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ABSTRACT

STOICHIOMETRIC MODELS IN METABOLIC SYSTEMS
BIOLOGY OF YEAST

A system-level analysis dBaccharomyces cerevisiae metabolism was performed
through integration of stoichiometric modeling dngh-throughput ‘omics’ data. A bridge
between metabolic networks and transcriptomics luaik by employing the reactions
involved in central carbon metabolism of the bakgmast. The fold changes in control-
effective fluxes (CEF), the weighted sum of caltedbelementary modes passing through
the reactions, were used for the prediction of ftild changes in mRNA transcripts of
metabolic genes on different growth media (glucedenol and galactose—ethanol). An
acceptable correlation was obtained between therdtieal CEF-based flux ratios and
experimental mMRNA level ratios of 38 genes. Apgitity of the approach to mammalian
cell metabolism through analysis of red blood eelzymopathies was also demonstrated.
CEF approach was then employed to investigateréimesdriptional regulation of fluxes in
yeast metabolism for carbon shifts from fermen&f{ylucose) to nonfermentative (ethanol,
acetate, lactate) substrates. An acceptable cborelaas obtained for the analysis of such
perturbation experiments, indicating that fluxesyehst central metabolism are mainly

transcriptionally regulated when there is a shiftarbon source.

An algorithm was developed to integrate metabolaa& with metabolic network
topology. The approach enables identification pbréer reactions, around which there are
significant coordinated changes following a peratidn. Applicability of the algorithm
was demonstrated f@& cerevisiae. Further combination of the results with transaipée

data enabled to infer whether the reactions amatukically or metabolically regulated.

Model-based structural robustness of yeast metholvas analyzed to guide the
research on phenomics. In silico lethality inforimatof gene deletions on different carbon

substrates indicated a more robust metabolisri. foerevisiae than forE. coli bacterium.
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OZET

MAYANIN METABOL iK SISTEM BIYOLOJISI YAKLA SIMIYLA
INCELENMESINDE STOKIiYOMETR iK MODELLER iN ROLU

Stokiyometrik modelleme ve hizli-tarama ydntemlsonucu elde edilen ‘omics’
verilerinin bUtunleik analizi yaklgimiyla maya metabolizmasi sistem bazli incelgtimi
Mayanin merkezi karbon metabolizmasindaki tepkimékez alinarak hesaplanan temel
aki yollarl, metabolik gyapilar ile transkriptom verilerinin butlnkrilmesinde
kullanilmistir. Bu amagla, bir reaksiyondan gecen aki modiariortalamasi alinarak
hesaplanan kontrol-etkili akilarin (KEA) farkl bestamlarinda gostergi degisiklikli gin
(glikoz-etanol ve galaktoz-etanol), 38 genin mRNanskriptlerindeki dgsikli gi basarili
ile 6ngordigl gorulmigtir. Bu yaklgimin memeli metabolizmasina uygulanabigir|i
alyuvarlarda gorilen enzim bozukluklarinin analmiluyla goésterilmitir. Daha sonra,
KEA vyaklasimi ile, maya metabolizmasinin akilarinin karbonyriggl degsisikli gi
durumunda yazilimsal dizeyde kontrol edilebgirlincelenmgir. Fermentatif (glikoz)
karbon kayngindan fermentatif olmayan kaygea (etanol, asetat, laktat) geciurumunda
5 farkli deneyde mRNA seviyelerinde gorilengidili gin, kasilik gelen KEAlar ile
uyumlu old@gu gozlemlenmtir. Bu sonuglar, karbon kaypgadegisikli gi durumunda maya

merkezi metabolizmasi akilarinin yazilimsal duzeyaigtrol edildgini gostermstir.

Metabolom verilerinin metabolik ggapilariyla butunlgtiriimesini salayan bir
algoritma geftirilmi stir. Bu yaklgim, maya metabolizmasinda, etrafinda en ¢@ksdeik
gorulen haberci tepkimelerin tesbitine olanakglaaistir. Sonuclarin transkriptom
verileriyle butunlgik analizi sonucu, tepkimelerin hangi seviyede kontedildigi

(hiyerasik, metabolik) hakkinda ¢ikarimlar yapilabiktii.

Fenomiks alanindaki agirmalara dncul olmasi amaclyla, maya metabolizmasi
model-tabanli dayaniklilik analizi gerceftielmistir. Sonuclar, S cerevisiaegnin E.

coli’'ye gore daha dayanikli ol@unu gdstermektedir.
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1. INTRODUCTION

Systems biology has recently emerged as a promifigld to interpret and
understand the cell at systems level rather thagystg the isolated parts of it. The advent
of high-throughput experimental data collectionhte@logies has been the driving force
behind this new field. The transformation of biotzg research into a data-rich discipline
was facilitated by the sequencing of the first geaan 1995. Today, genomes of more
than 300 organisms have been sequenced, makirgeti@mics one of the highly mature
tools of systems biology. Availability of genomegsence of an organism has led to the
birth of the other high-throughput technologiesmedy transcriptomics (Lockhart and
Winzeler, 2000) and proteomics (simultaneous séngeof the levels of all expressed
MRNA transcripts and proteins in the cell encodgdyenome under certain conditions).
Apart from the genetic material, simultaneous datacf the levels of small biochemical
species, called metabolites, has been another,féeading to a new field in data-rich
biology, called metabolomics (Mendes, 2002). Thaveosion of these metabolites into
each other through synthesis or decomposition isitm@d by the enzymes, proteins with
catalytic activities. The high-throughput quangfion of the flux of the metabolites
through enzymatic reactions is called fluxomicsnfBed et al., 2002). Phenomics, on the
other hand, refers to high-throughput screeningediilar fithess or viability under certain

conditions.

Systems biology deals with the analysis and intemgraof different types of ‘omics’
datasets through the use of computational tootdbtain overall quantitative description of
cellular systems. Thereby, cells can be monitaredilico, facilitating more complete
understanding of cellular functions. Computatiomaideling constitutes a crucial step in
systems biology cycle, where dy silico experiments such as simulations can be used to
generate the assumptions and hypotheses. Wet expes can be conducted to test the
predictions of the models. Accordingly, models banimproved, and this cycle continues
until an overall quantitative description of ceflulfunctions is obtained (Kitano, 2002).

Therefore, modeling tools are central to systenellemderstanding efforts.



Metabolism is a good starting point for systemddgg research as it is studied in
great detail and well annotated. Small-scale mdialamalysis of many organisms, from
prokaryotes to mammalian cells and human, has Ipsgformed through static and
dynamic modeling approaches. Genome-scale metastolichiometric models have been
developed for more than 10 microorganisms, fatititathe system-level understanding of
cellular metabolism.

The aim of this study is integrated consideratidntltee metabolism of yeast,
Saccharomyces cerevisiae, through the use of ‘omics’ data and computatidoals. The
background aspects of the conducted research esernged in the second chapter, entitled

as “Background Aspects”. The following chaptersadeesearch under four main topics.

The first section of the third chapter introduclee application of a novel approach
which links transcriptomics to fluxomics. Transddmic response ofS cerevisiae
metabolism to carbon source perturbations was mdxiairom literature (Deriset al.,
1997; Griffinet al., 2002). Metabolic pathway analysis was used émtifly a number of
flux distributions, called elementary flux modesheTl weighted combination of these
distributions enabled assignment of a flux to eaoaymatic reaction included in the
stoichiometric small-scale model (53 reactions)m@arison of the fold change in these
fluxes, called control-effective fluxes (CEF), witte fold change in corresponding mRNA
transcripts led to an acceptable correlation. Twid section in this chapter presents the
application of this approach to a mammalian celtabelism. The response of red blood
cell metabolism (36 reactions) to enzymatic deficies, called enzymopathies, were
investigated by calculating control-effective flexdéor non-deficient case and for the
deficiency of five enzymes. Results reported ieréiture were used to identify relative
importance of reactions in red blood cell metalmliand, to verify the changes in CEFs in

response to each deficiency by generaitmglico deficiency profiles.

The fourth chapter focuses on the analysis of trgptsonal regulation of metabolic
fluxes of S cerevisiae. Using a relatively larger model (83 reactionig transcriptomic
response for five carbon source perturbations {twchemostat in respiratory mode, three

in batch in respiro-fermentative mode) were comgpavéh the flux response, obtained by



CEF calculation. Results indicated that transcnpo changes are hierarchically

transmitted into flux level when the perturbatisnri carbon source.

The fifth chapter gives the detailes of the redeaat metabolomic level. A new
approach was developed to integrate metabolomi w#h the metabolic stoichiometric
model. A genome-scale yeast model was preprocessgdised as a scaffold to identify
reporter reactions, the reactions which signifigameéspond to the environmental and
genetic perturbations through changes in the lesedsirrounding metabolites. A software
package, named as RepRxn MX (Appendix G), was deeel to automate the
computational analysis. The approach was then mdieally integrated with
transcriptomic data, which enabled identificatioh regulation, i.e. whether a given
reaction is regulated at the metabolic or at tlamdcriptional (hierarchical) level. The
results indicate that although there are many noéitally regulated reactions in the
metabolic network, regulation is predominantly arehical. This study can be regarded as
one of the first steps towards the integration iffiecknt types of omics data by using
metabolic networks as a scaffold in order to undexd the architecture of metabolic

regulatory circuits.

Theoretical investigation of structural metabolicbustness ofS cerevisiae is
discussed in the sixth chapter. Different measafestructural robustness were compared
for yeast metabolism. Thie silico survival of the cell in response to single or rimpldt
gene deletions was the basis for the approach.aflvent in the phenomics area will

enable the refinement and verification of the rssptesented in this chapter.

The summary of the main results and main contrdmstito the research field are
given in the “Conclusions and Recommendations” tdrags well as the recommendations

for future work.



2. BACKGROUND ASPECTS

2.1. Metabolic Engineering

Metabolism is the chemical engine that drives ikend process (Edwardst al.,
1998). Metabolic engineering has emerged in theé ¢gesade as the interdisciplinary field
aiming to improve cellular properties by using madgenetic tools to modify pathways
(Stafford and Stephanopoulos, 2001). It was defiasdthe directed improvement of
cellular activities through the modification of sifec biochemical reaction(s) or the
introduction of new one(s) with the use of recomalinDNA technology. (Figure 2.1)
(Bailey, 1991; Stephanopoulost al., 1998). The rational approach of metabolic
engineering seeks identification of the criticathsa(or the metabolic bottlenecks) in a
producing strain’s metabolism and then directsviagt genetic engineering methodology

to manipulate the identified enzyme systems (Vaegblemet al., 1996).

Inexpensive Carbon Source

(eg. Glucose) Industrical Chemicals

Metabolically Engineered
Cell

Vitamins

Biopolymers
Pharmaceuticals
Figure 2.1. Metabolic engineering approach

On the experimental side, metabolic engineeringlieatmons have focused on
pathway modifications in microorganisms to congtran improved strain of interest.
There are a number of experimental tools utilizedyeénetically modify and analyze the
cellular function for this aim (Nielsen, 2001). Beetools are (Nielsen, 2001);

- availability of suitable strains and vectors thatlgle rapid transformation with
reasonable transformation efficiency,
- access to promoters of varying strength,

- use of disruption cassettes to introduce specéietic changes



- improved gene cloning techniques

The application of these tools led to the achievemé the following improvements
in the metabolic engineering perspective (Stephamlog et al., 1998; Ostergaaredt al.,
2000; Nielsen, 2001),

- expression of heterologous genes for protein priboiuc
- extension of substrate range

- engineering pathways leading to new products

- engineering for the degradation of xenobiotics

- improvement of overall cellular physiology

- elimination or reduction of by-product formation

- improvement of yield or productivity.

On the modeling side, mathematical models have beed to elucidate the structure
of metabolic pathways and distribution of kinetantrol in metabolic pathways (Stafford

and Stephanopoulos, 2001), which is discussedtail de the following sections.

2.2. Models in Metabolic Engineering

The explosion in experimental data within biologgshincreased the attempts to
develop mathematical models for description of utatl functions. One special focus
within the biotechnology field is the cellular mietdism, since it has potential to be
exploited for the production of compounds that midimd industrial application as
materials, pharmaceuticals, food additives, andrsoThe metabolism of a living cell,
however, is subject to regulatory mechanisms sinbheuses a number of interconnecting
pathways that consist of hundreds of reactionss@hegulatory mechanisms are difficult
to identify since they are not completely elucidayet. Thus, the establishment of whole-
cell models to fully describe all aspects of caiubehavior in terms of its metabolism is,
to date, not possible and all models are therdbased on simplifications. (Gombert and
Nielsen, 2000).

Mathematical models that describe the cellular b@ism play a central role in the

rapid developing field of metabolic engineering (@mert and Nielsen, 2000). There are



two major classes of metabolic design tools, namstgichiometric models and flux
analysis, and dynamic (kinetic) mathematical moaélsnetabolic networks (Varner and
Ramakrishna, 1999; Gombert and Nielsen, 2000). Bymamodeling requires the
knowledge of rate expressions and kinetic parametanich is usually possible only for a
small part of the cell metabolism, and mostlyrivitro conditions. Stoichiometric models,
on the other hand, are based only on the readiiachgometry and reversibility, which are

easy to obtain.

- Stoichiometric Modeling of Metabolism
b. Metabolic Flux Analysis
Flux Balance Analysis
Metabolic Network Analysis with Isotope Labeling

Metabolic Pathway Analysis

-~ ® 2 o0

Sampling Solution Spaces

g. Graph Theoretical Methods

- Kinetic Modeling of Metabolism
h. Dynamic Models
i. Cybernetic Models
j.  Metabolic Control Analysis

2.3. Stoichiometric Modeling of Metabolism

Formulation of stoichiometric models requires twpds of metabolic information.
First, metabolic stoichiometry is required to colamll the chemical reactions that take
place in the metabolic network of interest. Theoseicneeded information type is about the
demands placed on the metabolic system, such amab® synthesis, maintenance
requirements and secretion of products. Afterwattiis collected metabolic information is
put into the appropriate mathematical frameworkr(Waand Palsson, 1994). That is, mass
balances are set up around intracellular metakpkthich lead to a stoichiometric matrix,
S. This matrix puts a constraint on the cell sucét @l metabolic fluxes leading to the
formation and degradation of any metabolite musdrze, as represented in the following
balance equation (Varma and Palsson, 1994, Stepbaluset al., 1998):



Sv=b 2.1)

Here,v is the metabolic reaction rate vector subjechwreversibility/ irreversibility
constraintsvmin < V < Vinax , andb is the vector representing the net metabolite keptay
the cell. The principles and related methods oficetometric modeling, which are

discussed in the subsequent subsections, are sugechar Figure 2.2.

2.3.1. Metabolic Flux Analysis

Metabolic Flux Analysis (MFA) has been widely uded the quantification of the
intracellular fluxes (steady state rates) in theaibelism of bacterial, yeast, flamentous
fungi and animal cells. In MFA, mass balances oa#rthe metabolites represented in
matrix notation in Equation 2.1 are used to cakeulthe fluxes through the different
branches of the network, enabling the identificaid a snapshot of the metabolism under
a particular condition. The fluxes are calculatgddombining measurements of a few
fluxes with linear algebra to render a determir@do{/erdetermined) equation system with
zero degrees of freedom (Gombert and Nielsen, 200 directly measurable metabolic
fluxes are the extracellular fluxes like productregion, substrate uptake, oxygen uptake
or carbon dioxide evolution and the growth rateepfanopoulogt al., 1998, Wiechert,
2002). Stoichiometry-based MFA complements theckiometric relations by integrating
them with the measured fluxes. If the flux measwets are nonredundant and they make
the degrees of freedom of the system at least teeo, all intracellular metabolic fluxes
can be estimated from the data. Thereby, (i) thecstral identifiability of the fluxes can
be decided, (ii) all fluxes, including the non-measl extracellular fluxes, can be
computed efficiently, (iii) a confidence region ftre estimated fluxes can be computed,
(iv) the measured data can be derived explicithd &v) gross measurement errors can be
detected. Thus, MFA is a mature tool for metabetigineering (Wiechert, 2002).

2.3.2. Metabolic Network Analysis with Isotope Labling
This is the extension of measured data set usedfok by °C carbon labeling

measurements (Wiechert, 2002). When the mateailalnbes used in traditional MFA are

combined with balances of the labeling patterrhefrmetabolites, the models become non-
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Figure 2.2. Principles and methods of stoichiometrodeling

linear. The additional information supplied by m&&snents of the labeling pattern of the
metabolites do allow for more reliable quantificatiof the fluxes, as well as analysis of
the pathway topology and possible reversibilitieiere, cells are fed with’C-labelled
substrates, and tH&C-enrichment in different carbon atoms of indivitloeetabolites are
measured using NMR or GC/MS. The enrichment paitefnndividual carbon atoms give

unique information about the activity of differeaperating pathways. This technique,



MNA, enables the identification of compartmentatiwinenzyme and metabolites within
the cell as well as that of futile cycling and nitlic channeling (Gombert and Nielsen,
2000, Christiensen and Nielsen, 1999, Forster, 2003

2.3.3. Flux Balance Analysis

Often it is not possible to determine an appropriaumber of experimental
constraints and hence to decrease the degrees@dofn to zero for estimating the
metabolic fluxes in the resulting determined modgl MFA. Since the system is
underdetermined, meaning that the number of unksoisngreater than the number of
equations, there is no unique solution. In thisscéise metabolism can be investigated by
formulating the stoichiometric model with an objeetfunction, such as the optimization
of growth (Fdrster, 2003)Hereby, the stoichiometric relations are complemeéry a
linear or quadratic metabolic optimization criteridgseveral criteria like maximal growth
rate, maximal product formation or minimal ATP puatlon for a given substrate uptake
can be investigated to get the corresponding opfilera distribution. Such a formulation
is a classical linear or quadratic programming fEobsince an optimality criterion is used
to solve the metabolic flux balances to computaigue solution due to the insufficiency
of the number of measured fluxes (Wiechert, 20D2}ailed formulation of FBA approach

is presented in Appendix A.

In underdetermined systems, a plurality of solutidists. The cell has an infinite
number of choices on how to distribute its metabfilixes. This choice is constrained by
the stoichiometric balance equation (Equation ari reaction reversibilities, which forms
a domain of stoichiometrically allowable behaviétlte microorganism (Figure 2.3). This
allowable space defines thmetabolic genotype of the strain since it describes the
metabolic flux distributions that can be accomp@i$lwith the metabolic enzymes that the
strain possesses (Varma and Palsson, 1994). Witisnfeasible domain, a single flux
distribution is sought based on linear or quadrafiimization. Namely, microorganisms
make their choices among several possibilities hef teasible domain such that their
survivability is enhanced. The found single fluxstdbution represents the strain’s
metabolic phenotype under the particular conditions (Figure 2.3). they words, metabolic

genotype gives the domain of all possible fluxriisitions for a strain whereas metabolic



10

phenotype is the optimum flux distribution of thigagn within this domain for a given
environment. In this manner, FBA is an importartl tto determine metabolic phenotype

of the organisms quantitatively. (Varma and Palsi8084).

3

Metabolic Flux Vo

Metabolic Flux v

Metabolic Flux v,

Figure 2.3 A hypothetical feasible domain defined by Equatoh, with the optimum
point (metabolic phenotype) shown by a thick pokdapted from Varma and Palsson
(1994)

The linear optimization problems in FBA often exhitmultiple optimal solutions.
This means that a number of flux distributions nexyst that lead to the same optimal
objective value (Fdrster, 2003). Methodologies developed to calculate all these
alternate optima (Leet al., 2000, Phalakornkulet al., 2003, Mahadevan and Schilling,
2003, Zhuet al., 2003).

2.3.4. Metabolic Pathway Analysis

The previous methods, MFA, MNA and FBA, allow theaulation of a particular
solution, whereas metabolic pathway analysis (MEAAbles the screening for a number
of different flux distributions or even the comptia of all theoretical possible pathways
within the defined metabolic network (Forster, 2D0Bhus, MPA is one of the main

approaches for the flux analyses of metabolic neksv@Papinet al., 2003; Schillinget al.,



11

1999). It is used to define the structure of theaielic network and the overall metabolic
capabilities of the microorganism. The method ne@&d®rmation only about the
stoichiometry and the reversibility or irreversityil of reactions. Given the enzymatic
reactions occurring in a particular microorganisath,possible routes are determined and
analyzed. The possible paths from a substrateddugis are depicted in Figure 2.4 for an

example system.
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Figure 2.4. Graphical representation of 4 EFMsroégample network with 10 reactions

and 8 metabolites

An important tool used in MPA is the detection témeentary flux modes (EFMs).
An EFM is a minimal set of enzymes that could ofeert steady state, with the enzymes
weighted by the relative flux they need to carry toee mode to function (Schustetral.,
1999; Schustest al., 2000; Schustest al., 2002a). EFM analysis allows the discovery and
analysis of meaningful routes in metabolic netwof&sntrol-effective flux (CEF) analysis
is another tool in assessing metabolism by allowtimg quantification of EFM results
(Stelling et al., 2002). The CEFs, which are directly determineminfrthe set of EFMs,
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represent the importance of each reaction in a oésta for efficient and flexible
operation of the entire metabolic network. Therefggulatory events of metabolism are
implicitly incorporated. The method was succesgfulipplied to E. coli for the
functionality analysis based on the theoreticainestion of gene expression changes
(Stellinget al., 2002).

An alternative approach to the concept of EFMsxiseene pathways, EP, developed
by Palsson’s group (Schilling al., 2000, Palsso&t al., 2003, Klamt and Stelling, 2003a).
Both approaches use convex analysis of the nultespar the stoichiometric matrix in
order to calculate a unique set of pathways. InaBRlysis, a set of positively linear
independent pathways mathematically equivalenhéedges of a convex solution cone
are calculated, while in EFM analysis the methosb dhcludes some positively linear
dependent pathways and this allows the direct tatlon of all theoretically possible
pathways within a metabolic network. Although EPee amathematically = more
fundamental, it is more often easier to interphet EFMs from a biochemical perspective
(Forster, 2003).

Elementary modes are the smallest functioning sitdoiha metabolic network. This
motivates the hypothesis that they are also gealtiegulated as a unit. Hence, this is a
promising approach to the development of functiogahomics tools (Wiechert, 2002,
Schustekt al., 2002b).

2.3.5. Sampling Solution Spaces

Metabolic pathway analysis enables investigationwarall metabolic capabilities of
the organism of interest in defined environmentaiditions, by simultaneous analysis of
the calculated EFMs or EPs. However, it is not eotly possible to apply MPA to the
recent genome scale metabolic models, since theedse in the number of included
reactions leads to an exponential increase in tmaber of EFMs, thereby making it
impossible to calculate EFMs with current algorithifKlamt and Stelling, 2002). An
alternative approach therefore is the uniform ramd@mmpling of the flux solution space
defined by the stoichiometric constraints and iieaateversibility information (Figure 2.3).

One distinguishing feature of the collected fluxstdbutions by random sampling
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compared to EFMs is that they are not confinechtoddges. That is, unlike EFMs, they
mainly belong to the inner space. Sampling methad® been recently used for a genome
scale metabolic model @&. coli (Almaaset al., 2004); a model of human mitochondrial
metabolism (Thieleet al., 2005), and red blood cell metabolism (Priteal., 2004a;
Barrettet al., 2006).

/oo

Figure 2.5. Sampling of solution spaces. (a) Mdd&eto sampling by generating random
points within an enclosing shape (b) Point colmtitan be impossible in some cases (c)

Hit-and-Run sampling, starting from an initial pb{@) inside the solution space

One fundamental approach for uniform random sargpk Monte-Carlo approach,
where the solution space is enclosed with a muaitdisional shape whose dimensions and
volume are known (eg. Hypercube, hypersphere),pariickts which are guaranteed to fall
into the enclosing space are randomly generateén,Tthose which satisfy the inner

solution space is identified and stored, for furtiealysis (Figure 2.5.a).

Although it is simple to implement Monte-Carlo apach for systems with small
dimensions, the inner solution space becomes taall gor bigger systems, eventually
leading to a situation where none of the randomlyegated samples falls within this space

(Figure 2.5.b). Therefore, alternative approachesevdeveloped, which does not need an
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enclosing shape, and guarantees to remain alwaggwie solution space of interest. One
such approach is Hit-and-Run algorithm (Snetrel. 1984). Here, starting from a point
(flux distribution) which is known to be inside tkelution space satisfying stoichiometric
constraints, a random line passing through thisitpgi drawn, and its intersection points
with the edges of solution space are determinednTtandom sampling within this line is
performed, which ensures that obtained points ivays within the feasible domain. This
procedure is repeated until a desired number oftpare collected (Figure 2.5.c). Those

flux distributions can be used to calculate congfftdctive fluxes.

2.3.6. Graph Theoretical Methods

Metabolic networks have potential to be analyzedgbaph-theoretical tools after
they are transformed into a graph-like represesatirhis method does not utilize the
stoichiometric coefficients of reactions, but rathequires the stoichiometric reactions in
order to identify and depict the interactions beiwenzymes (reactions) and metabolites.
There are two main representation types, subst@gi@oh and bipartite graph
representations. Commonly used type is substragound) graph (Figure 2.6) where
metabolites correspond twdes, and reactions correspond to connectidinks) between
these nodes (Ma and Zeng, 2003). The physical mgasf the link is the temporary
educt-educt (substrate-substrate) complex itselfihich enzymes provide the catalytic
scaffolds for the reactions yielding products, whim turn can become educts for
subsequent reactions. This representation allowstesatical investigation and
quantification of the topologic properties of varsometabolic networks using the tools of
graph theory and statistical mechanics (Jeeng., 2000). The results obtained from a
graph-theoretical perspective are helpful for ustterding the general organization of
metabolic networks (Klamt and Stelling, 2003b).

Two important characteristics of graphs are conwiggt(degree) of nodes and path
length between nodes. Connectivity of a node ismtlmaber of links (edges) attached to it.
A path length is the number of edges connecting riode to another. Average shortest
pathway is of particular interest and known alsdhesnetwork diameter. If the network
diameter is low, this means that the interactiomvben the nodes of the graph is high, and

a perturbation in one part of the network can gamibpagate and affect the other parts.
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The structure of metabolic networks was studiedgigiraph theory in detail (Jeong
et al., 2000; Wagner and Fell, 2001; Ma and Zeng, 20@Bnkeet al., 2004). It was found
that most of the nodes in metabolic networks havewaconnection degree, while few
nodes have a very high connection degree, asrdhest in Figure 2.7 (from Jeomtjal.,
2000). Such networks are called scale-free netwaksd their connectivity distribution
follows power law. The high degree nodes dominheenetwork structure, and they are
called hubs of the network (Ma and Zeng, 2003).tdldelic networks were found to have
a small network diameter. Such networks are saitletesmall-world networks since to

reach from any node to another is on average shdrich further implies a high
interconnection between the nodes.
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Scale-free

Figure 2.7. In the scale-free network most nodeslonly a few links, but a few nodes,

called hubs, have a very large number of links ¢hare shown as black nodes)

2.4. Kinetic Modeling of Metabolism

The availability of detailed information about thenetics of specific cellular
processes (eg. enzyme-catalyzed reactions, prptetein interactions, or protein-DNA
binding) enables analysis of the dynamics of th®eesses by combining kinetics with
the known stoichiometry of metabolic pathways (Gemland Nielsen, 2000). However,
the main disadvantage of such models is the remeiné of kinetic parameter values
appearing in the rate expressions. Even if avalabl some extent, many of these
parameters originate fromm vitro experiments, rather than vivo observations. In fact,
cells exhibit different behaviouns vivo, which cannot be predicted bg vitro kinetic
models (Teusinlet al., 2000)

2.4.1. Dynamic Models

By utilizing the available kinetic information abiothe enzymes of the selected
pathways, one can simulate the cell behaviourdyreamic manner in order to predict the
levels of intracellular and extracellular metalesdiin response to a disturbance to the cell.
Most detailed kinetic models available in liter&ware for the two model microorganisms,
S cerevisae andE. coli (Rizzi et al., 1997; Chassagnokt al., 2002). These models are
limited with the reactions of central carbon metao (EMP pathway, PP pathway, TCA
cycle, respiratory chain) since the rate expressioinother pathways, such as anabolic
reactions leading to the synthesis of building kéofor the cell, cannot yet be represented

by kinetic expressions. The validation of the med®} the collected experimental data is
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currently not promising since there are large @igancies for a number of intracellular
metabolite profiles. This can be attributed to thee ofin vitro kinetic parameters. In

addition, timescale used for the comparison (a fewwutes) is quite limited to take into
account the phenomena like enzyme synthesis anchdigpn (Gombert and Nielsen,
2000).

2.4.2. Cybernetic Models

Regulatory aspects of cell metabolism can be adeduby applying cybernetic
principles. Here, kinetic models are integratechwigbernetic variables, which are thought
to represent cell regulatory architecture, esplycgane expression (Gombert and Nielsen,
2000, Varner and Ramkrishna, 1999). The princigethat physiology operates to
optimally satisfy nutritional objectives. The retsut model is postulated to be capable of
predicting modification of enzyme expression antividg profiles in response to genetic
or environmental perturbation (Varner and Ramkrsh999). Although the approach has
a number of applications (Altingaet al., 2002), it bears the stated drawbacks of kinetic

models as stated above.

2.4.3. Metabolic Control Analysis

Metabolic Control Analysis (MCA) replaces the qtetive terms of ‘rate-limiting’
and ‘not rate-limiting’ by a quantitative scale datne effect of an enzyme on a metabolic
flux is then represented by flux control coeffidigfell, 1997). Thus, MCA allows the
quantification of flux control within a pathway. Ud control coefficients represent the
relative increase in a given flux within the patlywd interest in response to an increase in
the activity of an enzyme of the pathway (Niels2®Q1; Stephanopoulas al., 1998). The
most important result of MCA for metabolic engiriegris that the control of flux through
a pathway is usually distributed over many différemzymatic steps constituting the
pathway. This fact points out that a single genetatlification will hardly result in a large
change in the flux distribution (Wiechert., 2002).

There are different approaches for the calculatbbrcontrol coefficients. Direct

approach utilizes experimental methods such astigemanipulation, enzyme titration and
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inhibitor titration to construct a curve of the dga in the pathway flux in response to the
alterations in the enzymatic activity. The slopetlog curve at any enzyme activity gives
the control coefficient of that enzyme at that pdectivity). (Fell, 1996). Although the
experimentalin vivo determination of control coefficients is a helpfapproach for
modeling and model validation, it is difficult t@rstruct such a curve, since a number of
perturbations are required to induce alterationthe activity of the enzymes of interest
(Wiechert, 2002).

Indirect approach for the calculation of controkffwients requires information on
enzyme kinetics. Kinetic rate expressions are reeggdo calculate elasticity coefficients,
a local property reflecting the response of stestdye reaction rate to a perturbation in the
metabolite concentrations. Elasticity is calculafed each reaction in the system by
introducing an infinitesimal change in a metabolttencentration and calculating the
resultant effect on the rate of that reaction bingishe kinetic rate expression. Calculated
elasticity coefficients are combined with the tlesos of MCA to obtain a quantitative
estimation of control coefficients (Stephanopouébsal., 1998; Heinrich and Schuster,
1996; Fell, 1997). This approach is of importandeewit is difficult to use direct methods.
However, the calculated values of control coeffitsestrictly depend on the way the
kinetic model constructed, reaction reversibilitiaad the regulatory events accounted in

the rate expressions.

2.5. Systems Biology Approach anth silico Biology

A metabolite, an enzyme or a gene in cellular systdo not function on their own,
independently from the rest of the system, but t#weyhighly interconnected to the other
entities. This means that cell must be analyzed atwork rather than analyzing its
constituents in an isolated manner. This view leasto the birth of a new discipline,
called systems biology, aiming at understandindolgip at system level. Systems biology
can be defined as (Klipgt a., 2005) “the coordinated study of biological sysseby (1)
investigating the components of cellular networkel @heir interactions, (2) applying
experimental high-throughput and whole-genome teglas, and (3) integrating
computational methods with experimental effortsieTdriving force behind this new field

is the achievability of high-throughput data collen, which allows the simultaneous
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measurement of gene expression (transcriptomics)teip abundance (proteomics),
metabolite levels (metabolomics) or fluxes (fluxoB)iat genome level. All these —omes
are closely interconnected within the cell, consitilg a hierarchical structure (Figure 2.8).

Holistic analysis of this structure at system lefeeins the field of systems biology.
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Figure 2.8. Interaction of different —omes in d,cabnstituting a highly interconnected

system. From Nielsen and Oliver, 2005
2.6. Transcriptomics: DNA chips

Earlier methods for transcription analysis sucmaghern blots allowed analysis of
only a few genes at a time. High-throughput tecbgiels have been recently developed
enabling simultaneous analysis of mMRNA levels bfjahes in a genome. Knowing when,
where and to what extent a gene is expressed tsatén understanding the function of
genes. Hence, use of DNA arrays is promising (Lackand Winzeler, 2000, Hollowag
al., 2002).

The use of DNA arrays for expression profiling &sbkd on the fundamental process
of hybridization. A DNA array is simply a surfacéapsolid support (e.g. glass) with about
1 cm x 1 cm dimensions, containing large sets omdahbilized nucleic acid probe
sequences at addressable locations available foridigation. This is referred as
downloading the genome onto a chip. Then, RNA isaexed from the biological sample
of interest, and labeled RNA or DNA target sequsenaes produced by a number of
sample preparation steps. The mixture of labelegkta is then applied to the DNA array

under controlled conditions to allow hybridizatiomith complementary immobilized
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probes located on the array surface (Bro, 2003¢rdlhy, individual cDNAs/cRNAs from
the target mixture hybridize (bind) with the coperding probe on array, proportionally
to their representation in a sample (Olieerl., 2002). In this design, the probes on the
array act as immobile substrates whereas the sanfjaligets) applied onto the array are
mobile substrates. After the hybridization steppfescent labeling is used to locate and
quantify the binding of applied target sequencesh&wr complementary probes on the
array by imaging with a light scanner. The resgltiscan is further processed using
specialized computer softwares to calculate amsity value for each gene represented on
the array (Bro, 2003). The data can then be furdinatyzed to identify expression patterns
and variations that correlate with cellular phys@l and function. The resultant
information can be helpful in assigning function smknown genes, expanding our
understanding of cellular processes, identificatbipotential drug targets and generation
of genome-wide snapshots of transcriptional agtivit response to any stimulus or

perturbation (Harringtoet al., 2000).

Two basic types of arrays are available to; spottedroarrays and high-density
oligonucleotide arrays (Bro, 2003, Harringteinal., 2000, Oliveret al., 2002, Lockhart
and Winzeler, 2000). In spotted arrays, pre-syritleessingle or double-strand DNAs are
printed onto glass slides whereas in oligonucleotiirays, developed by Affymetrix
(Lipshutz et al., 1999), sets of oligomers are synthesized in @ituglass wafers using a
photolithographic manufacturing process. On spotegys, genes are represented by
single cDNA fragments, greater than several hundbede pairs in length. On
oligonucleotide arrays, a given gene is represebyed probe containing 15-20 different
25-mer oligonucleotides that serve as unique, semuespecific detectors. This
representation minimizes the cross-hybridizatiotwieen similar sequences (Harringten
al., 2000, Oliveret al., 2002). Additionally, there is only one probe panscript in spotted
arrays whereas Affymetrix oligonucleotide arraysitain 22-40 probes per transcript
increasing the credibility.

2.6.1. Sample Preparation and Hybridization

Total RNA is extracted from the harvested cell sspfrom which mRNA is
isolated by exploiting the poly-A tail containednmost eukaryotic mMRNAs. Next, mMRNA
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is converted to cDNA. The single-stranded cDNA mpé&yed for further synthesis of
double-stranded cDNA in the procedure of Affymetdkips. Isolated double-stranded
cDNA is used to synthesize cRNA via vitro transcription reaction. Afterwards, the
cRNA is fractionated to fragments of length 35-20fleotides. Finally, the fragmented
cRNA is hybridized to DNA array, washed to remowan+hybridized material and then
stained with a fluorescent dye. Labeling of the ligp target is required to detect

hybridization on an array (Bro, 2003).
2.6.2. Data Analysis

Affymetrix GeneChips contain more than 22 probes fpanscript, to enable an
improved estimate of intensity detection for eacmnscript. Intensity of each gene is

calculated from the corresponding probe sets.

There are three fundamental steps required focieffi and effective data analysis:

data normalization, data filtering, and pattermitfecation (Harringtoret al., 2000).

2.6.2.1. NormalizationDirect comparison of expression values (gene sit&s) usually

requires normalization of data, either between gohisamples or across a set of
experiments (Harringtoet al., 2000). Namely, normalization is necessary to entie

gene expression levels on the arrays comparabt@nfmon approach for this is based on
the assumption that the total amount of mMRNA framhesample (array) is constant. Thus,
all expression levels from an array can be mu#igpplby a scaling factor to make the sum of
all expression levels the same for all arrays (B2003), but there are also more

sophisticated methods like non-linear scaling (Balst al., 2003).

2.6.2.2. Data Filtering and Statistical Analy$idNA expression array studies usually aims

at identification of differently expressed genesoime or several samples compared to a
control. Thus, following the normalization steptalahould be reduced by filtering out
uninformative genes; for example, genes that apeessed below a user defined threshold
or genes that show no variation in their expresswel during the course of experiment
(Harringtonet al., 2000).
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The easiest way to identify the magnitude of chainggene expression levels is to
calculate how many folds the expression change.dvew in order to gain confidence in
that the observed changes are a result of truegelsaof mRNA levels in the cell rather
than due to experimental errors, it is of impor@aiba have replicates and to use statistical
tests. Typically, widely known statistical testxluas t-test (to compare two conditions)
and ANOVA (to compare multiple conditions) can Ippled to associate the change with
a probability, called p-value. Alternative methais also continuously developed such as
the Significance Analysis of Microarrays (SAM) (Thes et al., 2001) and RankProduct
(Breitling et al., 2004). When, as in the case of DNA array datgelamounts of data are
simultaneously tested using statistical tests, embion for multiple testing must be
employed using Bonferroni or Benjamini-Hochbergreotions (Kaminski and Friedman,
2002; Bro, 2003).

2.6.2.3. Pattern Identificatiohe next step is to identify patterns and groupthéendata

that can be used to assign biological meaning ¢oetkpression profiles (transcriptional
data). Clustering programs such as hierarchicateting and k-means clustering can be
used for this purpose (Harringtehal., 2000, Hallowayet al., 2002). Clustering methods
attempt to identify genes that behave similarlyoasra range of conditions or samples.
Genes that demonstrate similar patterns of expressie hypothesized to share common
regulatory elements or common functions (Kaminskd &riedman, 2002). The main
advantage of clustering tools is that they elinentdte inherent difficulty in becoming
familiar with the results, allowing the investigato analyze the data in an automated and
practical fashion. In general, it is recommendedgply more than one clustering method
to a dataset. The results of several methods asdvafral gene filtering schemes should be
compared to decide on what is the true signalendidwtaset of interest. The decision should
lie on the reproducibility of the clusters by varsomethods. Thereby, independent of the
chosen analysis method, one can confidently coecilmbut whether the observed patterns

represent true biological phenomena (Kaminski ameldiman, 2002).

2.7. Metabolomics: Metabolome Analysis and Metabiie Profiling

There are three main approaches in metabolic daéysis: metabolite profiling;

metabolomics, and metabolic fingerprinting (FieB@01; Fiehn and Weckwerth, 2002).
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Metabolite profiling is the analysis and quantifioa of pre-defined metabolites
belonging to a certain biochemical pathway or adethemically related compounds.
Metabolomics, on the other hand, has the ultimatal @f unbiased identification and
quantification of all the metabolites present igeatain biological sample irrespective of
their chemical similarity or their co-occurrence @ pathway. The third approach,
metabolic fingerprinting gives a rapid classificati of samples without aiming at
identification and quantification of metaboliteangerprinting approach can be used in
genotype discrimination. Here, only the data paten the form of the whole spectra are
compared without any knowledge of which peaks bglmnwhich metabolites. It requires
little or no sample preparation, compared to theoapproaches. (Fiehn, 2001; Fiehn and
Weckwerth, 2002). There is also a closely relatmint metabolic footprinting, which
depends on the generation of spectra for only eglitdar metabolites, without again any
quantification (Allenet al., 2003).

Metabolomics is the most recent face of functiageiomics. Like other ‘omics’, it
is a non-targeted approach to study biological pheana, by simultaneous profiling large
number of small organic molecules (metabolites)oentered in an organism (Mendes,
2002). Whereas there has been significant progndsigh-throughput profiling of mRNAs
and proteins, comparably less effort has beenmot profiling the end products of gene
expression, metabolites (Figure 2.9; Fiehn, 200amr&r et al., 2003). The major
underlying reason is the current inability to coatpnsively profile all of the metabolome
because of limitations such as chemical compldgtymneret al., 2003). The genome and
transcriptome are made up of linear polymers ofr faucleotides with very similar
chemical properties, which render high throughmalgtical approaches possible. This is
also valid for proteome, which, although being sabsally more complex, is still based
on a limited set of 22 primary amino acids. Whee sarveys metabolome, however, the
chemical complexity is considerably greater. Consedjy, the chemical diversity and
complexity of the metabolome is a challenging lingt factor to profile all of the

metabolome simultaneously (Summeal., 2003).

Changes in transcriptome or proteome do not alvwayselate with alterations in
biochemical (metabolic) profiles. On the other hatid components of the metabolome,

metabolites, define the biochemical phenotype o€lf and can be regarded as the final
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output of gene expression (Figure 2.9). Hence, nodétane profiling can provide the most

functional information among the omics technolog®smneret al., 2003).
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Figure 2.9. Metabolomics is the end product of geaowith, among the omes, most direct

relation to phenotype. Adapted from Nielssgtml., 2004

2.7.1. Metabolite Identification

A variety of analytical methods is available to geate metabolite profiles, with
emphasis in mass spectrometry (MS) and nuclear et@gresonance (NMR) (Mendes,
2002). Among the other methods to profile metabaomare LC (liquid
chromatography)/UV (ultraviolet), GC (gas chromagqiny)/MS, LC/MS, LC/LIF (laser
induced fluorescence) and CE (capillary electrophis)/LIF. The selection of the most
suitable method is generally a reconciliation betmepeed, selectivity, and sensitivity. For
example, NMR is rapid and selective, but has nethtilow sensitivity. CE/LIF detection
is highly sensitive, but it lacks selectivity (Suenret al., 2003). That is, each analytical
detection method itself has a certain bias or atdgn(Fiehn and Weckwerth, 2002). For
example, GC requires that samples be volatile. Elewerivatization is required for
nonvolatile samples. LC, on the other hand, alldle analysis of nonvolatile species
without the need for derivatization (Sumreeral., 2003). MS requires that metabolites be
ionizable, ultraviolet absorption (UV) assumes thiachemical compounds have moieties
with excitable electrons. Therefore, no single bastabolomic technique exists (Fiehn
and Weckwerth, 2002). Also, a single analyticalhteque will not provide sufficient

visualization of the metabolome due to chemicdkdénces.
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Metabolomics aims at the identification of metatsoiomponents of a mixture. This
requires much deeper analysis compared to the rfingéng approach. First,
deconvolution of the fingerprint (spectrum, chroagaam etc.) into entities that represent
the component biochemical species is required. rklieds, a reference database
(metabolite library) must be looked up to identifig biochemical species (Mendes, 2002).
Also, automated metabolite identification requirefiable information on both retention

time and mass spectra (Fiehn, 2001).

2.7.2. Data Interpretation

Metabolomics generates multivariate datasets l&ascriptomics. Hence, statistical
tests discussed in section 2.6.2.2 can also beedppd metabolome data to identify
metabolites which significantly change between amwo conditions. Additionally,
unsupervised methods such as principal componerdl/sas (PCA) and clustering; or
supervised methods such as machine learning digmitcan be used to analyze the
emerging metabolome data. Such statistical analyséswv the classification of
experimental data. Thus, they are preferred whemthin objective is to classify samples
based on their metabolite profiles, which is usuakld by the fingerprinting approach
(Mendes, 2002). One other novel approach is dmadmwork of metabolic control analysis
with co-response approach (Raamsdenéd., 2001). In this approach, the co-response of
metabolite concentrations of a mutant against tetidn of a functionally unknown gene
is to be determined. A function can be assigndtidadeleted gene based on the similarity
to co-responses of concentrations of other mutatitsse functionally known genes are
deleted. Other novel approaches are being develapeggarallel with the increasing
attention towards metabolome data collection (Wesklwet al.,2004; Kimmelet al.,
2006)

2.8. Fluxomics: Stoichiometric Models and Isotopéabeling

Determination of metabolism-wide fluxes by the usé organism-specific
stoichiometric models is termed as fluxome. Fluxamjgresents the functional output of
the combined transcriptome, proteome, and metabidmanges as it forms the top level

of the hierarchical structure (Figure 2.8).
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Approaches discussed in sections 2.3.1., 2.3.22a8@ form the basis of fluxome
analysis. FBA is the easiest way of determinatidnfloxes since it requires only
measurement of a few exchanged fluxes. The eagyndieiation of fluxes through FBA
led to a number of related applications. Recerglgonstructed stoichiometric genome-
scale models of a number of microorganisms, amohgtware Escherichia coli (904
genes, 931 reactions and 625 metabolites, Rstedl., 2003), andSaccharomyces
cerevisiae (708 genes, 842 reactions and 584 metabolitestd¥@ét al., 2003a), have been
successfully analyzed by optimization (FBA). FBA used as an alternative to the
relatively difficult task of measuring the internfiixes in the metabolic network since
such genome-scale networks are underdeterminedtimen Major applications have been
to determine exchange fluxes of metabolic prod@Ethvardset al., 2001; Familiet al.,
2003) and to determine phenotypic differences inaimaic behaviour of organisms
through phase plane analysis (Edwaetisl., 2002; Duarteet al., 2004). Additionally,
prediction of the outcomes of genetic manipulati@s been a major focus. Qualitative
viability comparison for knockout strains with tRBA-based prediction was more than 80
per cent forE. coli (Edwards and Palsson, 2000) and yeast (Foestal:, 2003b). FBA
also helped to propose a reasoning for the dispéitgaand essentiality of yeast genes
(Pappet al., 2004). Another approach has been to identéygénes whose deletions will
lead to a desired phenotype. FBA through mixedgetelinear programming, called
OptKnock procedure (Burgaret al. 2003), and through integration of genetic aldponit

called OptGene procedure (Pa&tilal. 2005) were developed to serve this aim.

One major challenge for metabolic engineering istfgenomic era is integration of
genome-scale biological data into mathematical exgkrimental tools of the discipline.
Therefore, the recent trend has been to incorpa@déional biological knowledge such as
regulatory constraints in order to refine the résglflux values. It was demonstrated that
the prediction capability of genome-scale yeast ehadas improved when regulatory
information from gene expression data in Booleagicldormulation was incorporated
(Akessonet al., 2004). In a recently updatdel coli metabolic model integrated with
transcriptional regulatory model, growth and gempression simulations were done by
regulatory FBA, which combines linear optimizatitm determine a growth-optimized

metabolic flux distribution with logic statements simulate the effects of regulatory
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processes over time. The model was able to pradjbtthroughput phenotyping and gene

expression experiments (Covetial., 2004).

Although FBA allows a quick estimate of metaboliexes, solid estimate of fluxes
requires additional experimental constraift€ labeled glucose feeding experiments
(Section 2.3.3). Of the two approaches, NMR andawslysis, the latter has potential for
high-throughput analysis at miniaturized scale. h-tigroughput flux profiling for the
central carbon metabolism was recently achieve@6yMS analysis (Fischet al., 2004).
This was followed by the screening of a number eletlon mutants at the fluxome level
(Fischer and Sauer, 2005; Blaetkal., 2005). The analysis is based on the use of i-sma
scale stoichiometric matrix. Resulting fluxes fremall model can be used as constraints
to get an estimate of genome-wide metabolic flutesugh the use of genome-scale
models (Blanket al., 2005). On the other hand, intracellular fluxomethe form of
fingerprint, as in the case of metabolome fingegri can be used for metabolic variant

discrimination (Zamboni and Sauer, 2004).
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3. METABOLIC PATHWAY ANALYSISOF YEAST ASA TOOL
FOR SYSTEMSBIOLOGY AND EXTENSION OF THE APPROACH
FOR HUMAN METABOLISM

3. 1. Metabolic Pathway Analysis of Yeast Strengthensthe Bridge between

Transcriptomics and Metabolic Networ ks

Recent developments in the field of “omics” haveuteed in the accumulation of
huge number of experimental data to be analyzed. challenge is to develop powerful
methods for the integrated analysis of system ptigse Therefore, the need for system
level understanding of living organisms, which exps$ the relationship between structure,
function and regulation in complex cellular netwsrky combining experimental and

theoretical approaches, is growing in the post-geo@ra.

One of the recent challenges in the area of trgsaonics is to relate gene
expression levels to the fluxes carried throughdheymes encoded by these genes (Oh
and Liao, 2000; Ohet al, 2002). A novel theoretical approach was devised t
simultaneously predict key aspects of network fiometlity, robustness and gene
regulation inEscherichia colifrom stoichiometric network structure alone (Siglet al,
2002). Elementary flux mode analysis, one of thelstaf metabolic pathway analysis
(Klamt and Stelling, 2003a; Palssenal, 2003), allows implicit integration of regulatory
events into the stoichiometric metabolic analy§iempared to the flux balance analysis
(FBA), which only considers efficient operationtbé cell (Bonariugt al, 1996; Edwards
et al, 2001; Pramanik and Keasling, 1997; $&hial, 1999), elementary mode analysis
takes also flexibility of the metabolism into catesiation (Schusteat al,; 1999; Stellinget
al., 2002). Introduction of a parameter characterizilegibility and efficiency derived
from metabolic network structure, called controfeefive flux (CEF), establishes an

indirect relation between transcriptomics and flumkcs.

In this chapter, central carbon metabolism of tkasySaccharomyces cerevisiae

was analyzed using metabolic pathway analysis t@&Ementary flux modes for growth
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on three carbon substrates (glucose, galactoseetiahol) were determined using the
catabolic reactions occurring in yeast. Resultdaementary modes were used for gene
deletion phenotype analysis and for the analysisobtistness of the central metabolism
and network functionality. Control effective fluxesletermined by calculating the
efficiency of each mode, were used for the prealictdf transcript ratios of metabolic
genes in different growth media (glucose-ethanalagtose-ethanol). A high correlation
was obtained between the theoretical and experaherpression levels of 38 genes when
ethanol and glucose media are considered. Suclysiakas shown to be a bridge
between transcriptomics and fluxomics through tkisidy. Control effective flux
distribution was found to be promising in the silico predictions by incorporating
functionality and regulation into the metabolic wetk structure. Thus, theoretical
transcript ratio analysis strengthens the relatignbetween transcriptomics and metabolic

networks.

3.1.1. Modelling Aspects

53 reactions constituting the central metabolism Saiccharomyces cerevisiae
(glycolysis/gluconeogenesis, pentose phosphatewaathcitric acid cycle, glyoxylate
shunt and oxidative phosphorylation) were considienethe construction of amm silico
model (Appendix B). The reaction set described bysteret al (2002) was extended by
the complementary reactions presented in literaffadesteret al, 2003a; Gombertt al,
2001; Granstronet al, 2000; Nisseret al, 1997; Stuckrattet al, 2002; van Gulik and
Heijnen, 1995). Compartmentation of cofactors (NAQihd NADPH) and acetyl-
coenzyme-A was taken into account by treating tleesepounds as if two distinct species
existed in mitochondrial and cytosolic reactionszfines of peroxisomes were treated to

be cytosolic (Forstest al, 2003a).

The biomass equation is given in terms of the idsstic precursors 44). This
representation requires molar monomer compositioproteins, nucleotides, lipids and
carbohydrates. The number of required precursarshi® synthesis of each monomer is
known. This information is combined with the infation of utilized macromolecular
mass composition to obtain the equation (Cortatsal, 1995). The reported monomer

and macromolecule composition values differ notitgain the literature for
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Saccharomyces cerevisig€ortassat al, 1995; Stuckratlet al, 2002). However, it was

found that a 20 per cent change in the compostafamy of biomass precursors had only
minute effect on the resultant flux patterns (Daae Ison, 1999). Based on these facts,
same stoichiometric coefficients were used in biesnaquation in ethanol and glucose
media. The fact that the determined elementary siaahel their routes were found to be

insensitive to the biomass composition indicatexvalidity of this assumption.

For glyoxylate shunt enzymes, ICL1 is found to dealized in the cytosol (Tayl@t
al., 1996). MLS1 enzyme is also primarily cytosolicufizeet al, 2002). CIT and MDH
have different forms functioning in cytosol, peraxine or mitochondria. Cytosolic forms
(CIT2, MDH2) fuel glyoxylate pathway whereas mitocdrial isoenzymes (CIT1,
MDHZ1) function in the TCA cycle (Kispadt al, 1988, 1989; Roth and Schiuller, 2001).
Thus, all glyoxylate shunt enzymes were considevdge cytosolic @s-rs). The reversible
conversion of citrate to isocitrate catalyzed by QXC (rB3) is both cytosolic and

mitochondrial, hence is important for both TCA ®elnd glyoxylate shunt.

The gluconeogenic enzymes (FBP1, PCK1) are eskertten growth is on ethanol
and hence considered in the present stoichiometadel (s and p3). Pyruvate branch
enzymes PDC and PDA¢rand p;) were also considered (Boubekeetr al, 1999;
Flikweertet al, 1996). Malic enzyme (MAE1) was reported to bevacin Saccharomyces
cerevisiag(Boleset al, 1998, Cortassat al, 1995). Thus, reaction 43,§f was included

into the stoichiometric model.

Reaction 45 () represents the shuttle of acetaldehyde and etifandhe net
transfer of NADH from cytosol to mitochondria (Baddet al, 2001; Forsteet al, 2002;
Overkampet al, 2000). The shuttle reactions are catalyzed bymhechondrial alcohol

dehydrogenase enzyme (ADH3) and cytosolic isoengy#hBH1,2).

In conventional flux analysis methods, from micigamisms to mammalian cells
(Lee et al, 2000), only the reactions belonging to the cquoesling active pathways are
used to analyze a given physiological conditionatTls, inactive pathways are not
included in models. However, in this analysis, aligh, for example, IDP2 and ALD4

enzymes are thought to be inactive when growthmigllacose medium (Haselbeek al,
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1993; Haurieet al, 2001; Kurita and Nishida, 1998; Loftet al, 1994; Minardet al,
1998; Tessieet al, 1998), these reactions were included to be ablerédict transcript
ratios of corresponding genes in two different ¢bos. Following the same logic, all of
the gluconeogenesis and glyoxylate shunt enzymedeasafely included whereas these
are not accounted in MFA studies due to their indgtin glucose medium (Jorgensenh
al., 1995; Nisseret al, 1997; van Gulik and Heijnen, 1995). This apploatlowed

improved predictions of corresponding mMRNA levdias
3.1.2. Computational Methods

Elementary flux modes were calculated using METATCEX..2 and 4.3 (Pfeiffest
al., 1999; Schusteet al, 2002a) and FluxAnalyzer 4.0 (Klaret al, 2003). Control
effective flux calculations were performed usingchdisoft Excel and using a script written
in MATLAB (MathWorks Inc.).

CEFs were determined directly from the set of el#ian modes. After each mode
was normalized with respect to the substrate tumxefficiency value was assigned to each
elementary mode for each cellular objectisige oy USINg the ratio of mode’s outputs
(reactions related to cellular objectives) to theestment required to establish the mode
(the sum of absolute fluxes of each mode) as desti{Stellinget al, 2002),) is the index

for EFMs, and is the index for fluxes.

_ Fdeiioss
€ ceLosy = Z‘ri‘ (3.1)
i

In efficiency calculations, biomass flux as wellABEP maintenance flux were taken

as the mode outputs since these reactions arefba#iie cellular objectives of the yeast.

Then, the flux of a particular reaction!, in all determined elementary modes was

weighted with the efficiency of the correspondingdas to calculate the control effective

flux (CEF),v;, of the reaction.
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The ratio of CEFs of reactions in two different n@eds used to predict the
expression ratios of metabolic genes responsibletfe enzymes of the reactions in

Saccharomyces cerevisiae.

3.1.3. Elementary Flux Mode Calculations for Yeast M etabolism

Elementary flux modes were calculated for yeastvgrin three different substrates,
namely glucose, ethanol and galactose (Table Bilgases 1l.a, 2.a and 3, all possible
reactions, whether they are active or not on thgsecific substrates were taken into
consideration. Cases 1.b and 2.b are environmeuifgp PCK1, ALD4, IDP2, FBP1
enzymes and glyoxylate shunt enzymes were excludedse 1.b and only the reactions
that are known to be active in a medium when thly awvailable carbon substrate is
glucose were considered. PYK and PFK enzymes weckided in case 2.b and the
reactions that are known to be active in a mediumere the only available carbon source
is ethanol were considered. The reason to analggescl.b and 2.b is to show that the
theoretical gene level ratios have to be calculbtedonsidering all functional genes in the
organism, regardless of their activity in the sfiedi condition considered (eg. different

substrates).

The number of modes was calculated as 8726 andih3fl8cose and ethanol media
respectively. Since the number of available modesonsidered to be a measure of the
flexibility of the central metabolism on alternaticarbon sources (Stellireg al, 2002)
this finding indicates a better flexibility of thmicroorganism in the glucose medium as

expected.

The same number of modes was determined in casandl.8. The only difference
between glucose system and galactose system irs t&fritthe considered reactions is the
replacement of hexokinase reaction by those cadlyy GAL1, GAL7 and GALS5. Since

these three enzymes constitute an enzyme subsetregplacement does not alter the
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number of resultant elementary flux modes (caseatichcase 3). Enzyme subsets are the
enzymes which always operate together in fixed firoportions at steady state (Pfeifédr
al., 1999; Schustest al, 2002a).

Table 3.1. Different cases analyzed

Substrate | Number of EFMs Excluded Reactions
l.a| Glucose 8726 -ADH2 -GAL1,5,7
1.b Glucose 199 -ADH2 —-GAL1,5,7 -PCK1 -ALD4 -IDP2 -
FBP1 -Glyoxylate Shunt
2.a Ethanol 1308 -GLK1(HXK) -GAL1,5,7
2.b Ethanol 641 -GLK1(HXK) -GAL1,5,7 -PYK -PFK
3 | Galactose 8726 -ADH2

3.1.4. Deletion Phenotype Analysis

Since elementary modes indicate all possible rotheas the microorganism can
choose to maintain its growth, this information daam utilized in deletion phenotype
analysis. If a gene is deleted, all the routes Wwinclude the corresponding reaction are
disrupted. A gene is considered to be essentidl i§ involved in all EFMs enabling
growth. That is, its deletion will destroy all restleaving no way for the survival of the
deletion mutant. In the present study, the EFM yamslwas used to predict the deletion
phenotypes and the results were compared with pergnentally determined lethal
deletions reported in literature.

3.1.4.1. Glucose as Substraie.glucose medium, 13 lethad silico gene deletionsats,

acol, fba, pgi, rki, pgk, eno, gpm, tdh, pyk, gfid, pd¢ were identified by EFM analysis.
EFM results indicate that the omission of the rieactatalyzed by PDC enzyme leaves no
EFM out of 8726 (case 1.a) pointing to the letlyatif this deletionIt was reported that
PDC deficient cells could not grow on mineral mediwhen glucose was the only
available substrate (Flikweeet al, 1996). EFM analysis could also successfully mtedi
the lethality ofacs andpfk deletions (i.eacsl-acs2and pfk1-pfk2double deletions). All
elementary modes include these reactions in tbates assigning them as essential genes.

It was reported that thacsl-acs2double deletion was not viable in media containing
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glucose or ethanol (van den Berg and Steensma,).199So, a glucose-negative
phenotype was reported fpfk1-pfk2double deletions mutants (Avranitidis and Heinjsch
1994).

fba, pgi, rki, pgk, eno, gpm, tdind pyk deletions were stated as lethal mutations in
MIPS database_(_http://mips.gsf.de/genre/proj/yeakex.jsp. In silico predictions for

only 2 genesgcol, gpdl were not in agreement with the information ava#an MIPS, in

which these deletions were stated to be viable.

3.1.4.2. Ethanol as Substrate. silico single gene deletion analysis resulted in the

identification of 18 lethal caseads, acol, fba, pgi, rki, pgk, eno, gpm, tdh, ftpn,ald4,
sdh, fbp, icl1, mis1, pckl, nadhx-fadlixethanol containing medium.

EFM analysis shows that none of the 1308 modesse €.a have zero flux through
ALD4 enzyme. This result suggests that the delaticald4 gene in this organism is lethal.
ald4 deletion inS. cerevisiags reported to be detrimental for growth on ethigmessieret
al., 1998). Similarly, the lethal effect afls1gene deletions i. cerevisiagKunzeet al,
2002) when grown in ethanol medium was also comfdrby EFM analysis. All of the
1308 EFMs in case 2.a house the enzymatic reacétatyzed by the product of this gene.
In the present EFM analysis, all of the calculatexties utilize oxygen. This is an expected
result because growth on nonfermentable substratkeown to be respiratonfbp and
pckl deletions are also reported to be lethal in etharmedium (Stickratret al, 2002),

which is in agreement with here-made predictions.

The lethality ofin silico deletions was also checked from the online daghd#S.
acs, acol, fba, tdh, fum, sdhdicll deletions are also given as lethal in MIPS databas
parallel with the EFM simulation. As for the remiaig 6 cases, the silico prediction

cannot be checked for 4 mutations and the prediatias incorrect for 2 deletionpdk,

Pgi).

In case of double deletions of pyruvate kinaseraatic enzyme genes, zero biomass

yields were obtained for all the pathways in EFMilgsis. InSaccharomyces cerevisjae
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the strains lacking malic enzyme gemeaé) and both genes of pyruvate kinapgkl,

pyk2d were found to be unable to grow in ethanol (Beleal, 1999).

When elementary flux modes with maximum biomasddysre examined, all of
them are found to have a zero flux through PDC enezyThis suggests that the deletion of
the corresponding gene does not alter the biomats gf the strain. Flikweeret al,
(1996) showed that the biomass yieldspdt deficient and wild-typeS. cerevisiaavere
identical in ethanol-limited chemostat culturesughthe phenotype of a silent mutation

could successfully be predicted by EFM analysis.

3.1.5. Biomass Yield and Robustness Analysis
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Figure 3.1. Biomass yield profiles of EFMs for gtbven glucose and ethanol. The
pathways are arranged in the order of increasiognass yields. The axes are in

normalized units
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For each of the calculated elementary flux modetheoretical biomass yield was
calculated by dividing the relative flux toward®fass productiond3) to the relative flux
of substrate uptake reaction (rs). Resultant yield profiles of elementary pathwé#ys
glucose and ethanol media are compared in FigureThe gradual change in biomass
yield on ethanol, in the normalized pathway ranfy8.8-1.0, indicates that 70 per cent of
all pathways are in the range of high biomass gidice. between 0.9-1.0). Such high
yields could only be observed in 10 per cent ofghthways in glucose medium. 30 per
cent of glucose pathways (in the normalized pathsaage of 0.1-0.4) were found to result
in normalized biomass yields of 0.200.05. These results agree well with the fact that
high biomass yields can be obtained during respiyagrowth on nonfermentable

substrates.

Biomass yield can be regarded as a measure ofothestness of microorganisms
towards disturbances. It was found that althougletae mutants usually results in
reduced growth rates compared to the wild typerstthe maximum biomass yields of
viable deletions were almost the same with thahefwild type strain. Maximum biomass
yields on glucose and ethanol were calculated Uskg analysis for each deletion mutant
(Figures 3.2.a, 3.2.b). When the maximum biomastdyiare analyzed for the deletion
cases of each enzyme, yeast cells are found todheseust central metabolism supporting
the literature findings (Ebenhdh and Heinrich, 200&gner, 2000). In Figures 3.2.a and
3.2.b, there are a number iof silico mutations having zero biomass yields. That is, the
deletion of these genes was found to be lethahi®cell theoretically. There are 13 and 18
such deletion mutants having zero biomass for drawit glucose and ethanol respectively

(details are given in previous section).

In glucose medium, the maximum biomass vyields efable deletionstpi, nadhx,
fadhx, fuml, sdideletions) are found to be less than that ofvilie type strain (Figure
3.2.a). Among these, inhibition of oxidative phospttation reactions (NADHX, FADHX)
results in damage in the respiration of the organiParticularly inhibition of NADH
oxidation renders the cell almost anaerobic witkximam biomass yield of 0.17 g/g (26.5
per cent of parental strain). In the casetpfdeletion, mutant strains can only have a

maximum biomass yield of 0.35 g/g (54.7 per cergarental strain).
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Figure 3.2. Maximum biomass yields of mutant ssaialculated from EFM analysis.
Each point is for onan silico deletion strain (a) glucose is the substrate tfigreol is the

substrate

In ethanol medium, the maximum biomass yields ablg deletions were almost the

same with that of the wild type strain (Figure.B)2 The only noticeable exception for
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ethanol growth wasld6 deletion whose biomass yield was 93.6 per cenhefparental
strain. The main cause in the decrease of biomasd  in silico aldé mutants is the
decrease in NADPH supply of metabolism. Since NADBHequired in biosynthetic
reactions, its level highly controls biomass grow#fithough there are other reactions
supplying NADPH (IDP2, MAE1, ZWF1, GND), the cautieontrol effective flux through

these enzymes are noticeably lower than that of &bBing far from compensatory effect.
3.1.6. Theoretical Transcript Ratio Analysis

Calculated CEF ratios of each gene for ethanolghmcbse media were presented in
Table 3.2 and the corresponding transcript ratasethanol-glucose media were taken
from DeRisiet al, 1997. Of the 41 genes considered which have ifumein the central
metabolism of the yeast, calculated CEF ratiogt#fbgenes showed acceptable correlation
(R? = 0.65) with the transcript data (Figure 3.3)alsimilar study, calculated CEF ratios of
47 genes irEscherichia coliwas also found to correlate wittf R 0.60 (Stellinget al,
2002). The geng@dc was identified as outlier as shown by dark point$igure 3.3 and
thus not included in the regression analysis. leduB is on logarithmic scale with y axis
showing CEF ratios and x axis showing Experimed#ah ratios. Dark point in the figure
belongs to pdc, which is a statistical outlier ahds not included in the regression

analysis.

Region | in Figure 3.3. shows the genes whose egzme has increased when
ethanol is the substrate (20 genes). The pointsgion I, on the other hand, correspond
to the genes whose expression levels have decrdaasethanol medium (9 genes).
Direction of the change in the gene expression$ene5 genes in Region Il and 7 genes in
Region IV might be falsely predicted upon mediunarade. ‘False prediction’ within the
text mainly refers to the fact that although thpeximentally determined expression levels
have been found to increase in the ethanol /glucuseium, estimated CEF ratios
indicates a decrease in gene expression in etligluglose medium. Most of these false
points have the values close to 1 and they mayilpsarise from experimental errors. A
small modification in their values will shift thegmints to the reasonable regions (I and
[l). Derisi et al, 1997, have reported a decrease in the expreksiehof aldé gene in

ethanol.ald6é gene was found to be activated during the diaski€t together with the
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other cat8 dependent gendisp(l, pckl, idp2, acsl, icll, misl, miliiPaurieet al, 2001).
Based on this fact, one may also expect an incrigathe transcription oéld6 in parallel

to the increase in the activity of all cat8 depemndgenes as predicted in this study. The
activation of this gene upon medium change fronagtake to ethanol was also reported
(Griffin et al, 2002). The false predictions may also arise ftbmmusage of unweighted

averages for some of the reactions.
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R2=0,65
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Figure 3.3. Experimental versus theoretical ratiogene expression levels in glucose -
ethanol media. The values are the ratios of ethaweolium to the glucose medium. The

inset shows experimental versus theoretical ratigglactose- ethanol media

The calculated CEF and experimental transcrippsafGriffin et al, 2002) of the
genes in ethanol and galactose media are presamt@dble 3.2. The only difference
between glucose system and galactose system i trthe considered reactions are the
replacement of hexokinase reaction by those cadlizy GAL1, GAL7 and GALS5, which
constitute an enzyme subset. For the 20 genesdmrrdi which have functions in the
central metabolism of the yeast, calculated CEsathowed acceptable correlatiorf (R

0.66) with the transcript data (Figure 3.3, inset).
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Table 3.2. Theoretical (CEF-based) and Experiménm&NA-based) transcript ratios. The

given values are the ratios of ethanol medium e¢ogllacose (galactose) medium.

Gene CEF ratioDeRisiet al Griffin etal | Gene CEF ratiDeRisiet al Griffin et al
pgil  0.51 0.71 pyk 0.16 0.20 0.22
fbal  0.44 0.42 0.32 zwfl 154 1.37

tpil 0.81 0.46 0.30 sol 1.54 2.10

tdh 0.57 0.68 0.32 gnd1l?  1.54 1.67

pgkl  0.57 0.70 pdc 0.02 0.33

gpm  0.64 1.10 ald6 1.51 0.68 2.57
eno 0.64 0.63 0.19 ald4 8.62 5.56

rkil 1.53 0.87 acs 5.58 6.55 2.71
rpel  1.56 0.71 pda 0.12 1.05 1.27
tkl” 1.54 2.94 pyc 0.85 3.08 1.73
tall 1.54 0.32 cit13 2.47 5.25

tki’ 1.54 2.94 idp1 0.75 1.52 1.62
acol  4.05 6.25 457 idh1Z  0.59 2.78 2.40
idp2  1.48 10.00 1.17 | kgd1Z2  0.82 5.16 1.66
Isc1Z2  0.82 2.53 sdh 4.72 5.21 2.24
fuml 4.72 3.70 2.04 mael 2.10 0.81

mdhl  5.27 5.88 pckl  15.64 14.29 7.76
pfk1Z  0.38 0.49 0.54 cat2 6.05 4.35 1.17
fopl  6.36 14.29 7.24 misl  9.90 9.09

icll 9.90 12.5 cit2 6.20 4.76

mdh2  4.57 2.63

* For the reactions which are governed by multigenes, an unweighted average of expression ratios o
responsible genes were used.

In conclusion, the genes whose theoretically cateadl transcript ratios are widely
different from that of the experimental ones maibgtong to the tricarboxylic acid cycle
and pyruvate branch point. This may be due toréls&ricted reaction set which does not
include the anabolic reactions such as fatty agithesis, amino acid synthesis and
nucleotide synthesis. These reactions mainly etilKG, OAC, AcCoA, PEP, PYR,
RL5P, E4P as precursors. Although these metaboditesincluded into the biomass
equation with suitable stoichiometries in concomawith their utilization in biosynthesis
reactions, this probably restricts the flexibiligf the reactions that include these
metabolites and thus affects the theoretically dated CEF ratios. The main reason of
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considering a restricted number of biochemical tieas is that the inclusion of further
reactions leads to a combinatorial explosion inrtheber of EFMs (Foérstest al, 2002;
Klamt and Stelling, 2002; Klamet al, 2003). On the other hand, reproducibility of
microarray data in transcriptome analysis may bésthe cause of false predictions and the

experimental errors in this type of analysis caudd be excluded. (Pipet al, 2002).

Modification of the method used in the calculatafnCEF ratios by omitting (i) the
flux of ATP generation due to maintenance, (ii) thix modes with zero biomass yield or
(i) using the number of nonzero fluxes insteadtioé sum of absolute fluxes in each

mode, did not result in any further improvement.

3.1.7. CEF Analysisand Functionality

The new approach of control effective flux analysésmits to relate transcriptomics
to fluxomics unlike other stoichiometric approackEBA, MFA). CEF is a sign of relative
importance of reactions, and absolute CEF valuegyaen in Figure 3.4. Importance of
specific reactions under special conditions cowddpbedicted using these absolute CEF

values.

For example, CEF values of ALD4 and ALD6 are foundbe higher in ethanol
medium compared to those in glucose medium. ALDORB74W) is a mitochondrial
NADH dependent enzyme, which is experimentally fbia be active and necessary in
ethanol medium (Boubekeat al,1999; Tessieet al, 1998). The other isozyme, ALDS, is
mainly functional in glucose medium by contributittgthe NADPH levels in the cytosol
(Meadenet al, 1997) and is also active in ethanol medium (Hawi al., 2001).
Comparison of CEFs of these genes indicatesalit gene is much more important in
ethanol medium. Its CEF is 218.0 whereas thatld is 49.5 in ethanol medium (Figure
3.4).

A very low effective flux carried by PDC enzyme @thanol medium is also in
accordance with the literature (Flikweettal, 1996) since the mutants of this gene does

not differ very much from the wild type strain grins of growth rate phenotype.
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By examining solely the outputs of CEF analysis can conclude that there is an
increase in the sum of CEF of NADPH producing enggrm ethanol medium compared
to the glucose medium. This is observed for bottosylic (ZWF1, GND, IDP2, ALDG6)
and mitochondrial (MAEL, IDP1) enzymes with cormsging ratios of (84.5/53.5) and
(20.6/13.2). NADPH production in ethanol mediuninigportant due to aerobic growth and
leads to higher biomass production. CEF ratio ofrfaiss production 4 was calculated
as 1.56 (0.94/0.60) confirming this statement.

Effective fluxes carried by glycolysis enzymes (P¥Kd PFK) in ethanol medium
were calculated to be lower than those in glucoediom as expected. Moreover, the flux
of gluconeogenic counterpart of PFK, that is FBBlabout two times higher in ethanol
medium. Similarly, the gluconeogenic PCK1 enzyms &dlux considerably dominant to
the flux of PYK in this medium (Figure 3.4). Thexamination of CEF values can be used
in predicting the relative importance of glycolyiad gluconeogenic enzymes in different

media.

One should note that as the absolute values of @HFshange with respect to the
number of considered reactions, only CEF valuesutatied for the same network structure

can be compared.

3.1.8. Concluding Remarks

A novel approach which links transcriptomics to xfimics was applied to
Saccharomyces cerevisiaeThis approach was previously successfully applied
Escherichia coli(Stellinget al, 2002). The applicability of the method $accharomyces
cerevisiag which has different characteristics such as beingukaryote and having

cellular compartments, reinforces the universalftthe approach.

The study reflects the power of CEF analysis ovBAFand the importance of
flexibility. When the most efficient EFMs are oneitt from the system, the resultant
control effective flux distribution remains almastchanged. Hence, the flexibility seems
to be more important than the efficient operatiérihe cell. There is no objective in the

CEF analysis unlike FBA which can force the systenbehave in a particular manner.
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Same behaviour of the cell can be predicted by @&#lysis even if the most efficient
behaviour of the cell (predicted by FBA analysis)niot considered. Metabolic reaction

system is allowed to be flexible since it is freechoose all possible routes.

Although a very small number of reactions (a tofab3) are considered compared to
the recently published set of metabolic reactiomsSaccharomyces cerevisjaél175
reactions, Forsteet al, 2003a), the analysis presented in this studybésghreasonable
correlation with the experimental growth and traipgome data. Analysis of genome-
wide networks which will be facilitated by the désement of novel computational tools

and equipments, will give rise to construction efter models in the future.

3.2. Metabolic Pathway Analysis of Enzyme-Deficient Human Red Blood Cells

In this section, five enzymopathies (G6PDH, TPI, IP®@PGM and PGK
deficiencies) in the human red blood cells are stigated using a stoichiometric modeling
approach, i.e., metabolic pathway analysis. Theralvaim is to extend the approach

detailed in section 3.1 to the human metabolism.

The primary physiological objective of the red hlogell is gas transport and
exchange. Beyond this, it must perform several bwdia functions for its own survival.
The major metabolic function of the erythrocytetésproduce the necessary cofactors
(ATP, NADPH, and NADH) by energy and redox metafimlé for maintaining its osmotic
balance and electroneutrality and fighting oxidatstresses (Bossi and Giardina, 1996;
Joshi and Palsson, 1989; Wiback and Palsson, 2002ke cofactors are also necessary
for the bioconcave shape of the cell as well as tf@ specific intracellular cation

concentrations.

Enzymopathy can be described as a biochemicald#isan which a specific enzyme
undergoes alterations in its activity thaty have pathological consequences. For the
erythrocytes, deficiencies of about 20 enzymegaated with widely different degrees of
severity and complexity, have been identified so (flacobasch and Rapoport, 1996;

Jacobasch, 2000; Schuster and Holzhutter, 199%e&nzymopathies in human red blood
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cells can cause serious diseases including andéh@aanalyses of erythroenzymopathies

are of basic importance in handling with such dissa

Modelling studies on erythroenzymopathies and eogtyte metabolism have been
mainly by kinetic models (Holzhittet al, 1985; Joshi and Palsson, 1989; Martietel,
2000; Mulguiney and Kuchel, 1999; Schuster and Hidtter, 1995; Schustet al, 1989),
which are based on detailed information on kingtioperties of the enzymes. Few
attempts have been made to model red blood celshgmetrically (Schustest al, 1998;
Priceet al, 2003; Wiback and Palsson, 2002), which has tharatdge of relying solely
on the stoichiometries of the considered reactions.

In a metabolic network consisting of cellular réaws, the analysis of the fluxes
allows one to establish a relationship between getiotype and phenotype. One of the
main approaches for the flux analyses of metabonétworks is Metabolic Pathway
Analysis (MPA) (Papiret al, 2003; Schillinget al, 1999), which is used to define the
structure of the metabolic network and the ovenaktabolic capabilities of the
microorganism. The method only uses information uabine stoichiometry and the
reversibility or irreversibility of reactions. Gimethe enzymatic reactions occurring in a

particular microorganism, all possible routes atednined and analyzed.

An important tool used in MPA is the detection tédmneentary flux modes (EFMSs).
An EFM is a minimal set of enzymes that could ofest steady state, with the enzymes
weighted by the relative flux they need to carry tltee mode to function (Schuster al,
1999; Schusteet al, 2000; Schustest al, 2002a). EFM analysis allows the discovery and
analysis of meaningful routes in metabolic netwof&sntrol-effective flux (CEF) analysis
is another tool in assessing a metabolism (Stekih@l, 2002). The CEFs, which are
directly determined from the set of EFMs, repreddatimportance of each reaction of a
metabolism for efficient and flexible operationtbe entire metabolic network. Thereby,
regulatory events of metabolism are implicitly inporated. The method was successfully
applied toE. coli andS. cerevisiador the functionality analysis based on the thecaé
estimation of gene expression changes (Section@akjr et al, 2004; Stellinget al,
2002).
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In the present section, elementary flux mode (EEBbtection was performed for the
erythrocyte metabolic network via the simulationlsp METATOOL 4.3 (Dandekaat al,
2003; Pfeifferet al, 1999) and FluxAnalyzer 4.0 (Klangt al, 2003). The following
enzymes, which are clinically essential, were takenmodel systems in the metabolic
investigation of enzyme deficiencies of erythrosytglucose-6-phosphate dehydrogenase
(G6PD), triosephosphate isomerase (TPl), phospbogis isomerase (PGI),
disphosphoglycerate mutase (DPGM), and phosphoglied&inase (PGK). CEF analysis
was performed to analyze EFM results quantitativaetg to make comparisons for the
activities of pathways upon different degrees diciencies. When available, experimental
findings reported in literature related to metabdiehavior of the human red blood cells
were compared with the results of EFM and CEF aealy This study differs from the
previous models in that regulatory events are atsmunted by the help of CEF analysis,
with an emphasis on enzyme deficiencies. The utémgoal herein is the target

identification for drug design for the treatmentpatients with enzymopathies.

3.2.1. Metabolism of the Human Red Blood Cell

Main reactions in human red blood cells are degicte Figure 3.5 and given in
Table 3.3 (Joshi and Palsson, 1989, Mulquiney andhil, 1999; Schustet al, 1998;
Wiback and Palsson, 2002). There are 39 reactioigld metabolites in the network.

Red cells lack nuclei and other intracellular orgjes; they are incapable of protein
and lipid synthesis and of oxidative phosphorylaijBaynes and Dominiczak, 1999; Bossi
and Giardina, 1996). Unlike most metabolic networltee red cell does not generate
biomass (Wiback and Palsson, 2002). The main récenergy source is glucose that is
metabolized through the Embden-Meyerhof pathwayr(f with the production of 2
moles of ATP and lactate as end products per mglufose. The theoretical net gain of 2
mol of ATP for every 1 mol of glucose metabolizddough anaerobic glycolysis is
modified by the Rapoport-Luebering shunti(r r13) which is controlled by
diphosphoglycerate mutase (DPGM) and generatesdigtbsphoglycerate (D23PG)
(Bossi and Giardina, 1996; Monsen and Vestergaaglri8l, 1978). The pentose
phosphate shuntigr;) contributes to the redox status of the cell bydpicing 2 moles of

NADPH per mol of glucose entering the cycle.
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Table 3.3. Reactions in red blood cell metabolisimh @orresponding catalyzing enzyrhes

Reactions Enzymes
1. Glycolysis
(1) 1GLC+1ATP - 1G6P +1ADP HK
2 1G6P - 1F6P PGI
(3) 1F6P +1ATP- 1FDP +1ADP PFK
4) 1FDP ~ 1 GA3P +1DHAP ALD
(5) 1 DHAP - 1 GA3P TPI
(6) 1 GA3P + 1 NAD ~ 1 D13PG + 1 NADH GAPDH
(7) 1D13PG + ADP. 1P3G +1ATP PGK
(8) 1P3G - 1P2G PGM
9) 1P2G - 1PEP EN
(10) 1PEP+1ADP- 1PYR+1ATP PK
(11) 1PYR+1NADH - 1LAC+1NAD LDH
2. Rapoport-Luebering Shunt
(12) 1D13PG - 1D23PG DPGM
(13) 1D23PG - 1P3G DPGase,
(DPGM)
3. Pentose Phosphate Pathway
(14) 1G6P +1NADP- 1GL6P +1 NADPH G6PDH
(15) 1GL6P -~ 1GO6P PGLase
(16) 1GO6P +1 NADP- 1RL5P + 1 NADPH +1C® GL6PDH
(17) 1RL5P o 1 XYL5P XPI
(18) 1RL5P - 1R5P RPI
(19) 1R5P +1XYL5P~ 1SED7P + 1 GA3P TK
(20) 1SED7P +1 GA3P- 1F6P + 1ERY4P TA
(21) 1XYL5P +1ERY4Po~ 1F6P + 1 GA3P TK-I
4. Nucleotide Metabolism
(22) 1R5P +1ATP- 1PRPP+1AMP PRPPsyn
(23) 1R1P - 1R5P PRM
(24) 1PRPP+1ADE- 1AMP ADPRT
(25) 1INO o 1HYPX+RI1P PNPase

(26) 1HYPX+1PRPP- 1IMP HGPRT
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Table 3.3. continued

(27) 1IMP - 1INO IMPase
(28) 1AMP - 1ADO AMPase
(29) 1AMP - 1IMP AMPDA
(30) 1ADO - 1INO ADA
(31) 1ADO +1ATP - 1ADP+1AMP AK
(32) 2ADP o 1ATP+1AMP AdylK

5. Cellular Functions
(33) 1GSSG +1NADPH~ 2GSH + 1 NADP GSSG-R
(3) 2GSH+1HO, - 1GSSG GSHpox
(35) 1ATP+3Na+2Ky - 1ADP+3Na, +2K Na-K-ATPase
(36) ATP - ADP MemPhos
(37) MetHb + NADH - Hb + NAD MetHbRed
(38) D23PG + Hb - D23PG:Hb D23PGdrain
(39) 2GSH+1Q@ - 1GSSG+1KD, GSHox

®Arrow type, —» or —, indicates whether the reaction is considerediémsible or reversible in the analysis.

The red cell requiregnergy, (i) to replenish its adenine nucleotide | pasing
salvage pathways3,), (ii) to protect the cell against oxidative sBegs, rzs), (iii) to
control its volume through membrane Na-K ATPasatign pump) (#s), (iv) to maintain
the plasticity of its membranes§, (v) to prevent the accumulation of methemoglobin
(r37), and (vi) to modulate oxyhemoglobindyr (Bossi and Giardina, 1996; Schilling and
Palsson, 1998).

3.2.2. Analyzed Enzyme Deficiencies

Glucose-6-Phosphate Dehydrogenase (G6PD) enzynie flne first reaction of
pentose phosphate pathway (PPP) in which G6P idized and NADP is reduced
resulting in NADPH production {4). The biological functions of the PPP in the humech
blood cell are to synthesize ribose as sugar coemtsrof the nucleotides and to maintain
the continuous supply of NADPH as an obligatory sétdie for the glutathione system
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protecting the cell against oxidative stress (Jasob and Rapoport, 1996). Normal red
cells can defend themselves to a considerable eamgainst such changes by reducing
GSSG to GSH through the glutathione reductase ioga@t3). This requires a source of
NADPH. As G6PD-deficient red cells are unable tduee NADP to NADPH at a normal
rate, they are unable to remove hydrogen perokiadrigh peroxidase activitysg) (Bronk,
1999), which requires reduced glutathione (GSHptotect the cells against oxidative
damage (Bossi and Giardina, 1996). Namely, G6PDyreazis indispensable to protect
cells against even mild oxidative stress. G6PD ateféoelong to the most widespread
enzymopathies in man. It is estimated to affect #filion people worldwide (Miwa,
1996; Weatherall, 2000).

Triose Phosphate Isomerase (Tédjalyzes the interconversion of dihydroxyacetone
phosphate (DHAP) and glyceraldehyde-3-phosphate3@Ar) and plays an important
role in several crucial metabolic pathways. The abelic pattern of TPI deficient
erythrocytes is characterized by high levels of DH&nd a relatively minute decrease of
ATP. DHAP accumulation has been reported to bectder cellular functions and
responsible for the severity of TPl enzymopathiestbe mechanism of DHAP toxicity is
not well understood (Jacobasch and Rapoport, 1088szet al, 1996; Schneider, 2000).
The defect leads to hemolytic anemia coupled wéhralogical dysfunction (Olakt al.,
2002).

The enzyme phosphoglucose isomerase (PGI) catatlyge®versible isomerization
from G6P to F6P, an equilibrium reaction of glyaiy (r). Glucose turnover reacts,
therefore, only on deficiency below a very low icat residual activity of PGI but then
with a drastic decline of lactate formation, igecrease in glycolytic flux (Jacobasch and
Rapoport, 1996). The consequence of a limitatiothieyPGI reaction is an increase of the
G6P level which causes a feedback inhibition of Fdsulting both in a lower rate of
glycolysis and increased PPP activity associatedurn, with the recombination of F6P
formed in PPP with glycolytic pathway (Kanred al, 1998). With the effect of HK
inhibition, ATP, D23PG and GSH regeneration dea@sddacobasch and Rapoport, 1996).
This is the third most common enzymopathy in theldvfKannoet al, 1998).
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Disphosphoglyceromutase (DPGM) is a multifunctioeazyme which catalyzes
both the synthesis and dephosphorylation of D23RGhuman red blood cells 1§
(Jacobasch and Rapoport, 1996; Mulquiney and Kudi$£19). With lowering of DPGM,
the turnover via D23PG declines in favor of sulistighosphorylation catalyzed by PGK
and PK leading to changes of the metabolic pattafr®, FDP, triose phosphates, 3PG,
2PG, PEP are enhanced, ADP, D23PG, F6P, G6P ameistied (Jacobasch and Rapoport,
1996).

Phosphoglycerate Kinase (PGK) is a key enzyme faP Ageneration in the
glycolytic pathway, catalyzing the conversion of 3L (1,3-diphosphoglycerate) to 3PG
(3-phosphoglycerate) Ar bypassing the Rapoport-Luebering shunt. A sigaiit
accumulation of D23PG, and a decreased concentrafid TP were observed in patients
with PGK deficiency (Fujii and Miwa, 2000). Alsdiminished glucose consumption was
reported (Jacobasch, 2000).

3.2.3. Computational Methods

The same simulation tools as discussed in predeation (3.1.2) were used in the
EFM analysis of red blood cell metabolism. CEF gltions were made using Equations
3.1 and 3.2. In efficiency calculations (equatiorl)3GSSGR, GSHpoxMemPhos
NaKATPase, MetHbRemhd 23DPGdrain(r3z- rzg) were taken as the mode outputs since
these reactions are basis for the cellular objestive., main functions of erythrocytétK

reaction (), which consumes glucose, was taken as subsipta&aireaction.

The ratio of CEFs of reactions at two different ditions (healthy vs. enzyme-
deficient) was used to predict the efficienciesttu# reactions in human red blood cell

metabolism.

For the analysis of enzyme deficiencies in termshef degree of deficiency, a
modification was made on the formulation of CEFcaddtion. The fluxes of the reactions
of EFMs that included the deficient enzyme in threuites were multiplied by a constant,
d;, representing the degree of enzyme deficiedctakes values between 1 (healthy case)

and 0 (complete deficiency). The efficiencies cdsh modes were also weighted dyy
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Some of the cellular objectives disappear upon det@pdeficiency (eg. NaKATPase,
MemPhos and D23PGdrain reactions were not funetgpm complete PGK deficiency).
To account for the decreased contribution of thagectives on CEFs, the related CEF
terms,viceLLoss Were weighted by. Otherwise, the analysis led to incorrect resultthe
boundary of complete deficiency since the ratiovedy small numbers resulted in values
which had significant effects on the calculated €ER-or G6PD and TPI deficiencies,
where R5P and DHAP were considered as external holgta respectively, the modes
including these metabolites in their routes as resiewere weighted by (1 €). This
implies that these modes vanish for health case gradually gain importance as the

degree of deficiency increases.

3.24. Analysesof EFMs, CEFs, and in silico Deficiency Profiles

Biochemical pathways in the human red blood cedl iavestigated as a model for
the ultimate goal of target identification in dragsign. Possible enzyme deficiencies
inherited in the red blood cell are analyzed on llasis of elementary flux mode. The
effect of enzymopathies on the behaviour of metaboétwork and on the regulatory
events is studied using CEF concept, which alldwesquantification of EFM analysis. The
number of EFMs for each enzymopathy is given inl@ah4 where non-functioning
(disrupted) EFMs and indispensable enzymes (theyneeg whose absence lead to
cessation of all the routes) obtained through thguency analysis by Flux Analyzer are
also indicated. Table 3.5 details the calculate®<& human red blood cell metabolism,
in cases of non-deficient enzyme metabolism antti@complete deficiencies of clinically
essential enzymopathies. Tire silico deficiency profile for each enzymopathy is also

obtained for the whole range of O per cent -100cget deficiency.

3.2.4.1. Non-deficient Casefor the reactions of erythrocyte metabolism giirefTable

3.3, the corresponding number of elementary modesaliculated to be 48 (Table 3.4).
Each elementary mode represents a biochemicalitun3chusteet al, 1998; Schustest

al., 2002c; Wiback and Palsson, 2002), as indicatethe table. There are 18 different
overall stoichiometries. Half of the 48 EFMs ars@sated with lactate production, and

the other half differs only in terms of the endgurot, which is pyruvate.
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Table 3.4Number of EFMs obtained for each enzymopathy

Enzymopathy No.of EFMs Disrupted EFMs Indispensable Enzymes
None 48 - HK, GAPDH, PGM, EN, FK
G6PD 16 (18) 6-15, 21-30, 32, 33, 35,36, HK, GAPDH, PGM, EN,

39-42, 45-48 PK, ALD, PFK, PG, TPI
TPI 16 (345 1-5, 11-20, 26-31, 33, 34, HK, GAPDH, PGM, EN,
36-38, 41-44, 47, 48 PK, PPP enzymes
PGI 16 1-10, 16-25, 31, 32, 34, 35, HK, GAPDH, PGM, EN,
37-40, 43-46 PK, TPI, ALD, PFK, PPP
Enzymes
DPGM 36 1, 6,11, 16, 21, 26, 31-33, HK, GAPDH, PGM, EN, P}
34-36
PGK 6 2-5, 7-10, 12-15, 17-20, 22- HK, GAPDH, PGM, EN,
25, 27-48 PK, DPGM, DPGase
EN 0 All All
GAPDH 0 All All
HK 0 All All
PGM 0 All All
PK 0 All All
LDH 24 1-15, 31-33, 37-42 HK, GAPDH, PGM, EN, PK
ALD? 16 1-5, 11-20, 26-31, 33, 34, HK, GAPDH, PGM, EN,
36-38, 41-44, 47, 48 PK, PGI, PPP Enzymes
PFK® 16 1-5, 11-20, 26-31, 33, 34, HK, GAPDH, PGM, EN,
36-38, 41-44, 47, 48 PK, PGI, PPP Enzymes

®ALD and PFK are enzyme subsets and hence havaihe sombination of hampered EFMs.
®Numbers in paranthesis indicate the number of Efen R5P or DHAP are considered as external in the
corresponding enzymopathies.

In CEF analysis the "no deficiency” case points that GSSGR reaction has the
highest flux rate as shown in Table 3.5, which &l implies the importance of NADPH
production in the human red blood cell metaboligtis finding is in parallel with the
known fact that the production of glutathione isetial in this cell type since it reduces

NADP" in order to prevent the cell from oxidative dam@8aynes and Dominiczak, 1999;
Bronk, 1999).
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Table 3.5. CEF analysis for complete deficiencye Tirst column gives the absolute
values, whereas the others are the CEF ratiosfiniatecy case to the healthy one,

indicating whether the CEF of corresponding reaciicreased or decreased upon

deficiency

Enzyme No G6PD  TPI PGI DPGM PGK

Def. Def. Def. Def. Def. Def.
HK 3.00 0.83 1.83 1.50 0.67 0.33
PGI 2.65 0.94 2.34 0.00 0.71 0.40
PFK 1.97 1.26 0.85 1.52 0.61 0.24
GLYCOLYTIC ALD 1.97 1.26 0.85 1.52 0.61 0.24
PATHWAY TPI 1.97 1.26 0.00 1.52 0.61 0.24
GAPDH 497 1.00 1.11 1.51 0.64 0.30
PGK 3.75 0.99 1.22 1.53 0.85 0.00
PGM 3.9 0.97 1.19 1.57 0.81 0.38
EN 3.9 0.97 1.19 1.57 0.81 0.38
PK 3.9 0.97 1.19 1.57 0.81 0.38
LDH 1.62 0.98 1.18 1.66 0.72 0.19
RL DPGM 1.22 1.01 0.76 1.46 0.00 1.22
SHUNT DPGase 0.19 0.61 0.58 2.44 0.00 7.86
G6PD 3.09 0.00 3.71 1.46 0.78 0.50

PGLase 3.09 0.00 3.71 1.46 0.78 0.50
GL6PDH 3.09 0.00 3.71 1.46 0.78 0.50

PENTOSE R5PI 1.03 0.02 3.71 1.46 0.78 0.50
PHOSPHATE Xu5SPE 2.06 0.01 3.71 1.46 0.78 0.50
PATHWAY TKI 1.03 0.01 3.71 1.46 0.78 0.50
TA 1.03 0.01 3.71 1.46 0.78 0.50

TKII 1.03 0.01 3.71 1.46 0.78 0.50

PRPPsyn 0.24 0.57 0.64 2.43 1.48 0.00

PRM 0.24 0.57 0.64 2.43 1.48 0.00

NUCLEOTIDE AdPRT 0.16 0.57 0.64 2.42 1.48 0.00
PATHWAY PNPase 0.24 0.57 0.64 2.43 1.48 0.00

HGPRT 0.08 0.58 0.62 2.43 1.48 0.00
IMPase 0.16 0.58 0.63 2.43 1.48 0.00
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Table 3.5. continued

AMPase 0.26 0.59 0.61 2.43 1.48 0.00
NUCLEOTIDE  AMPDA 0.08 0.57 0.64 2.42 1.48 0.00

PATHWAY ADA 0.08 0.57 0.64 2.42 1.48 0.00
AK 0.18 0.60 0.60 2.44 1.48 0.00

ApK 0.24 0.57 0.64 2.43 1.48 0.00

GSSGR 6.19 0.00 3.71 1.46 0.78 0.50

CELLULAR GSHox 3.09 0.00 3.71 1.46 0.78 0.50

OBJECTIVE NaKATPase 1.00 1.08 0.83 1.35 1.07 0.00
MemPhos 1.06 1.05 0.80 1.38 1.09 0.00

MetHbRed 3.35 1.00 1.07 1.44 0.61 0.35

D23PGdrain  1.03 1.08 0.79 1.27 0.00 0.00

GSHpox 3.09 0.00 3.71 1.46 0.78 0.50

Nucleotide metabolism enzymes exhibit very low Citues implying relative
insignificancy of the pathway in the overall ergibyte metabolism. Since the turnover of
nucleotide pathway is reported to be very low (Atddnanovet al, 1996), this pathway is
usually not considered in modeling analysis of lengtytes (Mulquiney and Kuchel, 1999;

Schuster and Holzhdtter, 1995), in agreement waghlaw CEFs calculated here.

3.2.4.2. Glucose-6-phosphate dehydrogenase (G@Riciency. The experimental

finding that in the absence of G6PD, there is atflathway leading from glucose to ribose
via TK and TA reactions (Pandokt al, 1995) was already verified using EFM analysis
by blocking G6PD and considering ribose-5-phospliRt&P) as external (Schusktral,
1998). A substance is called external if it carctesidered to be present in large excess so
that its concentration is unaffected by the reastiander study (Schustet al, 2002c).
Based on this analysis, R5P is considered to bexéernal metabolite in the present
deficiency analysis, too. The corresponding nunab@lementary flux modes is calculated
to be 18. Common characteristics of these modesttat they do not involve the
glutathione disulfide reductase and glutathioneoxidase reactions, which are necessary
for preventing oxidative stress (Schusteral, 1998; Mehtaet al, 2000) and needed for

cellular functions.
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In normal erythrocytes, any oxidant that lowers ilabde NADPH raises
immediately the oxidative pentose phosphate pathway.s) rate several folds in order to
supply the needed amount of this cofactor. On therchand, red blood cells with G6PD
deficiency cannot increase their OPPP rate suffiieduring the oxidative load (Bossi
and Giardina, 1996) as predicted by CEF analysislt® (Table 3.5). Zero fluxes were
calculated for the oxidative PPP, and very low galwere obtained for the nonoxidative
part. The deficiency of G6PD blocks the PPP andleenthose enzymes inefficient. On
the other hand, the other objectives of the cal, ATP generation for the functioning of
cation pump and for the membrane plasticity, D23®&duction for the modulation of
hemoglobin oxygenation, reduction of methemogldbirfunctional form, were found to

be unaffected.

Deficiency profile of this enzymopathy (Figure &)indicates that the CEF values
of metabolic reactions do not increase more tharidld, and nucleotide pathway is mildly
affected. The only abrupt change occurs in PPPragyand hence G6PD enzyme, which
exhibit almost linear decrease upon enzyme defigieDeficiency profiles of the enzymes
in the same enzyme subset were found to exhibitsdmee trends (eg. PPP pathway
enzymes; glycolytic enzymes of PFK, ALD, TPI). Enmy subsets are defined as the
enzymes which always operate together in fixed firoportions at steady state (Pfeifédr
al., 1999). The behaviour observed in CEF profileppsuts the hypothesis that the
enzymes belonging to the same subset share simpdterns of genetic regulations
(Schusteet al, 2002b).

3.2.4.3. Triose Phosphate Isomerase (TPI) Defigiein a clinical study, TPI deficiency

was investigated from the metabolic and geneticeetspand a high level of DHAP
accumulation was reported (Hollat al, 1997; Olahet al, 2002; Oroszt al, 1996;
Repisoet al, 2002). On the basis of this literature inforroati EFM analysis was
performed by taking DHAP as external metabolitee ilmmber of functioning elementary
flux modes was found as 34. In this case, similgealytic CEF values were calculated in
TPI enzymopathy as in the healthy case. That &ettpression of the genes responsible
for glycolytic enzymes does not differ much whenl 9 deficient, in parallel with the
clinically observed situation that glycolysis isafiected in the patients (Repigt al,
2002).
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Names of the enzymes with outstanding behaviougiaen in figures

Investigating the CEFs in complete TPI deficienthe Rapoport-Luebering shunt
(ri2, n3) exhibited a decrease implying less D23PG prodagtand an increase was
observed in pentose phosphate pathway enzymese(Bal). This suggests that the cell is
in high oxygenation state (Messaea al, 1996) and fights with the deficiency by
increasing its flux to OPPP, as a defense mechanidme glucose utilization is not
negatively affected in deficient cells, which igpapent by the high CEF values of HK and
PGI reactions. The enzymes of ATP consumption reest(NaKATPase and MemPhos)
showed 20 per cent decrease, which is coincidevithl the behavior of TPI deficiency
that this enzymopathy leads to a generalized impent of cellular energy supply
(Jacobasch and Rapoport, 1996).

Deficiency profile (Figure 3.6.b) is associatedhwén increase in PP pathway and

glutathione related enzymes. Efficiency of TPI teatdecreases only 20 per cent upon 50
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per cent deficiency, after which a linear decrems®bserved. The deficiency is also

associated with about 3.5 fold increase in oxigatlamage protecting reactions.

3.2.4.4. Phosphoglucose isomerase (PGIl) Deficien@fF analysis of complete PGl

deficiency resulted in increased values of glyaslysnd nucleotide metabolism fluxes
compared to “no deficiency” case (Table 3.5). Therease in PPP fluxes was not high
compared to TPI deficiency, which implies that tteficiency does not have considerable
influence on this pathway. Particularly, there approximately 2.4 fold changes in the
fluxes of reactions catalyzed by DPGase and nudeometabolism.Although, the

decrease in glycolysis fluxes was the case repoirethe literature (Jacobasch and

Rapoport, 1996), theoretical CEF values indicatgosfie behaviour.

The change of CEF value of PGI enzyme upon itscokfcy (O per cent -100 per
cent) is slower until about 17 per cent deficierafyer which a linear decrease with higher
slope is observed (Figure 3.6.c). Tihesilico profiles of most of the enzymes show similar
behaviour associated with almost no change untp&iOcent deficiency, and then a slight
increase; except nucleotide pathway enzymes andaB®d his theoretical analysis does

not find any other significantly affected enzyme tlois enzymopathy.

3.2.4.5. Diphosphoglycerate mutase (DPGM) Deficjeitn DPGM deficiency case, the

CEFs of essential reactions do not show abruptgdmcompared to no deficiency case
(Table 3.5). This implies that DPGM or DPGase deficy is not critical, and has slight
effects on red blood cells Jacobasch and Rapop@®6). A decrease in the rate of OPPP
reactions, about 22 per cent, indicates that evgthie metabolism is not short of NADPH

production, and is not under the possible attaakxafative damage.

DPGM deficiency profile indicates that ATP consuioptreactions, NaKATPase
and MemPhos, are unaffected by this deficiency uf€ig3.6.d). This implies that this
deficiency is milder compared to other enzymopathiehich is in agreement with other
modeling attempts of this deficiency (Schuster &awzhuitter, 1995; Martinowet al,

2000). These modeling approaches use kinetic irdbaom on enzymatic reactions in
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contrary to this study, where the same conclusio®d®GM deficiency could be derived

using only stoichiometric modeling.

3.2.4.6. Phosphoglycerate kinase (PGK) Deficierfeyr this deficiency, only 6 EFMs
were obtained. Complete PGK deficiency exhibitsyvéow CEF for HK enzyme,

indicating that glucose uptake is impaired withpexst to healthy case (Table 3.5). This is
in agreement with the reported decrease in gluocassumption in PGK deficient red
blood cells (Jacobasch, 2000). Nucleotide pathway also found to be non-functional in
parallel with the emphasized lower yield of adenmeleotides (Jacobasch, 2000). The
only remarkable increase is associated with DP@aaetion (8 fold). This would also be
expected due to the reported higher levels of D23kP@e patients. High level of this
metabolite would supply a high amount of substfateDPGase reaction, contributing to

its enhanced activity.

The deficiency profile (Figure 3.6.e) shows that KP@ctivity changes almost
linearly upon increasing deficiency. DPGM enzymaeegatively affected upon deficiency
until the enzyme is 80 per cent deficient, aftericlhit shows a slight increase in CEF

value since it becomes an essential reaction isdbe of complete enzyme deficiency.

3.2.5. Concluding Remarks

The enzymopathies of G6PD, TPI, PGI, DPGM and RGkhe human red blood
cell were investigated by the help of EFM detecteomd CEF analysis. CEF analysis
allowed the detection of the importance of eacletiea in the EFMs as well as the relative
change in the efficiencies of enzymatic reactionssilico deficiency profiles). It revealed
the importance of the glutathione mechanism inhthman red blood cell, which prevents
oxidation within the cell. The reactions catalyAzgdthe glutathione enzymes were found
to have the highest CEFs in the erythrocyte meisimolApplication of new experimental
measurement techniques and consequently obtaingtgilel metabolic shapshot of
clinically available enzymopathy cases would aliowproved comparison and verification
of here-reported theoretical results and eventuleiad researchers to design drugs for

patients suffering from these enzymopathies.
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4. EFFECT OF CARBON SOURCE PERTURBATIONSON
TRANSCRIPTIONAL REGULATION OF METABOLIC FLUXES
IN S. CEREVISIAE

Metabolic fluxes are functions of metabolite levémetabolic regulation) and
enzyme concentrations, and the latter are contr@altetranscriptional, translational and/or
post-translational levels (hierarchical regulati@Mjelsen, 2003; ter Kuile and Westerhoff,
2001). Functional genomics era has facilitated arese on the type of flux regulation
through the expression levels of metabolic genep\jiadeet al., 2004; Oh and Liao,
2001; Kromeret al., 2004). A common approach in the literature isampare flux levels
calculated by flux balance analysis (FBA) or metabfiux analysis (MFA) with mRNA
levels (Familiet al., 2003; Oh and Liao, 2000, Varedh al., 2005). Since many of the
reactions are not active under the optimum growthddions determined by FBA,
prediction is not even possible for a number ofegerThis is also the case for the MFA
approach (Lapujadet al., 2004). Moreover, in FBA the occurrence of altéenaptima
cannot be excluded (Phalakornkuét al., 2001; Mahadevan and Schilling, 2003;
Urbanczik and Wagner, 2005). It was previously smawat these approaches do not
account for the flexibility of the metabolic netwoand that the quality of the resultant
prediction is greatly improved by the incorporatiohflexibility (Stelling et al., 2002).
Elementary flux modes identified by the enumeratasnthe flux solution space using
linear algebra (Schusteral., 2000) provide the missing flexibility informatior'Weighted
sum of fluxes through these elementary modes,calatrol-effective fluxes (CEF), lead
to the implicit incorporation of functionality andegulation into metabolic network
structure (Stellinget al., 2002; Cornish-Bowden and Cardenas, 2002; Galat., 2004).
CEF changes were previously used for the prediationanscriptome changes in carbon
source shifts foE. coli (Stellinget al., 2002) andS. cerevisiae (Chapter 3) metabolisms.

Application to erythrocyte enzymopathies was alsmdnstrated (Chapter 3).

In this chapter, the stoichiometric metabolic md@elS. cerevisiae used in Chapter
3 was improved and extended by the addition oftreas responsible for major amino acid

pathways. The resulting system includes 77 metsoland 83 reactions which are
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governed by a total of 137 genes (Appendix D). nigetary flux modes of this reaction
network were calculated for growth on different bmar substrates to determine CEFs
which are the weighted sum of modes going througareyme. The fold changes of CEFs
of reactions in the model in response to pertuobatiarising from carbon shifts were
compared with that of expression levels of metabgéines responsible for the enzymes of
the reactions. The number of fluxes obeying an@tedde correlation was used to evaluate
whether the metabolic fluxes are transcriptionalggulated for such perturbations.
Hierarchical and/or metabolic regulation was assiiowncluded to be predominant in

case of lack of correlation between the ratios BFE€ and mRNAs.

4.1. Computational Methods

4.1.1. Formulation

EFMs were calculated using FluxAnalyzer 5.3 (Klatrdl., 2004). CEF calculations
were performed under MATLAB 7.0 environment, anéyttare based on the efficiencies
of calculated EFMs in terms of the chosen cellolgectives: production of biomass itself
and ATP for maintenance. Efficiency of an EFM, &HEF of a reaction were calculated
based on Equations 3.1 and 3.2, as explained itose8.1.2. In Equation 3.1, EFMs
which are equivalent in terms of cellular objectiare distinguished by assuming that the
shorter pathways are more efficient as reflectedhan denominator of the formulation
(Stelling et al., 2002; Schwarzt al., 2005). This approach coincides with the recently
suggested flux minimization objective (Holzhutt2®04), which implies that the optimum
flux distribution is the one which has minimum tdtax. The ratio of CEFs of reactions at
two different conditions was used to predict theression ratios of metabolic genes

responsible for the enzymes of the reactiorfs oerevisiae.

4.1.2. M ethodology

Logarithms of the CEF and mRNA ratios for reactigeses between two conditions
were plotted against each other. A script was @miih MATLAB to identify the points
which cause the largest deviation from a preseafectarelation, and these points were

omitted from the plot one by one until a correlati(R’) of 0.60 was reached. This



64

correlation coefficient value was selected as tireshold for an acceptable degree of
correlation since it corresponds to a Pearson latioa coefficient around 0.80, which is
considered to be the lower limit for a good cotiela (Camachcet al., 2005). Moreover,
the correlation between logarithmic mRNA ratios tefo different wild type strains
(Williams et al., 2002) in response to the same carbon shift wasndr0.70 with slope
being noticeably different from unity. This inhetesriability in cell behaviour depending
on its genotype cannot be reflected into metabstachiometry since stoichiometric

models are not strain-specific, which also justifiee selected threshold value.

The number of point omissions required to keepréiyeession coefficient, :Rabove
0.60 was assumed to be one of the criteria fortityamy the type of regulation imposed on
the fluxes for a particular carbon shift. If mangiqds are to be omitted to reach the
threshold, this means a) fluxes are not transorpliy regulated, but regulated in post-
transcriptional, translational or post-translatiotevel (the other hierarchical control
mechanisms are active) b) or there is predominatalbolic regulation corresponding to
substantial changes in the metabolite levels, chpaih regulation types, metabolic and
hierarchical, are active. In addition, a second litaisve criterion called ‘correct
prediction’, which is based on the number of pointshe first (up-regulation) and third
(down-regulation) quadrants of the plotted coort#irexis, was also used, as employed by
others (Familet al., 2003).

4.2. Results

The set of experimental gene expression data ftwoocasource perturbations used in
this study are summarized in Table 4.1. If multipenes correspond to a single reaction,
their expression levels were summed up for eacldiion before the calculation of the
fold change. The metabolic model consists of cérdembon metabolism reactions as
described in Chapter 3, and improved by the inolusif the reactions involved in the
synthesis of major amino acids (Appendix D). Otherino acids which contribute to the
smaller portion of protein composition 8f cerevisiae (Forsteret al., 2003) were directly
incorporated into the biomass reactioggfrrather than including the individual reactions
responsible for their formation into the set of idiometric reactions taken into

consideration. The network could therefore be iestt to a manageable medium-scale
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size. This processing was necessary to avoid thicatorial explosion in the number of
elementary flux modes with the increase in the nemdf considered reactions, which
cannot be handled with the current algorithms (Klatral., 2002, Schwaret al., 2005).
The stoichiometric coefficients of the reaction deg to biomass formation were
calculated on the basis of the biomass compodifien by Forsteet al., 2003.

Table 4.1. Transcriptome datasets used in thig/stud

Article Source change Fermentation type
DeRisiet al., 1997 Carbon: Glucose- Ethanol Batch
Lapujadeet al., 2004 Carbon: Glucose-Ethanol Chemostat
Williams et al., 2002 Carbon: Glucose-Acetate Batch
Lapujadeet al., 2004 Carbon: Glucose-Acetate Chemostat
Prokischet al., 2004 Carbon: Glucose-Lactate Batch
Piperet al., 2002 Oxygen: Aerobic-Anaerobic Chemostat

Table 4.2. Number of EFMs for each studied carlmnce for the biomass composition
reported in Forsteat al., 2003. The numbers in paranthesis shows EFM nwusneen the

biomass composition of Gombettal., 2001 is employed for comparison

Substrate EFMs - M83 EFMs - M46
Glucose 136925 (184631) 13255
Ethanol 11427 (15099) 1225
Acetate 4240 (5452) 536
Lactate 25484 (34319) 2533

“In M83, the EFMs with simultaneous occurrence off@and GDH3 in reverse directions were not taken
into account since this leads to transhdrogenasetgcwhich is known to be not available & cerevisiae.

The number of EFMs calculated for each carbon soigrgiven in Table 4.2 for the
model in Appendix D called M83 (based on the nundfeincluded reactions), and for a
modified version of this model, M46, which only lndes central carbon metabolism
reactions as in Chapter 3. When the number of EBMbe two models is compared, an
approximately ten-fold increase is observed in ¢hse of M83. Therefore, it may be
concluded that the inclusion of amino acid readti@mables better and less-restricted

representation of the microorganism flexibility. ellsoefficients of biomass constituents
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were calculated also on the basis of another egllmlacromolecular composition reported
by Gombertet al., 2001 forS cerevisiae (rs3,), and this calculation led to noticeable
differences in the resultant number of EFMs for #ane carbon source (Table 4.2).
However, variations between calculated CEFs fohd#eM set were small and, therefore,
the biomass composition in Forskral., 2003 was used in EFM and CEF calculations

throughout this study.

The following strategy was pursued to distinguistive EFMs during growth on
glucose in different fermentation types. For basperiments (Table 4.1) operated in
respiro-fermentative mode, EFMs producing any & tlonsidered byproducts (ethanol,
glycerol, acetate, succinate) were retained siii® mode is mainly associated with
simultaneous biomass and product formation; thosmdyzing only biomass were
discarded, leading to 127872 EFMs instead of 136®R®Bmass-only EFMs were
considered in chemostat experiments since no bgtgtovas detected in the medium at a
dilution rate of 0.1 i (Lapujadeet al., 2004), leading to 9600 EFMs instead of 136925.
This approach was used to test the prediction dhtpebof the previous models where all
the EFMs had been used without such distinctionctamparison with experimental data
(Stellinget al., 2002; Cakiet al., 2004). The present strategy to include only acE¥Ms
into the model was found to enable improved prémtist of gene expression changes

(results not shown).

Table 4.3 summarizes the simulation results foregelmelonging to central carbon
metabolism (45) for each case in Table 4.1, inclgdhe correlation coefficient, slope,
correct qualitative prediction, and the omittedrpsito reach R= 0.60. An acceptable
correlation (B = 0.60) with a slope close to the unity was pdssity omitting at most 6
points for the studied carbon shifts (Table 4.2nB which had to be omitted correspond
to reactions whose CEF values do not show coroslatith the change in expression
levels of the genes encoding the enzymes catalythiege reactions. It is highly probable
that these fluxes are regulated at post-transeorpti and/or metabolic level. Correct
prediction of qualitative up-regulation and dowigukation was above 76 per cent for all
cases. These results (Table 4.3) indicate thateflugorresponding to central carbon
metabolism reactions are mainly transcriptionadigulated in carbon shift experiments. A

clear lack of correlation was observed in the oxyghift experiment, for which 20 points
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had to be discarded to reach the threshold coioelR = 0.60). Plots of mRNA ratios
versus CEF ratios for all cases studied are gimefigures 4.1 to 4.5. The present results
also reveal the fact that central metabolic gemegeedominantly upregulated in response
to a shift from fermentative carbon source to a@®with C-2 C-3 compounds as most of
the points lie in the first quadrant in Figures th 4.5.

Table 4.3. Results of simulations for genes belogdgp central carbon metabolism

o Number
Omissions ] Not
Correct Slope/ | of EFMs | Omitted )
for o, ) ) Applicable
5 Prediction R used in Genes
R%0.60 , , Gene$
simulation
Glucose/Ethanol 1.06/ 127872/ fk®, 1-
3 0.82 (36/44) p$ (opp
batch 0.65 11427 | fopl®, pyc hor2)
fk pyc 1-
Glucose/Ethanol 0.81/ 9600/ PicpY (opp
6 0.77 (33/43) ald4 pda hor2)
chemostat 0.60 7051 )
fba tpi bphl
(9ppl-
Glucose/Acetate 1.11/ 127872/ | maeidp2 hor2)
3 0.76 (31/41)
batch 0.63 4238 rpe bphl Pyc
pfk
1-
adhl rki (opp
Glucose/Acetate 1.18/ 9600/ hor2)
6 0.78 (32/41) Isc sol fha
chemostat 0.61 4190 bphl pfk
2wf
pyc
Glucose/Lactate 0.89/ 127872/ pfk idp2
4 0.84 (38/45) -
batch 0.60 25482 pyk mae
Aerobic/
1.25/
Anaerobic, 20
0.62
chemostat

"The points with a fold change between 0.95-1.05efdter of model or experiment were consideredeto b
correctly predicted.

*These genes were found to exhibit better agreemi#miCEF ratios in the analysis of Gasattal.(2000).

*CEF ratio was either zero or infinity for these genTherefore, they could not be used in the caticei
calculation.

The effect of the assumption regarding assignmehigher efficiency to the shorter
pathways was tested for each of the perturbatioa/aed here. Denominator of Equation
3.1 was not taken into account, thereby assignqualeefficiency to the EFMs with the

same objective flux, regardless of the correspandength. A lower correlation was



68

observed when the higher efficiency of shorter wats was not considered. These results
support the hypothesis that shortest modes cotdrilmost to (cellular activity)/ correlation
between CEFs and gene expression (Stedlirady, 2002; Schwaret al., 2005).

4.3. Discussions

The correlation between mRNA ratios of the genes @srresponding CEF ratios
were investigated for the genes belonging to cectitebon metabolism and amino acid

metabolism separately using M83 model.

4.3.1. Correlation between mRNA ratios for the genes of central carbon metabolism

and corresponding CEF ratios

The present results indicate that the response aft mof the central carbon
metabolism genes to a perturbation in the carbamcsois at transcriptional level and is
transmitted hierarchically to flux level (Table }.Blowever, the same genes are found to
be weakly correlated with CEFs in the case of orygjft, indicating that the response of

the same genes to different perturbations is regpesth by a similar control mechanism.

For each carbon source perturbation, a small sgenés whose mRNA ratios were
weakly correlated with the CEF ratios were omittEdr example, three genes, namely
pfkl, fopl and pyc, displaying a weak correlatisnaaresponse to a diauxic shift in batch
cultures (DeRisét al., 1997) were omitted (Table 4.3). Two of these gd(fiepl, pfk) are
responsible for the expression of enzymes involwveadonversion between fructose-6-
phosphate and fructose-diphosphate in reversetidinsc fopl is known to be active in
ethanol growth whereas pfk is active during glucgsawth. Although their up or down
regulation matches with CEF predictions perfedtiy, quantitative relation is absent. That
is, relatively insensitive ratiowise response aheyeexpression level may indicate an
amplified transmission of the signal to flux levdbwever, investigation of another dataset
(Gaschet al., 2000) for the same respiro-fermentative shiftvehdpetter correlation for
these genes, and corresponding CEF values as shdvigure 4.1 by square points. Thus,

these genes may also be false-negatives resultingthe absence of replicates.
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For the glucose/ethanol shift in the chemostauceltglycolysis pathway genes (pfk,
pyc, ald4, pda, fba, tpi) are found to be the nyaddviating ones, undergoing other kinds
of regulation rather than transcriptional (Tabl8)4This is supported by a recent study,
which shows that glycolytic genes are regulatetth@tevel of proteome in response to the
same perturbation (Kolkmaat al., 2005). The present analysis indicates a gooclation
between the magnitude of change in CEFs and trghsiavels of genes, with the
exception of these six points. Here, this analyiges a better correlation than the
comparison made using MFA based fluxes by Lapugids., 2004, where 19 out of 43
genes could not be included in correlation analggise the corresponding MFA-based
fold change was either zero or infinity, and thie fohanges of 21 of the remaining points
showed a correlation above the thresholt£R.60), with a slope several folds higher than
unity (3.5). This indicates that the use of genemaétabolic capabilities of the
microorganism under a carbon source as reflectedloulated EFMs, rather than focusing
on a single flux distribution, results in bettepmesentation of the hierarchical behaviour of
the control in gene expression. This is also Viaidhe diauxic shift in batch cultures. CEF
approach with 82 per cent qualitative correct preoin (Table 4.3) is superior to the FBA
approach with 61 per cent qualitative correct preain (Familiet al., 2003) which is based
on the number of up-regulated and down-regulatedtpohat are in agreement between

experimental and simulation results.

For the glucose/acetate shift in chemostat culiuteee of the six omitted genes
belong to pentose phosphate pathway (rki, sol,.zWMfe other three are from different
pathways, Isc from TCA cycle, fba and adhl froncglytic pathway. The corresponding
fluxes are similarly assumed to be subjected toleggpn types other than transcriptional
(Table 4.3). Unlike chemostat cultures, lack ohs@iptional regulation through fluxes of
reactions governed by two different genes, nand? and mae, is implied in case of

batch cultures for glucose-acetate shift (Tablg¢.4.3

For genes of central carbon metabolism predictlmn$183 was better than that of
M46, meaning that further incorporation of the pholes paths spanning amino acid

pathways reflects the flexibility of the organis@tter (results not shown).
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CEF Ratio

MRNA Ratio
Figure 4.1. Comparison of model-based and datadoadi®s for carbon shift from glucose
to ethanol in batch cultures. Filled circles ar dimitted points to reaci’R 0.60. The
squares are obtained by using the data from Geisth 2000

CEF Ratio

mRNA Ratio

Figure 4.2 Comparison of model-based and data-based ratiaafbon shift from glucose
to acetate in batch cultures. Filled circles agedimitted points to reach the selected cut-
off value of R = 0.60
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olred 430

mMRNA Ratio
Figure 4.3Comparison of the model-based and data-based faticarbon shift from

glucose to lactate in batch cultures
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Figure 4.4Comparison of the model-based and data-based faticarbon shift from

glucose to ethanol in chemostat cultures
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CEF Ratio

mRNA Ratio
Figure 4.5Comparison of the model-based and data-based faticarbon shift from

glucose to acetate in chemostat cultures

4.3.2. Correlation between mRNA ratios for the genes of amino acid pathways and

corresponding CEF ratios

For respiratory chemostat datasets, it is diffitaltestablish a correlation between
ratios of expression levels of amino acid genes amdesponding CEF ratios since
numerical values of both experimental mMRNA and nh&leF ratios for these genes are
very close to unity. Therefore, these genes ddhawé pronounced effect on the resultant

correlation and slope.

For respiro-fermentative batch datasets, on avetagemore points had to be
removed from the graph to get the predeterminecetzdion of R = 0.60. That is, there
was a lack of correlation between the ratios ofreggion levels of amino acid pathway
genes and corresponding CEF ratios. The obsere&dfacorrelation for amino acid genes
was also obvious fdE. coli model (Stellinget al., 2002). There was no positive correlation
between five genes available in the model belongirgmino acid metabolism, consistent
with the behaviour observed f&r cerevisae as summarized above. However, one should
be cautious to judge this lack of correlation as wWeakness of transcriptional regulation
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for genes involved in amino acid synthesis pathway®e experiments analyzed include a
direct perturbation in the carbon source. The tantieffect on central carbon metabolism
could be captured by the model more easily as éneifpation was directly related to this
metabolism. Since there was no perturbation fomanaicid pathways such as the change
in nitrogen source, the results may not reflectréwd situation. Additionally, the lack of
correlation in batch cultures may be explained hge tuse of rich media in the
fermentations. Due to their availability in the nmedhe amino acids might not have been
resynthesized within the cell, which may be anotterse of poor correlation. Therefore
the correct analysis of amino acid pathways reguspecially designed experiments.
Moreover, it has been reported (Grotkjeer, 2005) the change in the growth rate has a
direct influence on the mRNA levels. The lack ofretation for the relatively unperturbed
amino acid pathways can be attributed to the plessiffference in microbial growth rates
on the compared carbon sources in the batch exeetahdatasets. Furthermore, the
MRNA ratios may have been biased by the normatimathethods employed for the

analysis of transcriptome data.

On the other hand, as will be presented in Chaptepmparison of the significance
of statistical change in transcriptome and metabelqrofiles of S cerevisiae under
different conditions (Cakiet al., 2006) led us to the conclusion that almost athefgenes
governing amino acid metabolism were metabolicalbgulated with or without
transcriptional regulation. Although this findingrmot be stated as a strong support due to
the reasonings listed above, this may be anothglaeation for the lack of correlation
observed here. Then, this poor correlation imphes central carbon metabolism genes are
much more transcriptionally regulated than thoseeguing amino acid metabolism.
Therefore, in this study the focus was on the aslgf central carbon metabolism since
this was the part mostly affected by the here-stidtarbon-source perturbations as

explained above.
4.3.3. Effect of media and strains on thetranscriptional regulation of fluxes
The fluxes of central carbon metabolism are foumdé mainly transcriptionally

regulated in response to carbon source perturtsa(ibable 4.3). In order to investigate the

effect of strain type on the regulation of fluxéke experimental dataset for glucose-
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acetate shift in batch cultures (Williamnssal., 2002) was used. This study includes the
identification of changes in transcriptome as aoese to the same type of perturbation for
two different wild type yeast strains (W303, SKTIhe result presented in Table 4.3 is for
W303 strain and indicates that fluxes of centratabelism of this strain is subject to
transcriptional regulation, with only three disobey fluxes. The analysis of the other
strain (SK1) revealed a requirement of omissionseffen more points to reach the
predetermined correlation R 0.60) in addition to three omissions for W308isTresult
suggests that the regulation behaviour can strogpend on the genotype of strain itself
as suggested elsewhere (Feetal., 1999; Bremet al., 2002; Townsendt al., 2003;
Janseret al., 2005; Cakiet al., 2006).

W303 strain is suggested to exhibit more fermeveahehaviour than SK1 strain in
glucose containing medium (Williamet al., 2002). The expression levels of genes
involved in respiratory metabolism were higher &1 strain than for W303 strain. This
information was used to test the introduced apgroat distinguishing active EFMs
operating in respiratory and respiro-fermentativ@ngh. CEF analysis and comparison of
CEF and mRNA ratios for SK1 were performed consideall EFMs for glucose growth
instead of taking only those co-producing biomasish wvany of by-products. The
underlying assumption is that those producing dmgmass must also be active in this
strain displaying a more respiratory behaviour.uRast number of omissions was reduced
to 8 for SK1 strain. On the other hand, use oE&Ms for W303 strain caused an increase
in the number of omissions to five. It should betemibthat the incorporation of an
information on the phenotypic/fermentative behaviofithe strain into the analysis may

improve the prediction of the fluxes that are tipgionally regulated.

In order to investigate the effect of media on tregulation of fluxes, the
experimental dataset for glucose-lactate shift atch cultures, where the changes in
transcriptome as a response to this perturbatiorYRD and synthetic complete media
were reported (Prokisadt al., 2004), was used. The same type of analysis vsascalried
out for synthetic complete media, and the resuéieeveompared with that of YPD in Table
4.3. The number of the omitted fluxes increasedigit, indicating the effect of medium

components on the regulation type of particulaxdhi
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4.4. Alternative Approachesto CEF Calculation

Two additional approaches can be followed to gearehee set of flux distributions as
an input to CEF calculation. The glucose-ethanalukiic shift case in batch cultures
(DeRisiet al., 1997) is used here to demonstrate the predigiover of these approaches
for metabolic transcriptome changes, as compare&Rbl-derived approach for CEF
ratios.

The first approach is the uniform sampling of tluson space. There are two
different alternatives for such a sampling, i.e.n#sCarlo and hit-and-run. Of the two
methods that can be used to uniformly sample tiwe $blution space constrained by the
stoichiometric matrix and the reaction irreversipilnformation, Monte-Carlo approach is
not applicable for large-scale models. The othethow; hit-and-run sampling was
employed here to get a set of flux distributionsgled randomly and uniformly. Detailed
formulation of the approach is given in Appendix e sampling was performed until
about 4,000 flux distributions are obtained. Hittdun algorithm was executed to get 8
million sample points; and only every 200@oint was saved in order to prevent the
interdependency of the consecutively generated lemm@ollection of higher number of
flux distributions did not result in noticeable feifence in calculated CEFs. Therefore,
these sampling parameters were used in simulatgagtygrowth on both glucose and
ethanol. Then, the collected flux distributions gversed in the calculation of CEFs. CEF
calculation was repeated for three different samgptuns, to detect if the flux distributions
generated by sampling shows variability. No siguifit variation was observed among the
results of different executions. Figure 4.7 preséhé correlation between sampling-based
CEF ratios and transcript ratios. The correspontijye based on EFM-based CEF ratios

(Figure 4.1) is regenerated as Figure 4.6 withmitt;ng any points for comparison.

As another alternative to CEF calculation, maxima@minimization of a randomly
selected linear objective function was used indmgrogramming-based determination of
flux distributions. After collecting enough numbefr flux distributions, CEF calculations
were repeated, and the resultant correlations waleulated. Generation of about 1000
flux distributions by randomized FBA was considetedbe enough since execution of this

approach in different times led to flux distributgo with almost the same CEF values.
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Figure 4.8 presents the correlation between treedbiinge of mMRNA levels (DeRiai al.,

1997) and that of multiFBA-based CEFs.

CEF ratio

Figure 4.6. Correlation between experimental mRE#os and EFM-based CEF ratios for
carbon shift from glucose to ethanol in batch aeltu

CEF ratio

mRNA ratio

Figure 4.7. Correlation between experimental mRB#os and hit-and-run-based CEF

ratios for carbon shift from glucose to ethandbaich cultures
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As it can be seen from both of the figures (4.7 dn8), the two alternative
approaches lead to noticeably worse correlatioh wiperimental data, compared to the

correlation when EFM-based CEF values are used.

CEF ratio

0
R

mRNA ratio

Figure 4.8. Correlation between experimental mRB#os and multi-LP-based CEF ratios

for carbon shift from glucose to ethanol in batahiwres

4.5. Concluding Remarks

The hierarchical transmission of transcriptome gearto flux level was investigated
using control effective fluxes rather than the #8axderived from flux balance analysis. The
degree of high correlation between transcriptont filxome obtained by CEF approach
points out that the major reason for the lack afelation reported so far between gene
expressions and fluxes was due to neglecting thebility information of the network in
operation. The detailed analysis using CEFs hasvishihat fluxes of central carbon
metabolism are predominantly regulated at the trgptsonal level in response to changes
in carbon source. Regulation of amino acid metsboliseems to be mainly at the
metabolic level; however, a definite conclusion cat be drawn since the analyzed
perturbations were not directly related to amina anetabolism. Therefore, analysis of

nitrogen shift experiments will provide importantarmation on the regulatory mechanism
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of amino acid pathways. These results lead to tipothesis that if the applied
perturbation has a direct effect on a metabolitwpay, then the genetic response of that

pathway at mRNA stage is propagated into the fliages as demonstrated for central
carbon metabolism in this study.
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5. INTEGRATION OF METABOLOME DATAWITH METABOLIC
NETWORKSREVEALS REPORTER REACTIONS

One of the goals of systems biology is to obtaiarall quantitative description of
cellular systems. This is currently not achievasiece the number of components and
interactions involved in these systems is quitgdaresulting in a very large parameter
space. Thus, methods are required to reduce thendiomality and particularly identify
key regulatory points in the many different cellulagrocesses. Metabolism is a good
starting point to develop such analysis method# &s studied in great detail and well
annotated. Furthermore, genome-scale metabolic Imddee been developed for many
different cellular systems (Edwards & Palsson, 208f¥steret al, 2003; Sheikret al,
2005), and besides their use for simulation ofutail function (Edwardst al, 2001;
Famili et al, 2003; Priceet al, 2004b) these models can serve as scaffoldsnfdysis of
genome-scale biological data (Covettal, 2004; Borodina & Nielsen, 2005). This has
been demonstrated recently for analysis of trapsume data, where the use of genome-
scale metabolic models enabled identification ofegulated sub-networks and reporter
metabolites (Patil & Nielsen, 2005). Although tramgtome data provides an overview of
the global regulation in the metabolism, understagndf cellular physiology is incomplete
without knowledge of metabolome owing to the higimmectivity in metabolic networks
and inherent inter-dependency between enzymatidatgn, metabolite levels and fluxes
(Nielsen, 2003). Metabolites, acting as intermexiabf biochemical reactions, play a
crucial role within a living cell by connecting mardifferent operating pathways.
Metabolite levels are determined by the conceminatiand the properties of the
surrounding enzymes, making their levels a compiiextion of many cellular regulatory
processes in different dimensions. Thus, the métaim® represents a snapshot of the
functioning metabolism of the cell and hence presidvaluable information about
regulation of several different cellular proces@étias-Boaset al, 2005c). Consequently,
in recent years there has been increased focusalysé of the metabolome (Sumredr
al. 2003; Bincet al, 2004; Villas-Bbagt al, 2005c). Even though traditional data analysis
methods like principal component analysis, clusgeranalysis and chemometrics have
shown to be efficient for analysis of this kinddafta (Raamsdondt al, 2001; Allenet al,

2003), there are some limitations with these meth@mt uncovering the underlying
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biological principles (Weckwertret al, 2004). Furthermore, there are still only few
example studies on the use of metabolome data derstand regulatory principles in

metabolism.

Functional analysis of cellular metabolism and, particular, integration of
metabolome data with other omics-data demands {gpmantitative measurements of key
metabolites. However, a problem with metabolonscthe scarcity of targeted quantitative
data, and often metabolome analysis is (at best)-geantitative even though there is a
trend towards more quantitative analysis (Nielse®I&er, 2005). Although it is currently
not yet possible to quantify all the metabolitesinellular system (Goodacet al, 2004,
Fernie et al, 2004), a high-throughput GC-MS method that aflogemi-quantitative
identification of several metabolites $1 cerevisiaavas recently developed (Villas-Boes
al., 2005a; Devantiezt al, 2005a). In the latter studies, the levels otiBRjue metabolites
(out of 584 reported uniqgue metabolites in the geswscale yeast model, Forstdral.,
2003) were determined in genetically different yesisains under different environmental
conditions. Specifically, metabolites playing img@ort roles in the central carbon

metabolism and amino acid biosynthesis were able tiaentified.

In order to understand the regulatory principledastying the changes in metabolite
levels an algorithm was developed that enablesgiat®n of such quantitative
metabolome data with genome-scale models by usgrggh theoretical representation of
the metabolism. The application of this algoritrademonstrated here for the metabolome
data reported by Villas-Boaet al, (2005a) and Devantiat al (2005a). The algorithm
includes preprocessing of a genome-scale yeastinsadbk that the fraction of measured
metabolites within the model is enhanced, and herelis possible to map significant
alterations associated with a perturbation evemghoa small fraction of the complete
metabolome is measured. The significance of chamgése metabolite levels is used to
identify reporter reactions around which the moigniicant coordinated metabolite
changes are observed. Reporter reaction analysas iattempt to infer the differential
reaction significance based on metabolite measurenand hence provides a basis for
understanding the underlying cellular processepomding to the perturbations. It is
further demonstrated that through combination wismscriptome data, reporter reactions

may provide clues on whether regulatory controlaagiven reaction node is at the
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metabolic level or at the hierarchical level. Hgrethe reported approach represents an
attempt to map different layers of regulation withmetabolic networks through

combination of metabolome and transcriptome data.

5.1. Methods

5.1.1. Graph Representation

In the present study, the metabolic network ENZS)Bhe pre-processed model
(see section 5.2), was represented as a bipaniéected graph in order to identify
reporter reactions. Reactions and metabolites Wweth taken as nodes, and the edges
denoted the interactions between them (Patil & 9¢ie] 2005). Hence, the resulting graph

consisted of 317 nodes.

Different genetic and environmental perturbatioesogiated with the two datasets
(Devantier et al, 2005a; Villas-Bbaset al, 2005a) were analyzed. The graph
representation was used to identify ‘reporter nieast for these perturbations. The
algorithm used in the simulations is a modificatadrthe algorithm recently developed by
Patil & Nielsen, 2005, which was based on the aislgf transcriptoma data to identify
so-called reporter metabolites, the spots in theabwism with substantial transcriptional
regulation. The modified algorithm herein has trepability of identifying reporter
reactions, the putative key points in the metabolis terms of metabolic regulation
(Figure 5.1).

5.1.2. Significance Test

The significance of change for the experimentalatelite levels between any two
conditions were determined by comparing the leweilth the aid of a statistical-test,
thereby quantifying the effect of the associatedupkation. For each of the perturbations,
the statistical test was applied to the experimefzta following the normalization process
described by Villas-Bbast al (2005a). Briefly, the normalization process iststhat the
within-group variances among replicates are redumed between-group variances are

maximized. The Mann-Whitney rank-sum u-test is apawametric statistical test which
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has naa priori assumption about the distribution type of the ditavas preferred over the
standard t-test since the distribution of levelssoime of the metabolites among the
replicates, especially NAD+ and NADPH, was foundb®® skewed rather than normal
distributed. The Student t-test assumes normaltildligion of the data and compares the
mean values whereas the u-test compares medides thhn means. Furthermore, median
is a better measure for skewed distributions sinteless sensitive to the extreme scores
that can be encountered in the replicates.

0, X Stoichiometric model
|
L Perturbation TN
Experiments ro
[\ [\ et

Quantitative Metabolome Data
by GC-MS analysis

LANE N 31 T T VN B, Graph theoretical
' ' representation

Significance of change

2-oxoglutarate 5.34E-08
L-Histidine 7.48E-07
L-Isoleucine 1.01E-06
L-Proline 3.58E-06
Pyruvate 1.04E-05

~

Reporter Reactions

Figure 5.1Reporter reaction algorithm to identify differemtiaaction significance by

integrating metabolome data with metabolic networks
5.1.3. Strategy for the Lack of Data
Since the utilized reporter reaction algorithm dejgeon the scoring of reactions

based on the p-values of involved metabolites |abk of p-values for the 94 metabolites

that remain unmeasured in the final ENZSUB-3 modeist be handled. Random
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assignment from GC-MS peaks was used to overcoenprtiblem of the unavailable data.
GC-MS spectra contain a large number of unknowrk$eae to unmeasured metabolites.
All the peaks in GC-MS spectra were deconvolutedeiach replicate. The output was
normalized by using a Python code which minimizes sample variability within the
classes (Villas-Bbaset al, 2005a). Afterwards, the peaks in the spectraiwia selected
time interval (0.15 minutes) were binned to accdantthe fluctuations in the retention
times using a MATLAB algorithm. This has resultad the overall detection of 236
unknown peaks for the first dataset (Villas-Béasal, 2005a), with 116, 178 and 201 non-
zero peak comparisons for genetic perturbation®uuaérobic and anaerobic conditions
and environmental perturbations respectively, ad@ @nknown peaks for the second
dataset (Devantieet al, 2005a) with 129 and 174 non-zero peak compasigon the
environmental perturbation of laboratory and indakt strains respectively. The
significance of change for these unknown peaks quasitified for each perturbation by
means of p-values using the u-test. These p-value® randomly assigned to the

unmeasured metabolites.
5.1.4. Reporter Reaction Analysis

Resultant p-values were converted to z-scores wmmgverse normal cumulative
distribution function for further analysis. Eaclacgon in the constructed graph was scored
by calculating the score of the subnetwork formgdtd k neighboring metabolites, and z-

values of the metabolites were used in the scoring.

z (5.1)

_ 1y
reaction — \/—z metabolitek
k

ZeactionScore was then corrected for background distiinutising the meanugf) and
standard deviationof) of z-scores of metabolite groups of the same, sibtained by

random sampling from the same metabolic network.

Z — Zreaction B :uk (52)

corrected-reaction —
Oy
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In order to minimize the sensitivity of reporteacéions to the randomly selected p-
values for the non-measured metabolites as memtiai®ve, the reporter-reaction
algorithm was executed 1000 times by repeatingahdom assignment in each case. This
repetition eliminated the effect of the p-valuesttod assigned peaks on results. For each
reaction, the z-scores in each repetition were amest to get a final z-score. Those
reactions with the highest z-scores (typically 2.28, corresponding to p< 0.10) can be
defined as reporter reactions for a system withpieta metabolome data. Since available
experimental data were not complete, the calculatedores were used for deducing the
relative significance of the reactions in the amaty perturbations. Namely, the main focus
is comparative analysis of reactions among theietuplerturbations as revealed by Figure
5.3, rather than comparing a reaction to anotheedban its Z-score. The underlying
reason is to avoid potentially incorrect conclusiaiue to the unmeasured metabolites
which have randomly assigned p-values. Additiondtg analyzed reactions have a high
percentage of measured metabolite content as tediéa Tables 5.1 and 5.3. In the case
of low coverage of measured metabolite conteng thethod should be followed with
caution as the resultant Z-scores of reactionsheitlome insignificant, and such reactions
will not be picked up as reporters. However, irufatwhen analytical methods have been
further improved it is likely that more metabofitean be measured, and one will
overcome this shortcoming and our approach may leeaised to infer more solidly about
the level of regulation at different parts of largetabolic networks.

5.1.5. Computational Toolsand RepRxn M X Softwar e Package

METATOOL 4.3 (Pfeifferet al, 1999) was used for the identification of enzyme
subsets in the UNCOMP model. The codes written WTMAB 7.0 (MathWorks Inc.)
were utilized for the model pre-processing sumneatiabove and to call the algorithm
written in C++ for reporter reaction identificatioRlux Balance Analysis was performed
using in-house software BioOpt employing LINDO ARir linear optimization. A
software package which works under MATLAB 7.0 andudes 13 scripts was developed
to automate the preprocessing steps (Figure 5ti2),raporter reaction algorithm. This
package, named as RepRxn MX, is detailed in Appefxdi Deconvolution of peaks in
GC-MS spectra for the identification of metabolitessed on a metabolite library and for
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the random peak assignment was achieved using AMDft®/are (Steiret al, 1999), and

the peak normalization software was kindly provitgd. F. Moxley.

5.2. Model Preprocessing

Due to the large chemical diversity of the metabw there is currently no single
analytical method that enables analysis of the def@pmetabolome. Even the best
analytical methods reported to date for metabolamedysis therefore only cover a small
fraction of the metabolites present in genome-soaéabolic models. The unavailability
of data for a large number of metabolites is onghef major problems associated with
mapping (and hence integration) of metabolome datato genome-scale metabolic
networks. In order to overcome this fundamentalbjgm, the genome-scale model of
Forsteret al (2003) is pre-processed so as to obtain a reducet®| where the fraction of
experimentally measured metabolites was enrichduis Pprocessing was done by
systematically eliminating unmeasured metabolitesnfthe metabolic network. It should
be noted that the model pre-processing is depengierthe metabolome data that are
available, and the pre-processing will have to beedfor each case. However, following
the flow-chart depicted in Figure 5.2 this pre-@®&ing is relatively straight forward and

can easily be done also for other metabolic netsork

The yeast genome-scale model includes three comeats (mitochondria, cytosol
and external space) with 844 metabolites (559 ojitns164 mitochondrial, 121 external)
and 1175 reactions (Forstet al, 2003). Within the context of this model, metates!
present in more than one compartment are treatéfdtlasy are different entities in each
compartment. However, the experimental data usethig analysis (and most of the
datasets available to date) can only differentlatveen extracellular and intracellular
space. Since metabolite levels in different cetlidampartments are not available, the
cytosolic/mitochondrial compartmentation of the rabdas removed and corresponding
metabolites were represented as one, with theresponding reactions conserved. Also,
there are a number of duplicate reactions dued@thsence of isoenzymes in the model,
and these reactions were lumped into single reactiince metabolome data alone does
not provide information that enables distinctiontween the operations of different

isoenzymes. As a result, the ‘processed’ model ¢ummartmented model, UNCOMP)
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consists of 677 metabolites (559 internal, 118 rewt¢ with 725 reactions, including
transport reactions. With this model the experiraedata used here amount to about 12

per cent of these 677 metabolites (52 internagx3@rnal).

Genome-Scale Yeast Model
(1175 reactions, 844 metabolites)

.......... Remove compartmentation
Remove duplicate reactions

Uncompartmented (UNCOMP) Model
(725 reactions, 677 metabolites; 12.4 %)

.......... Combine enzyme subsets
(using METATOOL)

Enzyme-subset (ENZSUB-1) Model
(590 reactions, 563 metabolites; 14.9 %)

.......... Apply FBA to identify reactions inactive
under experimental conditions

Y

ENZSUB-2 Model
(361 reactions, 285 metabolites; 29.5 % )

.......... Discard reactions with no measured metabolite
Leave one of the cofactor pairs

ENZSUB-3 Model
(139 reactions, 178 metabolites; 47.2 %)

Figure 5.2. The preprocessing of the model to redhe fraction of unmeasured
metabolites and to focus on reactions involving sneed metabolites. Percentages indicate

the fraction of measured metabolites in each model

Enzyme subsets are enzymes that always operatidé¢oge fixed flux proportions at
steady state (Pfeiffest al, 1999; Schusteet al, 2002b), often representing enzymes in
linear pathways. Accordingly, the intermediate rbetdes in enzyme subsets can be
assumed to be similarly affected by the perturlbatioThe uncompartmented model
(UNCOMP) was further reduced in size by using METXOL 4.3 (Pfeifferet al, 1999;

Dandekaret al, 2003) and thus representing each enzyme subsesimgle reaction. The
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resulting model (Enzyme-subset model, ENZSUB-1)stin of 563 metabolites and 590
reactions and it has about 15 per cent of the métab measured within the data used.
Since the removal of the metabolites in linear palys also led to the omission of six
measured metabolites, the reactions containingethestabolites were restored back into
the ENZSUB-1 model. To further increase the fractimf the measured metabolites,
potentially inactive (or potentially low flux) retians were removed. This was done by
using Flux Balance Analysis (FBA) (Varma & Palsstf94; Kauffmanret al, 2002) for
simulation of fluxes at specific environmental citinths used in the experiments (aerobic
and anaerobic batch cultivation in glucose-limiteicimal media). ENZSUB-1 model was
used to simulate the fluxes with the objective gtfimum growth. Then, the maximum and
the minimum flux for each reaction in the model &vebtained by constraining the specific
growth rate between its optimum value and 50 pat oéthe optimum. Reactions that had
zero flux in the FBA analysis (at both optimum \eg) were considered as potentially
invariant between the studied perturbations and tiitted from the ENZSUB-1 model.
The resulting model had 349 reactions involving 26&tabolites. The here-used FBA-
based approach for model reduction does not nedgssaply that the eliminated
reactions are inactive and that the metabolitesluad in these reactions not present in the
cell. However, it is assumed that as these reactoa likely to carry very low fluxes under
the studied conditions, the associated metababitdspare likely to be weakly affected due
to changes in the fluxes through these reactioAkhough this approach is useful, the
assumption is not fool-proof as certain measuredabudites were intermediates in
pathways with zero fluxes (Pimelic Acid, PIMExt, Nitic Acid, C140xt, trans-4-
hydroxy-L-proline, Itaconate, Nicotinate, 4-Amingtz@ate, THMxt). The first six of these
metabolites were detected as ‘invariant’ by the Froach due to the fact that that these
metabolites are not connected to the overall ndtedrsteret al, 2003). However, here
reactions involving these measured metabolites westored back, and the resulting
model comprised a total of 285 metabolites paritig in 361 reactions (Figure 5.2).
Even though certain reactions may be removed flognanalysis by using this approach,
the algorithm will still correctly identify reponte@eactions, given the metabolome dataset.
The resulting metabolic network, ENZSUB-2 model svaubstantially enriched in terms

of the content of measured metabolites (now acaogifior about 30 per cent).
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In order to further focus the analysis only on tess involving measured
metabolites, ENZSUB-3 was constructed by keeping oeactions that involved at least
one measured metabolite. Additionally, only one rem of the NADH/NAD,
NADPH/NADP*, FADH,/FAD" cofactor pairs, when available, was retained ia th
remaining reactions since the levels of memberseath pair were assumed to be
interdependent. The resulting metabolic network,ZENB-3, included a total of 178
metabolites participating in 139 reactions, whiolresponds to more than 47 per centt of
the available quantitative metabolome data (Figugg. The 139 reactions included in the

model are given in the Appendix F.1.

The significance of change in the levels of meti®lbetween any two conditions
was calculated by applying a statistical test (pethods section). However, it is difficult
to deduce which reactions in the cell are affectest by only judging the significance of
the change in metabolite levels, since the numbéneometabolic reactions in the cell is
high and one metabolite usually appears in more @me reaction. Thus, a normalized z-
score for each reaction was calculated based or-tiadues of its neighboring metabolites
(p-values of individual metabolites were convertedz-scores by using inverse normal
cumulative distribution function, see methods seyti Here it is assumed that the
calculated reaction z-scores can be regarded aslaator of the significance of how the
reactions respond to the studied perturbation aalodic level. This assumption is based
on the fact that metabolite levels are governedhanges in fluxes and enzyme activities
(Nielsen, 2003). Reactions exhibiting significanhanges (typically z > 1.28,
corresponding to p< 0.10) for the perturbationdyereal were identified by using the graph
representation of the derived metabolic model, ENBS3, and listed in Table 5.1 and
Table 5.3. A loose cut-off was deliberately chosEme rason was not to be too-biased in
the light of the fact that measurements were natlable for all of the metabolites in the
model, and thus the resultant p-values are in faggeneral, shifted to high values due to

randomly selected p-values for those unmeasuredboktes.

5.3. Effect of an altered redox metabolism and oxygen availability

As a first demonstration of the developed approdala from metabolome analysis

of two different S. cerevisiaestrains was considered. The strains were a wifte ty
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laboratory strain (CEN.PK.113-7D) and a redox eegied strain, which was carried out
in batch cultures under two different environmemtahditions (aerobic and anaerobic) in
standard mineral media with glucose as the soleotasource (Villas-Bbast al, 2005a).
The redox engineered strain carrying a deletionthef NADPH-dependent glutamate
dehydrogenase encoded IBDH1 and an over-expression of the NADH-dependent
glutamate dehydrogenase encodedaH2 was constructed by dos Santisal (2003).
Three different perturbations were analyzed heesetjic change under both aerobic and
anaerobic conditions (wild type versus redox ergyied strain), and environmental change
for the wild type strain (aerobic versus anaerolfBihce it was reported that sample-to-
sample variability exceeds flask-to-flask varidiilireplicate samples from different shake
flasks were treated equivalently (Villas-B@atsal, 2005a). Accordingly, the metabolome
dataset includes around 15 intracellular and niméraeellular replicates for each
experimental condition. The dataset used in thislystis available in the supplemental

material as normalized abundances of GC-MS peaks.

Comparison of the wild type and mutant strains aéa@ that the genetic changes do
not alter the basic growth characteristics in aier¢tos Santost al, 2003) and anaerobic
(Nissenet al, 2000) batch cultivations. The here-developed@ggh, however, captures
the associated changes in different cellular payswhy identifying a number of
significantly affected reactions due to these pbdtions. The detected reactions (Table
5.1) belong to many different amino acid pathwagdicating a widespread effect of the
mutation on the cellular metabolism. The presetd#grated approach also differentiates
between the genetic perturbation under aerobic amakrobic conditions as there are

reactions that are specific to each condition.

Genetic perturbations (wild type versus redox eegiad) used in the present study
are directly related to a changed redox metabolEnvironmental perturbation (aerobic
versus anaerobic) is, however, also associatedanitenged redox metabolism due to the
direct effect of oxygen availability on the opeoatiof the TCA cycle and the pentose
phosphate pathway, and hence on the redox stdteeafell. This is also reflected in the
identified reporter reactions since a number of mam significantly changed reactions are
observed for the two different types of perturbatidable 5.1, Table 5.2).
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Table 5.1. Reactions with significant z-scores (z28) in response to genetic

perturbations by altered redox metabolism and enwiental perturbatié¢ The number

of measured metabolites and the total number chlbodites for each reaction are also

given in parentheses

Genetic Perturbation Genetic Perturbation Environmental Perturbation
(aerobic) (anaerobic) (wild type strain)

VALsyn (4/14) 2.90 |AGX1 (4/4) 2.67 | UGA® (5/5) 2.41
ALT (4/4) 2.83 |ALT (4/4) 235 |ALT (414)  2.34
LEUsyrf® (5/6) 2.66 |PROsc (2/3) 2.08 |AGX1 (414)  2.34
TYRsyn (3/4) 2.54 | LEUsyR® (5/6) 1.80 |CAR2 (3/4) 195
CAR2 (3/4) 250 | ASP3: (2/3)  1.78 | LEUsyR® (5/6)  1.95
PHEsyt® (3/5) 2.25|U46_ (3/4) 1.64 |TYRsyn (3/4)  1.92
AGX1 (4/4) 2.01 |CHAlp (2/3) 1.58 | VALsyn (4/4)  1.87
AAT (4/4) 1.86 | PHEsy® (3/5) 1.57 | PHEsyn (35) 1.74
ILEsyn™® (6/7) 1.77 |PUT1 (2/3)  1.55 | SERsymW 4/6)  1.67
SUCsc (2/3) 1.66 | VALsyn (4/4)  1.54/GAD1 (2/3)  1.47
SDH (2/3) 1.63|GLY1 (2/3) 1.50 |GDH13 (3/4)) 1.44
HISsyrts (4/10) 1.58| SERsym (4/6) 1.41 | ASPZ (2/3)  1.39
ASP341 (2/3) 157 GDH2 (3/4)  1.38
GDH2 (3/4) 1.55 MYRsc (2/2) 1.36
DLD (2/14) 151 ILEsyR® (6/7)  1.36
UGAF® (5/5) 1.48 HISsyr? (4/10) 1.34
SERsyf® (4/6) 1.46 GLYsyn (2/4)  1.30
LEU4 (2/14) 1.36 U155 (414)  1.29
FUM (2/2) 1.28

®Reactions specific to each perturbation are givdnoid letters.

PES means that the corresponding reaction is annemzsybset consisting of combination of more tha@ on

reaction.

‘sc in some of the reaction names stands for ‘deateindicating that they are secretion reactions.

The glutamate decarboxylase reaction (GAD1) appasra significantly changed

reaction specific to the environmental perturbatwérthe wild type cells, which implies a

major role of this reaction during respiratory gtbwTable 5.1). Indeed, it was reported
(McCammonet al, 2003) that the defects in any of the 15 TCA eygénes, associated

with the slowing down of the respiratory metaboligesult in a substantial decrease in the

MRNA levels of GAD], which is in agreement with the findings reporteste. GAD1
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constitutes the first step of the glutamate caiakmthway towards succinate (Colen&n
al.,, 2001). The downstream steps of the pathway atalyzed by Ugalp and Uga2p
(UGAFS), which are affected most by the environmentaltysbation (Table 5.1).
Detection of all reactions of this pathway (GADIGAF®) as responsive to the oxygen
availability (Figure 5.3.a) indicates that they baw key role in succinate production via
glutamate under anaerobic conditions where thetyisasecreting succinate. In fact, this
pathway was found to be activated during oxida(@elemanet al, 2001) or osmotic

(sugar) (Erasmust al, 2003) stress to control the redox balance otdile

Table 5.2. Grouping of the reactions with signifita-scores (z > 1.28) given in Table 5.1.
Reactions common to all perturbations and pertiobagpecific ones are grouped

separately. Complete reactions can be followed f&@pendix F.1

Genetic. Genetic  Environm.
Reactions Perturb. Perturb. Perturb.

(aerobic) (anaerobic) (wild type)

Reactions common to all perturbations

VALsyn oival — val, TA (4/14) 2.90 154 187
ALT pyr < ala,TA (4/4) 2.83 2.35 2.34
LEUsyrF® glu + ippmal— leu, TA (5/6) 2.66 1.80 1.95
PHEsy!f® prph— phe, TA (3/5) 2.25 1.57 1.74
AGX1 gox + ala— gly + pyr (4/4) 201 2.67 2.34
SERsyfA® p3g— ser,TA (4/6) 1.46 141 1.67
ASP3-1 asp— asn (2/3) 157 178 1.39
Reactions common to two perturbations

TYRsyn 4hpp— tyr, TA (3/4) 2.54 0.95 1.92
CAR2 orn— glusal, TA (3/4) 2.50 0.90 1.95
ILEsynf® obut + pyr— ile, TA (6/7) 1.77 1.07 1.36
HISsyrF> ....— his, TA (4/10) 1.58 0.68 1.34
GDH2 glu— akg (3/14) 1.55 1.13 1.38
UGAF® Gaba— succ,TA (5/5) 1.48 0.70 2.41
Perturbation-specific reactions

AAT oac«+ asp,TA (4/4) 1.86 0.73 1.12

SUCsc — Succk (213) 1.66 0.27 1.26
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Table 5.2. continued

SDH succ— fum (2/3) 1.63 0.31 1.00
DLD lac — pyr (214) 151 1.18 1.11
LEU4 oival— ippmal (2/14) 1.36 0.39 0.37
FUM fum < mal (2/2) 1.28 0.27 0.57
PROsc — proE (2/3) 1.24 2.08 1.26
U46_ thr— ac (3/4) 0.92 1.64 0.98
CHAlp ser— pyr (2/3) 1.13 1.58 1.25
PUT1 pro— pr5carb (213) 0.97 155 0.86
GLY1 acal + gly— thr (213) 1.07 1.50 1.03
GAD1 glu— gaba (213) 0.13 0.70 1.47
GDH13 akg— glu (3/4) 1.12 0.53 1.44
MYRsc myrist — myristE (2/12) 0.20 0.51 1.36
GLYsyn ser— gly (2/14) 0.55 1.22 1.30
U155 akg+ malE> mal +akgE| (4/4) 0.53 0.94 1.29

“TA: transaminase activity (conversion of glutamatelpha-ketoglutarate)

Although the glyoxylate cycle is generally beliewedbe repressed during growth on
glucose, Villas-Boast al (2005b) found that an alternative pathway forogiyate
biosynthesis is active iB. cerevisiae Examination of the z-scores of reactions invaivin
glyoxylate for all the analyzed perturbations rdgdathat AGX1 (reaction of enzyme
encoded byYFLO30w, which enables synthesis of glyoxylate from ghggi has much
higher scores for all the perturbations comparetthéoreactions of the glyoxylate pathway
(ICL and MLS) (Figure 5.3.b). Thus, the analysisdmdere supports the presence of an
alternative pathway catalyzed by AGX1 leading te thiosynthesis of glyoxylate from

glycine.

Reporter reaction analysis also identifies that gemetic perturbation results in
metabolic changes around the genes that are pedfbgure 5.3.c). Thus, the reaction
responsible for the over-expressed gene in thexredgineered strain, GDH2, has a
significant z-score for the genetic perturbatiordem aerobic condition. It should be
mentioned that a genetic perturbation of a genelldhoot necessarily result in that the
corresponding reaction comes out as a reportetio@acas certain genetic perturbations

may lead to only small changes in metabolite levd®wever, in this case there are two
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genetic modifications aroungtketoglutarate and glutamate (deletionGIDH1 and over-
expression ofSDH2) which leads to identification of GDH2 as reportBor the genetic
change under anaerobic conditions, the detectadfismnce of GDH2 is comparably
lower. However, an indirect effect of the geneticodification in the glutamate
biosynthesis can be observed from the presencean$aminase activity associated with
some of the identified reporter reactions for fsturbation (conversion of glutamate to
o-ketoglutarate by ALT, LEUsyTT, PHEsyfT®, VALsyn, SERsyR®, Table 5.1, Table 5.2).
On the other hand, the aerobic-anaerobic shifttHier wild-type gives rise to nearly the
same z-score for GDH2 reaction as the genetic qtion under aerobic conditions. One
explanation for this similarity in behavior woule bhat oxygen availability may have a
direct effect on glutamate dehydrogenase genes;ish@essation of oxygen uptake or
manipulation of redox metabolism may result in smieffects on this node in the
metabolism. In fact, in chemostat cultur€ésDH2 is associated with a significant
transcription change when subjected to the sameagmvental perturbation (Pipet al,
2002). On the other hand, it is not possible tkena definite interpretation about the
effect of the mutation on the deleted ge@&H1, by looking at the z-score of GDH13
reaction since the reaction catalyzed by Gdhlpestical with that catalyzed by Gdh3p.
Consequently, what is reflected by this z-scor¢éhes ‘combined’ response of these two
enzymes. The reason that the GDH13 reaction isideitified as a reporter reaction
whereas the GDH2 reaction is identified can only explained by either a different
response in the co-factor level as a consequencethef perturbations, i.e. the
NADPH/NADP' levels do not change as much as the NADH/NA®&vels, or due to
measurement errors of these co-factors (these atora are inherently difficult to

measure).

Since TCA cycle activity is known to be low underaarobic conditions, associated
effect of genetic mutation under this conditiorexpected to be weaker than the other two
perturbations analyzed. The z-scores for the SDiHFWM reactions (both being part of
the TCA cycle) are clearly in agreement with thxpectation (Figure 5.3.d). These two
reactions are also members of the electron trahsgstem, and this further explains why
the metabolites surrounding these reactions extehitarkably weaker coordinated change

in the genetic perturbation under anaerobic carlitihan in the other perturbations.
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A Glutamate B Malate
O ISOCItrate
GAD1
CoA M
co, MLS
4-Aminobutanoate Acetyl-CoA Glyoxylate Succinate
NADP+ -ketoglutarate
UGAES TT B Alanine
NADPH Glutamate ' ' AGX1
Succinate Pyruvate
Glycine
Malate NADH D][ NAD+
GDH2
l’_‘[ """"" a-ketoglutarate Glutamate
EUM GDH13
NADPH .o . NADP+
Fumarate D:l

................. CoA Citrate

E ATP ADp  Acetyl-CoA Glutamate  a-ketoglutarate
COz> PYC i AAT
Pyruvate Oxaloacetate Aspartate

]:1]’ NADH e
MDH
Phosphoenolpyruvate PCK1 ATP NAD+
ADP
Co, Malate

1 genetic perturbation (aerobic)
= genetic perturbation (anaerobic)
== environmental perturbation (wild type strain)

Figure 5.3. Example pathway structures based moms of reactions, which demonstrate
the metabolomic response of the selected readiworibe effect of an altered redox
metabolism and aerobic/anaerobic growth. The dakhesl correspond to the cut-off of

1.28 (p =0.10)

Similarly, the z-scores of key reactions involviogaloacetate suggest that these
reactions are mainly affected in the redox engegestrain under aerobic conditions

(Figure 5.3.e), and AAT, a transamination reactieading to the conversion of
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oxaloacetate to aspartate, appears to be the leyioe where oxaloacetate is involved.
There is no literature data available about theotfbf the genetic perturbation on this
metabolic reaction but as the genetic perturbagsnlts in a changed ratio of glutamate to
2-oxoglutarate (Villas-Bbaset al, 2005a) that may have effected this important

transamination reaction.

5.4. Effect of very-high-gravity fer mentation

As a second demonstration of the developed appraaetabolome data from two
differentS. cerevisiaetrains, a laboratory strain (CEN.PK.113-7D) andralustrial strain
used for fuel ethanol production (hereafter ternasd‘Red Star”), was used. For both
strains the data were obtained from anaerobic batlthres under two different cultivation
conditions; exponential growth in a glucose contajnstandard mineral media and the
stationary phase in a maltodextrin containing Jagh-gravity (VHG) mineral media
(Devantieret al, 2005a).Environmental perturbations obtained through vammin the
media were analyzed here for each strain. Thedeltdar metabolome dataset includes
four replicates for the standard medium and eigpticates for the VHG medium. The
extracellular metabolome dataset has six replickdeseach condition. The complete

dataset is available in the supplemental material.

As for the first case study discussed above, the rivedia perturbations analyzed
revealed the same trend for the glyoxylate reastipointing to substantial regulation of
the AGX1 reaction node in both perturbations (daaaishown). In case of the glutamate
metabolism, all the reactions have noticeably highgecores, except GDH2, implying that
this pathway is highly affected by VHG associategidima changes. All of the TCA cycle
reactions shown in Figure 5.3.d have very low z«sg0in accordance with the fact that the
cycle is barely operational under any of the experital conditions studied (anaerobic
fermentations). For reactions involving oxaloacet®AT again appears to play the major

role as observed in the first data set, in parallgi the graph shown in Figure 5.3.e.

The reaction governed by Gadlp, which catalyzesrbegylation of glutamate — a
reaction that is generally considered to be astatiavith stress, is found to be

significantly changed in both strains when the raedias changed (Table 5.3). A
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noticeably lower score was obtained for comparisbrthe two strains grown on the
standard medium (results not shown), which showasttie standard medium imposes less
stress compared with the VHG medium where sugareftmzhol stresses are predominant.
The appearance of all reactions (GAD1, USAinvolved in the glutamate catabolic
pathway as reporter reactions when the media isibexd (Table 5.3) points to the fact
that this perturbation has a major effect on thénamacid metabolism, and probably also
on the redox balance in the cell. The results arigcriptome analysis for the same strains
in standard and VHG media (Devantiet al, 2005b) indicate that the strains have

differences in their redox balancing, confirming finding reported here.

A large number of transport reactions were fountigee significant z-scores (Table
5.3). GC-MS analysis of extracellular metabolitesthie VHG medium revealed many
more metabolites compared to what is found in ttamdard medium, explaining the
appearance of transport reactions as significare. iere-reported algorithm allowed us to
identify and quantify the secretion reactions wharle mostly affected from the media
change, by integrating both intracellular and esghallar measurements to the reaction
network. Secretion of a number of amino acids éghadte, aspartate, proline, alanine and
glycine), and succinate, pyruvate and lactate anengonly and significantly regulated in
response to media perturbation for both the laboyand the red star strain. On the other
hand, detection of strain-specific secretion pagi€valine, citrate and alpha-ketoglutarate,
Table 5.3) points to differences in operation @& thetabolic network in the two strains,

possibly arising from the difference in the redoataiolism of the two strains.

Since the change in the fermentation medium lezthianol and osmaotic stress for both
strains (Devantieet al, 2005a), it is not surprising that many of thaeateons are shared in
the identified lists for the two strains in the r@domparison (Table 5.3). Transcriptome
analysis of this dataset revealed that a substadia of the significantly changed genes
were involved in protein synthesis and amino acetabolism (Devantieet al, 2005b).
Thus, amino acid pathway reactions detected byrteppoeaction analysis (Table 5.3) are
in accordance with the transcriptome data. Absef@mnino acid synthesis in VHG media
due to the cessation of growth in the stationargsghcan be a possible cause of the

observed differences.
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Table 5.3.Effect of media change (standard vs. VHG mediumg¢ach strain. Reactions
with significant z-scores (z > 1.28) are sh8®iz-scores of gene expression changes are
also given. ge: z-scores of reactions calculated by the devel@pguioach, g z-scores

of genes/gene groups calculated from asscociatedugs from transcriptome data.

Media Changefor laboratory strain Media Changefor industrial strain
(CEN.PK113-7D) (Red Star)
ZrRE Zce Zre Zce
ALT (4/4) 250 2.48|ALT (4/4) 2.48 1.80
AGX1 (4/4) 2.45 0.86|AGX1 (4/4) 231 221
UGAFS (5/5) 2.18 1.69| UGAS (5/5) 2.23 0.38
ECM40 (3/4) 1.85 2.39|U155_ (4/4) 201 -
GLUsc (2/3) 1.85 1.17 |ASN (4/7) 1.85 0.54
ASN (4/7) 1.84 2.30[TYRsyn (3/4) 1.84 3.41
CAR2 (3/4) 1.74 0.57 |GLUsc (2/3) 1.81 0.79
LYSsyn®® (7/8) 1.67  2.46| PHEsyit (3/5) 1.65 0.98
TRP23 (3/5) 1.67 1.31[TRP23 (3/5) 1.65 0.78
ASP31 (2/3) 1.47  1.45|PROsc (2/3) 1.45 0.90
CHA1p (2/3) 1.47 0.93|ALAsc (2/3) 1.45 0.75
U42_ 43 (2/3) 1.47 - |GLYsc (2/3) 1.45 0.80
ASPsc (2/3) 1.43  2.09|LACsc (2/3) 145 0.86
PROsc (2/3) 1.43  1.40 PYRsc (2/3) 1.45 0.86
ALASsC (2/3) 1.43 1.90|SUCsc (2/3) 145 -
GLYsc (2/3) 143 1.66|CITs (2/3) 145 -
LACsc (2/3) 1.43 0.81|AKGsc (2/3) 145 -
PYRsc (2/3) 1.43 0.81|uss_ (2/3) 143 -
SUCsc (2/3) 1.43 - |GAD1 (2/3) 143 1.21
GLY1 (2/3) 1.41  0.41|ILEsyn®® (6/7) 1.42 1.90
VALSC (2/3) 1.38 1.55| ASP3- (2/3) 1.41 1.34
PHEsyr> (3/5) 1.36 1.66| U4243_ (2/13) 141 -
GAD1 (2/13) 129  1.46|LEUsyn®® (5/6) 1.38 0.91
ASPsc (2/3) 1.29 0.86

 Reactions specific to each perturbation are ginesold letters.
®Number of measured metabolites and total numbemefabolites for each reaction are also given in
parentheses
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5.5. Integration of metabolome data with transcriptome data for under standing

regulation

For the latter case study, where the effect of aGVidedium was analyzed on the
metabolome of laboratory and industrial straingréhwas also performed genome wide
expression analysis (Devantier al, 2005b). This basically enables further evaluatid
mode of regulation for the different reactionstie reduced metabolic network. ter Kuile
& Westerhoff (2001) introduced the concept of metabregulation and hierarchical
regulation, where the first indicates that regolatiof flux is at the level of enzyme
kinetics, i.e. through changes of the metaboliteele and the second indicates that
regulation of flux is at the level of enzyme prodoe /activity
(transcription/translation/post-translational maition). As both metabolite data and
transcription data are available for this case ystudwas investigated whether it was
possible to identify the type of regulation at theividual reaction level. A major obstacle
for this kind of analysis is, however, that infotioa about changes in fluxes for the
analyzed conditions is not available, and such deatald also be difficult to obtain.
Although there are efficient methods for obtainish@ta on the metabolic fluxes in the
central carbon metabolism (Nielsen, 2003), it iialilt to get good estimates for the
fluxes in all pathways of the metabolic network lgmed here, and even though the fluxes
can be calculated by using flux balance analysis, method is not well suited to give
precise estimates for the actual fluxes in netwarkere there are redundant pathways. In
order to proceed with analysis, it was thereforsuaged that whenever there was a
coordinated significant change in metabolite lewtsund a reaction, then it is very likely
that the flux through this reaction is also chaggidowever, there is no guarantee that the
flux through this reaction is also changed as tloendld also be a change in the enzyme
concentration, or there could even be altered talfws regulation of the enzyme, thus
keeping the flux unchanged. Thus, the assumptiodenmaay result in identification of
some false positives, but still the analysis waelihrly lead to identification of reactions
around which there is at least one level of reguba{and possibly several levels of
regulation), and these reactions will thereforedferred as being metabolically regulated.
For all the reactions that are not identified gsoreer reactions one can not infer anything
about whether the flux has changed, but still it ba deduced from the transcription data

whether there has occurred regulation at the hibieal level, and even though this does
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not necessarily mean hierarchical regulation offlive these reactions will be referred as
being hierarchically regulated. This deduction s#h be informative as indicator of the
logic of transcriptional regulatory machinery gavieg gene expression. For cases where
there was a significant change at the transcripti@vel for an identified reporter reaction

this was considered to be a situation where theaemixed regulation.
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Figure 5.4a) Major components of flux regulation b) Classifion of (reporter) reactions

with respect to regulation type. mRNA levels wesslaned to reflect enzyme activities

The metabolic network includes several enzymes ognaeactions) governed by
multiple genes. Thus, in order to infer about tigamiicance of change in expression levels
for the reactions the transcript levels for all g@ercoding for the same reaction were
summed up before applying the statistical test. phealues of transcripts were then
calculated by using a t-test with unequal variarmoce] further converted into z-scores to

enable a comparison with the z-scores of reacthassd on metabolome data.

Using this approach all the reactions of the mdiabwetwork was grouped into
whether they were metabolically or hierarchicalggulated (or a combination or not
regulated at all) for the VHG dataset. To score riegnitude of the regulation at the
hierarchical and metabolic levels, the correspapdirscores were used. Hereby the
gualitative evaluation of z-scores emerging frora thanscriptome and the metabolome

data enabled us to get an indication of regulatdhin the metabolic network (see Figure
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5.4, Table F.1). The cases where only the transesggore is significantly changed can be
scored as points with possible hierarchical regutatwhereas the opposite case where
only the metabolite based z-score has significastthnged implies metabolic regulation of
the corresponding reaction (Rossehl, 2005). When both z-scores are significant tiere
regulation shared at both levels, and when nonthefz-scores are significant, it is not

possible to infer about at which level there isutatjon.

Figure 5.5 and Table F.1 presents magnitude ofethelation for the reactions of the
metabolic network, ENZSUBS3, at the hierarchical anetabolic levels for the effect of
very high-gravity (VHG) fermentation media on labtmry (CEN.PK113-7D) and
industrial (RS) strains. z-scores calculated bamedene expression changes (zGE) and
based on changes in the surrounding metabolites)(@Re shown. Red means a positive z-
score, and green means a negative z-score indjcttat the regulation is insignificant.
Reactions were color-coded with respect to theicares using z = 1.28 (p = 0.10) as the
cut-off value to decide on the corresponding retja type. yellow: hierarchically
regulation. black: metabolically regulationviolet: mixed regulationwhite: statistically

insignificant score for both type.

Of the 121 reactions in the model having correspandenes associated with them,
the number of reactions predicted to be regulatechichically, metabolically, and at both
levels were 56, seven, and 14 respectively fomtieglia perturbation with the laboratory
strain, and 31, 14, and five for the same pertimhawith the industrial strain (Figure 5.5,
Table F.1). For the laboratory strain, 44 reactimese found to be relatively irresponsive
to the perturbation. On the other hand, the nurobeotentially unregulated reactions was
much higher (71) for the industrial strain. Onelargtion for the observed predominance
of transcriptional regulation could be the facttttiee strains protect themselves against the
applied perturbation by mainly changing their gempression to minimize the changes in
the metabolome; an observation also encounterpthints (Hiraiet al, 2004). Figure 5.5
and Table F.1 suggest that metabolic regulatiom&nly predominant for secretion
reactions and amino acid pathways with or withootustaneous hierarchical regulation,
the sole exceptions being proline and methionirséige pathways. It is logical to identify

the latter as subjected to different regulatiorcaithey are involved in pathways with
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sulfur assimilation and there were no direct pédtion on sulfur utilization in the

experimental study.

The type of regulation for a number of reactioneds between the two strains,
which supports the finding that gene expressiortepatcan vary within differens.
cerevisiaestrains (Fereat al, 1999; Bremet al, 2002; Townseneét al, 2003; Janseat
al., 2005). Fereat al (1999) have reported altered expression levetgots involved in
metabolite transport for strains obtained by adapévolution in glucose limited cultures.
This observation presents an interesting analogyutoanalysis, as the industrial strain is
also likely to be a result of adaptive evolutiommitarly, different wild type strains were
found to have widespread variations in expressibrgenes involved in amino acid
metabolism (Townsendt al, 2003). In order to further validate that the abetism is
different in the industrial and laboratory strainge performed principal component
analysis of the metabolome data for the VHG mediataset (Figure 5.6). This shows a
clear distinction of the strains indicating thag ttrains behave remarkably different at the
level of metabolome. Our analysis systematicallymbmes the transcriptome and
metabolome and deduces the underlying regulationsicg these differences in
metabolism. Notably, following a change to a hgyhvity fermentation medium,
transcriptional regulation of metabolism is muchren@re-dominant in the laboratory
strain as compared to the industrial strain; wrerde number of reporter reactions
between two strains is around the same with a #0cpat overlap (Table 5.3). This
strongly suggests that although the industrialirstiaas a better adaptation of its
transcriptional program for high-gravity media, rinés still similar metabolic regulation
pattern to the laboratory strain. The differencestimins in terms of their response to the
same perturbation is, again, very visible in theresgon reactions where laboratory strain
attempts to regulate them also at transcriptiopakll whereas industrial strain relies
predominantly on metabolic control (Figure 5.5, [Bal-.1). The lesser degree of
transcriptional regulation in the industrial straiould benefit the cells by reducing the

investment of resources in transcriptional reguiatoachinery.
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Figure 5.6. Principal component analysis of theskit which involves the effect of very-
high-gravity fermentation. 1: CEN.PK strain in sdland media; 2: Industrial strain in
standard media; 3: CEN.PK strain in VHG media;dtuistrial strain in VHG media)

5.6. Low Coverage of Measured Metabolite Content by the Preprocessed M odel

Due to the large chemical diversity of the metabwothere is currently no single
analytical method that enables analysis of the demmpmetabolome. Even the best
analytical methods reported to date for metabolamaysis therefore only cover a small
fraction of the metabolites present in genome-soad¢abolic models. To overcome this
fundamental problem the genome-scale model wapnoaessed as discussed in section
5.2. However, the final model still includes a nienbf unmeasured metabolites. Here, the
effects and limits for the percentage of unmeasaed hence modeled) metabolites on

the applicability of the developed algorithm arscdissed.

It is difficult to give a unique favorable ratio theeen measured and unmeasured

metabolites as a threshold for the applicatiorhefdlgorithm. This is due to the fact that it
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is not only the ratio that matters, but also how theasured metabolites are distributed
throughout the metabolic network, i.e. if a lot mmktabolites are measured but they all
cluster within a certain part of the metabolic natiky it is not possible to deduce anything
about what is happening in other parts of the ngkwiBven if the ratio is high (e.g. higher

than 0.5) it may be problematic if the measuredalngites are distributed across different
parts of the metabolic network, and there will giere hardly be any metabolites that
coexist in the same reactions, making the resultastores more difficult to estimate

reliably.

Additionally, an increase in the ratio between noeed and modeled metabolites
will result in the inclusion of some of the reacigsowhich had been removed in the model
reduction steps since none of whose participatietpbolites were measured, and some of
those reactions may happen to have significanbrescand appear in the reporter list. On
the other hand, the decrease in the ratio, nametile number of measured metabolites,
may lead to elimination of some of the reactionth reporter list due to the low fraction

of measured metabolites participating in a reaction

To summarize, the proposed method is less likelyitk false-positives, but a
change in the measured metabolite coverage will teaa change in the number of false-
negatives. That is, the decrease in the ratioamly lead to an increase in the number of
false-negatives, but still we will have correcttelcted reactions. And since the discussion
of the results of the developed algorithm is cesdeon the reactions detected as
significant, the change in the ratio of measuredrtmeasured metabolites is not likely to
affect the obtained results substantially, at lgaghe sense that the detected reactions will

never include false positives.

To illustrate some of the above-discussed poifigngasured metabolites out of 84
was randomly labeled as unmeasured and the repedetion algorithm was executed for
the case where aerobic and anaerobic conditiorthéowild type strain are compared. The
original analysis had resulted in 18 reactions @ased with significant z-scores. After
randomly removing 10 measured metabolites fromahalysis, it was observed that 2
reactions were removed from the the list of orifjndetected reactions, as some of their

corresponding metabolites were unmeasured. In anoémdom removal of 10 measured
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metabolites, nine (out of the 18) of the significa@actions from the original list were

deemed insignificant after removal of 10 metabslite

Based on the features of the developed algoritiemain guidelines can be provided
for the metabolome measurements in order to efiegtiexploit the reporter approach; (i)
Measurement of metabolites that participate in meagctions (hubs in the metabolic
network) will certainly increase the coverage o€ thlgorithm. (i) Measurement of
metabolites that participate in certain closelatedl pathways (metabolites that are closely
placed in the network) will increase the confidemcéhe obtained z-scores for reactions in
those pathways.

5.7. Concluding Remarks

An integrative algorithm based on metabolome datas vintroduced for the
identification of reporter reactions, defined as thactions that are responding to a genetic
or environmental perturbation through a coordinatadation in the levels of surrounding
metabolites. It is demonstrated that the algoritinctions even with a small number of
measured metabolites (84), which is a typical sibmafor several currently used
technologies. Moreover, the method developed idall@ for mapping the entire
alterations associated with a specific perturbati®pending on the advances in analytical

detection techniques enabling the measurementaw§ar number of metabolites.

Furthermore, when integrated with transcriptome dia¢ developed approach can be
used to infer information about whether a reacttometabolically regulated or whether it
is hierarchically regulated. The approach can foeeebe regarded as a genome-scale
approach towards the integration of different tymésomics data by using metabolic
networks as a scaffold in order to understand ttobitecture of metabolic regulatory

circuits.
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6. METABOLIC PATHWAY ROBUSTNESS OF S. CEREVISIAE

Metabolic robustness is defined as the abilityhef imetabolic network to adjust its
fluxes in response to environmental or genetic gearwithout changes to the phenotype
(Edwards and Palsson, 1998). In a way, it is ttestance of cell metabolism against
perturbations. Structural robustness of an orgacsmbe determined to see whether a cell
can tolerate the elimination of some enzymes byatiaris (Wilhelmet al, 2004). Several
methods were suggested iassilico measures of metabolic robustness of cells, based o
the lethality of the cells in response to the defebf each metabolic gene (enzyme). These
methods requires calculation of EFMs, the posgiaiths from substrates to products. If,
after the deletion of an enzyme, there are stiflaming EFMs with active biomass growth
reaction, this mutant is predicted to be viablereEhof these measures are proposed by
Wilhelm et al., 2004, in which calculated EFMs ased as the basis. The forth measure is
based on a recently developed concept; minimasetgt (MCS) (Klamt and Gilles, 2004).
MCS calculation relies on pre-calculated EFMs, aad be defined as the minimal set of
reactions whose inactivation will lead to guaradtdailure in certain cellular network
functions. If the cellular network function to lested is biomass growth, the failure means

lethality.

6.1. Insilico Metabolic Robustness M easur es

Number of EFMs is an indicator of flexibility as vas redundancy. However, it is
reasoned that redundancy is not directly identrgéth robustness since systems with the
same number of EFMs were shown to have differebtistmess scores (Wilhelet al,
2004). Therefore, a measure must be defined wtoohpares the entire system with the

mutated system.

6.1.1. Overall Global Robustness

The structural robustness of a metabolic networthéoknockout (deficiency) of one

enzyme, E can be calculated based on the fraction of remgiBFMs after its knock-out.
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If EFMs in the original system is denoted as z, dmak of the perturbed network is
designated byizthe ratio Zz will be important. Since the aim is to calculateerall
robustness of the network rather than the robusttes specific enzyme knockout, this
ratio must be calculated for all the enzymesa\Rilable in the considered reaction system.
The arithmetic mean of all these ratios were suggeas a quantification of the global

robustness of the entire metabolic network (Wilhetral, 2004);

R =2 — (6.1)

wherer is the total number of reactions in the system.
6.1.2. Product-based Minimal Robustness

This measure is based on the essential productheofreaction system for the
organism of interest. Namely, if any of these esakproducts cannot be produced, the
organism is non-viable. Therefore, product-speciabustness should be taken into
account. This can be reflected into the robustmesasure as follows; to calculate the
robustness concerning product P1, only the EFM<hwviproduce this product must be
chosen, discarding the others. Then, the same farmtroduced in Equation 6.1 can be
applied to this set of EFMs. Product-based minimwddustness hypothesizes that the
robustness of the metabolic network of intereségsial to the minimum of robustness

values calculated for every available essentiadlypco(Wilhelmet al, 2004).
R, =min{R™, R™, R, ....R™} (6.2)
6.1.3. Product-based Global Robustness

It may happen that product-based robustness ofpooduct may be quite low, but
most of the random mutations would affect the ERMsducing the other products. This
third masure takes this fact into account, by ushey arithmetic mean of product-based

robustness values rather than the minimum of th&fithélm et al, 2004).
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(6.3)

wheren denotes the number of products of the metabotiwor&.

6.1.4. Minimal Cut Set- based Robustness

Minimal cut sets, the minimal set of enzymes whom@plete inhibition prevents the
functioning of a pre-defined target reaction (ei@ntass formation), are calculated based
on the EFMs of the system. The algorithm (Klamt &ilies, 2004), also assigns a fragility
coefficient to every enzyme in the model. Fragitifya reaction is defined as the reciprocal
of the average size of all MCSs in which that rescts involved. It is a number between
zero and one. The closer the number to zero lésis fragile, meaning more robust. Klamt
and Gilles also define a network fragility coeféint, F, to enable an overall quantification
of the structural fragility. F is defined as theseage of the fragility coefficients over all
reactions. Corresponding robustness score carefaged as (1 - F). Theoretically, this
measure is more sound than the previous measures isialso takes multiple deletions

(double, triple, quadrople,).into account rather than only single deletions.

6.2. Robustness of Yeast Central M etabolism compared to E. coli

6.2.1. EFM and M CS Calculation

Minimal cut sets, were determined for a total offéénentable and nonfermentable
substrates such as glucose, acetate, glycerolnathia Saccharomyces cerevisiaand
Escherischia coli for the cellular objective of biomass productiofhe biochemical
reaction set used covers central carbon metababfitihe yeast (54 reactions and 52
metabolites; Chapter 3; Calet al, 2004). EFM calculation was done by METATOOL
and FluxAnalyzer 5.0 softwares. The first three soees were calculated in MATLAB 7.0,
whereas the calculation of the fourth measure veafopned using FluxAnalyzer 5.0 with
the following target reaction; biomass formatiorn deduce relative robustness of yeast

metabolism, the same approach was also appliéd twli metabolism which consists of
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52 reactions and 49 metabolites, adapted fromigjedt al, 2002 and Carlson and Srienc,
2004. The total number of reactions differs in temanisms since there are a few
organism-specific metabolic reactions. The otherjomalifference between the two
microorganisms reflected into the reactions is fhaterevisiachas a compartmentalized
metabolism. Therefore, metabolites which cannotsp#sough the mitochondrial
membrane are distinguished by treating them asréifit metabolites in cytosol and
mitochondria (NADH, NADPH, Acetyl-CoA). Table 6.1livgs the substrates with
corresponding number of calculated elementary fiodes and minimal cut sets for both

microorganisms.

Table 6.1. Elementary flux modes and Minimal cus $er S. cerevisiaandE. coligrown

on 16 different substrates

S. cerevisiae E. coli
per cent per cent
Substrate EFM  EFM-BIOM* MCS | EFM EFM-BIOM* MCS
Glucose 15996 97.7 616 4532 514 541
Ethanol 1890 94.0 78 225 39.1 43
Acetate 932 89.5 90 443 46.0 98
Glycerol 4736 97.5 228 306 52.0 117
Succinate 5000 95.9 219 1204 61.4 248
Pyruvate 5879 95.0 269 970 54.0 22p
Lactate 4816 96.3 198 666 55.3 214
2-ketoglutarate 2699 93.4 108 831 67.4 236
Malate 3481 95.3 173 829 53.6 178
Ribose 6783 93.4 461 907 25.1 17p
Xylose 7105 93.7 492 1847 21.2 262
Erythrose 7731 94.3 707 946 27.9 264
Sedoheptulose 5689 92.2 480 1385 26.3 248
Fumarate 3481 95.3 165% 829 53.6 156
Citrate 3730 94.4 154 1648 58.7 31p
Oxaloacetate 3714 93.3 249 1391 52.8 245

* Percentage of biomass-producing EFMs. These Ekbfe used in the calculation of MCSs.

Among many other substrates, glucose is the natuladtrate for microorganisms.
Therefore, microorganisms should have higher atiaptéor growth in media containing
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glucose. That is, they should exhibit more flexigl®wth on glucose than other carbon
substrates. In accordance with this expectatioth bocroorganisms have highest number
of EFMs when glucose is the substrate (Table 6Abditionally, theoretical results
presented in the table reveals that yeast hasatdgiecnore flexible metabolism thdh coli

in general because of having higher number of Eféivithe same substrates.

Figures 6.1 and 6.2 present the general trend dlsE&nd MCSs for the studied
substrates for both microorganisms. Calculated dé@acorrelation between the numbers
of EFMs and MCSs for yeast is 0.79 whereas theasehigher correlation fdg. coli (0.92).
Therefore, it can be concluded that although threynat directly proportional in a precise
way, number of EFMs and MCSs are correlated. Thathie minimal sets of reactions
which can perform a function (EFMs) are interrafate the minimal set of reactions

whose removal impedes a certain function (MCSs).
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Figure 6.1. Comparison of calculated EFMs and Mfo§46 different substrates of

S.cerevisiaeThe substrates in x-axis are ranked with resjoeitte corresponding

robustness score in decreasing order
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Figure 6.2. Comparison of calculated EFMs and Mfo846 different substrates & col..
The substrates in x-axis are ranked with respettte@orresponding robustness score in

decreasing order

6.2.2. Resultsof Robustness M easures

Calculation of overall global robustness scorg) (Rd to very close robustness
values for each substrates $n cerevisiagwith minimum score belonging to growth on
ethanol (0.305), and maximum belonging to oxalcteeind malate (0.331). Overall,
these results suggest that yeast metabolism ispgmfragility, regardless of the substrate
type (Table 6.2). FoE. coli, on the other hand, the range of robustness valieesvider.
Ethanol is found to be the most robust substrat®8l@, with glucose being the most
fragile one (0.412). The results are surprisingeithey are opposed to the biological
expectation. Glucose is the most common substaté&.f coli and the microorganism
must be quite robust to genetic perturbations whgrows on this natural substrate. These
findings put doubts on the credibility of this raness measure. Additionally, the scores

imply more robust behaviour &:. colicompared to Scerevisiae

Essential products of microorganisms can be censilas biomass production and
ATP production for maintenance. Second measurg @Rggests the calculation of

robustness for both objectives, and assigning tinenmm of them as the robustness score.
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Therefore, biomass-based robustness was calculated only biomass-producing EFMs.
Similarly, use of only reactions which utilizes mi@nance reaction leads to maintenance-
based robustness. Calculated maintenance-basedtmebs gives higher values for all
substrates, whereas product-based ones are veitarsiomthose obtained as;RFor S.
cerevisiae the minimum of the two values gives scores inaalirthe same magnitude of
R1, ranging from 0.282 (ethanol growth) to 0.321 {leryse and ribose). This measure
again suggests a fragile yeast metabolism (Talle ¥W/hereas the previous measure) (R
indicated a clearly more robuf. coli metabolism; product-based minimal robustness
leads to noticeably closer scoresSocerevisiaescores, ranging from 0.341 (glycerol) to

0.395 (malate). However, the scores are again hiblae that belonging to yeast.

The third score is calculated by averaging mabewter- and biomass- based
robustness scores. Interestingly, growth of yeastcetate has the highest score in this
case, whereas it was one of the lowest according;tolrhe most fragile (least robust)
growth was found to be on glycerol (0.302). [Eorcoli, malate is again the most robust

substrate. Results are given in Table 6.2.

In general, these three measures do not resulonsistent results for yeast. The
Pearson correlation between &d R is 0.74, between Rand R is 0.24, and between,R
and R is -0.31. This means that, scores obtained parRRl R measures are moderately
correlated, whereaszResults in values not parallel withy Bnd R. This tendency is not
the same foE. coli, where R and R are correlated with a Pearson value of 0.25; and

correlation betweenfand R, and R and R are 0.56 and 0.63 respectively.

One possible reason for the incapability of thestfithree measures to reflect
differences between growth on different substragdbat they test only the effect of single
deletions. MCS-based fourth score, on the othed htakes all possible deletion mutants
into account. Fourth measure depends on networgilitya coefficient, which is
automatically calculated by FluxAnalyzer. Compatedother scores, this score is more
widely distributed between zero and one (Table,GRywing the comparison of relative
robustness of different substrates. Additionallys tmeasure predicts glucose as the most
robust substrate for both microorganisms, in paralith the biological expectation. The

most fragile substrates, on the other hand, am@nethfor E. coli (0.230) and acetate for
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yeast (0.297). In general, substrate robustnesdoimid to be higher when the
microorganism is yeast, according to the fourth snem The three exceptions are for
citrate, 2-ketoglutarate and acetate. As it is kmoacetate is the natural by-product Eor
coli, which becomes the first substrate in diauxic tsfoflowing glucose. For yeast,
however, ethanol is the preferred substrate aftauxét shift. Acetate can only be
produced in very low amounts by yeast. Therefoeasy must be more fragile in acetate
containing media. Theoretical finding is in accarda with this expectation. Figure 6.3
gives comparative robustness of substrates fort yaakE. coli depending on MCS-based

robustness score.

Table 6.2. Robustness scores for both microorgancaiculated with four different

measures
R1 R2 R3 R4
S.cer. E.colif S.cer. E.coli| S.cer. E.coli| S.cer. E.coli
Glucose 0.311 0.416| 0.307 0.356| 0.310 0412 0.562 0.519
Xylose 0.326 0.457| 0.319 0.388] 0.329 0.433 0.545 0.486
Erythrose 0.327 0.451| 0.321 0.375| 0.326 0.426 0.541 0.472
Ribose 0.328 0.448| 0.321 0.374| 0.331 0.424 0.531 0.448
Sedoheptulose 0.329 0.426| 0.320 0.362| 0.332 0.405 0.530 0.459
Pyruvate 0.317 0.463| 0.302 0.363| 0.324 0.501 0.511 0.447
Oxaloacetate 0.331 0.482| 0.311 0.381| 0.359 0.530 0.500 0.455
Glycerol 0.308 0.466| 0.301 0.341] 0.302 0423 0477 0.411
Malate 0.331 0.504| 0.317 0.395| 0.329 0.542 0.477 0.417
Lactate 0.319 0.463| 0.307 0.351| 0.313 0.464 0.476 0.440Q
Fumarate 0.328 0.496| 0.313 0.386| 0.327 0.534 0.466 0.402
Succinate 0.319 0.463| 0.307 0.376| 0.320 0.517 0.462 0.430
Citrate 0.316 0.462| 0.299 0.369| 0.314 0.454 0.435 0.492
2-ketoglutarates  0.322 0.474| 0.302 0.393| 0.312 0.521] 0.393 0.477
Ethanol 0.305 0.512| 0.282 0.350| 0.306 0.436 0.324 0.230
Acetate 0.320 0.466| 0.284 0.344| 0.473 0.471 0.297 0.323

One should also note that there is no one-to-olatiaaship between the robustness
scores and the number of elementary modes. In swases, the number of EFMs

(flexibility) decreases whereas robustness scome@ses. For examplds. coli can
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produce biomass in 204 different ways during grosthacetate, with MCS-robustness
score being 0.320. On the other hand, it has raitigeless alternative pathways for
biomass production when the substrate is glycel69). However, glycerol as substrate
leads to more robust metabolism, with a MCS-rolestnscore of 0.410. In some other

cases, flexibility and robustness score changkdrsame direction (Figure 6.4, Figure 6.5).
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Figure 6.3. Robustness Bf coliandS. cerevisiaenetabolisms on different substrates

based on the fourth measure which depends on nligimaet calculation
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Figure 6.4. Comparison of robustness scores fawthr on different substrates with

the number of EFMs fdB. cerevisiaenetabolism.
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Figure 6.5. Comparison of robustness scoresrfawty on different substrates

with the number of EFMs fdE. coli metabolism.

6.3. Concluding Remarks

The in silico survival analysis of thé&. cerevisiaecells in response to single or

multiple gene deletions was made by using differ@bustness measures. Minimal-cut-

set-based measure was shown to be the one mostlgiag with the known behaviour of

yeast. Among many different carbon substratesnétaral substrate, glucose, was shown

to be the substrate on which the microorganismbétehthe most robust behaviour among

others. Comparison with. coli metabolism indicated a more robust metabolic sirecof

S. cerevisiae
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions

A system-level understanding of the metabolism wassued in this research by
stoichiometric modeling approaches. The followingdusions can be drawn on the basis

of the results presented.

- Control effective fluxes were shown to better iplaxning the changes that occur
in metabolic transcriptome in response to a peatiwh.

- Applicability of CEF approach td&S cerevisiae and human metabolism was
successfully shown, reinforcing the universalitytted approach.

- Metabolic fluxes of central carbon metabolism wshewn to be transcriptionally
regulated for carbon source perturbations. Oxygemce perturbation was found to
shift the flux regulation into post-transcriptioral metabolic level.

- Metabolic fluxes of amino acid metabolism were shdw be post-transcriptionally
or metabolically regulated. Specially designed expents are required to test this
finding.

- Integration of high-throughput metabolome data witletabolic networks was
achieved to identify reporter reactions, even wvattsmall number of measured
metabolites.

- Further integration of reporter reaction approadth wranscriptome data allowed
inferring information about the regulation type (ai®lic and/or hierarchical) of
the reactions.

- Using minimal-cut-set based robustness measurepgguwas shown to be the
substrate on whicB. cerevisiae exhibits most robust metabolism. Comparison with
bacteriumE. coli indicates a more robust metabolic structure ofythast. Than

silico analysis is helpful to guide research on phenomics

Thereby, stoichiometric metabolic modeling appresctvere shown to be successful

in yeast systems biology research.
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7.2. Recommendations

In chapter 4, based on transcriptome data, piediktwere made about the
regulation type of fluxes in response to carborr@yperturbations. Metabolome analysis
of carbon shift experiments and subsequent anabjgisis data to calculate metabolically
regulated ‘reporter’ reactions will allow a quiclenfication of the predictions made in
chapter 4 about omitted points- not transcriptipneggulated fluxes. The idealized case
would be to obtain also proteome data, therebyethel at which the fluxes are regulated

can be identified in a high-throughput manner.

An experimental fluxome analysis for the studiediymbations can be performed to
identify whether the metabolic/hierarchical regaatprediction made in chapter 5 about
the reactions are in agreement at flux level. Alively, a model-based fluxome analysis
based on EFMs can also be performed as introducedapter 3, thereby making a bridge

between the two methods presented in chaptersn8-éachapter 5.

Furthermore, the model driven analysis presentethapter 5 for the integration of
metabolomic and transcriptomic data is flexible amaly allow integration of other types
of omics data, such as proteomics, and this wfiheethe method presented herein to
account for the genome-scale alterations in regptmgienetic as well as environmental
perturbations, and hence allow genome-scale ideatidn of all levels of regulation in the

metabolism.

Robustness measures utilized in chapter 6 igetdthal multiple deletions. The
advent of phenomics technologies to identify higfetghput lethality deletions will allow
verification and refinement of the results, and saguently improve the employed
stoichiometric model. Additionally, experiments omnimal media with each studied
carbon source can be conducted to identify corredipg growth rates. Thereby, it can be
checked whether the growth rates are in quantgatorrelation with corresponding
number of EFMs or MCSs.
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APPENDIX A: FLUX BALANCE ANALYSIS FORMULATION

A.1. Formulation of Balance Equations

For a biochemical system withreactions andn metabolites, stoichiometric matrix,

S, has dimensions of xm, providing that,

Sxv=b (A1)

Here,v shows the reaction rate vector, antepresents the net accumulation rate of

the metabolites in the medium.

After a stoichiometric matrix is formulated, a nega identity matrix is added next
to this stoichiometric matrix with dimensionsxim. The new matrix is called and is a

mx (n+m) matrix.
A=[S -1] (A.2)
The physical meaning for this addition is the ipayation of net accumulation rates
of metabolites into calculations. Since there aremetabolites, identity matrix is in

dimensions omx m.

With this incorporation, balance equations for thisompound reaction system

are written as,

AxR=0 (A.3)

whereR is a rate vector containing both the reactionsrated the net accumulation rates of

the metabolites, i.e,. it is anfm) x 1) matrix.

Then, the metabolites in the system are groupedrdicy to their accumulations in

the medium. Those that have negligible pools inrtteglium are called intracellular. The
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substrates taken from medium and the products teecte the medium are known as
extracellular metabolites. If number of extracellububstances in the system is denoted as

p, then (n-p) metabolites are intracellular.

Since the accumulation rates of the intracellulatabolites are zero, the columns of
identity matrix part ofA corresponding to these metabolites are omittedhcelem-p)
columns are deleted from matrix. This new matrix is called’. The dimension oA’ is

mx (n+p). R vector is also changed B3, which is a (¢+p) x 1) vector.
A'xR'=0 (A.4)
There are rf+p) unknowns in the system, i.a.reaction rates angd accumulation
rates for extracellular substances are unknown.kRamives number of independent
equations in the system. The difference is theakegof freedom of the system.
dof =(n+ p)—-rankA’ (A.5)
If dof is greater than zero, then the system is underdeted. All real metabolic
systems are underdetermined by their nature. Teertfaksystem determined, a number of
rates equal tdof must be specified.
A.2. Solution of Undetermined Systems
If there is no external measurement of metaboiitdbe system, or if the number of
measurements are less thdof of the system, the system remains underdetermiriads,
the number of possible solutions is infinite. Fbe tsolution of such a system, linear

programming is applied and this method is namdéasBalance Analysis (FBA).

First, the matrixA’ defined in Equation A.4 must be partitioned actaydo the

measured accumulation rates as follows,

AT x RAC 4 A8 5 RS — () (A.6)
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Here, the corresponding columnsAdffor measured metabolites are moved to a new
matrix calledA™? The remaining part of’ is calledA®®. The corresponding rate vector
R’ is also partitioned accordingly. kfof thep external metabolites are measurad;®

andA®° will have dimensions ahx k andmx (n+(p-k)) respectively.

The second term of Equation A.6 is denoted withtarde since it is calculable.

—A™EXR™E =P (A.7)

R™*is a (kx 1) matrix. SinceA™ andR™*are known, the resultabtvector can

be calculated numerically. As a result, the follogvfinal formula is obtained,

A% xR = (A.8)

Equation A.8 is the basis for the solution of umiggermined biochemical reaction
systems. This equation describes a set of equatansre used as equality constraints in

the linear programming solution.

Additional to Equation A.8, the lower and upperubds of each of the reactions

RCGJC

stored in constitute inequality constraints to the probldimese constraints can easily

be derived from reaction reversibility information.

Rlb < Rcalc < Rub (A.9)

An objective functiorZ is needed for the solution. The objective funci®selected
as maximization/ minimization of the accumulatioproduction/consumption) of a
particular metabolite. This is mathematically exgsed by a row vector with dimensions
equal to the dimensions &%°. In this row vectorf, the entry corresponding to the net
accumulation rate of the metabolite to be optimizeentered as 1 (for minimization) or -1

(for maximization) with other entries being zero;

Z=fxR®° (A.10)
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Here,f shows the mentioned row vector. All element$ isf zero except the one for
the net accumulation rate of the metabolite to p&nozed. Hence/Z, the objective
function, is a 1x1 vectorZ is not directly used in the solution, buuis utilized as an

indication of objective function.

Table A.1 summarizes all these theoretical defingi The stoichiometric network
can be solved using optimization packages such @dLAB or MOSEK under
MATLAB.

Table A.1. The summary of formulation of balancean and the adaptation of these

formulations to the considered reaction system

General Formulation
Number of reactions n
Number of metabolites m
Number of extracellular metabolites p
Number of intracellular metabolites m-p
S mxn
\Y nx1
b mx1
[ mxm
A mx (n+m)
R (n+m) x 1
A mx (n+p)
R’ (ntp) x 1
Number of unknown rates n{p)
Number of independent equations raik
dof (n+ p)—rank A’
Number of measured accumulation rates k
A=E mx (n+(p-k))
AT (mx k)
R™S (kx 1)
R (nt(p-k)) x 1
f 1x (n+(p-K)




122

APPENDIX B: REACTION SET FOR CENTRAL METABOLISM OF

YEAST

B.1. Reactions

Reversible reactions in the glycolysis/gluconeogenesis pathway were written in the

direction of their occurrence. Superscripts E and G in gene names show that the

corresponding reaction is particular to growth in ethanol or glucose. External metabolites

were written in bold font in their uptake and secretion reactions.

)
)
©)

(4)
©)
(6)
()
)
9)
(10)
(11)
(12)
(13)
(14)
(15
(16)
(17)
(18)

1. Substrate Uptake

1GLUC+1ATP - 1GLUC6EP+ ADP
1GAL +1ATP - 1GLUC6EP+ ADP
1ETOH + 1NADg: -~ 1ACAL + 1 NADHy,
2. Glycolysis & Gluconeogenesis

1GLUC6P ~ 1FRUC6P

1FRUC6P +1ATP - 1FRUCDP+ ADP

1 FRUCDP - 1FRUCG6P

1FRUCDP - 1GA3P+ 1DHAP

1DHAP o 1GA3P

1GA3P+1NADy: «~ 1P13G+ 1 NADHy
1P13G+1ADP o 1P3G+1ATP

1P3G ~ 1P2G

1P2G ~ 1PEP

1PEP+1ADP - 1PYR+1ATP

1 DHAP + 1 NADH: — 1 GOH3P + 1 NADgy
1 GOH3P - 1 GOH

1PYR - 1ACAL+1CO,

1ACAL + 1NADHyt — 1ETOH + 1 NADy
1 ACAL + 1NADPy: - 1 AC+ 1 NADPHy

GLK1,HXK®
GAL1,5,7
ADH2E

PGI1
PFK1,2°
FBP1F
FBA1
TPI1
TDH1,2,3
PGK1
GPM1,2,3
ENO1,2
PYK1,2°
GPD1,2
GPP
PDC1,2,5
ADH1,4°
ALD6



(19)
(20)
(21)
(22)
(23)

(24)
(25)
(26)
(27)
(29)
(29)
(30)
(31)

(32)
(33)
(34)
(35
(36)
(37)
(39)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

(46)

1 ACAL + 1 NADpmit - 1 AC + 1 NADHpt
1AC+2ATP - 1ACCOA:+2ADP
1PYR+1NADm: - 1ACCOAm: + 1 NADHyit + 1 CO2
1PYR+1ATP+1CO; - 10AC+1ADP
10AC+1ATP - 1PEP+1ADP+1CO;

3. Pentose Phosphate Pathway

1 GLUCG6P + 1 NADP,: — 1GI15L + 1 NADPH¢y
1G15L - 1P6G

1 P6G + 1 NADPy: — 1 RIBL5P + 1 NADPHy + 1 CO-
1RIBL5P ~ 1RIB5P

1RIBL5P ~ 1XYL5P

1RIB5P+ 1 XYL5P « 1SED7P+1GA3P
1SED7P+1GA3P - 1FRUCGEP+ 1E4P
1XYL5P+1E4P ~ 1FRUC6P + 1 GA3P

4. Citric Acid Cycle

10AC+1ACCOAm: - 1CIT

1CIT « 11SOCIT

11SOCIT + 1 NADpit - 1 AKG + 1 NADHq: + 1 CO;,
11SOCIT + 1 NADPyit - 1AKG + 1 NADPHp: + 1 CO,
1ISOCIT + 1NADP,; — 1AKG+ 1NADPH: +1CO;
1AKG + 1 NADpi; - 1SUCCOA + 1 NADH: + 1CO,
1SUCCOA +1ADP ~» 1SUC+1ATP
1SUC+1FAD - 1FUM +1FADH,

1FUM +1FADH,; - 1SUC+1FAD

1FUM - 1MAL

1MAL + 1 NADpit « 1 OAC+ 1 NADHm:

1 MAL + 1 NADPyi: - 1PYR+1CO;+ 1 NADPHm:
1 ACCOAy: — 1 ACCOAmit

1 NADHgt + 1 NADpit - 1 NADcy: + 1 NADHpt

5. Glyoxylate Shunt

10AC+1ACCOAy: —~ 1CIT
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ALD4
ACSL,2
PDAL,2, PDB
PYC1,2
PCK1F

2WF1
OL1,2,34
GND1,2
RKI1
RPE1

TKL, TKI
TAL1

TKI, TKL

CIT1,3
ACO1
IDH1,2
IDP1
IDP2
KGD1,2
LSC1,2
SDH1,2,3
osvil
FUM1
MDH1
MAE1
CAT2
ShuttleX

CIT2E



(47)
(49)
(49)

(50)
(51)
(52)

(53)

ACO
ACS
ADH
ALDG6
ALD4
BIOMX
CAT
CIT1,3
CIT2
ENO
FADHX
FBA
FBP
FUM

11SOCIT -~ 1GLYO+1SUC ICL1E
1GLYO+1ACCOAy: — 1MAL MLSL®
1MAL + 1NADy: « 1OAC+ 1 NADHy, MDH2E
6. Oxidative Phosphorylation

24 ADP + 20 NADHyit + 100, — 24 ATP + 20 NADyyit NADHX
24 ADP+ 20 FADH, +100; - 24 ATP+20FAD FADHX
1ATP - 1ADP MAINT

7. Biomass Formation

3 ACCOAit+ 24 ACCOA: + 11 AKG +3E4P+6 P3G +1 BIOMX
GOH3P +

6 PEP+ 18 PYR + 3RIB5P + 25 GLUCG6P + 10 OAC + 16

NADqy: +

6 NADpt + 90 NADPH¢y + 22 NADPH i + 254 ATP -

10000 BIOM + 16 NADHcyt + 6 NADHpmit + 90 NADP,y; + 22
NADP,; + 254 ADP

B.2. Reaction Abbreviations

Aconitate synthetase

Acetyl-coenzyme A synthetase

Alcohol dehydrogenase

Aldehyde dehydrogenase (NADP,: dependent)
Aldehyde dehydrogenase (NADi: dependent)
Biomass formation

Carnitine O-acetyltransferase

Citrate synthase (cytosolic)

Citrate synthase (mitochondrial)

Enolase

Electronic chain: reoxidation of FADH
Aldolase

Fructose 1,6-biphosphatase

Fumarate hydratase
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GAL
GLK,HXK
GND
GPD
GPM
GPP
ICL
IDH
IDP1
IDP2
KGD
LSC

ShuttleX
SOL
TAL
TDH

Galactokinase

Glucokinase, Hexokinase

Phosphogluconate dehydrogenase
Glycerol-3-phosphate dehydrogenase
Phosphoglycerate mutase

Glycerol phosphatase

Isocitrate lyase

| socitrate dehydrogenase (NA D, dependent)
I socitrate dehydrogenase (NADPyi; dependent)
Isocitrate dehydrogenase (NADPy; dependent)
Alpha-ketogluterate dehydrogenase
Succinate-CoA ligase

Malic enzyme

Malate dehydrogenase (NAD,; dependent)
Malate dehydrogenase (NAD.,: dependent)
Malate synthase

Electronic chain: reoxidation of NADH
Fumarate reductase

Phosphoenol pyruvate carbboxykinase
Pyruvate dehydrogenase

Pyruvate decarboxylase
Phosphofructokinase

Glucose-6-phosphate isomerase
3-phosphoglycerate kinase

Pyruvate carboxylase

Pyruvate kinase

Ribose 5-phosphate isomerase

Ribul ose-phosphate 3-epimerase

Succinate dehydrogenase

Reoxidation of cytosolic NADH to mitochondrial NADH
6-phosphoglucono-lactonase

Transaldolase

Glyceral dehyde-3-phosphate dehydrogenase
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TKL Transketolase
TPI Triosephosphate isomerase
ZWF Glucose-6-phosphate dehydrogenase
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APPENDIX C: METABOLITE AND REACTION ABBREVIATIONS

ADE
ADO
D13PG
D23PG
DHAP
ERY4P
FeP
FDP
G6P
GA3P
GL6P
GLC
GO6P
GSH
GSSG
H20-
Hb
HYPX
IMP
INO
LAC
MetHb
P2G
P3G
PEP
PRPP

FOR RED BLOOD CELL METABOLIC NETWORK

C.1. Metabolite Abbreviations

adenine

adenosine
1,3-diphosphoglycerate
2,3-diphosphoglycerate

dihydroxyacetone phosphate

erythrose 4-phosphate
fructose-6-phosphate
frucotose diphosphate
glucose-6-phosphate

glyceraldehydes-3-phosphate

6-phosphogluco lactone
glucose
6-phosphogluconate
reduced glutathione
oxidized glutathione
hydrogen peroxide
hemoglobin
hypoxanthine

inosine monophosphate
inosine

lactate

methemoglobin
2-phosphoglycerate
3-phospho glycerate
phosphenol pyruvate

5-phosphoribosy! pyrophosphate



PYR
R1P
R5P
RL5P
SED7P
XYLSP

ADA
ADPRT
AdylK
AK

ALD
AMPase
AMPDA
D23PGdrain
DPGase
DPGM
EN
G6PDH
GAPDH
GL6PDH
GSHox
GSHpox
GSSG-R
HGPRT
HK

IM Pase
LDH
MemPhos
MetHbRed
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pyruvate
ribose-1-phosphate
ribose-5-phosphate

ribul ose-5-phosphate
sedoheptul ose 7-phosphate
xylose-5-phosphate

C.2. Reaction Abbreviations

adenosine deaminase (EC 3.5.4.4)

adenine phosphoribosyltransferase (EC 2.4.2.7)
adenylate kinase (EC 2.7.4.3)

adenosine kinase (EC 2.7.1.20)

aldolase (EC 4.1.2.13)

adenosine monophosphate phosphohydrolase (EC 3.1.3.5)
adenosine monophosphate deaminase (EC 3.5.4.6)

2, 3 diphosphoglyerate drain

diphosphoglycerate phosphatase (EC 3.1.3.13)
diphosphoglycerate mutase (EC 5.4.2.4)

enolase (EC 4.2.1.11)

glucose-6-phosphate dehydrogenase (EC 1.1.1.49)
glyceral dehyde-3-phosphate dehydrogenase (EC 1.2.1.12)
phosphogluconate dehydrogenase (EC 1.1.1.44)
glutathione oxidase (EC 1.8.3.3)

glutathione peroxidase (EC 1.11.1.9)
glutathione-disulfide reductase (EC 1.8.1.7)
hypoxanthine phosphoribosyltransferase (EC 2.4.2.8)
hexokinase (EC 2.7.1.1)

inosine monophosphate phosphohdrolase (EC 3.1.3.5)
lactate dehydrogenase (EC 1.1.1.27)

membrane phosphorylation

methemogl obin reductase



PNPase
PRM
PRPPsyn
RPI

TA

TK

TP

XPl
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sodium-potassium cation pump
phosphofructokinase (EC 2.7.1.11)
glucose-6-phosphate isomerase (EC 5.3.1.9)
phosphoglycerate kinase (EC 2.7.2.3)
Phosphogluconolactonase (EC 3.1.1.31)
phosphoglycerate mutase (EC 5.4.2.1)
pyruvate kinase (EC 2.7.1.40)
purine-nucleoside phosphorylase (EC 2.4.2.1)
phosphoribomutase (EC 5.4.2.7)
phosphoribosyl pyrophosphate synthetase (EC 2.7.6.1)
ribose-5-phosphate isomerase (EC 5.3.1.6)
transaldolase (EC 2.2.1.2)

transketolase (EC 2.2.1.1)

triosephosphate isomerase (EC 5.3.1.1)

ribul ose phosphate epimerase (EC 5.1.3.1)



130

APPENDIX D: REACTION SET FOR CENTRAL AND AMINO ACID
METABOLISM OF YEAST

The reaction network contains 55 central metabolic reactions including the secretion
& uptake mechanisms (governed by 91 genes). The remaining 28 reactions belong to the

amino acid metabolism (governed by 46 genes).

Reversible reactions in the glycolysis/gluconeogenesis pathway were written in the

direction of their occurrence. Superscripts E and G in gene names show that the

corresponding reaction is particular to growth in ethanol or glucose. External metabolites

were written in bold font in their uptake and secretion reactions.

D
2

1. Substrate Uptake
1GLUC+1ATP - 1GLUC6P+ ADP

1ETOH + 1 NAD¢: -~ 1 ACAL + 1 NADHcy

GLK1, HXK1,2¢
ADH2E

(3) 1NH3 - MEP1,2,3
2. Glycolysis & Gluconeogenesis’

(4 1GLUC6BP -~ 1FRUC6P PGI1

(5 1FRUC6P+1ATP - 1FRUCDP+ADP PFK1,2°

(6) 1FRUCDP - 1FRUC6P FBP1E

(7) 1FRUCDP ~ 1GA3P+1DHAP FBAl1

(8) 1DHAP - 1GA3P TPI1

(99 1GA3P+1NADy: ~ 1P13G+ 1NADHgy TDH1,2,3

(10) 1P13G+1ADP ~ 1P3G+1ATP PGK1

(11) 1P3G o 1P2G GPM1,2,3

(12) 1P2G ~ 1PEP ENOL1,2,
ERR1,2,3

(13) 1PEP+1ADP - 1PYR+1ATP PYK1,2¢

(14) 1DHAP+ 1NADHg: — 1 GOH3P + 1 NADgy GPD1,2

(15 1 GOH3P - 1GOH GPP1, HOR2



(16)
(17)
(18)
(19)
(20)
(21)

(22)
(23)

(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)

1PYR - 1ACAL +1CO,

1ACAL + 1NADHyt < 1ETOH + 1 NADgy

1ACAL + 1NADPy: - 1 AC+ 1 NADPHy

1 ACAL + 1NADmit — 1 AC+ 1 NADHyt
1AC+2ATP - 1ACCOA:+2ADP

1PYR+ 1NADit - 1ACCOAit + 1 NADHpit + 1 CO;

1PYR+1ATP+1CO, - 10AC+1ADP
10AC+1ATP - 1PEP+1ADP+1CO,

3. Pentose Phosphate Pathway

1 GLUC6P + 1 NADP,; — 1GI15L + 1 NADPHy
1G15L - 1P6G

1P6G + 1 NADP,: — 1RIBL5P+ 1 NADPH, + 1 CO;
1RIBL5P ~ 1RIB5P

1RIBL5P ~ 1XYL5P

1RIB5P+ 1 XYL5P « 1SED7P+ 1GA3P
1SED7P+1GA3P - 1FRUCG6P + 1E4P

1 XYL5P+1E4P . 1FRUC6P+ 1GA3P

4. Citric Acid Cycle

10AC+1ACCOAm: - 1CIT

1CIT « 1ISOCIT

11SOCIT + 1 NADpit - 1 AKG + 1 NADHy: +1 CO;
11SOCIT + 1 NADPyit — 1 AKG + 1 NADPHp; + 1 CO;
1I1SOCIT + 1 NADPy: — 1AKG+ 1NADPH: + 1 CO>
1 AKG + 1 NADmt - 1SUCCOA + 1 NADH: + 1 CO;
1SUCCOA +1ADP ~ 1SUC+1ATP
1SUC+1FAD - 1FUM + 1FADH;

1FUM +1FADH,; - 1SUC+1FAD

1FUM o 1MAL

1 MAL + 1 NADpit « 10OAC+ 1 NADHyit

1 MAL + 1 NADPyit - 1PYR+1CO;+ 1 NADPH it
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PDC1,5,6
ADH1,4,5°
ALD6

ALD4,5
ACSL,2
PDAL,2, PDBL,
PDX1, LPD1
PYC1,2

PCK1F

2WF1

OL34

GND1,2

RKI1

RPE1

TKL1,2

TAL1, YGRO43C
TKL1,2

CIT1,3
ACO1,2
IDH1,2
IDP1
IDP2,3
KGD1,2, LPD1
LSC1,2
SDH1,2,3,4
oavil
FUM1
MDH1
MAE1



(44)
(45)

(46)
(47)
(48)
(49)

(50)
(51)
(52)

(53)
(54)
(55)
(56)

(57)
(58)
(59)
(60)
(61)
(62)
(63)

(64)
(65)
(66)
(67)

(68)

1 ACCOAy: — 1ACCOAm

1 ACAL + 1 NADHpit « 1ETOH + 1 NADyt
5. Glyoxylate Shunt

10AC+1ACCOAy: —~ 1CIT

11SOCIT - 1GLYO+1SUC

1GLYO +1ACCOAy: —~ 1MAL

1 MAL + 1 NADmit « 1OAC+ 1 NADHy
6. Oxidative Phosphorylation

24 ADP+ 20 NADH,t + 100, -
24 ADP+20FADH,+100;, -
1ATP - 1ADP

7. Product Secretion

-~ 1GOH

- 1 ETOH

-~ 1AC

-~ 1SuUC

8. Glutamate & Glutamine M etabolism

1 AKG + 1 NADPHy: + 1 NH; — 1 GLT + 1 NADPy
1GLT + 1NADy: — 1AKG+ 1NADH: + 1 NH3
1GLT+1ATP+1NH; - 1GLN+1ADP

1AKG +1GLN + 1NADHq: — 2GLT + 1 NADgy
1GLT - 1CO;+1GABA

1AKG+1GABA - 1GLT+1SUCSAL

1SUCSAL + 1 NADPy; — 1SUC + 1 NADPHy,

24 ATP + 20 NADit
24 ATP+ 20 FAD

9. Aspartate & Asparagine & Alanine Metabolism
10AC+1GLT - 1AKG+1ASP
2ATP+1GLN+1ASP - 2ADP+1GLT +1ASN
1ASN - 1ASP+1NH;
1PYR+1GLT - 1AKG+1ALA

10. Leucine & Valine Metabolism

2PYR - 1CO2+1ACLAC

CAT2, YAT1
ADH3

CIT2E
ICL1,2F
MLSL,25
MDH2,3F

NADHX
FADHX
MAINT

FPSL

BPH1

GDH1,3
GDH2
GLN1
GLT1
GAD1
UGAl
UGA2

AAT1,2
ASN1,2
ASP3-4,1
ALT1,2

ILV2,6

132



(69)
(70)
(71)
(72)
(73)
(74)

(75)
(76)
(77)
(78)
(79)
(80)
(81)

(82a)

(82b)

(833)

83h)

133

1 ACLAC + 1 NADPHit — 1 NADPyi; + 1 DHVAL ILV5
1DHVAL - 10IVAL ILV3
ACCOAmi: +10IVAL - 1IPPMAL LEU4
1IPPMAL + 1 NADg: — 1NADHg: + 1 OICAP + 1 CO; LEU2
10ICAP+1GLT - 1AKG+1LEU BAT1,2
10IVAL+1GLT - 1AKG+1VAL BAT2

11. Serine & Glycine M etabolism

1 P3G + NAD¢: — 1 PHP+ 1 NADHy SER3,33
1PHP+1GLT - 1AKG+ 1P3SER SER1

1P3SER - 1SER SER2

1SER - 1PYR+1NHs CHA1, SDL1
1SER - 1GLY +1C1 SHM1,2
1ALA+1GLYO o 1PYR+1GLY AGX1

1GLY + NADpjit - 1C1+ NADHp+ CO, + NH3 GCV1

12. AICAR synthesis

1R5P+ 1 P3G+ 8ATP+ 1 NADmit + 1 NADgy + 2 NADPH.: ADE4,5,7,8,6,5,
—~ 1 NADHmit + 1 NADH¢: + 2 NADP,: + 8 ADP + 1 2,1,13- CCM
AICAR

1R5P+6 ATP+2GLN+1GLY +1C1+1CO,+ASP . ADEA45,7,8,6,5,
2GLU +1FUM + 6 ADP+ 1 AICAR 2,1,13 -CCMAA

13. Biomass For mation

0.05877 PYR + 0.03293 OAC + 0.03430 AKG + 0.01767 P3G BIOMX-CCM
+0.04302 ACCOAy; + 0.00996 ACCOA ¢ + 0.00802 RBSP + (1 C-mol)
0.00889 E4P + 0.01777 PEP + 0.04400 G6P + 0.00187 GOH3P

+ 0.00201 AICAR + 0.28658 NADPH,,; + 0.03080 NADPH ;¢

+ 0.05056 NAD¢yt + 0.01716 NADy,t + 1.80302 ATP

0.05056 NADHgyt + 0.01716 NADHpmit + 0.28658 NADP: +

0.03080 NADP; + 1.80302 ADP + 0.05806 CO2 + 1 BIOM

0.00555 PYR + 0.04302 ACCOAy: + 0 ACCOA: + 0.00802 BIOMX-
RB5P + 0.00889 E4P + 0.01777 PEP + 0.04400 G6P + 0.00187 CCM-AA



134

GOH3P + 0.04485GLT + 0.02116 GLN + 0.01545 ALA + (2 C-mol)
0.03703 ASP + 0.00343 ASN + 0.00885 SER + 0.00976 GLY

+0.00996 ILE + 0.00892 VAL + 0.00595 C1 + 0.00201

AICAR + 0.12717 NADPH¢y; + 0.01192 NADPHy,;t + 0.02198

NAD¢yt + 0.01716 NADpit + 1.77156 ATP

0.02198 NADHcy: + 0.01716 NADHpmit + 0.12717 NADPy; +

0.01192 NADPyit + 1.77156 ADP + 0.02922 CO; + 1 BIOM +

0.00754 OAC + 0.03171 AKG + 0.00094 P3G + 0.00650 NH3
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APPENDIX E : ALGORITHMS OF SAMPLING APPROACHES

E.1. Algorithm of Hit-and-Run Sampling

Hit-and-Run generates a sequence of poingsyWich are inside a bounded and n-
dimensional set, € R". The algorithm can be summarized in four stepsufitan and
Smith, 1998; Zabinsky, 2003);

Sep 0. Choose an arbitrary starting point, Which is known to be inside the bounded set
(X0 € S). Setk=0.
Sep 1. Generate a uniformly distributed random directi@y, over an n-dimensional
hypersphere (termed hyperspherical direction, HD).
Sep 2. Generate a random pointY = Vi + ADk uniformly distributed over the line sety,L
which lies on the generated random direction;

Lk={v:v€ES andv=VY+ADy, A a real scalar }
If Lx =4, go to step 1.
Sep 3. Stop if a stopping criterion is met (eg. the maximnumber of points to be

collected). Otherwise, increment k by one, andrreta Step one.

Below is a more detailed explanation of the procedu

Sep 0. The initial starting point, 3 must be inside the solution space defined by S.
One should note that, although called as poins, itha vector having the same dimension
as the solutions space. Here, for the samplinduafdpace, the solution space is bounded
by the lower and upper bounds of the fluxes as wdl balancing of metabolites
represented as the stoichiometric matrix. Thisgahpoint can be generated using FBA
(Appendix A). To this aim, FBA is applied to theuadion system by slightly increasing
the lower bounds of fluxes and slightly decreasipger bounds of fluxes. Thereby, the
resulting solution vector of the system will na bn the boundaries of the solution space,
but will be guaranteed to be inside it.
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Sep 1. The direction is determined by randomly genetpéirvector of size equal to
the dimension of ¥vector, from a uniform distribution (i.e.x® R") from [-1, 1] interval.
Then, this vector is scaled by its Euclidean nonnorider to determine the unit direction

vector, Od;
_ (d,,d,,....d,)

£¢)

The resulting vector, D is said to be uniformly distributed in hyperspbar

Dy E.D

direction.

Sep 2. Generating a random pointy, on the line set, I, through \ in the
direction of 0d requires the determination of points where the limersects S in both
positive and negative directions. That is, therggetion pointSimin andimax, Where the
direction vector hits the boundaries, are foundhstimt (M + ADy) € S wherel is

randomly chosen between the intervahgf andimax

Determination of the bounds far is relatively straightforward for the case wh&re
is a convex polytope defined by the linear constsaiS = {v : Av = 0)Jb < x < ub}, with A
being the stoichiometric matrix including exchamgactions,lb andub being the lower
and upper bound vectors for x. The procedure depenahe null space identification of

the flux space S, and detailed in the followingsadtion.

E.1.1. Null Space I dentification for Hit-and-Run Method

The direct implementation of Hit-and-Run method liaear equality constraints is
not possible since the limits afwill always be equal to zero for such a systeneré&fore,
an alternative approach is followed bu using thk space of the stoichiometric matrix, A.
Null space of A is a space of all possible solwianf the system defined by the
homogenous linear equation system, Av = 0. Nulcepdetermination can be determined
in MATLAB using ‘null’ built-in function. If A is mx n in dimension, with m metabolites
(equations) and n reactions (unknowns), the dineansif corresponding null space is

equal to the degrees of freedom of the equatiotresyslefined by A. The column vectors
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constituting null space are the basis vectors wdefine the flux solution space. That is, if
the null space is defined as B, the linear comimnaof its columns)y, with random
coefficients will define a point (vector) which Wiie inside this space. Mathematically

expressing,

Bxa =V (E.2)

In other words, the null space matrix, B, can lamsformed into the flux space by
the help of the coefficient vectar, Therefore, by randomly generating coefficienttoes;
a number of flux vectors within the null space dan obtained. However, it must be
guaranteed that the resulting flux vectors muswitlein the lower/upper bound constraints

of fluxes. That is,
Ib<V <ub (E.3)
Equations (E.2) and (E.3) form the basis of thel-spéhce formulation for the
sampling of flux space through Hit-and-Run methbde randomly generated flux vector
through equation (E.2) must satisfy equation (Br8}this way, the flux points can also be
collected by Monte-Carlo approach, if the dimensabithe system is small, by accepting-

rejecting the generated points.

The following three steps summarize the procedamd,leads to the formation of an

equation set which will be used in Hit-and-Run Skingp

(1) Find null space of system matrix and form flux westsuch as;

Ba, =V, (E.4)

where B is the null space matrix of & is a randomly generated coefficient vector &pd

is the resulting flux vector.

(2) Combine eqn. (E.4) with egn. (E.3);
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Ib<Ba, <ub (E.5)
which can also be expressed aBg, <ub & -Ba, <-lb

(3) Represent the splitted form of eqgn. (E.5) inrmanotation;

B ub
[

e.g. for £ part: ) ba; <ub, and for the second pard -b,a; < -Ib, for the

K" o vector. Therefore, the solution of equation systefined by eqn. (E.6) will give
coefficient vector,ax, which will generate flux vectors through eqgn.4Ewhich will
always satisfy the lower/upper bound constrainténdd by eqn. (E.3). Therefore, the
initial problem of generating flux points is traoehed into the problem of generating
coefficient points (vectors) through equation (EA&¢cordingly, the initially defined four

steps for Hit-and-Run sampling must be modified.

E.1.2. Adaptation of the Original Hit-and-Run Algorithm for Null Space
Representation

Sep 0: Transform the initial starting flux vectorpoMrom flux space to the null space
by multiplying both sides of egn. (E.4) by the pdeunverse of null-space matrix, B.

a, = pinv(B) xV, (E.7)

pseudo-inverse of a matrix, B, is equal to'{B)-1xB', and can be easily calculated in
MATLAB using built-in function ‘pinv’. Pseudo-invee calculation is used if the matrix is
not square and cannot be directly inversed. Therdiy coefficient vectorpo, will

generate flux vectors which will not lie on the hdaries.
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Sep 1: The direction vector, P subject to eqn. (E.1) is generated in the sameasa
in the original algorithm, but the dimension beagual to the dimension of the coefficient

vector, not flux vector.

Sep 2: The new coefficient vectors will be generatedHitrand-Run method so that
they will always result in flux vectors within theull space. Therefore, similar to the

original formulation, the generation can be perfednusing the following equation;
@\, =\, +AD,. (E.8)

Here, the important point, as discussed beforéo ideterminel so that resulting
coefficient vectoray.1, will satisfy the linear inequality egn. (E.6). & mequalities can be
rewritten in the following form for'l row, withi being the row index, j being the column

index, andx,and O being row vectors;

S, (e, +1d,)<ub (E.9.9)
j

> ~b(a, +4d;)< b (E.9.b)
]
The aim is to determine lower and upper limitsh## tine passing through in the
direction of Q. In other wordsmin/ Amax COrresponding to the intersection points of the

line with the coefficient space is to be identifitherefore\ will be left alone in left hand

side of these equations;

ub, -v,

>ba, +Y bAd <ub & ;b”aj =v, — A= Sh (E.10.a)
b, —v,

> -ba,->bAD, <-Hb & D ba,=v, — A= (E.10.b)
i Zbii Bjj
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Here, v, Ibi andub; show the ' element of the flux vector and its corresponding
lower/upper bound values respectively. These egusitiefine twd. values for the' row,
which also corresponds to tHE dimension of the flux space. However, for the #fjiec
flux space sampling problem dealt here, the uppemnd of all flux variables is positive
infinity. That is, the generated fluxes will sayisfipper bound constraints in any case.

Therefore, Eqn. (E.10.a) will not be pursued anymor

Focusing on Egn. (E.10.b), it must be applied fachrerow of eqn. (E.6). The

numerator of the equation will always be negativeesyv, = Ib. . Therefore, depending on

the sign of the denominatot,will be either positive or negative. Focusing bede two
possibilities separately, for the rows where theotkinator is positive, Eqn. (E.10.b) will
be negative. The maximum of these negative valinesdhe which is closest to zero) will
give Anin. This is the minimum distance to an intersectibthe line with a constraint in the
one direction. On the other harighkx gives the minimum distance to an intersectionhen t
other direction of the chosen line. For the rowerehthe denominator of eqn. (E.10.b) is

negative, the value of will be positive. The minimum of these positivelues will give

Amex-

Once these upper and lower bounds are computede#h scalat for eqn. (E.8) is
chosen randomly betweehnin and Amax Thereby, the newn coefficient vector is

generated. Then, Egn. (E.4) can be used to germyatsponding flux vector.

This procedure is repeated until a sufficient numbke samples is collected. To
prevent the cross-dependence of the generatedspdiet flux vectors are only stored in

every 1008 direction change.
E.1.3. Adaptation of Monte-Carlo Sampling

One way to handle generation of flux points in Hudution space is Monte-Carlo
sampling. For this purpose, a random coefficienttmg oj, can be generated, whose
dimension is equal to the column number of the spdice matrix, B. Then, corresponding

flux vector can be obtained using eqgn. (C.4). Aineents of this vector must be checked
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to see if all of them are within the boundary Isndefined by eqn. (E.3). If all of the
elements of the flux vector is within the limiteetgenerated flux vector is accepted and
stored. The procedure can be repeated until the@edesumber of flux vectors are

generated.

As the dimension of the system increases, the pitifyaof the flux vector to satisfy
all boundary conditions decreases. Therefore, MQatdo approach for the null space is

only applicable for flux systems with small dimeorss.

E.2. Algorithm of multi-L P Sampling

Here, A high number of optimizations with differerendom objective functions are
performed in order to generate as many flux digtidms as possible. That is, the row
vector defining the objective function to be optieil is randomly generated in each
iteration. The dimension of the row vector is egoathe column number of stoichiometric
matrix (Appendix A).The negative binary values mmstvector shows the fluxes to be
maximized while the positive binary values indicatee fluxes to be maximized. For all
other fluxes, the corresponding entry is zero. Atite number of desired flux distributions
is set, linear programming (FBA) is performed urtis number is reached, with a

different randomly generated objective functioreath FBA.
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APPENDIX F: REACTIONS AND CORRESPONDING Z-SCORES OF
METABOLIC NETWORK, ENZSUB-3

F.1. Reactions of ENZSUB-3 M odel

First column gives the genes responsible for theesponding reaction, and the
second column includes short names which are ustkiarticle to refer to reactions. The
superscript ES means that the corresponding reai@n enzyme subset consisting of
combination of more than one reaction. The firsthed numbers in parenthesis next to
pathway names gives the number of the reactiotisinpathway; the second number gives
the number of reactions prior to enzyme-subsetattau Reaction names are shown in

capital non-italic letters, and gene names arepasentional, in capital italic letters.

# CARBOHYDRATE METABOLISM

Gene Name Reaction #GLYCOLYS S'GLUCONEOGENESIS (4/4)
Name
GPM1-2-3 GPM . 3-Phospho-D-glycerate <-> 2-Phospho-D-
glycerate

ENO1-2, ERR1-2-3 ENO . 2-Phospho-D-glycerate <-> Phosphoenolpyrivat
CDC19, PYK2 PYK : ADP + Phosphoenolpyruvate -> ATP + Pyruvate
PDA1, PDB1, PDA : CoA + NAD+ + Pyruvate -> Acetyl-CoA + CO2
LAT1 + NADH

#CITRATE CYCLE (TCA CYCLE) (7/8)

CIT1-2-3 CIT . Acetyl-CoA + Oxaloacetate -> Citrate + CoA

ACO1, YJL200C ACO . Citrate <-> Isocitrate

IDH1-2 IDH . Isocitrate + NAD+ -> 2-Oxoglutarate + CO2 +
NADH

IDP1-2-35° IDPES . Isocitrate + NADP+ -> 2-Oxoglutarate + CO2 +
NADPH

KGD1-2 KGD : 2-Oxoglutarate + CoA + NAD+ -> CO2 + NADH
+ Succinyl-CoA

LSC1 LSC1 . ATP + Itaconate + CoA <-> ADP +
Orthophosphate + Itaconyl-CoA

LSC2 LSC2 : ATP + CoA + Succinate <-> ADP +

Orthophosphate + Succinyl-CoA

# ELECTRON TRANSPORT SYSTEM,



SDH1-2-3-4,
YLR164W,
YMR118C,
YJLO45W,
YELO47C, OSV1
FUM1
MDH1-2-3

ICL1-2
DAL7, MLS1
PCK1

PYC1-2

MAE1

PDC1-5-6

DLD1, CYB2

POX1/FOX2/POT1

CHO1

CHO2, OPI3FS

SDH

FUM
MDH

ICL
MLS
PCK1

PYC

MAE1

PDC

DLD

POX

CHO1

OPIES
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COMPLEX Il (3/3)

: FAD + Succinate <-> FADH2 + Fumarate

. Fumarate <-> Malate
. Malate + NAD+ <-> NADH + Oxaloacetate

# ANAPLEROTIC REACTIONS (5/5)

. Isocitrate -> Glyoxylate + Succinate

. Acetyl-CoA + Glyoxylate -> CoA + Malate

. ATP + Oxaloacetate -> ADP + CO2 +
Phosphoenolpyruvate

. ATP + CO2 + Pyruvate -> ADP +
Orthophosphate + Oxaloacetate

: Malate + NADP+ -> CO2 + NADPH + Pyruvate

# PYRUVATE METABOLISM (1/1)

. Pyruvate -> Acetaldehyde + CO2

# ENERGY METABOLISM

#ATP SYNTHASE (1/1)

. 2 Ferricytochrome c + (R)-Lactate -> Pyruvat
2 Ferrocytochrome ¢

#FATTY ACIDSMETABOLISM

#FATTY ACID DEGRADATION (1/2)

. Myristic acid + ATP +7 CoA+7 FAD + 7
NAD+ -> AMP + Pyrophosphate + 7 FADH2 + 7
NADH + 7 Acetyl-CoA

#PHOSPHOLIPID BIOSYNTHESIS (2/4)

. CDPdiacylglycerol + L-Serine <-> CMP +
Phosphatidylserine

: Phosphatidylethanolamine + 3 S-Adenosyl-L-

methionine -> Phosphatidylcholine + 3 S-Adenosyl-
L-homocysteine



ERG6-2-3-5-4F°

uld

ADE1-2-4-5,7-6-8-
13ES

ADE12-13%°

GUA1L

URA2-3-4-5-105°

URA7-8

GAD1
UGA1-25°

GFAl
PUT2

U4l

ERGES

ul4

AICES

AMPES

GUA1L

URAFES

URA78

GAD1
UGAES

GFAl
PUT2

u41_
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# STEROL BIOSYNTHESIS (2/6)

: 3 NADPH + 2 Oxygen + S-Adenosyl-L-
methionine + Zymosterol -> Ergosterol + 3 NADP+
+ S-Adenosyl-L-homocysteine

: S-Adenosyl-L-methionine + Zymosterol ->
Ergosterol + S-Adenosyl-L-homocysteine

#NUCLEOTIDE METABOLISM
#PURINE METABOLISM (3/11)

. 10-Formyltetrahydrofolate + 5-Phospho-alpha-D-
ribose 1-diphosphate + 4 ATP + CO2 + Glycine +
L-Aspartate + 2 L-Glutamine -> 1-(5'-
Phosphoribosyl)-5-amino-4-imidazolecarboxamide
+ 4 ADP + Fumarate + 2 L-Glutamate + 4
Orthophosphate + Pyrophosphate +
Tetrahydrofolate

. GTP + IMP + L-Aspartate -> AMP + Fumarate +
GDP + Orthophosphate

. ATP + L-Glutamine + Xanthosine 5'-phosphate
AMP + GMP + L-Glutamate + Pyrophosphate

#PYRIMIDINE METABOLISM (2/5)

: 5-Phospho-alpha-D-ribose 1-diphosphate +
Carbamoyl phosphate + L-Aspartate + Orotate ->
(S)-Dihydroorotate + CO2 + Orthophosphate +
Pyrophosphate + UMP

: ATP + L-Glutamine + UTP -> ADP + CTP + L-
Glutamate + Orthophosphate

#AMINO ACID METABOLISM

#GLUTAMATE METABOLISM
(AMINOSUGARS METABOLISM) (10/11)

. L-Glutamate -> 4-Aminobutanoate + CO2

. 2-Oxoglutarate + 4-Aminobutanoate + NADP+ ->
L-Glutamate + NADPH + Succinate

. beta-D-Fructose 6-phosphate + L-Glutamine -
D-Glucosamine 6-phosphate + L-Glutamate

. L-Glutamate 5-semialdehyde + NADP+ -> L-
Glutamate + NADPH

. (S)-1-Pyrroline-5-carboxylate + NAD+ -> L-
Glutamate + NADH



GLT1
GDH2
GDH1-3
GLN1

U42_-43_

AAT1-2
ALT1-2
ASN1-2

MHT1, SAM4

ASP(3-1)-(3-2)-(3-

3)-(3-4)-1
SER3-33-1-2F°
SHM1-2
AGX1
GCV1
HOM3-255
THR1-455
CY4

GLY1
CHAL, ILV1
CHA1, SDL1
U46_

GLT1
GDH2
GDH13
GLN1

u42_43°

ALT
ASN

MHT

ASP3-1

SERsyrf>

GLYsyn

AGX1
GCV1

HOM ES

THRsyn®®

CYS4
GLY1
CHA1lo
CHA1p
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. 2-Oxoglutarate + L-Glutamine + NADH -> 2 L-
Glutamate + NAD+

. L-Glutamate + NAD+ -> 2-Oxoglutarate +
NADH + NH3

. 2-Oxoglutarate + NADPH + NH3 -> L-Glutareat
+ NADP+

. ATP + L-Glutamate + NH3 -> ADP + L-
Glutamine + Orthophosphate

. L-Glutamine -> L-Glutamate + NH3

# ALANINE AND ASPARTATE
METABOLISM (4/4)

. L-Glutamate + Oxaloacetate <-> 2-Oxoglutarat
L-Aspartate

. L-Glutamate + Pyruvate <-> 2-Oxoglutaraté.-+
Alanine

. ATP + L-Aspartate + L-Glutamine -> AMP + L-
Asparagine + L-Glutamate + Pyrophosphate

: Homocysteine + S-Adenosyl-L-methionine -> L-
Methionine + S-Adenosyl-L-homocysteine

# ASPARAGINE (/1)

. L-Asparagine -> L-Aspartate + NH3

#GLYCINE, SERINE AND THREONINE
METABOLISM (11/15)

. 3-Phospho-D-glycerate + L-Glutamate + NAD+ -
> 2-Oxoglutarate + L-Serine + NADH +
Orthophosphate

. L-Serine + Tetrahydrofolate <-> 5,10-
Methylenetetrahydrofolate + Glycine

. Glyoxylate + L-Alanine <-> Glycine + Pyrutel

. Glycine + NAD+ + Tetrahydrofolate -> 5,10-
Methylenetetrahydrofolate + CO2 + NADH + NH3
. ATP + L-Aspartate + NADPH -> ADP + L-
Aspartate 4-semialdehyde + NADP+ +
Orthophosphate

: ATP + L-Homoserine -> ADP + L-Threonine +
Orthophosphate

. Homocysteine + L-Serine -> L-Cystathionine

. Acetaldehyde + Glycine -> L-Threonine

: L-Threonine -> 2-Oxobutanoate + NH3

: L-Serine -> NH3 + Pyruvate

: L-Threonine + NAD+ -> Acetate + Glycine +
NADH



YFRO55W
SAH1
u47_
CYS3

SAM1-2

u4s_

YGRO12W

LEU2, BAT1-255
LEU4
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ILV5, ILV3ES
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ILV2-6, ILVS, ILV3
ES

U49_, LYS4-12,
U50 , LYS21-20%°
U51 ,LYS9-15°

LYS2-5

LYS2-5

SAH1
METsyn
CYS2

SAM

u4s_

CYSsyn

LEUsyn®®
LEU4

ILEsyn®S

VALsyn

OIVsyn®®

OXAsyn®s

LYSsyn®®

LYS2 1

LYS2 2
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#METHIONINE METABOLISM (5/5)

. L-Cystathionine -> Homocysteine + NH3 +
Pyruvate

. S-Adenosyl-L-homocysteine -> Adenosine +
Homocysteine

. 5-Methyltetrahydrofolate + Homocysteimel-
Methionine + Tetrahydrofolate

. L-Cystathionine -> 2-Oxobutanoate + L-Cyste
+ NH3

: ATP + L-Methionine -> Orthophosphate +
Pyrophosphate + S-Adenosyl-L-methionine

# CYSTEINE BIOSYNTHESIS (2)

. L-Serine + Acetyl-CoA -> CoA + O-Acetyl-L-
serine

. O-Acetyl-L-serine + Hydrogen sulfide -eetate
+ L-Cysteine

#BRANCHED CHAIN AMINO ACID
METABOLISM (VALINE, LEUCINE AND
| SOLEUCINE) (5/11)

. L-Glutamate + NAD+ + 2-Isopropylmalate -> 2-
Oxoglutarate + CO2 + L-Leucine + NADH

. Acetyl-CoA + (R)-2-Oxoisovalerate -> CoA2+
Isopropylmalate

: 2-Oxobutanoate + L-Glutamate + NADPH +
Pyruvate -> 2-Oxoglutarate + CO2 + L-Isoleucine +
NADP+

. (R)-2-Oxoisovalerate + L-Glutamate <-> 2-
Oxoglutarate + L-Valine

: NADPH + 2 Pyruvate -> (R)-2-Oxoisovalerate +
CO2 + NADP+

#LYSINE BIOSYNTHES| SDEGRADATION
(4/10)

: 2-Oxoglutarate + Acetyl-CoA + NAD+ -> 2-
Oxoadipate + 2 CO2 + CoA + NADH

. 2-Oxoadipate + L-2-Aminoadipate 6-
semialdehyde + 2 L-Glutamate + NAD+ + NADPH
<-> 2 2-Oxoglutarate + L-2-Aminoadipate + L-
Lysine + NADH + NADP+

: ATP + L-2-Aminoadipate + NADPH -> AMP +
L-2-Aminoadipate 6-semialdehyde + NADP+ +
Pyrophosphate

: ATP + L-2-Aminoadipate + NADH -> AMP + L-
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ECM40

URA2, CPA1-2

CAR2
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CAR1
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ARQ9, PHA2 S
AROS-9, AAT1-2

TRP2-3

ARGS5,6-85°

ECM40

CABsyn

CAR2

ARGsyn>

CAR1

HISsyn®S

HIS7

CHOsyn®®

PHEsyrf>
TYRsyn

TRP23
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2-Aminoadipate 6-semialdehyde + NAD+ +
Pyrophosphate

#ARGININE METABOLISM (6/10)

: ATP + 1 L-Glutamate + NADPH + N-Acetyl-L-
glutamate -> 2-Oxoglutarate + ADP + NADP+ +
Orthophosphate + N2-Acetyl-L-ornithine

: N2-Acetyl-L-ornithine + L-Glutamate -> L-
Ornithine + N-Acetyl-L-glutamate

. 2ATP + CO2 + L-Glutamine -> 2 ADP +
Carbamoyl phosphate + L-Glutamate +
Orthophosphate

: 2-Oxoglutarate + L-Ornithine -> L-Glutamate
L-Glutamate 5-semialdehyde

: ATP + Carbamoyl phosphate + L-Aspartate + L-
Ornithine -> AMP + Fumarate + L-Arginine +
Orthophosphate + Pyrophosphate

. L-Arginine -> L-Ornithine + Urea

#HISTIDINE METABOLISM (2/9)

. 5-Phospho-alpha-D-ribose 1-diphosphate + ATP
+ 2 NAD+ + L-Glutamate + D-erythro-1-
(Imidazol-4-yl)glycerol 3-phosphate -> 2-
Oxoglutarate + L-Histidine + 2 NADH +
Orthophosphate + 2 Pyrophosphate + "N-(5'-
Phospho-D-1'-ribulosylformimino)-5-amino-1-(5""-
phospho-D-ribosyl)-4-imidazolecarboxamide”

. "N-(5'-Phospho-D-1'-ribulosylformimino)-5-
amino-1-(5""-phospho-D-ribosyl)-4-
imidazolecarboxamide" + L-Glutamine -> L-
Glutamate + 1-(5'-Phosphoribosyl)-5-amino-4-
imidazolecarboxamide + D-erythro-1-(Imidazol-4-
yl)glycerol 3-phosphate

#PHENYLALANINE, TYROSINE AND
TRYPTOPHAN BIOSYNTHESIS (AROMATIC
AMINO ACIDS) (8/23)

: ATP + D-Erythrose 4-phosphate + NADPH + 2
Phosphoenolpyruvate -> ADP + Chorismate +
NADP+ + 4 Orthophosphate

. L-Glutamate + Prephenate -> 2-Oxoglutarate +
CO2 + L-Phenylalanine

. 3-(4-Hydroxyphenyl)pyruvate + L-Glutamate
2-Oxoglutarate + L-Tyrosine

: Chorismate + L-Glutamine -> Anthranilate-+
Glutamate + Pyruvate



TRP4-1-3-2-55°

BNA2-355
BNAS

BNA4-5-1, U54 -
55 -56 5

PRO1
PRO3
PRO3
PRO3

PUT1

GSH1-258

u76 -77_°

THI80

u86 -222 -85 =5

TRPsyrfF®

KYNsyn &s

BNA ES

PRO1

PROsyn
PRO3 2
PRO3 3

PUT1

GSHES

THIES

THI80

AON ES

148

. 5-Phospho-alpha-D-ribose 1-diphosphate +
Anthranilate + L-Serine -> CO2 + D-
Glyceraldehyde 3-phosphate + L-Tryptophan +
Pyrophosphate

. L-Tryptophan + Oxygen -> Formate + L-
Kynurenine

. L-Kynurenine -> Anthranilate + L-Alanine

. L-Kynurenine + NAD+ + 2 NADPH + 2 Oxygen
-> 2-Oxoadipate + CO2 + L-Alanine + NADH + 2
NADP+ + NH3

#PROLINE BIOSYNTHESIS (5/5)

: ATP + L-Glutamate -> ADP + alpha-D-Glutamyl
phosphate

. (S)-1-Pyrroline-5-carboxylate + NADPHL=>
Proline + NADP+

. L-1-Pyrroline-3-hydroxy-5-carboxylate +
NADPH -> trans-4-Hydroxy-L-proline + NADP+

. L-1-Pyrroline-3-hydroxy-5-carboxylate ADH
-> trans-4-Hydroxy-L-proline + NAD+

. L-Proline + NAD+ -> (S)-1-Pyrroline-5-
carboxylate + NADH

#METABOLISM OF OTHER AMINO ACID

# GLUTATHIONE BIOSYNTHESIS (V/1)

: 2 ATP + Glycine + L-Cysteine + L-Glutamate ->
2 ADP + Glutathione + 2 Orthophosphate
#METABOLISM OF COFACTORS,

VITAMINS, AND OTHER SUBSTANCES

#THIAMINE (VITAMIN B1) METABOLISM
(3/3)

. Thiamin diphosphate + ADP -> Thiamin + ATP
+ Orthophosphate
ATP + Thiamin -> AMP + Thiamin diphospleat

#PANTOTHENATE AND COA
BIOSYNTHESIS (1/3)

. L-Alanine + 3 Malonyl-CoA -> 3 CO2 + 3 CoA
+ H+EXT + AONAXxt
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FOL1

FOL1
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GAP1, DIP5
JEN1
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AGP1, TATZ,
PUT4
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GLUsc
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#FOLATE BIOSYNTHESIS (3/3)

4-amino-4-deoxychorismate -> Pyruvate + 4-
Aminobenzoate
. 4-Aminobenzoate + 2-Amino-7,8-dihydro-4-
hydroxy-6-(diphosphooxymethyl)pteridine ->
Pyrophosphate + Dihydropteroate
: 4-Aminobenzoate + 2-Amino-4-hydroxy-6-
hydroxymethyl-7,8-dihydropteridine ->
Dihydropteroate

# COENZYME A BIOSYNTHESIS (2/10)

. (R)-2-Oxoisovalerate + 5,10-
Methylenetetrahydrofolate + ATP + L-Aspartate +
NADPH -> (R)-Pantothenate + AMP + CO2 +
NADP+ + Pyrophosphate + Tetrahydrofolate

. (R)-Pantothenate + 3 ATP + CTP + L-Cysteine ->
Acyl-carrier protein + Adenosine 3',5'-bisphosphate
+ 2 ADP + CMP + CO2 + 2 Pyrophosphate

#NAD BIOSYNTHESIS (3/3)

. Nicotinamide <-> Nicotinate + NH3

. Nicotinate + 5-Phospho-alpha-D-ribose 1-
diphosphate -> Nicotinate D-ribonucleotide +
Pyrophosphate

. L-Aspartate + FAD -> FADH2 + a-
Iminosuccinate

# MEMBRANE TRANSPORT

#PLASMA MEMBRANE TRANSPORT (3/3)
. GLUxt <-> L-Glutamate

. LACxt + H+EXT <-> (R)-Lactate

. H+EXT + MALXxt <-> Malate

. 2-Oxoglutarate + MALxt <-> Malate + AKGxt
#AMINO ACIDS (21/21)

. H+EXT + ALAXxt <-> L-Alanine

. H+EXT + ASNxt <-> L-Asparagine

: H+EXT + ASPxt <-> L-Aspartate
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DIP5
GAP1, GNP1, CYSsc . H+EXT + CYSxt <-> L-Cysteine
BAP2-3, TAT1-2
GAP1, TAT2, GLYsc : H+EXT + GLYxt <-> Glycine
DIP5, PUT4
GAP1, AGP1, GLNsc : H+EXT + GLNxt <-> L-Glutamine
GNP1, DIP5
HIP1, GAP1, HISsc . H+EXT + HISxt <-> L-Histidine
AGP1, TAT1
TAT1, GAP1, ILEsc . H+EXT + ILExt <-> L-Isoleucine
AGP1, BAP2-3
TAT1, GAP1, LEUsc : H+EXT + LEUxt <-> L-Leucine
AGP1, BAP2-3,
GNP1
GAP1, AGP1, METsc : H+EXT + METxt <-> L-Methionine
GNP1, BAP2-3,
MUP1-3
GAP1, AGP1, PHEsc . H+EXT + PHEXxt <-> L-Phenylalanine
TAT2, BAP2-3
GAP1, PUT4 PROsc . H+EXT + PROxt <-> L-Proline
TAT1-2, GAP1, TRPsc . H+EXT + TRPxt <-> L-Tryptophan
BAP2-3
TAT1-2, GAP1, TYRsc . H+EXT + TYRXxt <-> L-Tyrosine
AGP1, BAP2-3
GAP1, AGP1, VALsc . H+EXT + VALxt <-> L-Valine
BAP2-3, TAT1
AGP1-3, GNP1, SERsc . H+EXT + SERXxt <-> L-Serine
GAP1, DIP5
TAT1, AGP1, THRsc : H+EXT + THRxt <-> L-Threonine
GAP1, GNP1
LYP1, GAP1 LYSsc : H+EXT + LYSxt <-> L-Lysine
SAM3 SAMsc : H+EXT + SAMXxt <-> S-Adenosyl-L-methionine
PUT4, UGA4 GABAsc . H+EXT + GABAXt <-> 4-Aminobutanoate
GAP1, CAN1 ORNSsc . H+EXT + ORNXxt <-> L-Ornithine

#METABOLIC BY-PRODUCTS
U205 SUCsc . H+EXT + SUCCxt <-> Succinate
JEN1 PYRsc : H+EXT + PYRxt <-> Pyruvate
U206 CITsc : H+EXT + CITxt <-> Citrate

# OTHER COMPOUNDS
U207 _ FUMsc . H+EXT + FUMXxt <-> Fumarate
U208 MYRsc : C140xt <-> Myristic acid
U213 AKGsc . H+EXT + AKGxt <-> 2-Oxoglutarate
THI7, YORO71C, THisc . THMxt + H+EXT <-> Thiamin
YOR192C

U226 _ PIMsc . PIMExt <-> Pimelic Acid
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Magnitude of regulation for the reactions of thetabelic network, ENZSUB3, at

metabolic (zRE) and transcriptional (zGE) levegiigen in Table F.1 for the effect of very
high-gravity (VHG) fermentation media on laborat¢6EN) and industrial Red Star (RS)
strains. Regulation is considered to be signifidantzRE, zGE > 1.28 (p < 0.10). In the

table, regulation type is coded as follows; H mdaiesarchical (transcriptionally) change,

M stands for metabolic change. HM shows the reastior which there is regulation in

both levels. The reactions were grouped with resfgethe pathways they belong. SM is

the abbreviation for standard media. ES in theti@acames stands for enzyme subset.

Table F.1. Magnitude of regulation for the reactioh ENZSUB3

CEN (VHGvsSM) | RS(VHG vsSM)

ZRE zGE ZRE zGE
GLYCOLYS'S
GPM -0.95 0.32 -0.90 1.49
ENO -1.69 2.18 -1.76  -1.63
PYK -0.04 0.82 -0.05 1.26
PDA -0.13  1.00 -0.01 1.73
TCACYCLE
CIT 027 1.13 -0.01  -0.09
ACO 019  1.32 0.00 1.46
IDH -0.73 -0.83 -0.62 -0.98
IDPES -0.08 0.41 0.02 1.28
KGD -0.24  0.77 -0.02 -0.31
LSC1 -0.73  1.37 -0.56 0.84
LSC2 031 0.68 0.44  0.47
SDH 0.72 -0.27 -0.02 1.61
FUM 0.14 154 -0.78 0.72
MDH -1.32  1.25 -1.35  1.16
ANAPLEROTIC REACTIONS,
ICL 0.63 0.03 0.52 1.49
MLS 040 -0.84 0.52 0.02
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Table F.1. continued

PCK1 -1.22 070 - | -1.15 126 -
PYC -0.121.05 - | -0.05 0.29 -
MAE1 068 152 H| 071 122 -
PDC 057 O - | 068 174 H
FATTY ACID

POX -1.13 078 -] -092 128 H
CHO1 ®4 204 H| 035 -142 -
ERG®® 039 195 H| -031 085 -
PURINE- PYRIMIDINE

AIC™ 032 152 H| -003 053 -
AMPE® 113 163 H| 09 132 H
GUA1 076 154 H| 090 155 H
URAFS 081 177 H| 090 061 -
URA78 008 097 -| 038 100 -
GLUTAMATE PATHWAY

GAD1 129 146 HM| 143 121 M
UGA®S 218 1.69 HM| 223 038 M
GFA1 119 032 - | 118 -063 -
PUT2 075 -016 - | 074 215 H
GLT1 125 282 H| 124 100 -
GDH2 056 183 H| 060 167 H
GDH13 120 025 - | 124 091 -
GLN1 093 136 H| 095 070 -
ALANINE-ASPARTATE PATHWAY

AAT 125 150 H| 124 230 H
ALT 250 248 HM | 248 1.80 HM
ASN 1.84 230 HM| 18 054 M
MHT -1.00 145 H| -099 035 -
ASP3-1 147 145 HM 141 134 HW
GLYCINE-SERINE-THREONINE P.

SERsyr> 093 162 H| 080 043 -
GLYsyn 115 169 H| 103 146 H
AGX1 245 0.86 M| 231 221 HM




Table F.1. continued

GCV1 017 52. H [ 001 081 -
HOM S 041 030 - | 047 144 H
THRsyn®® 042 130 H| -023 098 -
CYs4 -0.01 129 H| -031 043 -
GLY1 141 041 M| 046 050 -
CHA1lo 002 111 -| -096 152 H
CHA1p 147 093 M| 114 054 -
METHIONINE-CYSTEINE PATHWAY

YFRO55W -0.05 203 H| -005 044 -
SAH1 083 174 H| -075 142 H
CYS3 -1.83 038 - | -1.88 001 -
SAM 045 16 - | -0.34 081 -
CYSsyn -1.34 -083 -| -127 111 A
LEUCINE-I SOLEUCINE-VALINE P.

LEUsyn™® 1.07 154 H| 138 091 M
LEU4 -060 088 - | -018 158 H
ILEsyn®S 115 166 H| 1.42 190 HM
VALsyn 120 098 - | 124 -0.33
OlVsyn®s 004 183 H| 0.02 213 H
LYSINE PATHWAY

OXAsyn*=> 032 1.18 -| 006 117 -
LYSsyn®® 1.67 246 HM| 1.16 090 -
LYS2 1 022 121 -| 036 129 H
LYS2 2 030 121 -| -017 129 H
ARGININE PATHWAY

ARG5,6-8 120 156 H| 128 088 M
ECM40 84. 239 HM| 061 132 H
CABsyn 077 128 H| 089 034 -
CAR2 1.74 057 M| 062 -001 -
ARGsyn®® 062 068 - | -045 044 -
CAR1 056 174 H| -074 127 -
HISTIDINE PATHWAY

HISsyn=® 048 182 H| 075 1.25
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HIS7 100 132 H]| 109 206 H
AROMATIC AMINOACIDSP.

CHOsyn™> -061 166 H| -051 141 H
PHEsyrf> 136 166 HM| 165 098 M
TYRsyn 122 178 H| 1.84 341 HM
TRP23 167 131 HM 165 078 M
TRPsyrf® 044 174 H| 045 224 H
KYNsyn&® 009 215 H| 019 160 H
BNA5 065 197 H| 069 -111 -
BNA S 039 209 H| -006 -0.16 -
PROLINE PATHWAY

PRO1 049 183 HJ| 057 205 H
PROsyn 073 087 -| 072 084
PRO3_2 069 087 -| -0.71 0.84
PRO3_3 -1.44 087 -| -145 0.84
PUT1 -0.02 056 - | -002 167 H
SECRETION REACTIONS

GLUsc 185 117 M| 181 079 M
LACsc 143 081 M| 145 086 M
ALAsc 143 190 HM| 145 075 M
ASNSsc 081 -025 -| -003 069 -
ASPsc 143 209 HM 129 086 M
CYSsc -146 138 H| -1.47 053 A
GLYsc 143 166 HM| 145 080 M
GLNsc 114 025 -| -0.03 069 -
HISsc 088 -080 -| -003 088 -
ILEsc 086 155 H| -003 056 -
LEUsc 114 146 H| 101 066 -
METsc -146 194 H| -147 098 -
PHEsc 121 158 H| -003 021
PROsc 143 140 HM 145 090 M
TRPsc 048 152 H| -050 037 -
TYRsc 065 156 H| 1.15 043 -
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VALsC 1.38 155 HM|[ -0.03 056 -
SERsC 001 -080 -| -030 0.68
THRsc 1.14 1.00 -| -097 058 -
LYSsc 001 184 H| -003 1.00 -
SAMsc 047 154 H| -042 127 -
GABAsC -0.15 0.80 -| 003 202 H
ORNSscC -0.06 145 H| -1.47 159 H
PYRsC 143 081 M| 145 08 M
THIsc -084 162 H| -074 0.87 -
GSH> 040 1.15 - 0.42 0.63 -
NPT1 -0.78 155 H| -065 1.20
OPIS -0.46 0.48 - | -034 0.69 -
DLD 1.21 0.00 - 124 1.18
PANTES -0.24 224 H| 001 124
FOLla 7 205 H| 063 047 -
FOL1b -0.852.05 H | 071 0.47 -
PNC1 081159 H | -073 160 H
THI80 78 129 H| -066 0.12 -
PPTES -0.74 184 H| -043 054
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APPENDIX G: REPRXN MX SOFTWARE PACKAGE

A software package, called RepRxn MX, was developgich automates the
method discussed in chapter 5. The package wortksrMMATLAB 7.0, and consists of 13
M-files. A graphical user interface (GUI) was demd for the package (Figure G.1).
Basically, a) it follows the roadmap depicted ingutie 5.2 to construct ENZSUB-3
metabolic network. Two input files are required tbe this part to function: a text file
including all the reactions occurring in the metabo of interest, and another text file
with the names of measured metabolites. b) it per$areporter reaction analysis based on
the derived network, ENZSUB-3. This step requiratemal input of the p-values of

metabolites within the network.

rReprn MXI

Reporter Reaclions through Metaboelomics

Run Preprocessing Reaction Metabolite Time
Initial Model 1112
| UNCOMP Model (Duplicate Reaction Rermoval) 725 B77 220
¥ ENZSUB-1 Model (Enzyme Subset Reduction) 562 515 12

T ENZEUB-2 Model (FBA Reduction)
[T ENZZSUB-3 Model (Rxns with Measured Mets)

Run Reporter Reaction Algorithm

Figure G.1. Graphical user interface of the devetbhlATLAB package, RepRxn MX

G.1. Requirement for Model Reactions

All the metabolic reactions for the organism ofergst (in this case S. cerevisiae)

must be supplied in a text file in the followingifwat;

reactionname :A+B->C+D
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In other words, a name must be assigned to eactiaeafollowed by colon mark
“’, Then, the reactants are written separated loyreation mark ‘+’. The reactants and
products must be separated by ‘->’ or ‘<->’ depagdn if the reaction is irreversible or

reversible.

Whenever required, comment lines can be introduntm the input text files by
using ‘# sign. All lines which start with this sigwill not be read and executed by the
MATLAB codes.

The input metabolic network must be compatible witle nature of measured
metabolite data. That is, if the data does not nazakedistinction between the presence of
a metabolite in different compartments (such a®snitc or mitochondrial pools), the
reactions supplied must not be compartmentalizéé. dpposite case is also valid. In the
case of present data discussed in this chaptere tise a distinction only between
intracellular and extracellular compartments wherd¢he yeast genome-scale model
includes three compartments (mitochondria, cyt@u external space). Therefore, the
cytosolic/mitochondrial compartmentation of the mbdvas removed and metabolites
present in both of these compartments were repeders one, with their corresponding
reactions conserved. The package assumes thatpth@ocessing, if necessary, is
manually done before. For the present analysiatranged reaction list is available

through a text file called “SC_forster03 _uncomg.txt

G.2. Duplicate Reaction Removal

Duplicate reactions due to isoenzyme availability the supplied text file of
metabolic network, if any, are removed by keepindy ®ne of them since metabolome
data does not provide any special information terpret isoenzymes. ‘A_noduplic.m’

performs this preprocessing. Below is the outpuhefcode;

A. REMOVAL OF DUPLICATE REACTIONS: started ...
Model initially includes 1112 reactions.

Input Model was reduced by removing 387 duplicatetions ...
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New model was written into a new text file: "SC di@r03_nodup.txt"...
Metabolite List was constructed for NoDuplic Model

Metabolite List was written into "metlist_noduptxt” file..

DUPLICATE REACTION REMOVAL IS COMPLETE! :

NEW MODEL INCLUDES 725 REACTIONS AND 677 METABOLITE.
Elapsed time is 8.76 seconds.

As seen from the output, the code also constrhetdist of metabolites for the new
model using a function “func_metlist.m”. In this wdJNCOMP model was constructed
(Figure 5.X). The execution time is 8.7 sec. in anputer with Pentium IV 3 Ghz
processor and 1 GB memory.

G.3. Identification and Combination of Enzyme Subsets

UNCOMP model is processed by another MATLAB scadptled “B_enzsub.m” to
build ENZSUB-1 model. METATOOL can also be usegésform this task. However, it
is relatively inconvenient to convert the text fiko METATOOL input file format in an

automated fashion, and to process the outputdfite¢onstruct the new reaction list.

G.3.1. Construction of Stoichiometric Matrix from NoDuplic M odel

As detailed in the following subsection, enzymeéisat combination analysis
depends on the stoichiometric coefficients. Thermefdthe model stored in the text file
(SC_forster03_nodup.txt) is converted into a stoictetric matrix representation by a
script “text2mat_v3_sc.txt”. The script follows tf@lowing steps to construct the matrix;

- Reaction list is read from the text file.

- Reactants and products are separated into elifferariables.

- Reversibility information of the reactions is Id into a variable by scanning the
direction of the arrows in the reactions. Therelmyyer and upper bounds of
reactions are assigned.

- Metabolite names list is constructed from reactist.
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- A function “coeff_met.m” is used to construcbishiometric coefficient matrix

for reactants and products.

The output of the code is given below:

NODUPLIC model is being converted into stoichiontetepresentation...
Reaction List was read from the file: 725 Reactions

Metabolite List was constructed from reaction 1817 Metabolites

Number of Irreversible Reactions: 509

Number of Reversible Reactions : 216

Matrix conversion for REACTANTS and PRODUCTS weoenpleted ...
STOICHIOMETRIC MATRIX FOR NODUPLIC MODEL IS READY!.: 677 X
725

Elapsed time is 10.93 seconds.

G.3.2. Processing of Stoichiometric Matrix for Enzyme Subset Reduction

Next, “B_enzsub.m” script constructs ENZSUB-1 modéie following strategy is
followed for the detection and further combinatadriinear reaction paths;

- Number of reactions in which each metabolitdipgates is calculated.

- The metabolites which participate in only twacgtons are identified.

- Among those metabolites, the ones which havesime sign as coefficients in
both reactions are discarded from the list. Thesgrais that combination
(summation) of these two reactions will not resuoltthe disappearance of the
metabolite since both reactions either produceonsgme it.

- Additionally, if the metabolite identified is amg@ the measured metabolites, it is
also discarded. The underlying reasoning behingraazsubset combination is
that the metabolites in linear pathways will not tsturbed by any other
reactions; thereby the levels of these metaboli#shot be perturbed, remaining
constant. This is a reasonable assumption in tbe ahabsence of data for these

metabolites. However, whenever measurement isablailfor such metabolites,
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the combination is not performed with the aim die&ing the measurement
information into the analysis.

- Biomass and the precursors in the biomass equetialso removed from the list
if they are included. The precursors must be preduor the cell to function.

Therefore, their disappearance must not be allowed.

As a result of these steps, the metabolite liscwimcludes names of metabolites in
the linear pathways is ready. For each metabolitethie list; the two reactions it
particiapates (i.e. the corresponding columns énsttoichiometric matrix) are summed up.
This new reaction is added at the end of the simicltric matrix. The original reactions
are discarded. Since the summation leads to tlappésmrance of the metabolite of interest,
the corresponding row is also removed from the imagdditionally, it is also checked
whether the combination leads to the disappearaheay other measured metabolites. If
this is the case, the combination is not perform&sl.a result, ENZSUB-1 model is
reconstructed with 562 reactions and 515 metalsoliteis kept in the stoichiometric

matrix form for the purpose of the following prepessing steps.

B. DETECTION AND COMBINATION OF ENZYME SUBSETS: stid ...
ENZYME-SUBSET COMBINED MODEL IS READY : ENZSUB-1.
ENZSUB-1 MODEL HAS 562 REACTIONS AND 515 METABOLITHE
Elapsed time is 1.125 seconds.

G.4. Construction of ENZSUB-2 from ENZSUB-1

G.4.1. Use of FBA to Identify I nactive Reactions

The next step is to apply linear programming (FBA)the model to identify
reactions which are not active in glucose growthe Torresponding Matlab script is
“C_esr_FBA.m". It uses the stoichiometric matrigwier and upper bounds of reactions,
and the objective function as the input to ideniifgctive reactions under the experimental

conditions of interest. In this case, with the stdebon source of glucose, FBA is executed
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for aerobic and anaerobic conditions. After consing the optimal biomass growth rate
between its optimum value and 50% of the optimuacheflux in the model is maximized
and minimized to identify the extreme values okés that reaction can carry. The set of
reactions identified to have only zero fluxes areesl into files called ‘rxn_omit_aer.mat’
and ‘rxn_omit_anaer.mat’. linear programming wasfgened by using the built-in
“linprog” function of MOSEK Optimization Package.

C. USE OF FBA TO IDENTIFY INACTIVE REACTIONS: stad ...

117 external metabolites were identified ...

FBA for aerobic conditions starts ...

260 inactive reactions were identified and savedi&robic conditions ...
FBA for anaerobic conditions starts ...

258 inactive reactions were identified and saved\ftaerobic conditions ...
Elapsed time is 175.27 seconds.

G.4.2. Omission of FBA-derived | nactive Reactions

The matlab script ‘rxn_omission.m’ reads the prasilyg saved files which includes

the names of inactive reactions; and omit them.

There are 256 inactive reactions to be omitted ...

Elapsed time is 2.99 seconds.

G.4.3. Restoring Reactions with M easured Metabolites

Another script is required to check whether thecpdure led to the omission of
measured metabolites or not. In other words, theag be inactive reactions which were
discarded, however these reactions may involve uneds metabolites.

“comp_measmets.m” makes this check by identifyimchsmetabolites. If there is any, the
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reactions including these metabolites are store# beo the model, thereby leading to the
final form of ENZSUB-2 model.

Measured metabolite names are read ...

There are 84 measured metabolites..

Number of metabolites in FBA reduced model is 286 .
13 measured metabolites were identified as missing
ENZSUB-2 Model was finalized :

It includes 389 reactions and 303 metabolites ..

Elapsed time is 5.76 seconds.

G.5. Finalization of Preprocessing: ENZSUB-3 model

ENZSUB-2 model is scanned by “enzsub3_formn.m” ctmedentify reactions
none of whose participating metabolites are meadsufbiese reactions are discarded,
leading to the finalization of the preprocessingpstThen, the model is converted to
stoichiometric matrix in order to represent it iMG format by using the executable file,
‘GML_maker.exe’.

244 reactions with no measured metabolites weadied
ENZSUB-3 Model was constructed:

Model has 183 reactions & 145 metabolites ..

Measured metabolite coverage of ENZSUB-3 is 46rdqud ..

Elapsed time is 2.44 seconds.

ENZSUB3 model is being converted into stoichionmetepresentation...
Reaction List was read from the file: 145 Reactions

Metabolite List was constructed from reaction 183 Metabolites
Number of Irreversible Reactions: 97

Number of Reversible Reactions : 48
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Matrix conversion for REACTANTS and PRODUCTS weosnpleted ...
STOICHIOMETRIC MATRIX FOR NODUPLIC MODEL IS READY!: 183 x 145

Elapsed time is 1.15 seconds.

Conversion of stoichiometric matrix to GML formaass ...

GML file was created ..

G.6. Reporter Reaction Algorithm

After the first part of the algorithm, preprocesgins over, the final ENZSUB-3
model is represented as a graph. A matlab scripes to combine graph representation of
ENZSUB-3 with the p-values of measured metabol#applied in a .mat file format.
Additionally, a text file including a set of p-vas generated by analyzing the unknonw
peaks in GC-MS spectra must be supplied, for randssignment to the unmeasured
metabolites available in the model. The script eggpthe algorithm presented in Chapter
five, and gives the list of reactions in the moaetl corresponding z-scores. The user can
use a threshold (typically z = 1.28, correspondiagp = 0.10), to identify reporter

reactions.
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