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ABSTRACT 

 

 

STOICHIOMETRIC MODELS IN METABOLIC SYSTEMS 

BIOLOGY OF YEAST 

 

 

A system-level analysis of Saccharomyces cerevisiae metabolism was performed 

through integration of stoichiometric modeling and high-throughput ‘omics’ data. A bridge 

between metabolic networks and transcriptomics was built by employing the reactions 

involved in central carbon metabolism of the baker’s yeast. The fold changes in control-

effective fluxes (CEF), the weighted sum of calculated elementary modes passing through 

the reactions, were used for the prediction of the fold changes in mRNA transcripts of 

metabolic genes on different growth media (glucose-ethanol and galactose–ethanol). An 

acceptable correlation was obtained between the theoretical CEF-based flux ratios and 

experimental mRNA level ratios of 38 genes. Applicability of the approach to mammalian 

cell metabolism through analysis of red blood cell enzymopathies was also demonstrated. 

CEF approach was then employed to investigate the transcriptional regulation of fluxes in 

yeast metabolism for carbon shifts from fermentative (glucose) to nonfermentative (ethanol, 

acetate, lactate) substrates. An acceptable correlation was obtained for the analysis of such 

perturbation experiments, indicating that fluxes of yeast central metabolism are mainly 

transcriptionally regulated when there is a shift in carbon source.  

 

An algorithm was developed to integrate metabolome data with metabolic network 

topology. The approach enables identification of reporter reactions, around which there are 

significant coordinated changes following a perturbation. Applicability of the algorithm 

was demonstrated for S. cerevisiae. Further combination of the results with transcriptome 

data enabled to infer whether the reactions are hierarchically or metabolically regulated.  

 

Model-based structural robustness of yeast metabolism was analyzed to guide the 

research on phenomics. In silico lethality information of gene deletions on different carbon 

substrates indicated a more robust metabolism for S. cerevisiae than for E. coli bacterium. 
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ÖZET 

 

 

MAYANIN METABOL ĐK SĐSTEM BĐYOLOJ ĐSĐ YAKLA ŞIMIYLA 

ĐNCELENMESĐNDE STOKĐYOMETR ĐK MODELLER ĐN ROLÜ  

 

 

Stokiyometrik modelleme ve hızlı-tarama yöntemleri sonucu elde edilen ‘omics’ 

verilerinin  bütünleşik analizi yaklaşımıyla  maya metabolizması sistem bazlı incelenmiştir. 

Mayanın merkezi karbon metabolizmasındaki tepkimeler baz alınarak hesaplanan temel 

akı yolları, metabolik ağyapıları ile transkriptom verilerinin bütünleştirilmesinde 

kullanılmıştır. Bu amaçla, bir reaksiyondan geçen akı modlarının ortalaması alınarak 

hesaplanan kontrol-etkili akıların (KEA) farklı besi ortamlarında gösterdiği değişiklikli ğin 

(glikoz-etanol ve galaktoz-etanol), 38 genin mRNA transkriptlerindeki değişikli ği başarılı  

ile öngördüğü görülmüştür. Bu yaklaşımın memeli metabolizmasına uygulanabilirliği, 

alyuvarlarda görülen enzim bozukluklarının analizi yoluyla gösterilmiştir. Daha sonra, 

KEA yaklaşımı ile, maya metabolizmasının akılarının karbon kaynağı değişikli ği 

durumunda yazılımsal düzeyde kontrol edilebilirliği incelenmişir. Fermentatif (glikoz) 

karbon kaynağından fermentatif olmayan kaynağa (etanol, asetat, laktat) geçiş durumunda 

5 farklı deneyde mRNA seviyelerinde görülen değişikli ğin, karşılık gelen KEAlar ile 

uyumlu olduğu gözlemlenmiştir. Bu sonuçlar, karbon kaynağı değişikli ği durumunda maya 

merkezi metabolizması akılarının yazılımsal düzeyde kontrol edildiğini göstermiştir. 

 

Metabolom verilerinin metabolik ağyapılarıyla bütünleştirilmesini sağlayan bir 

algoritma geliştirilmi ştir. Bu yaklaşım, maya metabolizmasında, etrafında en çok değişiklik 

görülen haberci tepkimelerin tesbitine olanak sağlamıştır. Sonuçların transkriptom 

verileriyle bütünleşik analizi sonucu, tepkimelerin hangi seviyede kontrol edildiği 

(hiyerarşik, metabolik) hakkında çıkarımlar yapılabilmiştir. 

 

Fenomiks alanındaki araştırmalara öncül olması amacıyla, maya metabolizmasının 

model-tabanlı dayanıklılık analizi gerçekleştirilmi ştir. Sonuçlar, S. cerevisiae’nin E. 

coli’ye göre daha dayanıklı olduğunu göstermektedir. 
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1. INTRODUCTION 

 

 

Systems biology has recently emerged as a promising field to interpret and 

understand the cell at systems level rather than studying the isolated parts of it. The advent 

of high-throughput experimental data collection technologies has been the driving force 

behind this new field. The transformation of biological research into a data-rich discipline 

was facilitated by the sequencing of the first genome in 1995. Today, genomes of more 

than 300 organisms have been sequenced, making the genomics one of the highly mature 

tools of systems biology. Availability of genome sequence of an organism has led to the 

birth of the other high-throughput technologies, namely transcriptomics (Lockhart and 

Winzeler, 2000) and proteomics (simultaneous screening of the levels of all expressed 

mRNA transcripts and proteins in the cell encoded by genome under certain conditions). 

Apart from the genetic material, simultaneous detection of the levels of small biochemical 

species, called metabolites, has been another focus, leading to a new field in data-rich 

biology, called metabolomics (Mendes, 2002). The conversion of these metabolites into 

each other through synthesis or decomposition is monitored by the enzymes, proteins with 

catalytic activities. The high-throughput quantification of the flux of the metabolites 

through enzymatic reactions is called fluxomics (Sanford et al., 2002). Phenomics, on the 

other hand, refers to high-throughput screening of cellular fitness or viability under certain 

conditions. 

 

Systems biology deals with the analysis and integration of different types of ‘omics’ 

datasets through the use of computational tools to obtain overall quantitative description of 

cellular systems. Thereby, cells can be monitored in silico, facilitating more complete 

understanding of cellular functions. Computational modeling constitutes a crucial step in 

systems biology cycle, where dry in silico experiments such as simulations can be used to 

generate the assumptions and hypotheses. Wet experiments can be conducted to test the 

predictions of the models. Accordingly, models can be improved, and this cycle continues 

until an overall quantitative description of cellular functions is obtained (Kitano, 2002). 

Therefore, modeling tools are central to system-level understanding efforts. 
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Metabolism is a good starting point for systems biology research as it is studied in 

great detail and well annotated. Small-scale metabolic analysis of many organisms, from 

prokaryotes to mammalian cells and human, has been performed through static and 

dynamic modeling approaches. Genome-scale metabolic stoichiometric models have been 

developed for more than 10 microorganisms, facilitating the system-level understanding of 

cellular metabolism. 

 

The aim of this study is integrated consideration of the metabolism of yeast, 

Saccharomyces cerevisiae, through the use of ‘omics’ data and computational tools. The 

background aspects of the conducted research are presented in the second chapter, entitled 

as “Background Aspects”. The following chapters detail research under four main topics. 

 

The first section of the third chapter introduces the application of a novel approach 

which links transcriptomics to fluxomics. Transcriptomic response of S. cerevisiae 

metabolism to carbon source perturbations was obtained from literature (Derisi et al., 

1997; Griffin et al., 2002). Metabolic pathway analysis was used to identify a number of 

flux distributions, called elementary flux modes. The weighted combination of these 

distributions enabled assignment of a flux to each enzymatic reaction included in the 

stoichiometric small-scale model (53 reactions). Comparison of the fold change in these 

fluxes, called control-effective fluxes (CEF), with the fold change in corresponding mRNA 

transcripts led to an acceptable correlation. The second section in this chapter presents the 

application of this approach to a mammalian cell metabolism. The response of red blood 

cell metabolism (36 reactions) to enzymatic deficiencies, called enzymopathies, were 

investigated by calculating control-effective fluxes for non-deficient case and for the 

deficiency of five enzymes. Results reported in literature were used to identify relative 

importance of reactions in red blood cell metabolism, and, to verify the changes in CEFs in 

response to each deficiency by generating in silico deficiency profiles. 

 

The fourth chapter focuses on the analysis of transcriptional regulation of metabolic 

fluxes of S. cerevisiae. Using a relatively larger model (83 reactions), the transcriptomic 

response for five carbon source perturbations (two in chemostat in respiratory mode, three 

in batch in respiro-fermentative mode) were compared with the flux response, obtained by 
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CEF calculation. Results indicated that transcriptome changes are hierarchically 

transmitted into flux level when the perturbation is in carbon source. 

 

The fifth chapter gives the detailes of the research at metabolomic level. A new 

approach was developed to integrate metabolomic data with the metabolic stoichiometric 

model. A genome-scale yeast model was preprocessed and used as a scaffold to identify 

reporter reactions, the reactions which significantly respond to the environmental and 

genetic perturbations through changes in the levels of surrounding metabolites. A software 

package, named as RepRxn MX (Appendix G), was developed to automate the 

computational analysis. The approach was then systematically integrated with 

transcriptomic data, which enabled identification of regulation, i.e. whether a given 

reaction is regulated at the metabolic or at the transcriptional (hierarchical) level. The 

results indicate that although there are many metabolically regulated reactions in the 

metabolic network, regulation is predominantly hierarchical. This study can be regarded as 

one of the first steps towards the integration of different types of omics data by using 

metabolic networks as a scaffold in order to understand the architecture of metabolic 

regulatory circuits. 

 

Theoretical investigation of structural metabolic robustness of S. cerevisiae is 

discussed in the sixth chapter. Different measures of structural robustness were compared 

for yeast metabolism. The in silico survival of the cell in response to single or multiple 

gene deletions was the basis for the approach. The advent in the phenomics area will 

enable the refinement and verification of the results presented in this chapter. 

 

The summary of the main results and main contributions to the research field are 

given in the “Conclusions and Recommendations” chapter as well as the recommendations 

for future work. 
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2.  BACKGROUND ASPECTS 

 

 

2.1.  Metabolic Engineering 

 

Metabolism is the chemical engine that drives the living process (Edwards et al., 

1998). Metabolic engineering has emerged in the past decade as the interdisciplinary field 

aiming to improve cellular properties by using modern genetic tools to modify pathways 

(Stafford and Stephanopoulos, 2001). It was defined as the directed improvement of 

cellular activities through the modification of specific biochemical reaction(s) or the 

introduction of new one(s) with the use of recombinant DNA technology. (Figure 2.1) 

(Bailey, 1991; Stephanopoulos et al., 1998). The rational approach of metabolic 

engineering seeks identification of the critical paths (or the metabolic bottlenecks) in a 

producing strain’s metabolism and then directs the vast genetic engineering methodology 

to manipulate the identified enzyme systems (Vanrolleghem et al., 1996). 

 

MetabolicallyMetabolically EngineeredEngineered
CellCell

InexpensiveInexpensive CarbonCarbon SourceSource
((egeg. . GlucoseGlucose)) IndustricalIndustrical ChemicalsChemicals

VitaminsVitamins

BiopolymersBiopolymers

PharmaceuticalsPharmaceuticals

MetabolicallyMetabolically EngineeredEngineered
CellCell

InexpensiveInexpensive CarbonCarbon SourceSource
((egeg. . GlucoseGlucose)) IndustricalIndustrical ChemicalsChemicals

VitaminsVitamins

BiopolymersBiopolymers

PharmaceuticalsPharmaceuticals  

Figure 2.1. Metabolic engineering approach 

 

On the experimental side, metabolic engineering applications have focused on 

pathway modifications in microorganisms to construct an improved strain of interest. 

There are a number of experimental tools utilized to genetically modify and analyze the 

cellular function for this aim (Nielsen, 2001). These tools are (Nielsen, 2001); 

- availability of suitable strains and vectors that enable rapid transformation with 

reasonable transformation efficiency, 

- access to promoters of varying strength, 

- use of disruption cassettes to introduce specific genetic changes 



5 

- improved gene cloning techniques 

 

The application of these tools led to the achievement of the following improvements 

in the metabolic engineering perspective (Stephanopoulos et al., 1998; Ostergaard et al., 

2000; Nielsen, 2001), 

- expression of heterologous genes for protein production 

- extension of substrate range 

- engineering pathways leading to new products 

- engineering for the degradation of xenobiotics 

- improvement of overall cellular physiology 

- elimination or reduction of by-product formation 

- improvement of yield or productivity. 

 

On the modeling side, mathematical models have been used to elucidate the structure 

of metabolic pathways and distribution of kinetic control in metabolic pathways (Stafford 

and Stephanopoulos, 2001), which is discussed in detail in the following sections. 

 

2.2.  Models in Metabolic Engineering 

 

The explosion in experimental data within biology has increased the attempts to 

develop mathematical models for description of cellular functions. One special focus 

within the biotechnology field is the cellular metabolism, since it has potential to be 

exploited for the production of compounds that might find industrial application as 

materials, pharmaceuticals, food additives, and so on. The metabolism of a living cell, 

however, is subject to regulatory mechanisms since it houses a number of interconnecting 

pathways that consist of hundreds of reactions. These regulatory mechanisms are difficult 

to identify since they are not completely elucidated yet. Thus, the establishment of whole-

cell models to fully describe all aspects of cellular behavior in terms of its metabolism is, 

to date, not possible and all models are therefore based on simplifications. (Gombert and 

Nielsen, 2000). 

 

Mathematical models that describe the cellular metabolism play a central role in the 

rapid developing field of metabolic engineering (Gombert and Nielsen, 2000). There are 
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two major classes of metabolic design tools, namely, stoichiometric models and flux 

analysis, and dynamic (kinetic) mathematical models of metabolic networks (Varner and 

Ramakrishna, 1999; Gombert and Nielsen, 2000). Dynamic modeling requires the 

knowledge of rate expressions and kinetic parameters, which is usually possible only for a 

small part of the cell metabolism, and mostly in in vitro conditions. Stoichiometric models, 

on the other hand, are based only on the reaction stoichiometry and reversibility, which are 

easy to obtain. 

 

- Stoichiometric Modeling of Metabolism 

b. Metabolic Flux Analysis 

c. Flux Balance Analysis 

d. Metabolic Network Analysis with Isotope Labeling 

e. Metabolic Pathway Analysis 

f. Sampling Solution Spaces 

g. Graph Theoretical Methods 

 

- Kinetic Modeling of Metabolism 

h. Dynamic Models 

i. Cybernetic Models 

j. Metabolic Control Analysis 

 

2.3.  Stoichiometric Modeling of Metabolism 

 

Formulation of stoichiometric models requires two types of metabolic information. 

First, metabolic stoichiometry is required to compile all the chemical reactions that take 

place in the metabolic network of interest. The second needed information type is about the 

demands placed on the metabolic system, such as biomass synthesis, maintenance 

requirements and secretion of products. Afterwards, the collected metabolic information is 

put into the appropriate mathematical framework (Varma and Palsson, 1994). That is, mass 

balances are set up around intracellular metabolites, which lead to a stoichiometric matrix, 

S. This matrix puts a constraint on the cell such that all metabolic fluxes leading to the 

formation and degradation of any metabolite must balance, as represented in the following 

balance equation (Varma and Palsson, 1994, Stephanopoulos et al., 1998): 
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     bvS =.                             (2.1) 

 

Here, v is the metabolic reaction rate vector subject to the reversibility/ irreversibility 

constraints  vmin < v < vmax , and b is the vector representing the net metabolite uptake by 

the cell. The principles and related methods of stoichiometric modeling, which are 

discussed in the subsequent subsections, are summarized in Figure 2.2. 

 

2.3.1.  Metabolic Flux Analysis 

 

Metabolic Flux Analysis (MFA) has been widely used for the quantification of the 

intracellular fluxes (steady state rates) in the metabolism of bacterial, yeast, filamentous 

fungi and animal cells. In MFA, mass balances over all the metabolites represented in 

matrix notation in Equation 2.1 are used to calculate the fluxes through the different 

branches of the network, enabling the identification of a snapshot of the metabolism under 

a particular condition. The fluxes are calculated by combining measurements of a few 

fluxes with linear algebra to render a determined (or overdetermined) equation system with 

zero degrees of freedom (Gombert and Nielsen, 2000). The directly measurable metabolic 

fluxes are the extracellular fluxes like product secretion, substrate uptake, oxygen uptake 

or carbon dioxide evolution and the growth rate (Stephanopoulos et al., 1998, Wiechert, 

2002). Stoichiometry-based MFA complements the stoichiometric relations by integrating 

them with the measured fluxes. If the flux measurements are nonredundant and they make 

the degrees of freedom of the system at least zero, then all intracellular metabolic fluxes 

can be estimated from the data. Thereby, (i) the structural identifiability of the fluxes can 

be decided, (ii) all fluxes, including the non-measured extracellular fluxes, can be 

computed efficiently, (iii) a confidence region for the estimated fluxes can be computed, 

(iv) the measured data can be derived explicitly, and (v) gross measurement errors can be 

detected.  Thus, MFA is a mature tool for metabolic engineering (Wiechert, 2002).  

 

2.3.2.  Metabolic Network Analysis with Isotope Labeling 

 

This is the extension of measured data set used for MFA by 13C carbon labeling 

measurements (Wiechert, 2002). When the  material balances used in traditional MFA are 

combined with balances of the labeling pattern of the metabolites, the models become non- 



8 

• Genome Annotation
• Metabolic Biochemistry
• Cell physiology

1     0     .    .     1

2    -1     .    .     0

0     0     .    .    -2

.      .      .    .     .

1     1     .    .     0

Reactions

M
e
t
a
b
o
lit
e
s

Creation of Stoichiometric Matrix 
for the Organism of Interest

S =

S.v = 0
MASS BALANCE EQUATION
Underdetermined Linear Model

Particular solutions
Constraints: measurement of some of fluxes

Analysis of pathways structures

DETERMINED LINEAR SYSTEM (DOF = 0)
(Metabolic Flux Analysis)
Method: Linear Algebra

FURTHER CONSTRAINTS THROUGH 
LABELING EXPERIMENTS

(Metabolic Network Analysis)
Method: Numerical Solution

UNDERDETERMINED SYSTEM (DOF > 0)
(Flux Balance Analysis)

Method: Linear/Quadratic Optimization

CONSTRAINED SOLUTION SPACE
(Metabolic Pathway Analysis)

Method: Convex Analysis of Null Space

CONSTRAINED SOLUTION SPACE
(Uniform Random Sampling)

Method: Hit-and-Run Sampling

• Genome Annotation
• Metabolic Biochemistry
• Cell physiology

1     0     .    .     1

2    -1     .    .     0

0     0     .    .    -2

.      .      .    .     .

1     1     .    .     0

Reactions

M
e
t
a
b
o
lit
e
s

Creation of Stoichiometric Matrix 
for the Organism of Interest

S =

S.v = 0
MASS BALANCE EQUATION
Underdetermined Linear Model

Particular solutions
Constraints: measurement of some of fluxes

Analysis of pathways structures

DETERMINED LINEAR SYSTEM (DOF = 0)
(Metabolic Flux Analysis)
Method: Linear Algebra

FURTHER CONSTRAINTS THROUGH 
LABELING EXPERIMENTS

(Metabolic Network Analysis)
Method: Numerical Solution

UNDERDETERMINED SYSTEM (DOF > 0)
(Flux Balance Analysis)

Method: Linear/Quadratic Optimization

CONSTRAINED SOLUTION SPACE
(Metabolic Pathway Analysis)

Method: Convex Analysis of Null Space

CONSTRAINED SOLUTION SPACE
(Uniform Random Sampling)

Method: Hit-and-Run Sampling

 

Figure 2.2. Principles and methods of stoichiometric modeling 

 

linear. The additional information supplied by measurements of the labeling pattern of the 

metabolites do allow for more reliable quantification of the fluxes, as well as analysis of 

the pathway topology and possible reversibilities. Here, cells are fed with 13C-labelled 

substrates, and the 13C-enrichment in different carbon atoms of individual metabolites are 

measured using NMR or GC/MS. The enrichment patterns of individual carbon atoms give 

unique information about the activity of different operating pathways. This technique, 
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MNA, enables the identification of compartmentation of enzyme and metabolites within 

the cell as well as that of futile cycling and metabolic channeling (Gombert and Nielsen, 

2000, Christiensen and Nielsen, 1999, Förster, 2003).   

 

2.3.3.  Flux Balance Analysis 

 

Often it is not possible to determine an appropriate number of experimental 

constraints and hence to decrease the degrees of freedom to zero for estimating the 

metabolic fluxes in the resulting determined model by MFA. Since the system is 

underdetermined, meaning that the number of unknowns is greater than the number of 

equations, there is no unique solution. In this case, the metabolism can be investigated by 

formulating the stoichiometric model with an objective function, such as the optimization 

of growth (Förster, 2003). Hereby, the stoichiometric relations are complemented by a 

linear or quadratic metabolic optimization criterion. Several criteria like maximal growth 

rate, maximal product formation or minimal ATP production for a given substrate uptake 

can be investigated to get the corresponding optimal flux distribution. Such a formulation 

is a classical linear or quadratic programming problem since an optimality criterion is used 

to solve the metabolic flux balances to compute a unique solution due to the insufficiency 

of the number of measured fluxes (Wiechert, 2002). Detailed formulation of FBA approach 

is presented in Appendix A. 

 

In underdetermined systems, a plurality of solution exists. The cell has an infinite 

number of choices on how to distribute its metabolic fluxes. This choice is constrained by 

the stoichiometric balance equation (Equation 2.1) and reaction reversibilities, which forms 

a domain of stoichiometrically allowable behavior of the microorganism (Figure 2.3).  This 

allowable space defines the metabolic genotype of the strain since it describes the 

metabolic flux distributions that can be accomplished with the metabolic enzymes that the 

strain possesses (Varma and Palsson, 1994). Within this feasible domain, a single flux 

distribution is sought based on linear or quadratic optimization. Namely, microorganisms 

make their choices among several possibilities of the feasible domain such that their 

survivability is enhanced. The found single flux distribution represents the strain’s 

metabolic phenotype under the particular conditions (Figure 2.3). In other words, metabolic 

genotype gives the domain of all possible flux distributions for a strain whereas metabolic 
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phenotype is the optimum flux distribution of the strain within this domain for a given 

environment. In this manner, FBA is an important tool to determine metabolic phenotype 

of the organisms quantitatively. (Varma and Palsson, 1994). 

 

 

Figure 2.3. A hypothetical feasible domain defined by Equation 2.1, with the optimum 

point (metabolic phenotype) shown by a thick point. Adapted from Varma and Palsson 

(1994) 

 

The linear optimization problems in FBA often exhibit multiple optimal solutions. 

This means that a number of flux distributions may exist that lead to the same optimal 

objective value (Förster, 2003). Methodologies are developed to calculate all these 

alternate optima (Lee et al., 2000, Phalakornkule et al., 2003, Mahadevan and Schilling, 

2003, Zhu et al., 2003). 

 

2.3.4.  Metabolic Pathway Analysis 

 

The previous methods, MFA, MNA and FBA, allow the calculation of a particular 

solution, whereas metabolic pathway analysis (MPA) enables the screening for a number 

of different flux distributions or even the computation of all theoretical possible pathways 

within the defined metabolic network (Förster, 2003). Thus, MPA is one of the main 

approaches for the flux analyses of metabolic networks (Papin et al., 2003; Schilling et al., 



11 

1999). It is used to define the structure of the metabolic network and the overall metabolic 

capabilities of the microorganism. The method needs information only about the 

stoichiometry and the reversibility or irreversibility of reactions. Given the enzymatic 

reactions occurring in a particular microorganism, all possible routes are determined and 

analyzed. The possible paths from a substrate to products are depicted in Figure 2.4 for an 

example system. 
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Figure 2.4. Graphical representation of 4 EFMs of an example network with 10 reactions 

and 8 metabolites 

 

An important tool used in MPA is the detection of elementary flux modes (EFMs). 

An EFM is a minimal set of enzymes that could operate at steady state, with the enzymes 

weighted by the relative flux they need to carry for the mode to function (Schuster et al., 

1999; Schuster et al., 2000; Schuster et al., 2002a). EFM analysis allows the discovery and 

analysis of meaningful routes in metabolic networks. Control-effective flux (CEF) analysis 

is another tool in assessing metabolism by allowing the quantification of EFM results 

(Stelling et al., 2002). The CEFs, which are directly determined from the set of EFMs, 
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represent the importance of each reaction in a metabolism for efficient and flexible 

operation of the entire metabolic network. Thereby, regulatory events of metabolism are 

implicitly incorporated. The method was successfully applied to E. coli for the 

functionality analysis based on the theoretical estimation of gene expression changes 

(Stelling et al., 2002).  

 

An alternative approach to the concept of EFMs is extreme pathways, EP, developed 

by Palsson’s group (Schilling et al., 2000, Palsson et al., 2003, Klamt and Stelling, 2003a). 

Both approaches use convex analysis of the null space for the stoichiometric matrix  in 

order to calculate a unique set of pathways.  In EP analysis, a set of positively linear 

independent pathways mathematically equivalent to the edges of a convex solution cone 

are calculated, while in EFM analysis the method also includes some positively linear 

dependent pathways and this allows the direct calculation of all theoretically possible 

pathways within a metabolic network. Although EPs are mathematically  more 

fundamental, it is more often easier to interpret the EFMs from a biochemical perspective 

(Förster, 2003).  

 

Elementary modes are the smallest functioning subunits of a metabolic network. This 

motivates the hypothesis that they are also genetically regulated as a unit. Hence, this is a 

promising approach to the development of functional genomics tools (Wiechert, 2002, 

Schuster et al., 2002b). 

 

2.3.5.  Sampling Solution Spaces 

 

Metabolic pathway analysis enables investigation of overall metabolic capabilities of 

the organism of interest in defined environmental conditions, by simultaneous analysis of 

the calculated EFMs or EPs. However, it is not currently possible to apply MPA to the 

recent genome scale metabolic models, since the increase in the number of included 

reactions leads to an exponential increase in the number of EFMs, thereby making it 

impossible to calculate EFMs with current algorithms (Klamt and Stelling, 2002). An 

alternative approach therefore is the uniform random sampling of the flux solution space 

defined by the stoichiometric constraints and reaction reversibility information (Figure 2.3). 

One distinguishing feature of the collected flux distributions by random sampling 
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compared to EFMs is that they are not confined to the edges. That is, unlike EFMs, they 

mainly belong to the inner space. Sampling methods have been recently used for a genome 

scale metabolic model of E. coli (Almaas et al., 2004); a model of human mitochondrial 

metabolism (Thiele et al., 2005), and red blood cell metabolism (Price et al., 2004a; 

Barrett et al., 2006). 
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Figure 2.5. Sampling of solution spaces. (a) Monte-Carlo sampling by generating random 

points within an enclosing shape (b) Point collection can be impossible in some cases (c) 

Hit-and-Run sampling, starting from an initial point (1) inside the solution space 

 

 One fundamental approach for uniform random sampling is Monte-Carlo approach, 

where the solution space is enclosed with a multidimensional shape whose dimensions and 

volume are known (eg. Hypercube, hypersphere), and points which are guaranteed to fall 

into the enclosing space are randomly generated. Then, those which satisfy the inner 

solution space is identified and stored, for further analysis (Figure 2.5.a). 

 

Although it is simple to implement Monte-Carlo approach for systems with small 

dimensions, the inner solution space becomes too small for bigger systems, eventually 

leading to a situation where none of the randomly generated samples falls within this space 

(Figure 2.5.b). Therefore, alternative approaches were developed, which does not need an 
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enclosing shape, and guarantees to remain always within the solution space of interest. One 

such approach is Hit-and-Run algorithm (Smith et al. 1984). Here, starting from a point 

(flux distribution) which is known to be inside the solution space satisfying stoichiometric 

constraints, a random line passing through this point is drawn, and its intersection points 

with the edges of solution space are determined. Then, random sampling within this line is 

performed, which ensures that obtained points are always within the feasible domain. This 

procedure is repeated until a desired number of points are collected  (Figure 2.5.c). Those 

flux distributions can be used to calculate control effective fluxes. 

 

2.3.6.  Graph Theoretical Methods 

 

Metabolic networks have potential to be analyzed by graph-theoretical tools after 

they are transformed into a graph-like representation. This method does not utilize the 

stoichiometric coefficients of reactions, but rather requires the stoichiometric reactions in 

order to identify and depict the interactions between enzymes (reactions) and metabolites. 

There are two main representation types, substrate graph and bipartite graph 

representations. Commonly used type is substrate (compound) graph (Figure 2.6) where 

metabolites correspond to nodes, and reactions correspond to connections (links) between 

these nodes (Ma and Zeng, 2003).  The physical meaning of the link is the temporary 

educt-educt (substrate-substrate) complex itself, in which enzymes provide the catalytic 

scaffolds for the reactions yielding products, which in turn can become educts for 

subsequent reactions. This representation allows systematical investigation and 

quantification of the topologic properties of various metabolic networks using the tools of 

graph theory and statistical mechanics (Jeong et al., 2000). The results obtained from a 

graph-theoretical perspective are helpful for understanding the general organization of 

metabolic networks (Klamt and Stelling, 2003b).  

 

Two important characteristics of graphs are connectivity (degree) of nodes and path 

length between nodes. Connectivity of a node is the number of links (edges) attached to it. 

A path length is the number of edges connecting one node to another. Average shortest 

pathway is of particular interest and known also as the network diameter. If the network 

diameter is low, this means that the interaction between the nodes of the graph is high, and 

a perturbation in one part of the network can easily propagate and affect the other parts. 
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Figure 2.6. The glycolysis pathway as a part of metabolic network. (a) conventional 

presentation (b) the connection structure in a graphic representation . From Ma and Zeng, 

2003 

 

The structure of metabolic networks was studied using graph theory in detail (Jeong 

et al., 2000; Wagner and Fell, 2001; Ma and Zeng, 2003; Lemke et al., 2004). It was found 

that most of the nodes in metabolic networks have a low connection degree, while few 

nodes have a very high connection degree, as illustrated in Figure 2.7 (from Jeong et al., 

2000). Such networks are called scale-free networks, and their connectivity distribution 

follows power law. The high degree nodes dominate the network structure, and they are 

called hubs of the network (Ma and Zeng, 2003).  Metabolic networks were found to have 

a small network diameter. Such networks are said to be small-world networks since to 

reach from any node to another is on average short, which further implies a high 

interconnection between the nodes. 
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Figure 2.7.  In the scale-free network most nodes have only a few links, but a few nodes, 

called hubs, have a very large number of links (hubs are shown as black nodes) 

 

2.4.  Kinetic Modeling of Metabolism 

 

The availability of detailed information about the kinetics of specific cellular 

processes (eg. enzyme-catalyzed reactions, protein-protein interactions, or protein-DNA 

binding) enables analysis of the dynamics of these processes by combining kinetics with 

the known stoichiometry of metabolic pathways (Gombert and Nielsen, 2000). However, 

the main disadvantage of such models is the requirement of kinetic parameter values 

appearing in the rate expressions. Even if available to some extent, many of these 

parameters originate from in vitro experiments, rather than in vivo observations. In fact, 

cells exhibit different behaviours in vivo, which cannot be predicted by in vitro kinetic 

models (Teusink et al., 2000). 

 

2.4.1.  Dynamic Models 

 

By utilizing the available kinetic information about the enzymes of the selected 

pathways, one can simulate the cell behaviour in a dynamic manner in order to predict the 

levels of intracellular and extracellular metabolites in response to a disturbance to the cell. 

Most detailed kinetic models available in literature are for the two model microorganisms, 

S. cerevisiae and E. coli (Rizzi et al., 1997; Chassagnole et al., 2002). These models are 

limited with the reactions of central carbon metabolism (EMP pathway, PP pathway, TCA 

cycle, respiratory chain) since the rate expressions of other pathways, such as anabolic 

reactions leading to the synthesis of building blocks for the cell, cannot yet be represented 

by kinetic expressions. The validation of the models by the collected experimental data is  
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currently not promising since there are large discrepancies for a number of intracellular 

metabolite profiles. This can be attributed to the use of in vitro kinetic parameters. In 

addition, timescale used for the comparison (a few minutes) is quite limited to take into 

account the phenomena like enzyme synthesis and degradation (Gombert and Nielsen, 

2000).  

 

2.4.2.  Cybernetic Models 

 

Regulatory aspects of cell metabolism can be accounted by applying cybernetic 

principles. Here, kinetic models are integrated with cybernetic variables, which are thought 

to represent cell regulatory architecture, especially gene expression (Gombert and Nielsen, 

2000, Varner and Ramkrishna, 1999). The principle is that physiology operates to 

optimally satisfy nutritional objectives. The resultant model is postulated to be capable of 

predicting modification of enzyme expression and activity profiles in response to genetic 

or environmental perturbation (Varner and Ramkrishna, 1999). Although the approach has 

a number of applications (Altıntaş et al., 2002), it bears the stated drawbacks of kinetic 

models as stated above. 

 

2.4.3.  Metabolic Control Analysis 

 

Metabolic Control Analysis (MCA) replaces the qualitative terms of ‘rate-limiting’ 

and ‘not rate-limiting’ by a quantitative scale, and the effect of an enzyme on a metabolic 

flux is then represented by flux control coefficient (Fell, 1997). Thus, MCA allows the 

quantification of flux control within a pathway. Flux control coefficients represent the 

relative increase in a given flux within the pathway of interest in response to an increase in 

the activity of an enzyme of the pathway (Nielsen, 2001; Stephanopoulos et al., 1998). The 

most important result of MCA for metabolic engineering is that the control of flux through 

a pathway is usually distributed over many different enzymatic steps constituting the 

pathway. This fact points out that a single genetic modification will hardly result in a large 

change in the flux distribution (Wiechert., 2002). 

 

There are different approaches for the calculation of control coefficients. Direct 

approach utilizes experimental methods such as genetic manipulation, enzyme titration and 
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inhibitor titration to construct a curve of the change in the pathway flux in response to the 

alterations in the enzymatic activity. The slope of this curve at any enzyme activity gives 

the control coefficient of that enzyme at that point (activity). (Fell, 1996). Although the 

experimental in vivo determination of control coefficients is a helpful approach for 

modeling and model validation, it is difficult to construct such a curve, since a number of 

perturbations are required to induce alterations in the activity of the enzymes of interest 

(Wiechert, 2002). 

 

Indirect approach for the calculation of control coefficients requires information on 

enzyme kinetics. Kinetic rate expressions are necessary to calculate elasticity coefficients, 

a local property reflecting the response of steady-state reaction rate to a perturbation in the 

metabolite concentrations. Elasticity is calculated for each reaction in the system by 

introducing an infinitesimal change in a metabolite concentration and calculating the 

resultant effect on the rate of that reaction by using the kinetic rate expression. Calculated 

elasticity coefficients are combined with the theorems of MCA to obtain a quantitative 

estimation of control coefficients (Stephanopoulos et al., 1998; Heinrich and Schuster, 

1996; Fell, 1997). This approach is of importance when it is difficult to use direct methods. 

However, the calculated values of control coefficients strictly depend on the way the 

kinetic model constructed, reaction reversibilities, and the regulatory events accounted in 

the rate expressions.  

 

2.5.  Systems Biology Approach and in silico Biology 

 

A metabolite, an enzyme or a gene in cellular systems do not function on their own, 

independently from the rest of the system, but they are highly interconnected to the other 

entities. This means that cell must be analyzed as a network rather than analyzing its 

constituents in an isolated manner.  This view has led to the birth of a new discipline, 

called systems biology, aiming at understanding biology at system level. Systems biology 

can be defined as (Klipp et al., 2005) “the coordinated study of biological systems by (1) 

investigating the components of cellular networks and their interactions, (2) applying 

experimental high-throughput and whole-genome techniques, and (3) integrating 

computational methods with experimental efforts”. The driving force behind this new field 

is the achievability of high-throughput data collection, which allows the simultaneous 
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measurement of gene expression (transcriptomics), protein abundance (proteomics), 

metabolite levels (metabolomics) or fluxes (fluxomics) at genome level.  All these –omes 

are closely interconnected within the cell, constituting a hierarchical structure (Figure 2.8). 

Holistic analysis of this structure at system level forms the field of systems biology. 

 

 

Figure 2.8. Interaction of different –omes in a cell, constituting a highly interconnected 

system.  From  Nielsen and Oliver, 2005 

 

2.6.  Transcriptomics: DNA chips 

 

Earlier methods for transcription analysis such as northern blots allowed analysis of 

only a few genes at a time. High-throughput technologies have been recently developed 

enabling simultaneous analysis of mRNA levels of all genes in a genome. Knowing when, 

where and to what extent a gene is expressed is central to understanding the function of 

genes. Hence, use of DNA arrays is promising (Lockhart and Winzeler, 2000, Holloway et 

al., 2002). 

 

The use of DNA arrays for expression profiling is based on the fundamental process 

of hybridization. A DNA array is simply a surface of a solid support (e.g. glass) with about 

1 cm x 1 cm dimensions, containing large sets of immobilized nucleic acid probe 

sequences at addressable locations available for hybridization. This is referred as 

downloading the genome onto a chip. Then, RNA is extracted from the biological sample 

of interest, and labeled RNA or DNA target sequences are produced by a number of 

sample preparation steps. The mixture of labeled targets is then applied to the DNA array 

under controlled conditions to allow hybridization with complementary immobilized 
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probes located on the array surface (Bro, 2003). Thereby, individual cDNAs/cRNAs from 

the target mixture hybridize (bind) with the corresponding probe on array, proportionally 

to their representation in a sample (Oliver et al., 2002). In this design, the probes on the 

array act as immobile substrates whereas the samples (targets) applied onto the array are 

mobile substrates. After the hybridization step, fluorescent labeling is used to locate and 

quantify the binding of applied target sequences to their complementary probes on the 

array by imaging with a light scanner. The resulting scan is further processed using 

specialized computer softwares to calculate an intensity value for each gene represented on 

the array (Bro, 2003). The data can then be further analyzed to identify expression patterns 

and variations that correlate with cellular physiology and function. The resultant 

information can be helpful in assigning function to unknown genes, expanding our 

understanding of cellular processes, identification of potential drug targets and generation 

of genome-wide snapshots of transcriptional activity in response to any stimulus or 

perturbation (Harrington et al., 2000).  

 

Two basic types of arrays are available to; spotted microarrays and high-density 

oligonucleotide arrays (Bro, 2003, Harrington et al., 2000, Oliver et al., 2002, Lockhart 

and Winzeler, 2000). In spotted arrays, pre-synthesized single or double-strand DNAs are 

printed onto glass slides whereas in oligonucleotide arrays, developed by Affymetrix 

(Lipshutz et al., 1999), sets of oligomers are synthesized in situ on glass wafers using a 

photolithographic manufacturing process. On spotted arrays, genes are represented by 

single cDNA fragments, greater than several hundred base pairs in length. On 

oligonucleotide arrays, a given gene is represented by a probe containing 15-20 different 

25-mer oligonucleotides that serve as unique, sequence specific detectors. This 

representation minimizes the cross-hybridization between similar sequences (Harrington et 

al., 2000, Oliver et al., 2002). Additionally, there is only one probe per transcript in spotted 

arrays whereas Affymetrix oligonucleotide arrays contain 22-40 probes per transcript 

increasing the credibility.  

 

2.6.1.  Sample Preparation and Hybridization 

 

Total RNA is extracted from the harvested cell samples, from which mRNA is 

isolated by exploiting the poly-A tail contained in most eukaryotic mRNAs. Next, mRNA 
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is converted to cDNA. The single-stranded cDNA is employed for further synthesis of 

double-stranded cDNA in the procedure of Affymetrix chips. Isolated double-stranded 

cDNA is used to synthesize cRNA via in vitro transcription reaction. Afterwards, the 

cRNA is fractionated to fragments of length 35-200 nucleotides. Finally, the fragmented 

cRNA is hybridized to DNA array, washed to remove non-hybridized material and then 

stained with a fluorescent dye. Labeling of the applied target is required to detect 

hybridization on an array (Bro, 2003). 

 

2.6.2.  Data Analysis 

 

Affymetrix GeneChips contain more than 22 probes per transcript, to enable an 

improved estimate of intensity detection for each transcript. Intensity of each gene is 

calculated from the corresponding probe sets. 

 

There are three fundamental steps required for efficient and effective data analysis: 

data normalization, data filtering, and pattern identification (Harrington et al., 2000). 

 

2.6.2.1.  Normalization. Direct comparison of expression values (gene intensities) usually 

requires normalization of data, either between paired samples or across a set of 

experiments (Harrington et al., 2000). Namely, normalization is necessary to make the 

gene expression levels on the arrays comparable. A common approach for this is based on 

the assumption that the total amount of mRNA from each sample (array) is constant. Thus, 

all expression levels from an array can be multiplied by a scaling factor to make the sum of 

all expression levels the same for all arrays (Bro, 2003), but there are also more 

sophisticated methods like non-linear scaling (Bolstad et al., 2003). 

 

2.6.2.2.  Data Filtering and Statistical Analysis. DNA expression array studies usually aims 

at identification of differently expressed genes in one or several samples compared to a 

control. Thus, following the normalization step, data should be reduced by filtering out 

uninformative genes; for example, genes that are expressed below a user defined threshold 

or genes that show no variation in their expression level during the course of experiment 

(Harrington et al., 2000).  
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The easiest way to identify the magnitude of change in gene expression levels is to 

calculate how many folds the expression change. However, in order to gain confidence in 

that the observed changes are a result of true changes of mRNA levels in the cell rather 

than due to experimental errors, it is of importance to have replicates and to use statistical 

tests. Typically, widely known statistical tests such as t-test (to compare two conditions) 

and ANOVA (to compare multiple conditions) can be applied to associate the change with 

a probability, called p-value. Alternative methods are also continuously developed such as 

the Significance Analysis of Microarrays (SAM) (Tusher et al., 2001) and RankProduct 

(Breitling et al., 2004). When, as in the case of DNA array data, huge amounts of data are 

simultaneously tested using statistical tests, correction for multiple testing must be 

employed using Bonferroni or Benjamini-Hochberg corrections (Kaminski and Friedman, 

2002; Bro, 2003).  

 

2.6.2.3.  Pattern Identification. The next step is to identify patterns and groups in the data 

that can be used to assign biological meaning to the expression profiles (transcriptional 

data). Clustering programs such as hierarchical clustering and k-means clustering can be 

used for this purpose (Harrington et al., 2000, Halloway et al., 2002). Clustering methods 

attempt to identify genes that behave similarly across a range of conditions or samples. 

Genes that demonstrate similar patterns of expression are hypothesized to share common 

regulatory elements or common functions (Kaminski and Friedman, 2002). The main 

advantage of clustering tools is that they eliminate the inherent difficulty in becoming 

familiar with the results, allowing the investigator to analyze the data in an automated and 

practical fashion. In general, it is recommended to apply more than one clustering method 

to a dataset. The results of several methods and of several gene filtering schemes should be 

compared to decide on what is the true signal in the dataset of interest. The decision should 

lie on the reproducibility of the clusters by various methods. Thereby, independent of the 

chosen analysis method, one can confidently conclude about whether the observed patterns 

represent true biological phenomena (Kaminski and Friedman, 2002). 

 

2.7.  Metabolomics: Metabolome Analysis and Metabolite Profiling 

 

There are three main approaches in metabolic data analysis: metabolite profiling; 

metabolomics, and metabolic fingerprinting (Fiehn, 2001; Fiehn and Weckwerth, 2002). 
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Metabolite profiling is the analysis and quantification of pre-defined metabolites 

belonging to a certain biochemical pathway or a set of chemically related compounds. 

Metabolomics, on the other hand, has the ultimate goal of unbiased identification and 

quantification of all the metabolites present in a certain biological sample irrespective of 

their chemical similarity or their co-occurrence in a pathway. The third approach, 

metabolic fingerprinting gives a rapid classification of samples without aiming at 

identification and quantification of metabolites. Fingerprinting approach can be used in 

genotype discrimination. Here, only the data patterns in the form of the whole spectra are 

compared without any knowledge of which peaks belong to which metabolites. It requires 

little or no sample preparation, compared to the other approaches. (Fiehn, 2001; Fiehn and 

Weckwerth, 2002). There is also a closely related term, metabolic footprinting, which 

depends on the generation of spectra for only extracellular metabolites, without again any 

quantification (Allen et al., 2003). 

 

Metabolomics is the most recent face of functional genomics. Like other ‘omics’, it 

is a non-targeted approach to study biological phenomena, by simultaneous profiling large 

number of small organic molecules (metabolites) encountered in an organism (Mendes, 

2002). Whereas there has been significant progress in high-throughput profiling of mRNAs 

and proteins, comparably less effort has been put into profiling the end products of gene 

expression, metabolites (Figure 2.9; Fiehn, 2001, Sumner et al., 2003). The major 

underlying reason is the current inability to comprehensively profile all of the metabolome 

because of limitations such as chemical complexity (Sumner et al., 2003). The genome and 

transcriptome are made up of linear polymers of four nucleotides with very similar 

chemical properties, which render high throughput analytical approaches possible. This is 

also valid for proteome, which, although being substantially more complex, is still based 

on a limited set of 22 primary amino acids. When one surveys metabolome, however, the 

chemical complexity is considerably greater. Consequently, the chemical diversity and 

complexity of the metabolome is a challenging limiting factor to profile all of the 

metabolome simultaneously (Sumner et al., 2003).  

 

Changes in transcriptome or proteome do not always correlate with alterations in 

biochemical (metabolic) profiles. On the other hand, the components of the metabolome, 

metabolites, define the biochemical phenotype of a cell, and can be regarded as the final 
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output of gene expression (Figure 2.9). Hence, metabolome profiling can provide the most 

functional information among the omics technologies (Sumner et al., 2003). 

 

 

Figure 2.9. Metabolomics is the end product of genome, with, among the omes, most direct 

relation to phenotype. Adapted from Nielsen et al., 2004 

 

2.7.1.  Metabolite Identification 

 

A variety of analytical methods is available to generate metabolite profiles, with 

emphasis in mass spectrometry (MS) and nuclear magnetic resonance (NMR) (Mendes, 

2002). Among the other methods to profile metabolome are LC (liquid 

chromatography)/UV (ultraviolet), GC (gas chromatography)/MS, LC/MS, LC/LIF (laser 

induced fluorescence) and CE (capillary electrophoresis)/LIF. The selection of the most 

suitable method is generally a reconciliation between speed, selectivity, and sensitivity. For 

example, NMR is rapid and selective, but has relatively low sensitivity.  CE/LIF detection 

is highly sensitive, but it lacks selectivity (Sumner et al., 2003). That is, each analytical 

detection method itself has a certain bias or advantage (Fiehn and Weckwerth, 2002). For 

example, GC requires that samples be volatile. Hence, derivatization is required for 

nonvolatile samples. LC, on the other hand, allows the analysis of nonvolatile species 

without the need for derivatization (Sumner et al., 2003). MS requires that metabolites be 

ionizable, ultraviolet absorption (UV) assumes that biochemical compounds have moieties 

with excitable electrons. Therefore, no single best metabolomic technique exists (Fiehn 

and Weckwerth, 2002). Also, a single analytical technique will not provide sufficient 

visualization of the metabolome due to chemical differences. 
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Metabolomics aims at the identification of metabolite components of a mixture. This 

requires much deeper analysis compared to the fingerprinting approach. First, 

deconvolution of the fingerprint (spectrum, chromatogram etc.) into entities that represent 

the component biochemical species is required. Afterwards, a reference database 

(metabolite library) must be looked up to identify the biochemical species (Mendes, 2002). 

Also, automated metabolite identification requires reliable information on both retention 

time and mass spectra (Fiehn, 2001).  

 

2.7.2.  Data Interpretation 

 

Metabolomics generates multivariate datasets like transcriptomics. Hence, statistical 

tests discussed in section 2.6.2.2 can also be applied to metabolome data to identify 

metabolites which significantly change between any two conditions. Additionally, 

unsupervised methods such as principal components analysis (PCA) and clustering; or 

supervised methods such as machine learning algorithms can be used to analyze the 

emerging metabolome data. Such statistical analyses allow the classification of 

experimental data. Thus, they are preferred when the main objective is to classify samples 

based on their metabolite profiles, which is usually held by the fingerprinting approach 

(Mendes, 2002).  One other novel approach is the framework of metabolic control analysis 

with co-response approach (Raamsdonk et al., 2001).  In this approach, the co-response of 

metabolite concentrations of a mutant against the deletion of a functionally unknown gene 

is to be determined.  A function can be assigned to the deleted gene based on the similarity 

to co-responses of concentrations of other mutants whose functionally known genes are 

deleted. Other novel approaches are being developed in parallel with the increasing 

attention towards metabolome data collection (Weckwerth et al.,2004; Kümmel et al., 

2006) 

 

2.8.  Fluxomics: Stoichiometric Models and Isotope Labeling 

 

Determination of metabolism-wide fluxes by the use of organism-specific 

stoichiometric models is termed as fluxome. Fluxome represents the functional output of 

the combined transcriptome, proteome, and metabolome changes as it forms the top level 

of the hierarchical structure (Figure 2.8).  
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Approaches discussed in sections 2.3.1., 2.3.2 and 2.3.3 form the basis of fluxome 

analysis. FBA is the easiest way of determination of fluxes since it requires only 

measurement of a few exchanged fluxes. The easy determination of fluxes through FBA 

led to a number of related applications. Recently reconstructed stoichiometric genome-

scale models of a number of microorganisms, among which are Escherichia coli (904 

genes, 931 reactions and 625 metabolites, Reed et al., 2003), and Saccharomyces 

cerevisiae (708 genes, 842 reactions and 584 metabolites, Förster et al., 2003a), have been 

successfully analyzed by optimization (FBA). FBA is used as an alternative to the 

relatively difficult task of measuring the internal fluxes in the metabolic network since 

such genome-scale networks are underdetermined in nature. Major applications have been  

to determine exchange fluxes of metabolic products (Edwards et al., 2001; Famili et al., 

2003) and to determine phenotypic differences in metabolic behaviour of organisms 

through phase plane analysis (Edwards et al., 2002; Duarte et al., 2004).  Additionally, 

prediction of the outcomes of genetic manipulation has been a major focus. Qualitative 

viability comparison for knockout strains with the FBA-based prediction was more than 80 

per cent for E. coli (Edwards and Palsson, 2000) and yeast (Förster et al., 2003b). FBA 

also helped to propose a reasoning for the dispensability and essentiality of yeast genes 

(Papp et al., 2004).  Another approach has been to identify the genes whose deletions will 

lead to a desired phenotype. FBA through mixed-integer linear programming, called 

OptKnock procedure (Burgard et al. 2003), and through integration of genetic algorithm, 

called OptGene procedure (Patil et al. 2005) were developed to serve this aim.  

 

One major challenge for metabolic engineering in post-genomic era is integration of 

genome-scale biological data into mathematical and experimental tools of the discipline. 

Therefore, the recent trend has been to incorporate additional biological knowledge such as 

regulatory constraints in order to refine the resulting flux values. It was demonstrated that 

the prediction capability of genome-scale yeast model was improved when regulatory 

information from gene expression data in Boolean logic formulation was incorporated 

(Akesson et al., 2004). In a recently updated E. coli metabolic model integrated with 

transcriptional regulatory model, growth and gene expression simulations were done by 

regulatory FBA, which combines linear optimization to determine a growth-optimized 

metabolic flux distribution with logic statements to simulate the effects of regulatory 
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processes over time. The model was able to predict high throughput phenotyping and gene 

expression experiments (Covert et al., 2004).  

 

Although FBA allows a quick estimate of metabolic fluxes, solid estimate of fluxes 

requires additional experimental constraints 13C labeled glucose feeding experiments 

(Section 2.3.3). Of the two approaches, NMR and MS analysis, the latter has potential for 

high-throughput analysis at miniaturized scale. High-throughput flux profiling for the 

central carbon metabolism was recently achieved by GC-MS analysis (Fischer et al., 2004). 

This was followed by the screening of a number of deletion mutants at the fluxome level 

(Fischer and Sauer, 2005; Blank et al., 2005). The analysis is based on the use of a small-

scale stoichiometric matrix. Resulting fluxes from small model can be used as constraints 

to get an estimate of genome-wide metabolic fluxes through the use of genome-scale 

models (Blank et al., 2005). On the other hand, intracellular fluxome in the form of 

fingerprint, as in the case of metabolome fingerprints, can be used for metabolic variant 

discrimination (Zamboni and Sauer, 2004). 
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3.  METABOLIC PATHWAY ANALYSIS OF YEAST AS A TOOL 

FOR SYSTEMS BIOLOGY AND EXTENSION OF THE APPROACH 

FOR HUMAN METABOLISM 

 

 

3. 1.  Metabolic Pathway Analysis of Yeast Strengthens the Bridge between 

Transcriptomics and Metabolic Networks  

 

Recent developments in the field of “omics” have resulted in the accumulation of 

huge number of experimental data to be analyzed. The challenge is to develop powerful 

methods for the integrated analysis of system properties. Therefore, the need for system 

level understanding of living organisms, which explains the relationship between structure, 

function and regulation in complex cellular networks by combining experimental and 

theoretical approaches, is growing in the post-genomic era.  

 

One of the recent challenges in the area of transcriptomics is to relate gene 

expression levels to the fluxes carried through the enzymes encoded by these genes (Oh 

and Liao, 2000; Oh et al., 2002). A novel theoretical approach was devised to 

simultaneously predict key aspects of network functionality, robustness and gene 

regulation in Escherichia coli from stoichiometric network structure alone (Stelling et al., 

2002). Elementary flux mode analysis, one of the tools of metabolic pathway analysis 

(Klamt and Stelling, 2003a; Palsson et al., 2003), allows implicit integration of regulatory 

events into the stoichiometric metabolic analysis. Compared to the flux balance analysis 

(FBA), which only considers efficient operation of the cell (Bonarius et al., 1996; Edwards 

et al., 2001; Pramanik and Keasling, 1997; Shi et al., 1999), elementary mode analysis 

takes also flexibility of the metabolism into consideration (Schuster et al.; 1999; Stelling et 

al., 2002). Introduction of a parameter characterizing flexibility and efficiency derived 

from metabolic network structure, called control effective flux (CEF), establishes an 

indirect relation between transcriptomics and fluxomics. 

 

In this chapter, central carbon metabolism of the yeast Saccharomyces cerevisiae 

was analyzed using metabolic pathway analysis tools. Elementary flux modes for growth 
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on three carbon substrates (glucose, galactose and ethanol) were determined using the 

catabolic reactions occurring in yeast. Resultant elementary modes were used for gene 

deletion phenotype analysis and for the analysis of robustness of the central metabolism 

and network functionality. Control effective fluxes, determined by calculating the 

efficiency of each mode, were used for the prediction of transcript ratios of metabolic 

genes in different growth media (glucose-ethanol, galactose-ethanol). A high correlation 

was obtained between the theoretical and experimental expression levels of 38 genes when 

ethanol and glucose media are considered. Such analysis was shown to be a bridge 

between transcriptomics and fluxomics through this study. Control effective flux 

distribution was found to be promising in the in silico predictions by incorporating 

functionality and regulation into the metabolic network structure. Thus, theoretical 

transcript ratio analysis strengthens the relationship between transcriptomics and metabolic 

networks.  

 

3.1.1.  Modelling Aspects 

 

53 reactions constituting the central metabolism of Saccharomyces cerevisiae 

(glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle, glyoxylate 

shunt and oxidative phosphorylation) were considered in the construction of an in silico 

model (Appendix B). The reaction set described by Förster et al. (2002) was extended by 

the complementary reactions presented in literature (Förster et al., 2003a; Gombert et al., 

2001; Granström et al., 2000; Nissen et al., 1997; Stückrath et al., 2002; van Gulik and 

Heijnen, 1995). Compartmentation of cofactors (NADH and NADPH) and acetyl-

coenzyme-A was taken into account by treating these compounds as if two distinct species 

existed in mitochondrial and cytosolic reactions. Enzymes of peroxisomes were treated to 

be cytosolic (Förster et al., 2003a). 

 

The biomass equation is given in terms of the biosynthetic precursors (r53). This 

representation requires molar monomer composition of proteins, nucleotides, lipids and 

carbohydrates. The number of required precursors for the synthesis of each monomer is 

known. This information is combined with the information of utilized macromolecular 

mass composition to obtain the equation (Cortassa et al., 1995). The reported monomer 

and macromolecule composition values differ noticeably in the literature for 
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Saccharomyces cerevisiae (Cortassa et al., 1995; Stückrath et al., 2002). However, it was 

found that a 20 per cent change in the composition of any of biomass precursors had only 

minute effect on the resultant flux patterns (Daae and Ison, 1999). Based on these facts, 

same stoichiometric coefficients were used in biomass equation in ethanol and glucose 

media. The fact that the determined elementary modes and their routes were found to be 

insensitive to the biomass composition indicated the validity of this assumption. 

 

For glyoxylate shunt enzymes, ICL1 is found to be localized in the cytosol (Taylor et 

al., 1996). MLS1 enzyme is also primarily cytosolic (Kunze et al., 2002). CIT and MDH 

have different forms functioning in cytosol, peroxisome or mitochondria. Cytosolic forms 

(CIT2, MDH2) fuel glyoxylate pathway whereas mitochondrial isoenzymes (CIT1, 

MDH1) function in the TCA cycle (Kispal et al., 1988, 1989; Roth and Schüller, 2001). 

Thus, all glyoxylate shunt enzymes were considered to be cytosolic (r46-r49). The reversible 

conversion of citrate to isocitrate catalyzed by ACO1 (r33) is both cytosolic and 

mitochondrial, hence is important for both TCA cycle and glyoxylate shunt. 

 

The gluconeogenic enzymes (FBP1, PCK1) are essential when growth is on ethanol 

and hence considered in the present stoichiometric model (r6 and r23). Pyruvate branch 

enzymes PDC and PDA (r16 and r21) were also considered (Boubekeur et al., 1999; 

Flikweert et al., 1996). Malic enzyme (MAE1) was reported to be active in Saccharomyces 

cerevisiae (Boles et al., 1998, Cortassa et al., 1995). Thus, reaction 43 (r43) was included 

into the stoichiometric model. 

 

Reaction 45 (r45) represents the shuttle of acetaldehyde and ethanol for the net 

transfer of NADH from cytosol to mitochondria (Bakker et al., 2001; Förster et al., 2002; 

Overkamp et al., 2000). The shuttle reactions are catalyzed by the mitochondrial alcohol 

dehydrogenase enzyme (ADH3) and cytosolic isoenzymes (ADH1,2).  

 

In conventional flux analysis methods, from microorganisms to mammalian cells 

(Lee et al., 2000), only the reactions belonging to the corresponding active pathways are 

used to analyze a given physiological condition. That is, inactive pathways are not 

included in models. However, in this analysis, although, for example, IDP2 and ALD4 

enzymes are thought to be inactive when growth is on glucose medium (Haselbeck et al., 



 31 

1993; Haurie et al., 2001; Kurita and Nishida, 1998; Loftus et al., 1994; Minard et al., 

1998; Tessier et al., 1998), these reactions were included to be able to predict transcript 

ratios of corresponding genes in two different conditions. Following the same logic, all of 

the gluconeogenesis and glyoxylate shunt enzymes can be safely included whereas these 

are not accounted in MFA studies due to their inactivity in glucose medium (Jorgensen et 

al., 1995; Nissen et al., 1997; van Gulik and Heijnen, 1995).  This approach allowed 

improved predictions of corresponding mRNA level ratios. 

 

3.1.2.  Computational Methods 

 

Elementary flux modes were calculated using METATOOL 3.5.2 and 4.3 (Pfeiffer et 

al., 1999; Schuster et al., 2002a) and FluxAnalyzer 4.0 (Klamt et al., 2003). Control 

effective flux calculations were performed using Microsoft Excel and using a script written 

in MATLAB (MathWorks Inc.). 

 

CEFs were determined directly from the set of elementary modes. After each mode 

was normalized with respect to the substrate flux, an efficiency value was assigned to each 

elementary mode for each cellular objective, εj,CELLOBJ, using the ratio of mode’s outputs 

(reactions related to cellular objectives) to the investment required to establish the mode 

(the sum of absolute fluxes of each mode) as described (Stelling et al., 2002). j is the index 

for EFMs, and i is the index for fluxes. 

 

∑
=

i

j
i

j
CELLOBJ

CELLOBJj
r

r
,ε                         (3.1) 

 

In efficiency calculations, biomass flux as well as ATP maintenance flux were taken 

as the mode outputs since these reactions are basis for the cellular objectives of the yeast.  

 

Then, the flux of a particular reaction, jir , in all determined elementary modes was 

weighted with the efficiency of the corresponding modes to calculate the control effective 

flux (CEF), vi, of the reaction. 
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The ratio of CEFs of reactions in two different media is used to predict the 

expression ratios of metabolic genes responsible for the enzymes of the reactions in 

Saccharomyces cerevisiae. 

 

3.1.3.  Elementary Flux Mode Calculations  for Yeast Metabolism 

 

Elementary flux modes were calculated for yeast grown in three different substrates, 

namely glucose, ethanol and galactose (Table 3.1). In cases 1.a, 2.a and 3, all possible 

reactions, whether they are active or not on these specific substrates were taken into 

consideration. Cases 1.b and 2.b are environment-specific. PCK1, ALD4, IDP2, FBP1 

enzymes and glyoxylate shunt enzymes were excluded in case 1.b and only the reactions 

that are known to be active in a medium when the only available carbon substrate is 

glucose were considered. PYK and PFK enzymes were excluded in case 2.b and the 

reactions that are known to be active in a medium where the only available carbon source 

is ethanol were considered. The reason to analyze cases 1.b and 2.b is to show that the 

theoretical gene level ratios have to be calculated by considering all functional genes in the 

organism, regardless of their activity in the specified condition considered (eg. different 

substrates). 

 

The number of modes was calculated as 8726 and 1308 in glucose and ethanol media 

respectively. Since the number of available modes is considered to be a measure of the 

flexibility of the central metabolism on alternative carbon sources (Stelling et al., 2002) 

this finding indicates a better flexibility of the microorganism in the glucose medium as 

expected.  

 

The same number of modes was determined in case 1.a and 3. The only difference 

between glucose system and galactose system in terms of the considered reactions is the 

replacement of hexokinase reaction by those catalyzed by GAL1, GAL7 and GAL5. Since 

these three enzymes constitute an enzyme subset, this replacement does not alter the 
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number of resultant elementary flux modes (case 1.a and case 3). Enzyme subsets are the 

enzymes which always operate together in fixed flux proportions at steady state (Pfeiffer et 

al., 1999; Schuster et al., 2002a).  

 

Table 3.1. Different cases analyzed  

 Substrate Number of EFMs Excluded Reactions 

1.a Glucose 8726 -ADH2 –GAL1,5,7 

1.b Glucose 199 -ADH2 –GAL1,5,7 -PCK1 -ALD4 -IDP2 -

FBP1 -Glyoxylate Shunt 

2.a Ethanol 1308 -GLK1(HXK) -GAL1,5,7 

2.b Ethanol 641 -GLK1(HXK)  -GAL1,5,7 -PYK -PFK 

3 Galactose 8726 -ADH2 

 

3.1.4.  Deletion Phenotype Analysis  

 

Since elementary modes indicate all possible routes that the microorganism can 

choose to maintain its growth, this information can be utilized in deletion phenotype 

analysis. If a gene is deleted, all the routes which include the corresponding reaction are 

disrupted. A gene is considered to be essential if it is involved in all EFMs enabling 

growth. That is, its deletion will destroy all routes leaving no way for the survival of the 

deletion mutant. In the present study, the EFM analysis was used to predict the deletion 

phenotypes and the results were compared with the experimentally determined lethal 

deletions reported in literature. 

 

3.1.4.1.  Glucose as Substrate. In glucose medium, 13 lethal in silico gene deletions (acs, 

aco1, fba, pgi, rki, pgk, eno, gpm, tdh, pyk, pfk, gpd, pdc) were identified by EFM analysis. 

EFM results indicate that the omission of the reaction catalyzed by PDC enzyme leaves no 

EFM out of 8726 (case 1.a) pointing to the lethality of this deletion. It was reported that 

PDC deficient cells could not grow on mineral medium when glucose was the only 

available substrate (Flikweert et al., 1996). EFM analysis could also successfully predict 

the lethality of acs  and pfk deletions (i.e. acs1-acs2 and pfk1-pfk2 double deletions). All 

elementary modes include these reactions in their routes assigning them as essential genes. 

It was reported that the acs1-acs2 double deletion was not viable in media containing 
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glucose or ethanol (van den Berg and Steensma, 1995). Also, a glucose-negative 

phenotype was reported for pfk1-pfk2 double deletions mutants (Avranitidis and Heinisch, 

1994). 

 

fba, pgi, rki, pgk, eno, gpm, tdh and pyk deletions were stated as lethal mutations in 

MIPS database ( http://mips.gsf.de/genre/proj/yeast/index.jsp). In silico predictions for 

only 2 genes (aco1, gpd) were not in agreement with the information available in MIPS, in 

which these deletions were stated to be viable. 

 

3.1.4.2.  Ethanol as Substrate. In silico single gene deletion analysis resulted in the 

identification of 18 lethal cases (acs, aco1, fba, pgi, rki, pgk, eno, gpm, tdh, fum, tpi, ald4, 

sdh, fbp, icl1, mls1, pck1, nadhx-fadhx) in ethanol containing medium.  

 

EFM analysis shows that none of the 1308 modes in case 2.a have zero flux through 

ALD4 enzyme. This result suggests that the deletion of ald4 gene in this organism is lethal. 

ald4 deletion in S. cerevisiae is reported to be detrimental for growth on ethanol (Tessier et 

al., 1998). Similarly, the lethal effect of mls1 gene deletions in S. cerevisiae (Kunze et al., 

2002) when grown in ethanol medium was also confirmed by EFM analysis. All of the 

1308 EFMs in case 2.a house the enzymatic reaction catalyzed by the product of this gene. 

In the present EFM analysis, all of the calculated modes utilize oxygen. This is an expected 

result because growth on nonfermentable substrates is known to be respiratory. fbp and 

pck1 deletions are also reported to be lethal in ethanol medium (Stückrath et al., 2002), 

which is in agreement with here-made predictions. 

 

The lethality of in silico deletions was also checked from the online database, MIPS. 

acs, aco1, fba, tdh, fum, sdh and icl1 deletions are also given as lethal in MIPS database, in 

parallel with the EFM simulation. As for the remaining 6 cases, the in silico prediction 

cannot be checked for 4 mutations and the prediction was incorrect for 2 deletions (pgk, 

pgi).   

 

In case of double deletions of pyruvate kinase and malic enzyme genes, zero biomass 

yields were obtained for all the pathways in EFM analysis. In Saccharomyces cerevisiae, 
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the strains lacking malic enzyme gene (mae1) and both genes of pyruvate kinase (pyk1, 

pyk2) were found to be unable to grow in ethanol (Boles et al., 1999).   

 

When elementary flux modes with maximum biomass yield are examined, all of 

them are found to have a zero flux through PDC enzyme. This suggests that the deletion of 

the corresponding gene does not alter the biomass yield of the strain. Flikweert et al., 

(1996) showed that the biomass yields of pdc deficient and wild-type S. cerevisiae were 

identical in ethanol-limited chemostat cultures. Thus, the phenotype of a silent mutation 

could successfully be predicted by EFM analysis.  

 

3.1.5.  Biomass Yield and Robustness Analysis 

 

 

Figure 3.1. Biomass yield profiles of EFMs for growth on glucose and ethanol. The 

pathways are arranged in the order of increasing biomass yields. The axes are in 

normalized units 
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  For each of the calculated elementary flux modes, a theoretical biomass yield was 

calculated by dividing the relative flux towards biomass production (r53) to the relative flux 

of substrate uptake reaction (r1 /r3). Resultant yield profiles of elementary pathways for 

glucose and ethanol media are compared in Figure 3.1. The gradual change in biomass 

yield on ethanol, in the normalized pathway range of 0.3-1.0, indicates that 70 per cent of 

all pathways are in the range of high biomass yields (i.e. between 0.9-1.0). Such high 

yields could only be observed in 10 per cent of the pathways in glucose medium. 30 per 

cent of glucose pathways (in the normalized pathway range of 0.1-0.4) were found to result 

in normalized biomass yields of 0.20 ± 0.05.  These results agree well with the fact that 

high biomass yields can be obtained during respiratory growth on nonfermentable 

substrates.  

 

Biomass yield can be regarded as a measure of the robustness of microorganisms 

towards disturbances. It was found that although deletion mutants usually results in 

reduced growth rates compared to the wild type strain, the maximum biomass yields of 

viable deletions were almost the same with that of the wild type strain. Maximum biomass 

yields on glucose and ethanol were calculated using EFM analysis for each deletion mutant 

(Figures 3.2.a, 3.2.b). When the maximum biomass yields are analyzed for the deletion 

cases of each enzyme, yeast cells are found to have a robust central metabolism supporting 

the literature findings (Ebenhöh and Heinrich, 2003; Wagner, 2000). In Figures 3.2.a and 

3.2.b, there are a number of in silico mutations having zero biomass yields. That is, the 

deletion of these genes was found to be lethal for the cell theoretically. There are 13 and 18 

such deletion mutants having zero biomass for growth on glucose and ethanol respectively 

(details are given in previous section).  

 

In glucose medium, the maximum biomass yields of 5 viable deletions (tpi, nadhx, 

fadhx,  fum1, sdh deletions) are found to be less than  that of the wild type strain (Figure 

3.2.a). Among these, inhibition of oxidative phosphorylation reactions (NADHX, FADHX) 

results in damage in the respiration of the organism. Particularly inhibition of NADH 

oxidation renders the cell almost anaerobic with maximum biomass yield of 0.17 g/g (26.5 

per cent of parental strain). In the case of tpi deletion, mutant strains can only have a 

maximum biomass yield of 0.35 g/g (54.7 per cent of parental strain). 
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Figure 3.2. Maximum biomass yields of mutant strains calculated from EFM analysis.  

Each point is for one in silico deletion strain (a) glucose is the substrate (b) ethanol is the 

substrate  

 

In ethanol medium, the maximum biomass yields of viable deletions were almost the 

same with that of the wild type strain  (Figure 3.2.b). The only noticeable exception for 
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ethanol growth was ald6 deletion whose biomass yield was 93.6 per cent of the parental 

strain. The main cause in the decrease of biomass yield in in silico ald6 mutants is the 

decrease in NADPH supply of metabolism. Since NADPH is required in biosynthetic 

reactions, its level highly controls biomass growth. Although there are other reactions 

supplying NADPH (IDP2, MAE1, ZWF1, GND), the carried control effective flux through 

these enzymes are noticeably lower than that of ALD6 being far from compensatory effect. 

 

3.1.6.  Theoretical Transcript Ratio Analysis 

 

Calculated CEF ratios of each gene for ethanol and glucose media were presented in 

Table 3.2 and the corresponding transcript ratios for ethanol-glucose media were taken 

from DeRisi et al., 1997. Of the 41 genes considered which have functions in the central 

metabolism of the yeast, calculated CEF ratios for 40 genes showed acceptable correlation 

(R2 = 0.65) with the transcript data (Figure 3.3). In a similar study, calculated CEF ratios of 

47 genes in Escherichia coli was also found to correlate with R2 = 0.60 (Stelling et al., 

2002). The gene pdc was identified as outlier as shown by dark points in Figure 3.3 and 

thus not included in the regression analysis. Figure 3.3 is on logarithmic scale with y axis 

showing CEF ratios and  x axis showing Experimental data ratios. Dark point in the figure 

belongs to pdc, which  is a statistical outlier and thus not included in the regression 

analysis. 

 

Region I in Figure 3.3. shows the genes whose expression has increased when 

ethanol is the substrate (20 genes). The points in region III, on the other hand, correspond 

to the genes whose expression levels have decreased in ethanol medium (9 genes). 

Direction of the change in the gene expression levels of 5 genes in Region II and 7 genes in 

Region IV might be falsely predicted upon medium change. ‘False prediction’ within the 

text mainly refers to the fact that although the experimentally determined expression levels 

have been found to increase in the ethanol /glucose medium, estimated CEF ratios 

indicates a decrease in gene expression in ethanol /glucose medium. Most of these false 

points have the values close to 1 and they may possibly arise from experimental errors. A 

small modification in their values will shift these points to the reasonable regions (I and 

III). Derisi et al., 1997, have reported a decrease in the expression level of ald6 gene in 

ethanol. ald6 gene was found to be activated during the diauxic shift together with the 
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other cat8 dependent genes (fbp1, pck1, idp2, acs1, icl1, mls1, mdh2) (Haurie et al., 2001). 

Based on this fact, one may also expect an increase in the transcription of ald6 in parallel 

to the increase in the activity of all cat8 dependent genes as predicted in this study. The 

activation of this gene upon medium change from galactose to ethanol was also reported 

(Griffin et al., 2002). The false predictions may also arise from the usage of unweighted 

averages for some of the reactions. 
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Figure 3.3. Experimental versus theoretical ratios of gene expression levels in glucose - 

ethanol media. The values are the ratios of ethanol medium to the glucose medium. The 

inset shows experimental versus theoretical ratios in galactose- ethanol media 

 

The calculated CEF and experimental transcript ratios (Griffin et al., 2002) of the 

genes in ethanol and galactose media are presented in Table 3.2. The only difference 

between glucose system and galactose system in terms of the considered reactions are the 

replacement of hexokinase reaction by those catalyzed by GAL1, GAL7 and GAL5, which 

constitute an enzyme subset. For the 20 genes considered which have functions in the 

central metabolism of the yeast, calculated CEF ratios showed acceptable correlation (R2 = 

0.66) with the transcript data (Figure 3.3, inset).  
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Table 3.2. Theoretical (CEF-based) and Experimental (mRNA-based) transcript ratios. The 

given values are the ratios of ethanol medium to the glucose (galactose) medium.  

Gene CEF ratio DeRisi et al. Griffin et al. Gene CEF ratio DeRisi et al. Griffin et al. 

pgi1 0.51 0.71  pyk* 0.16 0.20 0.22 

fba1 0.44 0.42 0.32 zwf1 1.54 1.37  

tpi1 0.81 0.46 0.30 sol*  1.54 2.10  

tdh* 0.57 0.68 0.32 gnd12* 1.54 1.67  

pgk1 0.57 0.70  pdc* 0.02 0.33  

gpm* 0.64 1.10  ald6 1.51 0.68 2.57 

eno*  0.64 0.63 0.19 ald4 8.62 5.56  

rki1 1.53 0.87   acs* 5.58 6.55 2.71 

rpe1 1.56 0.71  pda*  0.12 1.05 1.27 

tkl* 1.54 2.94  pyc* 0.85 3.08 1.73 

tal1 1.54 0.32  cit13* 2.47 5.25  

tki* 1.54 2.94  idp1 0.75 1.52 1.62 

aco1 4.05 6.25 4.57 idh12*  0.59 2.78 2.40 

idp2 1.48 10.00 1.17 kgd12* 0.82 5.16 1.66 

lsc12* 0.82 2.53  sdh* 4.72 5.21 2.24 

fum1 4.72 3.70 2.04 mae1 2.10 0.81   

mdh1 5.27 5.88  pck1 15.64 14.29 7.76 

pfk12* 0.38 0.49 0.54 cat2 6.05 4.35 1.17 

fbp1 6.36 14.29 7.24 mls1 9.90 9.09  

icl1 9.90 12.5  cit2 6.20 4.76  

mdh2 4.57 2.63      

* For the reactions which are governed by multiple genes, an unweighted average of expression ratios of 
responsible genes were used. 
 

In conclusion, the genes whose theoretically calculated transcript ratios are widely 

different from that of the experimental ones mainly belong to the tricarboxylic acid cycle 

and pyruvate branch point.  This may be due to the restricted reaction set which does not 

include the anabolic reactions such as fatty acid synthesis, amino acid synthesis and 

nucleotide synthesis. These reactions mainly utilize AKG, OAC, AcCoA, PEP, PYR, 

RL5P, E4P as precursors. Although these metabolites are included into the biomass 

equation with suitable stoichiometries in concordance with their utilization in biosynthesis 

reactions, this probably restricts the flexibility of the reactions that include these 

metabolites and thus affects the theoretically calculated CEF ratios. The main reason of 
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considering a restricted number of biochemical reactions is that the inclusion of further 

reactions leads to a combinatorial explosion in the number of EFMs (Förster et al., 2002; 

Klamt and Stelling, 2002; Klamt et al., 2003). On the other hand, reproducibility of 

microarray data in transcriptome analysis may also be the cause of false predictions and the 

experimental errors in this type of analysis could not be excluded. (Piper et al., 2002).  

 

Modification of the method used in the calculation of CEF ratios by omitting (i) the 

flux of ATP generation due to maintenance, (ii) the flux modes with zero biomass yield or 

(iii) using the number of nonzero fluxes instead of the sum of absolute fluxes in each 

mode, did not result in any further improvement.  

 

3.1.7.  CEF Analysis and Functionality 

 

The new approach of control effective flux analysis permits to relate transcriptomics 

to fluxomics unlike other stoichiometric approaches (FBA, MFA). CEF is a sign of relative 

importance of reactions, and absolute CEF values are given in Figure 3.4. Importance of 

specific reactions under special conditions could be predicted using these absolute CEF 

values. 

 

For example, CEF values of ALD4 and ALD6 are found to be higher in ethanol 

medium compared to those in glucose medium. ALD4 (YOR374W) is a mitochondrial 

NADH dependent enzyme, which is experimentally found to be active and necessary in 

ethanol medium (Boubekeur et al.,1999; Tessier et al., 1998). The other isozyme, ALD6, is 

mainly functional in glucose medium by contributing to the NADPH levels in the cytosol 

(Meaden et al., 1997) and is also active in ethanol medium (Haurie et al., 2001). 

Comparison of CEFs of these genes indicates that ald4 gene is much more important in 

ethanol medium. Its CEF is 218.0 whereas that of ald6 is 49.5 in ethanol medium (Figure 

3.4).   

 

A very low effective flux carried by PDC enzyme in ethanol medium is also in 

accordance with the literature (Flikweert et al., 1996) since the mutants of this gene does 

not differ very much from the wild type strain in terms of growth rate phenotype. 
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Figure 3.4. CEF distribution map for S. cerevisiae cells. First number indicates CEF for 

glucose growth, the second is CEF for ethanol growth. Gray reaction lines are only active 

in ethanol growth; dotted reaction lines are only active in glucose growth 
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By examining solely the outputs of CEF analysis, one can conclude that there is an 

increase in the sum of CEF of NADPH producing enzymes in ethanol medium compared 

to the glucose medium. This is observed for both cytosolic (ZWF1, GND, IDP2, ALD6) 

and mitochondrial (MAE1, IDP1) enzymes with corresponding ratios of (84.5/53.5) and 

(20.6/13.2). NADPH production in ethanol medium is important due to aerobic growth and 

leads to higher biomass production. CEF ratio of biomass production (r53) was calculated 

as 1.56 (0.94/0.60) confirming this statement.  

 

Effective fluxes carried by glycolysis enzymes (PYK and PFK) in ethanol medium 

were calculated to be lower than those in glucose medium as expected. Moreover, the flux 

of gluconeogenic counterpart of PFK, that is FBP1, is about two times higher in ethanol 

medium. Similarly, the gluconeogenic PCK1 enzyme has a flux considerably dominant to 

the flux of PYK in this medium (Figure 3.4). Thus, examination of CEF values can be used 

in predicting the relative importance of glycolytic and gluconeogenic enzymes in different 

media. 

 

One should note that as the absolute values of CEFs will change with respect to the 

number of considered reactions, only CEF values calculated for the same network structure 

can be compared. 

 

3.1.8.  Concluding Remarks 

 

A novel approach which links transcriptomics to fluxomics was applied to 

Saccharomyces cerevisiae. This approach was previously successfully applied to 

Escherichia coli (Stelling et al., 2002). The applicability of the method to Saccharomyces 

cerevisiae, which has different characteristics such as being a eukaryote and having 

cellular compartments, reinforces the universality of the approach. 

 

The study reflects the power of CEF analysis over FBA and the importance of 

flexibility. When the most efficient EFMs are omitted from the system, the resultant 

control effective flux distribution remains almost unchanged. Hence, the flexibility seems 

to be more important than the efficient operation of the cell. There is no objective in the 

CEF analysis unlike FBA which can force the system to behave in a particular manner. 



 44 

Same behaviour of the cell can be predicted by CEF analysis even if the most efficient 

behaviour of the cell (predicted by FBA analysis) is not considered. Metabolic reaction 

system is allowed to be flexible since it is free to choose all possible routes. 

 

Although a very small number of reactions (a total of 53) are considered compared to 

the recently published set of metabolic reactions in Saccharomyces cerevisiae, (1175 

reactions, Förster et al., 2003a), the analysis presented in this study exhibits reasonable 

correlation with the experimental growth and transcriptome data.  Analysis of genome-

wide networks which will be facilitated by the development of novel computational tools 

and equipments, will give rise to construction of better models in the future.  

 

3.2.  Metabolic Pathway Analysis of Enzyme-Deficient Human Red Blood Cells  

 

In this section, five enzymopathies (G6PDH, TPI, PGI, DPGM and PGK 

deficiencies) in the human red blood cells are investigated using a stoichiometric modeling 

approach, i.e., metabolic pathway analysis. The overall aim is to extend the approach 

detailed in section 3.1 to the human metabolism.  

 

The primary physiological objective of the red blood cell is gas transport and 

exchange. Beyond this, it must perform several metabolic functions for its own survival. 

The major metabolic function of the erythrocyte is to produce the necessary cofactors 

(ATP, NADPH, and NADH) by energy and redox metabolisms for maintaining its osmotic 

balance and electroneutrality and fighting oxidative stresses (Bossi and Giardina, 1996; 

Joshi and Palsson, 1989; Wiback and Palsson, 2002). These cofactors are also necessary 

for the bioconcave shape of the cell as well as for the specific intracellular cation 

concentrations. 

 

Enzymopathy can be described as a biochemical disorder in which a specific enzyme 

undergoes alterations in its activity that may have pathological consequences. For the 

erythrocytes, deficiencies of about 20 enzymes, associated with widely different degrees of 

severity and complexity, have been identified so far (Jacobasch and Rapoport, 1996; 

Jacobasch, 2000; Schuster and Holzhutter, 1995). Since enzymopathies in human red blood 
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cells can cause serious diseases including anemia, the analyses of erythroenzymopathies 

are of basic importance in handling with such diseases. 

 

Modelling studies on erythroenzymopathies and erythrocyte metabolism have been 

mainly by kinetic models (Holzhütter et al., 1985; Joshi and Palsson, 1989; Martinov et al., 

2000; Mulquiney and Kuchel, 1999; Schuster and Holzhütter, 1995; Schuster et al., 1989), 

which are based on detailed information on kinetic properties of the enzymes. Few 

attempts have been made to model red blood cells stoichiometrically (Schuster et al., 1998; 

Price et al., 2003; Wiback and Palsson, 2002), which has the advantage of relying solely 

on the stoichiometries of the considered reactions.  

 

In a metabolic network consisting of cellular reactions, the analysis of the fluxes 

allows one to establish a relationship between cell genotype and phenotype. One of the 

main approaches for the flux analyses of metabolic networks is Metabolic Pathway 

Analysis (MPA) (Papin et al., 2003; Schilling et al., 1999), which is used to define the 

structure of the metabolic network and the overall metabolic capabilities of the 

microorganism. The method only uses information about the stoichiometry and the 

reversibility or irreversibility of reactions. Given the enzymatic reactions occurring in a 

particular microorganism, all possible routes are determined and analyzed. 

 

An important tool used in MPA is the detection of elementary flux modes (EFMs). 

An EFM is a minimal set of enzymes that could operate at steady state, with the enzymes 

weighted by the relative flux they need to carry for the mode to function (Schuster et al., 

1999; Schuster et al., 2000; Schuster et al., 2002a). EFM analysis allows the discovery and 

analysis of meaningful routes in metabolic networks. Control-effective flux (CEF) analysis 

is another tool in assessing a metabolism (Stelling et al., 2002). The CEFs, which are 

directly determined from the set of EFMs, represent the importance of each reaction of a 

metabolism for efficient and flexible operation of the entire metabolic network. Thereby, 

regulatory events of metabolism are implicitly incorporated. The method was successfully 

applied to E. coli and S. cerevisiae for the functionality analysis based on the theoretical 

estimation of gene expression changes (Section 3.1; Çakır et al., 2004; Stelling et al., 

2002).  
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In the present section, elementary flux mode (EFM) detection was performed for the 

erythrocyte metabolic network via the simulation tools, METATOOL 4.3 (Dandekar et al., 

2003; Pfeiffer et al., 1999) and FluxAnalyzer 4.0 (Klamt et al., 2003). The following 

enzymes, which are clinically essential, were taken as model systems in the metabolic 

investigation of enzyme deficiencies of erythrocytes; glucose-6-phosphate dehydrogenase 

(G6PD), triosephosphate isomerase (TPI), phosphoglucose isomerase (PGI), 

disphosphoglycerate mutase (DPGM), and phosphoglycerate kinase (PGK). CEF analysis 

was performed to analyze EFM results quantitatively and to make comparisons for the 

activities of pathways upon different degrees of deficiencies. When available, experimental 

findings reported in literature related to metabolic behavior of the human red blood cells 

were compared with the results of EFM and CEF analyses. This study differs from the 

previous models in that regulatory events are also accounted by the help of CEF analysis, 

with an emphasis on enzyme deficiencies. The ultimate goal herein is the target 

identification for drug design for the treatment of patients with enzymopathies. 

 

3.2.1.  Metabolism of the Human Red Blood Cell 

 

Main reactions in human red blood cells are depicted in Figure 3.5 and given in 

Table 3.3 (Joshi and Palsson, 1989, Mulquiney and Kuchel, 1999; Schuster et al., 1998; 

Wiback and Palsson, 2002). There are 39 reactions and 44 metabolites in the network. 

 

Red cells lack nuclei and other intracellular organelles; they are incapable of protein 

and lipid synthesis and of oxidative phosphorylation (Baynes and Dominiczak, 1999; Bossi 

and Giardina, 1996). Unlike most metabolic networks, the red cell does not generate 

biomass (Wiback and Palsson, 2002). The main red cell energy source is glucose that is 

metabolized through the Embden-Meyerhof pathway (r1-r11) with the production of 2 

moles of ATP and lactate as end products per mol of glucose. The theoretical net gain of 2 

mol of ATP for every 1 mol of glucose metabolized through anaerobic glycolysis is 

modified by the Rapoport-Luebering shunt (r12, r13) which is controlled by 

diphosphoglycerate mutase (DPGM) and generates 2,3-diphosphoglycerate (D23PG) 

(Bossi and Giardina, 1996; Monsen and Vestergaard-Bogind, 1978). The pentose 

phosphate shunt (r14-r21) contributes to the redox status of the cell by producing 2 moles of 

NADPH per mol of glucose entering the cycle.  
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Table 3.3. Reactions in red blood cell metabolism and  corresponding catalyzing enzymesa 

Reactions Enzymes 

            1.  Glycolysis  

(1) 1 GLC + 1 ATP  →  1 G6P + 1 ADP  HK 

(2) 1 G6P  ↔  1 F6P PGI 

(3) 1 F6P + 1 ATP  →  1 FDP  + 1 ADP  PFK 

(4) 1 FDP  ↔  1 GA3P + 1 DHAP ALD 

(5) 1 DHAP ↔ 1 GA3P TPI 

(6) 1 GA3P + 1 NAD  ↔  1 D13PG + 1 NADH  GAPDH 

(7) 1 D13PG + ADP  ↔  1 P3G + 1 ATP PGK 

(8) 1 P3G  ↔  1 P2G PGM 

(9) 1 P2G  ↔  1 PEP  EN 

(10) 1 PEP + 1 ADP  →  1 PYR + 1 ATP PK 

(11) 1 PYR + 1 NADH  →  1 LAC + 1 NAD LDH 

             2.  Rapoport-Luebering  Shunt  

(12) 1 D13PG  →  1 D23PG DPGM 

(13) 1 D23PG  →  1 P3G DPGase, 

(DPGM)  

             3.   Pentose Phosphate Pathway  

(14) 1 G6P + 1 NADP  →  1 GL6P + 1 NADPH  G6PDH 

(15) 1 GL6P  ↔  1 GO6P  PGLase 

(16) 1 GO6P + 1 NADP  →  1 RL5P + 1 NADPH + 1 CO2 GL6PDH 

(17) 1 RL5P  ↔  1 XYL5P XPI 

(18) 1 RL5P  ↔  1 R5P RPI 

(19) 1 R5P + 1 XYL5P  ↔  1 SED7P + 1 GA3P TK 

(20) 1 SED7P + 1 GA3P  ↔  1 F6P + 1 ERY4P TA 

(21) 1 XYL5P + 1 ERY4P  ↔  1 F6P + 1 GA3P TK-I 

            4.  Nucleotide Metabolism  

(22) 1 R5P + 1 ATP  →  1 PRPP + 1 AMP PRPPsyn 

(23) 1 R1P  ↔  1 R5P  PRM 

(24) 1 PRPP + 1 ADE  →  1 AMP ADPRT 

(25) 1 INO  ↔  1 HYPX + R1P PNPase 

(26) 1 HYPX + 1 PRPP  →  1 IMP   HGPRT 
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Table 3.3. continued  

  

(27) 1 IMP  →  1 INO  IMPase 

(28) 1 AMP   →  1 ADO  AMPase 

(29) 1 AMP  →  1 IMP  AMPDA 

(30) 1 ADO  →  1 INO  ADA 

(31) 1 ADO  + 1 ATP  →  1 ADP + 1 AMP AK 

(32) 2 ADP  ↔  1 ATP + 1 AMP AdylK 

            5.  Cellular Functions  

(33) 1 GSSG + 1 NADPH  ↔  2 GSH + 1 NADP GSSG-R 

(34) 2 GSH + 1 H2O2  →  1 GSSG GSHpox 

(35) 1 ATP + 3 Na+ + 2 Kext
+  →  1 ADP + 3 Naext

+ + 2 K+ Na-K-ATPase 

(36) ATP  →  ADP MemPhos 

(37) MetHb + NADH  →  Hb + NAD MetHbRed 

(38) D23PG + Hb  →  D23PG:Hb D23PGdrain 

  

(39) 2 GSH + 1 O2  →  1 GSSG + 1 H2O2 GSHox 

aArrow type, → or ↔, indicates whether the reaction is considered irreversible or reversible in the analysis. 

 

 

The red cell requires energy, (i) to replenish its adenine nucleotide pool using 

salvage pathways (r22-32), (ii) to protect the cell against oxidative stress (r33, r34), (iii) to 

control its volume through membrane Na-K ATPase  (cation pump) (r35), (iv) to maintain 

the plasticity of its membrane (r36), (v) to prevent the accumulation of methemoglobin 

(r37), and (vi) to modulate oxyhemoglobin (r38)  (Bossi and Giardina, 1996; Schilling and 

Palsson, 1998). 

 

3.2.2.  Analyzed Enzyme Deficiencies 

 

Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme fuels the first reaction of 

pentose phosphate pathway (PPP) in which G6P is oxidized and NADP is reduced 

resulting in NADPH production (r14). The biological functions of the PPP in the human red 

blood cell are to synthesize ribose as sugar components of the nucleotides and to maintain 

the continuous supply of NADPH as an obligatory substrate for the glutathione system 
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protecting the cell against oxidative stress (Jacobasch and Rapoport, 1996). Normal red 

cells can defend themselves to a considerable extent against such changes by reducing 

GSSG to GSH through the glutathione reductase reaction (r33). This requires a source of 

NADPH. As G6PD-deficient red cells are unable to reduce NADP+ to NADPH at a normal 

rate, they are unable to remove hydrogen peroxide through peroxidase activity (r34) (Bronk, 

1999), which requires reduced glutathione (GSH) to protect the cells against oxidative 

damage (Bossi and Giardina, 1996). Namely, G6PD enzyme is indispensable to protect 

cells against even mild oxidative stress. G6PD defects belong to the most widespread 

enzymopathies in man. It is estimated to affect 400 million people worldwide (Miwa, 

1996; Weatherall, 2000). 

 

Triose Phosphate Isomerase (TPI) catalyzes the interconversion of dihydroxyacetone 

phosphate (DHAP) and glyceraldehyde-3-phosphate (GA3P) (r5) and plays an important 

role in several crucial metabolic pathways. The metabolic pattern of TPI deficient 

erythrocytes is characterized by high levels of DHAP and a relatively minute decrease of 

ATP. DHAP accumulation has been reported to be toxic for cellular functions and 

responsible for the severity of TPI enzymopathies but the mechanism of DHAP toxicity is 

not well understood (Jacobasch and Rapoport, 1996, Orosz et al., 1996; Schneider, 2000). 

The defect leads to hemolytic anemia coupled with neurological dysfunction (Olah et al., 

2002). 

 

The enzyme phosphoglucose isomerase (PGI) catalyzes the reversible isomerization 

from G6P to F6P, an equilibrium reaction of glycolysis (r2). Glucose turnover reacts, 

therefore, only on deficiency below a very low critical residual activity of PGI but then 

with a drastic decline of lactate formation, i.e., decrease in glycolytic flux (Jacobasch and 

Rapoport, 1996). The consequence of a limitation by the PGI reaction is an increase of the 

G6P level which causes a feedback inhibition of HK resulting both in a lower rate of 

glycolysis and increased PPP activity associated, in turn, with the recombination of F6P 

formed in PPP with glycolytic pathway (Kanno et al., 1998). With the effect of HK 

inhibition, ATP, D23PG and GSH regeneration decreases (Jacobasch and Rapoport, 1996). 

This is the third most common enzymopathy in the world (Kanno et al., 1998). 
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Figure 3.5.  Human red blood cell metabolism. Adapted from Schuster et al., 1998. 

Metabolites considered as external in EFM calculation are GLC, LAC, PYR, HYPX, ADE, 

CO2, D23PG, K+
ext  and Na+ext 
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Disphosphoglyceromutase (DPGM) is a multifunctional enzyme which catalyzes 

both the synthesis and dephosphorylation of D23PG in human red blood cells (r12) 

(Jacobasch and Rapoport, 1996; Mulquiney and Kuchel, 1999). With lowering of DPGM, 

the turnover via D23PG declines in favor of substrate phosphorylation catalyzed by PGK 

and PK leading to changes of the metabolic pattern. ATP, FDP, triose phosphates, 3PG, 

2PG, PEP are enhanced, ADP, D23PG, F6P, G6P are diminished (Jacobasch and Rapoport, 

1996). 

 

Phosphoglycerate Kinase (PGK) is a key enzyme for ATP generation in the 

glycolytic pathway, catalyzing the conversion of D13PG (1,3-diphosphoglycerate) to 3PG 

(3-phosphoglycerate) (r7) bypassing the Rapoport-Luebering shunt. A significant 

accumulation of D23PG, and a decreased concentration of ATP were observed in patients 

with PGK deficiency (Fujii and Miwa, 2000).  Also, diminished glucose consumption was 

reported (Jacobasch, 2000). 

 

3.2.3.  Computational Methods 

 

The same simulation tools as discussed in previous section (3.1.2) were used in the 

EFM analysis of red blood cell metabolism. CEF calculations were made using Equations 

3.1 and 3.2. In efficiency calculations (equation 3.1), GSSGR, GSHpox, MemPhos, 

NaKATPase, MetHbRed and 23DPGdrain (r33- r38) were taken as the mode outputs since 

these reactions are basis for the cellular objectives, i.e., main functions of erythrocytes. HK 

reaction (r1), which consumes glucose, was taken as substrate uptake reaction. 

 

The ratio of CEFs of reactions at two different conditions (healthy vs. enzyme-

deficient) was used to predict the efficiencies of the reactions in human red blood cell 

metabolism. 

 

For the analysis of enzyme deficiencies in terms of the degree of deficiency, a 

modification was made on the formulation of CEF calculation. The fluxes of the reactions 

of EFMs that included the deficient enzyme in their routes were multiplied by a constant, 

dj, representing the degree of enzyme deficiency. dj takes values between 1 (healthy case) 

and 0 (complete deficiency). The efficiencies of these modes were also weighted by dj. 
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Some of the cellular objectives disappear upon complete deficiency (eg. NaKATPase, 

MemPhos and D23PGdrain reactions were not functioning in complete PGK deficiency). 

To account for the decreased contribution of these objectives on CEFs, the related CEF 

terms, vi,CELLOBJ  were weighted by dj. Otherwise, the analysis led to incorrect results in the 

boundary of complete deficiency since the ratio of very small numbers resulted in values 

which had significant effects on the calculated CEFs.  For G6PD and TPI deficiencies, 

where R5P and DHAP were considered as external metabolite respectively, the modes 

including these metabolites in their routes as external were weighted by (1 – dj).  This 

implies that these modes vanish for health case and gradually gain importance as the 

degree of deficiency increases. 

 

3.2.4.  Analyses of EFMs, CEFs, and in silico Deficiency Profiles  

  

Biochemical pathways in the human red blood cell are investigated as a model for 

the ultimate goal of target identification in drug design. Possible enzyme deficiencies 

inherited in the red blood cell are analyzed on the basis of elementary flux mode. The 

effect of enzymopathies on the behaviour of metabolic network and on the regulatory 

events is studied using CEF concept, which allows the quantification of EFM analysis. The 

number of EFMs for each enzymopathy is given in Table 3.4 where non-functioning 

(disrupted) EFMs and indispensable enzymes (the enzymes whose absence lead to 

cessation of all the routes) obtained through the frequency analysis by Flux Analyzer are 

also indicated. Table 3.5 details the calculated CEFs of human red blood cell metabolism, 

in cases of non-deficient enzyme metabolism and of the complete deficiencies of clinically 

essential enzymopathies. The in silico deficiency profile for each enzymopathy is also 

obtained for the whole range of 0 per cent -100 per cent deficiency. 

 

3.2.4.1.  Non-deficient Case.  For the reactions of erythrocyte metabolism given in Table 

3.3, the corresponding number of elementary modes is calculated to be 48 (Table 3.4). 

Each elementary mode represents a biochemical function (Schuster et al., 1998; Schuster et 

al., 2002c; Wiback and Palsson, 2002), as indicated in the table. There are 18 different 

overall stoichiometries. Half of the 48 EFMs are associated with lactate production, and 

the other half differs only in terms of the end product, which is pyruvate. 
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Table 3.4. Number of EFMs obtained for each enzymopathy 

Enzymopathy No.of EFMs Disrupted EFMs Indispensable Enzymes 

None 48 - HK, GAPDH, PGM, EN, PK 

G6PD 16 (18)b 6-15, 21-30, 32, 33, 35, 36, 

39-42, 45-48 

HK, GAPDH, PGM, EN, 

PK, ALD, PFK, PGI, TPI 

TPI 16 (34)b 1-5, 11-20, 26-31, 33, 34,    

36-38, 41-44, 47, 48 

HK, GAPDH, PGM, EN, 

PK, PPP enzymes 

PGI 16 1-10, 16-25, 31, 32, 34, 35, 

37-40, 43-46 

HK, GAPDH, PGM, EN, 

PK, TPI, ALD, PFK, PPP 

Enzymes 

DPGM 36 1, 6, 11, 16, 21, 26, 31-33,   

34-36 

HK, GAPDH, PGM, EN, PK 

PGK 6 2-5, 7-10, 12-15, 17-20, 22-

25, 27-48 

HK, GAPDH, PGM, EN, 

PK, DPGM, DPGase 

EN 0 All All 

GAPDH 0 All All 

HK 0 All All 

PGM 0 All All 

PK 0 All All 

LDH 24 1-15, 31-33, 37-42 HK, GAPDH, PGM, EN, PK 

ALD a 16 1-5, 11-20, 26-31, 33, 34,    

36-38, 41-44, 47, 48 

HK, GAPDH, PGM, EN, 

PK, PGI, PPP Enzymes 

PFKa 16 1-5, 11-20, 26-31, 33, 34,    

36-38, 41-44, 47, 48 

HK, GAPDH, PGM, EN, 

PK, PGI, PPP Enzymes 
aALD and PFK are enzyme subsets and hence have the same combination of hampered EFMs. 
bNumbers in paranthesis indicate the number of EFMs when R5P or DHAP are considered as external in the 
corresponding enzymopathies. 

 

In CEF analysis the "no deficiency” case points out that GSSGR reaction has the 

highest flux rate as shown in Table 3.5, which basically implies the importance of NADPH 

production in the human red blood cell metabolism. This finding is in parallel with the 

known fact that the production of glutathione is essential in this cell type since it reduces 

NADP+ in order to prevent the cell from oxidative damage (Baynes and Dominiczak, 1999; 

Bronk, 1999).  
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Table 3.5. CEF analysis for complete deficiency. The first column gives the absolute 

values, whereas the others are the CEF ratios of deficiency case to the healthy one, 

indicating whether the CEF of corresponding reaction increased or decreased upon 

deficiency 

 
Enzyme 

No 

Def. 

G6PD  

Def. 

TPI 

Def. 

PGI 

Def. 

DPGM 

Def. 

PGK  

Def. 

 HK 3.00 0.83 1.83 1.50 0.67 0.33 

 PGI 2.65 0.94 2.34 0.00 0.71 0.40 

 PFK 1.97 1.26 0.85 1.52 0.61 0.24 

GLYCOLYTIC ALD 1.97 1.26 0.85 1.52 0.61 0.24 

PATHWAY TPI 1.97 1.26 0.00 1.52 0.61 0.24 

 GAPDH 4.97 1.00 1.11 1.51 0.64 0.30 

 PGK 3.75 0.99 1.22 1.53 0.85 0.00 

 PGM 3.94 0.97 1.19 1.57 0.81 0.38 

 EN 3.94 0.97 1.19 1.57 0.81 0.38 

 PK 3.94 0.97 1.19 1.57 0.81 0.38 

 LDH 1.62 0.98 1.18 1.66 0.72 0.19 

RL DPGM 1.22 1.01 0.76 1.46 0.00 1.22 

SHUNT DPGase 0.19 0.61 0.58 2.44 0.00 7.86 

 G6PD 3.09 0.00 3.71 1.46 0.78 0.50 

 PGLase 3.09 0.00 3.71 1.46 0.78 0.50 

 GL6PDH 3.09 0.00 3.71 1.46 0.78 0.50 

PENTOSE R5PI 1.03 0.02 3.71 1.46 0.78 0.50 

PHOSPHATE Xu5PE 2.06 0.01 3.71 1.46 0.78 0.50 

PATHWAY TKI 1.03 0.01 3.71 1.46 0.78 0.50 

 TA 1.03 0.01 3.71 1.46 0.78 0.50 

 TKII 1.03 0.01 3.71 1.46 0.78 0.50 

 PRPPsyn 0.24 0.57 0.64 2.43 1.48 0.00 

 PRM 0.24 0.57 0.64 2.43 1.48 0.00 

NUCLEOTIDE AdPRT 0.16 0.57 0.64 2.42 1.48 0.00 

PATHWAY PNPase 0.24 0.57 0.64 2.43 1.48 0.00 

 HGPRT 0.08 0.58 0.62 2.43 1.48 0.00 

 IMPase 0.16 0.58 0.63 2.43 1.48 0.00 
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Table 3.5. continued       

 AMPase 0.26 0.59 0.61 2.43 1.48 0.00 

NUCLEOTIDE AMPDA 0.08 0.57 0.64 2.42 1.48 0.00 

PATHWAY ADA 0.08 0.57 0.64 2.42 1.48 0.00 

 AK 0.18 0.60 0.60 2.44 1.48 0.00 

 ApK 0.24 0.57 0.64 2.43 1.48 0.00 

 GSSGR 6.19 0.00 3.71 1.46 0.78 0.50 

CELLULAR GSHox 3.09 0.00 3.71 1.46 0.78 0.50 

OBJECTIVE NaKATPase 1.00 1.08 0.83 1.35 1.07 0.00 

 MemPhos 1.06 1.05 0.80 1.38 1.09 0.00 

 MetHbRed 3.35 1.00 1.07 1.44 0.61 0.35 

 D23PGdrain 1.03 1.08 0.79 1.27 0.00 0.00 

 GSHpox 3.09 0.00 3.71 1.46 0.78 0.50 

 

Nucleotide metabolism enzymes exhibit very low CEF values implying relative 

insignificancy of the pathway in the overall erythrocyte metabolism. Since the turnover of 

nucleotide pathway is reported to be very low (Ataullakhanov et al., 1996), this pathway is 

usually not considered in modeling analysis of erythrocytes (Mulquiney and Kuchel, 1999; 

Schuster and Holzhütter, 1995), in agreement with the low CEFs calculated here. 

 

3.2.4.2.  Glucose-6-phosphate dehydrogenase (G6PD) Deficiency. The experimental 

finding that in the absence of G6PD, there is still a pathway leading from glucose to ribose 

via TK and TA reactions (Pandolfi et al., 1995) was already verified using EFM analysis 

by blocking G6PD and considering ribose-5-phosphate (R5P) as external (Schuster et al., 

1998). A substance is called external if it can be considered to be present in large excess so 

that its concentration is unaffected by the reactions under study (Schuster et al., 2002c). 

Based on this analysis, R5P is considered to be an external metabolite in the present 

deficiency analysis, too. The corresponding number of elementary flux modes is calculated 

to be 18. Common characteristics of these modes are that they do not involve the 

glutathione disulfide reductase and glutathione peroxidase reactions, which are necessary 

for preventing oxidative stress (Schuster et al., 1998; Mehta et al., 2000) and needed for 

cellular functions. 
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In normal erythrocytes, any oxidant that lowers available NADPH raises 

immediately the oxidative pentose phosphate pathway (r14-r16) rate several folds in order to 

supply the needed amount of this cofactor. On the other hand, red blood cells with G6PD 

deficiency cannot increase their OPPP rate sufficiently during the oxidative load (Bossi 

and Giardina, 1996) as predicted by CEF analysis results (Table 3.5). Zero fluxes were 

calculated for the oxidative PPP, and very low values were obtained for the nonoxidative 

part. The deficiency of G6PD blocks the PPP and renders those enzymes inefficient. On 

the other hand, the other objectives of the cell, i.e., ATP generation for the functioning of 

cation pump and for the membrane plasticity, D23PG production for the modulation of 

hemoglobin oxygenation, reduction of methemoglobin to functional form, were found to 

be unaffected. 

 

Deficiency profile of this enzymopathy (Figure 3.6.a) indicates that the CEF values 

of metabolic reactions do not increase more than 1.3 fold, and nucleotide pathway is mildly 

affected. The only abrupt change occurs in PPP enzymes, and hence G6PD enzyme, which 

exhibit almost linear decrease upon enzyme deficiency. Deficiency profiles of the enzymes 

in the same enzyme subset were found to exhibit the same trends (eg. PPP pathway 

enzymes; glycolytic enzymes of PFK, ALD, TPI). Enzyme subsets are defined as the 

enzymes which always operate together in fixed flux proportions at steady state (Pfeiffer et 

al., 1999). The behaviour observed in CEF profiles supports the hypothesis that the 

enzymes belonging to the same subset share similar patterns of genetic regulations 

(Schuster et al., 2002b).  

 

3.2.4.3.  Triose Phosphate Isomerase (TPI) Deficiency. In a clinical study, TPI deficiency 

was investigated from the metabolic and genetic aspects and a high level of DHAP 

accumulation was reported (Hollan et al., 1997; Olah et al., 2002; Orosz et al., 1996; 

Repiso et al., 2002). On the basis of this literature information, EFM analysis was 

performed by taking DHAP as external metabolite. The number of functioning elementary 

flux modes was found as 34. In this case, similar glycolytic CEF values were calculated in 

TPI enzymopathy as in the healthy case. That is, the expression of the genes responsible 

for glycolytic enzymes does not differ much when TPI is deficient, in parallel with the 

clinically observed situation that glycolysis is unaffected in the patients (Repiso et al., 

2002). 
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(a) G6PD enzymopathy 
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(b) TPI enzymopathy 
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(c) PGI enzymopathy 
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(d) DPGM enzymopathy 
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(e) PGK enzymopathy 

Figure 3.6. Change of CEFs upon the activity change of enzymes of considered 

enzymopathies (a) G6PD (b) TPI (c) PGI (d) DPGM (e) PGK. y axis: CEF ratios with 

respect to the healthy case. In x axis, 0   fully functional enzyme, 1: complete deficiency. 

Names of the enzymes with outstanding behaviour are given in figures 

 

Investigating the CEFs in complete TPI deficiency, the Rapoport-Luebering shunt 

(r12, r13) exhibited a decrease implying less D23PG production, and an increase was 

observed in pentose phosphate pathway enzymes (Table 3.5). This suggests that the cell is 

in high oxygenation state (Messana et al., 1996) and fights with the deficiency by 

increasing its flux to OPPP, as a defense mechanism. The glucose utilization is not 

negatively affected in deficient cells, which is apparent by the high CEF values of HK and 

PGI reactions. The enzymes of ATP consumption reactions (NaKATPase and MemPhos) 

showed 20 per cent decrease, which is coincidental with the behavior of TPI deficiency 

that this enzymopathy leads to a generalized impairment of cellular energy supply 

(Jacobasch and Rapoport, 1996).  

 

Deficiency profile (Figure 3.6.b) is associated with an increase in PP pathway and 

glutathione related enzymes. Efficiency of TPI reaction decreases only 20 per cent upon 50 
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per cent deficiency, after which a linear decrease is observed. The deficiency is also 

associated with about 3.5 fold increase in oxidative damage protecting reactions.  

 

3.2.4.4. Phosphoglucose isomerase (PGI) Deficiency. CEF analysis of complete PGI 

deficiency resulted in increased values of glycolysis and nucleotide metabolism fluxes 

compared to “no deficiency” case (Table 3.5). The increase in PPP fluxes was not high 

compared to TPI deficiency, which implies that this deficiency does not have considerable 

influence on this pathway. Particularly, there are approximately 2.4 fold changes in the 

fluxes of reactions catalyzed by DPGase and nucleotide metabolism. Although, the 

decrease in glycolysis fluxes was the case reported in the literature (Jacobasch and 

Rapoport, 1996), theoretical CEF values indicate opposite behaviour. 

 

The change of CEF value of PGI enzyme upon its deficiency (0 per cent -100 per 

cent) is slower until about 17 per cent deficiency, after which a linear decrease with higher 

slope is observed (Figure 3.6.c). The in silico profiles of most of the enzymes show similar 

behaviour associated with almost no change until 70 per cent deficiency, and then a slight 

increase; except nucleotide pathway enzymes and DPGase. This theoretical analysis does 

not find any other significantly affected enzyme for this enzymopathy.  

 

3.2.4.5.  Diphosphoglycerate mutase (DPGM) Deficiency. In DPGM deficiency case, the 

CEFs of essential reactions do not show abrupt changes compared to no deficiency case 

(Table 3.5). This implies that DPGM or DPGase deficiency is not critical, and has slight 

effects on red blood cells Jacobasch and Rapoport, 1996). A decrease in the rate of OPPP 

reactions, about 22 per cent, indicates that erythrocyte metabolism is not short of NADPH 

production, and is not under the possible attack of oxidative damage. 

 

DPGM deficiency profile indicates that ATP consumption reactions, NaKATPase 

and MemPhos, are unaffected by this deficiency (Figure 3.6.d). This implies that this 

deficiency is milder compared to other enzymopathies; which is in agreement with other 

modeling attempts of this deficiency (Schuster and Holzhütter, 1995; Martinov et al., 

2000). These modeling approaches use kinetic information on enzymatic reactions in 



 61 

contrary to this study, where the same conclusion on DPGM deficiency could be derived 

using only stoichiometric modeling. 

 

3.2.4.6. Phosphoglycerate kinase (PGK) Deficiency. For this deficiency, only 6 EFMs 

were obtained. Complete PGK deficiency exhibits very low CEF for HK enzyme, 

indicating that glucose uptake is impaired with respect to healthy case (Table 3.5). This is 

in agreement with the reported decrease in glucose consumption in PGK deficient red 

blood cells (Jacobasch, 2000). Nucleotide pathway was also found to be non-functional in 

parallel with the emphasized lower yield of adenine nucleotides (Jacobasch, 2000). The 

only remarkable increase is associated with DPGase reaction (8 fold). This would also be 

expected due to the reported higher levels of D23PG in the patients. High level of this 

metabolite would supply a high amount of substrate for DPGase reaction, contributing to 

its enhanced activity. 

 

The deficiency profile (Figure 3.6.e) shows that PGK activity changes almost 

linearly upon increasing deficiency. DPGM enzyme is negatively affected upon deficiency 

until the enzyme is 80 per cent deficient, after which it shows a slight increase in CEF 

value since it becomes an essential reaction in the case of complete enzyme deficiency. 

 

3.2.5.  Concluding Remarks 

 

 The enzymopathies of G6PD, TPI, PGI, DPGM and PGK in the human red blood 

cell were investigated by the help of EFM detection and CEF analysis. CEF analysis 

allowed the detection of the importance of each reaction in the EFMs as well as the relative 

change in the efficiencies of enzymatic reactions (in silico deficiency profiles). It revealed 

the importance of the glutathione mechanism in the human red blood cell, which prevents 

oxidation within the cell. The reactions catalyzed by the glutathione enzymes were found 

to have the highest CEFs in the erythrocyte metabolism. Application of new experimental 

measurement techniques and consequently obtaining detailed metabolic snapshot of 

clinically available enzymopathy cases would allow improved comparison and verification 

of here-reported theoretical results and eventually lead researchers to design drugs for 

patients suffering from these enzymopathies. 
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4.  EFFECT OF CARBON SOURCE PERTURBATIONS ON 

TRANSCRIPTIONAL REGULATION OF METABOLIC FLUXES 

 IN S. CEREVISIAE 

 

 

Metabolic fluxes are functions of metabolite levels (metabolic regulation) and 

enzyme concentrations, and the latter are controlled at transcriptional, translational and/or 

post-translational levels (hierarchical regulation) (Nielsen, 2003; ter Kuile and Westerhoff, 

2001). Functional genomics era has facilitated research on the type of flux regulation 

through the expression levels of metabolic genes (Lapujade et al., 2004; Oh and Liao, 

2001; Krömer et al., 2004). A common approach in the literature is to compare flux levels 

calculated by flux balance analysis (FBA) or metabolic flux analysis (MFA) with mRNA 

levels (Famili et al., 2003; Oh and Liao, 2000, Varela et al., 2005). Since many of the 

reactions are not active under the optimum growth conditions determined by FBA, 

prediction is not even possible for a number of genes. This is also the case for the MFA 

approach (Lapujade et al., 2004). Moreover, in FBA the occurrence of alternate optima 

cannot be excluded (Phalakornkule et al., 2001; Mahadevan and Schilling, 2003; 

Urbanczik and Wagner, 2005). It was previously shown that these approaches do not 

account for the flexibility of the metabolic network and that the quality of the resultant 

prediction is greatly improved by the incorporation of flexibility (Stelling et al., 2002). 

Elementary flux modes identified by the enumeration of the flux solution space using 

linear algebra (Schuster et al., 2000) provide the missing flexibility information.  Weighted 

sum of fluxes through these elementary modes, called control-effective fluxes (CEF), lead 

to the implicit incorporation of functionality and regulation into metabolic network 

structure (Stelling et al., 2002; Cornish-Bowden and Cardenas, 2002; Çakır et al., 2004). 

CEF changes were previously used for the prediction of transcriptome changes in carbon 

source shifts for E. coli (Stelling et al., 2002) and S. cerevisiae (Chapter 3) metabolisms. 

Application to erythrocyte enzymopathies was also demonstrated (Chapter 3).  

 

In this chapter, the stoichiometric metabolic model for S. cerevisiae used in Chapter 

3 was improved and extended by the addition of reactions responsible for major amino acid 

pathways. The resulting system includes 77 metabolites and 83 reactions which are 
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governed by a total of 137 genes (Appendix D).  Elementary flux modes of this reaction 

network were calculated for growth on different carbon substrates to determine CEFs 

which are the weighted sum of modes going through an enzyme. The fold changes of CEFs 

of reactions in the model in response to perturbations arising from carbon shifts were 

compared with that of expression levels of metabolic genes responsible for the enzymes of 

the reactions. The number of fluxes obeying an acceptable correlation was used to evaluate 

whether the metabolic fluxes are transcriptionally regulated for such perturbations. 

Hierarchical and/or metabolic regulation was assumed/concluded to be predominant in 

case of lack of correlation between the ratios of CEFs and mRNAs. 

 

4.1.  Computational Methods 

 

4.1.1.  Formulation 

 

EFMs were calculated using FluxAnalyzer 5.3 (Klamt et al., 2004). CEF calculations 

were performed under MATLAB 7.0 environment, and they are based on the efficiencies 

of calculated EFMs in terms of the chosen cellular objectives: production of biomass itself 

and ATP for maintenance.  Efficiency of an EFM, and CEF of a reaction were calculated 

based on Equations 3.1 and 3.2, as explained in section 3.1.2. In Equation 3.1, EFMs 

which are equivalent in terms of cellular objectives are distinguished by assuming that the 

shorter pathways are more efficient as reflected in the denominator of the formulation 

(Stelling et al., 2002; Schwarz et al., 2005). This approach coincides with the recently 

suggested flux minimization objective (Holzhutter, 2004), which implies that the optimum 

flux distribution is the one which has minimum total flux. The ratio of CEFs of reactions at 

two different conditions was used to predict the expression ratios of metabolic genes 

responsible for the enzymes of the reactions in S. cerevisiae. 

 

4.1.2. Methodology 

 

Logarithms of the CEF and mRNA ratios for reactions/genes between two conditions 

were plotted against each other. A script was written in MATLAB to identify the points 

which cause the largest deviation from a preselected correlation, and these points were 

omitted from the plot one by one until a correlation (R2) of 0.60 was reached. This 
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correlation coefficient value was selected as the threshold for an acceptable degree of 

correlation since it corresponds to a Pearson correlation coefficient around 0.80, which is 

considered to be the lower limit for a good correlation (Camacho et al., 2005). Moreover, 

the correlation between logarithmic mRNA ratios of two different wild type strains 

(Williams et al., 2002) in response to the same carbon shift was around 0.70 with slope 

being noticeably different from unity. This inherent variability in cell behaviour depending 

on its genotype cannot be reflected into metabolic stoichiometry since stoichiometric 

models are not strain-specific, which also justifies the selected threshold value.  

 

The number of point omissions required to keep the regression coefficient, R2, above 

0.60 was assumed to be one of the criteria for identifying the type of regulation imposed on 

the fluxes for a particular carbon shift. If many points are to be omitted to reach the 

threshold, this means a) fluxes are not transcriptionally regulated, but regulated in post-

transcriptional, translational or post-translational level (the other hierarchical control 

mechanisms are active) b) or there is predominant metabolic regulation corresponding to 

substantial changes in the metabolite levels, c) or both regulation types, metabolic and 

hierarchical, are active. In addition, a second qualitative criterion called ‘correct 

prediction’, which is based on the number of points in the first (up-regulation) and third 

(down-regulation) quadrants of the plotted coordinate axis, was also used, as employed by 

others (Famili et al., 2003). 

 

4.2.  Results 

 

The set of experimental gene expression data for carbon source perturbations used in 

this study are summarized in Table 4.1. If multiple genes correspond to a single reaction, 

their expression levels were summed up for each condition before the calculation of the 

fold change. The metabolic model consists of central carbon metabolism reactions as 

described in Chapter 3, and improved by the inclusion of the reactions involved in the 

synthesis of major amino acids (Appendix D). Other amino acids which contribute to the 

smaller portion of protein composition of S. cerevisiae (Förster et al., 2003) were directly 

incorporated into the biomass reaction (r83a) rather than including the individual reactions 

responsible for their formation into the set of stoichiometric reactions taken into 

consideration. The network could therefore be restricted to a manageable medium-scale 
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size. This processing was necessary to avoid the combinatorial explosion in the number of 

elementary flux modes with the increase in the number of considered reactions, which 

cannot be handled with the current algorithms (Klamt et al., 2002, Schwarz et al., 2005). 

The stoichiometric coefficients of the reaction leading to biomass formation were 

calculated on the basis of the biomass composition given by Förster et al., 2003. 

 

Table 4.1. Transcriptome datasets used in this study 

Article Source change Fermentation type 

DeRisi et al., 1997 Carbon: Glucose- Ethanol Batch 

Lapujade et al., 2004 Carbon: Glucose-Ethanol Chemostat 

Williams et al., 2002 Carbon: Glucose-Acetate Batch 

Lapujade et al., 2004 Carbon: Glucose-Acetate Chemostat 

Prokisch et al., 2004 Carbon: Glucose-Lactate Batch 

Piper et al., 2002 Oxygen: Aerobic-Anaerobic Chemostat 

 

Table 4.2. Number of EFMs for each studied carbon source for the biomass composition 

reported in Förster et al., 2003. The numbers in paranthesis shows EFM numbers when the 

biomass composition of Gombert et al., 2001 is employed for comparison 

Substrate EFMs - M83* 

 

EFMs - M46 

 

Glucose 136925 (184631) 13255 

Ethanol 11427 (15099) 1225 

Acetate 4240 (5452) 536 

Lactate 25484 (34319) 2533 
*In M83, the EFMs with simultaneous occurrence of GDH2 and GDH3 in reverse directions  were not taken 
into account since this leads to transhdrogenase activity, which is known to be not available in S. cerevisiae. 

 

The number of EFMs calculated for each carbon source is given in Table 4.2 for the 

model in Appendix D called M83 (based on the number of included reactions), and for a 

modified version of this model, M46, which only includes central carbon metabolism 

reactions as in Chapter 3. When the number of EFMs of the two models is compared, an 

approximately ten-fold increase is observed in the case of M83.  Therefore, it may be 

concluded that the inclusion of amino acid reactions enables better and less-restricted 

representation of the microorganism flexibility. The coefficients of biomass constituents 
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were calculated also on the basis of another cellular macromolecular composition reported 

by Gombert et al., 2001 for S. cerevisiae (r83b), and this calculation led to noticeable 

differences in the resultant number of EFMs for the same carbon source (Table 4.2). 

However, variations between calculated CEFs for each EFM set were small and, therefore, 

the biomass composition in Förster et al., 2003 was used in EFM and CEF calculations 

throughout this study. 

 

The following strategy was pursued to distinguish active EFMs during growth on 

glucose in different fermentation types. For batch experiments (Table 4.1) operated in 

respiro-fermentative mode, EFMs producing any of the considered byproducts (ethanol, 

glycerol, acetate, succinate) were retained since this mode is mainly associated with 

simultaneous biomass and product formation; those producing only biomass were 

discarded, leading to 127872 EFMs instead of 136925. Biomass-only EFMs were 

considered in chemostat experiments since no by-product was detected in the medium at a 

dilution rate of 0.1 h-1 (Lapujade et al., 2004), leading to 9600 EFMs instead of 136925. 

This approach was used to test the prediction capabilities of the previous models where all 

the EFMs had been used without such distinction for comparison with experimental data 

(Stelling et al., 2002; Çakır et al., 2004). The present strategy to include only active EFMs 

into the model was found to enable improved predictions of gene expression changes 

(results not shown).  

 

Table 4.3 summarizes the simulation results for genes belonging to central carbon 

metabolism (45) for each case in Table 4.1, including the correlation coefficient, slope, 

correct qualitative prediction, and the omitted points to reach R2 = 0.60. An acceptable 

correlation (R2 = 0.60) with a slope close to the unity was possible by omitting at most 6 

points for the studied carbon shifts (Table 4.3). Points which had to be omitted correspond 

to reactions whose CEF values do not show correlation with the change in expression 

levels of the genes encoding the enzymes catalyzing these reactions. It is highly probable 

that these fluxes are regulated at post-transcriptional and/or metabolic level. Correct 

prediction of qualitative up-regulation and down-regulation was above 76 per cent for all 

cases. These results (Table 4.3) indicate that fluxes corresponding to central carbon 

metabolism reactions are mainly transcriptionally regulated in carbon shift experiments. A 

clear lack of correlation was observed in the oxygen shift experiment, for which 20 points 
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had to be discarded to reach the threshold correlation (R2 = 0.60). Plots of mRNA ratios 

versus CEF ratios for all cases studied are given in Figures 4.1 to 4.5. The present results 

also reveal the fact that central metabolic genes are predominantly upregulated in response 

to a shift from fermentative carbon source to a source with C-2 C-3 compounds as most of 

the points lie in the first quadrant in Figures 4.1 to 4.5.  

 

Table 4.3. Results of simulations for genes belonging to central carbon metabolism 

 
Omissions     

for 

R2:0.60 

Correct 

Prediction* 

Slope / 

R2 

Number 

of EFMs 

used in 

simulation 

Omitted 

Genes 

Not 

Applicable 

Genes# 

Glucose/Ethanol, 

batch 
3$ 0.82  (36/44) 

1.06/ 

0.65 

127872/ 

11427 

pfk$, 

fbp1$, pyc 

(gpp1-

hor2) 

Glucose/Ethanol, 

chemostat 
6 0.77  (33/43) 

0.81/ 

0.60 

9600/ 

7051 

pfk pyc 

ald4 pda 

fba tpi 

(gpp1-

hor2)  

bph1 

Glucose/Acetate, 

batch 
3 0.76  (31/41) 

1.11/ 

0.63 

127872/ 

4238 

mae idp2 

rpe 

(gpp1-

hor2)  

bph1 Pyc  

pfk 

Glucose/Acetate, 

chemostat 
6 0.78  (32/41) 

1.18/ 

0.61 

9600/ 

4190 

adh1 rki 

lsc sol fba 

zwf 

(gpp1-

hor2)  

bph1 pfk  

pyc 

Glucose/Lactate, 

batch 
4 0.84  (38/45) 

0.89/ 

0.60 

127872/ 

25482 

pfk idp2 

pyk mae 
- 

Aerobic/ 

Anaerobic, 

chemostat 

20  
1.25/ 

0.62 
   

*The points with a fold change between 0.95-1.05 for either of model or experiment were considered to be 
correctly predicted. 
$These genes were found to exhibit better agreement with CEF ratios in the analysis of Gasch et al.(2000). 
#CEF ratio was either zero or infinity for these genes. Therefore, they could not be used in the correlation 
calculation. 

 

The effect of the assumption regarding assignment of higher efficiency to the shorter 

pathways was tested for each of the perturbations analyzed here. Denominator of Equation 

3.1 was not taken into account, thereby assigning equal efficiency to the EFMs with the 

same objective flux, regardless of the corresponding length. A lower correlation was 



 68 

observed when the higher efficiency of shorter pathways was not considered. These results 

support the hypothesis that shortest modes contribute most to (cellular activity)/ correlation 

between CEFs and gene expression (Stelling et al., 2002; Schwarz et al., 2005). 

 

4.3.  Discussions 

 

The correlation between mRNA ratios of the genes and corresponding CEF ratios 

were investigated for the genes belonging to central carbon metabolism and amino acid 

metabolism separately using M83 model. 

 

4.3.1.  Correlation between mRNA ratios for the genes of central carbon metabolism 

and corresponding CEF ratios  

 

The present results indicate that the response of most of the central carbon 

metabolism genes to a perturbation in the carbon source is at transcriptional level and is 

transmitted hierarchically to flux level (Table 4.3). However, the same genes are found to 

be weakly correlated with CEFs in the case of oxygen shift, indicating that the response of 

the same genes to different perturbations is not shaped by a similar control mechanism.  

 

For each carbon source perturbation, a small set of genes whose mRNA ratios were 

weakly correlated with the CEF ratios were omitted. For example, three genes, namely 

pfk1, fbp1 and pyc, displaying a weak correlation as a response to a diauxic shift in batch 

cultures (DeRisi et al., 1997) were omitted (Table 4.3). Two of these genes (fbp1, pfk) are 

responsible for the expression of enzymes involved in conversion between fructose-6-

phosphate and fructose-diphosphate in reverse directions. fbp1 is known to be active in 

ethanol growth whereas pfk is active during glucose growth. Although their up or down 

regulation matches with CEF predictions perfectly, the quantitative relation is absent. That 

is, relatively insensitive ratiowise response at gene expression level may indicate an 

amplified transmission of the signal to flux level. However, investigation of another dataset 

(Gasch et al., 2000) for the same respiro-fermentative shift shows better correlation for 

these genes, and corresponding CEF values as shown in Figure 4.1 by square points. Thus, 

these genes may also be false-negatives resulting from the absence of replicates.  
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For the glucose/ethanol shift in the chemostat culture, glycolysis pathway genes (pfk, 

pyc, ald4, pda, fba, tpi) are found to be the mainly deviating ones, undergoing other kinds 

of regulation rather than transcriptional (Table 4.3). This is supported by a recent study, 

which shows that glycolytic genes are regulated at the level of proteome in response to the 

same perturbation (Kolkman et al., 2005). The present analysis indicates a good correlation 

between the magnitude of change in CEFs and transcript levels of genes, with the 

exception of these six points. Here, this analysis gives a better correlation than the 

comparison made using MFA based fluxes by Lapujade et al., 2004, where 19 out of 43 

genes could not be included in correlation analysis since the corresponding MFA-based 

fold change was either zero or infinity, and the fold changes of 21 of the remaining points 

showed a correlation above the threshold (R2 = 0.60), with a slope several folds higher than 

unity (3.5). This indicates that the use of general metabolic capabilities of the 

microorganism under a carbon source as reflected in calculated EFMs, rather than focusing 

on a single flux distribution, results in better representation of the hierarchical behaviour of 

the control in gene expression. This is also valid for the diauxic shift in batch cultures. CEF 

approach with 82 per cent qualitative correct prediction (Table 4.3) is superior to the FBA 

approach with 61 per cent qualitative correct prediction (Famili et al., 2003) which is based 

on the number of up-regulated and down-regulated points that are in agreement between 

experimental and simulation results. 

 

For the glucose/acetate shift in chemostat cultures, three of the six omitted genes 

belong to pentose phosphate pathway (rki, sol, zwf). The other three are from different 

pathways, lsc from TCA cycle, fba and adh1 from glycolytic pathway. The corresponding 

fluxes are similarly assumed to be subjected to regulation types other than transcriptional 

(Table 4.3). Unlike chemostat cultures, lack of transcriptional regulation through fluxes of 

reactions governed by two different genes, namely idp2 and mae, is implied in case of 

batch cultures for glucose-acetate shift (Table 4.3).  

 

For genes of central carbon metabolism predictions by M83 was better than that of 

M46, meaning that further incorporation of the possible paths spanning amino acid 

pathways reflects the  flexibility of the organism better (results not shown). 
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Figure 4.1. Comparison of model-based and data-based ratios for carbon shift from glucose 

to ethanol in batch cultures. Filled circles are the omitted points to reach R2 = 0.60. The 

squares are obtained by using the data from Gasch et al., 2000 
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Figure 4.2. Comparison of model-based and data-based ratios for carbon shift from glucose 

to acetate in batch cultures. Filled circles are the omitted points to reach the selected cut-

off value of R2 = 0.60 
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Figure 4.3. Comparison of the model-based and data-based ratios for carbon shift from 

glucose to lactate in batch cultures 
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Figure 4.4. Comparison of the model-based and data-based ratios for carbon shift from 

glucose to ethanol in chemostat cultures 
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Figure 4.5. Comparison of the model-based and data-based ratios for carbon shift from 

glucose to acetate in chemostat cultures 

 

4.3.2.  Correlation between mRNA ratios for the genes of amino acid pathways and 

corresponding CEF ratios  

 

For respiratory chemostat datasets, it is difficult to establish a correlation between 

ratios of expression levels of amino acid genes and corresponding CEF ratios since 

numerical values of both experimental mRNA and model CEF ratios for these genes are 

very close to unity. Therefore, these genes do not have pronounced effect on the resultant 

correlation and slope.  

 

For respiro-fermentative batch datasets, on average ten more points had to be 

removed from the graph to get the predetermined correlation of R2 = 0.60. That is, there 

was a lack of correlation between the ratios of expression levels of amino acid pathway 

genes and corresponding CEF ratios. The observed lack of correlation for amino acid genes 

was also obvious for E. coli model (Stelling et al., 2002). There was no positive correlation 

between five genes available in the model belonging to amino acid metabolism, consistent 

with the behaviour observed for S. cerevisiae as summarized above. However, one should 

be cautious to judge this lack of correlation as the weakness of transcriptional regulation 
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for genes involved in amino acid synthesis pathways. The experiments analyzed include a 

direct perturbation in the carbon source. The resultant effect on central carbon metabolism 

could be captured by the model more easily as the perturbation was directly related to this 

metabolism. Since there was no perturbation for amino acid pathways such as the change 

in nitrogen source, the results may not reflect the real situation. Additionally, the lack of 

correlation in batch cultures may be explained by the use of rich media in the 

fermentations. Due to their availability in the media, the amino acids might not have been 

resynthesized within the cell, which may be another cause of poor correlation. Therefore 

the correct analysis of amino acid pathways requires specially designed experiments. 

Moreover, it has been reported (Grotkjær, 2005) that the change in the growth rate has a 

direct influence on the mRNA levels. The lack of correlation for the relatively unperturbed 

amino acid pathways can be attributed to the possible difference in microbial growth rates 

on the compared carbon sources in the batch experimental datasets. Furthermore, the 

mRNA ratios may have been biased by the normalization methods employed for the 

analysis of transcriptome data.  

 

On the other hand, as will be presented in Chapter 5, comparison of the significance 

of statistical change in transcriptome and metabolome profiles of S. cerevisiae under 

different conditions (Çakır et al., 2006) led us to the conclusion that almost all of the genes 

governing amino acid metabolism were metabolically regulated with or without 

transcriptional regulation. Although this finding cannot be stated as a strong support due to 

the reasonings listed above, this may be another explanation for the lack of correlation 

observed here. Then, this poor correlation implies that central carbon metabolism genes are 

much more transcriptionally regulated than those governing amino acid metabolism. 

Therefore, in this study the focus was on the analysis of central carbon metabolism since 

this was the part mostly affected by the here-studied carbon-source perturbations as 

explained above. 

 

4.3.3.  Effect of media and strains on the transcriptional regulation of fluxes 

 

The fluxes of central carbon metabolism are found to be mainly transcriptionally 

regulated in response to carbon source perturbations (Table 4.3). In order to investigate the 

effect of strain type on the regulation of fluxes, the experimental dataset for glucose-
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acetate shift in batch cultures (Williams et al., 2002) was used. This study includes the 

identification of changes in transcriptome as a response to the same type of perturbation for 

two different wild type yeast strains (W303, SK1). The result presented in Table 4.3 is for 

W303 strain and indicates that fluxes of central metabolism of this strain is subject to 

transcriptional regulation, with only three disobeying fluxes. The analysis of the other 

strain (SK1) revealed a requirement of omission of seven more points to reach the 

predetermined correlation (R2 = 0.60) in addition to three omissions for W303. This result 

suggests that the regulation behaviour can strongly depend on the genotype of strain itself 

as suggested elsewhere (Ferea et al., 1999; Brem et al., 2002; Townsend et al., 2003; 

Jansen et al., 2005; Çakır et al., 2006).  

 

W303 strain is suggested to exhibit more fermentative behaviour than SK1 strain in 

glucose containing medium (Williams et al., 2002). The expression levels of genes 

involved in respiratory metabolism were higher for SK1 strain than for W303 strain. This 

information was used to test the introduced approach of distinguishing active EFMs 

operating in respiratory and respiro-fermentative growth. CEF analysis and comparison of 

CEF and mRNA ratios for SK1 were performed considering all EFMs for glucose growth 

instead of taking only those co-producing biomass with any of by-products. The 

underlying assumption is that those producing only biomass must also be active in this 

strain displaying a more respiratory behaviour. Resultant number of omissions was reduced 

to 8 for SK1 strain. On the other hand, use of all EFMs for W303 strain caused an increase 

in the number of omissions to five. It should be noted that the incorporation of an 

information on the phenotypic/fermentative behaviour of the strain into the analysis may 

improve the prediction of the fluxes that are transcriptionally regulated.  

 

In order to investigate the effect of media on the regulation of fluxes, the 

experimental dataset for glucose-lactate shift in batch cultures, where the changes in 

transcriptome as a response to this perturbation for YPD and synthetic complete  media 

were reported (Prokisch et al., 2004), was used. The same type of analysis was also carried 

out for synthetic complete media, and the results were compared with that of YPD in Table 

4.3. The number of the omitted fluxes increased to eight, indicating the effect of medium 

components on the regulation type of particular fluxes. 
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4.4. Alternative Approaches to CEF Calculation 

 

Two additional approaches can be followed to generate the set of flux distributions as 

an input to CEF calculation. The glucose-ethanol diauxic shift case in batch cultures 

(DeRisi et al., 1997) is used here to demonstrate the prediction power of these approaches 

for metabolic transcriptome changes, as compared to EFM-derived approach for CEF 

ratios. 

 

The first approach is the uniform sampling of the solution space. There are two 

different alternatives for such a sampling, i.e. Monte-Carlo and hit-and-run. Of the two 

methods that can be used to uniformly sample the flux solution space constrained by the 

stoichiometric matrix and the reaction irreversibility information, Monte-Carlo approach is 

not applicable for large-scale models. The other method, hit-and-run sampling was 

employed here to get a set of flux distributions sampled randomly and uniformly. Detailed 

formulation of the approach is given in Appendix E. The sampling was performed until 

about 4,000 flux distributions are obtained. Hit-and-Run algorithm was executed to get 8 

million sample points; and only every 2000th point was saved in order to prevent the 

interdependency of the consecutively generated samples. Collection of higher number of 

flux distributions did not result in noticeable difference in calculated CEFs. Therefore, 

these sampling parameters were used in simulating yeast growth on both glucose and 

ethanol. Then, the collected flux distributions were used in the calculation of CEFs. CEF 

calculation was repeated for three different sampling runs, to detect if the flux distributions 

generated by sampling shows variability. No significant variation was observed among the 

results of different executions. Figure 4.7 presents the correlation between sampling-based 

CEF ratios and transcript ratios. The corresponding figure based on EFM-based CEF ratios 

(Figure 4.1) is regenerated as Figure 4.6 without omitting any points for comparison. 

 

As another alternative to CEF calculation, maximization/minimization of a randomly 

selected linear objective function was used in linear programming-based determination of 

flux distributions. After collecting enough number of flux distributions, CEF calculations 

were repeated, and the resultant correlations were calculated. Generation of about 1000 

flux distributions by randomized FBA was considered to be enough since execution of this 

approach in different times led to flux distributions with almost the same CEF values. 



 76 

Figure 4.8 presents the correlation between the fold change of mRNA levels (DeRisi et al., 

1997) and that of multiFBA-based CEFs. 
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Figure 4.6. Correlation between experimental mRNA ratios and EFM-based CEF ratios for 

carbon shift from glucose to ethanol in batch cultures 
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Figure 4.7. Correlation between experimental mRNA ratios and hit-and-run-based CEF 

ratios for carbon shift from glucose to ethanol in batch cultures 
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As it can be seen from both of the figures (4.7 and 4.8),  the two alternative 

approaches lead to noticeably worse correlation with experimental data, compared to the 

correlation when EFM-based CEF values are used.  
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Figure 4.8. Correlation between experimental mRNA ratios and multi-LP-based CEF ratios 

for carbon shift from glucose to ethanol in batch cultures 

  

4.5.  Concluding Remarks 

 

The hierarchical transmission of transcriptome changes to flux level was investigated 

using control effective fluxes rather than the fluxes derived from flux balance analysis. The 

degree of high correlation between transcriptome and fluxome obtained by CEF approach 

points out that the major reason for the lack of correlation reported so far between gene 

expressions and fluxes was due to neglecting the flexibility information of the network in 

operation. The detailed analysis using CEFs has shown that fluxes of central carbon 

metabolism are predominantly regulated at the transcriptional level in response to changes 

in carbon source. Regulation of amino acid metabolism seems to be mainly at the 

metabolic level; however, a definite conclusion can not be drawn since the analyzed 

perturbations were not directly related to amino acid metabolism. Therefore, analysis of 

nitrogen shift experiments will provide important information on the regulatory mechanism 
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of amino acid pathways. These results lead to the hypothesis that if the applied 

perturbation has a direct effect on a metabolic pathway, then the genetic response of that 

pathway at mRNA stage is propagated into the flux stage, as demonstrated for central 

carbon metabolism in this study.  
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5.  INTEGRATION OF METABOLOME DATA WITH METABOLIC 

NETWORKS REVEALS REPORTER REACTIONS 

 

 

One of the goals of systems biology is to obtain overall quantitative description of 

cellular systems. This is currently not achievable since the number of components and 

interactions involved in these systems is quite large resulting in a very large parameter 

space. Thus, methods are required to reduce the dimensionality and particularly identify 

key regulatory points in the many different cellular processes. Metabolism is a good 

starting point to develop such analysis methods as it is studied in great detail and well 

annotated. Furthermore, genome-scale metabolic models have been developed for many 

different cellular systems (Edwards & Palsson, 2000; Förster et al., 2003; Sheikh et al., 

2005), and besides their use for simulation of cellular function (Edwards et al., 2001; 

Famili et al., 2003; Price et al., 2004b) these models can serve as scaffolds for analysis of 

genome-scale biological data (Covert et al., 2004; Borodina & Nielsen, 2005). This has 

been demonstrated recently for analysis of transcriptome data, where the use of genome-

scale metabolic models enabled identification of co-regulated sub-networks and reporter 

metabolites (Patil & Nielsen, 2005). Although transcriptome data provides an overview of 

the global regulation in the metabolism, understanding of cellular physiology is incomplete 

without knowledge of metabolome owing to the high connectivity in metabolic networks 

and inherent inter-dependency between enzymatic regulation, metabolite levels and fluxes 

(Nielsen, 2003). Metabolites, acting as intermediates of biochemical reactions, play a 

crucial role within a living cell by connecting many different operating pathways. 

Metabolite levels are determined by the concentrations and the properties of the 

surrounding enzymes, making their levels a complex function of many cellular regulatory 

processes in different dimensions. Thus, the metabolome represents a snapshot of the 

functioning metabolism of the cell and hence provides valuable information about 

regulation of several different cellular processes (Villas-Bôas et al., 2005c). Consequently, 

in recent years there has been increased focus on analysis of the metabolome (Sumner et 

al. 2003; Bino et al., 2004; Villas-Bôas et al., 2005c). Even though traditional data analysis 

methods like principal component analysis, clustering analysis and chemometrics have 

shown to be efficient for analysis of this kind of data (Raamsdonk et al., 2001; Allen et al., 

2003), there are some limitations with these methods for uncovering the underlying 
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biological principles (Weckwerth et al., 2004). Furthermore, there are still only few 

example studies on the use of metabolome data to understand regulatory principles in 

metabolism.  

 

Functional analysis of cellular metabolism and, in particular, integration of 

metabolome data with other omics-data demands (semi-)quantitative measurements of key 

metabolites. However, a problem with metabolomics is the scarcity of targeted quantitative 

data, and often metabolome analysis is (at best) semi-quantitative even though there is a 

trend towards more quantitative analysis (Nielsen & Oliver, 2005). Although it is currently 

not yet possible to quantify all the metabolites in a cellular system (Goodacre et al., 2004, 

Fernie et al., 2004), a high-throughput GC-MS method that allows semi-quantitative 

identification of several metabolites in S. cerevisiae was recently developed (Villas-Bôas et 

al., 2005a; Devantier et al., 2005a). In the latter studies, the levels of 52 unique metabolites 

(out of 584 reported unique metabolites in the genome-scale yeast model, Förster et al., 

2003) were determined in genetically different yeast strains under different environmental 

conditions. Specifically, metabolites playing important roles in the central carbon 

metabolism and amino acid biosynthesis were able to be identified.  

 

In order to understand the regulatory principles underlying the changes in metabolite 

levels an algorithm was developed that enables integration of such quantitative 

metabolome data with genome-scale models by using a graph theoretical representation of 

the metabolism. The application of this algorithm is demonstrated here for the metabolome 

data reported by Villas-Bôas et al., (2005a) and Devantier et al. (2005a). The algorithm 

includes preprocessing of a genome-scale yeast model such that the fraction of measured 

metabolites within the model is enhanced, and hereby it is possible to map significant 

alterations associated with a perturbation even though a small fraction of the complete 

metabolome is measured. The significance of changes in the metabolite levels is used to 

identify reporter reactions around which the most significant coordinated metabolite 

changes are observed. Reporter reaction analysis is an attempt to infer the differential 

reaction significance based on metabolite measurements, and hence provides a basis for 

understanding the underlying cellular processes responding to the perturbations. It is 

further demonstrated that through combination with transcriptome data, reporter reactions 

may provide clues on whether regulatory control at a given reaction node is at the 
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metabolic level or at the hierarchical level. Hereby, the reported approach represents an 

attempt to map different layers of regulation within metabolic networks through 

combination of metabolome and transcriptome data. 

 

5.1.  Methods 

 

5.1.1.  Graph Representation 

 

In the present study, the metabolic network ENZSUB-3, the pre-processed model 

(see section 5.2), was represented as a bipartite undirected graph in order to identify 

reporter reactions. Reactions and metabolites were both taken as nodes, and the edges 

denoted the interactions between them (Patil & Nielsen, 2005). Hence, the resulting graph 

consisted of 317 nodes.  

 

Different genetic and environmental perturbations associated with the two datasets 

(Devantier et al., 2005a; Villas-Bôas et al., 2005a) were analyzed. The graph 

representation was used to identify ‘reporter reactions’ for these perturbations. The 

algorithm used in the simulations is a modification of the algorithm recently developed by 

Patil & Nielsen, 2005, which was based on the analysis of transcriptoma data to identify 

so-called reporter metabolites, the spots in the metabolism with substantial transcriptional 

regulation. The modified algorithm herein has the capability of identifying reporter 

reactions, the putative key points in the metabolism in terms of metabolic regulation 

(Figure 5.1).  

 

5.1.2.  Significance Test 

 

The significance of change for the experimental metabolite levels between any two 

conditions were determined by comparing the levels with the aid of a statistical-test, 

thereby quantifying the effect of the associated perturbation. For each of the perturbations, 

the statistical test was applied to the experimental data following the normalization process 

described by Villas-Bôas et al. (2005a). Briefly, the normalization process is such that the 

within-group variances among replicates are reduced and between-group variances are 

maximized. The Mann-Whitney rank-sum u-test is a nonparametric statistical test which 
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has no a priori assumption about the distribution type of the data. It was preferred over the 

standard t-test since the distribution of levels of some of the metabolites among the 

replicates, especially NAD+ and NADPH, was found to be skewed rather than normal 

distributed. The Student t-test assumes normal distribution of the data and compares the 

mean values whereas the u-test compares medians rather than means. Furthermore, median 

is a better measure for skewed distributions since it is less sensitive to the extreme scores 

that can be encountered in the replicates. 

 

Perturbation
Experiments

O2O2 O2O2 Stoichiometric model

Graph theoretical
representation

Quantitative Metabolome Data 
by GC-MS analysis

Significance of change

Reporter Reactions

2-oxoglutarate          5.34E-08
L-Histidine 7.48E-07
L-Isoleucine 1.01E-06
L-Proline 3.58E-06
Pyruvate 1.04E-05

.                  .

.                  .

.                  .

 

Figure 5.1. Reporter reaction algorithm to identify differential reaction significance by 

integrating metabolome data with metabolic networks 

 

5.1.3. Strategy for the Lack of Data 

 

Since the utilized reporter reaction algorithm depends on the scoring of reactions 

based on the p-values of involved metabolites, the lack of p-values for the 94 metabolites 

that remain unmeasured in the final ENZSUB-3 model must be handled. Random 
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assignment from GC-MS peaks was used to overcome the problem of the unavailable data. 

GC-MS spectra contain a large number of unknown peaks due to unmeasured metabolites. 

All the peaks in GC-MS spectra were deconvoluted for each replicate. The output was 

normalized by using a Python code which minimizes the sample variability within the 

classes (Villas-Bôas et al., 2005a). Afterwards, the peaks in the spectra within a selected 

time interval (0.15 minutes) were binned to account for the fluctuations in the retention 

times using a MATLAB algorithm. This has resulted in the overall detection of 236 

unknown peaks for the first dataset (Villas-Bôas et al., 2005a), with 116, 178 and 201 non-

zero peak comparisons for genetic perturbations under aerobic and anaerobic conditions 

and environmental perturbations respectively, and 240 unknown peaks for the second 

dataset (Devantier et al., 2005a) with 129 and 174 non-zero peak comparisons for the 

environmental perturbation of laboratory and industrial strains respectively. The 

significance of change for these unknown peaks was quantified for each perturbation by 

means of p-values using the u-test. These p-values were randomly assigned to the 

unmeasured metabolites.  

 

5.1.4.  Reporter Reaction Analysis 

 

Resultant p-values were converted to z-scores using an inverse normal cumulative 

distribution function for further analysis. Each reaction in the constructed graph was scored 

by calculating the score of the subnetwork formed by its k neighboring metabolites, and z-

values of the metabolites were used in the scoring.  

 

∑= kmetabolitereaction Z
k

Z ,

1
    (5.1) 

 

Zreaction score was then corrected for background distribution using the mean (µk) and 

standard deviation (σk) of z-scores of metabolite groups of the same size, obtained by 

random sampling from the same metabolic network.  
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In order to minimize the sensitivity of reporter reactions to the randomly selected p-

values for the non-measured metabolites as mentioned above, the reporter-reaction 

algorithm was executed 1000 times by repeating the random assignment in each case. This 

repetition eliminated the effect of the p-values of the assigned peaks on results. For each 

reaction, the z-scores in each repetition were averaged to get a final z-score. Those 

reactions with the highest z-scores (typically z > 1.28, corresponding to p< 0.10) can be 

defined as reporter reactions for a system with complete metabolome data. Since available 

experimental data were not complete, the calculated z-scores were used for deducing the 

relative significance of the reactions in the analyzed perturbations. Namely, the main focus 

is comparative analysis of reactions among the studied perturbations as revealed by Figure 

5.3, rather than comparing a reaction to another based on its Z-score. The underlying 

reason is to avoid potentially incorrect conclusions due to the unmeasured metabolites 

which have randomly assigned p-values. Additionally, the analyzed reactions have a high 

percentage of measured metabolite content as indicated in Tables 5.1 and 5.3. In the case 

of low coverage of measured metabolite content, this method should be followed with 

caution as the resultant Z-scores of reactions will become insignificant, and such reactions 

will not be picked up as reporters. However, in future when analytical methods have been 

further improved it is likely  that more metabolites can be measured, and one will 

overcome this shortcoming and our approach may then be used to infer  more solidly about 

the level of regulation at different parts of large metabolic networks. 

 

5.1.5.  Computational Tools and RepRxn MX Software Package 

 

METATOOL 4.3 (Pfeiffer et al., 1999) was used for the identification of enzyme 

subsets in the UNCOMP model. The codes written in MATLAB 7.0 (MathWorks Inc.) 

were utilized for the model pre-processing summarized above and to call the algorithm 

written in C++ for reporter reaction identification. Flux Balance Analysis was performed 

using in-house software BioOpt employing LINDO API for linear optimization. A 

software package which works under MATLAB 7.0 and includes 13 scripts was developed 

to automate the preprocessing steps (Figure 5.2), and reporter reaction algorithm. This 

package, named as RepRxn MX, is detailed in Appendix G. Deconvolution of peaks in 

GC-MS spectra for the identification of metabolites based on a metabolite library and for 
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the random peak assignment was achieved using AMDIS software (Stein et al., 1999), and 

the peak normalization software was kindly provided by J. F. Moxley.  

 

5.2.  Model Preprocessing 

 

 Due to the large chemical diversity of the metabolome there is currently no single 

analytical method that enables analysis of the complete metabolome. Even the best 

analytical methods reported to date for metabolome analysis therefore only cover a small 

fraction of the metabolites present in genome-scale metabolic models. The unavailability 

of data for a large number of metabolites is one of the major problems associated with 

mapping (and hence integration) of metabolome data on to genome-scale metabolic 

networks. In order to overcome this fundamental problem, the genome-scale model of 

Forster et al. (2003) is pre-processed so as to obtain a reduced model where the fraction of 

experimentally measured metabolites was enriched. This processing was done by 

systematically eliminating unmeasured metabolites from the metabolic network. It should 

be noted that the model pre-processing is dependent on the metabolome data that are 

available, and the pre-processing will have to be done for each case. However, following 

the flow-chart depicted in Figure 5.2 this pre-processing is relatively straight forward and 

can easily be done also for other metabolic networks. 

 

The yeast genome-scale model includes three compartments (mitochondria, cytosol 

and external space) with 844 metabolites (559 cytosolic, 164 mitochondrial, 121 external) 

and 1175 reactions (Förster et al., 2003). Within the context of this model, metabolites 

present in more than one compartment are treated as if they are different entities in each 

compartment. However, the experimental data used in this analysis (and most of the 

datasets available to date) can only differentiate between extracellular and intracellular 

space. Since metabolite levels in different cellular compartments are not available, the 

cytosolic/mitochondrial compartmentation of the model was removed and corresponding 

metabolites were represented as one, with their corresponding reactions conserved. Also, 

there are a number of duplicate reactions due to the presence of isoenzymes in the model, 

and these reactions were lumped into single reactions since metabolome data alone does 

not provide information that enables distinction between the operations of different 

isoenzymes. As a result, the ‘processed’ model (Uncompartmented model, UNCOMP) 



 

 

86 

consists of 677 metabolites (559 internal, 118 external) with 725 reactions, including 

transport reactions. With this model the experimental data used here amount to about 12 

per cent of these 677 metabolites (52 internal, 32 external).  

 

Genome-Scale Yeast Model
(1175 reactions, 844 metabolites)

Uncompartmented (UNCOMP) Model
(725 reactions, 677 metabolites; 12.4 %)

Enzyme-subset (ENZSUB-1) Model
(590 reactions, 563 metabolites; 14.9 %)

ENZSUB-2 Model
(361 reactions, 285 metabolites; 29.5 % )

ENZSUB-3 Model
(139 reactions, 178 metabolites; 47.2 %)

Remove compartmentation  
Remove duplicate reactions

Combine enzyme subsets
(using METATOOL)

Discard reactions with no measured metabolite
Leave one of the cofactor pairs

Apply FBA to identify reactions inactive
under experimental conditions
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(725 reactions, 677 metabolites; 12.4 %)

Enzyme-subset (ENZSUB-1) Model
(590 reactions, 563 metabolites; 14.9 %)

Enzyme-subset (ENZSUB-1) Model
(590 reactions, 563 metabolites; 14.9 %)

ENZSUB-2 Model
(361 reactions, 285 metabolites; 29.5 % )

ENZSUB-2 Model
(361 reactions, 285 metabolites; 29.5 % )

ENZSUB-3 Model
(139 reactions, 178 metabolites; 47.2 %)

ENZSUB-3 Model
(139 reactions, 178 metabolites; 47.2 %)

Remove compartmentation  
Remove duplicate reactions

Combine enzyme subsets
(using METATOOL)

Discard reactions with no measured metabolite
Leave one of the cofactor pairs

Apply FBA to identify reactions inactive
under experimental conditions

 

Figure 5.2. The preprocessing of the model to reduce the fraction of unmeasured 

metabolites and to focus on reactions involving measured metabolites. Percentages indicate 

the fraction of measured metabolites in each model 

 

Enzyme subsets are enzymes that always operate together in fixed flux proportions at 

steady state (Pfeiffer et al., 1999; Schuster et al., 2002b), often representing enzymes in 

linear pathways. Accordingly, the intermediate metabolites in enzyme subsets can be 

assumed to be similarly affected by the perturbations. The uncompartmented model 

(UNCOMP) was further reduced in size by using METATOOL 4.3 (Pfeiffer et al., 1999; 

Dandekar et al., 2003) and thus representing each enzyme subset as a single reaction. The 
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resulting model (Enzyme-subset model, ENZSUB-1) consists of 563 metabolites and 590 

reactions and it has about 15 per cent of the metabolites measured within the data used. 

Since the removal of the metabolites in linear pathways also led to the omission of six 

measured metabolites, the reactions containing these metabolites were restored back into 

the ENZSUB-1 model. To further increase the fraction of the measured metabolites, 

potentially inactive (or potentially low flux) reactions were removed. This was done by 

using Flux Balance Analysis (FBA) (Varma & Palsson, 1994; Kauffmann et al., 2002) for 

simulation of fluxes at specific environmental conditions used in the experiments (aerobic 

and anaerobic batch cultivation in glucose-limited minimal media). ENZSUB-1 model was 

used to simulate the fluxes with the objective of optimum growth. Then, the maximum and 

the minimum flux for each reaction in the model were obtained by constraining the specific 

growth rate between its optimum value and 50 per cent of the optimum. Reactions that had 

zero flux in the FBA analysis (at both optimum values) were considered as potentially 

invariant between the studied perturbations and thus omitted from the ENZSUB-1 model. 

The resulting model had 349 reactions involving 267 metabolites. The here-used FBA-

based approach for model reduction does not necessarily imply that the eliminated 

reactions are inactive and that the metabolites involved in these reactions not present in the 

cell. However, it is assumed that as these reactions are likely to carry very low fluxes under 

the studied conditions, the associated metabolite pools are likely to be weakly affected due 

to changes in the fluxes through these reactions.  Although this approach is useful, the 

assumption is not fool-proof as certain measured metabolites were intermediates in 

pathways with zero fluxes (Pimelic Acid, PIMExt, Myristic Acid, C140xt, trans-4-

hydroxy-L-proline, Itaconate, Nicotinate, 4-Aminobenzoate, THMxt). The first six of these 

metabolites were detected as ‘invariant’ by the FBA approach due to the fact that that these 

metabolites are not connected to the overall network (Förster et al., 2003). However, here 

reactions involving these measured metabolites were restored back, and the resulting 

model comprised a total of 285 metabolites participating in 361 reactions (Figure 5.2). 

Even though certain reactions may be removed from the analysis by using this approach, 

the algorithm will still correctly identify reporter reactions, given the metabolome dataset. 

The resulting metabolic network, ENZSUB-2 model, was substantially enriched in terms 

of the content of measured metabolites (now accounting for about 30 per cent). 
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In order to further focus the analysis only on reactions involving measured 

metabolites, ENZSUB-3 was constructed by keeping only reactions that involved at least 

one measured metabolite. Additionally, only one member of the NADH/NAD+, 

NADPH/NADP+, FADH2/FAD+ cofactor pairs, when available, was retained in the 

remaining reactions since the levels of members of each pair were assumed to be 

interdependent. The resulting metabolic network, ENZSUB-3, included a total of 178 

metabolites participating in 139 reactions, which corresponds to more than 47 per centt of 

the available quantitative metabolome data (Figure 5.2).  The 139 reactions included in the 

model are given in the Appendix F.1. 

 

The significance of change in the levels of metabolites between any two conditions 

was calculated by applying a statistical test (see methods section). However, it is difficult 

to deduce which reactions in the cell are affected most by only judging the significance of 

the change in metabolite levels, since the number of the metabolic reactions in the cell is 

high and one metabolite usually appears in more than one reaction. Thus, a normalized z-

score for each reaction was calculated based on the z-values of its neighboring metabolites 

(p-values of individual metabolites were converted to z-scores by using inverse normal 

cumulative distribution function, see methods section). Here it is assumed that the 

calculated reaction z-scores can be regarded as an indicator of the significance of how the 

reactions respond to the studied perturbation at metabolic level. This assumption is based 

on the fact that metabolite levels are governed by changes in fluxes and enzyme activities 

(Nielsen, 2003). Reactions exhibiting significant changes (typically z > 1.28, 

corresponding to p< 0.10) for the perturbations analyzed were identified by using the graph 

representation of the derived metabolic model, ENZSUB-3, and listed in Table 5.1 and 

Table 5.3. A loose cut-off was deliberately chosen. The rason was not to be too-biased in 

the light of the fact that measurements were not available for all of the metabolites in the 

model, and thus the resultant p-values are in fact, in general, shifted to high values due to 

randomly selected p-values for those unmeasured metabolites. 

 

5.3.  Effect of an altered redox metabolism and oxygen availability 

 
As a first demonstration of the developed approach, data from metabolome analysis 

of two different S. cerevisiae strains was considered. The strains were a wild type 
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laboratory strain (CEN.PK.113-7D) and a redox engineered strain, which was carried out 

in batch cultures under two different environmental conditions (aerobic and anaerobic) in 

standard mineral media with glucose as the sole carbon source (Villas-Bôas et al., 2005a). 

The redox engineered strain carrying a deletion of the NADPH-dependent glutamate 

dehydrogenase encoded by GDH1 and an over-expression of the NADH-dependent 

glutamate dehydrogenase encoded by GDH2 was constructed by dos Santos et al. (2003). 

Three different perturbations were analyzed here: genetic change under both aerobic and 

anaerobic conditions (wild type versus redox engineered strain), and environmental change 

for the wild type strain (aerobic versus anaerobic). Since it was reported that sample-to-

sample variability exceeds flask-to-flask variability, replicate samples from different shake 

flasks were treated equivalently (Villas-Bôas et al., 2005a). Accordingly, the metabolome 

dataset includes around 15 intracellular and nine extracellular replicates for each 

experimental condition. The dataset used in this study is available in the supplemental 

material as normalized abundances of GC-MS peaks.  

 

Comparison of the wild type and mutant strains revealed that the genetic changes do 

not alter the basic growth characteristics in aerobic (dos Santos et al., 2003) and anaerobic 

(Nissen et al., 2000) batch cultivations. The here-developed approach, however, captures 

the associated changes in different cellular pathways by identifying a number of 

significantly affected reactions due to these perturbations. The detected reactions (Table 

5.1) belong to many different amino acid pathways, indicating a widespread effect of the 

mutation on the cellular metabolism. The present integrated approach also differentiates 

between the genetic perturbation under aerobic and anaerobic conditions as there are 

reactions that are specific to each condition. 

 

Genetic perturbations (wild type versus redox engineered) used in the present study 

are directly related to a changed redox metabolism. Environmental perturbation (aerobic 

versus anaerobic) is, however, also associated with a changed redox metabolism due to the 

direct effect of oxygen availability on the operation of the TCA cycle and the pentose 

phosphate pathway, and hence on the redox state of the cell. This is also reflected in the 

identified reporter reactions since a number of common significantly changed reactions are 

observed for the two different types of perturbation (Table 5.1, Table 5.2). 
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Table 5.1. Reactions with significant z-scores (z > 1.28) in response to genetic 

perturbations by altered redox metabolism and environmental perturbationa,b,c. The number 

of measured metabolites and the total number of metabolites for each reaction are also 

given in parentheses 

Genetic Perturbation 

(aerobic) 

Genetic Perturbation 

(anaerobic) 

Environmental Perturbation 

(wild type strain) 

VALsyn                                     (4/4) 2.90 AGX1                                               (4/4) 2.67 UGAES (5/5) 2.41 

ALT                                 (4/4) 2.83 ALT                                          (4/4) 2.35 ALT                 (4/4) 2.34 

LEUsynES (5/6) 2.66 PROsc (2/3) 2.08 AGX1                                               (4/4) 2.34 

TYRsyn                                          (3/4) 2.54 LEUsynES (5/6) 1.80 CAR2                                  (3/4) 1.95 

CAR2                                              (3/4) 2.50 ASP3-1                                             (2/3) 1.78 LEUsynES (5/6) 1.95 

PHEsynES     (3/5) 2.25 U46_                                              (3/4) 1.64 TYRsyn                                     (3/4) 1.92 

AGX1                                           (4/4) 2.01 CHA1p                                            (2/3) 1.58 VALsyn     (4/4) 1.87 

AAT                                           (4/4) 1.86 PHEsynES     (3/5) 1.57 PHEsynES    (3/5) 1.74 

ILEsynES (6/7) 1.77 PUT1                                              (2/3) 1.55 SERsynES (4/6) 1.67 

SUCsc                                             (2/3) 1.66 VALsyn     (4/4) 1.54 GAD1              (2/3) 1.47 

SDH                                         (2/3) 1.63 GLY1                                              (2/3) 1.50 GDH13                                              (3/4)) 1.44 

HISsynES (4/10) 1.58 SERsynES (4/6) 1.41 ASP3-1                                             (2/3) 1.39 

ASP3-1                                             (2/3) 1.57    GDH2                                              (3/4) 1.38 

GDH2                                              (3/4) 1.55    MYRsc (2/2) 1.36 

DLD                                           (2/4) 1.51    ILEsynES (6/7) 1.36 

UGAES  (5/5) 1.48    HISsynES (4/10) 1.34 

SERsynES (4/6) 1.46    GLYsyn (2/4) 1.30 

LEU4                                              (2/4) 1.36    U155_ (4/4) 1.29 

FUM (2/2) 1.28       
aReactions specific to each perturbation are given in bold letters. 
bES means that the corresponding reaction is an enzyme subset consisting of combination of more than one 
reaction. 
csc in some of the reaction names stands for ‘secretion’, indicating that they are secretion reactions. 
 

The glutamate decarboxylase reaction (GAD1) appears as a significantly changed 

reaction specific to the environmental perturbation of the wild type cells, which implies a 

major role of this reaction during respiratory growth (Table 5.1). Indeed, it was reported 

(McCammon et al., 2003) that the defects in any of the 15 TCA cycle genes, associated 

with the slowing down of the respiratory metabolism, result in a substantial decrease in the 

mRNA levels of GAD1, which is in agreement with the findings reported here. GAD1 
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constitutes the first step of the glutamate catabolic pathway towards succinate (Coleman et 

al., 2001). The downstream steps of the pathway are catalyzed by Uga1p and Uga2p 

(UGAES), which are affected most by the environmental perturbation (Table 5.1). 

Detection of all reactions of this pathway (GAD1, UGAES) as responsive to the oxygen 

availability (Figure 5.3.a) indicates that they have a key role in succinate production via 

glutamate under anaerobic conditions where the yeast is secreting succinate. In fact, this 

pathway was found to be activated during oxidative (Coleman et al., 2001) or osmotic 

(sugar) (Erasmus et al., 2003) stress to control the redox balance of the cell. 

 

Table 5.2. Grouping of the reactions with significant z-scores (z > 1.28) given in Table 5.1. 

Reactions common to all perturbations and perturbation-specific ones are grouped 

separately. Complete reactions can be followed from Appendix F.1 

Reactions 

 

 

 

Genetic. 

Perturb. 

(aerobic) 

Genetic 

Perturb. 

(anaerobic) 

Environm. 

Perturb. 

(wild type) 

Reactions common to all perturbations  

VALsyn oival ↔ val, TA (4/4) 2.90 1.54 1.87 

ALT pyr ↔ ala, TA (4/4) 2.83 2.35 2.34 

LEUsynES glu + ippmal → leu, TA (5/6) 2.66 1.80 1.95 

PHEsynES    prph → phe, TA (3/5) 2.25 1.57 1.74 

AGX1 gox + ala ↔ gly + pyr (4/4) 2.01 2.67 2.34 

SERsynES p3g → ser, TA (4/6) 1.46 1.41 1.67 

ASP3-1 asp → asn (2/3) 1.57 1.78 1.39 

Reactions common to two perturbations 

TYRsyn 4hpp → tyr, TA (3/4) 2.54 0.95 1.92 

CAR2 orn → glusal, TA (3/4) 2.50 0.90 1.95 

ILEsynES    obut + pyr → ile, TA (6/7) 1.77 1.07 1.36 

HISsynES    …. → his, TA (4/10) 1.58 0.68 1.34 

GDH2 glu → akg (3/4) 1.55 1.13 1.38 

UGAES Gaba → succ, TA (5/5) 1.48 0.70 2.41 

Perturbation-specific reactions 

AAT oac ↔ asp, TA (4/4) 1.86 0.73 1.12 

SUCsc → succE (2/3) 1.66 0.27 1.26 

      



 

 

92 

Table 5.2. continued     

SDH succ ↔ fum (2/3) 1.63 0.31 1.00 

      

DLD lac → pyr (2/4) 1.51 1.18 1.11 

LEU4 oival → ippmal (2/4) 1.36 0.39 0.37 

FUM fum ↔ mal (2/2) 1.28 0.27 0.57 

PROsc  → proE (2/3) 1.24 2.08 1.26 

U46_ thr → ac (3/4) 0.92 1.64 0.98 

CHA1p ser → pyr (2/3) 1.13 1.58 1.25 

PUT1 pro → pr5carb (2/3) 0.97 1.55 0.86 

GLY1 acal + gly → thr (2/3) 1.07 1.50 1.03 

GAD1 glu → gaba (2/3) 0.13 0.70 1.47 

GDH13 akg → glu (3/4) 1.12 0.53 1.44 

MYRsc myrist  → myristE (2/2) 0.20 0.51 1.36 

GLYsyn ser ↔ gly (2/4) 0.55 1.22 1.30 

U155_ akg+ malE ↔ mal +akgE (4/4) 0.53 0.94 1.29 
*TA: transaminase activity (conversion of glutamate to alpha-ketoglutarate) 

 
Although the glyoxylate cycle is generally believed to be repressed during growth on 

glucose, Villas-Bôas et al. (2005b) found that an alternative pathway for glyoxylate 

biosynthesis is active in S. cerevisiae. Examination of the z-scores of reactions involving 

glyoxylate for all the analyzed perturbations revealed that AGX1 (reaction of enzyme 

encoded by YFL030w), which enables synthesis of glyoxylate from glycine, has much 

higher scores for all the perturbations compared to the reactions of the glyoxylate pathway 

(ICL and MLS) (Figure 5.3.b). Thus, the analysis made here supports the presence of an 

alternative pathway catalyzed by AGX1 leading to the biosynthesis of glyoxylate from 

glycine. 

 

Reporter reaction analysis also identifies that the genetic perturbation results in 

metabolic changes around the genes that are perturbed (Figure 5.3.c). Thus, the reaction 

responsible for the over-expressed gene in the redox-engineered strain, GDH2, has a 

significant z-score for the genetic perturbation under aerobic condition. It should be 

mentioned that a genetic perturbation of a gene should not necessarily result in that the 

corresponding reaction comes out as a reporter reaction,  as certain genetic perturbations 

may lead to only small changes in metabolite levels. However, in this case there are two 
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genetic modifications around α-ketoglutarate and glutamate (deletion of GDH1 and over-

expression of GDH2) which leads to identification of GDH2 as reporter. For the genetic 

change under anaerobic conditions, the detected significance of GDH2 is comparably 

lower. However, an indirect effect of the genetic modification in the glutamate 

biosynthesis can be observed from the presence of transaminase activity associated with 

some of the identified reporter reactions for this perturbation (conversion of glutamate to 

α-ketoglutarate by ALT, LEUsynES, PHEsynES, VALsyn, SERsynES, Table 5.1, Table 5.2). 

On the other hand, the aerobic-anaerobic shift for the wild-type gives rise to nearly the 

same z-score for GDH2 reaction as the genetic perturbation under aerobic conditions. One 

explanation for this similarity in behavior would be that oxygen availability may have a 

direct effect on glutamate dehydrogenase genes; that is, cessation of oxygen uptake or 

manipulation of redox metabolism may result in similar effects on this node in the 

metabolism.  In fact, in chemostat cultures, GDH2 is associated with a significant 

transcription change when subjected to the same environmental perturbation (Piper et al., 

2002).  On the other hand, it is not possible to make a definite interpretation about the 

effect of the mutation on the deleted gene, GDH1, by looking at the z-score of GDH13 

reaction since the reaction catalyzed by Gdh1p is identical with that catalyzed by Gdh3p. 

Consequently, what is reflected by this z-score is the ‘combined’ response of these two 

enzymes. The reason that the GDH13 reaction is not identified as a reporter reaction 

whereas the GDH2 reaction is identified can only be explained by either a different 

response in the co-factor level as a consequence of the perturbations, i.e. the 

NADPH/NADP+ levels do not change as much as the NADH/NAD+ levels, or due to 

measurement errors of these co-factors (these co-factors are inherently difficult to 

measure). 

 

Since TCA cycle activity is known to be low under anaerobic conditions, associated 

effect of genetic mutation under this condition is expected to be weaker than the other two 

perturbations analyzed. The z-scores for the SDH and FUM reactions (both being part of 

the TCA cycle) are clearly in agreement with this expectation (Figure 5.3.d). These two 

reactions are also members of the electron transport system, and this further explains why 

the metabolites surrounding these reactions exhibit remarkably weaker coordinated change 

in the genetic perturbation under anaerobic condition than in the other perturbations. 
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Figure 5.3. Example pathway structures based on z-scores of reactions, which demonstrate 

the metabolomic response of the selected reactions for the effect of an altered redox 

metabolism and aerobic/anaerobic growth. The dashed lines correspond to the cut-off of 

1.28 (p = 0.10) 

 

Similarly, the z-scores of key reactions involving oxaloacetate suggest that these 

reactions are mainly affected in the redox engineered strain under aerobic conditions 

(Figure 5.3.e), and AAT, a transamination reaction leading to the conversion of 
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oxaloacetate to aspartate, appears to be the key reaction where oxaloacetate is involved. 

There is no literature data available about the effect of the genetic perturbation on this 

metabolic reaction but as the genetic perturbation results in a changed ratio of glutamate to 

2-oxoglutarate (Villas-Bôas et al., 2005a) that may have effected this important 

transamination reaction.  

 

5.4.  Effect of very-high-gravity fermentation 

 
As a second demonstration of the developed approach, metabolome data from two 

different S. cerevisiae strains, a laboratory strain (CEN.PK.113-7D) and an industrial strain 

used for fuel ethanol production (hereafter termed as “Red Star”), was used. For both 

strains the data were obtained from anaerobic batch cultures under two different cultivation 

conditions; exponential growth in a glucose containing standard mineral media and the 

stationary phase in a maltodextrin containing very-high-gravity (VHG) mineral media 

(Devantier et al., 2005a). Environmental perturbations obtained through variation in the 

media were analyzed here for each strain. The intracellular metabolome dataset includes 

four replicates for the standard medium and eight replicates for the VHG medium. The 

extracellular metabolome dataset has six replicates for each condition. The complete 

dataset is available in the supplemental material. 

 

As for the first case study discussed above, the two media perturbations analyzed 

revealed the same trend for the glyoxylate reactions, pointing to substantial regulation of 

the AGX1 reaction node in both perturbations (data not shown). In case of the glutamate 

metabolism, all the reactions have noticeably higher z-scores, except GDH2, implying that 

this pathway is highly affected by VHG associated media changes. All of the TCA cycle 

reactions shown in Figure 5.3.d have very low z-scores, in accordance with the fact that the 

cycle is barely operational under any of the experimental conditions studied (anaerobic 

fermentations). For reactions involving oxaloacetate, AAT again appears to play the major 

role as observed in the first data set, in parallel with the graph shown in Figure 5.3.e. 

 

The reaction governed by Gad1p, which catalyzes decarboxylation of glutamate – a 

reaction that is generally considered to be associated with stress, is found to be 

significantly changed in both strains when the media was changed (Table 5.3). A 
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noticeably lower score was obtained for comparison of the two strains grown on the 

standard medium (results not shown), which shows that the standard medium imposes less 

stress compared with the VHG medium where sugar and ethanol stresses are predominant. 

The appearance of all reactions (GAD1, UGAES) involved in the glutamate catabolic 

pathway as reporter reactions when the media is perturbed (Table 5.3) points to the fact 

that this perturbation has a major effect on the amino acid metabolism, and probably also 

on the redox balance in the cell. The results of transcriptome analysis for the same strains 

in standard and VHG media (Devantier et al., 2005b) indicate that the strains have 

differences in their redox balancing, confirming the finding reported here. 

 

A large number of transport reactions were found to have significant z-scores (Table 

5.3). GC-MS analysis of extracellular metabolites in the VHG medium revealed many 

more metabolites compared to what is found in the standard medium, explaining the 

appearance of transport reactions as significant. The here-reported algorithm allowed us to 

identify and quantify the secretion reactions which are mostly affected from the media 

change, by integrating both intracellular and extracellular measurements to the reaction 

network. Secretion of a number of amino acids (glutamate, aspartate, proline, alanine and 

glycine), and succinate, pyruvate and lactate are commonly and significantly regulated in 

response to media perturbation for both the laboratory and the red star strain.  On the other 

hand, detection of strain-specific secretion patterns (valine, citrate and alpha-ketoglutarate, 

Table 5.3) points to differences in operation of the metabolic network in the two strains, 

possibly arising from the difference in the redox metabolism of the two strains. 

 

Since the change in the fermentation medium led to ethanol and osmotic stress for both 

strains (Devantier et al., 2005a), it is not surprising that many of the reactions are shared in 

the identified lists for the two strains in the media comparison (Table 5.3). Transcriptome 

analysis of this dataset revealed that a substantial part of the significantly changed genes 

were involved in protein synthesis and amino acid metabolism (Devantier et al., 2005b).  

Thus, amino acid pathway reactions detected by reporter reaction analysis (Table 5.3) are 

in accordance with the transcriptome data. Absence of amino acid synthesis in VHG media 

due to the cessation of growth in the stationary phase can be a possible cause of the 

observed differences. 
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Table 5.3.  Effect of media change (standard vs. VHG medium) on each strain.  Reactions 

with significant z-scores (z > 1.28) are showna,b. z-scores of gene expression changes are 

also given. zRE: z-scores of reactions calculated by the developed approach, zGE: z-scores 

of genes/gene groups calculated from asscociated p-values from transcriptome data.  

Media Change for laboratory strain 

(CEN.PK113-7D) 

Media Change for industrial strain  

(Red Star) 

  zRE zGE   zRE zGE 

ALT                                          (4/4) 2.50 2.48 ALT                                          (4/4) 2.48 1.80 

AGX1                                        (4/4) 2.45 0.86 AGX1                                        (4/4) 2.31 2.21 

UGA ES                                   (5/5) 2.18 1.69 UGA ES                                   (5/5) 2.23 0.38 

ECM40                                           (3/4) 1.85 2.39 U155_                                             (4/4) 2.01 - 

GLUsc                                            (2/3) 1.85 1.17 ASN                                    (4/7) 1.85 0.54 

ASN                                              (4/7) 1.84 2.30 TYRsyn                                             (3/4) 1.84 3.41 

CAR2                                              (3/4) 1.74 0.57 GLUsc                                           (2/3) 1.81 0.79 

LYSsyn ES (7/8) 1.67 2.46 PHEsyn ES                                       (3/5) 1.65 0.98 

TRP23                                          (3/5) 1.67 1.31 TRP23                                         (3/5) 1.65 0.78 

ASP3-1                                           (2/3) 1.47 1.45 PROsc                                           (2/3) 1.45 0.90 

CHA1p                                           (2/3) 1.47 0.93 ALAsc                                            (2/3) 1.45 0.75 

U42_ -43_                              (2/3) 1.47 - GLYsc                                            (2/3) 1.45 0.80 

ASPsc                                            (2/3) 1.43 2.09 LACsc                                            (2/3) 1.45 0.86 

PROsc                                           (2/3) 1.43 1.40 PYRsc                                        (2/3) 1.45 0.86 

ALAsc                                            (2/3) 1.43 1.90 SUCsc                                             (2/3) 1.45 - 

GLYsc                                            (2/3) 1.43 1.66 CITsc                                             (2/3) 1.45 - 

LACsc                                            (2/3) 1.43 0.81 AKGsc                                             (2/3) 1.45 - 

PYRsc                                        (2/3) 1.43 0.81 U88_                                              (2/3) 1.43 - 

SUCsc                                             (2/3) 1.43 - GAD1                                              (2/3) 1.43 1.21 

GLY1                                              (2/3) 1.41 0.41 ILEsynES                      (6/7) 1.42 1.90 

VALsc                                           (2/3) 1.38 1.55 ASP3-1                                             (2/3) 1.41 1.34 

PHEsyn ES                                       (3/5) 1.36 1.66 U42_-43_                                                                                           (2/3) 1.41 - 

GAD1                                              (2/3) 1.29 1.46 LEUsynES        (5/6) 1.38 0.91 

    ASPsc                                            (2/3) 1.29 0.86 
a Reactions specific to each perturbation are given in bold letters. 
bNumber of measured metabolites and total number of metabolites for each reaction are also given in 
parentheses 
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5.5.  Integration of metabolome data with transcriptome data for understanding 

regulation 

 

For the latter case study, where the effect of a VHG medium was analyzed on the 

metabolome of laboratory and industrial strains, there was also performed genome wide 

expression analysis (Devantier et al., 2005b). This basically enables further evaluation of 

mode of regulation for the different reactions in the reduced metabolic network. ter Kuile 

& Westerhoff (2001) introduced the concept of metabolic regulation and hierarchical 

regulation, where the first indicates that regulation of flux is at the level of enzyme 

kinetics, i.e. through changes of the metabolite levels, and the second indicates that 

regulation of flux is at the level of enzyme production /activity 

(transcription/translation/post-translational modification). As both metabolite data and 

transcription data are available for this case study, it was investigated whether it was 

possible to identify the type of regulation at the individual reaction level. A major obstacle 

for this kind of analysis is, however, that information about changes in fluxes for the 

analyzed conditions is not available, and such data would also be difficult to obtain. 

Although there are efficient methods for obtaining data on the metabolic fluxes in the 

central carbon metabolism (Nielsen, 2003), it is difficult to get good estimates for the 

fluxes in all pathways of the metabolic network analyzed here, and even though the fluxes 

can be calculated by using flux balance analysis, this method is not well suited to give 

precise estimates for the actual fluxes in networks where there are redundant pathways. In 

order to proceed with analysis, it was therefore assumed that whenever there was a 

coordinated significant change in metabolite levels around a reaction, then it is very likely 

that the flux through this reaction is also changing. However, there is no guarantee that the 

flux through this reaction is also changed as there could also be a change in the enzyme 

concentration, or there could even be altered allosteric regulation of the enzyme, thus 

keeping the flux unchanged. Thus, the assumption made may result in identification of 

some false positives, but still the analysis would clearly lead to identification of reactions 

around which there is at least one level of regulation (and possibly several levels of 

regulation), and these reactions will therefore be referred as being metabolically regulated. 

For all the reactions that are not identified as reporter reactions one can not infer anything 

about whether the flux has changed, but still it can be deduced from the transcription data 

whether there has occurred regulation at the hierarchical level, and even though this does 
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not necessarily mean hierarchical regulation of the flux these reactions will be referred as 

being hierarchically regulated. This deduction can still be informative as indicator of the 

logic of transcriptional regulatory machinery governing gene expression. For cases where 

there was a significant change at the transcriptional level for an identified reporter reaction 

this was considered to be a situation where there was mixed regulation. 
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Figure 5.4. a) Major components of flux regulation b) Classification of (reporter) reactions 

with respect to regulation type. mRNA levels were assumed to reflect enzyme activities 

 

The metabolic network includes several enzymes (hence reactions) governed by 

multiple genes. Thus, in order to infer about the significance of change in expression levels 

for the reactions the transcript levels for all genes coding for the same reaction were 

summed up before applying the statistical test. The p-values of transcripts were then 

calculated by using a t-test with unequal variance, and further converted into z-scores to 

enable a comparison with the z-scores of reactions based on metabolome data. 

 

Using this approach all the reactions of the metabolic network was grouped into 

whether they were metabolically or hierarchically regulated (or a combination or not 

regulated at all) for the VHG dataset. To score the magnitude of the regulation at the 

hierarchical and metabolic levels, the corresponding z-scores were used. Hereby the 

qualitative evaluation of z-scores emerging from the transcriptome and the metabolome 

data enabled us to get an indication of regulation within the metabolic network (see Figure 
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5.4, Table F.1). The cases where only the transcript z-score is significantly changed can be 

scored as points with possible hierarchical regulation, whereas the opposite case where 

only the metabolite based z-score has significantly changed implies metabolic regulation of 

the corresponding reaction (Rossel et al., 2005). When both z-scores are significant there is 

regulation shared at both levels, and when none of the z-scores are significant, it is not 

possible to infer about at which level there is regulation. 

 

Figure 5.5 and Table F.1 presents magnitude of the regulation for the reactions of the 

metabolic network, ENZSUB3, at the hierarchical and metabolic levels for the effect of 

very high-gravity (VHG) fermentation media on laboratory (CEN.PK113-7D) and 

industrial (RS) strains. z-scores calculated based on gene expression changes (zGE) and 

based on changes in the surrounding metabolites (zRE) are shown. Red means a positive z-

score, and green means a negative z-score indicating that the regulation is insignificant. 

Reactions were color-coded with respect to their z-scores using z = 1.28 (p = 0.10) as the 

cut-off value to decide on the corresponding regulation type. yellow: hierarchically 

regulation. black: metabolically regulation. violet: mixed regulation. white: statistically 

insignificant score  for both type.  

 

Of the 121 reactions in the model having corresponding genes associated with them, 

the number of reactions predicted to be regulated hierarchically, metabolically, and at both 

levels were 56, seven, and 14 respectively for the media perturbation with the laboratory 

strain, and 31, 14, and five for the same perturbation with the industrial strain (Figure 5.5, 

Table F.1). For the laboratory strain, 44 reactions were found to be relatively irresponsive 

to the perturbation. On the other hand, the number of potentially unregulated reactions was 

much higher (71) for the industrial strain. One explanation for the observed predominance 

of transcriptional regulation could be the fact that the strains protect themselves against the 

applied perturbation by mainly changing their gene expression to minimize the changes in 

the metabolome; an observation also encountered in plants (Hirai et al., 2004). Figure 5.5 

and Table F.1 suggest that metabolic regulation is mainly predominant for secretion 

reactions and amino acid pathways with or without simultaneous hierarchical regulation, 

the sole exceptions being proline and methionine/cysteine pathways. It is logical to identify 

the latter as subjected to different regulation since they are involved in pathways with 
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sulfur assimilation and there were no direct perturbation on sulfur utilization in the 

experimental study.  

 

The type of regulation for a number of reactions differs between the two strains, 

which supports the finding that gene expression pattern can vary within different S. 

cerevisiae strains (Ferea et al., 1999; Brem et al., 2002; Townsend et al., 2003; Jansen et 

al., 2005). Ferea et al. (1999) have reported altered expression levels of genes involved in 

metabolite transport for strains obtained by adaptive evolution in glucose limited cultures. 

This observation presents an interesting analogy to our analysis, as the industrial strain is 

also likely to be a result of adaptive evolution. Similarly, different wild type strains were 

found to have widespread variations in expression of genes involved in amino acid 

metabolism (Townsend et al., 2003). In order to further validate that the metabolism is 

different in the industrial and laboratory strains, we performed principal component 

analysis of the metabolome data for the VHG medium dataset (Figure 5.6). This shows a 

clear distinction of the strains indicating that the strains behave remarkably different at the 

level of metabolome. Our analysis systematically combines the transcriptome and 

metabolome and deduces the underlying regulation causing these differences in 

metabolism.  Notably, following a change to a high-gravity fermentation medium, 

transcriptional regulation of metabolism is much more pre-dominant in the laboratory 

strain as compared to the industrial strain; whereas the number of reporter reactions 

between two strains is around the same with a 70 per cent overlap (Table 5.3). This 

strongly suggests that although the industrial strain has a better adaptation of its 

transcriptional program for high-gravity media, there is still similar metabolic regulation 

pattern to the laboratory strain. The difference in strains in terms of their response to the 

same perturbation is, again, very visible in the secretion reactions where laboratory strain 

attempts to regulate them also at transcriptional level, whereas industrial strain relies 

predominantly on metabolic control (Figure 5.5, Table F.1). The lesser degree of 

transcriptional regulation in the industrial strain could benefit the cells by reducing the 

investment of resources in transcriptional regulatory machinery. 
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Figure 5.5. Magnitude of the regulation for reactions of the metabolic network, ENZSUB3 
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Figure 5.6. Principal component analysis of the dataset which involves the effect of very-

high-gravity fermentation. 1: CEN.PK strain in standard media; 2: Industrial strain in 

standard media; 3: CEN.PK strain in VHG media; 4: Industrial strain in VHG media) 

 

5.6.  Low Coverage of Measured Metabolite Content by the Preprocessed Model 

 

Due to the large chemical diversity of the metabolome there is currently no single 

analytical method that enables analysis of the complete metabolome. Even the best 

analytical methods reported to date for metabolome analysis therefore only cover a small 

fraction of the metabolites present in genome-scale metabolic models. To overcome this 

fundamental problem the genome-scale model was pre-processed as discussed in section 

5.2. However, the final model still includes a number of unmeasured metabolites. Here, the 

effects and limits for the percentage of unmeasured (and hence modeled) metabolites on 

the applicability of the developed algorithm are discussed. 

 

It is difficult to give a unique favorable ratio between measured and unmeasured 

metabolites as a threshold for the application of the algorithm. This is due to the fact that it 
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is not only the ratio that matters, but also how the measured metabolites are distributed 

throughout the metabolic network, i.e. if a lot of metabolites are measured but they all 

cluster within a certain part of the metabolic network, it is not possible to deduce anything 

about what is happening in other parts of the network. Even if the ratio is high (e.g. higher 

than 0.5) it may be problematic if the measured metabolites are distributed across different 

parts of the metabolic network, and there will therefore hardly be any metabolites that 

coexist in the same reactions, making the resultant z-scores more difficult to estimate 

reliably. 

 
Additionally, an increase in the ratio between measured and modeled metabolites 

will result in the inclusion of some of the reactions which had been removed in the model 

reduction steps since none of whose participating metabolites were measured, and some of 

those reactions may happen to have significant z-scores and appear in the reporter list. On 

the other hand, the decrease in the ratio, namely in the number of measured metabolites, 

may lead to elimination of some of the reactions in the reporter list due to the low fraction 

of measured metabolites participating in a reaction. 

 
To summarize, the proposed method is less likely to pick false-positives, but a 

change in the measured metabolite coverage will lead to a change in the number of false-

negatives. That is, the decrease in the ratio will only lead to an increase in the number of 

false-negatives, but still we will have correctly detected reactions. And since the discussion 

of the results of the developed algorithm is centered on the reactions detected as 

significant, the change in the ratio of measured to unmeasured metabolites is not likely to 

affect the obtained results substantially, at least in the sense that the detected reactions will 

never include false positives.  

 
To illustrate some of the above-discussed points, 10 measured metabolites out of 84 

was randomly labeled as unmeasured and the reporter reaction algorithm was executed for 

the case where aerobic and anaerobic conditions for the wild type strain are compared. The 

original analysis had resulted in 18 reactions associated with significant z-scores.   After 

randomly removing 10 measured metabolites from the analysis, it was observed that 2 

reactions were removed from the the list of originally detected reactions, as some of their 

corresponding metabolites were unmeasured. In another random removal of 10 measured 
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metabolites, nine (out of the 18) of the significant reactions from the original list were 

deemed insignificant after removal of 10 metabolites. 

 

Based on the features of the developed algorithm, certain guidelines can be provided 

for the metabolome measurements in order to effectively exploit the reporter approach;  (i) 

Measurement of metabolites that participate in many reactions (hubs in the metabolic 

network) will certainly increase the coverage of the algorithm. (ii) Measurement of 

metabolites that participate in certain closely related pathways (metabolites that are closely 

placed in the network) will increase the confidence in the obtained z-scores for reactions in 

those pathways. 

 

5.7.  Concluding Remarks 

 

An integrative algorithm based on metabolome data was introduced for the 

identification of reporter reactions, defined as the reactions that are responding to a genetic 

or environmental perturbation through a coordinated variation in the levels of surrounding 

metabolites. It is demonstrated that the algorithm functions even with a small number of 

measured metabolites (84), which is a typical situation for several currently used 

technologies. Moreover, the method developed is suitable for mapping the entire 

alterations associated with a specific perturbation, depending on the advances in analytical 

detection techniques enabling the measurement of a larger number of metabolites. 

 

Furthermore, when integrated with transcriptome data the developed approach can be 

used to infer information about whether a reaction is metabolically regulated or whether it 

is hierarchically regulated. The approach can therefore be regarded as a genome-scale 

approach towards the integration of different types of omics data by using metabolic 

networks as a scaffold in order to understand the architecture of metabolic regulatory 

circuits.  
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6.   METABOLIC PATHWAY ROBUSTNESS OF S. CEREVISIAE 

 

 

Metabolic robustness is defined as the ability of the metabolic network to adjust its 

fluxes in response to environmental or genetic changes without changes to the phenotype 

(Edwards and Palsson, 1998). In a way, it is the resistance of cell metabolism against 

perturbations. Structural robustness of an organism can be determined to see whether a cell 

can tolerate the elimination of some enzymes by mutations (Wilhelm et al., 2004). Several 

methods were suggested as in silico measures of metabolic robustness of cells, based on 

the lethality of the cells in response to the deletion of each metabolic gene (enzyme). These 

methods requires calculation of EFMs, the possible paths from substrates to products. If, 

after the deletion of an enzyme, there are still remaining EFMs with active biomass growth 

reaction, this mutant is predicted to be viable. Three of these measures are proposed by 

Wilhelm et al., 2004, in which calculated EFMs are used as the basis. The forth measure is 

based on a recently developed concept; minimal cut sets (MCS) (Klamt and Gilles, 2004). 

MCS calculation relies on pre-calculated EFMs, and can be defined as the minimal set of 

reactions whose inactivation will lead to guaranteed failure in certain cellular network 

functions. If the cellular network function to be tested is biomass growth, the failure means 

lethality. 

 

6.1.  In silico  Metabolic Robustness Measures 

 

Number of EFMs is an indicator of flexibility as well as redundancy. However, it is 

reasoned that redundancy is not directly identical with robustness since systems with the 

same number of EFMs were shown to have different robustness scores (Wilhelm et al., 

2004).  Therefore, a measure must be defined which compares the entire system with the 

mutated system. 

 

6.1.1.  Overall Global Robustness 

 

The structural robustness of a metabolic network to the knockout (deficiency) of one 

enzyme, Ei, can be calculated based on the fraction of remaining EFMs after its knock-out. 
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If EFMs in the original system is denoted as z, and that of the perturbed network is 

designated by zi, the ratio zi/z will be important. Since the aim is to calculate overall 

robustness of the network rather than the robustness to a specific enzyme knockout, this 

ratio must be calculated for all the enzymes Ei available in the considered reaction system. 

The arithmetic mean of all these ratios were suggested as a quantification of the global 

robustness of the entire metabolic network (Wilhelm et al., 2004); 

 

        
zr

z
R

r

i

i

×
=
∑

=1

)(

1            (6.1) 

 

where r is the total number of reactions in the system. 

 

6.1.2.  Product-based Minimal Robustness 

 

This measure is based on the essential products of the reaction system for the 

organism of interest. Namely, if any of these essential products cannot be produced, the 

organism is non-viable. Therefore, product-specific robustness should be taken into 

account. This can be reflected into the robustness measure as follows; to calculate the 

robustness concerning product P1, only the EFMs which produce this product must be 

chosen, discarding the others. Then, the same formula introduced in Equation 6.1 can be 

applied to this set of EFMs. Product-based minimal robustness hypothesizes that the 

robustness of the metabolic network of interest is equal to the minimum of robustness 

values calculated for every available essential product (Wilhelm et al., 2004). 

 

R2 = min{R1
P1,  R1

P2,  R1
P3, …. R1

Pn}            (6.2) 

 

6.1.3.  Product-based Global Robustness 

 

It may happen that product-based robustness of one product may be quite low, but 

most of the random mutations would affect the EFMs producing the other products. This 

third masure takes this fact into account, by using the arithmetic mean of product-based 

robustness values rather than the minimum of them (Wilhelm et al., 2004). 
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where n denotes the number of products of the metabolic network. 

 

6.1.4.  Minimal Cut Set- based Robustness 

 

Minimal cut sets, the minimal set of enzymes whose complete inhibition prevents the 

functioning of a pre-defined target reaction (eg. biomass formation), are calculated based 

on the EFMs of the system. The algorithm (Klamt and Gilles, 2004), also assigns a fragility 

coefficient to every enzyme in the model. Fragility of a reaction is defined as the reciprocal 

of the average size of all MCSs in which that reaction is involved. It is a number between 

zero and one. The closer the number to zero, it is less fragile, meaning more robust. Klamt 

and Gilles also define a network fragility coefficient, F, to enable an overall quantification 

of the structural fragility. F is defined as the average of the fragility coefficients over all 

reactions.  Corresponding robustness score can be defined as (1 - F). Theoretically, this 

measure is more sound than the previous measures since it also takes multiple deletions 

(double, triple, quadrople,…) into account rather than only single deletions.  

 

6.2. Robustness of Yeast Central Metabolism compared to E. coli 

 

6.2.1.  EFM and MCS Calculation 

 

Minimal cut sets, were determined for a total of 16 fermentable and nonfermentable 

substrates such as glucose, acetate, glycerol, ethanol, in Saccharomyces cerevisiae and 

Escherischia coli, for the cellular objective of biomass production. The biochemical 

reaction set used covers central carbon metabolism of the yeast (54 reactions and 52 

metabolites; Chapter 3; Çakır et al., 2004). EFM calculation was done by METATOOL 

and FluxAnalyzer 5.0 softwares. The first three measures were calculated in MATLAB 7.0, 

whereas the calculation of the fourth measure was performed using FluxAnalyzer 5.0 with 

the following target reaction; biomass formation. To deduce relative robustness of yeast 

metabolism, the same approach was also applied to E. coli metabolism which consists of 
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52 reactions and 49 metabolites, adapted from Stelling et al., 2002 and Carlson and Srienc, 

2004. The total number of reactions differs in two organisms since there are a few 

organism-specific metabolic reactions. The other major difference between the two 

microorganisms reflected into the reactions is that S. cerevisiae has a compartmentalized 

metabolism. Therefore, metabolites which cannot pass through the mitochondrial 

membrane are distinguished by treating them as different metabolites in cytosol and 

mitochondria (NADH, NADPH, Acetyl-CoA). Table 6.1 gives the substrates with 

corresponding number of calculated elementary flux modes and minimal cut sets for both 

microorganisms. 

 

Table 6.1. Elementary flux modes and Minimal cut sets for S. cerevisiae and E. coli grown 

on 16 different substrates 

    S. cerevisiae   E. coli   

Substrate EFM 

per cent  

EFM-BIOM* MCS EFM 

per cent  

EFM-BIOM* MCS 

Glucose 15996 97.7 616 4532 51.4 541 

Ethanol 1890 94.0 78 225 39.1 43 

Acetate 932 89.5 90 443 46.0 98 

Glycerol 4736 97.5 228 306 52.0 117 

Succinate 5000 95.9 219 1204 61.4 248 

Pyruvate 5879 95.0 269 970 54.0 222 

Lactate 4816 96.3 198 666 55.3 214 

2-ketoglutarate 2699 93.4 103 831 67.4 236 

Malate 3481 95.3 173 829 53.6 173 

Ribose 6783 93.4 461 907 25.1 170 

Xylose 7105 93.7 492 1847 21.2 262 

Erythrose 7731 94.3 707 946 27.9 264 

Sedoheptulose 5689 92.2 480 1385 26.3 248 

Fumarate 3481 95.3 165 829 53.6 156 

Citrate 3730 94.4 154 1648 58.7 312 

Oxaloacetate 3714 93.3 249 1391 52.8 245 

* Percentage of biomass-producing EFMs. These EFMs were used in the calculation of MCSs. 
 

Among many other substrates, glucose is the natural substrate for microorganisms. 

Therefore, microorganisms should have higher adaptation for growth in media containing 
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glucose. That is, they should exhibit more flexible growth on glucose than other carbon 

substrates. In accordance with this expectation, both microorganisms have highest number 

of EFMs when glucose is the substrate (Table 6.1). Additionally, theoretical results 

presented in the table reveals that yeast has noticably more flexible metabolism than E. coli 

in general because of having higher number of EFMs for the same substrates.  

 

Figures 6.1 and 6.2 present the general trend of EFMs and MCSs for the studied 

substrates for both microorganisms. Calculated Pearson correlation between the numbers 

of EFMs and MCSs for yeast is 0.79 whereas there is a higher correlation for E. coli (0.92). 

Therefore, it can be concluded that although they are not directly proportional in a precise 

way, number of EFMs and MCSs are correlated. That is, the minimal sets of reactions 

which can perform a function (EFMs) are interrelated to the minimal set of reactions 

whose removal impedes a certain function (MCSs). 
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Figure 6.1. Comparison of calculated EFMs and MCSs for 16 different substrates of 

S.cerevisiae. The substrates in x-axis are ranked with respect to the corresponding 

robustness score in decreasing order 
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Figure 6.2. Comparison of calculated EFMs and MCSs for 16 different substrates of E. coli. 

The substrates in x-axis are ranked with respect to the corresponding robustness score in 

decreasing order 

 

6.2.2.  Results of Robustness Measures  

 

Calculation of overall global robustness score (R1) led to very close robustness 

values for each substrates in S. cerevisiae, with minimum score belonging to growth on 

ethanol (0.305), and maximum belonging to oxaloacetate and malate (0.331).  Overall, 

these results suggest that yeast metabolism is prone to fragility, regardless of the substrate 

type (Table 6.2). For E. coli, on the other hand, the range of robustness values are wider. 

Ethanol is found to be the most robust substrate (0.512), with glucose being the most 

fragile one (0.412). The results are surprising since they are opposed to the biological 

expectation. Glucose is the most common substrate for E. coli, and the microorganism 

must be quite robust to genetic perturbations when it grows on this natural substrate. These 

findings put doubts on the credibility of this robustness measure. Additionally, the scores 

imply more robust behaviour of E. coli compared to S. cerevisiae. 

 

 Essential products of microorganisms can be considered as biomass production and 

ATP production for maintenance. Second measure (R2) suggests the calculation of 

robustness for both objectives, and assigning the minimum of them as the robustness score. 
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Therefore, biomass-based robustness was calculated using only biomass-producing EFMs. 

Similarly, use of only reactions which utilizes maintenance reaction leads to maintenance-

based robustness. Calculated maintenance-based robustness gives higher values for all 

substrates, whereas product-based ones are very similar to those obtained as R1. For S. 

cerevisiae, the minimum of the two values gives scores in almost the same magnitude of 

R1, ranging from 0.282 (ethanol growth) to 0.321 (erythrose and ribose). This measure 

again suggests a fragile yeast metabolism (Table 6.2). Whereas the previous measure (R1) 

indicated a clearly more robust E. coli metabolism; product-based minimal robustness 

leads to noticeably closer scores to S. cerevisiae scores, ranging from 0.341 (glycerol) to 

0.395 (malate). However, the scores are again higher than that belonging to yeast. 

 

 The third score is calculated by averaging maintenance- and biomass- based 

robustness scores. Interestingly, growth of yeast on acetate has the highest score in this 

case, whereas it was one of the lowest according to R2. The most fragile (least robust) 

growth was found to be on glycerol (0.302). For E. coli, malate is again the most robust 

substrate. Results are given in Table 6.2. 

 

In general, these three measures do not result in consistent results for yeast. The 

Pearson correlation between R1 and R2 is 0.74, between R1 and R3 is 0.24, and between R2 

and R3 is -0.31. This means that, scores obtained by R1 and R2 measures are moderately 

correlated, whereas R3 results in values not parallel with R1 and R2.  This tendency is not 

the same for E. coli, where R1 and R2 are correlated with a Pearson value of 0.25; and 

correlation between R2 and R3, and R1 and R3 are 0.56 and 0.63 respectively. 

 

One possible reason for the incapability of the first three measures to reflect 

differences between growth on different substrates is that they test only the effect of single 

deletions. MCS-based fourth score, on the other hand, takes all possible deletion mutants 

into account. Fourth measure depends on network fragility coefficient, which is 

automatically calculated by FluxAnalyzer. Compared to other scores, this score is more 

widely distributed between zero and one (Table 6.2), allowing the comparison of relative 

robustness of different substrates. Additionally, this measure predicts glucose as the most 

robust substrate for both microorganisms, in parallel with the biological expectation. The 

most fragile substrates, on the other hand, are ethanol for E. coli (0.230) and acetate for 
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yeast (0.297). In general, substrate robustness is found to be higher when the 

microorganism is yeast, according to the fourth measure. The three exceptions are for 

citrate, 2-ketoglutarate and acetate. As it is known, acetate is the natural by-product for E. 

coli, which becomes the first substrate in diauxic shift following glucose. For yeast, 

however, ethanol is the preferred substrate after diauxic shift. Acetate can only be 

produced in very low amounts by yeast. Therefore, yeast must be more fragile in acetate 

containing media. Theoretical finding is in accordance with this expectation. Figure 6.3 

gives comparative robustness of substrates for yeast and E. coli depending on MCS-based 

robustness score. 

 

Table 6.2. Robustness scores for both microorganisms calculated with four different 

measures 

 R1  R2  R3  R4  

 S. cer. E. coli S. cer. E. coli S. cer. E. coli S. cer. E. coli 

Glucose 0.311 0.416 0.307 0.356 0.310 0.412 0.562 0.519 

Xylose 0.326 0.457 0.319 0.388 0.329 0.433 0.545 0.486 

Erythrose 0.327 0.451 0.321 0.375 0.326 0.426 0.541 0.472 

Ribose 0.328 0.448 0.321 0.374 0.331 0.424 0.531 0.448 

Sedoheptulose 0.329 0.426 0.320 0.362 0.332 0.405 0.530 0.459 

Pyruvate 0.317 0.463 0.302 0.363 0.324 0.501 0.511 0.447 

Oxaloacetate 0.331 0.482 0.311 0.381 0.359 0.530 0.500 0.455 

Glycerol 0.308 0.466 0.301 0.341 0.302 0.423 0.477 0.411 

Malate 0.331 0.504 0.317 0.395 0.329 0.542 0.477 0.417 

Lactate 0.319 0.463 0.307 0.351 0.313 0.464 0.476 0.440 

Fumarate 0.328 0.496 0.313 0.386 0.327 0.534 0.466 0.402 

Succinate 0.319 0.463 0.307 0.376 0.320 0.517 0.462 0.430 

Citrate 0.316 0.462 0.299 0.369 0.314 0.454 0.435 0.492 

2-ketoglutarate 0.322 0.474 0.302 0.393 0.312 0.521 0.393 0.477 

Ethanol 0.305 0.512 0.282 0.350 0.306 0.436 0.324 0.230 

Acetate 0.320 0.466 0.284 0.344 0.473 0.471 0.297 0.323 

 

One should also note that there is no one-to-one relationship between the robustness 

scores and the number of elementary modes. In some cases, the number of EFMs 

(flexibility) decreases whereas robustness score increases. For example, E. coli can 



 114 

produce biomass in 204 different ways during growth on acetate, with MCS-robustness 

score being 0.320. On the other hand, it has noticeably less alternative pathways for 

biomass production when the substrate is glycerol (159). However, glycerol as substrate 

leads to more robust metabolism, with a MCS-robustness score of 0.410. In some other 

cases, flexibility and robustness score change in the same direction (Figure 6.4, Figure 6.5). 
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Figure 6.3. Robustness of E. coli and S. cerevisiae metabolisms on different substrates 

based on the fourth measure which depends on minimal cut set calculation 
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 Figure 6.4. Comparison of robustness scores for growth on different substrates with 

the number of EFMs for S. cerevisiae metabolism. 
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  Figure 6.5. Comparison of robustness scores for growth on different substrates 

with the number of EFMs for E. coli metabolism. 

 
6.3.  Concluding Remarks 

 

The in silico survival analysis of the S. cerevisiae cells in response to single or 

multiple gene deletions was made by using different robustness measures. Minimal-cut-

set-based measure was shown to be the one mostly agreeing with the known behaviour of 

yeast. Among many different carbon substrates, the natural substrate, glucose, was shown 

to be the substrate on which the microorganism exhibits the most robust behaviour among 

others. Comparison with E. coli metabolism indicated a more robust metabolic structure of 

S. cerevisiae. 
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7.  CONCLUSIONS AND RECOMMENDATIONS 

 

 

7.1. Conclusions 

 

A system-level understanding of the metabolism was pursued in this research by 

stoichiometric modeling approaches. The following conclusions can be drawn on the basis 

of the results presented. 

 

- Control effective fluxes were shown to better in explaining the changes that occur 

in metabolic transcriptome in response to a perturbation. 

- Applicability of CEF approach to S. cerevisiae and human metabolism was 

successfully shown, reinforcing the universality of the approach. 

- Metabolic fluxes of central carbon metabolism were shown to be transcriptionally 

regulated for carbon source perturbations. Oxygen source perturbation was found to 

shift the flux regulation into post-transcriptional or metabolic level. 

- Metabolic fluxes of amino acid metabolism were shown to be post-transcriptionally 

or metabolically regulated. Specially designed experiments are required to test this 

finding. 

- Integration of high-throughput metabolome data with metabolic networks was 

achieved to identify reporter reactions, even with a small number of measured 

metabolites. 

- Further integration of reporter reaction approach with transcriptome data allowed 

inferring information about the regulation type (metabolic and/or hierarchical) of 

the reactions. 

- Using minimal-cut-set based robustness measure, glucose was shown to be the 

substrate on which S. cerevisiae exhibits most robust metabolism. Comparison with 

bacterium E. coli indicates a more robust metabolic structure of the yeast. The in 

silico analysis is helpful to guide research on phenomics. 

 

Thereby, stoichiometric metabolic modeling approaches were shown to be successful 

in yeast systems biology research. 
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7.2. Recommendations 

 

 In chapter 4, based on transcriptome data, predictions were made about the 

regulation type of fluxes in response to carbon source perturbations. Metabolome analysis 

of carbon shift experiments and subsequent analysis of this data to calculate metabolically 

regulated ‘reporter’ reactions will allow a quick verification of the predictions made in 

chapter 4 about omitted points- not transcriptionally regulated fluxes. The idealized case 

would be to obtain also proteome data, thereby the level at which the fluxes are regulated 

can be identified in a high-throughput manner. 

 

An experimental fluxome analysis for the studied perturbations can be performed to 

identify whether the metabolic/hierarchical regulation prediction made in chapter 5 about 

the reactions are in agreement at flux level. Alternatively, a model-based fluxome analysis 

based on EFMs can also be performed as introduced in chapter 3, thereby making a bridge 

between the two methods presented in chapters 3-4 and in chapter 5. 

 

Furthermore, the model driven analysis presented in chapter 5 for the integration of 

metabolomic and transcriptomic data is flexible and may allow integration of other types 

of omics data, such as proteomics, and this will refine the method presented herein to 

account for the genome-scale alterations in response to genetic as well as environmental 

perturbations, and hence allow genome-scale identification of all levels of regulation in the 

metabolism. 

 

  Robustness measures utilized in chapter 6 identify lethal multiple deletions. The 

advent of phenomics technologies to identify high-throughput lethality deletions will allow 

verification and refinement of the results, and subsequently improve the employed 

stoichiometric model. Additionally, experiments on minimal media with each studied 

carbon source can be conducted to identify corresponding growth rates. Thereby, it can be 

checked whether the growth rates are in quantitative correlation with corresponding 

number of EFMs or MCSs. 
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APPENDIX A: FLUX BALANCE ANALYSIS FORMULATION 

 

 
A.1. Formulation of Balance Equations 

 

For a biochemical system with n reactions and m metabolites, stoichiometric matrix, 

S, has dimensions of m×n, providing that, 

 

                                                                   bvS =×                                                        (A.1)     

 

Here, v shows the reaction rate vector, and b represents the net accumulation rate of 

the metabolites in the medium. 

 

After a stoichiometric matrix is formulated, a negative identity matrix is added next 

to this stoichiometric matrix with dimensions m×m. The new matrix is called A and is a 

m × (n+m) matrix. 

 

I][SA −=               (A.2) 

 

The physical meaning for this addition is the incorporation of net accumulation rates 

of metabolites into calculations. Since there are m metabolites, identity matrix is in 

dimensions of m× m. 

 

With this incorporation, balance equations for this m compound- n reaction system 

are written as,  

 

0RA =×                      (A.3) 

  

where R is a rate vector containing both the reaction rates and the net accumulation rates of 

the metabolites, i.e,. it is a ((n+m) × 1) matrix. 

 

Then, the metabolites in the system are grouped according to their accumulations in 

the medium. Those that have negligible pools in the medium are called intracellular. The 



 119 

substrates taken from medium and the products secreted to the medium are known as 

extracellular metabolites. If number of extracellular substances in the system is denoted as 

p, then (m-p) metabolites are intracellular. 

 

Since the accumulation rates of the intracellular metabolites are zero, the columns of 

identity matrix part of A corresponding to these metabolites are omitted. Hence, (m-p) 

columns are deleted from A matrix. This new matrix is called A’ . The dimension of A’  is 

m × (n+p).  R vector is also changed to R’ , which is a ((n+p) × 1) vector. 

 

0RA =′×′                       (A.4) 

 

There are (n+p) unknowns in the system, i.e. n reaction rates and p accumulation 

rates for extracellular substances are unknown. RankA’  gives number of independent 

equations in the system. The difference is the degrees of freedom of the system.  

 

A ′−+= rankpndof )(                                     (A.5) 

 

If dof is greater than zero, then the system is underdetermined. All real metabolic 

systems are underdetermined by their nature. To make the system determined, a number of 

rates equal to dof must be specified.  

 

A.2. Solution of Undetermined Systems 

 

If there  is no external measurement of metabolites in the system, or if the number of 

measurements are less than dof of the system, the system remains underdetermined. Thus, 

the number of possible solutions is infinite. For the solution of such a system, linear 

programming is applied and this method is named as Flux Balance Analysis (FBA).  

 

First, the matrix A’  defined in Equation A.4 must be partitioned according to the 

measured accumulation rates as follows,  

 

0RARA =×+× measmeascalccalc                 (A.6) 
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Here, the corresponding columns of A’  for measured metabolites are moved to a new 

matrix called Ameas. The remaining part of A’  is called Acalc. The corresponding rate vector 

R’  is also partitioned accordingly.  If k of the p external metabolites are measured, Ameas 

and Acalc will have dimensions of m× k and m× (n+(p-k)) respectively. 

 

The second term of Equation A.6 is denoted with vector b since it is calculable. 

 

bRA =×− measmeas                           (A.7) 

 

Rmeas is a (k× 1) matrix. Since Ameas and Rmeas are known, the resultant b vector can 

be calculated numerically. As a result, the following final formula is obtained, 

 

bRA =× calccalc              (A.8) 

 

Equation A.8 is the basis for the solution of underdetermined biochemical reaction 

systems. This equation describes a set of equations that are used as equality constraints in 

the linear programming solution.  

 

 Additional to Equation A.8, the lower and upper bounds of each of the reactions 

stored in  Rcalc constitute inequality constraints to the problem. These constraints can easily 

be derived from reaction reversibility information. 

 

ubcalclb RRR ≤≤              (A.9) 

 

An objective function Z is needed for the solution. The objective function is selected 

as maximization/ minimization of the accumulation (production/consumption) of a 

particular metabolite. This is mathematically expressed by a row vector with dimensions 

equal to the dimensions of Rcalc. In this row vector, f, the entry corresponding to the net 

accumulation rate of the metabolite to be optimized is entered as 1 (for minimization) or -1 

(for maximization) with other entries being zero;  

 

calcfZ R×=          (A.10) 
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Here, f shows the mentioned row vector. All elements of f is zero except the one for 

the net accumulation rate of the metabolite to be optimized. Hence, Z, the objective 

function, is a 1x1 vector. Z is not directly used in the solution, but f is utilized as an 

indication of objective function. 

 

Table A.1 summarizes all these theoretical definitions. The stoichiometric network 

can be solved using optimization packages such as TOMLAB or MOSEK under 

MATLAB.  

 

Table A.1. The summary of formulation of balance equation and the adaptation of these     

formulations to the considered reaction system 

 General Formulation 

Number of reactions n 

Number of metabolites m 

Number of extracellular metabolites p 

Number of intracellular metabolites m-p 

S m×n 

v n×1 

b m×1 

I m×m 

A m × (n+m) 

R (n+m) × 1 

A’ m× (n+p) 

R’ (n+p) × 1 

Number of unknown rates (n+p) 

Number of independent equations rank A’  

dof A ′−+ rankpn )(  

Number of measured accumulation rates k 

Acalc m× (n+(p-k)) 

Ameas (m× k) 

Rmeas (k× 1) 

Rcalc (n+(p-k)) × 1 

f 1× (n+(p-k)) 
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APPENDIX B: REACTION SET FOR CENTRAL METABOLISM OF 

YEAST 

 

 

B.1.  Reactions 

 

Reversible reactions in the glycolysis/gluconeogenesis pathway were written in the 

direction of their occurrence. Superscripts E and G in gene names show that the 

corresponding reaction is particular to growth in ethanol or glucose. External metabolites 

were written in bold font in their uptake and secretion reactions. 

 

 1. Substrate Uptake  

(1) 1 GLUC + 1 ATP  →  1 GLUC6P + ADP GLK1,HXKG 

(2) 1 GAL + 1 ATP  →  1 GLUC6P + ADP GAL1,5,7 

(3) 1 ETOH + 1 NADcyt →  1 ACAL + 1 NADHcyt  ADH2E 

 2.  Glycolysis &Gluconeogenesis  

(4) 1 GLUC6P  ↔  1 FRUC6P PGI1 

(5) 1 FRUC6P + 1 ATP  →  1 FRUCDP + ADP PFK1,2G 

(6) 1 FRUCDP  →  1 FRUC6P  FBP1E 

(7) 1 FRUCDP  ↔  1 GA3P + 1 DHAP FBA1 

(8) 1 DHAP ↔ 1 GA3P TPI1 

(9) 1 GA3P + 1 NADcyt  ↔  1 P13G + 1 NADHcyt  TDH1,2,3 

(10) 1 P13G + 1 ADP  ↔  1 P3G + 1 ATP PGK1 

(11) 1 P3G  ↔  1 P2G  GPM1,2,3 

(12) 1 P2G  ↔  1 PEP  ENO1,2 

(13) 1 PEP + 1 ADP →  1 PYR + 1 ATP PYK1,2G 

(14) 1 DHAP + 1 NADHcyt → 1 GOH3P + 1 NADcyt GPD1,2 

(15) 1 GOH3P → 1 GOH  GPP 

(16) 1 PYR  →  1 ACAL + 1 CO2 PDC1,2,5 

(17) 1 ACAL + 1 NADHcyt →  1 ETOH + 1 NADcyt  ADH1,4G 

(18) 1 ACAL + 1 NADPcyt →  1 AC + 1 NADPHcyt  ALD6 
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(19) 1 ACAL + 1 NADmit →  1 AC + 1 NADHmit  ALD4 

(20) 1 AC + 2 ATP →  1 ACCOAcyt + 2 ADP  ACS1,2 

(21) 1 PYR + 1 NADmit →  1 ACCOAmit + 1 NADHmit + 1 CO2 PDA1,2, PDB 

(22) 1 PYR + 1 ATP + 1 CO2  →  1 OAC + 1 ADP  PYC1,2 

(23) 1 OAC+ 1 ATP  →  1 PEP + 1 ADP + 1 CO2 PCK1E 

 3.  Pentose Phosphate Pathway  

(24) 1 GLUC6P + 1 NADPcyt  →  1 G15L + 1 NADPHcyt  ZWF1 

(25) 1 G15L  →  1 P6G  SOL1,2,3,4 

(26) 1 P6G + 1 NADPcyt →  1 RIBL5P + 1 NADPHcyt + 1 CO2  GND1,2 

(27) 1 RIBL5P  ↔  1 RIB5P RKI1 

(28) 1 RIBL5P  ↔  1 XYL5P RPE1 

(29) 1 RIB5P + 1 XYL5P  ↔  1 SED7P + 1 GA3P TKL, TKI 

(30) 1 SED7P + 1 GA3P  ↔  1 FRUC6P + 1 E4P TAL1 

(31) 1 XYL5P + 1 E4P  ↔  1 FRUC6P + 1 GA3P TKI, TKL 

 4.  Citric Acid Cycle  

(32) 1 OAC + 1 ACCOAmit →  1 CIT  CIT1,3 

(33) 1 CIT  ↔  1 ISOCIT ACO1 

(34) 1 ISOCIT + 1 NADmit  →  1 AKG + 1 NADHmit + 1 CO2 IDH1,2 

(35) 1 ISOCIT + 1 NADPmit  →  1 AKG + 1 NADPHmit + 1 CO2 IDP1 

(36) 1 ISOCIT + 1 NADPcyt  →  1 AKG + 1 NADPHcyt + 1 CO2 IDP2 

(37) 1 AKG + 1 NADmit  →  1 SUCCOA + 1 NADHmit + 1 CO2  KGD1,2 

(38) 1 SUCCOA + 1 ADP  ↔  1 SUC + 1 ATP LSC1,2 

(39) 1 SUC + 1 FAD  →  1 FUM + 1 FADH2 SDH1,2,3 

(40) 1 FUM + 1 FADH2  →  1 SUC + 1 FAD   OSM1 

(41) 1 FUM  ↔  1 MAL FUM1 

(42) 1 MAL + 1 NADmit  ↔  1 OAC + 1 NADHmit  MDH1 

(43) 1 MAL + 1 NADPmit  →  1 PYR + 1 CO2 + 1 NADPHmit  MAE1 

(44) 1 ACCOAcyt  →  1 ACCOAmit  CAT2 

(45) 1 NADHcyt + 1 NADmit  →  1 NADcyt + 1 NADHmit ShuttleX 

 5. Glyoxylate Shunt  

(46) 1 OAC + 1 ACCOAcyt  →  1 CIT  CIT2E 
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(47) 1 ISOCIT  →   1 GLYO + 1 SUC ICL1 E 

(48) 1 GLYO + 1 ACCOAcyt  →  1 MAL  MLS1 E 

(49) 1 MAL + 1 NADcyt  ↔  1 OAC + 1 NADHcyt  MDH2 E 

 6. Oxidative Phosphorylation  

(50) 24 ADP + 20 NADHmit + 10 O2  →   24 ATP + 20 NADmit  NADHX 

(51) 24 ADP + 20 FADH2 + 10 O2   →   24 ATP + 20 FAD FADHX 

(52) 1 ATP  →  1 ADP  MAINT 

 7. Biomass Formation  

(53) 3 ACCOAmit + 24 ACCOAcyt + 11 AKG + 3 E4P + 6 P3G + 1 

GOH3P +  

6 PEP + 18 PYR + 3 RIB5P + 25 GLUC6P + 10 OAC + 16 

NADcyt +  

6 NADmit + 90 NADPHcyt + 22 NADPHmit + 254 ATP  →    

 10000 BIOM + 16 NADHcyt + 6 NADHmit + 90 NADPcyt + 22 

NADPmit + 254 ADP 

BIOMX 

 

B.2.  Reaction Abbreviations 

 

ACO Aconitate synthetase 

ACS Acetyl-coenzyme A synthetase 

ADH Alcohol dehydrogenase 

ALD6 Aldehyde dehydrogenase (NADPcyt dependent) 

ALD4 Aldehyde dehydrogenase (NADmit dependent) 

BIOMX Biomass formation 

CAT Carnitine O-acetyltransferase 

CIT1,3 Citrate synthase (cytosolic) 

CIT2 Citrate synthase (mitochondrial) 

ENO Enolase 

FADHX Electronic chain: reoxidation of FADH 

FBA Aldolase 

FBP Fructose 1,6-biphosphatase 

FUM Fumarate hydratase 
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GAL Galactokinase 

GLK,HXK Glucokinase, Hexokinase 

GND Phosphogluconate dehydrogenase 

GPD Glycerol-3-phosphate dehydrogenase 

GPM Phosphoglycerate mutase 

GPP Glycerol phosphatase 

ICL Isocitrate lyase 

IDH Isocitrate dehydrogenase (NADmit dependent) 

IDP1 Isocitrate dehydrogenase (NADPmit dependent) 

IDP2 Isocitrate dehydrogenase (NADPcyt dependent) 

KGD Alpha-ketogluterate dehydrogenase 

LSC Succinate-CoA ligase 

MAE Malic enzyme 

MDH1 Malate dehydrogenase (NADmit dependent) 

MDH Malate dehydrogenase (NADcyt dependent) 

MLS Malate synthase 

NADHX Electronic chain: reoxidation of NADH  

OSM Fumarate reductase 

PCK Phosphoenolpyruvate carbboxykinase 

PDA, PDB Pyruvate dehydrogenase 

PDC Pyruvate decarboxylase 

PFK Phosphofructokinase 

PGI Glucose-6-phosphate isomerase 

PGK 3-phosphoglycerate kinase 

PYC Pyruvate carboxylase 

PYK Pyruvate kinase 

RKI Ribose 5-phosphate isomerase 

RPE Ribulose-phosphate 3-epimerase 

SDH Succinate dehydrogenase 

ShuttleX Reoxidation of cytosolic NADH to mitochondrial NADH 

SOL 6-phosphoglucono-lactonase 

TAL Transaldolase 

TDH Glyceraldehyde-3-phosphate dehydrogenase 
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TKL Transketolase 

TPI Triosephosphate isomerase 

ZWF Glucose-6-phosphate dehydrogenase 
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APPENDIX C: METABOLITE AND REACTION ABBREVIATIONS 

FOR RED BLOOD CELL METABOLIC NETWORK 

 

 

C.1.  Metabolite Abbreviations 

 

ADE  adenine 

ADO  adenosine 

D13PG  1,3-diphosphoglycerate 

D23PG  2,3-diphosphoglycerate 

DHAP  dihydroxyacetone phosphate 

ERY4P  erythrose 4-phosphate 

F6P  fructose-6-phosphate  

FDP  frucotose diphosphate 

G6P  glucose-6-phosphate 

GA3P  glyceraldehydes-3-phosphate 

GL6P  6-phosphogluco lactone 

GLC  glucose 

GO6P  6-phosphogluconate 

GSH  reduced glutathione 

GSSG  oxidized glutathione 

H2O2  hydrogen peroxide 

Hb  hemoglobin 

HYPX  hypoxanthine 

IMP  inosine monophosphate 

INO  inosine 

LAC  lactate 

MetHb  methemoglobin 

P2G  2-phosphoglycerate 

P3G  3-phospho glycerate 

PEP  phosphenolpyruvate 

PRPP  5-phosphoribosyl pyrophosphate 
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PYR  pyruvate 

R1P  ribose-1-phosphate 

R5P  ribose-5-phosphate 

RL5P  ribulose-5-phosphate 

SED7P  sedoheptulose 7-phosphate 

XYL5P  xylose-5-phosphate 

 

C.2.  Reaction Abbreviations 

 

ADA  adenosine deaminase (EC 3.5.4.4) 

ADPRT  adenine phosphoribosyltransferase (EC 2.4.2.7) 

AdylK  adenylate kinase (EC 2.7.4.3) 

AK  adenosine kinase (EC 2.7.1.20) 

ALD  aldolase (EC 4.1.2.13) 

AMPase  adenosine monophosphate phosphohydrolase (EC 3.1.3.5) 

AMPDA  adenosine monophosphate deaminase (EC 3.5.4.6) 

D23PGdrain  2, 3 diphosphoglyerate drain 

DPGase  diphosphoglycerate phosphatase (EC 3.1.3.13) 

DPGM  diphosphoglycerate mutase (EC 5.4.2.4) 

EN  enolase (EC 4.2.1.11) 

G6PDH  glucose-6-phosphate dehydrogenase (EC 1.1.1.49) 

GAPDH  glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 

GL6PDH  phosphogluconate dehydrogenase (EC 1.1.1.44) 

GSHox  glutathione oxidase (EC 1.8.3.3) 

GSHpox  glutathione peroxidase (EC 1.11.1.9) 

GSSG-R  glutathione-disulfide reductase (EC 1.8.1.7) 

HGPRT  hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) 

HK  hexokinase (EC 2.7.1.1) 

IMPase  inosine monophosphate phosphohdrolase (EC 3.1.3.5) 

LDH  lactate dehydrogenase (EC 1.1.1.27) 

MemPhos   membrane phosphorylation 

MetHbRed  methemoglobin reductase 
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NaKATPase  sodium-potassium cation pump 

PFK  phosphofructokinase (EC 2.7.1.11) 

PGI  glucose-6-phosphate isomerase (EC 5.3.1.9) 

PGK  phosphoglycerate kinase (EC 2.7.2.3) 

PGLase  Phosphogluconolactonase (EC 3.1.1.31) 

PGM  phosphoglycerate mutase (EC 5.4.2.1) 

PK  pyruvate kinase (EC 2.7.1.40) 

PNPase  purine-nucleoside phosphorylase (EC 2.4.2.1) 

PRM  phosphoribomutase (EC 5.4.2.7) 

PRPPsyn  phosphoribosylpyrophosphate synthetase (EC 2.7.6.1) 

RPI  ribose-5-phosphate isomerase (EC 5.3.1.6) 

TA  transaldolase (EC 2.2.1.2) 

TK  transketolase (EC 2.2.1.1) 

TPI  triosephosphate isomerase (EC 5.3.1.1) 

XPI  ribulose phosphate epimerase (EC 5.1.3.1) 
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APPENDIX D: REACTION SET FOR CENTRAL AND AMINO ACID 

METABOLISM OF YEAST 

 
 

The reaction network contains 55 central metabolic reactions including the secretion 

& uptake mechanisms (governed by 91 genes). The remaining 28 reactions belong to the 

amino acid metabolism (governed by 46 genes).   

 

Reversible reactions in the glycolysis/gluconeogenesis pathway were written in the 

direction of their occurrence. Superscripts E and G in gene names show that the 

corresponding reaction is particular to growth in ethanol or glucose. External metabolites 

were written in bold font in their uptake and secretion reactions. 

   

 1. Substrate Uptake   

(1) 1 GLUC + 1 ATP  →  1 GLUC6P + ADP GLK1, HXK1,2G 

(2) 1 ETOH + 1 NADcyt →  1 ACAL + 1 NADHcyt  ADH2E 

(3) 1 NH3  →   MEP1,2,3 

 2.  Glycolysis &Gluconeogenesisa  

(4) 1 GLUC6P  ↔  1 FRUC6P PGI1 

(5) 1 FRUC6P + 1 ATP  →  1 FRUCDP + ADP PFK1,2G 

(6) 1 FRUCDP  →  1 FRUC6P  FBP1E 

(7) 1 FRUCDP  ↔  1 GA3P + 1 DHAP FBA1 

(8) 1 DHAP ↔ 1 GA3P TPI1 

(9) 1 GA3P + 1 NADcyt  ↔  1 P13G + 1 NADHcyt  TDH1,2,3 

(10) 1 P13G + 1 ADP  ↔  1 P3G + 1 ATP PGK1 

(11) 1 P3G  ↔  1 P2G  GPM1,2,3 

(12) 1 P2G  ↔  1 PEP  ENO1,2, 

ERR1,2,3 

(13) 1 PEP + 1 ADP →  1 PYR + 1 ATP PYK1,2G 

(14) 1 DHAP + 1 NADHcyt → 1 GOH3P + 1 NADcyt GPD1,2 

(15) 1 GOH3P → 1 GOH  GPP1, HOR2 
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(16) 1 PYR  →  1 ACAL + 1 CO2 PDC1,5,6 

(17) 1 ACAL + 1 NADHcyt  ↔  1 ETOH + 1 NADcyt  ADH1,4,5G 

(18) 1 ACAL + 1 NADPcyt →  1 AC + 1 NADPHcyt  ALD6 

(19) 1 ACAL + 1 NADmit →  1 AC + 1 NADHmit  ALD4,5 

(20) 1 AC + 2 ATP →  1 ACCOAcyt + 2 ADP  ACS1,2 

(21) 1 PYR + 1 NADmit →  1 ACCOAmit + 1 NADHmit + 1 CO2 PDA1,2, PDB1, 

PDX1, LPD1 

(22) 1 PYR + 1 ATP + 1 CO2  →  1 OAC + 1 ADP  PYC1,2 

(23) 1 OAC+ 1 ATP  →  1 PEP + 1 ADP + 1 CO2 PCK1E 

 3.  Pentose Phosphate Pathway  

(24) 1 GLUC6P + 1 NADPcyt  →  1 G15L + 1 NADPHcyt  ZWF1 

(25) 1 G15L  →  1 P6G  SOL3,4 

(26) 1 P6G + 1 NADPcyt →  1 RIBL5P + 1 NADPHcyt + 1 CO2  GND1,2 

(27) 1 RIBL5P  ↔  1 RIB5P RKI1 

(28) 1 RIBL5P  ↔  1 XYL5P RPE1 

(29) 1 RIB5P + 1 XYL5P  ↔  1 SED7P + 1 GA3P TKL1,2 

(30) 1 SED7P + 1 GA3P  ↔  1 FRUC6P + 1 E4P TAL1, YGR043C 

(31) 1 XYL5P + 1 E4P  ↔  1 FRUC6P + 1 GA3P  TKL1,2 

 4.  Citric Acid Cycle  

(32) 1 OAC + 1 ACCOAmit →  1 CIT  CIT1,3 

(33) 1 CIT  ↔  1 ISOCIT ACO1,2 

(34) 1 ISOCIT + 1 NADmit  →  1 AKG + 1 NADHmit + 1 CO2 IDH1,2 

(35) 1 ISOCIT + 1 NADPmit  →  1 AKG + 1 NADPHmit + 1 CO2 IDP1 

(36) 1 ISOCIT + 1 NADPcyt  →  1 AKG + 1 NADPHcyt + 1 CO2 IDP2,3 

(37) 1 AKG + 1 NADmit  →  1 SUCCOA + 1 NADHmit + 1 CO2  KGD1,2, LPD1 

(38) 1 SUCCOA + 1 ADP  ↔  1 SUC + 1 ATP LSC1,2 

(39) 1 SUC + 1 FAD  →  1 FUM + 1 FADH2 SDH1,2,3,4 

(40) 1 FUM + 1 FADH2  →  1 SUC + 1 FAD   OSM1 

(41) 1 FUM  ↔  1 MAL FUM1 

(42) 1 MAL + 1 NADmit  ↔  1 OAC + 1 NADHmit  MDH1 

(43) 1 MAL + 1 NADPmit  →  1 PYR + 1 CO2 + 1 NADPHmit  MAE1 
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(44) 1 ACCOAcyt  →  1 ACCOAmit  CAT2, YAT1 

(45) 1 ACAL + 1 NADHmit  ↔  1 ETOH + 1 NADmit ADH3 

 5. Glyoxylate Shunt  

(46) 1 OAC + 1 ACCOAcyt  →  1 CIT  CIT2E 

(47) 1 ISOCIT  →   1 GLYO + 1 SUC ICL1,2 E 

(48) 1 GLYO + 1 ACCOAcyt  →  1 MAL  MLS1,2 E 

(49) 1 MAL + 1 NADmit  ↔  1 OAC + 1 NADHcyt  MDH2,3 E 

 6. Oxidative Phosphorylation  

(50) 24 ADP + 20 NADHmit + 10 O2  →   24 ATP + 20 NADmit  NADHX 

(51) 24 ADP + 20 FADH2 + 10 O2   →   24 ATP + 20 FAD FADHX 

(52) 1 ATP  →  1 ADP  MAINT 

 7. Product Secretion  

(53) →  1 GOH FPS1 

(54) →  1  ETOH  

(55) →  1 AC BPH1 

(56) →  1 SUC  

 8. Glutamate & Glutamine Metabolism  

(57) 1 AKG + 1 NADPHcyt + 1 NH3  →   1 GLT + 1 NADPcyt   GDH1,3 

(58) 1 GLT + 1 NADcyt  →  1 AKG + 1 NADHcyt + 1 NH3   GDH2 

(59) 1 GLT + 1 ATP + 1 NH3  →  1 GLN + 1 ADP   GLN1 

(60) 1 AKG + 1 GLN + 1 NADHcyt  →  2 GLT + 1 NADcyt   GLT1 

(61) 1 GLT   →  1 CO2 + 1 GABA GAD1 

(62) 1 AKG + 1 GABA   →  1 GLT + 1 SUCSAL UGA1 

(63) 1 SUCSAL + 1 NADPcyt  →  1 SUC + 1 NADPHcyt UGA2 

 9. Aspartate & Asparagine & Alanine Metabolism  

(64) 1 OAC + 1 GLT  ↔  1 AKG + 1 ASP AAT1,2 

(65) 2 ATP + 1 GLN + 1 ASP  ↔  2 ADP + 1 GLT + 1 ASN ASN1,2 

(66) 1 ASN  →  1 ASP + 1 NH3 ASP3-4,1 

(67) 1 PYR + 1 GLT  ↔  1 AKG + 1 ALA ALT1,2 

 10. Leucine & Valine Metabolism  

(68) 2 PYR  →  1 CO2 + 1 ACLAC ILV2,6 
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(69) 1 ACLAC + 1 NADPHmit  →  1 NADPmit + 1 DHVAL ILV5 

(70) 1 DHVAL  →  1 OIVAL ILV3 

(71) ACCOAmit + 1 OIVAL  →  1 IPPMAL LEU4 

(72) 1 IPPMAL + 1 NADcyt  →  1 NADHcyt + 1 OICAP + 1 CO2 LEU2 

(73) 1 OICAP + 1 GLT  ↔  1 AKG + 1 LEU BAT1,2 

(74) 1 OIVAL + 1 GLT  ↔  1 AKG + 1 VAL BAT2 

 11. Serine & Glycine Metabolism  

(75) 1 P3G + NADcyt  →  1 PHP + 1 NADHcyt SER3,33 

(76) 1 PHP + 1 GLT  →  1 AKG + 1 P3SER SER1 

(77) 1 P3SER  →  1 SER SER2 

(78) 1 SER → 1 PYR + 1 NH3 CHA1, SDL1 

(79) 1 SER  ↔  1 GLY + 1 C1 SHM1,2 

(80) 1 ALA + 1 GLYO  ↔  1 PYR + 1 GLY AGX1 

(81) 1 GLY + NADmit  →  1 C1 + NADHmit + CO2 + NH3  GCV1 

 12. AICAR synthesis  

(82a) 1 R5P + 1 P3G + 8 ATP + 1 NADmit + 1 NADcyt + 2 NADPHcyt  

→  1 NADHmit + 1 NADHcyt + 2 NADPcyt  + 8 ADP + 1 

AICAR 

ADE4,5,7,8,6,5,

2,1,13- CCM 

(82b) 1 R5P + 6 ATP + 2 GLN + 1 GLY + 1 C1 + 1 CO2 + ASP  →  

2 GLU + 1 FUM + 6 ADP + 1 AICAR 

ADE4,5,7,8,6,5,

2,1,13 -CCMAA 

 13. Biomass Formation  

(83a) 0.05877 PYR + 0.03293 OAC + 0.03430 AKG + 0.01767 P3G 

+ 0.04302 ACCOAcyt + 0.00996 ACCOAmit + 0.00802 RB5P + 

0.00889 E4P + 0.01777 PEP + 0.04400 G6P + 0.00187 GOH3P 

+ 0.00201 AICAR + 0.28658 NADPHcyt + 0.03080 NADPHmit 

+ 0.05056 NADcyt + 0.01716 NADmit + 1.80302 ATP 

→ 

 0.05056 NADHcyt + 0.01716 NADHmit + 0.28658 NADPcyt + 

0.03080 NADPmit + 1.80302 ADP + 0.05806 CO2 + 1 BIOM 

BIOMX-CCM  

(1 C-mol) 

   

83b) 0.00555 PYR + 0.04302 ACCOAcyt + 0 ACCOAmit + 0.00802 

RB5P + 0.00889 E4P + 0.01777 PEP + 0.04400 G6P + 0.00187 

BIOMX- 

CCM-AA  



 134 

GOH3P + 0.04485GLT + 0.02116 GLN + 0.01545 ALA + 

0.03703 ASP + 0.00343 ASN + 0.00885 SER + 0.00976 GLY 

+ 0.00996 ILE + 0.00892 VAL +  0.00595 C1 + 0.00201 

AICAR + 0.12717 NADPHcyt + 0.01192 NADPHmit + 0.02198 

NADcyt + 0.01716 NADmit + 1.77156 ATP   

 →   

0.02198 NADHcyt + 0.01716 NADHmit + 0.12717 NADPcyt + 

0.01192 NADPmit + 1.77156 ADP + 0.02922 CO2 + 1 BIOM + 

0.00754 OAC + 0.03171 AKG + 0.00094 P3G + 0.00650 NH3 

(1 C-mol) 
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APPENDIX E : ALGORITHMS OF SAMPLING APPROACHES 

 

 

E.1.  Algorithm of Hit-and-Run Sampling 

 

Hit-and-Run generates a sequence of points, Vk, which are inside a bounded and n- 

dimensional set, S Є Rn. The algorithm can be summarized in four steps (Kaufman and 

Smith, 1998; Zabinsky, 2003); 

 

Step 0. Choose an arbitrary starting point, V0, which is known to be inside the bounded set 

(X0 Є S). Set k = 0. 

Step 1. Generate a uniformly distributed random direction, Dk, over an n-dimensional 

hypersphere (termed hyperspherical direction, HD). 

Step 2. Generate a random point Vk+1 = Vk + λDk uniformly distributed over the line set, Lk, 

which lies on the generated random direction; 

 Lk = { v : v Є S  and v = Vk + λDk, λ a real scalar } 

If  L k = Ø, go to step 1.  

Step 3. Stop if a stopping criterion is met (eg. the maximum number of points to be 

collected). Otherwise, increment k by one, and return to Step one. 

 

Below is a more detailed explanation of the procedure; 

 

Step 0. The initial starting point, V0,   must be inside the solution space defined by S. 

One should note that, although called as point, this is a vector having the same dimension 

as the solutions space. Here, for the sampling of flux space, the solution space is bounded 

by the lower and upper bounds of the fluxes as well the balancing of metabolites 

represented as the stoichiometric matrix. This initial point can be generated using FBA 

(Appendix A). To this aim, FBA is applied to the equation system by slightly increasing 

the lower bounds of fluxes and slightly decreasing upper bounds of fluxes. Thereby, the 

resulting solution vector of the system will not lie on the boundaries of the solution space, 

but will be guaranteed to be inside it. 
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Step 1.  The direction is determined by randomly generating a vector of size equal to 

the dimension of Vk vector, from a uniform distribution (i.e. Dk Є Rn) from [-1, 1] interval.  

Then, this vector is scaled by its Euclidean norm in order to determine the unit direction 

vector, Dk; 
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The resulting vector, Dk, is said to be uniformly distributed in hyperspherical 

direction. 

 

Step 2. Generating a random point, Vk+1, on the line set, Lk, through Vk in the 

direction of Dk requires the determination of points where the line intersects S in both 

positive and negative directions. That is, the intersection points, λmin and λmax, where the 

direction vector hits the boundaries, are found such that (Vk + λDk) Є S  where λ is 

randomly chosen between the interval of λmin  and λmax.  

 

Determination of the bounds for λ  is relatively straightforward for the case where S 

is a convex polytope defined by the linear constraints, S = {v : Av = 0, lb ≤ x ≤ ub}, with A 

being the stoichiometric matrix including exchange reactions, lb and ub being the lower 

and upper bound vectors for x. The procedure depends on the null space identification of 

the flux space S, and detailed in the following subsection. 

 

E.1.1. Null Space Identification for Hit-and-Run Method 

 

The direct implementation of Hit-and-Run method for linear equality constraints is 

not possible since the limits of λ will always be equal to zero for such a system. Therefore, 

an alternative approach is followed bu using  the null space of the stoichiometric matrix, A.  

Null space of A is a space of all possible solutions of the system defined by the 

homogenous linear equation system, Av = 0. Null space determination can be determined 

in MATLAB using ‘null’ built-in function. If A is m x n in dimension, with m metabolites 

(equations) and n reactions (unknowns), the dimension of corresponding null space is 

equal to the degrees of freedom of the equation system defined by A. The column vectors 
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constituting null space are the basis vectors which define the flux solution space. That is, if 

the null space is defined as B, the linear combination of its columns, bj, with random 

coefficients will define a point (vector) which will lie inside this space. Mathematically 

expressing, 

 

 VB =×α                              (E.2) 

 

In other words, the null space matrix, B, can be transformed into the flux space by  

the help of the coefficient vector, α. Therefore, by randomly generating coefficient vectors, 

a number of flux vectors within the null space can be obtained. However, it must be 

guaranteed that the resulting flux vectors must be within the lower/upper bound constraints 

of fluxes. That is, 

 

 ubVlb ≤≤                          (E.3) 

 

Equations (E.2) and (E.3) form the basis of the null-space formulation for the 

sampling of flux space through Hit-and-Run method. The randomly generated flux vector 

through equation (E.2) must satisfy equation (E.3). In this way, the flux points can also be 

collected by Monte-Carlo approach, if the dimension of the system is small, by accepting-

rejecting the generated points. 

 

The following three steps summarize the procedure, and leads to the formation of an 

equation set which will be used in Hit-and-Run Sampling; 

 

(1) Find null space of system matrix and form flux vectors such as;  

 

kk VB =α                      (E.4) 

 

where B is the null space matrix of A, αk is a randomly generated coefficient vector and Vk 

is the resulting flux vector. 

 

(2) Combine eqn. (E.4) with eqn. (E.3); 
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ubBlb k << α                  (E.5) 

 

which can also be expressed as ;  ubB k <α   &    lbB k −<− α  

 

(3) Represent the splitted form of eqn. (E.5) in matrix notation; 
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e.g. for 1st  part:  ijij ubb∑ ≤α ,   and for the second part:  ijij lbb −≤−∑ α  for the 

kth α vector. Therefore, the solution of equation system defined by eqn. (E.6) will give 

coefficient vector, αk, which will generate flux vectors through eqn. (E.4) which will 

always satisfy the lower/upper bound constraints defined by eqn. (E.3). Therefore, the 

initial problem of generating flux points is transformed into the problem of generating 

coefficient points (vectors) through equation (E.6). Accordingly, the initially defined four 

steps for Hit-and-Run sampling must be modified. 

 

E.1.2.  Adaptation of the Original Hit-and-Run Algorithm for Null Space 

Representation 

 

Step 0: Transform the initial starting flux vector, V0, from flux space to the null space 

by multiplying both sides of eqn. (E.4) by the pseudo-inverse of null-space matrix, B. 

 

00 )( VBpinv ×=α         (E.7) 

 

pseudo-inverse of a matrix, B,  is equal to  (BT×B)-1×BT, and can be easily calculated in 

MATLAB using built-in function ‘pinv’. Pseudo-inverse calculation is used if the matrix is 

not square and cannot be directly inversed. Thereby, the coefficient vector, α0, will 

generate flux vectors which will not lie on the boundaries. 
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Step 1: The direction vector, Dk, subject to eqn. (E.1) is generated in the same way as 

in the original algorithm, but the dimension being equal to the dimension of the coefficient 

vector, not flux vector. 

 

Step 2: The new coefficient vectors will be generated by Hit-and-Run method so that 

they will always result in flux vectors within the null space. Therefore, similar to the 

original formulation, the generation can be performed using the following equation; 

 

kkk Dλαα +=+1 .        (E.8) 

 

Here, the important point, as discussed before, is to determine λ so that resulting 

coefficient vector, αk+1, will satisfy the linear inequality eqn. (E.6). The inequalities can be 

rewritten in the following form for ith row, with i being the row index, j being the column 

index, and αk and Dk being row vectors; 

 

( ) i
j

jjij ubdb ≤+∑ λα                   (E.9.a) 

( )∑ −≤+−
j

ijjij lbdb λα            (E.9.b) 

 

The aim is to determine lower and upper limits of the line passing through αk in the 

direction of Dk. In other words, λmin/ λmax corresponding to the intersection points of the 

line with the coefficient space is to be identified. Therefore, λ will be left alone in left hand 

side of these equations; 

 

ijjijjij ubdbb∑ ∑ ≤+ λα          &     ∑ =
j
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ikikkik lbDbb∑ ∑ −≤−− λα      &     ∑ =
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Here, vi, lbi and ubi show the ith element of the flux vector and its corresponding 

lower/upper bound values respectively. These equations define two λ values for the ith row, 

which also corresponds to the ith dimension of the flux space. However, for the specific 

flux space sampling problem dealt here, the upper bound of all flux variables is positive 

infinity. That is, the generated fluxes will satisfy upper bound constraints in any case. 

Therefore, Eqn. (E.10.a) will not be pursued anymore. 

 

Focusing on Eqn. (E.10.b), it must be applied for each row of eqn. (E.6). The 

numerator of the equation will always be negative since ii lbv ≥ . Therefore, depending on 

the sign of the denominator, λ will be either positive or negative. Focusing on these two 

possibilities separately, for the rows where the denominator is positive,  Eqn. (E.10.b) will 

be negative. The maximum of these negative values (the one which is closest to zero) will 

give λmin. This is the minimum distance to an intersection of the line with a constraint in the 

one direction. On the other hand,,λmax gives the minimum distance to an intersection on the 

other direction of the chosen line. For the rows where the denominator of eqn. (E.10.b) is 

negative, the value of λ will be positive. The minimum of these positive values will give 

λmax. 

  

 Once these upper and lower bounds are computed, the real scalar λ for eqn. (E.8) is 

chosen randomly between λmin and λmax. Thereby, the new α coefficient vector is 

generated. Then, Eqn. (E.4) can be used to generate corresponding flux vector. 

 

This procedure is repeated until a sufficient number of samples is collected. To 

prevent the cross-dependence of the generated points, the flux vectors are only stored in 

every 1000th direction change. 

 

E.1.3.  Adaptation of  Monte-Carlo Sampling 

 

One way to handle generation of flux points in the solution space is Monte-Carlo 

sampling. For this purpose, a random coefficient vector, αj, can be generated, whose 

dimension is equal to the column number of the null space matrix, B. Then, corresponding 

flux vector can be obtained using eqn. (C.4). All elements of this vector must be checked 
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to see if all of them are within the boundary limits defined by eqn. (E.3).  If all of the 

elements of the flux vector is within the limits, the generated flux vector is accepted and 

stored. The procedure can be repeated until the desired number of flux vectors are 

generated.  

 

As the dimension of the system increases, the probability of the flux vector to satisfy 

all boundary conditions decreases. Therefore, Monte-Carlo approach for the null space is 

only applicable for flux systems with small dimensions. 

 

E.2.  Algorithm of multi-LP Sampling 

 

Here, A high number of optimizations with different, random objective functions are 

performed in order to generate as many flux distributions as possible. That is, the row 

vector defining the objective function to be optimized is randomly generated in each 

iteration. The dimension of the row vector is equal to the column number of stoichiometric 

matrix (Appendix A).The negative binary values in this vector shows the fluxes to be 

maximized while the positive binary values indicates the fluxes to be maximized. For all 

other fluxes, the corresponding entry is zero. After the number of desired flux distributions 

is set, linear programming (FBA) is performed until this number is reached, with a 

different randomly generated objective function in each FBA. 
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APPENDIX F: REACTIONS AND CORRESPONDING Z-SCORES OF 

METABOLIC NETWORK, ENZSUB-3 

 

 

F.1. Reactions of ENZSUB-3 Model 

 

First column gives the genes responsible for the corresponding reaction, and the 

second column includes short names which are used in the article to refer to reactions. The 

superscript ES means that the corresponding reaction is an enzyme subset consisting of 

combination of more than one reaction. The first of the numbers in parenthesis next to 

pathway names gives the number of the reactions in that pathway; the second number gives 

the number of reactions prior to enzyme-subset reduction. Reaction names are shown in 

capital non-italic letters, and gene names are, as conventional, in capital italic letters. 

 
  # CARBOHYDRATE METABOLISM 
   

Gene Name Reaction 
Name 

# GLYCOLYSIS/GLUCONEOGENESIS (4/4) 

   
GPM1-2-3 GPM :  3-Phospho-D-glycerate <-> 2-Phospho-D-

glycerate  
ENO1-2, ERR1-2-3 ENO :  2-Phospho-D-glycerate <-> Phosphoenolpyruvate  
CDC19, PYK2  PYK :  ADP + Phosphoenolpyruvate -> ATP + Pyruvate  
PDA1, PDB1, 
LAT1 

PDA :  CoA + NAD+ + Pyruvate -> Acetyl-CoA + CO2 
+ NADH  

   
  # CITRATE CYCLE (TCA CYCLE) (7/8) 
   
CIT1-2-3 CIT :  Acetyl-CoA + Oxaloacetate -> Citrate + CoA  
ACO1, YJL200C ACO :  Citrate <-> Isocitrate  
IDH1-2 IDH :  Isocitrate + NAD+ -> 2-Oxoglutarate + CO2 + 

NADH  
IDP1-2-3ES IDP ES :  Isocitrate + NADP+ -> 2-Oxoglutarate + CO2 + 

NADPH  
KGD1-2 KGD :  2-Oxoglutarate + CoA + NAD+ -> CO2 + NADH 

+ Succinyl-CoA  
LSC1 LSC1 :  ATP + Itaconate + CoA <-> ADP + 

Orthophosphate + Itaconyl-CoA  
LSC2 LSC2 :  ATP + CoA + Succinate <-> ADP + 

Orthophosphate + Succinyl-CoA  
   
  # ELECTRON TRANSPORT SYSTEM, 
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COMPLEX II (3/3) 
   
SDH1-2-3-4, 
YLR164W, 
YMR118C, 
YJL045W, 
YEL047C, OSM1 

SDH :  FAD + Succinate <-> FADH2 + Fumarate  

FUM1 FUM :  Fumarate <-> Malate  
MDH1-2-3 MDH :  Malate + NAD+ <-> NADH + Oxaloacetate  
   
  # ANAPLEROTIC REACTIONS (5/5) 
   
ICL1-2 ICL :  Isocitrate -> Glyoxylate + Succinate  
DAL7, MLS1 MLS :  Acetyl-CoA + Glyoxylate -> CoA + Malate  
PCK1 PCK1 :  ATP + Oxaloacetate -> ADP + CO2 + 

Phosphoenolpyruvate  
PYC1-2 PYC :  ATP + CO2 + Pyruvate -> ADP + 

Orthophosphate + Oxaloacetate  
MAE1 MAE1 :  Malate + NADP+ -> CO2 + NADPH + Pyruvate  
   
  # PYRUVATE METABOLISM (1/1) 
   
PDC1-5-6 PDC :  Pyruvate -> Acetaldehyde + CO2  
   
   
  # ENERGY METABOLISM 
   
  # ATP SYNTHASE (1/1) 
   
DLD1, CYB2 DLD :  2 Ferricytochrome c + (R)-Lactate -> Pyruvate + 

2 Ferrocytochrome c  
   
   
  # FATTY ACIDS METABOLISM 
   
  # FATTY ACID DEGRADATION (1/1) 
   
POX1/FOX2/POT1  POX :  Myristic acid + ATP + 7 CoA + 7 FAD + 7 

NAD+ -> AMP + Pyrophosphate + 7 FADH2 + 7 
NADH + 7 Acetyl-CoA  

   
  # PHOSPHOLIPID BIOSYNTHESIS (2/4) 
   
CHO1 CHO1 :  CDPdiacylglycerol + L-Serine <-> CMP + 

Phosphatidylserine  
CHO2, OPI3ES     OPI ES :  Phosphatidylethanolamine + 3 S-Adenosyl-L-

methionine -> Phosphatidylcholine + 3 S-Adenosyl-
L-homocysteine  
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  # STEROL BIOSYNTHESIS (2/6) 
   
ERG6-2-3-5-4ES ERG ES :  3 NADPH + 2 Oxygen + S-Adenosyl-L-

methionine + Zymosterol -> Ergosterol + 3 NADP+ 
+ S-Adenosyl-L-homocysteine  

U14_     U14_ :  S-Adenosyl-L-methionine + Zymosterol -> 
Ergosterol + S-Adenosyl-L-homocysteine  

   
   
  # NUCLEOTIDE METABOLISM 
   
  # PURINE METABOLISM (3/11) 
   
ADE1-2-4-5,7-6-8-
13ES 

AICES :  10-Formyltetrahydrofolate + 5-Phospho-alpha-D-
ribose 1-diphosphate + 4 ATP + CO2 + Glycine + 
L-Aspartate + 2 L-Glutamine -> 1-(5'-
Phosphoribosyl)-5-amino-4-imidazolecarboxamide 
+ 4 ADP + Fumarate + 2 L-Glutamate + 4 
Orthophosphate + Pyrophosphate + 
Tetrahydrofolate  

ADE12-13 ES AMPES :  GTP + IMP + L-Aspartate -> AMP + Fumarate + 
GDP + Orthophosphate  

GUA1 GUA1 :  ATP + L-Glutamine + Xanthosine 5'-phosphate -> 
AMP + GMP + L-Glutamate + Pyrophosphate  

   
  # PYRIMIDINE METABOLISM (2/5) 
   
URA2-3-4-5-10 ES URA ES :  5-Phospho-alpha-D-ribose 1-diphosphate + 

Carbamoyl phosphate + L-Aspartate + Orotate -> 
(S)-Dihydroorotate + CO2 + Orthophosphate + 
Pyrophosphate + UMP  

URA7-8 URA78 :  ATP + L-Glutamine + UTP -> ADP + CTP + L-
Glutamate + Orthophosphate  

   
   
  # AMINO ACID METABOLISM 
   
  # GLUTAMATE METABOLISM 

(AMINOSUGARS METABOLISM) (10/11) 
   
GAD1 GAD1 :  L-Glutamate -> 4-Aminobutanoate + CO2  
UGA1-2 ES UGA ES :  2-Oxoglutarate + 4-Aminobutanoate + NADP+ -> 

L-Glutamate + NADPH + Succinate  
GFA1 GFA1 :  beta-D-Fructose 6-phosphate + L-Glutamine -> 

D-Glucosamine 6-phosphate + L-Glutamate  
PUT2 PUT2 :  L-Glutamate 5-semialdehyde + NADP+ -> L-

Glutamate + NADPH  
U41_     U41_ :  (S)-1-Pyrroline-5-carboxylate + NAD+ -> L-

Glutamate + NADH  
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GLT1 GLT1 :  2-Oxoglutarate + L-Glutamine + NADH -> 2 L-
Glutamate + NAD+  

GDH2 GDH2 :  L-Glutamate + NAD+ -> 2-Oxoglutarate + 
NADH + NH3  

GDH1-3 GDH13 :  2-Oxoglutarate + NADPH + NH3 -> L-Glutamate 
+ NADP+  

GLN1 GLN1 :  ATP + L-Glutamate + NH3 -> ADP + L-
Glutamine + Orthophosphate  

U42_ -43_    U42_43ES :  L-Glutamine -> L-Glutamate + NH3  
   
  # ALANINE AND ASPARTATE 

METABOLISM (4/4) 
   
AAT1-2 AAT :  L-Glutamate + Oxaloacetate <-> 2-Oxoglutarate + 

L-Aspartate  
ALT1-2 ALT :  L-Glutamate + Pyruvate <-> 2-Oxoglutarate + L-

Alanine  
ASN1-2 ASN :  ATP + L-Aspartate + L-Glutamine -> AMP + L-

Asparagine + L-Glutamate + Pyrophosphate  
MHT1, SAM4 MHT :  Homocysteine + S-Adenosyl-L-methionine -> L-

Methionine + S-Adenosyl-L-homocysteine  
   
  # ASPARAGINE (1/1) 
   
ASP(3-1)-(3-2)-(3-
3)-(3-4)-1 

ASP3-1 :  L-Asparagine -> L-Aspartate + NH3  

   
  # GLYCINE, SERINE AND THREONINE 

METABOLISM (11/15) 
   
SER3-33-1-2ES     SERsyn ES :  3-Phospho-D-glycerate + L-Glutamate + NAD+ -

> 2-Oxoglutarate + L-Serine + NADH + 
Orthophosphate  

SHM1-2 GLYsyn :  L-Serine + Tetrahydrofolate <-> 5,10-
Methylenetetrahydrofolate + Glycine  

AGX1 AGX1 :  Glyoxylate + L-Alanine <-> Glycine + Pyruvate  
GCV1    GCV1 :  Glycine + NAD+ + Tetrahydrofolate -> 5,10-

Methylenetetrahydrofolate + CO2 + NADH + NH3  
HOM3-2 ES HOM ES :  ATP + L-Aspartate + NADPH -> ADP + L-

Aspartate 4-semialdehyde + NADP+ + 
Orthophosphate  

THR1-4 ES THRsyn ES :  ATP + L-Homoserine -> ADP + L-Threonine + 
Orthophosphate  

CYS4 CYS4 :  Homocysteine + L-Serine -> L-Cystathionine  
GLY1 GLY1 :  Acetaldehyde + Glycine -> L-Threonine  
CHA1, ILV1 CHA1o :  L-Threonine -> 2-Oxobutanoate + NH3  
CHA1, SDL1 CHA1p :  L-Serine -> NH3 + Pyruvate  
U46_        :  L-Threonine + NAD+ -> Acetate + Glycine + 

NADH  
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  # METHIONINE METABOLISM (5/5) 
   
YFR055W  :  L-Cystathionine -> Homocysteine + NH3 + 

Pyruvate  
SAH1 SAH1 :  S-Adenosyl-L-homocysteine -> Adenosine + 

Homocysteine  
U47_     METsyn :  5-Methyltetrahydrofolate + Homocysteine -> L-

Methionine + Tetrahydrofolate  
CYS3 CYS2 :  L-Cystathionine -> 2-Oxobutanoate + L-Cysteine 

+ NH3  
SAM1-2 SAM :  ATP + L-Methionine -> Orthophosphate + 

Pyrophosphate + S-Adenosyl-L-methionine  
   
  # CYSTEINE BIOSYNTHESIS (2) 
   
U48_     U48_ :  L-Serine + Acetyl-CoA -> CoA + O-Acetyl-L-

serine  
YGR012W CYSsyn :  O-Acetyl-L-serine + Hydrogen sulfide -> Acetate 

+ L-Cysteine  
   
  # BRANCHED CHAIN AMINO ACID 

METABOLISM (VALINE, LEUCINE AND 
ISOLEUCINE) (5/11) 

   
LEU2, BAT1-2 ES LEUsyn ES :  L-Glutamate + NAD+ + 2-Isopropylmalate -> 2-

Oxoglutarate + CO2 + L-Leucine + NADH  
LEU4  LEU4 :  Acetyl-CoA + (R)-2-Oxoisovalerate -> CoA + 2-

Isopropylmalate  
BAT1-2, ILV2-6, 
ILV5, ILV3 ES 

ILEsyn ES :  2-Oxobutanoate + L-Glutamate + NADPH + 
Pyruvate -> 2-Oxoglutarate + CO2 + L-Isoleucine + 
NADP+  

BAT2 VALsyn :  (R)-2-Oxoisovalerate + L-Glutamate <-> 2-
Oxoglutarate + L-Valine  

ILV2-6, ILV5, ILV3 

ES 
OIVsyn ES :  NADPH + 2 Pyruvate -> (R)-2-Oxoisovalerate + 

CO2 + NADP+  
   
  # LYSINE BIOSYNTHESIS/DEGRADATION 

(4/10) 
   
U49_, LYS4-12, 
U50_, LYS21-20 ES    

OXAsyn ES :  2-Oxoglutarate + Acetyl-CoA + NAD+ -> 2-
Oxoadipate + 2 CO2 + CoA + NADH  

U51_,LYS9-1ES LYSsyn ES :  2-Oxoadipate + L-2-Aminoadipate 6-
semialdehyde + 2 L-Glutamate + NAD+ + NADPH 
<-> 2 2-Oxoglutarate + L-2-Aminoadipate + L-
Lysine + NADH + NADP+  

LYS2-5         LYS2_1 :  ATP + L-2-Aminoadipate + NADPH -> AMP + 
L-2-Aminoadipate 6-semialdehyde + NADP+ + 
Pyrophosphate  

LYS2-5          LYS2_2 :  ATP + L-2-Aminoadipate + NADH -> AMP + L-



 

 

147 

2-Aminoadipate 6-semialdehyde + NAD+ + 
Pyrophosphate  

   
  # ARGININE METABOLISM (6/10) 
   
ARG5,6-8 ES     ARG5,6-8 ES     :  ATP + 1 L-Glutamate + NADPH + N-Acetyl-L-

glutamate -> 2-Oxoglutarate + ADP + NADP+ + 
Orthophosphate + N2-Acetyl-L-ornithine  

ECM40 ECM40 :  N2-Acetyl-L-ornithine + L-Glutamate -> L-
Ornithine + N-Acetyl-L-glutamate  

URA2, CPA1-2   CABsyn :  2 ATP + CO2 + L-Glutamine -> 2 ADP + 
Carbamoyl phosphate + L-Glutamate + 
Orthophosphate  

CAR2 CAR2 :  2-Oxoglutarate + L-Ornithine -> L-Glutamate + 
L-Glutamate 5-semialdehyde  

ARG1-4-3 ES    ARGsyn ES :  ATP + Carbamoyl phosphate + L-Aspartate + L-
Ornithine -> AMP + Fumarate + L-Arginine + 
Orthophosphate + Pyrophosphate  

CAR1 CAR1 :  L-Arginine -> L-Ornithine + Urea  
   
  # HISTIDINE METABOLISM (2/9) 
   
HIS1-4-6-3-5-2 ES HISsyn ES :  5-Phospho-alpha-D-ribose 1-diphosphate + ATP 

+  2 NAD+ + L-Glutamate + D-erythro-1-
(Imidazol-4-yl)glycerol 3-phosphate -> 2-
Oxoglutarate + L-Histidine + 2 NADH + 
Orthophosphate + 2 Pyrophosphate + "N-(5'-
Phospho-D-1'-ribulosylformimino)-5-amino-1-(5""-
phospho-D-ribosyl)-4-imidazolecarboxamide"  

HIS7   HIS7 :  "N-(5'-Phospho-D-1'-ribulosylformimino)-5-
amino-1-(5""-phospho-D-ribosyl)-4-
imidazolecarboxamide" + L-Glutamine -> L-
Glutamate + 1-(5'-Phosphoribosyl)-5-amino-4-
imidazolecarboxamide + D-erythro-1-(Imidazol-4-
yl)glycerol 3-phosphate  

   
  # PHENYLALANINE, TYROSINE AND 

TRYPTOPHAN BIOSYNTHESIS (AROMATIC 
AMINO ACIDS) (8/23) 

   
ARO3-4-1-2 ES CHOsyn ES :  ATP + D-Erythrose 4-phosphate + NADPH + 2 

Phosphoenolpyruvate -> ADP + Chorismate + 
NADP+ + 4 Orthophosphate  

ARO9, PHA2 ES   PHEsyn ES :  L-Glutamate + Prephenate -> 2-Oxoglutarate + 
CO2 + L-Phenylalanine  

ARO8-9, AAT1-2 TYRsyn :  3-(4-Hydroxyphenyl)pyruvate + L-Glutamate -> 
2-Oxoglutarate + L-Tyrosine  

TRP2-3 TRP23 :  Chorismate + L-Glutamine -> Anthranilate + L-
Glutamate + Pyruvate  
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TRP4-1-3-2-5 ES  TRPsyn ES :  5-Phospho-alpha-D-ribose 1-diphosphate + 
Anthranilate + L-Serine -> CO2 + D-
Glyceraldehyde 3-phosphate + L-Tryptophan + 
Pyrophosphate  

BNA2-3 ES KYNsyn ES :  L-Tryptophan + Oxygen -> Formate + L-
Kynurenine  

BNA5      :  L-Kynurenine -> Anthranilate + L-Alanine  
BNA4-5-1, U54_-
55_-56_ ES     

BNA  ES :  L-Kynurenine + NAD+ + 2 NADPH + 2 Oxygen 
-> 2-Oxoadipate + CO2 + L-Alanine + NADH + 2 
NADP+ + NH3  

   
  # PROLINE BIOSYNTHESIS (5/5) 
   
PRO1   PRO1 :  ATP + L-Glutamate -> ADP + alpha-D-Glutamyl 

phosphate  
PRO3   PROsyn :  (S)-1-Pyrroline-5-carboxylate + NADPH -> L-

Proline + NADP+  
PRO3   PRO3_2 :  L-1-Pyrroline-3-hydroxy-5-carboxylate + 

NADPH -> trans-4-Hydroxy-L-proline + NADP+  
PRO3   PRO3_3 :  L-1-Pyrroline-3-hydroxy-5-carboxylate + NADH 

-> trans-4-Hydroxy-L-proline + NAD+  
PUT1 PUT1 :  L-Proline + NAD+ -> (S)-1-Pyrroline-5-

carboxylate + NADH  
   
   
  # METABOLISM OF OTHER AMINO ACID 
   
  # GLUTATHIONE BIOSYNTHESIS (1/1) 
                   
GSH1-2 ES   GSH ES :  2 ATP + Glycine + L-Cysteine + L-Glutamate -> 

2 ADP + Glutathione + 2 Orthophosphate  
   
   
  # METABOLISM OF COFACTORS, 

VITAMINS, AND OTHER SUBSTANCES 
                   
  # THIAMINE (VITAMIN B1) METABOLISM 

(3/3) 
   
U76_-77_ ES THI ES :   Thiamin diphosphate + ADP -> Thiamin + ATP 

+ Orthophosphate  
THI80   THI80 :   ATP + Thiamin -> AMP + Thiamin diphosphate  
   
  # PANTOTHENATE AND COA 

BIOSYNTHESIS (1/3) 
   
U86_-222_-85_ ES    AON ES :   L-Alanine + 3 Malonyl-CoA -> 3 CO2 + 3 CoA 

+ H+EXT + AONAxt  
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  # FOLATE BIOSYNTHESIS (3/3) 
   
U88_  U88 :   4-amino-4-deoxychorismate -> Pyruvate + 4-

Aminobenzoate  
FOL1 FOL1a :   4-Aminobenzoate + 2-Amino-7,8-dihydro-4-

hydroxy-6-(diphosphooxymethyl)pteridine -> 
Pyrophosphate + Dihydropteroate  

FOL1   FOL1b :   4-Aminobenzoate + 2-Amino-4-hydroxy-6-
hydroxymethyl-7,8-dihydropteridine -> 
Dihydropteroate  

   
  # COENZYME A BIOSYNTHESIS (2/10) 
   
ECM31, ILV5, 
PAN5-6, U98_ ES      

PANT ES :  (R)-2-Oxoisovalerate + 5,10-
Methylenetetrahydrofolate + ATP + L-Aspartate + 
NADPH -> (R)-Pantothenate + AMP + CO2 + 
NADP+ + Pyrophosphate + Tetrahydrofolate  

YDR531W, U92_-
93_-94_-96_, 
PPT2 ES 

PPT ES :  (R)-Pantothenate + 3 ATP + CTP + L-Cysteine -> 
Acyl-carrier protein + Adenosine 3',5'-bisphosphate 
+ 2 ADP + CMP + CO2 + 2 Pyrophosphate  

   
  # NAD BIOSYNTHESIS (3/3) 
   
PNC1 PNC1 :  Nicotinamide <-> Nicotinate + NH3  
NPT1   NPT1 :  Nicotinate + 5-Phospho-alpha-D-ribose 1-

diphosphate -> Nicotinate D-ribonucleotide + 
Pyrophosphate  

U99_     U99 :  L-Aspartate + FAD -> FADH2 + a-
Iminosuccinate  

   
   
  # MEMBRANE TRANSPORT 
   
  # PLASMA MEMBRANE TRANSPORT (3/3) 
   
AGP1-3, STL1, 
GAP1, DIP5 

GLUsc :  GLUxt <-> L-Glutamate  

JEN1 LACsc :  LACxt + H+EXT <-> (R)-Lactate 
U231_ MALsc :  H+EXT + MALxt <-> Malate  
U155_     U155 :  2-Oxoglutarate + MALxt <-> Malate + AKGxt  
   
  # AMINO ACIDS (21/21) 
   
GAP1, DIP5, 
AGP1, TAT2, 
PUT4 

ALAsc :  H+EXT + ALAxt <-> L-Alanine  

GAP1, AGP1, 
GNP1, DIP5 

ASNsc :  H+EXT + ASNxt <-> L-Asparagine  

AGP3, GAP1, ASPsc :  H+EXT + ASPxt <-> L-Aspartate  
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DIP5 
GAP1, GNP1, 
BAP2-3, TAT1-2 

CYSsc :  H+EXT + CYSxt <-> L-Cysteine  

GAP1, TAT2, 
DIP5, PUT4 

GLYsc :  H+EXT + GLYxt <-> Glycine  

GAP1, AGP1, 
GNP1, DIP5 

GLNsc :  H+EXT + GLNxt <-> L-Glutamine  

HIP1, GAP1, 
AGP1, TAT1 

HISsc :  H+EXT + HISxt <-> L-Histidine  

TAT1, GAP1, 
AGP1, BAP2-3 

ILEsc :  H+EXT + ILExt <-> L-Isoleucine  

TAT1, GAP1, 
AGP1, BAP2-3, 
GNP1 

LEUsc :  H+EXT + LEUxt <-> L-Leucine  

GAP1, AGP1, 
GNP1, BAP2-3, 
MUP1-3 

METsc :  H+EXT + METxt <-> L-Methionine  

GAP1, AGP1, 
TAT2, BAP2-3 

PHEsc :  H+EXT + PHExt <-> L-Phenylalanine  

GAP1, PUT4 PROsc :  H+EXT + PROxt <-> L-Proline  
TAT1-2, GAP1, 
BAP2-3 

TRPsc :  H+EXT + TRPxt <-> L-Tryptophan  

TAT1-2, GAP1, 
AGP1, BAP2-3 

TYRsc :  H+EXT + TYRxt <-> L-Tyrosine  

GAP1, AGP1, 
BAP2-3, TAT1 

VALsc :  H+EXT + VALxt <-> L-Valine  

AGP1-3, GNP1, 
GAP1, DIP5 

SERsc :  H+EXT + SERxt <-> L-Serine  

TAT1, AGP1, 
GAP1, GNP1 

THRsc :  H+EXT + THRxt <-> L-Threonine  

LYP1, GAP1 LYSsc :  H+EXT + LYSxt <-> L-Lysine  
SAM3 SAMsc :  H+EXT + SAMxt <-> S-Adenosyl-L-methionine  
PUT4, UGA4 GABAsc :  H+EXT + GABAxt <-> 4-Aminobutanoate  
GAP1, CAN1 ORNsc :  H+EXT + ORNxt <-> L-Ornithine  
   
  # METABOLIC BY-PRODUCTS 
   
U205_      SUCsc :  H+EXT + SUCCxt <-> Succinate  
JEN1    PYRsc :  H+EXT + PYRxt <-> Pyruvate  
U206_      CITsc :  H+EXT + CITxt <-> Citrate  
   
  # OTHER COMPOUNDS 
   
U207_      FUMsc :  H+EXT + FUMxt <-> Fumarate  
U208_      MYRsc :  C140xt <-> Myristic acid  
U213_      AKGsc :  H+EXT + AKGxt <-> 2-Oxoglutarate  
THI7, YOR071C, 
YOR192C 

THIsc :  THMxt + H+EXT <-> Thiamin  

U226_      PIMsc :  PIMExt <-> Pimelic Acid  
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F.2. Magnitude of Regulation for the Reactions of ENZSUB-3 Model 

 

Magnitude of regulation for the reactions of the metabolic network, ENZSUB3, at 

metabolic (zRE) and transcriptional (zGE) level is given in Table F.1 for the effect of very 

high-gravity (VHG) fermentation media on laboratory (CEN) and industrial Red Star (RS) 

strains. Regulation is considered to be significant for zRE, zGE > 1.28 (p < 0.10). In the 

table, regulation type is coded as follows; H means hierarchical (transcriptionally) change, 

M stands for metabolic change. HM shows the reactions for which there is regulation in 

both levels. The reactions were grouped with respect to the pathways they belong. SM is 

the abbreviation for standard media. ES in the reaction names stands for enzyme subset. 

 

Table F.1. Magnitude of regulation for the reactions of ENZSUB3  

  CEN (VHG vs SM) RS (VHG vs SM) 

  zRE zGE   zRE zGE   

GLYCOLYSIS             

GPM -0.95 0.32 - -0.90 1.49 H 

ENO -1.69 2.18 H -1.76 -1.63 - 

PYK -0.04 0.82 - -0.05 1.26 - 

PDA -0.13 1.00 - -0.01 1.73 H 

TCA CYCLE        

CIT -0.27 1.13 - -0.01 -0.09 - 

ACO -0.19 1.32 H 0.00 1.46 H 

IDH -0.73 -0.83 - -0.62 -0.98 - 

IDP ES -0.08 0.41 - 0.02 1.28 H 

KGD -0.24 0.77 - -0.02 -0.31 - 

LSC1                                               -0.73 1.37 H -0.56 0.84 - 

LSC2                                               0.31 0.68 - 0.44 0.47 - 

SDH 0.72 -0.27 - -0.02 1.61 H 

FUM 0.14 1.54 H -0.78 0.72 - 

MDH -1.32 1.25 - -1.35 1.16 - 

ANAPLEROTIC REACTIONS.             

ICL 0.63 0.03 - 0.52 1.49 H 

MLS 0.40 -0.84 - 0.52 0.02 - 
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Table F.1. continued       

PCK1                                               -1.22 0.70 - -1.15 1.26 - 

PYC                                           -0.12 -1.05 - -0.05 0.29 - 

MAE1                                               0.68 1.52 H 0.71 1.22 - 

PDC                                        0.57 0.07 - 0.68 1.74 H 

FATTY ACID             

POX -1.13 0.78 - -0.92 1.28 H 

CHO1                                            0.43 2.04 H 0.35 -1.42 - 

ERG ES -0.39 1.95 H -0.31 0.85 - 

PURINE- PYRIMIDINE             

AICES 0.32 1.52 H -0.03 0.53 - 

AMPES 1.13 1.63 H 0.96 1.32 H 

GUA1                                               0.76 1.54 H 0.90 1.55 H 

URA ES 0.81 1.77 H 0.90 0.61 - 

URA78 0.08 0.97 - 0.38 1.00 - 

GLUTAMATE PATHWAY             

GAD1                                               1.29 1.46 HM 1.43 1.21 M 

UGA ES 2.18 1.69 HM 2.23 0.38 M 

GFA1                                               1.19 0.32 - 1.18 -0.63 - 

PUT2                                               0.75 -0.16 - 0.74 2.15 H 

GLT1                                               1.25 2.82 H 1.24 1.00 - 

GDH2                                               0.56 1.83 H 0.60 1.67 H 

GDH13                                               1.20 0.25 - 1.24 0.91 - 

GLN1                                               0.93 1.36 H 0.95 0.70 - 

ALANINE-ASPARTATE PATHWAY             

AAT 1.25 1.50 H 1.24 2.30 H 

ALT 2.50 2.48 HM 2.48 1.80 HM 

ASN 1.84 2.30 HM 1.85 0.54 M 

MHT -1.00 1.45 H -0.99 0.35 - 

ASP3-1 1.47 1.45 HM 1.41 1.34 HM 

GLYCINE-SERINE-THREONINE P.             

SERsyn ES 0.93 1.62 H 0.80 0.43 - 

GLYsyn 1.15 1.69 H 1.03 1.46 H 

AGX1 2.45 0.86 M 2.31 2.21 HM 
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Table F.1. continued       

GCV1                                       -0.17 2.53 H 0.01 0.81 - 

HOM ES 0.41 0.30 - 0.47 1.44 H 

THRsyn ES 0.42 1.30 H -0.23 0.98 - 

CYS4                                               -0.01 1.29 H -0.31 0.43 - 

GLY1                                               1.41 0.41 M 0.46 0.50 - 

CHA1o 0.02 1.11 - -0.96 1.52 H 

CHA1p 1.47 0.93 M 1.14 0.54 - 

METHIONINE-CYSTEINE PATHWAY             

YFR055W                                            -0.05 2.03 H -0.05 0.44 - 

SAH1                                               -0.83 1.74 H -0.75 1.42 H 

CYS3                                               -1.83 0.38 - -1.88 0.01 - 

SAM                                         -0.45 1.16 - -0.34 0.81 - 

CYSsyn -1.34 -0.83 - -1.27 1.11 - 

LEUCINE-ISOLEUCINE-VALINE P.             

LEUsyn ES 1.07 1.54 H 1.38 0.91 M 

LEU4                                               -0.60 0.88 - -0.18 1.58 H 

ILEsyn ES 1.15 1.66 H 1.42 1.90 HM 

VALsyn 1.20 0.98 - 1.24 -0.33 - 

OIVsyn ES 0.04 1.83 H 0.02 2.13 H 

LYSINE PATHWAY             

OXAsyn ES 0.32 1.18 - -0.06 1.17 - 

LYSsyn ES 1.67 2.46 HM 1.16 0.90 - 

LYS2_1 0.22 1.21 - 0.36 1.29 H 

LYS2_2 -0.30 1.21 - -0.17 1.29 H 

ARGININE PATHWAY             

ARG5,6-8 ES     1.20 1.56 H 1.28 0.88 M 

ECM40                                            1.85 2.39 HM 0.61 1.32 H 

CABsyn 0.77 1.28 H 0.89 0.34 - 

CAR2                                               1.74 0.57 M 0.62 -0.01 - 

ARGsyn ES 0.62 0.68 - -0.45 0.44 - 

CAR1                                               0.56 1.74 H -0.74 1.27 - 

HISTIDINE PATHWAY             

HISsyn ES 0.48 1.82 H 0.75 1.25 - 
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Table F.1. continued       

HIS7                                               1.00 1.32 H 1.09 2.06 H 

AROMATIC AMINOACIDS P.             

CHOsyn ES -0.61 1.66 H -0.51 1.41 H 

PHEsyn ES 1.36 1.66 HM 1.65 0.98 M 

TYRsyn 1.22 1.78 H 1.84 3.41 HM 

TRP23 1.67 1.31 HM 1.65 0.78 M 

TRPsyn ES 0.44 1.74 H 0.45 2.24 H 

KYNsyn ES 0.09 2.15 H 0.19 1.60 H 

BNA5 0.65 1.97 H 0.69 -1.11 - 

BNA ES 0.39 2.09 H -0.06 -0.16 - 

PROLINE PATHWAY             

PRO1                                               0.49 1.83 H 0.57 2.05 H 

PROsyn 0.73 0.87 - 0.72 0.84 - 

PRO3_2 -0.69 0.87 - -0.71 0.84 - 

PRO3_3 -1.44 0.87 - -1.45 0.84 - 

PUT1                                               -0.02 0.56 - -0.02 1.67 H 

SECRETION REACTIONS             

GLUsc 1.85 1.17 M 1.81 0.79 M 

LACsc 1.43 0.81 M 1.45 0.86 M 

ALAsc 1.43 1.90 HM 1.45 0.75 M 

ASNsc 0.81 -0.25 - -0.03 0.69 - 

ASPsc 1.43 2.09 HM 1.29 0.86 M 

CYSsc -1.46 1.38 H -1.47 0.53 - 

GLYsc 1.43 1.66 HM 1.45 0.80 M 

GLNsc 1.14 -0.25 - -0.03 0.69 - 

HISsc 0.88 -0.80 - -0.03 0.88 - 

ILEsc 0.86 1.55 H -0.03 0.56 - 

LEUsc 1.14 1.46 H 1.01 0.66 - 

METsc -1.46 1.94 H -1.47 0.98 - 

PHEsc 1.21 1.58 H -0.03 0.21 - 

PROsc 1.43 1.40 HM 1.45 0.90 M 

TRPsc -0.48 1.52 H -0.50 0.37 - 

TYRsc -0.65 1.56 H 1.15 0.43 - 
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Table F.1. continued       

VALsc 1.38 1.55 HM -0.03 0.56 - 

SERsc -0.01 -0.80 - -0.30 0.68 - 

THRsc 1.14 1.00 - -0.97 0.58 - 

LYSsc -0.01 1.84 H -0.03 1.00 - 

SAMsc -0.47 1.54 H -0.42 1.27 - 

GABAsc -0.15 0.80 - -0.03 2.02 H 

ORNsc -0.06 1.45 H -1.47 1.59 H 

PYRsc 1.43 0.81 M 1.45 0.86 M 

THIsc -0.84 1.62 H -0.74 0.87 - 

GSHES 0.40 1.15 - 0.42 0.63 - 

NPT1 -0.78 1.55 H -0.65 1.20 - 

OPI ES -0.46 0.48 - -0.34 0.69 - 

DLD                                            1.21 0.00 - 1.24 1.18 - 

PANT ES -0.24 2.24 H 0.01 1.24 - 

FOL1a                                            -0.76 2.05 H 0.63 0.47 - 

FOL1b                                         -0.85 2.05 H 0.71 0.47 - 

PNC1                                          -0.81 1.59 H -0.73 1.60 H 

THI80                                            -0.78 1.29 H -0.66 0.12 - 

PPT ES               -0.74 1.84 H -0.43 0.54 - 
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APPENDIX G:  REPRXN MX SOFTWARE PACKAGE 

 

 

A software package, called RepRxn MX, was developed which automates the 

method discussed in chapter 5. The package works under MATLAB 7.0, and consists of 13 

M-files. A graphical user interface (GUI) was designed for the package (Figure G.1). 

Basically, a) it follows the roadmap depicted in Figure 5.2 to construct ENZSUB-3 

metabolic network. Two input files are required for the this part to function: a text file 

including all the reactions occurring in the metabolism of interest, and another text file 

with the names of measured metabolites. b) it performs reporter reaction analysis based on 

the derived network, ENZSUB-3. This step requires external input of the p-values of 

metabolites within the network. 

 

 

Figure G.1. Graphical user interface of the developed MATLAB package, RepRxn MX 

 

G.1.  Requirement for Model Reactions 

 

All the metabolic reactions for the organism of interest (in this case S. cerevisiae) 

must be supplied in a text file in the following format; 

 

reactionname : A + B -> C + D 
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In other words, a name must be assigned to each reaction, followed by colon mark 

‘:’, Then, the reactants are written separated by summation mark ‘+’. The reactants and 

products must be separated by ‘->’ or ‘<->’  depending on if the reaction is irreversible or 

reversible. 

 

Whenever required, comment lines can be introduced into the input text files by 

using ‘#’ sign. All lines which start with this sign will not be read and executed by the 

MATLAB codes. 

 

The input metabolic network must be compatible with the nature of measured 

metabolite data. That is, if the data does not make any distinction between the presence of 

a metabolite in different compartments (such as cytosolic or mitochondrial pools), the 

reactions supplied must not be compartmentalized. The opposite case is also valid. In the 

case of present data discussed in this chapter, there is a distinction only between 

intracellular and extracellular compartments whereas the yeast genome-scale model 

includes three compartments (mitochondria, cytosol and external space). Therefore, the 

cytosolic/mitochondrial compartmentation of the model was removed and metabolites 

present in both of these compartments were represented as one, with their corresponding 

reactions conserved. The package assumes that this preprocessing, if necessary, is 

manually done before.  For the present analysis, rearranged reaction list is available 

through a text file called “SC_forster03_uncomp.txt”. 

 

G.2. Duplicate Reaction Removal 

 

Duplicate reactions due to isoenzyme availability in the supplied text file of 

metabolic network, if any, are removed by keeping only one of them since metabolome 

data does not provide any special information to interpret isoenzymes. ‘A_noduplic.m’ 

performs this preprocessing. Below is the output of the code; 

 

---------------------------------------------------------------------------------------- 

A. REMOVAL OF DUPLICATE REACTIONS: started ... 

Model initially includes 1112 reactions. 

Input Model was reduced by removing 387 duplicate reactions ... 
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New model was written into a new text file: "SC_forster03_nodup.txt"... 

Metabolite List was constructed for NoDuplic Model ... 

Metabolite List was written into "metlist_noduplic.txt" file.. 

DUPLICATE REACTION REMOVAL IS COMPLETE! : 

NEW MODEL INCLUDES 725 REACTIONS AND 677 METABOLITES.. 

Elapsed time is 8.76 seconds. 

----------------------------------------------------------------------------------------  

 

As seen from the output, the code also constructs the list of metabolites for the new 

model using a function “func_metlist.m”. In this way, UNCOMP model was constructed 

(Figure 5.X). The execution time is 8.7 sec. in a computer with Pentium IV 3 Ghz 

processor and 1 GB memory.  

 

G.3.  Identification and Combination of Enzyme Subsets 

 

UNCOMP model is processed by another MATLAB script called “B_enzsub.m” to 

build ENZSUB-1 model. METATOOL can also be used to perform this task. However, it 

is relatively inconvenient to convert the text file into METATOOL input file format in an 

automated fashion, and to process the output file to reconstruct the new reaction list. 

 

G.3.1. Construction of Stoichiometric Matrix from NoDuplic Model 

 

As detailed in the following subsection,  enzyme subset combination analysis 

depends on the stoichiometric coefficients. Therefore, the model stored in the text file 

(SC_forster03_nodup.txt) is converted into a stoichiometric matrix representation by a 

script “text2mat_v3_sc.txt”. The script follows the following steps to construct the matrix; 

-  Reaction list is read from the text file. 

-  Reactants and products are separated into different variables. 

- Reversibility information of the reactions is stored into a variable by scanning the 

direction of the arrows in the reactions. Thereby, lower and upper bounds of 

reactions are assigned. 

-  Metabolite names list is constructed from reaction list. 
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-  A function “coeff_met.m” is used to construct stoichiometric coefficient matrix 

for reactants and products. 

 

The output of the code is given below: 

--------------------------------------------------------------------------- 

NODUPLIC model is being converted into stoichiometric representation... 

Reaction List was read from the file: 725 Reactions 

Metabolite List was constructed from reaction list: 677 Metabolites 

Number of Irreversible Reactions: 509  

Number of Reversible Reactions  : 216  

Matrix conversion for REACTANTS and PRODUCTS were completed ... 

STOICHIOMETRIC MATRIX FOR NODUPLIC MODEL IS READY!. : 677 x 

725 

Elapsed time is 10.93 seconds. 

--------------------------------------------------------------------------- 

 

G.3.2.  Processing of Stoichiometric Matrix for Enzyme Subset Reduction 

 

Next, “B_enzsub.m” script constructs ENZSUB-1 model. The following strategy is 

followed for the detection and further combination of linear reaction paths; 

-  Number of reactions in which each metabolite participates is calculated. 

-  The metabolites which participate in only two reactions are identified. 

- Among those metabolites, the ones which have the same sign as coefficients in 

both reactions are discarded from the list. The reason is that combination 

(summation) of these two reactions will not result in the disappearance of the 

metabolite since both reactions either produce or consume it.  

- Additionally, if the metabolite identified is among the measured metabolites, it is 

also discarded. The underlying reasoning behind enzyme subset combination is 

that the metabolites in linear pathways will not be disturbed by any other 

reactions; thereby the levels of these metabolites will not be perturbed, remaining 

constant. This is a reasonable assumption in the case of absence of data for these 

metabolites. However, whenever measurement is available for such metabolites, 
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the combination is not performed with the aim of reflecting the measurement 

information into the analysis. 

- Biomass and the precursors in the biomass equation is also removed from the list 

if they are included. The precursors must be produced for the cell to function. 

Therefore, their disappearance must not be allowed. 

 

As a result of these steps, the metabolite list which includes names of metabolites in 

the linear pathways is ready. For each metabolite in the list; the two reactions it 

particiapates (i.e. the corresponding columns in the stoichiometric matrix) are summed up. 

This new reaction is added at the end of the stoichiometric matrix. The original reactions 

are discarded. Since the summation leads to the disappearance of the metabolite of interest, 

the corresponding row is also removed from the matrix. Additionally, it is also checked 

whether the combination leads to the disappearance of any other measured metabolites. If 

this is the case, the combination is not performed. As a result, ENZSUB-1 model is 

reconstructed with 562 reactions and 515 metabolites. It is kept in the stoichiometric 

matrix form for the purpose of the following preprocessing steps. 

 

-------------------------------------------------------------------------- 

B. DETECTION AND COMBINATION OF ENZYME SUBSETS: started ... 

ENZYME-SUBSET COMBINED MODEL IS READY : ENZSUB-1. 

ENZSUB-1 MODEL HAS 562 REACTIONS AND 515 METABOLITES! 

Elapsed time is 1.125 seconds. 

-------------------------------------------------------------------------- 

 

G.4.  Construction of ENZSUB-2 from ENZSUB-1 

 

G.4.1. Use of FBA to Identify Inactive Reactions 

 

The next step is to apply linear programming (FBA) to the model to identify 

reactions which are not active in glucose growth. The corresponding Matlab script is 

“C_esr_FBA.m”. It uses the stoichiometric matrix, lower and upper bounds of reactions, 

and the objective function as the input to identify inactive reactions under the experimental 

conditions of interest. In this case, with the sole carbon source of glucose, FBA is executed 



 161 

for aerobic and anaerobic conditions. After constraining the optimal biomass growth rate 

between its optimum value and 50% of the optimum, each flux in the model is maximized 

and minimized to identify the extreme values of fluxes that reaction can carry. The set of 

reactions identified to have only zero fluxes are saved into files called ‘rxn_omit_aer.mat’ 

and ‘rxn_omit_anaer.mat’. linear programming was performed by using the built-in 

“linprog” function of MOSEK Optimization Package. 

 

-------------------------------------------------------------------------- 

C. USE OF FBA TO IDENTIFY INACTIVE REACTIONS: started ... 

117 external metabolites were identified ... 

FBA for aerobic conditions starts ... 

260 inactive reactions were identified and saved for Aerobic conditions ... 

FBA for anaerobic conditions starts ... 

258 inactive reactions were identified and saved for Anaerobic conditions ... 

Elapsed time is 175.27 seconds. 

-------------------------------------------------------------------------- 

 

G.4.2. Omission of FBA-derived Inactive Reactions  

 

The matlab script ‘rxn_omission.m’ reads the previously saved files which includes 

the names of inactive reactions; and omit them.  

 

------------------------------------------------------------------------ 

There are 256 inactive reactions to be omitted ... 

Elapsed time is 2.99 seconds. 

------------------------------------------------------------------------ 

 

G.4.3. Restoring Reactions with Measured Metabolites 

 

Another script is required to check whether the procedure led to the omission of 

measured metabolites or not. In other words, there may be inactive reactions which were 

discarded, however these reactions may involve measured metabolites. 

“comp_measmets.m” makes this check by identifying such metabolites. If there is any, the 
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reactions including these metabolites are stored back into the model, thereby leading to the 

final form of ENZSUB-2 model. 

 

------------------------------------------------------------------------ 

Measured metabolite names are read ... 

There are 84 measured metabolites.. 

Number of metabolites in FBA reduced model is 286 ... 

13 measured metabolites were identified as missing ... 

ENZSUB-2 Model was finalized : 

It includes 389 reactions and 303 metabolites .. 

Elapsed time is 5.76 seconds. 

------------------------------------------------------------------------ 

 

G.5.  Finalization of Preprocessing: ENZSUB-3 model 

 

ENZSUB-2 model is scanned by “enzsub3_formn.m” code to identify reactions 

none of whose participating metabolites are measured. These reactions are discarded, 

leading to the finalization of the preprocessing step. Then, the model is converted to 

stoichiometric matrix in order to represent it in GML format by using the executable file, 

‘GML_maker.exe’. 

 

------------------------------------------------------------------------ 

244 reactions with no measured metabolites were discarded 

ENZSUB-3 Model was constructed: 

Model has 183 reactions & 145 metabolites .. 

Measured metabolite coverage of ENZSUB-3 is 46.4 percent .. 

Elapsed time is 2.44 seconds. 

 

ENZSUB3 model is being converted into stoichiometric representation... 

Reaction List was read from the file: 145 Reactions 

Metabolite List was constructed from reaction list: 183 Metabolites 

 Number of Irreversible Reactions: 97  

 Number of Reversible Reactions  : 48  
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Matrix conversion for REACTANTS and PRODUCTS were completed ... 

STOICHIOMETRIC MATRIX FOR NODUPLIC MODEL IS READY!. : 183 x 145 

Elapsed time is 1.15 seconds. 

 

Conversion of stoichiometric matrix to GML format starts ... 

GML file was created .. 

------------------------------------------------------------------------ 

 

G.6.  Reporter Reaction Algorithm 

 

After the first part of the algorithm, preprocessing, is over, the final ENZSUB-3 

model is represented as a graph. A matlab script is used to combine graph representation of 

ENZSUB-3 with the p-values of measured metabolites supplied in a .mat file format. 

Additionally, a text file including a set of p-values generated by analyzing the unknonw 

peaks in GC-MS spectra must be supplied, for random assignment to the unmeasured 

metabolites available in the model. The script applies the algorithm presented in Chapter 

five, and gives the list of reactions in the model and corresponding z-scores. The user can 

use a threshold (typically z = 1.28, corresponding to p = 0.10), to identify reporter 

reactions. 
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