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ABSTRACT

PACKING REGULARITIES IN FOLDED PROTEINS

Using lattice models of proteins is a common method to reduce conformational
space. Protein structures can be satisfactorily threaded onto several such lattices, the
accuracy of the fit increasing with the coordination number of the lattice. Despite the
suitability of various lattice geometries, the optimal packing geometry of residues in folded
structures, or the generic preference for regular packing, if any, remains unclear. In this
thesis, a degree of intrinsic regularity in residue packing is revealed upon optimal
superimposition of clusters of residues from Protein Data Bank structures. This regularity
can be identified as an incomplete distorted face-centered cubic packing, ie. the closest
packing of identical spheres, emerging when the tertiary structure is observed at a coarse-
grained (single-site-per-residue) scale. It is apparently favored by the. drive for maximizing
packing density, and shows little variation with specific amino acid type. Both the extreme
cases of solvent-exposed and completely buried residue neighborhoods approximate this -
generic packing, their only difference being in the number (and not the type) of
coordination sites that are occupied‘(or left void for solvent occupancy). Interestingly,
these sites are not staggered even for the solvent-eprsed residues on the surface and it is
concluded that all residues, even those at the protein surface are densely packed. The
packing density is approximately uniform when the volume of solvent surrounding the

residues is excluded.



OZET
KATLANMIS PROTEINLERDE REZIDU YERLESME DUZENI

Latis modeller protéinlerin konformasyon uzaym azaltma amaciyla siklikla
kullanmilir. Protein Yépllarl cesitli latislere latisin koordinasyon sayisi arttikga artan bir
dogrulukta oriilebilir. Proteinlerin modellenmesi amaci ile gesitli latis geometrileri uygun
oldugu halde, katlanmus yapilardaki rezidiilerin belirli bir yerlesme diizenini segip
segmedigi konusunda heniiz bir bilgi bulunmamaktadir. Bu tezde, rezidiilerin proteinlere
ozgii diizenli bir yerlesme egilimi oldugu ortaya ¢ikarilmistr. Bu sonug Protein Bilgi
Bankasr'ndan alinan protein yapilarindaki rezidii topluluklarimn optimal olarak {ist lste
cakistirilmasiyla elde edilmigtir. Bu diizen, proteinlerin iigiinciil yapilarmm diisiik
¢oziiniirlikklii uzayda (rezidii bagina tek bir nokta) incelenmesi ile anlagiimaktadir. Buna
gore rezidiller tamamlanmams ve deformasyona ugramms yiizey merkezli kiibik bir
yerlesmeyi tercih etmektedir. Yiizey merkezli kiibik yerlesme aym biiyiikliikteki kiirelerin
en yogun yerlesmesidir. Bu ¢aligmada bulunan yerlesme diizeni, proteinlerin molekiil igi
yogunlugunu arttrma egiliminden kaynak_lamnaktadlr ve rezidii tipine gore kiigiik
farkhliklar gostermektedir. Hem ¢oziicliye temas eden, hem de tamamen proteinin igine
gémiilmiis olan rezidiilerin — en ug 6meklér — komguluklar: da bu proteinlere 6zgii genel
yerlesme diizenine yakin benzerlik gostermektedir. Rezidiiler arasindaki farkhlik,
doldurulan (ya da ¢ozicli i¢in bos birakilan) koordinasyoni merkezlerinin sayilari
seklindedir. Coziicliye temas eden ylizey rezidiileri igin bile aym yerlesme diizeni
gec;erlidir. Sonug olarak rezidiilerin g:e‘vresindeki ¢oziiciiye ayﬁlan hacim ihmal edildigi
takdirde, proteinin yiizeyi dahil olmak {izere tiim bolgelerinde aym oranda muntazam ve
yogun bir yerlesme diizeni bulundugu anlagilmustir.
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1. INTRODUCTION

Globular proteins have a ﬁnique _three-dimensio.nal structure under physiological
condiﬁons. This so-called native structures have significantly lowerﬁenergy than all other
conformations. Being compact crystals with a very hfgh order at the atomic level, one is
encouraged to examine their packing characteristics thoroughly (Richards and Lim, 1994).
Residue packing has been suggested to play a selective role in determining protein
structure in an "inverse folding" study by Ponder and Richards (1987). Two packing
criteria were used: avoidance of steric overlap and complete filling of available space of
rotamers of sidechains in determining the allowed sequences for a given tertiary structure.
Templates specific to different structural classes obtained with that kind of analysis can be
used to distinguish between these classes. An assumption of the study is that only a subset,
the "interior" residues establish the basic architecture of the mainchain whereas the
. mexterior” residues are mainly involved in the energetics of the structure, not the geometry
of the core parts of the mainchain. Another study by Munson et al. (1996) studied the
effects of packing by redesigning hydrophobic core of a four-helix-bundle protein, ROP.
The stability and structural properties of the protein were altered. In spite of computational
studies and repacking experiments with mutations, the way in which residues are likely to
be packed in folded proteins, or the preferential geometry towards which they tend to
constrain the structure, is still an open issue, and so is even the existence of such inherent

geometric packing preferences.

Controversial views have been advanced for the packing of sidechains in globular
. proteins. These differ in regularities and degrees of freedom. In one case, ideal packing
conforrmng with the closest packed cubic geometry of identical spheres has been proposed
(Raghunathan and Jernigan, 1997). In that study, the positional directions of the neighbors
of a given residue were stated to coincide with the directions in face-centered cubic lattice,
thus indicating an ideal architecture for folded proteins. In another case, residues were
proposed to pack with a complementarity similar to a jigsaw puzzle (Richards, 1977).
Opposmg both of these views, Bromberg and Dill (1994) proposed that sidechain packing
had a completely random arrangement free of directionality and complementarity.

However they indicated that as maximum compactness is finally approached, the entropy



of sidechains was lost which supports the view of efficient packing. These suggestions are
modeled in parts A, B and C of Figure 1.1, respectively.

Figure 1.1. Different views of residue packing in folded proteins

The aim of the present work is to explore the existence of generic packing
preferences and their role in determining the native conformation. Understanding how
amino acids are packed, assessing the extent of randomness/regularity in their spatial
rearrangements, and defining their coordination patterns are issues of crucial importance
for designing proteins and their complexes. That kind of study concentrates on how the



protein backbone is folded to the native structure. Therefore, long range order should be
analyzed although historically protein backbone preferences have been studied extensively.
Studies on the regularities of the polypeptide backbone started with the pioneering work of
Ramachandran et al. (1963). In their work, the allowed conformational states for secondary
structures were identified. Later more efficient approaches in which pseudobonds and
pseudotorsional angles  were obtained from the loci of four consecutive C* atoms have
been employed by several groups (DeWitte and Shakhnovich, 1994; Oldfield and Hubbard,
1994; Bahar et al. 1997). Also Pal and Chakrabarti (1999) proposed a graphical
representation for protein mainchain and sidechain torsional angles, which can aid in
identifying backbone regularities. Whereas in the Ramachandran plots only a single
residue is examined at a time, these analyses can capture regularities over several residues

on the mainchain.

Until now, a large number of computational and theoretical studies have been
" directed at characterizing the empirical potentials for inter-residue interactions by
exploiting the structures determined by X-ray crystallography' or NMR spectroscopy and
employing the inverse Boltzmann law (Jernigan and Bahar, 1996). Incorporating the
preferred packing geometry, if any,’ could increase the discriminative power of knowledge-
based potentials. |

The existence of some regularity in residue paeking would be of great utility for
reducing the computational time and increasing the accuracy of conformational searches
while solving the protein folding problem for a given sequence. Presently, the methods of
bioinformatics can predict secondary structure up to 80 per cent accuracy (Petersen etal,

12000), and a significant progress can be made in tertiary structure prediction by combining
the tools for predicting secondary structure with those efficiently discriminating between

alternative non-bonded interaction geometries.

The coordination patterns of residues that appear irresﬁective of amino acid type
might be the reason for commonly observed insensitivity of structures to single site
mutations. A study by Lim and Sauer (1991) revealed that even the majority of the
combinations of three sites mutations in the core of lambda repressor did not change the

general characteristics of its structure. What insensitivity to mutationsindicates is the



absence of specificity not the irregularity in packing. A non-specific packing may relate to
an ordered packing in which residues are packed similarly to hard spheres, or to disordered
packing having the freedom to accommodate local changes without causing changes in the
overall structure. Thus, whether' packing is ordered or not cannot be inferred from

tolerance or intolerance to mutations alone.

Proteins may have evolutionarily selected and conserved a regular architecture
required for biological function andv stability. The emergence of helical motifs in proteins is
suggested by Maritan et al. (2000) by suéh generic packing preferences. A property of
globular proteins which differentiates them from random coils is therefore related to
evolution, compactness, induces secondary structure formation (Chan and Dill, 1990;
Gregoret and Cohen, 1991; Hao et al. 1992; Hunt et al. 1994; Yee et al. 1994).

Although these studies indicate a relationship between regular backbone
- conformations and packing efficiency, no direct evidence of a regular non-bonded
coordination associated with the drive for maximizing packing efficiency has yet been
shown. Studies aimed at revealing sidechain coordination geometry have indicated a
degree of non-randomness in residue packing. The orientation of neighboring sidechains
with respect to a reference frame embedded on the mainchain were recently investigated
for all kinds of residue pairs, and it was found that some coordination states are selected
with probabilities about ten times higher than expected for random distributions (Bahar and
Jernigan, 1996). Later a residue-specific backbone-dependent library for sidechain isomers
had been proposed. Side chains could be packed onto known backbone structures utilizing
their isomeric states (Keskin and Bahar, 1998). However, the geometries revealed in these
~ analyses are based on reference frames embedded in the mainchain. The observed

coordination states could be biased by the local backbone structure.

A more informative analysis of residue packing should be independent of any
blased reference frame. The question to be answered is simple and direct: is there any
regulanty in residue packing, observed at a coarse-grained scale, single site per residue?
Residues can be represented by their C*- or CB-atoms. Bonded and non-bonded neighbors
need not be distinguished. A justification for this approximation comes from the Gaussian

network model which successfully describes the fluctuation dynamics of proteins despite



the use of a single parameter harmonic potential for all (bonded and non-bonded) contacts
(Bahar et al., 1997a; Demirel ef al., 1998). Another support is provided by Covell and
Jernigan (1990). In their study, five protein sequences were threaded onto restricted spaces,
in which the native structures are represented by one lattice point per residue. Non-bonded
interactions that exist in the native folded state appeared as the most energetically favored
interactions, which indicates thaf non-bonded interactions are also important as bonded

interactions.

Employing a direct study of packing architecture, Raghunathan and Jernigan (1997)
have indicated that residue coordination in folded proteins is regular and conforms to the
cubic closest geometry also named face-centered cubic (fcc) geometry. This extremely
regular packing is in contrast to the nuts-and-bolts description (Bromberg and Dill, 1994)
and do not agree with observations of preferential but relatively "ductile" association of
sidechains (Bahar and Jernigan, 1996).

In this study, the contrasting views of packing are reconciled. The method
employed for presenting the fcc geometry as the ideal architecture of folded proteins isr
tested. Clusters of residues (central residue énd neighboring residues within a shell of 6.8
A) in proteins are constrained to fit to other predefined geometries. Those fits will be
referred 'constrained fits' because the databank residue clusters are constrained to occupy a

priori defined lattice sites.

The drive for maximizing the packing efficiency stabilizes secondary structures
(helices) — as been pointed out in different studies (Chan and Dill, 1990; Maritan et al.,
2000; Stasiak and Maddocks, 2000). In this study, regularities in tertiary packing are

examined.

Another noteworthy feature is that residues are closely clustered in all regions, core
or surface. Thus, the lower coordination number of surface residues does nof imply a lower
density packing, but simply the occupation of a smaller subspace of the coordination
volume of closely packed residues, the remainder being apparently allocated to solvent
molecules. The requirement of achieving a high inter-residue packing geometry at all

regions — and the tendency for assuming fcc packing geometry — could be used as effective



constraints for reducing the conformational space in the search and/or engineering of

tertiary structures of proteins.

The present study finally focuses on threading of protein structures onto five
different lattices. In the second chapter, general information on proteins and crystals is
presented. Followed in the third chapter, the results of the study and discussion are given.
Finally in the fourth chépter, conclusions drawn from the results and recommendations for

further investigation are presented.



2. GENERAL INFORMATION ON PROTEINS AND CRYSTALS

2.1. Proteins

In this section, general information on proteins and their folded structures will be

given,
2.1.1. Proteins are Essential to Life with Their Diverse Structures

Virtually every property that characterizes a living organism is affected by proteins.
Nucleic acids are also essential for life, encode genetic information — mostly specifications
for the structures of proteins — and the expression of that information depends almost

entirely on proteins.

Life forms make use of many chemical reactions to supply themselves continually
with chemical energy and to use it efficiently, but by themselves these reactions could not
occur fast enough under physiological conditions (aqueous solution, 37°C, pH 7,
atmospheric pressure) to sustain life. The rates of these reactions are increased, by many
orders of magnitude, in organisms by the presence of enzymes, which are also proteins.
Proteins store and transport a variety of particles ranging from macromolecules to
electrons. They guide the flow of electrons in the vital process of photosynthesis; as
hormones, they transmit information between specific cells and organs in complex
organisms; some proteins control the passage of molecules across the membranes that

_compartmentalize cells and organelles; proteins function in the immune systems of
complex organisms to defend against intruders the best known among which are the
antibddies; and proteins control gene expression by binding to specific sequences of
nucleic acids, thereby turning genes on and off. Proteins are the crucial components of
muscles and other systems for converting chemical energy into mechanical energy. They
also are necessary for sight, hearing, and the other senses. And many proteins are simply
structural, providing the filamentous architecture within cells and the materials that are

used in hair, nails, tendons and bones of animals.



; In spite of these diverse biological functions, proteins form a relatively
homogeneous class of molecules. All are linear polymers, built of various combinations of
the same 20 amino acids. They differ only in the sequence in which the amino acids are
assembled into polymeric chains. The secret to their functional diversity lies partly in the
chemical diversity of the amino acids but primarily in the diversity of the three-
dimensional structures that these building blocks can form, simply by being linked in
different sequences. The awesome fimctional properties of proteins can be understood only
in terms of their relationship to the three-dimensional structures of proteins (Creighton,
1993). ‘

2.1.2. Proteins are Linear Heteropolymers That Have Unusual Interactions with
Water

Proteins are linear polymers that have structural aspects different from synthetic
- polymers. The apparent size of a polymer of given length depends markedly upon the
chemical nature of both the polymer and the solvent in which it is dissolved. In a good
solvent, a polymer chain is highly expanded because the interactions between the solvent
and the units of the chain are preferred over the interactions between the chain units
themselves. In a poor solvent these reactions are reversed and fhe chain contracts in an
attempt to exclude contact with the solvent as far as possible. These contracted chains will
usually aggregate and precipitate in further atterﬁpts to avoid solvent contact. These
relations are clear both conceptually and experimentally in such homopolymers as
polyethylene or polystyrene. In a more complex case of a heteropolymer with varying
properties along the chain, one can expect differing stiffnesses considering availability of
all conformations in different parts of the chain. The detailed character of the solvent now
begins to play a much more selective role in the behavior of the solutions. A given solvent
may appear to be good for one part of the polymer and poor for another. Thus, the swelling
or shrinking of a polymer in a particular polymer/solvent pair will reflect the subtle
compensation of strongly opposing forces. The apparent stiffness of the various regions of

the polymer will vary with the solvent conditions.

From such a point of view, water is actually a poor solvent for the polypeptide

chain under conditions where the native folded state is stable. Very little water is normally



found within the interiors of globular proteins. They are about as compact in that sense as
they can be. These dense molecules are, however, frequently very soluble in water without
any evidence of aggregation or precipitation. Such behavior would normally be taken as
evidence of a good solvent. In polypeptides this curious behavior is related to the differing
chemical properties of the individual amino acid residues. This ambivalent relationship
between polymer and solvent for the polypeptide/water pair appears to be at the root of the
unusual behavior of this system and of all of the biological functions that follow from it
(Creighton, 1992). |

2.1.3. The Polymeric Nature of Proteins

All of the 20 amino acids have in common a central carbon atom (C* ) to which are
attached a hydrogen atom, an amino group (NH>), and a carboxyl group (COOH). The
sidechain that is attached to the C* through its fourth valency distihguishes one amino acid
" from another (Creighton, 1993; Branden and Tooze, 1999). These amino acids are
connected by peptide bonds formed by a condensation reaction between the amino group
of one amino acid and the carboxyl group of another as a water molecule is liberated. The
repeated amide N, C%, and carbonyl C atoms 6f each residue form the backbone of the

polypeptide from which the various sidechains project (Branden and Tooze, 1999).

The most common and perhaps the most useful'way of classifying these amino
acids is according to the polarities of their sidechains (R groups). This is because proteins
fold to their native conformations largely in response to the tendency to remove their
hydrophobic sidechains from contact with water and to solvate their hydrophilic
‘sidechains. According to this classification scheme, there are three major types of amino
acids: those with non-polar R groups, those with uncharged polar R groups, and those with
charged polar R groups. The amino acids alanine, valine, leucine, isoléucine, methionine,
proline, phenylalanine and tryptophan are usually classified as non-polar amino acids. The
amino acids serine, threonine, asparagine, glutamine, tyrosine, ahd cysteine are commonly
classified as uncharged polar amino acids. Cysteine has the unique property among amino
acids to form disulfide bonds that has great importance in prbtein structure: It can join
separate polypeptide chains or cross-link two cyteines in the same chain. The amino acids

lysine, arginine, histidine, aspartic acid, and glutamic acid are charged polar amino acids.
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Glycine is unique because it has no sidechain. The 20 amino acids vary considerably in
their physicochemical properties such as polarity, acidity, basicity, aromaticity, bulk,
conformational flexibility, ability to cross-link, ability to hydrogen bond, and chemical
reactivity. These several characteristics, many of which are interrelated, are largely

responsible for proteins' great range of properties (Voet and Voet, 1995).

The four groups attached to the C* atom are chemically different for all the amino
acids except glycine where two H atoms bind to C* atom. All amino acids except glycine
are therefore chiral atoms which can exist in two mirror-image forms, called the L-isomer

and the D-isomer. Only L-amino acids are present in proteins.

In the late 1930s, Linus Pauling and Robert Corey began X-ray crystallographic
studies of the precise structure of amino acids and peptides. One of the important findings
was that peptide unit is rigid and planar. There is no freedom of rotation about the bond
between the carbonyl carbon atom and the nitrogen atom of the peptide unit because this
link has partial double-bond character. In contrast, the link between the C* atom and the
carbonyl carbon atom is a pure single bond. The bond between the C* atom and the peptide
nitrogen atom also is a pure single bond. Consequently, there is a large degree of rotational
freedom about these bonds on either side of the rigid peptide unit (Stryer, 1988). The
combinations of the rotations about these two bonds are described as psi and phi angle
combinations and shown in Ramachandran plots on which densely populated regions

indicate conformations of o-helices and B-strands.

2.1.4. Four Levels of Protein Structure

" Four levels of protein structure are defined. Primary structure is the amino acid
sequence, or, in other words, the arrangement of amino acids along a linear polypeptide
chain. Secondary structure occurs mainly as a-helices or B-strands. Certain amino acid
sequences favor either o-helices or B-strands; others favor formation of loop regions.
Secondary structure elements usually arrange themselves in simple motifs. Motifs are
formed by packing sidechains from adjacent a-helices or B-strands close to each other.

Tertiary structure is formed by packing secondary structures into one dr_several compact
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_globular domains. Proteins that contain more than one chain have a quaternary structure.

The primary structure of a protein specifies its final tertiary structure.

The main driving force for folding water-soluble globular protein molecules is to
pack hydrophobic sidechains into the interior of the molecule, thus creating a hydrophobic
core and hydrophilic surface. The core is densely packed so the hydrophobic side chains
with different shapes are packed like a three-dimensional jigsaw puzzle. The problem of
constructing a hydrophobic core from the hydrophilic chain is solved by the formation of
regular secondary structures such as o-helices or B-sheets that are characterized by their
mainchain NH and CO groups participating in hydrogen bonds and packing these
secondary structures within the interior of the protein molecule (Branden and Tooze,
1999).

2.1.5. Folded Proteins are Globular

Folded proteins are globular and highly compact With respect to random coil
conformation and their such folded structures are specific to their amino acid sequence. To
determine the relationship between the amino acid sequence and the folded structure is
known as the folding problem. The problem is still a challenge for protein science.
Characterization of the structure of a protein is a prerequisite for understanding its
function. Therefore understanding the principles of folding and the relation between

structure and function is of great importance for designing new proteins and drugs.
2.2, Crystals

2.2.1. Definition of Crystals

It is understood by the invention of optical microscope and X-ray diffraction that
the regularity observed in crystals at the macroscopic level is due to an underlying regular
pattern in the arrangement of atoms, ions or molecules. Crystals possess a periodicity that
produces long-range order so that the local atomic arrangement is repeated at regular

intervals in the three dimensions of space. The atoms of a small volume called the unit cell
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are repeated at specific intervals. All unit cells in a crystal are identical (Van Vlack, 1989;
Petrucci, 1985).

2.2.2. Crystal Lattices

The lattices that will be considered in the present study are simple cubic (sc), body-
centered cubic (bcc), embedded (emb), fcc and hexagonal closest packed (hep) lattices.
The unit cells of sc, bee and fec lattices are presented in Figure 2.1.

Figure 2.1. Space filling models of sc, bee and fee unit cells

In simple cubic lattice, a site is in contact with six other sites: four at the same
plane, one at the upper plane and one at the lower plane. The number of contact sites are
defined as coordination number. The coordination number in bec lattice is eight: four
contact sites at the upper plane and four at the lower plane. The coordination number in fcc
lattice is twelve: six contact sites at the same plane, three at the upper plane, three at the
lower plane. Fcc structure is also called cubic closest packed because it has the known but
.recently proved feature (Cipra, 1998; Sloane, 1998), of being the densest packing that can
be achieved with identical size hard spheres. One more structure has the densest packing
feature: hcp which also has a coordination number of twelve. These structures are
illustrated in Figure 2.2. Both in the hexagonal close packed structure and cubic close
packed structure the central site has six contacting sites at the same plane, three at the
upper and three at the lower plane. The difference is that the upper and lower three sites in
the cubic closest packed lattice are staggered (yellow and blue layers) but they are not in
hexagonal closest packed lattice. Therefore the structure is repeated in two layers (red and
yellow) in hexagonal closest packed lattice whereas it is repeated in three layers (red,
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yellow and blue) in cubic closest packed lattice. To verify that fcc and cubic closest packed
presentations are the same with different orientations Figure 2.3 (Petrucci, 1985) is
presented. The embedded lattice has a coordination number of ten: six simple cubic contact

sites and four bee-like contact sites that have tetrahedral arrangement.

hexagonal closest packed

cubic closest packed

Figure 2.2. Closest packed structures

Figure 2.3. Two views of the fcc unit cell
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| 2.2.3. Crystal Structures

Crystals form through co.valent, ionic and metallic bonding. The familiar diamond
lattice is a tetrahedral lattice formed by sp* hybrid covalent bonds and it has a coordination
number of four. Lattices also form by ionic bonding. The identities of lattices depend on
the relative sizes of small and large ions. As the ratio of small and large ion radii increases
‘from 0.22 to 1, tetrahedral, sc, bee and fec :lattices (which have coordination numbers of 4,
6, 8 and 12 respectively) are occupied by ionic crystals. The coordination number in pure
metals can be as high as 12 which leads to a fcc lattice because the atoms have only one
size thus have a radii ratio equal to 1. Metals can also assume bee structures. Iron at room
temperature, chromium, tungsien are examples of metals that have bcc structures.
Examples for metals assuming fce structures are iron at elevated temperatures, ’aluminum,
copper, lead and silver (Van Vlack, 1989). |

2.2.4. Packing Factors in Closest Packed Structures

Packing factor (PF) can be determined by assuming ‘hard spheres model and -

calculating the volume fraction of the unit cell occupied by the spheres:
PF = volume of spheres / volume of unit cell - 2.1
In fcc structure the unit cell is a cube with side length of:
a=2V2R | ‘ (2.2)

where R is the radius of the spheres. Fcc structure has four atoms per unit cell. The packing

factor for fec structure is therefore:

PF=4 (4nR%3)/a°=4 (4nR%/3) / (2V2R)® = 0.7405 (2.3)
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On the other hand, if we consider heterogeneous packing, the PF for equal

composition of large and small spheres, the small spheres being contiguous to the large

spheres in fcc arrangement yields:
PF = [4 (4nr’/3) + 4 (4nR%/3)] / (2r+2R)° (2.4)

The number of small spheres per unit cell is four (one full at the middle and 12
quarters at the sides of the unit cell). The length of the cube is

a=2V2R =2r+2R (2.5)
so that substitution for r = (¥2-1)R in Equation (2.4) gives
PF = [4 (4n((N2-1)R )*/3) + 4 (4rR%/3)] / (2(¥2-1)R+2R)’ = 0.7931 (2.6)

This result implies that the packing factor of 0.7405 for the closest packing 6f
identical spheres is exceeded in heterogeneous packing (Van Vlack, 1989).
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3. RESULTS AND DISCUSSION

3.1. Definition of Residue Clusters and Their Bundles of Directional Vectors

A total set of 28730 clusters of residues comprised of one central residue and m
bonded and non-bonded neighbors within its first coordination shell (of radius 6.8 A) have
been collected from a non-homologous set of 150 databank structures for this study. Figure
3.1 illustrates a cluster formed by a central residue (Gly65) in myoglobin. Its Protein Data
Bank (PDB) code is 1mbn (Watson, 1969). The cluster has m = 10 neighboring residues.
The dashed lines represent the directions of the coordination vectors that connect the
central residue to its neighbors. Residues are represented by their C*-atoms in the case of
Gly and CP-atoms for all other amino acids. The present cluster of coordinating residues
contains the residues 22, 25, 26, 29, 62, 64, 66, 67, 68, 69 of the myoglobin chain. A
bundle of unit directional vectors pointing from the central residue towards the m

coordinating residues characterizes each cluster.

Figure 3.1. Residue cluster in myoglobin
3.2. Constrained Fit of Residue Clusters to Lattices

It has been proposed that folded proteins have an ideal architecture corresponding
to fcc geometry (Raghunathan and Jernigan, 1997). To test the validity of this argument, a
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constrained Monte Carlo algorithm is employed. 1000 clusters extracted from PDB protein
structures are reoriented to fit to fcc unit directions. A cluster is chosen and rotated
randomly as a rigid body. The rotation is accepted if the distance deviation between the m
unit vectors of residue cluster and 12 unit vectors of fcc geometry is decreased, otherwise it

is rejected. The deviation is called the constrained root-mean-square (RMS) deviation and
calculated from:

<€ >cons = 2k E/ N (3.1)

where 1 <k <N = 1000 and gy is the distance deviation between the k™ cluster and target

fcc directions.

The resulting probability surface and corresponding contours are shown in Figure
3.2. Twelve peaks emerge at the locations (shown by polar angle, 8, and azimuthal angle,
$) corresponding to fcc geometry (see Table 3.1). This shows that the directional vectors of
residue clusters have been distributed to 12 coordination sites of fcc.

face-centered cubic

Figure 3.2. Fcc geometry obtained by constrained fit method
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\ To test if the fcc geometry is the only geometry that can be obtained by this
method, four other target lattices were alsd targeted. These lattices, described in the second
chapter, are sc, bee, emb and hep lattices. Their coordination directions are given in Table
3.1. It is seen in Figure 3.3 that PDB structures can also be fit to these geometries using the
constrained fit algorithm. Thus, fcc geometry cannot be viewed as the ideal architecture of
folded proteins using the latter algorithm adopted by Raghunathan and Jernigan (1997).

Table 3.1. Coordination angles for different lattice geometries

se |1 2 3 4 5 6
0(®) (45 |45 {90 {90 {135 |135

$(°)|90 [270 [0 |180 |90 |270

bee |1 2 3 4 5 6 7 8

0|55 |55 |55 |55 |125 125 {125 }125

o (°) (45 |135 |225 315 |45 [135 |225 |315

emb |1 2 3 4 5 6 7 8 9 110

8|35 (45 |45 |9 |90 (90 (90 145 (135 |135

5y [0 |90 [270 [0 |125 [180 [235 [0 |90 {270

hep (1 2 3 4 5 6 7 8 9 10 11 12

8()[35 (35 (35 (9 (9% |90 |90 (90 |90 145 145 (145

1) 30 150 |270 (0 60 |120 |180 240 {300 (30 -[150 (270

fce ‘1 2 3 4 5 6 7 8 9 10 11 12

8¢)[35 [35 (35 (90 (% 9% (90 (90 90 145 (145 |[145

6 (°) |30 {150 (270 |360 |60 120 (180 |240 (300 (210 330 (90

The constrained fit algorithm was executed up to 3x1 0° iterations for the five fits.

The RMS deviations decreased during the course of the executions as an be observed in



19

part (a) of Figure 3.4. Part (a) and part (b) of the Figure 3.4 display the RMS deviations up
to 2x10° iterations.

A simple cubic B  body-centered cubic

Figure 3.3. Sc, bee, emb, hep geometries obtained by constrained fit method

Constrained RMS deviations between the clusters and target lattices are found to
decrease to 0.20, 0.21, 0.25, 0.30, 0.37 for the hcp, fcc, emb, bec and sc umit cells,
respectively, starting from approximately 0.65 for randomly oriented clusters. This does
not however imply that clusters, themselves are optimally superimposed onto each other.
The point is that the coordination number of the target lattice (z) is usually larger than that
(m) of the cluster (coordination number of residue clusters is approximately 6.5 on the
average) such that any of the z!/[m!(z-m)!] combinations of the z directions taken m at a
time could be adopted for achieving the best fit. Different clusters therefore select different
subsets amongst the z accessible choices, and this freedom results in a relatively poor

(RMS deviation = 0.56 - 0.60 as shown in part (b) of Figure 3.4) superimposition between
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Monte Carlo steps

Figure 3.4. RMS deviation in Monte Carlo algorithms for (a) constrained fit to target
lattices and (b) optimal superimposition of clusters

the clusters, themselves. As an example, two vector sets that bave coordination number of
m=6 couid be perfectly well fitted onto two different subsets of fcc target vectors but

they would not be superimposed onto each other. When the clusters are optimally
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superimposed onto each other, the RMS deviation between them decreases to 0.39, as
shown in part (b) of Figure 3.4 with the abbreviation 'opt’. This kind of fit of residue
clusters, called the optimal superimposition, is described in the next subsection.

3.3. Optimal Superimposit_ion of Clusters. Generic Distribution of Amino Acids

The generic pécking geometry of residue clusters should be free of any predefined
geometries. This geometry is found in the present thesis from optimal superimposition of
residue clusters, irrespective of amino acid type or coordination number. An unconstrained
Monte Carlo algorithm is employed to this aim. The reason to use it is justified as follows:
Although an exhaustive search would be possible for constrained fit, it is impossible from
the point of view of execution time to perform an optimal superimposition because of the
large number of degrees of freedom in rotating N = 1000 residue clusters. The method is
employed by selecting a residue cluster and rotating it randomly as a rigid body. Then its
mean deviation from all other residue clusters is calculated and compared with the
preceeding value. If the deviation is decreased, the rotation is accepted, otherwise it is

rejected. The deviation €;; between each pair of clusters (i, j) is calculated as
;= X S/ min(m;, m) ' (3.2)

where Sy is the distance between the tips of the closest vectors selected from the two

clusters and my is the coordination number of the i cluster. The term min(m;, m;) denotes
the minimum of the two coordination numbers. For the superimposition of N clusters, all
pairwise combinations of vector sets are taken. The pairwise mean deviations are

calculated as

<g>=2;2; &/ [N(N-1)/2] 3.3)
The denominator simply represents the total number of combination of clusters.
This algorithm has been executed up to 3x10° Monte Carlo steps and the

coordination geometry in part (2) of Figure 3.5 has been obtained. As a verification of the

statistical accuracy of the results, longer runs (107) were executed. The coordination
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geometry displayed in part (d) of Figure 3.5 was obtained. The distribution preserves the
same features, except for a slight enhancement of the most densely occupied sites. The
running time is about 50 hours (real time) for 3x10° iterations during optimal
superimposition of 1000 clusters, and grows exponentially with increasing number of
residue clusters and coordination numBer of residue clusters. “

The results df optimal superimposition are displayed in Figure 3.5. The number of
peaks in part (a) is significantly lower than the coordination numbers of the lattices
targeted in constrained fit calculations, éxcept for the sc lattice. The peaks indeed reflect
the average coordination number (~ 6.5) in the databank clusters. The most populated

coordination directions are l_isted below.

1 2 3 4 5 6 7
() 110 105 70 65 115 165 120
(> 170 250 210 130 90 270 20
P@O,4) 015 010 008 002 0.10 0.3 0.5

The last Tow designates the respective probabilities of the individual coordination
directions, directly found from the fraction of residues located within a 20° solid angle
deviation with respect to the central directional vectors. The sum of these probabilities is
0.63, ie. more than half of the residues occupy these coordination states, while the
remainder selects any other suitable positions in space. The random probability of
occupancy of a solid angle of 20° is 0.03, found from the ratio of its surface area to that of
the entire coordination sphere. For random packing, the total probability of the above listed
seven coordination states would therefore be 0.21. The difference between random (0.21)
and observed (0.63) values discloses the existence of a preferred packing architecture,

favored by a factor of 3 with respect to random packing.

One might describe this preference in coordination directions to the regularities of
the backbone, or the dominant effect of the bonded neighbors, but this is not the case. The
part (b) of Figure 3.5 displays the coordination geometry of bonded residues and part (c)
displays non-bonded residues. So, the most probable coordination sites remain unchanged

when bonded residues are excluded from the clusters. This results corroborates previous
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analyses suggesting that bonded and non-bonded neighbors need not be necessarily
distinguished for satisfactorily describing inter-residue contact topology.

Interestingly, the directional vectors are not uniformly disfcributed in space, but
closely clustered to cover only a portion of the coordination sphere. The remaining empty

(or sparsely occupied) regions can be anticipated as those allocated to solvent molecules.

Figure 3.5. Coordination geometry obtained by optimal superimposition for (a) 'all'

residues, (b) bonded residues, (c) non-bonded residues, (d) ‘all' residues after a longer run
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3.4. Optimal Superimposition for Specific Amino Acids at the Center of Clusters

Figure 3.6 displays the optimal superimposition results for each type of amino acid
occupying the center of the examined clusters. The complete set of clusters has been
considered to this aim. The clusters have been grouped into 20 subsets according to the

identity of the central residue, and optimally superimposed within each group.

Recurrent patterns with slight variations can be detected for different amino acids in
Figure 3.6. An additional eight coordination state emerges in some cases. Table 3.2 lists
the resulting residue-specific coordination states. It is observed that (i) there is a rather
weak residue specificity, the coordination directions being preserved with only small
deviations in coordination anglés, and (ii) not all coordination states are occupied in the
neighborhood of all types of amino acids. Residues near a central amino acid usually select
sites from amongst these eight most probable directions, depending on the type of amino

acid.

The last two rows in Table 3.2 list the mean values for the directional vectors
characterizing the mést frequently occupied coordination sites. The first of these lists
simply the seven sites already identified for all clusters in part (a) of Figure 3.5 irrespective
of residue type, along with the eight site that is preferentially occupied in a number of
specific residues. And the last row is another representation of the same set of directional
vectors, expressed with respect to a different reference frame. The transformation to this

new frame aims at stipulating the correspondence to the fcc geometry.
3.5. Coordination of Core Residues

From optimal superimposition results, it was deduced that some portion of the
coordination sphere was left unoccupied — or more exactly weakly populated. It is
anticipated that this feature is indicative of the solvent-exposed regions. To verify this
conjecture, subsets of clusters composed of m = 10 or more residues have been considered.
These are evidently densely packed clusters, and could be viewed as reflecting the
behavior of core residues. Their optimal superimposition yielded the distribution of

coordination angles displayed in part (a) of Figure 3.7. There are now mc_)re peaks, and
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these are more or less evenly distributed in space. The directional vectors characterizing

the centers of coordination are listed below.

1 2 3 4 5 6 7 8 9 10
0() 45 45 45 95 105 60 100 85 105 140
6(°) 40 180 280 360 60 100 140 240 300 220

Figure 3.6. Coordination geometry around specific amino acids
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The fraction of residues occupying these sites was calculated to be 0.65, again
allowing for 20° deviations with respect to the central directional vectors. The individual
probabilities vary all as 0.07 + 0.01. In this case the random distribution would give a total
probability of 0.30 for the ten regions. The observed total probability (0.65) thus indicates

an enhancement in the selection of these directions by a factor about 2.

The distributions of coordination sites for three special cases, Ala, Cys and Gly, are
presented in the respective parts (b)-(d) of Figure 3.7. Their corresponding coordination
states are given in Table 3.3. Comparisbn of parts (a) and (b) shows that the geometry of
clusters for ‘all' types of central amino acid is well represented by that of alanine. Parts (c)
and (d), on the other hand, exhibit some distinctive features. Glycine samples an additional

eleventh state, consistent with its higher conformational freedom.

Table 3.3. Coordination states of amino acids in the core

1 2 3 4 5 6 7 8 9 10 11

ALL (0|45 {45 |45 |95 |105 |60 |100 |85 105 | 140
() |40 | 180 {280 [360 (60 |100 {140 (240 |300 |220

ALA |0 |40 |50 |50 |95 115 |65 105 |85 105 | 145
$(°) 120 |[170 {280 |340 |60 {100 {160 [220 |280 |220

CYS |06 |35 |40 {45 70 |[130 {70 |115 |85 100 | 150
¢(°) |60 [180 [290 {360 |60 |120 |150 [220 |320 |250

|GLY |6(¢) |30 |40 (50 |90 |8 |65 105 | 80 105 | 145 | 130
() |30 [180 {280 |340 (40 |90 |160 |220 |280 |230 |45

 For illustrative purposes, the superimposition of two bundles of vectors

corresponding to two residue clusters (m = 10) is depicted in Figure 3.8.
3.6. Comparison of Optimal Packing Architecture with Lattice Geometries

Let us now examine the generic coordination geometry of core residues (m > 10) in
more detail. The azimuthal angle difference between the successive directional vectors 4-9
is approximately 60°. This approximately hexagonal organization conforms to the high
propensity of the value A¢ = 60° noted in our previous exainination (Jernigan and Bahar,

1999) of triplets of residues. The sites 4-9 identified here may be viewed as composing the
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middle layer in a regular close-packed arrangement. Out of the remaining four sites, three
- (1-3) Lie in the upper hemisphere (0 = 45°) and are separated by 120 + 20°. Interestingly,
this arrangement closely approximates both of the hep and fcc geometries. Finally, the
tenth residue occupies a lower layer (6 = 140°) position that can be compared to a
staggered site of the fcc lattice. Thus, overall the optimal geométry in the core closely

resembles that of an fcc packing with two empty sites. We may call that an incomplete,
distorted fcc packing.

Figure 3.7. Coordination geometry around (a) 'all' amino acids, (b) only Ala, (c) only
Cys, (d) only Gly, in the core regions of the examined proteins
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Figure 3.8. Two bundles of vectors corresponding to two residue clusters (m = 10)

superimposed onto each other

The so-called distortions with respect to the fce lattice can be rationalized by a
closer examination. First, there are two unoccupied sites, because the subset of cluster
under examination consist mainly of clusters of m = 10 coordinating residues. Additional
calculations performed with higher density clusters (m > 12) indeed verified that the
remaining two unoccupied sites Become also ﬁlled upon optimal superimposition of such
clusters which can be seen in Table 3.4. On the other hand, the preference for site 10 over
the unoccupied sites 11 and 12 could be associated with the relatively large (100° instead
of 60°) azimuthal angle difference between the two nearest hexagonal sites 7 and 8. The
relatively small (40°) azimuthal angle diﬁ'ereﬁce between the site 6 and its nearest
neighbérs (5 and 7) on the other hand, is apparently accommodated by a polar angle
distortion (60° instead of 90°).

As a further validation of the above identified distorted, incomplete fcc geometry,
we checked if the seven optimal coordination directions found for all residues could also
be associated with the directional vectors of fcc packing. This was indeed confirmed, as
presented in the last row of Table 3.2, and reproduced in Table 3.4. The serial numbers of
directional vectors are rearranged in Table 3.4, so as to match those of the fcc geometry.
Interestingly, even the additional site observed for a number of specific residues (Table

3.2) precisely conforms to one of the directional vectors (7™) of the fcc geometry.



Table 3.4. Coordination states of surface to core central residues
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Coord. Coordination states (°)
number 1 12 |3 [4 J5 T6 [7 8 [9 J10 |11 [12 |Ptot
0 |40 [45 95 |90 0.40
3<sm<d  [¢ |30 [170 50 | 110 G.3)
0 140 |35 (45 |95 [105]55 |90 120 | 0.63
3<sm<I14 |¢ [ 10 [200(285]|350(50 |115|180 115 | (3.0)
0 |45 |45 (45 |95 | 10560 |100]85 |105] 140 0.65
m>10 d [40 | 180280360 |60 | 100|140 [ 240 | 300 [ 220 (2.2)
0 145 |25 [50 {70 [100]75 |80 |75 |105]|140|145]130] 0.76
m>12 ¢ |60 |170 (28034040 |120] 160|220 |260 |200 [ 330|120 | (2.1)
0 [35 |35 [35 |90 [90 [90 |90 [90 |90 [145[145]|145| _
fce o |30 |150{270 (36060 | 120 180|240 ]300 [210]330]90

Finally, surface residues (subset of clusters that have coordination numbers of 4 or
less) have been examined. Evidently, fewer peaks are observed in this case, but these can
be easily allocated to four of the fcc geometry as can be seen in Table 3.4. The fraction of
residues occupying these four sites near solvent-exposed residues is calculated to be 0.40,
again allowing 20° solid angle deviations with respect to the centers of coordination sites.
Random occupation would on thg other hand‘ yield a ratio of 0.12, i.e. the preference for

these sites is enhanced by a factor of 3.3 over random distribution.

The observed twelve directional vectors identified for the most densely packed core
residues (m > 12) exhibit an occupation ratio of 0.76, as opposed to the random ratio of
0.36. Therefore approximately three quartefs of residues occupy these 'regular’
coordination directions, while the remainder are 'disordered’ when the highest coordination
clusters are examined. A gradual enlargement in the fraction of residues that occupy the
'regular' coordination sites is seen as increasingly denser clusters are examined. This
tendency is revealed in the last column of Table 3.4. But from the point of view of
enhancemenf‘ relative to random distribution, an opposite tendency is observed, ie.
residues in densely packed regions cannot effectively select from the allowed coordination
sites, apparently due to the more severe constraints that are imposed by non-bonded
interactions. The enhancement factors, simply found ﬁ'obm the ratio of the actual

occupancies to those expected for a random distribution, are given in parentheses in the

last column.
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For a visual comparison of the fcc geometry and the packing geometry of the
densest residue clusters (m > 12), Figure 3.9 is displayed. In this figure, the fcc directional
vectors and the corresponding residue cluster model (first row) are depicted, along with the

12 directional vectors given in the Table 3.4 for m > 12 (second row). The second column
displays the corresponding space-filling models.

Figure 3.9. Directional vectors and the corresponding residue cluster models for the ideal
fce packing (top), and the densest core packing (bottom)

3.7. Generic Behavior: Incomplete, Distorted Fcc Geometry
Table 3.4 provides a summary of the correspondence between the coordination

directions identified for all residues (3 < m < 14), core residues (m > 10), surface residues

(m < 4) and the most densely packed clusters (m > 12), on the one hand, and the
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coordination directions of the fec geometry, on the other. The fraction of residues
occupying these coordination directions, and the enhancement in the selection of these

sites, relative to random distribution, are listed in the last column.

Figure 3.10 also provides a summary of the results obtained by optimal

superimposition of clusters of different coordination numbers:

Figure 3.10. Coordination geometry around (a) surface residues (m < 4), (b) all residues

(3 <m < 14), (c) core residues (m 2 10), (d) densest core residues (m > 12)
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In this figure, part (a) displays the most probable coordination sites for surface
residues (m < 4). The sites are assigned numbers consistent with those in Table 3.4. Part
(b) shows the results for all residues, irrespective of their coordination number, obtained by
the rigid body rotation of the map in part (a) in Figure 3.5. Here, the additional site that has
been observed for a subset of specific residues is included for visualization purposes
(denoted with label 7). Parts (c) and (d) describe the core residues that have coordination
numbers m > 10 and m > 12, respectively. As can be seen in this figure, sites are gradually
filled as the coordination number increases. It is important to note that the filling is not
sparse or staggered, but relatively close sites are filled first so that the density excluding

the solvent space is approximately constant.

It is also possible to presént these results with a different kind of illustration. The
coordination sphere and its most populated regions are presented in Figure 3.11. Part (a)
and (b) show the coordination sites for core residues (m = 10) with two views, (c) and (d)

all' residues (3 < m < 14), (e) and (f) surface residues (m < 4).
3.8. Threading of Folded Proteins onto Several Lattices

The fit to target lattices has been tested for a single coordination sphere around a
central residue. Although a given lattice représentation can adequately fit the coordination
geometry at the level of single coordination sphere, it may be less adequate when a whole
structure is being fitted. This is because single coordination geometry méy not be repeated
over the entire space. Furthermore, in compact structures such as proteins, not all
coordination sites are accessible, due to their occupancy by other chain segméﬁts. In view
of these limitations, threading calculations on lattices have been performed. In this method,
PDB structures are threaded onto a predefined lattice, such that each residue occupies a
lattice site. The level of accuracy of the mappings to the five different lattice geometries

have been evaluated from the RMS deviations between the original structures and their on-

lattice representations.

Figure 3.12 illustrates the results for two example proteins. Part (a) displays the X-
ray structure (gray) and the best fitting (fcc) lattice representation (black) for an a-protein,
myoglobin (PDB code: Imba). Part (b) displays the X-ray (gray) and lattice (black)
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structures for a B-protein, plastocyanin (PDB code: 1plc). The respective RMS deviations

between the X-ray and lattice structures are 2.04 A and 2.29 A.

\
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Figure 3.11. Coordination geometry around (a) and (b) core, (c) and (d) ‘all', (¢) and (f)

surface residues
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Figure 3.12. The X-ray structures (gray) and fcc on-lattice structures (black) of (a)
myoglobin and (b) plastocyanin

For a systematic study of the accuracy of lattice representations, calculations have
been performed for four different structural classes of proteins, known as a—, B—, a+f and
o/B classes. Five test proteins have been selected from each class. These are high
resolution (<2.5 A) X-ray structures, given that lower resolution structures could obscure
the results. The C%C? virtual bond representation has been adopted for threading the
proteins. The threaded chains are self-avoiding, ie. no two C* atoms occupy the same
lattice site. The RMS deviations between the original positions of the a—carbons and their
approximate on-lattice positions are listed in Table 3.5. The values given in parentheses are

taken from the study of Godzik et al. (1993). The reported values are the deviations in A,
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the lattice edge being taken as 3.8 A (i.e. the length of C*-C® virtual bonds) for the sc, bec,

fcc and hep lattices. In the emb lattice, there are two lattice lengths, given by 1 and 3'2/2,
which were each multiplied by 3.8 A.

Table 3.5. Threading results (RMS deviations in units of A) for PDB structures belonging
to four different structural classes

o-proteins
PDB code [Resolution (A) |size  |sc bee emb fee hcp
1AVHA 2.3 318 3.02 2.54 2.52 2.00 2.03
1LE4 2.5 139 2.81 225 |2.21 1.96 1.93
IMBA 1.6 146 2.77 2.44 2.40 2.04 2.11
2.7 (2.4) (1.9)
IMBC 1.5 153 2.82 2.44 2.37 1.97 2.06
2LH1 2.0 153 - {2.93 2.47 2.41 2.07 2.07
B-proteins
PDB code | Resolution (A) | size sC bee emb fcc hcp
1HILA 2.0 217 5.07 3.51 2.51 2.28 2.48
IMAMH |[2.45 217 5.01 3.46 2.79 2.31 2.54
1PLC 1.33 99 4.31 3.99 2.60 2.29 2.20
(4.3) (2.9) (3.3)
2AYH 1.6 214 435  14.05 2.83 2.62 2.27
SFABA 1.8 206  [5.63 3.91 2.95 2.22 2.49
a+p proteins
PDB code |Resolution (&) | size sC bee emb fce hep
1DNKA 2.3 250 3.48 4.02 2.68 2.47 2.44
1PPN 1.6 212 3.82 2.79 2.53 2.16 2.19
2AAK 2.4 150 3.39 3.73 2.44 2.46 1.96
2ACT 1.7 218 3.90 |3.01 2.76 2.24 2.34
4BLMA 2.0 256 3.99 2.78 2.38 2.19 2.14
o/B-proteins
PDB code |Resolution (&) | size sc bee emb fce hep
1DHR 2.3 236 3.43 3.23 2.78 2.37 2.16
1FX1 2.0 147 3.39 3.73 2.49 2.37 2.36
10FV 1.7 169 3.60 3.07 2.42 2.15 2.25
2DRI 1.6 271 3.73 3.08 2.67 2.18 2.15
2YPIA 2.5 247 3.85 2.60 2.71 220 2.21
(3.3) (2.8) (2.0)
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A summary of the results from threading calculations is presented in Table 3.6.
Lattices having higher coordination numbers yield closer representations of the original
structure. But these results are also associated with the details in the lattices and different
structural classes of proteins. B-proteins and those belonging to a+p and /B classes are
harder, in general, to be threaded onto sc and bec lattices compared to a-proteins. This
deficiency can be partly attributed to the C*-C* virtual bond angle of 120° in B-strands, as
opposed to its value of 90‘0 in a—helices (Bahar ef al., 1997). The former can be readily
accommodated by the fcc and hep lattice cells; whereas the sc and bee cells do not comply
with 120° bond angles, hence the relatively high RMS deviations observed for B, o+ and
o/ proteins in the sc and bec cases (Table 3.6). Notice that the highest RMS deviations
take place in the case of B-proteins threaded onto sc lattices, which can be understood from

the fact that the sc lattice does not contain any coordination angle other than 90°.

Table 3.6. Average RMS deviations (A) between databank structures and their lattice

models

Class |sc bcc |emb jfcc |hep

o 2.87 1243 |2.38 |2.00 {2.04
B 4.87 |3.78 |2.74 [2.34 {2.40
otf [3.72 [3.27 [2.56 |2.30 |2.21
o/p 3.60 |3.14 |2.61 |2.25 [2.23
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4. CONCLUSION AND RECOMMENDATIONS

Packing architecture of residues in folded proteins can be modeled with a variety of
regular geometries with approximately equal fidelity. Not surprisingly, the fcc lattice
directional vectors were pointed out in a previous study (Raghunathan and Jernigan, 1997)
to closely match the packing geometry, irrespective of amino acid type. However, in the
present work, an alternative geometry with an equal coordination number (hcp) is shown to

yield the same level of accuracy, when all clusters 3 < m < 14 are considered.

Different coordination geometries were obtained, in the present thesis, for surface,
core and completely buried residues, when the clusters are optimally superimposed
irrespective of any predefined target representation. Comparison of the coordination maps
with those of regular lattices reveals that the optimal architecture is a distorted, incomplete
fcc packing. A cubic closest packed geometry may thus be viewed as a generic

characteristic of the residue packing architecture in protein interiors.

Another important conclusion is that résidues are packed closely and uniformly at
all structural regions. Even for the clusters having relatively low coordination numbers, the
coordination sites are closely clustered in space, i.e. the coordinating residues do not fill
sparsely the coordinating sphere in the neighborhood of the central fesidugs, but are closely
grouped to occupy sites approximating those of a fcc packing. Therefore the uniform
(high) densities of residues are maintained even at solvent-exposed regions, with the only
difference that not all sites are occupied. Altérnatively stated, the number of coordinating
residues are different for surface and core residues. However, when only the space
allocated to residues is considered, the density throughout the proteins is uniform.
Interestingly, the same feature has been pointed out by Tsai et al. (1999) based on a
different knowledge-based study. The compact — condensed matter - nature of proteins is

also revealed by a Voronoi tesselation study (Soyer et al., 2000).

The recently observed fcc coordination geometry does not preclude the
complementarity in packing as suggested by Richards, 1977. It has been stated (Harpaz et
 al., 1994) that packing density in proteins can even exceed that (0.7405) of fcc geometry
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which has been shown (Cipra, 1998; Sloane, 1998) to be the closest packing geometry for
identical spheres. It is possible to exceed this upper limit for packing of identical spheres
by considering particles with respective radii in the ratio of 1.00:0.414, for example, which
leads to a packing density of 0.7931 on a fcc lattice. This suggests that the size and shape
heterogeneity of amino acids is well-suited for maximizing packing density. The intrinsic
tendency of residues (when examined at the coarse-grained level of single-site-per-residue)

to assume fcc packing aréhitecture, can originate from the drive for maximizing packing
density.

Despite the observed intrinsic regularity, the random positioning of about 1/39 of
residues (on the average) could be selected to optimize the bonded and non-bonded
interactions in a given irregular context, hence the adaptability of tertiary structures to
single-site mutations. And the 2/3™ of residues are packed in conformity with a well-

defined architecture.

Core residues being more severely constrained cannot select the well-defined
coordination states as efficiently as other residues. The seven coordination states identified
for all residues in folded proteins are favored, on the average, by a factor of 3 compared to
that implied by a random packing. The fraction of residues assuming these coordination
states is indeed 0.63, as opposed to the value of 0.21 expected from random packing. Core
residues, on the other hand, exhibit a relatively weaker freedom for selecting the well-
defined coordination loci. The total frequency of occupancy of the twelve well-defined
coordination loci is 0.76 for clusters having m > 12. This number exceeds the random

probability (0.36) of the 12 coordination sites by a factor of about two, only.

In view of the present findings, the surface cannot be distinguished from the core
by a lower packing density but rather by a flexibility (or ductility) evidenced by its high
fraction (0.60) of residues occupying random positions. The solid-like core, on the other
hand, can be understood in the view of the staggered closest packed distribution of
residues. More than 2/3@ of residues occupy these well-defined coordination sites. Solid-
like versus liquid-like nature of the protein interior and exterior was suggested by
Fraunfelder et al. (1979) and shown to be consistent with the Lindemann criterion by
Karplus and coworkers (Zhou et al., 1999). The Lindemann criterion is related to a
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disorder' parameter. The disorder parameter or the Lindemann parameter' is the ratio of the
rms atomic fluctuation to lattice constant ¢ of a crystal. If this ratio reaches a certain value,
fluctuations cannot increase without damaging or destroying the crystal lattice. Thus, this

critical value is an indicator of the substance's being solid or liquid.

Packing architecture exhibits weak residue specificity, consistent with the faster
divergence compared to sffucture. This is inferred from the similar coordination geometries
observed for specific residues. This result conforms to the fact that during protein
evolution, sequences diverge faster than structure. The same coordination architecture can
thus accommodate different types of residues. Alternatively, mutations that drive structural
changes could be associated with the differentiation of the coordination geometries around
twenty amino acids. Behe ef al. (1991) stated that packing does not determine the native
fold. The weak specificity presently observed can indeed imply that packing does not
determine the unique structure for a given sequence. On the other hand, knowledge of the
generic packing architecture of residue clusters in folded structures, and its correlation with
secondary structure, might provide important guidance in reducing the space for

conformational search and in the computational predictions of 3D structure.

The regular packing geometry traced here at a coarse-grained scale is likely to be
the result of an evolutionary imposed preference, for tolerating mutations while optimizing
residue packing. The emergence of helical motifs was indeed shown (Michelletti et al.,
1999) to be the result of evolutionary pressure for selecting structures ha(zing a high degree
of thermodynamic stability, which can accommodate amino acid sequences that fold
reproducibly and rapidly. Helices satisfy such optimal packing constraints (Maritan et al.,
2000).

Examination of coordination geometry can be extended to other studies. It has been
pointed that by employing bioinformatics tools, secondary structures of proteins can be
predicted up to 80 per cent accuracy. In order to predict the folded structure, it would be
useful to consider the packing of these secondary structures. This can be achieved by
examining the coordination geometry around residues in a—helices only or -strands only,

as an extension of the present work.
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The optimal superimposition method can be modified to examine folded structures
of proteins in more detail. For example the identity of neighbors can be distinguished in the
superimposition algorithm. The algorithm can be constrained to favor superimposition of
similar neighbors. Thus, the coordination geometry will not only point the sites that are
populated but also point which sites are populated by which type of neighbors. The identity
of neighbors can be distinguished by their being hydrophobic or hydrophilic; small or

large; a-helix, B-strand or coil forming,
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