, halving the enzyme activity is likely to have little effect 

on the overall metabolic flux. Consequently, mutations will generally have a much more 

severe effect when homozygous than when heterozygous. Dominance relationships are 

also affected from natural selection to some extent. Metabolic pathways themselves have 

evolved through natural selection in order to be more stable and robust against 

perturbations, including mutations [31-34]. 

 

The fact that most mutations are recessive and deleterious raises another question of 

whether interactions among these mutations reinforce or weaken their individual effects. 

Quantification of the degree of dominance, direction and synergy of genetic interactions is 

critical in understanding the working principles of natural selection against mutational 

loads [35].  Genetic variation is observed in every population, even in such populations 

that are well adapted to their environment. Because of this reason, they have been evoked 

to explain the evolution of several biological phenomena including diploidity, 

reproduction, recombination, dominance and epistasis [36]. 
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The interaction data obtained from various types of analyses are used to construct a 

genetic interaction network for the complete organism. Analysis of a subset of the yeast 

genetic network provides information on the complete network. Using a set of SGA 

screens, nearly 4000 interactions were obtained from nearly 1000 genes [37]. For each 

non-essential gene, the average number of interactions was found to be 34 while it was 5 

fold higher for the essential genes. Extrapolating from this subset, the global network is 

thought to contain nearly 200 000 synthetic lethal interactions. In a different perspective, 

there are 200 times more combinations of ways to generate a lethality phenotype than it is 

possible to do with the essential genes. This provides clues to present why the single gene 

effects of many phenotypes are limited to explain cellular functionality [38]. 

 

Large-scale genetic analyses reveal evidence that mutations in most eukaryotic genes 

have apparent effect. Supporting this view, the systematic gene deletion studies conducted 

in the yeast S. cerevisiae present the fact that only nearly 20% of all the genes are essential 

for viability determined from the studies on the mutant haploids growing in standard 

laboratory conditions [39-40]. Even though recent systematic analyses showed a 

measurable growth phenotype under at least one condition for every yeast gene [41], the 

ability of most deletion mutants to grow under optimal conditions provides support for the 

robustness of biological circuits and cellular buffering against genetic variations. This 

emphasizes an important property of networks, which is resistance to attack at a single 

node [42]. Synthetic enhancement genetics is the term used for examining how mutations 

in two genes interact to modulate a phenotype, which is an application of Fisher‟s 

definition of epistasis. Synthetic enhancement combinations are rare possibilities when all 

combinatory pairs of interactions are considered, therefore sensitive and selective 

screening methods and computational tools are developed to serve this purpose [38]. 

 

Synthetic lethality, a subset of synthetic enhancement phenotypes, is observed when 

the absence of two or more genes simultaneously results in a non-multiplicative phenotype, 

being inviability whereas the absence of individual genes in single mutants does not 

present itself with such a phenotype. Due to the incomplete knowledge of cellular 

functions, it is not clear most of the time why a particular double mutant shows a synthetic 

lethal phenotype, however, several possible mechanisms have been proposed depending on 

the characteristics of the interacting alleles [38]. If both mutations occur in non-essential 
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genes and are null alleles, it is generally considered that the genes function in parallel 

pathways working on a shared essential function. This is called the „between pathways‟ 

model and is typically associated with bidirectional genetic redundancy meaning that each 

pathway compensates for defects in the other [43-45]. Another case of genetic interactions, 

which is of interest involve duplicated genes or paralogs. Recent studies show that patterns 

of genetic interactions between duplicates are divergent indicating that paralogous genes 

maintain functional specificity [46]. Conversely, distant paralogs encoding metabolic 

genes are also shown to interact indicating that the product of the duplicated gene might 

retain sufficient activity to mask the loss of the conserved copy [15]. Conditional or 

hypomorphic alleles of essential genes can be used to evaluate synthetic phenotypes. In 

such cases, the interactions may occur „within pathways‟ as well as „between pathways‟. In 

„within pathway‟ models, synthetic lethality is an indication of genes functioning in the 

same essential pathway, the function being diminished by each mutation [41] (Figure 2.5). 

 

 

Figure 2.5 Mechanisms of synthetic lethal interactions [38] 

 

In this study, the in silico fitness of metabolic gene deletion mutants of the amino 

acid production and utilization pathways was investigated using flux balance analysis. The 

query genes, which were selected in the previous section, were used for in silico prediction 

of the genetic interactions amongst themselves using maximization of the flux through 

biomass as the objective function in the metabolic flux analysis so that the fitness effect of 

the wild type as well as strains where one or more genes were absent could be determined. 

Epistatic interactions would thus be quantified from the predicted specific growth rates for 

wild type, single and double deletion mutants. 
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2.2.2. Methods 

 

2.2.2.1. Flux Balance Analysis (FBA). Flux balance analysis has been carried out as 

described in Section 2.1.2.4. The fitness of the mutants was assessed by constraining the 

reactions, which were catalysed by the query genes, to zero. 

 

2.2.2.2. Determination of epistasis. Epistatic interactions were determined using the 

product rule where fitness (W) is defined by the exponential (specific) growth rate (m) of a 

strain relative to that of the wild type or control (mwt) [37, 47-49] – proposing relative 

growth rate measure for genes y and x:  

 

 Wx = mx / mwt  Wy = my/mwt  and  Wxy = mxy /mwt 

 

with the neutrality function: Wxy = Wx Wy; any inequality meaning presence of an 

interaction.  

 

2.2.3. Results and discussion 

 

In accordance with the findings stated in Section 2.1.3, the set of query genes were 

determined from the reactions associated with amino acid metabolism and amino acid 

transport reactions stated in iFF708. These genes, which were taking role in amino sugars 

metabolism (glucosamine), arabinose, xylose and mannitol metabolisms, alanine and 

aspartate metabolism, asparagine metabolism, glycine, serine and threonine metabolism, 

methionine metabolism, cysteine metabolism, branched chain amino acid metabolism, 

lysine biosynthesis and degradation, arginine metabolism, histidine metabolism, aromatic 

amino acids metabolism, proline biosynthesis, -alanine metabolism, selenoamino acid 

metabolism, proteins, peptides and amino acids metabolism, glutathione biosynthesis and 

membrane transport of amino acids, were selected.  

 

Eliminating the reactions that were facilitated by yet unknown enzymes, 154 

enzymes were identified as taking role in the amino acid metabolism and 32 enzymes were 

taking place in amino acid transport (Table 2.5). 
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The metabolic flux constraints for glucose and ammonium uptake as well as ethanol 

production were determined at a plausible hypothetical point in the mid-exponential phase 

of batch fermentations. The specific growth rate was selected as 0.15 h
-1

. The consumed 

glucose was set at 10 g/L and the consumed ammonium was set at 1.67 g/L. Ethanol 

production was taken as 2.5 g/L. The robustness of the observed phenotype; lethality or 

fitness was confirmed by varying the concentration of the consumed and produced 

metabolites by 25% and by varying the specific growth rate by 25%. The results indicated 

that although the distribution of fluxes varied in magnitude, these variations were not 

sufficient to alter the observed phenotype, changing the viability outcome. 

 

The in silico gene deletions were made by constraining the fluxes through the 

reactions catalysed by the gene products to zero. The deletion of 114 annotated genes 

involved in amino acid metabolism did not cause a change in viability whereas the deletion 

of 40 known genes were predicted to yield lethal phenotypes. This fitness data were then 

verified by the Saccharomyces Genome Database. However, out of the 114 viable 

predictions, 13 genes were reported as being inviable in the database and out of the 40 

inviable predictions, 8 genes were reported as viable. This corresponded to 11% 

discrepancy in the viability predictions and 20% discrepancy in the inviability predictions. 

Only two incorrect viability predictions were determined for the genes involved in amino 

acid transport although the evaluation could not represent the transport genes adequately 

since 50% of them were not annotated (Table 2.5).  

 

The discrepancy rate was observed to increase as much as up to 35% for the 

prediction of lethality in double deletions. This high rate would result in incorrect 

predictions of epistasis, genetic interactions and redundancy in the amino acid pathways.  

Therefore, the need for the investigation of parameters affecting the predictive capability 

of flux balance analysis emerged. For this purpose, one of the most important parameters 

affecting the flux distributions in a metabolic model, the biomass composition, and the 

effects of its variation on flux distributions were investigated in the next section in order to 

be able to better manipulate the model for obtaining more successful predictions. 
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Table 2.5. Viability prediction success through the use of flux balance analysis 

Gene functions 

in 

amino acid production 

and utilization 

amino acid production 

and utilization 

amino acid 

transport 

No. of genes 138 44 65 

No. of un-

annotated genes 
24 4 33 

No. of annotated 

genes 
114 40 32 

Predicted 

phenotype 
viable  inviable viable 

Incorrect 

predictions 

13 (GFA1, GNA1, 

PCM1, QRI1, CHS2, 

DED81, KRS1, 

YDR341c, DYS1, 

HTS1, DIM1, SPB1, 

NMT1) 

8 (HOM3, YGR012w, 

LYS1, ARG5, HIS1, 

HIS6, ARO9, TRP1) 

2 (HIP1, 

FCY21) 

% error in single 

deletions 
11% 20% 6% 

% error 

projection for 

double deletions 

78% 64% 88% 

 

2.3. Investigation of the effect of plasticity and biomass composition at different 

metabolic states on metabolic flux distributions  

 

2.3.1. Background 

 

Plasticity refers to how cellular response is adapted to different environmental 

conditions and it is an important aspect of handling epistasis. Many of the genes do not 

affect growth under normal conditions and therefore may seem dispensable. This implies 

that organisms compensate for null mutations via redundant pathways and redundant gene 

duplicates. This phenomenon is termed as mutational robustness. However, many of the 

duplicates and alternate pathways are found to contribute to fitness only under certain 
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conditions. This is called environmental adaptation. This connection between mutational 

robustness and environmental adaptation is yet unclear and requires further investigation. 

If environmental variability (plasticity) affects the robustness of an organism against 

mutations and combinations of mutations, then these two phenomena should be 

investigated within the same context [15]. 

 

The mechanisms of metabolic change and adaptation to an environmental stimulus 

are still not well understood. Approximately 3% of yeast metabolic reactions were reported 

to be always active under different simulated growth conditions. However, the rest of the 

metabolic pathways were reported only to respond to certain environmental changes being 

conditionally active under certain conditions. This is defined as flux-based plasticity.  The 

metabolic core, which was constituted from a sub-network of constantly active reactions, 

was reported to display a higher fraction of essential enzymes [50]. This would indicate 

that the remaining part of the network, which was affected from variations in 

environmental conditions, would be more susceptible to phenotypic variations resulting 

from epistatic effects displayed under specific conditions.    

 

It has been previously reported that living systems might switch their biological 

objective when a physiological change was imposed on them. Understanding of such 

changes as seen during diauxic shift in yeast would still remain a challenge to be 

overcome. Since the knowledge on changing objectives would be limited, this would also 

limit the capability of FBA to correctly describe the system. The metabolic flux objectives 

under different metabolic states would be inferred from the available data. Such available 

data would be on biomass compositions and the comparative analysis of this data between 

wild type and mutants as well as throughout physiological transitions or under different 

metabolic conditions would be used to infer suitable cellular objectives to enhance the 

predictive capability of metabolic flux analysis [51]. Within this perspective, an analysis of 

how variations in the biomass composition through alterations in the stoichiometric ratios 

of its individual constituents would affect flux distribution was carried out in the last 

section of this chapter.  

 

 

 



 
 

22 

2.3.2. Methods 

 

2.3.2.1. Determination of metabolic constraints. The growth environment was selected to 

imitate synthetic defined minimal medium [52] with no limitation and with carbon, 

nitrogen, sulphur or phosphorous limitations, in which the concentration of the 

compound(s) imposing the limitation on the element balance was reduced to 10% of its 

value. The approximate chemical composition of yeast nitrogen base without amino acids 

and without ammonium sulphate was obtained from the manufacturer (Difco 

Microbiology). Steady state condition with a specific growth rate of 0.1h
-1

 was assumed. 

Total carbon from all sources was expressed in terms of glucose, total nitrogen from all 

sources was expressed in terms of ammonium, total sulphur from all sources was expressed 

in terms of sulphate and total phosphorous from all sources was expressed in terms of 

inorganic phosphate. 

 

2.3.2.2. Flux balance analysis (FBA). Flux balance analysis has been carried out as 

described in Section 2.1.2.4.  

 

2.3.2.3. Variations in the biomass composition. Flux distributions were determined 

individually by varying the coefficient of every biomass constituent in the biomass 

composition equation by a factor of two. The coefficients were doubled or halved and the 

new flux distributions were obtained (Appendix B).  For each environmental condition, the 

differences in flux distributions between the unaltered biomass composition and the altered 

biomass compositions were determined and for the purpose of visualization, the flux 

distributions were overlaid on metabolic pathways [53].   

 

2.3.3. Results and Discussion 

 

In order to identify the effect of variations in the composition of the biomass 

constituents on flux distributions, the coefficients of amino acid constituents and the other 

constituents were doubled or halved under different physiological conditions. These effects 

were evaluated within the context of inferring suitable cellular objectives to enhance the 

predictive capability of metabolic flux analysis. 
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Approximate metabolite concentrations were determined for the amount of 

remaining glucose and ammonium as well as the produced biomass based on the values 

obtained from previously conducted fermentation (Table 2.6). 

 

Table 2.6. Major nutritional constituents of foot printing medium (FPM) in the simulated 

fermentations 

Medium 

Consumed  

ammonium 

(g/L) 

Consumed 

glucose  

(g/L) 

Produced 

biomass 

(g/L) 

Consumed 

inorganic 

phosphate (g/L) 

Consumed 

sulphate 

(g/L) 

FPM 1.6930 20.0000 2.5000 0.2400 4.1460 

C-lim FPM 1.6930 2.0000 2.5000 0.2400 4.1460 

N-lim FPM 0.1693 20.0000 2.5000 0.2400 4.1460 

S-lim FPM 1.6930 20.0000 2.5000 0.2400 0.4146 

P-lim FPM 1.6930 20.0000 2.5000 0.0240 4.1460 

 

The fluxes of four major compounds were determined for 5 physiological cases at a 

specific growth rate of 0.1 h
-1

 (Table 2.7) and were used as constraints in the flux balance 

analysis.  

 

Table 2.7. Flux constraints in mmol / g biomass hour for the studied physiological cases 

Medium 
Consumed  

ammonium 

Consumed 

glucose 
Biomass 

Consumed 

inorganic 

phosphate 

Consumed 

sulphate 

FPM 3.9835 4.8489 3.7879 0.3000 1.7275 

C-lim FPM 3.9835 0.9600 3.7879 0.3000 1.7275 

N-lim FPM 0.3984 4.8489 3.7879 0.3000 1.7275 

S-lim FPM 3.9835 4.8489 3.7879 0.3000 0.1728 

P-lim FPM 3.9835 4.8489 3.7879 0.0300 1.7275 

 

The changes in the distribution of fluxes when the biomass composition was varied 

were first investigated for the case when the medium constituents were not limited for C, 

N, S or P. Then the differences when an environmental limitation was imposed on the 
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system were analysed comparatively. The 44 biomass constituents could be grouped under 

functional categories (Table 2.8). 

 

Table 2.8. Categorization of biomass constituents 

Functional group Constituents 

Amino acids 

L-alanine, L-arginine, L-asparagine, L-aspartate, L-cysteine, L-

glutamine, L-glutamate, glycine, L-histidine, L-isoleucine, L-

leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-

serine, L-threonine, L-tryptophan, L-tyrosine, L-valine 

Lipid/steroid 

constituents 

Phosphatidate, phosphatidylcholine, phosphatidylethanolamine, 

1-phosphatidyl-D-myo-inositol, phosphatidylserine, 

triacylglycerol, ergosterol, zymosterol 

Nucleosides and 

deoxynucleosides 

ATP, ADP, AMP, CMP, GMP, UMP, dTMP, dCMP, dGMP, 

dAMP 

Storage and wall 

carbohydrates 
Mannan, glycogen, alpha-alpha-trehalose, 1,3-β-glucan 

Inorganic 

substances 
Sulphate, orthophosphate 

 

Alterations in the amount of either constituent induced changes in the fluxes in the 

TCA cycle and the redox metabolism, however, these changes were not coupled to the 

glycolytic and gluconeogenic fluxes at all times and they were never coupled with the 

glycerol production or utilization.  

 

Variations in the amounts of amino acid constituents induced changes in redox 

metabolism, the TCA cycle, folate metabolism, glycolysis, gluconeogenesis and serine-

glycine-threonine metabolism. Variations in proline, phenylalanine and threonine content 

induced changes in the glutamate metabolism, whereas variations in glycine, serine, 

glutamate and proline content induced changes in the pentose phosphate shunt. 

 

The changes in the lipid and steroid content of biomass induced changes in similar 

pathways to those that were responsive to variations in amino acid content. Additionally, 

fatty acid metabolism was also affected.  



 
 

25 

The redox metabolism and the tricarboxylic acid cycle were affected from changes in 

the nucleotide and deoxynucleotide content of the biomass. Only dTMP, dAMP and AMP 

induced changes in glycolysis and gluconeogenesis. Phosphoenolpyruvate pathway was 

affected only from changes in the GMP content and the folate metabolism was only 

affected by the dAMP and dTMP content. 

 

The redox metabolism, the TCA cycle, folate metabolism, glycolysis, 

gluconeogenesis and serine-glycine-threonine metabolism were affected from changes in 

storage and wall carbohydrate content as well as the pathways converting pyruvate to 

alcoholic compounds.  

 

Orthophosphate content only induced changes in the redox metabolism and the 

tricarboxylic acid cycle whereas sulphate also induced additional changes in the pentose 

phosphate shunt and the pathways converting pyruvate to isoamylalcohol and butyl 

alcohol.  

 

Forcing the metabolism to optimize the distribution of its fluxes under carbon 

limitation caused an overall decrease in the non-zero fluxes in the biological system on 

which forced biomass changes were not imposed. Only when the AMP content of the 

biomass was doubled, the overall distribution of non-zero fluxes was larger than that 

observed when the environment was not carbon limited. This unexpected increase in 

intracellular fluxes would be an indicator of very inefficient use of metabolic enzymes, 

thus might indicate an unrealistic combination of nutritional limitation and biomass 

constituent variation. Non-zero fluxes were smaller when the orthophosphate content was 

varied, AMP and dGMP content was increased or glutamate, methionine or ADP content 

of biomass was decreased indicating a more efficient utilization of metabolic activity. 

 

The magnitude of fluxes was lower under N-limitation, similar to the observations 

for C-limitation. However, unlike the case observed for carbon limitation, nitrogen 

limitation did not cause a decrease in the magnitude of fluxes in wild type yeast cell. On 

the other hand, manipulation of the biomass content only caused increase in the magnitude 

of fluxes except for the decrease in AMP content of the biomass. Specifically decreasing 

the glycine, serine, leucine, proline, valine or mannan content of biomass or increasing 
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ATP or sulphate content caused an increase in the magnitude of metabolic fluxes. The flux 

distribution was induced by any change in dGMP content. 

 

The magnitude of flux distributions were lower in yeast cells grown under sulphate 

limitation in all cases regardless of the manipulation of the biomass components. 

Specifically, changes in the lipid and steroid content of the cell as well as its amino acid 

content caused many non-zero fluxes to diminish. This finding would be an indicator of 

how metabolic cellular response rearranges itself to optimize its survival under strict 

nutritional limitations. 

 

Alterations in the ATP content, increasing the leucine, glycogen or mannan content, 

decreasing the ADP, PI or asparagine content of the cell would induce the metabolic fluxes 

under phosphorous limitation.  

 

2.3.4. Conclusions and future prospects 

 

This study highlighted the significance of plasticity and biomass contents in 

predicting flux distributions. In broad terms, carbon or nitrogen limitations were observed 

to cause an overall decrease in the metabolic distribution of enzymatic fluxes. This change 

was thought to occur as an attempt of the organism to more efficiently utilize its already 

decreased resources. The observed decrease might directly be attributed to decreased influx 

of nutritional supplements in addition to the metabolic efforts to enable the optimization of 

available resources on a stricter balance sheet. 

 

An interesting outcome of constraining the uptake of sulphur into the organism was 

identified as only the lowering of overall fluxes whenever a change in the biomass content 

induced a change in flux distributions. The availability of extracellular sulphur was strictly 

related to the lipid and steroid content of the cell and this finding would require further 

investigation of the mentioned association. The relationship between the increase in the 

storage carbohydrate content of the cell and the limited availability of phosphate also 

requires further investigation. 
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 In conclusion, the effect of changing the biomass composition caused different parts 

of the metabolic pathway to become active or inactive in the in silico predictions in which 

yeast model was subjected to different metabolic constraints representing growth in 

different nutrient concentrations causing limitation in most of the cases. Therefore, it 

is important to understand how the environment affects metabolism and its regulation 

(plasticity) in order to increase the predictive power of FBA. For this purpose, further 

studies were conducted in order to investigate how yeast cells dynamically respond to 

environmental perturbations and how genetically altered yeast cells respond to nutrient 

limitation. 
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3.  INVESTIGATION OF TRANSIENT CHANGES IN YEAST METABOLISM IN 

RESPONSE TO AN ENVIRONMENTAL PERTURBATION 

 

 

Transient changes in yeast metabolism were investigated as a response to two 

different nutritional perturbations involving glucose or ammonium, which are 

(respectively) among the most highly abundant carbon and nitrogen sources for yeast. The 

re-arrangement in the organism both at the transcriptome and the metabolome levels were 

considered of interest. In the first part of this chapter, the transcriptional response of yeast 

cells to variations in the availability of nutrients in an otherwise carefully controlled 

environment is presented. In the second part of the chapter, the additional information 

provided by the endometabolome were discussed in conjunction with the transcriptome 

and the two sets of data were overlaid on metabolic pathways to get a more comprehensive 

view of how yeast seeks for alternative paths to cater for its energy and other requirements. 

The last section of this chapter introduces a still on-going study on the application of 

transient high throughput data providing information at various levels (metabolite and gene 

expression levels, in this particular case) for the prediction of novel interactions among 

genes through the integration of protein-protein interaction, epistatic interaction and 

transcription factor-gene interaction networks as well as the metabolic network. 

 

3.1.  A comparison of how yeast re-programs its transcriptional profile in response to 

different nutrient impulses 

 

3.1.1.  Background 

 

The ability of a microorganism to adapt changes in its physicochemical (e.g. 

temperature [54], pH [55]) or nutritional [56, 57] environment is crucial for its survival. 

The yeast, Saccharomyces cerevisiae, has developed mechanisms to respond to such 

environmental changes in a rapid and effective manner; such responses may demand a 

widespread re-programming of gene activity [55, 58]. This is especially true of changes in 

the nutrient environment and the ability to sense and respond to changes in nutrient 

availability is essential for cells from both unicellular and multicellular organisms. Glucose 

is the most abundant monosaccharide on earth and is the preferred carbon source for most 
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organisms and, accordingly, changes in glucose availability often have profound 

consequences in many types of cell [59]. The introduction of glucose to a culture of S. 

cerevisiae cells growing by respiration evokes changes at both the level of gene expression 

and of metabolism, with several proteins being activated or deactivated and gene 

expression being completely re-programmed to accommodate the switch from respiration 

to fermentation. Carbon catabolite repression down-regulates the expression of genes that 

encode enzymes involved in gluconeogenesis, the Krebs cycle, respiration, mitochondrial 

development, and the utilization of carbon sources other than glucose, fructose or mannose 

[60]. While the main effect of glucose is exerted at the transcriptional level [61], changes 

in mRNA and protein stability are also involved in the process [62, 63]. 

 

Ammonium assimilation in yeast occurs through its incorporation into glutamate, the 

source of nearly 80% of all cellular nitrogen [64]. Growth on ammonium causes a decrease 

in the activities of the enzymes used to assimilate less favourable nitrogen sources. This 

phenomenon is termed nitrogen catabolite repression, although the effect is not as well 

characterised as its carbon counterpart, particularly with respect to sudden changes in 

ammonium availability. Much less is known of the cellular response to sudden changes in 

the concentration of ammonium available to the cell. It should be noted that, while 

ammonium is not one of the most preferred nitrogen sources for S. cerevisiae, the yeast 

grows well on ammonium and its presence evokes nitrogen catabolite repression [65]. 

Ammonium is taken via two high-affinity permeases (Mep1p and Mep2p) as well as by a 

low-affinity permease (Mep3p). The expression of the GDH1, GLN1, and GAP1 genes is 

regulated by the concentration of ammonium present in the growth medium [65, 66]. The 

expression of nitrogen-regulated genes is controlled by both positively (Gln3p and Nil1p) 

and negatively acting proteins (Nil2p and Dal80p). In addition, it has been shown that the 

TOR kinases play an essential role in preventing the expression of nitrogen-regulated 

genes [65], and they probably have an important integrative role. 

 

Several investigations of the transient responses of yeast metabolism to a sudden 

change in nutritional availability have been carried out. Kresnowati et al. [56] have 

investigated the transient short-term transcriptome and metabolome response of yeast cells 

to glucose perturbation in chemostats and have indicated that both the transcriptomic and 

metabolomic changes mediate two kinds of response – one concerned with the transition 
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from fully respiratory to respiro-fermentative metabolism and the other with the increase in 

growth rate that is the consequence of an increase in nutrient supply. Ronen and Botstein 

[57] have investigated the transient transcriptional response to switching carbon sources 

between galactose and glucose and concluded that experimental designs that involve short-

term transient perturbations may be useful in understanding dynamic metabolic regulatory 

networks. The transient response to nitrogen catabolite repression was investigated by 

introducing an ammonium pulse into a glutamine-limited culture [66] and showed that the 

ammonium-induced repression was not due to a generalised stress response but, instead, 

represented a specific signal for nitrogen catabolite regulation. The effect of sulphate or 

phosphate limitation in the growth medium, together with uracil and leucine deficiency, 

was also investigated and it has been deduced that the cells adjust their growth rate to 

nutrient availability and maintain homeostasis in the same way in both batch and steady-

state conditions [67]. 

 

In this study, the dynamic re-organization of yeast‟s cellular activity was analysed by 

following the short- and long-term transcriptomic response to a sudden relaxation of either 

carbon and nitrogen limitation by an impulse of glucose or ammonium, respectively. The 

experimental design was such that the specific perturbation was uniquely introduced into 

an otherwise carefully controlled environment. Thus a glucose impulse was given to a 

steady-state glucose-limited culture and an ammonium impulse to a corresponding 

ammonium-limited steady-state culture. The response of the yeast cells was monitored at 

the transcriptomic level until the steady state was re-established.  Thus the time-scale of 

this investigation ranged from seconds to hours, allowing the elucidation of both the 

metabolic and regulatory switches that enable yeast cells to adapt to, and recover from, a 

transient change in nutrient availability. We believe that this study makes a significant 

contribution to our understanding of nutritional control in yeast since the response is 

studied over both short and long time-scales for two different nutrients under well-

controlled physiological conditions. 

 

3.1.2.  Methods 

 

3.1.2.1.  Strain and Growth Conditions. Wild type BY4743 (MATa/MATα his3Δ/his3Δ 

leu2Δ/leu2Δ LYS2/lys2Δ MET15/met15Δ ura3Δ/ura3Δ; [23]) was cultivated in 2L 
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fermenters (Applikon) with 1L working volume under aerobic conditions in glucose- or 

ammonium-limited F1 media [24] in chemostat mode at a dilution rate of 0.1h
-1

. 

Temperature and pH were controlled to 30
o
C and pH 4.5, respectively. Fermenters were 

stirred at 800 rpm which, together with constant air flow at a rate of 0.1 vvm, provided 

dissolved oxygen at ≥ 80% dO2 saturation at all times during cultivation.  

 

3.1.2.2.  Pulse Injections and Sampling. After the 150
th

 hour of continuous fermentation, 

when the chemostat had spent > 5 residence times at steady state, the limiting nutrient was 

injected into the fermentation broth aseptically to provide non-limited F1 Medium 

concentrations for that nutrient. 50 ml of 40% (w/v) glucose or 50 ml of 6.26% (w/v) 

(NH4)2SO4 were sufficient to provide 2% (w/v) glucose and 0.313% (w/v) (NH4)2SO4 

concentrations in the growth media. The mixing of the pulse injection was complete within 

milliseconds. Duplicate samples were collected at steady state prior to the impulse and as 

soon as the nutrient was injected, 3 samples were collected at the 20
th

, 40
th

 and 60
th

 

seconds, 4 more samples were taken with 5-minute intervals within the first 20 minutes. 

Hourly samples were collected for five hours, and another sample was taken two hours 

after the last hourly sample. At that point, > 95% of the fermentation broth had been 

replaced with fresh medium, either by means of sampling or due to the nature of 

continuous cultivation. After the 210
th

 hour, when the chemostat had spent more than 5 

residence times at steady state after the impulse disturbance, duplicate samples were 

collected at the second steady state. Samples for transcriptome analyses were collected at 

every time point. Biomass was determined gravimetrically at the two steady states. 

 

3.1.2.3.  Sampling for Transcriptome Analysis, RNA Isolation and Transcriptome 

Analysis. A culture sample (20 ml) was centrifuged at 4000 rpm for 3 min. Most of the 

supernatant was discarded, allowing re-suspension of cells in a small volume of growth 

medium. The cell suspension was released into liquid nitrogen and stored at 80
o
C until 

RNA isolation. Total RNA was isolated as described by [68].  Total RNA was qualitatively 

assessed on an Agilent 2100 Bioanalyser (Agilent Technologies) and quantified using 

Nanodrop ultra- low-volume spectrophotometer (Nanodrop Technologies). cDNA was 

synthesised, and double-stranded cDNA was retrieved from ca.15g of total RNA as 

described in the Affymetrix GeneChip


 Expression Analysis Technical Manual, using 

appropriate kits. cDNA was checked for quality using the Agilent 2100 Bioanalyser and 



 
 

32 

was quantified using Nanodrop. Biotin-labelled cRNA was synthesized and was purified 

using clean up kits and it was quantified using the Nanodrop spectrophotometer before 

hybridization. Hybridization and loading onto Affymetrix Yeast2 arrays were carried out 

as described in the GeneChip


 Expression Analysis Technical Manual. The chips were 

then loaded into a fluidics station for washing and staining using Microarray Suite 5 with 

EukGe W S2v4 programme. Lastly, the chips were loaded onto the Agilent GeneArray 

scanner 2500 and another quality check was performed using Microarray Suite 5 [69]. 

 

3.1.2.4.  Microarray Data Acquisition and Analysis. The raw data files were assessed with 

dChip software for outliers at the array level as well as at the probe-set level [70]. Different 

nutritional conditions (glucose and ammonium pulse experiments) were treated as different 

sets and were assessed for their quality control separately. RMA Express software was then 

used to normalize the data, again as two separate data sets [71]. The data was log2 

transformed prior to analysis. In compliance with MIAME guidelines [72], the microarray 

data from this study has been submitted to ArrayExpress at the European Bioinformatics 

Institute under accession number E-MTAB-643. 

 

In order to identify transcripts whose expression significantly differed from steady-

state levels following the nutrient pulse [73, 74], the software package EDGE [75] was 

used. For dimension reduction in principal components and partial least squares analysis, 

PLS Toolbox in MATLAB 2007a environment was utilized. Microsoft Excel Built-In 

commands were used to calculate the Pearson correlation coefficients of the transcriptome 

at the first steady state and the rest of the sampling times. All p-values were corrected for 

the false positives introduced by multiple testing using Bonferroni correction and 10
-3

 was 

selected as the cut-off threshold for p-values. The Benjamini-Hochberg method was used 

for the calculation of false discovery rates. GeneCluster 2.0 [76] was used for clustering 

via self-organizing maps and Hierarchical Clustering Explorer (HCE) 3.0 [77] was used for 

hierarchical clustering purposes. The significantly enriched functional categories and the 

process ontology terms of the genes falling into the same cluster were determined by 

Saccharomyces Genome Database GO Term Finder tool [78] or AmiGO Term Finder tool 

[79]. The threshold p-value was selected as 10
-3

. Transcription factors (TF) were taken 

from two sources TRANSFAC Professional Gene Transcription Factor Database [80] and 
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YEASTRACT [81] and TFs that are common in both databases were considered in further 

analyses. 

 

3.1.2.5.  Dynamic Regulatory Events Miner Analysis. Bifurcation points were determined 

using hidden-input/hidden-output Markov model based software, DREM - The Dynamic 

Regulatory Events Miner as described by the authors [82]. Different nutritional 

perturbations, where glucose and ammonium sulphate were introduced into their 

corresponding limited cultures, were analysed independently. The chromatin 

immunoprecipitation experiments (chip-CHIP experiments) from which the TF-gene 

interactions were acquired were garnered from [83, 84]. 

 

3.1.3.  Results and Discussion 

 

The immediate, as well as the adaptive (long-term), response to the release from 

nutritional limitation, followed by the system‟s slow return to the nutrient-limited steady 

state was investigated using a systems biology approach. Glucose (as a carbon source) and 

ammonium (as a nitrogen source) were injected into their respective nutrient-limited 

cultures in two matched fermenters operated in fully controlled chemostat mode. Samples 

for transcriptome analysis were taken at different time intervals, ranging from seconds to 

hours, until the culture had reached a second steady state.  

 

3.1.3.1.  Correlation Analyses of Genome-wide Expression Profiles. The change in the 

transcriptional program of S. cerevisiae upon suddenly switching to a surplus of a single, 

previously limiting, nutrient was first investigated by comparing the array data to the 

preceding glucose- or ammonium-limited steady state using Pearson correlation 

coefficients. Introduction of glucose into the limiting medium was observed to have a 

pronounced and immediate effect, with a continuous decrease in correlation until the 16
th

 

minute after the injection, transcript levels determined in later samples were found to be 

more correlated with those observed at the first steady state (Figure 3.1). In contrast, the 

transcriptional response of the ammonium-limited cells to an ammonium impulse was 

more subtle, with the Pearson correlation coefficient between each sample and that from 

the preceding steady state always >0.95 (Figure 3.1). It had been reported previously that 
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carbon limitation evoked a more profound transcriptional response from yeast than other 

limitation for other primary nutrients, i.e. nitrogen, sulphur or phosphorus [85, 86].  

 

 

Figure 3.1.  Correlation analysis of genome-wide transcriptional response with each data 

point corresponding to samples collected at 20, 40 and 60 sec, 8, 16, 24 and 32 min, 1, 2, 3, 

4, 5 and 7 h and the 2
nd

 steady state in comparison to the 1
st
 steady state 

 

3.1.3.2. Temporal Organization of the Global Transcriptional Response. Correlation 

analysis of the transcriptome data from cells released from glucose limitation clusters 

samples taken within the first hour following the glucose impulse and separates them from 

the samples from the later time points. More detailed analysis allows a further partitioning 

of these two main temporal clusters. The response observed in the first minute, the first 

hour, the first three hours, and the rest of the sampling times following the glucose impulse 

were found to be clustered into distinct groups, the last of which had very similar 

transcriptome profile to that of the preceding glucose-limited limiting steady state. This 

clustering analysis revealed that the transcriptional responses obtained in the first minute 

were quite similar as was the case for the response in the first hour. Following the first 
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hour, the transcriptional response was observed to be moving towards that of the steady 

states (Figure 3.2a). 

 

The release from ammonium limitation, by providing an ammonium impulse, 

revealed a very different transcriptional response to that observed upon release from 

glucose limitation, in that the re-programming of gene expression started later and took 

longer both to complete and to return to the steady-state profile. Thus, the transcriptome 

profile recorded 20 sec. after the ammonium impulse was not significantly different to that 

of the preceding steady state. The profiles of cells collected 40 and 60 sec post-impulse 

were clustered with those from the 8 and 16 min samples and were still closely related to 

the steady state. The main impact of the ammonium impulse on gene transcription is seen 

in the period between 24 min and 3 h post-impulse, while the period 4-7 h post-impulse 

represents a slow return to the steady-state profile (Figure 3.2b).  

 

The individual temporal transcriptional profiles were also clustered via self-

organizing maps to distinguish the general dynamic trends in transcriptional response of 

yeast cells, growing in either glucose- or ammonium-limiting chemostats at steady state, to 

a glucose or ammonium impulse. The transcriptome profiles fall into 81 clusters in the 

response to glucose perturbation and 49 clusters in that to ammonium perturbation (taking 

into account confidence intervals about the centroids). The impact of the impulse can be 

expected to last for 7 h at a dilution rate, D = 0.1 h
-1

.
 
Changes in the concentration of the 

limiting nutrient supplemented by an impulse in the chemostat excluding the consumption 

by cellular growth and maintenance and the biomass concentration within the growth 

vessel were modelled as shown in Figure 3.3. This figure will be the same for both the 

glucose and the ammonium impulses and mid-length and longer-term responses were 

observed at similar times for both perturbations. However the short-term responses to the 

two impulses differed markedly. The short-term response to the ammonium impulse started 

later and was more prolonged than that to glucose. Moreover, the ammonium impulse 

triggered an oscillatory, rather than a sustained response in some of the transcript levels.  

 

3.1.3.3.  Genes showing a significant change in expression level in response to the nutrient 

impulses. Gene ontology (The Gene Ontology Consortium, 2000) biological process terms 
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associated with genes showing a significant change in their transcript levels in response to 

a nutrient impulse are shown in Table 3.1.  

 

 

Figure 3.2. Hierarchical clustering of the dynamics of liberation from glucose ((a) and (b)) 

and from ammonium limitation ((c) and (d)) with Pearson correlation coefficient as the 

distance metric and the time spans indicated as periods annotated from P1 to P5 

 

A glucose impulse was found to elicit significant changes in the transcript levels of 372 

genes which are associated with the following biological process terms: carboxylic acid 

metabolic processes; aspartate, glutamine, methionine and serine family amino acid 

metabolic processes; purine metabolic processes; glycolysis; oxidative phosphorylation; 
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alcohol catabolic processes; energy-coupled proton transport (Table 3.1). Kresnowati et al. 

[56] studied the changes in transcript levels during the first 6 min following a glucose 

impulse and have also reported significant changes in transcript levels belonging to energy, 

purine ribonucleotide, amino-acid metabolism, and signal transduction functional 

categories in the MIPS classification as a short-term response to shifting from glucose 

limitation to conditions where glucose was in excess. 

 

 

Figure 3.3. Dilution of pulse  

 

Transcripts that showed a significant response to the glucose impulse were placed 

into 8 co-responding clusters (c0 to c7; Figure 2.4a) using self-organizing maps [87]. Six 

of these clusters could be associated with a biological process GO term. Glucose 

stimulated the expression of 138 genes significantly associated with „translation‟ term and 

the maximum response was recorded within the first hour following the impulse (c0 and 

c4). For 33 genes, the increase in their transcript levels occurred later, reaching its highest 

level in the last three hours (c2, Figure 2.4a); this cluster was enriched for genes associated 

with the term „glycolysis‟. A group of transcripts significantly enriched with in carboxylic 

acid metabolic processes were immediately down-regulated with excess glucose in the 

fermentation medium, the expression levels slowly recovering to the initial carbon-limited 

state after the first 10 minutes following the glucose pulse (c3).  
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Table 3.1. Gene Ontology (GO) annotations to differentially expressed genes 

Significantly Associated 

Process GO Term 
p-value 

Fraction of 

the Subset 

Associated 

with the Term 

Fraction of 

Transcriptome 

Associated 

with the Term 

Carbon Catabolite Repression 

Carboxylic metabolic 

processes 
4.07 x 10

-21
 74 / 372 344 / 6353 

Aspartate family amino 

acid metabolic processes 
1.09 x 10

-6
 17 / 372 48 / 6353 

Glutamine family amino 

acid metabolic processes 
2.35 x 10

-4
 11 / 372 27 / 6353 

Methionine family amino 

acid metabolic processes 
1.69 x 10

-3
 10 / 372 26 / 6353 

Serine family amino acid 

metabolic processes 
9.85 x 10

-3
 13 / 372 37 / 6353 

Purine metabolic processes 2.37 x 10
-9

 17 / 372 35 / 6353 

Glycolysis 4.20 x 10
-8

 13 / 372 22 / 6353 

Oxidative phosphorylation 4.79 x 10
-8

 18 / 372 46 / 6353 

Alcohol catabolic processes 1.19 x 10
-7

 19 / 372 54 / 6353 

Energy coupled proton 

transport 
3.81 x 10

-7
 11 / 372 17 / 6353 

Nitrogen Catabolite Repression 

glycolysis 3.95 x 10
-16

 15 / 369 22 / 6353 

gluconeogenesis 5.85 x 10
-6

 9 / 369 15 / 6353 

Proton transport 8.02 x 10
-6

 11 / 369 21 / 6353 

Oxidative phosphorylation 2.98 x 10
-4

 14 / 369 46 / 6353 

Aspartate family amino 

acid metabolic process 
5.38 x 10

-4
 14 / 369 48 / 6353 

Amino acid and derivative 

metabolic process 
4.19 x 10

-3
 36 / 369 273 / 6353 
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The glucose impulse also rendered the expression of genes associated with aerobic 

respiration low in the first half-hour after pulse. During this period of excess glucose, the 

expression of oxidative phosphorylation genes, including the ATP synthesis pathway, were 

found to be down-regulated after the first minute following the perturbation (c7). This 

result is also in good agreement with the observation that gene clusters exhibiting a 

significant enrichment in energy and metabolism MIPS functional categories were down-

regulated immediately (within 120-210 seconds) after the glucose pulse [54]. 

 

Introduction of glucose also immediately stimulated the expression of genes 

associated with the sulphate assimilation pathway (c5) but, as the glucose levels started to 

decline again, the genes associated with this pathway were down-regulated gradually after 

the first hour and later recovered to levels similar to that of the preceding steady state. 

Expression of genes for transcription factors related to sulphur metabolism were also up-

regulated within 5 minutes following the introduction of glucose [56]. This is most likely 

to be associated with methylation, reflecting the huge demand for the post-transcriptional 

processing of rRNA to sustain the transiently boosted growth rate. 

 

The transcripts in clusters c1 and c6 (Figure 3.4a) displayed a sustained response of 

either up- (c1) or down-regulation (c6) throughout the experiment after the introduction of 

the glucose pulse. However, analysis of the genes in these clusters failed to reveal their 

significant (p-value < 10
-4

) enrichment for any GO biological process category. Among the 

genes in c1 (the cluster displaying sustained up-regulation following the glucose impulse) 

were a sub-group of transcripts that were related to methylation: SAM1 and SAM2, whose 

products are S-adenosylmethionine synthetases. It has previously been reported that an 

increase in growth rate requires Sam1p, and further increases results in yet more demand 

for methyl donors to sustain rRNA modification, also requiring higher levels of Sam2p, a 

close homolog of Sam1p [85]. This supports the idea that the initial stimulation of the 

expression of genes concerned with sulphur metabolism is associated with the increased 

demand for methyl donors. Five members of the alcohol catabolic process, namely PFK1, 

PFK2, ENO2, TKL1 and CTS1 were also members of the up-regulated cluster c1. Cluster 6 

contains genes that displayed sustained down-regulation following the glucose impulse and 

included several amino-acid metabolism genes: CIT2, CPA2, IDP2, ARG1 and CPA1 in 

the glutamine family amino-acid metabolic process; LYS20, LYS21, LYS9 and HOM3 in the 
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aspartate family amino acid metabolic process; HOM3, CYS4 and FPR1 in homoserine 

metabolic process, as well as four members of the nicotinamide nucleotide metabolic 

process, PYC1, PYC2, ADH2 and ALD4. 

 

Interestingly, the transcript levels of genes for glucose transporters did not go 

through any major change in response to a sudden shift from glucose-limited to glucose-

abundant conditions. Expression of the high-affinity glucose transporters would be 

expected to be fully de-repressed during the preceding glucose-limited steady state. 

However, of the genes encoding high-affinity glucose-repressible hexose transporters, only 

HXT7 displayed a significant down-regulation in the level of its transcript immediately 

following the pulse. Transcript levels for the other three genes encoding high-affinity 

glucose transporters (HXT2, HXT4 and HXT7) are up-regulated from 1 h post-impulse as 

the glucose concentration in the growth medium starts to fall. 

 

Published values [88] for the poly (A) tail lengths of all mRNA molecules were 

checked in order to identify any possible differences in mRNA degradation since no direct 

measurement was available. The down-regulated transcripts were not found to be 

significantly enriched with short poly (A) tails neither for carbon or nitrogen catabolite 

repression with the distribution of poly (A) tail length among up- and down-regulated 

transcripts appearing to be random. Since the shortest mRNA half-lives in yeast were in 

the range of 3 to 6 minutes [89], even the transcripts of the samples taken within the first 

minute are likely to be the result of an increase in transcription activity rather than mRNA 

degradation.  

 

Relieving nitrogen limitation in the fermentation with an ammonium impulse resulted in 

significant changes in the transcription levels of 369 genes. The members of this gene set 

are significantly enriched for GO bioprocess annotations associated with: central carbon 

metabolism, including glycolysis; gluconeogenesis; proton transport and oxidative 

phosphorylation; as well as amino acid production pathways, such as aspartate family 

amino acid metabolic process and amino acid and derivative metabolic process (Table 3.1). 

 

A similar clustering of genes with a significant change in their transcript levels 

following the ammonium impulse, using self-organizing maps, produced 9 groups with 
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bioprocess GO terms that can be significantly associated with each subset (Figure 3.4b). It 

was observed that the cells respond to the ammonium impulse more slowly than they do to 

a carbon impulse.  

 

Down-regulation of the transcripts clustered in c0 started after the first minute 

displaying a sharp decrease in the expression levels after the first hour. This cluster was 

significantly enriched for glycolytic genes whose expression levels recovered towards the 

second steady state. Another cluster (c1), which was also significantly enriched with 

glycolytic genes, exhibited a delayed up-regulated transcriptional profile. This indicated 

that recovery from nitrogen limitation allowed the yeast cells also to utilize glucose better, 

thus resulting in down-regulation of glycolytic genes in mid-length response periods and 

then an up-regulation towards the cessation of the effect of the pulse as the re-

establishment of high glucose concentrations resulted in the cells switching back into 

fermentative metabolism. Clusters significantly enriched with oxidative phosphorylation 

and trans-membrane ion transport processes were observed to display a down-regulation 

trend having the most distinct down-regulation between the 3
rd

 and the 5
th

 hours, 

recovering towards the second steady state (c6 and c3, respectively). This might have been 

due to the presence of excess glucose repressing respiration-related events during this latter 

period.  

 

The transient abundance of ammonium led to an up-regulation of genes concerned 

with the process, and regulation, of translation. This up-regulated expression profile was 

displayed at the minute and hour timescales in c2, c5, c7, and c8. Clusters that were 

significantly enriched with „translation process‟ terms (c5, c7 and c8) were also 

significantly enriched for „cellular biosynthetic process‟ (p-value < 10
-25

 (c25), and p-value 

< 10
-37

 (c8)), which indicated an up-regulation of growth-related events following a release 

from ammonium limitation. The induction of growth also required a higher demand for the 

methylation of tRNAs and rRNAs. The expression level of SAM1 in c2 was also observed 

to be up-regulated as is the case for the glucose impulse.  

 

The expression levels of transcripts that were enriched with cation transport process 

were sharply turned off around the first hour following the pulse (c4). Among the members 

of this cluster, an ammonium permease, Mep2p, works in conjunction with Pmp1p, Pmp3p 
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and Pma1p to facilitate the trans-membrane transport of the slightly acidic ammonium 

during the uptake of the nitrogen source. This might have been due to the fast consumption 

of ammonium at that time, altering the intracellular pH, which resulted in the down-

regulation of the relevant genes, only to be up-regulated again at later time points. 

 

 

Figure 3.4. Clustering of significantly expressed transcripts in glucose (a) or ammonium 

(b) perturbations with the number of genes in each cluster shown in top centre and 

enclosing lines indicating the confidence interval around the centroids 

 

3.1.3.4. Dynamic transcriptional reprogramming of the cell during transition created by a 

nutrient impulse. Temporal organization of dynamic regulatory events within the 

transcriptional response of yeast cells to a nutrient impulse was investigated using a 

systems-based approach, namely Dynamic Regulatory Event Miner (DREM) [82]. A 
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hidden-input/hidden-output Markov model integration of protein-DNA interactions and 

dynamic transcriptome data has been used in the Dynamic Regulatory Events Miner. The 

dynamic programming of the cells in response to nitrogen and carbon catabolite repression 

was identified using bifurcation points corresponding to times where expression of a subset 

of genes diverges from the rest under regulation of one or more transcription factors using 

DREM - Dynamic Regulatory Events Miner software [82]. Regulation of the response to 

nutritional perturbation for switching to glucose and ammonium surplus was investigated 

separately.  

 

Perturbing the glucose-limited system with abundant glucose resulted in a complex 

regulatory behaviour (Figure 3.5a). Immediately after the introduction of glucose, the 

surplus resulted in a bifurcation into four branches. Up-regulated and down-regulated pairs 

of branches displayed similar characteristics with the only difference being their levels of 

expression with respect to the initial steady state. Regulatory events related to glucose-

sensing signal transduction (Mth1p), stress conditions (Msn2p and Msn4p), respiration 

(Hap2p), early meiosis (Swi4p and Ume6p), significantly affected this quadruple split. The 

transcripts in the upper up-regulated branch were significantly associated with 

microtubule-associated complex component GO term while the ones in the lower up-

regulated branch were associated with the tRNA modification term. It has been reported 

previously that autophagosomes are attached to microtubules for their delivery to the 

vacuole and autophagocytosis is significantly stimulated during nutrient deprivation [90]. 

Release from glucose limitation may have thus caused a re-programming of the genes 

associated with these processes. This lower branch further split at the 32
nd

 minute with the 

upper set of transcripts being significantly enriched with the ER membrane component 

term while the expression of genes constituting the lower part were significantly enriched 

with proteasome complex process GO term. Autophagosome formation was previously 

reported also to be associated with the ER membrane [91]. The transcripts in the lower 

down- regulated branch were enriched for aerobic respiration while those in the upper 

down-regulated branch were enriched for retrograde transport process GO terms. As the 

cascade of regulatory events proceeded, a new set of bifurcations was observed at the 32
nd

 

minute following the glucose induction. Ino4p; a transcription factor required for de-

repression of inositol-choline-regulated genes involved in phospholipid synthesis was 

responsible for this onset of a late response in the upper down-regulated branch. Following 



 
 

44 

this split, the transcripts found in the upper division were significantly enriched for G1-

specific transcription in the mitotic cell cycle term while the genes in the lower division 

were enriched for the retrograde transport process GO term (Table 3.2).  

 

Table 3.2. Gene Ontology enrichment of transcripts following bifurcation that was 

controlled by transcription factors 

 
Branch of Down-regulated 

Transcripts 

Branch of Up-regulated 

Transcripts 

Case TFs 
Process 

GO Terms 
p-value TFs 

Process 

GO Terms 
p-value 

Carbon 

Catabolite 

Repression 

Mth1p, 

Msn2p, 

Msn4p, 

Hap2p, 

Swi4p, 

Ume6p 

ion trans-

membrane 

transporter 

activity 

5.3 x 10
-5

 

Mth1p, 

Msn2p, 

Msn4p, 

Hap2p, 

Swi4p, 

Ume6p 

endoplasmi

c reticulum 

membrane 

4.7 x 10
-5

 

G1-specific 

transcriptio

n in mitotic 

cell cycle 

5.0 x 10
-3

 

microtubule 

associated 

complex 

2.8 x 10
-3

 

aerobic 

respiration 
8.4 x 10

-5
 

tRNA 

modificatio

n 

1.0 x 10
-3

 

retrograde 

transport 
8.1 x 10

-3
 

proteasome 

complex 
1.3 x 10

-3
 

Nitrogen 

Catabolite 

Repression 

Hms1p, 

Mga1p, 

Msn1p, 

Phd1p, 

Hap2p 

ion trans-

membrane 

transport 

5.9 x 10
-3

 Gcr2p 

ribosome 

biogenesis 

and 

assembly 

2.9 x 10
-3
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Figure 3.5. Identification of bifurcation points under carbon (a) or nitrogen catabolite 

repression (b) with the average expression of a set of transcripts represented as a single 

branch and the size of the circles indicating the variance in expression levels for that time 
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Pulse injection of ammonium sulphate into fermentation medium after prolonged 

periods of limitation resulted in a bifurcation of transcripts into up-regulated and down-

regulated branches (Figure 3.5b). However, the observed response was delayed for 20 

seconds, similar to what has been observed by the hierarchical clustering of sampling time 

points from the transcriptome data. Similar to the findings here, the first sampling point (20 

seconds after the pulse injection) was clustered together with the initial and final steady-

state samples. A single transcription factor, Gcr2p; glycolysis regulatory protein, was 

found to be significantly responsible for the split of the up-regulated branch with 

transcripts significantly enriched for ribosome biogenesis and assembly. Five transcription 

factors four of which were related to nitrogen starvation directly (Hms1p, Mga1p, Msn1p 

and Phd1p); also regulating pseudohyphal growth, suppressing pseudohyphal growth 

defects of ammonium permease mutants and pseudohyphal differentiation, as well as 

another transcription factor activating respiratory gene expression (Hap2p) were 

significantly associated with the down-regulated branch of transcripts which were enriched 

for ion trans-membrane transport (Table 3.2). 

 

The dynamic re-programming of the cells in response to a perturbation causing a 

change in nutrient availability exhibits a more complex pattern when carbon limitation is 

relieved than when ammonium was added to nitrogen-limited culture. Additionally, the 

change in the expression levels of the sub-set of genes in an individual „branch‟ identified 

by the DREM analysis is much more coherent in response to the glucose impulse than in 

response to the ammonium impulse. The glucose impulse resulted in an almost immediate 

sub-division of the transcripts into four branches under the control of the Mth1p, Msn2p, 

Msn4p, Hap2p Swi4p and Ume6p transcription factors and, after a further half an hour, 

two of the four branches bifurcate, one of the new sub-branches being under the control of 

Ino4p. The up-regulated transcripts following the initial sub-division were enriched for 

genes with microtubule-associated complex and tRNA modification GO terms, while 

down-regulated transcripts were enriched for genes with ER membrane, proteasome 

complex, aerobic respiration, retrograde transport and G1-specific transcription in the 

mitotic cell cycle GO terms.  

 

The transcripts responding to the ammonium impulse bifurcate into two branches 20 

seconds after the ammonium impulse. Gcr2p was the transcription factor identified as 
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responsible for the up-regulated branch while Hap2p, Hms1p, Mga1p, Msn1p and Phd1p 

were those responsible for the down-regulated branch. The expression of genes involved 

ribosomal activities was up-regulated while that of genes involved in ion transport was 

down-regulated during this perturbation. 

 

3.1.4.  Study conclusions 

 

The dynamic re-organization of gene expression in S. cerevisiae cells in response to 

a sudden relaxation of either carbon or nitrogen limitation has been examined over both 

short and long time-scales using a system-based integrative approach. The observation of 

the genome-wide response at both levels, in a wide-ranging time span from seconds to 

hours, revealed metabolic and regulatory switches of yeast cells to adapt to and recover 

from an impulse-like perturbation.  

 

Analysis of transcripts that were significantly responsive to the relaxation from 

nutritional limitations indicated that several metabolic processes were affected at distinct 

time scales. Following the glucose perturbation, the changes in expression levels of 

transcripts were more pronounced and sudden when compared to the relaxation from 

ammonium limitation. Clustering of the transcriptional profiles of the significantly 

expressed genes revealed the time-dependent up- or down-regulation of specific processes 

in both cases. In response to additional glucose in the fermentation broth, the cells 

responded by significantly changing the expression level of transcripts whose gene 

products take part in translation, sulphur assimilation, glycolysis, carboxylic acid 

metabolic process and oxidative phosphorylation processes. The yeast cells respond to the 

availability of additional nitrogen source, by displaying a significant change in the 

expression level of transcripts enriched with translation, regulation of translation, and 

transition ion transport process ontology terms. 

 

The dynamic re-programming of the cell in response to carbon catabolite repression 

displayed a complex behaviour, which was regulated by the glucose-sensing signal 

transduction, stress, respiration, late G1-specific transcription and early meiosis controlling 

transcription factors.  Dynamic analysis of the transcriptome revealed, for the first time, the 

up-regulation of genes enriched with the microtubule-associated process term as well as 
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the down-regulation of genes associated with the retrograde transport term.  A further 

delayed bifurcation occurred under the regulation required for the de-repression of inositol-

choline-regulated genes involved in phospholipid synthesis, INO4. This delayed re-

organization, after 30 minutes, of the genes associated with endoplasmic membrane, 

proteasome and G1-specific transcription revealed the presence of a more complicated 

organization of the yeast cells to the return to carbon limitation conditions. The nitrogen 

catabolite repression resulted in a single bifurcation of transcripts into up-regulated and 

down-regulated branches with a delayed response in comparison to what has been 

observed for the carbon catabolite repression. A single transcription factor; GCR2, 

responsible for the regulation of glycolysis, was found to be significantly responsible for 

the split of the up-regulated branch whereas nitrogen starvation, respiration and 

pseudohyphal growth regulating transcription factors; HAP2, HMS1, MGA1, MSN1 and 

PHD1, were significantly associated with the regulation of the down-regulated genes.  

 

The presented study revealed the importance of long-term analysis of the response to 

the relaxation from nutritional deprivation to understand the molecular basis of the 

dynamic behaviour of the cells. A further detailed systems-based study that integrates 

additional levels of functional genomics analyses may provide further information on the 

dynamic re-organization of yeast cells to changing environmental conditions. 

 

3.2.  Long-term dynamic response to changing nutritional environment and time 

dependent re-organization of yeast cells 

 

3.2.1.  Background 

 

The survival of a free-living microorganism depends on its ability to deal with 

changes in its physicochemical environment, including variations in temperature [54], pH 

[55] or nutritional availability [56, 57, 92-94]. Appropriate mechanisms to deal with such 

changes rapidly and effectively have been developed over evolutionary time, and the 

expression of more than half of yeast‟s genes has been observed to change in response to 

environmental perturbations [55, 58]. The mechanism underlying the sensing and the 

utilization of glucose, which is the most abundant monosaccharide on earth and most 

preferred carbon source for most organisms, are of particular importance and have been 
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studied extensively (see [59]).  

 

Glucose has a central role in yeast metabolism, both as both a nutrient and a 

regulator. The introduction of excess glucose into the growth environment of respiring 

Saccharomyces cerevisiae cells switches metabolism to the fermentative mode, inducing 

various signal transduction pathways and causing several proteins to be activated or 

inactivated. Carbon catabolite repression, which is the ability of glucose to repress the 

expression of several genes that encode enzymes involved in gluconeogenesis, respiration, 

mitochondrial development, and the utilization of carbon sources other than glucose, 

fructose or mannose [60]. The regulation and control determined by the availability of 

glucose may be exerted occurs at different levels; however, its main effect has been 

reported to take place at the transcriptional level [61]. The increase in growth rate invoked 

by the introduction of glucose into a carbon-limited culture was observed to cause a 

distinctive restructuring of yeast‟s transcriptional profile. The Snf1-Rgt pathway has a 

specific, but limited, role in this response, while protein kinase A and Sch9p are 

responsible for triggering more than 90% of all glucose-induced changes, including those 

to the respiratory and gluconeogenic pathways [95]. Similarly, an increase in medium 

glucose concentration has been associated with a pronounced drop of adenine nucleotide 

content and the interconversion of adenine nucleotides and inosine was proposed to 

provide a rapid and energetically cost-efficient mechanism of adaptation [96]. 

 

Ammonium is assimilated in yeast via its conversion into glutamate [64]. Although 

glutamate, itself, is the most preferred nitrogen source for the organism, laboratory strains 

of yeast grow very well on ammonium as the principal source of nitrogen [65]. Thus, on 

ammonium-based media, yeast cells decrease the activities of enzymes involved in the 

utilization of poor nitrogen sources – a phenomenon termed nitrogen catabolite repression.  

The cellular response to sudden changes in the amount of available ammonium has been 

studied much less than an equivalent transition for glucose (see above).  

 

The transient response of the yeast metabolism to rapid changes in nutrient 

availability was investigated in several studies. The transient short-term transcriptome and 

metabolome response of yeast cells to glucose perturbation in continuous cultures was 

investigated by Kresnowati et al. (2006) who interpreted the changes at both the 
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transcriptomic and metabolomic changes to reflect two major responses: one involving the 

transition from fully respiratory to respiro-fermentative metabolism, and the other 

involving the preparation for an increase in growth rate [56]. Ronen and Botstein 

investigated the transient transcriptional response to switching carbon sources between 

galactose and glucose and their experimental design proved useful in elucidating the 

dynamic regulatory networks controlling central carbon metabolism [57]. 

 

In order to investigate nitrogen catabolite repression ter Shure et al. (1998) 

investigated the transient response to an ammonium impulse by glutamine-limited yeast 

cultures [66]. Their study revealed that the ammonium-induced repression did not 

represent a general stress response but, rather, the relief of ammonium limitation was a 

specific signal for nitrogen catabolite regulation.  

 

The previous chapter on the transcriptomic responses of yeast cells to the sudden and 

transient relief of nutrient limitation encompassed both glucose and ammonium responses. 

When a glucose impulse was applied to a glucose-limited chemostat culture, we found 

significant changes in the levels of transcripts related to translation, glucose transport, 

oxidation reduction, nucleobase, nucleoside and nucleotide metabolic process, cell death, 

aerobic respiration ion transport, sulphur assimilation, glycolysis, carboxylic acid 

metabolism, and oxidative phosphorylation. The transcriptomic response  of ammonium-

limited yeast cells to an ammonium impulse indicated significant changes in the expression 

of genes involved in translation and its regulation, ribosome biogenesis, non-coding RNA 

metabolism process (including rRNA biosynthesis and maturation), as well as transition 

ion transport. Thus, for both nutrient impulses, there was a response that could be 

attributed to the increase in growth rate [85], and another that was specific to the nutrient 

whose limitation was relieved [86]. 

 

In the present study, an integrative approach was used to map long-term dynamic 

transcriptome and metabolome data onto metabolic pathways and used such maps to reveal 

the important molecular events that occur in particular pathways at distinct temporal 

phases following the transient relief of nutrient limitation. This is the first study to 

encompass both the transcriptomic and metabolomic responses of yeast from an initial 

nutrient-limited steady, through the period of nutrient excess engendered by a glucose or 
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ammonium impulse, to the re-establishment of the nutrient-limited steady state. Thus the 

complete cycle of famine, feast, and famine to which yeast is thought to be frequently 

exposed in nature has been followed.  

 

3.2.2.  Methods 

 

3.2.2.1.  Data acquisition. The dynamic transcriptome data were obtained from the 

previously described chemostat experiments in response to a nutritional perturbation 

(Section 3.1.2.).  

 

3.2.2.2.  Sampling and extraction of the endometabolome, analytical methods for 

fingerprinting. For metabolic fingerprinting, 5ml of sample was rapidly quenched in 60% 

(v/v) methanol buffered with tricine at -50
o
C and the endometabolites were extracted in 

boiling  75% (v/v) ethanol buffered with tricine at 80
o
C as described by Castrillo  et al. 

(2003) [97]. The vacuum-dried samples were stored at -80
o
C until analysis. For both foot 

printing and fingerprinting, derivatization and identification of peaks via GC-ToF-MS 

were performed as described by Pope et al. (2007) [98]. The dynamic metabolome data is 

provided in Appendix C. 

 

3.2.2.3.  Identification of gene expression in co-clustered time spans and mapping of the 

transcriptome and the metabolome on metabolic pathways. The hierarchical clustering of 

the transcriptome and the metabolome data were carried out using Hierarchical Clustering 

Explorer (HCE) 3.0 [77] with the distance metric selected as the Pearson correlation. The 

periods were identified from the determined clusters. The gene expression levels in each 

period were statistically confirmed to display insignificant differences within a single 

period using the Student‟s t-test with a significance threshold of 0.05. The geometric 

means of the log.-transformed expression levels in each period were then calculated. The 

differences in log mean values for the periods following a perturbation and the period 

consisting of the succeeding or preceding steady-state data (expressed as fold changes in 

either expression and in the amount of the measured metabolite) were mapped onto the 

metabolic pathways. Consideration of each period separately enabled the dynamic 

overview of the decision making involved in the pathway preferences. 

 



 
 

52 

The complementary nature of transcriptome and endometabolome data was 

investigated by mapping expression levels and intracellular metabolite concentrations 

simultaneously onto metabolic pathways (SGD, 

http://pathway.yeastgenome.org:8555/expression.html). The direction and reversibility of 

the reactions were assessed using the KEGG database [99] and the Yeast 4.0 metabolic 

model [11]. 

 

3.2.3.  Results and Discussion 

 

In order to understand the dynamic re-organization of the cellular metabolism in 

response to the sudden and relaxation of glucose or ammonium limitation, a systems-based 

integrative approach, which maps both transcriptome and metabolome data onto metabolic 

pathways, was used to reveal the important molecular events that occur in specific 

pathways in distinct time periods following the perturbation. Re-organization of the 

pathways associated with the central carbon metabolism and energy homeostasis in yeast 

was given particular attention in this investigation. 

 

Analysis of the time-course data revealed that the transcriptomic response following 

nutritional perturbations was organized into distinct periods or phases. The dynamic 

transcriptional and metabolic responses were clustered into five distinct hierarchical phases 

in case of the glucose impulse and the phases formed by the clusters into which the 

responses fell, reflected the presence of a time-scale dependent effect that the responses 

displayed; the steady states phase (P1), the seconds phase (P2), the minutes phase (P3), the 

early-hours response (the first three hours) (P4) and the late-hours response (the rest of the 

sampling period) (P5). On the other hand, a delayed response to the perturbation of the 

ammonium level was observed rather than a time-scale dependent response as it was the 

case for the glucose perturbation. The phases developed such that the first sample collected 

within the first minute (the 20
th

 second sample) was clustered together with the steady 

states (P1), the remaining two samples collected in the first minute (20
th

 and 40
th

 seconds) 

were clustered together with the first two samples collected within the first hour (8
th

 and 

16
th

 minutes) (P2), the remaining two samples collected in the first hour (24
th

 and 32
nd

 

minutes) were clustered together with the response obtained in the early hours (the first 

three hours) (P3). The rest of the sampling period was clustered together separately from 

http://pathway.yeastgenome.org:8555/expression.html
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the other phases (P4) (Figure 3.6).  

 

 

Figure 3.6. Hierarchical organization of the response to the impulse like addition of 

glucose (a) or ammonium (b) and the dynamic change in the concentration of the catabolite 

in its respective culture 

 

The investigation of the endometabolomic response to the relaxation from carbon 
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limiting conditions did not display any time dependent organization. Previous findings also 

revealed that carbon sufficiency played an important role in the arrangement of 

endometabolome for different growth rates and glucose sufficient and deficient cases could 

not be clearly separated by means of principal component analysis [85]. The intracellular 

concentration of TCA cycle intermediates, sugar derivatives and amino acids were the 

highest in the later hours following the impulse like addition of glucose. An accumulation 

of intracellular amino acid derivatives within the cell were observed towards the depletion 

of additional nutrient introduced into the medium as the cells switched back their 

metabolism to down regulate the transcripts involved in translation and growth associated 

events. 

 

As a response to the impulse like addition of ammonium, the endometabolome of the 

limiting steady state conditions were clustered together and the samples taken at hourly 

basis could be distinctly identified in a separate cluster from the samples taken within the 

first minute. On the other hand, the samples taken within the first hour following the 

impulse ammonium injection were distributed within these two clusters. The dynamic 

profiles of the intermediary products related to lipid and sphingolipid metabolisms and 

phosphatidylinositol signalling pathway indicated a decrease in concentration until P3, and 

then recovering towards the second steady state. The intracellular concentration of amino 

acids and intermediates decreased sharply with extracellular supplementing of ammonium 

and recovered gradually as the extracellular ammonium concentration gradually became 

limited.  

 

The difference in log mean average of each period and the steady-state period 

corresponding to fold changes in the expression and metabolite levels were calculated for 

the phases P2 -P5 in the case of glucose pulse experiment, and for P2 - P4 in the case of 

ammonium pulse experiment. These differences were mapped onto the selected metabolic 

pathways (Figure 3.7). Consideration of each phase separately enabled a dynamic 

overview of the cellular decision-making involved in the pathway selection to be obtained 

(Figure 3.8). 
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Figure 3.7. A schematic overview of the data overlying process 

  

3.2.3.1.  Changes in the Central Carbon Metabolism. Introduction of glucose into a carbon-

limited steady-state culture induced changes in the levels of both transcripts and 

metabolites involved in the TCA cycle, glycolysis, gluconeogenesis, and glucose 

fermentation pathways. The down-regulation of the TCA cycle and up-regulation of the 

glycolytic pathways leading towards ethanol production was observed in response to a 

perturbation in the amount of glucose. Several other studies also describe switch towards a 

respiro-fermentative metabolism within 5 minutes upon addition of glucose into a 

continuous culture [56, 96]. A strong and immediate down-regulation of the expression 

HXK1, HXK2 and GLK1 was observed (i.e. in phases P2 and P3, 20-60 sec and 8-32 min 

post-impulse). This immediate response remains unchanged for nearly an hour post-

impulse, although these genes are up-regulated in the later phases of the experiment. Most 

of the genes that encode enzymes in the lower part of the glycolytic pathway were up-

regulated during all phases compared to their expression levels at limiting glucose 

conditions. Walther et al. (2010) have also reported an increase in the phosphorylated 

sugars of the glycolytic pathway following a relief from glucose limitation, which is 
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congruent with the present findings [96]. Pyruvate may be considered as a critical branch 

point, where the flux may be directed towards either the TCA cycle or the fermentation 

pathway. PDC1, PDC5 and PDC6 were up-regulated in response to the glucose 

perturbation, shifting energy metabolism towards fermentation; this up-regulation was 

particularly marked in the case of PDC5 in P2 and P3, but decreased in P4 and P5. 

Kresnowati M. T. A. P. et al. (2006) have also reported an up-regulation of PDC1 and 

PDC6 within 5 minutes of the addition of glucose into the medium of a carbon-limited 

culture growing on glucose [56]. Complementing this flux, ADH4 was selectively up-

regulated starting in P3 and reached even higher expression levels in P4 and P5. On the 

other hand, ADH2, ADH3 and ADH5 were down-regulated throughout the experiment. 

Kresnowati M. T. A. P. et al., (2006) have also reported a down-regulation of ADH5 as a 

fast response to a glucose pulse in their system [56]. ADH1, in contrast, followed a similar 

pattern to PDC5, being initially up-regulated in P2 and P3 and then down-regulated in P4 

and P5. The ALD family of genes are involved in directing the flux from acetaldehyde 

towards the production of acetic acid were down-regulated specifically in P3 and P4 

(Figure Appendix D1 a1).  

 

The impulse-like addition of ammonium to a steady-state nitrogen-limited culture 

also provoked changes in central carbon metabolism. The genes involved glycolysis were 

slightly up-regulated in P2 and P4 whereas they were down-regulated in P3. Consequently, 

the fluxes were selectively distributed towards both ethanol and acetate in P2 and P4 

following the pyruvate branch point. On the other hand, in P3, similar to the observations 

for carbon catabolite repression, a strong down-regulation of HXK1, HXK2 and GLK1 was 

observed as well as of ALD4 and ALD6, thus limiting the direction of flux towards acetate. 

Genes for enzymes in the ethanol production pathway were slightly up-regulated in 

response to the addition of ammonium except for ADH2, which was down-regulated 

during P2, P3 and P4 (Figure Appendix D1 b1). 

 

The genes encoding enzymes of the TCA cycle were down-regulated except for 

PYC2, LSC1 and LSC2, which were slightly up-regulated in P2, and ACO2, which was up-

regulated during P2 and P3, MDH1 and IDH2, which were slightly up-regulated in P5. 

DAL7 was strongly up-regulated during P2, P3 and P4. DAL7 was also reported to take 

part in allantoin degradation in purine catabolic processes [100]. The induction of this gene 
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might have allowed the redirection of flux towards purine catabolism.  

 

 

Figure 3.8. General trends displaying the changes in the log2 expression values of the genes 

in energy metabolism 

 

The most pronounced down-regulation of the TCA cycle genes was observed during 

P3. The expression levels of genes encoding subunits of the succinate dehydrogenase 

complex (SDH1, SDH2, SDH3 and SDH4) were all down-regulated throughout the effect 

of the pulse. SDH1 and SDH3 were previously reported to be down-regulated during 

carbon catabolite repression [56]. All of the identified and the measured metabolites; 

pyruvate, 2-oxoglutarate, succinate, fumarate and malate, showed a slight accumulation in 

the cells in all periods except for the steady states.  This might be the result of the down-

regulation of genes that specify enzymes which use these metabolites as intracellular 

intermediates (Figure Appendix D1 a2).  
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The genes encoding enzymes involved in the upper gluconeogenic pathway was 

induced upon the addition of glucose. MAE1, catalysing the production of pyruvate from 

malate, was up-regulated during P2, P3 and P4, gradually decreasing in time and it was 

down-regulated upon depletion of glucose in P5. The product of the reaction catalysed by 

this enzyme, pyruvate, is also a precursor for the synthesis of several amino acids including 

leucine, isoleucine, valine and alanine in addition to being a key intermediate in sugar 

metabolism [101]. Since PYC1, whose enzyme product takes part in the conversion of 

pyruvate to oxaloacetate, and MDH2 were down-regulated throughout the effect of the 

impulse like addition of glucose and PYC2 was down-regulated during P3-P5, it could be 

deduced that pyruvate was used as in the amino-acid production pathways upon relief from 

the glucose limitation as well as in ethanol production. Down-regulation in PCK1 and 

FBP1 is more pronounced after P2. The down-regulation of MDH2 and FBP1 upon 

addition of glucose following a long period of glucose limitation is in accordance with 

previous findings suggesting the degradation of the enzymes encoded by these genes 

through a vacuolar degradation pathway [102]. FBA1 and PGI1 were slightly down-

regulated in P2 and P3 while it was slightly up-regulated in P4 and P5 (Figure Appendix 

D1 a3). 

 

The expression levels of the TCA cycle genes were not constitutively up- or down-

regulated relative to their levels at steady state but they displayed phase-dependent 

expression upon relaxation of ammonium limitation. PYC1 was responsive to the addition 

of ammonium starting with P3 when its expression decreased, and the lowest expression 

value of this gene was detected in P4. On the other hand, PYC2 (its paralog), was down-

regulated immediately at P2 and it was up-regulated in P3, settling to its steady-state 

expression level in P4. The citrate synthase, CIT3 and the malate dehydrogenases, MDH1 

and MDH2 were down-regulated throughout the experiment; whereas the other citrate 

synthases CIT1 and CIT2 were only down-regulated in P3 and P4, taking more time for 

their expression levels to decrease. A gene encoding a putative mitochondrial aconitase, 

ACO2, was slightly up-regulated and that for isocitrate lyase, ICL1, was down-regulated 

during P2-P4. On the other hand, ACO1 was up-regulated in P2 and down-regulated during 

P3-P4. IDH1, IDH2, LSC1 and LSC2 were up-regulated in P2 and P4 whereas they were 

down-regulated in P3. KGD1, FUM1 and MDH3 were down-regulated in P3 while KGD2 

and the succinate dehydrogenases SDH1, SDH2, SDH3 and SDH4 were initially up-
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regulated in P2 and down-regulated in P3 and P4. MLS1, enabling the glyoxylate shunt, 

was down-regulated during the periods P2-P4 when the effect of the ammonium impulse 

could be identified.  

 

MLS1 was previously reported as being repressed on glucose [103]. The constant 

supply of sufficient glucose, probably perceived as being in excess by the cell, during the 

ammonium perturbation would explain the repression of MLS1 in the cell. DAL7 was only 

down-regulated in P2 and it was up-regulated in P3 and P4. It has been previously reported 

that DAL7 is repressed under standard growth conditions [104]. The introduction of 

ammonium might have created a temporary situation in which the environment was 

relieved from all stresses that were created by the limitation of ammonium as well as being 

supplemented with sufficient but not excess amount of glucose (a balanced diet) causing 

the down-regulation of the expression of that gene in P2. Ammonium was used up during 

the course of the fermentation as the growth rate increased and as some of it was removed 

away from the chemostat due to the nature of continuous fermentation and the medium 

gradually shifted back towards the limitation of the nitrogen source,. In contrast, to the 

case of the carbon catabolite repression, the amount of the intermediate metabolite malate 

was lower in P2, P3 and P4 than it was during ammonium limitation (P1). This might be 

due to the low flux from fumarate and glyoxylate as a result of the down-regulation of 

MLS1 and DAL7 in P2, MLS1 and FUM1 in P3 and MLS1 in P4.  This might indicate that 

MLS1 might be one of the most important factors determining malate accumulation (Figure 

Appendix D1 b2).  

 

The expression of the gluconeogenic gene PCK1, whose enzyme product plays role 

in the conversion of oxaloacetate into phosphoenolpyruvate, decreased upon the addition 

of ammonium and this down-regulation was stronger in P4 than in P2 and P3. The 

accumulation of oxaloacetate was prevented by directing the fluxes towards citrate 

production in P2 and the expression levels of the genes encoding the enzymes catalysing 

this reaction; CIT1 and CIT2 increased. In P3 and P4, however, oxaloacetate accumulation 

would only be prevented through the activation of the aspartate biosynthetic pathway and 

the up-regulation of AAT1 supports this observation. Interestingly, a similar response to 

relief upon glucose limitation was observed for MDH2 and FBP1, which were both down 

regulated during P2-P4 although this down-regulation was more pronounced in P3 and P4. 
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This might indicate that the cells perceived nutrient limitation followed by its abundance 

through the same mechanisms regardless of the type of the nutrient being glucose or 

ammonium and this phenomenon requires further investigation (Figure Appendix D1 b3). 

 

2.2.3.2.  Re-organization of the Nucleotide Pools in Response to Catabolite Repression. 

The apparent loss of adenine nucleotides associated with the energy homeostasis, which 

follows the relaxation from nutrient-limiting conditions in yeast presents an important 

problem in the understanding of the mechanisms governing the respiro-fermentative 

transition. Kresnowati M. T. A. P. et al., (2006) reported that the immediate decrease in 

adenine nucleotide (AXP) pools following the relief from glucose limitation was not 

accompanied by any of the other three nucleotides (NXPs), but rather by the up-regulation 

of purine biosynthesis, C1 and sulphur metabolism [56]. In response to a glucose pulse, the 

set of genes with a significant change in their expression levels were previously reported to 

be involved in purine metabolism and methionine family amino acid metabolic processes. 

The previous results indicate that clusters of genes that were significantly up-regulated in 

response to a glucose impulse were found to be enriched with sulphur assimilation process 

gene ontology terms (Section 3.1.3). Transient accumulation of the purine salvage pathway 

intermediates IMP and inosine were also reported to account for the pronounced drop in 

the AXP pool by Walther T. et al. (2010) in a series of shake-flask cultivations using 

trehalose mimicking the growth of yeast on glucose-limited medium and they have 

reported that the interconversion of adenine nucleotides and inosine facilitates the rapid 

and energy-efficient adaptation of the AXP pool size to changing environmental 

conversions [96]. The accumulation and recycling of inosine could be considered as a 

response to energy homeostatic perturbations under fermentative conditions. AXP 

concentrations were reported to recover quickly to about 80% of their initial levels within 

5-10 minutes whereas the GXP nucleotide concentration was reported to reach a novel 

steady state that was significantly higher than that prior to the addition of glucose [96].  

 

Consistent with these studies, significant changes in the expression levels of the 

genes involved in glycolysis, oxidative phosphorylation, translation and aspartate family 

amino-acid metabolic process as a response to the relaxation from both carbon and 

ammonium limitation were observed (Section 3.1.3). In this study, in order to shed light on 

the mechanisms that counterbalance the reduction in AXP pools upon perturbation of 
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energy homeostasis through a pulse injection of a major nutrient, the yeast cells were 

analysed by using a systems biology approach. The transcriptomic and the metabolomic 

data were mapped onto the metabolic pathways that had been implicated to be involved in 

these processes in previous studies (Figure 3.9).     

  

 

Figure 3.9. Re-arrangement of metabolism upon an impulse-like nutritional perturbation 

 

3.2.3.3.  Changes in the Purine and Pyrimidine Biosynthetic Pathways and their Salvage 

Pathways. Since the tricarboxylic acid cycle becomes inactivated upon addition of glucose, 

the cells require the activation of alternate routes to provide for the need for the purine 

nucleotides, ATP and GTP, to sustain energy metabolism. The initial steps of de novo 

synthesis of purine nucleotides were immediately activated as soon as glucose was 

introduced. The immediate up-regulation of the upper purine biosynthetic pathway upon 

glucose addition may be responsible for the accumulation of IMP, which was observed by 

Walther T. et al. (2010) [96]. This up-regulation was most pronounced during P3. The 

observation of the up-regulation in ADE12, ADE13 and AMD1 during P2-P4 indicated that 

the cyclic conversion of IMP to adenylosuccinate and AMP was possible. On the other 
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hand, the up-regulation of SAH1 (whose product catalyses the release of adenine during 

methyl transfer from S-adenosyl-L-methionine to S-adenosyl-L-homocysteine) and the up-

regulation of ADO1 (encoding the enzyme that converts adenosine to AMP) may provide 

an alternative route for the production of AMP. However, the production of ADP from 

AMP was blocked by the down-regulation of ADK1 and ADK2 in P2. The UMP kinase 

encoded by URA6, up-regulated in this perturbation throughout P2-P4, has been reported to 

compensate for the lack of function in ADK1 [105]. This might have been used as an 

alternative route for ADP production.  ADK1 and ADK2 were observed to become 

progressively up-regulated through P3-P5 enabling ADP synthesis from AMP. 

 

The accumulated IMP seems to be converted first to XMP and finally GMP by the 

catalytic action of the enzymes encoded by the up-regulated IMD3-IMD4 and GUA1, 

respectively. GMP can then be converted to GDP by the product of GUK1, which was 

observed to be up-regulated throughout the experiment.  

 

YNK1, encoding the nucleoside diphosphate kinase, catalysing the phosphorylation 

of ADP and GDP to ATP and GTP, respectively, was found to be down-regulated 

throughout the experiment. These results indicated that there might be some indirect routes 

for the production of ATP and GTP when the tricarboxylic acid cycle becomes inactivated 

upon addition of glucose. One possibility might be an equilibrium shift towards ATP 

production in the presence of abundant AMP and ADP, through ADO1, or the up-

regulation of GUK1 (encoding guanylate kinase) may catalyse the reaction between ADP 

and GDP to produce ATP. The produced GMP could then be recycled back to xanthosine-

5-phosphate through GUA1, and then to IMP through IMD3 and IMD4 (Figure 3.10). 

Conversions between ADP and dADP, as well as between GDP and dGDP were identified 

to be active through the up-regulated transcripts; RNR1, RNR2, RNR3 and RNR4. 

 

TAD3 encoding the enzyme that converts adenosine to inosine was found to be up-

regulated during P2-P5. Additionally, the up-regulation of APT1, APT2 and AAH1 may 

also account for the conversion of AMP to IMP, then to adenylosuccinate, then to adenine 

and then to hypoxanthine. PNP1, which is encoding the purine nucleoside phosphorylase, 

was also found to be up-regulated. This enzyme catalyses the reversible reactions between 

inosine and hypoxanthine as well as between adenine and adenosine. Therefore the 
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accumulation of inosine within 5 minutes upon glucose induction and a delayed 

accumulation of hypoxanthine within 10 minutes observed by Walther T. et al. (2010) [96] 

can be explained in the light of these observations. 

 

 

Figure 3.10. Schematic overview of alternative routes for ATP production during 

inactivation of the TCA cycle and the down-regulation of YNK1 upon addition of glucose 

into the fermentation medium 

 

Since HPT1, encoding an enzyme that catalyses the conversion of hypoxanthine to 

IMP was down-regulated throughout the experiment. There are two possible ways to 

relieve the hypoxanthine accumulation. Both of them require the conversion of 

hypoxanthine to xanthine in the first step and their conversion into uric acid. Although 

such an enzyme was identified in other fungi including Aspergillus niger and Yarrowia 

lipolytica, the presence of a similar enzyme could not be demonstrated in S. cerevisiae. 

BLASTP search in S. cerevisiae genome using the amino-acid sequences of An03g01530, 

An04g05440 and 1.17.1.4 enzymes did not result to indicate the presence of similar 

sequences in S. cerevisiae. However, it should be noted that the reactions of the purine 

salvage pathway were not entirely identified according to what the KEGG database 

reported [106]. Walther T. et al. (2010) [96] have also included this potentially relevant 
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reaction in their purine salvage pathway in S. cerevisiae based on the experiments that they 

have carried out using several psp mutants. Since the conversion of xanthine to XMP was 

not possible due to the down-regulation of XPT1, fluxes should be oriented from xanthine 

towards 5-ureido-4-imidazole carboxylate and later to glycine to be used in the 

superpathway of serine, threonine and glycine biosynthesis although the detailed 

mechanism and the enzymes catalysing these reactions are, as yet, unknown. Another 

alternative route utilizing xanthine and hypoxanthine is purine catabolism, enabling the 

degradation of the purine compounds into uric acid, allantoin, urea and later into ammonia 

through the utilization of the gene products of DAL1, DAL2, DAL3 together with DUR1,2 

[107]. DAL1 and DUR1,2 were up-regulated throughout the experiment. DAL2 was on the 

other hand down-regulated throughout the experiment and DAL3 was up-regulated in P2, 

P4 and P5 whereas it was down-regulated in P3. The reaction through DAL3 caused the 

accumulation of glyoxylate during the production of ammonia. As previously stated, a 

member of the glyoxylate shunt, DAL7 may also take role in purine catabolic processes 

[100, 108] and it was observed to be up-regulated during carbon catabolite repression. The 

upper-purine biosynthetic pathway was observed to partially become down-regulated upon 

depletion of glucose. The strong up-regulation observed for APT1 and AAH1 as well as the 

strong down-regulation observed for YNK1 and ADK2 appeared to be less pronounced as 

the amount of available carbon decreased and the steady state conditions were beginning to 

be restored. In P5, almost all of the pathway components were down-regulated and since 

the TCA cycle became active again, the ATP production necessary for respiration and 

maintenance would be supplied through that channel (Figure Appendix D2 a1).  

 

In response to the introduction of ammonium into a nitrogen-limited culture, the 

genes taking role in the de novo synthesis of purine nucleotides as well as the salvage 

pathways of purines and their nucleosides were up-regulated immediately in P2 except for 

ADE16, XPT1 and RNR3. However, ADE17 (the paralog of ADE16) and RNR1 (which 

encodes the major isoform of the large subunit of ribonucleotide-diphosphate reductase 

with the minor isoform being RNR3), were found to be selectively up-regulated. The 

upper-purine biosynthetic pathway remained up-regulated through periods P2-P4, similar 

to what has been observed during carbon catabolite repression, being most pronounced in 

P3, corresponding to a later time than that in glucose repression. ADE12, ADE13, AMD1 

and ADK2 were found to be up-regulated providing the synthesis of ADP during P2-P4. 
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The observation of up-regulation of IMD4, GUA1 and GUK1 indicated that GDP may also 

be synthesized during P2-P4. One of the most pronounced changes in P3 was observed in 

the down-regulation of YNK1 taking a role in the production of XTPs from XDPs and 

dXDPs in a similar but delayed response to the carbon catabolite repression of metabolism. 

As the effect of the impulse of ammonium began to cease in P4, the up-regulation of the 

genes in upper-purine biosynthetic pathway became less pronounced (Figure Appendix D2 

b1). 

 

The de novo biosynthesis of pyrimidine ribonucleotides UTP and CTP from L-

glutamine was rendered low owing to the down-regulation observed in URA3 with the 

introduction of glucose into its limiting culture. This effect was persistent throughout the 

duration of the pulse effect. It has previously been reported that UXP and CXP profiles 

also displayed a similar decrease in concentration to what has been observed in AXP and 

GXP pools, which was in correspondence with this finding [56]. URA1, URA2, URA4 and 

URA5 mediating the conversion of L-glutamine into orotidine-5‟-phosphate in the 

preceding reactions were all up-regulated throughout P2-P4 and they were down-regulated 

in P5. URA10, the minor isozyme of URA5, was down-regulated for the duration of P3-P5. 

However, this pathway seems to be blocked by the down-regulation of URA3 throughout 

the phases during which the effect of the impulse like addition of glucose was observed. 

This result may indicate that the de novo synthesis of UMP was not possible under these 

conditions. The up-regulation of URA6, mediating the conversion of UMP to UDP, also the 

up-regulation of FUR1, mediating the conversion of uracil to UMP may suggest the 

activation of the salvage pathway of pyrimidine nucleotides for the utilization of uracil, 

which is supplemented in the fermentation medium.  FUR4, encoding uracil permease that 

mediates the uptake of uracil, was observed to be up-regulated in P2 and P3 and became 

down-regulated in P4 and P5. The presence of uracil was reported to result in the activation 

of uracil phosphoribosyltransferase (UPRTase) encoded by FUR1 and the repression of 

genes involved in the pyrimidine biosynthesis [109]. The genes including URA6, FUR1, 

URK1, CDD1 and FCY1, which are associated with this salvage pathway, were found to be 

up-regulated through P2-P4, with expression peaking in P3. The conversion of UDP and 

CDP to UTP and CTP was also blocked by the down-regulation of YNK1 in P2-P4. 

However, URA7 and URA8, whose gene products catalyse the conversion of UTP to CTP, 

were found to be activated during P2-P5. Additionally, DUT1, encoding the enzyme which 
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catalyses the conversion of dUTP to dUMP, was up-regulated (Figure Appendix D2 a2, 

a3). Thus alternative routes for the production of UTP and CTP are required. One of two 

possibilities to overcome this obstacle may be the presence of as yet undefined gene 

products compensating for the role of YNK1. The other alternative may be the equilibrium 

shift among XDPs and XTPs to favour XTP generation in times of cellular need. UDP first 

may have been used for the generation of ATP, and ATP may further be used for the 

conversion of UDP to UTP and further to CTP. 

 

The effect of the addition of ammonium into a nitrogen-limited culture was observed 

to cause similar but less pronounced changes in the de novo synthesis of pyrimidine 

ribonucleotides pathway than the response to the addition of glucose into its respective 

limited culture. The most-pronounced down regulation in the de novo synthesis of 

pyrimidine ribonucleotide pathway was observed in the expression level of URA3 and 

similar to the observation for the response to glucose impulse, URA3 acted as a bottleneck, 

limiting the production of UMP, a significant precursor for the production of UTP and 

CTP. URA7 and URA8 whose products catalyse the conversion between UTP and CTP 

were both up-regulated in P2 and P4 whereas only URA8 was down-regulated in P3. The 

salvage pathway of pyrimidine deoxyribonucleotides were also not as strongly affected in 

response to the perturbation as in the case of the introduction of glucose. A similar, but 

slightly delayed, up- or down-regulation pattern was also observed in this case except for 

CDD1, which remained down-regulated during P2-P4 (Figure Appendix D2 b2, b3).  

 

3.2.3.4.  Folate Metabolism. The role of folates in metabolism is to donate 1C units to 

various biosynthetic pathways through the production of tetrahydrofolate (THF), which is 

an active form of folic acid [110]. Carbons C2 and C8 of purine rings are obtained from the 

folate metabolism that takes place in the mitochondria [111]. FOL1 and FOL2, taking part 

in the upper folate biosynthetic pathway starting from GTP, were up-regulated in P2-P4. 

Although FOL3 was down-regulated, the putative dihydrofolate synthetase, RMA1, was 

observed to be up-regulated during P2-P5 and this might have replaced the loss of function 

in FOL3 [112].  Down-regulation of ABZ2 throughout P2-P5 demands that 7,8-

dihydropteorate be formed from GTP, rather than chorismate.  The formation of 1C units 

was enabled through the interconversions between THF, 5,10-methylene-THF and 5,10-

methenyl-THF. The expression levels of the genes encoding the enzymes facilitating these 
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interconversions were up-regulated in P2 and P3 and these paths gradually became inactive 

through P4 and P5. The conversion of glycine and THF into 5,10-methylene-THF, NH3 

and CO2 was facilitated by the active glycine cleavage complex (Lpd1p, Gcv1p, Gcv2p 

and Gcv3p). All members except for LPD1 were observed to be up-regulated in P2-P4. 

LPD1 was previously reported to be down-regulated in response to catabolite repression 

and its release from repression requires the activity of the HAP2/3/4/5 complex [113]. 

Additionally, SHM1 and SHM2; encoding enzymes in the superpathway of serine and 

glycine biosynthesis facilitated the conversion of serine and THF into glycine and 5,10-

methylene-THF [112]. Glycine was reported to lend purine rings their nitrogen at the N7 

position and their carbon atoms at the C4 and C5 positions [111]. The folate metabolism 

switched back to the steady-state configuration as the amount of glucose became 

progressively limited in P5 (Figure Appendix D3 a). 

 

In response to the addition of ammonium into an N-limited culture, the genes 

involved in the folate biosynthetic pathways and the folate interconversions were up-

regulated in P2. A very similar pattern of regulation to that observed for carbon catabolite 

repression was encountered in P3. The expression levels of the genes of the pathway were 

up-regulated except for LPD1, ABZ2 and CDC21, which were down-regulated. The 

interconversions among folate products were active throughout P2-P3 enabling the 

generation of 1C species to be utilized in purine biosynthetic processes. More genes were 

down-regulated in P4 including GCV1, GCV2, SHM2 and MTD1. CDC21 and ABZ2 were 

up-regulated and LPD1 was only very slightly down-regulated (Figure Appendix D3 b). 

 

3.2.3.5.  Superpathway of Serine and Glycine Biosynthesis. The superpathway of serine 

and glycine biosynthesis was up-regulated, as soon as glucose was introduced into the 

carbon-limited culture, through the up-regulation of SER3, SER33, SER2 and SER1. GLY1, 

which mediates the interconversion between L-threonine and L-glycine, became strongly 

up-regulated in P2 upon relaxation of nutrient limitation. The up-regulation in GLY1 

gradually decreased through P3-P4 and finally it became down-regulated during P5. SHM2 

and SHM1, both encoding the enzyme that catalysed the interconversion between L-

glycine and L-serine, were found to be up-regulated throughout P2-P4, and down-regulated 

in P5. A slightly increased accumulation L-serine and L-threonine was also observed 

through P3-P5. One route leading to the synthesis of L-glycine from glyoxylate was 
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rendered low through the down-regulation of AGX1 throughout the experiment. This 

down-regulation was most pronounced in P3 and P4 (Figure Appendix D4 a1).  

 

Upon relaxation of ammonium limitation, only AGX1 (of the genes involved in the 

superpathway of serine and glycine biosynthesis) was slightly down-regulated in P2. This 

down-regulation was more pronounced in P3. SER2 and SHM2 were also down-regulated 

in P4, reducing the production of L-glycine from glyoxylate and the production of L-serine 

from 3-phosphoglycerate (Figure Appendix D4 b1). 

 

3.2.3.6.  Sulphur Assimilation and Methionine Metabolic Pathways. In response to carbon 

catabolite repression, methionine biosynthesis was up-regulated in P2 and P3 via the route 

utilizing sulphate rather than L-aspartate. The only exception was MET17, which was 

down-regulated, creating a bottleneck for the formation of L-methionine. A close homolog, 

CYS3 (BLASTP e-value: 5.7e-35), might have replaced its function, allowing information 

flow in the pathway. L-cysteine was also converted to homocysteine and then to L-

methionine through the up-regulation of CYS3 and STR3. SAM1, SAM2 and MET6 (on the 

route towards L-methionine and S-adenosyl-L-methionine) were up-regulated once 

homocysteine was produced. MET6, enabling L-methionine production from L-

homocysteine also facilitated the interconversion between 5-methyl-THF and THF. 

Direction of fluxes from S-adenosyl-L-homocysteine towards L-homocysteine was 

facilitated by SAH1, which was up-regulated, releasing additional adenosine for the 

production of AMP in purine biosynthesis. The fluxes towards cystathionine through STR2 

and CYS4 were also up-regulated and CYS3 (whose product converts L-cysteine to L-

cystathionine) was also up-regulated.  A strong up-regulation of STR3 may have directed 

the fluxes towards L-methionine production. A similar response in the methionine 

biosynthetic pathway was observed in P3. The genes taking role in the upper biosynthetic 

pathway were gradually down-regulated in P4 and P5. Genes in the salvage pathway of 

methionine were observed to be up-regulated immediately. Although BAT1 and ARO8 

remained up-regulated ADI1, BAT2 and ARO9 became progressively down regulated 

through P3 to P5. The down-regulation in the salvage pathway was more pronounced in P5 

with more transcripts including MRI1, MEU1, SPE4 and SPE2 being down-regulated. 

MEU1 was previously reported to regulate the expression of ADH2, for which the strongest 

down-regulation of expression was also observed in P5 [114] (Figure Appendix D4 a2, a3). 
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Both upper branches of the methionine biosynthetic pathway, utilizing either 

sulphate or L-aspartate were up-regulated in response to an ammonium perturbation. The 

down-regulation of MET17 during P3 might have been compensated by CYS3 as in the 

case of glucose perturbations. The low expression levels that were observed for MET2 and 

STR3 indicated that the production of L-methionine from L-aspartate or from L-cysteine, 

respectively, was rendered low. A similar up- and down regulation pattern was observed in 

the salvage pathway of methionine as a response to relaxation from ammonium limitation, 

except for the fact that this pathway remains functioning in P4 just before reaching the 

initial (steady-state) condition again (Figure Appendix D4 b2, b3). 

 

3.2.3.7.  Aspartate Biosynthetic Pathway and the Superpathway of Glutamate Biosynthesis. 

Aspartate biosynthesis donates the nitrogen in the N1 position of the purine ring [111]. In 

response to carbon catabolite repression, the expression levels of the genes in the aspartate 

biosynthetic pathway were not rendered low immediately but remained active through P2, 

being down-regulated in P3-P5. During P2, although PYC1 was down-regulated, its active 

isoform PYC2 was still up-regulated, enabling the formation of oxaloacetate. The synthesis 

of aspartate from pyruvate was rendered low through the simultaneous down-regulation of 

PYC1 and PYC2 through P3-P5. The down-regulation in the cytosolic aspartate 

aminotransferase, encoded by AAT2, and the up-regulation in the mitochondrial aspartate 

aminotransferase, specified by AAT1, indicated that L-aspartate biosynthesis from 

oxaloacetate was enabled through the mitochondrial route rather than the cytosolic route. 

However, the route for the production of homoserine and L-threonine from aspartate was 

rendered low through the down-regulation of HOM2-HOM6 and THR4, respectively, 

throughout the experiment. The accumulated aspartate may be converted to fumarate by 

the up-regulated ADE12 and ADE13 (through adenylosuccinate), or by the up-regulated 

ARG1 and ARG4 (through L-argininosuccinate). Indeed, fumarate accumulation observed 

throughout the experiment also supports this hypothesis. Another possibility may be the 

conversion of L-aspartate to N-carboyl-L-aspartate through the up-regulated URA2 

towards pyrimidine metabolism. The cyclic interconversion between L-aspartate and L-

asparagine through the equilibrium reaction catalysed by the product of the up-regulated 

ASN1 and ASN2 genes was observed to be active during P2-P5. ASP1, ASP3-1, ASP3-2, 

ASP3-3 and ASP3-4 mediating the conversion of L-asparagine to L-aspartate and ammonia 

lending a nitrogen atom for the purine ring was also found to be up-regulated during all 
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periods. The intracellular concentrations of L-aspartate, homoserine and L-threonine were 

all high. The blocked pathway from L-aspartate and homoserine towards L-threonine 

production was complemented by this intracellular accumulation (Figure Appendix D5 a1). 

 

Nitrogen catabolite repression resulted in an up-regulation in L-aspartate biosynthetic 

pathway starting from pyruvate increasingly from P2 to P4. Either one of the isoforms; 

PYC1 or PYC2, was active throughout all periods or L-aspartate production was enabled 

through either the mitochondrial or the cytosolic aspartate aminotransferase during P2-P4. 

In contrast to what has been observed during carbon catabolite repression, homoserine and 

L-threonine production was also up-regulated through HOM3, HOM2, HOM6, THR1 and 

THR4 during P2-P4. The intracellular concentrations of L-aspartate and homoserine were 

high whereas that of L-threonine was low. The up-regulation of the pathway from L-

aspartate and homoserine towards L-threonine complemented this finding (Figure 

Appendix D5 b1). 

 

L-glutamine delivers the nitrogen atoms at positions N3 and N9 of the purine ring 

[111]. L-glutamine biosynthesis initiates from a component of the TCA cycle, isocitrate. 

Isocitrate was converted to 2-oxoglutarate through the catalysis by the gene product of 

IDP1, which was selectively up-regulated throughout the carbon catabolite repression, 

diverting alpha-ketoglutarate to biosynthetic processes [115]. 2-oxoglutarate, together with 

NH3 would then be converted into L-glutamate through the catalysis of the up-regulated 

GDH1, GDH2 and GDH3 and 2-oxoglutarate would be converted via the up-regulated 

GLT1 in P2. This process was observed to be down-regulated during P3-P5. Ammonia 

utilization and the conversion into L-glutamine was not blocked through GLN1 during P2 

and P3, however, it was rendered low during P4 and P5 as a result of the down-regulation 

of the enzyme The intracellular concentrations of ammonium, 2-oxoglutarate, L-glutamate 

and L-glutamine were all high (Figure Appendix D5 a2). 

 

In response to the addition of ammonium, the production of L-glutamate was 

observed to be low during P2-P4, which was also observed in the intracellular 

concentrations of the metabolite. Although IDP1, which mediates the conversion of 

isocitrate to 2-oxoglutarate, was up-regulated, GDH1, GDH2 and GDH3 were down-

regulated in P2 and P3. The direct conversion of 2-oxoglutarate into L-glutamate was 
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rendered low by the down-regulation of GLT1 in P2. L-glutamine production from L-

glutamate was active as a response to nitrogen catabolite repression in P2-P3 and down-

regulated in P4. GLT1 was, on the other hand, up-regulated in P3 and P4. The intracellular 

concentrations of ammonium, 2-oxoglutarate and L-glutamine were all high (Figure 

Appendix D5 b2). 

 

3.2.4.  Study conclusions 

 

The quantification of the dynamic changes in the transcriptome and the metabolome 

in response to an impulse-like perturbation in nutrient availability and the integration of 

these data with the partway information revealed long-term dynamic re-organization yeast 

cells.  

 

The glycolytic and gluconeogenic pathways and the TCA cycle were found to be 

affected from an impulse-like shift of the nutritional availability and different isoforms of 

the genes constituting the central energy metabolism were observed to be active in 

different periods of time after the perturbation. The transcriptional response of the upper 

part of the glycolysis was immediate and these genes remained down-regulated for at least 

three hours, limiting glucose phosphorylation to avoid glucose-accelerated death. The most 

pronounced down-regulation of the TCA cycle genes was observed within the first hour 

following the glucose impulse, displaying a rather late response. The impulse-like addition 

of ammonium into the N-limited culture triggered an even later response in comparison to 

the addition of glucose. The response observed in the lower glycolytic pathway was found 

to be glucose-specific as an equivalent response was not observed during the ammonium 

perturbation. The fluxes towards the lower gluconeogenic pathway were limited through 

the down-regulation of genes encoding specific enzymes in both cases. 

 

The initial steps of de novo synthesis of purine nucleotides were immediately 

activated as soon as glucose was introduced. Upon depletion of glucose, almost all of the 

pathway components were down-regulated and, with the activation of the TCA cycle, the 

necessary energy for survival and maintenance would again be supplied through that 

channel. The time-dependent changes observed in the purine salvage pathway provided 

additional evidence about the role and organization of this pathway to control energy 
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homeostasis and compensate for the sudden drop in the AXP pools. Further insight was 

provided into the accumulation of inosine, IMP and hypoxanthine that had been reported in 

previous studies.  The de novo biosynthesis of pyrimidine ribonucleotides was also 

rendered low with the introduction of glucose into a C-limited culture. The salvage 

pathway of pyrimidine nucleotides was activated for the utilization of uracil, which is 

supplemented in the fermentation medium. The effect of the addition of ammonium into an 

N-limited culture was observed to cause similar, but less pronounced, changes in both the 

de novo synthesis of pyrimidine ribonucleotides and their salvage pathways to those 

observed in the response to the addition of glucose under C-limitation.  

 

The folate interconversions donating 1C units in purine metabolism were active 

during the first hour following the introduction of glucose, being gradually down-regulated 

during the rest of the experiment. A very similar pattern of regulation to what had been 

observed for the carbon catabolite repression was encountered in the first three hours upon 

the addition of ammonium. The pathway gradually became inactive as the effect of the 

pulse began to cease.  

 

In response to carbon catabolite repression, our integrative analysis of methionine 

biosynthesis indicated the importance of sulphur metabolism, rather than L-aspartate. The 

direction of flux was re-arranged such that the release of additional adenosine was 

facilitated. Genes in the salvage pathway of methionine were also observed to be up-

regulated immediately. All of the upper methionine biosynthetic pathway genes were up-

regulated in response to an ammonium perturbation. A similar up- and down regulation 

pattern was observed in the salvage pathway of methionine to that of the biosynthetic 

pathway with the exception that this pathway remains functional until the return to the 

initial steady-state condition. In response to carbon catabolite repression, the down-

regulation of L-aspartate biosynthetic pathway genes was delayed, being prominent after 

the first minute. An accumulation of aspartate might have been relieved by its conversion 

to fumarate through various routes. Another possibility may have been its re-direction 

towards pyrimidine metabolism. In contrast, nitrogen catabolite repression resulted in an 

increasing up-regulation in the L-aspartate biosynthetic pathway. L-Glutamine production 

was up-regulated throughout the carbon catabolite repression phase, diverting alpha-

ketoglutarate to biosynthetic processes, and was down-regulated throughout the nitrogen 
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catabolite repression.  

 

This long-term integrative study revealed, that in addition to the dynamic re-

organization of the de novo biosynthetic pathways, the salvage pathways appeared to be re-

organized in a time-dependent manner by catabolite repression in the yeast. The 

transcriptional and the metabolic responses observed for nitrogen catabolite repression 

were not as severe as those for carbon catabolite repression. This may have been due to the 

fact that uracil, histidine and leucine were supplemented in the fermentation medium to 

satisfy the auxotrophic requirements of the strains employed. Selective up- or down 

regulation of different isoforms throughout the response to the relaxation from nutritional 

limitation in yeast requires further investigation to assign particular functions to the 

paralogs. Although this study provided additional information on inosine accumulation and 

recycling, it has also indicated the requirement of further studies to shed light into the 

specific situations that were encountered on the pathways, which were limiting the  

communication of the transcriptional message via the down-regulation of one or more 

genes in the pathway such as in the case of the relief from the accumulation of 

hypoxanthine or the down-regulation of YNK1, whose product phosphorylates XDP 

nucleotides to XTP.  

 

Transcriptome and metabolome data were observed to complement each other, 

providing useful information whenever they were simultaneously available. Additional 

metabolite measurements and studies on the proteome and phosphoproteme level, 

complemented by accurate measurements of mRNA decay, may provide better information 

to shed light onto the time-dependent re-organization of yeast cells as a dynamic response 

to a changing nutritional environment and thus provide a quantitative understanding of cell 

behaviour. Similar integrative systems-level approaches would also provide a solid 

understanding of metabolic processes that control the respiro-fermentative transition in 

human cells. 
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3.3.   A novel tool for the prediction of hidden genetic interactions embedded in 

dynamic gene expression data enriched with an a priori knowledge on network 

information 

 

3.3.1.  Background 

 

Cellular processes are complex phenomena, which require the presence and the fine-

tuning of simultaneous interactions among multiple events. This complexity also stems 

from the need for the dynamic evaluation of these multiple events, each of which may be 

considered as an individual stimulus for the event occurring at the following time point. It 

is therefore important to investigate cellular processes as they take place in time as a 

response to a perturbation in order to get a more comprehensive view of this complex 

coordination. 

 

Monitoring the dynamic response of organisms has been the subject of many 

research studies including relatively small scale kinetics studies 116-118 as well as 

genome scale high-throughput studies including transcriptome 119, 120, proteome 121, 

122, metabolome 123, 124 and interactome 125, 126. The transient biological response 

of organisms ranging from simple bacteria 116, 122 to mammals 118, 124 including 

humans 120, 121 have been investigated in these studies. 

 

One of the biggest challenges in systems biological applications is data integration 

127. Several methods have been developed in order to integrate data obtained from 

various sources to reach a better understanding of the overall view and to extract the 

hidden information within the collected data.  

 

Partial least squares (PLS) regression has previously been suggested as a powerful 

tool for exploring the relationships among gene expression profiles in order to obtain 

biologically meaningful association data. Both simulated and original microarray data have 

been used in this analysis and the method has been shown to be effective as a screening 

procedure for the identification of gene-gene interactions 128. In another study, Bayesian 

networks and Bayesian learning with Markov chain Monte Carlo has been used as a 

reverse engineering approach to infer interaction networks from simulated microarray data. 
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The results of this study indicated that the performance of network inference varied with 

the size of the training set, the degree of inadequacy of prior assumptions, and the 

inclusion of further information 129. State space models have also been used such that 

they have been treated with variational Bayesian learning algorithms. Dynamic microarray 

data has been used to reconstruct genetic regulatory networks 130, 131. Another 

framework has utilized Bayesian networks for the integration of various types of high-

throughput data such as microarray data or two-hybrid screen data to predict gene function. 

Using two completely independent types of data meant that specificity did not have to be 

sacrificed, which is often an inevitable outcome of genome-scale data generation. Thus 

inaccuracies in the predictions would have been prevented. The method was tested on 

Saccharomyces cerevisiae using physical interaction data and microarray data set 132. 

Yet another study makes use of a stochastic hybrid model enabling the abstraction and the 

controller design of the lactose regulation system in Escherichia coli due to the 

requirements imposed by the small size of the cell. The framework suggested the presence 

of a control mechanism that was based on a large number of Markov chains through the 

adjustment of the transition rates 133. The statistical nature of Bayesian systems enables 

handling of challenging problems since they may account for the kinetic parameter 

uncertainty and incorporate environmental stochasticity [134]. 

 

Previously conducted studies indicate the necessity of integration of various types of 

information in order to increase the specificity of the information obtained from high-

throughput studies. In this study, a novel integrative approach has been developed to 

extract hidden information from dynamic high- throughput data. The integration of 

different types of information has been utilized in such a way as to enable both an increase 

in the specificity of the obtained information and the identification of novel interactions 

and yet unknown associations among the genes. This hidden information was debugged 

from already known interactions and at the same time supported by high throughput 

dynamic data. 

 

3.3.2.  Methodology 

 

The notion that the expression level of a gene at any time is determined as the result 

of multiple events that took place at that particular time as well as at discrete time points 
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that have proceeded that specific time point has been previously used in the literature. A 

useful approach for such applications is the utilization of linear algebra.  

 

3.3.2.1.  Construction of the linear model. Assuming that the expression level of a single 

gene at a particular time (t) depends on the expression of that particular gene at a preceding 

time point (t-1) as well as on the expression of the other genes constituting the gene 

expression vector at that preceding time point (t-1), then the following linear dependence 

could be given: 

 



x t Ax t1              (2.1) 

 

where  



x t is the vector indicating the expression of all the genes available at time (t),  



x t1 

is the vector indicating the expression of all the genes available at time (t-1), A is the 

genetic association matrix and  is the error term associated with the relation.  

 

The objective function that needs to be minimized in this problem is the error
2
 

created by the prediction with an additional term to account for the sparsity of the matrix; 

 



x t Ax t1
ti 2

T


2

 Aij
ij

      (2.2) 

 

with 



  as a counting parameter and the second term of the objective function indicating the 

loose coupling of the system with relatively less number of interactions occurring within as 

reported in previous studies 135-137. 

 

3.3.2.2.  Segregation of the interaction matrix. The expression level of each gene may be 

thought of as a linear combination of several biological processes taking role in the cell. 

Therefore the interaction matrix can be partitioned such that the total expression level may 

be the linear combination of partial interaction matrices regarding various biological 

actions: 

 

                                                (2.3) ogrpm AAAAAA 
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where the subscript m denotes the fraction of expression represented by the metabolic 

activity, p denotes the fraction of expression represented by being involved in a protein-

protein interaction, r denotes the fraction of expression represented by being involved in a 

transcription factor-gene interaction, g denotes the fraction of expression represented by 

being involved in a genetic interaction and o denotes the fraction of expression represented 

by being involved in a yet unknown interaction or a post-translational modification. Not all 

genes are required to take a role in all of the available partitions.  

 

The metabolic portion of the interaction matrix Am, was obtained from the 

stoichiometric matrix such that any two genes that were sharing a common metabolite in 

their reactions were considered to be interacting. The extent of this sharing determined the 

strength of the interaction.  

 

The protein-protein interaction sub-matrix Ap, and the transcription factor-gene 

interaction sub-matrix Ar, was directly obtained from the literature and the strength of this 

interaction was determined from the number of different resources that were used to 

confirm this interaction.  

 

The epistatic interaction sub-matrix Ag, was directly obtained from the literature and 

similar to the previously discussed cases, the strength of this interaction was determined 

from the number of different resources that were used to confirm this interaction. 

 

3.3.2.3.  Model Network. In order to test the model, a subset of randomized expression 

profiles were used on the following hypothetical model network that was composed of the 

capital letter metabolites and small letter genes and gene products (Figure 3.11). Protein 

complexes and transcription factor-gene regulations are indicated in the figure with curved 

arrows. Currency metabolites functioning in more than one part of the metabolism (such as 

ADP and ATP in a realistic network) are also indicated by curved arrows. Feedback loops 

are included to make it more similar to a real network and transport reactions are denoted 

by the 
o
 superscript. 
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Figure 3.11. Hypothetical network 

 

3.3.2.4.  Test Model. The glycolysis and the tricarboxylic acid cycle in the yeast, 

Saccharomyces cerevisiae were selected as the test models. Both a linear and a cyclic 

pathway were selected for testing. The dynamic gene expression data following a 

perturbation were obtained from the literature 138. The reactions were obtained from the 

Saccharomyces Genome Database 29, the genetic and the physical interactions regarding 

this set of genes were acquired from BioGRID 139 and the TF-gene interactions were 

obtained from three different sources 81, 140, 141.  

 

3.3.2.5.  Implementation of metabolic pathway information. The hypothetical metabolic 

pathway is converted into an electrical wiring diagram with time dependence 

characteristics.  The metabolites were denoted as M and the enzymes catabolizing the 

reactions were denoted as x. The superscript (
o
) indicated the extracellular metabolites. The 

effect of the contribution of previous metabolite concentrations affecting the available flux 

through a particular reaction at a particular time was included in the subscripts (t) and (t-1) 

thus enabling the implementation of time dependence into the metabolic pathway 

information. In this manner, it was made possible to represent the equilibrium reactions 

without dissecting the reaction into its forward and reverse components and analysing them 

separately (Figure 3.12). A deterministic logic table was prepared for this network. Then 
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the metabolites (M) were removed from the network, to be considered as hidden variables 

leaving only the enzymes (x) as the observable variables. With only the values of M
o
1t and 

M
o
3t known, the remaining hidden variables were assigned probabilities such that the 

observable variables would possess their assigned values as provided by their expressions. 

In order to keep the log2 expression values representing the flux through the corresponding 

enzymes, a prior was set such that the value of x varied between 2 and 14. 

 

Figure 3.12. Electrical wiring diagram of the hypothetical metabolic network 

 

3.3.2.6.  Implementation of regulatory information. Hypothetical regulatory information on 

transcription factor-gene interactions (transcription factors denoted as y), protein-protein 

interactions (proteins denoted as z) and gene-gene interactions (genes denoted as w) was 

also provided in addition to the metabolic information. Providing the connection between 

the genes of the metabolic network based on the values provided for the observed 

variables. 

 

 

 

M
2t-1

 

M
o

1t
 M

1t
 M

3t
 M

2t
 M

o

3t
 

x
1
 x

2
 x

3
 

x
4
 

x
5
 

x
6
 

M
10t

 M
11t

 

x
7
 x

11
 

  

 

x
15

 
M

3t-1
 

 

 

M
4t

 

 

M
5t

 M
6t

 

x
8
 

M
7t-1

 

M
5t-1

 

M
7t

 

x
9
 

M
8t-1

 

M
7t-1

 

M
8t

  

x
10

 

M
9t

 

 

M
8t-1

 

 
X

12
 /x

13
 /x

14
 

 

 

 

 

M
12t

 

M
12t

 



 
 

80 

3.3.3.  Evaluation of the Applicability of the Test Model 

 

The electrical wiring diagram was first converted into a simpler form, in which the 

observable and the hidden variables could clearly be separated from each other (Figure 

3.13). 

 

 

Figure 3.13. The finalized metabolic pathway with the observable variables x, and M0 and 

the hidden variables M 
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For each metabolic reaction taking place, the possibility of that event happening or 

not was determined through the help of a deterministic logical evaluation. For an 

individual reaction, the possibility of that reaction taking place in the absence or the 

presence of the metabolites and the enzyme catalysing the reaction were evaluated and 

deterministically stated as 1 if the reaction was concluded to occur and as 0 if under the 

stated conditions, it would be impossible for the reaction to take place (Figure 3.14).  

 

 

Figure 3.14. Deterministic logical evaluation of the direction of flow for the metabolic 

information 
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The metabolites M01 and M03 as well as all x, y, w and z variables were identified 

as the observable variables since gene expression values or metabolite concentration values 

could be measured and provided as inputs into the software. The concentration of the 

remaining M metabolites was not determined and therefore, they were categorized as 

hidden variables. The interaction matrix among the observable variables x, y, w and z was 

constructed. The information regarding the interactions among the x enzymes were 

extracted from the hypothetical metabolic pathway (Figure 3.13). Any two x variables 

were determined to be interacting if they shared a common metabolite in the interactions 

that their enzyme products catalysed. The TF-gene interactions between y and x variables, 

the physical interactions between z and x variables as well as the epistatic interactions 

between w and x variables were arbitrarily assigned and again a deterministic table was 

formed (Figure 3.15). 

 

 

Figure 3.15. The interaction matrix 

 

Arbitrary gene expression profiles and metabolite concentration profiles were 

generated for the observable M01, M03, x, y, w and z variables (Figure 3.16). The profiles 

were created for a similar condition to that introduced in the first two sections of this 

chapter. The concentrations and the expression levels were not completely randomly 
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assigned. Instead, a complementary or a synergetic relationship was assumed among some 

profiles whereas others were left as fluctuating samples. Some lag phases were introduced 

into the profiles of the genes that are functional along the same path, whose actions follow 

each other.  

 

 

Figure 3.16. Randomly assigned gene expression level and metabolite concentration 

profiles 

 

Since the identification of novel interactions from gene expression profiles was 

targeted, two genes x_4 and z_2 were deliberately provided with similar expression 

profiles (Figure 3.17) and any interaction among them was not reported in the interaction 

matrix to be provided as input so that it was identified in the simulations being predicted as 

having an interaction. 
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Figure 3.17. Similar expression profiles for x_4 and z_2 deliberately embedded into the 

data 

 

3.3.4.  Future Prospects 

 

The implementation of metabolic networks and the regulatory networks into the 

interaction matrix for the hypothetical model system has been completed in this still on-

going study. Following the implementation of gene-TF interaction network, protein-protein 

interaction network and gene-gene interaction network in the model, the system, on which 

information regarding transcript and metabolome levels was available, would gain 

enhanced predictive power for the identification of novel interactions at the same time 

taking plasticity into consideration. Upon application of this technique on the real small 

scale model system, the transient novel interactions hidden in the data, on which dynamic 

changes induced by an environmental perturbation was observed, would be determined and 

selected for in vivo verification. The model structure allows the implementation of the 

model on genome scale models in addition to the hypothetical test models and small-scale 

models. Therefore the next step would be extending the study through the application of 

the novel tool on genome scale information.  
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4.  INVESTIGATION OF HOW GENETICALLY ALTERED YEAST STRAINS 

RESPOND TO DIFFERENT NUTRITIONAL ENVIRONMENTS 

 

 

This chapter of the study is concerned with how yeast copes with the loss of drug 

resistance genes under different environmental conditions. The variations in the 

fermentation characteristics of two members of the DHA12 family and the pleiotropic drug 

resistance family were investigated in this chapter. The transcriptional and the 

metabolomic response of gene deletions of QDR3 and PDR3 under glucose or ammonium 

limitation in carefully controlled fermenters were investigated and presented in conjunction 

with the metabolic flux distribution predictions in the first section. The fitness effects of 

each member were investigated using a high throughput genomics approach and the 

genetic interactions between the query gene QDR3 and the remaining members of these 

two families are currently being investigated using a chemical genomics approach. 

 

4.1.  Drug resistance in yeast: Is that all there is to it? 

 

4.1.1.  Background 

 

Major metabolic pathways, DNA repair and cell cycle control regarding the 

functionality of the cell are conserved mechanisms throughout the evolution of the DNA 

within a range of eukaryotes from yeast to human [142]. The treatment of fungal infections 

has been much harder and the advances in developing therapies have been much slower 

than the case for bacterial infections with the use of antibiotics. Functional and structural 

similarity of the target cell to human cell lines is one of the main reasons of that outcome. 

Therefore, the obstacles presented in treating a fungal infection are similar to the problems 

that are faced in the treatment of the cancer cells [143].  

  

Adaptation aims to maintain the integrity and the viability of the organism. Fungi 

populations are adaptable to changes in the environment through the development of drug 

resistance upon the introduction of an anti-fungal drug into the environment [144]. Drug 

resistance is a self-preservation technique to cope with external harmful chemical factors 

for survival. The organism may immediately resist to the presence of a harmful agent using 
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its necessary mechanisms or it may not have any coping mechanism, resulting in cellular 

death. In other cases, drug resistance can be developed through adaptation in a similar 

manner to what has been observed for patients developing resistance to chemotherapy 

drugs since chemical resistance mechanisms are highly conserved among eukaryotes. In 

both cases, many mechanisms of action involve the over-expression of multi-drug 

resistance pumps [143].   

 

Development of drug resistance is desirable from the organism‟s point of view if the 

survival of the cell, which was exposed to the chemical agent, is aimed. On the other hand, 

it is a downfall if cells need to be destroyed using that particular agent as it is the case in 

fungal infections and in cancer therapy. Development of chemical resistance limits the 

therapeutic potential of both anti-fungal and anti-tumour drugs [145] and prevention of the 

development of a drug resistance will result in the efficient uptake and utilization of the 

drugs. The first step in the process is the target identification to prevent this resistance. 

 

The similarity of yeast drug resistance mechanisms to that of human‟s makes it an 

ideal model for studying drug resistance. Moreover, the non-pathogenic nature of 

Saccharomyces cerevisiae makes it more attractive to use in this area of research. Several 

studies have been conducted where S. cerevisiae is used as a model organism for the 

identification of novel mechanisms of drug resistance, specifically, anti-tumour drug 

resistance. Schenk P. W. et al. have identified NPR2 and SKY1 genes in yeast to be 

epistatic in providing resistance to two anti-cancer agents; cisplatin and doxorubicin [97]. 

In a study, IXR1 gene was identified as providing resistance to a chemotherapeutic agent; 

cisplatin [146]. Another study has been conducted using yeast and human ovarian 

carcinoma cell line in parallel identifying the SKY1 gene in S. cerevisiae and its human 

homologue SRPK1 gene to induce cisplatin resistance in the corresponding organisms 

[147]. High throughput technologies have also been used to identify genes that confer 

resistance to cisplatin such as PDR2 and ZDS2 [148]. 

 

The multiple drug resistance (MDR) in yeast is carried out via two major super-

families of membrane transporters; the major facilitator super-family (MFS) and the ATP 

binding cassette (ABC) super-family. Both mechanisms work through the use of drug 

efflux pumps. The increased expression of these pump proteins allows the drugs to be 
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pumped out from the metabolism, hence the survival of the organism in the drugs‟ 

presence [149].  

 

In Saccharomyces cerevisiae, the MFS comprises of the proton motive force-

dependent multi-drug efflux system [150].  Most of the 23 genes of this system were 

thought to be involved in multi-drug resistance. The products of these genes consist of 12 

and 14 predicted membrane–spanning segments and owing to that, they are called the 

DHA12 and DHA14 drug efflux families [151]. QDR3, the gene of interest in this study, is 

a member of the QDR family plasma membrane transporters in the DHA12 family. One of 

its close homologues Qdr1p confers resistance to the anti-fungal agents; ketoconazole and 

fluconazole as well as an isomer of quinine; quinidine [150]. Another close homolog, 

Qdr2p, is a resistance determinant for quinidine well as an anti-herbicide; barban [151]. 

The resistance range of Qdr3p, however, is much broader than its homologs, causing an 

increased tolerance to a range of inhibitory compounds that are structurally and 

functionally unrelated. Among these drugs are the anti-malarial drug; quinidine, the 

herbicide; barban and the anti-cancer drugs; cisplatin and bleomycin [152]. 

 

The other known associate of the MDR, the ABC super-family utilizes the ATP 

hydrolysis in order to drive drug extrusion and the factors that are required for all multi-

drug transporters [150]. There are some 30 genes encoding the ABC proteins in yeast. A 

subset of these ABC transporters takes role in the mediation of pleiotropic drug resistance 

(PDR) that is very similar to the multi-drug resistance occurring in mammalian cells, 

parasites, fungal pathogens and bacteria. The PDR sub-family is reported to be the largest 

and the best characterized ABC sub-family in S. cerevisiae [153]. This PDR sub-family 

consists of transporter genes, also called the pleiotropic drug response elements (PDRE) 

[154]. Pdr1p and Pdr3p are the transcriptional regulators of the ABC transporter genes and 

either of them is able to mediate PDR although they are not directly responsible for the 

observed effects of drug resistance [155]. Pdr13p and Ngg1p are also thought to regulate 

Pdr1p and therefore, the function of the complex formed by Pdr1p and the self-regulatory 

Pdr3p is thought to be subject to regulation by other transcription factors [156]. Pdr1p and 

Pdr3p take interchangeable roles in regulating the PDRE, specifically Pdr5p that is 

responsible for the transport of drugs. However, Pdr3p is also involved in the retrograde 

response to activate Pdr5p [157]. 
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This study aims to investigate how the metabolism copes with the loss of QDR3 

gene. Recent analyses (data not shown) have indicated a possible respiratory deficiency for 

the mutant lacking this gene in a manner that is dependent on the amount of glucose in the 

medium [14], which was different from what has been observed for the deletion mutants of 

two close orthologs with functional similarity; QDR1 and QDR2. For this purpose 

homozygous diploid deletion mutant of QDR3 was grown on carbon and nitrogen limited 

continuous cultures and transcriptome and endo- or exometabolome levels as well as the 

optimum metabolic solution space yielding the present phenotype was determined in 

comparison to ho/ho selected as control and pdr3/pdr3 selected as drug resistance 

control strain from another well-characterized MDR family. Studies so far have been 

focusing on the drug and chemical resistance characteristics of that family [150, 151, 152] 

rather than concentrating on the system based changes observed in the metabolism. This is 

believed to be the first comprehensive study to investigate a member of the MDR major 

facilitator super-family; Qdr3p and its previously unpredicted respiratory performance in 

high-throughput terms with an integrative systems biological approach. 

 

4.1.2.  Methods 

 

4.1.2.1.  Strain, Growth Conditions and Sampling. Three homozygous deletion mutants; 

ho/ho, qdr3/qdr3 and pdr3/pdr3 of diploid BY4743 (MATa/MATα his3Δ/his3Δ 

leu2Δ/leu2Δ LYS2/lys2Δ MET15/met15Δ ura3Δ/ura3Δ; [23]) was cultivated in 2L 

fermenters (Applikon) with 1L working volume under aerobic conditions in glucose- or 

ammonium-limited F1 media [24] in chemostat mode at a dilution rate of 0.1h
-1

. The 

fermentation conditions were given in Section 3.1.2.1. Samples for transcriptome, endo- 

and exometabolome analyses were taken after spending 5 residence times at steady state. 

Biomass was determined at the steady states gravimetrically. 

 

4.1.2.2.  Endo-metabolome and exometabolome sampling, endometabolome extraction, 

analytical methods for foot printing and fingerprinting. For metabolic foot printing, 1 ml 

samples were withdrawn from the fermentation broth on ice and centrifuged at 4
o
C at 14 

000 rpm for 4 minutes. The supernatant was stored at -80
o
C until analysis. Sampling 

protocols for metabolic fingerprinting were described in Section 3.2.2.2. The protocols for 

metabolic foot printing and fingerprinting were described in Section 3.2.2.2. The 
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metabolome data is supplemented in Appendix E. Steady state exometabolic 

concentrations of glucose, ethanol, ammonium, acetate, acetaldehyde and succinate were 

determined enzymatically using Boehringer-Mannheim kits and they were further used in 

flux balance analysis. 

 

4.1.2.3.  Transcriptome sampling RNA isolation and transcriptome analysis. The complete 

protocol was carried out as described in Section 3.1.2.3.  

 

4.1.2.4.  Microarray data acquisition. The complete protocol was carried out as described 

in Section 3.1.2.4. In compliance with MIAME guidelines [72], the microarray data from 

this study has been submitted to ArrayExpress at the European Bioinformatics Institute 

under accession number [E-MTAB-707].  

 

4.1.2.5.  Data analysis. In order to identify transcripts whose expression significantly 

differed from wild type levels [74], the software package EDGE [75] was used. This set of 

significantly expressed transcripts for QDR3 and PDR3 deletions under glucose or 

ammonium limitation were evaluated using p-values, which were corrected for the false 

positives introduced by multiple testing using Bonferroni correction and 10
-2

 was selected 

as the cut-off threshold for p-values. The Benjamini-Hochberg method was used for the 

calculation of false discovery rates. The visualizations for the common subsets of genes 

were illustrated via the Venn Diagram generator 

(http://www.pangloss.com/seidel/Protocols/venn4.cgi). Hierarchical Clustering Explorer 

(HCE) 3.0 [77] was used for hierarchical clustering purposes. The significantly enriched 

functional categories and the process ontology terms of the genes falling into the same 

cluster were determined by AmiGO Term Finder tool [79]. The threshold p-value was 

selected as 10
-3

. Transcription factors (TF) were taken from three sources; YEASTRACT 

[81, 158], Lee et al. [140], and Luscombe et al. [141]. Protein-protein interactions were 

taken from Yeast BIOGRID [139].  

 

The optimum distributions of the fluxes under different genetic and environmental 

conditions were determined by linear optimization with the suitable biological objective 

functions by using the metabolic model constructed by Förster et al. [12]. The mapping of 

the transcriptome and the metabolome as well as the flux distributions on the biochemical 

http://www.pangloss.com/seidel/Protocols/venn4.cgi
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pathways was done by using the Saccharomyces Genome Database Pathway Tools Omics 

Viewer [53].  

 

4.1.3.  Results and discussion 

 

The response to genetic perturbations resulting from the deletion of QDR3 or PDR3 

genes from two separate multi-drug resistance families were investigated and compared 

using a system based integrative approach. Homozygous deletion mutants of QDR3, PDR3 

and HO genes were grown in glucose or ammonium limited continuous cultures. 

Transcriptome, endo- and exometabolome profiles at steady state as well as the 

distributions of the fluxes in the optimized solution space were compared to reveal the 

differences in the underlying mechanisms of action in drug resistance. The selection of the 

drug resistance control family was based on several criteria that needed to be taken into 

consideration simultaneously. The mutant of such a gene was selected that it would be 

respiratory proficient, not having close orthologs to replace the gene but with functional 

differences and not taking a role in the retrograde response from mitochondria. Since 

respiration related phenomena take place in the mitochondrion, a drug resistance mutant 

also unable to trigger retrograde signalling was selected as a control strain. The 

experimental setup was selected specifically to follow response to different amounts of 

glucose in fermentation medium aiming to clarify the yet unclear mechanisms put into 

action in the absence of QDR3.  

   

4.1.3.1.  Nutritional conditions determine the transcriptional and metabolic response of the 

deletion mutants. In order to identify the differences in the molecular mechanism of drug 

resistance in response to both genetic and environmental conditions, hierarchical 

organization of the transcriptome, endo- and exometabolome of the control strain and of 

the mutant strains;  ∆pdr3/∆pdr3 and ∆qdr3/∆qdr3 were comparatively investigated under 

glucose and ammonium limitation.   

 

A total of 1812 genes displayed a significantly altered expression levels (p-

value=0.01) in either one or more of the experimental conditions. The hierarchical 

organization of both the transcriptome and the endometabolome obtained under glucose or 

ammonium limitation clustered as two separate subsets of one major cluster. ∆pdr3/∆pdr3 
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was clustered together with the wild type under glucose limitation while ∆qdr3/∆qdr3 was 

then hierarchically associated with these two mutants. When ammonium was the limiting 

nutrient in the medium, ∆qdr3/∆qdr3 was in the same cluster with the control strain and 

∆pdr3/∆pdr3 was more distant in terms of hierarchical organization. The clustering of exo-

metabolome indicated the distinct behaviour of these strains under two different types of 

limitation conditions. Under ammonium limitation exo-metabolome for ∆qdr3/∆qdr3 was 

clustered together with the control strain and more distantly with ∆pdr3/∆pdr3 whereas the 

deletion mutants of the two drug resistance genes were clustered together further away 

from the control strain under glucose limitation (Figure 4.1a, b). 

 

In light of the hierarchical organization of the strains obtained at different levels, the 

nutritional conditions were determined to be the dominant parameter in determining the 

cellular behaviour of these two deletion strains and these two strains were observed to 

display different and distinct behaviour under glucose or ammonium limitation. 

 

4.1.3.2.  Deletion and nutrition specific gene expression profiles reveal how yeast re-

adjusts itself to its current condition. The investigation of the transcriptome profiles 

indicated that in total, 1523 genes were differentially up-regulated in at least one of the 

fermentations conducted using ∆qdr3/∆qdr3 and ∆pdr3/∆pdr3 under glucose or 

ammonium limitation whereas 1301 genes were differentially down-regulated (Figure 4.2, 

Tables 4.1 and 4.2).  

 

The expression levels of 116 genes increased in response to all nutrient limitations 

and genetic perturbations and this subset of genes were significantly enriched for growth 

associated processes including gene expression, translation, ribosome biogenesis, 

regulation of gene expression and translation and non-coding RNA metabolism. On the 

other hand a subset of genes (62 genes) was constitutively down-regulated irrespective of 

the type of nutrient limitation or genetic perturbation that they were exposed to. This 

subset of genes was significantly enriched with cellular response to heat. Previous reports 

also indicated the up-regulation of similar growth associated processes irrespective of the 

type of environmental perturbation, in response to increasing growth rates and an 

accompanied down regulation of stress response genes including heat responsive genes 

[85, 86]. Interestingly it was observed that under nutrient limited conditions, the yeast cells 
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with a missing drug resistance gene responded in a similar manner to what has been 

observed under increasing growth rate conditions.    

 

 

Figure 4.1. Hierarchical organization of transcriptome (a), and metabolome (b) with 

QDR3-QDR3: ∆qdr3/∆qdr3, PDR3-PDR3: ∆pdr3/∆pdr3, HO-HO: ∆ho/∆ho 
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Table 4.1. Biological process GO terms significantly associated (p value < E-02) with 

differentially expressed transcripts under glucose limitation with U-R: up regulation, D-R: 

down regulation and non-significant associations denoted with * 

Process GO Term Trend P-value 
Sample 

frequency 

Background 

frequency 

∆qdr3/∆qdr3, glucose limitation 

oxidation reduction U-R 1.47E-05 37/230 367/6355 

ubiquitin-dependent protein catabolic 

process 
U-R 3.45E-04 23/230 186/6355 

carboxylic acid metabolic process U-R 1.12E-03 35/230 397/6355 

mitochondrion inheritance U-R 1.24E-03 9/230 30/6355 

proteolysis involved in cellular protein 

catabolic process 
U-R 1.45E-03 26/230 248/6355 

cellular ketone metabolic process U-R 2.26E-03 35/230 409/6355 

mitochondrion localization U-R 3.04E-03 9/230 33/6355 

amine biosynthetic process U-R 4.98E-03 18/230 141/6355 

potassium ion transport D-R 1.11E-01* 3/61 11/6355 

∆pdr3/∆pdr3, glucose limitation 

regulation of cell cycle U-R 9.37E-01* 11/118 186/6358 

mitochondrial ATP synthesis coupled 

electron transport 
D-R 2.49e-08 12/206 28/6357 

oxidative phosphorylation D-R 3.40e-08 16/206 59/6357 

respiratory electron transport chain D-R 1.65e-07 12/206 32/6357 

cell death D-R 1.72e-05 13/206 55/6357 

translation D-R 4.67e-04 62/206 1042/6357 

nucleobase, nucleoside and nucleotide 

metabolic process 
D-R 1.26e-03 26/206 281/6357 

 

The subset of genes that were up-regulated only in glucose limited conditions in the 

absence of the QDR3 gene constituted a group of 231 genes.  
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Table 4.2. Biological process GO terms significantly associated (p value < E-02) with 

differentially expressed transcripts under ammonium limitation as well as at all times with 

U-R: up regulation, D-R: down regulation and non-significant associations denoted with * 

Process GO Term Trend P-value 
Sample 

frequency 

Background 

frequency 

∆qdr3/∆qdr3, ammonium limitation 

protein thiol-disulphide exchange U-R 1.46E-01* 2/76 2/6358 

glycerophospholipid catabolic process U-R 8.60E-01* 2/76 4/6358 

post-transcriptional regulation of gene 

expression 
D-R 3.24e-04 18/134 206/6357 

∆pdr3/∆pdr3, ammonium limitation 

ribosome biogenesis U-R 8.66E-17 49/162 437/6355 

rRNA processing U-R 9.75E-08 31/162 321/6355 

ncRNA processing U-R 2.82E-07 35/162 419/6355 

ribonucleoprotein complex assembly U-R 9.24E-04 15/162 127/6355 

maturation of SSU-rRNA from 

tricistronic rRNA transcript 
U-R 7.88E-03 12/162 97/6355 

glucose catabolic process D-R 4.86E-09 14/128 57/6355 

pyruvate metabolic process D-R 4.83E-08 12/128 44/6355 

glycolysis D-R 1.17E-07 11/128 37/6355 

alcohol metabolic process D-R 6.00E-05 20/128 237/6355 

gluconeogenesis D-R 4.70E-03 7/128 33/6355 

Up-regulated in all fermentations 

regulation of translation U-R 2.21e-15 28/115 192/6357 

ribosome biogenesis U-R 1.84e-07 30/115 448/6357 

gene expression U-R 5.13e-06 71/115 2235/6357 

regulation of gene expression U-R 3.35e-05 39/115 878/6357 

translation U-R 4.23e-05 43/115 1042/6357 

ncRNA metabolic process U-R 1.34e-03 25/115 483/6357 

Down-regulated in all fermentations 

cellular response to heat D-R 3.56e-03 3/62 4/6357 
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This group of transcripts were significantly enriched with oxidation reduction, 

carboxylic acid metabolism, mitochondrion inheritance and mitochondrion localization, 

which are all related to the extent to which the organism uses its respiratory capacity, as 

well as other processes regarding the metabolic degradation processes including ubiquitin-

dependent protein catabolism and proteolysis involved in cellular protein catabolism, 

cellular ketone metabolism and amine biosynthesis.Since the fermentation medium was 

limited in terms of its glucose content, the metabolism was observed to switch itself to 

perform respiratory functions as reported elsewhere [159, 160]. Genes that were involved 

in ubiquitination and proteolytic activity have previously been reported to be expressed at a 

higher level when the cells are growing by respiration, similar to the present findings 

[161].  

 

All genes associated with protein thiol-disulphide exchange and half of the genes that 

were associated with glycerophospholipid catabolism were among the 76 transcripts that 

were up-regulated under ammonium limitation in ∆qdr3/∆qdr3 mutants. Protein thiol-

disulphide exchange enzymes were previously reported to be strong oxidases [162]. The 

up-regulation in the expression levels of the oxidation-reduction enhancing genes, even in 

the presence of abundant glucose, might indicate that the absence of QDR3 gene resulted 

in increased oxidative activity, which might put the cell at risk. Glycerophospholipid 

catabolism generates choline moieties to be reused in phosphaditylcholine synthesis as 

well as being involved in the utilization of glycerophosphocholines and 

glycerophosphoinositols as phosphate sources in yeast [163]. The up-regulation of this 

degradation pathway might indicate the necessity for additional phosphates made available 

through this route although this pathway is not reported as a major source of phosphates in 

the cell.   

   

The group of genes that were differentially up-regulated when ammonium was 

limited in the absence of PDR3 (162 genes), were significantly associated with growth 

related processes including ribosome biogenesis, rRNA and non-coding RNA processing, 

ribonucleoprotein complex assembly and the maturation of SSU-rRNA from tricistronic 

rRNA transcript. It would be possible to speculate that the yeast cells tried to cope with the 

loss of the drug resistance gene by trying to maintain their growth at optimum as much as 

the availability of the nitrogen source permitted. 
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Figure 4.2. Distribution of the differentially up-regulated (a) and down-regulated (b) 

transcripts with Nlim: ammonium limitation, Clim: glucose limitation, pdr3: ∆pdr3/∆pdr 

and qdr3: ∆qdr3/∆qdr and the numbers indicating the number of genes in that set 

 

a 

b 
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The 118 genes that were up-regulated under glucose limitation in the absence of 

PDR3 were associated with regulation of cell cycle. The control of glucose regulation on 

cell cycle genes, which were critical for the passage to G1 phase, was previously reported 

[164]. More of the cell cycle genes, including the previously reported BCK2 and GRR1, 

would be affected from glucose limited conditions as a response to the absence of PDR3. 

 

The 61 transcripts that were down-regulated under glucose limitation in the absence 

of QDR3 gene were associated with potassium ion transport, though not significantly. The 

down-regulation of the genes that play role in the transport of potassium ion, which is the 

most abundant ion in the yeast cell, might have indicated alterations in the major 

determinant of electrical membrane potential modulating the ion homeostasis and toxicity 

in the cell created by the loss of function of the QDR3 gene [165].   

 

Another group of transcripts (134) were significantly down-regulated in the 

∆qdr3/∆qdr3 population under ammonium limitation and they were associated with the 

post-transcriptional regulation of gene expression and the transcripts that were significantly 

down-regulated in the absence of the PDR3 gene under ammonium limitation (128 genes) 

were significantly associated with glucose catabolism, pyruvate and alcohol metabolism, 

glycolysis, gluconeogenesis and monocarboxylic acid metabolism. Although the glucose 

supplied into the fermentation environment was sufficient, the genes active during 

fermentation were observed to be down-regulated in the absence of PDR3. Possibly, the 

ability of yeast cells to perceive the glucose level in the environment was altered in 

response to the loss of PDR3. The enzyme product of PDR5 gene, whose transcription is 

directly controlled by Pdr3p, was reported previously to be physically interacting with the 

low affinity glucose transporter Hxt1p and the hexose transporter with a moderate affinity 

for glucose, Hxt5p (Table 4.3). The transport of glucose would thus be affected in the 

absence of PDR3 and the metabolism might have lost its ability to efficiently uptake and 

utilize glucose through a loss of activity in Hxt1p and Hxt5p. Moreover, HXT5 was 

previously reported to be induced by a decrease in growth rate [166].  This also agrees with 

the up-regulation of growth related transcripts observed under the same conditions.  
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Table 4.3. The expression levels of the physically interacting proteins for QDR1, QDR2, 

QDR3, and PDR1, PDR3, PDR5 with the interactions within the DHA12 drug resistance 

family and the pleiotropic drug resistance family of the ABC transporters** 

Family 

Name 

Gene 

Name* 

Significance 

(Y/N) 

Case when 

significant* 
Interacting with 

The QDR 

sub-family 

QDR1 N - HSP82 

QDR2 Y, d-r C, QDR3 

PDR5, PDR12, HXT1, HXT5, 

HNM1, SFK1, SNQ1, SOS23, 

TPO1, UBI4 

QDR3 N - PDR12, HEK2 

The PDR 

sub-family 

PDR1 N - NGG1, PDR3, HEK2 

PDR3 N - HSP82, NGG1, PDR1, HEK2 

PDR5 

Y, d-r in C and N 

QDR3, u-r in N 

PDR3 

All cases 

QDR2, PDR12, HXT1, HXT5, 

HNM1, SFK1, SNQ1, SOS23, 

TPO1, UBI4 

TPO1 N - 
QDR2, PDR12, PDR5, TPO3, 

TPO2, SNQ2 

TPO2 Y, d-r N, PDR3 PDR12, TPO1, TPO3, SNQ2 

TPO3 N - SNQ2, TPO1, TPO2 

TPO4 N - PDR12, YOR1 

NGG1 Y, u-r C, PDR3 PDR1, PDR3 

PDR12 Y, d-r 
Both QDR3 

and C PDR3 
QDR2, QDR3, TPO4 

SNQ2 Y, d-r All cases 
PDR5, PDR12, QDR2, TPO1, 

TPO2, TPO3 

YOR1 

Y, d-r in C and N 

QDR3, u-r in N 

PDR3 

All cases TPO4 

**Abbreviations: d-r = down-regulated, u-r = up-regulated, Y = yes, N = no, C = glucose limitation, N = 

ammonium limitation, QDR3 = ∆qdr3/∆qdr3, PDR3 = ∆pdr3/∆pdr3 

 

The expression level of the transcripts that were significantly down-regulated in the 

absence of PDR3 gene under glucose limitation (206) were significantly associated with 
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respiration related processes including mitochondrial ATP synthesis coupling electron 

transport, oxidative phosphorylation, respiratory electron transport chain, cell death, 

translation and nucleobase, nucleoside and nucleotide metabolic processes. This 

observation also supported the notion that the cells re-organized their glucose responsive 

respiration-fermentation switch metabolism during the loss of PDR3 gene. 

 

4.1.3.3.  The expression levels of transcription factors were re-arranged to compensate for 

the loss of the drug resistance genes. The expression levels of 44 genes encoding 

transcription factors were significantly altered in response to the nutrient limitations and 

the genetic perturbations (Table 4.4). Four transcription factors (GCN4, ASH1, HAP1 and 

MET4) were up-regulated in glucose limited conditions and down-regulated under 

ammonium limitation in both strains. The up-regulation of GCN4 under glucose limitation 

might display its role in the energy metabolism, specifically in purine biosynthesis and its 

role as a general controller in response to nutrient stress whereas the presence of leucine, 

histidine and uracil supplemented in the medium to remove the strain‟s auxotrophy 

prevented the stress response induced by ammonium limitation, thus resulting in the down-

regulation of the transcription factor [167]. The up-regulation of HAP1 in aerobic 

conditions induced by the limited amount of glucose and its down-regulation in 

fermentative conditions induced by the presence of abundant glucose also agreed with the 

reported literature [168]. 

 

The gene encoding the haem-activated transcription factor, Hap4p, which is involved 

in the global control of respiratory gene expression, was down-regulated in the absence of 

QDR3 whereas it was up-regulated in the absence of PDR3 under both nutritional 

limitations. Despite the role of Hap4p as being active during growth on non-fermentable 

carbon sources [169, 170], its expression was low in ∆qdr3/∆qdr3 even under glucose 

limited conditions whereas the expression of the gene was high in ∆pdr3/∆pdr3 even 

during the presence of sufficient amounts of glucose to switch the metabolism to 

fermentation. This might possibly indicate the presence of a drug resistance mechanism 

associated with respiration by-passing the effect of the fermentable carbon source, glucose, 

through the respiration controlling transcription factor Hap4p.  
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Table 4.4. Differentially expressed genes encoding transcription factors (TFs) 

 Trend* and significance of differential change  (p-value) 

TF encoding 

gene 
Q –G** Q-A** P-G** P-A** 

GCN4 u-r (1.10E-03) d-r (1.01E-03) u-r (1.01E-03) d-r (1.06E-03) 

GIS2 u-r (2.41E-02) u-r (1.70E-02) d-r (3.24E-02) d-r (2.29E-02) 

ASH1 u-r (2.89E-02) d-r (3.52E-02) u-r (2.06E-02) d-r (3.82E-02) 

ABF1 u-r (4.60E-02) u-r (2.97E-02) u-r (4.99E-02) d-r (3.66E-02) 

SIN3 u-r (2.90E-02) d-r (2.96E-02) d-r (2.98E-02) d-r (3.04E-02) 

CDC39 u-r (3.24E-02) u-r (4.45E-02) d-r (3.21E-02) d-r (4.66E-02) 

HAP1 u-r (3.54E-02) d-r (1.24E-02) u-r (4.39E-02) d-r (2.03E-02) 

RSF2 u-r (4.40E-02) d-r (4.14E-02) d-r (4.75E-02) d-r (4.88E-02) 

IXR1 u-r (5.47E-02) u-r (5.64E-02) u-r (5.60E-02) u-r (5.40E-02) 

MET4 u-r (5.99E-02) d-r (5.07E-02) u-r (4.22E-02) d-r (4.93E-02) 

HAP4 d-r (4.44E-02) d-r (3.98E-02) u-r (2.25E-02) u-r (2.97E-02) 

ZAP1 - u-r (1.54E-02) - u-r (1.99E-02) 

STP3 - u-r (4.30E-02) - d-r (4.88E-02) 

MIG2 - u-r (4.61E-02) - u-r (5.81E-02) 

IFH1 - d-r (4.22E-02) - u-r (3.92E-02) 

HAC1 - d-r (1.26E-02) - u-r (1.83E-02) 

STP2 - d-r (4.96E-02) - d-r (4.23E-02) 

RIM101 - d-r (4.94E-02) - d-r (5.97E-02) 

AFT1 - d-r (4.56E-02) - d-r (5.52E-02) 

CUP9 - d-r(4.84E-02) - d-r (5.28E-02) 

PHD1 u-r (3.72E-02) - u-r (3.65E-02) - 

CAT8 u-r (4.30E-02) - u-r (4.63E-02) - 

OPI1 u-r (4.76E-02) - u-r (4.25E-02) - 

ROX1 d-r (4.49E-02) - u-r (3.28E-02) - 

SUM1 d-r (5.36E-02) - u-r (2.29E-02) - 

GIS1 d-r (5. 94E-02) - d-r (5.08E-02) - 

ADR1 u-r (4.78E-02) - - - 
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 Table 4.4. Differentially expressed genes encoding transcription factors (TFs), cont. 

 Trend* and significance of differential change  (p-value) 

TF encoding 

gene 
Q –G** Q-A** P-G** P-A** 

RPN10 u-r (5.42E-02) - - - 

MGA2 u-r (5.54E-02) - - - 

NRG2 - u-r (4.60E-02) - - 

TYE7 - u-r (5.37E-02) - - 

MIG1 - u-r (5.71E-02) - - 

UGA3 - d-r (5.65E-02) - - 

SPT23 - d-r (5.96E-02) - - 

HMRA2 - - u-r (2.86E-02) - 

LYS14 - - d-r (2.40E-02) - 

HAL9 - - d-r (5.31E-02) - 

RAP1 - - - u-r (5.84E-02) 

MTH1 - - - d-r (4.94E-02) 

SWI1 u-r (3.97E-02) d-r (5.69E-02) u-r (3.79E-02) - 

DOT6 - u-r (3.09E-02) u-r (3.85E-02) d-r (3.53E-02) 

RPN4 u-r (4.22E-02) - d-r (4.39E-02) d-r (5.11E-02) 

BAS1 - u-r (4.93E-02) u-r (5.52E-02) u-r (4.90E-02) 

RSC30 d-r (3.63E-02) - d-r (2.51E-02) d-r (5.86E-02) 

*u-r: up-regulated, d-r: down-regulated 

**Q-G: ∆qdr3/∆qdr3 under glucose limitation, Q-A: ∆qdr3/∆qdr3 under ammonium limitation, P-G: 

∆pdr3/∆pdr3 under glucose limitation, P-A: ∆pdr3/∆pdr3 under ammonium limitation  

 

GIS2 and CDC39 were found to be up-regulated in the absence of QDR3 whereas it 

was down-regulated in the absence of PDR3 under both environmental limitations. The 

absence of GIS2 was previously reported to create decreased resistance to fenpropimorph; 

a morpholine fungicide and a reduction in the function of CDC39 was reported to result in 

a decrease in the resistance to the antineoplastic drug, hydroxyurea [29]. The expression 

levels of these two transcription factors might be induced so as to compensate for the 

deficiency in drug resistance capacity that was created by the absence of QDR3. Such 
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compensation was not observed in the absence of PDR3, possibly due to the presence of 

PDR1 superseding PDR3. 

 

CAT8, OPI1 were up-regulated and GIS1 was down-regulated in both strains under 

glucose limitation. The decreased rapamycin resistance displayed by the null mutant of 

CAT8, the transcriptional activator necessary for de-repression of genes under non-

fermentative growth conditions [171], as well as the decreased resistance to a variety of 

chemicals including sodium arsenite, CTBT, amiodarone, sulphanilamide, BPS, benomyl, 

calcium dichloride and wortmannin, displayed by OPI1 might indicate that the up-

regulation in these transcripts might have been triggered to compensate for the reduced 

chemical resistance induced by the deletion of the drug resistance genes [29]. An 

interesting point that requires further investigation was the down-regulation of GIS1 in 

both mutant cultures under glucose limitation, which encodes a transcription factor 

involved in gene expression during nutrient limitation and also during transition to 

stationary phase [172, 173]. The haem-dependent repressor of hypoxic genes, ROX1 and 

the transcriptional repressor required for the mitotic repression of middle sporulation 

specific genes, SUM1 were down regulated in ∆qdr3/∆qdr3, whereas they were up 

regulated in Δpdr3/Δpdr3 under this condition. The down-regulation of ROX1 might 

indicate that the yeast might have perceived its glucose limited and aerated environment as 

being insufficient in terms of the available oxygen in the absence of QDR3 gene. On the 

other hand, SUM1 might have been replacing functions during the absence of PDR3 gene 

since its null mutant was previously reported to result in decreased resistance to 

streptomycin, amitrole, cycloheximide, fluconazole and sulfometuron methyl [29].  

 

MIG2 was among the genes that were differentially expressed under ammonium 

limitation in both strains. Increased transcription of MIG2 in both Δqdr3/Δqdr3 and 

Δpdr3/Δpdr3 under ammonium limitation could be attributed to the fact that in the 

presence of sufficient amounts of glucose, MIG2 is required for the repression of the genes 

involved in the utilization of carbon sources other than glucose [174]. The loss of function 

of these transcription factors except for MIG2 all cause decreased resistance to heavy 

metals, toxins or chemicals and their differential expression in the absence of drug 

resistance genes might attribute to their properties to overcome this limitation within the 

cell.  
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The ADR1, RPN10 and MGA2 were significantly up-regulated in ∆qdr3/∆qdr3, 

whereas HAL9 was among the genes whose expression was significantly down-regulated 

in Δpdr3/Δpdr3 under glucose limitation. The protein encoded from MGA2, taking part in 

fatty acid desaturation, was involved in lipid biosynthetic activity which is controlled by a 

number of stimuli such as changes in the availability of lipid nutrients [175] and varying 

the available nutrient might be concluded to impose a change in the activity of the lipid 

biosynthetic pathways in the absence of QDR3 but not of PDR3. ADR1, whose gene 

product is the carbon-source-responsive transcription factor involved in the expression of 

genes that are regulated by glucose repression, was up-regulated when the available 

amount of glucose was limited in the medium in the absence of QDR3 [176]. Thus, in the 

absence of this gene, the metabolism tried to behave in such a way as to adjust itself to 

survive in glucose excess conditions. The absence of RPN10 was reported to be associated 

with a decreased resistance to bleomycin, one of the anti-tumour drugs to which QDR3 

provides resistance [177]. Thus the up-regulation in RPN10 might have been directly 

associated with the efforts to compensate for the absence of QDR3. Since the null mutation 

of HAL9 causes increased nutrient utilization, the cellular mechanisms would have been 

adjusted in such a way in order to optimize the uptake of glucose under limited conditions 

in the absence of PDR3 by decreasing the expression level of the HAL9 transcription factor 

[29]. 

 

NRG2 and MIG1 were among the genes that were found to be up-regulated, and 

UGA3 and SPT23 were down-regulated in the absence of QDR3 under ammonium 

limitation. A significant up-regulation of NRG2 gene whose product is a negative regulator 

of pseudohyphal growth was observed for Δqdr3/Δqdr3 in N-source limitation [178]. On 

the other hand, this observation for NRG2 was in accordance with its functional role of 

negative regulation of glucose-repressed genes [179] within the significant subset of 

Δqdr3/Δqdr3 of ammonium limitation. Increased transcription of MIG1 in Δqdr3/Δqdr3 

under ammonium limitation is in conjunction with its repressive function in the utilization 

of carbon sources other than glucose and in gluconeogenesis in the presence of glucose 

[174]. The cold responsive SPT23, which was significantly down-regulated in 

Δqdr3/Δqdr3 under ammonium limitation, was also involved in lipid biosynthetic activity 

[175] and varying the available nutrient was again observed to impose a change in the 

activity of the lipid biosynthetic pathways in the absence of QDR3 but not in PDR3.  
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Despite its role in nitrogen utilization, UGA3 was down-regulated in the absence of QDR3, 

although under ammonium limited conditions the cells would have required an efficient 

utilization of the available nitrogen sources [180]. The expression of TF encoding genes 

was not significantly and exclusively affected in Δpdr3/Δpdr3 under ammonium limitation 

(Table 4.3).  

 

4.1.3.4.  Alterations in glycerol metabolism to cope with the loss of drug resistance genes. 

One of the most outstanding differences in intracellular metabolite levels was observed in 

the accumulation of glycerol and D-glucose. Therefore the glycerol production mechanism 

and related pathways of the central carbon metabolism in ∆qdr3/∆qdr3 or ∆pdr3/∆pdr3 

under glucose or ammonium limitation were investigated integratively using the 

information provided by the endometabolome and the transcriptome as well as the 

metabolic flux distributions. Differences in the distribution of metabolic fluxes in the 

deletion strains under glucose or ammonium limitation were determined by the predictions 

obtained from flux balance analysis. The reaction fluxes in the metabolic pathways were 

best predicted through the maximization of the oxygen uptake in glucose limited 

fermentations and of the ethanol production in ammonium limited fermentations with 

sufficient amount of glucose in the medium. The solution space was constrained by the 

exometabolite concentrations for each deletion under each nutrient limitation. 

 

The absence of drug resistance mutants resulted in differences in the respiration – 

fermentation characteristics that would be expected to take place in wild-type yeast strains 

in the presence of abundant or limited amounts of glucose (Figure 4.3). The amount of 

intracellular glucose was higher in all cultures of mutant strains than what was observed 

for wild type, even though it was slightly lower in the case of the QDR3 deletion under 

glucose limitation than the others, which would be an indicator of a more efficient route to 

glucose utilization by this mutant. Since PDR3 would possibly be responsible for the 

functioning of the low-affinity hexose transporter Hxt1p and medium-affinity hexose 

transporter Hxt5p (as discussed above), Hxt3p (another low affinity hexose transporter) 

could replace the function of these proteins. The over-expression of HXT3 in ∆pdr3/∆pdr3 

under ammonium limitation supported this prediction. Interestingly, the expression levels 

of high affinity hexose transporters were not altered in comparison to their expression 

levels in wild-type strains under glucose limitation, although the intracellular accumulation 
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of glucose was apparent. The expression levels of both low-affinity hexose transporters 

HXT1 and HXT3 were up-regulated in ∆qdr3/∆qdr3 when glucose was abundant. A slight 

down-regulation of HXT4 was observed under glucose limitation and this would be 

responsible for the slightly less accumulation of intracellular glucose under this condition.  

  

 

Figure 4.3. Differences in glycerol production mechanism for ∆qdr3/∆qdr and ∆pdr3/∆pdr 

under glucose or ammonium limitation. Green: up-regulation or increase, red: down-

regulation or decrease, black: no data, blue: no significant change. 

 

Not only the uptake, but also the mechanisms of formation of glucose were triggered 

in the loss of drug resistance mutants. Since the glucose transport mechanisms were active 

in all conditions, the increase in the expression of gluconeogenic pathway genes appeared 

slightly less expected. ∆pdr3/∆pdr3 mutant adjusted the expression levels of the 

gluconeogenic genes based on the availability of extracellular glucose, down regulating the 

expression of the genes whenever extracellular glucose was available. On the other hand, 

an up-regulation of gluconeogenic pathway genes was observed in glucose or ammonium 

limited cultures of ∆qdr3/∆qdr3, regardless of the availability of glucose indicating the 

unresponsiveness of the genes from this pathway to either the intracellular or the 

extracellular glucose concentrations.  
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The expression levels of the genes involved in glycogen biosynthesis or catabolism 

were not significantly altered but slightly down-regulated to accompany the high 

concentrations of available intracellular glucose for either mutant strain under ammonium 

or glucose limitation indicating that high intracellular concentrations of glucose was not 

specifically directed towards the synthesis of glycogen, the storage carbohydrate, or neither 

was glycogen catabolised to supply additional glucose for the metabolism. The tendency of 

these mutants to re-arrange their metabolism for maintaining high levels of glucose in the 

cell would be considered as a means of enabling an anoxic fermentative environment to 

cope with the loss of drug resistance properties.  

 

Glycerol production and the glycolytic flux pathways were previously reported to be 

related [181]. Despite differences in the availability of glucose, a fermentable carbon 

source, being present as the sole carbon source in these fermentations, the fluxes and the 

expression levels of the genes taking role in glycolysis, fermentation and the tricarboxylic 

acid cycle were constitutively up- or down-regulated without displaying a trade-off except 

for the case of the ∆pdr3/∆pdr3 mutant grown under glucose limitation, in which the 

response of the transcripts in the glycolytic pathway and the TCA cycle were similar to 

each other and different from those in fermentation. The genes in these pathways were 

down-regulated regardless of the amount of glucose available in the medium in the 

fermentation of the ∆pdr3/∆pdr3 mutants. However, the genes of the fermentation and 

gluconeogenesis pathways were up-regulated under glucose limitation and this was 

accompanied by the accumulation of intracellular pyruvate whereas these pathways were 

down-regulated under ammonium limitation when the available glucose was abundant 

accompanied by low intracellular pyruvate concentrations. The loss of QDR3 gene resulted 

in the up-regulation of the genes taking role in glycolysis, fermentation and TCA cycle 

under glucose limitation while down-regulation was observed under ammonium limitation 

when the glucose was abundant.  

 

A strong accumulation of glycerol was detected in all cases except for the 

∆qdr3/∆qdr3 mutant grown under ammonium limitation. However, this accumulation was 

accompanied by the strong down-regulation of the glycerol exporter gene, GUP2, only in 

one case, and that was for the ∆qdr3/∆qdr3 mutant grown under glucose limitation. It was 

previously reported that yeast cells produced glycerol under anaerobic and glucose 
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repressing growth conditions in order to maintain a cytosolic redox state conducive to 

sustain glycolytic catabolism [182]. However, the present observation of glycerol 

accumulation in aerated glucose limited cultures of yeast cells would indicate an alteration 

in the yeast metabolism as a response to cope with the loss of drug resistance genes. 

Therefore GUP2 would possibly be down-regulated to maintain high intracellular 

concentration of glycerol. 

 

Although glycerol was previously reported to be a by-product of yeast ethanol 

fermentation [182], the loss of PDR3 was observed to alter this coupling resulting in the 

two phenomena to become independent events under ammonium limitation both in terms 

of intracellular and/or extracellular metabolite concentrations as well as the expression 

levels of the genes involved in either one of the metabolisms.  

 

The genes taking role in the utilization of glycerol were up-regulated except for the 

case of the ∆pdr3/∆pdr3 mutant grown under ammonium limitation.  Although glycerol 

production and accumulation has previously been reported to be stimulated under stress 

conditions, these mechanisms are yet unclear in terms of providing explanatory 

information [181]. The stress conditions created by both the limitation of a macronutrient 

as well as the loss of a drug resistance gene both induced the production of glycerol 

through the up-regulation of the GPD genes and RHR2 as well as the up-regulation of 

genes taking role in another route, glycerophospholipid metabolism, releasing glycerol as a 

by-product of cardiolipin production except for the ∆pdr3/∆pdr3 mutant grown under 

glucose limitation.   

 

Despite the down-regulation of the expression levels of the TCA cycle enzymes, the 

expression levels of the genes involved in oxidation-reduction on the mitochondrial 

membrane were higher in ∆pdr3/∆pdr3 than their levels in wild type under ammonium 

limitation. The genes involved in the oxidation-reduction phenomenon taking role in the 

mitochondrial membrane in respiratory chain complexes II and III remained up-regulated 

in ∆qdr3/∆qdr3 mutants, regardless of the amount of glucose supplied into the 

environment. It was previously reported that the expression of GPD2 taking role in 

glycerol production was induced by anoxic conditions [183]. The up-regulation observed 

in the expression level of this gene under ammonium limitation where abundant glucose 
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was available indicated that glycerol formation was facilitated to act as a redox sink to 

maintain the redox state under fermentative conditions. The high intracellular 

accumulation of glucose would possibly mimic the anoxic condition that the cells required 

in order to activate such mechanisms. 

 

The intracellular accumulation of glycerol in ∆pdr3/∆pdr3 under glucose limitation 

despite the up-regulation of the genes taking role in its utilization and the down-regulation 

of the enzymes involved in its production remains unclear via any known routes of yeast 

and could only be explained through the presence of yet undisclosed alternative pathways. 

However, under ammonium limitation, the production of glycerol could not be facilitated 

through the glycerophospholipid pathways due to the down-regulation of the enzymes 

catalysing the production of L-threonine from oxaloacetate. Therefore, the glycerol 

accumulation could solely be attributed to the up-regulation of the genes involved in its 

production and the down-regulation of the genes taking part in its utilization.  

 

The lower concentration of intracellular glycerol observed for the ∆qdr3/∆qdr3 

mutant under ammonium limitation would be attributed to the abstinence to supply 

sufficient amounts of L-threonine that would be used for L-serine production, which in 

turn was required for the glycerophospholipid metabolism. Under these conditions, the 

glycerophospholipid metabolism would be identified as the more significant supplier of 

glycerol. As soon as the expression levels of the genes in this metabolic pathway were 

rendered low, the intracellular accumulation of glycerol was relieved. 

 

4.1.4.  Study Conclusions 

 

The intracellular rearrangement of gene expression levels, metabolite concentrations 

and the predicted fluxes were integrated for the homozygous deletion mutants of drug 

resistance genes from two different families; QDR3 from the multidrug resistance family 

and PDR3 from the pleiotropic drug resistance family grown in aerated continuous 

fermentations under glucose or ammonium limitation. The availability of glucose was the 

dominant parameter in determining the hierarchical organization of transcriptome and 

endometabolome in the absence of these drug resistance genes. Yeast re-adjusted its 

metabolism to cope with the loss of drug resistance genes by inducing the expression of 
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growth associated genes whereas rendering the expression of heat response genes low 

mimicking a similar response to increasing the growth rate. In addition, transcriptional 

regulation was used as a mean to increase the yeast‟s resistance to external chemical 

factors through down- up-regulation of transcription factors involved in increased chemical 

resistance. ∆qdr3/∆qdr3 utilized potassium ion homeostasis as well as the re-adjustment of 

the expression levels of transcription factors in order to cope with its decreased resistance 

to external factors of toxicity.  

 

Alterations in the mechanism of drug resistance either by ATP mediated transport or 

by proton pumps caused significant changes in the central carbon mechanism and glycerol 

related pathways. The mechanism was possibly associated with respiration, regardless of 

the availability and the amount of a fermentable carbon source in the medium through the 

respiration controlling transcription factor Hap4p. A strong accumulation of glucose and 

glycerol, even in glucose limited aerated cultures, as well as the decoupling of glycerol 

production and fermentation could be attributed to the re-arrangement of the metabolism to 

cope with the loss of drug resistance genes. The glycerophospholipid metabolism would be 

the more significant supplier of glycerol in the absence of QDR3 whereas the increase in 

the amount of glycerol through its production pathway as well as its little utilization by the 

PDR3 mutants under ammonium limitation could be attributed to the accumulation of 

glycerol. These re-arrangements enabled the maintaining of the redox state under the 

anoxic conditions dictated by the intracellular accumulation of glucose. 

 

Alterations in the drug resistance mechanisms were shown to result in perturbations 

in sensing and rearrangement of the metabolism as well as switching on or off of several 

transcriptional regulatory mechanisms in response to the availability of glucose in the 

environment. Loss of QDR3 gene could be related to the loss of resistance to chemical 

drugs from a wide range of applications including the chemotherapeutic agents; bleomycin 

and cisplatin. The anoxic conditions created by the presence of available glucose in the 

loss of QDR3 gene and switching of the metabolism to accumulate intracellular glycerol to 

maintain the redox balance might imply that metabolic arrangements for the removal drug 

resistance would need to be evaluated carefully since the central carbon metabolism was 

completely affected by this change. Tumour cells prefer anoxic conditions for growth and 

development, which is similar to the conditions investigated in this study, and the 
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unexpected observations on the central carbon metabolism that were provided by this study 

indicated the necessity for the systems based evaluation of metabolism upon genetic 

manipulations conducted on drug resistance mechanisms. These arrangements were 

conducted to cope with the loss of drug resistance genes by helping to maintain the 

integrity of the cell, aiding in its survival and developing novel mechanisms to adapt to the 

newly encountered environmental conditions. These changes are yet unclear and require 

further investigation under the light of the present findings. 

 

4.2.  Prediction of genetic interactions from phenotype via chemical genomics and 

synthetic genetic arrays 

 

4.2.1.  Background 

 

Phenomics is a field of study concerned with the characterization of phenotypes, 

which are characteristics of organisms that arise via the interaction of the genome with the 

environment. Phenotype analysis is used to ascertain gene function and it refers to any type 

of phenotypic analysis of genomic information to understand the relationship between 

genes and higher levels of organization in the cell. The development and implementation 

of genome-wide analytical techniques, which can be generally named under „omics‟, 

provide information of mRNA, protein and metabolite levels in the whole cell. However, 

the operational unit of function in cells can more properly be seen fully as assembled 

biochemical networks and from their properties such as connectivity, interactions and 

dynamic properties [184].  

 

With the advances in genome sequencing and large-scale genetic analyses, genetic 

interactions of large scale have been available for many organisms. These advances have 

proposed a new challenge on researchers to understand how genes function as networks to 

carry out and regulate cellular processes. Saccharomyces cerevisiae is a suitable model 

organism to gain insights into genetic interactions and networks due to the availability of 

powerful functional genomic tools to allow systematic analyses. This helps in 

understanding interacting components as well as key properties of the genetic networks in 

which they participate. Understanding genetic-interaction networks in yeast serve a higher 

purpose as similar networks are expected to underlie the relationship between genotype 
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and phenotype in outbred populations in which combinations of specific alleles determine 

the fitness of individuals. Moreover, complex genetic disorders with multiple effectors are 

largely unknown in higher organisms and understanding and mapping genetic networks in 

model organisms such as yeast provides a starting point in studying and understanding 

similar interactions in those organisms [38]. 

 

Genetic interactions tend to occur among functionally related genes, although for 

essential genes, interactions correspond to a broader functional range. Because of this 

reason, the set of genetic interactions observed for a particular query gene may suggest a 

function for that gene [38]. Synthetic lethal interactions identify pathways that buffer one 

another and therefore, genetic interaction maps are useful in identifying enzyme-substrate 

relationships. The upstream activators and downstream targets of specific enzymes might 

be identified from genetic identification profiles. The interaction relationships might also 

be used to identify proteins that are negatively regulated by specific enzymes [38]. 

 

Epistasis is defined as the interaction between different genes and it has been a 

growingly interesting topic in complex disease genetics. Complicating factors, such as an 

increased number of contributing loci and susceptibility alleles, penetrance and 

contributing environmental effects, cause the search for treatment of diseases with complex 

traits to be harder and the results to be less successful than simple Mendelian disorders. 

The presence of epistasis is particularly important if the effect of one locus is altered or 

masked by the effects at another locus and therefore the power to detect the first locus is 

reduced. Elucidation of the joint effects at the loci is hindered by their interaction [185].  

 

Fitness, a class of phenotype is central to many genetic interaction studies. Fitness 

originally was a measure of population allele frequencies [186, 188, 188]. It can also be 

determined by using growth rates of isogenic microbial cultures. 

 

In order to gain a thorough understanding of complex biological processes and 

functional relationships, small molecules can also serve as replacements of mutations. 

These molecules have the advantage of providing rapid and reversible modulation of gene 

activity. The use of such probes on a genome wide scale is generally termed as „chemical 

genomics‟. Chemical genomics is based on the idea that deletion of a gene encoding the 
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target of an inhibitory compound should result in similar effects to inhibition of a target by 

drug treatment. In a chemical-genetic interaction, a deletion mutant is hypersensitive to a 

normally sub-lethal concentration of a growth inhibitory compound. The comparison of a 

chemical-genetic profile to a synthetic-lethality profile should identify pathways and 

targets that are inhibited by drug treatment (Figure 4.4). A comprehensive compendium of 

global genetic interaction profiles might allow the targets of growth-inhibitory compounds 

to be identified. For therapeutic intervention, gene-drug and drug-drug combinations 

inhibiting cellular systems should be investigated because most genes are non-essential and 

that cell function reflects interconnected robustness. Chemical genomics studies might 

enable identification of compounds that target specific pathways and selectively kill cells 

with defined mutant phenotypes to prevent and cure diseases [38]. 

 

 

Figure 4.4 Chemical-genetic and synthetic lethal interactions [38] 

 

In this study, the chemical genomics approach was used to investigate the yet 

undisclosed genetic relationships among two families of drug resistance genes; the DHA12 

family from major facilitator superfamily and the PDR drug resistance family from the 

ABC drug transporters super-family in yeast. The query gene was selected as QDR3. The 

anti-malarial drug quinidine, the pesticide barban, the chemotherapeutic agents bleomycin 

and cisplatin were selected as the query drugs since QDR3 gene provides resistance to 

these drugs. This study is believed to be the first study to investigate the resistance 

mechanisms and genetic interactions among these two drug resistance families using this 

approach.  
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4.2.2.  Methods 

 

4.2.2.1. Selection of drug resistance mutants. The deletion strains were selected from 

BY4742 (MATα his3∆1 leu2∆0 lys2∆0 ura3∆0) background [23]. The deletion strains that 

were used are ∆ho as control, ∆aqr1, ∆flr1, ∆qdr1, ∆qdr2, ∆qdr3, ∆dtr1, ∆hol1, ∆yhk8, 

∆tpo1, ∆tpo2, ∆tpo3, and ∆tpo4 from the DHA12 drug resistance family and ∆pdr1, 

∆pdr3, ∆pdr5, ∆pdr8, ∆pdr10, ∆pdr11, ∆pdr12, ∆pdr13, ∆pdr15, ∆snq2, ∆aus1, ∆ngg1, 

∆yor1, ∆war1, ∆yrr1, ∆yap1, ∆yap8, ∆rdr1, ∆msn2, and ∆yrm1 from the PDR family. The 

deletions in the strains were confirmed by diagnostic PCR.   

 

4.2.2.2. Determination of drug dosages. All drugs were purchased from Sigma; Bleomycin 

sulphate from Streptomyces verticillus B5507, cis-Diamineplatinum (II) dichloride P4394, 

quinidine Q3625, barban PS540 and G418 disulphate salt G5013. The drug stock solutions 

were prepared as described elsewhere [152]. The stock solutions were; 40 mM barban in 

acetone, 8.44 mM cisplatin in saline solution, 1.26 mg/ml bleomycin in water and 10 mM 

quinidine in 70% ethanol. All solutions were kept refrigerated and used within a month of 

preparation. In the growth media following the addition of the solutions, care was taken to 

keep the ethanol concentration below 1.4% (v/v) and the acetone concentration below 

0.3% (v/v) in order to avoid growth inhibition due to the presence of the solvents. Lethal 

concentrations of the drugs were determined by growing ∆ho and ∆qdr3 mutants in micro-

aerated YPD+geneticin (200µg/l) environment supplemented by the drugs. The lethal 

concentrations were determined as being above 0.08 mM for barban, 1.2 mM for 

quinidine, 38 mg/ml for bleomycin and 5.91 mM for cisplatin. 

 

4.2.2.3. Randomization of strains on pinning plates and wells, pinning and replication. The 

positioning of cells on the pinning plates were randomized such that on a 96-well or 96-pin 

plate, 3 randomly selected strains were present as duplicates and the remaining 30 strains 

were present as triplicates. Among the replicates, it was ensured that at least one pinning 

was done on the inner portion of the plate rather than the sides to eliminate the edge 

effects. The master plate was prepared in a 96-well plate using liquid medium (YPD + 

geneticin (200µg/l)). The agar plates of the same medium were prepared in triplicates and 

except for the control plates, the drugs were added to attain the desired concentrations. 

Plate inoculations and replications were carried out using Singer Instruments Rotor HDA. 
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4.2.2.4. Colony visualizations, size determination and calculation of significance and 

epistasis. The visualization of the colonies and the colony perimeter/area/volume 

determinations were carried out using the software provided by the gel documentation 

equipment; UVITec transilluminator Fire Reader v. 15.08 for Windows. The significance 

analysis was carried out using Student‟s t-test as the statistic and the significance threshold 

was determined as 10
-3

. Product formulation was used for the determination of epistasis 

from colony areas as described in Section 2.2.2.2. Average colony areas were used in the 

calculations. 

 

4.2.3.  Study results 

 

4.2.3.1. Growth defects. The DHA12 and ABC transporter family mutants have been 

screened for their growth performances using quinidine in the chemical screens. The 

maximum available non-lethal concentration of quinidine (1.2 mM) was used in the 

screens. Both control and drug treated plates were grown on geneticin. The control 

triplicates and the drug-treated triplicates are presented in Figure 4.5. The colony sizes 

determined from pixel counts are provided in Appendix F. The interplate differences 

among the replicates were determined to be insignificant (p-value < 10
-3

) in both treated 

and untreated pinnings.  

 

The measure of growth was determined in terms of colony areas. Growth of ∆qdr3 

and ∆pdr5 mutants indicated that a fitness defect was not observed for these two mutants 

on untreated environment in comparison to the growth of ∆ho (p-value < 10
-3

). On the 

other hand, ∆ngg1 had a significant decrease in growth (p-value < 10
-5

) even on the control 

environment. The fitness of both ∆ngg1 and ∆pdr5 mutants was decreased significantly (< 

10
-5

 and < 10
-4

, respectively) in the treated samples in comparison to the growth 

performance of ∆ho whereas no significant change was observed for ∆qdr3. The quinidine 

treatment on the other hand directly affected the fitness of ∆pdr5 (p-value < 10
-5

) whereas 

a significant difference could not be observed for the other strains.     

 

4.2.3.2. Determination of epistasis. The statistical evaluation of the growth defect in both 

∆ngg1 and ∆pdr5 mutants indicated that the growth of these mutants was significantly 
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altered in response to the treatment by the drug quinidine replacing the loss of function by 

QDR3. The extent of epistasis was calculated using the product rule (Table 4.5).  

 

  

Figure 4.5. Drug screens for the replicates (in red or in blue) in quinidine untreated (a) and 

quinidine treated (b) strains with ∆qdr3 indicated by blue arrow, ∆ho indicated by red 

arrow, ∆ngg1indicated by red circles and ∆pdr5 indicated by blue circles 

 

A strong epistasis was observed for both gene pairs; QDR3-NGG1 and QDR3-PDR5. 

Both of the proposed interactions were previously not reported. However, in previous 
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studies, PDR5 was observed to be down regulated in the absence of QDR3 gene and NGG1 

was slightly up-regulated in the absence of QDR3 (Section 4.1.3). PDR5 was previously 

reported as a multi-drug transporter with a decreased resistance to several anti-fungal and 

chemotherapeutic agents [154, 156]. The epistatic interaction that was observed between 

the two multi-drug transporters would indicate complementary roles in drug resistance in 

terms of ATP mediated and proton pump transfer of toxic chemicals out of the cell. The 

amino terminal domain of NGG1, a transcriptional regulator involved in glucose 

repression, was shown to interact with PDR1 and PDR3 transcriptional domains and it was 

also reported to take role in retrograde transport although no physical or chemical 

interactions with any of the QDR family genes were reported and further investigation of 

this interaction might lead towards novel findings on drug resistance –glucose regulation 

relationship, which was discussed in Section 4.1.3 [189, 190].  

 

Table 4.5. Determination of epistasis between QDR3 – NGG1 and QDR3 – PDR5 

gene pairs 

Average colony areas untreated treated 

∆ho 414 430 

∆qdr3 543 472 

∆ngg1 234 110 

∆pdr5 413 183 

Growth ratios with respect to ∆ho  untreated treated 

∆qdr3 1.310789 1.097325 

∆ngg1 0.566023 0.254879 

∆pdr5 0.997182 0.425746 

Multiplicative epistatic effect observed calculated 

QDR3-NGG1 0.254879 0.741936 

QDR3-PDR5 0.425746 1.307095 

 

4.2.2.  Future prospects 

 

This on-going study shed light onto the identification of novel genetic interactions, 

which were proposed by chemical genomics studies. A single drug, quinidine was 

sufficient to identify two novel interactions involving NGG1 and PDR5 with QDR3. 
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Colony formation was amorphous in the presence of barban as the treatment drug (data not 

shown). Further dosage optimization studies would be needed to confirm this colony 

deformation and cell morphologies would be investigated in conjunction with the drug 

treatment studies. Further analyses would be carried out using the chemotherapeutic 

agents; bleomycin and cisplatin. The proposed novel interactions would be confirmed by 

synthetic genetic arrays creating double mutants and the fitness of the drug resistance 

mutants would further be investigated through competition experiments using yeast TAG 

microarrays with universal molecular barcodes. 
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5. CONCLUSION 

 

 

Prediction of phenotype from genome-scale high-throughput network and component 

information still remains a challenge for systems based approaches in biological research. 

The aim of this thesis was to identify the effect of plasticity on the prediction of novel 

genetic interactions leading to a decrease in fitness and causing synthetic sickness or 

lethality within the network of yeast in a quantitative manner. The conditional fitness of 

yeast cells, which were subject to changes in their physiology, was investigated taking the 

concept of plasticity into consideration.   

 

In the first part of this study, in order to improve the predictive power of Flux 

Balance Analysis for epistatic interactions, the effect of variations in the composition of 

biomass constituents on flux distributions was investigated. This study revealed the 

importance of plasticity and the biomass composition in predicting flux distributions. 

Biomass formation can be predicted with less than only 10% discrepancy, only for the 

mid-exponential phase, during which a quasi-steady state would be assumed, but not for 

the early or the late exponential phase. The distribution of fluxes indicated that the amino 

acid production and utilization pathways would be a suitable choice for monitoring fitness 

through manipulations in metabolic fluxes. The changes in the biomass composition were 

found to affect different parts of the metabolism under different environmental conditions. 

Thus, the results of this chapter of the study indicated that the predictive power of flux 

balance analysis could be enhanced by taking the effect of the environment on the 

metabolism and its regulation (plasticity) into consideration. 

 

In the second and third parts of this thesis, the effect of environmental and genetic 

perturbations on the metabolism and its regulation in yeast was investigated.  

 

Dynamic re-organization of yeast metabolism in response to two nutritional 

perturbations involving glucose or ammonium was analysed by monitoring the short- and 

long-term transient changes at both transcriptome and metabolome levels using a systems 

based approach. The time scale of the investigation ranged from seconds to hours, allowing 

the elucidation of both the metabolic and regulatory switches that enable yeast cells to 
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adapt to, and recover from a transient change in the nutritional environment. The 

experimental design was such that the specific perturbation was uniquely introduced into 

an otherwise carefully controlled environment. A glucose impulse was injected into a 

steady-state glucose limited culture and an ammonium impulse into a corresponding 

ammonium –limited steady state culture. The quantification of the dynamic changes in the 

transcriptome and the metabolome in response to an impulse-like perturbation in nutrient 

availability and the integration of these data with the pathway information revealed long-

term dynamic re-organization yeast cells. Metabolic processes, which were affected at 

distinct time scales as a response to the relaxation from nutritional limitations, were 

identified. The changes in expression levels of transcripts following the glucose 

perturbation were more pronounced and sudden when compared to the relaxation from 

ammonium limitation. The dynamic re-programming of the cell in response to carbon 

catabolite repression displayed a more complex behaviour than what was observed for the 

nitrogen catabolite repression. The transcriptional and the metabolic responses observed 

for nitrogen catabolite repression were not as severe as those for carbon catabolite 

repression. The molecular basis of the changes in energy homeostasis as a response to the 

impulse-like perturbations was clarified. A novel integrative approach to extract hidden 

information from dynamic high-throughput data was developed to improve the predictions 

of genetic interactions from these data. 

 

The response to genetic perturbations from deletions of QDR3 or PDR3 genes, which 

are members of two separate multi-drug resistance families, were investigated and 

compared using a system based integrative approach. The homozygous deletion mutants of 

QDR3, PDR3 and HO genes were grown in glucose or ammonium limited continuous 

cultures. Transcriptome, endo- and exometabolome profiles at steady state as well as the 

flux distributions in the optimized solution space were compared to understand the 

molecular basis of the drug resistance and the changes induced by the deletion of these 

genes in two different environmental conditions. The availability of glucose was the 

dominant parameter in determining the hierarchical organization of the transcriptome and 

the endometabolome in the absence of these drug resistance genes. Yeast re-adjusted its 

metabolism to cope with the loss of drug resistance genes by inducing the expression of 

growth associated genes whereas rendering the expression of heat response genes low 

mimicking a similar response to increasing the growth rate. The molecular basis of the 
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changes induced by the genetic alterations in drug resistance either by ATP mediated 

transport or by proton pumps was clarified by using a system based approach. A 

chemogenomic approach was also developed to predict lethal drug-gene interactions using 

drug treatment as bait; and the deletion mutants of two drug resistance families, namely 

QDR3 or PDR3 were screened against drugs. Two novel interactions involving NGG1 and 

PDR5 with QDR3 were identified by chemical genomics studies.  

 

In conclusion, flux balance analysis should be considered for the prediction of 

phenotypic information and genetic interactions through implementation of regulatory 

information and plasticity information provided from the response of organisms to 

environmental perturbations. The results obtained from different levels of the systems 

based study should be integrated with chemogenomic information and through 

implementation of novel tools.  

 

In a broader perspective, the enhancement of our power of prediction of phenotype 

information would help unravel the complete quantitative genetic interaction network, 

which in turn would provide the link between genotype and phenotype. This would then 

enable reaching direct deductions about phenotype just with the knowledge of genotypic 

information on functional relationships and in return, might set a milestone for 

construction of quantitative genetic interaction networks of higher organisms including 

Homo sapiens as well as providing clues as to open reading frames encoding human 

genetic disorders through the use of their homologues in a model organism.   
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