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ABSTRACT 
 

 

CONFORMATIONAL TRANSITIONS OF PROTEINS EXPLORED 

BY MONTE CARLO SIMULATIONS INTEGRATED WITH 

COLLECTIVE MODES    
 

Elucidation of conformational transitions between open/closed or free/bound states 

of proteins sheds light on the mechanism of their action. In this thesis, a new technique 

(ANM-MC) is proposed, in which collective modes obtained from anisotropic network 

model (ANM) are used in conjunction with a Monte Carlo (MC) simulation approach to 

investigate conformational transition pathways and pathway intermediates of proteins. 

ANM-MC is applied to Adenylate Kinase (AK), hemoglobin, Human Serum Transferrin 

(HSTR), and Lysine/Arginine/Ornithine (LAO) binding protein. Target conformations are 

reached by root mean-square deviation (RMSD) of 2.27, 1.90, 1.81, and 1.40 Å for AK, 

hemoglobin, HSTR, and LAO-binding protein cases respectively. Intermediate snapshots 

seem as plausible pathway intermediates when compared with related x-ray structures. 

Targeted Monte Carlo (TMC) approach, which is a forcing algorithm towards the target, is 

utilized without the use of collective modes. Both ANM-MC and TMC can explore the 

sequence of events with an efficient yet realistic conformational search. ANM-MC is 

further improved to be applicable to proteins with unknown target conformations. In this 

technique, called RG-ANM-MC, starting from open conformation, transitional path is 

generated by selecting lowest energy conformations obtained by normal modes with 

decreasing radius of gyration (RG). Application of the method on AK, HSTR, and LAO-

binding proteins reveal 3.18, 3.45, and 2.61 Å RMSD approach values to corresponding 

target states, respectively. RG-ANM-MC proves to be an efficient tool for proposing 

plausible closed states of proteins exhibiting hinge-like high amplitude collective motions. 

Conformational changes arising due to ligand binding are found to be intrinsic properties 

of binding protein, i.e. unliganded proteins possess a pre-existing fluctuation mechanism 

even in the absence of ligands. In both approaches (ANM-MC and RG-ANM-MC), lowest 

frequency modes are effective during transitions. 



 

 

v

ÖZET 
 

 

PROTEINLERDE KONFORMASYONEL GEÇİŞLERİN KOLEKTİF 

MODLAR VE MONTE CARLO SİMÜLASYON TEKNİKLERİ İLE 

İNCELENMESİ 
 

 Proteinlerde açık/kapalı veya serbest/bağlı yapı arası geçişlerin incelenmesi, 

fonksiyonel mekanizmaların aydınlanması açısından büyük önem taşımaktadır. Bu tezde, 

Anisotropik ağ modeli yardımıyla elde edilen kolektif modların Monte Carlo (MC) 

simülasyon tekniği ile birlikte kullanılmasıyla ANM-MC olarak adlandırılan bir yöntem 

geliştirilmiş ve bu yöntem konformasyonel geçiş yolizlerinin ve ara yapıların elde 

edilmesinde ve incelenmesinde kullanılmıştır. ANM-MC, Adenylate Kinase (AK), 

hemoglobin, human serum transferrin (HSTR) ve Lysine/Arginine/Ornithine (LAO) 

binding protein üzerinde uygulanmış ve bu proteinlerin kapalı (hedef) yapılarına sırasıyla 

2.27, 1.90, 1.81, ve 1.40 Å kök ortalama kare sapması (RMSD) kadar yaklaşım 

sağlanabilmiştir. Simülasyon sonucu elde edilen ara yapılar, incelenen proteinlerle ilintili 

protein bilgi bankasından elde edilen kristal yapılarla karşılaştırılmış ve uygun ara yapı 

adayları oldukları gösterilmiştir. Kolektif hareketler kullanılmadan yapılan 

Hedeflendirilmiş Monte Carlo (TMC) tekniği de hedefe yaklaşabilmiş ve fiziksel olayların 

sıralarını göstermekte verimli bir yöntem teşkil etmiştir. Hedef yapıları bilinmeyen 

proteinlere de uygulanabilmesi adına geliştirilen RG-ANM-MC yöntemi ise düşük enerjili 

konformasyonlar ve proteinin kapanabilmesi için azalan jirasyon yarıçapı temel alınarak 

oluşturulmuştur. Bu yöntem ile, kapalı yapı ile ilgili hiçbir bilgi kullanılmadan AK, HSTR 

ve LAO-binding protein için hedef yapılara 3.18, 3.45 ve 2.61 Å RMSD kadar yaklaşım 

sağlanabilmiştir. RG-ANM-MC proteinlere, uygun kapalı yapılar önerebilecek bir yöntem 

teşkil etmektedir. Simülasyon sonuçları gösteriyor ki, bağlanma ile meydana gelen yapısal 

değişiklikler aslında proteinde var olan içsel bir özelliktir. Bir başka deyişle, bağlanan yapı 

yokluğunda da, protein serbest yapısıyla bu gibi konformasyonel geçişlere imkan verecek 

bir titreşimsel mekanizmaya sahiptir. Her iki yöntemde de (ANM-MC ve RG-ANM-MC) 

düşük titreşimli modlar ilgili geçişi elde etmekte etkili olmuştur.   
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1.  INTRODUCTION 
 

Proteins carry out important biological functions in living organisms such as 

catalysis, regulation, and transportation. The function of a protein is closely related to the 

conformational ensemble accessible to its three dimensional (3-D) structure. Usually 

experimental techniques such as x-ray crystallography and nuclear magnetic resonance 

(NMR) are used to obtain detailed atomic structures of macromolecules. Recent 

developments in experimental approaches provide complementary information about 

protein conformations. Cryo-electron microscopy (cryo-EM), fluorescence resonance 

energy transfer (FRET), and single particle tracking provide low-resolution conformations 

and information about conformational transitions with no atomic details. However, they 

are useful for elucidating molecular mechanisms and thus biological functions of protein 

complexes (Kasprzak et al., 1988; Frank, 1996; Branden and Tooze, 1999; Lakowicz, 

1999).  

 

Conformational changes between functional states of proteins are essential in 

biological activities such as opening and closing of ion channels or ligand binding to 

enzymes and receptors (Zheng et al., 2007). Understanding these biological events relies 

on the elucidation of transitional complexes and pathways (Kim et al., 2002; Lei et al., 

2004). NMR technique can be used to attain an average structure among an ensemble of 

conformations. The method explores highly populated conformations but fails to 

distinguish less populated intermediate conformations.  

 

Although a large part of the current knowledge of conformational flexibility in 

proteins is derived from experimental data (especially x-ray crystallography and NMR), 

there is currently no experimental technique that allows monitoring of protein 

conformational changes at atomic resolution as a function of time. Hence, the use of 

computational molecular modeling techniques, namely molecular dynamics (MD) 

simulations, Monte Carlo (MC) sampling methods, normal mode analysis (NMA) or 

coarse-grained elastic network models (ENM) has gained considerable interest recently 
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(McCammon and Harvey, 1987; Kitao and Go, 1999; Lei et al., 2004; Bahar and Rader, 

2005; Ma, 2005).  

 

MD and NMA techniques that make use of all-atom empirical potentials (Brooks 

and Karplus, 1983) are among the most popular techniques for simulating protein 

dynamics. These atomistic simulations can reach up to nanoseconds or at most a few 

microseconds, hence can not efficiently explore the protein conformational changes that 

are in the time range of microsecond-milliseconds to seconds. As a result, to overcome the 

time-scale limitations of atomistic approaches, coarse-grained approaches such as ENM 

(Brooks and Karplus, 1983; Bahar and Rader, 2005; Ma, 2005) and MC simulations 

(Metropolis and Ulam, 1949; Northrup and McCammon, 1980; Haliloglu and Bahar, 1998; 

Haliloglu, 1999; Kurt and Haliloglu, 1999) have become promising tools to model protein 

systems. Especially, recent studies rely on the success of ENM based approaches to 

describe protein conformational transitions (Mouawad and Perahia, 1996; Tama and 

Sanejouand, 2001; Delarue and Sanejouand, 2002; Tama and Brooks, 2002, 2006; Zheng 

and Brooks, 2005a, 2005b, 2006; Kim et al., 2002, 2005; Xu et al., 2003; Mouawad et al, 

2002; Maragakis and Karplus, 2005; Krillova et al., 2008).  

 

 The most widely adopted coarse-grained ENM approaches are the Gaussian 

network model (GNM) (Bahar et al., 1997a, 1998, Haliloglu et al., 1997; Bahar and 

Jernigan, 1998; Bahar, 1999) and the anisotropic network model (ANM) (Atilgan et al., 

2001).  In both GNM and ANM, residues are assumed to undergo Gaussian-distributed 

fluctuations which are coupled by harmonic potentials. In GNM, these fluctuations are 

assumed to be isotropic, with no directional preferences, whereas in ANM they are 

anisotropic (Atilgan et al., 2001). Low-frequency motions, i.e. collective motions can be 

described well even if there is no atomic detail. Hence, both GNM and ANM are shown to 

yield a successful description of a protein’s internal motions. Latest computational studies 

(Kurkcuoglu et al., 2004; Yildirim and Doruker, 2004; Kantarci et al., 2005) reported that 

GNM and ANM have been successful in reproducing collective modes and predicting 

atomic fluctuations for even large biological systems by using harmonic potentials between 

close-neighboring residues in the protein 3-D structure. Recent studies also revealed that 

hierarchical levels of coarse-graining considerably reduce the computational time, 
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moreover provide a realistic picture of harmonic motion of proteins and thus structure-

function relationships (Doruker et al., 2002). In this way, the analysis of even very large 

biological systems such as GroEL-GroES complex (Keskin et al., 2002), ribosome 

complex (Wang et al., 2004), RNA polymerase (Yildirim and Doruker, 2004), 

triosephosphate isomerase (Kurkcuoglu et al., 2005; 2006) and restriction endonuclease 

EcoRI-DNA complex (Doruker et al., 2006) could be accomplished. In most of the ENM 

based studies, the protein conformational transitions are explored by using the x-ray 

structures of the initial and final states. However, in many cases the initial state is known, 

whereas the end state, i.e. target structure is not available. Therefore, computational tools 

that predict the conformational changes even in the absence of final state information are 

of great interest (Zheng and Brooks, 2006). Moreover, most of these applications routinely 

perform successive deformations onto the initial structure (Mouawad and Perahia, 1996; 

Xu et al., 2003) disregarding the fact that as the initial conformation is deformed, the 

eigenvectors of the initial structure become less accurate in representing the global motions 

of the new intermediate structures (Zheng and Brooks, 2006). Another point is that, ENM 

applications provide harmonic modes which illustrate the collective motions the protein 

exhibits, but does not give insight about the sequence of these physical events and the 

intermediate complexes and hence are insufficient in exploring transitional pathways.  

 

The objective of this study is to develop a new approach by incorporating collective 

motions obtained from the elastic network model, ANM, into MC simulation technique so 

as to explore the conformational space of large biological systems and to investigate 

conformational transition pathways of proteins and their complexes in a computationally 

efficient way.  In the present thesis, three methodologies are proposed, which are named as 

ANM-MC; RG-ANM-MC and Targeted Monte Carlo (TMC) simulation techniques for 

investigating the protein conformational transitions. As the names imply, the first two 

methods, ANM-MC and RG-ANM-MC (RG designates the radius of gyration 

consideration) are based on an iterative methodology composed of successive ANM and 

MC cycles and both techniques make use of collective modes. On the other hand, TMC 

does not use collective modes; instead it is based on a forcing algorithm towards the target 

state. The approaches developed in this thesis are aimed to prevail over the limitations of 

some previous applications by repeating NMA periodically throughout the simulation and 
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using the updated normal modes of the present state. Consequently, by repeated NMA 

followed by energy minimization using MC, the present methodologies could possibly 

generate a more feasible pathway between two conformations within short computational 

times. In ANM-MC methodology, first the normal modes of the initial structure are 

calculated by ANM. Then, the slow mode overlapping the desired transition is selected by 

calculating the overlap of each mode with the target direction which is found by 

superimposition of initial and final structures. The new structure is generated by deforming 

the initial conformation along the chosen mode. The energy of this new structure is then 

minimized by MC and the normal modes are recalculated. With this method, the transition 

between open-closed conformations of Adenylate kinase (AK), human serum transferrin 

(HSTR), and Lysine/Arginine/Ornithine (LAO) binding protein and tense (T)-relaxed (R2) 

forms of hemoglobin are investigated. In order to analyze the significance of using the 

normal modes, the ANM calculations are omitted from the ANM-MC algorithm and solely 

successive MC simulations are applied.  This protocol, named as TMC forces the initial 

structure towards the target state along the desired direction.  

 

Finally, ANM-MC technique is further improved to investigate the conformational 

transition pathways of protein systems with unavailable target structures as well. RG-

ANM-MC is an extension of ANM-MC with an additional constraint introduced by the 

radius of gyration (RG). In RG-ANM-MC, similar iterative algorithm composed of ANM 

and MC cycles is also valid, but this time the new conformation is generated by making 

use of the energies of conformations generated by collective modes and their RG’s. RG-

ANM-MC is applied to AK, HSTR and (LAO)-binding protein. The plan of the present 

thesis is as follows: proteins, and their dynamics, protein conformational transitions and 

pathways together with the structural details of the protein systems studied in this thesis 

will be presented in the following chapter. Details regarding the elastic network model, i.e. 

ANM and MC simulation technique followed by the details about three developed 

protocols (ANM-MC, TMC, and RG-ANM-MC) can be found in the third chapter. The 

applications of the novel methodologies, namely ANM-MC, TMC, and RG-ANM-MC, on 

various protein systems are presented in chapters four and five and six, respectively.  

Finally, the conclusions and recommendations will follow. 
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2.  PROTEINS: STRUCTURE, FUNCTION, DYNAMICS AND 

CONFORMATIONAL TRANSITIONS 

 

2.1.  Protein Structure and Function 

 

Proteins are macromolecules constructed from linear sequences of amino acids. 

They perform many functions essential to life. There are twenty common naturally 

occurring amino acids, which are linked together via peptide (amide) bonds to form a 

polypeptide chain (Figure 2.1). All the naturally occurring amino acids have the same 

relative stereochemistry at the alpha-carbon. The side chains have different sizes, shapes, 

hydrogen bonding capabilities and charge distributions, which enable proteins to display 

the required biological functions (Leach, 2001).  

 

 
 

Figure 2.1. Aminoacids are linked via peptide bonds to give a polypeptide chain 

 

Every function in the living cell depends on proteins. Understanding the function of 

a protein is fundamental for gaining insight into many biological processes. Among the 

important functions in which the proteins are involved several examples may be given such 

as: motion and locomotion of cells and organisms; the catalysis of all biochemical 

reactions; and the transport of materials in body fluids. Besides, the proteins constitute the 

structure of cells, and the extracellular matrix they are embedded in. Moreover, the 

receptors for hormones and other signaling molecules and the transcription factors that turn 

genes on and off to guide the differentiation of the cell are all made up of proteins (Stryer, 

1988). 

 

The details of a protein sequence are stored in the code of a gene. Through the 

processes of transcription and translation, a cell reads the genetic information and uses it to 
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construct the protein. In many cases, the resulting protein is then chemically altered (post-

translational modification) before becoming functional. It is very common for proteins to 

work together to achieve a particular function, and often physically associate with one 

another to form a complex (Stryer, 1988). 

 

The first x-ray structures revealed that proteins did not adopt regular structures but 

were more complex. Biochemists refer to four distinct aspects of a protein's structure. 

These are called the primary, secondary, tertiary and quaternary structures. The primary 

structure represents the amino acid sequence. The secondary structure designates the 

highly patterned sub-structures, i.e. helices and beta sheets that are formed by hydrogen 

bonding.  

          
 

 

                           
 

Figure 2.2. Primary, secondary, tertiary, and quaternary structures of proteins (Petsko and 

Ringe, 2004) 

(a) (b) 

(c) (d) 
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There can be many different secondary motifs present in one single protein 

molecule. The tertiary structure represents the overall shape of a single protein molecule, 

i.e. indicates the spatial relationship of the secondary structural motifs to one another. 

Tertiary structure is primarily formed by hydrophobic interactions, but hydrogen bonds, 

ionic interactions, and disulfide bonds are usually involved too. Finally, the Quaternary 

structure is associated with the shape or structure that results from the union of more than 

one protein molecule. It is usually called protein subunits in this context, which function as 

part of the larger assembly or protein complex (Alberts et al., 1994). 

 

2.1.1.  Experimental Techniques to Identify Protein Structure 

 

X-ray crystallography and NMR are the most widely used experimental methods to 

obtain detailed (3-D) structural information about proteins. X-ray crystallography is a 

method for determining the arrangement of atoms within a crystal. As a beam of x-rays 

strikes a crystal and scatters into many different directions, a crystallographer can produce 

a 3-D picture of the density of electrons within the crystal. From this electron density, the 

mean positions of the atoms in the crystal can be determined, as well as their chemical 

bonds, their disorder and various other information. Crystal structures of proteins began to 

be solved in the late 1950s, beginning with the structure of sperm whale myoglobin 

(Kendrew et al., 1958) Since that date, nearly 40000 x-ray crystal structures of proteins, 

nucleic acids and other biological molecules have been determined. About 82% of all 

structures present in PDB were solved by x-ray crystallography. The technique is also used 

routinely by scientists to determine how a pharmaceutical interacts with its protein target 

and what changes might be advisable to improve it (Scapin et al., 2006). However, intrinsic 

membrane proteins remain challenging to crystallize because they require detergents or 

other means to solubilize them in isolation, and such detergents often interfere with 

crystallization. Such membrane proteins are a large component of the genome and include 

many proteins of great physiological importance, such as ion channels and receptors 

(Lundstrom, 2004; 2006). 

 

NMR relaxation techniques can also be successfully employed to investigate the 

time-dependent conformational fluctuations of proteins (Palmer et al., 2001). This 
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technique makes use of the magnetic spin of atomic nuclei, such as 1H, 13C, 15N and 31P 

to provide information about the relative atom distances in a molecule, and thus its 3-D 

model. Moreover, NMR can also be employed for studying the flexibility and dynamics of 

proteins (Branden and Tooze, 1999). Although initial NMR relaxation experiments and 

analyses have concentrated on protein dynamics on the ps-ns timescale (Kay, 1998; 

Palmer, 1997) more recent methodologies focus on μs-ms motions (Palmer et al., 2001; 

Cavanagh and Venters, 2001). NMR has produced roughly 6000 structures (RCSB Protein 

Data Bank). While, crystallography can solve structures of large molecules, solution-state 

NMR is restricted to relatively small molecules (less than 70 kDa) (Scapin et al., 2006).  

 

There exits several other experimental techniques for investigating the protein 

conformational dynamics and protein interactions at low resolution such as Cryo-electron 

microscopy (cryo-EM), fluorescence resonance energy transfer (FRET), and single particle 

tracking methods. These tools give structural transitions without atomic details. 

Nevertheless, they give insight about the molecular mechanisms and hence shed light to 

biological functions of proteins (Frank, 1996; Kasprzak et al., 1988; Lakowicz, 1999). 

Singe particle tracking is a straightforward method for measuring molecular motion. It is 

based on tagging the molecule with a label that is easily visualized, such as a small reporter 

particle or a fluorescent dye molecule and then using this label to track motion directly in 

an optical microscope (Kasprzak et al., 1988; Greenleaf et al., 2007). FRET is based on 

detection of the emission intensity when energy transition occurs between a donor and an 

acceptor fluorophores attached to the molecule of interest.  It allows the measurement of 

nanometer-scale motions (Stryer, 1978; Lakowicz, 1999). Cryo-EM is an electron 

microscopic technique that involves freezing the biological sample in order to view the 

sample with the least possible distortion and the fewest possible artifacts. The sample is 

studied at cryogenic temperatures (generally liquid nitrogen temperatures) and a rather 

coarse-grained map of the protein structure is obtained as compared to x-ray 

crystallography (Frank, 1996). 

 

2.1.2.  Computational Techniques to Identify Protein Structure 
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Functional genomics is concerned with characterizing the proteins expressed by the 

genome i.e. assigning their biological function. To some extent, it is possible to determine 

the function of a protein just from a sequence analysis alone. However, linking the 3-D 

structure of a protein directly to its function is more appealing, which is known as 

structural genomics (Leach, 2001). 

 

The number of protein sequences for which the experimental structural information 

is known is far less than the number of protein sequences discovered (Leach, 2001). The 

high-resolution images provide necessary information in the atomistic level related to atom 

rearrangements. Computational techniques such as ab-initio methods, homology modeling 

and threading are also helpful for survey of protein structures. However, according to PDB 

statistics, among nearly 40000 protein structures available, only 3% were obtained by 

computational methods. This once again calls attention to using experimental techniques in 

structure determination.  

 

The ab-initio structure prediction technique attempts to determine protein structure 

from scratch by finding the global minimum of an energy function defined on the space of 

possible structural conformations of the protein. With present methods these techniques are 

extremely computationally costly and thus have been used only for very small proteins. 

Homology modeling is based on the reasonable assumption that two homologous proteins 

will share very similar structures. Given the amino acid sequence of an unknown structure 

and the solved structure of a homologous protein, each amino acid in the solved structure is 

mutated computationally into the corresponding amino acid in the unknown structure.  

 

In the case of threading, with the amino acid sequence of a protein of interest, one 

attempts to align the sequence to each amino acid sequence in a library of template 

proteins of known structure in such a way that a quasi-energy score or other score is 

minimized. The score of an alignment is defined in such a way that the value of the score 

reflects the extent to which the given alignment predicts a structural similarity of the 

protein of interest to the template protein. Best structural alignment scores are computed 

for template protein and the template with the best score amongst all templates is returned. 

Threading relies on the fact that there are far more proteins than folds, so that a given 
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protein of unknown structure is likely to have structure quite similar to that of a protein of 

known structure (Leach, 2001). 

 

2.2.  Protein Dynamics and Conformational Transitions 

 

A large diversity of processes in living organisms critically depends on protein 

activity. Virtually all biological processes that involve motion find their origin in protein 

dynamics. Muscle contraction, for instance, is based on the combined action of two 

proteins: actin and myosin. Dynamics also plays an important role in many proteins of 

which the primary function is not mobility itself, such as ability to change conformation 

(Stryer, 1988). In the following subsections the concepts of protein dynamics and 

conformational transitions in proteins will be reviewed. 

 

2.2.1. Protein Dynamics 

 

Proteins exhibit different types of collective domain motions such as shear, and 

hinge-bending motions, which are relevant to biological activity and function (Gerstein et 

al., 1994). Most of the collective motions of proteins are hinge-like motions occurring 

around one or multiple centers (Jernigan et al., 1999). The visual interpretation of shear 

and hinge-bending motions is presented in Figure 2.3. 

 

Hinge motion usually occurs in proteins that have two domains (or fragments) 

connected by linkers (i.e. hinges) that are relatively unconstrained by packing. A few large 

torsion angle changes in the hinges are sufficient to produce almost the whole motion. The 

rest of the protein rotates essentially as a rigid body, with the axis of the overall rotation 

passing through the hinges. The overall motion is always perpendicular to the plane of the 

interface. Hinge motion involves a few large changes in main chain torsion angles at the 

hinge connecting two domains, constrained only by the Ramachandran allowance of 

torsional angles (Janin and Wodak, 1983; Perutz, 1989; Gerstein et al., 1994; Gerstein and 

Krebs, 1998).  
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On the other hand, shear-motion basically describes the special kind of sliding 

motion a protein must undergo if it wants to maintain a well-packed interface. Because of 

the constraints on interface structure, individual shear motions have to be very small. Shear 

motion is accommodated by small changes in side chain torsional angles with no 

significant deformation in main chain torsional configuration of the interface segments. 

The whole motion is parallel to the plane of the interface and is limited to total translations 

of ~2 Å and rotations of 15°. Since an individual shear motion is so small, a single one is 

not sufficient to produce a large overall motion, and a number of shear motions have to be 

concatenated to give a large effect. Consequently, proteins that undergo shear often have a 

layered architecture. Examples include citrate synthase, Trp repressor and aspartate amino 

transferase (Janin and Wodak, 1983; Perutz, 1989; Gerstein et al., 1994; Gerstein and 

Krebs, 1998). 

 

 
 

Figure 2.3. Interpretation of shear and hinge motions in proteins (Gerstein and Krebs, 

1998) 
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2.2.2. Conformational Transitions in Proteins 

 

Proteins may shift between several similar structures in performing their biological 

function. These structures are referred as conformations and transitions between them are 

called conformational changes. Thus any unique polypeptide may have more than one 

stable folded conformation and each conformation may have its own biological activity 

(Brooks et al., 1988). The function of a protein is mainly dependent upon its adopted 

conformation. Unlike synthetic polymers, which may adopt many different conformations, 

a protein prefers a unique conformation in its native state. This unique single structure 

adopted corresponds to the global minimum of the free energy under physiological 

conditions. The ability to change conformation of a protein is essential for the function of 

many transport proteins, proteins involved in signal transduction, proteins in the immune 

system, and numerous enzymes. The conformational changes involved range from very 

subtle, local changes, as in the case of e.g. myoglobin, to global conformational changes, 

involving motions of significant amplitude for large parts of a protein (e.g. hemoglobin). 

Dynamics plays an important role not only in the function of the protein, but also the 

mechanism by which a protein reaches that native conformation (Stryer, 1988). 

 

Proteins are dynamic molecules and often undergo conformational change upon 

ligand binding. It is widely accepted that flexible loop regions have a critical functional 

role in enzyme proteins. In many enzymes, conformational changes serve to enclose the 

substrate, thereby preventing its release from the protein and ideally positioning it for the 

protein to perform its function, as in the case of lysozyme. Immunoglobulins are highly 

flexible in order to be able to deal with a large range of ligands. Another role of protein 

dynamics is found in G-proteins, binding of a hormone to its receptor triggers the 

dissociation of the α-domain from the rest of the protein after a GTP-mediated 

conformational change. A special class of conformational transitions is found in so-called 

allosteric proteins. Substrate binding to one subunit of these multimeric proteins triggers a 

conformational change that alters the substrate affinity of the other subunits, thereby 

sharpening the switching response of these proteins (Stryer, 1988). Antibody-antigen 

assemblies form another important class of protein complexes exhibiting conformational 
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changes (Keskin, 2007). Each conformation generates a distinct binding site topology, 

allowing the receptor to engage multiple ligands at the same region of the binding site. 

  

Global motions of proteins control the actions induced by protein-ligand 

interactions such as substrate binding to enzymes and antibody-antigen interactions 

(Amadei et al., 1993; Hayward et al., 1997; Tama and Sanejound, 2001; Keskin et al., 

2002; Tobi and Bahar, 2005; Keskin, 2007). Elucidation of the mechanisms by which the 

proteins bind to each other or to ligands is of great importance to control protein-protein, 

protein-ligand interactions. There are several different models proposed to explain protein 

binding mechanisms such as the lock and key model, induced-fit model, and pre-existing 

equilibrium model that are illustrated in Figure 2.4.  

 

The enzyme-substrate interaction was first explained by the lock and key analogy, 

where the lock is the enzyme and the key is the substrate. The idea was that, only the 

correctly sized key (substrate) fits into the key hole (active site) of the lock (enzyme). In 

the light of experimental evidences another approach, the induced-fit theory, was proposed 

to explain the enzyme-substrate binding (Koshland, 1958). This approach assumes that the 

enzyme is partially flexible and its final shape is determined by the substrate.  

 

 
 

Figure 2.4. Models for protein binding mechanisms (a) Lock and key model, (b) 

Induced-fit model, (c) Pre-existing equilibrium model. L: Ligand (Goh et al., 2004) 

 

(a) 

(b) 

(c) 
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Pre-existing equilibrium is an alternative model to describe the mechanisms of 

protein interactions (Tsai et al., 1999; Ma et al., 2002; Li et al., 2004). This hypothesis is 

based on protein folding theories of the funnel energy landscape (Frauenfelder, 1991; 

Karplus, 1997). In this model, the native state protein possesses an ensemble of 

conformations at its binding site. The ligand will bind selectively to an active 

conformation, thereby biasing the equilibrium toward the binding conformation. According 

to the preexisting equilibrium model, a protein possesses multiple structures and, hence, 

may have multiple active-sites and functions (Goh et al., 2004; Keskin, 2007).  

 

For proteins that exhibit allosteric behavior, the binding of a ligand to one area of 

the protein can affect the conformation of the protein at a distant region away from the 

binding site (Goh et al., 2004). An illustrative example undergoing allosteric 

conformational transitions can be given as the enzyme adenylate kinase (AK). In AK, there 

exist two binding sites, i.e. for binding adenosine triphosphate (ATP) and adenosine 

monophosphate (AMP). Literature studies reveal different findings about domain closure 

sequence in AK. It is speculated that the ATP binding takes place prior to AMP; hence the 

ATP-binding domain closes first. Due to its allosteric behavior, the closure of the ATP-

binding domain triggers the closure of the AMP-bind domain. Nevertheless, domain 

closure in AK is still open to debate.  

 

Another important allosteric protein is human hemoglobin. Hemoglobin is a 

tetrameric protein that transports H+ and CO2 in addition to O2. The oxygen binding 

properties of hemoglobin are regulated by interactions between its α and β subunits. In 

other words, the binding of O2 enhances the binding affinity of another O2 to the same 

hemoglobin molecule. This indicates that binding of O2 is cooperative which indeed makes 

hemoglobin a more efficient O2 transporter. In fact, this cooperative binding enables 

hemoglobin to deliver 1.83 times as much O2 as it would if the binding sites were 

independent (Styer, 1988).  

 

The allosteric mechanism of hemoglobin and other allosteric proteins is generally 

described by the Monod-Wyman-Changeux (MWC) model proposed in 1965. The model 

assumes equilibrium between the two interconvertable conformational states; the relaxed, 
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liganded (R) state and tense unliganded (T) state. It also assumes that the subunits of each 

form should be in the same conformational state, i.e. for a protein having two identical 

subunits for instance TT or RR states are allowed, whereas RT is not accessible. The R 

state has a high affinity for the substrate whereas the T state has a low affinity. The 

addition of substrate shifts the conformational equilibrium in the direction of the relaxed 

high-affinity R form, because substrate binds only to R form. Hence, propagation of 

enzyme molecules in the R form increases as more substrate is added which implies a 

cooperative binding behavior of substrate (Stryer, 1988; Tama and Sanejound, 2001; Goh 

et al., 2004).  

 

2.3. Molecular Modeling and Simulation Techniques 

 

In this section, molecular modeling and simulation techniques used for proteins will 

be discussed in two subsections. First, various computational tools currently used for 

molecular modeling will be presented. In the next subsection, the use of these techniques, 

especially in studying conformational transitions, is discussed. 

 

2.3.1. Overview and Current State of Art 

 

Various computational techniques are adopted to explore molecular motions and 

protein dynamics. Molecular dynamics (MD) is one of the most popular atomistic 

simulation techniques. MD simulations at pico/nano-second time scales output one or more 

trajectory files, which describe the coordinates of each individual atom over time. In MD, 

an attempt is made to describe the time evolution of molecular systems as realistically as 

possible. In a typical simulation, a starting configuration is generated from an 

experimentally determined structure, and put in an environment that best mimics its natural 

environment. Then, Newton's equation of motion is solved for this configuration (Leach, 

2001). The main problem with animating these trajectories is that, taking large time steps 

would destroy the impression of smooth motion, while small time steps may not screen 

interesting motions. Hence, the degree to which the simulations adequately sample the 

conformational space of the protein is an important task in MD applications. If a given 

property is poorly sampled over the MD simulations, the results obtained have a limited 
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usefulness. Although with improvements in computer power and algorithms the simulation 

times of MD have been progressed to several microseconds, still this timescale is too short 

to observe many important protein processes, such as slow conformational changes and 

protein folding/unfolding (Daggett, 2000). To improve the existing capability of the atomic 

simulations more efficient approaches needed to be introduced. 

 

Collective coordinates can be used as a basis for efficient sampling. Collective 

modes obtained from short MD simulations are used to generate a coarse-grained 

description of conformational sub-state and construct a bias potential that lowers the free 

energy barriers of structural transitions (Muller et al., 2002). Berendsen and coworkers 

developed the so called “essential dynamics” (ED) which serves as an improvement over 

conventional MD simulation (Amadei et al., 1993, 1996; Berendsen and Hayward, 2000). 

In this approach, the protein motions are constrained to move along the essential collective 

modes, while the motions along the other degrees of freedom obey the usual equations of 

motion. As a result, an “essential subspace”, spanned by a small number of collective 

modes can be obtained. However, the basic limitation of these approaches is the fact that 

different short MD runs each having different initial starting conformations would give 

different collective mode directions. Biasing the move along that direction would only 

span the conformational space of the corresponding initial structure. That is, the essential 

subspace may vary when the protein conformation belongs to different local states. Hence, 

these techniques need to be further improved to serve as reliable tools for conformational 

search of large proteins.   

 

In relatively large molecular systems (tens of thousands of particles) the 

combinatorial problem of calculating all pair-wise interactions makes the force calculations 

required for MD simulations extremely time-consuming. A clear gap exists between 

computer simulation times and the times required for most biological processes (Van 

Gunsteren and Berendsen 1990). With current state of the art methods and computers, 

simulation time scales generally range between nanoseconds-to several microseconds, 

whereas most biological processes take place at times ranging between microseconds to 

seconds (or even minutes). Especially in dealing with large biological systems, NMA, 
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especially coarse-grained approaches such as elastic network models (ENM) have gained 

considerable interest recently (Lei et al., 2004; Bahar and Rader, 2005; Ma, 2005).  

 

The use of collective coordinates has become a powerful tool for extracting 

functionally relevant modes of motion from simulation results (Kitao and Go, 1999). The 

most widely adopted atomistic technique is the Normal Mode Analysis (NMA) approach. 

NMA is based on the notion that most positional fluctuation of proteins occurs along 

collective degrees of freedom (Levitt et al., 1983; Go et al., 1983; Brooks and Karplus, 

1983). In NMA approach, proteins are assumed to possess a spectrum of vibrations from 

slow to fast taking place due to the vibration of atoms around their covalent bonds. 

Vibrations occurring at high frequencies are referred as the fast motions (fast modes). On 

the other hand, the large domain motions occur at lower frequencies, referred as slow 

motions (slow modes). Residues active in the fastest modes possess a strong resistance to 

conformational changes which implies their important role in maintaining the structure. 

Residues active in the slowest modes, on the other hand, are susceptible to large scale 

(global) motions associated with the collective dynamics of the overall tertiary structure. 

Hence, slow motions are relevant to biological function (Bahar et al., 1998).  

 

In NMA, the potential energy surface is assumed to be harmonic. Collective 

variables are obtained by diagonalisation of the Hessian matrix (second derivative of the 

potential energy) in a local energy minimum. Quasi harmonic analysis (Karplus and 

Kushick, 1981; Levy et al., 1984; Teeter and Case, 1990), principal component analysis 

(Kitao et al., 1991; Amadei et al., 1991; Garcia, 1992) and singular value decomposition 

(Romo et al, 1995) of MD trajectories of proteins have shown that even beyond the 

harmonic approximation, protein dynamics is dominated by a limited number of collective 

coordinates. These methods seek those collective degrees of freedom that best approximate 

the total amount of fluctuation. It was shown that low frequency collective motions from 

NMA correlate well with experimental data related to biological function (Tama and 

Sanejouand, 2001). 

 

Another widely used tool used to carry out extensive search on the conformational 

space of especially larger proteins is the Monte Carlo (MC) simulation technique. MC 
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search methods are stochastic techniques based on the use of random numbers and 

probability statistics to sample conformational space. In general MC search consists of two 

steps: (1) generating a “trial conformation” and (2) deciding whether the new conformation 

will be accepted or rejected.  Starting from an initial conformation, random numbers are 

used to generate the next trial conformation by constructing moves. Multiple torsion moves 

as well as Cartesian coordinate moves are among the many possible variations. Once a new 

“trial conformation” is created, it is necessary to determine whether this conformation will 

be accepted or rejected. If rejected, randomly creating new conformations is repeated until 

one of them is accepted. The new conformation is accepted or rejected according 

Metropolis criterion which is based on choosing the low energy conformation. If the 

energy of the new conformation is lower than the current conformation than the move is 

accepted, i.e. the trial conformation is now taken as the current conformation. However, 

even if the energy of the trial conformation is higher than the current energy, there is a 

certain probability, proportional to the Boltzmann factor, that it will be accepted (Becker, 

2001). MC calculations using coarse grained protein models similar to those used for 

threading have shown that native state dynamics of proteins can successfully be simulated 

at a rate one order of magnitude faster than can be obtained by all-atom models (Haliloglu 

and Bahar, 1997; Bahar et al., 1997c). This simplified yet realistic method allows efficient 

simulation of the dynamics with multiple independent trajectories at long time scales.  

 

2.3.2. Simulation Techniques Used in Studying Conformational Transitions  

 

The conformational transitions are usually too fast to be measured experimentally, 

or can be rarely observed with molecular dynamics simulations; which pose a difficult 

challenge (Noe et al., 2003). Atomistic simulation techniques that make use of all-atom 

empirical potentials (Brooks and Karplus, 1983) such as MD and NMA generally become 

computationally inefficient for investigating conformational transitions of proteins, 

especially as the system size increases.  

 

Currently, MD simulations that can reach up to nanoseconds or at most a few 

microseconds are not suitable for exploration of conformational changes in the time scale 

of microsecond/milliseconds to seconds. For this purpose, targeted MD simulations (TMD) 
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(Schlitter et al., 1993; Kong et al., 2006, van der Vaart and Karplus 2005, 2007) are 

adopted to simulate large conformational transitions by biasing the conventional MD 

technique to sample the conformational space in a predefined direction. It is based on 

knowledge of both the initial and end structures and performing a molecular dynamics 

simulation starting from one conformational state as initial structure and using the RMSD 

from the end state for a directing, i.e. biasing constraint (Schlitter et al., 1993) The TMD 

proved successful in finding continuous pathways for the investigated transitions. 

However, it does not always yield reversible pathways and necessarily follow lowest 

energy pathway (van der Vaart and Karplus 2005). 

 

Alternative to atomistic models, low resolution coarse-grained approaches, such as 

ENM and MC simulation techniques may appear as efficient tools for conformational 

analysis of large proteins and their complexes. Recently several ENM based approaches 

frequently employed in conformational transition studies have been reported (Mouawad 

and Perahia, 1996; Tama and Sanejouand, 2001; Delarue and Sanejouand 2002; Tama and 

Brooks, 2002, 2006; Zheng and Brooks, 2005a, 2005b, 2006; Kim et al. 2002, 2005; Xu et 

al., 2003; Mouawad et al., 2002; Maragakis and Karplus, 2005; Krillova et al., 2008). An 

NMA based computational study was reported in which a set of different proteins with 

different binding mechanisms were analyzed (Krebs et al., 2002). The results showed that 

half of the proteins studied undergo conformational changes that are governed by the two 

or three lowest frequency modes. This suggests that, conformational transition of protein 

between unbound and bound (to a ligand) structures follow the lowest frequency normal 

modes of the protein. 

 

Mouawad and Perahia (1996) aimed to reveal the transitional pathway of 

hemoglobin. The authors carried out single NMA on the T structure and along both 

positive and negative directions. T structure was continuously deformed along first 3 

slowest modes consecutively followed by energy minimization. Four intermediate 

structures were proposed between T-R and maximum approach to R state was 1.82 Ǻ. The 

study of Xu et al. (2003) is somewhat similar to Mouawad and Perahia (1996), in which 

the authors demonstrated a transition from T to R2 in hemoglobin. This study revealed that 
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the T to R2 transition is in accord with the most global (slowest) mode. The authors did not 

propose a transition pathway but reported an approach of 2.4 Å to R2 state.  

 

Among various computational methodologies, based on ENM that are developed 

for investigating the conformational transitions, one such promising approach is the 

method developed by Zheng and Brooks in which they proposed an ENM based approach 

that makes use of the crystal structure of the initial state and several distance constraints 

for the end state (Zheng and Brooks, 2005a; 2005b; 2006). The method, which is utilized 

by iteratively minimizing the error of fitting the given distance constraints as well as the 

energy cost, proved successful in maintaining the associated transitions in a set of 16 

protein structures by iteratively minimizing the error of fitting the given distance 

constraints as well as the energy cost. In their recent work, Zheng and coworkers 

developed a mixed elastic network model (MENM) to study the large scale conformational 

changes of motor proteins KIF1A kinasin and myosin II (Zheng et al., 2007). This 

approach combines the elastic network potentials of the initial and end states from known 

x-ray structures by adding their respective partition functions. The MENM energy function 

is generated and transition paths are characterized by connecting the beginning and end 

structures which are retained as local minima on the MENM surface.  

 

Maragakis and Karplus (2005) developed the plastic network model (PNM) which 

generates a minimum energy path between two end structures. With this methodology, the 

authors studied the transitional pathway of adenylate kinase (AK) from open to closed 

conformations and suggested a set of crystal structures that may possibly be present in the 

pathway. Kim and coworkers developed the rigid-cluster elastic network interpolation 

(ENI) algorithm based on uniformly interpolating the distances in two different 

conformations within the framework of elastic network model (Kim et al., 2002; 2005). In 

another recent study, the authors combined geometric path planning algorithms originating 

from robotics research and ENM in order to study large-amplitude conformational changes 

with application to AK (Krillova et al., 2008). By using path planning algorithm, the 

conformational exploration is performed and then guided with the directions of collective 

motions obtained by low-frequency modes.  
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Recently, there have been several hybrid strategies combining different approaches 

summarized so far in order to enhance the conventional techniques and overcome their 

limitations. One such approach, the so called Amplified Collective Motion (ACM), was 

proposed by Zhang and coworkers. The method uses ENM-derived normal modes for 

improving the simulation efficiency of MD simulations (Zhang et al., 2003; He et al., 

2003). In this novel approach, the authors aim to accelerate the conformational sampling of 

proteins through MD simulations by making use of collective modes obtained from coarse-

grained elastic network models. The authors applied their methodology to bacteriophage 

T4 lysozyme and villin headpiece subdomain (HP-36). Both in terms of sampling low 

energy conformations and the coverage of the conformational space by the sampled 

conformations, these new schemes are reported to be able to achieve the expected increase 

in sampling efficiency.  

 

2.4. Proteins Studied 

 

2.4.1. Adenylate Kinase (AK) 

 

 E.coli AK is a 214-residue allosteric protein belonging to nucleoside monophosphate 

kinases (NMP kinases), which catalyze the transfer of the terminal phosphoryl group from 

adenosine triophosphate (ATP) to adenosine monophosphate (AMP). AK involves three 

domains, namely a core domain, an ATP-binding or LID domain (residues 122-158) and 

an AMP-binding (AMP-bind) domain (residues 30-63) (Figure. 2.5). In apo/unligated 

structure, the ATP-bind and AMP-bind domains assume open conformations. During 

catalysis, the core domain of AK is mainly preserved unlike the LID and AMP-bind 

domains that undergo large conformational changes. AK is known to attain two unique 

conformations, namely open and closed states (Berry et al., 1994; Müller and Schulz, 

1992; Müller et al., 1996). The corresponding RMSD between the open and closed 

conformations is 7.13 Å. 

 

 The ribbon diagrams presented in Figure 2.5 are generated in Pymol (De Lano, 

2002). In the figure, the core, LID and AMP-bind domains are colored in blue, red and 

orange, respectively.  



 

 

22

 

    
 

Figure 2.5.  Ribbon diagrams for (a) apo/open conformation of AK (PDB code: 4AKE)    

(b) bound/closed conformation of AK (PDB code: 1AKE) 

 

In Figure 2.5 (a), the open conformation is depicted with protein data bank (PDB) code: 

4AKE (Müller et al., 1996)), and in panel (b), the closed conformation crystallized with the 

inhibitor P1P5-di(adenosine-5')pentaphosphate (AP5A), available with PDB code: 1AKE 

(Müller and Schulz, 1992) is illustrated.  

 

2.4.2. Hemoglobin 

 

Hemoglobin is a common example for allosteric transitions in proteins. As an 

oxygen-binding tetrameric protein, hemoglobin adopts three conformations: a relaxed CO-

bound (R2) state (PDB code: 1BBB) (Silva et al., 1992), a relaxed O2-bound (R) state 

(PDB code: 1HHO) (Shaanan, 1983), and a tense unliganded (T) state (PDB code: 1A3N) 

(Tame and Vallone, 2000).  

 

 Figure 2.6 depicts the ribbon diagrams of T (unliganded) and R2 (CO-bound) forms 

of tetrameric human hemoglobin. Each of the four monomers α1, α2, β1, β2 are colored 

with cyan, yellow, green, magenta. The four heme groups are indicated with red. The 

structure R2 was first thought to be an intermediate between T and R, however 

(a) (b) 
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computational studies suggested that it is instead R being probably an intermediate 

between T and R2 (Srinivasan and Rose, 1994).  

 

 

 

   
  

Figure 2.6. Tense (T) and relaxed (R2) conformations of tetrameric human hemoglobin 

(PDB entries: 1A3N and 1BBB, respectively). 

 

2.4.3. Human Serum Transferrin (HSTR) 

 

 HSTR (Figure 2.7) is a 679 residue protein responsible from binding ferric ions in the 

bloodstream and transporting the bound irons to cells. Upon release of iron, the iron-free 

apo transferrin is returned to circulation without degradation (Jeffrey et al., 1998). The 

sequence of steps in iron release is not well known. However, kinetic and biophysical 

studies (El Hage Chahine et al., 1995) reveal that the iron release mechanism is associated 

with a large conformational change that is similar in all transferrins. The protein is folded 

into two globular lobes: The N-lobe and C-lobe, each of which are able to bind one ferric 

ion. The two lobes are also divided into two subdomains, i.e N1 and N2; C1 and C2 lobes. 

The binding cleft is placed in between each subdomain to bind a single Fe3+ ion together 

with CO3
2- ion. The iron ligand residues are Tyr 95 and Tyr 188 in N2-lobe; and Asp 63 

and His 249 in N1-lobe (Baker et al., 2003).  

 

 Comparison of the apo (Jeffrey et al., 1998) (PDB code: 1BP5-A chain) and holo 

(Macgillivray et al., 1998) (iron-bound; PDB code: 1A8E) forms of the protein depicted in 

Figures 2.7 (a) and (b), respectively, shows that a large rigid-body domain movement of 

(a) (b) 
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63o in the N-lobe occurs in apo form as compared to holo form to enable an open binding 

cleft (Jeffrey et al., 1998). This large conformational change corresponds to 6.7 Å RMSD 

between the two conformations. This domain movement is also very similar in human 

lactoferrin protein (Anderson et al., 1990).  

 

 

 

     
 

Figure 2.7.  Ribbon diagrams for (a) apo/open conformation (PDB code: 1BP5-A chain) 

and (b) bound/closed conformation (PDB code: 1A8E) of HSTR. 

 

 

2.4.4. Lysine/Arginine/Ornithine binding (LAO-binding) protein 

 

 LAO-binding protein (Figure 2.8) is part of bacterial periplasmic transport system 

which is consist of the substrate binding protein (receptor) and the membrane-bound 

complex proteins (Kang et al., 1991). LAO-binding protein is responsible for binding the 

Lysine, Arginine, or Ornithine amino acids in the cell. These amino acids are then 

translocated from the periplasm to cytoplasm and by interacting with the membrane 

proteins. As all other binding proteins, the LAO-binding protein undergoes a significant 

conformational change, characterized by an opening/closing motion of two domains, upon 

substrate binding (Oh et al., 1993). In Figures 2.8 (a) and (b) the open (apo) (Kang et al., 

1991) and closed (Oh et al., 1993) (liganded, Lysine bound) structures of the protein are 

Fe3
+  CO3

2- 

N1-domains 

N2-domains 

hinge 
Fe3

+  CO3
2- 

(a) (b) 
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provided. The protein consists of 238 residues and the RMSD between the open and closed 

forms corresponds to 4.7 Å.  

 

 

      
 

Figure 2.8.    Ribbon diagrams for (a) apo/open conformation (PDB code: 2LAO) and (b) 

bound/closed conformation (PDB code: 1LST) of LAO-binding protein. 
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3.  MATERIALS AND METHODS 
 

 

3.1.  Anisotropic Network Model (ANM) 

 

ANM (Atilgan et al., 2001) is a coarse-grained NMA tool, commonly used to 

determine the vibrational motions in proteins. By considering the 3D anisotropy of the 

residue fluctuations, ANM predicts the directions of collective motions, which provide 

information about the biological function of the protein and its mechanism of action. It 

estimates the magnitude and direction vectors of residue displacements using NMA for 3N-

6 internal modes, for an N-residue structure. The coarse-grained representation of protein 

structures assumes Cα atoms of amino acids as interaction centers, i.e. nodes.  

 

In the elastic network representation of a protein, all pairs of these coarse-grained 

sites/nodes that are closer than a cutoff distance, rc (usually 13-18 Å), are connected by 

harmonic springs with a universal force constant γ.  The corresponding total potential 

energy of the folded protein structure can be given as a summation over all harmonic 

interactions of (i, j) pairs as 

 

∑∑ Δ−Δ−=
i j

ijijc RrhV 2))(()2/( RRγ    (3.1) 

   

where h(x) is the heavy side step function [h(x) = 1 if x ≥ 0, and zero otherwise]; γ is 

the universal force constant and Rij is the distance between sites i and j in the native 

structure of protein. RΔ i, is the fluctuation in the position vector Ri of site i ( Ni ≤≤1 ). 

The directional dependence of ANM incorporates the X, Y, and Z components of the 

position vector Ri. Therefore, the overall potential calculation includes the fluctuations for 

all components. The potential energy of a structure with N interaction sites is expressed in 

matrix notation as 

 

  V = (1/2) ΔRT H ΔR     (3.2)  
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where, ΔR is a 3N-dimensional vector of the fluctuations ΔRi in the position vectors Ri of 

all sites (1 ≤ i ≤ N), ΔRT being its transpose, and H is the Hessian matrix. In the general 

case of N residues, the second derivatives of the overall potential are organized in the 

(3Nx3N) Hessian matrix, H, which is composed of (NxN) super-elements of size (3x3) and 

expressed as 
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where the ijth super-element Hij of H is, 
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with Xi, Yi and Zi being the components of Ri. In order to calculate the normal modes of the 

elastic network, the symmetric Hessian matrix H is diagonalized into the form, 

 

           Ut H U = Λ       (3.5) 

 

Λ is the (3N x 3N) diagonal matrix with diagonal elements being eigenvalues or squared 

normal mode frequencies. U is a (3N x 3N) orthogonal matrix (UtU = UUt = I, I being the 

identity matrix), where the columns are the normalized eigenvectors giving the normal 

mode directions of motion. In normal mode calculations, the overall rotational and 

translational motion of the molecule is excluded corresponding to six zero eigenvalues and 

the overall motion is described over 3N-6 individual internal modes.  

 

 The correlation between ΔRi and ΔRj can be given by  
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<ΔRi • ΔRj> = (3kBT/γ) tr [H-1]ij     (3.6)  

 

where kB is the Boltzmann constant, T is the absolute temperature, and tr[H-1]ij is the trace 

of the ijth submatrix [H-1]ij of H -1, that is the sum of the diagonal elements of this 3x3 

matrix. It refers to three different components of ΔRi and ΔRj. The mean square 

fluctuations (msf) of the residues, <ΔRi
2>, can also be found by the above equation when i 

= j. 

 

The force constant γ can be determined by comparing theoretical and experimental 

residue fluctuations. Experimental msf can be obtained from the temperature factor or B-

factor data of crystal structures with the following equation. 

 

Bi = (8π2 / 3) ‹ΔRi
2›     (3.7) 

 

Previous studies have demonstrated that essential fluctuation characteristics and 

important collective mode shapes could be successfully reproduced by coarse-grained 

ANM with high efficiency, i.e. the required computational time being several orders of 

magnitude less than that for atom-based simulation techniques like molecular dynamics 

(MD) simulations (Bahar et al., 1997a, 1998; Doruker et al., 2000, 2002). It has been 

demonstrated that the collective motions at low frequencies obtained by ANM and 

essential motions from MD agree with high overlaps (Doruker et al., 2006). 

 

3.2.  Monte Carlo (MC) Simulation Technique 

 

An off-lattice dynamic Monte Carlo (MC) / Metropolis simulation method 

(Haliloglu and Bahar, 1998) has been developed to simulate protein dynamics at different 

time scales. Simulation results have been shown to be in agreement with those from NMR 

measurements, such as order parameters (Haliloglu and Bahar, 1999) and hydrogen 

exchange data (Kurt and Haliloglu, 1999). This method uses a simplified yet realistic 
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model for representing the protein structure and allows efficient simulation of the 

dynamics with multiple independent trajectories at long time scales.  

 

In this simplified model, the backbone of the protein structure is represented by the 

virtual bond model originally proposed by Flory (Flory, 1969). Each residue is represented 

by two interaction sites, its alpha-carbon atom and center of mass of side chain. A 

schematic representation of the model is given in Figure 1, where a protein segment 

between backbone sites Cα
i-2 and Cα

i+2 is shown. The conformation of the backbone is 

defined by 3N-6 variables: N-1 backbone virtual bonds li connecting alpha-carbon atoms i-

1 and i, N-2 bond angles θi, the angle between li and li+1, and N-3 dihedral angles φi, 

describing the torsional rotation of the bond li. The sidechain conformation, is expressed by 

the set of generalized variables {liS, θi
S, φi

S}, li
S being the bond length connecting backbone 

and sidechain interaction site, θi
S is the bond angle between li and li

S, and φi
S the torsion 

angle defined by li-1, li and li
S.  

 

 

 
 

Figure 3.1. Schematic representation of the virtual bond model 

 

To calculate the energy E(Φ) of a given protein conformation Φ, contributions of 

two types of interactions are added: long-range (LR) interactions between non-bonded 

residues that are close in space, and short-range (SR) interactions between covalently 

bonded units along the chain sequence in the form, 
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( ) ( ) ( )Φ+Φ=Φ SRLR EEE      (3.8) 

The long-range potentials given by Bahar and Jernigan (1997) are used to evaluate 

ELR(Φ) according to the following expression: 
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where rij is the distance between sites i and j in conformation Φ. The first term stands 

for the potential between side chain sites (SS); the second term is the potential between the 

side chain and backbone sites (SB); and the last term is one between two backbone sites 

(BB) of residues i and j, respectively. 

 

The short-range conformational energy of the backbone is evaluated using 

statistical potentials extracted form protein structures as based on virtual bond model and 

formulations reported by Bahar et al. (1997b) and Haliloglu and Bahar (1998) as expressed 

with the following equation. 
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In this equation, the first summation is the potential associated with the stretching of 

the virtual backbone bonds, approximated by a stiff harmonic potential. The second 

summation refers to the bending of backbone bond angles; the third stands for the bond 

torsions φi
- and φi

+ which are the rotational angles of the virtual backbone bonds preceding 

and succeeding the ith α-carbon, respectively. Terms are also included to account for 

pairwise interdependence of the torsion and/or bond angle bending. For the short-range 

conformational energy of the side chains, the statistical potentials converted from the 

probability distributions for packing of side chains in low resolution models are used (Kurt 
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et al., 2003). For instance, the energy associated with a side chain bond angle at state θi for 

a residue type A is 

 

( ) ( ) ( )[ ]θθθ 0
AAiA P/PlnRTE −=     (3.11) 

 

where ( )θAP  is the statistical probability of finding that bond at angle θ and ( )θ0
AP  is 

the background probability assuming a uniform distribution. Similar expressions are 

derived for side chain bond length and torsions and side chain conformation energy is 

summed over all side chains as 
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where S
il , S

iθ  and S
iφ  are the bond length, bond angle and torsion angle of side chain 

i. 

 

In the low resolution MC/Metropolis simulation technique, a randomly chosen site, 

either an alpha-carbon or a sidechain site, is subjected to a differential perturbation using a 

uniformly distributed random number generator. The strength of the perturbation, Δx is 

controlled by the formula, 

 

)12( −=Δ rkx      (3.13) 

 

Here, r is the random number variable in the range 0 ≤ r ≤ 1, and k is a damping 

factor that may be adjusted to mimic the response at a given temperature. The acceptance 

of a move is based on the Metropolis criterion which is based on generating a new random 

number and accepting the new conformation Φ if the following condition is satisfied, 

where Φo represents the original conformation: 

 

( ) ( )[ ]{ } rRTEE ≤Φ−Φ− /exp 0    (3.14) 
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One MC step (MCS) is defined as N perturbations and may be viewed as the 

average time for all N residues of the protein to have a chance to move. An MC algorithm 

with only local moves in some cases could give insight about the real time of a process. 

However, there is no correspondence between MCS and real time in the algorithm due to 

the implementation of both global deformations on collective modes and local moves. The 

analyses would be reliable if performed over multiple independent runs that are long 

enough for efficient sampling of the conformational space. 

 

3.3. ANM-MC Simulation  

 

 In the developed algorithm (Kantarci-Carsibasi et al., 2008), ANM is successively 

employed to provide collective deformation directions and short MC runs to provide 

energy minimization on the deformed conformations. Schematic flowchart of the method 

developed is provided in Fig. 3.2. The algorithm requires the crystal structures of the initial 

and final/target states as inputs. The initial state may be the apo/open conformation of a 

protein and the final state may be the bound/closed conformation. Atomistic structures are 

first coarse-grained (STEP 1) by assigning two nodes for each residue: the alpha-carbon 

and the center of mass (com) of the side chain in accordance with the knowledge based 

potentials used. For glycine, only one node (alpha carbon) is taken into account. Next, the 

target structure is aligned on the initial structure based on alpha-carbon coordinates in 

order to define the target direction (STEP 2). The target direction (Q), which is a 3N 

dimensional vector comprised of alpha-carbon coordinate deformations, is calculated by 

subtracting the initial coordinates from the aligned coordinates of the target. Details of the 

superimposition methodology can be found in the study by Umeyama (1991) which is 

reviewed in Appendix A.  

 

 ANM is then applied to the initial structure (STEP 3) to extract m lowest frequency 

eigenmodes (m = 10 and 20 is used in this thesis) using BLZPACK (Block Lanczos 

Package)- a Fortran 77 implementation of the block Lanczos algorithm (Grimes et al., 

1994; Marques, 1995, 2001).  
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Figure 3.2. Flowchart of the ANM-MC algorithm 

 

This algorithm facilitates calculating the generalized and standard eigenvalue problem and 

allows obtaining corresponding eigenvectors and eigenvalues of a very large matrix within 

a considerably short time. The cutoff distance rc is taken to be 18 Ǻ in ANM calculations 

using only alpha-carbon coordinates. The dot products of the m eigenvectors with the 

target direction are computed (considering both positive and negative directions) and the 
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eigenvector U (Eq. 3.5) giving the highest dot product- overlap- with the target direction Q 

is determined (STEP 4).  

 

 A new conformation is now generated by deforming the initial structure along this 

mode direction using a prespecified deformation factor (DF = 0.1–0.5 Å in this thesis) as 

expresses in the following notation: Rnew = R ± U (rescale factor). Here, Rnew and R denote 

the coordinate matrix of the new conformation generated and the initial state for which 

normal mode analysis is carried out, respectively (STEP 5). U is the eigenvector and it is 

multiplied by a rescale factor such that the RMSD between the new and the old 

conformation corresponds to selected DF. In other words, for instance, DF=0.2 Å means 

that the deformation is given such that the newly generated conformation has an average 

RMSD of 0.2 Å from the previous conformation.  Although the ANM is performed using 

the alpha-carbon atoms, the structure is deformed along the selected mode direction by 

applying the same deformation to the alpha-carbon and side chain nodes of each residue. 

The deformed conformation is allowed to relax by a specified number of MC steps (MCS 

= 100, 500 or 1000 employed here) by utilizing the MC algorithm described in Section 3.2 

(STEP 6).  

 

 Finally, the RMSD between the energy-minimized new structure and the target 

structure is calculated (STEP 7). Once the two structures, i.e. the target structure B is 

superimposed on the initial structure A, the coordinates of B are rotated (Brot) and the 

corresponding RMSD based on alpha carbon coordinates of the initial structure A and 

superimposed target structure (Brot) can then be calculated by Equation 3.15.  
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RMSD calculation is performed for each residue and summation over all residues is 

divided by the residue number and then the square root is taken, hence an average RMSD 

is calculated. If the RMSD is smaller than a desired value (Rrequired) the simulation stops; if 
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not the simulation enters a new iteration after the initial state is updated with the output 

from the previous MC step. Obviously, the target vector is also updated at each iteration 

based on the modification of the initial state.   

 

 The ANM-MC simulation is performed in an automated way after providing the x-

ray structures of the initial and final states of a protein. The necessary input parameters are, 

the deformation factor (DF), the number of MC steps (MCS) to be employed at each 

iteration, and the cutoff distance for ANM calculations (rc = 18 Å). Parameter adjustment 

is carried out in this thesis to determine suitable values for DF and MCS which are 0.2 Å 

and 1000, respectively. ANM-MC is applied first to adenylate kinase (AK) and then to 

another frequently studied allosteric protein, the human hemoglobin. 

 

3.4. Targeted Monte Carlo (TMC) Simulation  

 

TMC simulations (Kantarci-Carsibasi et al., 2008) are carried out to assess the 

effect of incorporating normal mode directions in the ANM-MC methodology. Similarly, 

starting with the open conformer the protein is forced toward the closed conformer by 

deforming the coordinates along the target direction without using slow modes. Hence the 

new conformation can be obtained by Rnew = R ± Q (DF). The new conformation is again 

relaxed by MC and the rest of the algorithm is same (Fig. 3.2). In short, the MC 

conformational search is now targeted absolutely in the direction of desired conformational 

transition. This is similar to morphing algorithms (Krebs and Gerstein, 2000), where the 

path between two conformations is linearly interpolated together with energy minimization 

to conserve the chemical structure.  The simulation parameters are DF and MCS in the 

TMC method. 

 

3.5. RG-ANM-MC Simulation 

 

 RG-ANM-MC method (Kantarci-Carsibasi et al., 2009) originates from ANM-MC 

method with additional advantage of its applicability to cases with unknown final state 3-D 

structure. The schematic flow diagram of the algorithm is presented in Fig.3.3, which can 

be summarized as follows: In STEP 1, the atomistic pdb structure of the initial 
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conformation is coarse-grained by assigning two nodes for each residue: the alpha-carbon 

(Cα) and the center of mass of the side chain (SC) in accordance with the knowledge based 

potentials used (For glycine, only one node, Cα, is taken into account).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Flowchart of the RG-ANM-MC algorithm 
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Then, ANM is applied to this coarse-grained initial structure (STEP 2) to extract m lowest 

frequency eigenmodes using BLZPACK (m=10 here). The initial structure is deformed 

using a prespecified (DF) in all m directions which results in 2m different conformations 

(STEP 3) (positive-negative direction of each mode, i.e. taking m=10 results in 20 different 

conformations). Among these 2m different conformations, the “essential conformation” 

approaching to the closed conformer of the protein is selected based on two criteria: the 

potential energies and the radius of gyrations (RG) of the conformations. The definition of 

RG is presented by Eq. 3.16, where the distance of each residue from the center of mass 

(com) of the protein is summed over all residues.  

 

RG 
N

)zz()yy()xx(
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i
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=

−+−+−
= 1

222

   (3.16) 

 

 In STEP 4, potential energies of all 2m conformers together with their RG’s are 

calculated. Then the conformations having lower RG than the starting conformation are 

identified and among them a single conformation having the minimum energy as compared 

to others is selected (STEP 5). In this way, the transition is guided by a constraint put on 

RG. In other words, the open protein is guided towards a conformation having an RG close 

to the closed state through an energetically favorable pathway. However, it should be 

noticed that closed state 3-D structure is not used except that the RG of the open 

conformation should obviously decrease in order for the protein to close. Similarly, the 

obtained structure is energy minimized by MC simulation (STEP 6). 

 

 The point where the iterative algorithm should stop depends on the closeness of the 

successive snapshots obtained. Since the target structure information is assumed to be 

unknown in this case, there is no chance for comparing the intermediate structures with the 

target. Hence in order to end the program, the RMSD between the present and the previous 

intermediate structures, i.e. successive RMSD’s are recorded at each iteration (STEP 7) 

and average RMSD value of, for instance, 10 successive intermediate structures is 

computed. If this average RMSD is less than a desired value the program can be ended 

since this shows that the successive snapshots resemble each other and hence maximum 
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approach is attained with a stabilized RMSD profile. Otherwise, the iteration continues by 

performing ANM and obtaining new eigenmodes for the present conformation. It should 

be noted that a sliding window concept is applied in computing the average RMSD of 10 

successive snapshots.  
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4. ANM-MC SIMULATION RESULTS 
 

 

 In this chapter, the ANM-MC methodology is used to investigate the 

conformational transitions in two proteins, namely adenylate kinase (AK) and hemoglobin. 

The degree of approach to the target structure and the mechanism by which the transition 

takes place are analyzed by calculating the RMSD between the simulation snapshots and 

the target conformation. RMSD values are calculated based on Cα coordinates of the 

structures obtained. The potential energies of the simulation snapshots are compared to 

those of starting and end structures. Moreover, the conformational transition pathway is 

analyzed by comparing the simulation snapshots with the x-ray structures proposed as 

intermediates in literature.   

 

4.1.  Case study: Adenylate Kinase (AK)  

 

AK undergoes a significant hinge-bending motion upon substrate binding (Figure 

2.5). The motion is highly collective with an RMSD change of 7.13 Å and possesses an 

allosteric behavior. There is large amount of experimental and computational data on the 

AK conformational transition, including proposed candidate structures existing on the 

transitional pathway (Maragakis and Karplus, 2005). Hence, AK is a suitable system for 

the evaluation of ANM-MC technique and the adjustment of simulation parameters. 

 

 The transition of AK from the apo (4AKE) to the bound/closed state (1AKE) is 

studied by ANM-MC methodology. The first conformers (chain A) in both x-ray structures 

(reporting two chains) are chosen. The water molecules and the ligand atoms are not taken 

into consideration. First, the collective modes of apo AK are investigated by ANM using 

the HingeProt web server (Emekli et al., 2007). The slowest two modes are associated with 

the motion in the LID domain, i.e. LID opening and closing. In 3rd and 4th eigen modes, 

LID closing is accompanied with AMP-bind domain closing. Figure 4.1 presents the 

alternative conformations for the first four modes. However, ANM itself does not provide 

information about the sequence of these events, i.e. which domain closes first still remains 

a question.  
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Figure 4.1. Four slowest collective modes of apo AK (PDB code: 4AKE) 

 

4.1.1.  Parameter Adjustment: RMSD and Energy Profiles in AK 

 

As explained in Section 3, the simulation parameters of concern are the 

deformation factor (DF) applied along collective modes and the number of Monte Carlo 

Step (MCS) employed in each cycle. Hence, these two parameters are explored for 

parameter adjustment, using DF= 0.1, 0.2 and 0.5 Å and MCS = 100, 500 and 1000. Three 

independent runs are performed for each combination of DF and MCS, but results are 

shown for a single run because of the similarity of the different runs. Figure 4.2 presents 

the simulation results obtained for the transition from the open to the closed (target) 

conformation of AK for different MCS. In all cases, the x-axis represents the number of 

ANM-MC iterations or cycles. One iteration/cycle means an ANM calculation followed by 

deformation along a collective mode with the specified DF, and then followed by an MC 

simulation of certain steps (MCS = 100, 500, or 1000). In Figure 4.2 (a), the effect of MCS 

on the RMSD profiles is demonstrated for fixed DF=0.2 Å. These RMSD values are 

between the energy minimized intermediate structures obtained during the simulation and 

the target structure.   
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Figure 4.2.  RMSD and energy values as a function of iteration/cycle number for various 

AK runs from open to closed states (a) Effect of MCS on RMSD values. (b) Effect of MCS 

on the total energies of the intermediate structures during the simulation (DF=0.2 Ǻ) 
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DF is first fixed arbitrarily in order to determine MCS and then DF will also be adjusted by 

fixing the MCS. As observed from Figure 4.2 (a), RMSD value starts from 7.13 Å - the 

value between 4AKE and 1AKE- and smoothly decreases up to 2.27 Å (MCS=100); 2.29 

Å (MCS=500); and 2.34 Å (MCS=1000) indicating a reasonable approach to the closed 

conformer. There is no significant difference in the RMSD profiles obtained for different 

MCS, i.e. RMSD to the target state is almost invariant with changing MCS. Thus it can be 

concluded that intermediate structures having similar backbone structures are obtained for 

this range of MCS values.  

 

 In general, longer MCS results in longer computational times hence shorter MCS 

would be preferred. However, the energies of the intermediates that are depicted in Figure 

4.2 (b) should also be considered to determine a suitable MCS value. Figure 4.2 (b) 

demonstrates the effect of MCS on the total energy profiles (total energy=short-range + 

long-range energies, see Section 3, Eq. 3.8) of the intermediate structures throughout the 

simulation with DF = 0.2 Å. The x-ray structures of the open and closed conformers of AK 

are also relaxed by MC simulations and for comparison their average energies from the 

beginning to MCS = 1000 are depicted on the figure as horizontal lines. The energy of 

closed conformation (1AKE) is lower than that of open conformation (4AKE).  

 

 In contrast to the RMSD profiles, the total energies of these intermediates differ 

considerably with the MCS employed. Specifically, MCS=1000 in each cycle results in 

structures with lower energies that fall in the range of open and closed structure energies. 

As the backbone structures of these intermediates are somewhat similar, the reason for 

these energy differences should arise from side chain orientations. Indeed, as the 

components of the total energy is decomposed and examined, the total long-range and side 

chain short-range interactions (associated with side chain bond stretching, angle bending 

and bond torsion) obtained with longer energy minimizations are found to be lower than 

that of the shorter runs (not shown), hence leading to lower total energies. Thus, an MCS 

of 1000 is found to be suitable for energy minimization. Even longer MCS could be used 

in each cycle, however that would decrease the computational efficiency of the new 

protocol. 
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 In Figure 4.3, the effect of deformation factor used in ANM calculations is 

demonstrated by fixing the MCS at 1000. In fact, many different DF values ranging from 

0.1 to 3.0 Ǻ are studied, but most appropriate results, in terms of RMSD and energy, are 

obtained for low DF values such as 0.1, 0.2, and 0.5 as depicted in Figure 4.3 (a). The 

variation in the RMSD to target is presented in this figure. With smaller deformation 

factors such as 0.1, 0.2 Å; smoothly decreasing RMSD profiles are obtained. The closest 

approaches to the closed conformer are 2.27 and 2.34 Å at the 104th and 47th cycles with 

DF = 0.1 and 0.2 Ǻ, respectively.  

 

 Higher deformation factors (data shown for DF = 0.5 Ǻ) lead to trajectories that 

approach the target faster (minimum RMSD = 2.38 at the 21st cycle) but show a subsequent 

increase in RMSD. This unstable behavior around the target is due to deforming the 

structure about slow mode directions that have in fact very low overlap values with the 

target direction after the initial decrease in RMSD, which will be discussed in the 

subsequent section. Hence, for closer approaches and stable RMSD profiles, smaller 

deformation factors, such as 0.1 and 0.2 Å, are chosen to be more appropriate. However, 

applying DF=0.5 until the closest approach to the target (minimum RMSD) and then using 

smaller DF’s such as 0.1 (see inset of Figure 4.3 (a)) is another choice which results in 

smoothly decreasing and non-oscillatory RMSD profiles as well.  

 

 Figure 4.3 (b) points out the effect of deformation factor on the total energy profiles. 

The average energies of the initial (open) final (closed) states are depicted as horizontal 

lines as before. Smaller DF’s (0.1 or 0.2 Å) provide energy values that fall in the range of 

initial and target structure energies. However, this does not mean that using DF=0.5 will 

always result in high energy values.  

 

In fact, quite reasonable energy profiles may also be obtained with DF = 0.5 Ǻ as 

well, if longer energy minimizations, such as for 3000 MCS, are performed, as 

demonstrated in Figure. 4.4. Among the different parameter combinations employed for 

AK, DF = 0.1, 0.2 Ǻ can be regarded as appropriate choices with MCS = 1000. It is 

necessary to further investigate whether or not the choice of these parameters significantly 

alters the transitional pathways obtained. 
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Figure 4.3.  (a) RMSD of intermediate structures to target structure with various DF’s (0.1, 

0.2, 0.5 Ǻ) with MCS= 1000. The inset presents results using DF =0.5 until maximum 

approach attained, then continuing with DF=0.1 (b) Energy profiles of AK  

(a) 

(b) 
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Figure 4.4.  Effect of MCS on the energy profiles of AK intermediates with DF= 0.5 

 

 

4.1.2.  Transition Pathway and Pathway Intermediates of AK 

 

 The parameter combination of DF = 0.2 Å and MCS = 1000 will be used in this 

section for detailed analysis of the pathway intermediates. Figure 4.5 illustrates several 

snapshots up to 60th iteration taken from the ANM-MC simulation trajectory. During the 

initial cycles of the trajectory (up to snapshot ~30), the mobile LID domain (red) slowly 

closes over the core domain (blue). When the LID is almost closed, the AMP-bind domain 

(orange) begins to bend over the core. However, complete closure of the AMP-bind 

domain is not observed here. As a result, this visual inspection reveals that LID domain is 

more mobile as compared to AMP-bind domain and closure of the LID seems to precede 

that of AMP-bind domain.  

 

 The transition pathway of AK has been recently studied by a plastic network model 

study (Maragakis and Karplus, 2005), where several x-ray structures have been proposed 
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to be on the pathway. Table 4.1 tabulates the RMSD values between ANM-MC simulation 

snapshots depicted in Figure 4.5 and the x-ray structures proposed to be present on the 

transition pathway.  

 

 
 

Figure 4.5.  Several intermediate structures obtained during simulation of AK transition 

from open to closed conformation obtained for simulation with DF=0.2; MCS=1000. 

 

RMSD values indicated in bold face represent the maximum approaches attained among 

the selected snapshots to the specific x-ray structures. The last two rows list the RMSD 

between the open (4AKE) and closed (1AKE) structures and the rest of the crystal 

structures studied. Earlier snapshots (iterations up to 30) exhibit maximum approach to the 

crystal structures: 1AK2, 1DVR (B chain) and 1DVR (A chain), sequentially. In 1AK2, the 

LID domain is about to close over the core, while the AMP-bind region is completely 

open. In 1DVR (A and B chains), the LID region is totally closed, while the AMP-bind is 

still open.  Hence the overlap of these three x-ray structures with the earlier snapshots 

indicates the priority of LID closing.  
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 Subsequent snapshots (iterations > 30) fall in proximity with the rest of four crystal 

structures, namely 1E4Y (A chain), 1E4V (A chain), 1ANK (A chain), and 2ECK (A 

chain). These crystal structures bear close resemblance to the closed conformer 1AKE, i.e. 

both the LID and AMP-bind domains are almost closed. Since the snapshots between 35th - 

60th iterations fall within 2.3-2.8 Ǻ RMSD range with these structures, the AMP-bind 

closing appears to take place- at least partially- in the late stages of the simulation. 

 

Table 4.1.  RMSD values between simulation snapshots (DF = 0.2 Å and MCS = 1000) 

and several AK crystal structures 

 
Snapshot/ 

iteration 

4AKE 

 

1AK2a 

 

1DVR b

B chain 

1DVR b

A chain 

1E4Y c 
A chain 

1E4V d 
A chain 

1ANK e 
A chain 

2ECK f 
A chain 

1AKE 

 

5 2.09 4.09 4.21 4.10 5.93 6.23 6.25 6.31 6.25 

10 2.71 3.55 3.51 3.35 5.19 5.46 5.44 5.53 5.47 

15 3.63 2.98 2.86 2.67 4.49 4.70 4.65 4.75 4.71 

20 4.46 3.14 2.53 2.38 3.92 4.05 3.99 4.08 4.05 

25 5.04 3.45 2.54 2.36 3.40 3.49 3.44 3.52 3.49 

30 5.30 3.64 2.73 2.60 2.98 3.09 3.06 3.14 3.09 

35 5.73 3.98 2.75 2.63 2.66 2.74 2.71 2.76 2.74 

40 6.23 4.17 2.92 2.81 2.52 2.50 2.47 2.51 2.49 

45 6.56 4.54 3.26 3.12 2.38 2.42 2.38 2.40 2.34 

50 6.94 4.84 3.55 3.42 2.46 2.36 2.37 2.38 2.37 

55 6.95 4.96 3.54 3.41 2.43 2.39 2.34 2.30 2.38 

60 7.02 4.95 3.51 3.40 2.50 2.42 2.40 2.30 2.41 

4AKE 0.00 5.38 5.78 5.63 7.20 7.64 7.66 7.23 7.13 

1AKE 7.13 5.57 4.02 3.92 0.93 0.65 0.45 0.28 0.00 

 

 
a 1AK2 (Schlauderer and Schulz, 1996) belong to bovine mitochondria inter-membrane 

space AK.  

 b 1DVR (A and B chains) (Schlauderer et al., 1996) belong to the baker’s yeast AK.  
c 1E4Y (Müller and Schulz, 1993) is the Glysine-loop modified version of AK from E.coli.  
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d 1E4V (Müller and Schulz, 1993) is G10V mutant of AK from E.coli.  
e  1ANK (Berry et al., 1994)  is AMPPNP and AMP bound form of AK from E.coli,  
f  2ECK (Berry et al., 2006) is AMP and ADP bound form of AK from E.coli. 

 

   

 The present results are in conformity with recent studies pointing to the 

conformational changes and physical order of events during open to closed transition in 

AK. The plastic network model of Maragakis and Karplus (2005) has also indicated that 

LID closure precedes the bending motion of the AMP-bind region due to the highly 

flexible nature of the LID domain and its low elastic energy barrier cost. A coarse-grained 

structure-based Hamiltonian model proposed by Whitford et al. (2007) has revealed that 

the free energy barrier of LID domain closure is less than that of AMP-bind region, 

implying the AMP-bind closure as the rate-limiting step. An MD study by Lou and Cukier 

(2006) has indicated that the LID initially closes toward the core at high temperature.  

 

 Table 4.2 lists the closest approaches attained to x-ray structures in different AK 

runs carried out with various DF and MCS parameter combinations. The first value shows 

the minimum RMSD attained to each crystal structure and the value in parenthesis denotes 

the specific cycle, at which the maximum approach is attained. For instance, for DF=0.1 

and MCS=1000, the closest approach attained to x-ray structure 1AK2 is 2.88 Ǻ at 30th 

iteration. Independent runs (1 and 2) performed using the same parameters (DF = 0.2 and 

MCS = 1000) provide similar intermediates. Moreover, different MCS (MCS = 100 or 

1000) or DF (DF = 0.1, 0.2 or even 0.5, not shown) did not change significantly the 

minimum RMSD values attained to the x-ray structures. As a result, appropriate simulation 

parameters should be chosen according to the size of each system. For instance, in case of 

large proteins, the simulation time to reach the target would definitely increase due to the 

system size. In that case, choosing higher DF’s such as 0.5 would be more efficient. Even 

though the MCS would also be preferred to be low for decreasing the computational time; 

it should be adjusted so as to attain comparable energy values with the initial/final state 

energies.  
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 Performing long energy minimizations result in more appropriate intermediate 

structure energies with the cost of prolonged computational times. However, if the main 

topic of concern is the exploration of the transitional pathway, i.e. the pathway 

intermediate structures, relatively shorter energy minimizations and/or higher DF may be 

employed especially for large biological systems. In summary, the most important finding 

in ANM-MC simulations is that similar pathway intermediates are obtained for different 

combinations of parameters; even for those that lead to high energies compared to open 

and closed x-ray structures. 

 

Table 4.2.  Closest approaches attained to x-ray structures in different AK runs 

 

ANM-MC  

Parameters 

1AK2 

 

1DVR

(B) 

1DVR

(A) 

1E4Y

(A) 

1E4V

(A) 

2ECK 

(A) 

1ANK 

(A) 

1AKE

 

DF=0.1,  

MCS=1000 

2.88 

30 

2.52 

40 

2.30 

40 

2.35 

100 

2.32 

100 

2.30 

100 

2.30 

100 

2.29 

105 

DF=0.2,  

MCS=100  

2.91 

 15 

2.50 

20 

2.11 

25 

2.36 

45 

2.32 

50 

2.34 

55 

2.27 

55 

2.27 

50 

DF=0.2,  

MCS=1000 (1) 

2.98 

15 

2.53 

20 

2.36 

25 

2.38 

45 

2.36 

50 

2.34 

55 

2.30 

50 

2.34 

50 

DF=0.2,  

MCS=1000 (2) 

2.96 

15 

2.50 

20 

2.42 

25 

2.38 

45 

2.35 

50 

2.34 

55 

2.33 

55 

2.35 

50 

 

 The mode directions chosen at each iteration with corresponding overlap values are 

plotted in Figure 4.6. As mentioned before, among the first ten slowest modes, the mode 

chosen at each step has the highest overlap with the target direction and the structure is 

deformed along this direction. Previous studies have reported that conformational changes 

are usually accompanied by the lowest frequency normal modes (Tama and Sanejouand, 

2001). For DF = 0.2, MCS = 1000; initially the algorithm chooses the 1st and then 2nd 

slowest modes with high overlap values (0.5-0.7), which are associated with the LID 

closing. Up to 20-25 iterations, the conformational change is thus driven with the lowest 

frequency modes in conformity with previous studies and the RMSD to target structure 



 

 

50

decreases from 7.13 Ǻ to 4.44 Ǻ. After 20-25 iterations, higher modes associated with 

AMP-bind domain come into picture. 

 

  The basic approach to the target state is accompanied by the lowest frequency two 

modes, but higher modes with lower overlap values provide for a more precise mapping of 

the structure on to target (down to 2.34 Ǻ RMSD). This outcome is also supported by 

Patrone and Pande (2006), who has pointed out the relevance of using higher modes to 

map a conformational change. They reported that the low frequency modes typically bring 

the reference conformation about 50% closer to the target conformation based on their 

RMSD and further approach should be accompanied by higher modes.  All the calculations 

presented so far are based on slowest ten eigen modes. It may be speculated whether there 

is any contribution or effect of including even higher modes. Hence, simulations are 

repeated by taking the first 20 slowest modes.  Though the RMSD and energy profiles are 

quite similar, the maximum approach to target is attained as 2.17 Å for DF=0.2 and 

MCS=1000 (for ten mode case, this value was 2.34 Å). As an expected outcome, using 

higher modes provided a slightly more precise mapping to the target conformation.  

 

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40 45 50 55 60

iteration

m
od

e 
nu

m
be

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ov
er

la
p

mode number overlap

 
Figure 4.6.  Mode directions preferred and corresponding overlap values at each iteration 

during simulation of AK from open-to-closed states (slowest 10 modes are included). 
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 The mode directions preferred with corresponding overlap values are depicted in 

Figure 4.7 for the 20 mode case. When Figures 4.6 and 4.7 are compared, up to about 

iteration 20, the first two slowest modes are chosen, which drive the structure to undergo a 

large conformational change. Afterwards, higher modes are almost randomly chosen at 

each case for a closer approach. But the major conformational change is already driven by 

the slowest two modes with high overlap values, and hence similar intermediate structures 

are obtained throughout the trajectory. As a result, the first 10 modes seems to be a 

satisfactory choice.   
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Figure 4.7.  Mode directions preferred and corresponding overlap values at each iteration 

during simulation of AK from open-to-closed states (slowest 20 modes are included). 

 

4.1.3.  Contact Map Representations of AK Intermediates  

 

 The event of domain closure is explored more thoroughly at the residue level by 

plotting the residues contact maps. In Figure 4.8,  the Cα atom pairs that are in contact 

within a cutoff distance of 15 Å are displayed for x-ray structures of open and closed 

conformers of AK in panels a and b, respectively. The contact maps are symmetric, hence 

only the upper diagonals are presented.  
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Figure 4.8.  Contact maps for open (a), closed (b) forms of AK and for final snapshots (50th 

snapshot) of two independent simulations (c) and (d) with DF=0.2 Å and MCS=1000. 

 

(a) 

(b) 
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Figure 4.8. continued 

 

(d) 

(c) 
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The residues belonging to the LID and AMP-bind domains are highlighted within 

rectangles. The major differences in the residue contacts between the open and closed 

conformers are indicated within black circles in panel (b). Upon closure, the LID and the 

AMP-bind domains form close contact with each other and with the core domain. Similar 

analysis is carried out for the structures obtained at the end of simulation. Contact maps of 

final structures obtained from two independent simulations with DF = 0.2 Å and MCS = 

1000 are generated and compared with that of the closed one. Figure 4.8 (c) and (d) show 

the plots for the 50th snapshot, which has attained maximum approach to the target state. 

Comparison with the target structure (Figure 4.8 (b)) indicates that in both runs an 

important part of the necessary contacts in black circles have been formed. The missing 

contacts are due to the fact that there is still a 2.34 and 2.41 Å RMSD of these snapshot 

with the target structure.  

 

Table 4.3.  Comparative analysis of new contact formation at each snapshot across two 

different runs of AK 

 

Snapshots     LID contacts (%) 

   Run1              Run2 

AMP-bind contacts (%) 

      Run1             Run2 

common residues 

in contact (%) 

5 14.1 13.0 0 0 80 

10 15.8 15.8 0 0 75 

15 18.1 18.1 0 0 78 

20 18.1 18.6 1.0 1.0 75 

25 18.6 22.0 1.0 1.4 69 

30 22.6 22.6 3.1 4.1 65 

35 25.4 25.4 5.1 5.8 65 

40 26.0 26.0 6.1 6.5 60 

45 28.2 29.4 8.5 9.9 67 

50 31.1 29.9 11.0 10.2 57 

 

 The comparative quantitative analysis of new contact formation at each snapshot of 

two independent runs is tabulated in Table 4.3. The table shows cumulative percentage of 

LID (first column) and AMP-bind (second column) related contacts formed at each 
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snapshot and the overall percentage of common residues (third column) in contact at that 

particular snapshot across the two runs (both with DF = 0.2 Å and MCS = 1000). The 

percentages of LID and AMP-bind related contacts are calculated by taking the ratio of the 

number of contacts present at that snapshot to the corresponding number of contacts found 

in the target conformation (1AKE). The percentages of contacts belonging to LID and 

AMP-bind domains are very similar across the two runs. Both runs confirm the priority of 

LID closing which is then accompanied by AMP-closing. At the final snapshot (50) at 

most about 30% of LID contacts and 10 % of AMP-bind contacts that are to be present in 

the final closed structure are formed. The overall percentage of common residues is higher 

especially at initial stages of the simulation. Nevertheless, multiple independent runs result 

in a similar sequence of events (Tables 4.2 and 4.3) and MC serves for refining the 

conformations with the current implementation.  

 

 It should be noted that reverse transition from the closed to the open state of AK 

could not be accomplished with the current ANM-MC methodology as effectively as the 

forward (open to closed) transition. The RMSD to the open structure, which is the target in 

this case, just decreases to about 5 Å, i.e. the final structure obtained could not attain a 

close mapping to the target, i.e. close mapping to the target structure could not be attained. 

This will be discussed in the next chapter in comparison with the TMC simulations.  

 

4.1.4. Stability of end structures 

 

Longer MC simulations are performed on the structures obtained at the end of 

ANM-MC, in order to validate their stability. Figure 4.9 illustrates the RMSD and energy 

profiles of the final snapshot (2.34 Å RMSD to target) of an ANM-MC simulation during 

prolonged MC simulation (10,000 MCS). In panel a, the RMSD of MC simulation 

snapshots from the target is depicted. The RMSD values oscillate between 2.2-2.6 Å 

around the initial value (2.34 Å).  

 

In Figure 4.9 (b), the energy profile is compared with the average energies of open 

and closed states (horizontal solid lines). The energy trend attains a stable profile near the 

initial and final structure energies. 
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Figure 4.9. RMSD(a) and Energy (b) profiles of the final snapshot of an ANM-MC 

simulation during prolonged MC simulation 

(a) 

(b) 
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4.2.  Case study: Hemoglobin 

 

An important and widely investigated allosteric protein is hemoglobin, which 

consists of 4 chains with a total number of 572 residues. The system size is more than 

twice compared to AK resulting in longer computational times. ANM-MC methodology 

will also be tested for the case of hemoglobin, which exhibits a conformational change of 

3.5 Å between T and R2 states. The RMSD between T-R and R-R2 states are 2.4 and 1.8 

Å, respectively, where the R state has been proposed as an intermediate (Srinivasan and 

Rose, 1994). T-to-R2 transition will be studied and the transitional pathway will be 

analyzed from the aspect of approach of the simulation trajectory to the suggested pathway 

intermediate R-state. In R2, there are two additional valine residues in the beginning of 

chains B and D, which are discarded here to match the size of the initial and target 

structures. 

 

In the study of Xu et al. (2003) the global dynamics of both T and R2 forms were 

investigated by ENM. It was reported that both of the conformations exhibit similar 

behavior. Moreover, the two α-chains exhibit similar dynamics as well as the two β-chains 

(Fig. 2.4). ANM modes indicated that the slowest mode is associated with the motion of 

the dimer α1-β1 relative to α2-β2, while the second slowest mode controls the relative 

movements of the dimers α1-β2 and α2-β1. 

 

4.2.1.  RMSD and Energy Profiles of Hemoglobin 

 

 As in the case of AK, simulation parameters (DF and MCS) are investigated first 

for hemoglobin. Figure 4.10 presents the ANM-MC simulation results obtained for 

hemoglobin with different DF values by fixing MCS at 1000. Similar to the case of AK, 

deformation factors of 0.1, 0.2 and 0.5 provide close approaches to target with stable 

profiles (panel a). Minimum RMSD values to target structure (R2) are 1.9 Ǻ with DF = 0.1 

and 0.2, and 1.95 Ǻ with DF = 0.5. Figure 4.10 (b) demonstrates the energy values of the 

snapshots obtained.  
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Figure 4.10.  RMSD values of human hemoglobin (a) and corresponding energy profiles 

during simulation of transition from T-to-R2 form with different DF’s (b).  
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All three values of DF lead to reasonable RMSD and energy profiles. Indeed, DF=0.5 Å 

seem to be a more appropriate choice in this case due to similar RMSD profiles with 

DF=0.1 and 0.2; and closer energy values to target structure. Moreover, the simulation 

time is almost half of that of the ones with DF=0.1 and 0.2.  

 

4.2.2.  Transition Pathway and Pathway Intermediates of Hemoglobin 

 

 

 The RMSD values of snapshots with T, R and R2 crystal structures are provided in 

Table 4.4 for the run performed with DF = 0.2 and MCS = 1000. The pdb file of 1HHO 

includes two monomers, hence the tetrameric structure is generated symmetrically using 

Pymol (DeLano, 2002). Srinivasan and Rose (1994) had suggested R state to be an 

intermediate state between T and R2. In accordance, intermediate snapshots of the 

simulation pass through R on the pathway from T to R2. As the snapshots begin to deviate 

from the T state, the R state is reached with a minimum RMSD = 1.89 Å (at 15th iteration). 

Subsequently, the R2 state is approached with an RMSD = 1.91 Å (at 30th iteration). 

 

Table 4.4.  RMSD values of the simulation snapshots with crystal structures of hemoglobin 

(T, R and R2 forms) with DF=0.2; MCS=1000 

 

Snapshots 1A3N(T) 1HHO (R) 1BBB (R2) 

5 1.04 2.08 2.91 

10 1.99 2.04 2.40 

15 2.54 1.89 2.10 

20 2.89 1.94 1.97 

25 3.06 2.04 1.93 

30 3.07 1.98 1.91 

35 3.20 2.14 1.95 

40 3.24 2.12 1.94 

45 3.30 2.19 1.97 
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 Similar intermediate structures are obtained with DF = 0.5 and MCS = 1000 as 

presented in Table 4.5. Thus for relatively large proteins like hemoglobin, DF = 0.5 seems 

more appropriate in terms of computational efficiency, since the RMSD profiles and the 

intermediates are quite similar with the case of lower deformation factors. An important 

outcome of ANM-MC simulations is that although the simulation was targeted in the 

direction of T-R2 transition, on the path another state, the R state is visited first. As a result 

the snapshots reveal that R like structures exists on the hemoglobin transitional pathway.  

 

Table 4.5.  RMSD values of the simulation snapshots with crystal structures of hemoglobin 

(T, R and R2 forms) with DF=0.5; MCS=1000. 

 

Snapshots 1A3N(T) 1HHO (R) 1BBB (R2) 

2 0.82 1.88 2.95 

5 2.48 2.24 2.27 

7 2.72 1.79 2.05 

10 2.94 1.81 2.01 

13 2.95 1.90 1.99 

15 3.27 2.26 1.97 

18 3.30 2.03 2.04 

20 3.33 2.35 2.05 

23 3.35 2.34 2.08 

  

 The directional preferences, i.e. the modes preferred at each iteration with 

corresponding overlaps during the simulation are depicted in Figure 4.11. In the initial 

stage (up to 16th iteration), the first two global modes guide the major part of the transition. 

After that point higher modes with low overlap values (around 0.1) slightly decrease the 

RMSD with target from 2.1 to 1.9.  
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Figure 4.11.  Mode directions preferred and corresponding overlap values with the target 

direction obtained for hemoglobin from T to R2 state (DF=0.2; MCS=1000 case). 

 

 Computational efficiency 
 

 Besides its simplicity, the ANM-MC algorithm requires reasonably short CPU 

times for completion. For instance, a single iteration for AK (214 residues), which includes 

the calculation of 10 slowest modes by ANM, followed by energy minimization of MCS = 

100 (MCS = 1000) and an RMSD check, takes about 1 minute and 17 seconds (6 min and 

10 seconds)  on a 1.5 GHz  Itanium2 processor with 2 GB RAM. A complete run that 

drives AK from the open to closed conformation by attaining a maximum approach lasts 

approximately 1 hour (5 hours) for MCS = 100 (MCS = 1000) and DF = 0.2 Å. In the case 

of hemoglobin (572 residue), a complete run with DF = 0.2 lasts about 5 days with MCS = 

1000 and less than one day with MCS = 100, providing similar intermediates. Thus, a 

rough comparison of the CPU times necessary to simulate such conformational transitions 

with targeted MD and ANM-MC method indicates that the latter is much more efficient 

requiring couple of days, whereas the former may last on the order of weeks to months, 

depending on the system size and simulation parameters. 
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5.  TARGETED MONTE CARLO SIMULATION RESULTS 
 

 

TMC simulations are carried out to assess the effect of incorporating normal mode 

directions in the ANM-MC methodology. Similarly, starting with an initial conformation 

(e.g. open state), the protein is forced toward the target (e.g. closed state) conformation by 

deforming the coordinates along the target direction without the aid of slow modes. This 

targeted protocol is applied to AK and hemoglobin and the results are compared to those of 

the ANM-MC method.  

 

5.1.  Case Study: Adenylate Kinase (AK) 

 

5.1.1. Open-to-closed transition 

 

The RMSD and energy profiles for TMC simulations of AK are presented in 

Figures 5.1 (a) and (b), respectively. In these figures the results obtained in TMC and 

ANM-MC methodologies are compared. The TMC method reaches the target structure 

faster with a final RMSD ~ 0 Å, indicating almost a complete match of the final snapshot 

with the target conformation due to the forcing mechanism towards target. The energy 

profiles of two methodologies are quite similar. The trends are sensible as compared to the 

average energies of the open (4AKE) and closed (1AKE) states, which are indicated as 

horizontal lines.  

 

Comparisons of TMC snapshots with the AK related x-ray structures are provided 

in Table 5.1. The RMSD (2.5 - 3.4 Å) of the TMC snapshots with the first four x-ray 

structures associated with LID closure (1AK2, 2AK2, 1DVRB, 1DVRA) are higher than 

the ones obtained with ANM-MC (2.3 – 2.9 Å, in Table 4.1). In contrast, TMC approaches 

closer to the rest of the structures (1E4YA, 1E4VA, 2ECKA, 1ANKA), that have very 

similar conformations to the target (RMSD < 1 Å). Hence, as compared to ANM-MC 

method, TMC succeeds in attaining close proximity with the final four x-ray structures that 

mainly resemble the target.  
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Figure 5.1.  TMC simulation results as compared with ANM-MC method with application 

to AK (DF=0.2 Å; MCS=1000) (a) RMSD between the intermediate snapshots and target 

structure (b) Energy profiles of intermediates. 

(a) 

(b) 
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 Table 5.1. RMSD values between the AK related x-ray structures and intermediate 

structures obtained with TMC simulations of AK from open-to-closed conformation. 

 

snapshots 

4AKE 

 

1AK2 

 

1DVR 

B 

1DVR 

A 

1E4Y 

A 

1E4V 

A 

2ECK 

A 

1ANK 

A 

1AKE

 

5 2.20 3.68 3.92 3.80 5.52 5.82 5.91 5.81 5.83 

10 3.26 3.43 3.09 2.95 4.24 4.51 4.62 4.55 4.53 

15 4.44 3.53 2.70 2.55 2.99 3.24 3.33 3.26 3.25 

20 5.62 4.14 2.88 2.74 1.84 2.00 2.04 2.02 2.01 

25 6.80 4.99 3.52 3.40 0.96 0.83 0.95 0.81 0.81 

30 7.55 5.59 4.08 3.96 0.96 0.28 0.33 0.48 0.15 

 

5.1.2. Reverse Transition 

 

 Even though most studies in literature focus on the open-to-closed conformational 

transitions, the reverse transition was also studied in AK by ANM-MC and TMC methods. 

The results pointed out that TMC succeeds in generating the reverse (closed-to-open) 

pathway with similar pathway intermediates obtained in the forward (open-to-closed) 

transition simulations.  

 

 On the other hand, the ANM-MC protocol can not reach the open conformation to 

the extent that TMC achieves. In the case of ANM-MC simulation, when the overlap 

values of the forward and reverse transitions are compared, it is observed that in the 

forward case, the overlap values of modes are quite high, whereas in the reverse transition 

case they are low.  

 

 In a comprehensive study (Tama and Sanejouand, 2001) performed over 20 

different proteins exhibiting open/closed transitions both forward and reverse transitions 

were investigated by NMA. The authors concluded that when studying an open 

conformation the normal modes better described the conformational change, the 

corresponding overlap being significantly higher. In other words, the reverse transitions 

from closed-to-open states do not usually correspond to the slow modes obtained from 

normal mode analysis. This was attributed to the possibility that the property captured by 
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NMA may be related to the shape of the protein. The domains of the protein in the open 

form are more separated and better defined; hence NMA performs better with open forms 

as far as the shape is concerned. Since ANM-MC is a normal mode based protocol, the 

reverse transition of AK could not be accomplished. Due to the forcing algorithm of the 

TMC method, both the forward and the reverse transitions could be successfully simulated.  

 

 In Figure 5.2, RMSD and energy profiles of AK obtained by ANM-MC and TMC 

simulations of transition from the closed-to-open conformation, i.e. for reverse transition 

are given. In the ANM-MC case, the RMSD to the open conformation has just decreased 

from 7.13 to 5.02 Å at most (Figure 5.2(a)) and the energy profile (Figure 5.2 (b)) of the 

simulation trajectory is observed to be quite high as compared to the open and closed 

conformer average energies (indicated by horizontal lines).  There seems to be large energy 

barriers to be overcome in order for the closed structure to open, which is not possible by 

the aid of normal modes.   

 

 In the case of TMC, almost a complete mapping to target with RMSD ~ 0 Å is 

attained. Energy values of both methods are comparable with the initial and target state 

average energies (panel b). As a matter of fact, TMC method proves more successful for 

accomplishing the reverse transition. 

 

 Table 5.2 tabulates the RMSD between the TMC snapshots of reverse transition 

simulation and AK related x-ray structures. Snapshots are between 2.2-2.9 Å proximity 

with the three open-like x-ray structures (1DVRA, 1DVRB, 1AK2). The TMC snapshots 

are initially close to the first four x-ray structures (2ECK, 1ANK, 1E4V, 1E4Y) which 

resemble the closed structure, and continuously move away as the simulation proceeds.  
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Figure 5.2. RMSD (a) and energy (b) values as a function of iteration/cycle number 

for reverse transition simulation of AK by ANM-MC and TMC methods (DF=0.2, 

MCS=1000)  

  

(a) 

(b) 
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Table 5.2. RMSD values between the AK related x-ray structures and intermediate 

structures obtained for reverse transition of AK with TMC simulation 

 

snapshots 1AKE 

2ECK 

A 

1ANK 

A 

1E4V 

A 

1E4Y 

A 

1DVR 

B 

1DVR 

A 1AK2 4AKE 

5 3.25 1.26 1.26 1.23 1.09 2.54 2.43 4.05 5.82 

10 4.06 2.32 2.31 2.27 2.01 2.21 2.51 3.27 4.52 

15 5.39 3.37 3.37 3.37 2.99 2.38 2.23 2.99 3.22 

20 5.87 4.41 4.42 5.21 4.24 2.60 2.61 2.93 1.92 

25 6.22 5.33 5.44 5.43 5.14 3.19 3.11 3.48 0.63 

30 7.10 5.89 6.10 5.93 5.77 3.76 3.53 3.87 0.12 

 

The mode directions chosen at each iteration with corresponding overlap values are 

plotted in Figure 5.3 for ANM-MC reverse transition of AK. The comparison of this figure 

with the one obtained in the forward transition case (Figure 4.6) reveals that the overlap 

values of modes with the target direction are considerably lower in the reverse transition 

case.  
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Figure 5.3. Modes chosen and corresponding overlap values at each iteration for 

ANM-MC reverse transition simulation of AK (DF=0.2; MCS=1000) 
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This implies that normal modes better describe the conformational changes taking place in 

the forward transition case. In the reverse transition case, at 10th iteration, the overlap value 

has already fall down to 0.2. However, in the forward case, such a small overlap value was 

attained after about 40th iteration until which almost maximum approach was attained.  

 

5.2.  Case Study: Hemoglobin 

 

5.2.1. T-to-R2 transition 

 

TMC simulations are also carried out for hemoglobin. Figure 5.4 illustrates the 

comparative results obtained by TMC and ANM-MC methods. TMC is examined to 

approach the target state R2 starting T state with an RMSD of almost 0 Å approach as in 

the case of AK. On the other hand, the maximum approach value attained by ANM-MC 

was 1.91 Å for DF=0.2; MCS=1000.  

 

 The RMSD and energy profiles for TMC simulations of hemoglobin are depicted in 

the Figures 5.4 (a) and (b), respectively, for comparison of TMC and ANM-MC 

methodologies. It may be inferred that TMC exhibits a sharp decrease of RMSD towards 

the target with energy profiles lower than the one obtained with ANM-MC method. 

However, in the later snapshots the energy profile seems to be higher than ANM-MC case. 

Nevertheless, the energy values are comparable with that of the target state. 

 

Further analysis of the simulation trajectory is demonstrated in Table 5.3. The 

interpretation of the simulation snapshots with the initial (T state), final (R2 state) and the 

known intermediate (R state) of the simulation trajectory revealed that the intermediate R 

state is approached by 1.28 Å at 13th snapshot and beyond 30th snapshot, the structure does 

not change much as the RMSD from the target is around 0.1 Å.  
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Figure 5.4. TMC simulation results as compared with ANM-MC method with application 

to hemoglobin for T-to-R2 transition (DF=0.2 Å; MCS=1000 for both cases). (a) RMSD 

between the intermediate snapshots and target structure. (b) Energy profiles of 

intermediates. 

(a) 

(b) 
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Table 5.3. RMSD values between TMC simulation snapshots and T, R2, and R form x-ray 

structures of hemoglobin (DF=0.2, MCS=1000) 

 

snapshots 1A3N(T) 1HHO (R) 1BBB (R2) 

3 0.93 1.65 2.87 

5 1.16 1.49 2.43 

7 1.85 1.38 1.98 

10 2.3 1.31 1.32 

13 2.76 1.28 0.69 

15 2.91 1.32 0.32 

20 3.21 1.57 0.18 

25 3.47 1.78 0.15 

30 3.52 1.8 0.10 

 

5.2.2. Reverse Transition 

 

As in case of AK, the reverse transition pathway study (R2-to-T) is also carried out 

for hemoglobin. Previous studies investigating hemoglobin transitional pathway reported 

that slowest modes successfully bring the T state close to the R and R2 states, however the 

backward passages did not prove to be accessible (Mouawad and Perahia, 1996; Xu et al., 

2003). In Figure 5.5, the RMSD and energy profiles of hemoglobin obtained for reverse 

transition simulations by ANM-MC and TMC methods are given. With TMC, the RMSD 

to the T state, which is the target in this case, has successfully decreased from 3.55 to 

around 0.1 Å (Figure 5.5(a)) and the energy profile (Figure 5.5 (b)) of the simulation 

trajectory is observed to be quite sensible as compared to the open and closed conformer 

average energies (indicated by horizontal lines). 

 

 In the case of ANM-MC, the target state could be approached an RMSD of 1.91 Å 

which not too far from the approach attained in the forward transition case (1.89 Å). The 

energy profile is observed to be similar to the TMC case and comparable with the initial 

and final state average energy values.  
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Figure 5.5. TMC simulation results as compared with ANM-MC method with application 

to hemoglobin for reverse transition (DF=0.2 Å; MCS=1000 for both cases). (a) RMSD 

between the intermediate snapshots and target structure. (b) Energy profiles of 

intermediates. 

(a) 

(b) 



 

 

72

As a matter of fact, in the case of hemoglobin both TMC and ANM-MC methods can be 

successfully employed for accomplishing the reverse transition. The details regarding the 

comparison of the simulation trajectory with the initial (T state), final (R2 state) and the 

known intermediate (R state) are tabulated on Table 5.4. The simulation results revealed 

that the intermediate R state is approached by 1.43 Å at 10th snapshot and beyond 30th 

snapshot, RMSD from the target is observed to be around 0.1 Å.  

 

Table 5.4. RMSD values between reverse TMC simulation snapshots and T, R2, 

and R form x-ray structures of hemoglobin 

 

snapshots 1BBB(R2) 1HHO (R) 1A3N (T) 

3 0.70 1.77 2.86 

5 1.16 1.59 2.42 

7 1.62 1.47 1.96 

10 2.31 1.43 1.28 

13 2.99 1.92 0.64 

15 3.44 2.30 0.28 

17 3.48 2.33 0.17 

20 3.54 2.39 0.18 

25 3.58 2.44 0.12 

30 3.60 2.46 0.10 

 

To summarize, both the ANM-MC and the TMC methods proposed in this work 

succeed in exhibiting transitions from open-to-closed forms of AK and free-to-bound states 

of hemoglobin, with reasonable pathway intermediates. TMC method is observed to reach 

the target conformation faster and with a more precise approach. In both methods, 

simulation snapshots were compared with the known x-ray structures that may be 

candidate pathway intermediates and the RMSD values indicated satisfactory approaches 

to the target conformations. In the reverse transition simulations, ANM-MC could not 

maintain very close mapping to the target state in the case of AK. This may be attributed to 

a high energy barrier that could not be overcome in the reverse transition pathway, hence 

preventing the molecule to open completely. Moreover, literature findings report that 
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generally reverse transitions might not be accompanied by the lowest frequency normal 

modes (Tama and Sanjound, 2001). However, TMC succeeded to attain almost complete 

mapping towards the target state with ~ 0 Å RMSD. In the case of hemoglobin, both 

ANM-MC and TMC enabled satisfactory mapping to the target conformation.  

 

It is important to notice that the intermediate structures obtained in the case of 

forward and reverse transition of AK by TMC possess similarity with the x-ray structures 

proposed in literature. Nevertheless, the simulation snapshots reveal that both in the 

forward and reverse transitions the domain closure and/or opening is not in a sequential 

manner, i.e. the two domains close or open together in TMC unlike in ANM-MC, which 

clearly reflects the sequential order of domain closure. 

 

Especially, for large systems TMC method could be efficiently used. However, in 

the case of unavailable target information, both ANM-MC and TMC methods would fail to 

predict and investigate the transitional pathway. At this point, RG-ANM-MC method, 

which will be presented in the following chapter, can successfully be used to simulate 

systems without target information by incorporating collective normal modes and tracking 

the radius of gyration.  
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6. RG-ANM-MC SIMULATION RESULTS 
 

 

 The ANM-MC methodology has been successful for analyzing the conformational 

transitions of AK and hemoglobin, for which the target conformations, i.e. closed state x-

ray structures are available. In this chapter, a more generalized version of ANM-MC, the 

RG-ANM-MC methodology is presented. The origination of this method stems from the 

need for prediction of plausible closed states for proteins. Various alternative methods has 

been studied before finalizing RG-ANM-MC technique. Initially, only the conformations 

deformed along modes which result in lower energies were selected in search from the 

open to a plausible closed state. However, this protocol was unable to guide the structure 

towards its closed state, instead enabled a conformational search around the initial state. 

Furthermore, it was also not possible to reach to the closed state by selecting the 

conformations with decreasing RG’s only. As a matter of fact, a combined approach 

utilizing both the energies and introducing RG’s of the conformations as a constraint 

accomplished the desired transition.  

 

 The RG-ANM-MC methodology is applied to adenylate kinase (AK), human serum 

transferrin (HSTR) and Lysine/Arginine/Ornithine binding (LAO-binding) proteins that 

undergo large-amplitude conformational transitions. The RMSD of conformational 

changes are as follows: AK (7.13 Å); HSTR (6.70 Å); and LAO-binding protein (4.70 Å) 

with corresponding system sizes, i.e. residue numbers: 214, 238, and 328, respectively. 

Even though, for these proteins the x-ray structures of closed conformers exist, the 

algorithm does not use any structural information about target during simulation except 

that the radius of gyration of the simulation intermediates should decrease in order for the 

protein to close (see methods for details). Though not needed in the simulations, the closed 

state structures can still be utilized to test the success of the methodology. Hemoglobin was 

not taken as a test case protein here since distinct and large-amplitude conformational 

changes, such as open-to-close transitions have been rather preferred. 

 

 The adjustment of parameters, namely the deformation factor in ANM calculations 

and the Monte Carlo step used in ANM-MC simulations, was discussed in Section 4. 
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Among various combinations of DF and MCS, DF=0.2 Å gave satisfactory results within 

short CPU times for various protein systems. Hence, this value of DF=0.2 Å will be used 

here and MCS will be set by testing several alternative values (MCS=100, 500, 1000).  

 

6.1.  Case study: Adenylate kinase (AK)  

 

 For the evaluation of ANM-MC technique, AK was chosen primarily due to its 

large conformational change (RMSD between open and closed structures= 7.13 Å) and the 

availability of large amount of experimental and computational data. In this section, the 

RG-ANM-MC simulation results of AK are presented in comparison with previous ANM-

MC results. As before, the simulations are performed for the first chain disregarding the 

water and the ligand molecules. 

 

6.1.1.  RMSD, Energy and RG Profiles of AK 

 

 Figure 6.1 represents the simulation results obtained for the transition from the 

open to the closed conformation of AK for several MCS values with DF=0.2 Å. In Figure 

6.1 (a) the RMSD between the simulation snapshots and the closed (target) conformation 

calculated at each iteration is demonstrated. Although the x-ray structure of the closed state 

as a target is not used in simulations, this figure illustrates the approach attained to the 

target. For the RG-ANM-MC simulation of AK, it can be observed that there is no 

significant difference between the RMSD profiles obtained for different MCS. But to 

decide on an appropriate value, the energy profiles should also be checked.  

 

 The corresponding energy profiles of the intermediate structures obtained during 

the simulations are given in Figure 6.1 (b). The initial and the target, i.e. the open and 

closed conformations are also relaxed by MC and average values from beginning to 

MCS=1000 are plotted as horizontal lines on the figure. As can be deduced from the 

RMSD and energy profiles, MCS=500 seems to be an appropriate choice with maximum 

approach to target state being 3.18 Å (Figure 6.1 (a)) and the potential energy being very 

close to that of the target conformation.  
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Figure 6.1.  (a) Effect of Monte Carlo step (MCS) on the RMSD values between the 

intermediate structures and target (closed) structure as a function of iteration/cycle number 

for DF=0.2 (b) Corresponding energy profiles of AK. 

 

(a) 
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In fact, a closer mapping to the target state with a lower RMSD profile is possible with 

MCS=100 (maximum approach=2.98 Å), however as far as the energy profile is 

concerned, MCS=500 seems to be a better choice. Therefore, the rest of the calculations on 

AK are based on the results of simulation with parameter values: DF=0.2 Å, and 

MCS=500.  

 

 Figure 6.2 illustrates further details of RG-ANM-MC simulation. Figure 6.2 (a) 

compares the RMSD profile of ANM-MC methodology, that targets the closed 

conformation using collective modes; with that obtained by RG-ANM-MC (for both 

methods DF=0.2 and MCS=500). The RMSD profiles exhibit similar trends with 

maximum approach values to the target state being 2.38 Å (at 48th step) and 3.18 Å (at 44th 

step) in ANM-MC and RG-ANM-MC methods, respectively. Though closer mapping to 

target is achieved by the previous ANM-MC methodology, RG-ANM-MC simulation 

without any target structure information proves successful with a 3.18 Å RMSD. 

 

 Previous studies reported that the conformational transitions are usually driven by 

the lowest frequency collective modes (Tama and Sanejouand, 2001; Krebs et al., 2002; 

Xu et al., 2003; Ma, 2005; Patrone and Pande, 2006). The results obtained by both ANM-

MC and RG-ANM-MC simulations agree with literature. The specific collective mode 

chosen as the deformation direction with the corresponding radius of gyration value at each 

iteration are provided in Figure 6.2 (b). Initially, the algorithm chooses the 1st and 2nd 

slowest modes, which are associated with the LID closing. Up to 28th iteration, the 

conformational change is driven with the two lowest frequency modes in conformity with 

previous studies. As a result, the RMSD to target structure decreases from 7.13 Å to 4.14 

Å. In the following iterations, higher modes associated with AMP-bind domain motion 

enable a closer mapping to the target by decreasing the RMSD from 4.14 to 3.18 Å.  

 

 On the same figure (6.2 (b)), the RG values of the intermediates are also plotted. As 

a constraint of the RG-ANM-MC algorithm, the intermediate conformations are selected 

according to decreasing RG values, which is reflected by the RG profile in the figure. The 

RG values of the open and closed AK x-ray conformations are 376.36 Å and 268.06 Å, 

respectively. The RG of the final intermediate (60th snapshot) is attained as 299.30 Å. 
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Figure 6.2. Comparison of the RMSD profiles of ANM-MC and RG-ANM-MC 

simulations of AK (DF=0.2; MCS=500) (a) and specific modes chosen and the 

corresponding RG values at each iteration (b). 

(a) 
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 In the previous ANM-MC method, the simulation was continued until a desired 

approach to the target state was maintained with a steady profile. In the case of RG-ANM-

MC methodology, the duration of the simulation should be based on another factor since 

the target structure is unavailable. Hence, considering average RMSD of successive 

intermediates (see section 3) would be an option. 

 

 In Figures 6.3 (a) and (b), the simulation period required to attain maximum 

approach with a steady RMSD profile is discussed. In panel a, average RMSD of 10 

successive intermediates (RMSD10avg) is plotted. It can be inferred from the figure that for 

attaining RMSD10avg ≤ 0.1 the program should be continued more than 100 steps (until 

80th step shown) and for attaining RMSD10avg ≤ 0.2, the program should be continued up 

to about 60th step. However, as far as the approach to the target structure is concerned 

(Figure 6.3 (b)), maximum approach has been already attained at 55th step. Hence 

RMSD10avg ≤ 0.2 seems to be a sufficient constraint for ending the algorithm within a 

shorter computational time.  

 

6.1.2.  Transition Pathway and Pathway Intermediates of AK 

 

 Figure 6.4 illustrates several snapshots (up to 60th iteration) selected from the RG-

ANM-MC simulation trajectory. Earlier studies report that the LID domain (red) is much 

more mobile than AMP-bind domain (orange); and that the closure of the LID precedes the 

bending motion in the AMP-bind domain. (Maragakis and Karplus, 2005; Lou and Cukier, 

2006; Withford et al., 2007; Kantarci-Carsibasi et al., 2008). This outcome is also 

supported by inspection of the simulation snapshots and their contact map representations 

presented in Section 4. Similar observation is valid in the case of RG-ANM-MC simulation 

results in Figure 6.4. In the first half of the simulation, the motion of the LID domain is 

more significant and motion of the AMP-bind region seems to be observable after ~ 40th 

iteration.    
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Figure 6.3. RMSD between the successive intermediate structures of RG-ANM-MC 

simulation of AK for attaining RMSD10avg ≤ 0.1 and 0.2 Å (a) and RMSD of simulation 

intermediates from the closed conformation of AK for RMSD10avg ≤ 0.1 and 0.2 Å (b). 
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Figure 6.4.  Several intermediate structures obtained during simulation of AK in open to 

closed transition obtained with RG-ANM-MC simulation (DF=0.2; MCS=500) 

 

 The RMSD between the RG-ANM-MC simulation snapshots presented in Figure 

6.4, with the proposed AK intermediates is tabulated in Table 6.1. RMSD values indicated 

in bold face represent maximum approaches attained among the selected snapshots to the 

specific x-ray structures. The maximum approaches are observed to be between 2.7- 3.5 Å. 

With the previous ANM-MC methodology, the simulation snapshots were maintained 

between 2.3- 3.0 Å RMSD with these x-ray structures. 

 

 Earlier snapshots (iterations up to 40) exhibit maximum approach to the crystal 

structures: 1AK2, 1DVR (B chain) and 1DVR (A chain), sequentially. In 1AK2, the LID 

domain is about to close over the core, while the AMP-bind region is completely open. In 

1DVR (A and B chains), the LID region is totally closed, while the AMP-bind is still open. 

The overlap of these three x-ray structures with earlier snapshots indicates the priority of 

LID closing. Subsequent snapshots (iterations > 40) fall in proximity with the rest of four 

crystal structures, namely 1E4Y(A chain), 1E4V (A chain), 1ANK (A chain), and 2ECK 

(A chain). These crystal structures bear close resemblance to the closed conformer 1AKE, 

i.e. both the LID and AMP-bind domains are almost closed. The similarity of final 
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snapshots with these structures shows that the AMP-bind closing appears to take place 

more significantly in the late stages of the simulation.  

 

Table 6.1.  RMSD values between RG-ANM-MC simulation snapshots and several AK 

crystal structures (DF = 0.2 Å and MCS = 500) 

 
Snapshot/ 

iteration 

4AKE 

 

1AK2a 

 

1DVRb 

B chain

1DVRb 

A chain

1E4Yc 

A chain

1E4Vd 

A chain

1ANKe 

A chain 

2ECKf 

A chain 

1AKE

 

5 2.35 4.47 4.22 4.10 5.93 6.23 6.25 6.31 6.25 

10 3.13 4.10 4.13 4.02 5.50 5.80 5.84 5.87 5.81 

15 3.59 4.08 3.52 3.38 4.76 5.03 5.06 5.10 5.66 

20 3.80 3.73 3.15 2.94 4.40 4.66 4.64 4.71 5.36 

25 4.13 3.65 2.95 2.84 4.06 4.30 4.28 4.35 4.84 

30 4.73 3.54 2.83 2.70 3.63 4.10 3.78 3.84 4.28 

35 5.28 3.75 2.81 2.68 3.52 3.63 3.53 3.66 3.76 

40 5.74 3.80 2.71 2.66 3.50 3.53 3.48 3.54 3.50 

45 6.44 4.03 2.83 2.76 3.46 3.45 3.40 3.45 3.43 

50 7.17 4.64 3.44 3.40 3.53 3.49 3.56 3.59 3.48 

55 7.54 5.16 3.91 3.88 3.55 3.50 3.58 3.58 3.50 

60 7.54 5.17 3.91 3.89 3.55 3.53 3.58 3.59 3.51 

4AKE 0.00 5.38 5.78 5.63 7.20 7.64 7.66 7.23 7.13 

1AKE 7.13 5.57 4.02 3.92 0.93 0.65 0.45 0.28 0.00 

 
a 1AK2 (Schlauderer and Schulz, 1996) belong to bovine mitochondria inter-membrane 

space AK.  
b 1DVR (A and B chains) (Schlauderer  et al.,1996) belong to the baker’s yeast AK.  
c 1E4Y (Müller and Schulz, 1993) is the Glysine-loop modified version of AK from E.coli.  
d 1E4V (Müller and Schulz, 1993) is G10V mutant of AK from E.coli.  
e  1ANK (Berry et al., 1994)  is AMPPNP and AMP bound form of AK from E.coli.  
f  2ECK (Berry et al., 2006)  is AMP and ADP bound form of AK from E.coli. 

 

 RG-ANM-MC simulations are also performed for accomplishing reverse transition, 

beginning with the closed form of AK. Same procedure is valid, except that RG should 

increase during transition from the closed-to-open state. However, the desired transition 
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could not be managed by RG-ANM-MC method as was also not possible with ANM-MC 

method. In the study of Tama and Sanejouand (2001), the authors have also pointed out 

that the reverse transitions from closed-to-open states do not usually correspond to the 

slow modes obtained from normal mode analysis. 

6.1.3. Significance of energy consideration of collective modes for the conformational 

transition 

 

 While developing the RG-ANM-MC method, several alternative procedures were 

tested. Initially, the transition was tried to be accomplished by using only normal modes 

and corresponding conformation energies. However, this protocol could not prove 

successful in approaching the target. Instead, the conformational space could be scanned 

around the initial structure. Hence the requirement for a constraint condition came into 

picture. RG is then used as a constraint that would lead the protein to closure.  

 

 It is also studied whether the transition could be accomplished by disregarding the 

conformation energies and choosing only the conformations having lower RG’s. The 

results are presented in Figure 6.5. In panel a, the RMSD profiles obtained by both 

approaches are compared. In the case of disregarding the energies, the RMSD decreases 

approximately to step 45th, attaining a maximum approach to target with 3.03 Å RMSD; 

and then starts to deviate with increasing RMSD. In the case of energy and RG 

consideration, the RMSD trend attains a stable profile around the maximum approach 

value. Moreover, it is indicated in Figure 6.5 (b), that the energy profile is significantly far 

from target state when only RG is considered.  

 

 When the simulation snapshots obtained in both cases are compared the case where 

RG criterion is used only, can not capture the x-ray structures such as 1AK2, 1DVRB, and 

1DVRA. As a matter of fact, using a combined scheme proved more successful in 

obtaining a stable RMSD and energy profile. Furthermore, the combined scheme revealed 

the sequence of steps more clearly during the transition. 
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Figure 6.5. Comparison of RG-ANM-MC simulations with/without consideration of 

normal mode energies (a) RMSD profiles (b) Energy profiles 
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6.2.  Case study: Human Serum Transferrin (HSTR) 

 

 In this section, the RG-ANM-MC simulation results will be presented for the 

transition from open to closed conformations of HSTR. N-lobe half-molecules (328 

residue) with apo and holo form pdb codes: 1BP5-Achain and 1A8E are used and ligand 

and water molecules are disregarded in the simulation.  

 

6.2.1.  RMSD, Energy and RG Profiles in HSTR 

 

 First the parameters are adjusted as in the previous cases. By fixing DF=0.2 Å, a 

suitable MCS is determined. Figure 6.6 (a) and (b) represent the RG-ANM-MC simulation 

results obtained for HSTR by using MCS= 100, 500, and 1000.  In Figure 6.6 (a), the 

RMSD between the simulation snapshots and the closed (target) conformation calculated at 

each iteration is demonstrated. The corresponding energy profiles obtained by this 

combination of parameters are depicted in Figure 6.6 (b). The initial and target structures 

are also relaxed by 1000 MCS and average energies are indicated by horizontal lines on the 

figure.  

 

 The simulation intermediates are desired to get as close as possible to the target 

state with a stable RMSD trend and comparable energy profiles with that of the target. As 

Figure 6.6 (a) implies, unlike the AK case, the MCS seems to alter the RMSD profiles 

considerably. For MCS = 100, 500, and 1000, the closest approach values to the target 

conformation are obtained as 2.71, 3.45, and 4.60 Å RMSD, respectively. Adjustment of 

the two parameters suggests MCS=500 is an appropriate choice. Hence, results will be 

presented for DF=0.2, and MCS=500.  

 

 Figure 6.7 illustrates further details of the RG-ANM-MC simulation of HSTR. The 

comparison of the RMSD profile obtained by RG-ANM-MC and ANM-MC simulations 

are demonstrated in Figure 6.7 (a) (for both methods DF=0.2, and MCS=500). The 

maximum approach values attained to the target state are 1.81 Å at 50th iteration step and 

3.45 Å at 55th iteration steps by ANM-MC and RG-ANM-MC methodologies, 

respectively. 
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Figure 6.6. RMSD (a) and energy (b) profiles of intermediate structures of HSTR obtained 

by RG-ANM-MC with different MCS values (DF=0.2 Å) 

 

 

(a) 

(b) 



 

 

87

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

iteration step

R
M

SD
(Å

)

RG-ANM-MC ANM-MC

max approach:
50th step=1.81 Å 

max approach:
55th step=3.45Å 

 
 

370

380

390

400

410

420

430

440

450

460

0 10 20 30 40 50 60

iteration step

R
ad

iu
s o

f g
yr

at
io

n 
(Å

)

0

1

2

3

4

5

6

7

m
od

e 
nu

m
be

r

RG mode number

 
 

Figure 6.7.  Comparison of the RMSD profiles of ANM-MC and RG-ANM-MC 

simulations of HSTR (DF=0.2; MCS=500) (a) and modes with corresponding RG’s chosen 

at each iteration (b). 
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Figure 6.8. RMSD between the successive intermediate structures of RG-ANM-MC 

simulation of HSTR for attaining RMSD10avg ≤ 0.1 and 0.2 Å (a) and RMSD of simulation 

intermediates from closed conformation of HSTR for RMSD10avg ≤ 0.1 and 0.2 Å (b). 
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 ANM-MC methodology provides a closer mapping to target state, however, 

without any target information RG-ANM-MC technique yields close proximity with the 

ANM-MC profile. In Figure 6.7 (b), the variations of RG and the mode direction 

throughout the simulation are presented. The direction of transition is guided by the lowest 

frequency normal modes initially which constitute the minimum energy direction, and then 

higher modes accompany as in the previous cases. The RG values of the open and closed 

conformations are 449.88 and 371.80, respectively. The RG of the final intermediate (60th 

snapshot) is attained as 375.68 which is quite close to that of the target structure (Figure 

6.7 (b)).  

 

 Similarly, in Figure 6.8 (a) and (b) the decision of the period of simulation is 

illustrated based on RMSD10avg values. As in the case of AK, RMSD10avg= 0.2 is a 

sufficient choice for capturing the maximum approach to the target within reasonable 

computational time. 

 

6.2.2.  Transition Pathway and Pathway Intermediates of HSTR 

 

 In Figure 6.9, several intermediate structures (up to 60th iteration) from the RG-

ANM-MC simulation of HSTR are presented (DF= 0.2 Å; MCS= 500). All snapshots are 

displayed by superimposing on the initial (open) conformation. Visual interpretation 

reveals the closure of the two domains (N1 and N2) about the hinge point.  

 

 
 

Figure 6.9.  Several intermediate structures obtained during simulation of HSTR in 

transition from open to closed conformation obtained with RG-ANM-MC simulation 

(DF=0.2; MCS=500). 
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 Based on the simulation snapshots a plausible transitional pathway is suggested by 

extensive x-ray structure search through Protein Data Bank. There is not yet a published 

transitional pathway suggested for HSTR. The database is scanned for protein structures in 

which the name “transferrin” appears. Among over 20 x-ray structures, several candidates 

are proposed to be present in the HSTR transitional pathway. Table 6.2 tabulates these x-

ray structures and their RMSD from the simulation snapshots RMSD values indicated in 

bold face represent the maximum approach values attained among the selected snapshots to 

the specific x-ray structures.  

 

Table 6.2. RMSD values between RG-ANM-MC simulation snapshots and several 

transferrin related crystal structures (DF = 0.2 Å and MCS = 500) 

 

Snapshot/ 

iteration  

1BP5 

 

1IQ7a 

A chain

1FCKb

A chain

1BLFc 

A chain

1TFDd 

A chain 

1A8E 

 

10 1.51 4.23 5.60 5.93 6.05 6.15 

20 2.79 3.72 4.70 4.99 5.08 5.17 

30 3.51 3.59 3.71 3.88 4.01 4.03 

40 3.99 3.71 3.67 3.73 3.61 3.68 

50 4.80 3.83 3.49 3.66 3.51 3.60 

60 5.49 4.42 3.53 3.55 3.40 3.45 

1BP5 0.00 4.58 6.16 6.52 6.63 6.70 

1A8E 6.70 5.31 1.66 1.48 1.00 0.00 

 
a Apo form of C-terminal ovotransferrin from chicken (Mizutani et al., 2001) 
b Diferric bovine lactoferrin (Moore et al., 1997) 
c Diceric human lactoferrin (Baker et al., 2000) 
d Rabbit serum transferrin (Sara et al., 1990) 

 

 The maximum approach values are observed to be between 3.4- 3.6 Å. Thus, the 

transitional pathway intermediates proposed in this thesis includes apo form of C-terminal 

ovotransferrin from chicken, diferric bovine lactoferrin, diceric human lactoferrin, and 
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rabbit serum transferrin in a sequential manner. Especially it is suggested that apo form of 

C-terminal ovotransferrin (1IQ7) and diferric bovine lactoferrin (1FCK) are significant 

candidate intermediates that lie in the middle of the pathway. The other two x-ray 

structures are closer to the closed form; hence lie towards the end of the pathway.  

 

 The suggested candidate intermediates are validated by previous ANM-MC 

methodology. The RMSD values between the ANM-MC simulation intermediates and 

suggested transferrin related x-ray structures are tabulated on Table 6.3. Even closer 

approach values are obtained (RMSD between 1.95-2.85 Å) to the x-ray structures which 

confirm the RG-ANM-MC results. 

 

Table 6.3. RMSD values between ANM-MC simulation snapshots and transferrin related 

crystal structures (DF = 0.2 Å and MCS = 500) 

 

Snapshot/

iteration  

1BP5 

 

1IQ7a 

A chain

1FCKc

A chain

1BLFb

A chain

1TFDd 

A chain 

1A8E 

 

10 2.30 3.49 4.28 4.59 4.66 4.72 

20 3.69 3.22 3.14 3.40 3.24 3.43 

30 4.91 2.85 2.38 2.54 2.40 2.36 

40 5.80 3.11 2.25 2.32 2.35 2.25 

50 6.28 3.45 2.43 2.38 1.95 1.81 

60 6.41 3.87 2.51 2.42 1.98 1.83 

1BP5 0.00 4.58 6.16 6.52 6.63 6.70 

1A8E 6.70 5.31 1.66 1.48 1.00 0.00 

 

 

6.3.  Case study: Lysine/Arginine/Ornithine Binding (LAO-binding) Protein 

 

In this section, the RG-ANM-MC simulation results are presented for LAO-binding 

protein. This protein consists of 238 residues with apo and holo form PDB codes: 2LAO 

and 1LST, respectively. RMSD of the corresponding conformational change is 4.7 Å and 

the water and ligand molecules are disregarded in the simulation. 
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6.3.1.  RMSD, Energy and RG Profiles in LAO-binding protein 

 

 The RMSD and energy profile results obtained in the simulation of LAO-binding 

protein are provided in Figure 6.10 (a) and (b), respectively for the same combination of 

simulation parameters. RMSD varies significantly with MCS, as in the case of HSTR. The 

maximum approaches to the target structure with MCS=100, 500 and 1000 are 2.10, 2.52, 

and 3.13 Å, respectively. Based on the energy plot, MCS=500 seems to be the best choice. 

Hence, as in the case of AK and HSTR for DF=0.2, MCS=500 seems to be suitable for the 

simulations. 

 

 Figure 6.11 demonstrates further details on the RG-ANM-MC simulation of LAO-

protein. The comparative analysis of results obtained by the ANM-MC and RG-ANM-MC 

methods is given in Figure 6.11 (a). As in previous cases, similar RMSD profiles are 

observed in both cases with maximum approach values as 1.40 Å (27th step) and 2.61 Å 

(26th step) in the ANM-MC and RG-ANM-MC methods, respectively.  

 

 Figure 6.11 (b) reveals the mode directions selected with the corresponding RG 

values attained at each iteration. Up to 21st step, first two slowest modes are selected as 

was observed in AK and HSTR. At the 21st iteration the RMSD has already decreased from 

4.7 to 2.7 Å; then higher modes come into for decreasing the RMSD from 2.7 to 2.6 Å. 

The RG values of the open and closed conformations are 362.78 and 313.29, respectively. 

The RG of the final intermediate is attained as 340.33 (Figure 6.11 (b)). 
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Figure 6.10. RMSD (a) and energy (b) profiles of intermediate structures of LAO-binding 

protein obtained by RG-ANM-MC with different MCS values (DF=0.2) 
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Figure 6.11.  Comparison of the RMSD profiles of ANM-MC and RG-ANM-MC 

simulations of LAO-binding protein (DF=0.2; MCS=500) (a) and modes with 

corresponding RG’s chosen at each iteration (b). 
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Figure 6.12. RMSD between the successive intermediate structures of RG-ANM-MC 

simulation of LAO-binding protein for attaining RMSD10avg ≤ 0.1 and 0.2 Å (a) and 

RMSD of simulation intermediates from closed conformation of LAO-binding protein for 

RMSD10avg ≤ 0.1 and 0.2 Å (b). 
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 Analysis on the simulation duration for attaining RMSD10avg value of  0.1 and 0.2 is 

depicted in Figure 6.12 (a) and (b). Since similar to the previous test cases with 

RMSD10avg = 0.2, maximum approach is already attained at much earlier steps; hence 

RMSD10avg = 0.2 is once again regarded as the sufficient constraint for ending the 

algorithm.  

 

6.3.2.  Transition pathway and pathway intermediates of LAO-binding protein 

 

 Figure 6.13 presents the RG-ANM-MC simulation intermediates of LAO-binding 

protein. It is revealed that the two domains approach each other by bending about a hinge. 

There is still an RMSD of 2.6 Å between the final snapshot (Figure 6.10 (a), MCS=500) 

and the closed structure hence closure of the domains is not complete.  

 

 Recently, Keskin (2007) presented an ANM based study investigating the 

conformational changes that antibody proteins undergo. The author simulated 8 different 

proteins including LAO-binding protein and proposed a transition pathway by adding the 

eigenvector leading to the desired transition to the original coordinates using various 

rescale, i.e. deformation factors. It is observed that the two domains close as the ligand is 

bound to protein and the maximum approach value to the target is maintained as 2.13 Å. 

 

 

 
 

Figure 6.13.  Several intermediate structures obtained during RG-ANM-MC simulation of 

LAO-binding protein in transition from open to closed conformation (DF=0.2; MCS=500). 
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7.  CONCLUSIONS AND RECOMMENDATIONS 
 

 

7.1. Conclusions 

 

In this study, new approaches are developed to investigate conformational 

transition pathways of proteins which undergo large conformational changes upon ligand 

binding. In the first protocol, namely ANM-MC methodology, the elastic network model 

ANM is coupled with an MC algorithm that utilizes knowledge-based potentials of 

proteins. ANM-MC algorithm is shown to be useful for the investigation of protein 

conformational transition pathways. An important implication of this method is that it 

improves ANM as well as MC in the sense of providing information about the sequence of 

events as well as more efficient conformational search.  

 

 Investigation of parameters has indicated that small deformation factors such as 

0.1, or 0.2 Å prove successful in maintaining satisfactory RMSD and energy profiles, 

thereby achieving a close approach to the target state with reasonable pathway 

intermediates. However, when faster sampling of the transitional pathways in larger 

systems like the hemoglobin in this thesis, one may choose larger DF’s followed by shorter 

energy minimizations if the elucidation of intermediate conformations and the sequence of 

events is of main concern since effect of MCS on RMSD profiles and intermediate 

structures is not significant. 

  

 Application of the ANM-MC algorithm proves successful in achieving the transition 

between the open and closed conformations of AK (E.coli). Specific snapshots along the 

trajectory fall within acceptable RMSD ranges with the crystal structures proposed as 

intermediates on the AK pathway previously suggested in literature (Maragakis and 

Karplus, 2005). The closing of the LID domain precedes that of AMP bind domain, which 

is also validated with contact map representations. Similarly, the method accomplishes the 

transition from T to R2 states of hemoglobin, passing through the R state proposed to be an 

intermediate state between T and R2 (Srinivasan and Rose, 1994). Both applications on 

AK and hemoglobin reveal that the two lowest frequency modes are foremost in driving 
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the conformational changes. Nevertheless, higher modes are needed in later stages for a 

closer mapping towards the target structure.   

 

In RG-ANM-MC method, which is an extension of ANM-MC, ANM and MC 

algorithms are used to simulate the conformational transitions of three proteins, namely 

AK, HSTR, and LAO-binding protein. As compared to the ANM-MC methodology, RG-

ANM-MC possesses the very important advantage of being applicable to systems where 

only the initial conformation is available. In this method, the conformation having the 

minimum energy with a lower radius of gyration is selected as the intermediate in going 

from the open to closed conformation. Hence, previous methodology has somewhat been 

generalized for application to proteins exhibiting hinge-bending motions without the aid of 

target information.  

 

Application of the RG-ANM-MC algorithm proves successful in achieving the 

transition between the open and closed conformations of AK, HSTR, and LAO-binding 

protein. Specific snapshots along the trajectory fall within acceptable RMSD ranges with 

the crystal structures proposed as intermediates on the AK pathway (Maragakis and 

Karplus, 2005). Moreover, in the case of AK, the closing of the LID domain precedes that 

of AMP bind domain. For the case of HSTR, several HSTR related x-ray structures that 

might be candidate pathway intermediates are proposed in this thesis. Especially, apo form 

of C-terminal ovotransferrin (1IQ7) and diferric bovine lactoferrin (1FCK) are suggested 

as significant candidate intermediates.  

 

In all three test cases, the corresponding conformational changes, i.e. the 

transitional path is guided by the lowest frequency normal modes. Nevertheless, higher 

modes are needed in later stages for a closer mapping towards the target structure. This 

finding is in agreement with previous studies (Brooks and Karplus, 1985; Tama and 

Sanejouand, 2001; Zheng and Doniach, 2003; Emekli et al., 2007) which reported that 

usually the conformational transition is guided by the slowest mode, or sometimes by the 

two lowest frequency normal modes.  It should also be noticed that, both techniques were 

successful for proteins exhibiting hinge-bending motion which is actually a common 
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property for open-to-closed transitions. Further work is necessary for the algorithm to 

cover a wider range of protein systems.  

 

Both ANM-MC and RG-ANM-MC results are in conformity with literature studies 

reporting that the conformational change arising due to ligand binding actually is an 

intrinsic property of the binding-protein (Tsai et al., 1999; Ma et al., 2002; Lei et al., 2004; 

Keskin, 2007). In all the three protein systems studied, unliganded proteins possess a pre-

existing fluctuation mechanism of transition between the open/closed conformations in the 

unliganded form, i.e. it is in fact not the ligand that induces the conformational change, but 

instead the unliganded protein that we simulate exhibits transitions between the open and 

closed states. The transition is derived by the lowest frequency normal-modes even in the 

absence of ligand molecules. Nevertheless, ligands have a stabilizing effect on the closed 

forms (Oh et al., 1993; Keskin, 2007). 

 

The reverse transitions were also studied with ANM-MC, RG-ANM-MC and TMC 

methods with application to AK and hemoglobin. Although the target state is approached 

to some extent, the reverse transitions could not be completely achieved by the normal 

mode based methodologies, namely ANM-MC and RG-ANM-MC in the case of AK. In 

the case of hemoglobin both reverse and forward transitions could be better accomplished 

by both techniques. On the other hand, by TMC, the reverse transitions could be 

accomplished with almost complete match to the target state in both test cases. The 

intermediate structures are observed to be similar in the case of forward and reverse 

transitions.  

 

As compared to previous ENM based conformational transition studies, (Xu et al., 

2003; Maragakis and Karplus, 2005; Zheng et al., 2007) the methodologies developed in 

this thesis provide more feasible pathways by updating the normal modes at each step 

followed by energy minimizations both in the presence and absence of final state structure 

information. The protocols developed in this thesis are also advantageous due to short CPU 

times required for completion. The ANM based techniques (ANM-MC, RG-ANM-MC) 

that perform NMA almost take twice the time that of TMC takes, for a complete run for the 

protein to accomplish transition from open to closed conformation. For instance, with 
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MCS=1000, a complete run of AK from the open to closed state lasts about 5 hour for 

attaining maximum approach by ANM-MC. Same simulation by TMC requires about  2 

hours and 50 minutes. In the case of RG-ANM-MC the search for a plausible closed state 

requires approximately 5 hours and 15 minutes for completion.  

 

7.2.  Recommendations  

 

 In the present thesis, three different methodologies, namely ANM-MC, TMC, and 

RG-ANM-MC gave satisfactory results in proteins with varying sizes, structures, and 

amplitude of transitions such as AK, hemoglobin, HSTR, and LAO-binding protein. ANM-

MC and TMC are developed for analyzing the conformational transitions between two 

known states of a protein, i.e. open-to-closed, or vice versa. However, in cases when a 

target structure is unavailable TMC method can not be used. Instead, the extension of 

ANM-MC, RG-ANM-MC can be used to suggest plausible closed states using only the 

initial structure information. Hence, this method can be applied to cases with or without 

target state information. However it is worth noting that, the methodologies prove 

successful with proteins undergoing global and large amplitude conformational changes 

such as opening and closing motion. The protocols should be further adjusted to simulate 

proteins for which more localized motions are of interest such as an opening closing of a 

small loop section. 

 

 TMC simulations, which are performed without an ANM analysis, provided much 

closer approaches in shorter times to the target state due to its forcing mechanism towards 

the final structure. However, the algorithm is totally inapplicable in cases where the target 

information is not known. In cases where the target structure is available, an improved 

technique could be a combination of ANM-MC and TMC methods. Initially, ANM-MC 

can be employed and after RMSD values level off, TMC may be applied to provide a 

closer mapping to the target state and intermediates that lie close to the target.   

 

 These methodologies can also be adjusted for simulating protein-DNA or protein-

RNA systems to investigate the corresponding changes upon nucleic acid binding. This 

requires the adjustment of energy parameters used in MC simulation for DNA and RNA. 
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For instance, p53-DNA or ribosome-RNA complexes, which are important protein-nucleic 

acid complexes, could be explored.  

 

 In the present thesis, the similarity of the simulation intermediates with the x-ray 

structures related to the protein family is analyzed by superimposing the structures and 

computing the corresponding RMSD values by using Pymol. This analysis could be 

performed in a more automated way by incorporating pairwise sequence alignment 

algorithms into the present protocol. By this way, the search for the x-ray structures that 

may be present on the transition pathway through the protein data bank could be much 

more efficient. Finally, all the three approaches presented may be used successfully to 

investigate the conformational transitions in protein-ligand, protein-protein or protein-

nucleic acid systems. ANM-MC and RG-ANM-MC methodologies can be used in 

modeling the conformational transitions of proteins in cases where the target state structure 

is available or not, respectively.  
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APPENDIX A: SUPERIMPOSITION PROCEDURE 
 

 

The steps encountered during superimposition of initial and final structures are 

listed below. 

 

1) Make transformation: equate the center of mass of both initial and final structures to 

zero. 

2) Calculate ABt (A:coordinate matrix of the initial structure; B: coordinate matrix of the 

target structure. Both matrices have the dimensions Nx3, N being the residue number 

and 3 stands for x, y, and z coordiantes) 

3) Perform singular value decomposition of ABt to obtain LDVt. D is the diagonal matrix 

and matrices L (3x3) and Vt (3x3) are computed. 

4) Rotation matrix, R (3x3) is then calculated from: R = L S Vt where matrix S (3x3)  is 

identitiy matrix diag (1,1,1) if det(L).det(V)=1; or diag(1,1,-1) if det(L).det(V)=-1. 

5) Multiplication of the matrix B (Nx3) with rotation matrix R (3x3) gives the new rotated 

coordinates of matrix B, Brot (Nx3). 

6) The target direction (Q matrix with dimensions Nx3) is then defined by subtracting the 

initial state coordinates from the rotated new coordinates of target with following 

notation:  Q = Brot - A. 

 



 

 

103

REFERENCES 

 

 

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, 1994, “Molecular 

Biology of the Cell”, 3rd edition, Garland Publishing, New York. 

 

Amadei, A., B. M. Linssen, and H. J. C. Berendsen, 1993, “Essential dynamics of 

proteins”, Proteins: Structure Function and Genetics, Vol.17, pp. 412-425. 

 

Amadei, A., B. M. Linssen, B. L. de Groot, van Aalten, D. M. F., and H. J. C. Berendsen, 

1996, “An efficient method for sampling the essential subspace of proteins”, Journal of 

Biomolecular Stucture and Dynamics, Vol. 13, pp. 615-625. 

 

Anderson, B. F., H. M. Baker, G. E. Norris, S. V. Rumball, and E. N. Baker, 1990, 

“Apolactoferrin structure demonstrates ligand-induced conformational change in 

transferrins”, Nature (London), Vol. 344, pp. 787-790. 

 

Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar, 2001, 

“Anisotropy of Fluctuation Dynamics of Proteins With an Elastic Network Model”, 

Biophysical Journal, Vol. 80, pp. 505-515. 

 

Bahar, I. and A. J. Rader, 2005, “Coarse-grained Normal Mode Analysis in Structural 

Biology”, Current Opinion in Structural Biology, Vol. 15, pp. 586-592. 

 

Bahar, I., A. R. Atilgan, M. C. Demirel, and B. Erman. 1998, “Vibrational Dynamics of 

Folded Proteins: Significance of Slow and Fast Motions in Relation to Function and 

Stability”. Physical Review Letters, Vol 80 (12), pp. 2733-2736.  

 

Bahar, I., A. R. Atilgan and B. Erman, 1997a, “Direct Evaluation of Thermal Fluctuations 

in Proteins Using A Single Parameter Harmonic Potential”, Folding and Design, Vol. 

2, pp. 173-181. 

 



 

 

104

Bahar, I., M. Kaplan, and R. L. Jernigan. 1997b, “Short-range conformational energies, 

secondary structure propensities, and recognition of correct sequence-structure 

matches”. Proteins Vol. 29, pp. 292-308. 

 

Bahar, I., B. Erman, T. Haliloglu, R. L. Jernigan, 1997c, “Efficient characterization of 

collective motions and interresidue correlations in proteins by low-resolution 

simulations”. Biochemistry Vol. 36, pp. 13512-13523. 

 

Bahar, I, 1999, “Dynamics of Proteins and Biomolecular Complexes”, Reviews in 

Chemical Engineering, Vol. 15, pp. 319-347.  

 

Bahar I. and R. L. Jernigan, 1998, “Vibrational Dynamics of Transfer RNAs: Comparison 

of the Free and Synthease Bound Forms”, Journal of Molecular Biology, Vol. 281, pp. 

871-885. 

 

Bahar I., and R. L. Jernigan, 1997, “Inter-residue potentials in globular proteins and the 

dominance of highly specific hydrophilic interactions at close separation”, Journal of 

Molecular Biology, Vol.1, pp. 195-214. 

 

Baker, H. M., C. J. Baker, C. A. Smith, E. N. Baker, 2000, “Metal substitution in 

transferrins: specific binding of cerium(iv) revealed by the crystal structure of cerium-

substituted human lactoferrin”. Journal of Biology and Inorganic Chemisrty Vol.5, pp. 

692-698. 

 

Baker, H. M., B. F. Anderson, and E. N. Baker, 2003, “Dealing with iron: Common 

structural principles in proteins that transport iron and heme”, Proceedings of National 

Academy of Science U.S.A., Vol. 7, pp. 3579-3583.  

 

Berendsen, H. J. C., and S. Hayward, 2000, “Collective protein dynamics in relation to 

function”, Current Opinion in Structural Biology, Vol. 10, pp.165–169. 

 



 

 

105

Berry, M.B., B. Maedor, T. Bilderback, P. Liang, M. Glaser, and G. N. Phillips, 1994, 

“The closed conformation of a highly flexible protein: the structure of the E. coli 

adenylate kinase with bound AMP and AMPPNP”. Proteins, Vol. 19, pp. 183-198. 

 

Berry, M. B., E. Y. Bae, T. R. Bilderback, M. Glaser, and G. N. Phillips, 2006, “Crystal 

structure of ADP/AMP complex of Escherichia coli adenylate kinase”. Proteins Vol. 

62(2), pp. 555-556. 

 

Branden, C. and J. Tooze, 1999, Introduction to Protein Structure, 2nd ed., Garland 

Publishing, Inc., NewYork. 

 

Brooks, B., and M. Karplus, 1983, “Harmonic Dynamics of Proteins: Normal Modes and 

Fluctuations in Bovine Pancreatic Trypsin Inhibitor”, Proceedings of National 

Academy of Science USA, Vol. 80, pp. 6571-6575. 

 

Brooks, B., and M. Karplus, 1985, “Normal modes for specific motions of 

macromolecules: application to the hinge-bending mode of lysozyme”, Proceedings of 

National Academy of Science USA, Vol. 82, pp. 4995–4999. 

 

Brooks, C. L., M. Karplus, and B. M. Pettitt, 1988, “Proteins”, John Wiley and Sons. 

Cavanagh, J., and R.A. Venters, 2001, “Protein dynamic studies move to a new time slot”, 

Nature Structural Biology Vol. 8, pp. 912-914.  

 

Daggett, V., 2000, “Long timescale simulations”, Current Opinion in Structural Biology Vol. 10, 

pp. 160–164. 

 

DeLano, W. L., 2002, The PyMOL Molecular Graphics System, DeLano Scientific, San 

Carlos, CA, USA. 

 



 

 

106

Delarue, M., and Y. H. Sanejouand, 2002, “Simplified normal mode analysis of 

conformational changes in DNA-dependent polymerases: the elastic network model”, 

Journal of Molecular Biology Vol. 320, pp. 1011-1024.   

 

Doruker, P., R. L. Jernigan, and I. Bahar, 2002, “Dynamics of large proteins through 

hierarchical levels of coarse-grained structures”. Journal of Computational Chemistry 

Vol. 23, pp. 119-127.  

 

Doruker, P., A. R. Atilgan and I. Bahar, 2000, “Dynamics of Proteins Predicted by 

Molecular Dynamics Simulations and Analytical Approaches: Application to α-

Amylase Inhibitor”, Proteins, Vol. 40, pp. 512-524. 

 

Doruker, P., L. Nilsson and O. Kurkcuoglu, 2006, “Collective Dynamics of EcoRI-DNA 

Complex by Elastic Network Model and Molecular Dynamics Simulations”, Journal of 

Biomolecular Structure & Dynamics, Vol. 24, pp. 1-15. 

 

El Hage Chahine, J.-M., and R. Pakdaman, 1995, “Transferrin, a mechanism of iron 

release”, European Journal of Biochemistry, Vol. 230, pp. 1102-1110. 

 

Emekli, U., D. Schneidman-Duhovny, H. J. Wolfson, R. Nussinov, and T. Haliloglu, 2007, 

“HingeProt: Automated Prediction of Hinges in Protein Structures”. Proteins, Vol.70 

(4), pp. 1219-1227. 

 

Flory, P. J, 1969, “Statistical mechanics of chain molecules”, Interscience, New York. 
 

Frank J, 1996, “Three-Dimensional Electron Microscopy of Macromolecular Assemblies”, 

Academic Press, New York. 

 

Frauenfelder, H., S. G. Sligar, P. G. Wolynes, 1991, “The energy landscapes and motions 

of proteins”, Science, Vol. 254, pp. 1598-1603. 

 



 

 

107

Garcia, A. E., 1992, “Large-amplitude nonlinear motions in proteins”. Physical Review 

Letters, Vol. 68, pp. 2696-2699. 

Gerstein, M., A. M. Lesk, and C. Chothia, 1994, “Structural Mechanisms for Domain 

Movements in Proteins”, Biochemistry, Vol. 33, pp. 6739-6749.  

Gerstein, M., and W. Krebs, 1998, “A database of macromolecular motions”, Nucleic 

Acids Research Vol. 26 (18), pp. 4280-4290. 

Go, N., T. Noguti, T., and T. Nishikawa, 1983, “Dynamics of a small globular protein in 

terms of low-frequency vibrational modes”, Proceedings of National Acadademy of 

Science U.S.A. Vol. 80, pp. 3696-3700. 

 

Goh, C. S., D. Milburn, and M. Gerstein, 2004, “Conformational changes associated with 

protein-protein interactions”, Current Opinion in Structural Biology, Vol. 14, pp. 1-6. 

 

Greenleaf, W. J., M. T. Woodside, and S. M. Block, 2007, “High Resolution Single 

Molecule Measurements of Biomolecular Motion”, Annual Review of Biophysics and 

Biomolecular Structure, Vol. 36, pp. 171-190. 

 

Grimes, R. G, J. G. Lewis, and H. D. Simon, 1994, “A shifted block Lanczos algorithm for 

solving sparse sysmetric eigenvalues problems”, SIAM Journal on Matrix Analysis and 

Applications, Vol. 15, pp. 228-272. 

 

Ha, T., 2001, “Single-Molecule Fluorescence Resonance Energy Transfer”, Methods, Vol. 

25, pp. 78–86 

 

Hayward, S., A. Kitao, and H. J. Berendsen, 1997, “Model-free methods of analyzing 

domain motions in proteins from simulation: a comparison of normal mode analysis 

and molecular dynamics simulation of lysozyme”, Proteins, Vol. 27(3), pp. 425-437. 

 



 

 

108

He, J., Z. Zhang, Y. Shi and H. Liu, 2003, “Efficiently Explore the Energy Landscape of 

Proteins in Molecular Dynamics Simulations by Amplifying Collective Motions”, 

Journal of Chemical Physics, Vol.119, pp. 4005-40017. 

 

Haliloglu, T. and I. Bahar, 1998, “Coarse-grained simulations of conformational dynamics 

of proteins: Application to Apomyoglobin”, Proteins Vol. 31, pp.271-281. 

 

Haliloglu, T, 1999, “Coarse-grained simulations of the conformational dynamics of 

proteins”, Computational Theory of Polymer Science Vol. 9, pp.: 255-260. 

 

Haliloglu, T., I. Bahar and B. Erman, 1997, “Gaussian Dynamics of Folded Proteins”, 

Physical Review Letters, Vol. 79, pp. 3090-3093.  

Janin, J, and S. J. Wodak, 1983, “Structural Domains in Proteins and their Role in the 

Dynamics of Protein Function”, Progress in Biophysics and Molecular Biology Vol. 

42, pp. 21-78.  

Jeffrey, P.D., M. C. Bewley, R. T. A. McGillivray, A.B. Mason, R. C. Woodworth, and E. 

N. Baker, 1998, “Ligand-induced conformational change in transferrins: Crystal 

structure of the open form of N-terminal half-molecule of human transferrin”, 

Biochemistry, Vol. 37 (40), pp. 13978-13986.   

Jernigan, R. L., M. C. Demirel and I. Bahar, 1999, “Relating Structure to Function through 

the Dominant Modes of Motion of DNA Topoisomerase II”, International Journal of 

Quantum Chemistry, Vol. 75, pp. 301-312. 

 

Kang, C., W. Shine, Y. Yamagataj, S. Gokcen, G. Ferro-Luzzi Ames, S. Kim, 1991, 

“Crystal Structure of the Lysine-, Arginine-, Ornithine-binding Protein (LAO) from 

Salmonella typhimurium at 2.7-Å Resolution”, Journal of Biological Chemistry, 

Vol.266 (35), pp. 23893-23899.  

 



 

 

109

Kantarci, N., P. Doruker, and T. Haliloglu, 2006, “Cooperative fluctuations point to the 

dimerization interface of p53 core domain”, Biophysical Journal, Vol. 91(2), pp. 421-

432. 

 

Kantarci-Carsibasi, N., T. Haliloglu, and P. Doruker, 2008, “Conformational transition 

pathways explored by monte carlo simulation integrated with collective modes”, 

Biophysical Journal, Vol.95 (12), pp. 5862-5873.  

 

Kantarci-Carsibasi, N., T. Haliloglu, and P. Doruker, 2009, “Prediction of a plausible 

closed conformation from open state: explored by elastic network model with control 

of radius of gyration” (in preparation). 

 

Karplus, M., and J. N. Kushick, 1981, “Method for estimating the configurational entropy 

of macromolecules”, Macromolecules Vol. 14, pp. 325-332. 
 

Karplus, M., 1997, “The Levinthal paradox: yesterday and today”, Folding and Design 

Vol. 2, pp.69-75. 

 

Kasprzak, A. A., R. Takashi, and M. F. Morales, 1988, “Orientation of actin monomer in 

the F-actin filament: Radial coordinate of glutamine-41 and effect of myosin 

subfragment 1 binding on the monomer orientation”, Biochemistry, Vol. 27, pp. 4512-

4522. 

 

Kay, L.E., 1998, “ Protein dynamics from NMR”, Nature Structural Biology Vol. 5, pp. 

513–517. 

 

Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips, 

1958, "A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray 

Analysis". Nature Vol. 181 (4610), pp. 662–666. 

 



 

 

110

Keskin, O., I. Bahar, D. Flatow, D. G. Covell and R. L. Jernigan, 2002, “Molecular 

Mechanisms of Chaperonin GroEL-GroES Function”, Biochemistry, Vol. 41, pp. 491-

501. 

 

Keskin, O., 2007, “Binding induced conformational changes of proteins correlate with 

their intrinsic fluctuations: a case study of antibodies”, BMC Structural Biology Vol. 

7(1), pp. 31-41.  

 

Kim, M. K., R. L. Jernigan, and G. S. Chirikjian, 2005, “Rigid-cluster models of 

conformational transitions in macromolecular machines and assemblies”, Biophysical 

Journal, Vol.89:, pp. 43-55. 

 

Kim, M. K., R. L. Jernigan and G. S. Chirikjian, 2002, “Efficient Generation of Feasible 

Pathways for Protein Conformation Transitions”, Biophysical Journal, Vol. 83, pp. 

1620-1630.  

 

Kitao, A., F. Hirata, and N. Go, 1991, “The effects of solvent on the conformation and the 

collective motions of protein: normal mode analysis and molecular dynamics 

simulations of melittin in water and in vacuum.” Journal of Chemical Physics, Vol. 

158, pp. 447-472. 

 

Kitao, A. and N. Go, 1999, “Investigating Protein Dynamics in Collective Coordinate 

Space”, Current Opinion in Structural Biology, Vol. 9, pp. 164-169. 

 

Kong, Y., J. Ma, M. Karplus and W. N. Lipscomb, 2006, “The Allosteric Mechanism of 

Yeast Chorismate Mutase: A Dynamic Analysis”, Journal of Molecular Biology, Vol. 

356, pp. 237-247.    

 

Koshland, D.E., 1958, “Application of a theory of enzyme specificity to protein synthesis”, 

Proceedings of National Academy of Science U. S. A. Vol. 44(2), pp. 98-104. 

 



 

 

111

Krebs, W. G., and M. Gerstein, 2000, “The morph server: The standardized system for 

analyzing and visualizing macromolecular motions in a database framework”, Nucleic 

Acids Research Vol. 28 (8), pp. 1665-1675.  

 

Krebs, W.G., V. Alexandrov, C. A. Wilson, N. Echols, H. Yu, and M. Gerstein, 2002,  

“Normal mode analysis of macromolecular motions in a database framework: 

developing mode concentration as a useful classifying statistic”, Proteins, Vol. 48(4), 

pp. 682-695. 

 

Krillova, S., J. Cortes, A. Stefaniu, and T. Simeon, 2008, “An NMA-guided path planning 

approach for computing large-amplitude conformational changes in proteins” Proteins, 

Vol. 70, pp. 131-143. 

 

Kurkcuoglu, O., P. Doruker and R. L. Jernigan, 2004, “Mixed Levels of Coarse-Graining 

of Large Proteins Using Elastic Network Model Succeeds in Extracting the Slowest 

Motions”, Polymer, Vol. 45, pp. 649-657. 

 

Kurkcuoglu, O., P. Doruker and R. L. Jernigan, 2005, “Collective Dynamics of Large 

Proteins from Mixed Coarse-Grained Elastic Network Model”, QSAR and 

Combinatorial Science, Vol. 24, pp. 443-448. 

 

Kurkcuoglu, O., P. Doruker and R. L. Jernigan, 2006, “Loop Motions of Triosephosphate 

Isomerase Observed with Elastic Networks”, Biochemistry, Vol. 45, pp. 1173-1182. 

 

Kurt, N. and T. Haliloglu, 1999, “Conformational dynamics of Chymotrpsin inhibitor 2 by 

coarse-grained simulations”, Proteins Vol. 37, pp. 454-464. 

 

Kurt, N., T. Haliloglu, and C. A. Schiffer, 2003, “Structure based prediction of potential   

binding and non-binding peptides to HIV-1 protease”, Biophysical Journal, Vol. 85, 

pp. 853-863.  

 



 

 

112

Lakowicz, J. R., 1999, "Principles of Fluorescence Spectroscopy", Plenum Publishing 

Corporation, 2nd edition. 

 

Leach, A. R, 2001, Molecular Modeling: Principles and Applications, Prentice Hall, 2nd 

edition. 

 

Lei, M., M. I. Zavodszky, L. A. Kuhn and M. F. Thope, 2004, “Sampling Protein 

Conformations and Pathways”, Journal of Computational Chemistry, Vol. 25, pp. 

1133-1148. 

 

Levinthal, C, 1969, “How to Fold Graciously. Mossbauer Spectroscopy in Biological 

Systems”, Proceedings of a meeting held at Allerton House, Monticello, Illinois. J.T.P. 

DeBrunner and E. Munck eds., University of Illinois Pres, pp. 22-24 

 

Levitt, M., C. Sander, and P. S. Stern, 1983, “The normal modes of a protein: Native 

bovine pancreatic trypsin inhibitor”, International Journal of Quantum Chemistry: 

Quantum Biology Symposium Vol. 10, pp.181-199. 

 

Levy, R. M., A. R. Srinivasan, W. K. Olson, and J. A. McCammon, 1984, “Quasiharmonic 

method for studying very low frequency modes in proteins”, Biopolymers Vol. 23, pp. 

1099-1112. 

 

Li, X., O. Keskin, B. Ma, R. Nussinov, and J. Liang, 2004, “Protein-protein interactions: 

hot spots and structurally conserved residues often locate in complemented pockets that 

pre-organized in the unbound states: implications for docking”, Journal of Molecular 

Biology, Vol. 344(3), pp. 781-795. 

 

Lou, H., and R. I. Cukier, 2006, “Molecular dynamics of apo-adenylate kinase: a principal 

component analysis”, Journal of Physical Chemistry B, Vol. 110, pp. 12796-12808.  

Lundstrom, K, 2006, "Structural genomics for membrane proteins". Cellular and 

Molecular Life Sciences, Vol. 63 (22), pp. 2597–607.  



 

 

113

Lundstrom, K, 2004, "Structural genomics on membrane proteins: mini review". 

Combinatorial Chemistry and High Throughput Screening, Vol. 7 (5), pp. 431–439.  

Ma, J, 2005, “Usefulness and Limitations of Normal Mode Analysis in Modeling 

Dynamics of Biomolecular Complexes”, Structure, Vol. 13, pp. 373-380. 

 

Ma, B., M. Shatsky, H. J. Wolfson, and R. Nussinov, 2002, “Multiple diverse ligands 

binding at a single protein site: a matter of pre-existing populations”, Protein Science, 

Vol. 11(2), pp. 184-197. 

 
Macgillivray, R. T. A., S. A. Moore, J. Chen, B. F. Anderson, H. Baker, Y. Lou, M. 

Bewkley, C. A. Smith, M. E. P. Murphy, Y. Wang, A. B. Mason, R. C. Woodworth, G. 

D. Brayer, and E. N. Baker, 1998, “Two high-resolution crystal structures of the 

recombinant N-lobe of human transferrin reveal a structural change implicated in iron 

release”, Biochemistry, Vol. 37, pp. 7919-7928.  

 

Maragakis, P. and M. Karplus, 2005, “Large Amplitude Conformational Change in 

Proteins Explored With a Plastic Network Model: Adenylate Kinase”, Journal of 

Molecular Biology, Vol. 352, pp. 807-822. 

 

Marques, O. A, 1995, BLZPACK: Description and user’s guide. Technical report 

TR/PA/95/30 CERFACS, Toulouse, France. 

 

Marques, O. A, 2001, BLZPACK : User’s guide. NERSC, Lawrence Berkely National 

Laboratory (http://crd.lbl.gov/~osni/marques.html#BLZPACK) 

 

McCammon, A. and S. C. Harvey, 1987, Dynamics of Proteins and Nucleic Acids, 

Cambridge University Press, Cambridge. 

 

Metropolis, N., and S. Ulam, “The Monte Carlo Method”, 1949, Journal of the American 

Statistical Association, Vol. 44, No. 247, pp. 335-341. 

 



 

 

114

Mizutani, K., B. K. Muralidhara, H.Yamashita, S. Tabata, B. Mikami, and M. Hirose, 

2001, “Anion-Mediated Fe3+ release mechanism in ovotransferrin C-lobe: A 

structurally identified SO4
2- binding site and its implications for the kinetic pathway”, 

Journal of Biological Chemistry, Vol. 276, pp. 35940-35946. 

 

Moore, S. A., B. F. Anderson,C. R. Groom, M. Haridas, and E. N. Baker, 1997, “Three-

dimensional structure of diferric bovine lactoferrin at 2.8 A resolution”, Journal of 

Molecular Biology, Vol. 274, pp. 222-236.             

 

Mouawad, L. and D. Perahia, 1996, “Motions in Hemoglobin Studied by Normal Mode 

Analysis and Energy Minimization: Evidence for the Existence of Tertiary T-Like, 

Quaternary R-Like Intermediate Structures”, Journal of Molecular Biology, Vol. 258, 

pp. 393-410. 

 

Mouawad, L., D. Perahia, C. H. Robert and C. Guilbert, 2002, “New insights into the 

Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations”, 

Biophysical Journal, Vol.  82, pp. 3224-3245. 

Muller, E. M., A. de Maijere, and H. Grubmuller, 2002, “Predicting unimolecular chemical 

reactions: chemical flooding”, Journal of Chemical Physics, Vol. 116, pp. 897-905. 

 

Müller, C. W., and G. E. Shulz, 1992, “Structure of the complex between adenylate kinase 

from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. A model for 

a catalytic transition state”, Journal of Molecular Biology, Vol. 224, pp. 159-177.  

 

Müller, C. W., G. J. Schlauderer,  J. Reinstein, and G. E. Shulz, 1996, “Adenylate kinase 

motions during catalysis: an energeticcounterweight balancing substrate binding”, 

Structure, Vol.  4, pp. 147-156.  

 

Müller, C. W., and G. Schulz, 1993, “Crystal structures of two mutants of adenylate kinase 

from Escherichia coli that modify the gly-loop”, Proteins: Structure Function and 

Genetics, Vol. 15, pp. 42-49. 

 



 

 

115

Noe, F., S. J. Schwarzl, S. Fischer, and J. C. Smith, 2003, “Computational tools for 

analyzing structural changes in proteins in solution”, Applied Bioinformatics, Vol. 2(3), 

pp. 11-17. 

 Northrup, S.H., and J. A. McCammon, 1980, “simulation methods for protein structure 

fluctuations”, Biopolymers, Vol. 19 (5), pp. 1001-1016. 

  

Oh, B, J. Pandit, C. Kangl, K. Nikaido, S. Gokcen, G. Ferro-Luzzi Ames, and S. Kim, 

1993, “Three-dimensional Structures of the Periplasmic Lysine/Arginine/Ornithine-

binding Protein with and without a Ligand”,  Journal of Biological Chemistry, Vol. 268 

(15), pp. 11348-11355.  

 

Palmer, A.G., C. D. Kroenke, and J. P. Loria, 2001, “NMR methods for quantifying 

microsecond-millisecond motions in biological macromolecules”, Methods in 

Enzymology, Vol. 339, pp. 204–238. 

 

Palmer, A.G, 1997, “Probing molecular motion by NMR”, Current Opinion in Structural 

Biology, Vol. 7, pp. 732–737. 

 

Patrone, P., and V. S. Pande, 2006, “Can conformational change be described by only a 

few normal modes?”, Biophysical Journal Vol. 90 (5), pp. 1583-1593. 

 

Perutz, M. F, 1989, “Mechanisms of cooperativity and allosteric regulation in proteins”, 

Quarterly Review of Biophysics, Vol. 22, pp. 139-236.  

 

Petsko, A. G. and D. Ringe, 2004, Protein Structure and Function, New Science Press 

Ltd., London. 

 

RCSB Protein Data Bank (pdb statistics http://pdbbeta.rcsb.org/pdb/static.do?p=general_ 

information/pdb_statistics/index.html) 

 

Romo, T. D., J. B. Clarage, D. C. Sorensen, G. N. Phillips Jr, 1995, “Automatic 

identification of discrete substates in proteins: singular value decomposition analysis of 



 

 

116

time-averaged crystallographic refinements”, Proteins: Structure Function and 

Genetics, Vol. 22, pp. 311-321. 

 

Sara, R., R. Garratt, B.Gorinsky, H. Jhoti, P. Lindley, 1990, “High-resolution X-ray studies 

on rabbit serum transferrin: preliminary structure analysis of the N-Terminal half-

molecule at 2.3 angstroms resolution”, Acta Crystallographica Sect.B, Vol. 46, pp.763-

771.                       

Scapin, G, 2006, "Structural biology and drug discovery", Current Pharmeceutical Design, 

Vol. 12 (17), pp. 2087–97 

Schlauderer, G., and G. Schulz, 1996, “The structure of bovine mitochondrial adenylate 

kinase: comparison with isoenzymes in other compartments”, Protein Science Vol. 5, 

pp. 434-441. 

 

Schlauderer, G., K. Proba, and G. Schulz, 1996, “Structure of a mutant adenylate kinase 

ligated with an ATP-analogue showing domain closure over ATP”, Journal of 

Molecular Biology, Vol.  256, pp.223-227. 

 

Schlitter, J., M. Engels, P. Kruger and E. Jacoby, 1993, “Targeted Molecular Dynamics 

Simulation of Conformational Change-Application to T-R Transition in Insulin”, 

Molecular Simulation, Vol. 10, pp. 291-308. 

 

Shaanan, B, 1983, “Structure of human oxyhemoglobin at 2.1 angstroms”, Journal of 

Molecular Biology, Vol. 171 (1), pp. 31-59. 

 

Silva, M. M., P. H. Rogers, and A. Arnone, 1992, “A third quaternary structure of human 

hemoglobin A at 1.7 Å resolution”, Journal of Biological Chemistry, Vol. 267, pp. 

17248-17256.  

 

Srinivasan, R., and G. D. Rose, 1994, “The T-to-R transformation in hemoglobin: a 

reevaluation”, Proceedings of National Academy of Sciences U.S.A. Vol. 91, pp. 

11113-11117. 



 

 

117

 

Stryer, L, 1988, Biochemistry. 3d Ed. New York: W. H. Freeman and co. 

 

Stryer, L., 1978, “Fluorescence Energy Transfer As a Spectroscopic Ruler”, Annual 

Review of Biochemistry, Vol. 47, pp. 819-846. 

 

Tama, F. and Y. H. Sanejouand, 2001, “Conformational Change of Proteins Arising From 

Normal Mode Calculations”, Protein Engineering, Vol. 14, pp. 1-6. 

 

Tama, F. and C. L. Brooks, 2002, “The Mechanism and Pathway of ph Induced Swelling 

in Cowpea Chlorotic Mottle Virus”, Journal of Molecular Biology, Vol. 318, pp. 733-

747. 

 

Tama, F. and C. L. Brooks, 2006, “Symmetry, form and shape: guiding principles for 

robustness in macromolecular machines”, Annual Review of Biophysics and 

Biomolecular Strucure, Vol.35, pp. 115-133.   

 

Tame, J. R., and B. Vallone, 2000, “The structures of deoxy human hemoglobin and the 

mutant Hb Tyralpha42His at 120 K”, Acta Crystallographica D. Biological 

Crystallography Vol. 56 (7), pp. 805-811.  

 

Teeter, M. M., and D. A. Case, 1990, “Harmonic and quasi harmonic descriptions of 

crambin”, Journal of Physical Chemistry, Vol. 94, pp. 8091-8097. 
 

Tobi D, and I. Bahar I, 2005, “Structural changes involved in protein binding correlate 

with intrinsic motions of proteins in the unbound state”, Proceedings of National 

Academy of Science U. S. A. Vol. 102(52), pp. 18908-18913. 

 

Tsai, C.J., S. Kumar, B. Ma, and R. Nussinov, 1999,  “Folding funnels, binding funnels, 

and protein function”, Protein Science, Vol. 8, pp. 1181-1190. 

 



 

 

118

Umeyama, S., 1991, “Least-squares estimation of transformation parameters between two 

points patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 13 (4), pp. 376-380. 

 

van der Vaart A. and M. Karplus, 2005, “Simulation of Conformational Transitions by the 

Restricted Perturbation-Targeted Molecular Dynamics Method”, Journal of Chemical 

Physics, Vol. 122, pp. 114903-114909. 

 

van der Vaart A. and M. Karplus, 2007, “Minimum Free Energy Pathways and Free 

Energy Profiles of Conformational Transitions Based on Atomistic Molecular 

Dynamics Simulations”, Journal of Chemical Physics, Vol. 126, pp. 164106-164123. 

 

Van Gunsteren, W. F., and H. J. C. Berendsen, 1990, “Computer simulation of molecular 

dynamics: Methodology, applications, and perspectives in chemistry”, Angewandte 

Chemie International Edition, Vol. 29, pp. 992-1023. 

 

Wang, Y., A. J. Rader, I. Bahar and R.L. Jernigan, 2004, “Global Ribosome Motions 

Revealed with Elastic Network Model”, Journal of Structural Biology, Vol. 147, pp. 

302-314.  

 

Whitford, P. C., O. Miyashita, Y. Levy, and J. N. Onuchic, 2007, “Conformational 

transitions of adenylate kinase: switching by cracking”, Journal of Molecular Biology, 

Vol. 366, pp. 1661-1671.  

 

Xu, C., D. Tobi and I. Bahar, 2003, “Allosteric Changes in Protein Structure Computed by 

a Simple Mechanical Model: Hemoglobin T↔R2 Transition”, Journal of Molecular 

Biology, Vol. 333, pp. 153-168. 

 

Yildirim, Y. and P. Doruker, 2004, “Collective Motions of RNA Polymerases. Analysis of 

Core Enzyme, Elongation Complex and Holoenzyme”, Journal of Biomolecular 

Structure & Dynamics, Vol. 22(3), pp. 267-280.  

 



 

 

119

Zhang, Z., Y. Shi and H. Liu, 2003, “Molecular Dynamics Simulations of Peptides and 

Proteins With Amplified Collective Motions”, Biophysical Journal, Vol. 84, pp. 3583-

3593. 

 

Zheng, W., and S. Doniach, 2003, “A comparative study of motor protein motions by using 

a simple elastic-network model”, Proceedings of National Academy of Sciences U.S.A., 

Vol. 100, pp. 13253–13258. 

 

Zheng, W. and B. R. Brooks, 2005a, “Normal-modes-based Prediction of Protein 

Conformational Changes Guided by Distance Constraints”, Biophysical Journal, Vol. 

88, pp. 3109-3117.  

 

Zheng, W., and B. R. Brooks, 2005b, “Identification of dynamical correlations within the 

myosin motor domain by the normal mode analysis of elastic network model”, Journal 

of Molecular Biology, Vol. 346, pp. 745-759.  

 

Zheng, W. and B. R. Brooks, 2006, “Modeling Protein Conformational Changes by 

Iterative Fitting of Distance Constraints Using Reoriented Normal Modes”, Biophysical 

Journal, Vol. 90, pp. 4327-4336. 

 

Zheng, W., B. R. Brooks, G. Hummer, 2007, “Protein conformational transitions explored 

by mixed elastic network models”, Proteins, Vol. 69. pp. 43-57. 

 

 
 

 




