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ABSTRACT 

 

 

MODELING OF SELECTIVE CO OXIDATION OVER 

CuOX-CoOX-CeO2 CATALYSTS USING ARTIFICIAL NEURAL 

NETWORKS 

 

 

This study is aimed to model design and reaction parameters of CO oxidation over 

CuOx-CoOx-CeO2 catalyst using neural and modular neural networks.  Since there are 

many possible architectures for modular networks, the best network is searched using the 

measures of correlations such as R2, R2
adj, and RMSE.  In all models, first a small network 

is constructed and enlarged without over fitting the data. Then the best networks were 

optimized with Quasi – Newton method using the MATLAB® Optimization Toolbox.  

The significance of input parameters and their effects on CO conversion were also 

analyzed.  The data was also modeled using the multiple regression method for 

comparison.   

 

The effects of precipitation pH and temperature were modeled with a neural 

network of two neurons in the hidden layer with an R2 value of 0.970.  The precipitation 

and reaction conditions were also modeled together with a neural network of 3-1 structure, 

and modular neural networks of 2-3-1 and 1-1-1structures with the R2 values of 0.981, 

0.989 and 0.971 respectively indicating that both models can be used.  However, it was 

found that the modular neural networks have some advantages; they feed the similar input 

parameters into the same module which enhances the modeling power, and decreases the 

possibility of over-fitting by lowering the number of connections for the same number of 

data points. Similar models were developed for various combinations of catalyst 

preparation conditions (temperature and pH), target metal loadings (Cu, Ce and Co weight 

per cent) and reaction parameters (temperature, W/F and time on stream) with considerable 

success.  It was also observed that the effects of measured catalyst properties (actual metal 

loadings and total surface area) on CO conversion can also be modeled successfully using 

both neural and modular neural networks. 
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ÖZET 
 
 
 

YAPAY SİNİR AĞLARI İLE CuOx-CoOx-CeO2 KATALİZÖRDE 

SEÇİMLİ CO OKSİDASYONUNUN MODELLENMESİ 

 

 

Bu çalışmada sinir ve modüler sinir ağları kullanılarak CO oksidasyonu için CuOx-

CoOx-CeO2 katalizörlerinin tasarım ve reaksiyon parametreleri modellenmişir.  Modüler 

sinir ağları değişik yapılarda kullanılabileceğinden, en iyi ağ mimarisi korelasyon 

ölçümleri kullanılarak aranmış, her ağ için R2, R2
adj ve RMSE değerleri hesaplanarak 

karşılaştırılmıştır. Her model için önce küçük bir ağ kurulmuş ve veriyi ezberlemeyeceği 

şekilde performansını artıracak ölçüde genişletilmiştir. En iyi ağlar MATLAB® 

Optimizasyon Kiti kullanılarak Quasi-Newton metodu ile optime edilmiştir.  Ayrıca, CO 

dönüşümü üzerine girdi parametrelerinin önemi ve etkileri de analiz edilmişlerdir. 

Karşılaştırma yapabilmek amacıyla deneysel veriler çoklu regresyon metodu ile de 

modellenmiştir.  

   

Çöktürme pH’ı ve sıcaklığı, saklı katmanında iki nöronu bulunan sinir ağı ile 

modellenmiş ve 0.970’lik R2 değeri elde edilmiştir.  Çökelme ve reaksiyon şartları 3-1’lik  

sinir ağı ile 2-3-1 ve 1-1-1’lik moduler ağlar kullanılarak modellenmiş ve sırasıyla 0.981, 

0.989 ve 0.971’lik R2 değerleri elde edilmiştir.  Bu sonuçlar her iki modelleme biçiminin 

de kullanılabileceğini gösterse de modüler yapay sinir ağlarının, değişik girdi gruplarını 

ayırması ile modelleme gücünü arttırma avantajı olduğu belirlenmiştir.  Ayrıca, moduler 

yapı nöronlar arasındaki bağlantı sayısını indirmekte ve böylece modelin veriyi ezberleme 

olasılığını da azalmaktadır.  Katalizör hazırlama koşullarının (çökelme pH’ı ve sıcaklığı), 

hedef metal yüzdelerinin (Cu, Co ve Ce ağırlık yüzdeleri) ve reaksiyon parametlerinin 

(sıcaklık, W/F ve kalış süresi) çeşitli kombinasyonlarını için benzer modeller makul başarı 

ile geliştirilmiştir.  Ayrıca ölçülmüş katalizör özelliklerinin (metal yüzdeleri ve katalizör 

yüzey alanı) CO dönüşümü üzerine etkilerinin de sinir ve modüler sinir ağları ile başarılı 

bir şekilde modellenebildiği görülmüştür.  
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1.  INTRODUCTION 

 
 

In the last decade, the limitation of petroleum reserves has become clearer for the 

communities and the researches on the alternative energy technologies have been 

increased.  One of the promising energy sources for transportation vehicles and 

small/medium size stationary applications such as houses and small businesses is the fuel 

cell technology.  

 

Although, the fuel cell technology has been subjected a considerable development 

since its initiation, there are some problems concerning this technology.   One of them is 

the catalyst used in the anode of the cell which has two disadvantages (Panzera et al., 2004, 

İnce et al., 2005): 

i. The feed stream to the fuel has to be free from carbon monoxide.  CO poisons the 

Pt catalyst in the anode. 

ii. The platinum is a precious metal and has a limited supply.  For instance there 

isn’t enough platinum to be used in every vehicle produced in the world. 

 

Since the safe storage of the hydrogen is not well established, it should be produced 

on-site using a fuel processor for the transportation vehicles and the other small-medium 

size applications like houses.  However, hydrogen from the fuel processor contains some 

amount of CO, which must be eliminated. Although noble metal catalyst (especially Pt 

based catalysts) are common studied for this purpose, CuOx-CeO2 catalysts also seem to be 

a promising choice (Park et al., 2004).  Indeed 20wt% Cu – 20wt% Co – 60wt% Ce 

catalysts prepared by co-precipitation method was investigated for CO oxidation in H2 rich 

environment in our group and found to be successful.  The effects of pH and temperature 

which are the most important parameters for precipitation were studied using response 

surface method and the optimum pH and temperature values were found to be 10.0 and T 

37.5 °C respectively.  The effects of reaction conditions such as reaction temperature, W/F, 

CO, O2, CO2 and H2O concentration in feed stream were also studied in the same work. 

(Kibar, 2005).  In a similar study the effects of the metal loadings were also studied 

experimentally by Özdemir (2006).  
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In this study the results of the experimenal works by Kibar (2005) and 

Özdemir(2006) were modeled via both  Neural Networks (NN) and Modular Neural 

Networks (MNN).  The tangential sigmoid function was used for both models as the 

activation function while the Marquardt – Levenberg algorithm was employed as the 

learning algorithm to adapt weights.  MATLAB® Neural Network Toolbox was used for 

computations of the NNs and MNNs.  The data were also fitted by quadratic multiple 

regression for comparison.  The goodness of the fit were measureed using R2, R2
adjusted and 

Root Mean Squared Error while k-fold cross validation method was used for validation..  

The best neural network models were also optimized with MATLAB® Optimization 

Toolbox using constrained nonlinear optimization fuction with Quasi-Newton optimization 

method.  Finally the the input significance analysis for the best neural network model of 

each subset was also performed to see the relative impacts of the design parameters   

 

In the 2nd chapter, a literature survey of the CO oxidation, catalyst design, neural 

and modular neural models structure, measures of regression and optmization method are 

given.  Chapter 3 presents the experimental data and computational methods.  The results 

obtained from various artificial neural network models and multiple regression with 

measures of regression are given and discussed in chapter 4.  Finally, the conclusions 

extracted from modeling tehniques and recommendations for further studies on neural 

networks are listed in Chapter 5 of the thesis.  
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2. LITERATURE SURVEY 

 

 

In this chapter of thesis some recent studies on CO oxidation using mixed oxide 

catalysts will be presented first.  Then, the neural network (NN) and modular neural 

network (MNN) models will be explained in details in section two and three respectively.  

The text will continue with the modeling of CO oxidation by neural networks in section 

four.  In section five, the method of multiple regression calculations will be presented.  

Calculation methods of correlation parameters namely R2, R2
adjusted and RMSE, input 

significance computation method, k-fold cross validation and factor effects analysis will be 

covered in sixth section.  Finally, the optimization methods for neural networks will be 

discussed.  

 

2.1 CO Oxidation 
 

 
Selective CO oxidation in hydrogen rich streams has been the main focus for many 

researchers in the recent years.  CO is a poison for fuel cells which are considered as the 

promising energy conversion devices both for home and industrial use in the future.  

Polymer electrolyte membrane fuel cells (PEMFC), especially, seem to be an attractive 

choice for small-medium applications such as cars or houses.  Due to nature of the 

reactions, CO is obtained as an impurity in the product stream in most of the H2 production 

methods, which involve the use of hydrocarbon source.  For instance, H2 can be produced 

on-site by steam reforming or autothermal reforming of hydrocarbon fuels; such as 

gasoline and methanol followed by water gas shift process (Zou et al., 2006).  CO 

concentration is expected to be about 1% in a H2 feed stream from a fuel processor while 

the concentration of more than 10 ppm CO in the hydrogen stream can cause deterioration 

in its energy conversion efficiency via CO-induced poisoning of the anode catalyst (Pt), it 

should be kept far below a tolerable level.  Hence the CO in the feed must be eliminated.  

 

The concentration can be reduced to acceptable levels by catalytic methanation, Pd-

based membrane purification and catalytic selective CO oxidation.  Of these methods, the 

selective oxidation of CO with O2 appears to be the simplest and most effective method for 

removing CO.  The most important requirements of catalysts of selective CO oxidation are 
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a high oxidation rate of CO and a high selectivity with respect to the side oxidation 

reaction of H2 since these to reaction will compete (Park et al., 2004): 

 

Desired reaction:  molkcalCOOCO /6.67
2

1
22 +→+  

 

(2.1) 

Undesired reaction: molkcalOHOH /6.58
2

1
222 +→+  

 

(2.2) 

 

Such catalysts should also be active in the presence of CO2 and H2O in the feed. 

(Chen et al., 2006).  

 

2.1.1. CO Oxidation Catalysts 

 

The catalysts proposed in the literature for the selective oxidation of CO are noble 

metal based, including alumina-supported Pt-group metal catalysts and metal oxide-

supported Au catalysts.  Gold based catalysts have been found to be markedly more active 

catalysts than Pt-group metal catalysts at low temperatures (<393 K), but not as resistant to 

deactivation by CO2 and H2O.  None of these catalysts can prevent significant losses of 

hydrogen by oxidation (Avgouropoulos et al., 2002).  

 

Purifying H2 by selectively oxidizing trace amounts of CO over the precious metal 

catalysts such as Pt, Ru, Rh and Au could be achieved.  Oh et al. (2000) studied the 

activity and selectivity of Pt, Ru, and Rh catalysts supported on alumina and found Ru and 

Rh to be very selective compared to Pt/alumina.  Korolkikh et al. (2000) investigated the 

selective oxidation of CO over Pt/alumina and found that metal oxide promoters enhanced 

the activity of the catalysts even at low temperatures.  Igarashi et al. (1997) investigated Pt 

supported zeolites.  Their results showed that the selectivity was affected by supports and 

Pt/mordenite showed the highest conversion of CO to CO2.  Manasilp and Gulari (2002) 

showed that a 2% Pt/alumina sol-gel catalyst can clean down to a few ppms (Ren and 

Hong, 2007).  A number of platinum group metal-based catalysts supported on alumina, 

zeolite or activated carbon have been also studied as potential PROX catalysts.  At low 

oxygen concentrations, the selectivity of Pt based catalysts for CO oxidation in a H2-rich 



  5 

environment can be improved by increasing the oxygen supply to Pt sites via promoters 

like CeO2 or SnO2 (Özdemir, 2006, Ince et al 2005, and Şimşek et al., 2007).  

 

CuO-CeO2 mixed oxide catalysts have been also reported to be very active in the 

oxidation of CO with a specific activity several orders of magnitude higher than that of 

conventional Cu-based catalysts, and comparable to Pt-based catalysts.  Mixed oxides of 

CuO-CeO2 have recently been proposed as good candidates for the selective removal of 

CO from reformate streams: they can be used in the temperature range of 373-423 K with a 

selectivity of 95-90% for complete conversion; they are more active and significantly more 

selective than Pt-based catalysts at a lower reaction temperature; they are less active but 

much more selective than Au-based catalysts.  The use of the mixed oxide CuO-CeO2 for 

CO oxidation has recently attracted much attention (Chen et al., 2006). 

 

2.1.2. Co Oxidation over CuOx-CoOx-CeO2 Catalysts  
 
 

 High cost and limited supply of Pt directed the researchers for less expensive more 

abundant metals for CO oxidation.  Cu and Co are promising candidates when they are 

supported with a metal which has an affinity for O2 binding.  Neither of Cu, Co or Ce is 

good catalysts for CO oxidation when they are compared with Al2O3 supported Pt.  

Consequently, a combination of these metals should be used for complete conversion.  

CuO and CeO2 enhance CO oxidation through a synergistic effect.  Cerium oxide is well 

known to have a high oxygen exchange capacity, which is related to the capacity of cerium 

to change oxidation states reversibly between Ce4+ and Ce3+ by receiving or giving up 

oxygen (Schmitz et al., 1993).  

 

It has been observed that CoOx addition has increased the activity of CuOx-CeO2 

catalysts.  The addition of Co metal until a certain point raises the activity then it started to 

decrease.  When Co is precipitated only with Cu or Ce, the conversion of the catalyst is 

very low.  CoOx-CeO2 has the lowest activity among the various combinations of these 

three metals (Özdemir, 2006).  It was found that the catalyst with metal weight percents of 

16.67 %Cu, 16.67 %Co and 66.66 %Ce has the highest (100%) conversion (Özdemir, 

2006).  It was also reported that the presence of Co in the Cu-Ce catalyst is helpful in 

alleviating the temporal poisoning effect of H2O by weakening the water and catalyst 
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surface interaction (Park et. al., 2004). The catalyst preparation conditions (precipitation 

pH and temperature) were also optimized with data from face centered composite design 

within the pH range of 8.5 – 11.5 and temperature range of 5.0 – 70.0 °C, and the optimum 

pH and temperature were calculated as 10.0 and 37.5 °C respectively (Kibar, 2005).  

 

2.2.  Artificial Neural Network (ANN) Modeling 
 

 
Artificial neural network (ANN) is a powerful data modeling tool.  The main 

advantages of this technique are the modeling without any assumptions about the nature of 

the phenomenological mechanism underlying the process, the ability to learn linear and 

nonlinear relationships between variables directly from a set of examples, the capacity of 

modeling multiple outputs simultaneously and a reasonable application of the model to 

unlearned data (Basheer & Hajmeer, 2000). 

 

 Even multiple input – multiple output (MIMO) nonlinear relationships can be 

approximated simultaneously and easily.  Owing to their several attractive characteristics, 

ANNs have been widely used in chemical engineering applications such as steady state and 

dynamic process modeling, process identification, yield maximization, nonlinear control, 

and fault detection and diagnosis (Nandi et al., 2004). 

 

A neural network model consists of an input layer, hidden layer(s) and an output 

layer.  Each layer has elements called neuron; a neuron takes its input from the previous 

neuron and calculates the output using the weights from a transfer function. 

 

 

Figure 2.1:  Schematic representation of a neuron 

Neural Network 
including connections 
(called weights) 
between neurons Input Output 

Compare 

Target 

Adjust 
Weights 
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To select the number of hidden layers and the number of processing elements 

(neurons) in hidden layers, it is necessary to make a trial and error procedure until a good 

behavior of the network is obtained. However, as for the number of hidden layers 

concerns, it is advisable to use just one layer because use of more layers exacerbates the 

problem of local minima (Rai et al., 2005). 

 

The number of hidden neurons depends on the number of training patterns, the 

amount of data noise, and the complexity of the function that ANN is approximating 

(Hecht-Nielsen, 1987). 

 

The number of hidden neurons that can be used without the risk of over fitting can 

be estimated according to the equation introduced by Carpenter and Hoffman (1995). 

 

1

/

−+

−
=

outputinput

outputsample

hidden
NN

NN
N

β
 (2.3) 

 

Where Nhidden is the number of hidden nodes, Nsample the number of training data 

sets, Ninput the number of input nodes and Noutput is the number of output nodes.  The 

constant β determines the degree of over-determination.  It has three values:  β < 1, under-

determined; β = 1, determined and β > 1, over-determined.  In brief, β ≥ 1 is preferred. 

 

2.2.1. Backpropagation Algorithm 

 

Training algorithms for feedforward networks use the gradient of the performance 

function to determine how to adjust the weights to minimize performance. The gradient is 

determined using a technique called backpropagation, which involves performing 

computations backward through the network. The backpropagation computation is derived 

using the chain rule of calculus. The simplest implementation of backpropagation learning 

updates the network weights and biases in the direction in which the performance function 

decreases most rapidly which is the negative of the gradient.  An iteration of this algorithm 

can be written as in equation 2.4 (MATLAB Neural Network Toolbox Help), 
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kkkk gxx α−=+1  (2.4) 

 

Where xk, is the vector of weights and biases, gk is current gradient and αk is the 

learning rate. 

 

There are two different ways in which this gradient descent algorithm can be 

implemented: incremental mode and batch mode. In incremental mode, the gradient is 

computed and the weights are updated after each input is applied to the network. In batch 

mode on the other hand, all the inputs are applied to the network before the weights are 

updated. 

 

The learning rate is multiplied by the negative of the gradient to determine the 

changes to the weights and biases. The larger the learning rate, the bigger the step is.  If the 

learning rate is made too large, the algorithm becomes unstable.  If the learning rate is set 

too small, the algorithm takes a long time to converge. 

 

The training stops if the number of iterations exceeds epochs, if the performance 

function drops below the goal, or if the magnitude of the gradient is less than the minimum 

gradient set before training. 

 

The networks are also sensitive to the number of neurons in their hidden layers. 

Too few neurons can lead to under-fitting, while too many neurons can contribute to over-

fitting, in which all training points are well fitted, but the fitting curve oscillates wildly 

between these points.  The backpropagation algorithm is given Figure 2.2; 
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Figure 2.2. Backpropagation Algorithm (Callan, 1999) 

 

The input and target data are separated into groups of vectors for training, 

validating and testing the network.  Validation set is used to stop training early if it 
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attempts to over-fit the training data, and testing set is used as an independent measure of 

how the network might be expected to perform on data that it was not trained on. 

 

Typically one epoch of training is defined as a single presentation of all input 

vectors to the network.  The network is then updated according to the results of all those 

presentations. 

 
2.2.2.   Levenberg-Marquardt Algorithm 
 
 

The Levenberg-Marquardt algorithm was designed to approach second-order 

training speed without having to compute the Hessian matrix. When the performance 

function has the form of a sum of squares (as is typical in training feedforward networks), 

then the Hessian matrix can be approximated as 

 

JJH
T=  

 

(2.5) 

 
and the gradient can be computed as 
 

eJg
T=  

 
(2.6) 

 
Were J is the Jacobian matrix that contains first derivatives of the network errors 

with respect to the weights and biases, and e is a vector of network errors. The Jacobian 

matrix can be computed through a standard backpropagation technique that is much less 

complex than computing the Hessian matrix. 

 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix 

in the following Newton-like update: 

 

eJIJJxx
TT

kk

1
1 ][ −

+ +−= µ  

 
(2.7) 

 

When the scalar µ is zero, this is just Newton's method; the approximate Hessian 

matrix is used for updating weights and biases. When µ is large, this becomes gradient 

descent with a small step size.  Newton's method is faster and more accurate near an error 

minimum, so the aim is to shift toward Newton's method as quickly as possible. Thus, µ is 
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decreased after each successful step (reduction in performance function) and is increased 

only when a tentative step would increase the performance function. In this way, the 

performance function is reduced at each iteration of the algorithm (MATLAB, Neural 

Network Toolbox Help, 2006). 

 
2.3. Modular Neural Network (MNN) Modeling 

 
 

The term “Modular neural networks” is very fuzzy.  It is used in a lot of ways with 

different structures.  Everything that is not monolithic is said to be modular (Melin et al., 

2007).  A monolithic neural network is a standard artificial neural network in which all 

inputs is connected to the every neuron in the hidden layer.  In a neural network the 

connections between inputs and neurons in the hidden layer can be established as wished, 

these special neural network architectures are named as custom neural networks 

(MATLAB, Neural Network Toolbox Help, 2006).  Modular neural networks are artificial 

neural networks as well. 

 

On the other hand, a neural network is said to be modular if the computation 

performed by the network can be decomposed into two or more modules (subsystems) that 

operate on distinct inputs without communicating with each other.  The outputs of the 

modules are mediated by an integrating unit that is not permitted to feed information back 

to the modules.  In particular, the integrating unit both decides (1) how the outputs of the 

modules should be combined to form the final output of the system, and (2) which modules 

should learn which training patterns (Haykin, 1994). 

 

2.4. Modeling of CO Oxidation using ANN 

 
 

Traditionally, the processing and understanding of the experimental outputs 

(characterization and catalytic performances) was accomplished by the researchers, who 

applied previous experiences or fundamental knowledge in order to carry out the 

experimental design and to establish relationships between the different experimental 

results.  In the case of the large number of variables (such as in the case of computational 

catalysis) in play and the application of complex optimization algorithms for the 

experimental design make the direct human interpretation of data derived from high 
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throughput experimentation difficult.  Hence recently, data mining techniques have been 

applied in order to find relationships and patterns between the input and output data 

derived from accelerated experimentation.  For instance, the artificial intelligence (AI) 

techniques have an important potential for modeling and prediction of complex high-

dimensional data.  Among these techniques, artificial neural networks (NN) could be 

useful in the chemical field (Serra et al., 2003). 

 

Omata et al. investigated activity and selectivity of cobalt supported on alkali metal 

carbonate for PROX of 1 vol% CO using the stoichiometric amount of O2 in excess 

hydrogen.  Co/SrCO3 was discovered, and optimized to achieve high performance by using 

a full factorial design of experiment, an artificial neural network and a grid search (Omata 

et al., 2005).  Günay and Yildirim, (2007) modeled design parameters of Pt-Co-Ce/Al2O3 

catalyst via artificial neural networks for low temperature CO oxidation. 

 

 
2.5. Multiple Regression 

 
 

A general linear model is one expressed as 

 

∑
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(2.8) 

 

Where the parameters are {ak}, and the expression is linear with respect to them, 

and Xk(x) can be any (nonlinear) functions of x, not depending on the parameters {ak}.  

Then equation 2.9 is obtained, 
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This is rewritten as equation 2.10, 
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Or as  

∑
=

=
M

j

kjkj a
1

βα  

 

(2.11) 

 

Solving this set of equations gives the regression parameters {aj}.  

 

Various global and piecewise polynomials can be used to fit the data.  Most 

approximations are to be used with M < N.  One can sometimes use more and more terms 

and calculating the value of χ2 (error sum of squares) for each solution.  Then stop 

increasing M when the value of χ2 no longer increases with increasing M (Perry and Green, 

1997). 

 

2.5.1. Quadratic Response Surface Models 

 

Response surface methodology (RSM) is a tool for understanding the quantitative 

relationship between multiple input variables and one output variable.  Consider one 

output, z, as a polynomial function of two inputs, x and y.  The function z = f(x,y) 

describes a two-dimensional surface in the space (x,y,z).  In general, you can have as many 

input variables as you want and the resulting surface becomes a hyper surface.  Also, you 

can have multiple output variables with a separate hyper surface for each one. 

 

For three inputs (x1, x2,x3), the equation of a quadratic response surface is  

(MATLAB Statistics Toolbox Help) 

 

...3322110 ++++= xbxbxbby   (Linear Terms) 

...322331132112 ++++ xxbxxbxxb   ((Interaction Terms) 
2
333

2
222

2
111 xbxbxb ++  (Quadratic Terms) 

(2.15) 
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2.6. Measures of Regression 
 

 

After fitting a data, goodness of fit statistics should be evaluated.  A good fit might 

be a model; (i) in which the model coefficients can be estimated with little uncertainty, (ii) 

which explains a high proportion of the variability in the data, and (iii) which is able to 

predict new observations with high certainty. 

 

 Generally speaking, graphical measures are more beneficial than numerical 

measures because they allow viewing the entire data set at once, and they can easily 

display a wide range of relationships between the model and the data. The numerical 

measures are more narrowly focused on a particular aspect of the data and often try to 

compress that information into a single number.  In practice, depending on the data and 

analysis requirements, one might need to use both types to determine the best fit 

(MATLAB® Curve Fitting Toolbox Help). 

 

The goodness of fit statistics that may be used to evaluate the model are; (i) 

Residual analysis, (ii) Sum of squares due to error, SSE (iii) Root mean square error, (iv) 

R-Square Statistic, R2 and (v) Adjusted R-Square , R2
adj.  

 

2.6.1. Residual Analysis 

 

Residuals are defined as the difference between the observed values of the 

dependent variable and the values that are predicted by the model.  The residuals 

approximate independent random errors of a fit that is appropriate for the data. 

 

Mathematically, the residual for a specific predictor value is the difference between 

the response value y and the predicted response value ŷ . 

 

yyr ˆ−=  (2.16) 

 

Assuming the model you fit to the data is correct, the residuals approximate the 

random errors.  Therefore, if the residuals appear to behave randomly, it suggests that the 
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model fit the data well.  However, if the residuals display a systematic pattern, it is a clear 

sign that the model fits the data poorly (MATLAB Curve Fitting Toolbox Help). 

 

2.6.2. Sum of Squares Due to Error (SSE) 

 

This statistic measures the total deviation of the response values from the fit to the 

response values. It is also called the summed square of residuals and is usually labeled as 

SSE where yi is experimental and ŷ is calculated conversion value. 

∑
=

−=
1

2)ˆ(
i

iii yywSSE  (2.17) 

 

 A value closer to 0 indicates that the model has a smaller random error component, 

and that the fit will be more useful for prediction. 

 

2.6.3. Root Mean Square Error (RMSE) 

 

This statistic is also known as the fit standard error and the standard error of the 

regression. It is an estimate of the standard deviation of the random component in the data, 

and is defined as 

MSEsRMSE ==  (2.18) 

 

Where MSE is the mean square error or the residual mean square and v is degrees of 

freedom. 

v

SSE
MSE =  (2.19) 

 

Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful for 

prediction (MATLAB, Curve Fitting Toolbox Help). 

 

2.6.4. R-Square 

 

This statistic measures how successful the fit is in explaining the variation of the 

data. Put another way, R-square is the square of the correlation between the response 
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values and the predictions. It is also called the square of the multiple correlation coefficient 

and the coefficient of multiple determination. 

 

R-square is defined as the ratio of the sum of squares of the regression (SSR) and 

the total sum of squares (SST). SSR is defined as 
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2)ˆ(  (2.20) 

 

SST is also called the sum of squares about the mean, and is defined as 
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Where SST = SSR + SSE.  Given these definitions, R-square is expressed as 

SST

SSE

SST

SSR
R −== 12  (2.22) 

 

R-square can take on any value between 0 and 1, with a value closer to 1 indicating 

that a greater proportion of variance is accounted for by the model. For example, an R-

square value of 0.8234 means that the fit explains 82.34% of the total variation in the data 

about the average. 

 

If the number of fitted coefficients is increased in the model, R-square will increase 

although the fit may not improve in a practical sense. To avoid this situation, degrees of 

freedom adjusted R-square statistic should be used. 

 

It is possible to get a negative R-square for equations that do not contain a constant 

term. Because R-square is defined as the proportion of variance explained by the fit, if the 

fit is actually worse than just fitting a horizontal line then R-square is negative. In this 

case, R-square cannot be interpreted as the square of a correlation (MATLAB, Curve 

Fitting Toolbox). 
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2.6.5. Degrees of Freedom Adjusted R-Square 

 

This statistic uses the R-square statistic defined in section 2.6.2, and adjusts it based 

on the residual degrees of freedom. The residual degrees of freedom is defined as the 

number of response values n minus the number of fitted coefficients m estimated from the 

response values. 

mnv −=  (2.23) 

 

v indicates the number of independent pieces of information involving the n data 

points that are required to calculate the sum of squares.  If parameters are bounded and one 

or more of the estimates are at their bounds, then those estimates are regarded as fixed. The 

degrees of freedom are increased by the number of such parameters. 

 

The adjusted R-square statistic is generally the best indicator of the fit quality when 

you compare two models that are nested — that is, a series of models each of which adds 

additional coefficients to the previous model. 
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−=  (2.24) 

 

The adjusted R-square statistic can take on any value less than or equal to 1, with a 

value closer to 1 indicating a better fit. Negative values can occur when the model contains 

terms that do not help to predict the response (MATLAB Curve Fitting Toolbox Help). 

 

2.6.6. k-Fold Cross Validation 

Cross validation is a model evaluation method that is better than residuals.  The 

problem with residual evaluation is that they do not give an indication of how well the 

learner will do when it is asked to make new predictions for data it has not already seen.  

One way to overcome this problem is to not use the entire data set when training a learner. 

Some of the data is removed before training begins.  Then when training is done, the data 

that was removed can be used to test the performance of the learned model on “new” data. 



  18 

This is the basic idea for a whole class of model evaluation methods called cross validation 

(Schneider, 1997).  

The holdout method is the simplest kind of cross validation. The data set is 

separated into two sets, called the training set and the testing set. The function 

approximator fits a function using the training set only.  Then the function approximator is 

asked to predict the output values for the data in the testing set (it has never seen these 

output values before). The errors it makes are accumulated as before to give the mean 

absolute test set error, which is used to evaluate the model. The advantage of this method 

is that it is usually preferable to the residual method and takes no longer to compute. 

However, its evaluation can have a high variance. The evaluation may depend heavily on 

which data points end up in the training set and which end up in the test set, and thus the 

evaluation may be significantly different depending on how the division is made 

(Schneider, 1997).  

k-fold cross validation is one way to improve over the holdout method.  The data 

set is divided into k subsets, and the holdout method is repeated k times. Each time, one of 

the k subsets is used as the test set and the other k-1 subsets are put together to form a 

training set. Then the average error across all k trials is computed. The advantage of this 

method is that it matters less how the data gets divided. Every data point gets to be in a test 

set exactly once, and gets to be in a training set k-1 times. The variance of the resulting 

estimate is reduced as k is increased. The disadvantage of this method is that the training 

algorithm has to be rerun from scratch k times, which means it takes k times as much 

computation to make an evaluation.  A variant of this method is to randomly divide the 

data into a test and training set k different times. The advantage of doing this is that size of 

the each test set and could be chosen independently.  By doing so the number of the trials 

is averaged over (Schneider, 1997).  

2.7. Optimization of Neural Networks 

A neural network can be thought as a function whose variables are present in the 

input layer.  A network with one output can be optimized by any numerical optimization 

method if the network is fed as a function to the particular multiple optimization method 

(Günay, 2005). 
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Optimization techniques are used to find a set of design parameters that can in 

some way be defined as optimal.  In a simple case this might be the minimization or 

maximization of some system characteristics that is dependent on x.  In a more advanced 

formulation the objective function, f(x), to be minimized or maximized, might be subject 

to constraints in the form of equality constraints, 0)( =xGi  ),...1( emi = ; inequality 

constraints, 0≤iG  ),...,1( mmi e += ; and/or proper bounds, xl, xu,. 

 
minimize  f(x) 

      x 
subject to 

0)( =xGi
,         (i = 1,…,me) 

0≤iG ,              (i = me + 1,…,m)   

 

(2.25) 

 

where x is the vector of length n design parameters, f(x) is the objective function, 

which returns a scalar value, and the vector function G(x) returns a vector of length m 

containing the values of the equality and inequality constraints evaluated at x (MATLAB 

Optimization Toolbox Help) . 

 

2.7.1. Constrained Optimization    

 

In constrained optimization, the general aim is to transform the problem into an 

easier sub problem that can then be solved and used as the basis of an iterative process. A 

characteristic of a large class of early methods is the translation of the constrained problem 

to a basic unconstrained problem by using a penalty function for constraints that are near 

or beyond the constraint boundary. In this way the constrained problem is solved using a 

sequence of parameterized unconstrained optimizations, which in the limit (of the 

sequence) converge to the constrained problem.  These methods are now considered 

relatively inefficient and have been replaced by methods that have focused on the solution 

of the Kuhn-Tucker (KT) equations. The KT equations are necessary conditions for 

optimality for a constrained optimization problem.  If the problem is a so-called convex 

programming problem, that is, f(x) and Gi (x), i = 1,…, m, are convex functions, then the 

KT equations are both necessary and sufficient for a global solution point. 
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Referring to equation 2.25, the Kuhn Tucker equations can be stated as 
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ii xGxf
1

** 0)(.)( λ  
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                                 0* ≥iλ                 mmi e ,...,1+=  

(2.26) 

 

in addition to the original constraints in equation 2.25.  

 

The first equation describes a canceling of the gradients between the objective 

function and the active constraints at the solution point. For the gradients to be canceled, 

Lagrange multipliers ( ,iλ i = 1,…,m) are necessary to balance the deviations in magnitude 

of the objective function and constraint gradients.  Because only active constraints are 

included in this canceling operation, constraints that are not active must not be included in 

this operation and so are given Lagrange multipliers equal to zero. This is stated implicitly 

in the last two equations of 2.26. 

 

The solution of the KT equations forms the basis to many nonlinear programming 

algorithms. These algorithms attempt to compute the Lagrange multipliers directly. 

Constrained quasi-Newton methods guarantee superlinear (faster convergence than linear) 

convergence by accumulating second order information regarding the KT equations using 

a quasi-Newton updating procedure. These methods are commonly referred to as 

Sequential Quadratic Programming (SQP) methods, since a QP sub problem is solved at 

each major iteration (MATLAB Optimization Toolbox Help).  

 

2.7.2. Sequential Quadratic Programming (SQP) 

 

SQP methods represent the state of the art in nonlinear programming methods. 

Given the problem description in equation 2.25 the principal idea is the formulation of a 

QP sub problem based on a quadratic approximation of the Lagrangian function. 
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Here equation 2.25 is simplified by assuming that bound constraints have been 

expressed as inequality constraints.  QP sub problem is obtained by linearizing the 

nonlinear constraints. 
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3. COMPUTATIONAL DETAILS 
 

 

Preparation and reaction conditions of CuOx-CoOx-CeO2 for the selective CO 

oxidation catalyst were modeled via neural and modular neural networks.  The multiple 

regression models were also constructed for comparison.  The results were tested 

statistically using residual analysis and k-fold cross validation.  Precipitation pH and 

temperature and Cu, Co, and Ce metal percents were optimized using constrained 

optimization method. 

 

3.1. Experimental Data 

 

The experimental data obtained by Kibar (2005) and Özdemir (2006) were used as 

the training, test and validation data.  The catalyst were prepared using co-precipitation 

technique and tested in a micro flow reaction system in both cases.  The data are presented 

and explained briefly in the following sections, and the details of the experimental work 

can be found elsewhere (Kibar, 2005, Özdemir, 2006). 

 

3.1.1. Effects of Preparation Conditions (Precipitation pH and Temperature) 

  

Kibar (2005) was studied the effect of precipitation pH and temperature using 

response surface method.  He changed the pH from 8.5 to 11.5 and temperature from 5 to 

70°C, while keeping all other conditions constant with target metal contents of 20 wt % 

Cu, 20 wt % Co and 60 wt % of Ce.  Then he tested the optimum catalyst in a micro flow 

reactor at 120°C and with W/F ratio of 1.0 mg min/ml at the feed composition of 1% CO, 

1% O2, 60% H2, 10% H2O and 25% CO2, the reactor outlet is sampled after 3 hours.   

 

Kibar (2005) also develop a model and optimized it to have the optimum pH of 

10.0 and temperature of 37.5 leading a conversion of 34.1%.  The results are summarized 

in Table 3.1. 
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Table 3.1.  Experimental total surface area, metal percents, conversion and 

selectivity depending on the precipitation pH and temperature data (Kibar, 2005) 

pH 

Temperature 

(°C) 

TSA 

(m2/g) Co (%) Cu (%) X (%) S (%) 

8.5 5.0 2.0 28.4 15.5 28.2 31.9 

8.5 37.5 37.5 28.6 15.7 32.4 40.1 

8.5 70.0 12.6 32.3 16.2 25.2 36.5 

10.0 5.0 13.3 29.9 17.0 27.7 35.0 

10.0 37.5 36.6 25.7 13.5 32.9 41.9 

10.0 37.5 34.6 30.2 15.8 32.9 38.4 

10.0 37.5 34.6 32.1 16.0 36.6 39.4 

10.0 70.0 24.1 27.2 14.8 28.9 39.7 

11.5 5.0 11.5 28.0 15.3 27.1 41.4 

11.5 37.5 25.7 18.6 12.8 31.6 37.1 

11.5 70.0 25.7 20.6 12.7 29.1 34.4 

 

 

3.1.2. Effects of Reaction Conditions (Reaction Temperature, W/F Ratio, Time on 

Stream) 

 

Kibar (2005) also studied the effects of reaction conditions such as reaction 

temperature, and W/F ratio as given in Table 3.2.  The time on stream could be considered 

as another reaction parameter since the measurements were performed three different times 

on stream as seen from the same table. 

 

Table 3.2: Experimental conversion and selectivity values for the respective 

temperature and weight of catalyst over flow rate values (Kibar, 2005). 

Exp# 

Temperature 

(°C) 

W/F 

(mg.min/ml) 

1 Hour 2 Hours 3 Hours 

X (%) S (%) X (%) S (%) X (%) S (%) 

1 120 1 27.1 22.1 36.6 27.3 41.1 29.4 

2 140 1 46.3 67.6 53.1 64.3 57.0 45.6 

3 160 1 78.2 54.8 75.7 58.1 70.3 60.6 

4 140 2.5 71.4 55.7 76.7 54.9 74.3 55.8 

5 160 2.5 100.0 38.5 100.0 41.8 100.0 43.4 

6 160 1.75 100.0 50.3 98.5 48.6 100.0 47.5 

7 150 2.5 99.4 52.0 100.0 60.4 100.0 56.7 
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3.1.3. Metal Percent Optimization of CuOx-CoOx-CeO2 Catalyst 

 

Özdemir (2005) studied the effects of metal loading on CO conversion using 

mixture experiment.  She changed the target Co, Ce and Cu ratios and measured the total 

surface area, actual metal loadings, conversion and selectivity (Table 3.3).  The reaction 

temperature was set at 150°C and W/F ratio at 1 mg min/ml.  The optimum metal loadings 

are found as 16.67% Cu, 16.67% Co and 66.66% Ce.  The results of this study are given in 

Table 3.3. 

 

Table 3.3:  Experimental Total Surface Area, Conversion and Selectivity for the 

corresponding target and measured metal percents (Özdemir 2006) 

Exp# 
Target 
wt%Cu 

Measured 
wt% Cu 

Target 
wt%Co 

Measured 
wt% Co 

Target 
wt%Ce 

Measured 
wt% Ce 

%X %S 
TSA 

(m2/g) 

1 0.00 0.00 0.00 0.00 100.00 100.00 1.90 0.00 35.80 

2 
16.67 11.07 16.67 8.05 66.67 80.88 100.00 31.97 29.18 

3 
33.33 23.33 33.33 28.81 33.33 47.86 87.62 33.81 23.42 

4 
16.67 10.62 66.67 34.78 16.67 50.60 84.97 83.86 15.08 

5 
50.00 33.62 0.00 0.00 50.00 66.38 71.67 24.05 24.54 

6 
50.00 36.18 50.00 26.11 0.00 0.00 2.73 33.72 3.71 

7 
0.00 0.00 50.00 28.83 50.00 71.17 2.05 0.00 23.43 

8 
0.00 0.00 0.00 0.00 100.00 100.00 0.70 0.00 34.69 

9 
0.00 0.00 100.00 100.00 0.00 0.00 6.49 0.00 4.92 

10 
0.00 0.00 50.00 27.78 50.00 72.22 10.75 43.77 32.32 

11 
100.00 100.00 0.00 0.00 0.00 0.00 0.23 0.00 2.10 

12 
0.00 0.00 100.00 100.00 0.00 0.00 8.41 0.00 5.61 

13 
66.67 37.55 16.67 10.68 16.67 51.77 86.87 28.07 19.13 

14 
100.00 100.00 0.00 0.00 0.00 0.00 4.45 0.00 1.40 

 

 

3.2. Computational Approach 

 

Neural network and modular neural network models were constructed for modeling 

the experimental data showing the effects of the preparation and reaction conditions of 

CuOx-CoOx-CeO2 catalysts on CO oxidation.  MATLAB® Neural Network Toolbox was 

used for computations. Tangential sigmoid function which gives better results than 
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logarithmic sigmoid function was used as the activation function.  The Widrow-Hoff 

learning rule was employed as the error correcting rule of Levenberg - Marquardt 

modification of backpropagation algorithm which was used to adopt weights and biases of 

the network.  The data was divided into three sets before computations as training, 

validation and testing set; validation set was used for validating network performance 

during training so that training stops early if it attempts to over-fit the training data, and 

test data were used for an independent measure of how the network might be expected to 

perform on data it was not trained on.   

 

The performances of the networks were measured statistically with coefficient of 

determination (R2), adjusted coefficient of determination (R2
adj), and root mean square 

error (RMSE) correlation factors.  First, neural and modular neural networks were 

constructed using as small as possible number of neurons in the hidden layers then the 

networks were enlarged.  The time on stream was also included in the modeling of reaction 

conditions, (reaction temperature and W/F ratio) to increase the data by 3 fold.  For 

comparison, the experimental data were also modeled via quadratic multiple regression 

using Excel Solver (MS Excel Xp, 2002). 

 

The model validation was done by constructing curves of experimental results and 

calculated data, the distribution of data with respect to y = x line was observed.  Also, the 

errors of the models were displayed on the graphs of which y axis was zero error line.  The 

errors shouldn’t be much scattered in order to confirm the suitability of the model.  k-fold 

cross validation was used to validate the data, the data set was divided in k set, and each 

time k-1 set were used to calculate conversion, a balanced distribution of root mean square 

error was looked for to assign a model good. 

 

The input importance calculations were also done for the best models of each data 

set.  Before each run, one of the input columns was excluded from the data.  And, its effect 

on the root mean square error of the network was observed in order to determine which 

input parameter has greater importance on conversion for the models tested (Alyuda Help, 

2005).  Factor effects of the input parameters were also determined by constructing curves 

each time changing only one input parameter and having constant others. 
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Neural networks were optimized using MATLAB® Optimization Toolbox with 

constraint optimization algorithm.  The optimum values of precipitation pH and 

temperature, and Cu, Co, and Ce metal ratios were calculated from the best models. 



  27 

4. RESULTS AND DISCUSSION 
 
 
 

4.1.  Neural and Modular Neural Network Modeling of CO Conversion 

 

The CO conversion on CuOx-CoOx-CeO2 was modeled with neural networks and 

modular neural networks. At first, the artificial neural network model was applied starting 

with a small model and then enlarging the model without the number of points exceeding 

the number of connections between neurons.  The data were also modeled via quadratic 

multiple regression for comparison.   

   

The neural network modeling was performed for each data set of preparation 

conditions, metal loading and reaction conditions as well as the combination of them to 

increase the number of data points.  The time on stream (sampling time) was also used for 

the same purpose. In addition, the effects of the physical properties of the catalyst (weight 

percents and total surface area) as an intermediate output, on CO conversion were modeled 

to see the relation between catalyst properties and the activity.  Various neural network 

structures for various combinations of data set are presented in the following sections. 

 

4.1.1. Modeling the Effects of Preparation Conditions on CO Conversion 

 

The preparation conditions of the catalyst, precipitation pH and temperature were 

modeled first with a neural network of 2 neurons in a hidden layer.  The schematic 

representation of the network is given in Figure 4.1.  Since there are only 11 experimental 

data points and the input parameters can be considered as the same type, the modular 

neural network was not constructed for this section.  For the same reason, only a neural 

network with one hidden layer and 2 neurons was used with a considerable success.  
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Figure 4.1. Schematic representation of the NN 2-1 model 

 

The experimental and calculated CO conversions by neural network are presented 

in Table 4.1 with multiple linear regression results.  The measures of regression R2, R2
adj, 

and RMSE are also given in the same table. 

 

 
Table 4.1: Results for the NN 2-1 and quadratic multiple regression models 

 Neural Network Results Multiple Regression Results 
%X Exp. X Cal. Error Error % %X Cal. Error Error % 

28.2 28.2 0.00 0.00 29.83 1.63 5.78 

32.4 32.6 0.16 0.49 28.61 -3.79 11.69 

25.2 25.5 0.28 1.13 27.39 2.19 8.71 

27.7 27.7 0.00 0.00 31.75 4.05 14.63 

32.9 32.8 -0.12 0.36 31.79 -1.11 3.38 

32.9 32.8 -0.12 0.36 31.79 -1.11 3.38 

36.6 32.8 -3.82 10.43 31.79 -4.81 13.15 

28.9 28.0 -0.86 2.98 31.82 2.92 10.10 

27.1 27.7 0.61 2.26 27.99 0.89 3.29 

31.6 31.6 0.00 0.00 29.28 -2.32 7.35 

29.1 29.8 0.66 2.26 30.56 1.46 5.02 

R2 0.851 R2 0.573 
R2

adjusted 0.851 R2
adjusted 0.289 

RMSE 2.01 RMSE 1.17 
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As it can be seen from the table, the neural network model represents the 

experimental data better than multiple regression model considering its R2 value of 0.851 

compare to 0.573 of regression.  When the 7th data point which seems to be an 

experimental error is excluded from the model an R2 of 0.970 is obtained from the neural 

network model.    

 

The experimental versus calculated conversion values are given in Figure 4.2.  The 

neural network results are dominantly closer to y = x curve than multiple regression 

indicating a better fit. 
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Multiple Regression Model
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Figure 4.2. Comparison of (a) NN 2-1 and (b) quadratic multiple regression results with 

experimental data 

 

When the residuals of the models are plotted, the neural network also shows less 

deviation from zero error line compared to the multiple regression as can seen in Figure 

4.3. 
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Figure 4.3. Residual analysis for NN 2-1 and quadratic multiple regression models 

 

Since there are 11 data points k-fold cross validation analysis is done by extracting 

only one data point each time. As can be seen from Table 4.2, RMSE’s are usually small 

and close to each other as a further indicator of the fitness of the model.  

 

Table 4.2: k-fold cross validation analysis for the NN 2-1 model 

Subset Number Experiment 
Excluded 

RMSE 

1 1 2.10 

2 2 1.99 

3 3 2.84 

4 4 2.21 

5 5 2.15 

6 6 2.03 

7 7 2.53 

8 8 2.06 

9 9 2.07 

10 10 2.06 

11 11 2.46 

 Average 2.23 
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4.1.2. Modeling the Effects of Preparation and Reaction Conditions Together on CO 

Conversion 

 

The  data related to the precipitation pH and temperature were then combined with 

the data for the effects of the reaction conditions (reaction temperature, W/F ratio and time 

on stream) and modeled via neural networks as well as modular neural networks and 

multiple regression. The data were separated into two inputs groups during modular neural 

network modeling.   In the first group catalyst preparation conditions (pH and T) were 

collected, while the second group contained reaction parameters.  Since various modular 

neural network architectures, with the same or similar number of connections, are possible, 

only the ones that have reasonable good fit will be presented in details while only the 

measures of regression will be given for the others.  The regression coefficients of ten 

different network architectures (2 ANN and 8 MNN) are given in Table 4.3 to compare 

their fitness.  

 

Table 4.3:  Comparison of regression coefficients of different network architectures 

for preparation and reaction conditions modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input 
Structure 

Network 
Model 

R2 R2
adjusted Se RMSE 

5 NN 4-1 0.982 0.978 3.96 21.7 

5 NN 3-1 0.981 0.974 4.15 7.2 

5 NN 2-1 0.952 0.917 6.53 9.6 

2-3 MNN 2-2-2-1 0.974 0.973 4.88 18.9 

2-3 MNN 2-2-1-1 0.949 0.894 6.88 9.1 

2-3 MNN 1-1-1 0.971 0.909 5.19 6.1 

2-3 MNN 1-2-1 0.839 0.667 12.18 16.2 

2-3 MNN 2-1-1 0.971 0.935 5.20 6.7 

2-3 MNN 2-2-1 0.958 0.931 6.22 9.4 

2-3 MNN 2-3-2-1 0.988 0.988 3.28 18.0 

2-3 MNN 2-3-1 0.989 0.988 3.14 7.7 

5 MR 0.984 0.976 3.84 6.3 
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 The results of NN 3-1 (3 neuron in one hidden layer) and MNN 2-3-1 (two neuron 

for the preparation conditions and three neuron for the reaction conditions) were analyzed 

in details as the sample structures since they represent the experimental data well even 

though they are quite simple. Although, the modular network (MNN 2-3-1) has two more 

neurons than the NN (NN 3-1), it has only two more connections due to its structure.   The 

schematic representation of the neural networks are given in Figure 4.4. 

 

  

a b 
Figure 4.4: Schematic representation of the (a) NN 3-1 and (b) MNN 2-3-1 models 

 
 

The results obtained from these two models are listed in Table 4.4 indicating that 

the modular network has slightly better R2, and R2
adjusted values.   
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Table 4.4.  Results for the NN 3-1 and MNN 2-3-1 models 

 

 

 
 
 
 
 
 
 
 

 
 Neural Network Results (3-1) 

Modular Neural Network Results 
(2-3-1)  

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
28.2 31.2 3.0 10.5 28.2 0.0 0.12 

32.4 29.6 -2.8 8.7 25.6 -6.8 21.02 

25.2 28.4 3.2 12.8 25.3 0.1 0.49 

27.7 34.2 6.5 23.4 35.5 7.8 28.20 

32.9 31.8 -1.1 3.3 34.2 1.3 3.81 

32.9 31.8 -1.1 3.3 34.2 1.3 3.81 

36.6 31.8 -4.8 13.1 34.2 -2.4 6.68 

28.9 30.0 1.1 4.0 29.0 0.1 0.37 

27.1 38.5 11.4 42.1 27.2 0.1 0.51 

31.6 35.2 3.6 11.2 28.1 -3.5 11.13 

29.1 32.5 3.4 11.8 29.1 0.0 0.05 

27.1 32.8 5.7 21.2 29.8 2.7 9.85 

46.3 48.3 2.0 4.3 50.7 4.4 9.57 

78.2 74.3 -3.9 5.0 78.5 0.3 0.38 

71.4 75.1 3.7 5.2 80.6 9.2 12.83 

100.0 102.6 2.6 2.6 100.0 0.0 0.00 

100.0 96.9 -3.1 3.1 99.9 -0.1 0.09 

99.4 96.8 -2.6 2.7 99.9 0.5 0.55 

36.6 33.5 -3.1 8.4 32.2 -4.4 11.93 

53.1 49.8 -3.3 6.3 53.7 0.6 1.06 

75.7 74.8 -0.9 1.2 74.4 -1.3 1.69 

76.7 75.1 -1.6 2.0 76.7 0.0 0.04 

100.0 102.9 2.9 2.9 100.0 0.0 0.00 

98.5 96.8 -1.7 1.7 99.7 1.2 1.25 

100.0 97.2 -2.8 2.8 99.9 -0.1 0.15 

41.1 34.3 -6.8 16.5 35.5 -5.6 13.59 

57.0 51.3 -5.7 10.1 56.1 -0.9 1.57 

70.3 75.3 5.0 7.1 71.4 1.1 1.55 

74.3 75.2 0.9 1.2 74.0 -0.3 0.45 

100.0 103.2 3.2 3.2 100.0 0.0 0.00 

100.0 96.6 -3.4 3.4 99.2 -0.8 0.78 

100.0 97.4 -2.6 2.6 99.6 -0.4 0.41 

R2 0.981 R2 0.989 
R2

adjusted 0.974 R2
adjusted 0.988 

RMSE 7.2 RMSE 7.7 
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The graphical comparisons of the results obtained from the neural models with 

experimental data are given in Figure 4.5.  Both models have a very good fit since all the 

data point are quite close to on the 45° (y=x) line. 
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Figure 4.5. Comparison of (a) NN 3-1 and (b) MNN 2-3-1 results with 

experimental data 

The residual analysis indicate that the modular neural network results are less 

scattered and majority of them are closer to horizontal line compare to monolithic network 

as seen in Figure 4.6. 
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Figure 4.6. Residual analysis for the NN 3-1 and MNN 2-3-1 models  
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Although, the number of connections did not exceed the number of data points (32) 

in the modular neural network discussed in the previous section, to prevent any questions 

of over-fitting, a smaller neural network is searched for modeling the data.  For example 

the data was also modeled with a modular neural network of only 1 neuron in the hidden 

layer of each input pattern, which is the smallest modular neural model possible to 

construct.  The schematic representation of the model is given in Figure 4.7.  The 

calculated CO conversions has a R2 value of 0.971 which indicates a sufficient 

representation of the data without having much complexity compared to the quadratic 

regression equation (Table 4.5).   

 

Figure 4.7.  Schematic representation of the MNN 1-1-1 model 
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Table 4.5. Results for the MNN 1-1-1 and quadratic MR models 

 

 

The error distribution around the zero error line is given in Figure 4.8.  Although 

the MNN errors are seem to be more scattered than those for multiple regression, the 

neural network can be still considered as successful since the number of weights (10) is 

small when compared to the 21 coefficients in the multiple regression. 

 

 
 

Modular Neural Network Results 
(1-1-1) 

Quadratic Multiple Regression 
Results  

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
28.2 34.1 5.9 20.77 27.82 -0.4 1.37 

32.4 34.1 1.7 5.11 33.31 0.9 2.80 

25.2 26.1 0.9 3.56 24.45 -0.8 2.98 

27.7 34.1 6.4 22.95 27.59 -0.1 0.38 

32.9 34.1 1.2 3.51 35.99 3.1 9.40 

32.9 34.1 1.2 3.51 35.99 3.1 9.40 

36.6 34.1 -2.5 6.95 35.99 -0.6 1.66 

28.9 27.7 -1.2 3.98 30.05 1.1 3.96 

27.1 34.1 7.0 25.67 27.59 0.5 1.82 

31.6 34.1 2.5 7.77 31.74 0.1 0.43 

29.1 29.7 0.6 2.07 28.70 -0.4 1.39 

27.1 34.0 6.9 25.42 26.22 -0.9 3.23 

46.3 41.3 -5.0 10.83 51.97 5.7 12.24 

78.2 75.8 -2.4 3.09 74.27 -3.9 5.02 

71.4 75.0 3.6 5.09 75.40 4.0 5.60 

100.0 99.9 -0.1 0.15 104.33 4.3 4.33 

100.0 95.8 -4.2 4.21 99.93 -0.1 0.07 

99.4 95.6 -3.8 3.79 90.29 -9.1 9.16 

36.6 34.0 -2.6 7.04 32.73 -3.9 10.57 

53.1 41.4 -11.7 21.96 55.43 2.3 4.39 

75.7 76.3 0.6 0.83 74.69 -1.0 1.33 

76.7 75.6 -1.1 1.47 79.31 2.6 3.40 

100.0 99.9 -0.1 0.13 105.19 5.2 5.19 

98.5 96.0 -2.5 2.54 100.57 2.1 2.11 

100.0 95.9 -4.1 4.15 92.68 -7.3 7.32 

41.1 34.1 -7.0 17.14 35.99 -5.1 12.42 

57.0 41.6 -15.4 27.03 55.65 -1.4 2.38 

70.3 76.9 6.6 9.35 71.86 1.6 2.22 

74.3 76.1 1.8 2.45 79.97 5.7 7.64 

100.0 99.9 -0.1 0.12 102.81 2.8 2.81 

100.0 96.2 -3.8 3.79 97.97 -2.0 2.03 

100.0 96.1 -3.9 3.94 91.82 -8.2 8.18 

R2 0.971 R2 0.984 
R2

adjusted 0.910 R2
adjusted 0.976 

RMSE 6.0 RMSE 6.3 
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Figure 4.8:  Residual analysis for the MNN 1-1-1 and quadratic multiple regression models 

 

k-fold cross validation analysis was also done by dividing the experimental data 

into 8 (k = 8) subsets.  Since time on stream has included as a parameter into data set, each 

subset includes all 3 time on stream values of the same experiment.  The change of time 

stream of the catalyst does not change the main character of it.  Hence, in cross validation 

all three points should be excluded together.  Otherwise, the exclusion of one data point 

will be compensated by the others and cross validation results would seem better than the 

model actually would have performed (Günay, 2007).  The RMSE’s of the remaining data 

points are given in Table 4.6. 

 

Table 4.6:  k-fold cross validation analysis for the MNN 1-1-1 model 

Subset Number Experiments 
Excluded 

RMSE 

1 2,4,9,11 6.3 

2 1,2,19,26 6.6 

3 3,13,20,27 6.7 

4 5,14,21,28 6.9 

5 6,15,22,29 6.3 

6 7,16,23,30 6.4 

7 8,17,24,31 6.5 

8 10,18,25,32 6.1 

 Average 6.48 
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The RMSE’s of the subsets are balanced and close to one used for prediction of the 

entire range of the experimental data, which indicates that the model covers all data points 

with sufficient precision. 

 

The results obtained from the Modular Neural Network with 1-1-1 Structure are 

sufficiently accurate with a R2 of 0.971 and RMSE of 6.1.  However, the R2’s obtained 

from MNN 1-2-1 and MNN 2-2-1 are 0.839 and 0.958 which suggest that more 

connections between the parameters are not always mean better fit.  Consequently, it is 

best to start with a small neural network and enlarge it.  Also, one should not enlarge the 

network too much to avoid over-fitting of the data, in which each neuron would memorize 

a data point and the model will perform well on the given points but will fit poorly on the 

data that it has not encountered before. 

 
4.1.3. Modeling the Effects of Target Metal Content on CO Conversion 
 
 

The effects of target Cu, Co and Ce contents of the catalyst were modeled via 

neural network of 2 neurons (NN 2-1).  The schematic representation of the neural network 

model is given in Figure 4.9.   Since there were only 14 data points, and 3 input parameters 

were similar in nature, a modular approach was decided to be unnecessary.  The calculated 

versus experimental conversions with the neural network model and quadratic multiple 

regression are given in Table 4.7. 

 

 

Figure 4.9:  Schematic representation of the NN 2-1 model 

%Cu 

Neuron 1 

Bias 

%Co 

%Ce 

Neuron 2 

Bias 

%X 



  39 

Table 4.7. Calculated conversions for the NN 2-1 and quadratic multiple regression models  

 

 

The neural network model fit the data much better than the multiple regression with 

a R2
adj of 0.810 rather than 0.488.  The comparison graphs for modeling results with 

experimental data are given in Figure 4.10 for both models,   Although the neural network 

results are quite closer to the y = x line indicating a better fit, they are not as good as the 

ones that obtained in the previous sections.  The similar conclusions can be drawn from the 

residual analysis in Figure 4.11.  

 

 

 
 Neural Network  Results (2-1) 

Quadratic Multiple Regression 
Results  

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
1.90 0.53 -1.4 72.3 1.36 -0.5 28.56 

100.00 64.26 -35.7 35.7 61.13 -38.9 38.87 

87.62 64.51 -23.1 26.4 74.38 -13.2 15.11 

84.97 61.11 -23.9 28.1 43.69 -41.3 48.59 

71.67 64.81 -6.9 9.6 100.00 28.3 39.53 

2.73 21.14 18.4 674.4 41.13 38.4 1406.53 

2.05 16.33 14.3 696.6 28.39 26.3 1284.78 

0.70 0.53 -0.2 24.7 1.36 0.7 93.91 

6.49 2.15 -4.3 66.9 7.91 1.4 21.86 

10.75 16.33 5.6 51.9 28.39 17.6 164.07 

0.23 1.93 1.7 738.9 -0.59 -0.8 356.51 

8.41 2.15 -6.3 74.5 7.91 -0.5 5.96 

86.87 58.42 -28.4 32.7 64.72 -22.1 25.49 

4.05 1.93 -2.1 52.4 -0.59 -4.6 114.57 

R2 0.825 R2 0.803 
R2

adjusted 0.810 R2
adjusted 0.488 

RMSE 44.0 RMSE 22.0 
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Quadratic Multiple Regression Model
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Figure 4.10. Comparison graphs for the (a) NN 2-1and (b) MR results with experimental 

data 
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Figure 4.11.  Residual analysis of the NN 2-1 and multiple regression models 

 
 

The experiments for the effects of metal loading were performed in a single time on 

stream of 3 hours, preventing to increase the number of data points for a better fit.  

Combining the data related to the metal loading and reaction conditions did not result a 

good fit both because they are from different experimental work and their common 

parameters are not as many as in the case of combining precipitation and reaction 

conditions.  Hence the results could not be improved further.  
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4.1.4. Modeling the Effects of Reaction Conditions on CO Conversion 

 
The reaction temperature and W/F ratio were also modeled, without combining 

with the preparation parameters, using neural network (NN 4-1), modular neural network 

(MNN 2-1-2-1) and multiple regression.  In order to increase the data number by 3 fold, 

time on stream is considered as a model parameter.  The schematic representation of the 

MNN 2-1-2-1 is given in Figure 4.12 while the results obtained from this models and NN 

4-1 are given in Table 4.8. 

 

 

Figure 4.12. Schematic representation of the MNN 2-1-2-1 model 
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Table 4.8.  Results obtained from the NN 4-1 and MNN 2-1-2-1 models 

 

 

 The NN results are slightly better than the MNN ones.  However, the modular 

neural network has an extra hidden layer but 5 less connections than the NN model of 4 

neurons in the hidden layer.  The R2 values are close to each other which are 0.983 for NN 

and 0.981 for MNN. R2 for multiple regression, on the other hand was 0.965, and R2
adj was 

0.930.  The small difference in the correlation results suggest that when the input number 

is low, using MNN model does not make much difference.  However, the effect of 5 less 

connections used in the MNN should not be underestimated.  For example it was not 

possible to lower the number of neurons in the hidden layer in ANN (3 neurons gave a 

poor fit) while it could be done with MNN.  

 

The comparison graphs of the ANN and MNN are given in Figure 4.13.  The 

graphs are similar to each other since both models gave a good fit of the data. 

 

 
 Neural Network Results (4-1) 

Modular Neural Network Results 
(2-1-2-1) 

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
27.1 27.81 0.7 2.6 34.19 7.1 26.16 

46.3 40.82 -5.5 11.8 51.24 4.9 10.66 

78.2 77.29 -0.9 1.2 75.62 -2.6 3.30 

71.4 72.18 0.8 1.1 76.39 5.0 6.98 

100.0 99.61 -0.4 0.4 101.34 1.3 1.34 

100.0 98.43 -1.6 1.6 100.34 0.3 0.34 

99.4 100.98 1.6 1.6 99.93 0.5 0.53 

36.6 35.43 -1.2 3.2 34.18 -2.4 6.61 

53.1 53.37 0.3 0.5 51.11 -2.0 3.74 

75.7 77.82 2.1 2.8 75.14 -0.6 0.74 

76.7 74.38 -2.3 3.0 75.89 -0.8 1.05 

100.0 100.05 0.1 0.1 100.66 0.7 0.66 

98.5 99.31 0.8 0.8 99.66 1.2 1.18 

100.0 100.00 0.0 0.0 99.24 -0.8 0.76 

41.1 39.11 -2.0 4.8 34.18 -6.9 16.85 

57.0 63.66 6.7 11.7 50.99 -6.0 10.54 

70.3 80.74 10.4 14.9 74.67 4.4 6.22 

74.3 74.37 0.1 0.1 75.41 1.1 1.50 

100.0 100.60 0.6 0.6 99.98 0.0 0.02 

100.0 100.52 0.5 0.5 98.98 -1.0 1.02 

100.0 99.35 -0.6 0.6 98.56 -1.4 1.44 

R2 0.983 R2 0.981 
R2

adjusted 0.983 R2
adjusted 0.980 

RMSE 14.4 RMSE 10.7 
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Figure 4.13.  Comparison graphs for the (a) NN 4-1 and (b) MNN 2-1-2-1 results with 
experimental data 

 
 
 

The distributions of the errors for both models are also given in Figure 4.14.  Both 

neural models results are close to each other, and they are better than multiple regression 

model.  
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Figure 4.14:  Residual analysis for the NN 4-1, MNN 2-1-2-1, and quadratic multiple 

regression models 
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4.1.5. Modeling the Effects of Design and Reaction Parameters Together on CO 
Conversion 

 
 

The design parameters, namely precipitation pH, precipitation temperature, target 

Cu, Co, and Ce weight percents are modeled with the reaction parameters; reaction 

temperature, W/F and time on stream (sampling time) together using both neural and 

modular neural networks.  The catalyst preparation and reaction parameters were fed to the 

MNN as separate input groups similar to the MNN modeling works discussed in previous 

sections. The correlation measures of all models tested are given in Table 4.9.  Among the 

two different NN structures the model with 3 neurons in the hidden layer has better 

correlation coefficients which again supports that more neuron does not mean to give 

better result.  Similarly among three different modular architectures constructed the one 

with 3 neurons for each input pattern has the best results.  

 

 

Table 4.9: Comparison of regression coefficients of different network architectures for 
design and reaction parameters modeling 

 

 

 

 

 

 

 

 

 

 

The comparison of the results best NN which has 3 neurons in the hidden layer, and 

the modular neural network, which has two groups of inputs; design and reaction 

parameters with three neurons for each in the hidden layer (Figure 4.15) are given in Table 

4.10.  It should be noted that, although MNN has 3 more neurons in the hidden layer and 

has only 6 more number of connections.  Dividing the input sequence reduced the number 

of additional connections arising from the increase in the number of neurons.   

 

Input 

Structure 

Network 

Model 
R2 R2

adjusted Se RMSE 

8 NN 4-1 0.896 0.896 11.61 77.0 

5 NN 3-1 0.949 0.935 8.10 16.2 

5-3 MNN 4-3-1 0.967 0.937 6.58 30.9 

5-3 MNN 3-3-1 0.963 0.959 6.96 20.7 

5-3 MNN 2-3-1 0.953 0.937 6.88 15.0 
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Figure 4.15.  Schematic representation of the MNN 3-3-1 model 
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Table 4.10.  Results for the NN 4-1 and MNN 3-3-1 models 

 
 Neural Network Results (3-1) 

Modular Neural Network Results 
(3-3-1) 

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
28.2 29.8 1.6 5.7 33.54 5.3 19.0 

32.4 29.6 -2.8 8.7 31.83 -0.6 1.8 

25.2 29.3 4.1 16.1 27.22 2.0 8.0 

27.7 30.2 2.5 9.1 34.87 7.2 25.9 

32.9 30.0 -2.9 8.8 33.38 0.5 1.4 

32.9 30.0 -2.9 8.8 33.38 0.5 1.4 

36.6 30.0 -6.6 18.0 33.38 -3.2 8.8 

28.9 29.6 0.7 2.5 30.16 1.3 4.4 

27.1 30.7 3.6 13.3 35.48 8.4 30.9 

31.6 30.5 -1.1 3.5 34.48 2.9 9.1 

29.1 30.0 0.9 3.2 32.29 3.2 11.0 

27.1 29.6 2.5 9.1 26.65 -0.4 1.7 

46.3 51.5 5.2 11.3 48.82 2.5 5.4 

78.2 68.3 -9.9 12.7 82.54 4.3 5.6 

71.4 71.6 0.2 0.3 73.76 2.4 3.3 

100.0 93.1 -6.9 6.9 103.59 3.6 3.6 

100.0 102.3 2.3 2.3 93.15 -6.9 6.9 

99.4 99.3 -0.1 0.1 90.66 -8.7 8.8 

36.6 29.7 -6.9 18.9 28.65 -8.0 21.7 

53.1 53.2 0.1 0.2 53.77 0.7 1.3 

75.7 68.0 -7.7 10.2 85.54 9.8 13.0 

76.7 74.2 -2.5 3.2 76.88 0.2 0.2 

100.0 92.2 -7.8 7.8 101.36 1.4 1.4 

98.5 101.4 2.9 2.9 93.77 -4.7 4.8 

100.0 100.0 0.0 0.0 91.29 -8.7 8.7 

41.1 29.8 -11.3 27.4 31.54 -9.6 23.3 

57.0 55.0 -2.0 3.5 59.49 2.5 4.4 

70.3 67.6 -2.7 3.8 88.58 18.3 26.0 

74.3 76.7 2.4 3.3 80.64 6.3 8.5 

100.0 91.2 -8.8 8.8 100.38 0.4 0.4 

100.0 100.4 0.4 0.4 94.92 -5.1 5.1 

100.0 100.7 0.7 0.7 92.65 -7.4 7.4 

1.90 -3.3 -5.2 273.7 -0.05 -2.0 102.8 

100.00 90.4 -9.6 9.6 74.86 -25.1 25.1 

87.62 89.6 2.0 2.3 83.04 -4.6 5.2 

84.97 76.9 -8.1 9.6 76.03 -8.9 10.5 

71.67 86.6 14.9 20.8 84.06 12.4 17.3 

2.73 19.5 16.7 612.5 5.44 2.7 99.3 

2.05 15.9 13.9 677.4 8.42 6.4 310.7 

0.70 -3.3 -4.0 571.4 -0.05 -0.8 107.5 

6.49 4.4 -2.1 32.6 5.82 -0.7 10.3 

10.75 15.9 5.2 48.2 8.42 -2.3 21.7 

0.23 5.1 4.9 2138.7 1.98 1.8 761.8 

8.41 4.4 -4.0 48.0 5.82 -2.6 30.8 

86.87 52.1 -34.8 40.1 83.73 -3.1 3.6 

4.05 5.1 1.1 27.1 1.98 -2.1 51.1 

R2 0.949 R2 0.963 
R2

adjusted 0.935 R2
adjusted 0.959 

RMSE 16.2 RMSE 20.7 
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The advantage of using modular neural network clearly appears in these models. 

MNN has an R2 of 0.963 and RMSE of 20.7. NN with 3 neurons in the hidden layer, 

however, has a RMSE of 53.7 which indicates a fit as not good as MNN although R2 of 

0.949 is quite close to the one of MNN.  The comparison graphs of the models with the 

experimental data can be seen in Figure 4.16. 
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Figure 4.16:  Comparison graphs of the (a) NN 3-1 and (b) MNN 3-3-1 results with 

the experimental data 

 

The residual analysis of the NN 3-1 is given in Figure 4.17.  Modular neural 

network errors have fewer deviations from the zero error line. 
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Figure 4.17.  Residual analysis for the NN 3-1 and MNN 3-3-1 models 
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4.1.6. Modeling of CO Conversion from Measured Catalyst Properties  

 

There is a significant difference in target metal contents and measured metal 

contents in the prepared catalysts due to nature of co-precipitation technique (Kibar 2005, 

Özdemir 2006).  In the sections 4.1.3 and 4.1.5, the metal contents used for modeling of 

conversion were the target values.  Here, the measured Cu, Co, and Ce metal percents, and 

the total surface area (TSA) measured at precipitation pH, 10.0 and temperature 37.5 °C 

were used for modeling with a neural network of 2 neurons in the hidden layer and a 

modular neural network of 2 neurons for metal contents and 1 neuron for TSA. The 

schematic representation of the MNN is given in Figure 4.18. The results of the neural 

networks are given in Table 4.11 for comparison. 

 

  

 

 
 
 

Figure 4.18.  Schematic representation of the MNN 2-1-1 model 
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Table 4.11.  Results obtained from the NN 2-1 and MNN 2-1-1 models 

 
 
 

The R2 value for the artificial neural network is 0.988 and for the modular neural 

network is 0.979.  Both models approximated the experimental data well.  The NN model 

is slightly better than MNN.   Since the number of data points is relatively small from the 

other models, the modular approach hasn’t revealed its advantages.  The conversion data 

was also modeled with multiple regression which gives a R2 of 0.815.  The neural models 

have a clear advantage on fitting the data.  The comparison of the results of the neural 

models with experimental data is given in Figure 4.19. 

 

 

 

 

 

 

 

 
 Neural Network Results (2-1) 

Modular Neural Network Results 
(2-1-1) 

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
1.9 2.9 0.99 51.95 2.1 0.19 10.00 

100.0 99.7 -0.27 0.27 90.1 -9.94 9.94 

87.6 87.9 0.25 0.29 87.7 0.09 0.10 

85.0 100.9 15.86 18.65 82.4 -2.59 3.05 

71.7 71.7 -0.01 0.01 89.1 17.43 24.31 

2.7 3.9 1.17 43.32 5.6 2.89 107.04 

2.1 0.1 -1.96 93.44 3.3 1.17 55.71 

0.7 1.8 1.10 157.03 1.1 0.43 61.43 

6.5 7.5 0.99 15.26 9.9 3.43 52.77 

10.8 9.6 -1.20 11.07 9.6 -1.25 11.57 

0.2 2.3 2.10 1049.75 4.0 3.76 1880.00 

8.4 8.4 -0.02 0.26 10.2 1.81 21.55 

86.9 86.4 -0.46 0.53 83.0 -3.87 4.45 

4.5 2.3 -2.16 47.91 3.7 -0.79 17.56 

R2 0.988 R2 0.979 
R2

adjusted 0.988 R2
adjusted 0.979 

RMSE 16.5 RMSE 21.6 
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Figure 4.19.  Comparison of the (a) NN 2-1 and (b) MNN 2-1-1 results with 

experimental data 

 

 

The residual analyses of the three models are given in Figure 4.20.  Neural network 

results have lower errors than multiple regression and closer distribution to the zero error 

line. 
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Figure 4.20.  Residual analysis for the NN 2-1, MNN 2-1-1 and MR models  
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4.1.7. Modeling the Measured Catalyst Properties and Reaction Conditions over CO 

Conversion  

 

Next the measured metal percents and the total surface area were modeled together 

with reaction conditions (reaction temperature, W/F and time on stream) using an artificial 

neural network of 2 neurons in the hidden layer and with a modular neural network, which 

has a two inputs sequence with 1 neurons in each.  The schematic representation of the 

MNN 1-1-1 is given in Figure 4.21. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.21.  Schematic representation of the MNN 1-1-1 model  
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The predicted and experimental results were compared in Table 4.12.  The artificial 

neural network 2-1 has R2 of 0.991 and MNN has 0.974.  Both models fit the data well.  

MNN 1-1-1 has only 1 Neuron in each hidden layer and 12 connections which are 7 less 

than the NN indicating a much lower risk of over-fitting.  

 

 
Table 4.12.  Results for the NN 2-1 and MNN 1-1-1 models 

 
 

 
 Neural Network Results (2-1) 

Modular Neural Network Results 
(1-1-1) 

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
28.2 26.1 -2.1 7.5 27.1 -1.1 3.80 

32.4 33.4 1.0 3.2 32.8 0.4 1.15 

25.2 27.2 2.0 7.9 27.4 2.2 8.81 

27.7 26.2 -1.5 5.6 27.2 -0.5 1.69 

32.9 40.9 8.0 24.3 33.0 0.1 0.31 

32.9 33.5 0.6 1.9 32.5 -0.4 1.31 

36.6 35.2 -1.4 3.8 34.0 -2.6 7.14 

28.9 29.7 0.8 2.7 28.1 -0.8 2.89 

27.1 26.8 -0.3 1.2 27.2 0.1 0.47 

31.6 29.1 -2.5 7.9 27.4 -4.2 13.25 

29.1 31.1 2.0 6.9 27.7 -1.4 4.96 

27.1 29.0 1.9 7.0 40.7 13.6 50.12 

46.3 56.9 10.6 23.0 40.9 -5.4 11.68 

78.2 77.3 -0.9 1.2 76.1 -2.1 2.72 

71.4 70.2 -1.2 1.7 75.5 4.1 5.78 

100.0 100.4 0.4 0.4 101.1 1.1 1.15 

100.0 99.6 -0.4 0.4 99.2 -0.8 0.85 

99.4 99.4 0.0 0.0 99.1 -0.3 0.29 

36.6 33.9 -2.7 7.5 40.7 4.1 11.16 

53.1 57.0 3.9 7.3 40.9 -12.2 23.02 

75.7 74.7 -1.0 1.3 74.9 -0.8 1.08 

76.7 73.3 -3.4 4.5 74.3 -2.4 3.10 

100.0 100.4 0.4 0.4 101.1 1.1 1.14 

98.5 99.3 0.8 0.8 99.0 0.5 0.49 

100.0 99.4 -0.6 0.6 98.9 -1.1 1.06 

41.1 41.7 0.6 1.5 40.7 -0.4 1.02 

57.0 57.0 0.0 0.0 40.9 -16.1 28.31 

70.3 72.3 2.0 2.9 73.7 3.4 4.80 

74.3 73.4 -0.9 1.2 73.1 -1.2 1.60 

100.0 100.4 0.4 0.4 101.1 1.1 1.13 

100.0 99.0 -1.0 1.0 98.8 -1.2 1.20 

100.0 99.2 -0.8 0.8 98.8 -1.2 1.25 

R2 0.991 R2 0.974 
R2

adjusted 0.987 R2
adjusted 0.946 

RMSE 5.0 RMSE 6.5 
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The comparison curves of calculated results from the models and the experimental 

data is given in Figure 4.21 while the residual analysis was presented in Figure 4.22. 

 

Figure 4.22.  Comparison graphs of the (a) NN 2-1 and (b) MNN 1-1-1 results with 
experimental data 
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Figure 4.23.  Residual analysis for NN 2-1 and MNN 1-1-1 models 
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4.1.8. Modeling of CO Conversion from Design and Reaction Studies Together with 
Measured Metal Content 

 
 

Finally the CO conversion was modeled using catalyst preparation conditions (pH 

and precipitation temperature), measured metal contents of catalysts and reaction 

conditions were modeled together using an NN of 3-1 structure and MNN of 2-2-1 

structure.  Although, modular neural network has one more neuron than the artificial one, it 

has six less connections due to its modular nature.  The schematic representation of the 

MNN 2-2-1 model is given in Figure 4.24.  The results obtained from these models are 

given in Table 4.13.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24.  Schematic representation of the MNN 2-2-1 model 

 

R2 values are reasonable high for both models while MNN 2-2-1 seems slightly 

better. The fitness of both models are also evident from calculated versus experimental CO 

conversion plot (Figure 4.25) and residual analysis in Figure 4.26. 
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Table 4.13.  Results for the NN 3-1 and MNN 2-2-1 models 

 
 Neural Network Results (3-1) 

Modular Neural Network Results 
(2-2-1) 

%X Exp. X Cal. Error Error % %X Cal. Error Error % 
28.2 23.0 -5.2 18.4 27.3 -0.9 3.0 

32.4 25.6 -6.8 20.9 38.1 5.7 17.7 

25.2 19.7 -5.5 21.8 25.2 0.0 0.0 

27.7 40.7 13.0 46.9 31.2 3.5 12.7 

32.9 22.1 -10.8 32.7 35.0 2.1 6.5 

32.9 33.2 0.3 0.9 36.3 3.4 10.4 

36.6 33.4 -3.2 8.7 35.8 -0.8 2.1 

28.9 23.2 -5.7 19.7 27.4 -1.5 5.2 

27.1 40.8 13.7 50.4 24.3 -2.8 10.2 

31.6 28.8 -2.8 9.0 33.7 2.1 6.8 

29.1 24.1 -5.0 17.3 30.2 1.1 3.9 

27.1 12.6 -14.5 53.3 33.0 5.9 21.7 

46.3 48.1 1.8 4.0 44.3 -2.0 4.3 

78.2 67.3 -10.9 14.0 80.2 2.0 2.5 

71.4 75.4 4.0 5.6 80.7 9.3 13.0 

100.0 99.1 -0.9 0.9 100.6 0.6 0.6 

100.0 98.7 -1.3 1.3 92.1 -7.9 7.9 

99.4 89.5 -9.9 10.0 90.4 -9.0 9.1 

36.6 25.6 -11.0 30.2 33.6 -3.0 8.2 

53.1 59.4 6.3 11.9 53.3 0.2 0.3 

75.7 77.4 1.7 2.2 84.9 9.2 12.2 

76.7 77.4 0.7 0.9 82.6 5.9 7.7 

100.0 100.1 0.1 0.1 101.1 1.1 1.1 

98.5 100.8 2.3 2.4 93.1 -5.4 5.5 

100.0 90.9 -9.1 9.1 91.1 -8.9 8.9 

41.1 36.8 -4.3 10.5 35.7 -5.4 13.0 

57.0 69.0 12.0 21.1 65.1 8.1 14.2 

70.3 85.9 15.6 22.2 86.5 16.2 23.0 

74.3 79.3 5.0 6.8 83.3 9.0 12.1 

100.0 101.0 1.0 1.0 101.6 1.6 1.6 

100.0 102.5 2.5 2.5 93.6 -6.4 6.4 

100.0 92.3 -7.7 7.7 91.5 -8.5 8.5 

1.90 11.5 9.6 504.3 3.6 1.7 90.8 

100.00 73.5 -26.5 26.5 73.4 -26.6 26.6 

87.62 81.3 -6.3 7.2 78.4 -9.3 10.6 

84.97 69.6 -15.3 18.0 71.5 -13.5 15.9 

71.67 83.2 11.5 16.1 84.3 12.6 17.6 

2.73 6.7 3.9 143.8 6.8 4.0 147.5 

2.05 7.6 5.5 270.4 12.4 10.3 503.9 

0.70 11.5 10.8 1540.3 3.6 2.9 417.9 

6.49 3.9 -2.6 40.5 6.9 0.4 6.3 

10.75 7.7 -3.0 27.9 12.1 1.4 12.9 

0.23 -5.0 -5.2 2257.0 2.1 1.8 797.4 

8.41 3.9 -4.5 54.1 6.9 -1.5 18.0 

86.87 72.9 -14.0 16.1 74.9 -12.0 13.8 

4.05 -5.0 -9.0 222.5 2.1 -2.0 49.0 

R2 0.938 R2 0.955 
R2

adjusted 0.920 R2
adjusted 0.930 

RMSE 18.0 RMSE 12.3 
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It should be also noted that the results are quite similar to those obtained (section 

4.1.6) when the targeted metal loadings were used instead of measured ones while keeping 

all the other parameters the same. Apparently both targeted and measured metal loadings 

are sufficient to represent the catalytic performance. 
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Modular Neural Network (2-2-1) Results
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Figure 4.25.  Comparison of the (a) NN 3-1 and (b) MNN 2-2-1 results with experimental 

data 
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Figure 4.26.  Residual Analysis for the NN 3-1 and MNN 2-2-1 models 
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4.2. Optimization of Artificial Neural Networks 

 

Kibar (2005) tried to determine optimum precipitation pH and temperature at the 

constant reaction temperature of 120°C and W/F ratio of 1.0 mg min/ml using quadratic 

multiple regression equation in his work.  Özdemir (2006) also studied the optimum metal 

loading at the reaction temperature of 150°C and W/F ratio of 1.0 mg min/ml. The 

optimization calculations were repeated using the modular neural networks constructed in 

sections 4.1.1, 4.1.3 and 4.1.6 and constrained optimization by MATLAB® Optimization 

Toolbox. Then the results are compared with the optimization results of the previous 

studies in the following sections.    

 

 

4.2.1. Optimization of Precipitation pH and Temperature  

 

The optimum values for pH and precipitation temperature are given in Table  4.14 

together with the results obtained by Kibar (2005) using quadratic regression equation. 

Although optimum pH value of 11.5 could be considered close to (pH = 10.0) obtained 

value by Kibar (2005), the optimum temperature found in this case is different than 37.5 

°C found by Kibar (2005).  This difference could be attributed to experimental as well as 

modeling errors from both techniques.  Predicted CO conversion value of 34.06 is the 

same for both model.  

 

Table 4.14.  Optimization results of the NN 2-1 for precipitation pH and 

temperature  

Parameter 

Optimum Value with 

NN 2-1 

Optimum value with 

quadratic equation 

(Kibar, 2005) 

pH 11.5 10.0 

Temperature (°C) 50.8 37.5 

%X  34.1 34.1 
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4.2.2. Optimization of Target Metal Content 

 

The neural network model (2 neurons in the hidden layer) for the target metal 

content of the catalyst was also optimized using constrained optimization using Quasi-

Newton method.  The optimum metal loadings values are given in Table 4.15. The values 

calculated by Özdemir (2006) were also added for comparison, the results are in good 

approximation. 

 

 

Table 4.15: Optimization results of the NN 2-1 for target metal contents 

Parameter 

Optimized Values 

NN 2-1 

Quadratic Equation 

(Özdemir, 2006) 

wt% Cu 47.9 50.0 

wt% Co 1.2 0.0 

wt% Ce 50.9 50.0 

%X  87.7 88.2 
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4.3. Input Significance Analysis of the Neural Models 

 

 The input significant analysis for both preparation and reaction conditions were 

performed using the “change of root mean square test” method; one input column is 

extracted each time and the deterioration of outputs are observed by calculating the new 

RMSE (Sung, 1998).  Since, the significance of the input parameters can differ from 

network to network, the analysis was carried out for three representative networks:  NN 2-

1 for preparation parameters, MNN 1-1-1 for preparation and reaction conditions together 

and MNN 3-3-1 for all parameters together. 

 

4.3.1. Input Significance of the Preparation Conditions 

 

Input significances for precipitation pH and temperature were calculated with 

neural network 2-1.  When pH column was extracted from the model, the RMSE error was 

calculated as 1.31, similarly for temperature column, RMSE was calculated as 2.04 

indicating that the precipitation temperature has a higher impact on the results (Table 

4.16).  It should be noted that, the number of parameters (two) is small to have a definite 

conclusion about the input significance hence the results should be treated carefully.  

 

Table 4.16.  Input significance analysis for the NN 2-1 model 

Extracted Input RMSE 

pH 1.31 

Temperature (°C) 2.04 

Average 1.68 

 

 

4.3.2.  Input Significance of the Preparation and Reaction Conditions 

 

Next, the input significances of the preparation and reaction conditions, when they 

are used together, were also analyzed using MNN 1-1-1 network structure. The results of 

the significance analysis were given in Table 4.17.  It is interesting to note that the 

parameters having similar nature have close values of significance with each other.  The 

preparation temperature and pH have almost the same significance while the reaction 
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temperature and W/F ratio have higher.  Although the time on stream is considered as a 

reaction parameter, it has a different nature than reaction temperature and W/F ratio.  

 

Table 4.17.  Input significance analysis for the MNN 1-1-1 model 

Extracted Input RMSE 

pH 6.1 

Temperature (°C) 6.5 

Reaction Temperature (°C) 26.1 

W/F 15.1 

Time on Stream (h) 6.0 

Average 12.0 

 

 

4.3.3. Input Significance of the Design Studies and Reaction Conditions  

 

Finally, input significance analysis covers all input parameters were done by the 

MNN 3-3-1 model in section 4.1.5.  The results were summarized in Table 4.18.  

 

Table 4.18.  Input significance analysis for the MNN 3-3-1 model 

Extracted Input RMSE 

pH 14.9 

Temperature (°C) 14.3 

%Cu 113.7 

%Co 92.7 

%Ce 82.6 

Reaction Temperature (°C) 62.8 

W/F 29.9 

Sampling Time (h) 14.4 

Average 53.2 

 

The same group of parameters was found to have similar level significance again. 

Apparently the metal loadings have highest significance.  This is a reasonable result since 
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these are the factors that have the main responsibility for the catalytic activity.  The 

difference in the significance of these factors as well as the difference among the reaction 

parameters’ significance can not be further due to the errors in model and experiments. 

 

4.4. Analysis of Factor Effects 

 

The effects of preparation and reaction parameters were analyzed using the modular 

neural network of 1-1-1 structure for the catalyst containing target metal content of 20 wt% 

of Cu, 20 wt% Co and 60 wt% Ce. The effects of metal loadings were not studied since the 

neural network model for this case (4.1.3) was not as successful as the others.   

 

The change of CO conversion was calculated by changing one variable while 

holding the other variables constant. For example the effects of the precipitation pH was 

studied at the constant precipitation temperature  of 37.5 oC, the reaction temperature of 

120.°C, W/F ratio of 1.0 and time on stream of 3 hours (Figure 4.27.a) while the same 

parameters were used with the pH of 10 for the effects of precipitation temperature. 

(Figure 4.27.b) 

 

For the effects of reaction temperature (Figure 4.27.c),however, W/F ratio was held 

constant at 2.5 mg min /ml and time on stream at 2 hours while  the reaction temperature 

was varied between 140 - 160°C.  In the fourth graph (Figure 4.27.d), the reaction 

temperature was held constant at 160°C and time on stream at 2 hours, and W/F ratio was 

varied between 1.0 and 2.5 mg min/ml.  In the fifth graph (Figure 4.27.e) the time on 

stream was changed between 1 and 3 hours while the reaction temperature was kept 

constant at 160°C, and W/F ratio at 2.5 mg min/ml,  

 

The predicted factor effects are given in Figure 4.27 as solid line while the 

experimental data were also presented as symbols if they were available. It is clear that the 

model predicts the experimental data points reasonable well.   
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Figure 4.27.  Factor effects graphs for the preparation and reaction conditions 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 
 

5.1. Conclusions 

 

The preparation and reaction conditions of CuOx-CoOx-CeO2 catalyst were 

modeled with neural and modular neural networks.  Each data group was also modeled 

with quadratic multiple regression for comparison.  Both neural and modular neural 

networks fit the experimental data well and much better than quadratic multiple regression.  

Also, in cases where there are two different groups of parameters namely, preparation and 

reaction conditions, the modular neural networks performed better than the neural ones.  

Furthermore, modular neural networks had the advantage of splitting the input parameters, 

hence decreasing the number of connections between the neurons. 

 

First, a small neural and modular neural network was constructed for modeling, 

then the network was enlarged until a sufficient representation of experimental data 

obtained without over-fitting the data.  The correlation parameters of R2, adjusted R2 and 

root mean square error were used for statistical analysis. The cross validation analysis was 

applied to preparation and reaction conditions modeling to ensure that the models 

represented the entire data set successfully.   

 

Then the preparation conditions, pH, temperature and target metal loadings were 

optimized using constrained optimization for maximum conversion with Quasi-Newton 

method.  Finally the significance of the input parameters and their effects on CO 

conversion were analyzed.   

 

5.1.1. Conclusions for Modeling of Preparation Conditions  

 

The preparation conditions were modeled with a neural network of 2 neurons in the 

hidden layer.  A modular neural network did not constructed since the parameters belonged 

to the same set.  The R2 obtained from the model was 0.851 which was much better than 

quadratic multiple regression with a value of 0.573.  If the conversion belonging to 
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experiment 7 was extracted from the data a R2 0.97 is obtained, which suggest that an 

experimental error could be associated with that point. 

 

k- fold cross validation was applied to the model which resulted with an average 

root mean square error of 2.23.  There was no significant deviation from the average 

RMSE except for the 7th experimental data point which was mentioned as a possible 

experimental error previously. 

 

5.1.2. Conclusions for Modeling of Reaction and Preparation Conditions Together 

 

 The catalyst preparation conditions were modeled with the reaction parameters 

using a neural network of 3-1 and modular neural networks of 2-3-1 and 1-1-1 structures.  

The R2 of the neural model is 0.981, the modular neural networks has a R2 of 0.989 for 2-

3-1 structure and 0.971 for 1-1-1 structure. 

 

The success of MNN 1-1-1 network was remarkable although its structure is quite 

simple and number of connection (only 10 for the data set consisting 30 experimental 

points) is quite low indicating that modular neural network is indeed better for modeling of 

CO oxidation.  

 

All the data subsets gave similar RMSE values to the average RMSE of 6.48 in k-

fold cross validation of MNN 1-1-1 model.  

 

5.1.3. Conclusions for Modeling of Catalyst Metal Content  

 

The target metal content was modeled by a neural network of 2 neurons in the 

hidden layer.  A R2 of 0.825 obtained from the neural model and 0.803 from the quadratic 

multiple regression model.  Both low correlation factors suggest that only target metal 

content were not sufficient to model conversion properly. 

 

 The effects of the measured metal loadings and total surface were also modeled 

using both neural network (NN 2-1) and modular neural network (MNN 2-1-1), which 

gave quite good results with R2 of 0.988 and 0.979 respectively.   
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5.1.4. Conclusions for Modeling of Reaction Conditions 

 

A neural network with 4 neurons in the hidden layer and modular neural network of 

2-1-2-1 structure used to model conversion from reaction temperature, W/F ratio and 

sampling time.  The regression parameter for NN was 0.983 and for MNN was 0.981.  

Since the inputs are from the same group of parameters modular approach did not provide 

any improvement although it as more complex structure. 

 

5.1.5. Conclusions for Modeling of Design and Reaction Studies Together 

 

All preparation and reaction parameters together were modeled with neural models 

of 3 and 4 neurons in their hidden layers, and modular neural models of 4-3-1, 3-3-1 and 2-

3-1 structures.  The R2 of MNN 3-3-1 and NN 3-1 are 0.963 and 0.949 respectively. 

Although the modular model has 3 more neurons, it has only 6 more connections with a 

better fitting capability to the network.  

 

NN 4-1 has a R2 of 0.896, (lower than 0.949 for NN 3-1) indicating that using more 

neurons does not always result with a better fit.  Hence, starting with a small network is the 

best choice. 

 

When the measured metal contents were used in the model, a neural network with 3 

neurons in the hidden layer gave a R2 of 0.938 while the modular neural network with 2-2-

1 structure had a R2 value of 0.955.  The measured metal loadings increased the 

performance of modular neural network by decreasing the required neuron number in the 

hidden layers. 

 

5.1.6. Conclusions for Optimization of Neural Networks 

 

The NN 2-1 model was optimized using constrained optimization with Quasi-

Newton method.  The optimum precipitation pH was calculated as 11.5 and temperature as 

50.8 °C.   
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Target metal loadings of the CuOx-CoOx-CeO2 catalyst were optimized.  Optimum 

metal loadings for maximum conversion were calculated as 47.9 % for Cu, 1.2 % for Co 

and 50.9 % for Ce.   

 

5.1.7. Conclusions for Input Significance and Factor Effects Analysis 

 

The Input significance analysis for the precipitation parameters indicated that the 

temperature seems to be slightly more significant. However the number of parameters 

(only 2) was too small to have any definitive conclusion.  

 

The input significance analysis for all parameters together revealed that similar 

parameters such as metal content, preparation parameters and reaction parameters have 

similar significance on the CO conversion results.  

 

The factor effect analysis was also carried for the catalyst preparation and reaction 

parameters using MNN 1-1-1. The model approximated the experimental data points with 

good precision. 

 

5.2. Recommendations 

 

The recommendations for the future work on catalyst design using neural networks 

are stated below. 

 

There are various algorithms as learning algorithms for backpropagation.  Other 

algorithms such as batch training, conjugate gradient and Quasi-Newton algorithms might 

be used in modeling. 

 

The data points in this thesis have been taken once an hour, the time interval might 

be decreased and models that have high number data points could be constructed. 

 

Since the neural network model can relate any data points, various catalysts might 

be used in the same network to enlarge its structure. 
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Always, one should start with a small network to avoid using unnecessary neurons 

and prevent over-fitting. 

 

When studying with modular neural networks, different activation functions might 

be used in each hidden layer.  Since every function have different aspects, one could 

benefit from the advantage of using various functions in a network together. 
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