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ABSTRACT 

 

 

ADAPTIVE CLARKE-GAWTHROP SELF-TUNING CONTROL OF 

BLOOD GLUCOSE CONCENTRATION IN PATIENTS WITH TYPE I 

DIABETES  

 

 

Adaptive Clarke-Gawthrop type of self-tuning controller is used for regulating the 

blood glucose concentration in Type I diabetic patients. This control algorithm is proposed 

to be integrated into the automation pumps used by diabetic patients as a replacement for 

manual insulin injection. The controller is implemented on an educational software, 

GlucoSim which simulates the glucose-insulin dynamics in Type I diabetic patients with 

insulin infusion being the manipulated variable. The performance of the controller is 

investigated by changing some important parameters that should be specified at the 

beginning of the simulations. These parameters are the initial values of the controller 

parameters, the covariance matrix P, the setpoint of the blood glucose concentration, the 

constraint factor ζ, the clamp value of the manipulated variable, the forgetting factor λ, and 

the control interval. The simulations are carried out for two cases: when the process and 

disturbance model parameters are unknown and when they are approximately known. The 

best performance is obtained when the process model parameters are unknown. The 

optimum parameter settings found are then as follows: the setpoint of the blood glucose 

concentration is 100 mg dl-1, the constraint factor is 1.5, the insulin infusion is clamped 

when it exceeds 50 000 mU min-1, the forgetting factor is 0.5 and the control interval is 5 

minutes.  
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ÖZET 

 

 

KENDİNDEN AYARLANAN (SELF-TUNING) UYARLANIR 

CLARKE-GAWTHROP ALGORİTMASI İLE TİP I ŞEKER 

HASTALARININ KANINDAKİ GLİKOZ DERİŞİMİNİN DENETİMİ 

 

 

Bu çalışmada, tip I şeker hastalarının kanındaki glikoz derişiminin düzenlenmesi 

için Clarke-Gawthrop kendinen ayarlanan (self-tuning) algoritmasının adaptif (uyarlanır) 

biçimi kullanılmıştır. Bu kontrol algoritmasının, insulinin şeker hastalarında şırınga ile 

vücuda zerki yerine uygulanabilecek otomatik pompalama sistemine entegre edilmesi 

düşünülmektedir. İşbu algoritma, GlucoSim adlı eğitim amaçlı geliştirilmiş yazılımda, 

insülin zerketme hızı ayarlan kontrol değişkeni olmak suretiyle, tip I şeker hastalarında 

glikoz-insülin dinamiğini incelemek üzere kullanılmıştır. Algoritmanın başarımı, değerleri 

benzetimlerin başında belirlenen bazı önemli parametrelerin değiştirilmesiyle ölçülmüştür. 

Bu parametreler, başlangıç değerleri, P covaryans matrisi, kandaki glikoz miktarının ayar 

noktası, ayarlanan kontrol değişkeninin kısıt faktörü ζ, insulin klemp değeri, unutma 

faktörü λ ve kontrol zaman aralığı olarak sıralanır. Benzetimler iki ayrı durum için 

yapılmıştır: süreç ve bozucu etkenlerin model parametrelerinin hiç bilinmediği birinci 

durum ve bu parametrelerin yaklaşık olarak bilindiği ikinci durum. Sonuçlar 

karşılaştırıldığında en iyi başarımın, süreç model parametreleri hiç bilinmediği durumda 

elde edildiği görülmektedir. Bu da şu parametre değerlerine tekabül etmektedir: kandaki 

glikoz miktarının ayar noktası 100 mg dl-1, ayarlanan kontrol değişkeninin kısıt faktörü 

1.5, insulin klemp değeri 50000 mU dak-1, unutma faktörü 0.5 ve kontrol zaman aralığı 5 

dakika olarak belirlenmiştir.  
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1.  INTRODUCTION 

 

 

 Insulin is a hormone that is needed to convert sugar, starches and other food into 

energy needed for daily life. Diabetes mellitus which is simply called Diabetes is a disease 

in which the body does not produce or properly use insulin. Diabetes occurs when the 

body cannot make use of the glucose in blood for energy consumption, due to either a 

failure in insulin secretion from pancreas or secretion of ineffective insulin. According to 

the causing factors, diabetes is classified as Type I diabetes, Type II diabetes, Gestational 

diabetes and Pre-diabetes. Type I diabetes results from the body's failure to produce 

insulin which is used to allow glucose to enter the body cells and fuel them. Type II 

diabetes results from insulin resistance combined with relative insulin deficiency leading 

to improper usage of insulin. Furthermore, pregnant women who have never had diabetes 

before but who have high blood glucose levels during pregnancy are said to have 

Gestational diabetes. Gestational diabetes affects about four per cent of all pregnant 

women. Before people develop Type II diabetes, they almost always have "pre-diabetes" 

blood glucose levels that are higher than normal but not yet high enough to be diagnosed 

as diabetes (American Diabetes Association, 2005). 

 

 Therapies are diversified according to the type of diabetes. Insulin therapy is 

necessary to treat all patients with Type I diabetes and for others who do not produce 

enough of their own insulin to keep blood glucose in a secured interval. The current 

therapy for Type I diabetes is based on three to five daily insulin injections or insulin 

infusion by manual pump in which the insulin injection dose is arranged according to 

three to seven daily blood glucose measurement (Eren et.al., 2006). The Diabetes Control 

and Complication Trial study (DCCT, 1993) has stated that fixing the blood glucose 

levels in a secured interval reduces the possible complications of diabetes. However, 

patients frequently face with large variations in blood glucose concentration which may 

lead to hypo/hyperglycemia because of the open loop nature of the current therapy when 

combined with the unexpected daily life disturbances such as change in diet, exercise, 

stress or illness. To take precautions, strict regime and a very rigid and non-sedentary 

lifestyle are advised to the patients. Therefore, a novel therapy that gives the patient 

freedom in daily life is of great importance. Such therapy may be possible by totally 
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closing the loop with an automated artificial pancreas, consisting of a continuous blood 

glucose measuring device, an insulin infusion pump and a control algorithm (Eren et al., 

2006).  

 

 The final element of an automated pump, which is the control algorithm, is a very 

popular research area for researchers with different majors. Up to the present, various 

control algorithms are applied to control blood glucose level. All the control algorithms 

can be classified according to the type of injection route, namely subcutaneous (SC) and 

intravenous (IV) injection route, each has different insulin absorption time which leads to 

different time delays in blood glucose control. 

 

 Shimoda et al. (1997) used the method for the controller design which is based on 

the pole-assignment strategy. Their work is an important example of a successful use of 

the SC route for the closed loop control of insulin-dependent diabetic patients. The reason 

is mainly due to the use of Lispro insulin, which is better suited for SC closed-loop 

control than regular insulin since it behaves like IV-injected insulin. However, the pole-

assignment strategy used in the work of Shimoda and coworkers (1997) is not very robust; 

in addition, it requires a repeated assessment of the model parameters, which is usually 

difficult in clinical practice. To overcome these limitations, several authors have proposed 

and tested closed-loop strategies based on adaptive control (Candas et al.,1994). These 

strategies do not require periodical re-assessment of the patient parameters, and they have 

been shown to be at least as good, if not superior, to a pole-assignment strategy with 

repeated assessments (Fischer et al., 1987). Trajanoski, et al. (1997 and 1998), proposed a 

nonlinear predictive control strategy for closed-loop control with the subcutaneous route. 

The system has been assessed by simulation, using the SC route for both Lispro insulin 

delivery and glucose measurement. This study has some interesting aspects: first, the 

predictive control scheme seems flexible enough to deal with blood glucose control, even 

in presence of pathophysiological variations (i.e., variations in the system parameters such 

as time constants and gains of the system); second, the proposed controller may be easily 

modified to be used in real time. Unfortunately, the results are not completely satisfactory; 

in particular, in the presence of meals. Predictive control is emerging as an important 

control strategy in several applications. Its major advantages, which make it an appealing 

alternative to adaptive control approaches, are its capability of handling constraints in the 
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control space, and the possibility of ensuring stability to the controlled system. Recently, a 

predictive control strategy has been presented for controlling by infusing insulin via IV 

route (Parker et al. 1999), but one can easily see its possible extension to the SC route. 

 

 Eren et al. (2006) have developed low-order recursive linear time series models for 

the prediction of future blood glucose concentrations, using frequently sampled blood 

glucose measurements (at five minutes intervals). Such predicted glucose values are then 

integrated with model based control algorithms, such as generalized predictive control 

(GPC) and linear quadratic control (LQC), for adjusting the required insulin infusion rates 

with an automated insulin pump. Since the models are derived from patients’ own glucose 

data, the proposed algorithm can dynamically adapt to inter- and intra-subject variability 

(Eren et al., 2006). 

 

 In the regulation of blood glucose concentration, as the disturbances (e.g. change in 

diet, exercise, stress or illness) are highly stochastic, adaptive control algorithm would be 

a requirement for control mechanism. In an adaptive system it is assumed that the 

regulator parameters are adjusted on line continuously. This implies that the regulator 

parameters follow changes in the process. However, it is difficult to analyze the 

convergence and stability properties of such systems. To simplify the problem it can be 

assumed that the process has constant but unknown parameters. When the process is 

known, the design procedure specifies a set of desired controller parameters. The adaptive 

controller should converge to these parameter values even when the process is unknown. 

A regulator with this property is called self-tuning, since it automatically tunes the 

controller to obtain the desired performance (Astrom and Wittenmark, 1989). 

 

 It is proposed in this thesis that blood glucose concentration be regulated under 

adaptive Clarke-Gawthrop self tuning controller and blood glucose and insulin dynamics 

in patients with type I diabetes are simulated by GlucoSim which is an educational 

software package written by Agar et al. (2005) 

 

 In Section 2 necessary theoretical background for dynamical system and self-tuning 

regulation with an emphasis on Clarke-Gawthrop self-tuners are presented. In Section 3, 

discrete time dynamical-stochastic model of the virtual patient is obtained using impulse 
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and step tests on the virtual patient. Section 4 discusses the self-tuning regulation results 

and finally Section 5 summarizes the conclusion reached and gives recommendation for 

future work. 
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2.  THEORETICAL BACKGROUND 

 

 

2.1.  Discrete Process Transfer Function Models 

 

2.1.1.  Continuous Time Processes 

 

Consider a continuous dynamical process in which an input u(t) and an output y(t)  

are related linearly. 

 

                                           u(t)                                 y(t)                      y(t) 

 

The dynamic relationship can be represented via a first order linear ordinary 

differential equation as in Equation (2.1) 

 

( )
( ) ( )p

dy t
y t K u t

dt
τ + =                                               (2.1) 

 

where τ is the process time constant and Kp is the process gain. Equation (2.1) can be 

expressed as Equation (2.2) in operational form. 

 

( 1) ( ) ( )pD y t K u tτ + =                                                (2.2) 

 

where D is the differential operator and y(t) and u(t) are deviations from the steady state 

values. One can get the first order transfer function model in Equation (2.3) by taking 

Laplace Transform with zero initial conditions.  

 

( )

( ) ( 1)
pKy s

u s sτ
=

+
                                                    (2.3) 

 

 Higher order systems can be expressed by the differential equation of order (r, s). 

 

2 2
1 2 1 2(1 ... ) ( ) (1 ... ) ( )r s

r p s DD D D y t K G D G D G D u tτ τ τ τ+ + + + = + + + + −      (2.4) 

Process 
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where 
Dτ is the time delay in the process and s r≤  for physical realizability. 

 

2.1.2.  Discrete Time Processes 

 

 If the output is measured at discrete specified time intervals (yt; t = 0, 1, 2, ...) and 

the input is given at the same interval (ut; t = 0, 1, 2, ... with ut being constant during the 

time interval [t-1,t)) like in the case of digital computer control, the linear dynamic 

behaviour of yt and ut can be represented by a difference equation model, in Equation 

(2.5). 

 

1 1 2 2 0 1 1... ...t t t r t r t b t b s t b sy y y y w u w u w uδ δ δ− − − − − − − −− − − − = − − −                (2.5) 

 

where b is the whole time delay of the process, i.e. the summation of time delay of 

process and a delay due to sampling. Equation (2.5) can also be expressed as Equation 

(2.6) by introducing the backward shift operator, B (i.e. ( ) ( 1)By t y t= − ).  

 

( )
( )
0 1

1

... ( )

( )1 ...

s b

s bs
t t tr

rr

w w B w B B w B
y u B u

BB B δδ δ

− − −
= =

− − −
                             (2.6) 

 

where ( )w B  and ( )Bδ are polynomials of order s and r respectively and the order of the 

bacward shift operator B is b. Thus a model can be defined as the discrete transfer 

function model of order (r, s, b).   

 

2.1.3.  Relationship between Discrete and Continuous Time Processes 

 

 It is of great importance to look at the relationship between the discrete and 

continuous time models in order to convert one to another easily. The relationship 

between the continuous and discrete (sampled) system is based on the continuous 

behaviour of the input u between the sampling instants. An important case in digital 

computer control is that step-wise continuous input in which after taking a sample of 

output ( ty ), the input ( tu ) is adjusted to a new level and fixed at that value. This is called 

a zero order sample and hold.  
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 Consider a first order system with a time delay presented by 

( 1) ( ) ( )p DD y t K u tτ τ+ = − , where τ  is the time constant, pK  is the process gain and Dτ  

is the time delay. Sampling a continuous process at a equispaced time interval of Ts units 

and assuming ( )u t  is manipulated in the zero-order hold manner, the discrete model can 

be represented as a first order difference equation as follows:  

 

( )0 1 1(1 ) t t fB y w w B uδ − −− = −                                           (2.7) 

 

by factoring the time delay into the form ( )D sf c Tτ = +  where f is the number of whole 

periods of delay and c is a fractional period of delay. The discrete model parameters are 

defined as 
T

se
τ

δ
−

= , 1
0 (1 )c

pw K δ −= −  and 1
1 ( )c

pw K δ δ −= − . The parameter δ can be 

taken as the time constant of the discrete model whereas 0w can be thought of the discrete 

model gain when sT  is an integer multiplier of Dτ .  

 

2.2.  Time Series Models for Stochastic Disturbances 

 

 The time dependent processes for which it is impossible to calculate the future 

behaviour can be defined as stochastic processes. They can be represented as time series, 

a sequences of observations in time { }1 2, ,..., Nz z z . A stochastic process can be defined as 

stationary if its statistical properties such as its mean ( µ ), variance ( 2
zσ ) and 

autocovariances (
bγ ) do not change with time.  

 

( )tE zµ =                                                          (2.8) 

 

2 2( )z tE zσ µ= −                                                      (2.9) 

 

cov( ) ( )( )b t t b t t bz z E z zγ µ µ+ += = − −                                  (2.10) 

 

 The simplest stochastic disturbance is the white noise which is a sequence of 

independent identicallly distributed random variables { }, 1, 2,...ta t = . Assuming that ta  
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is normally distributed with mean zero and variance 2
aσ , the autocovariance function is 

given by 

 

{ } 2 0b t t b aE a a bγ σ+= = =                                           (2.11) 

                                                                  0 0b= ≠  

 

However, the disturbance processes are formed by highly correlated successive values. 

 

2.2.1.  Autoregressive Moving Average (ARMA) Models 

 

 The highly correlated successive series, tN  could be generated from a white noise 

sequence ta  by filtering through a linear dynamic filter. 

 

                                         

 

1

1

1 ... ( )

1 ... ( )

q

q q

t t tp

p p

B B B
N a a

B B B

θ θ θ

φ φ φ

− − −
= =

− − −
                                 (2.11) 

 

or in the difference equation form  

 

1 1 1 1... ...t t p t p t t q t qN N N a a aφ φ θ θ− − − −= + + + − − −                         (2.12) 

 

This is an autoregressive moving average (ARMA) model of order (p,q). If the ( ) 1Bθ = , 

then the model is called autoregressive model (AR) with order of p whereas it is called 

moving average model (MA) with order q when ( ) 1Bφ = .  

 

2.2.2.  Autoregressive Integrated Moving Average (ARIMA) Models 

 

 In most process control cases, the stochastic disturbances show a nonstationary 

trend and do not vary about a fixed mean. The mean level drifts, but the series in different 
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mean levels resemble each other. Non stationary models in charge of modeling this 

behaviour are obtained by one or at most two roots of ( )Bϕ  on the unit circle. Calling the 

denominator of Equation (2.11) , ( )Bϕ  and factoring as: 

 

�
( ) ( ) (1 )d

stationary roots at unity

B B Bϕ φ= −
�����

    1 2d or=                                 (2.13) 

 

the general autoregressive-integrated-moving-average model (ARIMA) of order (p, d, q) 

can be obtained in Equation (2.14) 

 

( )

( )
q

t td

p

B
N a

B

θ

φ
=

∇
                                                  (2.14) 

 

where (1 )B∇ = −  is a backward difference operator. A comprehensive discussion of these 

models can be found in Box and Jenkins (1976). 

 

2.2.3.  Prediction of Stochastic Processes 

 

 Designing a controller requires an optimal prediction of the disturbance b times 

periods into the future. The value of an ARIMA disturbance model at a time t+b can be 

expressed in Equation (2.15). 

 

2 3
1 2 3

1 1 1 1 1 1

1 2

( )

( )

(1 ...)

( ... ) ( ...)

( ) ( )

q

t b t b

p

t b

t b t b b t b t b t

t b t

B
N a

B

B B B a

a a a a a

B a B a

θ

φ

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

+ +

+

+ + − − + + −

+

=
∇

= + + + +

= + + + + + +

= +

                 (2.15) 

 

The first term in the right hand side of the Equation (2.15) includes only future unknown 

random shocks 1 1( ,  , ...,  )t b t b ta a a+ + − + , leading the term to be unpredictable. On the other 

hand the second term is a function of only the known present and past shocks 

1 2( ,  ,  ,  ...)t t ta a a− −  which makes it predictable. Therefore, b-step ahead prediction 
t b t

N
∧

+
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of 
tN  made at time t can be formed by the known part of the (t+b) head value of the 

disturbance in Equation (2.16) 

 

2 ( ) tt b t
N B aψ
∧

+
=                                                   (2.16) 

 

whereas the unpredictable part forms the prediction error: 

 

1( )t b t t be B aψ+ +=                                                   (2.17) 

 

 The Equation (2.16) can also be expressed as a rational polynomial in Equation 

(2.18) since it is not easy to work with the form of infinite series of the prediction 

represented in (2.16). 

 

( )

( )
q

t b t bd

p

B
N a

B

θ

φ
+ +=

∇
                                                (2.18) 

 

1

( )
( )

( )t b b t b td

p

T B
N B a a

B
ψ

φ
+ − += +

∇
                                     (2.19) 

 

where 1( )b Bψ −  is a polynomial of order (b-1) and ( )T B  is a polynomial obtained from the 

relation below: 

 

1

( ) ( )
( )

( ) ( )
q

bd d

p p

B T B
B

B B

θ
ψ

φ φ
−= +

∇ ∇
                                     (2.20) 

or  

1( ) ( ) ( ) ( )d b

q b pB B B T B Bθ ψ φ−= ∇ +                                   (2.21) 

 

where the subscripts denote the order of the polynomials and the order of 

( ) max  ( , 1)T B q b p d= − + − . 
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2.2.4.  Randomly Occuring Deterministic Disturbances 

 

 Although most processes have some stochastic disturbances, in many cases they are 

not the major disturbances in the system. In fact, the major disruptions in the process are 

resulting from the deterministic type disturbances such as sudden step changes, impulse 

changes, ramps, or exponential changes to new levels, occuring infrequently but at 

random intervals due to sudden unexpected loads on the system or due to unanticipated 

set point changes made by operators. It is shown by MacGregor et. al. (1980) that these 

processes can be represented by the structure of an ARIMA process differing only in the 

probability distribution of the shocks at which is zero most of the time and nonzero 

occasionally. 

 

2.3.  Optimal Controllers 

 

 The design of an optimal controller also requires a quantitative measure in order to 

judge the performance of the controller besides transfer function and the disturbance 

model of the process. Although each controller are judged via different performance 

indices, all indices are aimed to be minimized.   

 

2.3.1.  Minimum Variance Controller 

 

 In order to build minimum variance control, consider a model of the form 

 

1

( )( )

( ) ( )
qs

t t f td

r p

Bw B
Y u a

B B

θ

δ φ
− −= +

∇
                                       (2.22) 

 

 The performance index is chosen to be the minimization of the expected value of 

2
t bY +  where 1b f= + . 

 

{ }2min
t

t b
U

E Y +                                                    (2.23) 

 



12 

where E is the expectation operator. The controller based on the criterion expressed in 

Equation (2.23) is called minimum variance controller. Using the forecasting factorization 

Equation (2.19), Equation (2.24) can be obtained. 

 

{ }

2

2
1 1

2

1 2

2
2

2 1

( )
( )

( )

( )
                ( ) ( )

( )

( )
                ( ) ( )

( )

( )
                                2

( )

s
t f t t f

r

s

t f t f t

r

s
t t f t f

r

s

r

w B
E Y E u N

B

w B
E u B a B a

B

w B
E u B a E B a

B

w B
E u

B

δ

ψ ψ
δ

ψ ψ
δ

δ

+ + + +

+ +

+ +

 
= + 

 

 
= + + 

 

 
= + + 

 

+ { }2 1( ) ( )t t f t fB a B aψ ψ + +

 
+ 

 

            (2.24) 

 

 The last term on the right hand side of the Equation (2.24) will be zero because the 

future values of ta in 1( )f t fB aψ + +  are independent of the present and past values. Besides 

that, the first two terms are positive. The only way to minimize the relation is equalize the 

term in the first parenthesis to zero. Hence one can obtain the controller equation for the 

manipulated variable, tu .  

 

2

( )
( ) 0

( )
s

t t

r

w B
u B a

B
ψ

δ
+ =                                             (2.25) 

 

1/2

( ) ( )
( )

( ) ( )
r r

t f tt t

s s

B B
u B a N

w B w B

δ δ
ψ

∧

+ += − = −                                (2.26) 

 

 The output deviation in response to the control action in terms of Yt can be obtained 

by, eliminating 
ta using the relation 1 ( ) t f ta B Yψ= . The controller equation can be 

rearranged as in the form of Equation (2.27) by inserting the Equations (2.16) and (2.19). 

 

( ) ( ) 1

( ) ( ) ( )
r

t td

s p f

B T B
u Y

w B B B

δ

φ ψ
= − ⋅ ⋅

∇
                                      (2.27) 
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where 2

( )
( )

( ) d

p

T B
B

B
ψ

φ
=

∇
. In differenced form the Equation (2.27) can be expressed as : 

 

( ) ( ) 1

( ) ( ) ( )
d r

t t

s p f

B T B
u Y

w B B B

δ

φ ψ
∇ = − ⋅ ⋅                                      (2.28) 

 

 The first rational poynomial on the right hand side is inverse of the process dynamic 

model excluding the time delay term, the second one is the transfer function of the 

optimal disturbance predictor, and the last one is an optimal compensator for the f periods 

of time delay in the process.  

 

2.3.2.  Linear Quadratic Controller 

 

 As an alternative to minimum variance controller  a different performance index in 

Equation (2.29) is taken. 

 

{ }2 2min '( )
t

t t
U

E Y Uζ+ ∇                                            (2.29) 

 

The performance index is aimed to minimize the output tY  subject to a constraint on the 

difference of input tU with the previous input 1tU − . The constraining parameter ζ ′  can be 

defined as the cost per unit control action. The controller synthesized by the criterion 

expressed in Equation (2.29) is called linear quadratic controller (LQC). The name comes 

from the linear process model and the quadratic performance index. A spectral 

factorization method (Wilson, 1970) is used to solve the problem. The important point of 

the solution is that as the constraint factor ζ ′  exists implicitly in the controller equation, 

spectral factorization should be performed for a range of values of ζ ′  until both the 

variance of the output tY  and tU∇ are acceptable. Furthermore, in LQC algorithm, the 

effect of the present control action on all future values of the variance of the output is 

considered which leads the controller also to be called "the infinite step controller".  
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2.3.3.  One-step Optimal Controller 

 

 Clarke-Hasting James (1971) proposed a novelty in the LQC which eliminates the 

necessity of spectral factorization in the solution of minimizing the output 
tY  subject to a 

constraint on the difference of input tU with the previous input 1tU − . Their quadratic 

performance index can be summarized that at every control interval the controller drives 

the b-step ahead minimum mean squared forecast of the output to zero.  This controller 

differs from the LQC in that it does not consider the effect of present control action on the 

variance of the output beyond the b time delay, just sets the instantenous b step ahead 

forecast of the output to zero.  

 

 One step optimal controller is obtained by minimizing an instantenous performance 

index given in Equation (2.30), 

 

{ }2 2
/min ( )

t b t t
Y Uζ+

′′+ ∇                                            (2.30) 

 

where /t b tY + is the b-step ahead forecast of the output tY .  

 

 To solve the minimization problem it is necessary to divide the disturbance part into 

two parts namely forecastable part and unforecastable part. 

 

( )
( ) 

( )t b t b td

p

T B
N B a a

B
ψ

φ
+ += +

∇
                                      (2.31) 

 

In the Equation (2.31) the first term on the right hand side is the unforecastable part which 

is the forecast error and the second term is the forecastable one. After rearranging the 

Equation (2.30) by adding Equation (2.22) and Equation (2.31) and differentiating with 

respect to Ut and equating the derivative to zero, the controller equation can be obtained in 

which the constraint factor ζ appears explicitly, 
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( ) ( )

( ) ( ) ( ) ( ) ( )
t t

f

B T B
U Y

B w B B B B

δ

ψ φ ζ δ θ
∇ = −

+

                           (2.32) 

 

where 
0w

ζ
ζ

′′
= . When 0ζ =  the controller reduces to minimum variance controller. 

 

Note that the constraint factor appears explicitly in the control law. The constraint 

factor can be interpreted as the pole shifting parameter which gradually shifts the poles of 

( )w B  towards those of ( )Bδ ∇ . For 0ζ ≠  the “one-step” optimal controller can be 

viewed as cancelling some fraction of the minimum mean square forecast; therefore, for a 

given variance of the input, the variance of the output is slightly larger than the 

corresponding LQ design. Nevertheless the simplicity of the algorithm makes it popular. 

 

2.4.  Adaptive Control 

 

 In daily life, to adapt is used to change behavior in order to deal with new situations 

or purposes. Adaptive control is also found for the similar reasons. An adaptive controller 

is a controller which can change its behavior (i.e. its parameters) to fit changes in 

dynamics of the process or in disturbances. The primary reason for introducing adaptive 

control was to obtain controllers that could adapt to changes in process and disturbance 

parameters. Adaptive control can be classified as gain scheduling, model-reference 

adaptive control, and self-tuning regulators. In what follows self-tuning regulators are 

introduced as this is the controller implemented on a virtual patient with Type I diabetes.  

 

2.4.1.  Self-tuning Regulators 

 

 The theory of self-tuning regulator (STR) was originally proposed by Kalman 

(1958). Astrom and his coworkers have developed the self-tuning version of the controller 

proposed by Astrom and Wittenmark, (1973) and Astrom et. al. (1977). Self-tuning 

regulators, their design principles and applications can be found in the study of Astrom 

(1980). A guide of practical rules for applications can be found in the Ph.D. dissertation of 

Camurdan (1986). What follows in this section are excerpts from this work. 
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 As was stated earlier, in designing an optimal controller the process and the 

disturbance model have to be known a priori, but for self-tuning regulators no such 

knowledge is necessary since the controller converges to the optimal controller that would 

have been obtained had the process and disturbance been known (the self-tuning 

property). STRs are based on an online combination of identification and control. 

Unknown contoller parameters are estimated through using a recursive parameter 

estimation routine. It is based on certainty equivalence i.e uncertainties associated with 

parameter estimates are not taken into account.  

 

 

 

Figure 2.1 Block diagram of self-tuning regulator 

 

 There are many types of STRs resulting from different design procedures and 

different estimation routines. If the process dynamics is time varying then an adaptive 

version of STRs may be necessary to meet the model parameter variations since an 

adaptive controller can retune itself to changing dynamics. If the process has operating 

point dependent nonlinearity then this is handled by the STR as if it is time varying 

problem. STRs can be implemented as true self-tuning algorithms in that they use all the 

process information available to determine the optimal settings for the tuning parameters. 

They can also be implemented as an adaptive controllers, in that they only use a part of 
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the past process information to tune the parameters; they can re-tune as the process 

evolves because they forget very old process information.  

 

 A control loop operating under STR is composed of two parts; (i) the controller and 

the process and (ii) on line estimator and a controller design part as can be seen in Figure 

2.1. The information that the estimator receives about the dynamics of the process and the 

disturbance are the present and the past values of the input (i.e. the manipulated variable) 

and the output (i.e. the controlled variable) deviations from their respective steady state 

values. The estimator uses this information to estimate the transfer function and the 

disturbance model and passes these estimates to the controller design block which 

operates on this data to carry out the controller parameter calculating such as a spectral 

factorization or pole placement and, in turn, feeds this information to the controller. 

Finally the controller calculates the present control action. This estimation form is being 

referred to as explicit identification because the process and the noise model are estimated 

explicitly. A simpler version of STR is the one whereby the controller parameters are 

updated directly bypassing the intermediate algorithmic computations. This STR 

algorithm is referred to as implicit. It must be emphasized that the rate at which the 

estimator adapts to varying process dynamics must be faster than the rate at which the 

process parameters change. Note that the parameters are estimated under closed loop 

conditions. This is possible since a closed loop system with STR is a nonlinear and time 

varying stochastic system.  

 

2.4.1.1.  Clarke-Gawthrop Self-tuning Regulator. Clarke-Gawthrop (1975), by using 

Clarke and Hasting-James (1971) performance index, developed the implicit self-tuning 

version of the “one-step” optimal controller as a straight forward extension of the 

stochastic minimum variance self-tuning controller proposed by Astrom and Wittenmark 

(1973). However, as pointed out by Macregor and Tidwell (1980) an assumption made 

regarding the expectation operator in the work of Clarke and Hasting-James (1971), and 

Clarke-Gawtrop (1975) is incorrect. A corrected version of the detailed derivation can be 

found in the study of Harris (1977). If the parameters of the Clarke-Gawthrop regulator 

converge then the controller will minimize  
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2 ( )tt b t
Y Uζ
∧

+
′+ ∇                                                     (2.33) 

where 
t b t

Y
∧

+
 is the b-step ahead forecast of tY  made at time t. The self-tuning version of 

this constrained input controller can be obtained by showing that the same strategy will 

also minimize  

 

( )( ) ( )
2 2

 d

t b t t t bE Y U Eζ φ+ ++ ∇ =                                         (2.34) 

where 0/ wζ ζ ′=  and can be a negative or a positive number depending on the sign of 0w  

such that ζ ′  is positive.  

 

 Defining a generalized output variable of the form: 

 

 t b t b tY Uφ ζ+ += + ∇                                                    (2.35) 

 

The unknown parameters of the numerator and the denominator polynomials in Equation 

(2.32), are estimated via the recursive least squares estimation algorithm, from the 

regression equation:  

 

( ) ( )t b t t t bB Y B U eφ α β+ += + ∇ +                                      (2.36) 

 

where t be +  is the error term associated with the estimation, and is assumed to be 

uncorrelated with the regressors 
tY  and 

tu∇ . ( )Bα  and ( )Bβ  polynomials are the 

numerator and the denominator terms in Equation (2.32) The generalized loss function 

minimized by the estimation algorithm is : 

 

2

1

( )
t

t i

i

i

J e tλ −

=

=∑                                                      (2.37) 

 

In the equation above λ is the forgetting factor (exponentially discounting factor) 

whose domain is defined on the interval 0 1λ< ≤ . This generalized form of recursive 
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least squares estimation, for λ less than 1, naturally leads to adaptive control whereby 

the controller parameters are adapted to changes in process transfer funstion 

parameters. If λ is equal to 1 then the estimation algorithm is reduced to ordinary 

least squares and when it is less then 1.0 then the algorithm will discount the 

information of the distant past by putting lesser weights on these past data points. A 

discounting factor between 0.99 and 0.95, provided that the disturbances are 

persistent and that the controller is not overparametrized, works well in practical 

applications. The number of past observations used in estimation is called the 

effective window length (Clarke-Gawthrop, 1975) and is given by: 

 

1.0

1 λ−
                                                      (2.38) 

 

A large value of λ will lead to slow but smooth adaptation, whereas a small value of λ 

will lead to quick but noisy adaptation. λ equal to 1.0 corresponds to infinite memory 

length where all the present and past information are weighted equally. 

 

 The estimation routine is done in the following way: Define θ , tX  and 

t bX − vectors as: 

 

0 1 1 0 1 1( , ,..., , , ,..., ) 'm lθ α α α β β β+ +=                                 (2.39) 

 

1 1( , ,..., , , ,... ) 't t t t m t t t lX Y Y Y U U U− − − −= ∇ ∇ ∇                           (2.40) 

 

1 1( , ,..., , , ,... ) 't b t b t b t b m t b t b t b lX Y Y Y U U U− − − − − − − − − − −= ∇ ∇ ∇                   (2.41) 

 

where m is the order of the polynomial ( )Bα , and l is the order of the polynomial 

( )Bβ  in the Equation (2.35). Note that the dimensions of the vectors defined in 

Equations (2.39) through (2.41) are equal to m+l+2. 

 

 The equation (2.36) can then be written in compact vector notation as  
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't b t t bX eφ θ+ += +                                               (2.42) 

or 

't t b tX eφ θ−= +                                                (2.43) 

 

Note that the controller equation is given by: 

 

' 0tX θ =                                                    (2.44) 

or  

0 1 1 0 1 1... ... 0t t l t l t t m t mU U U Y Y Yβ β β α α α− − − −∇ + ∇ + + ∇ + + + + =                (2.45) 

 

The elements of the θ  vector that can be defined as the controller parameters are 

updated at every control interval from: 

 

1 1( ' )t t t t t b tK Xθ θ φ θ− − −= + −                                       (2.46) 

 

The term in the paranthesis is an estimate of the one step ahead prediction error, and 

tK  is the gain vector for updating the parameters. The gain vector is related to the tP  

matrix which is proportional to the variance covariance matrix of the parameter 

estimates i.e. the θ vector. The gain vector tK  and the tP  matrix are given by: 

 

1

1'
t t b

t

t b t t b

P X
K

X P Xλ
− −

− − −

=
+

                                          (2.47) 

 

1 1
1

1

'

'
t t b t b t

t t

t b t t b

P X X P
P P

X P X
λ

λ
− − − −

−

− − −

 
= − 

+ 
                                 (2.48) 

 

The diagonal elements of the tP  matrix are a measure of the uncertainty of the 

parameter estimates. A low value is an indication of the certainty and conversely a 

high value is an indication of the reduction in the parameter uncertainty attained from 

the last measurement. The second term in Equation (2.48) is a measure of the 

reduction in the parameter uncertainty attained from the last measurement. Therefore, 
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when the forgetting factor is equal to 1, the elements of the 
tP  matrix decrease 

monotonically as the parameters converge. This is because at every interval more 

information is obtained, consequently confidence over the parameter estimates is 

increased. The effect of the forgetting factor on the 
tP  matrix, for 1λ < , is that the 

elements of the tP  matrix and hence the gain of the estimator is kept larger; thereby 

the elements of the 
tP  matrix will not tend to zero and the algorithm will always be 

alert to track changing process dynamics.   

 

 Consider the case when the parameters of the process and the disturbance model 

are time invariant, and λ  is 1.0. As more information is coming to the estimator the 

parameters converge to a constant value. This is reflected in the 
tP  matrix by the fact 

that the elements tend towards zero because of the increased confidence over the 

parameter estimates. This in turn causes the gain of the estimator to approach zero. At 

this point the estimator should be switched off to avoid numerical problems. 

 

 If the transfer function plus the noise model structural configurations can be 

conjectured without any knowledge as to the parameter values, then the orders of the 

( )Bα  and ( )Bβ  polynomials can readily be obtained, from Equation (2.32). If, 

however, neither the structural configuration nor the parameters are known then the 

order of the ( )Bα  and ( )Bβ  polynomials can be guessed and then the optimality of 

the controller can be checked by means of the two theorems (Astrom and 

Wittenmark, 1973). According to one of these theorems, if the controller structure is 

optimal then certain cross and auto correlations of the generalized output variable tφ  

with the input variable tU  will be statistically insignificant. 

 

 The parameters iα  and iβ  are estimated at each control interval. A close look at 

Equation (2.45) shows that one parameter is redundant and hence can be fixed 

initially by zeroing out the corresponding rows and columns of the 
tP  matrix. Since a 

zero element of this matrix reflects an absolute certainty over this parameter it will 

not be updated. It is shown by Astrom and Wittenmark (1973) that the fixed 
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numerical value of 0β  must the satisfy the inequality 0 00.5w β< < ∞  for the closed 

loop stability. 

 

 It should be emphasized that STRs are complex regulators. Contrary to what the 

name "self-tuning " might imply, a number of a priori estimates have to be provided 

so that a stable and optimal controller can be achieved. This requires system insight 

and engineering judgement to implement a self tuner in a control loop. Order of the 

( )Bα  and ( )Bβ  polynomials, sampling period, number of periods of delay, 

discounting factor λ , and the initial estimates of the θ  vector and the 
tP  matrix are 

required. A detailed discussion regarding the choice of the tuning parameters of the 

STR is given in the paper of Wellsted and Zanker (1982). 
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3.  MODELING OF THE PROCESS-DISTURBANCE MODEL AND 

THE CONTROLLER 

 

 

3.1.  Modeling of the Process 

 

In this study, adaptive Clarke-Gawthrop self-tuning regulator is tested on a virtual 

patient with type I diabetes. As a virtual patient a software GlucoSim is used. It is an 

educational software developed by Agar, et. al. (2005) for simulating glucose-insulin 

interaction in a type-I diabetic patient. Mathematical models with varying degrees of 

complexities are built on pharmacokinetic diagrams of insulin and glucose. Modeling the 

glucose-insulin interaction requires an understanding of the physiological and metabolic 

processes that determine the observable behavior. Chemical reactions and transport 

processes form an integrated network when modeling the glucose-insulin interaction in 

human body. A number of mathematical models of the insulin-dependent (type-I) diabetes 

mellitus have been previously reported in the literature (Puckett and Lightfoot, 1995; 

Cobelli et. al. , 1982; Bergman et. al., 1973; Leaning and Boroujerdi, 1991). However, 

they extended and utilized two mathematical models of Puckett and Lightfoot (1995) 

based on pharmacokinetic diagrams of glucose and insulin which represent the transport 

of glucose and insulin through the major vessels to the capillaries. 

 

In order to design the controller, a process model is required. This empirical model 

is obtained from the GlucoSim using a step test and approximating the process reaction 

curve by a first order plus time delay model from which a discrete pulse transfer function 

is obtained.  

 

Consider a model given in the Equation (3.1) 

 

1

( )

( )
s

t t f

r

w B
Y u

Bδ
− −=                                               (3.1) 
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where ( )w B  and ( )Bδ  are the polynomials of order r and s respectively and f is the 

process time delay. For a first order plus dead time model with a zero-order hold the 

Equation (3.2) has the form  

 

0 1
1

( )

(1 )
f

t t

w w B
Y B u

Bδ
−

−
=

−
                                               (3.2) 

 

where 1
0 (1 )c

pw K δ −= − , 1
1 ( )c

pw K δ δ −= − , 
sT

e τδ
−

= , integer ( )D sf Tτ=  and 

fraction ( )D sc Tτ=  

 

 A process reaction curve obtained following a step change to insulin injection rate is 

given in Figure 3.1 in which the y axis denotes the blood glucose concentration GB in a 

virtual patient. The identified process model transfer function is given by Equation (3.3). 

 

 

 

Figure 3.1. Open loop response of GlucoSim to a step change in insulin injection 
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Time delay is determined as 70 minutes and the process gain is found to be -0.0024. 

 

( )
700.0024

1 280 1

Ds s
p

P

P

K e e
G s

s s

τ

τ

− −−
= =

+ +
                                      (3.3) 

 

 This continuous model is then discretized for the sampling time of five minutes. 

Therefore the pulse transfer function for the GlucoSim process is  

14 0
1 1

0.00004

(1 0.98 ) (1 )
f

t t t

w
Y B u B u

B Bδ
− −

−
= =

− −
                                  (3.4) 

 

3.2.  Modeling of the Disturbance 

 

 The disturbances of a diabetic patient are generally formed by the meals taken at 

specified time intervals. 

 

 

 

Figure 3.2. Open loop response of Glucosim to meals taken at specified times  
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 By observing the open loop response of the GlucoSim to the meals taken at some 

specified times given in Figure 3.2, the disturbances are modeled as randomly occurring 

deterministic signals and expressed as : 

 

( )
1

1t t
N a

Bφ
=

− ∇
,                                                   (3.5) 

 

where at are random shocks which is most of the time zero and non zero occasionally. 

(Meal or snack times). The disturbance model given in the Equation (3.5) is an Auto 

Regressive Integrated (ARI) disturbance model, of order (1,1) with 1d = . The value of 

the parameter φ in the ARI (1,1) model is obtained as a step response from the impulse 

response in Figure 3.2 and determined approximately as 0.6. 

 

 Box-Jenkins type transfer function plus disturbance model is obtained upon 

combining Equation (3.4) and (3.5) which is hereafter referred to as discrete linear 

dynamic stochastic model 

1

1

( )

( )
s

t t b t

r

w z
Y u N

zδ

−

−−
= +                                                 (3.6) 

 

where 
1

1

( )t td
N a

zφ −
=

∇
 and b = f + 1. 

 

( )
14

1

0.00004 1

(1 0.98 ) 1 0.6t t t
Y B u a

B B
−

−
= +

− − ∇
                                  (3.7) 

 

3.3.  Design of the Controller 

 

 The Clarke-Gawthrop self tuning controller equation was given in Equation (2.32) 

previously in Section 2.3.3.  

 

( ) ( )

( ) ( ) ( )  ( ) ( )
d r

t t

f s p r q

B T B
u Y

B w B B B B

δ

ψ φ ζ δ θ
∇ =

+
                           (3.8) 
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( ) ( )
( )

( ) ( )

b
q

fd d

p p

B T B B
B

B B

θ
ψ

φ φ

−

= +
∇ ∇

                                         (3.9) 

 

( ) ( ) ( ) ( )d b

fB B B T B Bθ ψ φ −= ∇ +                                      (3.10) 

 

To satisfy the above the order of  ( )T B  must be identified firstly. 

 

order of ( )T B = maximum (q - f -1, p + d -1)                          (3.11) 

 

As q = 0, f = 14, p = 1, and d = 1 the order of ( )T B is equal to 1 i.e. 0 1( )T B t t B= + . The 

( )f Bψ and ( )T B  polynomials are obtained by long division of ( )Bθ  into ( ) dBφ ∇ .  
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 Controller parameters should converge to the values of the given expression below: 
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 (3.12) 
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The initial values of controller parameters are hence obtained using the discrete dynamic-

stochastic model parameters given in Equation (2.32). In the Result and Discussion these 

parameter values are used as initial estimates for the case when the process-disturbance 

model parameters are approximately known.  
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4.  RESULTS AND DISCUSSION 

 

 

 Prior to the regulation of blood glucose concentration, the Clarke-Gawthrop self-

tuning regulator is firstly simulated on a simple first order system with different delay 

times. After ascertaining that the controller algorithm works properly for these simple 

systems used, it is then applied to GlucoSim which is an educational software that 

simulates the glucose-insulin interaction in Type I diabetic patients. 

 

 The maximum duration of simulation in GlucoSim is 24 hours. Times at which the 

meals are taken and the carbohydrate (CHO) content of the meals can be adjusted at the 

beginning of each run. The CHO content of the meals and the time of each meal are taken 

to be the same in each simulation. The patient is assumed to have three meals and three 

snacks in a day, i.e breakfast, snack, lunch, snack, dinner and snack. The carbohydrate 

content of the meals are 1000, 100, 500, 500, 500, 200 mg per kg body weight 

respectively and each of them is taken at 08:30, 12:00, 13:30, 18:00, 20:00 and 22:00.  

 

 Clarke-Gawthrop type self-tuning regulator is a sophisticated algorithm wherein 

many parameters need to be considered. In order to keep the blood sugar in a safe 80-110 

mg dl-1 range, the parameters in the algorithm should be varied so that the optimum 

parameter settings can be found. As the whole glucose-insulin dynamics is very complex, 

the performance of the regulator is highly dependent on the initial parameters used. The 

parameters that should be specified at the beginning of control are the initial values of the 

controller parameters, (i.e. the 1 2 3 0 1 15[ , , , , ,..., ]θ α α α β β β=  at t=0), the covariance matrix 

P of the controller parameters, set point of blood glucose concentration, the maximum 

insulin infusion rate that a patient can take in a day, basal insulin infusion rate, the 

constraint factor ζ of the manipulated variable (insulin infusion), forgetting factor λ, and 

sampling time (control period) of continuous GlucoSim process.  

 

 Under open loop condition, if the patient simply has a breakfast of 1000 CHO mg 

per kg body weight and nothing for the next 24 hours then the blood glucose 

concentration level increases initially and then settles to the 147, 100, 92, 86 and 80 mg 

dl-1 if the basal rate of insulin infusion is set to 0, 2400, 3400, 4400, and 5400 mU min-1 
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respectively. Therefore depending on the specified set point, the basal rate is specified 

accordingly (e.g. 5400 mU min-1 if the set point is 80 mg dl-1). However, in the simulation 

studies carried out the optimum basal rate is found to be 5400 mU min-1 for all set points, 

and hence is fixed at this value.  

 

 This part is divided into six subsections wherein each of the aforementioned 

parameters are varied and the manipulated and the controlled variables are recorded. 

Furthermore, all the subsections are also subdivided into two parts according as whether 

only the structure of the controller is assumed to be known but the parameters are not, and 

both the structure of the controller and its approximate parameter values are known. This 

means that in the first case both the structures of process dynamic stochastic model and 

the disturbance dynamic stochastic model are known but the parameter values are 

unknown (hereafter referred to as unknown dynamic stochastic model parameters case) 

whereas in the second part both the transfer function and the disturbance dynamic 

stochastic model are approximately known (hereafter referred to as approximately known 

dynamic stochastic model parameters case). 

 

 In all the simulations presented in this section some parameters are specified as 

follows: Basal rate of the insulin infusion rate is set to 5400 mU min-1, the constraint 

factor of insulin infusion rate is 1.5 and the forgetting factor is 0.5. Unless otherwise 

stated the values of the parameters given above are kept constant all through the 

simulations. The initial diagonal elements of covariance P matrix are set to appropriate 

values given while the off diagonal elements are set to zero, i.e. P = a I where a is an 

appropriate scalar and I is the unit matrix with appropriate dimensions. Every time a 

change is made in a parameter e.g. initial values of controller parameters, the constraint 

factor, etc. This change is simulated for both unknown and approximately known dynamic 

stochastic model parameter cases. In all figures that follow, the controlled variable, the 

blood glucose concentration Gb versus time is presented in the (a) part of figures in mg dl-

1 unit, whereas the control action, insulin infusion rate is given in mU min-1 unit in the (b) 

part.  
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 Controller performance is measured quantitatively by Integral Square Error (ISE) 

and defined as sum of squares of the difference between the set point and the controlled 

variable.  

 

4.1.  Changes in the Initial Values of Controller Parameters (θ Vector) and Their 

Covariance P Matrix Estimates 

 

 In this part, the effects of the changes in initial values of controller parameters and 

covariance matrix of these parameters on the regulation of blood glucose concentration 

are investigated. In each run presented in this part, the other parameters, i.e. set point of 

blood glucose concentration, the maximum insulin infusion rate, basal insulin infusion 

rate, the constraint factor ζ of insulin infusion, forgetting factor λ and sampling time of 

continuous GlucoSim process are kept constant at the values of 100 mg dl-1, 50000 mU 

min-1, 5400 mU min-1, 1.5, 0.5, and 5 minutes respectively.  

 

4.1.1.  Changes in the Initial Values of θ Vector and P matrix with Unknown 

Process-Disturbance Model Parameters 

 

 Since in the adaptive self-tuning controller algorithm, it is not necessary to know the 

process and disturbance dynamic stochastic model, at the onset of the control all the 

controller parameters θi are set to "1", and the diagonal elements of covariance P matrix is 

set to large values since large diagonal values of P indicates little information about the 

parameters, this in turn renders the parameter estimator with a large gain. 

 

 The closed loop responses of GlucoSim process to the changes in the initial values 

of the controller parameters are presented in Figures 4.1 to 4.3. The initial values of the 

controller parameters are taken as (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) in 

Figure 4.1, (1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) in 

Figure 4.2, and (1, 1, 1, 1, 1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01, 0.01, 0.01) in Figure 4.3. The choice of initial parameters is a consequence of the 

fact that βis for i > 3 converges to very small values. In these runs variances of the 

controller parameters are initially set to 1000. 
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 For the responses presented in Figure 4.1, all the values of controller parameters αis 

and βis (θis) are initialiazed at 1. At the end of 24 hour period, the glucose concentration 

decreases below to 50 mg dl-1 which is a real threat for hypoglycemia. Therefore a change 

in initial guesses of θ vector is made and the values of βis (i=3,4,...,n) are reduced to 0.1 in 

Figure 4.2.  

 

 

 

Figure 4.1. The response when all the controller parameters αis and βis are initialized at 1 

and dynamic stochastic model parameters are unknown.  

 

 The response of blood glucose concentration is more acceptable than the one in 

Figure 4.1 until the early morning hours. But in the hours closer to wake up, the patient is 

again exposed to hypoglycemia. (GB < 50 mg dl-1) 

 

 Later the initial values of βis (i=3,4,..n) are further decreased to 0.01 in Figure 4.3.  
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Figure 4.2. The response when the controller parameters αis are initialized at 1, βis are 

initialized at 0.1 and dynamic stochastic model parameters are unknown.  

 

 

 

Figure 4.3. The response when the controller parameters αis are initialized at 1, βis are 

initialized at 0.01 and dynamic stochastic model parameters are unknown.  
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 When the responses in Figures 4.1 to 4.3 are compared, the most appropriate guess 

for the θ vector seems to be the one with βis =0.1 (i=3,4,..n) and the rest is equal to 1, 

which is presented in Figure 4.2. As GB falls just below 50 mg dl-1 at the very end of 24 

hour period whereas other two cases GB to go below 50 mg dl-1 for much larger periods of 

time after midnight (1000 minutes in Figures 4.1 and 4.3). Since the response 

corresponding to Figure 4.2 has the lowest ISE (Table 1) the parameter values used for 

this case are also used to check the effect of the initial P matrix.  

 

Table 4.1. ISE values of all simulations presented in Figures 4.1-4.34 

 

ISE = Integral Square Error 

 ISE (x10-6)  ISE (x10-6) 

Figure 4.1 3366 Figure 4.18 12738 

Figure 4.2 2488 Figure 4.19 7498 

Figure 4.3 3130 Figure 4.20 9186 

Figure 4.4 2540 Figure 4.21 6235 

Figure 4.5 2853 Figure 4.22 6196 

Figure 4.6 3025 Figure 4.23 2631 

Figure 4.7 2125 Figure 4.24 2019 

Figure 4.8 9188 Figure 4.25 4414 

Figure 4.9 8572 Figure 4.26 4090 

Figure 4.10 12698 Figure 4.27 5264 

Figure 4.11 2861 Figure 4.28 3738 

Figure 4.12 5378 Figure 4.29 2530 

Figure 4.13 7624 Figure 4.30 4891 

Figure 4.14 3373 Figure 4.31 4147 

Figure 4.15 14864 Figure 4.32 5072 

Figure 4.16 4163 Figure 4.33 3690 

Figure 4.17 5067 Figure 4.34 3574 
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Figure 4.4. The response when diagonal elements of P matrix are initialized at 100 and 

dynamic stochastic model parameters are unknown.  

 

 On the other hand, the effect of initial values of covariance P matrix when 

regulating the blood glucose concentration is investigated by setting the variances of the 

controller parameters to 100, 1000, 10000 and 100000 in Figures 4.4, 4.2, 4.5, and 4.6 

respectively.  

 

 As the P matrix values become larger, a better control of glucose concentration in 

the blood is obtained (lower ISE values), since larger variances allows more freedom to 

controller parameter variations to converge to the initially unknown true values.  
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Figure 4.5. The response when diagonal elements of P matrix are initialized at 10000 and 

dynamic stochastic model parameters are unknown. 

 

 

 

Figure 4.6. The response when diagonal elements of P matrix are initialized at 100000 

and dynamic stochastic model parameters are unknown. 
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4.1.2. Changes in the Initial Values of θ Vector and P matrix with Approximately    

Known Process-Disturbance Model Parameters 

 

 Finally in Figures 4.7 to 4.9, the controller parameters that can be approximately 

obtained if the discrete linear dynamic-stochastic dynamic stochastic model parameters 

are known (from impulse tests), are used with low initial covariance matrix in the 

GlucoSim. In these simulations, P matrix are initialized at 1, 0.1, and 0.01 respectively. 

 

 

 

Figure 4.7. The response when diagonal elements of P matrix are initialized at 1 and 

dynamic stochastic model parameters are approximately known. 

 

 The benefit of initially giving close to the true values of parameters is limited to the 

first few hours when faster response to the breakfast is obtained because of rapid insulin 

infusion. Glucose concentration level which exceeds of 300 mg dl-1 is prevented. 

However, due to the nonlinearity of the process a low gain estimator (because of low P 

matrix) cannot keep track of changing controller parameters and hence the control 

deteriorates. After about 10 hours (600 minutes), the unknown parameter case gives better 

results.  
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Figure 4.8. The response when diagonal elements of P matrix are initialized at 0.1 and 

dynamic stochastic model parameters are approximately known. 

 

 

 

Figure 4.9. The response when diagonal elements of P matrix are initialized at 0.01 and 

dynamic stochastic model parameters are approximately known. 
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4.2.  Changes in the Set Point of the Blood Glucose Concentration 

 

 Fasting blood glucose level in a healthy person should be in between 80-110 mg dl-1 

(American Diabetes Association, 2005) in order to prevent the hypo and hyperglycemia. 

Set point of the blood glucose concentration is also one of the important parameters in the 

controller algorithm. A number of different set points (i.e 90, 95, 100, 105 mg dl-1) which 

are in the safe range (80-110 mg dl-1) are used both when linear dynamic-stochastic 

dynamic stochastic model parameters are unknown and approximately known in Figures 

4.10 to 4.15.  

 

4.2.1. Changes in the Set Point of the Blood Glucose Concentration with Unknown 

Process-Disturbance Model Parameters 

 

 In Figures 4.10 to 4.12, the only change is the set points of blood glucose 

concentration (90, 95, 105 mg dl-1), and the other parameters are kept constant. The 

variances of the controller parameters are taken as 100000 while the controller parameters 

(αi's) are initialized at 1, (βi's) are initialized at 0.1 and the variances of the controller 

parameters are initialized at 1000. The constraint factor of insulin infusion rate is 1.5, and 

the forgetting factor is 0.5. The closed loop response of GlucoSim when the set point of 

the blood glucose concentration equals to 100 mg dl-1 is already given in Figure 4.6.  

 

 When the set point of blood glucose concentration is set to a value closer to the base 

limit of the fasting glucose concentration, i.e 80 mg dl-1, at the end of the day the patient 

faces hypoglycemia as the concentration falls below the base limit of hypoglycemia, i.e. 

50 mg dl-1. 

 

 Increasing the set point to 95 mg dl-1 leads blood glucose concentration to settle in a 

safer range as can be seen in Figure 4.11 and the blood glucose concentration reaches the 

set point. 
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Figure 4.10. The response when the set point of blood glucose concentration is 90 mg dl-1 

and dynamic stochastic model parameters are unknown. 

 

 

 

Figure 4.11. The response when the set point of blood glucose concentration is 95 mg dl-1 

and dynamic stochastic model parameters are unknown. 
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Figure 4.12. The response when the set point of blood glucose concentration is 105 mg dl-1 

and dynamic stochastic model parameters are unknown. 

 

 When the set point is chosen closer to the upper limit of the fasting glucose 

concentration, the blood glucose concentration varies at high values for long periods of 

time as might be expected. The case for set point equals to 100 mg dl-1 is already given in 

Figure 4.6. Hence among all the set points ( 90, 95, 100, 105 mg dl-1), 95 mg dl-1 seems to 

be the most appropriate choice for the proposed algorithm as this set point has the lowest 

ISE value. (2860E06) 

 

4.2.2. Changes in the Set Point of the Blood Glucose Concentration with 

Approximately Known Process-Disturbance Model Parameters    

 

 In the responses presented in Figures 4.13 to 4.15, only the set point of blood 

glucose concentration is varied as 90, 95, and 105 mg dl-1 respectively whereas the other 

parameters are kept constant. The controller parameters which are approximately obtained 

from impulse and step tests are initially used with low initial covariance P matrix in the 

GlucoSim. The closed loop response of GlucoSim in which the set point is 100 mg dl-1 is 

already given in Figure 4.8. 
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Figure 4.13. The response when the set point of blood glucose concentration is 90 mg dl-1 

and dynamic stochastic model parameters are approximately known. 

 

 

 

Figure 4.14. The response when the set point of blood glucose concentration is 95 mg dl-1 

and dynamic stochastic model parameters are approximately known. 
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Figure 4.15. The response when the set point of blood glucose concentration is 105 mg dl-

1 and dynamic stochastic model parameters are approximately known. 

 

4.3.  Changes in the Upper Clamp Value of Insulin Infusion Rate 

 

There is a limitation on the amount of insulin that is given to diabetic patients 

(American Diabetes Association, 2005). When the controller is implemented without any 

clamp on the manipulated variable then the process becomes unstable. When the upper 

clamp is set to 100 000 mU min-1 with lower being 0 then the controller becomes on-off 

(bang-bang) controller. By trial and error an optimum clamp is found to be 50 000 mU 

min-1. The other two upper limits tested are 40 000 mU min-1 and 60 000 mU min-1 and 

are discussed below. 

 

4.3.1. Changes in the Maximum Insulin Infusion Rate with Unknown Process-

Disturbance Model Parameters 

 

In Figures 4.16 and 4.17, only the maximum insulin infusion rate is varied as 60 000 

and 40 000 mU min-1 respectively, whereas the other parameters kept constant. The initial 
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diagonal elements of covariance P matrix are taken as 100000 while the controller 

parameters αis are initialized at 1, βis are initialized at 0.1, basal rate of the insulin 

infusion rate is set to 5400 mU min-1, the constraint factor of insulin infusion rate ζ is set 

to 1.5 and the forgetting factor λ is set to 0.5. The closed loop response of GlucoSim in 

which the maximum insulin infusion rate is 50 000 mU min-1, can be seen in Figure 4.6. 

As Gb falls below 50 mg dl-1 in Figures 4.16 and 4.17, the virtual patient faces glycemia at 

the end of 24 hours. 

 

 

 

Figure 4.16. The response when the maximum insulin infusion is 60 000 mU min-1 and 

dynamic stochastic model parameters are unknown. 
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Figure 4.17. The response when the maximum insulin infusion is 40 000 mU min-1 and 

dynamic stochastic model parameters are unknown. 

 

4.3.2. Changes in the Maximum Insulin infusion Rate with Approximately Known 

Process-Disturbance Model Parameters 

 

 Here responses are obtained for two different upper level clamp values 60 000 and 

40 000 mU min-1. Only the maximum insulin infusion rate is varied as 60 000 and 40 000 

mU min-1 while keeping the other parameters constant. The responses obtained are given 

in Figures 4.16 and 4.17 respectively. The P matrix is initialized at 0.1, basal rate of the 

insulin infusion rate is set to 5400 mU min-1
,
 the constraint factor ζ of insulin infusion rate 

is 1.5 and the forgetting factor λ is 0.5. The closed loop response of GlucoSim in which 

the maximum insulin infusion rate is 50 000 mU min-1, can be seen in Figure 4.8. 

 

 The responses in Figures 4.18 and 4.19 are similar to the case of the dynamic 

stochastic model parameters are unknown presented in Figures 4.16 and 4.17.  
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Figure 4.18. The response when the maximum insulin infusion is 60 000 mU min-1 and 

dynamic stochastic model parameters are approximately known. 

 

 

 

Figure 4.19. The response when the maximum insulin infusion is set to 40 000 mU min-1 

and dynamic stochastic model parameters are approximately known. 
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4.4.  Changes in the Constraint Factor of Manipulated Variable 

 

 The constraint factor ζ constrains the change in the manipulated variable and hence 

prevents large variations. When ζ is reduced to 0, a minimum variance control is obtained 

where the manipulated variable can change without any contraints. The variation of 

constraint factor ζ with a clamp on the manipulated variable is investigated in this part by 

setting ζ to 0, 1, 1.5 and 2. Figures 4.20 to 4.22 and 4.6 refer to the variations of ζ for both 

when the process dynamic stochastic model is unknown and approximately known. The 

variation of constraint factor ζ is investigated in this part when it is equal to 0, 1, 1.5, and 

2 for the cases when the process dynamic stochastic model is unknown and known. 

 

4.4.1. Changes in the Constraint Factor with Unknown Process-Disturbance 

Model Parameters 

 

 

 

Figure 4.20. The response of minimum variance control (ζ = 0) when dynamic stochastic 

model parameters are unknown. 

 

 In Figures 4.20 to 4.22, only the constraint factor of insulin infusion rate is varied as 

0 (corresponding to minimum variance self-tuner), 1 and 2 respectively, whereas the other 
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parameters are kept constant. The diagonal elements of P-matrix are initially taken as 

100000 while the controller parameters αis are initialized at 1, βis are initialized at 0.1 and 

the variances of the controller parameters are initialized at 1000 when the process 

dynamic stochastic model is unknown. The closed loop response of GlucoSim in which 

the constraint factor ζ is set to 1.5, can be seen in Figure 4.6.  

 

 The response given in Figure 4.20 is when the constraint factor is set to 0. The 

variations in the manipulated variable is unacceptable as it changes between upper and 

lower clamp value. Figure 4.22 illustrates an interesting response where too high a 

constraint factor ζ (ζ = 2) does yield very oscillatory variations in the manipulated 

variable similar to the case when ζ is zero. 

 

 In order to prevent large variations in insulin infusion rate and to form a smooth 

pattern non-zero constraint factor is used which results in the Clarke-Gawthrop self-tuning 

controller algorithm.  

 

 

 

Figure 4.21. The response when the constraint factor ζ is 1 and dynamic stochastic model 

parameters are unknown. 
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Figure 4.22. The response when the constraint factor ζ is 2 and dynamic stochastic model 

parameters are unknown. 

 

4.4.2. Changes in the Constraint Factor with Approximately Known Process-

Disturbance Model Parameters 

 

 In Figures 4.23 to 4.25, are given the responses of the controlled and the 

manipulated variables for ζ equals to 0, 1, and 2 respectively while the other parameters 

are kept constant. The response when the constraint factor ζ is set to 1.5 is already 

presented in Figure 4.8.  

 

 Again, as in the process dynamic stochastic model unknown case the manipulated 

variable variations become unacceptable when ζ equals to 0, 1, and 2 as can be seen in 

Figures 4.23 to 4.25. 
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Figure 4.23. The response of minimum variance control (ζ =0) when dynamic stochastic 

model parameters are approximately known. 

 

 

 

Figure 4.24. The response when the constraint factor ζ is 1 and dynamic stochastic model 

parameters are approximately known. 
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Figure 4.25. The response when the constraint factor ζ is 2 and dynamic stochastic model 

parameters are approximately known. 

 

4.5.  Changes in the Forgetting Factor 

 

 The forgetting factor λ which can be defined also as exponentially discounting 

factor, has a domain defined on the interval 0 1λ< ≤ . The generalized form of 

recursive least squares estimation, for λ less than 1, naturally leads to adaptive control 

whereby the controller parameters are adapted to changes in process and disturbance 

transfer function parameters. If λ is equal to 1 then the estimation algorithm is 

reduced to ordinary least squares and when it is less then 1.0 then the algorithm will 

discount the information of the distant past by putting lesser weights on these past 

data points.  
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4.5.1. Changes in the Forgetting Factor with Unknown Process-Disturbance 

Model Parameters 

 

 In Figures 4.26 to 4.28, only the forgetting factor is varied as 1, 0.75, 0.25 

respectively, whereas the other parameters are kept constant. The variances of the 

controller parameters are taken as 100000 while the controller parameters (αi's) are 

initialized at 1, (βi's) are initialized at 0.1, the maximum insulin infusion rate is 50 000 

mU min-1, the basal rate of the insulin infusion rate is set to 5400 mU min-1, and the 

constraint factor of insulin infusion rate is set to 1.5. The closed loop response of 

GlucoSim in which the forgetting factor is set to 0.5, can be seen in Figure 4.6.  

 

 

 

Figure 4.26. The response when the forgetting factor λ is 1 and dynamic stochastic model 

parameters are unknown. 
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Figure 4.27. The response when the forgetting factor λ is 0.75 and dynamic stochastic 

model parameters are unknown. 

 

 

 

Figure 4.28. The response when the forgetting factor λ is 0.25 and dynamic stochastic 

model parameters are unknown. 
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4.5.2. Changes in the Forgetting Factor with Approximately Known Process-

Disturbance Model Parameters  

 

 In Figures 4.29 and 4.30, only the forgetting factor is varied as 0.75, 0.25 

respectively, whereas the other parameters are kept constant. P-matrix is initially set to 

0.1, the maximum insulin infusion rate to 50 000 mU min-1, basal rate of the insulin 

infusion rate is to 5400 mU min-1, and the constraint factor of insulin infusion rate to 1.5. 

The closed loop response of GlucoSim in which the forgetting factor is set to 0.5, can be 

seen in Figure 4.8.  

 

 

 

Figure 4.29. The response when the forgetting factor λ is 0.75 and dynamic stochastic 

model parameters are approximately known. 
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Figure 4.30. The response when the forgetting factor λ is 0.25 and dynamic stochastic 

model parameters are approximately known. 

 

4.6.  Changes in the Sampling Time of the GlucoSim Process 

 

 In order to reduce the time delay which complicates the control algorithm when it is 

high, the sampling time of the process can be increased which will reduce the whole 

periods of delay b in the transfer function. Previously used sampling time is 5 minutes in 

GlucoSim is increased to 10 minutes and 14 minutes since they are integer multiples of 70 

minutes of the dead time in GlucoSim. So that when the process is discretized the process 

time delay of the Box- Jenkins type dynamic stochastic model without one period of delay 

imposed by sampling is decreased to 7 and 5 respectively. The closed loop response of 

GlucoSim process to a decrease in time delay can be seen in Figures 4.31 to 4.34.  
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4.6.1. Changes in the Sampling Time of the GlucoSim Process with Unknown 

Process-Disturbance Model Parameters 

 

 

 

Figure 4.31. The response when the sampling time is set to 10 minutes and dynamic 

stochastic model parameters are unknown.  

 

 As far as the final value of the controlled variable is concerned the patient suffers 

from hypoglycemia since GB value falls below 50 mg dl-1. Reducing the control interval 

does not seem to improve the regulatory response. 
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Figure 4.32. The response when the sampling time is set to 14 minutes and dynamic 

stochastic model parameters are unknown. 

 

 By decreasing the time delay via increasing sampling time was, to simplify the 

controller algorithm which may lead to a superior control. However, this expectation is 

not realized. At the end of the day the blood glucose concentration decreases to below 50 

mg dl-1 in Figure 4.35 and closer to 50 mg dl-1 in Figure 4.36 which is an undesirable 

result.  

 

4.6.2. Changes in the Sampling Time of the GlucoSim Process with Approximately 

Known Process-Disturbance Model Parameters 

 

 As can be seen in Figures 4.33 and 4.34, the regulator performance is also not 

acceptable in this case too as hypoglycemia limits are reached.  
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Figure 4.33. The response when the sampling time is set to 10 minutes and dynamic 

stochastic model parameters are approximately known. 

 

 

 

Figure 4.34. The response when the sampling time is set to 14 minutes and dynamic 

stochastic model parameters are approximately known. 
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5.  CONCLUSION AND RECOMMENDATION 

 

 

5.1.  Conclusion 

 

 In the regulation of blood glucose concentration, as the disturbances are highly 

stochastic, adaptive control algorithm is a requirement for control mechanism. In an 

adaptive system, the regulator parameters are adjusted on line continuously. This implies 

that the regulator parameters follow changes in the process. However, it is difficult to 

analyze the convergence and stability properties of such systems. To simplify the problem 

it can be assumed that the process has constant but unknown parameters. When the 

process is known, the design procedure specifies a set of desired controller parameters. 

The adaptive controller should converge to these parameter values even when the process 

is unknown. A regulator with this property is called self-tuning, since it automatically 

tunes the controller to obtain the desired performance (Astrom and Wittenmark, 1989).  

 

 The blood glucose concentration in Type I diabetic patients is regulated by adaptive 

Clarke-Gawthrop self tuning controller on a virtual patient simulated by GlucoSim which 

is an educational software package written by Agar et. al. (2005). In order to obtain the 

desired performance of self tuning regulator, some parameters (i.e. initial values of the 

controller parameters θ vector, the covariance matrix P, the set point of blood glucose 

concentration, the maximum allowable insulin infusion rate, the constraint factor ζ, the 

forgetting factor λ, the sampling time mentioned in Section 4 are changed for two 

different cases: the process-disturbance model parameters are known and approximately 

known. When the regulation of blood glucose concentration is carried out in Type I 

diabetic patients using Clarke-Gawthrop self tuning controller a better performance is 

obtained for the case with unkown process-disturbance model parameters. The best 

control performance is selected among those which has the lowest ISE value, does not 

allow too high an increase in the blood glucose concentration and prevent hypoglycemia 

at the end of 24 hours period. The optimum settings found are as follows: for the set point 

of the blood glucose concentration 100 mg dl-1 concentration is chosen among the set of 

90, 95, and 105 mg dl-1, the forgetting factor is determined to be 0.5 among the set of 

(0.25, 0.5, 0.75, 1), the constraint factor of manipulated variable is 1.5, the initial values 
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of controller parameters are (1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 

0.1, 0.1, 0.1) and the diagonal elements of the P matrix are initialized at 100000. By using 

these parameter settings a safe blood glucose level is determined for the virtual patient 

with Type I diabetes in a 24 hours period. The risk of hypo and hyperglycemia is 

prevented. Adaptive control achievement is that a freedom in daily life can be given to the 

patients to change their diets, exercises, change in diet, exercise and stress levels. 

 

5.2.  Recommendation  

 

In Clarke-Gawthrop type self tuning regulator the fact that there is no need to 

estimate the process-disturbance model parameters and design a controller at each control 

period, it simplifies the regulation algorithm when compared to other controller 

algorithms such as LQC, and MPC. However, in this case the GlucoSim process formed 

by the glucose-insulin interaction in Type I diabetic patients, is a nonlinear process and 

the performance of the regulator is highly dependent on the initial parameters. This makes 

it hard to find the optimum parameters set that should be specified in the beginning of the 

simulation. In this work, one variable at a time is used to obtain the best settings of the 

initial conditions. Response surface methodology (with the response being ISE) using 

factorial design can be used to find the optimum settings for the initial parameter settings 

as described in Section 4. 

 

As an alternative to controlling the blood glucose level manipulating insulin 

infusion rate in a single loop, a cascade control arrangement can be carried out wherein 

the inner loop controlled variable is the insulin concentration in the blood and the outer 

loop is the blood glucose concentration. A simple PI controller can be used as the slave 

and an adaptive STR as the master controller.  
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