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ABSTRACT

RECOGNITION AND BINDING PROCESSES IN HIV-1

PROTEASE

HIV-1 protease is a drug target against AIDS and understanding its molecu-

lar recognition processes is important in development of drugs. Here, the combined

computational methodologies used put three different perspectives together to study

the recognition and binding processes in HIV-1 protease complex structures. To inves-

tigate the substrate specificity, a biased sequence search threading (BSST) technique

is introduced. The potential sequence space is efficiently explored by a low resolu-

tion knowledge-based scoring function and potential substrate sequences are predicted,

which are correlated with the natural substrates. The change in the molecular recogni-

tion events, which lead to drug resistance via mutations and/or co-evolution between

protease and substrate, is studied by analyzing the collective dynamics of ligand bound

protease structures using the Anisotropic Network Model (ANM). The analysis of the

dynamic fluctuations imply that substrate and inhibitor complex structures fall into two

groups, which differ by the direction of the fluctuations of some mechanistically crucial

sites that determine the main rotational axes in the cooperative modes of motion. The

network of key interactions within the protease complex structures is also examined

by the communication pathways generated using both topological features reflected by

the Gaussian Network Model (GNM) and residue-specific interactions estimated by a

modeled van der Waals potential. The hinge regions with minimum fluctuation in the

most cooperative modes, i.e. dimerization, active site, flap and substrate cleft regions

of the protease, act as messengers in the communication. The short pathways between

the substrate and protease active site defines the core regions that either function

in ligand recognition or interact with the residues that confer drug resistance as the

key interacting regions. Moreover, the examination of structural properties of mutant

structures indicates a higher correlation of the wild-type complex with the co-evolved
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structure than the other mutant structures with respect to both dynamic fluctuations

and ensemble of short pathways. Overall, this study adds a further structural and

dynamic view to the understanding of the HIV-1 protease system with respect to its

interactions to the substrates and drugs, and further to drug resistance.
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ÖZET

HIV-1 PROTEAZDA PEPTİT TANIMA VE BAĞLANMA

MEKANİZMALARI

HIV-1 proteazın moleküler tanıma mekanizmasının anlaşılması, AIDS ilaçlarının

geliştirilmesi için önemlidir. Bu çalışmada kullanılan hesapsal yöntemler, HIV-1 pro-

teaz bileşik yapılarındaki tanıma ve bağlanma süreçlerini üç farklı perspektiften araştır-

maktadır. Sübstrat belirginliği incelenmesi için geliştirilen yanlı sekans aramalı giy-

dirme tekniği, düşük rezolüsyonlu bilgi bazlı puanlama fonksiyonu kullanarak sekans

uzayını başarılı bir şekilde tarar ve doğal sübstratlarla yüksek ilintili potansiyel sübstrat

sekansı tahmini yapar. Mutasyonlar ve/veya proteaz-sübstrat arasındaki eşevrim ile

ilaç rezistansına sebep olan tanıma mekanizmasındaki değişiklik, eşyönsüz elastik ağyapı

modeli ile bileşik yapıların kollektif hareketleri incelenerek araştırılmıştır. Dinamik

dalgalanmalara ve kooperatif hareket modlarında asal dayanak eksenlerini belirleyen

önemli bölgelerin dalgalanma yönlerindeki değişikliklere göre, sübstrat ve ilaç bileşik

yapılarının ikişer gruba ayrıldığı gözlemlenmiştir. Gaussian ağyapı modelinin yansıttığı

topolojik özellikler ve modellenmiş van der Waals potansiyeli ile çıkarılan rezidülere

özgü etkileşimler kullanılarak oluşturulan haberleşme yolları ile, bileşik yapılardaki

etkileşim ağı incelenmiştir. Haberleşmede etkili bölgelerin, en kooperatif modlarda

en düşük frekansta dalgalanan, ikizleşme, aktif bölge, kanat ve sübstrat çevresi gibi

dayanak bölgeleri olduğu belirlenmiştir. Sübstrat ve proteaz aktif bölgesi arasındaki

en kısa haberleşme yolları, peptit tanınmasında rol oynayan veya ilaç rezistansı gösteren

rezidülerle etkileşen çekirdek bölgelerin anahtar etkileşim bölgeleri olduğunu göstermiştir.

Ayrıca, mutantların dinamik dalgalanmalar ve kısa haberleşme yolları açısından analizi

ile, yaban tipi ve eşevrim geçiren yapılar arasında diğer mutantlara göre daha yüksek i-

linti bulunmuştur. Bu çalışma, HIV-1 proteaz sisteminde sübstrat ve ilaçlarla etkileşim

ve ilaç rezistansı konusunda yeni yapısal ve dinamik bakış açıları geliştirmektedir.
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1. INTRODUCTION

1.1. Background and Significance

Acquired Immune Deficiency Syndrome (AIDS) is a set of infections resulting

from the damage of the human immunodeficiency virus (HIV) to the human immune

system (Weiss, 1993). AIDS is a pandemic now. In 2007, the number of people living

with the disease worldwide is estimated to be 33.2 million, and the number of deaths is

estimated as 2.1 million people, including 330,000 children (UNAIDS, 2007). Although

treatments can slow the course of the disease, no vaccine or cure is currently available.

Thus, suppression of viral replication and maintaining it at low levels have become

critical objectives in the HIV-1 research field. To this end, highly active antiretroviral

therapy (HAART), which is a strategy to improve the length and quality of life of

infected individuals, has become successful (Hoggs et al., 1998). Many patients have

had complete response to HAART. However, reports of failure, partial response, and/or

breakthrough with antiretroviral treatment, have compromised the future of HIV-1

treatment (Scott and Schiffer, 2000).

1.1.1. Human Immunodeficiency Virus (HIV)

HIV was first identified as the agent that causes AIDS in 1983 (Barre-Sinnoussi

et al, 1983). HIV-1 is a member of the retrovirus family (Figure 1.1), which are small

envelope viruses that contain a diploid, single-stranded RNA genome. The retroviruses

are highly prone to mutations. The viral nucleic acids (RNA) and the enzymes required

for early replication events (PR and RT) are found in the inner core of the virus particle

which is surrounded by capsid proteins. The capsid is surrounded by a lipid membrane

and a virus matrix protein is inserted into the inner surface of the membrane. The

envelope glycoprotein protrudes through the membrane and forms the outer surface of

the virus particle.
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Figure 1.1. The Human Immunodeficiency Virus (HIV)

HIV uses the enzyme reverse transcriptase to make a DNA copy of its RNA

genome for replication. A double-stranded DNA intermediate is then produced by a

complementary copy of this DNA. The DNA intermediate inserts into the host cell

chromosomes. The HIV proviral DNA is then activated and transcribed into HIV

genomic RNA and HIV mRNA. The viral mRNA is translated into viral proteins at

the host cell’s ribosomes. HIV uses a HIV encoded enzyme, namely the protease,

in order to cleave a large gag-pol polyprotein and gag polyprotein into functional

proteins. These proteins are essential to the structure of HIV and to its RNA packaging.

Viral maturation occurs by the binding of the active site of the HIV protease to the

polyproteins and cleaving them into functional proteins (Figure 1.2).

The HIV-1 genome has three reading frames: gag, pol, and env, which code for

several proteins that are essential for virus assembly and replication. Of these genes,

gag codes for proteins that make up the viral core, pol codes for reverse transcriptase,

protease, and integrase, and env encodes proteins that make up the viral envelope

(Figure 1.3). The reverse transcriptase is found within the virus particle and copies

the retroviral RNA sequence into single-stranded DNA when a host cell is infected. A

complementary strand of DNA copy of the retroviral genome integrates into the DNA of
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Figure 1.2. Life cycle of HIV

the host cell. The integrated proviral genome can stay in this state for a long time until

the development of AIDS symptoms due to destruction of helper T-cells. New copies of

the virus are formed by the expression of the retroviral genes by the host cell. The gag,

pol and env reading frames are expressed as polyproteins. These polyproteins have to

be separated in order eventually for the individual protein molecules to function. HIV

proteases then cleave the polyproteins into functional proteins, MA (matrix antigen;

p17), CA (capsid antigen; p24), NA (nucleocapsid antigen), PR (protease), RT (reverse

transcriptase), and IN (integrase). Likewise, the env gene is transcribed and translated

into a polyprotein that is cleaved by proteases into SU (surface glycoprotein; gp120)

and TM (transmembrane glycoprotein; gp41).

1.1.2. HIV-1 Protease

HIV-1 protease is essential for the life-cycle of HIV (Weber and Harrison, 1999).

The aspartic protease cleaves newly synthesized polyproteins and creates the mature
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Figure 1.3. The HIV genome. Gag (group antigen; codes for matrix antigen p17,

capsid antigen p24, and nucleocapsid antigen); Pol (polymerase; codes for reverse

transcriptase, protease, and integrase); Env (envelope; codes for surface glycoprotein

gp120 and transmembrane glycoprotein gp41); Tat (transactivating protein; regulates

transcription of integrated DNA of HIV); Rev (regulator of viral expression; passage

of RNA transcripts out of the nucleus); Nef (negative factor; needed for full

pathogenecity of HIV); Vif (viral protein R; aids transport of uncoated nucleoprotein

to the nucleus); Vpu (blocks transport of CD4 to the host cell surface).
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protein components of an infectious HIV virion. Because of its sensitive and essential

function, HIV-1 protease is an excellent target for drug therapy (Goodsell, 2000). The

HIV protease exists as a homodimer, with each subunit made up of 99 amino acids

(Figure 1.4) and it allows viral maturation by processing the Gag and GagPol polypro-

teins (Henderson et al., 1988; Chou, 1996). The protease has a single active site which

is formed by the dimer interface and capped by two flexible flaps. The active site has

the Asp25-Thr26-Gly27 sequence where the two Asp25 residues (one from each chain)

act as the catalytic residues (Wlodawer and Erickson, 1993). The flap region includes

two solvent-accessible loops (residues 33-43 of each chain) followed by two flexible flaps

(residues 44-62 of each chain) and is important for ligand-binding interactions. The

terminal region (residues 1-4 and 95-99 of each chain) is important for dimerization

and stabilization of the active protease. A large conformational change occurs during

ligand binding, which involves the opening and closing of the flaps over the binding

site (Yang et al., 2008).

1.1.3. Substrates

The peptide bond hydrolyzed by the protease is referred to as the scissile bond.

The hydrolysis of the peptide bond is catalyzed by the conserved D25 residue of the

protease by activating a nucleophilic attack by a water molecule on the carbonyl of

the scissile amide bond (Moore and Dreyer, 1993). The P1 position is the amino

acid immediately upstream of the scissile bond, and the P1’ position is the amino

acid immediately downstream of the scissile bond (Figure 1.5). Flanking amino acids

towards the N-terminus are referred to as P1, P2, P3, P4 and those towards the C-

terminus are named P1’, P2’, P3’, P4’. The corresponding pockets in the protease are

referred to as S1, S1’, S2, S2’, etc.

Despite the symmetry conferred on its active site by being a homodimer, HIV-1

protease recognizes ten non-homologous octameric substrate sites (Table 1.1) within

the Gag and GagPol polyproteins that are asymmetric. The asymmetry of these sub-

strates in both shape and charge distribution can be observed by their amino acid

sequences around the cleavage sites (Prabu-Jeyabalan et al., 2000; Prabu-Jeyabalan et
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Figure 1.4. Substrate bound HIV-1 protease complex structure.

(a) Cartoon representation, (b) α-Carbon trace with residue labels identified.
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Figure 1.5. The schematic diagram of a substrate bound to protease subsites. The

scissile bond is indicated by an arrow.

al., 2002). The crystal structures of complexes of inactive variants of wild type HIV-1

protease with substrates peptides have been determined (Prabu-Jeyabalan et al., 2000;

Prabu-Jeyabalan et al., 2002; Prabu-Jeyabalan et al., 2004) (Figure 1.6). Despite the

fact that the substrate sites are asymmetric, the currently prescribed inhibitors are

relatively symmetric around the cleavage site, permitting a single mutation to impact

the inhibitor binding twice, while possibly impacting substrate binding to a lesser ex-

tent. Substrate recognition in HIV-1 protease is based on a conserved shape rather

than a particular sequence (Prabu-Jeyabalan et al., 2000). This theory implies that

there is an interdependency between the different protease substrate subsites in order

for a particular sequence to be a substrate. This interdependency likely results from

the fact that not all positions within the substrate sites are able to tolerate mutations

as can be seen in the variation within the substrate sequences of different subtypes. A

systematic study of substrate variation with patient therapy has not been performed

as has been done for the protease (Wu et al., 2003). Substrate variation is being inves-

tigated both in vivo (Mammano et al., 1998) and in vitro (Lin et al., 2000). However,

computational techniques, which utilize the three dimensional structures of the sub-

strate complexes, may be useful to predict which substrate sites are most likely to be

susceptible to compensatory mutations.
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Figure 1.6. Structures of the natural substrates of HIV-1 protease.

(a) Conformation of seven natural substrate peptides as observed in complexes with

an inactive variant of HIV-1 protease, D25N. The peptides are colored by atom type.

(b) Superimposed structures of the natural substrate peptides. The colors of the

peptides are: magenta, matrix-capsid; red, ca-p2; blue, p2-nc; orange, nc-p1; green,

p1-p6; yellow, rt-rh; and cyan, rh-in. The α-carbon trace of the protease is of the

ca-p2 substrate peptide complex. The figures are made with the graphics program

PYMOL (Delano, 2002).
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Table 1.1. Amino acid sequences of the natural substrate cleavage sites of HIV-1

protease. The natural substrates with available crystal structures are highlighted in

bold.

P4 P3 P2 P1 P1’ P2’ P3’ P4’

Substrate sites in the Gag polyprotein

matrix-capsid S Q N Y * P I V Q

capsid-p2 A R V L * A E A M

p2-nucleocapsid A T I M * M Q R G

nucleocapsid-p1 R Q A N * F L G K

p1-p6 P G N F * L Q S R

Substrate sites in the Pol polyprotein

transframe-protease S F N F * P Q I T

protease-reverse transcriptase T L N F * P I S P

reverse transcriptase-RNaseH A E T F * Y V D G

RNase-integrase R K I L * F L D G

1.1.4. Inhibitors

The development of the HIV-1 protease inhibitors is regarded as a major success

of structure-based drug design. Indeed, the protease inhibitors are considered the most

potent drugs currently available for the treatment of AIDS (Prabu-Jeyabalan et al.,

2002). These drugs are essential components of most HAART therapies (Flexner,

1998). Nine FDA-approved HIV-1 protease inhibitors, indinavir (IDV), nelfinavir

(NFV), amprenavir (APV), saquinavir (SQV), ritonavir (RTV), lopinavir (LPV), atazanavir

(ATV), tipranavir (TPV) and most recently darunavir (DRV or TMC) are all com-

petitive inhibitors (King et al., 2004), binding at the active site by mimicking the

tetrahedral intermediate of its substrate and essentially becoming ”stuck”, disabling

the enzyme. Therefore, they compete directly with the enzyme’s ability to recognize

substrates (Prabu-Jeyabalan et al., 2000; Prabu-Jeyabalan et al., 2002). The protease

inhibitors are peptidomimetics that resulted from structure-based drug design efforts

of both academia and the pharmaceutical industry. All of them have large, gener-

ally hydrophobic, moieties that interact with the mainly hydrophobic P2-P2’ pockets
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in the active site (Wlodawer and Erickson, 1993). Although chemically different, the

three-dimensional shape and electrostatic character of these drugs are fairly similar

(Figure 1.7), therefore a small set of mutations can result in a protease variant with

multi-drug resistance. This evolution of drug resistance in HIV-1 protease presents a

new challenge to future structure-based drug design efforts.

Figure 1.7. Structures of the HIV-1 protease inhibitors.

(a) The HIV-1 protease inhibitors used in this study. The structures are colored by

atom type. (b) Superimposed structures of the inhibitors that are used in this study.

The colors of the peptides are: red, APV; blue, IDV; green, LPV; yellow, NFV; pink,

PSU; skyblue, PSV; brown, RO1; magneta, RTV; cyan, SQV; orange, TMC. The

figures are made with the graphics program PYMOL (Delano, 2002).
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1.1.5. Drug Resistance and Co-evolution

Because HIV is a retrovirus with a high rate of replication, it exists as a quasis-

pecies or swarm of viral variants in pseudoequilibrium, where potential drug resistant

mutants are likely to preexist prior to therapy. Drug resistance is a subtle change in

the balance of recognition events from the relative affinity of HIV-1 protease to bind

inhibitors to its ability to bind and cleave substrates. Mutations in HIV-1 protease that

alter inhibitor binding and cause drug resistance can also affect substrate specificity.

The virus will be under selective pressure to co-evolve the substrate sequence, thereby

allowing the protease to retain activity (King et al., 2004; Prabu-Jeyabalan et al., 2004;

Kolli et al., 2006). Earlier studies have shown that substrate specificity of the protease

is based on the shape adopted by the substrate sequences, defined as ”the substrate

envelope” (Prabu-Jeyabalan et al., 2002; King et al., 2004). Most primary active-site

mutations occur outside the substrate envelope and thereby preferentially impact in-

hibitor binding over substrate recognition. Therefore, most of the substrates do not

co-evolve with the protease. However, some substrates protrude beyond the envelope,

and they are the ones which co-evolve with the protease (Kolli et al., 2006). An exam-

ple of this evolutionary communication between substrate (or inhibitor) and enzyme

is the apparent co-evolution of the nc-p1 cleavage site with the V82A mutation in the

protease (Prabu-Jeyabalan et al., 2004). The most frequently observed case change

occurs at P2, where alanine mutates to valine in viral sequences that also contain the

V82A drug resistant protease mutation. Selection for a valine at this site makes sense

as valine is the wild-type residue at P2 another substrate sequence, the ca-p2 cleavage

site. The p1-p6 is another cleavage site that undergoes co-evolution with HIV protease

(Kolli et al., 2006). Mutations in the substrate cleavage-site p1-p6 covary with the

D30N/N88D protease mutations. Asp30 is important both to binding of NFV and also

likely to recognition of the p1-p6 cleavage site. Structural analysis shows that both

NFV and p1-p6 have atoms that protrude beyond the substrate envelope and contact

Asp30 of different monomers respectively. Thus, both the inhibitor and the p1-p6 sub-

strate are likely to be affected by D30N mutation. This likely explains the particular

co-evolution of the p1-p6 cleavage site with the D30N-resistant mutation and also why

no other co-evolution with any of the other substrates occurs (Kolli et al., 2006).
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1.2. Plan of Attack

HIV protease has been a key and effective target in the treatment of patients

infected with HIV. Understanding the subtle balance of molecular recognition events

that confer drug resistance in HIV-1 protease is crucial to the development of next

generation of drugs for the treatment of HIV infection. Besides experimental efforts,

computational means are essential for the rational design of new drugs. The complexity

and the multi-disciplinary nature of drug resistance require that evolutionary routes,

the dynamics of the target protein and many other aspects are to be addressed for

drug design. The computational search for mutational plasticity in the HIV-1 protease

complex structures by the analysis of energetic interactions, investigation of dynamic

fluctuations of residues, and identification of the pathways of communication as a

network of interacting residues in the structure should add a further structural view

to the understanding of the drug resistance behavior of HIV-1 protease. The study

in this thesis might contribute both to the overall understanding of the plasticity of

the ensemble of HIV-1 protease conformations and sequences and to the technology

of drug design. The findings might have potential applications in protein engineering,

rational protein design, and structure-based drug discovery.

1.2.1. Substrate Specificity by a Biased Sequence Search

A protein’s behavior is a function of its sequence within a defined environment.

The main purpose of any computational approach to protein design or structure predic-

tion is to solve the problem of determining the fitness (effective energy) of a particular

sequence in a given conformation or state. Two conflicting requirements for the energy

function used are physical accuracy and computational efficiency. The size of the se-

quence space compatible with a given protein fold is very large. Nevertheless, it is still

small compared with the full space of a protein sequence, whose size is 20N , where N

is the number of residues of the protein. The protein topology appears to be determi-

nant (Koehl and Levitt, 1999a; Koehl and Levitt, 1999b) for the space of the allowed

sequences in a given fold. There are two major classes of fitness functions: statistical

effective energy functions (Lazaridis and Karplus, 2000) and physical effective energy
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functions. Statistical potentials are derived from databases of proteins with known

structures (Russ and Ranganathan, 2002). The advantage of these potentials lies in

their computational efficiency, mathematical simplicity, and their ability to implicitly

capture effects such as desolvation, loss of entropy, and the hydrophobic effect, which

are hard to account for explicitly. The disadvantage of statistical potentials is that the

accuracy and physical interpretability are compromised. Physical based potentials use

atomic-level representations to capture underlying physical phenomena and approxi-

mate the free energy of the studied system (Lazaridis and Karplus, 2000; Gordon et

al., 1999; Pokala and Handel, 2001). The advantage of these potentials is that they

have the potential to provide a more comprehensive understanding of the observed

phenomena; however they are computationally more expensive. An optimal energy

function would have the simplicity and computational efficiency offered by statistical

potentials while retaining the theoretical rigor and physical interpretability of physical

based potentials.

A novel threading approach based on knowledge-based potentials to search for the

substrate specificity and sequence volume that has fitness to wild type HIV-1 protease

is developed in this work. A biased sequence search threading (BSST) methodology

is introduced, in which both short-range and distance-dependent knowledge-based po-

tentials are employed to score the sequences threaded on the template structures of

substrate bound HIV-1 protease. This technique should probe the preferences of sub-

strate sites and the interdependence between them and help to suggest which sites

within the substrate sequences are more likely to be tolerant to change and which

are not. The difficulty is in rigorously testing the large number of possible sequences;

208 for an eight residue substrate. However, a biased search utilizing the Metropolis

criterion (Metropolis et al., 1953) can focus the search only on those sequences that

are more likely to bind. Different template structures provide a structure space as

well as a base for the differences between the behavior of the substrates, which adjust

themselves within the consensus volume and which protrude outside of the consensus

volume. The assumption is that the patterns that account for specificity are encoded

within the particular conformations adopted by the HIV-1 protease and its interac-

tions with its substrates. To be effective, this methodology must efficiently, via a
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biased search with a low-resolution knowledge-based scoring function, explore the po-

tential substrate sequence space. Determining which substrates are less adaptable, by

verifying the technique’s ability to predict sequence variability, will help elucidate the

plasticity of the active site and may be useful in future inhibitor design.

1.2.2. Dynamic Fluctuations

Fluctuations of biomolecular complexes around their native states are important

for functional analysis in molecular biophysics. Several features such as entropy changes

upon binding, possible drug binding sites, or the overall stability and function can be

deduced from the detailed analysis of these fluctuations (Keskin et al., 2002; Micheletti

et al., 2002). There exists significant correlation between cooperative motions of the

structure and its biological function (Bahar et al., 1998; Bahar, 1999). There are sev-

eral computational methods that could be used to identify these dominant correlated

motions. The common approach is to decompose the dynamics into a collection of

modes of motion focusing on a few low frequency/large amplitude modes which are

expected to be relevant to function (Bahar et al., 1998; Bahar, 1999). The process

of extracting the dominant collective modes from fluctuations in molecular dynamics

(MD) trajectories, also called principal component analysis (PCA), is now an estab-

lished computational method of studying protein dynamics. The major disadvantage

of this method is the sampling inefficiency of MD simulations, especially in large size

molecular systems (Doruker et al., 2000). Also, MD force fields are not optimal for

low-energy fluctuations around the native state (Hamacher and McCammon, 2006).

Alternatively, there are a variety of studies where the cooperative motions could be

studied by normal mode analysis (Cui and Bahar, 2005). Recently, elastic network

models have gained considerable attention in studying the large scale motion of pro-

tein structures (Chennubhotla, 2005). Among these approaches, the Gaussian (Bahar

et al., 1997a; Haliloglu et al., 1997) and the anisotropic (Atilgan et al., 2001) network

models (GNM and ANM) applied to the HIV-1 protease system have produced results

that are highly in accord with those of both experimental and MD simulations, de-

spite their simplicity (Bahar et al., 1998; Kurt et al., 2003b; Micheletti et al., 2004;

Perryman et al., 2004; Trylska et al., 2007; Yang et al., 2008).
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Complex mutational patterns are required for HIV-1 protease inhibitor resistance

and structural factors appear to be responsible for the covariation among many of the

protease residues (Wu et al., 2003). To this end, the structural fluctuations of HIV-1

protease in interaction with the substrates and the inhibitors should be elaborated to

enhance the understanding of the dynamics of HIV-1 protease in relation to its function.

This is also to predict possible binding sites for allosteric inhibitors to regulate HIV-

1 protease dynamics and aid in the evasion of the drug resistance that continually

develops (Perryman et al., 2004).

The crystal structures of both substrate and inhibitor liganded protease are an-

alyzed by the Anisotropic Network Model (ANM) (Atilgan et al., 2001) in this work.

Additional to the wild type protese complex structures, the mutant and coevolved

HIV-1 protease-subtrate structures are included in the analysis. The elastic network

model here is constructed by incorporating all the atoms of the structure for the dy-

namic analysis. The size and orientation of motion of protease and peptide positions,

emphasizing on specific regions of protease such as dimerization, active site, flap and

substrate cleft regions, are elaborated by comparative analysis between different natu-

ral substrate and inhibitor complex structures. This analysis together with the exam-

ination of the structural and dynamic properties of wild-type, mutant and co-evolved

structures could contribute to the understanding of the binding as well as the drug

resistance mechanism of HIV-1 protease.

1.2.3. Pathways of Communication

Protein topology has been shown (Mirny and Shakhnovich, 2001; Levy et al.,

2004) to play an important role in the determination of protein function and folding

kinetics. A key feature of many complex systems is their robustness, which is expected

to be embedded in the protein topology. Proteins evolve toward a robust design that

can tolerate mutations and environmental changes. On the other hand, they are vul-

nerable to perturbations at key positions or to drastic changes in the environment. If

protein structures are information processing networks, mutations of amino acids that

are crucial for network communications are expected to impair function. Information
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communicated through these networks can be transmitted in a physical (or chemical)

form. The residues that are presumed to receive and propagate the information should

be central in the interaction network, lying on the shortest pathways (i.e., an ensemble

of shorthest pathways) between most residue pairs in the protein. A number of the-

oretical results have suggested the crucial role of central residues in protein network

communication. Examples include, the role of highly connected amino acids as nucle-

ation centers in protein folding (Vendruscolo et al., 2002), the correlation of the most

interconnected residues at protein-protein interfaces with residues that contribute the

most to binding free energy (del Sol and O’Meara, 2004), and the role of central active

site residues (Amitai et al., 2004; del Sol et al., 2006a) in transmitting information

between protein residues.

Since there is a network of interactions within a structure’s native topology, which

is associated with its function and stability, there should be an extent of correlation

between this network of interacting residues and drug induced mutation patterns in

the HIV-1 protease complex structure. The communication pathways within the HIV-1

protease complex structure are studied by a new methodology in this work. An en-

semble of pathways of communication is generated within complex structure starting

from the each position in substrate sequence in a given template structure. In gen-

eration of the pathways for the scoring of the interaction between the two residues,

two approaches are utilized: The intensity of the interactions based on the residue

specific potential functions and the coupling between the fluctuations predicted by the

Gaussian Network Model (Bahar et al., 1997a; Haliloglu et al., 1997), which reflects

topological features of the structure with no specificity in interactions. The analysis of

the most dominant and shortest pathway(s) generated provides information about the

interdependency of substrate recognition by HIV-1 protease and the differences in the

behavior of each of the two monomers with respect to these pathways of interactions.

1.2.4. Contribution

Combined computational methodologies used in this thesis puts three different

perspectives together to study the recognition and binding processes in HIV-1 protease
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complex structures within the paradigm of sequence, structure and dynamics. In the

first part, a novel threading approach based on knowledge-based potentials, namely

the biased sequence search threading (BSST) is introduced to search for the substrate

specificity of HIV-1 protease. In the second part, the structural fluctuations of the lig-

and bound HIV-1 protease are analyzed to identify the functionally plausible dynamic

motion comparatively between substrate and inhibitor complexes. In the third part, a

methodology to generate communication pathways within the HIV-1 protease complex

structure is developed to identify the residue interactions that are possibly crucial in

the binding interactions.
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2. MATERIALS AND METHODS

2.1. HIV-1 Protease Structures

The crystal structures of HIV-1 protease in complex with its seven natural sub-

strates and ten inhibitors given in Table 2.1 are used in this study.

Table 2.1. Substrate and inhibitor bound structures of HIV-1 protease

PDB code Reference

Substrates

capsid-p2 (ca-p2) 1F7A Prabu-Jeyabalan et al., 2000

matrix-capsid (ma-ca) 1KJ4 Prabu-Jeyabalan et al., 2002

nucleocapsid-p1(nc-p1) 1TSU Prabu-Jeyabalan et al., 2004

p1-p6 1KJF Prabu-Jeyabalan et al., 2002

p2-nucleocapsid (p2-nc) 1KJ7 Prabu-Jeyabalan et al., 2002

RNase-integrase (rh-in) 1KJH Prabu-Jeyabalan et al., 2002

rev.trans.-RNaseH (rt-rh) 1KJG Prabu-Jeyabalan et al., 2002

Inhibitors

amprenavir (apv) 1HPV Kim et al., 1995

indinavir (idv) 1HSG Chen et al., 1994

lopinavir (lpv) 1MUI Stoll et al., 2002

nelfinavir (nfv) 1OHR Kaldor et al., 1997

CARB-AD37 (psu) 2PSU Chellappan et al. 2007

CARB-KB45 (psv) 2PSV Chellappan et al. 2007

ro1 2F3K Prabu-Jeyabalan et al., 2006

ritonavir (rtv) 1HXW Kempf et al., 1995

saquinavir (sqv) 1HXB Krohn et al., 1991

darunavir (tmc) 1T3R Surleraux et al., 2005



19

2.2. Threading

Threading, known as fold recognition, is a method that may be used to suggest

a general structure for a new protein (Jones et al, 1992; Jones and Thornton, 1993).

In this method, the amino acid sequence is threaded through known three-dimensional

structures and the energy of the structure is evaluated based on some form of potentials

to score the structure. In designed algorithms, sequences that minimize the potential

function are expected to have greatest likelihood of adopting the target structure. A

variety of scoring functions have been used for threading (Bryant and Lawrence, 1993;

Jernigan and Bahar, 1996; Jones and Thornton, 1996). The scoring functions are in

general very simple because of the large number of possibilities to consider, which

also reflects the low resolution nature of the problem. Many of the scoring functions

used are the potentials of mean force that provide energy of interaction between two

residues as a function of their separation. Use of such knowledge-based potentials was

demonstrated in several studies (Sipply, 1990; Altuvia et al., 1995; Altuvia et al., 1997;

Schueler-Furman et al., 2000).

In this work, both short-range and distance-dependent knowledge-based poten-

tials are employed to score the structures using a conventional threading method in

which the sequences are exhaustively sampled by a biased search technique introduced.

With this, two features will be tackled, the number of sequences and the scoring func-

tion, which makes the search relatively complex for determining the rules of predicting

amino acid sequences that will be potentially binding sequences.

2.2.1. Virtual Bond Model

In this simplified model, the backbone of the protein structure is represented by

the virtual bond model originally proposed by Flory and collaborators (Flory, 1969).

Each residue is represented by two interaction sites, one at its alpha-carbon atom and

one at its sidechain centroid. Hence, the sidechain interaction center is selected on

the basis of specific properties of the amino acid type (Bahar and Jernigan, 1996). A

schematic representation of the model is given in Figure 2.1, where a protein segment
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between backbone sites Cαi−2 and C
α
i+1 is shown.

Accordingly, the conformation of the backbone is defined by a set of 3N − 6 gen-

eralized coordinates for a protein with N residues. These are N − 1 backbone virtual

bonds li connecting alpha-carbon atoms i − 1 and i, N − 2 bond angles θi, the angle

between liand li+1, and N−3 bond torsional angles φi. Sidechain conformation, on the

other hand, is conveniently expressed by the set (lsi , θ
s
i , φ

s
i ), l

s
i being the bond length

connecting backbone and sidechain interaction site, θsi is the bond angle between li and

lsi , and φ
s
i the torsion angle defined by li−1, li and l

s
i .

Figure 2.1. Schematic representation of the virtual bond model

2.2.2. Energy of the Protein Conformation

Statistical residue-specific knowledge-based potentials are used to calculate the

energy of a given protein conformation with the virtual bond model. The total energy

of the peptide is composed of both short and long range interactions: Short range

interactions include backbone and side chain conformational energies of the peptide;

long range interactions include intermolecular nonbonded interactions of the peptide

with the protease and the intramolecular long range interactions of the peptide.

The long-range interaction energy of the peptide is calculated by employing

distance-dependent inter-residue potentials (Bahar and Jernigan, 1997). Two effective
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interaction sites per residue (its alpha-carbon atom for the backbone and a residue-

specific side-chain site) are considered, and the energy of interaction between any two

interaction sites are evaluated depending on the distance in-between and the type of

amino acid that the sites belong to. The total interaction energy of the peptide is

found by summation over all n peptide and N protease residues as

ELR (Φ) =
n
∑

i=1

N
∑

j=1

ESS(rij) +
n
∑

i=1

N
∑

j=1

ESB(rij) +
n
∑

i=1

N
∑

j=1

EBB(rij)

+
n−3
∑

i=1

n
∑

j=i+3

ESS(rij) +
n−4
∑

i=1

n
∑

j=i+4

ESB(rij) +
n−5
∑

i=1

n
∑

j=i+5

EBB(rij) (2.1)

where rij is the distance between sites i and j in conformation Φ. The terms account

for potentials between side-chain sites (SS); side-chain and backbone sites (SB) and

two backbone sites (BB) of residues i and j, respectively. The conformational energy

of the backbone is calculated using the statistical potentials extracted from protein

structures as based on the virtual bond model given by Bahar et al. (1997a) for bond

angle and bond torsions.

ESR (Φ ) =
n−1
∑

i=2

E(θi) +
n−1
∑

i=3

[

E(φ−i )/2 + E(φ
+
i )/2 + ∆E(φ

−
i , φ

+
i )
]

+
n−1
∑

i=3

[

∆E(θi, φ
−
i ) + ∆E(θi, φ

+
i )
]

(2.2)

Here, the first summation is the bending of backbone bond angles; the second is the

torsion of bonds φ−i and φ
+
i which are the rotational angles of the virtual backbone

bonds preceding and following the ith α-carbon, respectively. Terms are also included

for the pairwise interdependence of the torsion and/or bond angle bending. For the

side chains, the statistical potentials converted (Kurt et al., 2003) from the probability

distributions for packing of side chains in low resolution models (Keskin and Bahar,

1998) are used. The energy associated with a side chain bond angle at state θi for a

residue type A is

EA(θi) = −RT ln[PA(θ)/P
0
A(θ)] (2.3)
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where PA(θ) is the statistical probability of finding that bond at angle θ and P
0
A(θ)

is the background probability assuming a uniform distribution. In the discrete state

formalism adopted, the background probabilities are directly proportional to the mesh

sizes. Analogous expressions are used for side chain bond lengths and torsions. The

side chain conformational energy is summed up over all n side chains in the peptide as

EsSR(Φ) =
n
∑

i−1

E(lsi ) +
n
∑

i−1

E(θsi ) +
n
∑

i−1

E(φsi ) (2.4)

where lsi , θ
s
i and φ

s
i are the bond length, bond angle and torsion angle of side chain i.

2.3. Elastic Network Models

2.3.1. Gaussian Network Model (GNM)

Gaussian Network Model (GNM) is a recently developed simple analytical model

that is used to analyze the vibrational dynamics of globular proteins (Bahar et al.,

1997a; Haliloglu et al., 1997). GNM has been applied to a number of different biomolec-

ular systems including RNA complexes (Bahar and Jernigan, 1998), enzyme com-

plexes (Bahar and Jernigan, 1999), substrate-binding proteins (Keskin et al., 2000)

and monomeric proteins (Haliloglu et al., 1997), and it has been shown to effec-

tively and efficiently predict X-ray crystallographic temperature factors (Bahar et al.,

1997a), H/D exchange behavior (Bahar et al., 1998b) and order parameters from NMR-

relaxation measurements (Haliloglu and Bahar, 1999). GNM uses the known topology

of protein-protein contacts to model the protein as an elastic network with uniform

single-parameter harmonic potentials between the alpha-carbons of residue pairs in

contact.

Using GNM, the dynamics of a biomolecular system can be decomposed into a

collection of internal modes at different frequencies with a procedure similar to normal

mode analysis, yet computationally much more efficient. The slowest modes, with

the lowest frequencies, represent the most cooperative motions involving the overall
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structure. These dominant modes of motion give information about the molecular

dynamics relevant to biological function occurring on a global scale (Amadei et al.,

1993; Hinsen, 1998; deGroot et al., 1998; Bahar et al. 1998a). The first modes reflect

localized motions involving high-frequency fluctuations of individual residues. These

residues are generally in dense regions of the structure with high coordination numbers

and they are potentially important for the structural stability.

GNM theory finds its roots in the elasticity theory of random polymer networks

(Flory, 1976). In this theory, it is assumed that the native-state protein is equivalent

to a three-dimensional elastic network. The junctions in this network are the alpha-

carbon atoms, and the interactions between the neighboring residues are represented

by harmonic potentials with a uniform spring constant. The residues i and j in the

folded protein are assumed to undergo Gaussianly distributed fluctuations ∆Rij about

their mean positions in the separation Rij = |Rj −Ri|.

According to the GNM theory (Bahar et al., 1997a), the potential energy of the

network in terms of ∆Ri, using the harmonic potential approximation, is

V = (γ/2)

[

N
∑

i,j

Γij(∆Rj −∆Ri)
2

]

= (γ/2)

[

N
∑

i,j

Γij〈∆Ri �∆Rj〉

]

(2.5)

Here, the normalization constant γ is the counterpart of the single parameter of the

Hookean pairwise potential originally proposed by Tirion (1996) and represents and

represents the inter-residue interactions in the native state. The equilibrium correlation

between the fluctuations ∆Ri and ∆Rj of residues i and j is given by

〈∆Ri �∆Rj〉 = (3kBT/γ)[Γ
−1]ij (2.6)

where Γ is a symmetric matrix known as the Kirchoff or connectivity matrix, Ri is the

position vector of the ith alpha-carbon, kB is the Boltzmann constant, T is the absolute

temperature. The mean-square fluctuations of individual residues can be readily found

from equation 2.6, taking i = j.



24

The elements of the Kirchoff matrix are defined as

Γij =



















−1 if i 6= j and Rij ≤ rc

0 if i 6= j and Rij > rc

−
∑

i6=j Γij if i = j



















(2.7)

Here rc is the cutoff separation defining the range of interaction of non-bonded alpha-

carbons. A reasonable cutoff distance including all residue pairs within a first interac-

tion shell is 7 Å (Bahar and Jernigan, 1997). The ith diagonal element of Γ characterizes

the local packing density or the coordination number of residue i.

The inverse of Γ may be written as

Γ−1 = U(Λ−1)UT (2.8)

where U is an orthogonal matrix whose columns ui are the eigenvectors of Γ, and Λ is

the diagonal matrix of the eigenvalues (λi) of Γ, usually organized in ascending order.

Mean-square fluctuations of the alpha-carbon atoms and the cross correlations between

them are given by the respective diagonal and off-diagonal elements of Γ−1.

It is possible to decompose Γ−1 into the sum of contributions from individual

modes as

Γ−1 =
N
∑

k=2

λ−1k uku
T
k =

N
∑

k=2

A(k) (2.9)

Here A(k) is the NxN matrix (for a protein of N residues) describing the contribution

of the kth vibrational mode to atomic fluctuations. The first eigenvalues of Γ, identically

equal to zero, is not included in the above summation. The ith eigenvalue represents

the frequency of the ith mode of motion, and the ith eigenvector gives the shape of this

mode as a function of residue index.
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2.3.2. Anisotropic Network Model (ANM)

The anisotropic network model (ANM) (Atilgan et al., 2001) performs harmonic

vibrational analysis of protein structures around their equilibrium states and predicts

the directionalities of the collective motions in addition to their magnitudes. The

elastic network is formed by connecting all neighboring atoms and the conformations

that describe the fluctuations of residues from the average in the principal directions

of motion are generated. The total potential energy for a system of N nodes is the

summation over all harmonic interactions of close-neighboring (i, j) pairs. The cutoff

distance is chosen as 9 Å.

ANM is an extension of GNM where the fluctuations are anisotropic (dependent

on direction), which incorporates the X, Y and Z components of the position vector,

Ri, independently. Therefore, the overall potential for the ANM calculations, includes

the fluctuations for all components. The harmonic potential can be expressed as

V = (γ/2)

[

N
∑

i,j

h(rc −Rij)(∆Rj −∆Ri)
2

]

= (γ/2)

[

N
∑

i,j

Hij(∆Rj −∆Ri)
2

]

(2.10)

where γ is the harmonic force constant and Rij is the distance between the sites i and

j in the native structure of the protein. h(x) is the heavy side step function which is

1 if x > 0 and zero otherwise.

In ANM, Γ of GNM is replaced by the Hessian matrix H of the second derivative

of the intramolecular potential function in equation 2.10. H is a 3Nx3 symmetric

matrix and composed of NxN super elements Hij each of size 3x3, given by the second

derivatives of V with respect to Ri and Rj of C
α-atoms of respective ith and jth residues.

The correlation between ∆Ri and ∆Ri decomposed into 3N − 6 modes of motions is

then given by

〈∆Ri �∆Rj〉 = (3kBT/γ)tr[H
−1] = (3kBT/γ)

N
∑

k=1

tr[λ−1k uku
T
k ]ij (2.11)
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tr[H−1]ij is the trace of the ij
th submatrix [H−1]ij of H

−1, that is the sum of the

diagonal elements of this 3x3 matrix. It refers to three different components of ∆Ri

and ∆Rj; whereas, when i = j, the self correlations between the components ∆Ri

are obtained. Here the knowledge of fluctuation vectors permits us to construct and

explicitly view pairs of alternative conformations sampled by the individual modes,

simply by adding the fluctuation vectors ±∆Ri to the equilibrium position vectors in

the respective modes.

2.4. Molecular Dynamics

2.4.1. Theoretical Background

In order to predict the time-dependent events occurring in a molecular system

on the atomistic scale, molecular dynamics simulations are widely used. In MD simu-

lations, atoms are allowed to interact with each other using empirical potential energy

functions or forcefields, from which the forces on atoms are extracted for a given con-

figuration. Successive configuration of the system is obtained by the integration of

Newton’s equation of motion, which is:

d2Ri
dt2
=
Fi
mi

(2.12)

In equation 2.12, the motion of a particle with a mass of mi along the direction of Ri

under the force of Fi in that direction is described.

Forcefields describe the potential energy of a system as a function of the atomic

positions/coordinates. MD simulations are based on an empirical model of interactions

within a system involving stretching and rotation of bonds, as well as non-bonded

interactions within a system.
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V (R1, ...,RN) =
∑

bonds

kl
2
(li − li,0)

2+

∑

angles

kθ
2
(θi − θi,0)

2+

∑

torsions

Vn
2
(1 + cos(nw − γ))+

N
∑

i=1

N
∑

j=i+1

(

4ǫij

[

(

σij
Rij

)12

−

(

σij
Rij

)6
]

+
qiqj
4πǫ0Rij

)

(2.13)

Equation 2.13, denotes the potential energy, which is a function of the positions

(Ri) of N atoms or particles. The first term in the equation describes the interaction

of pairs of bonded atoms, where li is the bond length. The second term is similarly

the summation over all the angles in the molecule modeled using a harmonic potential,

where θi is the angle between the three successive atoms. Torsional potential describes

the change in energy when a bond rotates, and is depicted with the third term in the

equation. The fourth contribution in the equation is for the non-bonded atoms, which

are separated by at least three atoms. The non-bonded interactions are defined by

two different potentials. The former one is the Lennard-Jones 12-6 potential function

that accounts for van der Waals interactions, whereas the latter one is the Coulomb

potential for electrostatic interactions. There may be terms that are more complicated

in the force fields other than these basic four components (Leach, 2001).

Potential energy of a macromolecular system is a multi-dimensional function of

the atomic coordinates; hence, protein fluctuates in a multi-dimensional energy sur-

face. To predict the geometries of the system at the minimum points, minimization

algorithms are used. Energy minimization prior to the MD simulation provides a bet-

ter starting conformation, removes the steric overlaps in the structure and relaxes the

bond lengths and angles. The task is to minimize the energy of the system according

to 3N atomistic coordinates, which is not a trivial task. Steepest descent and conjugate

gradient are widely used minimization algorithms to solve this nonlinear optimization

problem.
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Steepest descent method is performed prior to the conjugate gradient method due

to its quick convergence ability in finding the minima. To determine the exact location

of the minimum point, the minimization is then switched to conjugate gradient method.

In classical MD simulations, the initial configuration of the system should be

introduced by specifying 3N atomistic coordinates (Ri) of the structure. This structure

is generally obtained from the experimental data, such as X-ray or NMR structure

of a protein. It is meaningful to select a starting conformation that is close to the

desired state of the protein, generally minimum energy/native state. Furthermore, any

high-energy interactions in the system may cause instabilities during the simulation;

therefore, an energy minimization is performed prior to the simulation.

In order to emphasize boundary effects in the simulation, periodic boundary

conditions are used. By the utilization of periodic boundary conditions it is possible

to include the solvent effect with a relatively small number of particles. In periodic

boundary conditions, particles are enclosed in a solvent box; this box is replicated to

infinity by rigid translation in all the three cartesian directions, completely filling the

space. The shape of the solvent box may be a truncated octahedron, a cube or a

hexagonal prism depending on the shape of the initial structure.

When the initial configuration of the system is minimized in a solvent box, it is

required to assign initial velocities at t = 0. The initial velocities of the system are

assigned according to the Maxwell-Boltzmann distribution at the initial temperature.

red(Leach, 2001)

After the system is initialized, i.e. put in a solvent box and assigned initial

velocities, the potential energy of the system can be calculated, and hence the force on

each atom from the derivative of potential energy is determined by

Fi = −▽ Vi(R1, ...,RN) = −
∂V (R1, ...,RN)

∂Ri
(2.14)
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Once the forces on each atom at the current time t are calculated, the next step

is to produce the new conformation at time t+∆t by integrating Equation 2.12.

2.4.2. Simulation Details

The AMBER (Case, 2004; Case, 2005) simulation package with the ff03 forcefield

is used in all the simulations. The protein is solvated explicitly in a truncated octa-

hedron box using the TIP3P water model (Jorgensen et al., 1983). Bonds involving

hydrogens are constrained by the use of the SHAKE algorithm (Ryckaert et al., 1977)

with a relative geometrical tolerance of 10E-5. Initial atom velocities corresponding to a

temperature of 10 K are generated from a Maxwellian distribution and the temperature

is gradually raised to 300 K. The temperature is maintained at 300 K and the pressure

at 1 bar by the Berendsen weak-coupling approach (Berendsen et al, 1984). Constant

pressure periodic boundary conditions are used with isotropic position scaling. The

Particle Mesh Ewald (PME) method (Essman et al., 1995) is used to calculate the full

electrostatic energy of a periodic box, bypassing pairlist creation and nonbonded force

and energy evaluation by calling special PME functions to calculate the Lennard-Jones

and electrostatic interactions with a cutoff distance of 9 Å. A time step of 2 fs is em-

ployed in the Leapfrog integrator. The coordinates and energies are recorded every 0.4

ps in the 11 ns simulation, but data is extracted from the full trajectory at every 20

ps instead to decrease computation time. This generates a sample coordinate set of

550 frames. The potential energy, the root mean square deviation (RMSD) and the

mean-square fluctuations are investigated for both the full trajectory and the sample

set of 550 frames. The good correlation between the two data sets shows the reduced

sample set represents the full trajectory, thus, the calculations are performed with the

550 representative frames.

2.4.3. Cluster Analysis

A representative set of conformations is selected among the large amount of con-

formations generated by MD simulations for subsequent analysis using cluster analysis.

The similarity measure to group the MD simulated frames is root mean square devia-
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tion (RMSD) in this study.

The cluster analysis procedure requires a similarity matrix in which each element

represents the structural difference between a pair of structures. A similarity matrix

is constructed by measuring the distance between frames using the root-mean-squared

deviation (RMSD):

RMSD =

√

∑N
i=1 d

2
i

N
(2.15)

N is number of atoms over which RMSD is measured and di is the distance between

coordinates of atom i in the two structures, when they are superimposed (Leach, 2001).

MMTSB Toolset’s (Feig et al., 2004) kclust utility is used to perform conforma-

tional clustering. It uses k-means which is a high-performance clustering algorithm; it

starts by randomly choosing a collection of frames from the trajectory, each of which

is assigned to its own cluster. It is then iterated over all other frames. Each frame is

assigned to the cluster whose centroid is closest; the centroid for this cluster is then

recomputed. The iterative procedure continues until all frames are assigned to their

clusters. The number of clusters is a parameter which depends on the cutoff value of

RMSD (cluster radius); as RMSD cutoff increases, less number of clusters are found

by the algorithm. The conformations generated from the MD trajectories of HIV-1

protease complex structures are clustered separately in order to group together ”re-

dundant” conformations and examine the unique conformers.

2.4.4. Principal Components Analysis (PCA)

The dimensionality of a data set is the number of variables that are used to de-

scribe each object. However, there are significant correlations between these variables.

To eliminate these correlations, PCA is a commonly used method for reducing the

dimensionality of a data set. In general, a principal component is a linear combination

of the variables. The first principal component of a data set corresponds to that linear
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combination of variables which gives the ’best fit’ straight line through the data when

they are plotted in the v -dimensional space. More specifically, the first principal com-

ponent maximizes the variance in the data so that the data have their greatest ’spread’

of values along the first principal component. The second and subsequent principal

components account for the maximum variance in the data not already accounted for

by previous principal components. Each principal component corresponds to an axis

in a v -dimensional space, and each principal component is orthogonal to all the other

principal components. There can clearly be as many principal components as there are

dimensions in the original data, and indeed in order to explain all of the variation in

the data it is usually necessary to include all the principal components. However, in

many cases only a few principal components may be required to explain a significant

proportion of the variation in the data (Leach, 2001).

PCA is performed for the structures taken from MD simulations, using the AM-

BER software ptraj utility (Case, 2004; Case, 2005).

The input is an n by p coordinate matrix, X, where n is the number of snap-

shots and p is three times the number of atoms. Each row in X represents the atom

coordinates of each snapshot structure. The elements of the covariance matrix, C, is

calculated as

cij =< xi− < xi >> � < xj− < xj >> (2.16)

where averages are over the n snapshots. The covariance matrix, C, can be decomposed

as

C = P∆P T (2.17)

where the eigenvectors, P , represent the principal components (PCs) and the eigenval-

ues are the elements of the diagonal matrix, ∆. Each eigenvalue is directly proportional

to the variance it captures in its corresponding PC (Alpaydin, 2004).
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2.4.4.1. Overlaps between PCs and ANM Modes. The overlap between the motion

spaces of the first I PCs and the first J low-frequency modes is defined by the root

mean-square inner product (RMSIP) (Amadei et al., 1999) as

RMSIP (I, J) = (
1

I

I
∑

i=1

J
∑

j=1

(Pi �Mj)
2)1/2 (2.18)

where Pi is the i
th PC, and Mj is the j

th normal mode. This RMSIP indicates how

well the motion space spanned by the first I PCs is represented by the first J modes.
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3. SUBSTRATE SPECIFICITY IN HIV-1 PROTEASE BY

A BIASED SEQUENCE SEARCH METHOD

A change in specificity of recognition implied by drug resistance may also imply

a change in the substrate specificity of HIV-1 protease. Computational threading tech-

niques can be utilized to predict substrate specificity by determining the relationship of

the substrate sequence and three-dimensional structure of the protease. The goals here

are 1) to ascertain if the energy functions used in the scoring of threaded sequences

can identify the natural substrates, 2) to elucidate the roles of the specific residue com-

binations in interactions with the binding site and 3) to predict the sequences of yet

unidentified potential substrates. From this data it may be possible to predict which

substrate sequences are more likely to tolerate changes in HIV-1 protease due to drug

resistant mutations and which are not.

3.1. Biased Sequence Search Threading (BSST)

A substrate sequence of eight residues - with 20 possible amino acids at each

residue - requires an analysis of an ensemble of 208 sequences in complete enumera-

tion. To make this large set of potential sequences manageable, a biased search can

selectively search only those sequences which have lower energies rather than sampling

all sequences. This allows for efficient sampling of a vast number of the potential se-

quences on various template substrate complexes of HIV-1; and the potential function

which incorporated both the short and long range interactions of the peptide with

the protease to score the sequences on the template structures. Here, the biasing se-

quence search technique using the Metropolis criteria is introduced (Ozer et al., 2006)

to search towards regions of the sequence space with a higher likelihood of identifying

members of the binding sequences (lower energy sequences). The energy window from

the minimum for the sampling sequences can be adjusted with the temperature in the

Metropolis criterion (Metropolis et al., 1953) that controls the acceptance ratio of the

threaded sequences.
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The method is performed as follows: Potential octameric substrate sequences,

non-binding sequences (Chou, 1996) and some random sequences are threaded through

the known protease-substrate complex structures (Table 2.1) and total energy of the

peptide is evaluated using the statistical residue-specific knowledge-based potentials

given in Section 2.2.1. Then, any one of the residues in the peptide is randomly changed

with any of the other nineteen amino acids. Metropolis criterion (Metropolis et al.,

1953) determines the acceptance of each sequence by the difference in the energies of the

old and the new sequences to find sequences of lower energy. The combination of using

different template structures and threading random sequences allows a thorough search

in sequence space. To avoid initial sequence induced biased search, the procedure is

repeated by starting from different sequences on each of the template structures.

Seven crystal structures of the protease complexed with its natural substrates

(ma-ca, ca-p2, p2-nc, nc-p1, p1-p6, rt-rh, rh-in) were utilized to thread the sequences

of the nine natural substrates (Table 1.1), nonbinding sequences (Chou, 1996) and

random sequences with BSST. The potential functions were previously (Kurt et al.,

2003) ranked by the energies of binding and nonbinding peptides based on the poten-

tial functions with a variety of threading techniques. The total energy difference was

approximately 30 kT within the list of binding peptides. The same energy window, 30

kT, is utilized here for the sequences generated with BSST by Metropolis sampling.

The total number of sequences in the pool is 206,847, excluding 30% of the high energy

sequences did not alter the results. The preferences of the sites on the substrate for

specific amino acids were calculated within these sequences and compared with that of

the natural substrates and the cleavable sequences (Chou, 1996) in Chou’s database.

In these calculations, the probability of specific residues at each site was calculated on

independent, pairwise dependent and triplewise dependent preferences of these sites.

The calculations were repeated using only the peptide conformational energy and only

the non-bonded interaction between the peptide and the protease allowing the relative

contribution of each component in substrate recognition to be elucidated.
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3.2. Amino Acid Sequence Preference at Particular Sites within The

Substrate

To predict the preference of each substrate site for specific amino acids, the

distribution of the amino acids sampled at each of the eight peptide positions by BSST

was calculated. The preferences were compared with the sequences of natural substrates

(Figure 3.1). For most of the peptide positions, the observations are consistent with

the sequence variability in the natural substrates. For the P4 position, there is an Ala

residue in three of the natural substrates, which is the most probable amino acid in

our sequence pool as well. The same case is observed at the cleavage point involving

P1 and P1’ positions for Phe and Leu, at P2’ position for Ile and at P4’ position for

Gly residues. However, some amino acids which occur often within the nine natural

substrates are not in the sequences generated. Examples of these are: Arg at P4 which

is a charged amino acid, Gln at P3 and P2’, Asn at P2, Ser at P3’ which are polar

amino acids and Pro at P1’. Thus, some substrate positions, P1, P1’ and P2’ are

predicted well by independent preferences, while others are not.

The independent preferences of the sites on the substrate for specific amino acids

show that BSST preferentially selected for natural substrate sequences at a particular

site within a substrate. There are only nine natural substrate sequences, yet amino

acids found with the highest probabilities at any of the eight positions of these natural

substrates are also picked by our method with the highest probabilities. The amino

acids flanking the scissile bond are generally hydrophobic (Pettit et al., 2002) and the

residues picked in highest probabilities by our method at both of these positions are

hydrophobic amino acids such as Phe and Leu. The potential role of the P1 amino acid

in regulating the rate of cleavage is explored in Pettit et al.’s work and the require-

ment of hydrophobic amino acids at P1 position is confirmed (Pettit et al., 2002). Our

results with BSST reproduce this, finding Phe, Leu and Met residues, which are all

hydrophobic amino acids, at P1 position. For P3, P2, P2’ and P3’ positions, the amino

acids that are not picked by our method, although they are seen in high probabilities

within the natural substrates, are generally polar amino acids such as Gln, Asn and Ser.

This might be due to the lack of explicit solvent considerations in the energy potentials.
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Figure 3.1. Distribution of the selected amino acid residues observed at each of the

eight peptide positions (P4-P4’) based on the independent preference of each

substrate site. The amino acids seen in the nine natural substrates at each site are

given in the title parentheses with the number of times each particular amino acid

occurs.

3.3. Pairwise Amino Acid Sequence Preference within The Substrate

As BSST selects for particular positions within the natural substrates, the effect

of the amino acid preference of substrate sites on each of the other substrate sites was

also analyzed. The joint probabilities of amino acids for all possible 28 pairwise com-

binations of eight substrate positions are calculated and mutual information statistics

was used as a measure of covariation between positions within the biased sequences.

3.3.1. Mutual Information Statistics

The average strength of the effective interaction between two variables is the

mutual information, a measure of the interdependence between each variable (Crooks
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et al., 2004). Mutual information, M(x, y) for the positions x and y is defined as

M(x, y) = H(x) +H(y)−H(x, y) (3.1)

H(x), H(y) and H(x, y) are the Shannon entropies of positions x and y and the joint

entropy of these two positions, respectively.

H(x) = −
m
∑

i=1

P (xi) logP (xi) (3.2)

H(x, y) = −
m
∑

i=1

n
∑

j=1

P (xi, yj) logP (xi, yj) (3.3)

Here, m and n are the numbers of different amino acids represented at positions x and

y, respectively. P (xi) is the probability of amino acid i at position x, and P (xi, yj) is

the probability of each combination of amino acids xi and yj.

If the amino acids at the two positions vary independently, they will form many

combinations and the mutual information will be low. If the positions covary, there

will be fewer combinations and mutual information will remain relatively large, as the

joint entropy is small (Hoffman et al., 2003).

The mutual information values for the 28 substrate pairs within an eight residue

peptide can be seen on Figure 3.2. Most of these covariant pairs are at the positions

on the primed side of the cleavage site. However, the P1-P1’ pair at the cleavage site

also covaries. In the pairs which are two, three or four residues apart, the P4’ position

is involved in the most prominent covariant pairs. Overall, the pairs with high mu-

tual information values are mostly neighboring positions in either sequence or structure.
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Figure 3.2. Mutual information values of the pairwise substrate interactions. The

pairs are grouped in terms of the separation in amino acid sequence. The pairs with

high mutual information values, i.e. the covarying pairs are shown in black bars.
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3.3.2. Preferences of Pairs

To understand the characteristics of the highly probable pairs, the results were

analyzed in more detail. Table 3.1 lists the most probable amino acid pairs in all 28

possible pairs on the peptide sequence. The prominent pairs which occur in any of the

nine natural substrates or any of the 62 sequences from Chou’s training database of

cleavable peptides (Chou, 1996) are indicated in the last two columns. Among the total

of 400 possible pairwise combinations of 20 amino acids, most of the pairs generated by

BSST reproduce the residue pairs in two or more of the nine natural substrates. The

amino acid pairs in which most of the natural substrates are reproduced are P1-P1’,

P4-P1, P1-P4’, P2-P4’. Many pairs are also reproduced in Chou’s database. How-

ever in three pairs, P3-P2, P3-P2’ and P3-P3’, none of the natural substrate pairs are

found, and P3-P2’ and P3-P3’ are not reproduced in Chou’s database either. Overall,

the pairs which reproduce the largest number of natural substrate sequences are those

involving the P1 site. The P1-P1’ pair reproduces four natural substrates with high

probabilities of Phe and Leu residues at each position of the pair. Also, the P1-P4’

and P4-P1 pairs reproduce five and four natural pairs respectively. The most prob-

able amino acid pairs except the ones reproducing the natural substrates are Ile-Gly

and Gly-Gly at P1-P4’ and Gly-Leu and Gly-Phe at P4-P1, which are all hydrophobic

amino acids or Gly. Natural substrates involving Gly are picked by our method as

well as the predicted pairs involving Gly residues. This overselection of Gly residues

is expected as the BSST method searches towards the sequence space of lower energy

and the term for the side chain conformational energy in the energy function is zero for

Gly. The amino acid preferences at each peptide position in the pairs were also com-

pared with the independent preferences at those positions. The additional amino acids

that are picked in the natural substrate pairs although they are not highly probable

independently are Ala at P3’ on P1-P3’, P2-P3’, P4-P3’ pairs of ca-p2 substrate and

Arg at P4’ on P1-P4’ pair of p1-p6 substrate. Thus, overall, the pairwise prediction

more accurately produces the sequence patterns seen in the natural substrates than

does the independent prediction.
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Table 3.1: The most probable pairs generated with BSST

compared with natural substrates and peptides in Chou’s

database (Chou, 1996)

Significant pairs Natural Number of

Pair generated % substrates reproduced peptides

by BSST reproduced in Chou database

P4-P3 A G 8.6

A T 7.2 p2-nc 1

G G 5.7 2

P G 3.7 p1-p6 1

T T 3.7

T G 3.3

P3-P2 G V 7.5 1

G L 7.1

T G 5.9

G G 3.7

G I 3.7

T T 3 1

P2-P1 L F 7.1 1

V L 6.2 ca-p2 3

I F 3 2

G L 2.9

G G 2.6

I L 2.5 rh-in 4

T F 2.5 rt-rh 3

P1-P1’ F L 11.1 p1-p6 1

L F 8 rh-in 2

M F 5.4 1

G L 4.5

F Y 4.4 rt-rh 3
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Table 3.1: continued

L L 3.7 1

L A 3.5 ca-p2 4

P1’-P2’ F L 7.6 nc-p1, rh-in 3

L I 6.3

L F 5.7

F I 5.3

Y V 5 rt-rh 2

L G 3.4

V I 3.2

F F 3.2

P2’-P3’ V L 6

G G 3.8

I V 3.6 ma-ca 1

L L 3.6

F T 3.6

I G 3.5

I T 3.1

P3’-P4’ L G 9.2

G G 4.4 1

V A 4.3

D G 4.2 rt-rh, rh-in 2

G C 3.9

N G 3.7

P4-P2 A V 7.6 ca-p2 1

A G 5.6

G G 3.1

P L 3.1 1

G L 3

A I 2.9 p2-nc 1

P3-P1 G F 9.1 p1-p6 1
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Table 3.1: continued

G L 8

T G 4.5

G M 3.5

F F 3.1 tf-pr 2

T L 2.8 2

G G 2.7

P2-P1’ L L 7.3

G L 5.6

V A 4.9 ca-p2 4

G F 4.7

I F 3.9 rh-in 2

I L 3.8 1

L F 3.4 1

T L 3.4 1

P1-P2’ F V 9.2 rt-rh 4

L L 5.4 rh-in 2

L I 5.2

F F 4.8

M I 3.2

F I 3.2 pr-rt 2

M L 3.2

P1’-P3’ L G 7.5

L T 6.6

F L 5.6

F D 3.1 rh-in 1

F N 2.9

Y L 2.7 1

M G 2.6

P2’-P4’ V G 9.4 rt-rh

I G 7.5
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Table 3.1: continued

L G 6.6 rh-in 1

I A 5.5

F G 4.1

F A 3.8

P4-P1 A F 7.3 rt-rh 4

A L 6.4 ca-p2 2

G L 5.2 4

G F 4.8

P F 4.7 p1-p6 3

A I 4.1

A M 3.2 p2-nc 3

G M 3.1

A G 3

T G 2.9

P3-P1’ G L 10.8 p1-p6 1

T L 8.3 1

G F 5.6

G A 4 1

T F 3.7

G V 2.5

R F 2.4

T M 2.1 p2-nc 1

P2-P2’ V I 4.6

L I 4.6

L F 4.6

G I 4.4

T V 3.6 rt-rh 3

I I 3.2

P1-P3’ F T 6.6

F L 5.1
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Table 3.1: continued

G G 4.5

L G 3.9

L L 3.7

V G 3.7

L A 2.5 ca-p2 3

P1’-P4’ F G 12.8 rh-in 1

L G 9.6

Y G 4.1 rt-rh 1

V A 3.7

L C 3.3

P4-P1’ G F 6.5 1

A L 6.4

G L 4.5 1

P L 4.5 p1-p6 1

T L 4.1

A F 4

A A 3.7 ca-p2 3

A Y 3.6 rt-rh 3

P3-P2’ G I 9.2

G F 7

T I 4.8

F V 3.5

G L 3.3

T G 2.9

P2-P3’ L T 4.8 1

T G 4.4

V A 3.5 ca-p2 1

G G 3.4

V G 2.7

P1-P4’ F G 9.9 rt-rh 4
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Table 3.1: continued

L G 8.3 rh-in 3

M G 6.2 p2-nc 1

I G 4.2

G G 4

W A 3.8

Y A 3.1

L M 2.6 ca-p2 1

F R 2.4 p1-p6 1

P4-P2’ A I 8.3 1

A V 7.3 rt-rh 2

G I 4.1

G V 3.7 1

G L 3.7

A F 3.7

T I 3.5 pr-rt 1

P3-P3’ T G 6.2

G T 6.2

G G 5.2

G A 3

G L 2.8

G V 2.6

P2-P4’ G G 8.3 1

I G 5.4 p2-nc, rh-in 5

L G 4.1

L A 4

V M 3.6 ca-p2 1

T G 2.9 rt-rh 1

C G 2.7

P4-P3’ T G 5.3

A L 4.9
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Table 3.1: continued

G L 4.2

A G 3.6

P T 2.9 1

A A 2.7 ca-p2 2

T V 2.6 1

P3-P4’ T G 9.1 p2-nc 1

G G 8.2

G A 3.7

W A 3.6

F G 3.1

G M 3.1

T C 2.8

P4-P4’ A G 14.3 p2-nc, rt-rh 2

G G 9.1 2

T A 3.9

T G 3

S A 3 1

A M 2.7 ca-p2 1

Neighboring positions in either sequence or structure vary in an interdependent

manner and covariation is observed mostly at the primed side of the substrate sequence.

This results from the covariation analysis within the biased sequences and the fewer

combination of the pairs with high mutual information values. The pairwise combina-

tions of the sequences generated by BSST reproduced both the natural substrates and

the 62 cleavable peptides in Chou’s training database taken from experimental data19

although the database contains other proteins than Gag and Pol. The P1-P1’, P4-P1,

P1-P4’, P2-P4’ pairs, which reproduce most of the natural substrates as well as a higher

number of peptides in Chou’s database compared to the other pairs, are probably less

tolerant to mutations. On the other hand, the P3-P2 pair, in which none of the natu-

ral substrates are reproduced, and the P3-P2’ and P3-P3’ pairs, in which none of the
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natural substrates nor the peptides in Chou’s database are reproduced, can probably

tolerate mutations. The high probabilities of Phe and Leu residues on the covariant

P1-P1’ pair, which also reproduce p1-p6 and rh-in substrates, support the requirement

of the residues flanking the target scissile bond being generally hydrophobic as stated

in Pettit et al.’s work.28 The requirement of hydrophobic amino acids at P1 position

is fulfilled within the pairwise combinations except the Tyr and Trp residues, yet Tyr

exists in ma-ca substrate. The pairs where most of the natural substrate sequences are

reproduced involve the P1 position as well, which has a potential role in cleavage. The

overselection of Gly residues is a result of searching towards the sequence space of lower

energy as the term for the side chain conformational energy in the energy function is

zero for Gly. The energy potentials could be modified to overcome this overselection,

yet Gly residues exist in natural substrates. The preferences of each peptide position

on the pairwise combinations are almost consistent with the independent preferences

of these positions. There are also some amino acids that could be picked in the natural

substrate pairs although they are not highly probable independently, such as Ala at

P3’ on the ca-p2 substrate and Arg at P4’ on the p1-p6 substrate. This indicates

that in some cases pairwise correlations represent the natural substrates better than

independent preferences, that is, coupling is important for these amino acids.

3.4. Triplewise Amino Acid Sequence Preference within The Substrate

As our methodology selected both for particular positions and pairwise combi-

nations within the natural substrates, the triplewise interactions in the low energy

sequences generated were also analyzed. The interactions among three variables can

be quantified by the triplet mutual information, M3(x, y, z). This is the average infor-

mation carried by the triplewise interactions, in excess of the information carried by

the pairwise interactions (Crooks et al., 2004). M3(x, y, z) is defined as

M3(x, y, z) = −H(x)−H(y)−H(z) +H(x, y) +H(x, z) +H(y, z)−H(x, y, z) (3.4)
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where H(x, y, z), the joint entropy of the three positions x, y and z, is

H(x, y, z) = −
m
∑

i=1

n
∑

j=1

o
∑

k=1

P (xi, yj, zk) logP (xi, yj, zk) (3.5)

Here, o is the number of different amino acids represented at position z and P (xi, yj, zk)

is the probability of each combination of amino acids xi, yj and zk.

The 56 triplewise interactions in the sequences generated by BSST were com-

pared with the nine natural substrate sequences, while the total number of triplewise

interactions within the 20 amino acids is 8000. Only five natural substrates are repeat-

edly seen in the triplets: ca-p2, p2-nc, p1-p6, rt-rh and rh-in. The P1-P1’-P4’ triplet

reproduces four natural substrates and the triplets P4-P2-P4’, P4-P1-P1’, P4-P1-P4’,

P4-P1’-P4’, P2-P1-P4’, P1-P1’-P3’ reproduce three natural substrates. However, many

other triplets that occur in the natural substrates are not observed; such as P4-P3-P2’,

P4-P3-P3’, P3-P2-P1, P3-P2-P1’, P3-P2-P2’, P3-P2-P3’, P3-P1-P2’, P3-P1’-P2’, P3-

P2’-P3’, P3-P2’-P4’, P3-P3’-P4’, P2-P1-P2’, P2-P2’-P3’. Most of the triplets that

reproduce two or more of the natural substrates involve at least one of the cleavage

positions P1 and P1’. Of these, the predicted triplets have Phe, Met, Leu, Gly at P1

position and Tyr, Leu, Phe, Ala at P1’ position as the most probable amino acids. The

triplewise preferences of each peptide position were also compared with their indepen-

dent and pairwise preferences. The amino acid that is picked in the triplets of natural

substrates, although not highly probable neither independently nor in the pairs, is Ser

at P3’ on P3-P1-P3’ and P3-P1’-P3’ triplets of p1-p6 substrate. Therefore the triple-

wise preference also adds some additional data reproducing the sequence variability in

the natural sequences.

The sequence variability within the natural substrates is represented better by

the triplewise preferences of the positions in the peptide sequences generated by BSST

than the variability in specific positions and pairwise combinations. The most probable

amino acids of the 56 triplets reproduce five of the natural substrates, which are ca-

p2, p2-nc, p1-p6, rt-rh and rh-in. The triplets which reproduce three or more natural
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substrates and are probably more selective than the others, mostly involve the P1 and

P1’ positions. These positions are important as they surround the cleavage site and

are probably less tolerant to mutations. Of the triplets involving the cleavage site,

the highly probable hydrophobic amino acids at P1 and P1’ are both consistent with

the pairwise preferences and the results of Pettit et al.28 as well. In fact, most of the

highest probable amino acids at each independent positions and pairs are also picked

within the highest probable triplets. There are also a few amino acids that are picked in

the triplets although they are neither as highly probable independently nor significant

in pairwise combinations, such as Ser at P3’ on the p1-p6 substrate.

3.5. Significance Assessment

The significance of particular pairwise and triplewise associations are assessed by

permutation tests (Hoffman et al., 2003), in which 1,000 shuffles are randomly gener-

ated to form a reference distribution. As is commonly performed (Korber et al., 1993;

Meller and Elber, 2001; Webber and Barton, 2001; Hoffman et al., 2003), the number of

sequences in each shuffle is maintained to be the same as in the original sequence pool.

M(x, y) and M3(x, y, z) are recalculated for each shuffle. Then, P values describing

the significance of M are calculated as the number of shuffles in which the M value of

the permuted shuffle is greater than the M value of the original pool, divided by the

total number of shuffles performed (Korber et al., 1993; Hoffman et al., 2003). As large

values ofM indicate fewer combinations as a result of covariation, getting low M values

for random shuffles is an expected result because of many combinations. This strategy

for calculating significance is analogous to significance assessment by Z-score which

is a measure of the deviation from random distribution, where the distribution with

scores that are far from random average value are more significant (Meller and Elber,

2001; Webber and Barton, 2001). For all the pairs and triplets within the sequences

generated by BSST, no permuted value of M exceeds the original value, indicating

that all original M values are significant with all P values being zero; therefore all the

pairwise and triplewise preferences within the substrate sequences are analyzed.
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3.6. Prediction of Potential Substrate Sequences

Any prediction method based on statistical theory is composed of an algorithm

and a database (Chou, 1996). The database of the prediction method used here is

the pool of lower energy sequences generated by the biased search. The techniques

can be further utilized to calculate a combined probability for octameric sequences and

therefore potential substrates. These sequences can then be compared with the natural

substrates to access how accurately these prediction schemes are working. To predict

cleavable substrate sequences, the probabilities of octameric sequences are calculated

in three ways: using the independent probabilities, pairwise conditional probabilities

and triplewise conditional probabilities of the peptide positions within the sequences

in this database.

The probability for a specific octameric sequence using the independent proba-

bilities, p of each the peptide positions through P4 to P4’ is calculated by

Poctamer = p(P4) � p(P3) � p(P2) � p(P1) � p(P1’) � p(P2’) � p(P3’) � p(P4’) (3.6)

For the probability calculation using the pairwise interdependences, the most

convenient approach is via the conditional probabilities, q. The probability for an

octameric sequence using the pairwise conditional probabilities of the peptide positions

is calculated by

Poctamer = p(P4) � p(P4,P3) � p(P3,P2) � p(P2,P1)�

p(P1,P1’) � p(P1’,P2’) � p(P2’,P3’) � p(P3’,P4’) (3.7)

Similarly, the probability for an octameric sequence using the triplewise condi-
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tional probabilities is calculated by

Poctamer = p(P4) � p(P3,P2) � p(P4,P3,P2) � p(P3,P2,P1)�

p(P2,P1,P1’) � p(P1,P1’,P2’) � p(P1’,P2’,P3’) � p(P2’,P3’,P4’) (3.8)

The number of residue positions in the top 100 most probable predicted oc-

tameric sequences matching the residues of the natural substrates is assessed (Figure

3.3). The number of matching positions as well as the number of natural substrate se-

quences reproduced is higher in the sequences predicted using the triplewise conditional

probabilities than using the pairwise or independent probabilities. The representative

sequences predicted using the triplewise conditional probabilities are listed in Table

3.2. These potential substrate sequences reproduce five or more residues within each

of five of the natural substrates, namely rt-rh, ca-p2, p1-p6, rh-in and p2-nc. Within

these natural substrates, p2-nc, which is the least picked, is the most variable and rt-rh

and ca-p2, which are reproduced mostly, are not variable in sequences when comparing

the natural variation among the subtypes.

The triplewise preferences of the peptide positions generated by BSST can be fur-

ther utilized to predict potential substrate sequences. Using the triplewise conditional

probabilities to predict the potential substrate sequences produces the most accurate

prediction when the sequences are compared with the natural substrates. The pre-

dicted potential substrate sequences have five or more residue positions matching with

the residue positions of most of the natural substrates. The natural substrate which

is the least picked is p2-nc, which is the most variable substrate and rt-rh and ca-p2,

which are reproduced mostly, are not variable substrates. This implies that there is a

complex interdependence between the different substrate residue positions.
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Figure 3.3. Histogram of the number of residues in the predicted octameric sequences

that match residues in one of the nine natural substrate sequences. The sequences

predicted using the triplewise conditional probabilities reproduced the natural

sequences with highest fidelity and they are shown in black bars, the sequences

predicted using the pairwise conditional probabilities are shown in gray bars and the

sequences predicted using the independent probabilities are shown in open bars.
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Table 3.2: Representative sequences within the top

100 sequences predicted using the triplewise conditional

probabilities. The residue positions matching natural

substrates are highlighted in bold.

Natural substrates Number of matches P4 P3 P2 P1 P1’ P2’ P3’ P4’

rt-rh 7 A F T F Y V D G

ca-p2 6 A G V L A I A M

ca-p2 6 A G V L A F A M

rt-rh 6 A F T F Y V L G

ca-p2 6 A G V L A L A M

rt-rh 6 A H T F Y V L G

ca-p2 6 A G V L A H A M

rt-rh 6 A M T F Y V L G

rt-rh 6 A I T F Y V L G

rt-rh 6 A G V F Y V D G

rt-rh 6 A F C F Y V D G

rt-rh 6 A Q T F Y V L G

ca-p2 5 A G V L A I A Y

ca-p2 5 A G V L A I A W

rt-rh 5 A G V F Y V L G

rt-rh 5 A F C F Y V L G

ca-p2 5 A G V L A I G M

rt-rh 5 A F F F Y V L G

ca-p2 5 A G V L A F A Y

ca-p2 5 A G V L A I A G

p1-p6 5 P G L F L F T R

ca-p2 5 A G V L A F A W

ca-p2 5 G G V L A I A M

rt-rh 5 A F V F Y V L G

rt-rh 5 A F S F Y V L G

rt-rh 5 G F T F Y V L G
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Table 3.2: continued

ca-p2 5 A G V L A I A I

rt-rh 5 A F T F W V L G

rh-in 5 A T G L F L D G

p1-p6 5 P G L F L H T R

ca-p2 5 A G V L A I A Q

rh-in 5 A T I L F L L G

ca-p2 5 A G V M A I A M

p2-nc 5 A T I M F L L G

rt-rh 5 A H C F Y V L G

ca-p2 5 G G V L A F A M

rt-rh 5 T F T F Y V L G

rt-rh 5 A G G F Y V L G

rt-rh 5 A H V F Y V L G

rt-rh 5 A I C F Y V L G

rt-rh 5 T T T F Y V L G

rt-rh 5 A T G F Y V L G

ca-p2 5 A G V L A I A V

ca-p2 5 A G V L A I A E

rt-rh 5 A M C F Y V L G
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3.7. Contribution of Peptide Conformational Energy and

Peptide-Protease Interaction Energy in Recognition

BSST was performed considering the total energy of the peptide, i.e. Metropolis

criterion (Metropolis et al., 1953) was applied to the total energy which included both

short and long range interactions. The calculations were then repeated twice after

threading the peptide sequences onto the substrate positions. In one approach, the

low energy sequences were generated without considering the protease, i.e. Metropolis

criterion (Metropolis et al., 1953) was applied to the peptide conformational energy. In

the second approach, the low energy sequences were generated only with considering

the nonbonded interactions, i.e. Metropolis criterion (Metropolis et al., 1953) was

applied to the long range interaction energy. The independent, pairwise and triplewise

amino acid preferences of the peptide positions of the sequences generated when the

lower energy sequence space was searched according to peptide conformational energy

were consistent with the preferences of the sequences generated by BSST according to

the total energy of the peptide. Although the highest probable amino acids preferred

by the positions were mostly the same in the sequences generated by BSST considering

peptide conformational energy, the probability values of the mostly preferred amino

acids were lower and more uniform. The top 100 most probable potential cleavable

sequences predicted using the triplewise conditional probabilities of these new sequences

generated by BSST according to peptide conformational energy had five residues or less

matching the residues of the natural substrates. The only natural substrate with five

residues reproduced was ca-p2. Moreover, when the calculations were repeated with

the sequences generated by BSST according to the energy of nonbonded interactions

only, it was not possible to evaluate significant probability values for the amino acid

preferences of the peptide positions and to predict cleavable substrate sequences. The

long range interactions between the peptide and the protease were not as important as

the near-neighbor interactions within the peptide, although the addition of the effect

of long range interactions enhanced the recognition. Only when the top 100 most

probable cleavable sequences were predicted using the sequences generated by BSST

according to total peptide-protease energy were the sequences of five to seven residues

of five natural substrates reproduced.
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The repeated BSST calculations considering only the conformational energy of

the peptide and only the energy due to the interactions between the peptide and the

protease suggest the relative roles of each in recognition. Although the amino acid

preferences of the peptide positions were similar, far fewer of the natural substrate

residues were matched in the potential cleavable sequences predicted when BSST was

carried out without considering the protease. The results of BSST utilizing only the

energy of nonbonded interactions, was not able to either reproduce preferences of pep-

tide positions or to make any predictions to match substrate sequences. Only utilizing

the entire potential with the local protease substrate interactions with BSST was able

to successfully reproduce substrate sequences.
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4. DYNAMIC FLUCTUATIONS IN HIV-1 PROTEASE

The crystal structures of substrate and inhibitor liganded HIV-1 protease are an-

alyzed by a structure-based method, namely the Anisotropic Network Model (ANM).

The crystal structures of the protease in complex with its seven natural substrates and

ten inhibitors (Table 2.1) are used. According to the inhibition constants of inhibitors

reported previously (Wang and Kollman, 2001; Prabu-Jeyabalan et al., 2006; Chellap-

pan et al., 2007; Hou et al., 2007), tmc and lpv are the strongest inhibitors whereas

psu and psv are the weakest inhibitors among the ones used in this study.

The size and orientation of motion of residues in protease and peptide positions

are elaborated comparatively between different complex structures. The conforma-

tions generated by the ANM are superimposed prior to this analysis. Conformations

generated from MD trajectories of seven wild-type HIV-1 protease-natural substrate

complex structures, the D30N mutant p1-p6 complex, the D30N-N88D mutant p1-p6

complex, and the D30N/N88D/LP1’F co-evolved p1p-p6 complex structures are also

utilized here. A representative set of conformations is selected among the large amount

of conformations generated by MD simulations for subsequent analysis using a cluster-

ing method. Further, the ANM analysis is performed for the representative members

of the largest cluster of each structure. Principal component analysis (PCA) is also

applied to molecular dynamics (MD) trajectories of the wild-type natural substrate

complex structures, to compare the observed motions and support the structure-based

explanation of the results by ANM.

4.1. Principal Motions and Residue Fluctuations

The mechanisms of the cooperative molecular motions relevant to function are

implied by the low frequency modes of motion (Bahar, 1999; Liu et al., 2004). The

fluctuations in the principal directions refers to the main functional motion of the struc-

ture and thus all HIV-1 protease complex structures that are functional should display

similar modes of motion. The motion of complex structures in the most cooperative
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modes, the slowest first and second modes, is similar for all substrate and inhibitor

complex structures. The direction of the fluctuations of residues for the ca-p2 sub-

strate complex is presented as an example in Figures 4.1 and 4.2. The X and Z axes lie

along the in-plane directions where X is the longest axis along which the protease lies,

and the Y axis lies along the out-of-plane direction where positive Y direction coincides

with the direction from N- to C- terminus of the peptide (see the ribbon diagrams in

(a) panel). In the first slowest mode (Figure 4.1), both monomers of the protease ro-

tate around two axes parallel to Z direction and the peptide fluctuates in negative Y

direction. In the second slowest mode (Figure 4.2), there are two axes around which

the monomers rotate, one parallel to X direction and the other parallel to Z direction.

The monomers rotate around the X axis in opposite directions and the motion in the

substrate is significant in the edges in the second slowest mode.

Besides the crystal structures, the ANM analysis is carried out for the represen-

tative structures extracted from the MD simulations. For this, the conformations of 11

ns MD simulations of substrate complex structures are clustered and the best member

of the largest cluster of conformations are chosen for the ANM analysis. The modes of

motion are highly correlated with those obtained by the ANM of crystal structures, im-

plying that the dynamic fluctuations in the principal modes of motion are not affected

by possible crystal contacts.

The distribution of mobilities among residues in the low frequency modes are

represented by the mode shapes in Figures 4.3-4.6, where the mean square fluctuations

of protease residues in the substrate and inhibitor complex structures in the first two

modes are displayed. The fluctuations of protease residues in the inhibitor complex

structures are in good correlation with those in the substrate complexes, and the mini-

mum fluctuating residues correspond to the same regions. These minimum fluctuating

regions in the most cooperative two modes correspond to residues 5-10 (dimerization

region), 25-27 (active site), 45-55 (flap) and 80-90 (substrate cleft). The mobility of

the flap region is supressed by binding of peptides. On the other hand, highly mobile

regions correspond to residues 12-22, 36-44 and 61-73. Previous studies (Bahar et al.,

1997; Bahar et al., 1998a) indicate that the minima in the global mode shapes corre-
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Figure 4.1. Motion of HIV-1 protease complex structures in the first slowest mode.

(a) X and Z axes lie along the in-plane directions where X is the longest axis along

which the protease lies, and Y axis lies along the out-of-plane direction where positive

Y direction coincides with the direction from N- to C- terminus of the peptide.

(b),(c),(d) The fluctuations of residues viewed from different directions. The

monomers of the protease rotate around two axes parallel to Z direction and the

peptide fluctuates in negative Y direction.
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Figure 4.2. Motion of HIV-1 protease complex structures in the second slowest mode.

(a) X and Z axes lie along the in-plane directions where X is the longest axis along

which the protease lies, and Y axis lies along the out-of-plane direction where positive

Y direction coincides with the direction from N- to C- terminus of the peptide.

(b),(c),(d) The fluctuations of residues viewed from different directions. The

monomers of the protease rotate around two axes, one parallel to X direction and the

other parallel to Z direction. The monomers rotate around X axis in opposite

directions and the motion in the substrate is significant in the edges.
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spond to the regions with restricted motion that may act like hinges of the molecule,

while the maxima correspond to substrate recognition regions of highest mobility that

sample a large space. The mobile regions as well as residues that are important for

protein stability or that take part in the key native contacts have been addressed for

HIV-1 protease by previous GNM studies (Bahar et al., 1998a; Kurt et al., 2003; Liu

et al., 2004; Micheletti et al., 2004). The flap region 45-55, although being part of the

relatively mobile flap, has reduced mobility in the bound state. This is in consistency

with its low tolerance to mutations (Bahar et al., 1998; Kurt et al., 2003). Neverthe-

less, the region 36-44 is located at the solvent-exposed parts of the flap and has the

highest mobility. These regions surround and anchor the peptide in the cleft between

the two monomers.

The fluctuations in the most cooperative modes in substrate and in inhibitor com-

plexes are averaged separately and the deviation of each residue from the average is

calculated. The patterns below each panel in Figures 4.3-4.6 distinguishes the residues

of each structure that fluctuates above or below average; residues that fluctuate above

average and belove average are colored red and blue, respectively. The highest devi-

ation from average collective motion is in rt-rh and p1-p6 substrate complexes in the

first mode, and in rt-rh and p2-nc complexes in the second mode. nc-p1 has the closest

motion to average of substrate complexes in the first two modes. On the other hand,

clustering of MD snapshots of substrate complexes separately shows that rt-rh complex

has lowest number of clusters and p1-p6 has highest number of clusters by the same

rmsd value. Thus, deviation from average collective motion for rt-rh might mean that

its structural motion is relatively restricted and its sampled conformational space is

rather limited. Contrary to rt-rh, p1-p6 has the ability to sample the conformational

space rather freely compared to the other complex structures. The restricted motion

of rt-rh may be associated with the tight binding of the substrate. In several previous

studies (Altman et al. (2007); Hou et al., 2008), rt-rh is also shown as the tightest

binding natural substrate. Altman et al. (2007) designed tighter binding substrate-like

peptides to the inactivated protease using rt-rh/inactivated protease complex as an ini-

tial model. To this end, paradoxically tighter binding should reduce the conformational

entropy of the protease, which in return should decrease its binding energy.
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The patterns below the first two slow mode profiles of substrate complex struc-

tures (Figures 4.3-4.4) reveal that they can be grouped according to the magnitude of

residue fluctuations. The difference in fluctuations, particularly in the regions 12-22,

36-44, 61-73 and 85-96 in both monomers, sorts the substrates as one group consisting

of ca-p2, ma-ca and rt-rh, and the other group consisting of nc-p1, p1-p6, p2-nc and

rh-in. The regions 12-22 and 36-44 are both highly fluctuating regions in the first two

modes, whereas regions 61-73 and 85-96 are comparably higher fluctuating regions in

the second mode while they have reduced mobility in the first mode. The two groups of

substrate complex structures behave conversely in these regions of the two monomers:

The region 12-22 in the first monomer of group 1 (ca-p2, ma-ca, rt-rh) is more mobile

than that of group 2 (nc-p1, p1-p6, p2-nc, rh-in) in the first mode (Figure 4.3), while

this region in the first monomer of group 2 is more mobile than that of group 1 in

the second mode (Figure 4.4). The second monomers behave conversely; i.e. region

12-22 in the second monomer of group 2 is more mobile than that of group 1 in the

first mode (Figure 4.3), and it is more mobile in the second monomer of group 1 in

the second mode (Figure 4.4). The region 36-44 behaves as follows: it is more mobile

in the second monomer of group 1 and in the first monomer of group 2 in the first

mode (Figure 4.3), and in the second mode, it is more mobile in the first monomer of

group 1 and in the second monomer of group 2 (Figure 4.4). The pattern below the

first slowest mode profile (Figure 4.3) suggests that the region 61-73 is more mobile in

the first monomer of group 1 and in the second monomer of group 2, and the region

85-96 is more mobile in the first monomer of group 2 and in the second monomer of

group 1. Similarly, the pattern below the second slowest mode profile (Figure 4.4)

suggests that these two regions behave conversely in the second mode. The grouping

of the substrates is suggested in the work of Pettit et al. (2002) where they classify

processing sites of substrates based on cleavage rate associated with a specific subset

of P1 amino acids. The two groups are defined by the size of the amino acid in the

P1’ position; p2-nc and nc-p1 cleavage sites being in one group and ca-p2 and ma-ca

cleavage sites being in the other group (Pettit et al., 2002). These substrates also fall

into the same groups in our classification based on the residue fluctuations.
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Figure 4.3. Mean square fluctuations of protease residues in the substrate complex

structures in the first mode
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Figure 4.4. Mean square fluctuations of protease residues in the substrate complex

structures in the second mode
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Figure 4.5. Mean square fluctuations of protease residues in the inhibitor complex

structures in the first mode
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Figure 4.6. Mean square fluctuations of protease residues in the inhibitor complex

structures in the second mode
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In the case of inhibitors, the highest deviation from the average collective motion

in the most cooperative two modes is in nfv, followed by idv, psu, psv, tmc and sqv.

On the other hand, apv, rtv, ro1 and lpv have the closest motion to average behavior

of inhibitor complex structures in the first two modes. When the patterns below the

first two slow mode profiles of inhibitor complex structures that distinguish the residue

fluctuations above or below average (Figures 4.5-4.6) are analyzed, the grouping of

inhibitor complex structures is also noticed. Nevertheless, these two groups of inhibitor

complex structures are not as clear as in the case of substrates. The analysis for

particularly the regions 12-22, 36-44, 61-73 and 85-96 in inhibitor complexes, which

are analyzed in detail for the substrates, can sort the inhibitors as one group consisting

of apv, nfv, psv, rtv and sqv, and the other group consisting of idv, lpv, psu, ro1 and

tmc. The two groups of inhibitor complexes also behave conversely in the most mobile

regions of the two monomers as in substrates. Both minimum and maximum fluctuating

regions of group 1 inhibitor complex structures in the first monomer coincide with those

of group 1 substrate complex structures. This reveals that the fluctuations of the group

of substrates consisting of ca-p2, ma-ca and rt-rh correlates with that of the group of

inhibitors consisting of apv, nfv, psv, rtv and sqv. Similarly, the fluctuations of the

group of the substrates consisting of nc-p1, p1-p6, p2-nc and rh-in correlates with that

of the group of inhibitors consisting of idv, lpv, psu, ro1 and tmc. Observing similar

profiles in the fluctuations of both subtrate and inhibitor complex structures may point

to an intrinsic behavior for the protease structure; this will be further elaborated below.

PCA is performed on the conformations from 11 ns MD simulations of the natural

substrate complex structures. The first few PCs collectively capture the majority of

the total variance in the fluctuations. The average contribution of the first ten PCs of

seven substrate complex structures is 87% of this MD trajectory. The first ten ANM

modes of seven substrate complex structures correlate with 76% of the MD trajectory

on the average. Root mean-square inner product (RMSIP) values between the first

several PCs and the first several ANM modes are calculated to measure the coverage

of the motion subspaces spanned by each approach. Table 4.1 summarizes the over-

laps between these PCs and ANM modes for each substrate complex structure. Large

RMSIP values can be seen even with three modes, and improvements are achieved as
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more modes are included. These results suggest that the majority of the dynamics of

protease complex structures can be explained by a small set of low-frequency ANM

modes. This is also claimed in the recent work of Yang et al. (2008) where they identi-

fied essential motions of inhibitor bound HIV-1 protease for several data sets of X-ray

structures, NMR ensembles and MD simulation and compared them with their coarse-

grained elastic network model normal modes. Nevertheless, it should be noted that

this is as much reflected by PCA of an MD trajectory of a given length. Further, the

ANM modes in principle could represent large scale motions that could not spanned

by 11 ns MD simulations. The length of the MD simulations may not be long enough

to define the motion in the most cooperative modes, hence the grouping of substrate

and inhibitor complex structures are not observed in MD simulated structures. Yet,

the present MD simulations still provide assurance and at the same time could be com-

plimentary for several other dynamic properties that are of interest here.

Table 4.1: Overlaps between PC and ANM mode spaces

of the subsrate complex structures

ca-p2 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.61 0.55 0.57 0.46

6 ANM modes 0.66 0.60 0.64 0.58

10 ANM modes 0.74 0.68 0.70 0.67

20 ANM modes 0.83 0.80 0.80 0.79

ma-ca 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.66 0.53 0.55 0.46

6 ANM modes 0.69 0.59 0.63 0.56

10 ANM modes 0.73 0.66 0.68 0.62

20 ANM modes 0.77 0.75 0.78 0.74

nc-p1 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.66 0.66 0.63 0.49

6 ANM modes 0.70 0.70 0.69 0.59

10 ANM modes 0.73 0.74 0.74 0.66
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Table 4.1: continued

20 ANM modes 0.80 0.81 0.81 0.78

p1-p6 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.59 0.58 0.60 0.47

6 ANM modes 0.65 0.66 0.66 0.56

10 ANM modes 0.68 0.71 0.70 0.63

20 ANM modes 0.80 0.81 0.81 0.78

p2-nc 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.59 0.67 0.57 0.48

6 ANM modes 0.62 0.69 0.64 0.56

10 ANM modes 0.68 0.74 0.70 0.66

20 ANM modes 0.77 0.81 0.80 0.78

rh-in 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.62 0.57 0.57 0.43

6 ANM modes 0.66 0.66 0.64 0.54

10 ANM modes 0.74 0.73 0.71 0.63

20 ANM modes 0.85 0.85 0.83 0.80

rt-rh 3 PCs 6 PCs 10 PCs 20 PCs

3 ANM modes 0.51 0.57 0.61 0.47

6 ANM modes 0.59 0.64 0.68 0.58

10 ANM modes 0.67 0.68 0.73 0.68

20 ANM modes 0.82 0.82 0.84 0.80

The eigenvalues that represent the frequencies of the individual 50 ANM modes

for all substrate and inhibitor complex structures are plotted in ascending order in

Figure 4.7. It is also clearly observed here that the frequency of motion is very similar

for all the structures in the ten slowest modes, yet the eigenvectors in the slowest modes

display some differences. In the later modes, lpv and tmc, which are known to be the

strong binding inhibitors (Wang and Kollman, 2001; Prabu-Jeyabalan et al., 2006;

Chellappan et al., 2007; Hou et al., 2007), have lower eigenvalues than other complex

structures. Lower eigenvalue, i.e. lower frequency, suggests relatively more contribution
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of the corresponding eigenvector to the overall motion and thus, this observation here

may imply a more cooperative motion for the strong inhibitors in the same window of

eigenvectors.

Figure 4.7. Eigenvalues from ANM

The correlation of the fluctuation of the two monomers of the protease in all the

substrate and inhibitor complex structures are analyzed to observe the symmetry in the

fluctuations between the two monomers of HIV-1 protease, which is a symmetric struc-

ture in unbound state. Table 4.2 shows these correlation coefficients for the first two

modes and for the average of first ten modes. In the most cooperative modes, the av-

erage correlation coefficient between the monomers of the inhibitor complex structures

are higher than the average of substrate complex structures, implying more symme-

try in the inhibitor complexes. When substrate and inhibitor complex structures are

analyzed separately, it is observed that the monomers correlate at the least in p1-p6

and nfv complex structures, respectively, in the first mode where the motion is ob-

served along the Z axis (Figure 4.1). In the second slowest mode where the motion is

observed along the X axis (Figure 4.2), the monomers of p1-p6, p2-nc, psu, nfv, psv
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and idv complexes are less correlated. In the average of the first ten ANM modes,

p2-nc and nfv have the least correlation between their monomers among the substrate

and inhibitor complex structures, respectively. However, averaging the first ten PCs of

MD simulated substrate complex structures showed minimum correlation of monomers

in p1-p6. Lower correlation between the fluctuations of the two monomers indicates

higher asymmetry in the fluctuations of the dimer structure, which is observed mainly

in p1-p6 among substrate complexes and nfv among inhibitor complexes. These com-

plex structures exhibits the highest deviation from average collective motion as well.

Table 4.2. The correlation coefficients between the magnitude of mean square

fluctuations of the two monomers of HIV-1 protease complex structures

mode 1 mode 2 first 10 modes

Substrates

ca-p2 0.99 0.97 0.98

ma-ca 0.98 0.96 0.99

nc-p1 0.90 0.82 0.98

p1-p6 0.70 0.65 0.98

p2-nc 0.81 0.65 0.90

rh-in 0.81 0.77 0.99

rt-rh 0.85 0.79 0.98

Inhibitors

apv 0.99 0.99 0.99

idv 0.90 0.86 0.98

lpv 0.99 0.99 0.96

nfv 0.89 0.86 0.84

psu 0.93 0.85 0.97

psv 0.90 0.86 0.92

ro1 0.99 0.97 0.97

rtv 0.97 0.97 0.91

sqv 0.93 0.93 0.97

tmc 0.93 0.87 0.98
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4.2. Orientational Correlations

The inner products of eigenvectors that define the mode shapes are calculated

to observe the orientational correlations between the fluctuations of the same residues

in different complex structures. The orientational correlations of protease residues

between the substrate and between the inhibitor complex structures in the most co-

operative two modes are displayed in Figures 4.8-4.20. The value of each residue in

the charts represent the dot product value of the fluctuation vectors that define the

direction of motion for that residue of the two complex structures compared. Thus, the

peaks with negative correlation values in the charts indicate the residues that fluctuate

more diversely thereby causing the orientational difference between the two structures

compared.

The groups of substrates and inhibitors identified with respect to the magnitude

of residue fluctuations are more clearly observed with this analysis, especially in the

first mode. Figures 4.8-4.10 show the orientational correlations of the substrate com-

plex structures in the first mode; between the residues of the structures among group

1 (Figure 4.8), among group 2 (Figure 4.9), and between group 1 and 2 (Figure 4.10).

The same applies for the inhibitor complex structures in Figures 4.11-4.13. The charts

here clearly demonstrate the grouping according to the similarity in orientation of mo-

tion; the orientational correlations among the structures that fall into the same group

of the structures are much higher compared to those between the structures that fall

into the different groups. The least correlating residues between different structures

even in the same groups correspond to 56, 69, 78 and 93 in both monomers of sub-

strate and inhibitor complexes. However, the orientational correlation values of these

residues differ in the two monomers of different groups. In group 1 of substrates and

inhibitors (Figures 4.8 and 4.11), which are claimed to be correlated to each other

based on magnitude of residue fluctuations, the orientational difference is mainly in

the second monomer. Residue 93 has a lower correlation value in the first monomer,

yet lower correlation of residues 69 and 78 in the second monomer is more dominant

to cause the asymmetry within this group (Figures 4.8 and 4.11). On the other hand,

in group 2 of substrates and inhibitors (Figures 4.9 and 4.12), the orientational differ-
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ence is caused predominantly by residue 69 in the first monomer, although residues 78

and 93 have lower correlation values in the second monomer. When the orientational

correlations between the two groups of substrates (Figure 4.10) and inhibitors (Figure

4.13) are compared, residue 69 which has a remarkably lower dot product value in the

first monomer causes the orientational difference and thus the asymmetry between the

monomers. In general, the asymmetry between the monomers of the substrate complex

structures is higher than the inhibitor complex structures. Moreover, the correlation

values between the residues among the substrate complex structures is much lower

compared to the correlation values among the inhibitor complex structures, which is

particularly noticeable in the orientational correlation of residues between the two dif-

ferent groups of substrates and inhibitors (Figures 4.10 and 4.13). This demonstrates

the more similar motion in the inhibitor complexes, i.e. the dynamics of the protease

does not change significantly upon binding of different inhibitors, whereas binding of

different substrates allows the protease sample a larger conformational space, appar-

ently due to the flexible nature of the substrate structures.

Figure 4.8. Orientational correlation of protease residues of substrate complexes in

group 1 with those of the other substrate complexes in the same group in the first

mode
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Figure 4.9. Orientational correlation of protease residues of substrate complexes in

group 2 with those of the other substrate complexes in the same group in the first

mode

Figure 4.10. Orientational correlation of protease residues of substrate complexes in

group 1 with those of the substrate complexes in group 2 in the first mode
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Figure 4.11. Orientational correlation of protease residues of inhibitor complexes in

group 1 with those of the other inhibitor complexes in the same group in the first

mode

Figure 4.12. Orientational correlation of protease residues of inhibitor complexes in

group 2 with those of the other inhibitor complexes in the same group in the first

mode



76

Figure 4.13. Orientational correlation of protease residues of inhibitor complexes in

group 1 with those of the inhibitor complexes in group 2 in the first mode

The least correlating residues between different structures in the first mode, i.e.

56, 69, 78 and 93 in both monomers of substrate and inhibitor complexes, are observed

to be in the minimum fluctuating regions in this mode (Figures 4.3 and 4.5). Residues

56 and 78 are very close in distance in space; 56 is the hinge point connecting the

flexible flap loop (45-55) to the solvent-exposed upper arm of the flap (36-44), and 78

is the hinge point connecting the same flap loop (45-55) to the lower arm of the flap (57-

77). These two arms in connection with the flap, namely the highly fluctuating region

36-44 and the minimum fluctuating region 61-73, appear to be the regions that imply

the grouping of the substrates and inhibitors according to the magnitude of residue

fluctuations. Besides, residues 69 and 93, which are the other least correlating residues

in orientation, are also very close in space. 69 is the tip of the minimum fluctuating

lower arm of the flap (61-73) and 93 is the tip of another minimum fluctuating loop

(85-96) that also indicate the grouping of substrates and inhibitors in first mode. These

specific loops and residues that bring on the grouping of structures are identified in

Figure 4.14, where it is also noticed that these residues 56, 69, 78 and 93 lie along the

two axes parallel to Z direction; i.e. the rotational axes around which the protease

monomers rotate in the first slowest mode (see Figure 4.1).
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Figure 4.14. The regions causing the orientational difference in the first mode. The

high fluctuating loops are displayed in red, the minimum fluctuating loops are

displayed in orange, and the least correlating residues between different complex

structures are displayed in blue.

In the second mode on the other hand, the orientational correlations do not pro-

nounce the grouping of structures as clearly as in the first mode. Figures 4.15-4.17

show the orientational correlations of the substrate complex structures in the second

mode; between the residues of the structures among group 1 (Figure 4.15), among

group 2 (Figure 4.16), and between group 1 and 2 (Figure 4.17). The same applies for

the inhibitor complex structures in Figures 4.18-4.20. The orientational correlations

among the structures that fall into the same group of the structures are higher com-

pared to those between the structures that fall into the different groups, similarly as

in the first mode. Yet, the least correlating residues in the second mode correspond to

25-27, 49-51, 84 and 97 in both monomers of substrate and inhibitor complexes. The

orientational correlation values of these residues differ in the two monomers of different

groups of substrates particularly. The orientational difference and the asymmetry in

the monomers is caused mainly by residues 25 and 49-51 of the second monomer in the

first group of substrates (Figure 4.15) and by the same residues of the first monomer

in group 2 of substrates (Figure 4.16). Residues 84 and 97 have the influence in the

orientational difference between the two groups of substrates (Figure 4.17) and also
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between the two groups of inhibitors (Figure 4.20). Further, the asymmetry between

the monomers of the substrate complex structures is higher than the inhibitor complex

structures in the second mode as well, pointing out to the more similar motion in the

inhibitor complexes and sampling of a larger space by the substrate bound protease

structures.

Figure 4.15. Orientational correlation of protease residues of substrate complexes in

group 1 with those of the other substrate complexes in the same group in the second

mode

The least correlating residues between different structures in the second mode,

i.e. 25-27, 49-51, 84 and 97, are also observed to be in the minimum fluctuating regions

in this mode (Figures 4.4 and 4.6). 49-51 are the residues at the flap tips, which are

minimum fluctuating regions in the bound structures. Besides, 25-27 are the active

site residues at the the tip of the loop right in the middle of the substrate cleft that

is connected to the mobile 12-22 loop. This 12-22 region and the other regions 36-44,

61-73 and 85-96, are all highly fluctuating regions in the second mode which also imply

the grouping of structures according to the magnitude of residue fluctuations. Residues

84 and 97, on the other hand, are the residues at the edges of the other mobile loop

85-96. These mobile loops and residues that cause the orientational difference between
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Figure 4.16. Orientational correlation of protease residues of substrate complexes in

group 2 with those of the other substrate complexes in the same group in the second

mode

Figure 4.17. Orientational correlation of protease residues of substrate complexes in

group 1 with those of the substrate complexes in group 2 in the second mode
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Figure 4.18. Orientational correlation of protease residues of inhibitor complexes in

group 1 with those of the other inhibitor complexes in the same group in the second

mode

Figure 4.19. Orientational correlation of protease residues of inhibitor complexes in

group 2 with those of the other inhibitor complexes in the same group in the second

mode
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Figure 4.20. Orientational correlation of protease residues of inhibitor complexes in

group 1 with those of the inhibitor complexes in group 2 in the second mode

the structures in the second slowest mode are identified in Figure 4.21, where it is also

noticed that these hinge residues 25-27, 49-51, 84 and 97 lie along the axis parallel to

Z direction; i.e. the rotational axis around which the monomers rotate in the second

mode (see Figure 4.2).

Drug resistant mutations that occur in the protease after changing the inhibitor

binding can also affect substrate recognition by changing the enzyme’s substrate speci-

ficity. Then, the protease retains activity by the co-evolution of the substrate sequence.

Mutations in the p1-p6 substrate cleavage site covary with the D30N/N88D protease

mutations (Kolli et al., 2006). MD simulations carried out with the mutant and co-

evolved variants of p1-p6 substrate complex structures are utilized here. The ANM

analysis is performed for the representative members of the largest cluster of each

structure. Figure 4.22 displays the orientational correlation of protease residues of the

D30N mutant, the D30N-N88D mutant and the co-evolved p1-p6 complex structure

with D30N, N88D and LP1’F mutations to those of the wild-type p1-p6 complex in

the first mode.
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Figure 4.21. The regions causing the orientational difference in the second mode. The

high fluctuating loops are displayed in red and the least correlating residues between

different complex structures are displayed in blue.

Figure 4.22. Orientational correlation of protease residues of D30N, N88D and

D30N-N88D mutants and co-evolved p1-p6 substrate complexes to those of wild-type

p1-p6 complex
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Here the orientational difference between the structures is also caused by the min-

imum fluctuating residues. Correlation of the wild-type complex with the co-evolved

structure is higher than the correlations with the mutant structures. Particularly,

residue 69 of the first monomer is the least correlating residue that causes the dif-

ference in the orientation of translational motion (Figure 4.22). The mutation in the

subtrate allows the protease residues fluctuate as in wild type and justify the existence

of this mutation for the conservation of, at least, the fluctuations.

4.3. Correlations between the Direction of Fluctuations

The correlation between the fluctuations of residues are analysed for the substrate

and inhibitor complex structures with respect to binding of peptides with the protease

and dimerization of the monomers of the protease. In the binding and dimerization,

the correlated fluctuations across the peptide and protease and across the interface of

the two monomers of the protease are elaborated. The positively correlated atoms that

fluctuate in the same direction are being focused in the present analysis. This in a way

describes the association points between two interacting structures.

Figure 4.23. Cross correlations of residues in HIV-1 protease complex structure in the

first ten ANM modes
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Figure 4.24. Cross correlations of residues in HIV-1 protease complex structure in the

first ten PCs

The correlated dynamic fluctuations in the first ten ANM modes are displayed in

Figure 4.23 for the ca-p2 substrate complex structure as an example, as very similar

maps are obtained for the other substrate complex structures. Figure 4.24 shows the

correlations in the first ten PCs of the same structure, which agree well with those

in ANM except that they are less pronounced. The analysis of the fluctuations of

the residues shows that the minima of the slowest modes shape (Figures 4.3-4.6) that

correspond to 5-10 (dimerization region), 25-27 (active site), 45-55 (flap) and 80-90

(substrate cleft), i.e. the hinge regions of the two monomers in the most cooperative

modes, and the N- and C- termini regions of the monomers are highly correlated with

each other. As for the interaction between the protease and the peptide, the residues

of the protease that display positively correlated fluctuations with the fluctuations of

the peptide’s residues also correspond to these hinge regions (Figures 4.23 and 4.24).

The highly fluctuating regions on the other hand, such as solvent-exposed arms of

the protease, display negative correlation between the monomers or with the peptide.

Strong positive correlation between the substrate motion and the regions 24-30 and

45-55 is also found in previous works (Micheletti et al., 2004; Trylska et al., 2007). An
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essential analysis of an MD trajectory of a substrate bound HIV-1 protease structure

by Micheletti et al. (2004) reveals that regions 24-30 and 45-55 display a rotational

”nutcracker-like” motion by embracing the substrate and the regions near the flaps

elbows, 37-41 and 61-73, undergo a countermovement that results in a negative cor-

relation with the substrate motion. Micheletti et al. (2004) conclude that a force

applied around residues 40 and 63 should affect the protease-substrate coupling as

mobile regions should be involved in any functionally relevant mechanical coupling.

4.3.1. Correlations between the Peptide and the Protease

To identify the critical residues for peptide binding, the peptide atoms that are

positively correlated to each protease atom are specified. In the most cooperative

modes, the number of correlated atom pairs is higher for inhibitor complex structure

than substrate complex structures, despite the higher number of atoms that substrates

comprise. The tighter binding of inhibitors than substrates is also suggested in previous

works (Luque et al., 1998; Wang and Kollman, 2001; Hornak and Simmerling, 2007;

Hou et al., 2008). The stronger binding of inhibitors obviously results in restricting

the motion of the inhibitor complex structures compared to the substrates. Luque et

al. (1998) also stated that the substrates have higher flexibility than the synthetic in-

hibitors in solution and thus binding of substrates cause higher conformational entropy

loss. By contrast, because of their higher flexibility, the substrates are more adaptable

to backbone rearrangements or conformational changes induced by the protease muta-

tions. The capacity of the inhibitors to adapt to changes in the geometry of the binding

pocket is more restricted because they are less flexible (Hornak and Simmerling, 2007).

Further, with their tighter binding, the orientational space of the protease residues’

fluctuations between the inhibitor complex structures is more restricted than between

the substrate complex structures. This similarity in orientation of the fluctuations

for inhibitor complexes, together with their similarity in three-dimensional shape and

electrostatic character, may also have implications for multi-drug resistance.

Figures 4.25 and 4.26 display the positive correlations above 0.9 in the first ten

slowest modes for the substrate and inhibitor complex structures respectively. When
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less than ten modes are taken into account, the positively correlated interactions are

only higher in number as expected and more scattered in the same regions. Moreover,

taking different threshold values for positive correlations only changes the number of

interactions; yet the distribution remains similar. The significant residues to binding

are mainly located in four regions: residues 8-10, 25-27, 45-55 and 80-90; yet regions

25-27 (active site) and 45-55 (flaps) are more emphasized compared to the other two

regions. The peptide atoms that are positively correlated to each protease atom are

also analysed within the cross correlations of the first few PCs of MD simulated sub-

strate complex structures; the peaks of significant residues to binding are found at the

same regions of the protease.

Figure 4.25. Number of peptide atoms positively correlated to each protease residue

in substrate complexes in the first ten modes

The residues that are outside the strongly correlated regions but still interact with

the peptide correspond to the residues in psu and psv complex structures which are the

weakest inhibitors (Figure 4.26). These regions have further more interactions with the

weak inhibitors when analyzed by the Gaussian Network Model (GNM) which is known

as more robust in mean-square fluctuations (Cui and Bahar, 2005). Binding of these

weak inhibitors to the positions other than the minimum fluctuating hinge regions in
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Figure 4.26. Number of peptide atoms positively correlated to each protease residue

in inhibitor complexes in the first ten modes

the protease might play a role in decreasing the drug affinity, as the well conserved

residues such as 25, 27, 28, 29 and 49 in the hinge regions are demonstrated to be

critical for substrate binding in previous works (Wang and Kollman, 2001; Hou et al.,

2008). Resistance-evading potent drugs should interact strongly with these residues.

4.3.2. Correlations across the Dimer Interface

To identify the critical residues in dimerization, the atoms of one monomer that

are positively correlated to the other monomer are specified. Figures 4.27 and 4.28

display the interactions in the first ten ANM modes for substrate and inhibitor com-

plex structures respectively. The interactions between the two monomers are observed

at the same residues in the substrate and inhibitor complex structures. The cross

correlations of the first few PCs of MD simulated substrate complex structures are

investigated for the protease positions taking role in dimerization and they are also

found on the same regions as in ANM. The only detail in PC correlations that should

be noted is that the number of positively correlated residues between two monomers

are higher than that between substrate and protease, when the same threshold value
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as in ANM is taken. The significant residues to dimerization are mainly located in the

same four specific regions as in binding to the peptide; 8-10, 25-27, 45-55 and 80-90.

However, the regions 8-10 (dimerization), 25-27 (active site) and 45-55 (flaps) are more

emphasized compared to the region 80-90. In addition, the N- and C- termini of the

monomers are highly correlated with each other. The coupling between the binding

site and the dimer interface is also suggested by the positive correlations between the

active site and the C- and N- terminal residues of the monomers (Figures 7a and 7b).

The importance of dimer interface for drug targeting is also stated by previous works

(Hornak and Simmerling, 2007; Bowman et al., 2005) where they demonstrate that

inhibitors that act as allosteric inhibitors binding at the dimer interface and alter the

conformation of the protease can indirectly reduce the binding affinity of the substrate.

Figure 4.27. Number of atoms of one monomer positively correlated to the other

monomer in substrate complexes in the first ten modes
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Figure 4.28. Number of atoms of one monomer positively correlated to the other

monomer in inhibitor complexes in the first ten modes
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5. PATHWAYS OF COMMUNICATION IN HIV-1

PROTEASE

The allosteric information transfer is fundamental to function and biological role

of proteins (Changeux and Edelstein, 2005). This communication describes events

where a signal at one region of a protein affects other distant regions in the protein

via conformational changes (Tang et al., 2007). In a recent review, it is emphasized

that allostery may not necessarily involve a change in backbone shape that leads to

creation of new conformational species, but rather it leads to a change in their relative

concentrations (Tsai et al., 2008). Yet, it must be noted that side-chain conformational

changes, which could be important even in the absence of changes in backbone, are

not taken into account in Tsai et al.’s review. Long-range interactions of residues are

important in protein’s binding processes and distant residues participating in substrate

recognition control the structure or activity of the substrate binding site (Sel et al.,

2003; Tsai et al., 2008). Proteins sample an ensemble of conformations as a result of

their intrinsic dynamics and the ligand binds to a conformation that is optimal for

interaction (Chennubhotla et al., 2008). The interactions between the protein and its

ligand often induce local energetic and conformational changes at the binding site that

subsequently propagate in a cooperative manner through the protein to produce collec-

tive conformational responses at distal regions (Ota and Agard, 2005; Chennubhotla et

al., 2008). The changes in structure as a result of these cooperative changes lead to new

functional states stabilized by rearrangement of intra- or inter-molecular interactions

(Chennubhotla et al., 2008).

To be able to study the communication pathways in HIV-1 protease complex

structure, a computation method is designed: The structure is considered a network

of residues, where the extent of the interaction of each residue with others are deter-

mined as based on a scoring function that assigns a weight for each interaction. For

the scoring function, two approaches are implemented. The first approach uses the cor-

relations between the fluctuations of residues predicted by the coarse-grained elastic
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network model, namely GNM (Bahar et al., 1997a; Haliloglu et al., 1997). The second

approach uses the connectivity reflected by a modeled residue-specific Van der Waals

potential function. Using these dynamic and energetic correlations, pathway analysis

is performed to generate a network of interactions within the HIV-1 protease structure

that could be plausible for its function. The networks are then visualized by the Pajek

software (Batagelj and Mrvar, 1998).

5.1. Generation of Pathways

This analysis searches through the vast network for the most probable pathways

of communication. The pathways are generated by a Monte Carlo approach, in which

a probabilistic generation method based on random numbers is used. The generation

of any given pathway starts with the identification of possible pairs; a possible pair

represents a possible step that could be taken at a certain point on the pathway.

The generation of the pathways in detail is as follows: An NxN matrix, where

N is the number of residues, is generated with the interaction values of each residue

(Figure 5.1).

Figure 5.1. An example of an interaction matrix for a system of N residues

Then, a probability (weight) matrix (Figure 5.2) is constructed with all the ele-

ments in the interaction matrix. The diagonal elements of the probability matrix are

set to zero, to prevent revisit of the starting residue along the pathways.
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Figure 5.2. An example of a probability matrix for a system of N residues

The conditional probability matrix (Figure 5.3) is then generated by normalizing

the rows in the probability matrix by

P (ij) =
W (ij)

∑N
j=1W (j)

(5.1)

Figure 5.3. An example of a conditional probability matrix for a system of N residues

The row of the starting residue in the conditional probability matrix is selected

and the probability values in that row are added from left to right in order to obtain the

cumulative values that produce the probability distribution. Then, a random number

between 0 and 1 is generated, and the residue with the range where the random number

fits is selected as the residue in the next step.

Since Monte Carlo path generation is a probabilistic method, paths consisting

of different lengths and different residues are generated. Several runs are carried out
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to generate ensembles of pathways that represent the population, and the dominant

pathways as well as the frequency of residues visited along the pathways are elaborated.

5.1.1. Prediction of Communication Pathways by GNM

The cross-correlations of residues predicted by the coarse-grained Gaussian Net-

work Model (GNM) (Bahar et al., 1997a; Haliloglu et al., 1997) includes essential

information about the coupled motions of molecular regions. It’s possible to analyze

the relations between distant and close regions using the cross correlation map; but

the vast amount of information present about the motions makes it difficult to disclose

a network of allosteric signals between remote residues. The pathways of communica-

tion here are generated using the cross-correlations between the fluctuations of atoms

predicted by GNM, i.e. the probability matrix in the initial step of pathway prediction

algorithm directly involves the cross-correlation values.

5.1.2. Prediction of Communication Pathways by Residue-Specific Poten-

tials

A ”simplified van der Waals” calculation is carried out for estimating the interac-

tion energies between the atoms of the system. The van der Waals interaction energy

can be calculated as a ”6-12” or ”Lennard-Jones” potential, with a long range shallow

attractive interaction and a short range repulsive one, as

E(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(5.2)

where ǫ is the well depth, σ is the collision diameter and r is calculated with the

coordinates of each atom by

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (5.3)

While this potential works well in computing the interactions in a molecular



94

dynamics simulation, the repulsive term is too restrictive in assessing particular in-

teractions of an experimentally determined crystal structure, where slight changes in

position can cause a favorable interaction to be considered unfavorable. Thus, the at-

tractive potential is retained and the repulsive potential is removed in the interaction

energy calculations (Figure 5.4).

Figure 5.4. Plot of (a) Lennard-Jones potential function, (b) the simplified function.

The interaction matrix constructed in the initial step of pathway prediction al-

gorithm here involves the interaction energies calculated for each atom of each residue.

The probability matrix is constructed through e−Eij with all the elements in the energy

matrix. Due to the minus sign in the exponential, negative energy values which are

more favorable get higher weights whereas the positive energy values get lower weights.

5.2. Pathway Analysis by GNM

Proteins are engaged in functional motions, and interactions, both within and

between molecules. These motions can range from local motions, such as single amino

acid side chain reorientations, to large scale global motions, such as domain-domain

movements. Elastic network models, based on polymer mechanics, are successful in

explaining the global motions (Cui and Bahar, 2005). GNM, which assumes isotropic

fluctuations in the neighborhood of a single energy minimum (Bahar et al., 1997a;



95

Haliloglu et al., 1997), have been widely used to explain the collective dynamics of

proteins. These collective motions can also determine communication patterns that

are characteristic to the native framework of the protein structures (Chennubhotla

and Bahar, 2007b; Chennubhotla et al., 2008). The lowest frequency global modes,

i.e. the most cooperative collective motions that recruit a large number of residues

and potentially play a role in accessing the functional substates, have an active part

in facilitating allosteric communication (Bahar et al., 2007; Chennubhotla and Bahar,

2007b; Chennubhotla et al., 2008). Moreover, the role of residue fluctuations and cross-

correlations are important in transmitting information; they are shown to be highly

correlated with the communication pathway lengths in previous works (Atilgan et al.,

2007; Chennubhotla and Bahar, 2007b).

Here, the average of the slowest five cooperative modes of the substrate bound

HIV-protease structure (ca-p2) is analyzed for the key interactions of information flow

across the network. The approach here uses the positive correlations within the struc-

ture in generating the communication pathways by a Monte Carlo path generation

method (see Methods section). The mean-square fluctuations in the slowest five modes

for the HIV-1 protease complex structure displayed in Figure 5.5 shows that the minima

in both monomers of HIV-1 protease refer to residues 8-10 (dimerization region), 25-27

(active site), 45-55 (flaps) and 80-90 (substrate cleft). These minimum fluctuating sites

refer to the hinge regions (flexible joints), which are revealed to act as messengers in

the transmission of allosteric signals in recent works (Chennubhotla and Bahar, 2006;

Bahar et al., 2007). The cross-correlation map for the slowest five modes is displayed in

Figure 5.6. The positively correlated regions between the two protease monomers and

those between the substrate peptide and protease here also correspond to the hinge

regions noted in the slow mode profile (Figure 5.5).
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Figure 5.5. GNM slow mode profile for the most cooperative five modes. Residues

1-99 correspond to monomer A, residues 100-198 correspond to monomer B, and

residues 199-206 correspond to substrate peptide.

Figure 5.6. GNM cross-correlation map for the slowest five cooperative modes
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5.2.1. Short Pathways starting at the Substrate

The pathways of communication between the substrate and the hinge regions

of both monomers of ca-p2 complex structure of HIV-1 protease are analyzed. The

residues visited on the second, third and fourth steps when the starting region of the

pathways is the substrate (P4-P4’ sites) are displayed on Figures 5.7-5.9 respectively.

The hinge regions, 8-10, 25-27, 45-55 and 80-90, are visited most frequently on these

short paths. However, the regions visited become more widespread on the fourth step

and revisit of starting points cannot be observed in two steps, therefore the optimum

number of steps for the analysis of shorter paths is taken as three.

Figure 5.7. Frequency of residues visited at the second step on 1,000 paths starting at

the substrate. Residues 1-99 correspond to monomer A, residues 100-198 correspond

to monomer B, and residues 199-206 correspond to substrate peptide.

5.2.2. Short Pathways starting at the Protease

The destinations at the third step when the pathways are started from different

regions on the protease dimer, from both the hinge regions and the high fluctuating

regions of both monomers, are analyzed. Figures 5.10-5.15 display the residues on

the third step when the starting region involves the hinges, namely the active sites
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Figure 5.8. Frequency of residues visited at the third step on 1,000 paths starting at

the substrate. Residues 1-99 correspond to monomer A, residues 100-198 correspond

to monomer B, and residues 199-206 correspond to substrate peptide.

Figure 5.9. Frequency of residues visited at the fourth step on 1,000 paths starting at

the substrate. Residues 1-99 correspond to monomer A, residues 100-198 correspond

to monomer B, and residues 199-206 correspond to substrate peptide.



99

(25-27), flaps (46-55), substrate clefts (80-90), dimerization sites (8-10), and two high

fluctuating regions 15-18 and 35-38, successively. The paths starting from the active

sites of monomer A and monomer B are displayed on the two panels in Figure 5.10;

they can reach nearly all the residues on the same monomer of the starting region,

but the destinations on the other monomer are only either the hinge regions or the

substrate sites in three steps.

The pathways that start from the flap regions reach either the hinge regions

of both monomers or the substrate sites in three steps (Figure 5.11). Yet, the regions

reached on monomer B when the paths are started from the flaps of monomer A (Figure

5.11a) and the regions reached on monomer A when the paths are started from the

flaps of monomer B (Figure 5.11b) are almost equal; i.e. communication can involve

both monomers’ residues equally. The dimerization region (8-10) is not involved as

frequently in the third step of these pathways compared to the ones starting from the

active sites.

The behavior observed in the pathways starting from the substrate cleft regions

(Figure 5.12) is similar to those starting from the active sites; they can reach nearly all

residues in the same monomer as the starting region in three steps and the destinations

on the other monomer are only either the hinge regions or the substrate. Yet, the

number of paths that involve the other monomer’s hinge regions as destination points

is fairly lower than the ones reaching the hinge regions of the starting monomer.

The pathways starting from the dimerization regions can reach the hinge regions

of both monomers or the substrate sites in three steps (Figure 5.13). Yet, the flaps are

not involved as frequently in the destination regions of these pathways; as similarly as

the dimerization region is not involved in the destination of the paths starting from

the flaps.

When the starting points of the pathways are the high fluctuating regions (Figures

5.14 and 5.15), the destination points are predominantly on the same monomer as the

starting region. The pathways that start from residues 15-18 of one monomer never
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Figure 5.10. Frequency of residues visited at the third step on 1,000 paths starting at

(a) the active site of monomer A (residues 25-27) (b) the active site of monomer B

(residues 124-126). Residues 1-99 correspond to monomer A, residues 100-198

correspond to monomer B, and residues 199-206 correspond to substrate peptide.
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Figure 5.11. Frequency of residues visited at the third step on 1,000 paths starting at

(a) the flap of monomer A (residues 46-55) (b) the flap of monomer B (residues

145-154). Residues 1-99 correspond to monomer A, residues 100-198 correspond to

monomer B, and residues 199-206 correspond to substrate peptide.
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Figure 5.12. Frequency of residues visited at the third step on 1,000 paths starting at

(a) the substrate cleft of monomer A (residues 78-85) (b) the substrate cleft of

monomer B (residues 177-184). Residues 1-99 correspond to monomer A, residues

100-198 correspond to monomer B, and residues 199-206 correspond to substrate

peptide.
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Figure 5.13. Frequency of residues visited at the third step on 1,000 paths starting at

(a) the dimerization region of monomer A (residues 8-10) (b) the dimerization region

of monomer B (residues 107-109). Residues 1-99 correspond to monomer A, residues

100-198 correspond to monomer B, and residues 199-206 correspond to substrate

peptide.
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reaches the other monomer, yet the destination region can be one of the substrate sites

in three steps (Figure 5.14). On the other hand, the three step pathways that start

from residues 35-38 of one monomer can reach the substrate or the flap region of the

other monomer as well (Figure 5.15).

5.2.3. Short Pathways starting at the Substrate and reaching Specified Re-

gions of the Protease

Figures 5.16-5.21 display the cumulative frequency of residues visited in three

steps when the starting point is any of the eight substrate sites. The residues visited

along these three step pathways when the destination regions are specified as the ac-

tive sites (25-27), flaps (45-55), dimerization regions (8-10), clefts (80-90) and a high

fluctuating region of residues 15-18 of both monomers are given in Figures 5.17-5.21

successively. The frequency values on the y-axis vary according to the number of

residues in different destination regions. All the paths starting from the substrate visit

the flexible joints most frequently. However, the number of residues visited in monomer

B is higher than the number of those visited in monomer A, especially in the region of

residues 25-55. On the other hand, it is also noticed that the frequency of the residues

visited in the region 80-90 is higher in monomer B than in monomer A (Figure 5.16).

When the destination points are specified and the frequencies of the residues vis-

ited along the three step pathways starting from the substrate are analyzed accordingly,

the hinge regions are the regions mostly involved in communication even if the desti-

nation region involves high fluctuating residues. Yet, if the destination region is one

of the flexible joints (Figures 5.17-5.20), the regions visited along the paths are denser

in the hinge regions than they are in the high fluctuating region 15-18. Nearly all the

residues are visited at least once along the paths that reach the high fluctuating region

15-18 (Figure 5.21). The higher number of residues visited in monomer B compared

to the ones in monomer A applies here in the paths with specified destination points

as well. Particularly in the paths that reach the flaps and the clefts, the number of

residues that are visited in flaps and clefts of monomer B is quite higher than that of

monomer A.
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Figure 5.14. Frequency of residues visited at the third step on 1,000 paths starting at

(a) the high fluctuating residues 15-18 of monomer A (b) the high fluctuating residues

114-117 of monomer B. Residues 1-99 correspond to monomer A, residues 100-198

correspond to monomer B, and residues 199-206 correspond to substrate peptide.
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Figure 5.15. Frequency of residues visited at the third step on 1,000 paths starting at

(a) the high fluctuating residues 35-38 of monomer A (b) the high fluctuating residues

134-137 of monomer B. Residues 1-99 correspond to monomer A, residues 100-198

correspond to monomer B, and residues 199-206 correspond to substrate peptide.
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Figure 5.16. Frequency of residues visited in three steps on 10,000 paths starting at

the substrate. Residues 1-99 correspond to monomer A, residues 100-198 correspond

to monomer B, and residues 199-206 correspond to substrate peptide.

Figure 5.17. Frequency of residues visited in three steps on 10,000 paths starting at

the substrate and reaching the active sites (residues 25-27). Residues 1-99 correspond

to monomer A, residues 100-198 correspond to monomer B, and residues 199-206

correspond to substrate peptide.
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Figure 5.18. Frequency of residues visited in three steps on 10,000 paths starting at

the substrate and reaching the flaps (residues 45-55). Residues 1-99 correspond to

monomer A, residues 100-198 correspond to monomer B, and residues 199-206

correspond to substrate peptide.

In general, the short pathways starting from the hinge regions or the substrate

sites terminate either at the hinge regions of both monomers or at the substrate,

whereas the communication starting from the highly mobile sites of one monomer

remains within the same monomer. Hence, intermolecular communication is slower

than intramolecular communication. Moreover, the time of communication within the

core regions such as the active sites or the other substrate cleft residues is shorter than

that when the solvent-exposed mobile regions are involved. The active residues are

previously shown to be effective in communication (Chennubhotla and Bahar, 2007b);

the pathways generated based on the correlations by GNM here also involve the active

site residues most frequently. On the other hand, the negatively correlated regions

between the two monomers (Figure 5.6), which are also the high fluctuating regions

(Figure 5.5), are not observed frequently in the destination points of the short paths of

three steps. This also agrees with the statements in Chennubhotla and Bahar’s work

(2007b), where the residues subject to large amplitude fluctuations and the anticorre-

lated residues are shown to increase the communication time.
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Figure 5.19. Frequency of residues visited in three steps on 10,000 paths starting at

the substrate and reaching the dimerization regions (residues 8-10). Residues 1-99

correspond to monomer A, residues 100-198 correspond to monomer B, and residues

199-206 correspond to substrate peptide.

5.2.4. Network Communication between Substrate and Active Sites

The network communication between the active sites of HIV-1 protease and the

substrate sites, which is constructed using the pathways generated with the positive

correlations of residues predicted by the GNM, is also visualized by the Pajek soft-

ware (Batagelj and Mrvar, 1998). The residues visited along the three step pathways

of communication between the eight substrate sites and the active site of protease

monomer A and monomer B are displayed in the panels of Figures 5.22 and 5.23 suc-

cessively. Thicker lines in the figures represent higher frequency of the corresponding

interaction. The residues in the specific regions (active site (25-27), flap (45-55), cleft

(80-90), dimerization regions (8-10) and N- and C- termini) of the protease are grouped

together in the figures. These hinge regions are noticed as the most visited regions on

the pathways and there are links between the two monomers. Yet, hinge regions of

monomer B are mostly visited in three steps, no matter whether the pathways are

started from the primed or unprimed site of the substrate.
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Figure 5.20. Frequency of residues visited in three steps on 10,000 paths starting at

the substrate and reaching the substrate clefts (residues 80-90). Residues 1-99

correspond to monomer A, residues 100-198 correspond to monomer B, and residues

199-206 correspond to substrate peptide.
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Figure 5.21. Frequency of residues visited in three steps on 10,000 paths starting at

the substrate and reaching the high fluctuating residues 15-18. Residues 1-99

correspond to monomer A, residues 100-198 correspond to monomer B, and residues

199-206 correspond to substrate peptide.



Figure 5.22. Network of interaction between the substrate sites and the active site of protease monomer A



Figure 5.23. Network of interaction between the substrate sites and the active site of protease monomer B
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5.3. Pathway Analysis by Residue-Specific Potentials

The second approach to generate the pathways of communication in complex

structures of HIV-1 protease uses energetic correlations estimated by a simplified Van

der Waals potential function. With this residue-specific approach, the identities of in-

dividual amino acids are considered, that is, sequence specificity is taken into account.

Using these energetic correlations, the frequency of the residues visited along the in-

formation pathways between the substrate and the protease and the shortest paths of

communication between the substrate and the active site residues are elaborated in

both natural substrate structures and mutant p1-p6 complex structures.

5.3.1. Short Pathways starting at the Substrate

The destinations at the third step when the pathways are started at the substrate

sites are analyzed; Figure 5.24 displays the residues on the third step for ca-p2 complex

when the starting region involves all of the eight substrate sites. The only difference

noticed when the cleavage site P1 is taken as the starting residue (Figure 5.25) is the

frequency of the residues visited at the third step. With any substrate site as starting

point, the destination residues at the third step are all residues of hinge regions (8-10,

25-27, 45-55, 80-90) and the substrate itself. Besides, the frequency of these regions in

destination points differs in comparing the two monomers. When the pathways starting

from all substrate sites are added up (Figure 5.24), asymmetry is observed in the active

sites (25-27) and cleft (80-90) regions; the active site and the cleft of monomer B are

more visited on the third step. On the other hand, when the destination points of the

pathways starting at the P1 substrate site is observed (Figure 5.25), the number of

times that the pathways reach the dimerization region (8-10) of monomer B is higher

than the number of times they reach the dimerization region of monomer A. Besides,

the flap region (45-55) of monomer A is more involved than that of monomer B in the

destination point of the paths starting at P1. Meanwhile, it should also be noted that

the destination regions at the third step of the pathways starting from the substrate

sites in different natural substrate bound HIV-1 protease complex structures are quite

similar, both in location and in frequency.
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Figure 5.24. Frequency of residues visited at the third step on 100,000 paths starting

at the substrate. Residues 1-99 correspond to monomer A, residues 100-198

correspond to monomer B, and residues 199-206 correspond to substrate peptide.

Figure 5.25. Frequency of residues visited at the third step on 100,000 paths starting

at P1 site of substrate. Residues 1-99 correspond to monomer A, residues 100-198

correspond to monomer B, and residues 199-206 correspond to substrate peptide.

(residue 203 on x-axis)
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The observed destination regions in short pathways are similar to those generated

by the previous approach that uses the GNM correlations. Nevertheless, taking residue

specificity into account provides more pronounced results, i.e. the residues outside the

specific hinge regions of the protease are hardly visited. The important role of these

hinge regions, which correspond to the minimum fluctuating residues in global modes,

is emphasized here; they act as messengers in information transfer.

5.3.2. Pathways starting at the Substrate and reaching Active Sites of the

Protease

When the destination point is specified as the active site residue 25 on the three

step pathways starting from the substrate, the hinge regions are the regions involved

in communication. Figure 5.26 displays the cumulative frequency of residues visited

along these pathways when the starting point is any of the eight substrate sites. The

residues visited on the three step pathways between the substrate and the active sites

of complex structures of different natural substrates are also identical, both in location

and in frequency.

Figure 5.26. Frequency of visited residues in three steps, starting at the substrate and

reaching the active sites of both monomers (residues 25 and 124 on x-axis). Residues

1-99 correspond to monomer A, residues 100-198 correspond to monomer B, and

residues 199-206 correspond to substrate peptide.
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Further, the dominant pathways between the substrate and active sites are an-

alyzed. About 10% of the pathways that start at the substrate and reach the active

sites occur more than once. Within these pathways that occur more than once, the

maximum number of steps they take to reach residue 25 of either protease monomer is

seven. Thus, analysis of three step pathways as the short pathways between substrate

and active sites is reasonable. Moreover, about 3% of the pathways are directly reach-

ing residue 25 at the second step. The key interacting residues, i.e. the residues visited

along the pathways between the substrate sites and the active sites are 23-30, 48-50 and

82-87. The same residues are observed on the pathways between the substrate cleav-

age sites and protease active sites in all the natural substrate complex structures. The

paths that occur most frequently in the ensemble of communication pathways starting

at the substrate cleavage sites and reaching the protease active sites in different natural

substrate complex structures are given in Appendix A.

5.3.3. Pathways starting at the Substrate Cleavage Site and reaching Active

Sites of the Protease in Mutant Structures

Pathway analysis is performed on the best members of the largest clusters of

MD simulated mutant p1-p6 complex structures, namely the D30N mutant, the N88D

mutant, the D30N-N88D mutant and the co-evolved D30N-N88D-LP1’F structures.

The pathways between the substrate cleavage site P1 and the active site of the protease

are analyzed. The average number of steps the paths starting from the substrate take to

reach residue 25 is identical in the wild-type and the co-evolved structure. The mutant

structures have either longer or shorter paths; this implies adjustment of the wild-type

structure through co-evolution. Moreover, the analysis of the most dominant pathways

between substrate and active site reveal similarities between the wild-type and the co-

evolved p1-p6 complex structures as well. Out of a total of 100,000 paths generated,

the number of steps in the pathways that occur more than once is 1035, 1124, 992, 1333,

and 1037 in the wild-type, D30N mutant, N88D mutant, D30N-N88D mutant and co-

evolved D30N-N88D-LP1’F structures, respectively. Further, the sequence of residues

involved in the first four most dominant pathways of the wild-type and the co-evolved

structures are exactly identical. The co-evolving P1’ site of substrate, is one of the
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residues visited along these most dominant pathways. Yet, in the D30N-N88D double

mutant structure, this site is visited along the pathways that occur less frequently. The

number of pathways involving different residues, which implies variability, is 97, 97, 86,

110 and 87 in the wild-type, D30N mutant, N88D mutant, D30N-N88D mutant and

co-evolved D30N-N88D-LP1’F structures, respectively. On the other hand, the number

of paths that directly reach residue 25 in the first step is 272, 398, 316, 541, and 311

in the wild-type, D30N mutant, N88D mutant, D30N-N88D mutant and co-evolved

D30N-N88D-LP1’F structures, respectively. The lower number of paths that reach the

destination point in the first step in the wild-type and co-evolved structures indicate

that less residues are visited along these pathways in these structures than the mutant

structures. The key interacting residues, i.e. the residues visited along the pathways

between the substrate cleavage sites and the active sites of the mutant structures are

8, 23-30, 48-50, 82-87 and 90. The paths that occur most frequently in the ensemble

of communication pathways starting at the substrate cleavage sites and reaching the

protease active sites in all the mutant complex structures are given in Appendix A.

5.3.4. Key Interactions

The key interacting residues that are found most frequently along the ensembles

of the most dominant pathways, and thus that should be crucial in controlling the

communication between HIV-1 protease and its substrates, are observed as 25, 26

and 87 (Figure 5.27). Residue 25 and 26 are active site residues that function in

ligand recognition (Perryman et al., 2004) and their effectiveness in communication is

also shown in the previous section where pathways of communication are generated

using the contact topology information by the GNM. On the other hand, residue 87

interacts with residue 25 and also residue 90 whose mutations were reported to confer

drug resistance (Wu et al., 2004). These residues are also stated as the conserved

interconnectivity determinants that play important roles in information transfer within

HIV-1 protease in previous works (del Sol et al., 2006a; del Sol et al., 2006b).
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Figure 5.27. The key residues (25, 26, 87) in the shortest pathways of communication

between the HIV-1 protease and its substrates

5.3.5. The Shortest Paths

Shortest pathways between the substrate sites and the active sites of both protease

monomers are proposed, using the average step numbers that the residues are reached

along the pathways and the average path lengths. The estimation of the shortest paths

is as follows: Once the pathways are generated, the frequencies of the residues visited

along these pathways are calculated. Then, the average step number of each residue

is calculated by simply dividing the sum of their step numbers by their frequency. As

expected, the average step number of the starting residue is 1. In addition, average

path length of every residue is calculated by dividing the sum of the lenghts of the

paths on which they appear by their frequency. The average step number and the

average path length of the destination residue are equal to each other. Then, the mean

and the standard deviation of the average step numbers are calculated. Starting from

the mean value, the average step numbers are divided into ranges of one standard

deviation length in both positive and negative directions. Later, the residues with the

highest frequency value in every range constitute the steps of the so called shortest

path between the starting and the destination residues.

The shortest pathways between the substrate sites and the active sites of both
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protease monomers estimated for ca-p2 are given in Table 5.1. The shortest pathways

estimated for different natural substrate complex structures involve the same residues

(Table 5.2). The substrate sites are re-visited along these shortest pathways and there

are links between the two protease monomers. The pathways starting from the primed

site of the substrate involve residues of monomer B whereas those starting from the

unprimed site involve residues of monomer A to reach the protease active sites.

Table 5.1. The shortest pathways between the substrate sites and the active sites of

both protease monomers estimated for the ca-p2 complex structure

P4 P3 30.A 87.A P2’ 26.A 25.A

P3 29.A P2 87.A 84.A 26.B 25.A

P2 P3 84.A 25.B 25.A

P1 P2 25.B 87.A 25.A

P1’ P2’ P1 25.B 23.A 89.A 25.A

P2’ 30.B 29.B 87.B 26.B 26.A 25.A

P3’ P2’ 30.B 87.B 25.B 87.A 25.A

P4’ P2’ 76.B 25.B 87.A 25.A

P4 P3 29.A 87.A P2’ 29.B 25.B

P3 29.A P2 P1 P2’ 87.B 25.B

P2 P1 25.A 30.B 26.B 25.B

P1 P2 P2’ 25.A 23.B 25.B

P1’ P2’ 25.A 87.B 24.B 25.B

P2’ 30.B 29.B 87.B 25.A 26.A 25.B

P3’ P2’ 29.B 87.B P1 24.B 25.B

P4’ P2’ 32.B 85.B 26.B 25.B

The shortest pathways between the substrate cleavage site P1 and residue 25 of

monomer A are estimated for the best members of the largest clusters of MD simulated

wild-type and mutant p1-p6 complex structures (Table 5.3). Observing similar residues

along these shortest pathways as the shortest pathways of p1-p6 crystal structure im-

plies that communication is not affected by conformational changes. This might be

due to the involvement of hinge regions as messengers in information transfer.
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Table 5.2. The shortest pathways between the substrate cleavage sites and the active

sites of both protease monomers estimated for the natural substrate complex

structures other than ca-p2

ma-ca P1 P2 P1’ 30.A 26.A 25.A

nc-p1 P1 P1’ 25.B 87.A 85.A 25.A

p1-p6 P1 P2 P2’ 25.B 87.A 23.A 25.A

p2-nc P1 P1’ 25.B 87.A 85.A 25.A

rh-in P1 P1’ 25.B 29.A 25.A

rt-rh P1 P1’ 25.B 87.A 23.A 25.A

ma-ca P1 P2 25.A P2’ 87.B 25.B

nc-p1 P1 P1’ 25.A 87.B 90.B 25.B

p1-p6 P1 P2 P1’ 25.A 30.B 24.B 25.B

p2-nc P1 P2 25.A 87.B 25.B

rh-in P1 P2’ 25.A 87.B 85.B 25.B

rt-rh P1 P2 P1’ 25.A 26.A 90.B 25.B

ma-ca P1’ P1 25.B 25.A

nc-p1 P1’ P2’ P1 25.B 26.B 26.A 25.A

p1-p6 P1’ P2’ P1 25.B 87.A 26.A 25.A

p2-nc P1’ P2’ P1 P2 87.A 26.A 25.A

rh-in P1’ P2’ P1 25.B 84.A 90.A 25.A

rt-rh P1’ P2’ P1 29.B 23.A 26.A 25.A

ma-ca P1’ P1 25.A 26.B 25.B

nc-p1 P1’ P2’ P1 25.A 87.B 23.B 25.B

p1-p6 P1’ P1 25.A 87.B 23.B 25.B

p2-nc P1’ P2’ 25.A 87.B 23.B 25.B

rh-in P1’ P2’ P1 P2 29.B 26.B 25.B

rt-rh P1’ P2’ P1 29.B 87.B 85.B 25.B
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Table 5.3. The shortest pathways between the P1 cleavage site and the active site of

protease monomer A estimated for the best members of the largest clusters of MD

simulated mutant p1-p6 complex structures

wt p1-p6 P1 P2 P1’ 25.B 87.A 25.A

D30N P1 P2 25.B 84.A 24.A 25.A

N88D P1 P2 25.B 26.A 85.A 25.A

D30N-N88D P1 P2 P1’ 25.B 87.A 25.A

D30N-N88D-LP1’F P1 P2 P1’ 25.B 87.A 90.A 25.A

The residues visited frequently along the shortest pathways generated are identi-

cal with those on the dominant pathways. Yet, the shortest paths estimated are longer

than the most dominant pathways. The shorter dominant pathways are probably due

to analysing the paths between closely interacting regions; i.e. the substrate sites and

the protease active sites are close in space. Thus, the shortest pathway analysis should

be improved further with the investigation of more distant interactions.
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6. CONCLUSIONS AND FUTURE STUDIES

6.1. Conclusions

Understanding the molecular recognition events that confer drug resistance in

HIV-1 protease is crucial to the development of drugs. Combined computational

methodologies used in this thesis puts three different perspectives together to study

the recognition and binding processes in HIV-1 protease complex structures within the

paradigm of sequence, structure and dynamics. In the first part, substrate specificity

investigated by a sequence search threading method explores the potential substrate

sequence space. In the second part, the analysis of the fluctuations of the ligand

bound HIV-1 protease structures identifies the functionally plausible dynamic motion

comparatively between different substrate and inhibitor complexes. In the third part,

the residue interactions that are possibly crucial in the binding interactions of HIV-1

protease are identified by a communication pathway analysis.

The biased sequence search threading methodology introduced in the first part

uses low resolution knowledge-based potentials and efficiently explores the potential

substrate sequence space. Different template structures are used to provide a structure

space as a base for the differences between the behavior of various substrates. By deter-

mining the relationship between the substrate sequence and three-dimensional struc-

ture of the protease, it is possible to probe which substrate sequences are more likely to

tolerate changes in HIV-1 protease due to drug resistant mutations and which are not.

The low energy substrate sequences generated by the biased search are correlated with

the natural substrates. Octameric sequences are predicted using the probabilities of

residue positions in the sequences generated by BSST in three ways: considering each

position in the substrate independently, considering pairwise interdependency and con-

sidering triplewise interdependency. The prediction of octameric sequences using the

triplewise conditional probabilities produces the most accurate results, implying that

there is a complex interdependence between the different substrate residue positions.

This likely reflects that HIV-1 protease recognizes the overall shape of the substrate
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more than its specific sequence. Overall, the BSST methodology based on low res-

olution knowledge-based potentials provided a powerful methodology for accurately

predicting HIV-1 protease substrate specificity.

In the second part of this thesis, the elaborated analysis of the structural fluctu-

ations of HIV-1 protease in interaction with its substrates and inhibitors enhance the

understanding of the dynamics of HIV-1 protease in relation to its function. The anal-

ysis of the fluctuations of ligand bound complex structures by atomistic Anisotropic

Network Model (ANM) displays that all HIV-1 protease complex structures display

similar molecular motion in the low frequency modes that are related to the main

function. The minimum fluctuating residues in these modes of motion, i.e. the hinge

regions, correspond to the dimerization region, the active site, the flaps and the sub-

strate cleft of the protease, which are also positively correlated with each other. As for

the interaction between the protease and the peptide, the residues of the protease that

display positively correlated fluctuations with the fluctuations of the peptide’s residues

also correspond to these hinge regions. That is; the same sites are associated with

both dimerization and binding to ligands. Further, despite the similarity in the coo-

pearative modes between the substrate and inhibitor complex structures, the detailed

comparative analysis of the direction of the fluctuations of residues between the struc-

tures suggested some differences: The substrate and inhibitor structures are observed

to gather into two groups each, according to the magnitude of residue fluctuations and

orientational correlations of residues. The residues that lead to this grouping of com-

plex structures with respect to their direction of fluctuations lie along the rotational

axes around which the protease monomers rotate in the most cooperative modes. The

latter analysis also implies that the protease bound to different subtrates and to dif-

ferent inhibitors displays an enhanced orientational space sampled for the former. The

extent of the coupling of the protease with its substrates and inhibitors implies tighter

binding for the inhibitors. Because of their higher flexibility, the substrates should

be more adaptable to backbone rearrangements or conformational changes induced by

the protease mutations. Moreover, the examination of the structural and dynamic

properties of the mutant and co-evolved structures of p1-p6 substrate contributes to

the understanding of the binding as well as the drug resistance mechanism of HIV-1
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protease. The higher correlation of the wild-type complex with the co-evolved struc-

ture than the other mutant structures, justify the existence of this mutation for the

conservation of dynamic fluctuations. The conservation of the direction of the fluctua-

tions, in particular, with respect to the rotational axes in the most cooperative modes

justifies the co-evolution. In the third part of this thesis, the network of key inter-

actions within the native topology of HIV-1 is searched by an ensemble of pathways

generated by a newly designed computation tool. Focusing on the binding process,

an ensemble of pathways of communication is generated between the binding site and

substrate sites. The scoring of the interaction between the two residues is carried out

by two approaches; using the coupling between the fluctuations predicted by the Gaus-

sian Network Model (GNM) which reflects topological features of the structure with

no specificity in interactions, and using the intensity of the interactions based on the

residue specific potential functions. The communication, as observed similarly by both

approaches, is achieved by the hinge regions (flexible joints) that act as messengers in

the information transfer between the residues. Moreover, the time of communication

within the hinge residues found in core regions is shorter than that when the solvent-

exposed mobile regions are involved. Further, the most dominant pathways estimated

between the substrate and protease active sites define the key interacting residues. The

active site and the substrate cleft residues in the core regions that either function in

ligand recognition or interact with the residues that confer drug resistance are effective

in communication. The additional analysis of conformations from molecular dynamics

simulations suggest similar communication pathways as the crystal structures, imply-

ing that communication is not affected by conformational changes as probably the

hinges are involved as messengers. Also, the adjustment of the p1-p6 variant struc-

tures through co-evolution is reflected by the similarity in the most dominant pathways

of communication in the wild-type and co-evolved complex structures.

With all, the present thesis might contribute both to the overall understanding

of the plasticity of the ensemble of ligand bound HIV-1 protease conformations and

sequences and to the technology of drug design.
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6.2. Future Studies

Very little sequence homology exists between the various substrate sequences in

HIV-1 protease and natural variation exists in the substrate sequences between different

viral subtypes of HIV (i.e. 1A, 1B, 1C). Altered specificity in different subtypes may

indicate protease variants that warrant subtype specific inhibitor, i.e. subtypes which

are unlikely to respond to currently available inhibitors, as ”non-B” HIV proteases, are

more important world-wide. The biased sequence search threading technique intro-

duced in this thesis is applicable for predicting which substrate sites can tolerate the

changes and which cannot, by an efficient exploration of the sequence space. Hence,

the technique’s ability to predict sequence variability can be utilized to examine the

natural variation that exists within the subtypes. Yet, minimization of the modeled

protease variants on which the sequences of subtypes will be threaded is of importance

here, which can be handled by Monte Carlo/Metropolis simulations. Understanding

the range of adaptability of the substrate sites within the subtypes should provide

an important test and validation of a set of sequences that can then be applied to

variations that occur with drug resistance. Further, this general method could also

potentially be optimized to predict the substrate specificity of other proteases with

complex substrate specificities.

Certain substrate sites are more likely to mutate in response to particular mu-

tations in the drug resistant protease variants. This affects substrate specificity and

different substrate sites may be more susceptible to change depending on the protease

mutation. An example of this evolutionary communication has already been seen in the

co-evolution of the nc-p1 cleavage site where Ala in P2 mutates to Val in response to

V82A mutation in the protease associated with IDV or RTV therapy (Prabu-Jeyabalan

et al., 2004). The p1-p6 is another cleavage site that undergoes co-evolution with HIV-

1 protease; mutations in the P1’ site of p1-p6 substrate covary with the D30N/N88D

mutations in the protease (Kolli et al., 2006). Despite the knowledge of mutation

types, the exact mechanism by which these changes as well as compensatory protease

mutations cause resistance or facilitate protease activity is poorly understood. The ex-

amination of the structural and dynamic properties of the mutant structures involved
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in the co-evolution of p1-p6 with D30N/N88D protease mutations here contributes to

the understanding of the binding as well as the drug resistance mechanism of HIV-1

protease. Therefore, the structural analysis performed in this thesis can be utilized

to elaborate the co-evolution of the nc-p1 substrate cleavage site with V82A protease

mutation. The conformations of mutant and co-evolved variants of p1-p6 substrate

complex structures utilized here are obtained from MD simulations of in silico created

variant structures. Yet, the crystal structure of AP2V/V82A nc-p1/protease variant

has already been solved (Prabu-Jeyabalan et al., 2004) and deposited in the PDB.

Thus, MD simulations of this variant structure can be carried out and conformations

generated from these simulations can be analyzed with respect to both dynamic fluc-

tuations and ensemble of short pathways. This might help in investigation of the

mechanism of drug resistance and co-evolution in the HIV-1 protease system.

The structural fluctuations and orientational correlations of wild-type and mutant

HIV-1 protease complex structures are analyzed in the most cooperative modes of the

ANM utilized in this thesis. The principal components of the conformations generated

by the MD simulations of the same structures are also calculated and their correlation

with the ANM modes is studied. The measure of the coverage of the motion subspaces

spanned by each approach shows that the majority of the dynamics of protease complex

structures can be explained by a small set of low-frequency ANM modes. Nevertheless,

it should be noted that this is as much reflected by the PCA of an MD trajectory

of a given length. In other words, these ANM modes in principle could represent

large scale motions that could not spanned by the 11 ns MD simulations. The length

of the MD simulations may not be long enough to define the motion in the most

cooperative modes, hence the grouping of substrate and inhibitor complex structures

are not observed in the MD simulated structures. Although the present MD simulations

still provide assurance and could be complimentary for the dynamic properties that are

of interest here, the simulations can be elongated in order to search the conformational

space more thoroughly.

The communication analysis by a newly designed computation tool in this the-

sis is carried out between the binding site and substrate sites of the HIV-1 protease
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complex structures. The confirmation of the role of the hinge regions in information

transfer, the revelation of the location of the key interacting residues in the dominant

paths of communication, and the adjustment of the variant structures with co-evolution

reflected by the similarity in the communication pathways of wild-type and co-evolved

structures suggest that this analysis can further be applied to investigate the commu-

nication between different sites within the structure. Both inter- and intramolecular

communication can be inspected; i.e. the interactions between the substrate and dif-

ferent regions of the protease as well as those between the protease sites that display

correlated mutations can be elaborated in the ligand bound HIV-1 protease structures.

The shortest path prediction algorithm should also be improved by the analysis of

communication between distant sites. This would help to predict the patterns of drug

resistant mutations and to design potential binding sites for allosteric inhibitors to

regulate the HIV-1 protease dynamics.
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APPENDIX A: DOMINANT PATHWAYS OF

COMMUNICATION IN SUBSTRATE COMPLEX

STRUCTURES

Table A.1. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in ca-p2 complex structure

Starting point Step 1 Step 2 Step 3 Frequency

P1 25.A 450

P1 27.A 25.A 119

P1 P1’ 25.A 83

P1 P2 25.A 78

P1 28.A 25.A 66

P1 27.B 25.A 43

P1 25.B 25.A 39

P1 27.A 28.A 25.A 27

P1 27.A 26.A 25.A 21

P1 P2 28.A 25.A 19

P1 28.A 27.A 25.A 13

P1 P2 P1’ 25.A 11

P1 P2 27.A 25.A 11

P1 25.B 27.A 25.A 10

P1 P1’ P2 25.A 9

P1 P1’ 27.B 25.A 8

P1 25.B 27.B 25.A 8

P1 P3 28.A 25.A 7

P1 28.B 27.B 25.A 7

P1 28.A 26.A 25.A 6
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Table A.2. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in ca-p2 complex structure

Starting point Step 1 Step 2 Step 3 Frequency

P1 25.B 688

P1 27.A 25.B 83

P1 P1’ 25.B 75

P1 28.B 25.B 71

P1 27.B 25.B 50

P1 23.B 25.B 40

P1 25.A 25.B 31

P1 84.B 25.B 24

P1 P2 25.B 16

P1 23.B 24.B 25.B 16

P1 27.B 28.B 25.B 11

P1 27.A 25.A 25.B 10

P1 27.B 26.B 25.B 10

P1 P2 27.A 25.B 9

P1 P1’ 27.B 25.B 9

P1 84.B 85.B 25.B 9

P1 P1’ 28.B 25.B 7

P1 27.A 26.A 25.B 7

P1 28.A 27.A 25.B 7

P1 P2’ 28.B 25.B 6

P1 25.A 26.A 25.B 6

P1 P2 P1’ 25.B 5

P1 27.A 24.B 25.B 5

P1 28.B 27.B 25.B 5
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Table A.3. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in ca-p2 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 606

P1’ P1 25.A 78

P1’ 27.B 25.A 78

P1’ 23.A 25.A 36

P1’ P2 25.A 29

P1’ 25.B 25.A 24

P1’ 84.A 25.A 24

P1’ P1 27.A 25.A 21

P1’ P1 P2 25.A 19

P1’ P1 28.A 25.A 16

P1’ 23.A 24.A 25.A 14

P1’ 27.B 26.A 25.A 11

P1’ 27.B 26.B 25.A 11

P1’ P1 25.B 25.A 9

P1’ P1 27.B 25.A 9

P1’ 84.A 85.A 25.A 9

P1’ P2 P1 25.A 8

P1’ P2’ 25.A 8

P1’ 84.A 28.A 25.A 8

P1’ P2’ 27.B 25.A 7

P1’ 27.B 27.A 25.A 7

P1’ P1 27.A 28.A 25.A 6

P1’ 27.B 25.B 25.A 6

P1’ 28.B 27.B 25.A 6
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Table A.4. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in ca-p2 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.B 486

P1’ P1 25.B 114

P1’ 27.B 25.B 82

P1’ 28.B 25.B 52

P1’ 25.A 25.B 24

P1’ 27.B 26.B 25.B 22

P1’ P1 27.A 25.B 19

P1’ P2’ 28.B 25.B 16

P1’ P1 28.B 25.B 12

P1’ 27.B 28.B 25.B 12

P1’ P2 P1 25.B 11

P1’ P1 27.B 25.B 11

P1’ 28.B 27.B 25.B 11

P1’ 25.A 27.A 25.B 9

P1’ P1 25.A 25.B 7

P1’ P1 84.B 25.B 6

P1’ P2’ 28.B 27.B 25.B 6

P1’ P2’ 30.B 28.B 25.B 6

P1’ 28.B 26.B 25.B 6

P1’ P2’ 25.B 5

P1’ P3’ P2’ 28.B 25.B 5

P1’ 25.A 26.B 25.B 5
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Table A.5. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in ma-ca complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 349

P1 27.A 25.A 113

P1 P1’ 25.A 104

P1 28.A 25.A 57

P1 27.B 25.A 35

P1 25.B 25.A 26

P1 P2 28.A 25.A 20

P1 27.A 26.A 25.A 18

P1 P2 27.A 25.A 15

P1 27.A 28.A 25.A 12

P1 28.A 27.A 25.A 12

P1 28.B 25.A 10

P1 P1’ 84.A 25.A 9

P1 P2’ P1’ 25.A 9

P1 P2 28.A 27.A 25.A 8

P1 25.B 27.B 25.A 8

P1 P3 29.A 28.A 25.A 7

P1 P2 25.A 7

P1 P1’ 27.A 25.A 7

P1 P3 28.A 25.A 6

P1 P2 P1’ 25.A 6

P1 P1’ P2’ 25.A 6

P1 25.B 26.B 25.A 6

P1 P3 27.A 25.A 5

P1 P1’ 27.B 25.A 5

P1 P1’ 28.B 25.A 5

P1 25.B 27.A 25.A 5
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Table A.6. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in ma-ca complex structure

Starting point Step 1 Step 2 Step 3 Frequency

P1 25.B 477

P1 P1’ 25.B 74

P1 27.B 25.B 54

P1 27.A 25.B 52

P1 28.B 25.B 52

P1 23.B 25.B 22

P1 P2 25.B 18

P1 84.B 25.B 18

P1 P2 27.A 25.B 12

P1 28.A 25.B 12

P1 P1’ 27.B 25.B 10

P1 P2 P1’ 25.B 9

P1 23.B 24.B 25.B 9

P1 25.A 27.A 25.B 9

P1 28.B 27.B 25.B 9

P1 P3 25.B 8

P1 P1’ 28.B 25.B 8

P1 P2’ 25.B 8

P1 27.A 28.A 25.B 8

P1 P1’ 27.A 25.B 7

P1 25.A 25.B 7

P1 25.A 27.B 25.B 7

P1 27.B 26.B 25.B 7

P1 P1’ P2’ 25.B 6

P1 P2 28.A 25.B 5

P1 27.B 28.B 25.B 5

P1 84.B 85.B 25.B 5
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Table A.7. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in ma-ca complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 566

P1’ P1 25.A 84

P1’ 27.B 25.A 71

P1’ 27.A 25.A 52

P1’ 84.A 25.A 40

P1’ 23.A 25.A 25

P1’ P1 27.A 25.A 23

P1’ 25.B 25.A 22

P1’ 28.B 25.A 16

P1’ P1 28.A 25.A 12

P1’ 27.A 28.A 25.A 10

P1’ 23.A 24.A 25.A 9

P1’ 27.A 26.A 25.A 9

P1’ 27.B 26.B 25.A 9

P1’ P2’ 25.A 8

P1’ 28.B 27.B 25.A 8

P1’ 84.A 85.A 25.A 7

P1’ P2 P1 25.A 6

P1’ P2’ P1 25.A 6

P1’ P2’ 27.B 25.A 6

P1’ P1 25.B 25.A 5

P1’ P1 27.A 26.A 25.A 5

P1’ 23.A 27.B 25.A 5

P1’ 25.B 26.A 25.A 5

P1’ 25.B 27.A 25.A 5
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Table A.8. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in ma-ca complex structure

Starting point Step 1 Step 2 Step 3 Frequency

P1’ 25.B 361

P1’ P1 25.B 103

P1’ P2’ 25.B 75

P1’ 27.B 25.B 75

P1’ 28.B 25.B 59

P1’ 27.A 25.B 39

P1’ 25.A 25.B 30

P1’ P2’ 28.B 25.B 24

P1’ P2’ 27.B 25.B 15

P1’ P1 27.A 25.B 13

P1’ P2’ P1 25.B 10

P1’ 28.B 27.B 25.B 10

P1’ P1 28.B 25.B 9

P1’ P1 P2’ 25.B 8

P1’ P2’ 84.B 25.B 8

P1’ 25.A 26.B 25.B 8

P1’ P2 P1 25.B 7

P1’ P1 27.B 25.B 7

P1’ 25.A 26.A 25.B 7

P1’ 27.B 26.B 25.B 7

P1’ 25.A 27.A 25.B 6

P1’ 25.A 27.B 25.B 6

P1’ 27.B 28.B 25.B 6

P1’ P1 P2 25.B 5

P1’ 23.A 27.B 25.B 5

P1’ 25.A 28.A 25.B 5
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Table A.9. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in nc-p1 complex structure

Starting point Step 1 Step 2 Step 3 Frequency

P1 25.A 356

P1 27.A 25.A 98

P1 P2 25.A 60

P1 28.A 25.A 59

P1 P1’ 25.A 47

P1 27.B 25.A 37

P1 27.A 28.A 25.A 25

P1 25.B 25.A 24

P1 P3 P2 25.A 20

P1 P3 28.A 25.A 20

P1 P2 28.A 25.A 16

P1 P3 27.A 25.A 13

P1 27.A 26.A 25.A 13

P1 28.A 27.A 25.A 11

P1 P1’ 27.B 25.A 10

P1 P2 27.A 25.A 9

P1 P2’ P1’ 25.A 9

P1 P1’ P2’ 25.A 8

P1 28.A 26.A 25.A 7

P1 P3 25.A 6

P1 P1’ 84.A 25.A 6

P1 23.B 26.A 25.A 6

P1 25.B 27.B 25.A 6

P1 27.A 27.B 25.A 6
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Table A.10. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in nc-p1 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.B 511

P1 27.A 25.B 65

P1 28.B 25.B 61

P1 27.B 25.B 53

P1 P1’ 25.B 39

P1 84.B 25.B 34

P1 23.B 25.B 29

P1 P1’ P2’ 25.B 27

P1 P2 27.A 25.B 18

P1 25.A 25.B 16

P1 P2’ 25.B 15

P1 27.B 28.B 25.B 14

P1 P3 25.B 12

P1 P1’ 27.B 25.B 10

P1 23.B 24.B 25.B 10

P1 84.B 28.B 25.B 10

P1 P1’ P2’ 28.B 25.B 9

P1 P2’ 28.B 25.B 9

P1 P2’ P1’ 25.B 8

P1 84.B 85.B 25.B 8

P1 27.B 26.B 25.B 7
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Table A.11. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in nc-p1 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 455

P1’ 27.B 25.A 59

P1’ P2’ 25.A 40

P1’ P1 25.A 32

P1’ P2 25.A 30

P1’ 84.A 25.A 30

P1’ 23.A 25.A 25

P1’ P2’ P1 25.A 15

P1’ P2’ 27.B 25.A 14

P1’ P1 27.A 25.A 12

P1’ 25.B 25.A 10

P1’ P1 28.A 25.A 8

P1’ 27.B 26.A 25.A 8

P1’ P2 27.A 25.A 7

P1’ 25.B 27.A 25.A 7

P1’ P2 28.A 25.A 6

P1’ P1 P2 25.A 6

P1’ P2’ 23.A 25.A 6

P1’ 23.A 24.A 25.A 5

P1’ 27.B 24.A 25.A 5

P1’ P2’ 25.B 25.A 4

P1’ P2’ 84.A 25.A 4

P1’ 8.A 9.A 24.A 25.A 4



140

Table A.12. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in nc-p1 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.B 327

P1’ P2’ 25.B 153

P1’ 27.B 25.B 71

P1’ P1 25.B 52

P1’ P2’ 28.B 25.B 36

P1’ P2’ 27.B 25.B 28

P1’ 27.B 26.B 25.B 25

P1’ 25.A 25.B 20

P1’ 27.B 28.B 25.B 16

P1’ P2’ P1 25.B 12

P1’ P1 27.A 25.B 11

P1’ 25.A 27.A 25.B 10

P1’ P2’ 27.B 26.B 25.B 9

P1’ P2’ 27.B 28.B 25.B 9

P1’ P1 27.B 25.B 8

P1’ P2’ 84.B 25.B 8

P1’ P1 28.B 25.B 7

P1’ P1 P2’ 25.B 5

P1’ P1 84.B 25.B 5

P1’ 27.B 25.A 25.B 5

P1’ P1 27.B 28.B 25.B 4

P1’ P2’ 28.B 27.B 25.B 4

P1’ P2’ 29.B 28.B 25.B 4

P1’ P3’ P2’ 25.B 4

P1’ 25.A 27.B 25.B 4

P1’ 27.B P2’ 25.B 4

P1’ 27.B 26.A 26.B 25.B 4
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Table A.13. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 294

P1 P2 25.A 107

P1 27.A 25.A 90

P1 28.A 25.A 53

P1 P1’ 25.A 38

P1 27.B 25.A 29

P1 P2 27.A 25.A 26

P1 P2 28.A 25.A 26

P1 27.A 28.A 25.A 24

P1 25.B 25.A 20

P1 27.A 26.A 25.A 18

P1 P3 27.A 25.A 11

P1 P2 P1’ 25.A 10

P1 P2 84.A 25.A 9

P1 P3 28.A 25.A 8

P1 25.B 27.A 25.A 8

P1 P2 P3 28.A 25.A 7

P1 P1’ P2 25.A 7

P1 P2 P3 25.A 6

P1 P2 28.A 27.A 25.A 6

P1 25.B 27.B 25.A 6

P1 27.B 26.B 25.A 6

P1 P1’ P2’ 27.B 25.A 5

P1 P1’ 27.B 25.A 5

P1 23.B 27.A 25.A 5

P1 25.B 26.B 25.A 5

P1 28.A 27.A 25.A 5
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Table A.14. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.B 485

P1 27.A 25.B 63

P1 28.B 25.B 51

P1 27.B 25.B 39

P1 P1’ 25.B 38

P1 P2 25.B 32

P1 23.B 25.B 28

P1 84.B 25.B 25

P1 P2 27.A 25.B 16

P1 P1’ 27.B 25.B 10

P1 23.B 24.B 25.B 9

P1 25.A 25.B 9

P1 27.A 25.A 25.B 9

P1 25.A 27.B 25.B 8

P1 27.B 28.B 25.B 8

P1 27.B 26.B 25.B 7

P1 P3 27.A 25.B 6

P1 P2 P1’ 25.B 6

P1 27.A 23.B 25.B 6

P1 27.A 26.A 25.B 6

P1 P2 28.A 27.A 25.B 5

P1 P1’ 28.B 25.B 5

P1 27.A 27.B 25.B 5

P1 28.A 25.A 25.B 5

P1 84.B 85.B 25.B 5
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Table A.15. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 440

P1’ 27.B 25.A 63

P1’ 84.A 25.A 45

P1’ P1 25.A 41

P1’ P2 25.A 29

P1’ 23.A 25.A 23

P1’ 25.B 25.A 23

P1’ P1 P2 25.A 16

P1’ P2 P1 25.A 13

P1’ P2 28.A 25.A 13

P1’ 23.A 24.A 25.A 12

P1’ P1 27.A 25.A 10

P1’ 25.B 27.A 25.A 9

P1’ P2’ 25.A 8

P1’ P2’ 27.B 25.A 7

P1’ 84.A 85.A 25.A 7

P1’ P1 28.A 25.A 6

P1’ 25.B 26.B 25.A 6

P1’ P2 P1 27.A 25.A 5

P1’ 25.B 27.B 25.A 5

P1’ 27.B 23.A 25.A 5

P1’ 27.B 24.A 25.A 5

P1’ 28.B 27.B 25.A 5
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Table A.16. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.B 388

P1’ 27.B 25.B 84

P1’ 28.B 25.B 46

P1’ P1 25.B 45

P1’ P2’ 28.B 25.B 23

P1’ 25.A 25.B 21

P1’ 27.B 26.B 25.B 18

P1’ P2 P1 25.B 13

P1’ P2’ 27.B 25.B 10

P1’ 27.B 28.B 25.B 10

P1’ P1 27.B 25.B 9

P1’ P1 28.B 25.B 9

P1’ P1 27.A 25.B 8

P1’ 25.A 26.B 25.B 7

P1’ 28.B 27.B 25.B 7

P1’ 23.A 27.B 25.B 6

P1’ 25.A 27.B 25.B 6

P1’ P1 84.B 25.B 5

P1’ P2’ P3’ 28.B 25.B 5

P1’ P2’ 25.B 5

P1’ P2’ 28.B 26.B 25.B 5

P1’ P2’ P1 25.B 4

P1’ P2’ 27.B 26.B 25.B 4

P1’ P2’ 29.B 28.B 25.B 4

P1’ P3’ P2’ 28.B 25.B 4

P1’ 27.B 28.B 26.B 25.B 4
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Table A.17. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in p2-nc complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 396

P1 27.A 25.A 112

P1 P1’ 25.A 87

P1 28.A 25.A 71

P1 P2 25.A 62

P1 27.B 25.A 45

P1 25.B 25.A 32

P1 P2 28.A 25.A 20

P1 27.A 28.A 25.A 19

P1 27.A 26.A 25.A 15

P1 P1’ 27.A 25.A 12

P1 P1’ 27.B 25.A 10

P1 25.B 27.A 25.A 10

P1 P2 27.A 25.A 9

P1 28.A 26.A 25.A 9

P1 25.B 27.B 25.A 8

P1 28.A 27.A 25.A 8

P1 P3 28.A 25.A 7

P1 P2 P1’ 25.A 7

P1 25.B 26.A 25.A 7

P1 P2 27.A 26.A 25.A 6

P1 P2 84.A 25.A 6

P1 28.B 27.B 25.A 6

P1 P1’ 84.A 25.A 5

P1 25.B 26.B 25.A 5

P1 27.A 27.B 25.A 5
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Table A.18. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in p2-nc complex structure

Starting point Step 1 Step 2 Step 3 Frequency

P1 25.B 721

P1 27.A 25.B 75

P1 P1’ 25.B 55

P1 27.B 25.B 51

P1 28.B 25.B 51

P1 23.B 25.B 34

P1 84.B 25.B 33

P1 P1’ 27.B 25.B 17

P1 27.B 26.B 25.B 13

P1 23.B 24.B 25.B 9

P1 25.A 25.B 9

P1 28.A 27.A 25.B 9

P1 P2 25.B 8

P1 27.A 26.A 25.B 8

P1 28.B 27.B 25.B 8

P1 P2 27.A 25.B 7

P1 P1’ 25.A 25.B 7

P1 P2’ P1’ 25.B 7

P1 27.A 25.A 25.B 7

P1 27.A 26.B 25.B 7

P1 P2’ 28.B 25.B 6

P1 23.B 85.B 25.B 6

P1 27.B 28.B 25.B 6

P1 84.B 23.B 25.B 6

P1 P3 27.A 25.B 5

P1 P2 P1’ 25.B 5

P1 27.A 24.B 25.B 5
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Table A.19. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in p2-nc complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 548

P1’ 27.A 25.A 56

P1’ P1 25.A 55

P1’ 27.B 25.A 49

P1’ 84.A 25.A 32

P1’ P2 25.A 29

P1’ 23.A 25.A 22

P1’ 25.B 25.A 19

P1’ P1 27.A 25.A 16

P1’ 23.A 24.A 25.A 14

P1’ P2’ 25.A 13

P1’ P2 28.A 25.A 11

P1’ P2’ 27.B 25.A 9

P1’ 27.A 26.A 25.A 9

P1’ P1 P2 25.A 8

P1’ 27.B 26.B 25.A 8

P1’ 84.A 85.A 25.A 8

P1’ P1 27.B 25.A 7

P1’ P1 28.A 25.A 7

P1’ 25.B 26.A 25.A 7

P1’ P1 27.A 28.A 25.A 6

P1’ 25.B 27.A 25.A 6

P1’ 27.B 25.B 25.A 6

P1’ P2 P1 25.A 5

P1’ P1 27.A 26.A 25.A 5

P1’ 27.B 24.A 25.A 5

P1’ 27.B 26.A 25.A 5
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Table A.20. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in p2-nc complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.B 367

P1’ 27.B 25.B 108

P1’ P1 25.B 100

P1’ 27.A 25.B 27

P1’ P2’ 28.B 25.B 26

P1’ 25.A 25.B 22

P1’ 27.B 26.B 25.B 17

P1’ P2’ 27.B 25.B 16

P1’ P1 27.A 25.B 14

P1’ 27.B 28.B 25.B 13

P1’ P2 P1 25.B 11

P1’ P2’ P1 25.B 7

P1’ P1 28.B 25.B 6

P1’ P2’ 25.B 6

P1’ P2’ 28.B 27.B 25.B 6

P1’ 25.A 27.A 25.B 6

P1’ 27.A 25.A 25.B 6

P1’ 27.A 27.B 25.B 6

P1’ P2’ 84.B 25.B 5

P1’ 25.A 26.B 25.B 5

P1’ 27.A 26.A 25.B 5

P1’ 27.B 26.A 25.B 5

P1’ P1 25.A 25.B 4

P1’ P1 27.B 25.B 4

P1’ P2’ 27.B 28.B 25.B 4

P1’ P3’ P2’ 28.B 25.B 4

P1’ 23.A 27.B 25.B 4
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Table A.21. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in rh-in complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 621

P1 27.B 25.A 65

P1 28.A 25.A 60

P1 27.A 25.A 56

P1 P1’ 25.A 37

P1 84.A 25.A 35

P1 23.A 25.A 28

P1 P2 25.A 14

P1 25.B 25.A 13

P1 27.A 28.A 25.A 11

P1 P4 25.A 8

P1 27.B 26.B 25.A 8

P1 P1’ 27.B 25.A 7

P1 P2’ 28.A 25.A 7

P1 28.A 27.A 25.A 6

P1 28.B 27.B 25.A 6

P1 P1’ P2’ 28.A 25.A 5

P1 P2’ P1’ 25.A 5

P1 27.A 26.A 25.A 5

P1 27.A 26.A 26.B 25.A 5

P1 27.B 26.A 25.A 5

P1 27.B 27.A 25.A 5

P1 84.A 28.A 25.A 5

P1 84.A 85.A 25.A 5
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Table A.22. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in rh-in complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.B 364

P1 27.B 25.B 93

P1 P2 25.B 63

P1 28.B 25.B 50

P1 27.A 25.B 48

P1 P1’ 25.B 47

P1 25.A 25.B 32

P1 27.B 28.B 25.B 20

P1 P2 28.B 25.B 17

P1 P1’ 27.A 25.B 12

P1 P2 27.B 25.B 11

P1 27.B 26.B 25.B 10

P1 28.B 27.B 25.B 10

P1 25.A 27.B 25.B 8

P1 28.A 25.A 25.B 8

P1 P1’ 27.B 25.B 7

P1 P3 28.B 25.B 6

P1 P2 P1’ 25.B 6

P1 25.A 27.A 25.B 6

P1 28.A 27.A 25.B 6

P1 P4 27.B 25.B 5

P1 P2 28.B 27.B 25.B 5

P1 25.A 26.A 25.B 5

P1 25.A 26.A 26.B 25.B 5

P1 25.A 26.B 25.B 5

P1 27.B P1’ 25.B 5

P1 28.B 86.B 25.B 5
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Table A.23. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in rh-in complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 310

P1’ 27.A 25.A 73

P1’ P1 25.A 64

P1’ P2’ 28.A 25.A 34

P1’ 27.B 25.A 30

P1’ P2’ 27.A 25.A 27

P1’ 25.B 25.A 16

P1’ 27.A 26.A 25.A 14

P1’ 27.A 28.A 25.A 14

P1’ P2’ 25.A 12

P1’ P2’ P1 25.A 9

P1’ P1 27.B 25.A 7

P1’ P1 28.A 25.A 7

P1’ P2’ 84.A 25.A 7

P1’ P2 P1 25.A 6

P1’ P2’ 27.A 28.A 25.A 6

P1’ 27.B P1 25.A 6

P1’ P2’ 27.A 26.A 25.A 5

P1’ P2’ 28.A 27.A 25.A 5

P1’ 27.A 27.B 25.A 5

P1’ 27.B 26.B 25.A 5
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Table A.24. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in rh-in complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.B 360

P1’ P1 25.B 49

P1’ 27.B 25.B 44

P1’ 27.A 25.B 43

P1’ 23.B 25.B 30

P1’ P2’ 27.A 25.B 27

P1’ 84.B 25.B 22

P1’ P1 27.B 25.B 19

P1’ P2’ 25.B 18

P1’ P2 25.B 17

P1’ 25.A 25.B 15

P1’ 84.B 85.B 25.B 11

P1’ P2’ P1 25.B 8

P1’ 27.B 26.B 25.B 8

P1’ 27.B 28.B 25.B 8

P1’ P1 28.B 25.B 7

P1’ P2 P1 25.B 6

P1’ P2 28.B 25.B 6

P1’ 27.A 26.A 25.B 6

P1’ P1 P2 25.B 5

P1’ 23.B 24.B 25.B 5

P1’ 23.B 27.A 25.B 5

P1’ 23.B 85.B 25.B 5

P1’ 25.A 27.A 25.B 5

P1’ 27.A 23.B 25.B 5
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Table A.25. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in rt-rh complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 338

P1 27.A 25.A 109

P1 P2 25.A 59

P1 28.A 25.A 45

P1 27.B 25.A 35

P1 P1’ 25.A 27

P1 25.B 25.A 25

P1 27.A 26.A 25.A 24

P1 27.A 28.A 25.A 19

P1 P2 27.A 25.A 11

P1 P2 28.A 25.A 11

P1 P3 27.A 25.A 10

P1 25.B 27.B 25.A 10

P1 P3 P2 25.A 8

P1 P3 29.A 28.A 25.A 8

P1 P1’ 27.B 25.A 8

P1 P2’ P1’ 25.A 8

P1 P3 25.A 7

P1 P2’ 27.B 25.A 7

P1 28.A 26.A 25.A 7

P1 25.B 26.A 25.A 6

P1 27.A 25.B 25.A 6

P1 P3 27.A 26.A 25.A 5

P1 P2 P3 25.A 5

P1 25.B 27.A 25.A 5
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Table A.26. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer B in rt-rh complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.B 593

P1 27.A 25.B 64

P1 28.B 25.B 51

P1 27.B 25.B 37

P1 84.B 25.B 27

P1 23.B 25.B 25

P1 P1’ 25.B 22

P1 P3 25.B 21

P1 23.B 24.B 25.B 16

P1 P2 27.A 25.B 12

P1 25.A 25.B 12

P1 27.B 26.B 25.B 12

P1 P1’ 27.B 25.B 11

P1 27.A 25.A 25.B 11

P1 28.B 27.B 25.B 10

P1 P2 25.B 9

P1 P3 27.A 25.B 8

P1 27.A 26.B 25.B 7

P1 28.A 27.A 25.B 7

P1 84.B 85.B 25.B 7

P1 P3 P2 25.B 6

P1 P2’ 27.B 25.B 6

P1 25.A 27.B 25.B 6

P1 27.A 27.B 25.B 5

P1 27.A 28.A 25.A 25.B 5

P1 27.B 28.B 25.B 5
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Table A.27. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer A in rt-rh complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.A 368

P1’ 27.B 25.A 44

P1’ P1 25.A 35

P1’ 27.A 25.A 34

P1’ P2’ 25.A 32

P1’ P2’ 27.B 25.A 24

P1’ 23.A 25.A 23

P1’ P2 25.A 16

P1’ 25.B 25.A 15

P1’ 84.A 25.A 15

P1’ P1 27.A 25.A 11

P1’ 23.A 24.A 25.A 11

P1’ P2’ P1 25.A 9

P1’ P2’ P1 P2 25.A 6

P1’ 27.A 26.A 25.A 6

P1’ 27.A 28.A 25.A 6

P1’ 27.B 25.B 25.A 6

P1’ 27.B 26.A 25.A 6

P1’ P2 P1 25.A 5

P1’ P2’ P2 25.A 5

P1’ 25.B 27.B 25.A 5
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Table A.28. Dominant pathways between the P1’ cleavage site and the active site

residue 25 of protease monomer B in rt-rh complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1’ 25.B 276

P1’ 27.B 25.B 67

P1’ P1 25.B 42

P1’ P2’ 28.B 25.B 38

P1’ P2’ 25.B 25

P1’ 27.A 25.B 25

P1’ P2’ 27.B 25.B 21

P1’ 27.B 28.B 25.B 20

P1’ 27.B 26.B 25.B 15

P1’ P2’ P1 25.B 13

P1’ P1 27.B 25.B 12

P1’ P1 27.A 25.B 10

P1’ 25.A 25.B 10

P1’ P2 P1 25.B 9

P1’ P2’ 84.B 25.B 9

P1’ P2’ 27.B 26.B 25.B 6

P1’ P2’ 28.B 27.B 25.B 6

P1’ P1 28.B 25.B 5

P1’ 27.B P1 25.B 5

P1’ 27.B 27.A 25.B 5

P1’ P2’ P3’ 25.B 4

P1’ P2’ 28.B 29.B 25.B 4

P1’ P2’ 84.B 85.B 25.B 4

P1’ 8.A 29.B 28.B 25.B 4

P1’ P3’ 25.B 4

P1’ P3’ 29.B 28.B 25.B 4

P1’ 27.B 25.A 25.B 4
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Table A.29. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in the best members of the largest cluster of MD

simulated wild-type p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 272

P1 P2 25.A 131

P1 27.A 25.A 85

P1 P1’ 25.A 54

P1 25.B 25.A 46

P1 P2 27.A 25.A 35

P1 27.B 25.A 29

P1 28.A 25.A 28

P1 27.A 26.A 25.A 25

P1 P2 28.A 25.A 21

P1 P2 P1’ 25.A 19

P1 27.A 28.A 25.A 13

P1 27.A 25.B 25.A 11

P1 P3 P2 25.A 10

P1 P2 P3 25.A 9

P1 P2 84.A 25.A 8

P1 25.B 26.B 25.A 7

P1 25.B 27.B 25.A 7

P1 P3 28.A 25.A 7

P1 P3 25.A 6

P1 P3 27.A 25.A 6

P1 P2 P3 27.A 25.A 6
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Table A.30. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in the best members of the largest cluster of MD

simulated D30N mutant p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 398

P1 27.A 25.A 87

P1 P2 25.A 83

P1 P1’ 25.A 73

P1 27.B 25.A 38

P1 27.A 26.A 25.A 32

P1 28.A 25.A 29

P1 25.B 25.A 27

P1 27.A 28.A 25.A 19

P1 P3 P2 25.A 15

P1 P2 P1’ 25.A 14

P1 P2 28.A 25.A 13

P1 P3 27.A 25.A 11

P1 P3 28.A 25.A 11

P1 P2 27.A 25.A 11

P1 25.B 27.A 25.A 9

P1 P3 25.A 9

P1 25.B 26.A 25.A 8

P1 28.B 25.A 8

P1 28.B 27.B 25.A 7

P1 P3 27.A 26.A 25.A 7

P1 28.A 27.A 25.A 6

P1 23.B 26.A 25.A 6

P1 P1’ 25.B 25.A 6

P1 P1’ P2 25.A 6
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Table A.31. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in the best members of the largest cluster of MD

simulated N88D mutant p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 316

P1 27.A 25.A 118

P1 P2 25.A 89

P1 P1’ 25.A 44

P1 25.B 25.A 37

P1 P3 27.A 25.A 29

P1 P3 P2 25.A 23

P1 27.A 28.A 25.A 20

P1 27.B 25.A 20

P1 P2 27.A 25.A 19

P1 27.A 26.A 25.A 14

P1 28.B 25.A 12

P1 P3 25.A 10

P1 P2 84.A 25.A 10

P1 P2 P1’ 25.A 10

P1 P2 28.A 25.A 9

P1 P1’ 27.B 25.A 9

P1 25.B 26.A 25.A 8

P1 P2 P3 25.A 8

P1 P1’ 84.A 25.A 8

P1 25.B 27.B 25.A 7

P1 84.B 25.A 7

P1 27.A 25.B 25.A 6

P1 27.B 25.B 25.A 6
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Table A.32. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in the best members of the largest cluster of MD

simulated D30N-N88D mutant p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 541

P1 P2 25.A 136

P1 28.A 25.A 58

P1 25.B 25.A 53

P1 27.B 25.A 52

P1 P1’ 25.A 51

P1 27.A 25.A 46

P1 P2 28.A 25.A 19

P1 P2 84.A 25.A 17

P1 27.A 26.A 25.A 16

P1 28.A 27.A 25.A 15

P1 84.A 25.A 14

P1 25.B 27.B 25.A 9

P1 P1’ P2 25.A 9

P1 P1’ P2’ 25.A 9

P1 25.B 26.B 25.A 8

P1 27.B 26.B 25.A 8

P1 25.B 27.A 25.A 7

P1 28.B 27.B 25.A 7

P1 P3 P2 25.A 7

P1 28.A 27.A 26.A 25.A 6

P1 23.B 27.A 25.A 6

P1 25.B 26.A 25.A 6

P1 P1’ 27.B 25.A 6



161

Table A.33. Dominant pathways between the P1 cleavage site and the active site

residue 25 of protease monomer A in the best members of the largest cluster of MD

simulated D30N-N88D-LP1’F mutant p1-p6 complex structure

Starting point Step 1 Step 2 Step 3 Step 4 Frequency

P1 25.A 311

P1 P2 25.A 156

P1 27.A 25.A 103

P1 P1’ 25.A 47

P1 P2 P1’ 25.A 37

P1 25.B 25.A 34

P1 P2 27.A 25.A 32

P1 27.A 28.A 25.A 19

P1 27.A 26.A 25.A 18

P1 P2 28.A 25.A 15

P1 P3 P2 25.A 12

P1 P2 P3 25.A 10

P1 29.A 28.A 25.A 9

P1 P2 P3 27.A 25.A 9

P1 25.B 27.B 25.A 8

P1 28.B 25.A 8

P1 23.B 25.B 25.A 7

P1 P2 27.A 28.A 25.A 7

P1 P1’ 27.B 25.A 7

P1 29.A 87.A 25.A 6

P1 P3 P2 27.A 25.A 6

P1 27.A 28.A 26.A 25.A 5

P1 27.A 25.B 25.A 5

P1 27.A P2 25.A 5
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