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ABSTRACT 

 

WAVELET COHERENCE: ANALYSIS OF TIME SERIES AND 

EXPLORATION TOWARDS FAULT DETECTION 

 

Wavelet Coherence Analysis (WCA) is a tool for depicting degree of coherency 

and phase differences between binary time series. The advantages of WCA are the 

capability to cope with non-stationary time series and to monitor the time- and frequency-

domain information collectively. In this thesis, commonly used WCA software toolboxes 

were comparatively evaluated and a hybrid MATLAB code was developed. WCA was 

used to elucidate possible coherency and lead-lag relationships between binary time series. 

Data pertaining to engineering and economics were used. Studies with CAB (Chemical 

Activity Barometer) and IPI (US Industrial Production Index) disclosed the power of WCA 

in explicating and interpreting the coherency and lead-lag relationships hidden between 

these series and confirmed the claims made by ACC (American Chemistry Council) that 

the CAB leads IPI. Additionally, it was shown that at US Business Cycle periods (0.5 to 

two years), the troughs (ends of economic recessions) observed with WCA of CAB and IPI 

lead the troughs claimed by ACC. WCA supports that CAB is a leading indicator of the US 

economy, especially during economic recessions between 1945 and 2007. Comparative 

studies demonstrated that working with detrended series increased resolution of WCA 

while working with moving-averaged series distorted WCA due to introduction of artificial 

lags in averaging. WCA application to yearly CAB and Chemical Engineering Plant Cost 

Index (CEPCI) and yearly IPI and CEPCI pairs exhibited that it was not possible to decide 

whether CEPCI is a leading indicator for the US economy or not. Furthermore, for the first 

time in literature, WCA was used as a tool for Fault Detection (FD). Fault containing 

synthetic time series along with unfaulty one were used to evaluate the potential of WCA 

in FD. It was shown that WCA can detect faults quickly and is a viable tool for FD, change 

point identification, and template matching tasks. 
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ÖZET 

 

DALGACIK UYUMLULUĞU: ZAMAN SERİLERİ ANALİZİ VE 

HATA TESPİTİ 

 

Dalgacık Uyumluluk Analizi (DUA), ikili zaman serileri arasındaki uyumluluk 

derecesini ve faz farklılıklarını gösteren bir araçtır. DUA'nın avantajları, durağan olmayan 

zaman serileri ile baş edebilme ve zaman-frekans bilgilerini birlikte izleyebilmedir. Bu 

tezde, yaygın olarak kullanılan DUA yazılım paketleri karşılaştırılmıştır ve hibrid bir 

MATLAB kodu geliştirilmiştir. DUA, ikili zaman serileri arasındaki uyumluluk ve 

öncüllük-artçıllık ilişkilerini açıklamak için kullanılmıştır. Kimya mühendisliği ve 

ekonomi ile ilgili veriler araştırma için seçilmiştir. KAB (Kimyasal Aktivite Barometresi) 

ve EÜE (ABD Endüstriyel Üretim Endeksi) ile yapılan çalışmalar, DUA'nın bu seriler 

arasında gizli uyumluluk ve faz ilişkilerini açıklamadaki gücünü göstermiştir. ACC 

(American Chemistry Council) tarafından öne sürülen KAB'nin EÜE'ye öncülük ettiği 

iddiası doğrulanmıştır. Buna ek olarak, ABD İş Döngülerinde (0,5 ila iki yıllık dönemler), 

aylık KAB ve EÜE'nin DUA'sının, ACC tarafından öne sürülen ekonominin dip yaptığı 

dönemlere öncülük ettiği gösterilmiştir. KAB’ın özellikle 1945 ve 2007 arasındaki 

durgunluk dönemlerinde, ABD ekonomisinin öncü göstergesi gibi davrandığı DUA 

tarafından da kanıtlanmıştır. Karşılaştırmalı çalışmalar, hareketli ortalama serileri 

kullanımının yapay gecikmeler nedeniyle DUA’yı bozduğunu fakat eğimden arındırılmış 

serilerle çalışmanın DUA çözünürlüğünü artırdığını göstermiştir. Yıllık KAB ve Kimya 

Mühendisliği Tesisi Maliyet Endeksi (KMTME) çiftiyle yıllık EÜE ve KMTME çiftine 

DUA yapıldığında, KMTME'nin ABD ekonomisin öncü bir göstergesi olup olmadığına 

karar vermenin mümkün olmadığı sonucuna varılmıştır. Ayrıca, literatürde ilk kez DUA, 

Hata Tespitinde (HT) kullanılmıştır. Hatalı ve hatasız sentetik seriler, DUA’nın HT 

potansiyelini değerlendirmek için kullanılmış olup, DUA'nın hataları hızlı bir şekilde 

algılayabildiği ve HT, değişim noktası tanıma ve şablon eşleştirme görevleri için uygun bir 

araç olabileceği gösterilmiştir. 
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1. INTRODUCTION 
 

 

 

In many time-series related studies, frequency-domain analyses such as the Fourier 

Transformation (FT) are preferred over time-domain analyses to discover the cyclic 

natures at different frequencies that are hidden otherwise. However, there are two problems 

about the FT. (Tiwari, 2013). First, temporal locations are disregarded (overlooked) 

because the time-domain data are lost while doing the transformation. Second, the FT is 

argued to be applicable only to the stationary time-series data which consist superposition 

of linear, independent, and non-evolving periodicities (Labat, 2005). But most of data 

series in which we are interested, such as macroeconomic- or engineering-related data, data 

are often noisy and non-stationary, thus not convenient for FT-related applications. One 

attempt to solve those problems is the short-time FT developed by Gabor (1946). In this 

method, windows are shifted over the time-series and the FT are applied to resulting sub-

samples. Nonetheless, this is also not as efficient as desired because such windowed 

samples are not instantaneously adaptive. 

 

On the other hand, the Wavelet Transformation (WT) as both a frequency- and 

time- domain method is a promising solution to all of the aforementioned problems. It is a 

natural local analysis of time-series  since the length of wavelets varies endogenously by 

stretching into a long wavelet function to measure the low-frequency movements and by 

compressing into a short wavelet function to measure the high-frequency movements 

(Aguiar-Conraria and Soares, 2011). In this way, local analysis of non-stationary time-

series data can be performed and transient changes can be well captured. Moreover, the 

WT preserves the temporal locations of time-series data as a function of time and hence 

allows us to simultaneously observe time- and frequency- domain information. 

 

Use of Wavelet Transform Analysis (WTA) has become increasingly popular in 

geophysics since 1990s. Although early adopters of the WTA were using colorful images 

to provide results, they were not sufficient to depict quantitative findings. This is partly 

because the WTA (i.e. transformation from only-time to time-frequency domain) needs to 

pass the statistical significance test to be valid. According to Torrence and Compo (1998), 
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former analyses were not reliable due to the lack of statistical significance. Subsequently, 

Torrence and Compo (1998) introduced statistically significant WTA toolbox. Their work 

makes the WTA comprehensible to researches by providing detailed and unique examples. 

They use the El Nino-Southern Oscillation (ENSO) data for their analysis and cover the 

choice of wavelet function, finite nature of time-series, and transformation from wavelet 

scale to Fourier frequency. 

 

Later on, Grinsted et al. (2004) presented a new MATLAB toolbox for the WTA 

which is also known as AGToolbox. This a user-friendly package that covers Continuous 

Wavelet Transform (CWT), cross wavelet transform (XWT), Wavelet Coherence Analysis 

(WCA), and phase angle relationship between time series. The article uses geophysical 

data (the Arctic Oscillation index and the Baltic maximum sea ice extent record) to 

systematically demonstrate the prospects of the WA user. Additionally, the statistical 

significance test is performed by using Monte Carlo method in this article/toolbox. 

 

More recently in 2011, Soares and Aguiar-Conraria (2011) developed a new 

MATLAB toolbox which is called ASToolbox. They aim to improve the toolbox that 

belongs to Torrence and Compo (1998) and bring all the necessary functions together in a 

single package. In addition to former toolboxes, it also performs partial and multiple WCA. 

Moreover, bootstrapping, Monte Carlo, and ARMA processes can be chosen in order to 

conduct the significant test. Competences of ASToolbox are shown in their work by 

applying to synthetic time series. Additionally, CWT is exemplified by using the data of 

Gross National Product (GNP) growth rate in the US, WCA is demonstrated by using the 

data of stock markets in the UK, the US, and Germany, and Partial Wavelet Coherence 

(PWC) by using the US stock market data and oil prices. 

 

Additionally, MATLAB has adapted WCA and included a basic function since 

MATLAB version R2016a. 

 

In the literature, WCA has become increasingly more preferable over stationary 

methods. The WCA has been extensively used in macroeconomics, finance, stock markets, 

energy markets, medical studies, and meteorology etc. Scholars focus on finding a 

coherent relationship or interaction between different variables in the form of cyclical co-



3 
 

movements. I first review the studies on economics and financial markets. In those fields, 

macroeconomics- or finance-related indicators such as economic growth, inflation, market 

pricing, or real wages have been investigated in the literature. Specifically, the studies on 

the co-movements of different stock markets are very common in the literature. Following 

this, I review several more papers on the co-movements of different commodity prices. 

Lastly, I look at limited number of papers from medical and biological studies and 

meteorology, which utilize WCA as well. 

 

First of all, many studies examine market cycles as the subject of WCA. Mayes et 

al. (2011) compare the Gross Domestic Product (GDP) growth cycles in three major 

Eurozone economies: France, Germany, and Italy. They find that there is coherence at the 

conventional business-cycle frequencies of those three countries to a large degree whereas, 

in high frequencies, the coherency is low. In addition, the phase relation between Italy and 

France is not significant. Tiwari et al. (2013) look for the co-movements of the inflation 

rates among G7 countries and find significant continuous coherencies for longer time 

scales of four to 10 years and over 16 years. Moreover, the findings suggest that the 

inflation coherencies among G7 countries exist during the recent subprime crisis in varying 

time scales. 

 

 Marczak and Gómez (2015) examine the lag-lead patterns over time between 

consumer and producer real wages and business cycles in the US and Germany. The 

findings suggest that the US and Germany are different in that sense. In the US, the 

business cycle is led by both real wages whereas the business cycle is leading the 

consumer real wages in Germany. Bilgili (2015) uses WCA to probe the coherency relation 

between renewable-energy consumption and industrial production, and finds that 

renewables have a positive impact at all frequencies and more so at higher ones. 

 

 Yang et al. (2016) examine returns of some exchange rates against US dollar 

(EUR/USD, GBP/USD, and JPY/USD) by WCA. Their goal is to inform policymakers and 

investors by observing volatility fluctuations, effects of global financial crises, and 

European debt crisis. WCA indicate that the euro and the pound are strongly coherent 

while the yen and the pound are coherent in long periods. Conversely, the yen and the 

pound are not coherent at long-term periods. They presume that for long-term rate 
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exchange assessment of euro-pound and euro-yen, interest rate parity is a successful 

leading indicator. 

 

 The WCA is a useful tool to analyze not only the conventional markets. Kristoufek 

(2015) wants to understand the reason behind tremendous increase in popularity of Bitcoin 

and Chinese market contribution. Kristoufek (2015) performs WCA for Bitcoin prices. 

Several possible contributing factors seem to exist as both speculative and technical ones 

for the Chinese market. The evidences depict that contrary to common thoughts, technical 

drivers (e.g. money supply, price level, and usage in trade) are also related with Bitcoin 

price in the long-term. Additionally, the number of coin miners increases with the Bitcoin 

price. Nonetheless, the price effect on miners fades away with time. Although the US 

Dollar and Chinese Yen are tightly connected, Kristoufek (2015) finds no clear evidence 

that the Chinese market influences the US market. He argues that such an outcome is due 

to the structure and frequencies of the data analyzed. Bitcoin seems to be a unique form of 

asset having the properties of both a standard financial instrument and a speculative one. 

 

 Aguiar-Conraria et al. (2008) uses cross wavelet coherency and cross wavelet 

power to probe the impact of interest rate price changes on macroeconomic variables such 

as industrial production, inflation, and monetary aggregates M1 and M2. This paper 

contributes to the literature by showing that “great moderation” is not a phenomenon that 

occurred in 1980s but actually happened in 1950s. 

 

 Two studies explore the interrelation between carbon emission and macroeconomic 

parameters such as economic growth and trade openness in France. Mutascu (2018) 

explores the interrelation between emissions and economic growth in France by using 

various wavelet tools including WCA. It is hypothesized that the environmental pollution 

is supposed to increase as the economy grows. In other words, it reaches a peak with 

growing economy then falls afterward. However, the findings indicate that such a co-

movement does not exist for France in medium-term meaning that carbon emissions do not 

go along with the growing economy. However, this is more likely the result of 

environmentalist policies in France before 2002. Mutascu (2018) investigates the co-

movements between carbon emissions and trade openness. This paper’s findings show no 

coherency between carbon emissions and trade openness at high frequencies but at medium 
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and low frequencies, because the insufficient environmental regulations may drive exports 

based on pollutants at medium term whereas the business cycle drives the interaction 

between trade and emissions at long term (low frequency). 

 

 The use of macroeconomic variables such as economic growth in WCA is not 

limited to the studies on carbon emissions. Ferrer et al. (2018) examine the interactions 

between the financial-stress variables and real economic activity in the US. The results 

show that the coherence between financial stress and real economy in the US varies over 

time. According to the findings, the most significant coherence between financial stress 

and real economic activities exists following the subprime-mortgage crisis, meaning that 

the coherent interaction between the stress and the real economy is the strongest during 

periods of financial crises. Aguiar-Conraria et al. (2012) investigate the relation between 

the yield curve and the macroeconomic variables in the US and found varying 

deterministic relations between the level, slope, and curvature of the yield curve and 

fundamental macroeconomic parameters, such as real activities, unemployment, inflation, 

and Federal Reserve Bank (FED) funds rate. 

 

 Several papers utilized the WCA to investigate the co-movement relations between 

stock markets in the same or different countries. Graham et al. (2013) finds that there is a 

modest degree of coherency in stock returns between S&P 500 and MENA region stock 

markets as well as within the MENA region stock markets (particularly Egypt, Kuwait, and 

Saudi Arabia) themselves. Most significantly, Egypt market correlates with the US market 

the most. The authors explain this by the relative openness of the Egyptian stock markets 

to foreign participation. The WCA of Barunik et al. (2011) finds the strongest 

interdependency (particularly during the period of the subprime-mortgage crisis) among 

Czech (PX) and Polish (WIG) stock markets in a sample of several Central- and Western-

European stock markets as well as the US. The findings suggest that the wavelet 

coherencies are different between Central-European, Western-European and the US stock 

markets. Moreover, another significant evidence is that British (FTSE) and German (DAX) 

stock markets are highly correlated on a daily basis between 2004 and 2009. 

 

 Tiwari et al. (2016) scrutinize relationship of stock markets of PIIGS countries with 

the stock markets of UK and Germany. WCAs between stock markets of PIIGS countries 
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and UK reveal that they move “in phase” along the entire time span. The stock markets are 

mostly coherent in medium- and long-term periods (64 days to 512 days). For long-term 

coherency, they postulate that the stock markets of PIIGS countries with the exception of 

Italy lead the stock market of UK between 2008 and 2011. Conversely, the stock market of 

UK leads the stock market of PIIGS for medium-term period after the collapse of Lehman 

Brothers. Similarly, WCAs between stock markets of PIIGS countries and Germany are 

roughly analogous to WCAs of PIIGS and UK. During the subprime crisis, German stock 

market leads that of Ireland, Greece and Portugal in very short periods and coherency level 

between PIIGS and German stock market is higher. 

 

 Jiang et al. (2017) work with six stock markets of Association of Southeast Asian 

Nations (ASEAN) countries (Indonesia, Thailand, Philippines, Malaysia, Singapore and 

Vietnam) to monitor the co-evolution of markets and the effect of causal events on 

volatility. WCAs point out that stock markets in ASEAN countries have a stronger 

tendency to move together, especially during financial turbulence. In contrast to the claims 

of different studies utilizing other methods, such as Azman-Saini et al. (2002), Singapore is 

found to be the least dependent market. They say that the stock market of Vietnam does 

not move coherently with the rest of stock markets of ASEAN countries. Specifically, 

Indonesia is coherent with Thailand and the Philippines at high frequencies, whereas, it is 

coherent with Malaysia at low frequencies. The authors thus conclude that a portfolio, 

which includes only ASEAN stock markets, is likely to fail decreasing the risks. 

 

 Saâdaoui et al. (2017) study the co-movement relationships between conventional 

and Islamic stock markets via cross wavelet analyses. The subject indexes include Dow 

Jones (DJ) index and their Islamic counterparts such as DJ Islamic Market World Index 

(DJWI), DJ Islamic Market Developed Markets Index (DJDI), and DJ Islamic Market 

Emerging Markets Index (DJEI). Islamic countries’ lifestyle and Islamic-based fiscal 

affairs attract attention of policymakers, market participants and investors to Islamic stock 

markets as an alternative option to conventional markets in the matters of portfolio 

diversification and risk reduction during financial depressions since this situation 

encourages risk sharing. Covariation figures of conventional stock markets vs. Islamic 

stock markets show that they are coherent at long-term periods. On the other hand, 

covariations show differences in shorter periods. During slumps, conventional stock 



7 
 

markets move mostly coherent in all periods whereas co-movement of Islamic stock 

markets is not as strong as among conventional markets. Therefore, Islamic is a 

considerable option for portfolio diversification. 

 

 Academicians and economist have become more motivated to understand 

interrelation between stock markets especially after big financial turmoil. Marfatia (2017) 

investigates the integration of risks in international stock markets by examining 22 leading 

stock markets of the world via wavelet analyses. The author uses XWT to assess coherency 

of these stock markets to guide policy makers and portfolio managers. Evidences display 

that US market and Eurozone markets are coherent in long-term periods; however, they are 

not significantly coherent in short-term periods. Hence, risks are possible to be observed in 

the long run. Additionally, comparisons of WCAs depict that level of co-movement 

between a stock market and another stock market in the same region is higher than co-

movement level between the stock market and the US stock market. The study also reveals 

that despite the common belief about the contagion effect of financial crisis from one 

country to others, the spillover of risks was mostly limited at lower frequencies. 

 

 Furthermore, economics-related applications of WCA include several studies on the 

interactions between commodity, real estate, or equity prices such as oil or housing and 

other related market movements. McCarthy and Orlov (2012) work on the links between 

volatility of the futures price of crude oil and S&P500. They additionally study volume of 

crude oil futures and US stock market futures contracts. Unlike Awerbuch and Sauter 

(2006) and Jones and Kaul (1996), they claim that oil prices and the US stock market have 

positive relationship. Akoum et al. (2012) inspect relationship among six GCC countries’ 

(Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates) stock 

markets and crude oil prices. They also work on stock markets of Egypt and Jordan, which 

are also located in the same region yet not producing oil, to enlarge the scope of the study. 

They conclude that evidence of WCA discloses that stock markets and oil price co-move in 

the long term (more than six months), more strongly after 2007. Also, the relationship 

between stock-market and oil prices is stronger for Jordan compared to Egypt. 

Subsequently, they draw a conclusion that linking function between stock-market and oil 

prices varies from country to country. 
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 Aguiar-Conraria et al. (2014) perform WCA to industrial production indexes of 

Euroland countries and oil price to uncover the outcomes of Euro adoption for 

macroeconomics in the context of oil prices. The findings show that zones of coherence are 

located around 6-year period between 1985 and 1995. Nevertheless, coherency zones move 

to shorter periods in the last decade. Moreover, after Euro adoption, industrial production 

of most of the Euroland countries react synchronized to oil shocks. However, among 11 

countries, Ireland, Belgium and Portugal do not have similar economical response to 

sudden changes in oil price. 

 

 Vacha et al. (2013) probe biofuels (ethanol and Biodiesel) and several commodities 

(gasoline, diesel, crude oil, corn, wheat, soybeans, sugarcane and rapeseed oil) via WCA to 

observe the relationship between them in time and frequency domains. Among analyzed, 

biofuel and commodity pairs, the pairs of ethanol and corn, and German diesel and 

biodiesel are the prominent ones. All of these pairs are coherent around 6-month period but 

the coherency shows discrepancy during periods of food crisis. In that period, the 

coherency becomes important only in short periods and phase differences between biofuels 

and commodities prevail to be more important. In food crisis, corn leads ethanol whereas 

German diesel leads biodiesel. 

 

Aloui and Hkiri (2014) examine GCC countries’ (Bahrain, Kuwait, Oman, Qatar, 

Saudi Arabia, and the United Arab Emirates) stock market co-movement behaviors using 

WCA. They assert that stock markets are highly affected from economic crises and they 

start to move together more strongly together after 2007 at short-term periods. Madaleno 

and Pinho (2014) apply WCA to oil price and world general stock market index and its 10 

subgroups (basic materials, consumer goods, consumer services, financials, health care, 

industrials, oil and gas, technology, telecommunications, utilities) to elaborate their former 

study. Results show that oil price, and world and sectoral stock markets have high 

coherency in long periods (0.7 years to 5.6 years). However, coherency is not stable over 

years. Before and after crises, the co-movement of oil price and stock indexes becomes 

more significant. Specially, in 2008 (during the global financial crisis), the series are 

coherent in short, medium and long periods. Furthermore, stock markets lead in all periods 

in which the global financial crisis was taking place. 
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 Vacha and Barunik (2012) try to reveal the interconnection between energy 

commodities such as gasoline, heating oil, natural gas, and crude oil. Results indicate that 

gasoline, heating oil and crude oil are highly correlated to each other and relations between 

commodities are highly dependent on investment horizon. Additionally, the fear of 

recession results in a tendency to move in unison for commodities but heating oil and 

crude oil is highly coherent in 64- to 128-day period band, even exterior of recession. 

 

 Li et al. (2015) analyze the evolution of co-movement between US housing and 

stock markets. They claim that the US housing and stock markets are coherent over 1890 

to 2012, except for the period from 1998 to 2002. In this period, they move “in phase”. On 

the other hand, the coherency is observed the most in long-term periods throughout the 

time span. Between 1905 and 1910 and between 1998 and 2002, the US housing and stock 

markets have coherency in the short-term period. 

 

 Mudakkar and Zaman (2013) perform WCA to indicate the effects of oil price on 

stock exchange of Pakistan (KSE 100) and India (NIFTY 50). They conclude that co-

movements between oil price and stock exchanges are significant during financial shocks. 

The effects of financial shocks before 2007 are observed in short term whereas, after 2007, 

the shocks influence stock exchanges in medium term. In Huang et al. (2016), Shanghai 

Composite index (SH), Brent oil prices and London gold fixing price data are analyzed 

using WCA to uncover hidden information caused by nonlinear relationship between 

prices. Results of WCAs exhibit that SH and Brent oil are coherent in short, medium and 

long periods. At short-term periods (2 to 16 days band), coherent zones are discrete but 

unstable. In medium term periods (16 to 256 days band), there are more coherent zones 

than that of long-term periods (256 to 512 days band), and in long-term periods SH and 

Brent oil is coherent between 2003 and 2012. Similarly, SH and gold price WCA depicts 

close results for short and medium periods, however the coherent region is comparatively 

smaller and it is located between 2004 and 2010. 

 

 Graham et al. (2013) apply WCA to the stock market (S&P500) and commodities 

(S&P Goldman Sachs Commodity Index), energy, light-energy, non-energy, reduced 

energy, agriculture, livestock, petroleum, industrial metal, precious metals and softs 

commodities (corn, wheat, sugar etc.) in order to discover possible connections between 
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these markets. They aim at giving evidence of cross-market relations for investors 

preparing portfolios. They deduce the results that there is generally no significant 

coherency between the stock market and commodities. Therefore, they claim that 

commodities are still good options to sustain diversification. Additionally, taking term 

differences into account shows that short-term investment is a good option for 

diversification whereas, after 2007, long-term investment is a little bit doubtful during a 

financial crisis period. 

 

 Sousa et al. (2014) aim to give insight about the noteworthy variables for the co-

movement among CO2 prices, energy prices (gas, coal and electricity), and economic 

activity for carbon-market actors of The European Union Emission Trading Scheme (EU 

ETS) using WCA. Their results display that CO2 and energy prices are coherent over 8 to 

20 months and energy price is lagging behind CO2 price. They associate the results with 

the CO2 emissions suppression success of the EU ETS. They also add that Kyoto Protocol 

generates an uncertain atmosphere that results in an increase in volatility. Moreover, CO2 

price and economic activity analysis shows that the economic trends lead the carbon 

markets. 

 

 Papaioannou et al. (2015) focus on dynamics of the interrelation between Greek 

and Italian electricity markets. They believe that the outcomes attained by the application 

of WCA will bring light to authorities for preparing national markets according to the 

European model during coupling process of the two markets. Results reveal that two 

markets are highly coherent between 2005 and 2013. Furthermore, regulations and failures 

create higher coherency in short periods. Reboredo et al. (2017) want to observe dynamic 

relationship between fossil fuel and renewable energy to see the results of developments. 

They conduct WCA to oil price, renewable energy stock prices, and three renewable-

energy sectoral indices (wind, solar, smart technology). Results display that although 

sectoral indices have differences, level of co-movement between oil and renewable energy 

is low for short-term periods and it is getting higher over longer-term periods, especially 

between 2008 and 2012. They suggest that volatility reduction of portfolios can be 

accomplished for short-term investors by investing in oil as an alternative to renewable 

energy. 
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Pal and Mitra (2017) study crude oil prices, world food price indices, and sub-

indices (dairy, cereals, vegetable oil, sugar) for policymakers and farmers to determine 

beneficial crop choices. Results show that crude oil and food prices are coherent between 

2001 and 2012. Coherencies are mostly observed in long-term periods. WCAs also catch 

that food crisis happened between 2006 and 2008 and financial turbulence occurred 

between 2007 and 2009. During periods of crisis, oil prices lead food prices in short time 

periods and the authors suggest policy makers to move accordingly. 

 

 Aloui et al. (2016) attempt to investigate the co-movement between investors’ 

sentiment and equity returns in Islamic and conventional market indexes. Their empirical 

findings show that the co-movement is shifting over time and frequencies and the Islamic 

equity returns do not behave differently from their conventional counterparts in the context 

of investor sentiments. Yang et al. (2017) examine association between crude oil price and 

exchange rate market of markets with the power of WCA. Unlike previous studies, they 

group stock markets as markets of oil-importing countries (EU, India, Japan, and South 

Korea) and markets of oil-exporting countries (Brazil, Canada, Mexico and Russia) for 

better understanding. The evidence show that around 2008, both oil importing and oil-

exporting countries have strong coherency, but coherency for oil-importing countries start 

from 2005. The study make it clear for policy makers that crude oil price is a more 

important factor for oil-importing countries for determining the exchange rate comparing 

to oil-exporting countries. Moreover, with respect to investors, the stability of interaction 

between crude oil and exchange rate is low in short-term. 

 

Mensi et al. (2018) conduct WCA for BRICS countries’ stock markets and two 

macro economically important commodities to reveal international connections of those 

countries. WCA results reveal that stock markets are coherent with crude oil price at long-

term periods and global financial crises reflect on WCA as highly coherent zones. 

Conversely, there is no finding of co-movement between stock markets and gold price. 

Therefore, it is suggested that BRICS stock markets and gold price are alternative assets of 

each other during financial turmoil. 

 

Abid and Kaffel (2018) examine the relationship between four asset prices (stock, 

gold, oil, Forex) and their volatility index to demonstrate behavior differences under 
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different economic conditions, strength levels between prices, and volatility in a period in 

which they are significant and worthiness for portfolio managers. Wavelet Power 

Spectrums (WPS) show that during some financial stresses, assets are affected in medium 

periods while risk indexes are affected almost in all periods. WCAs show that the assets 

and their volatility indexes do not have stable coherency during the entire period and phase 

differences between them changes from period to period. On the other hand, S&P 500 and 

its volatility index are coherent in short, medium and long periods and they are “out of 

phase”. Finally, they conclude that putting an assets and its risk index in the same portfolio 

is disadvantageous, because they are correlated. 

 

 Global economy and business are highly affected from financial crises and from 

stresses on crude-oil prices resulting from geopolitical indecisions. Uddin et al. (2018) use 

WCA to clarify co-evaluation between crude-oil price and possible roots of fluctuations of 

crude-oil price such as financial speculation, uncertainty in financial markets and macro 

economy, and market sentiment. WCAs show that oil price and indecisions are coherent at 

short-term periods and at business-cycle periods. The phase relation between them range 

between −π 2⁄  and +π 2⁄     –π/2 and +π/2. For higher periods, oil price lags behind the 

uncertainties indexes. On the other hand, crude-oil price and speculation index are highly 

coherent at 4.5- and 8-year period bands. However, they are “out of phase” according to 

the WCA. 

 

 Meteorology is another field in which WCA is taken advantage of. Torrence and 

Webster (1999) apply WCA to El Nino-Southern Oscillation (ENSO) and Indian monsoon 

data over 125 years to investigate the relationship between coherency and variance. They 

argue that the coherency between ENSO and Indian monsoon is high in 2- to 8-year bands 

over 1875-1920 and 1960-1990. Additionally, if only decadal parts of data are analyzed, 

coherency and variance shows parallelism (i.e., higher the coherency, higher the variance). 

 Likewise, Ashok et al. (2003) study meteorological indicators to enhance the 

knowledge about Indian Ocean Dipole (IOD), which is a physical entity. WCA of the 

Equatorial Indian Ocean zonal wind anomalies (EIOZWA) and Indian Ocean Dipole Mode 

Index (IODMI) significantly shows that coherent zones on the years with IOD have a 

dominant effect. Additionally, El Nino/Southern Oscillation (ENSO) and EIOZWA are 

also found coherent. On the other hand, ENSO and IODMI do not have coherency at the 
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periods in which ENSO and EIOZWA are coherent. Thus, the study reveals that the IOD 

events may be a result of regional air-sea interactions rather than an external forcing. 

 

 Lastly, WCAs are found in medical and biological studies. Garg et al. (2013) work 

with WCA to test the capability of distinguishing connections between cardiovascular- and 

postural-control system. They report that WCA over blood pressure and calf-muscle 

electromyography is successful to recognize co-activity between them. Hassan et al. (2010) 

use the data collected from uterine of three pregnant women for WCA to characterize 

electrical activity of uterine. Hypothesis about the uterine electrical activity claims that 

electromyogram signal of pregnant abdomen is classified as Fast Wave Low, which is 

interpreted as propagation, and Fast Wave High which is interpreted as excitability of the 

uterus (Devedeux et al., 1993). 

 

 The main purpose of this thesis is to investigate capabilities of CWT, WPS, and 

WCA; additionally, to discover hidden associations between US chemical-industry-

related/-based time series (CAB and CEPCI) and US Industrial Production Index (IPI), and 

to clarify phase relations between them. 

 

 In Chapter 2, the fundamentals of wavelets and theoretical background on CWT, 

WPS, WPS, XWT, WCA, and phase difference are briefly reviewed. Moreover, definitions 

of FT, cone of influence (COI), padding, smoothing, phase relations between two time 

series are also included. Additionally, algorithmic structures of MATLAB’s default WCA 

function, the ASToolbox, and AGToolbox are explained systematically. 

 

In Chapter 3, analysis of a motivating example is presented with the Pearson 

correlation method, windowed cross correlation, windowed and lagged correlation, WPS 

and WCA. Subsequently, results come from conventional methods and wavelet based 

methods are compared in terms of coherency and phase difference extend. 

 

In Chapter 4, the American Chemistry Council’s (ACC) Chemical Activity 

Barometer (CAB) and business cycle phenomena are defined. Monthly data of CAB and 

Industrial Production Index (IPI) of US are deeply investigated by WPS and WCA to test 

whether CAB is a leading indicator of IPI and is able to detect business cycles in US 
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economy. Outcomes are compared with already determined business cycles taken from 

ACC. Additionally, overall phase difference relation images between the CAB and IPI is 

generated. 

 

In Chapter 5, WCA is applied to binary pairs of CAB-Chemical Engineering Plant 

Cost Index (CEPCI) data and IPI-CEPCI data in order to assess the potential of CEPCI as a 

leading indicator of the US economy. However, since only the yearly CEPCI data are 

available, firstly the effects of data collection frequency on WCA of CAB and IPI are re-

examined with the yearly versions of the CAB and IPI data. The results of the yearly WCA 

of CAB and IPI are compared with the results of Chapter 4, where monthly CAB and IPI 

data are used. However, the main purpose of this chapter is on the CEPCI data and its 

WCA with CAB and IPI pairs. 

 

 In Chapter 6, as groundwork, WCA is applied to Process Fault Detection and 

Diagnosis (FDD) field to assess the viability WCA as a new FDD tool, for the first time in 

literature. For this purpose, first, the synthetic time series already used in Chapter 3 are 

reviewed within the framework of FDD and WCA is concluded to be a successful tool for 

fault and change point detection tasks. Moreover, two new synthetic time series are 

generated and several faults are added to these time series and fault detection ability of 

WCA under permanent and temporal faults is demonstrated. 
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2. TECHNICAL BACKGROUND FOR WAVELET COHERENCE 

ANALYSIS AND THE TOOLBOX USED 
 

 

 

2.1.Wavelets and the Morlet Wavelet 

 

 

Wavelets are small dynamic waves which have characteristic oscillation. Amplitudes of 

waves begin from zero, then increases, and then returns to zero. Wavelets are generated by 

positioning and scaling a wavelet function ψ(t) (i.e., mother wavelet) which is defined as: 

 

 
𝜓𝑠,𝜏(𝑡) =

1

√𝑠
𝜓 (

𝑡 − 𝜏

𝑠
) (2.1) 

 

where, 1/√𝑠 is the normalization factor, 𝜏 is the location parameter, and 𝑠 is the scale 

parameter (Akoum et al., 2012). While 𝜏 determines position of the wavelet, s shows how 

the wavelet is stretched or dilated. In order to compress the wavelet, 𝑠 parameter must be 

decreased which will make it possible to investigate higher frequencies (minor 

oscillations), or vice versa (Benhmad, 2013). 

 

Wavelet function ψ(t) is assumed to be a square integrable function (ψ = L2 ∈ 𝑅) 

and it has to satisfy several theoretical conditions (Aguiar-Conraria et al., 2008). In order 

to ensure back transform from frequency domain to time domain, wavelet function must be 

successfully localized in time and frequency domain. To do so, a wavelet has to rapidly 

decay in both (left and right) directions which is also the reason behind success of wavelet 

analysis with dealing nonstationary series and discontinuities (jumps) (Auth, 2013). In 

other words, a wavelet has to fulfill admissibility condition, which will be explained in 

detail in the following section, to be used as an orthogonal function for Continuous 

Wavelet Transform (CWT)). The admissibility condition is given as: 
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𝐶𝜓 = 2𝜋∫
|Ѱ(𝜔)|2

|𝜔|
𝑑𝜔 < ∞

∞

−∞

 (2.2) 

 

where, 𝐶𝜓 is the admissibility constant and Ѱ(𝜔) is the Fourier Transform (FT) of wavelet 

𝜓(𝑡). Gençay et al. (2002) show that admissibility condition holds when mean of a wavelet 

is zero: 

 

 

∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞

 (2.3) 

 

and 

 

 

∫ 𝜓2(𝑡)𝑑𝑡 = 1.
∞

−∞

 (2.4) 

 

In other words, total area under positive parts of a wavelet has to be equal to total 

area under negative parts of the wavelet and the wavelet has to have values other than zero. 

 

 There are different types of wavelets such as the Haar, Daubechies, Biorthogonal, 

Coiflets, Symlets, Morlet, Mexician Hat, Meyer etc. (Misiti et al., 2010). Among wavelets, 

the Morlet wavelet is successfully localized in frequency domain (Tiwari et al., 2013) and 

it is widely used in economics (Aguiar-Conraria et al., 2008, 2013; Crowley, 2007; 

Madaleno and Pinho, 2014; Percival and Walden, 2000; Rua and Nunes, 2009). In this 

study, following the path of literature, we use the Morlet wavelet which is defined as: 

 

 
𝜓𝑀(𝑡) = 𝜋−

1
4(𝑒𝑖𝜔0𝑡 − 𝑒−

𝜔0
2

2 )𝑒−
𝑡2

2  (2.5) 

 

where, 𝜔0 denotes central frequency of the wavelet and 𝑒−
𝜔0
2

2  is added to ensure that the 

admissibility condition holds. Fortunately, in almost all cases, 𝜔0 is chosen bigger than 5 
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and thus 𝑒−
𝜔0
2

2  becomes negligible (Aguiar-Conraria et al., 2008). Hence, the Morlet 

wavelet reduces to: 

 

 
𝜓𝑀(𝑡) = 𝜋−

1
4𝑒𝑖𝜔0𝑡𝑒−

𝑡2

2 . (2.6) 

 

Aguiar-Conraria and Soares (2007) shows that the center of wavelet is located on 

the point (0,
𝜔0

2𝜋
) in time-frequency plane and in most cases 𝜔0 = 6 is chosen. Thus: 

 

 𝜇𝑓 =
𝜔0
2𝜋

≈ 1 (2.7) 

 

where 𝜇𝑓 is center of frequency and hence the relationship between scale and frequency 

becomes: 

 

 
𝑓 =

𝜇𝑓

𝑠
≈
1

𝑠
. (2.8) 

 

 

2.2. Continuous Wavelet Transform 

 

 

Projecting the specific wavelet onto the time series studied, 𝑥(𝑡), gives the Continuous 

Wavelet Transform (CWT), 𝑊𝑥, of the series as: 

 

 
𝑊𝑥(𝑠, 𝜏) = ∫ 𝑥(𝑡)

1

√𝑠
𝜓(
𝑡 − 𝜏

𝑠
)

∞

−∞

𝑑𝑡 (2.9) 

 

where, 𝜓 is the complex conjugate of 𝜓. The time series can be reconstructed from this 

continuous wavelet transform as (Barunik et al., 2011): 

 

 
𝑥(𝑡) =

1

𝐶𝜓
∫ [∫ 𝑊𝑥(𝑠, 𝜏)𝜓𝑠,𝜏(𝑡)𝑑𝜏]

𝑑𝑠

𝑠2
, 𝑠 > 0

∞

−∞

∞

0

 (2.10) 
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where, 𝐶𝜓 is admissibility constant (see (Akansu and Haddad, 2001) for its derivation) . 

Another useful inference is that the energy of  𝑥(𝑡), that is ||x||
2
, is preserved after back 

transformation (Aguiar-Conraria and Soares, 2007): 

 

 
||𝑥||

2
=
1

𝐶𝜓
∫ [∫ |𝑊𝑥(𝑠, 𝜏)|

2 𝑑𝜏]
𝑑𝑠

𝑠2

∞

−∞

∞

−∞

. (2.11) 

 

 

2.3. Wavelet Power Spectrum 

 

 

Wavelet Power Spectrum (WPS) is a univariate analysis tool. It allows observing local 

variance of a time series for different scales and time localizations. WPS differs from FT-

based power spectrum (Torrence and Compo, 1998). Significance testing for WPS is also 

possible (Grinsted et al., 2004; Torrence and Compo, 1998).WPS is defined as the square 

of the absolute value of the CWT and is given by: 

 

 𝑊𝑃𝑆𝑥(𝑠, 𝜏) = |𝑊𝑥(𝑠, 𝜏)|
2. (2.12) 

 

 

2.4. Cross Wavelet Transform and Wavelet Coherence Analysis 

 

 

WCA is a bivariate analysis which is used to observe interaction between two time series. 

In WCA, both the Cross Wavelet Transform (XWT) and the cross wavelet power of two 

series (𝑥(𝑡), 𝑦(𝑡)) must be computed. 

 

 𝑊𝑥𝑦(𝑠, 𝜏) = 𝑊𝑥(𝑠, 𝜏)𝑊𝑦̅̅ ̅̅ (𝑠, 𝜏) (2.13) 

 

where, 𝑊𝑥𝑦(𝑠, 𝜏) denotes XWT of 𝑥(𝑡) and 𝑦(𝑡), 𝑊𝑥(𝑠, 𝜏) denotes CWT of 𝑥(𝑡), and 

𝑊𝑦̅̅ ̅̅ (𝑠, 𝜏) denotes complex conjugate of CWT of 𝑦(𝑡). Cross wavelet power, |𝑊𝑥𝑦(𝑠, 𝜏)|, is 

the absolute value of XWT.  
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 The Wavelet Cohrence (WC) is defined as: 

 

 

𝑅2(𝑠, 𝜏) =
|𝑆 (𝑠−1𝑊𝑥𝑦(𝑠, 𝜏))|

2

𝑆(𝑠−1 |𝑊𝑥(𝑠, 𝜏)|2)𝑆(𝑠−1 |𝑊𝑦(𝑠, 𝜏)|2)
 (2.14) 

 

where, 𝑆 is a smoothing operator and 0 ≤ 𝑅2 ≤ 1 shows the coherency strength. When 𝑅2 

is close to 1, the coherence between time series is high and when 𝑅2 is close to 0, the 

coherence between time series is low. 

 

 Unfortunately, there is no consensus on how the smoothing should be implemented. 

In other words, it is not clear that what type of smoothing is appropriate and also it is not 

clear that on which domain smoothing should be performed (time domain, frequency 

domain or both) (Torrence and Compo, 1998). 

 

 

2.5. Phase Difference 

 

 

WCA also shows the phase differences between two time series of different frequencies. 

WC phase difference is defined as: 

 

 

𝜑𝑥𝑦(𝑠, 𝜏) = 𝑡𝑎𝑛
−1(

𝐼 (𝑆 (𝑠−1𝑊𝑥𝑦(𝑠, 𝜏)))

𝑅 (𝑆 (𝑠−1𝑊𝑥𝑦(𝑠, 𝜏)))
) (2.15) 

 

where, I represents the imaginary operator and R represents the real operator. Phase 

differences calculated by Eq. 2.15 are shown in WCA figures with arrows. Right-directed 

arrows show that the two time series are “in phase” while left-directed arrows shows that 

the two time series are “in anti-phase” (i.e., “out of phase”). Additionally, upward arrows 

mean that the second time series, 𝑦(𝑡), leads the first time series, 𝑥(𝑡), by 90°, and 

downward arrows mean that the first time series, 𝑥(𝑡), leads the second time series, 𝑦(𝑡), 

by 90°. 
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2.6. Wavelet Coherency Analysis Software Toolboxes 

 

 

There are mainly three MATLAB software toolboxes commonly used in the literature, 

namely AGToolbox, ASToolbox and MATLAB’s default WCA function, “wcoherence”. 

Most parts of those toolboxes are similar to each other. Generally, calculation of XWT and 

the smoothing sections of these software show minor differences. Subsequently, WCA 

shows minor differences. Some important sections of these toolboxes are highlighted in the 

following sections (2.7 - 2.9). 

 

 

2.7. Major Calculation Steps of MATLAB’s Default WCA Function 

 

 

In MATLAB’s default WCA function, “wcoherence” there are eight major computational 

sections. 

 

1. Two time series are individually sent to “cwtft” function subroutine for CWT 

calculation. Each time series follow the next steps in “cwtft”: 

 

i. The time series is sent to “ftt” function for discrete Fourier transform. 

 

ii. All family members of the mother wavelet are sent to “waveft” function for 

wavelet Fourier transformation. 

 

iii. Transformed time series are projected onto the transformed wavelet family to 

obtain CWTs of the series (Eq. 2.9). 

 

2. XWT is formed by multiplying CWTs of the two time series (Eq. 2.13). 

 

3. Smoothing operations are performed only on frequency domain for both CWTs and 

XWT. 
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4. Cross Wavelet Power Spectrum (XWPS) is obtained by dividing the smoothed 

XWT by the square roots of the smoothed CWTs of the two time series (Eq. 2.16). 

 

 
𝑋𝑊𝑃𝑆 =

𝑆(𝑋𝑊𝑇)

(𝑆(𝑊𝑥(𝑠, 𝜏))
1
2 ∗ 𝑆 (𝑊𝑦(𝑠, 𝜏))

1
2
)

 
(2.16) 

 

5. WC is obtained by dividing the square of absolute value of smoothed XWT by the 

smoothed CWTs of the two time series (Eq. 2.14). 

 

6. Phase difference between the two series is obtained by taking the inverse tangent of 

division of imaginary part of the cross wavelet power spectrum to real part of the 

cross wavelet power spectrum (Eq.2.15). 

 

7. Cone of Influence (COI) is calculated. 

 

8. WCA image figure is generated by including WC, COI, and phase-difference 

arrows. 

 

 

2.8. Major Calculation Steps of the ASToolbox 

 

 

In the ASToolbox, there are collections of function subroutines with intricate dependence 

structure. This functional dependence of the toolbox may be outlined with three major 

computational sections. 

 

1. Two time series are individually sent to “AWT” subroutine for calculation of CWT, 

WPS, and COI separately. Each time series then follow the next steps: 

 

i. The time series is sent to “fft” function for their discrete Fourier transform. 
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ii. All family members of the mother wavelet are transformed to Fourier domain 

by using definition of Fourier transformation. 

 

iii. Transformed time series is projected onto the transformed wavelet family to 

find CWTs of the series (Eq. 2.9). 

 

iv. WPS is obtained as the square of absolute value of CWT (Eq. 2.12). 

 

v. COI is calculated. 

 

vi. Optionally, statistical p-values for WPS are calculating based on ARMA model 

with bootstrapping or ARMA model with Gauss model. 

 

2. Two time series are sent together to “AWCO” subroutine for calculation of WC. 

“AWCO” contains an extra “AWT” function and the following steps shows 

working principals of “AWCO” function. 

 

i. XWT is obtained through CWTs of the two series (Eq. 2.13). 

 

ii. WPS of each time series are obtained by taking the square of absolute values of 

CWT of the two series separately (Eq. 2.12). 

 

iii. WPSs and XWT of the two series are smoothed in both time and scale 

directions. 

 

iv. WC of the two series is obtained by the division of smoothed XWT of the two 

series with the square root of production of WPSs of the two series (Eq. 2.14). 

 

3. Output of “AWCO” subroutine is feed to “AWCOOutput” function for calculation 

of cross wavelet power spectrum, phase difference spectrum and time lag. Steps are 

as follows: 

 

i. XWPS is obtained by absolute value of XWT (Eq. 2.13).  
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ii. Phase difference between the two series is obtained by taking the inverse 

tangent of the division of the XWT imaginary part to the XWT real part (Eq. 

2.15). 

 

iii. Time lag is calculated by division of product of phase difference and mean 

period to 2π (Eq. 2.17). 

 

 
𝑇𝑖𝑚𝑒 𝑙𝑎𝑔 =

𝜑𝑥𝑦(𝑠, 𝜏) ∗ 𝑚𝑒𝑎𝑛(𝑝𝑒𝑟𝑖𝑜𝑑)

2𝜋
. (2.17) 

 

Note that ASTbx does not have a default plotting section. 

 

 

2.9. Major Calculation Steps of the AGToolbox 

 

 

In the AGToolbox, there are fewer collection of function subroutines with less intricate 

dependence structure compared to the ASToolbox. The functional dependence of the 

ASToolbox toolbox may be outlined with seven computational sections. 

 

Two time series are together sent to “wtc” subroutine for WC calculation including 

the following intermediate steps. 

 

1. Two time series are individually sent to “wavelet” function in which CWT of 

the two series are calculated (Eq. 2.9). During calculation “wave_bases” 

function is used for wavelet Fourier transformation and “fft” function is used 

for discrete Fourier transform of the time series. 

2. Two CWTs of the time series are individually sent to “smoothwavelet” function 

for smoothing. 

 

3. COI of the both series are calculated and the smaller one is chosen. 

 

4. XWT is calculated via unsmoothed CWTs of the two time series (Eq. 2.13).  



24 
 

5. XWT is sent to “smoothwavelet” function for smoothing. 

 

6. WC is obtained by the division of square of absolute value of smoothed XWT 

with the smoothed CWTs of the two time series (Eq. 2.14). 

 

7. Phase difference between the two series is obtained by taking the inverse 

tangent of division of the XWT imaginary part by the XWT real part (Eq. 2.15). 

 

In this thesis work, basically, a modified version of the original AGToolbox is 

used, because it is the most commonly used toolbox in the literature for WCA, such as 

(Andries et al., 2014; Barunik et al., 2011; Cui et al., 2012; Grinsted et al., 2004; Ng and 

Chan, 2012; Vacha and Barunik, 2012). Modifications made are mostly around the plotting 

sections and with the purpose of making the toolbox more user friendly. For example, the 

original AGToolbox gives only the WCA image figure overlayed with phase-difference 

arrows, but no phase-angle information and phase-angle plots whereas the original 

ASToolbox gives the WCA image figure but without phase-difference and phase-angle 

information (which can be obtained and plotted separately if desired). The modified 

AGToolbox developed in this thesis work, combines the best parts of the AGToolbox and 

ASToolbox, and thus gives the WCA image subplot with phase-difference arrows overlay, 

together with the phase-angle subplots. Therefore, a complete WCA is obtained and 

presented in a single figure composed of several subplots in a single run of the code. 
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3. MOTIVATING EXAMPLE 
 

 

 

Wavelet Coherence Analysis (WCA) differs from the conventional time-domain and 

frequency-domain time-series analysis techniques. While those methods work only in one 

domain, namely, time domain or frequency domain, the WCA covers both the time and 

frequency domains (Pal and Mitra, 2019). Before investigating real time series via WCA, 

its demonstrative application to a synthetic time series is much more beneficial for the 

exhibition of its capabilities. 

 

 

3.1. Definition and Properties of the Synthetic Time Series 

 

 

In order to maintain reproducibility and comparability, the following synthetic data-

generating process, used in Aguiar-Conraria and Soares (2011), was adopted to 

demonstrate the WCA and its capabilities. 

 

𝑥(𝑡) = sin (
2𝜋

3
𝑡) + 3 sin (

2𝜋

6
𝑡) + t  , 𝑡 =

1

12
,
2

12
, … ,

600

12
 (3.1) 

𝑦(𝑡) =

{
 
 

 
 4sin (

2𝜋

3
(𝑡 +

5

12
)) − 3 sin (

2𝜋

6
(𝑡 −

10

12
)) + t 

4sin (
2𝜋

3
(𝑡 −

5

12
)) − 3 sin (

2𝜋

6
(𝑡 +

10

12
)) + t 

 

, 𝑡 =
1

12
,
2

12
, … ,

300

12
  

, 𝑡 =
301

12
,
302

12
,… ,

600

12
 

(3.2) 

 

These time series are highly formalized and simple time series. Thus, they make the 

WCA very transparent and provide ease of comparison with the theoretical treatment 

presented in Chapter 2. Additionally, white noises are added to both series in order to 

understand effect of noise on WCA results. White noises, i.i.d. (independently and 

identically distributed), are generated from normal distributions with zero mean and unit 

variance, t  N(0,1) t, where α is the scale parameter that adjusts the signal to noise 
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ratio. An added noise is called white noise if its expected value is zero, independent of 

time. In other words, its signal power is distributed independently over time or among 

frequencies. In this example, the scale parameter   is set to one. 

 

Cyclic behaviors of the two time series are easy to observe. From Eq. 3.1 and Eq. 

3.2, one can easily deduce that 𝑥(𝑡) and 𝑦(𝑡) are constructed by merging 3-year and 6-year 

cycles (assuming that the time unit is one year). However, the behavior of 𝑥(𝑡) is 

unchanged over time, whereas the behavior of 𝑦(𝑡) exhibits transient change after 25 

years. In Figure 3.1a and Figure 3.1b, 𝑥(𝑡) and 𝑦(𝑡) are plotted. Their aforementioned 

behaviors may be deduced from Figure 3.1. Nevertheless, although we know that these two 

synthetic time series share similar sub-cycles, it is not possible to observe common features 

of these time series just by looking at their superposition; as seen in Figure 3.1c. 

 

 

Figure 3.1. Individual and Superimposed Plots of the Synthetic Time Series.  



27 
 

3.2. Windowed Cross Correlation Analysis of the Synthetic Time Series 

 

 

In order to reveal the hidden relationships between these two series, increasingly complex 

methods will be applied. Firstly, the overall Pearson linear correlation coefficient of the 

two series is -0.172. The Pearson correlation coefficient takes values between -1 and 1, 

with 1 meaning perfect positive correlation and -1 meaning perfect negative correlation 

between the two series. On the other hand, 0 indicates that there is no correlation between 

these series. Therefore, for these synthetic time series, it can be seen that the correlation is 

low; just based on the overall correlation coefficient. The Pearson linear correlation 

coefficient does not take any lags between the time series into consideration, however, 

windowed cross correlation can account for lags by using sliding-window approach. 

 

To choose the best correlation-window size (window length), correlation 

coefficient was calculated for different window sizes. In Figure 3.2, calculated correlation 

coefficients were plotted. The colors represent the correlation coefficient between the time 

series as given by the colorbar on the right-hand side of the figure. Figure 3.2 clearly 

shows that windows which have window length longer than six years basically contains all 

sub-cycles and it is similarly colored at almost everywhere on the figure excluding the 

edges. Moving-average windowed correlation analysis is a low-resolution analysis and 

short-term transitional changes are disregarded for window lengths longer than 6 years. 

Additionally, when the window length is large (e.g., greater than 15 years), edge effects 

prevail. On the other hand, when the window length is too small, the windows start to lose 

their representative features. Moreover, it is known that the two time series have a common 

6-year cycle from Eq. 3.1 and Eq. 3.2. Consequently, it is expected that setting the window 

size to three years (36 months) will have enough high representative power for these time 

series. 
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Figure 3.2. Moving Centered-Window Correlations of the Synthetic Time Series for 

Different Window Lengths. 

 

In Figure 3.3a, windowed and lagged correlation of the synthetic time series was 

plotted by setting window length to six years (72 months). The colors represent the 

correlation coefficient between the time series. While bright yellow indicates positive 

perfect correlation (i.e., correlation coefficient is 1), dark blue indicates negative perfect 

correlation (i.e., correlation coefficient is -1). 

 

The advantage of using windowed and lagged correlation is in its success to 

investigate correlation between the time series even if there is a phase difference between 

them. Figure 3.3a depicts that on the 3-year lag (y-axis) horizon and -3-year lag (or, 3-year 

lead) horizon, there are two broad dark yellow (high correlation) regions. Hence, it is 

presumed that the time series are positively correlated (color code shows that it is positive 

in the range 0.20 to 0.45, approximately) at ±3-year lags. Regrettably, these inferences are 

not enough to comment about the cyclic nature and transient change of the time series. 

Subplot b of Figure 3.3 shows the correlation coefficient as line plot at the zero-lag level of 

Figure 3.3.  
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Figure 3.3. Windowed and Lagged Correlation between the Synthetic Time Series. 

 

 

3.3. Univariate Analysis of the Synthetic Time Series 

 

 

In order to reveal periodic components of the time series, the Wavelet Power Spectra 

(WPS) of the series were constructed. Continuous Wavelet Transform (CWT) was used to 

calculate WPS. Unlike Fourier Transformation (FT), CWT has an adaptive window size. 

Therefore CWT is successful at dealing with non-stationary time series (Mudakkar and 

Zaman, 2013). WPSs of the synthetic time series are shown in Figure 3.4. From the WPS 

of 𝑦(𝑡) series, one can easily distinguish the two hot-colored regions on the 3-year and 6-

year period bands. This is not a coincidence, because as seen in Eq. 3.2, the 𝑦(𝑡) is 

constructed by the addition of two sine cycles, one with period of 3 years and the other of 6 

years. Additionally, transitional changes in the time series are caught by WPS around 25 

years. In contrast to WPS, the Power Spectral Density (PSD) does not show temporal 

changes in the time series, since it uses FT to analyze frequency domain. FT discards time-
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localized information (Li et al., 2015). The WPS of the 𝑥(𝑡) series contains two broad hot-

colored regions located on the 3-year and 6-year period bands as well. However, the one 

located on the 3-year period band is not conspicuous because the magnitude of coefficient 

of 3-year cycle in Eq. 3.1 is smaller. Since there is no transient change in series 𝑥(𝑡), the 

hot-colored regions are continuous. Moreover, the coefficient of 6-year cycle in Eq. 1 is 

three times that of the 3-year cycle in Eq. 1 which can be observed in the PSD of series 

𝑥(𝑡). In Figure 3.4, while the peak at 6 years is large, the peak at 3 years is relatively 

small. Although WPS and PSD explain the nature of two the time series, unfortunately 

they do not give any information about the association between them. 

 

Figure 3.4. Wavelet Power Spectrums and Power Spectral Densities of the Synthetic Time 

Series. 
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3.4. Wavelet Coherence Analysis of the Synthetic Time Series 

 

 

To be able to explore connections between the time series, Wavelet Coherence Analysis 

(WCA) should be executed. WCA is a bivariate framework; it can accommodate only two 

series. However it may be considered as a three-dimensional examination method; time 

and frequency components and power of correlation between two time series can be 

analyzed simultaneously (Sun and Xu, 2018). WCA can be explained as the proportion of 

cross-spectrum that can be obtained via multiplication of spectrum of each series 

individually (Aguiar-Conraria and Soares, 2007) and it enables one to visualize the degree 

of co-movement of two time series regarding both the time and frequency components. 

Unlike correlation, the range of coherency is between 0 and 1. While 1 specifies that two 

series are coherent, 0 indicates that there is no coherency between the two time series. 

Furthermore, high coherency is represented by yellow shades whereas low coherency is 

represented by blue shades in the WCA-related figures of this thesis work. Moreover, 

WCA provides phase-difference information between time series. 

 

 The lead-lag and phase-state (i.e., “in phase” or “out of phase”) relationships in 

WCA can be summarized handsomely by Figure 3.5, as Funashima (2017) argued. 

 

Figure 3.5. Lead-Lag and Phase-State Relationships in Wavelet Coherence Analysis.  
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Table 3.1 lists the values of some of the important parameters used in the WCA 

computations of this chapter’s example. The handling of these parameters can be found in 

the MATLAB code of this example presented in Appendix section of this thesis. 

 

Table 3.1. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

dt sampling interval 1/12 years 

DJ number of octaves per scale 1/32 

LPer lower level of period 0.15 years 

UPer upper level of period 32 years 

LPhaseDif lower levels of phase-difference bands [2.5, 3.5, 5.0] years 

UPhaseDif upper levels of phase-difference bands [3.5, 5.0, 7.0] years 

MinScale minimum scale 0.12 years 

MaxScale maximum scale 32 years 

Mother mother wavelet Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [30 30] 

 

Figure 3.6 is the general layout adopted in this thesis work for the compact 

presentation of the WCA results by means of “image of coherence” as well as phase-

difference plots. 
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Figure 3.6. Wavelet Coherence Analysis and Phase-Difference Plots of the Synthetic Time 

Series. 

 

First of all, the arrows and Figure 3.6b (as superimposed on the image of 

coherence) display phase differences between the time series. If the angle between arrows 

and the x axis is 𝜑𝑥,𝑦 ∈ (−𝜋 2⁄ , 0) ∪ (𝜋 2⁄ , 𝜋) then 𝑥(𝑡) leads 𝑦(𝑡), whereas if 𝜑𝑥,𝑦 ∈

(0, 𝜋 2⁄ ) ∪ (−𝜋,−𝜋 2⁄ ) then 𝑦(𝑡) leads 𝑥(𝑡). Additionally, arrows directed right indicate 

that the series are “in phase” while arrows directed left indicate that the series are “out of 

phase” (Madaleno and Pinho, 2014). Unfortunately, the explanation of this phase-

difference relationship is disputed in the literature. Funashima (2017) compared alternative 

interpretations of phase-difference and found that if the phase difference between two 

series is 𝜑𝑥,𝑦 ∈ (0, 𝜋 2⁄ ) ∪ (−𝜋,−𝜋 2⁄ ) then 𝑥(𝑡) leads 𝑦(𝑡), whereas if  𝜑𝑥,𝑦 ∈
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(−𝜋 2⁄ , 0) ∪ (𝜋 2⁄ , 𝜋) then 𝑦(𝑡) leads 𝑥(𝑡). Additionally, Funashima reported that if  

𝜑𝑥,𝑦 ∈ (−𝜋 2⁄ , 𝜋 2⁄ ) then 𝑥(𝑡) and 𝑦(𝑡) move “in phase” whereas if 𝜑𝑥,𝑦 ∈ (𝜋 2⁄ , 𝜋) ∪

(−𝜋,−𝜋 2⁄ )then 𝑥(𝑡) and 𝑦(𝑡) move “out of phase” (Funashima, 2017). 

 

The WCA (image of coherence) seen in Figure 3.6b and the phase differences in 

various period bands seen in Figure 3.6 c-d-e reveal that both interpretations are valid but 

while the former is based on WCA, the latter is derived from period bands’ phase-

difference plots. A Monte Carlo simulation is used to construct %5 significance levels 

(Grinsted et al., 2004) that were shown as black contour lines. WCA treats time series as 

cyclic series of infinite length and since time series have finite length, errors occur towards 

both edges of the time series. To overcome these errors, WCA pads the edge of the series 

with zeros. Therefore, significance of the WCA outcomes decreases towards the endpoints 

(Torrence and Compo, 1998). A Cone of Influence (COI) is introduced to show %95 

significance level of WCA and has been indicated with a dashed white line on Figure 3.6b. 

In Figure 3.6b, the horizontal axis displays time domain and the vertical axis displays 

frequency domain. However, in order to make interpretation easier, the frequency is 

converted to period by taking the reciprocal of the frequency values. 

 

Fıgure 3.6 depicts the overlay plots of the synthetic time series, WCA of the time 

series, and phase differences averaged over some particular period bands (2.5-3.5, 3.5-5, 5-

7 year period bands). From the shape of the WCA of the two time series, periods can be 

classified as short term and long term. As a short-term analysis, significant strong 

coherency is observed in the 2-3.5 year period band between 3 and 20 years. This “island 

of high coherency” is caused by the common nature of the two time series around 3-year 

period. In addition to coherence, the arrows over this “island” have up-and-rightward 

orientation, meaning that series 𝑦(𝑡) leads series 𝑥(𝑡) by approximately 𝜋 4⁄  (see also the 

arrows on Figure 3.5). Correspondingly, in Eq. 3.2, the 3-year cycle of series 𝑦(𝑡) has a 5-

month lead. There are 36 months in 3 years and 5/36 = 0.139. The angle between arrow 

representation of 5-month lag/lead in the 3-year period band becomes 2𝜋 × 0.139 ≈ 𝜋/4, 

since central angle of a circle equals to 2𝜋. Crosschecking WCA findings with Eq. 3.1 and 

Eq. 3.2 shows the success of WCA in capturing phase differences. Similarly, there is 

strong coherence in the 2-3.5 year period band between 30 and 47 years. In contrast to the 

region between 3 and 20 years, this region has down-and-rightward directed arrows 
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indicating series 𝑥(𝑡) leads series 𝑦(𝑡) by approximately 𝜋 4⁄  (see also the arrows on 

Figure 3.5). Again crosschecking this finding with Eq. 3.1 and Eq. 3.2 reveals that WCA 

consistently captures the phase differences, because in Eq. 3.2 the 3-year cycle of series 

𝑦(𝑡) has a 5-month lag after 𝑡 = 25. Additionally, since arrows in both “islands of high 

coherence” have rightward orientation, the two time series are “in phase” in the short term 

(see also the arrows on Figure 3.5). Moreover, between 20 and 30 years, WCA does not 

indicate coherency, as expected, because of the transient change in series 𝑦(𝑡). 

 

As a long-term analysis, there is strong coherency in the 4.5-8 year period band 

between 10 and 20 years, and between 30 and 40 years. Similar to the short term analysis, 

Eq. 3.1, Eq. 3.2, and WCA results all confirm each other for the long term as well. The two 

series share a 6-year cycle and these correspond to “high-coherence islands” located at 4.5- 

8 year periods in the WCA of Figure 3.6b.Yet, arrows over the coherent islands are 

directed left and therefore the series are “out of phase” (see also the arrows on Figure 3.5). 

In other words, when series are “out of phase”, unlike the situation in which the series are 

in phase, phase differences are measured by looking at the consecutive peaks of the first 

series and the valleys of the second series. Hence, arrows located on the left hand side 

island are oriented up-and-leftward (see also the arrows on Figure 3.5), which means the 

peaks of the series 𝑥(𝑡) lead the valleys of the series 𝑦(𝑡) by approximately  𝜋 4⁄  , whereas 

arrows located on the right hand side island are oriented down-and-leftward (see also the 

arrows on Figure 3.5) which means the peaks of the series 𝑦(𝑡) lead the valleys of the 

series 𝑥(𝑡) by approximately 𝜋 4⁄ . From Eq. 3.1 and Eq. 3.2, it can be seen that the series 

𝑦(𝑡) has 10 months of lag for the first half and a 10-month lead for the second half with 

respect to series 𝑥(𝑡). There are 72 months in 6 years and 10/72 = 0.139. The angle 

between arrow representation of 5-month lag/lead in the 3-year period band becomes 

2𝜋 × 0.139 ≈ 𝜋/4, since central angle of a circle equals to 2𝜋. Additionally, sign on the 

6-year cycle of series 𝑦(𝑡) is negative which also generates a phase difference of 𝜋 (or.– 𝜋, 

according to perspective). Therefore, for the first half period, the phase difference is 

𝜋 4⁄ + 𝜋 = 5𝜋/4. For the sake of easy interpretation instead of saying that the 𝑥(𝑡) leads 

the 𝑦(𝑡) by 5𝜋/4, it is preferable to say that the series are “out of phase” and 𝑥(𝑡) leads 

𝑦(𝑡) by 𝜋/4 (this is found by subtracting a half period from the phase difference). 

Similarly, for the second half period, the phase difference is −𝜋 4⁄ − 𝜋 = −5𝜋/4 which 
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means 𝑥(𝑡) lags by −5𝜋/4 (or 𝑦(𝑡) leads by 5𝜋/4). Once again to make interpretation 

easier it is favored to say that the series are “out of phase” and 𝑦(𝑡) leads 𝑥(𝑡) by 𝜋/4. 

 

Phase relations may also be investigated by looking at subplots c, d and e of Figure 

3.5. In subplot c, the mean phase difference for the 2.5-3.5 year period band is around 

−𝜋/4 in the first half and  𝜋/4 in the second half. By taking (Funashima, 2017) 

interpretation into account, the series are “in phase” and 𝑦(𝑡) leads 𝑥(𝑡) in the first half, 

whereas 𝑥(𝑡) leads 𝑦(𝑡) in the second half. In subplot b, the mean phase difference for the 

3.5-5 year period band is around −5𝜋/8 in the first half and 5𝜋/8 in the second half. Thus, 

the series are “out of phase” and 𝑥(𝑡) leads 𝑦(𝑡) by 𝜋/8 in the first half, whereas 𝑦(𝑡) 

leads 𝑥(𝑡) 𝜋/8 in the second half. Nevertheless, a corresponding significantly coherent 

zone does not appear in WCA in Figure 3.5b for the 3.5-5 year period band, therefore, this 

phase relation is not meaningful. In subplot c, the mean phase difference for 5-7 year 

period band is around −3𝜋/4 in the first half and 3𝜋/4 in the second half. Thus, the series 

are “out of phase” and 𝑥(𝑡) leads 𝑦(𝑡) by 𝜋/4 in the first half whereas 𝑦(𝑡) leads 𝑥(𝑡) by 

𝜋/4 in the second half. 

 

In some cases, investigation of the distribution of phase differences may be more 

important. For instance, comparison of phase differences of stock indexes taking different 

time scales (e.g., short term vs. long term) into account may create opportunities for 

investors. Figure 3.7 shows such a distribution of phase differences, for the first time in 

known literature. Phase difference between the series 𝑥(𝑡) and the series 𝑦(𝑡) is examined 

in 4 different (quantized) categories which are displayed in the 4-level color bar. In Figure 

3.7, light-blue areas (0 < 𝜑𝑥,𝑦 < −𝜋/2) and yellow areas (0 < 𝜑𝑥,𝑦 < 𝜋/2) belong to the 

“in phase region”. While the yellow area indicates that the series 𝑥(𝑡) leads the series 𝑦(𝑡), 

the light-blue area indicates that the series 𝑦(𝑡) leads the series 𝑥(𝑡). Blue areas (−𝜋/2 <

𝜑𝑥,𝑦 < −𝜋) and red areas (𝜋/2 < 𝜑𝑥,𝑦 < 𝜋) belong to the “out of phase” region. While 

the blue area indicates that the series 𝑥(𝑡) leads the series 𝑦(𝑡), the red area indicates that 

the series 𝑦(𝑡) leads the series 𝑥(𝑡). Although Figure 3.7 is a rough (quantized) 

representation of phase differences, it enables one to visualize the phase difference 

association between the two series with more simplicity and crispness. 



37 
 

 

Figure 3.7. Distribution of Phase Angles between the Synthetic Time Series. 

 

Figure 3.8 consists of four different subplots. Figure 3.8a shows the frequency-wise 

means (means at each x-axis value and along the y-axis of WCA image in Figure 3.6b) of 

coherency between the two series over time. Although there is a slight decrease in mean 

coherency around 25 years, general overview of the Figure 3.8a says the two time series 

are coherent along the time with a magnitude roughly equal to 0.5. Figure 3.8b shows the 

frequency-wise mean of the phase-difference between the two series over time. It can be 

seen that the two time series are “in phase” and the series 𝑦(𝑡) leads the series 𝑥(𝑡) in the 

first half, whereas the series 𝑥(𝑡) leads the series 𝑦(𝑡) in the second half. Figure 3.8c 

shows the time-wise mean (means at each y-axis value and along the x-axis of WCA image 

in Figure 3.6b) of coherency between the two series over the periods. This plot facilitates 

to pin down the short-, medium-, and long-term behaviors and can be used to classify such 

durations. There are five peaks located around 0, 3, 6, and 17 years and beyond 25 years, 

not all necessarily meaningful. While the first peak is discarded because of the noise which 

affects the lowest periods the most, the last two peaks are discarded because they are 

outside of the significant region (COI in WCA image of Figure 3.6b). Subsequently, only 

peaks located at 3 years and 6 years are used to assign terms as short-term and long-term. 

This figure makes it easier to conclude that the series have high coherency at 3-, 6-, and 
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17-year periods. Figure 3.8d shows the time-wise mean of phase difference between the 

two series over period. This figure makes it easier to conclude about the phase-difference 

between the two time series for different period bands. Around 13-20 years band they are 

on the average “out phase”, indicating that peak of 𝑦(𝑡) leads valley of  𝑥(𝑡) by 𝜋/4, and 

around 13-20 years they are on the average “in phase”, indicating that 𝑥(𝑡) leads 𝑦(𝑡) by 

𝜋/4. 

 

In all of the subplots (Figure 3.6c-d-e and Figure 3.8a-b-c-d) the light-colored 

shadow bands around the solid curves (which are the mean values) are the standard-error 

bands computed over the data points used in calculating the mean values. The regions of x-

axis corresponding to more spreaded (wide) standard-error bands localize the time zones in 

which the variation in the subplot quantity (coherence or mean phase difference) is high 

and thus one should be less sure about the mean (curve) value. Vice versa, the regions of x-

axis corresponding to less spreaded (narrow) standard-error bands localize the time zones 

in which the variation in the subplot quantity (coherence or mean phase difference) is low 

and thus one can be more sure about the mean (curve) value. For instance, for this 

example, the standard-error bands in Figure 3.8c increases significantly as period increases 

beyond 21 years; indicating that the mean coherence across time (solid line) represents the 

coherences across time, for times greater than 21 years, with high certainty. This 

observation can be verified from the WCA image in Figure 3.6b. A similar argument is 

valid for the mean phase-differences across time in Figure 3.8d for periods beyond 20 

years, which can also be verified from the arrows on the WCA image in Figure 3.6b as 

well. 
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Figure 3.8. Mean Coherence and Mean Phase-Difference between the Synthetic Time 

Series across Time and Frequency Domains. 
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4. WAVELET COHERENCE ANALYSIS OF THE CHEMICAL 

ACTIVITY BAROMETER AND U.S. INDUSTRIAL PRODUCTION 

INDEX 
 

 

 

This core chapter is on the Wavelet Coherence Analysis (WCA) of two economic time 

series, the Chemical Activity Barometer (CAB) and the US Industrial Production Index 

(IPI), and exhibits the power and features of the WCA. The aim of this chapter is to 

elucidate the coherency and the phase differences (lead-lag relationship) hidden in two real 

time series, the CAB and IPI. First, the description and economic importance of the CAB 

and IPI will be presented. Then, the CAB and IPI time series will be analyzed under three 

major sections as: i) analysis of the original trending series, ii) analysis of the detrended 

series, and iii) analysis of their moving-average-smoothed first-order differenced 

transformations. 

 

 

4.1. Description and Economical Importance of the CAB and the IPI 

 

 

The CAB is a composite index of chemical industry activity that produces a leading 

indicator of broader economy-wide activity. To better understand shifts in the Business 

Cycle (BC) it is important to distinguish between leading, coincident, and lagging 

indicators of the BC, which essentially reflect the timing of their movements. Leading 

indicators (average weekly hours, new orders, consumer expectations, building permits, 

stock prices, etc.) are those that consistently turn before the economy does. Coincident 

indicators (employment, industrial production, personal income, business sales, etc.) turn 

in step with the economy and track the progress of the BC. Lagging indicators (inventory-

to-sales ratios, change in unit labor costs, commercial and industrial loans outstanding, 

etc.) turn after the economy turns, thus playing a confirming role. These three types of 

indicators are important in their own right although most attention is played to the role of 

leading indicators because they tend to shift direction in advance of BC. Leading indicators 

have a “look-ahead” quality and measure anticipations and new commitments. They lead 

the economy, and turn before the economy does. Their lead with respect to BC helps 
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policy makers monitor the changes in the economy. Economists have been working for a 

long time to determine economic indicators which lead the economy. For instance, 

National Bureau of Economic Research (NBER) is an US organization which was founded 

in 1920 and provides dates of recessions in US industry. The leading indicators enable to 

reveal BCs and it gives signals to policy makers to anticipate prospective movements of 

the economy to some extent. Although, the economists have been working for almost a 

century, there is no concrete tool which works perfectly throughout the historical data and 

this is still an attractive subject for researchers. 

 

 As one of the largest industries in the US, the chemical industry pervades nearly 

every facet of the economy, and its products stand at the beginning of the supply chain. 

Found to lead the US BCs, it provides an excellent vantage point from which to observe 

the global economy. Not only does the chemical industry, a $760 billion enterprise, 

provide inputs to numerous sectors, but it also generates millions of jobs. The business of 

chemistry supports nearly 25% of the US Gross Domestic Product (GDP) and accounts for 

12% of US exports. In 2011, e.g., $56 billion is spent for R&D in chemical industry. Also, 

every one of the five patents in US belongs to chemical industry. Given its principal and 

growing role in the US, tracking the chemical industry is a key factor to anticipate where 

the economy is heading (Dooley, 2012). 

 

 Chemistry’s essential role in the US economy and its early position in the supply 

chain give the American Chemistry Council (ACC) the ability to identify emerging trends 

in the US economy and specific sectors outside of, but closely linked to, the business of 

chemistry. The CAB, the ACC’s first-of-its kind, leading macroeconomic indicator will 

highlight the peaks and troughs in the overall US economy and illuminate potential trends 

in market sectors outside of chemistry. It is the chemical industry’s vital importance that 

makes the CAB a leading economic indicator. The barometer is a critical tool for 

evaluating the direction of the US economy. The CAB index provides a longer lead 

(performs better) than the NBER declarations. The ACC claims that the CAB leads the 

NBER signals by two to fourteen months, with an average lead of eight months (Swift, 

2015). 

  



42 
 

 The CAB is a composite index which comprises indicators drawn from a range of 

chemicals and sectors, including chlorine and other alkalies, pigments, plastic resins and 

other selected basic industrial chemicals. It first originated through a study of the 

relationship between the BCs in the production of selected chemicals and cycles in the 

larger economy during the period from 1947 to date. Other specific indicators used in the 

calculation of the CAB include hours worked in chemicals, chemical company stock data, 

publicly sourced chemical price information, end-use (or customer) industry sales-to-

inventories, and several broader leading economic measures (building permits and 

Purchasing Managers’ Index (PMI) for new orders). The CAB is constructed using a five-

step procedure similar to that used by the US Conference Board to calculate composite 

indexes: i) Calculation of month-to-month changes in the component indices, ii) Adjusting 

month-to-month changes by multiplying them by the component’s weighting, iii) 

Summing the adjusted month-to-month changes (across the components for each month), 

iv) Computing preliminary levels of the composite index, and v) Rebasing the composite 

index to reflect the average lead (in months) of an average 100 in the base year (the year 

2007 is used) of a reference time series (the Federal Reserve’s Industrial Production index 

is used). To update the CAB from month to month, steps i) through iv) are followed to 

incorporate the most recent six months of data. The revisions to the base year in step v) are 

made when the Federal Reserve changes its base year for the IPI. The CAB does not use 

company-specific price information as input data and data is aggregated such that 

company-specific and product-specific data cannot be determined (Swift, 2015). 

 

 CAB provides earlier forecasting, determines turning points and likely future trends 

of the wider US economy, identifies shifts in other industries within the US economy, and 

highlights the industry’s role in driving economic growth. CAB is not a leading index of 

chemical industry activity. Rather, it is a leading index (barometer) based on chemical 

industry data that leads overall industrial production and the overall BC. The ACC claims 

that the relationship between CAB and IPI is such that there is a positive correlation over 

0.9 between IPI and CAB, eight months prior(Swift, 2015). 

 

 CAB is supposed to lead the IPI which is the reference series chosen as a proxy for 

US economic activity. The industrial production has the advantage to be available on a 

monthly basis and to have displayed strong co-movements with GDP historically. The 
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ACC state that not only does the CAB identify the peaks, troughs, trends and shifts in the 

US economy, but it can also be used as a critical tool for forecasting. 

 

 According to McDermott and Scott (2000) there are two methodologies for BC 

identification. The first one, which is proposed by Burns and Mitchell (1946), is classical 

cycle and the second one is growth cycle which is proposed by scientists who study real 

BC. The main difference between them is that the measurements are performed based on 

trend-cycle data in classical cycle approach whereas the measurements are performed 

based on detrended data in growth cycle approach (Mazzi and Scocco, 2002). On the other 

hand, when Hughes Hallett and Richter (2006) explain the pros of time-frequency 

approach in their study, they say that time-frequency technique is not affected by 

detrending. Moreover, (Mayes and Crowley, 2009) say that wavelet analysis doesn’t rely 

on any particular detrending method by using definition of Hughes Hallett and Richter 

(2006). In this chapter, we study both the original data and detrended data to observe if 

there is a difference. 

 

 Before diving into the analysis, it is helpful to explain briefly how NBER determine 

turning points for the US economy. After Burns and Mitchell (1946) scrutinize the BCs, 

Bry and Boschan (1971) simplify their method and generated an algorithm. Consequently, 

NBER committee uses these methods and more (e.g., expert views and judgements) to 

determine the official US peaks and troughs (Boldin, 1994). Decision rules of Bry and 

Boschan (1971) are as follows: 

 

1. Peaks and troughs have to be separated 

 

2. Duration between peak to trough or trough to peak must be at least 6 months. 

 

3. Duration between two consecutive peaks or two consecutive troughs must be at 

least 15 months. 

 

4. In the six months after the beginning of the time series and the six months before 

the end of the time series, peaks and troughs are not counted as turning points.  
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4.2. Data Description and Preliminary Result 

 

 

WCA allows the characterization of the behavior of two co-varying indices, (such as the 

price indices of two commodities) in both the time and frequency domains. Such method is 

invaluable considering the cyclical behavior of the CAB and the US economy. In this 

thesis, co-varying behavior of the CAB and IPI is analyzed by the WCA, for the first time 

in the literature. 

 

 In this thesis work, 1209 monthly data of CAB and IPI covering 1919M1 to 

2019M9 were used. All the data were obtained from the ACC. The ACC’s claim is that the 

CAB holds some primacy in the behavior of other industries due to interactions in 

production chains in the US, and thus, CAB is a leading indicator of IPI and hence the US 

economy. 

 

 Values of the CAB and IPI data are depicted in Figure 4.1a. As the ACC claimed, it 

can be observed that the CAB and IPI move correlated over time. It is also observed that 

the time series have downfalls on particular years. The two time series are detrended 

(linear trend removal) and plotted in Figure 4.1b. The values above the linear trend become 

positive and the values below the trend become negative. This detrended figure better 

shows the years when the two times series move together. For instance, in 1946 and 1947, 

there is an obvious fall or in 2019 there is a dramatic fall. On the other hand, in Figure 4.1c 

year-on-year smoothed change of the time series are plotted, which actually is the three-

month simple moving average smoothing of the yearly differenced series. This is how the 

ACC plots and analyzes the CAB and IPI in their monthly newsletters. Recessions between 

2001 and 2002, and in 2009, as well as the leading of IPI by CAB, can easily be detected 

by this plot. Nevertheless, these plots in the Figure 4.1 are not enough to say 

interrelationship between two time series. To reveal hidden relationships between CAB 

and IPI, all of these series (original trending, detrended, and smoothed-difference series) 

are investigated via univariate Wavelet Power Spectrum (WPS) and the WCA in the 

following sections of this chapter. 
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Figure 4.1. Original Trending, Detrended, and Three-Month Moving-Average-Smoothed 

Yearly-Differenced CAB and IPI Series. 
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4.3. Univariate Wavelet-Based Analysis of the Original Trending CAB and IPI Series 

 

 

In literature, there are studies in which univariate WPS is individually used to define major 

cycles in a particular economy. For instance, Mayes and Crowley (2009) use WPS to 

analyze BCs of core members of Euro zone and Aguiar-Conraria and Soares (2011) use 

WPS to analyze BCs of the EU-15 and EU-12 countries. Although WPS shows evolution 

of major cycles along time, it is not possible to identify “business cycle” in the classical 

sense. In other words, one can not identify economic peaks and troughs by using WPS. 

 

In this section, the original trending CAB and IPI series, as shown in Figure 4.1a, 

will be used. Firstly, the cyclic natures of the time series were explored by using two 

separate univariate analyses, WPS and Fourier Power Spectral Density (PSD). While 

WPSs of the time series are computed using Continuous Wavelet Transforms (CWT) of 

the series, the PSDs of the time series are computed by adjusting an ARMA(P,Q) model to 

the series (Aguiar-Conraria et al., 2008). “Q” parameter is set to zero as it is suggest in the 

paper (Aguiar-Conraria et al., 2008) whereas a suitable “P” parameter is experimentally 

found to be 200 by comparing the WPS and PSD methods and to obtain smooth and well-

defined spectrum peaks. 

 

 In Figure 4.2, there are horizontal red bands at 10-year period of the WPSs of the 

CAB and IPI along the time span which means that both time series consist of common 

sub-cycles with 10-year periods. Moreover, the same conclusion can be drawn for the 

horizontal red bands in both WPSs located at around 20-year period, however the red line 

becomes indistinct between 1950 and 1975 for IPI, which means that both time series 

consist of common sub-cycles with 20-year periods but the sub-cycle is less dominant in 

between 1950 and 1975 for IPI. There are clear red lines located at 30-year period and they 

are also sub-cycles. Similarly, horizontal red bands located between 32-year period and 64-

year period along the time span in WPSs elucidate that both time series consist of common 

sub-cycles with roughly 48-year period, but it must be kept in mind that these sub-cycles 

are slightly outside of the significant region (COI) and thus they are questionable. 

Additionally, at the period larger than 64 year, there are solid intense red lines. It is hard to 
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tell that they are also sub-cycles, because they are far from the significant region outlined 

by the COI. 

 

 On the other hand, peaks located at 30-year period are remarkable on the PSDs of 

the both time series whereas peak located at 22-year period is remarkable only on the PSDs 

of.CAB Additionally, PSD peaks around 10-period is noteworthy as well. Moreover, when 

one goes to larger periods, PSD shows higher power, as in WPS figures. However, since 

the time data is lost in FT-based PSD analysis, it is not possible to say something about 

time localization of the peaks. Thus, although WPSs and PSDs give some limited 

information on the nature of the time series, unfortunately they do not give any information 

about probable associations between them. 

 

 

Figure 4.2. Wavelet Power Spectra and Power Spectral Densities of the Original Trending 

CAB and IPI Series.  
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4.4. Wavelet Coherence Analysis of the Original Trending CAB and IPI Series 

 

 

In literature, there are studies in which WCA is used to reveal BC synchronization among 

two different economies. For instance, Rua (2010) uses WCA to analyze BC 

synchronization among European economies and Hanus and Vacha (2015) use WCA to 

analyze BC synchronization among Visegrad Four. However, in this thesis, WCA will be 

used to reveal synchronization of two economic indicator of the same economy, namely 

CAB and IPI. Subsequently, results of WCA will be compared to NBER’s BC turning 

points to decide whether WCA of the CAB and IPI is a leading indicator or not and 

whether the CAB leads IPI as claimed by the ACC. 

 

Table 4.1 lists the values of some of the important parameters used in the WCA 

computations of this chapter’s example. 

 

Table 4.1. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

dt sampling interval 1/12 years 

DJ number of octaves per scale 1/32 

LPer lower level of period 1/12 years 

UPer upper level of period 100.42 years 

LPhaseDif lower levels of phase-difference bands [0.5, 1.0, 3.0] years 

UPhaseDif upper levels of phase-difference bands [1.0, 2.0, 12] years 

MinScale minimum scale 0.12 years 

MaxScale maximum scale 100.42 years 

Mother mother wavelet Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [60 60] 

 

Fıgure 4.3 contains plots of normalized values of the original trending CAB and IPI 

series, their WCA image, and average phase difference between two series over the three 

particular period bands (0.5-1, 1-2, and 3-12 year period bands). WCA comprises much 

valuable information on the interrelation of the two series. In order to advance without 
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missing a point and to be companionable with real-life analysis habits of the economists, 

the WCA figure will be studied under the short-, medium-, and long-term perspectives. 

 

 

Figure 4.3. Wavelet Coherence Analysis and Phase-Difference Plots of the Original 

Trending CAB and IPI Series. 

 

Figure 4.4 was generated to identify more crisply the range of these short, medium, 

and long terms and to behold overall time-wise and frequency-wise mean of phase 

difference and coherency of the CAB and IPI series. From Figure 4.4a, it can be deduced 

that average coherency between two series is approximately 0.7 along the timeline, which 

means they are highly coherent. On the other hand, Figure 4.4b contains critical 

information for WCA. The peaks in this sub-figure can be used for designation of short-, 

medium-, and long-term behavior. In this context, the peaks located at 1 and 6 years are 
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attributed to short and medium while periods are longer than 24 years can be attributed to 

long terms. It is hard to deduce something from Figure 4.4c whereas Figure 4.4d roughly 

shows that in (business) cycles between 2- and 12-year period band and between 19-and 

34-year period band, the CAB leads IPI by approximately 𝜋 8⁄  phase angle, but at the rest 

of the timeline the two series are in-phase. Nevertheless, just by looking at the mean 

coherency spectrum and phase difference spectrum across time plots can be deceptive 

because two dimensional coherency plots disregard the degree of coherency. Importance of 

the true (un-averaged) WCA analysis and the WCA image in Figure 4.3 arises in this 

situation. 

 

Figure 4.4. Mean Coherence and Mean Phase-Difference between the Original Trending 

CAB and IPI Series across Time and Frequency Domains.  
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In all of the subplots (Figure 4.3c-d-e and Figure 4.4a-b-c-d) the light-colored shadow 

bands around the solid curves (which are the mean values) are the standard-error bands 

computed over the data points used in calculating the mean values. The regions of x-axis 

corresponding to more spreaded (wide) standard-error bands localize the time zones in 

which the variation in the subplot quantity (coherence or mean phase difference) is high 

and thus one should be less sure about the mean (curve) value. Vice versa, the regions of x-

axis corresponding to less spreaded (narrow) standard-error bands localize the time zones 

in which the variation in the subplot quantity (coherence or mean phase difference) is low 

and thus one can be more sure about the mean (curve) value. For instance, for this 

example, the standard-error bands in Figure 4.4b decreases significantly as period 

approaches to 8 years; indicating that the mean coherence across time (solid line) certainly 

represents the coherences across time for business cycles close to 8 years. 

 

Now, the short-, medium-, and long-term behaviors can be attributed using the WCA. 

The motivation of applying WCA to the CAB and IPI is to discover the link (interrelations) 

between the time series and to find a hint for a new leading indicator. By taking simple 

rules of Bry and Boschan (1971), we claim that BC turning points should be revealed by 

looking at the short term (0.5 to one year) part of WCA image. Additionally, so as to make 

such a visual comparison more precisely, turning points claimed by the ACC (listed in 

Table 4.2) should be roughly matched on the WCA image. For this purpose, the cyan 

colored downward arrows are put to indicate troughs and the purple colored upward arrows 

are put to show peaks on the WCA image. Additionally, vertical white lines are added onto 

Figure 4.3b which point out the beginnings of the years written above the vertical line. 

Interestingly, dates of the small “zones of high coherency” located between 0.5 to one year 

band and dates of troughs claimed by the ACC are somehow matched. This image brings 

in mind an asymmetric feature of economies in general; the contagion effect. Boldin 

(1994) defines asymmetric quality of BCs as the dissimilar features of recession and 

expansion periods of the economy. Additionally, Aloui and Hkiri (2014) define the 

contagion effect as sudden increase in coherency during turmoil periods rather than during 

stable periods. Many scientists use wavelet analysis to study contagion effect such as 

(Gallegati, 2012; Madaleno and Pinho, 2014; Rua and Nunes, 2009). 
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It is important to understand the reason why Table 4.2 is constructed. Firstly, the ACC 

already claims that the CAB is a leading indicator of NBER’s BCs. If the WCA of CAB 

and IPI reveals that CAB leads IPI, then it should lead NBER BC as well. Therefore, 

turning points of CAB are put into the table. Moreover, since our focus will be on the 

recession periods, these periods are put into the table as well in order to observe the size 

and duration relationships of “coherency zones (islands)” on the WCA image. Finally, 

phase difference between the peaks of CAB and peaks of NBER are put into the table, 

instead of phase difference of troughs, because recession periods start right after the peaks. 

Hence, the phase differences between CAB and IPI to be extracted from the WCA image 

can be compared with the phase difference between peaks of CAB and peaks of NBER. 

 

Table 4.2. Dates of the CAB Turning Points and Phase Difference between the Peaks 

Claimed by ACC (CAB) and NBER. 

ACC’s CAB 

Peak Date 

ACC’s CAB 

Trough Date 

Recession Duration 

(Peak to Trough) 

(Month) 

Phase Difference 

Between ACC’s CAB 

Peaks 

and NBER Peaks 

(Month) 

October 1919 May 1921 7 3 

December 1922 November 1923 11 5 

June 1926 December 1926 6 4 

December 1928 July 1932 7 8 

December 1936 April 1938 4 5 

August 1943 September 1945 25 18 

September 1948 July 1949 10 2 

May 1953 January 1954 8 2 

January 1957 March 1958 14 8 

June 1959 October 1960 16 11 

May 1969 April 1970 11 7 

February 1973 February 1975 24 9 

March 1979 June 1980 15 14 

December 1980 August 1982 20 8 

October 1989 January 1991 15 9 

March 2000 October 2001 19 12 

May 2007 March 2009 22 5 

   Average = 7.6 
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Consequently, matching “zones of high coherency” and turning points of BC as 

claimed by ACC are both listed in chronological order: 

 

1. According to Table 4.2, at the mid of 1921 there was the first trough and the 

recession lasted seven months. Additionally, it is claimed by the ACC that the 

trough of CAB leaded the trough of NBER by three months in the first BC. On the 

other hand, there is a coherent region between 0.5 to one year period band on the 

WCA image between 1920 and 1921 with downward directed black arrows which 

means that CAB leads IPI roughly by two or three months (see Figure 3.5). 

Consequently, the WCA is successful in detection of both the first BC and the 

phase difference between the trough of CAB and the trough of NBER for the first 

BC. Additionally, for the first trough, it is not possible to say whether WCA is 

leading CAB or not (meaning that whether the trough observed from the WCA 

image is leading the through claimed by the ACC) by looking at the WCA figure 

because it is on the edge of the COI. Furthermore, the width of the coherent zone is 

roughly 26 months and it does not represent the duration of the first recession 

period (seven months) in Table 4.2. 

 

2. According to Table 4.2, at the late of 1923 there was the second trough and the 

recession lasted 11 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by three months in the second BC. On the 

other hand, there is an indistinct coherent region between 0.5 to one year period 

band on the WCA image at 1924 with upward directed black arrows which means 

that IPI leads CAB roughly by two or three months (see Figure 3.5). Consequently, 

WCA is not successful in detection of both the second BC and the phase difference 

between the trough of CAB and the trough of NBER for the second BC. 

Additionally, for the second trough, it is clearly seen that the cyan colored 

downward arrow which indicates the trough of CAB prevails earlier than the 

coherent zone in the WCA figure. Furthermore, the width of the coherent zone is 

roughly 13 months and it approximately represents the duration of the second 

recession period (11 months) in Table 4.2. 
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3. According to Table 4.2, at the late of 1926 there was the third trough and the 

recession lasted six months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by four months in the third BC. On the other 

hand, there is an indistinct coherent region between 0.5 to one year period band on 

the WCA image at 1926 with southeastward directed black arrows which means 

that CAB leads IPI roughly by two months (see Figure 3.5). Consequently, the 

WCA is successful in detection of the third BC and is partially successful in 

detection of the phase difference between the trough of CAB and the trough of 

NBER for the third BC. Additionally, for the third trough, it is roughly seen that 

coherent zone in the WCA figure prevails earlier than the cyan colored downward 

arrow which indicates the trough of CAB. Furthermore, the width of the coherent 

zone roughly 15 months and it does not represent the duration of the third recession 

period (six months) in Table 4.2. 

 

4. According to Table 4.2, at the mid of 1932 there was the fourth trough and the 

recession lasted seven months. Additionally, it is claimed by the ACC that the 

trough of CAB leaded the trough of NBER by eight months in the fourth BC. On 

the other hand, there is a large coherent region between 0.5 to one year period band 

on the WCA image between 1931 and 1938 with northeastward directed black 

arrows which means that the IPI leads CAB roughly by two months (see Figure 

3.5). Consequently, the WCA is successful in detection of the fourth BC but is not 

successful in detection of the phase difference between the trough of CAB and the 

trough of NBER for the fourth BC. Additionally, for the fourth trough point, it is 

roughly seen that coherent zone in the WCA figure prevails earlier than the cyan 

colored downward arrow which indicates the trough of CAB. Furthermore, the 

width of the coherent zone roughly 5.5 years and it does not represent the duration 

of the fourth recession period (seven months) in Table 4.2. 

 

5. According to Table 4.2, at the onset of 1938 there was the fifth trough and the 

recession lasted four months. Additionally, it is claimed by the ACC that the trough 

of the CAB leaded the trough of NBER by five months in the fifth BC. On the other 

hand, there is a slim coherent region between 0.5 to one year period band on the 

WCA image at 1939 with slightly southeastward directed black arrows which 
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means that the CAB leads IPI by one month (see Figure 3.5). Consequently, the 

WCA is not successful in detection of both the fifth BC and the phase difference 

between the trough of CAB and the trough of NBER for the fifth BC. Additionally, 

for the fifth trough, it is clearly seen that the cyan colored downward arrow which 

indicates the trough of CAB prevails earlier than the coherent zone in the WCA 

figure. Furthermore, the width of the coherent zone is roughly 17 months and it 

does not represent the duration of the fifth recession period (4 months) in Table 4.2. 

 

6. According to Table 4.2, at the late of 1945 there was the sixth trough and the 

recession lasted 25 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 18 months in the fifth BC. On the other 

hand, there is a slim coherent region between 0.5 to one year period band on the 

WCA image between 1944 and 1946 with rightward directed black arrows which 

means that there is no phase difference between the CAB and IPI or the arrows are 

already completed 360 degree rotation and return to their initial position (see Figure 

3.5). The 18 months lead of CAB claimed by the ACC is approximately equal to 

two full tours for arrows on the coherent region between 0.5 to one year period 

band on the WCA image. Consequently, the WCA is successful in detection of the 

sixth BC and is doubtfully successful in detection of the phase difference between 

the trough of CAB and the trough of NBER for the sixth BC. Additionally, for the 

sixth trough, it is roughly seen that the coherent zone in the WCA figure occurs 

earlier than the cyan colored downward arrow which indicates the trough of CAB. 

Furthermore, the width of the coherent zone is roughly 17 months and it does not 

represent the duration of the sixth recession period (25 months) in Table 4.2. 

 

7. According to Table 4.2, at the mid of 1949 there was the seventh trough and the 

recession lasted 10 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by two months in the seventh BC. On the other 

hand, there is an indistinct coherent region between 0.5 to one year period band on 

the WCA image at 1950 with northeastward directed black arrows which means 

that the IPI leads CAB roughly by two months (see Figure 3.5). Consequently, the 

WCA is successful in detection of the seventh BC but is not successful in detection 

of the phase difference between the trough of CAB and the trough of NBER for the 
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seventh BC. Additionally, for the seventh trough, it is seen that the coherent zone in 

the WCA figure prevails slightly earlier than the cyan colored downward arrow 

which indicates the trough of CAB. Furthermore, the width of the coherent zone is 

roughly 17 months and it does not represent the duration of the seventh recession 

period (10 months) in Table 4.2. 

 

8. According to Table 4.2, at the onset of 1954 there was the eighth trough and the 

recession lasted eight months. Additionally, it is claimed by the ACC that the 

trough of CAB leaded the trough of NBER by two months in the eighth BC. On the 

other hand, there is a coherent region between 0.5 to one year period band on the 

WCA image between 1952 and 1954 with southeastward directed black arrows 

which means that the IPI leads CAB roughly by two months (see Figure 3.5). 

Consequently, the WCA is successful in detection of both the eighth BC and the 

phase difference between the trough of CAB and the trough of NBER for the eighth 

BC. Additionally, for the eighth trough, it is clearly seen that coherent zone in the 

WCA figure comes earlier than the cyan colored arrow which indicates the trough 

of CAB. Furthermore, the width of the coherent zone is roughly 18 months and it 

does not represent the duration of the eighth recession period (eight months) in 

Table 4.2. 

 

9. According to Table 4.2, at the onset of 1958 there was the ninth trough and the 

recession lasted 14 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by eight months in the ninth BC. Moreover, 

according to Table 4.2, at the late of 1960 there was the 10th trough and the 

recession lasted 16 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 11 months in the 10th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1957 and 1961 with southeastward directed black arrows which 

means that the IPI leads CAB roughly by two months or the arrows are already 

completed 360 degree rotation and show the residuals (see Figure 3.5). The eight-

month lead of the CAB claimed by the ACC is approximately equal to a full tour 

for arrows on the coherent region between 0.5 to one year period band on the WCA 

image and 11 months lead claimed by the ACC is equal to a full tour plus 
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approximately 𝜋 4⁄  degree rotation for arrows on the coherent region between 0.5 

to one year period band on the WCA image. Consequently, the WCA is successful 

in detection of both the ninth BC and the 10th BC. Also, the WCA is doubtfully 

successful for the phase difference between the trough of CAB and the trough of 

NBER for the ninth BC and the 10th BC. Additionally, for the ninth and 10th 

troughs, it is clearly seen that the coherent zones in the WCA figure prevails earlier 

than the cyan colored arrows which indicates the trough of CAB. Furthermore, the 

widths of the first part and the second part of the coherent zones are roughly 24 and 

25 months, respectively, which do not represent the durations of the ninth and the 

10th recession periods (14 months and 16 months) in Table 4.2. 

 

10. According to Table 4.2, at the beginning of 1970 there was the 11th trough and the 

recession lasted 11 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by seven months in the 11th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1969 and 1973 with northeastward directed black arrows which 

means that the IPI leads CAB roughly by two months or the CAB leads IPI by 

roughly seven months (at eight months periods, leading by seven months or lagging 

by two months are indistinguishable because of the cyclical nature of time series) 

(see Figure 3.5). Seven-month lead of the CAB claimed by the ACC is almost equal 

to a full tour (one or two months are missing for completing the tour) for arrows on 

the coherent region between 0.5 to one year period band on the WCA image. 

Consequently, the WCA is successful in detection of both the 11th BC and the 

phase difference between the trough of CAB and the trough of NBER for the 11th 

BC. Additionally, for the 11th trough, it is clearly seen that coherent zone in the 

WCA figure appears earlier than the cyan colored arrow which indicates the trough 

of CAB. Furthermore, the width of the coherent zone is roughly 3.5 years and it 

does not represent the duration of the 11th recession period (11 months) in Table 

4.2. 

 

11. According to Table 4.2, at the onset of 1975 there was the 12th trough and the 

recession lasted 24 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by nine months in the 12th BC. On the other 
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hand, there is a slim coherent region between 0.5 to one year period band on the 

WCA image between 1975 and 1976 with rightward directed black arrows which 

means that there is no phase difference between CAB and IPI or the arrows are 

already completed 360 degree rotation and return to their initial position (see Figure 

3.5). The nine months lead of the CAB claimed by the ACC is approximately equal 

to a full tour for arrows on the coherent region between 0.5 to one year period band 

on the WCA image. Consequently, the WCA is successful in detection of both the 

12th BC and the phase difference between the trough of CAB and the trough of 

NBER for the 12th BC. Additionally, for the 12th trough, it is roughly seen that the 

coherent zone in the WCA figure emerges slightly earlier than the cyan colored 

arrow which indicates the trough of CAB. Furthermore, the width of the coherent 

zone is roughly 15 months and it does not represent the duration of the 12th 

recession period (24 months) in Table 4.2. 

 

12. According to Table 4.2, at the mid of 1980 there was the 13th trough and the 

recession lasted 15 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 14 months in the 13th BC. Moreover, 

according to Table 4.2, at the mid of 1982 there was the 14th trough and the 

recession lasted 20 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by eight months in the 14th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1979 and 1983. At the left hand side of the coherent zone which 

corresponds to 13th trough have southeastward directed black arrows which means 

that the CAB leads IPI roughly by two months or the arrows are already completed 

360 degree rotation and show the residuals (see Figure 3.5). The 14-month lead of 

the CAB claimed by the ACC is equal to a full tour plus approximately 𝜋 4⁄  degree 

rotation for arrows on the coherent region between 0.5 to one year period band on 

the WCA image. On the other hand, the right hand side of the coherent zone which 

corresponds to 14th trough have northeastward directed black arrows which means 

that the IPI leads CAB roughly by a month or the CAB leads IPI by roughly eight 

months (at nine months periods, leading by eight months or lagging by one moths 

are indistinguishable because of the cyclical nature of time series) (see Figure 3.5). 

The eight-month lead of the CAB claimed by the ACC is almost equal to a full tour 
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(one or two months are missing for completing the tour) for arrows on the coherent 

region between 0.5 to one year period band on the WCA image. Consequently, the 

WCA is successful in detection of both the 13th BC and the 14th BC. Also, the 

WCA is successful in detection of the phase difference between the trough of CAB 

and the trough of NBER for the 13th and 14th BCs. Additionally, for the 13th and 

14th troughs, it is clearly seen that coherent zones in the WCA figure prevail earlier 

than the cyan colored arrows which indicates the trough of CAB. Furthermore, the 

widths of the first and second parts of the coherent zones are roughly 34 months 

and 12 months, respectively which do not represent the durations of the 13th and 

the 14th recession periods (15 months and 20 months) in Table 4.2. 

 

13. According to Table 4.2, at the opening of 1991 there was the 15th trough and the 

recession lasted 15 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by nine months in the 15th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1990 and 1992 with southeastward directed black arrows which 

means that the CAB leads IPI roughly by two months or the arrows are already 

completed 360 degree rotation and show the residuals (see Figure 3.5). The nine-

month lead of the CAB claimed by the ACC is equal to a full tour plus 

approximately 𝜋 8⁄  degree rotation for arrows on the coherent region between 0.5 

to one year period band on the WCA image. Consequently, the WCA is successful 

in detection of both the 15th BC and the phase difference between the trough of 

CAB and the trough of NBER for the 15th BC. Additionally, for the 15th trough, it 

is clearly seen that the coherent zone in the WCA figure arises earlier than the cyan 

colored arrow which indicates the trough of CAB. Furthermore, the width of the 

coherent zone is roughly 3.8 years and it does not represent the duration of the 15th 

recession period (15 months) in Table 4.2. 

 

14. According to Table 4.2, at the late of 2001 there was the 16th trough and the 

recession lasted 19 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 12 months in the 16th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 2001 and 2004 with southeastward directed black arrows which 
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means that the CAB leads IPI roughly by two months or the arrows are already 

completed 360 degree rotation and show the residuals (see Figure 3.5). The 14-

month lead of the CAB claimed by the ACC is equal to a full tour plus 

approximately 𝜋 2⁄  degree rotation for arrows on the coherent region between 0.5 

to one year period band on the WCA image. Consequently, the WCA is successful 

in detection of the 16th BC and WCA is doubtfully successful in detection of the 

phase difference between the trough of CAB and the trough of NBER for the 16th 

BC. Additionally, for the 16th trough, it is clearly seen that the coherent zone in the 

WCA figure appears earlier than the cyan colored arrow which indicates the trough 

of CAB. Furthermore, the width of the coherent zone is roughly 3 years and it does 

not match the duration of the 16th recession period (19 months) in Table 4.2. 

 

15. According to Table 4.2, at the beginning of 2009 there was the 17th trough and the 

recession lasted 22 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by five months in the 17th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 2005 and 2007 with randomly directed black arrows. However, it is 

hard to claim that the 17th trough and the “coherent zone” correspond to each 

other. Consequently, the WCA is not successful in detection of both the 17th BC 

and the phase difference between the trough of CAB and the trough of NBER for 

the 17th BC. Subsequently, 17th it is clearly seen that the coherent zone in the 

WCA figure is not a leading indicator for the 17th trough. 

 

Table 4.3 is constructed to sum up the abovementioned performance of the WCA 

on the CAB and IPI data with regard to CAB being a leading indicator of IPI, the success 

in catching the phase relationship between CAB and IPI and in capturing the recession 

durations claimed by the ACC. The zeros in the table indicate inconclusive cases. 
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Table 4.3. Performance Summary of WCA on the Original Trending CAB and IPI Data. 

BC 

Success in Being 

Leading 

Indicator of 

Troughs Claimed 

by ACC 

Success in 

Capturing Phase 

Relationship 

Between CAB and 

IPI 

Success in 

Capturing 

Recession 

Duration 

Claimed by ACC 

1. 0 +  

2.   + 

3. + +  

4. +   

5.    

6. + +  

7. +   

8. + +  

9. + +  

10. + +  

11. + +  

12. + +  

13. + +  

14. + +  

15. + +  

16. + +  

17. 0 0 0 

 
+ = 13 

 = 2 

+ = 12 

 = 4 

+ = 1 

 = 15 

 

As shown in Table 4.3, the WCA successfully reacts earlier than the occurrences of 

troughs from second BC to 16th BC with the exception of the third BC. Similarly, one can 

successfully predict phase relationship between troughs claimed by the ACC and troughs 

claimed by the NBER from eighth BC to 16th BC. However, the WCA totally fails to bring 

a comment to recession durations claimed by the ACC or NBER. Moreover, the WCA fails 

in identifying the last BC claimed by the ACC, therefore performance of the WCA is still 

questionable. 
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Furthermore, the interpretation of Figure 4.3b under medium-term scope (between 

three to 12 years period band) enables to shed light on association between CAB and IPI 

over a different scale. Clearly, the CAB and IPI are highly coherent between three to 12 

years period throughout the time line which means that the analysis is on the right track. In 

other words, the analysis of the CAB is promising to predict changes in the IPI. Elaborate 

investigation of the medium-term periods of Figure 4.3b depicts that the CAB and IPI are 

“in phase” along the time line and there is no phase difference between the time series until 

1945 (the same result roughly can be extracted from Figure 4.3e), excluding the two to 

four years period band after 1939 (arrows point to southeast direction which means that the 

CAB leads IPI by approximately five months). However, between 1945 and 1975, arrows 

on the three to 12 years period band point almost downwards, which means that the CAB 

leads IPI by approximately 3.5 years. Whereas, arrows point to southeast in the 1.5 to three 

year period band in between 1945-1975, which means that the CAB leads IPI by 

approximately 5.5 months. Additionally, from 1965 to 2000, the CAB keeps leading the 

IPI yet with small phase angle (approximately few months) at medium-term scale. 

However, from 2000 on, the phase between the CAB and IPI returns to its initial position 

and the CAB leads the IPI by about 1.5 year. On the other hand, there are two less coherent 

zones and one blue (almost totally incoherent) zone in medium-term region. The first less 

coherent zone is located at four years period in between 1933 and 1939 and the second less 

coherent zone is located at two to four years period band in between 1950 and 1955. 

Furthermore, the incoherent zone is located at four years period band in between 1986 and 

1985. Arrows around those less coherent regions do not point the same direction with the 

rest of the adjacent arrows in the medium-term. These regions may be attributed to 

unexplained economic incidents in those years. Furthermore, there is a large less coherent 

zone in between 12 and 20 year periods band between 1962 and 1975. 

 

Additionally, it can be inferred that the CAB and IPI are highly coherent at higher 

periods. Nevertheless, only small part of the long-term period is implicit in COI in which 

the time series are coherent and the arrows point to southeast direction. This averagely 

corresponds to the fact that the CAB leads IPI by about four years.  
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It should be noted that the coherent regions below 0.25 year period are disregarded 

since the distinction between noise and meaningful data is not precise at that scale. 

Additionally, coherent regions over 32 year period are disregarded as well, because 

coherency analysis becomes statistically insignificant out of the COI. 

 

In addition, Figure 4.5 shows the image of the quantized distribution of the phase 

differences between CAB and IPI. In Figure 4.5, light-blue areas (0 < 𝜑𝑥,𝑦 < −𝜋/2) and 

yellow areas (0 < 𝜑𝑥,𝑦 < 𝜋/2) correspond to the “in phase” condition. While the light-

blue area indicates that the IPI leads CAB, the yellow area indicates that the CAB leads 

IPI. Blue areas (−𝜋/2 < 𝜑𝑥,𝑦 < −𝜋) and red areas (𝜋/2 < 𝜑𝑥,𝑦 < 𝜋) correspond to the 

“out of phase” condition. The blue area indicates that the IPI leads CAB (or the troughs of 

the CAB lead the peaks of IPI), while the red area indicates that the CAB leads IPI (or the 

troughs of the IPI lead the peaks of the CAB). Consequently, the CAB leads the IPI almost 

everywhere between two to eight year period band, around 32 year period and at the 

periods larger than 64 year. On the other hand, the IPI leads the CAB around 16 year 

period and between 40 to 64 year period band. 

 

 

Figure 4.5. Quantized Distribution of Phase Angles between the Original Trending CAB 

and IPI Series.  
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4.5. Univariate Wavelet-Based Analysis of the Detrended CAB and IPI Series 

 

 

In this section, the detrended CAB and IPI series, as shown in Figure 4.1b, will be used. In 

order to detrend the time series, linear trend lines of the two time series were individually 

subtracted from the original time series and we have left with cyclical part of the time 

series. Firstly, dominant sub-cycles of the detrended time series were explored by using 

two separate univariate analyses, WPS and PSD. While WPSs of the time series are 

computed using CWT of the series, the PSDs of the time series are computed by adjusting 

an ARMA(P,Q) model to the series Aguiar-Conraria et al. (2008). “Q” parameter is set to 

zero as it is suggest in the paper Aguiar-Conraria et al. (2008) whereas a suitable “P” 

parameter is experimentally found to be 210 by comparing the WPS and PSD methods and 

to obtain smooth and well-defined spectrum peaks. 

 

 In Figure 4.6, there are horizontal red bands at 10-year period of the WPSs of the 

CAB and IPI along the time span which means that both time series consist of common 

sub-cycles with 10-year periods. Moreover, the same conclusion can be drawn for the 

horizontal red bands in both WPSs located at around 20-year period which means that both 

time series consist of common sub-cycles with 20-year periods. There are clear red lines 

located at 30-year period and they are also sub-cycles. Similarly, horizontal red bands 

located between 32-year period and 64-year period along the time span in WPSs elucidate 

that both time series consist of common sub-cycles with roughly 48-year period, but it 

must be kept in mind that these sub-cycles are slightly outside of the significant region 

(COI) and thus they are questionable. Additionally, at the period larger than 64 year, there 

are solid intense red lines. It is hard to tell that they are also sub-cycles, because they are 

far from the significant region outlined by the COI. 

 

 On the other hand, PSD peaks around 8-period are noteworthy for CAB and IPI. 

Moreover, peaks located at 5-year period and 10-year period are remarkable only on the 

PSDs of CAB. Additionally, when one goes to larger periods, continuous increases starting 

from 20-year period are remarkable on the PSDs of the both time series which can be 

addressed to obvious red zone of WPS figures. However, since the time data is lost in FT-

based PSD analysis, it is not possible to say something about time localization of the 
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peaks. Thus, although WPSs and PSDs give some limited information on the nature of the 

time series, unfortunately they do not give any information about probable associations 

between them. 

 

 Furthermore, comparison WPS figures of detrended and original trending series 

depicts that there are small differences among them. For example, the red line located 

around 10 year period in WPS figures of detrend CAB and IPI is slightly thicker than the 

red line located around 10 year period in WPS figures of original trending CAB and IPI. 

Nevertheless, PSD figures show indifferent results. 

 

 

Figure 4.6. Wavelet Power Spectra and Power Spectral Densities of the Detrended CAB 

and IPI Series. 
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4.6. Wavelet Coherence Analysis of the Detrended CAB and IPI Series 

 

 

In this section, WCA of the detrended CAB and IPI series will be used. Subsequently, 

results of WCA will be compared to NBER’s BC turning points to decide whether WCA of 

the CAB and IPI reveals a leading indicator or not and whether the CAB leads IPI as 

claimed by the ACC. 

 

Table 4.4 lists the values of some of the important parameters used in the WCA 

computation in this section. 

 

Table 4.4. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

dt sampling interval 1/12 years 

DJ number of octaves per scale 1/32 

LPer lower level of period 1/12 years 

UPer upper level of period 100.42 years 

LPhaseDif lower levels of phase-difference bands [0.5, 1.0, 3.0] years 

UPhaseDif upper levels of phase-difference bands [1.0, 2.0, 12] years 

MinScale minimum scale 0.12 years 

MaxScale maximum scale 100.42 years 

Mother mother wavelet Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [60 60] 

 

Fıgure 4.7 contains plots of normalized values of the detrended CAB and IPI series 

(individually detrended via the removal of their individual linear trends/fits), their WCA 

image, and average phase difference between two series over the three particular period 

bands (0.5-1, 1-2, and 3-12 year period bands). WCA encompasses valuable information 

on the interrelation of the two series. In order to advance without missing a point and to be 

companionable with real-life analysis habits of the economists, the WCA figure will be 

studied under the short-, medium-, and long-term perspectives. 
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Figure 4.7. Wavelet Coherence Analysis and Phase-Difference Plots of the Detrended 

CAB and IPI Series. 

 

Figure 4.8 was generated to identify more crisply the range of these short, medium, 

and long terms and to behold overall time-wise and frequency-wise mean of phase 

difference and coherency of the CAB and IPI series. From Figure 4.8a, it can be deduced 

that average coherency between two series is approximately 0.7 along the timeline, which 

means they are highly coherent. On the other hand, Figure 4.8b contains critical 

information for the WCA. The peaks in this sub-figure can be used for designation of 

short-, medium-, and long-term behavior. In this context, the peaks located at 1 and 6 years 

are attributed to short and medium while periods are longer than 24 years can be attributed 

to long terms. It is hard to deduce a lot from Figure 4.8c whereas Figure 4.8d roughly 

shows that in (business) cycles between 2- and 12-year period band and between 19- and 
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34-year period band, the CAB leads IPI by approximately 𝜋 8⁄  phase angle, but at the rest 

of the timeline the two series are in-phase. Nevertheless, just by looking at the mean 

coherency spectrum and phase difference spectrum across time plots can be deceptive 

because two dimensional coherency plots disregard the degree of coherency. Importance of 

the true (un-averaged) WCA analysis and the WCA image in Figure 4.7 arises in this 

situation. 

 

Furthermore, comparison of mean coherency and mean phase difference figures of 

detrended and original trending series depicts that there are minor differences between 

them. For instance, in Figure 4.8b, coherency decreases to 0.7 between 10 to 24 year 

period bands whereas there is no such a decrease in Figure 4.4b. 

 

Figure 4.8. Mean Coherence and Mean Phase-Difference between the Detrended CAB and 

IPI Series across Time and Frequency Domains.  
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Now, the short-, medium-, and long-term behaviors can be analyzed using the 

WCA. The motivation for application of the WCA to the CAB and IPI is to discover the 

link (interrelations) between the time series and to find a hint for a new leading indicator. 

As discussed in the former section, by considering the simple rules of Bry and Boschan 

(1971), we claim that BC turning points should be revealed by looking at the short term 

(0.5 to one year) part of the WCA image. Additionally, so as to make such a visual 

comparison more precisely, turning points claimed by the ACC (listed in Table 4.2) should 

be roughly matched on the WCA image. For this purpose, the cyan colored downward 

arrows are put to indicate troughs and the purple colored upward arrows are put to show 

peaks on the WCA image. Additionally, vertical white lines are added onto Figure 4.7b 

which point out the beginnings of the years written above the vertical line. Similar to 

Figure 4.3b of the previous section, in Figure 4.7b dates of the small “zones of high 

coherency” located between 0.5 to one year band and dates of troughs claimed by the ACC 

are somehow matched here as well. The aim of this section is to study if the widely-

accepted asymmetric feature of economies in general and the CAB being a leading 

indicator of NBER’s BCs can be captured by the WCA of the detrended CAB and IPI data 

as well and to compare the results with those of the previous section  that belong to the 

original trending data. Consequently, matching “zones of high coherency” and turning 

points of BC as claimed by the ACC are both listed in chronological order: 

 

1. According to Table 4.2, at the mid of 1921 there was the first trough and the 

recession lasted seven months. Additionally, it is claimed by the ACC that the 

trough of CAB leaded the trough of NBER by three months in the first BC. On the 

other hand, there is a coherent region between 0.5 to one year period band on the 

WCA image between 1920 and 1921 with downward directed black arrows which 

means that the CAB leads IPI roughly by two or three months (see Figure 3.5). 

Consequently, the WCA is successful in detection of both the first BC and the 

phase difference between the trough of CAB and the trough of NBER for the first 

BC. Additionally, for the first trough, it is not possible to declare whether WCA is 

leading CAB or not by looking at the WCA figure because it is on the edge of the 

COI. Furthermore, the width of the coherent zone is roughly 26 months and it does 

not represent the duration of the first recession period (seven months) in Table 4.2. 
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2. According to Table 4.2, at the late of 1923 there was the second trough and the 

recession lasted 11 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by three months in the second BC. On the 

other hand, there is an indistinct coherent region between 0.5 to one year period 

band on the WCA image at 1924 with upward directed black arrows which means 

that the IPI leads CAB roughly by two or three months (see Figure 3.5). 

Consequently, the WCA is not successful in detection of both the second BC and 

the phase difference between the trough of CAB and the trough of NBER for the 

second BC. Additionally, for the second trough, it is clearly seen that the cyan 

colored downward arrow which indicates the trough of CAB prevails earlier than 

the coherent zone in the WCA figure. Furthermore, the width of the coherent zone 

is roughly 13 months and it approximately represents the duration of the second 

recession period (11 months) in Table 4.2. 

 

3. According to Table 4.2, at the late of 1926 there was the third trough and the 

recession lasted six months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by four months in the third BC. On the other 

hand, there is an indistinct coherent region between 0.5 to one year period band on 

the WCA image at 1926 with southeastward directed black arrows which means 

that the CAB leads IPI roughly by two months (see Figure 3.5). Consequently, the 

WCA is successful in detection of the third BC and is partially successful in 

detection of the phase difference between the trough of CAB and the trough of 

NBER for the third BC. Additionally, for the third trough, it is roughly seen that 

coherent zone in the WCA figure prevails earlier than the cyan colored downward 

arrow which indicates the trough of CAB. Furthermore, the width of the coherent 

zone roughly 15 months and it does not represent the duration of the third recession 

period (six months) in Table 4.2. 

 

4. According to Table 4.2, at the mid of 1932 there was the fourth trough and the 

recession lasted seven months. Additionally, it is claimed by the ACC that the 

trough of CAB leaded the trough of NBER by eight months in the fourth BC. On 

the other hand, there is a large coherent region between 0.5 to one year period band 

on the WCA image between 1931 and 1938 with northeastward directed black 
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arrows which means that the IPI leads CAB roughly by two months (see Figure 

3.5). Consequently, the WCA is successful in detection of the fourth BC but is not 

successful in detection of the phase difference between the trough of CAB and the 

trough of NBER for the fourth BC. Additionally, for the fourth trough point, it is 

roughly seen that coherent zone in the WCA figure prevails earlier than the cyan 

colored downward arrow which indicates the trough of CAB. Furthermore, the 

width of the coherent zone roughly 5.5 years and it does not represent the duration 

of the fourth recession period (seven months) in Table 4.2. 

 

5. According to Table 4.2, at the onset of 1938 there was the fifth trough and the 

recession lasted four months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by five months in the fifth BC. On the other 

hand, there is a slim coherent region between 0.5 to one year period band on the 

WCA image at 1939 with slightly southeastward directed black arrows which 

means that the CAB leads IPI by one month (see Figure 3.5). Consequently, the 

WCA is not successful in detection of both the fifth BC and the phase difference 

between the trough of CAB and the trough of NBER for the fifth BC. Additionally, 

for the fifth trough, it is clearly seen that the cyan colored downward arrow which 

indicates the trough of CAB prevails earlier than the coherent zone in the WCA 

figure. Furthermore, the width of the coherent zone is roughly 17 months and it 

does not represent the duration of the fifth recession period (4 months) in Table 4.2. 

 

6. According to Table 4.2, at the late of 1945 there was the sixth trough and the 

recession lasted 25 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 18 months in the fifth BC. On the other 

hand, there is a slim coherent region between 0.5 to one year period band on the 

WCA image between 1944 and 1946 with rightward directed black arrows which 

means that there is no phase difference between the CAB and IPI or the arrows are 

already completed 360 degree rotation and return to their initial position (see Figure 

3.5). The 18 months lead of CAB claimed by the ACC is approximately equal to 

two full tours for arrows on the coherent region between 0.5 to one year period 

bands on the WCA image. Consequently, the WCA is successful in detection of the 

sixth BC and is doubtfully successful in detection of the phase difference between 
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the trough of CAB and the trough of NBER for the sixth BC. Additionally, for the 

sixth trough, it is roughly seen that the coherent zone in the WCA figure occurs 

earlier than the cyan colored downward arrow which indicates the trough of CAB. 

Furthermore, the width of the coherent zone is roughly 17 months and it does not 

represent the duration of the sixth recession period (25 months) in Table 4.2. 

 

7. According to Table 4.2, at the mid of 1949 there was the seventh trough and the 

recession lasted 10 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by two months in the seventh BC. On the other 

hand, there is an indistinct coherent region between 0.5 to one year period band on 

the WCA image at 1950 with northeastward directed black arrows which means 

that the IPI leads CAB roughly by two months (see Figure 3.5). Consequently, the 

WCA is successful in detection of the seventh BC but is not successful in detection 

of the phase difference between the trough of CAB and the trough of NBER for the 

seventh BC. Additionally, for the seventh trough, it is seen that the coherent zone in 

the WCA figure prevails slightly earlier than the cyan colored downward arrow 

which indicates the trough of CAB. Furthermore, the width of the coherent zone is 

roughly 17 months and it does not represent the duration of the seventh recession 

period (10 months) in Table 4.2. 

 

8. According to Table 4.2, at the onset of 1954 there was the eighth trough and the 

recession lasted eight months. Additionally, it is claimed by the ACC that the 

trough of CAB leaded the trough of NBER by two months in the eighth BC. On the 

other hand, there is a coherent region between 0.5 to one year period band on the 

WCA image between 1952 and 1954 with southeastward directed black arrows 

which means that the IPI leads CAB roughly by two months (see Figure 3.5). 

Consequently, the WCA is successful in detection of both the eighth BC and the 

phase difference between the trough of CAB and the trough of NBER for the eighth 

BC. Additionally, for the eighth trough, it is clearly seen that coherent zone in the 

WCA figure comes earlier than the cyan colored arrow which indicates the trough 

of CAB. Furthermore, the width of the coherent zone is roughly 18 months and it 

does not represent the duration of the eighth recession period (eight months) in 

Table 4.2.  
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9. According to Table 4.2, at the onset of 1958 there was the ninth trough and the 

recession lasted 14 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by eight months in the ninth BC. Moreover, 

according to Table 4.2, at the late of 1960 there was the 10th trough and the 

recession lasted 16 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 11 months in the 10th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1957 and 1961 with southeastward directed black arrows which 

means that the IPI leads CAB roughly by two months or the arrows are already 

completed 360 degree rotation and show the residuals (see Figure 3.5). The eight-

month lead of the CAB claimed by the ACC is approximately equal to a full tour 

for arrows on the coherent region between 0.5 to one year period band on the WCA 

image and 11 months lead claimed by the ACC is equal to a full tour plus 

approximately 𝜋 4⁄  degree rotation for arrows on the coherent region between 0.5 

to one year period band on the WCA image. Consequently, the WCA is successful 

in detection of both the ninth BC and the 10th BC. Also, the WCA is doubtfully 

successful for the phase difference between the trough of CAB and the trough of 

NBER for the ninth BC and the 10th BC. Additionally, for the ninth and 10th 

troughs, it is clearly seen that the coherent zones in the WCA figure prevails earlier 

than the cyan colored arrows which indicates the trough of CAB. Furthermore, the 

widths of the first part and the second part of the coherent zones are roughly 24 and 

25 months, respectively, which do not represent the durations of the ninth and the 

10th recession periods (14 months and 16 months) in Table 4.2. 

 

10. According to Table 4.2, at the beginning of 1970 there was the 11th trough and the 

recession lasted 11 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by seven months in the 11th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1969 and 1973 with northeastward directed black arrows which 

means that the IPI leads CAB roughly by two months or the CAB leads IPI by 

roughly seven months (at eight months periods, leading by seven months or lagging 

by two months are indistinguishable because of the cyclical nature of time series) 

(see Figure 3.5). Seven-month lead of the CAB claimed by the ACC is almost equal 
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to a full tour (one or two months are missing for completing the tour) for arrows on 

the coherent region between 0.5 to one year period band on the WCA image. 

Consequently, the WCA is successful in detection of both the 11th BC and the 

phase difference between the trough of CAB and the trough of NBER for the 11th 

BC. Additionally, for the 11th trough, it is clearly seen that coherent zone in the 

WCA figure appears earlier than the cyan colored arrow which indicates the trough 

of CAB. Furthermore, the width of the coherent zone is roughly 3.5 years and it 

does not represent the duration of the 11th recession period (11 months) in Table 

4.2. 

 

11. According to Table 4.2, at the onset of 1975 there was the 12th trough and the 

recession lasted 24 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by nine months in the 12th BC. On the other 

hand, there is a slim coherent region between 0.5 to one year period band on the 

WCA image between 1975 and 1976 with rightward directed black arrows which 

means that there is no phase difference between the CAB and IPI or the arrows are 

already completed 360 degree rotation and return to their initial position (see Figure 

3.5). The nine months lead of the CAB claimed by the ACC is approximately equal 

to a full tour for arrows on the coherent region between 0.5 to one year period band 

on the WCA image. Consequently, the WCA is successful in detection of both the 

12th BC and the phase difference between the trough of CAB and the trough of 

NBER for the 12th BC. Additionally, for the 12th trough, it is roughly seen that the 

coherent zone in the WCA figure emerges slightly earlier than the cyan colored 

arrow which indicates the trough of CAB. Furthermore, the width of the coherent 

zone is roughly 15 months and it does not represent the duration of the 12th 

recession period (24 months) in Table 4.2. 

 

12. According to Table 4.2, at the mid of 1980 there was the 13th trough and the 

recession lasted 15 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 14 months in the 13th BC. Moreover, 

according to Table 4.2, at the mid of 1982 there was the 14th trough and the 

recession lasted 20 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by eight months in the 14th BC. On the other 
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hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1979 and 1983. At the left hand side of the coherent zone which 

corresponds to 13th trough have southeastward directed black arrows which means 

that the CAB leads IPI roughly by two months or the arrows are already completed 

360 degree rotation and show the residuals (see Figure 3.5). The 14-month lead of 

the CAB claimed by the ACC is equal to a full tour plus approximately 𝜋 4⁄  degree 

rotation for arrows on the coherent region between 0.5 to one year period band on 

the WCA image. On the other hand, the right hand side of the coherent zone which 

corresponds to 14th trough have northeastward directed black arrows which means 

that the IPI leads CAB roughly by a month or the CAB leads IPI by roughly eight 

months (at nine months periods, leading by eight months or lagging by one moths 

are indistinguishable because of the cyclical nature of time series) (see Figure 3.5). 

The eight-month lead of the CAB claimed by the ACC is almost equal to a full tour 

(one or two months are missing for completing the tour) for arrows on the coherent 

region between 0.5 to one year period band on the WCA image. Consequently, the 

WCA is successful in detection of both the 13th BC and the 14th BC. Also, the 

WCA is successful in detection of the phase difference between the trough of CAB 

and the trough of NBER for the 13th and 14th BCs. Additionally, for the 13th and 

14th troughs, it is clearly seen that coherent zones in the WCA figure prevail earlier 

than the cyan colored arrows which indicates the trough of CAB. Furthermore, the 

widths of the first and second parts of the coherent zones are roughly 34 months 

and 12 months, respectively which do not represent the durations of the 13th and 

the 14th recession periods (15 months and 20 months) in Table 4.2. 

 

13. According to Table 4.2, at the start of 1991 there was the 15th trough and the 

recession lasted 15 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by nine months in the 15th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 1990 and 1992 with southeastward directed black arrows which 

means that the CAB leads IPI roughly by two months or the arrows are already 

completed 360 degree rotation and show the residuals (see Figure 3.5). The nine-

month lead of the CAB claimed by the ACC is equal to a full tour plus 

approximately 𝜋 8⁄  degree rotation for arrows on the coherent region between 0.5 
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to one year period band on the WCA image. Consequently, the WCA is successful 

in detection of both the 15th BC and the phase difference between the trough of 

CAB and the trough of NBER for the 15th BC. Additionally, for the 15th trough, it 

is clearly seen that the coherent zone in the WCA figure arises earlier than the cyan 

colored arrow which indicates the trough of CAB. Furthermore, the width of the 

coherent zone is roughly 3.8 years and it does not represent the duration of the 15th 

recession period (15 months) in Table 4.2. 

 

14. According to Table 4.2, at the late of 2001 there was the 16th trough and the 

recession lasted 19 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by 12 months in the 16th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 2001 and 2004 with southeastward directed black arrows which 

means that the CAB leads IPI roughly by two months or the arrows are already 

completed 360 degree rotation and show the residuals (see Figure 3.5). The 14-

month lead of the CAB claimed by the ACC is equal to a full tour plus 

approximately 𝜋 2⁄  degree rotation for arrows on the coherent region between 0.5 

to one year period band on the WCA image. Consequently, the WCA is successful 

in detection of the 16th BC and WCA is doubtfully successful in detection of the 

phase difference between the trough of CAB and the trough of NBER for the 16th 

BC. Additionally, for the 16th trough, it is clearly seen that the coherent zone in the 

WCA figure appears earlier than the cyan colored arrow which indicates the trough 

of CAB. Furthermore, the width of the coherent zone is roughly 3 years and it does 

not match the duration of the 16th recession period (19 months) in Table 4.2. 

 

15. According to Table 4.2, at the beginning of 2009 there was the 17th trough and the 

recession lasted 22 months. Additionally, it is claimed by the ACC that the trough 

of CAB leaded the trough of NBER by five months in the 17th BC. On the other 

hand, there is a coherent region between 0.5 to one year period band on the WCA 

image between 2005 and 2007 with unsystematically directed black arrows. 

However, it is hard to claim that the 17th trough and the “coherent zone” 

correspond to each other. Consequently, the WCA is not successful in detection of 

both the 17th BC and the phase difference between the trough of CAB and the 
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trough of NBER for the 17th BC. Subsequently, 17th it is clearly seen that the 

coherent zone in the WCA figure is not a leading indicator for the 17th trough. 

 

Table 4.5 is constructed to sum up the abovementioned performance of the WCA 

on the CAB and IPI with regard to CAB being a leading indicator of IPI, the success in 

catching the phase relationship between CAB and IPI and in capturing the recession 

durations claimed by the ACC. The zeros in the table indicate inconclusive cases. 

 

Table 4.5. Performance Summary of WCA on the Detrended CAB and IPI Data. 

BC Success in Being 

Leading 

Indicator of 

Troughs Claimed 

by ACC 

Success in 

Capturing Phase 

Relationship 

Between CAB and 

IPI 

Success in 

Capturing 

Recession 

Duration Claimed 

by ACC 

1. 0 +  

2.   + 

3. + +  

4. +   

5.    

6. + +  

7. +   

8. + +  

9. + +  

10. + +  

11. + +  

12. + +  

13. + +  

14. + +  

15. + +  

16. + +  

17. 0 0 0 

 + = 13 

 = 2 

+ = 12 

 = 4 

+ = 1 

 = 15 
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As shown in Table 4.5, the WCA successfully reacts earlier than the occurrences of 

troughs from second BC to 16th BC with the exception of the third BC. Similarly, one can 

successfully predict phase relationship between troughs claimed by the ACC and troughs 

claimed by the NBER from eighth BC to 16th BC. However, the WCA totally fails to bring 

a comment to recession durations claimed by the ACC or NBER. Moreover, the WCA fails 

in identifying the last BC claimed by the ACC, therefore performance of the WCA is still 

questionable. Consequently, comparison short-term interpretation of the WCA figures of 

the detrended and original trending series depicts that there is almost no differences among 

them. 

 

Furthermore, the interpretation of Figure 4.7b under medium-term scope (between 

three to 12 years period band) depicts that the CAB and IPI are highly coherent between 

three to 12 years period throughout the time line which means that the analysis is on the 

right track. In other words, the analysis of the CAB is promising to predict changes in the 

IPI. Elaborate investigation of the medium-term periods of Figure 4.7b depicts that the 

CAB and IPI are “in phase” along the time line and there is no phase difference between 

the time series until 1945 (the same result roughly can be extracted from Figure 4.7e), 

excluding the two to four years period band after 1939 (arrows point to southeast direction 

which means that the CAB leads IPI by approximately five months). However, between 

1945 and 1975, arrows on the three to 12 years period band point almost downwards, 

which means that the CAB leads IPI by approximately 3.5 years. Whereas, arrows point to 

southeast in the 1.5 to three year period band in between 1945-1975, which means that the 

CAB leads IPI by approximately 5.5 months. Additionally, from 1965 to 2000, the CAB 

keeps leading the IPI yet with small phase angle (approximately few months) at medium-

term scale. However, from 2000 on, the phase between the CAB and IPI returns to its 

initial position and the CAB leads the IPI by about 1.5 year. On the other hand, there are 

two less coherent zones and one blue (almost totally incoherent) zone in medium-term 

region. The first less coherent zone is located at four years period in between 1933 and 

1939 and the second less coherent zone is located at two to four years period band in 

between 1950 and 1955. Furthermore, the incoherent zone is located at four years period 

band in between 1986 and 1985. Arrows around those less coherent regions do not point 

the same direction with the rest of the adjacent arrows in the medium-term. These regions 

may be attributed to unexplained economic incidents in those years. Furthermore, there is a 
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large blue “no coherency region” in between 10 and 20 year periods band from 1950 till 

the end. Addition to large “no coherency region”, there is les coherent region between 22 

to 32 year period band between 1919 and 1970. Interestingly, these “incoherent” and “less 

coherent” regions do not exist in Figure 4.3b of the previous section related to the original 

trending series and thus they can be attributed to the effects of detrending. 

 

Additionally, it can be inferred that the CAB and IPI are highly coherent at higher 

periods. Nevertheless, only small part of the long-term period is implicit in the COI in 

which the time series are coherent and the arrows point to southeast direction. This 

averagely corresponds to the fact that the CAB leads IPI by about four years. Also, unlike 

Figure 4.3b of the previous section related to the original trending series, arrows on 48 to 

64 year period band point to southeast direction too which averagely corresponds to the 

fact that the CAB leads IPI by about eight years. 

 

It should be noted that the coherent regions below 0.25 year period are disregarded 

since the distinction between noise and meaningful data is not precise at that scale. 

Additionally, coherent regions over 32 year period are disregarded as well, because 

coherency analysis becomes statistically insignificant out of the COI. 

 

In addition, Figure 4.9 shows the image of the quantized distribution of the phase 

differences between CAB and IPI. In Figure 4.9, light-blue areas (0 < 𝜑𝑥,𝑦 < −𝜋/2) and 

yellow areas (0 < 𝜑𝑥,𝑦 < 𝜋/2) correspond to the “in phase” condition. While the light-

blue area indicates that the IPI leads CAB, the yellow area indicates that the CAB leads 

IPI. Blue areas (−𝜋/2 < 𝜑𝑥,𝑦 < −𝜋) and red areas (𝜋/2 < 𝜑𝑥,𝑦 < 𝜋) correspond to the 

“out of phase” condition. The blue area indicates that the IPI leads CAB (or the troughs of 

CAB lead the peaks of IPI), while the red area indicates that the CAB leads IPI (or the 

troughs of IPI lead the peaks of CAB). Consequently, the CAB leads the IPI almost 

everywhere between two to eight year period band, and at the periods larger than 32 year. 

On the other hand, the IPI leads the CAB between 20 to 30 year period band between 1919 

and 1940, and between 10 to 20 year period band beyond 1962. Furthermore, quantized 

phase-difference distribution figures of the detrended and original trending series depict 

that there are considerable differences between them especially at the mid-term and long-

term periods.  
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Figure 4.9. Quantized Distribution of Phase Angles between the Detrended CAB and IPI 

Series. 

 

 Overall, the focus of this chapter was on BC periods, i.e., the short-term periods. 

Therefore, for short-term periods, the comparisons between Figure 4.3 and Figure 4.7, 

Figure 4.4 and Figure 4.8, and Figure 4.5 and Figure 4.9 depicted that detrending the data 

did not affect the WCA results. On the other hand, this was not a valid inference for the 

longer periods. Especially between 8- to 32-year periods, the effects of detrending became 

evident. While the differences between Figure 4.3 and Figure 4.7 within 8- to 32-year 

periods showed that the detrending increased the resolution, the differences between Figure 

4.5 and Figure 4.9 for 8- to 64-year periods showed that the detrending also influenced the 

phase-difference between the time series. Subsequently, Figure 4.8, which contained the 

mean phase-difference and mean coherence showed dissimilarities with Figure 4.4 as well. 
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4.7. Univariate Wavelet-Based Analysis of the Moving-Average-Smoothed First-

Order Differenced CAB and IPI Series 

 

 

The ACC uses moving-average-smoothed first-order differenced transformations of the 

CAB and IPI in their analysis (Chemical Activity Barometer vs. Industrial Production, 

2019). Although, moving average (MA) is a powerful tool to eliminate noise in time series, 

it also generates artificial lags in the series (Bai et al., 2015). In this section, the WPS and 

PSD of the year-to-year change of the three-month MA of the CAB and IPI will be 

investigated. 

 

In Figure 4.10, there are horizontal red bands at/around 2-, 4-, 10-, 20-, and 30-year 

periods and at larger periods of the WPSs of the CAB and IPI along the time span. 

However, among them, the horizontal red bands located at shorter than 8-year period can 

not be observed in Figure 4.2 and Figure 4.6 of the previous sections. Similarly, there are 

few peaks at the shorter than 8-year period in the PSD figures which is unlike of the 

original trending and detrended series. This can be the result of artificial lags introduced in 

smoothing by MA. 
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Figure 4.10. Wavelet Power Spectra and Power Spectral Densities of the Year-to-Year 

Change of Three-Month MA of the CAB and IPI Series. 

 

 

4.8. Wavelet Coherence Analysis of the Moving-Average-Smoothed First-Order 

Differenced CAB and IPI Series 

 

 

Similar to previous sections on the original trending and detrended series, the WCA of the 

year-to-year change of the three-month MA of the CAB and IPI will be investigated 

concisely in this section. 

 

 When Figure 4.11 is compared with the former WCA figures (Figure 4.3 for the 

original trending data and Figure 4.7 for the detrended data), at first sight, it seems like 
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there are no striking differences among them for low periods (0.5 to one year period). 

Since we analyze BCs for these low periods (since typical BCs fall in this period range as 

elaborated at the begining of this chapter), our BC analyses and their conclusions with 

regard to BC issues are similar as well. However, when one prudently compares the 

figures, it can be seen that there are significant dissimilarities among them. For instance, 

shapes of the “zones of high coherency” are different. Also, in Figure 4.11 “zones of high 

coherency” shifted to the left hand side compared to Figure 4.3 and Figure 4.7. This 

shifting to the left hand side can be observed by comparing the 11th BC located at 1970 in 

different figures. On the other hand, the effects of detrending and MA prevail theselves for 

the longer periods (2 to 64 years). The blue-colored “incoherent region” located between 8- 

to 40-year periods is much larger than the WCA figure of the detrended data and some 

arrows are differently oriented as well. Furthermore, the arrows on 48- to 64-year period 

bands are also differently oriented than the arrows in the WCA figure of the detrended 

data. Moreover, the sizes of the “less coherent” zones located at the four-year period in 

between 1933 and 1939, and located at two- to four-year period band in between 1950 and 

1955, are larger than the sizes in the WCA figure of the detrended data. Furthermore, the 

“incoherent zone” is located at the four-year period band in between 1986 and 1985 has a 

larger size as well. 
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Figure 4.11. Wavelet Coherence Analysis of the Year-to-Year Change of the Three-Month 

MA of the CAB and IPI Series. 

 

 Since Figure 4.12 is generated from Figure 4.11, there are differences between the 

figures of mean coherence and mean phase-difference between Figure 4.12 and Figure 4.4 

and Figure 4.8 (previous sections on the original trending and detrended data, respectively) 

across time and frequency domains. For instance, these differences can be captured by 

comparing periods larger than 24 year in Figure 4.12b and Figure 4.8b or by comparing 

periods larger than 14 year in Figure 4.12d and Figure 4.8d. 
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Figure 4.12. Mean Coherence and Mean Phase-Difference between the Year-to-Year 

Change of the Three-Month MA of the CAB and IPI Series across Time and Frequency 

Domains. 

 

 Finally, Figure 4.13 is created by using the year-to-year change of the three-month 

MA of the CAB and IPI series. Figure 4.13 depicts that the smoothing increases the size of 

the region in which the IPI leads the CAB on the phase distributions between 16- to 64-

year period bands as compared to Figure 4.5 and Figure 4.9 of the previous sections on the 

original trending and detrended data, respectively. 
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Figure 4.13. Quantized Distribution of Phase Angles between the Year-to-Year Change of 

the Three-Month MA of the CAB and IPI Series. 

 

 Overall, the focus of this chapter was on the BC periods, i.e., the short-term periods 

as above-mentioned. Therefore, the short-term periods comparison of Figure 4.11 with 

Figure 4.3 and Figure 4.7 depicted that the three-month MA impacted the WCA figure at 

the short-term periods. At the same time, comparison of the longer periods (of 8- to 64-

year periods) of Figure 4.11 with Figure 4.3 and Figure 4.7, and Figure 4.13 with Figure 

4.5 and Figure 4.9 depicted that the WCA of the three-month MA differed from the 

original trending and detrended time series in two circumstances. First, they showed 

different levels of coherency, and, second, they showed different phase-angle relationships 

between the two time series. It is known that MA smoothing generates artificial lag and we 

assume that this artificial lag can be attributed for the dissimilarities between the WCA 

figures. On the other hand, the ACC still uses three-month MA smoothing in their 

analyses. The reason can be that the MA-smoothed time series can be used for detection of 

turning points simply by eye, without further analysis. For instance, from Figure 4.11a it 

can be confirmed just by observation that some definite, well-defined turning points 
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(troughs and/or peaks) located around 2007, 2001, 1991, 1982, 1980, and 1975 and so on, 

coincide with the turning points disclosed by the NBER. 

 

 

4.9. Summary of the Effects of Detrending and Three-Month MA Smoothing 

 

 

In this section, dissimilarities resulting from detrending and MA smoothing are 

encapsulated. Firstly, comparison of the univariate analyses (contrasting Figure 4.2, Figure 

4.6 and Figure 4.10) reveals that the sub-cycles located at shorter than 30-year period 

become more visible in Figure 4.6 of the detrended time series compared to the sub-cycles 

in Figure 4.2 of the original trending time series. Whereas, in Figure 4.10 of the time series 

smoothed by the simple MA, those sub-cycles are much more visible than the sub-cycles 

of the detrended and original trending time series. Secondly, comparison of the WCA 

figures (contrasting Figure 4.3, Figure 4.7 and Figure 4.11) exposes that the coherency 

levels in the WCA of the detrended series (Figure 4.7) and original trending series (Figure 

4.3) are almost perfectly the same over the BC periods (0.5- to one-year periods), whereas 

the “high coherency zones” in the WCA (Figure 4.11) of the time series smoothed by MA 

show small but critical differences. Since, adjacent data points have effects on each data 

point of time series smoothed by MA, the “high coherency zones” are shifted to the left 

and their shapes are slightly different than the “high coherency zones” in the WCAs of the 

detrended and original trending time series. Moreover, for the longer periods (eight- to 64- 

year periods), the effects of detrending and MA smoothing are more obvious. The 

resolution for these particular period ranges is higher for the WCA of the detrended series 

(Figure 4.7) is higher than for the WCA of the original trending series (Figure 4.3). On the 

other hand, MA smoothing increases the resolution more than detrending. 

 

 Finally, as in shown Figure 4.5, Figure 4.9, and Figure 4.13, the phase relationships 

between the CAB and IPI are not significantly affected by detrending or MA smoothing 

over the BC periods (0.5- to one-year periods). On the other hand, for the longer periods 

(eight- to 64- year periods), the detrending increases the region in which the IPI leads the 

CAB in comparison with the original trending series, whereas, MA smoothing further 

increases the region in which the IPI leads the CAB in comparison with the detrended time 
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series. The WCA, on the other hand, does not necessitate detrending and does not 

introduce artificial lags as in MA smoothing in exploring the lead-lag relationships 

between time series. 
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5. WAVELET COHERENCE ANALYSES FOR THE YEARLY CEPCI, 

CAB, AND IPI DATA 
 

 

 

5.1. Description of Cost Indices and the CEPCI 

 

 

Cost estimation is a critical step in the design of chemical processes. Process or cost 

engineers use cost indices to estimate the total cost of a project. There are several cost 

indices which are used for process engineers in different fields. The Nelson-Farrar 

Refinery Cost Index, which is used in the oil and gas industry, can be found in the (Oil and 

Gas Journal, 2020). The Marshall and Swift equipment cost index which is used in allied 

industries. The Process Engineering Plant Cost Index which is originated from UK covers 

data for the 16 OECD countries and published monthly in the (Process Engineering, 

2020). The Chemical Engineering Plant Cost Index (CEPCI) (Mignard, 2014) is perhaps 

the best known and the most widely used index. In cost estimation, these indices are fed to 

the following equation to estimate the present cost: 

 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 × (
𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑇𝑖𝑚𝑒

𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑇𝑖𝑚𝑒 𝑡ℎ𝑒 
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 𝑤𝑎𝑠 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑

). (5.1) 

 

CEPCI is widely used by process engineers and is published monthly in the 

(Chemical Engineering - Chemical Engineering essentials for the global chemical 

processing industries (CPI), 2020). At the end of the year, the mean of the monthly indices 

are calculated to construct the annual indices. Although CEPCI is constructed from US 

cost data, it is used worldwide due to dominancy of the US economy and acceptance of US 

dollar as an international currency. CEPCI has been available since 1963 and was revised 

several times, two of them are major revisions (1982 and 2002) (Jenkins, 2018; Vatavuk, 

2002). CEPCI is a composite index which is constructed from weighed sum of normalized 

four sub-indices. They are i) equipment, ii) construction labor, iii) buildings, and iv) 

engineering and supervision. The equipment sub-index is also generated by seven different 
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sub-indices, they are i) process machinery, ii) heat exchangers and tanks, iii) pumps and 

compressors, iv) pipes, valves and fittings, v) process instruments, vi) electrical equipment, 

vii) structural supports and miscellaneous (Mignard, 2014). Current formulation of CEPCI 

is as follows: 

 

𝐶𝐸𝑃𝐶𝐼 = 0.50675𝐸 + 0.04575𝐵 + 0.1575𝐸𝑆 + 0.290𝐶𝐿 (5.2) 

 

where 𝐸, 𝐵, 𝐸𝑆, and 𝐶𝐿 are the equipment index, buildings index, engineering and 

supervision index, and construction labor index, respectively (Vatavuk, 2002). 

 

When the CEPCI’s indices and sub-indices are calculated, 54 inputs are used. One 

of those inputs is the productivity factor which is defined as the effect of prediction of 

technological developments. Moreover, 41 of 54 inputs are Producer Price Indices (PPIs). 

US Department of Labor’s Bureau of Labor Statistics (BLS) announces the PPIs monthly 

and the PPIs cover sectors such as agriculture, forestry, manufacturing, mining, and 

selected service sectors. 41 PPIs are selected from 13000 indices. These 13000 indices are 

generated from 100000 price quotations coming from 25000 private foundations. 

Furthermore, there are also 12 inputs used in the CEPCI sub-indices which are related to 

labor-costs. These inputs are published by the BLS as well and include changes in labor 

rates and special labor costs as designers and engineers etc. (Vatavuk, 2002). Due to 

difficulties in following and forecasting the 53 PPIs and due to missing or modified data, 

economists try to find indicators to estimate the value of the CEPCI. There are two 

different approaches. Microeconomic approach is one of them and it tries to estimate the 

value of the CEPCI with few BLS parameters. (Caldwell and Ortego, 1975) used five BLS 

parameters in order to estimate CEPCI, they are namely general purpose machinery and 

equipment price index, metal tanks price index, processing materials and components price 

index, electrical machinery and equipment price index, and one chemical engineering labor 

index. On the other hand, macroeconomic approach as well was used by economist, such 

as (Cran, 1976) and (Caldwell and Ortego, 1975). Cran (1976)uses weighted average of 

two general economic indicators (steel cost and labor indices) to track CEPCI, whereas 

Caldwell and Ortego (1975) check for linear relation between the CEPCI and price indices 

(the consumer and the wholesale price indices) also between the CEPCI and the Gross 

National Product (GNP) deflator. Although they showed the correlation among them, 
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actual value prediction of the CEPCI was not successful. (Mignard, 2014) also tries to 

predict the CEPCI by using macro-economic indicators. He used yearly interest rate on US 

bank prime loans, and yearly price of US domestic oil to generate a composite index. The 

composite index was successful to predict the CEPCI data but its parameters had to be 

changed in some specific years. It was claimed that these changes were caused by oil 

shocks in the 1970s, high interest rates in the 1980s, and changes in the formulation of the 

CEPCI in 1982 and 2002. 

 

 

5.2. Description of the Yearly Data 

 

 

In the previous chapter, performance of the Chemical Activity Barometer (CAB) as a 

leading indicator for US economy was investigated. Comparison of the WCA of the CAB 

and IPI considering the turning points announced by the ACC has disclosed that the CAB 

was a leading indicator for the IPI as well as for the troughs announced by the ACC since 

1945. In this chapter, the potential of CEPCI as a leading indicator of IPI will be studied 

and compared with that of the CAB using WCA. However, only the yearly data are 

available for CEPCI from 1950 to 2019. So as to make a healthy comparison, monthly data 

of the CAB and IPI are transformed to yearly data and WCA of the CAB and IPI are re-

performed using this yearly data as well. Therefore all the analyses in this chapter are 

performed on yearly basis. 

 

The original trending values of the CEPCI, CAB, and IPI are depicted in Figure 

5.1a. It can be immediately deduced that three time series have common positive trend. 

However, while the CAB and IPI increase more closely with each other with time, the 

CEPCI notably deviate from them. It is also observed that the CAB and IPI moves 

correlated but it is not that much easy to bring similar comment for the CEPCI. The three 

time series are detrended (linear trend removal) individually and plotted in Figure 5.1b. 

The values above the linear trend become positive and the values below the trend become 

negative. This detrended figure better shows the years when the CAB and IPI move 

together and gives insight about the positioning of the CEPCI according to the CAB and 

IPI. For instance, around 1970, 1980, 2000, and 2009 there are obvious negative 



92 
 

correlations between CEPCI and the CAB/IPI pair. Nevertheless, Figure 5.1 is not 

adequate to conclude on further interrelationship among the three time series. To reveal 

possible hidden relationships between CEPCI, CAB, and IPI, the WCA will be performed 

in the following sections of this chapter. Since the WCA is a binary analysis, it is not 

possible to analyze three time series simultaneously on one WCA image. Therefore, 

following sections contain WCA of binary combination of the CEPCI, CAB and IPI. 

Moreover, detrended series are used in the following sections. The reason is twofold: 

firstly, since in the Chapter 4 it was shown that detrending increases resolution of the 

WCA at the higher periods, and secondly, the trend of the CEPCI has completely different 

characteristic than trends of the CAB and IPI. 
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Figure 5.1 Original Trending and Detrended Yearly CEPCI, CAB and IPI Series. 
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5.3. WCA of the Detrended Yearly CAB and IPI Series 

 

 

In Chapter 4, an extensive WCA has been executed to reveal hidden relationship between 

CAB and IPI. Since the recession periods of Business Cycles (BC) mostly have durations 

less than one year, we focused on the short-term periods on the WCA figure for the CAB 

and IPI. Fortunately, data collection frequency of the CAB and IPI is high enough to study 

such short-term BCs. On the other hand, we have only the yearly data for the CEPCI. In 

this section, WCA of the CAB and IPI is considered again, this time, however, with the 

yearly data, and the results are compared with the WCA outcomes presented in Chapter 4 

so that effects of the data frequency will be also be apprehended. After this yearly version 

of the WCA for the CAB and IPI, the WCA for the other binary pairs (CEPCI/CAB, and 

CEPCI/IPI) will be performed taking data collection frequency into consideration. Table 

5.1 lists the values of some of the important parameters used in this chapter for the WCA 

computations of the yearly CAB and IPI. 

 

Table 5.1. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

dt sampling interval 1 year 

DJ number of octaves per scale 1/32 

LPer lower level of period 1 year 

UPer upper level of period 70 years 

LPhaseDif lower levels of phase-difference bands [1.0, 3.0, 16] years 

UPhaseDif upper levels of phase-difference bands [2.0, 8.0, 24] years 

MinScale minimum scale 1 year 

MaxScale maximum scale 70 years 

Mother mother wavelet” Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [60 60] 

 

Fıgure 5.2 contains plots of the detrended yearly CAB and IPI series, their WCA 

image, and average phase difference between two series over the three particular period 

bands (1-2, 3-8, and 16-24 year period band). WCA comprises much valuable information 
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on the interrelation of the two series. In order to advance without missing a point and to be 

companionable with real-life analysis habits of the economists, the WCA figure will be 

studied under the short-, medium-, and long-term perspectives. 

 

 

Figure 5.2. Wavelet Coherence Analysis and Phase-Difference Plots of the Detrended 

Yearly CAB and IPI Series. 

 
Figure 5.3 was generated to identify more crisply the range of these short, medium, 

and long terms and to behold overall time-wise and frequency-wise mean of phase 

difference and coherency of the yearly CAB and IPI series. From Figure 5.3a, it can be 

deduced that average coherency between the CAB and IPI is approximately 0.85 along the 

timeline, which means they are highly coherent. In Chapter 4, this average coherency was 

approximately 0.7 (see Figure 4.8a). This difference can be the result of the fact that Figure 
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5.2b does not cover periods less than one year, however those lower periods had been 

covered in Figure 4.7b and they contained less coherent zones with respect to higher 

periods. On the other hand, Figure 5.3b contains critical information for WCA. The peaks 

in this sub-figure can be used for designation of short-, medium-, and long-term behavior. 

In this context, the peaks located at one and five years can be attributed to short and 

medium terms, while periods longer than 24 years can be attributed to long terms, as 

almost the same as in the Chapter 4 (see Figure 4.8b). It is hard to deduce something from 

Figure 5.3c (it looks like a smoothed version of the analogous figure in Chapter 4, see 

Figure 4.8c). Whereas, Figure 5.3d roughly shows that in (business) cycles, from the 

beginning to 12-year period band and between 18- and 34-year period band, the CAB leads 

IPI by approximately 𝜋 8⁄  phase angle, but at the rest of the timeline the IPI leads CAB by 

approximately 𝜋 8⁄  phase angle which is almost the same as in Chapter 4 (see Figure 4.8d). 

Nevertheless, just by looking at the mean coherency spectrum and phase-difference 

spectrum across time plots can be deceptive because these two dimensional averaged 

coherency plots omit many details. Importance of the true (un-averaged) WCA analysis 

and the WCA image in Figure 5.2b arises in this situation. 

 

 

Figure 5.3. Mean Coherence and Mean Phase-Difference between the Detrended Yearly 

CAB and IPI Series across Time and Frequency Domains.  
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Now, the short-, medium-, and long-term behaviors can be analyzed using the 

WCA. Unlike the analysis in Chapter 4, Figure 5.3b does not comprise periods less than 

one year, since the data used in this chapter are yearly. However 1- to 2-year period band 

can give insight about short-term periods. There is an intermittent “zone of high 

coherency” along the time located at 1- to 2-year period band. Between 1950 and 1965, 

there is a coherent zone with rightward directed arrows, which means the two series are in 

phase (see Figure 5.2c). On the other hand, in Chapter 4 (Figure 4.7b), there is the same 

coherent zone located at 1- to 2-year period band between 1950 and 1965 with arrows 

which have the same direction, however the resolution is higher in Chapter 4. Between 

1965 and 1970, there is another coherent zone located at roughly 1- to 1.5-year period band 

with northeastward directed arrows, which means that the IPI leads the CAB by three 

months (see Figure 5.2c). On the other hand, in Chapter 4 (Figure 4.7b), there is no such a 

coherent zone. Between 1970 and 1975, there is another coherent zone with some 

rightward directed arrows between 1970 and 1973, which means that the two series are in 

phase, and some southeastward directed arrows between 1973 and 1975, which means that 

the CAB leads the IPI by three months (see Figure 5.2c). There is a “no coherency zone” 

between 1975 and 1979 and another “high coherency zone” between 1979 and 1982 with 

arrows rightward directed, which means that the two series are in phase (see Figure 5.2c). 

On the other hand, in Chapter 4 (Figure 4.7b), there is similar coherent zone located at 1- 

to 2-year period band between 1972 and 1983 with arrows which have roughly the same 

direction, however, Figure 4.7b does not have “incoherent region “ between 1975 and 

1979. There is another coherent zone between 1983 and 1990 with some southwestward 

directed arrows between 1983 and 1985, some downward directed arrows between 1970 

and 1988, and some southeastward directed arrows between 1989 and 1991, which means 

that the CAB leads the IPI averagely five months between 1983 and 1991 (see Figure 

5.2c). On the other hand, there is no corresponding coherent zone in Figure 4.7b. Between 

1991 and 2002, there is another coherent zone located at roughly 1- to 1.5-year period band 

with leftward directed arrows, which means two series are out-of-phase (see Figure 5.2c). 

On the other hand, there is no corresponding coherent zone in Figure 4.7b. There is another 

coherent zone between 2003 and 2005 with rightward directed arrows, which means the 

series are in phase. On the other hand, there is a coherent zone at similar years with 

similarly directed arrows in Figure 4.7b. There is another coherent zone between 2008 and 

2019 with some southwestward directed arrows between 2008 and 2010, some downward 
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directed arrows between 2010 and 2016, and some southeastward directed arrows between 

2016 and 2019, which means that the CAB leads the IPI averagely five months between 

2008 and 2019 (see Figure 5.2c). On the other hand, there is no corresponding coherent 

zone in Figure 4.7b. 

 

Comparing the coherency and phase relations between the yearly CAB and IPI, as 

deduced from the short-term (1- to 2-year period band) part of the WCA and from the 

short-term part of the WCA figure of the monthly CAB and IPI (Chapter 4, Figure 4.7b), it 

is seen that they significantly differ from each other. Therefore, it can be said that the 

WCA at just above the data collection periods is not very reliable. 

 

Furthermore, the interpretation of Figure 5.2b under medium-term scope (between 

3- to 12-year period band) depicts that the CAB and IPI are highly coherent between 3- to 

12-year periods throughout the time line, except the incoherent zone between 1950-1963 

for periods between five to 11 year. A comparison of the “high coherency zone” located at 

the medium-term region with the “high coherency zone” located at the medium term in 

Figure 4.7b (monthly data) depicts that these two zones are almost the same but the one in 

Figure 5.2b looks like a trimmed form of the one in Figure 4.7b. Additionally, the arrows 

on these two zones mostly show the same direction. Hence, it can be inferred that 

increasing the data collection frequency does not affect high coherency zone for medium-

term periods, especially periods larger than three years. 

 

Additionally, long-term interpretation of Figure 5.2b show that, as is the case in the 

medium term, there is almost no difference between the high periods of Figure 5.2b and 

the high periods of Figure 4.7b (monthly data). There is a large “incoherent region” 

between 10- and 20-year periods along the time and it can be inferred that the CAB and IPI 

are highly coherent at the periods higher than 20 years. However, only a small part of the 

“high coherency region” falls in the COI. Moreover, almost all arrows in Figure 5.2b and 

Figure 4.7b show the same direction. 

 

In addition, Figure 5.4 shows the image of the quantized distribution of the phase 

differences between the yearly CAB and IPI. Since WCA of the yearly CAB and IPI are 

not significant for short-term periods, it is not easy to say something for periods shorter 
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than two years. Although it seems like the CAB leads the IPI (phase angle is between 0 to 

𝜋 2⁄ , yellow regions) almost everywhere between 1- to 2-year period, between 1950 and 

1960, and between 1962 and 1972, the IPI leads the CAB. Moreover, between 1986 and 

2005, the two series are out-of-phase (phase angle is between 𝜋 2⁄  to 𝜋 at the red regions 

and phase angle is between -𝜋 2⁄  to - 𝜋 at the blue regions) between 1- to 2-year periods. 

Furthermore, between 2014 and 2016, the two series are out-of-phase (phase angle is 

between 𝜋 2⁄  to 𝜋 at the red regions). At the rest of the figure, the CAB leads the IPI 

almost everywhere between 2- to 10-year period band (phase angle is between 0 to 𝜋 2⁄ , 

yellow regions), and at the periods larger than 20 years (phase angle is between 0 to 𝜋 2⁄ , 

yellow regions). On the other hand, the IPI leads the CAB between 10- to 20-year period 

band (phase angle is between 0 to -𝜋 2⁄ , cyan regions) along the time. A comparison of 

Figure 5.4 with Figure 4.9 shows that they are almost identical at the periods greater than 

two years. 

 

 

Figure 5.4. Quantized Distribution of Phase Angles between the Detrended Yearly CAB 

and IPI Series. 
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5.4. WCA of the Detrended Yearly CAB and CEPCI Series 

 

 

In this section, the WCA of the detrended yearly CAB and CEPCI series will be carried 

out. As mentioned above (in Section 5.2), the ACC claims that the CAB is a leading 

indicator for the US economy and there is no doubt that the CEPCI has a strong relation 

with the US economy. However, unlike the CAB, the CEPCI is not constructed primarily 

for tracking the IPI, but it is constructed to track the plant-construction costs in the US 

(Vatavuk, 2002). Therefore, it will be interesting to analyze the interrelationships between 

the CAB and CEPCI via WCA. Accordingly, if the CEPCI leads the CAB, the CEPCI may 

be counted as a better US economy leading indicator. If not however, it will be hard to say 

something strong about leading indicator characteristic of the CEPCI and it requires further 

analyses. 

 

Table 5.2 lists the values of some of the important parameters used in the WCA 

computations of the yearly CAB and CEPCI in this chapter. 

 

Table 5.2. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

Dt sampling interval 1 year 

DJ number of octaves per scale 1/32 

LPer lower level of period 1 year 

UPer upper level of period 70 years 

LPhaseDif lower levels of phase-difference bands [1.0, 3.0, 16] years 

UPhaseDif upper levels of phase-difference bands [2.0, 8.0, 24] years 

MinScale minimum scale 1 year 

MaxScale maximum scale 70 years 

Mother mother wavelet Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [60 60] 

 

Fıgure 5.5 contains plots of the detrended yearly CAB and CEPCI series, their 

WCA image, and average phase difference between two series over the three particular 
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period bands (1-2, 3-8, and 16-24 year period bands). WCA comprises much valuable 

information on the interrelation of the two series. In order to advance without missing a 

point and to be companionable with real-life analysis habits of the economists, the WCA 

figure will be studied under the short-, medium-, and long-term perspectives. 

 

 

Figure 5.5. Wavelet Coherence Analysis and Phase-Difference Plots of the Detrended 

Yearly CAB and CEPCI Series. 

 

Figure 5.6 was generated to identify more crisply the range of these short, medium, 

and long terms and to behold overall time-wise and frequency-wise mean of phase 

difference and coherency of the CAB and CEPCI series. From Figure 5.6a, it can be 

deduced that average coherency between the CAB and CEPCI does not show a constant 

mean value and the overall coherency can be analyzed in five parts. In the first part, the 
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coherency varies around roughly 0.4 from 1950 to about 1962. In the second part, the 

coherency varies slightly above 0.6 from 1965 to early 1980. In the third part, the 

coherency varies around roughly 0.7 from early 1980 to early 1995. In the fourth part, the 

coherency varies around roughly 0.7 from mid 1995 to 2002. In the final part, the 

coherency increases to 0.8 from 2005 to 2012 and returns to back to roughly 0.7 from 2012 

to date. On the other hand, Figure 5.6b contains critical information for the WCA. The 

peaks in this sub-figure can be used for the designation of short-, medium-, and long-term 

behavior. In this context, the peaks located at one and four years can be attributed to the 

short- and medium-term periods while the peak at 22 year can be attributed to the long-

term period. Figure 5.6c says that the CAB and CEPCI are in phase from 1950 to about 

1955, however, the CEPCI starts to lead the CAB from about 1955 to approximately 1977 

by an average of 𝜋 4⁄  phase angle. From 1977 to 2014, the CAB leads the CEPCI by 

slightly less than 𝜋 4⁄  phase angle, however, roughly from 2002 to 2006, the phase angle 

decreases to 𝜋 8⁄ . Finally, from 2015 to date, the CAB leads the IPI by 𝜋 8⁄  phase angle. 

On the other hand, Figure 5.6d roughly shows that in shorter periods from 1- to 8-year 

period band, the CAB leads the CEPCI with a small phase difference. However from 8- to 

13-year periods, the CAB leads the CEPCI by about 𝜋 8⁄  phase angle. From 13- to 27-year 

periods, the phase difference between the CAB and CEPCI keeps increasing (indicating 

that the CAB leads the CEPCI more and more with time). However, in Figure 5.6d, this 

increase suddenly ceases around 27-year period and the mean phase difference suddenly 

decreases to - 𝜋, indicating that beyond 27-year period the CEPCI leads the CAB. The 

cause of this sudden decrease may be explained by the cyclical nature of the phase angle; 

the phase angle completes a full tour. Nevertheless, just looking at the mean coherency 

spectrum and phase difference spectrum across time plots can be deceptive because these 

two dimensional averaged coherency plots omit many details. Importance of the true (un-

averaged) WCA analysis and the WCA image in Figure 5.5b arises in this situation. 
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Figure 5.6. Mean Coherence and Mean Phase-Difference between the Detrended Yearly 

CAB and CEPCI Series across Time and Frequency Domains. 

 

Now, the short-, medium-, and long-term behaviors can be analyzed using the 

WCA. In the former section (Section 5.3) it was shown that increasing data collection 

period from month to year has effected the short-term periods (1- to 2-year period band). 

Although we know that it is not statistically significant, there is a large “high coherency 

region” located roughly between 1- to 2-year period band along the time. Arrows on the 

region have different directions. The arrows from 1950 to 1955 are rightward directed, 

which means the two series are in phase. The arrows from 1955 to 1975 are averagely 

upward directed, which means that the CEPCI leads the CAB roughly by five months (the 

lead duration is in months since it leads about one fourth of 1.5 years). The arrows from 

1975 to 1981 are leftward directed, which means the two series are out-of-phase. The 

arrows from 1981 to 2002 are averagely southwestward directed, which means the CAB 

leads the CEPCI roughly by seven months (the lead duration is in months since it leads 

about one third of 1.5 years), or the two series are out-of-phase and the CEPCI leads the 

CAB for three months (the lead duration is in months since it leads about one sixth of 1.5 



104 
 

years). The arrows located from 2002 to 2017 are leftward directed, which means that the 

two series are out-of-phase. Finally, the arrows from 2017 to date are northwestward 

directed, which means that the CEPCI leads the CAB by seven months (the lead duration is 

in months since it leads about one third of 1.5 years), or the two series are out-of-phase and 

the CAB leads the CEPCI by three months (the lead duration is in months since it leads 

about one sixth of 1.5 years). 

 

Furthermore, the interpretation of Figure 5.5b under medium-term scope (between 

3- to 12-year period band) depicts that the CAB and CEPCI are highly coherent for two 

specific zones. The first “high coherency zone” is located between 3- to 8-year period band 

in between 1966 and mid of 1979. The reason of this zone can be the oil shock of 1970s 

which affected both the CAB and CEPCI. The arrows on the zone can be investigated in 

four different groups. The first group is the arrows located between 3- to 4-year period 

band. Those arrows are northwestward directed, which means that the CEPCI leads the 

CAB averagely by 15 months (or the two series are out-of-phase and the CAB leads the 

CEPCI by six months. The rationality behind these leads in month units can be explained 

as follows. 3.5 years is the average for the 3- to 4-year period band, and this corresponds to 

42 months, which is the one whole tour of the phase angle. The angles in this zone are 

about 145 degrees. Therefore, since 145/360 is about 3/8, the 3/8th of 42 months 

corresponds to about 15 months. 

 

The second group is the arrows located between 4- to 6-year period band. Those 

arrows are leftward directed until 1973, which means that two series are out-of-phase. The 

third group is the arrows located between 4- to 6-year period band from 1973 to mid 1979. 

Those arrows are northwestward directed, which means that the CEPCI leads the CAB 

averagely by 20 months (or, the two series are out-of-phase and the CAB leads the CEPCI 

by 10 months). The fourth group is the arrows located between 6- to 8-year period band. 

Those arrows are leftward directed along the zone, which means that two series are out-of-

phase. The second “high coherency zone” is located between 3- to 8-year period band 

between 1993 and to date (note that from 2014 to 2019 and from 5.5- to 8-year period band 

the color of the zone becomes green, which means there is a decrease in coherency 

between two time series) The reason behind this zone can be the change in formulation of 

the CEPCI that took place in 2002. On the other hand, the arrows on this zone show two 
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different characteristics as well and they can be investigated in two different groups. The 

first group of arrows is between 3- to 5-year period band. Those arrows are southwestward 

directed, which means that the CAB leads the CEPCI averagely by 15 months (or, the two 

series are out-of-phase and the CEPCI leads the CAB by six months). The second group of 

arrows between 5- to 8-year period band. Those arrows are downward directed, which 

means that the CAB leads the CEPCI by about 1.5 year. 

 

Additionally, long-term interpretation of Figure 5.5b shows that there is a large 

“high coherency region” between roughly 16- and 32-year periods along the time. 

However, only small part of the “high coherency region” is inside the COI. On the other 

hand, the arrows on this zone show two different characteristics as well and they can be 

investigated in two different groups. The first group of arrows is between 16- to 21-year 

period band. Those arrows are southwestward directed, which means that the CAB leads 

the CEPCI by about 12 years (or, the two series are out-of-phase and the CEPCI leads the 

CAB by 6 about years). The second group arrows are between 21- to 32-year period band. 

Those arrows are leftward directed, which means that the two series are out-of-phase. 

 

In addition, Figure 5.7 shows the image of the quantized distribution of the phase 

differences between the yearly CAB and CEPCI. Although there is no dominant color 

between 1- to 16-year period band from 1950 to early 1960s, there is a blue-colored region 

between 1- to 16-year period band from early 1960s to roughly 1980 (phase angle is 

between -𝜋 2⁄  to - 𝜋 at the blue regions). Moreover, there is the red colored region between 

1- to 16-year period band roughly from 1980 to 2019 (phase angle is between 𝜋 2⁄  to 𝜋 at 

the red regions). However, there are cyan- and blue-colored zones from 1983 to 1993 

between 2- to 4-year period band in which the CEPCI leads the CAB, a blue-colored zone 

from 2001 to 2007 between 1- to 2.5-year period band in which the phase angle is between 

-𝜋 2⁄  to - 𝜋, another blue colored zone from 2014 to 2019 between 1- to 2.5-year period 

band in which the phase angle is between -𝜋 2⁄  to - 𝜋, and, finally, a yellow-colored zone 

from 1993 to 2019 between 5- to 10-year period band in which the phase angle is between 

0 to 𝜋 2⁄ . The yellow-colored zone can be critical because the coherency of this region is 

significant (see Figure 5.5b) and apparently there the CAB leads the CEPCI. Finally, there 

are a red zone throughout the time line located at 16- to 28-year period band, a blue zone 

throughout the time line located at 28- to 44-year period band, a cyan zone throughout the 
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time line located at 44- to 57-year period band, and, lastly, a yellow zone throughout the 

time line located at 57- to 72-year period band. 

 

 

Figure 5.7. Quantized Distribution of Phase Angles between the Detrended Yearly CAB 

and CEPCI Series. 

 

Consequently, it is not possible to say something on whether the CEPCI is a 

leading indicator of the US economy or not, for the short-term (less than two years). 

Similarly, it is not possible to draw a conclusion for the medium-term (between 3- to 12-

year), for years before 1993. On the other, from 1993 to date there becomes a significant 

coherency between the two time series and from the analysis it seems that the CAB leads 

the CEPCI at this medium-term. Hence, there is no strong evidence to call CEPCI as a 

leading indicator in the medium-term. Finally, there is a very significant coherency for the 

long-term periods between the two time series. In the long-term periods, the two time 

series are mostly out-of-phase. Therefore it is not possible to make decision about the 

leading-indicator potential of the CEPCI. 
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5.5. WCA of the Detrended Yearly IPI and CEPCI Series 

 

 

In this section, the WCA of the detrended yearly IPI and CEPCI series will be considered. 

In Section 5.4, it was questioned whether the CEPCI leads the CAB or not. Since the data 

collection frequency is low, no conculusive comment had been made for the short-term 

(less than two years) and deductions, in general, were not in the direction of that the 

CEPCI is a better leading indicator for the US economy than the CAB for larger periods 

(longer than three years). Consequently, interrelation between the IPI and CEPCI gains 

importance. It is expected that WCA of the IPI and CEPCI will give an idea on whether the 

CEPCI is a leading indicator for the US economy or not. Table 5.3 lists the values of some 

of the important parameters used in the WCA computations of the yearly IPI and CEPCI in 

this chapter. 

 

Table 5.3. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

dt sampling interval 1 year 

DJ number of octaves per scale 1/32 

LPer lower level of period 1 year 

UPer upper level of period 70 years 

LPhaseDif lower levels of phase-difference bands [1.0, 3.0, 16] years 

UPhaseDif upper levels of phase-difference bands [2.0, 8.0, 24] years 

MinScale minimum scale 1 year 

MaxScale maximum scale 70 years 

Mother mother wavelet Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [60 60] 
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Fıgure 5.8 contains plots of the detrended yearly IPI and CEPCI series, their WCA 

image, and average phase difference between two series over the three particular period 

bands (1-2, 3-8, and 16-24 year period bands). WCA comprises much valuable information 

on the interrelation of the two series. In order to advance without missing a point and to be 

companionable with real-life analysis habits of the economists, the WCA figure will be 

studied under the short-, medium-, and long-term perspectives. 

 

 

Figure 5.8. Wavelet Coherence Analysis and Phase-Difference Plots of the Detrended 

Yearly IPI and CEPCI Series. 

 
Figure 5.9 was generated to identify more crisply the range of these short, medium, 

and long terms and to behold overall time-wise and frequency-wise mean of phase 

difference and coherency of the IPI and CEPCI series. From Figure 5.9a, it can be deduced 
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that average coherency between the IPI and CEPCI does not varies around a constant mean 

value and the overall coherency can be divided into four parts. In the first part, the 

coherency is around 0.7 at 1950 and it decreases to about 0.4 towards the early 1960s. In 

the second part, coherency varies roughly between 0.5 and 0.6 from mid 1960s to 2005. In 

the third part, coherency increases from 0.6 to 0.7 from roughly 2005 to 2008. In the final 

part, the coherency varies around 0.7 from 2009 to date. On the other hand, Figure 5.9b 

contains critical information for the WCA. The peaks in this sub-figure can be used for the 

designation of short-, medium-, and long-term behaviors. In this context, the peaks located 

at one year and four year can be attributed to short and medium terms while periods longer 

than 22 years can be attributed to long terms. Figure 5.9c says that the IPI and CEPCI are 

in phase from 1950 to early 1960s, however the IPI starts to lead the CEPCI from early of 

1960s to date averagely by a phase angle of 𝜋 4⁄ . On the other hand, Figure 5.9d roughly 

shows that, in shorter periods from 1- to 4-year period band, the phase angle between IPI 

and CEPCI increases from 0 to 𝜋 2⁄ . From 4- to 11-year period band, the IPI leads the 

CEPCI by an average of 𝜋 2⁄  phase angle. However, from 4- to 7-year period band, the 

phase angle decreases to 𝜋 4⁄ . From 11- to 16-year period, the CEPCI leads the IPI, 

increasingly. However, in Figure 5.6d, the increase was until 22-year period and there was 

a sudden drop to about 𝜋 4⁄  phase angle afterwards. Finally, from 16- to 30-year period, 

the IPI leads the CEPCI by 3𝜋 4⁄  phase angle (or, the two series are out-of-phase and the 

CEPCI leads the IPI by 𝜋 4⁄  phase angle). Nevertheless, just by looking at the mean 

coherency spectrum and phase difference spectrum across time plots can be deceptive 

because these averaged plots hinder the details of coherency phenomenon. Importance of 

the true (un-averaged) WCA analysis and the WCA image in Figure 5.8b arises in this 

situation. 
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Figure 5.9. Mean Coherence and Mean Phase-Difference between the Detrended Yearly 

IPI and CEPCI Series across Time and Frequency Domains. 

 

Now, the short-, medium-, and long-term behaviors can be analyzed using the 

WCA. In Section 5.3 it had been shown that increasing the data collection frequency from 

month to year had effected the short-term periods (1- to 2-year period band). Although we 

know that it is not statistically significant, in Figure 5.8d there is a large “high coherency 

region” located roughly between 1- to 2-year period band along the time. This region is 

interrupted between 1976 and 1980 by an “incoherent region”. Arrows on the region have 

different directions. The arrows from 1950 to 1955 on this region are rightward directed, 

which means the two series are in phase. The arrows located from 1955 to 1975 are 

averagely upward directed, which means that the CEPCI leads the IPI roughly by five 

months. The arrows located from 1973 to 1976 are leftward directed, which means the two 

series are out-of-phase. The arrows located from 1980 to 1989 are averagely downward 

directed, which means the IPI leads the CEPCI roughly by five months. The arrows from 

1989 to 1994 on the region are rightward directed, which means the two series are in 

phase. The arrows located from 1994 to 1997 on the region are averagely northeastward 
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directed, which means the CEPCI leads the IPI roughly by three months. The arrows from 

1997 to 2001 on the region are rightward directed, which means the two series are in 

phase. The arrows from 2001 to 2005 on the region are upward directed, which means the 

CEPCI leads the IPI roughly by five months. The arrows located from 2005 to 2008 are 

leftward directed, which means the two series are out-of-phase. From 2008 on, the arrows 

are downward directed, which means the IPI leads the CEPCI roughly by five months. A 

comparing short-term periods (1- to 2-year period band) of Figure 5.5b with Figure 5.8b 

portrays that the short-term interrelation between CAB and CEPCI, and between IPI and 

CEPCI have dissimilarities, especially after 1980. 

 

Furthermore, the interpretation of Figure 5.8b under medium-term scope (between 

3- to 12-year period band) depicts that the IPI and CEPCI are highly coherent for four 

specific regions. The first “high coherency zone” is located between 4- to 8-year period 

band in between 1950 and 1956. Those arrows on the region are averagely rightward 

directed, which means that two series are in phase. The second “high coherency zone” is 

located between 3- to 8-year period band in between 1965 and mid 1978. The reason 

behind this zone can be the oil shock of 1970s which affected both the IPI and the CEPCI. 

The arrows on this zone are leftward directed, which means that the two series are out-of-

phase. The third “high coherency zone” is located between 2- to 4-year period band. The 

reason behind this zone can be the occurrence of very high interest rates in 1980s which 

affected both the IPI and the CEPCI. The arrows on this zone are southwestward directed 

along the zone, which means that the IPI leads the CEPCI by roughly 15 months (or, the 

two series are out-of-phase and the CEPCI leads the IPI by six months). The fourth “high 

coherency zone is located between 3- to 8-year period band from 1993 to date. The reason 

behind this zone can be the change in the formulation of CEPCI in 2002. On the other 

hand, arrows on the zone show two different characteristics as well and they can be 

investigated in two different groups. The first group of arrows is located between 3- to 5-

year period band. Those arrows are downward directed, which means that the IPI leads the 

CEPCI roughly by one year. The second group of arrows is located between 5- to 8-year 

period band. Those arrows are southeastward directed, which means that the IPI leads the 

CEPCI averagely by nine months. A comparison of the medium-term periods of Figure 

5.5b with Figure 5.8b depicts that the IPI and CEPCI pair have more coherent regions than 

the CAB and CEPCI pair, at medium-term periods. Additionally, the phase difference 
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between IPI and CEPCI is roughly 𝜋 8⁄  degree (the shifted version of the phase difference 

between CAB and CEPCI), at medium-term periods. The reason of this shift is the 𝜋 8⁄  

phase angle between the CAB and IPI at medium-term periods (see Figure 4.7e). 

 

Additionally, long-term interpretation of Figure 5.8b shows that there is a large 

“high coherency region” between roughly 16- and 32-year periods along the time. 

However, only small part of the “high coherency region” falls into the COI. The arrows 

located on this region are southwestward directed, which means that the IPI leads the 

CEPCI by an average of 16 years (or, the two series are out-of-phase and the CEPCI leads 

the IPI by 8 years). A comparing of the long-term periods of Figure 5.5b with Figure 5.8b 

indicates that the CAB and CEPCI have slightly more coherent region than the IPI and 

CEPCI at long-term periods, and, between 16- and 21-year period band, the phase 

relationship is different. The CAB and CEPCI pair has more coherent regions than the IPI 

and CEPCI pair, at long-term periods. 

 

In addition, Figure 5.10 shows the image of the quantized distribution of the phase 

differences between the yearly IPI and CEPCI. Since the phase distribution between two 

series is too complex, especially for periods less than four years or so, the detailed 

interpretation of Figure 5.10 will not be undertaken. However, in general, at medium-term 

periods, the yellow-colored region (phase angle is between 0 to 𝜋 2⁄  at the yellow regions) 

is dominant from 1950 to early 1960. From early of 1960 to 1990, the red-colored region 

(phase angle is between 𝜋 2⁄  to 𝜋 at the red regions) is dominant. Finally, from 1990 to 

date, the yellow-colored region is dominant again. Hence, it can nearly be said that the IPI 

leads the CEPCI at medium-term periods. However, between 10- and 16-year periods, the 

CEPCI leads the IPI. From 10- to roughly 32-year period band, there is a solid red region, 

which means the IPI leads the CEPCI in those periods. From 32-year period to higher 

periods there are the blue, cyan and yellow regions in succession, which means that the 

phase relationship between the IPI and CEPCI alternates at higher periods. 
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Figure 5.10. Quantized Distribution of Phase Angles between the Detrended Yearly IPI 

and CEPCI Series. 

 

Consequently, it is again not possible indeed to say something about the 

performance of the CEPCI as a leading indicator for the US economy for the short-terms 

(less than two years). Since there is more coherent region in the medium-term periods 

(between 3- to 12-year) on the WCA figure of the IPI and CEPCI compared to that on the 

WCA figure of the CAB and CEPCI, it is more possible to draw a conclusion for the 

medium-term. In the medium-term, it can be said that the IPI leads the CEPCI, in other 

words, the CEPCI is not a leading indicator of the US economy for the medium-term 

periods. Finally, there is a very significant coherency for the long-term periods between the 

two time series. In the  long-term periods, the two time series are, most of the time, out-of-

phase. Therefore it is not possible to make decision about the leading-indicator 

characteristics of the CEPCI. 
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5.6. Summary on the Performance of CEPCI as a Leading Indicator for the US 

Economy 

 

 

CEPCI is the most widely used cost index in chemical engineering world. It is a composite 

index and contains many US economy-related parameters, and thus, it was presumed to be 

good candidate for being a leading indicator of the US economy. This chapter has shed a 

light on the CEPCI’s potential as a leading indicator. 

 

Effects of the data frequency (monthly versus yearly) on the WCA was a key 

element. This chapter begun with a comparison of the WCAs of the monthly and yearly 

data of the CAB and IPI. The results show that, data frequency has significant effect on the 

short-term periods, especially for periods close to the data frequency. For our case, the 

WCA results for the periods less than two years are considered as questionable. 

 

Furthermore, the ACC claims that the CAB is a good leading indicator for the US 

economy. Therefore, it was checked whether the CEPCI leads the CAB or not. The 

motivation behind this analysis was simple. Since the CAB is a leading indicator of the IPI, 

it was thought that if the CEPCI leaded the CAB, naturally the CEPCI would have been 

considered as a better leading indicator of the IPI (actually a leading indicator of the CAB 

as well). Unfortunately, there is no evidence to show that the CEPCI leads the CAB in 

Figure 5.5b at periods larger than two years and it is not possible to securely comment for 

periods less than two years due to insufficient data frequency. On the other hand, the 

CEPCI may still be considered as a leading indicator for the IPI (it can be a leading 

indicator which has a performance worse than the CAB). 

 

Lastly, so as to test whether the CEPCI is a leading indicator for the IPI or not, the 

WCA of the IPI and the CEPCI has beenexecuted (Figure 5.8b). It is clearly seen that the 

IPI leads the CEPCI at periods larger than two years. Since, we can not say anything 

significant for the shorter periods, it can be concluded that the CEPCI is not a leading 

indicator for the IPI and thus for the US economy for periods larger than two years. 
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6. APLICATION OF WCA TO FAULT DETECTION 
 

 

 

With the developing technology, plant operations have become more complex than ever. 

However, the sophisticated plant operations stimulate undesirable process events and 

according to Venkatasubramanian et al. (2003) these events end up with casualty of 20 

billion dollars in US petrochemical industry annually. Due to these losses, attention of 

researchers and practitioners turned into the finding a solution to minimize the losses 

caused by abnormal evets. The Process Fault Detection and Diagnosis (FDD) has been 

firstly conceptualized in 1970s and, Bread and Jones filter is firstly used in fault detection 

(Ding, 2008). Although the basic elements of process control (PID controllers, MPC 

controllers etc.) keep the process as much as at optimum by eliminating disturbances, they 

fail to cope with changes occurred during the course of the technological adaption and 

some insidious process changes which are called “faults”. The major faults may be counted 

as process drifts (e.g., due to catalyst deactivation), stochastic changes (e.g., due to ambient 

temperature changes), measurement problems (e.g., due to biased sensors), and actuator 

problems (e.g., due to valve sticking). These faults can cause economic, environmental and 

safety drawbacks. On the other hand, there are still needs for human operators for mostly 

manual checking in order to detect and diagnose faults. Because of range of failures and 

excessive number of variables generated from highly integrated processes, human 

operators are likely to fail to detect all faults. As reported by Venkatasubramanian et al. 

(2003) 70% of industrial accidents are triggered by human mistakes. 

 

 Process Monitoring (PM) methods have been introduced in order to eliminate 

human effects and improve fault detection tasks. PM consists of four procedures: fault 

detection, fault identification, fault diagnosis, and process recovery. The first procedure is 

concerned with the detection of faults. The second is oriented with the identification of the 

variables which are likely to be the cause of fault. The third procedure is concerned with 

the diagnosis of the causes underlying a fault. Finally, the last procedure focuses on the 

recovery of the process from faulty operation to normal operation. 
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PM may be approached from several dimensions ranging from statistics, pattern 

recognition and classification, information theory, and system theory (Chiang et al., 2001). 

The measurements reflect the states of the process and PM supports operators and 

engineers to unveil helpful information obtained from large process measurements. Process 

operators or engineers follow the process using PM techniques and can intervene with the 

process if necessary. Different sources give different names but Chiang et al. (2001) 

classifies the PM techniques as “data-driven” and “analytical”. 

 

 Data-driven techniques are based on process history data. Therefore, quantity and 

quality of the process data are critical for a data-driven model. Since a complex process 

generates very large data, data-driven techniques may become very useful due to 

possibility for dimension reduction. On the other hand, inadequate and untrustworthy 

measurements can influence the data-driven techniques directly and adversely. Data-driven 

techniques can be divided into two groups which are “qualitative” and “quantitative”. 

Moreover, quantitative methods can be classified as “statistical” or “non-statistical”. While 

a neural network is an example for non-statistical quantitative data-driven technique, the 

Principal Component Analysis is an example for statistical quantitative data-driven 

technique. 

 

 Analytical techniques mostly utilize the first-principle mathematical models. Since 

the analytical techniques rely on physical considerations, it can represent the reality much 

better than the data-driven model. However, in order to apply an analytical technique 

successfully, a system which has sufficient data collection ability (i.e., sufficient number of 

sensors and indicators) is needed. Therefore, analytical techniques are mostly used in small 

systems which can be easily followed. Diagnostic observers for dynamic systems, 

parameter estimation, and Kalman filtering are among the mostly used strategies for fault 

detection and isolation whose working principal depends on a priori knowledge. 

 

According to Venkatasubramanian et al. (2003), there is no perfect technique which 

successfully diagnoses all faults. It sounds fair because PM models are mostly developed 

to detect some particular faults. Therefore such PM models are highly biased and they are 

likely to fail to detect faults other than they are modeled and trained for. In order to 

benchmark alternative strategies, Venkatasubramanian et al. (2003) suggest 10 prominent 
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features that a successful FDD technique should possess. Some of the important ones that 

are also relevant to this thesis work are as follows: i) Quick fault detection and diagnosis 

ability for rapid response to malfunctions, ii) Fault isolation ability to discriminate known 

faults from unknown ones, iii) Fault explanation ability to interpret root causes of the fault 

and how the fault spreads, and iv) Simplicity to implement in real world. 

 

On the other hand, there are also signal-processing based fault diagnosis 

techniques. It is believed that signals carry characteristics of the malfunction and with the 

correct signal-processing algorithm the fault can be diagnosed (Ding, 2008). Typically, 

signal-processing based fault-diagnosis techniques are performed for steady state system 

and it is expected to define deviation from the steady state as faults. 

 

Since the Wavelet Coherence Analysis (WCA) is successful in both time and 

frequency domains, it is worthy to test the usability of the WCA in FDD tasks. As a matter 

of fact, in Chapter 3, while the features of WCA have been tested, a change-point detection 

related problem has already been studied. Since a FDD problem is also a change-point 

detection problem, Chapter 3 actually contains a FDD application of the WCA. Therefore, 

comparison of Eq. 3.1 and 3.2 with Figure 3.1 and 3.6 is a good point to start assessing the 

potential of WCA as a FDD tool. In Eq. 3.2 there was a sudden change after the 25th year. 

On the other hand, Eq. 3.1 had no change along the time line. Therefore, if Eq. 3.1 is 

assumed as reference time series (normal, unfaulty, operating template), any deviation 

from this template can be attributed as a fault occurring in due to Eq. 3.2. In Figure 3.1, the 

instantaneous change occurring at 25th year had been caught for this simple case. In Figure 

3.6b, cycles and the changes in these cycles had been shown. If it is assumed that Eq. 3.2 

corresponds to operation without fault until 25th year, the change in the Eq. 3.2 at the 25th 

year is detected in two ways; as an alteration in the coherency level and as a shift in the 

phase relationship between two series (changes in direction of the arrows on the coherent 

zones). Figure 3.6b explicitly shows that there is a discontinuity around 25th year that 

matches with the position at which the fault was introduced through Eq. 3.2. Moreover, at 

the 25th year, the directions of the arrows begin to change, i.e. the phase relationship 

between the reference time series and faulty time series changes and this change is 

permanent because the fault persists thereafter to the end of the series. Thus, the phase-
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difference arrows can be used to identify hidden phase-shift faults as well as to assess 

whether the effect of the fault persists or not. 

 

 

6.1. Definition of the Synthetic Time Series 

 

 

For a preliminary exhibition of the aptitudes of WCA in the field of FDD, a modified 

version of the synthetic data generating model for the Swiss-Roll Data Set is used 

(Musulin, 2014). Firstly, the original series 𝑥1(𝑡) and 𝑥2(𝑡) are defined as follows for the 

normal (unfaulty) operation: 

 

𝑥1(𝑡) =
t cos(t)

5
 (6.1) 

𝑥2(𝑡) =
t sin(t)

5
 (6.2) 

 

where, 

 

𝑡 =
3𝜋

2
(1 + 2(𝑖)) , 1 < 𝑖 ≤ 500 (6.3) 

 

and where  is the disturbance represented by uniform random numbers U(0,1) of 

dimension 500 (thus, the dimension of 𝑡 is 500 as well). 𝑥1(𝑡) is depicted in Figure 6.1a 

and 𝑥2(𝑡) is depicted in Figure 6.1b. 

 

For the first faulty data set, the following two different step faults are replaced with 

the normal operation data, as follows: 
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𝑥1𝑓1(𝑡) =
t cos(t − 0.5)

5
 

for  200 < 𝑖 ≤ 500,  

otherwise  𝑥1𝑓1(𝑡) = 𝑥1(𝑡) 
(6.4) 

𝑥2𝑓1(𝑡) =
t sin(t + 1.0)

5
 

for  200 < 𝑖 ≤ 500,  

otherwise  𝑥2𝑓1(𝑡) = 𝑥2(𝑡). 
(6.5) 

 

𝑥1𝑓1(𝑡) is depicted in Figure 6.1c and 𝑥2𝑓1(𝑡) is depicted in Figure 6.1d. 

 

For the second partially faulty data set, a temporarily occurring fault is replaced 

with 𝑥1(𝑡) only and 𝑥2(𝑡) is left faultless, as follows: 

 

𝑥1𝑓2(𝑡) =
t cos(t − d)

5
 

for 100 < 𝑖 ≤ 400,  

otherwise  𝑥11(𝑡) = 𝑥1(𝑡) 
(6.6) 

𝑥2𝑓2(𝑡) = 𝑥2(𝑡) 1< 𝑖 ≤ 500 (6.7) 

 

where 𝑑 is a fault vector of uniform random numbers, U(0,1) of dimension 50, yet 

generated with a different seed. 𝑥1𝑓2(𝑡) is depicted in Figure 6.1e and 𝑥2𝑓2(𝑡), is depicted 

in Figure 6.1f (which is identical to Fig.6.b). 
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Figure 6.1. Normal and Fault-Added Synthetic Time Series. 

 

 The two original (unfaulty) series 𝑥1(𝑡) and 𝑥2(𝑡) are shown in red color in Figure 

6.1a and 6.1b respectively. Different fault-added version of 𝑥1(𝑡) and 𝑥2(𝑡) are shown in 

the rest of Figure 6.1. The vertical pink bars on the figures indicate starting points of the 

added faults, whereas the vertical black bar indicates the end of the added fault. There is no 

fault in Figure 6.1f and thus it is identical to Figure 6.1b. As can be appreciated from 

Fig.6.1 it is highly difficult to detect the exact beginning and ending locations of the faulty 

operation zones just by eye inspection if these locations had not been marked with vertical 

bars, since the generated faults are not simply identifiable mean or trend changes but are 

obscure random-number sequence changes in the first and second faulty sets. 
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6.2. Application of WCA to Fault Detection 

 

 

In this section, WCA will be performed over these conscientiously prepared synthetic 

series to decide whether WCA is a promising tool for process fault detection. The normal 

(unfaulty) series are used as the “normal operation template” (as the first series of the 

WCA) and the faulty series are used as the “abnormal operation” or “query series” (as the 

second series of the WCA). Therefore, the WCA of this binary series (normal and faulty) 

may actually be considered as the application of WCA on “template matching” problems 

which are very important in the operation of batch chemical plants. 

 

Table 6.1 lists the values of some of the important parameters used in the WCA 

computations in this chapter. 

 

Table 6.1. Values of Some Important Parameters used in the WCA Computations. 

Parameter Explanation Value 

dt sampling interval 1 

DJ number of octaves per scale 1/32 

MinScale minimum scale 0.95 

MaxScale maximum scale 256 

Mother mother wavelet Morlet 

MonteCarloCount number of surrogate sets 10 

ArrowDensity densitiy of arrow on WCA figure [25 25] 

 

Firstly, WCA of 𝑥2(𝑡) and 𝑥2𝑓2(𝑡) = 𝑥2(𝑡) will be observed to see the behavior of 

WCA when there is no fault. Figure 6.2 contains plots of 𝑥2(𝑡) (red) and 𝑥2𝑓2(𝑡) (blue), it 

also contains WCA of 𝑥2(𝑡) and 𝑥2𝑓2(𝑡). Unsurprisingly, WCA of a series with itself gives 

one unique yellow region with rightward directed arrows, which means the two series are 

in phase. It can be deduced that when there is no fault or when a perfect template matching 

occurs, WCA will show a homogeneous region with rightward directed arrows. 
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Figure 6.2. WCA of Series 𝑥2(𝑡) (no fault) and 𝑥2𝑓2(𝑡) (no fault). 

 

 Secondly, WCA of 𝑥1(𝑡) and 𝑥1𝑓1(𝑡) will be observed to see the behavior of WCA 

when there is permanent fault after a particular point in time. From Eq. 6.4, it is know that 

fault is added to the system at time 200. Figure 6.3 contains plots of 𝑥1(𝑡) (red) and 

𝑥1𝑓1
(𝑡) (blue), it also contains WCA of 𝑥1(𝑡) and 𝑥1𝑓1(𝑡). The starting point of the fault is 

indicated by a vertical pink bar at t=200 in Figure 6.3b and c. Although it is not possible to 

detect the initiation of the fault in Figure 6.3b by naked eye, in the WCA image it is clearly 
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identified by the disruption of the smooth yellow zone right at the bar for periods between 

one and about 58 year. Additionally, color of periods larger than 90 years become blue 

which indicates no coherency and only small portion of this region located in COI. We 

have observed similar “no coherency zone” at larger periods in Figure 4.7b and it may be 

caused from increase in resolution because of elimination of trends. The disrupted zones 

can be investigated under three groups. The first disrupted coherent zone is located at 

between 32- to 58-year period band. This zone firstly responses to the fault and it is the 

most persisting disrupted zone. However, the left tail of this disrupted zone, located around 

34-year period is interestingly starts just before the fault, 10 time units before. This can be 

caused by tail effects of sliding wavelets in wavelet transformation. There is a “perfect 

coherency zone” located at 19- to 32-year period band, which interestingly occupies the 

entire time range and separates the first group from the second one. The second group of 

disputed zones is located between 2- to 19- year period band. These are unsystematically 

distributed with different sizes. This disorderly appearance is most probably due to the 

injection of random numbers as fault sources in Eq. 6.1 and 6.4. The third group of 

disrupted zones is located at less than two-year period. They may be residuals and can be 

assumed as noise. On the other hand, arrows after the fault are mostly rightward directed. It 

can be said that phase relationship between original and fault-added series is not affected 

from fault. In short, the vicinity of the 34-year period is more sensitive to the fault than the 

others in this case. 
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Figure 6.3. WCA of Series 𝑥1(𝑡) (no fault) and 𝑥1𝑓1
(𝑡) (fault-1). 

 

 Thirdly, WCA of 𝑥2(𝑡) and 𝑥2𝑓1(𝑡) will be observed to see the behavior of WCA 

when there is permanent fault after a particular point in time. From Eq. 6.5 it is know that 

fault is added to the system at time 200. Figure 6.4 contains plots of 𝑥2(𝑡) (red) and 

𝑥2𝑓1
(𝑡) (blue), it also contains WCA of 𝑥2(𝑡) and 𝑥2𝑓1(𝑡). The starting point of the fault is 

indicated by a vertical pink bar at t=200 in Figure 6.4b and c. Although it is not possible to 

detect the initiation of the fault in Figure 6.4b by naked eye, in the WCA image it is clearly 
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identified by the disruption of the smooth yellow zone right at the fault bar for periods 

between one and about 97 years. Additionally, the colors of periods larger than 128 years 

become blue which indicates incoherency, and only small portion of this region is located 

in COI. Similar “incoherent zones” at larger periods in Figure 4.7b may be observed and 

these may be caused by the increase in resolution as a result of detrending. Unlike Figure 

6.3c, “incoherent zones” are much larger in Figure 6.4c. This can be resulted from higher 

magnitude (+1.0) of fault incurred. The magnitude of the fault in Eq. 6.5 is twofold of that 

in Eq. 6.4 (-0.5). The disrupted zones can be investigated under two groups. The first 

disrupted coherent zone is located at 70- to 100-year period band between 255<t<440. 

Unlike Figure 6.3c, larger periods failed to detect the fault. There is a “perfect coherency 

zone” located at 19- to 32-year period band which interestingly occupies the entire time 

range and separates the first group from the second one. The second group is the large 

disrupted zones located between 2- to 60-year period band and it indicates the detection of 

the fault. Once again, there is a minor “incoherent zone” located around 17-year period, 

which is interestingly starts just (10 time units) before the fault is presented and is similar 

to minor “incoherent zone” around 34th time period in Figure 6.3c. On the other hand, the 

arrows after the fault are very much unsystematically directed compared to Figure 6.3c in 

which the magnitude of fault was less (half) than the magnitude of fault in Figure 6.4c. By 

comparing the behavior of the phase-difference arrows in Figure 6.3c and Figure 6.4c, it 

can be said that phase relationships between original and faulty series are affected after a 

threshold level of fault magnitude. 
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Figure 6.4. WCA of Series 𝑥2(𝑡) (no fault) and 𝑥2𝑓1
(𝑡) (fault-1). 

 

Finally, WCA of 𝑥1(𝑡) and 𝑥1𝑓2(𝑡) will be observed to see the behavior of WCA 

when the fault is introduced abruptly at a particular point in time and removed at another 

future point in time. From Eq. 6.6, it is known that the fault is added to the system 

temporarily, only in between 100 < t < 400. Figure 6.5 contains plots of 𝑥1(𝑡) (red) and 

𝑥1𝑓2
(𝑡) (blue), it also contains WCA of 𝑥1(𝑡) and 𝑥1𝑓2(𝑡). The starting points of the fault 

is indicated by a vertical pink bar and the termination of the fault is indicated by a vertical 
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black bar in Figure 6.5b and c. Although it is not possible to detect the faulty zone in 

Figure 6.5b by comparing it with Figure 6.5a via naked eye, in the WCA image, the faulty 

zone is clearly identified by the definite presence of the “incoherent zone” that occurs right 

after the pink bar until the black bar. Additionally, “incoherent zones” are distributed 

between 1st and 128th time instances, and for this example, the color code for periods 

larger than 128 years are also yellow even though a small part it is located inside the COI. 

Since the magnitude of the fault is random for this case, it is observed that sizes of the 

“incoherent zones” are in between Figure 6.4c and Figure 6.5c. The disrupted zones can be 

investigated under three groups. The first group is located at 50- to 85-year period band. 

This “incoherent zone” starts from the pink bar and it crosses the black bar (termination of 

the fault) by 56 time unit and it is a successful precursor to detect the fault on time. 

Interestingly, there is another “incoherent zone” located between 85- to 11- year period 

band between 0<t<279. Since its starting point is outside the COI, and is much before the 

starting point of the fault, it is not counted as a consequential disruption of coherent zone. 

There is again a “perfect coherency zone” located at 41- to 50-year period band, which 

interestingly occupies the entire time range and separates the first group from the second 

one. The second group of disrupted zones is located between 9- to 41-year period band and 

these zones may also be attributed to detection of the fault. Again, similar to previous 

cases, there is a minor “incoherent zone” which begins right before the beginning of the 

fault at about 34th time instance (10 time units before the fault). The third group of 

disrupted zones is located between 2- to 9-year period band and this group may also be 

attributed to detection of the fault. This group late reacts to the fault. On the other hand, the 

arrows on Figure 6.5c within the fault zone are not straightly rightward directed as in 

Figure 6.3c and are not randomly directed as in Figure 6.4c. Since the magnitude of the 

fault in Eq. 6.6 is random and between zero and one, it can again be concluded that the 

magnitude of fault has significant effect on phase relationships. In other words, the severity 

of the changes in the angles of arrows is an indicator of the magnitude of the fault. 
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Figure 6.5. WCA of Series 𝑥1(𝑡) (no fault) and 𝑥1𝑓2
(𝑡) (fault-2). 

 

 In summary, these basic examples show that the WCA is a strong candidate to 

become a new process fault-detection tool. The analyses of this chapter show that the 

WCA (coherence levels) and the phase differences (arrow directions) are sensitive to the 

magnitude of the fault as well. On the other hand, the study done in this chapter is an 

offline analysis. There are edge effects associated with WCA and thus the significance of 

the WCA decays towards the edges where the COI appears. Therefore, the applicability of 
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the WCA to online process fault detection, where the fault enters the WCA picture from its 

less significant edges, is still a question and must be analyzed further in more detail. 

 

 On the basis of learnings from the example of this chapter and from that of Chapter 

3, the following table which summarizes the potential of the WCA for applications in FDD 

may be constructed. 

 

Table 6.2. Summary of the Potential of the WCA for Applications in FDD (+: Definitely 

Positive, ?: Requires Further Investigation). 

A Successful FDD Technique Should Possess WCA Technique Possesses 

Quick fault detection ability + 

Fault isolation ability to discriminate faults ? 

Fault explanation ability ? 

Simplicity to implement + 

  



130 
 

7. CONCLUSIONS AND RECOMENDATIONS 
 

 

 

Time series carry information in both time domain and frequency domain. There are 

successful tools which extract the information carried by time series. However, these tools 

have a critical deficiency; they can only work in one particular domain. On the other hand 

Wavelet Analysis (WA) effectively performs in both domains simultaneously that makes it 

possible to capture local spectral changes. In addition, most of the time series in 

engineering and economics are nonstationary and WA can cope with such nonstationary 

time series. Thanks to these positive aspects, WA has started to be widely used by 

academy in the last two decades. Likewise, this thesis has focused on presenting alternative 

chemical-industry related application fields of Continuous Wavelet Transform (CWT), 

Wavelet Power Spectrums (WPS), and Wavelet Coherence Analysis (WCA). In order to 

make a comprehensive study, CWT and WPS are used for univariate analyses whereas 

WCA is used for bivariate analyses. 

 

Firstly, in Chapter 1, WA was introduced. It was verbally compared with the 

classical methods such as the Fourier Transform (FT). After that, alternative software 

programs with which one can perform and study WA were reviewed and a hybridization of 

the most widely used two of them was implemented and proposed for use in this thesis 

work. After this introduction, a relatively broad literature review on WA was given. In 

literature, WA is commonly used in several different territories. Initially, some articles 

related with economics, finance, and commodity prices have been reviewed. In those 

articles, researchers work with several different indicators such as oil price, stock price, 

inflation, and country currencies etc. These generally use WA for hedge accounting and 

risk management. In some other articles, WA are used to reveal interrelationship among 

certain variables in some specific fields such as medical, geophysics, meteorology, energy, 

etc. 

 

 In Chapter 2, mathematical background of WA was investigated in reasonable 

depth. The Morlet Wavelet was used throughout the thesis because of its wide usage in the 

literature and recognized power in localization in both time and frequency domains 
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simultaneously (Tiwari et al., 2013). After that, derivations of CWT and WPS from Morlet 

Wavelet have been presented. Finally, formulization of WCA and calculation of phase 

differences between time series were explained. Furthermore, alternative software 

toolboxes for WA namely the AGToolbox, the ASToolbox and the MATLAB’s default 

WCA function were comparatively studied. It was seen that perhaps the most important 

difference between these toolboxes was in their smoothing procedures. In the literature, 

there is not any single smoothing procedure agreed upon and used identically in all 

toolboxes. A modified version of the original AGToolbox, hybridized with some parts of 

the ASToolbox, was developed and used in this thesis since these two toolboxes are the 

most widely used ones in literature works. 

 

 In Chapter 3, performances of WPS and WCA were tested on simulated synthetic 

time series. The time series were created from a model which was originally used in ( 

Aguiar-Conraria and Soares, 2011). So as to compare univariate performance of WPS, its 

results were compared with the results of the Power Spectral Density (PSD) which works 

only on frequency domain. WPS was not only overperformed PSD but also it detected 

sudden changes in the time series. Furthermore, Windowed and Lagged Correlation 

(WLC) was used to compare the result of WCA with the results of the traditional 

correlation approach. Although WLC eliminated the effect of phase difference to some 

extent, its results were too coarse for comparison with WCA. On the other hand, WCA was 

almost perfectly detected the coherency between the two series. Additionally, it showed 

remarkable performance for detecting phase differences between the two simulated time 

series. 

 

 In Chapter 4, the chemical industry related time series were analyzed in depth. 

Chemical Activity Barometer (CAB) is a composite index created by the American 

Chemical Council (ACC) which was built by using chemical-sectors related economic 

indicators. In regard of ACC, CAB is a leading indicator of the US economy, particularly 

the Industrial Production Index (IPI). In order to check whether CAB is a leading indicator, 

ACC uses three-month simple moving average (3MMA) and compares the results with the 

turning points of US economy, announced officially by the National Bureau of Economic 

Research (NBER). In this thesis work, WCA was applied to the monthly CAB and IPI data 

to check the claims of the ACC. The results have explicitly stated that the CAB and IPI are 
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coherent at medium periods (3- to 12-year periods). However, due to the fact that US 

Business Cycles (BCs) are located at short periods (0.5- to 2-year periods), the focus was 

shifted to short-term periods. Short-term periods of Figure 4.3b and 4.7b revealed that the 

troughs claimed by the ACC and coherent zones at short-term periods coincide with each 

other. Detailed comparison of these coherent zones demonstrated that the troughs, most of 

the time, are preceded by the coherent zones on the WCA image of the CAB and IPI, 

especially for the troughs between 1945 and 2007. On the other hand, phase differences 

between the CAB and IPI congregated with phase differences between the troughs of the 

CAB and the troughs published by the NBER. These results were attributed to parallel 

moving tendencies of economic variables during epochs of recession. Furthermore, WCA 

recursively was applied to trending, detrended, and 3MMA of the same series. 

Consequently, resolution of the WCA image increased when detrended series were used 

instead of the original trending series and when the 3MMA series were used instead of 

both the original trending and detrended series. However, due to artificial lag introduced in 

the 3MMA process, the phase relationship got distorted and the arrows of the WCA no 

longer showed the actual direction. 

 

 In Chapter 5, experiences of Chapter 4 were applied to Chemical Engineering Plant 

Index (CEPCI) to check whether CEPCI is a leading indicator of the US economy. 

Unfortunately, monthly data of CEPCI was not available. Therefore, yearly data of the 

CEPCI were used. The motivation behind this chapter was to examine the binary 

relationships between the CAB and CEPCI pair and between the IPI and CEPCI pair with 

WCA in order to be able to sort these series with respect to their potential as being leading 

indicators of the US economy based on the phase relationships among them. To do so, 

firstly the original monthly data of the CAB and IPI were converted to yearly data and then 

the three yearly time series were detrended since the resolution of WCA image increases 

when detrended data are used. Additionally, in spite of the fact that BCs are located at 

short-term periods (0.5- to 2-year periods), only the medium- and long-term periods were 

studied since the data frequency decreased upon conversion from monthly to yearly series. 

Consequently, two important results have been obtained. The first one is that increasing the 

data collection period from months to years had drastic effects on low periods of the WCA 

image. The second is that the CEPCI was partially coherent with the CAB and IPI at 

medium term (3- to 12-year periods), however there was no solid evidence whether the 
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CEPCI leaded the CAB or the IPI. Therefore, it can not be said that the CEPCI is a leading 

indicator of the US economy by analyzing with the low-frequency yearly data. 

 

 In Chapter 6, the applicability of the WCA in Process Fault Detection (PFD) tasks 

was studied, to the best of our knowledge, for the first time in literature. In this 

experimental chapter, simple faults with different characteristics were used in order to 

examine whether WCA was a promising PFD tool or not. Two different synthetic time 

series (containing no fault) and four different faulty time series grouped into two faults 

were generated and used in the WCA of their binary pairs with unfaulty counterparts. 

Several interesting outcomes were obtained. The first observation was that the faults 

distorted coherent zones as well as phase-difference indicator arrows. The second 

observation was that there was direct proportion between the magnitude of the fault and the 

level of distortion of the coherent zones as well as the homogeneity of the direction of the 

phase arrows. However, while the coherent zones were more sensitive to the faults, arrows 

were affected after a certain threshold level of the fault magnitude. The third observation 

was that the WCA detected the faults no matter how abrupt or permanent were the faults. 

 

There are two caveats for future studies. During the thesis, mostly the positive 

aspects of the WCA were put forward. Nevertheless, perhaps the most important limitation 

of the WCA is its aptness to only the binary time series. Therefore, it is impossible to 

perform WCA with multivariable or even with ternary time series. Any improvements in 

this aspect can make the WCA a much more attractive tool. However, this is not a 

straightforward task at all and requires deep theoretical development which is actually the 

job of the mathematicians. 

 

 Moreover, it was shown in Chapter 6 that WCA was a promising tool for PFD 

tasks. The series used were synthetic and the PFD analyses were offline. It is 

recommended to test the PFD performance of WCA with more realistic data, e.g., by using 

the Tennessee Eastman Plant benchmark problem. In addition, online image-processing 

tools may be barrowed from the computer science literature to test the applicability of 

WCA for online PFD tasks in real-time. However, anyone who will try WCA for PFD 

tasks, especially in real-time applications, should not forget that there is an obscure “edge 

effect” associated with any wavelet transform and thus with the WCA as well, due to 
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cyclical nature of wavelets. Therefore, in online application of WCA, any new data point 

added to a streaming data series will fall into the end zone that suffers from the edge 

effects. Thus, one should check significance of detected fault right at the edge before 

reaching conclusions and taking further actions in real time. 

 

 As a last but important recommendation for future work it is suggested to 

investigate if the phase differences (arrow directions in the WCA image) and coherence 

levels (color coding of the WCA image), individually, can be used for the detection of two 

different fault types. For instance, the coherence levels may be more suitable in detecting 

classical faults such as mean, variance, and trend changes and the phase angles may be 

more suitable to detect slowly occurring / propagating phase-shift changes (e.g., obscure 

phase shifts due to slowly prevailing fouling phenomenon in heat exchangers) 
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APPENDIX A: MATLAB CODE USED 
 

 

echo off; clc; clear all; close all; format short g; warning off; 

rng('default'); % Comment this to get different random series on each run 

 

% Example2_Cross_PhaseDifference.m of ASToolbox 

delt=12; 

t = 0 : 1/delt : 50; % Note that dt = 1/12 !!! 

lt=length(t); 

r=1; 

x=sin(2*pi*t/3)+3*sin(2*pi*t/6)+randn(1,lt)*r; 

tin=0:1/delt:25; 

tfin=25+1/delt:1/delt:50; 

yin=4*sin(2*pi*((tin+5/delt)/3))-... 

    3*sin(2*pi*((tin-10/delt)/6))+randn(1,length(tin))*r; 

yfin=4*sin(2*pi*((tfin-5/delt)/3))-... 

     3*sin(2*pi*((tfin+10/delt)/6))+randn(1,length(tfin))*r; 

y=[yin, yfin]; 

 

Lt = length(t); 

 

DATA(:,1)=x; 

DATA(:,2)=y; 

 

st = delt; % for years 

 

names = {'Series x(t)','Series y(t)'}; 

 

% DATA=detrend(DATA); 

DATA=([mapminmax(DATA')]'+1)/2; % map between 0 & +1 

 

dt = unique(round(diff(t),6)); % Sampling Interval 

 

tunit = {'years'}; % For axis labelling 'months'/'seconds'/... 

 

% DJ : Number of Octaves per Scale. Spacing between discrete scales. 

%      A smaller # will give better scale resolution, but be slower to plot. 

DJ = 1/32;  

 

LPer = 0.15; % Lower period for WCA 

UPer = 32; % Lower period for WCA 

 

 

%--- Period-band selections for phase-difference & time-lag computations 

LPhaseDif = [2.5 3.5 5]/1; % Lower Phase Difference Band 

UPhaseDif = [3.5 5.0 7]/1; % Upper Phase Difference Band 

%-END- Period-band selections for phase-difference & time-lag computations 

 

d1 = DATA(:,1); 

d2 = DATA(:,2); 

 

figure(111222111) 

subtightplot(3,1,1,[0.15,0],[0.005,0.045],[0.05,0.015]) 
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plot(t,x,'r-','LineWidth',1.0); 

title(['(a)  Series ',names{1}],'FontName',' ','FontSize',10); 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Values'],'FontName',' ','FontSize',10); 

grid on 

 

subtightplot(3,1,2,[0.15,0],[0.035,0.015],[0.06,0.015]) 

plot(t,y,'b-','LineWidth',1.0); 

title(['(b)  Series ',names{2}],'FontName',' ','FontSize',10);  

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Values'],'FontName',' ','FontSize',10); 

grid on 

 

subtightplot(3,1,3,[0.15,0],[0.085,0.015],[0.06,0.015]) 

plot(t,x,'r-','LineWidth',1.0); 

hold on 

plot(t,y,'b-','LineWidth',1.0); 

title(['(c)  Series ',names{1}, ' and ',names{2}],'FontName',' ','FontSize',10);  

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Values'],'FontName',' ','FontSize',10); 

legend(names,'Location','B')  

hold off 

grid on 

 

%--- AGToolbox 

hFig2=figure(10); set(hFig2,'Position',[800, 40, 800, 800],'Name','AGToolbox Example'); 

 

%--- Plot of Series 

subtightplot(4,2,[1 2],[0.06,0.],[0.0,0.025],[0.05,0.015]) 

plot(t,d1,'r-','LineWidth',1.0); 

hold on 

plot(t,d2,'b-','LineWidth',1.0); 

title(['(a)  Series ',names{1}, ' and ',names{2}],'FontName',' ','FontSize',10);  

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel('Normalized Series Values','FontName',' ','FontSize',10); 

legend(names,'Location','Best')  

hold off 

grid on 

%-END- Plot of Series 

 

%--- Plot of Coherency and COI 

subtightplot(4,2,[3 5 7],[0.06,0.],[0.025,0.025],[0.05,-0.05]) 

 

%------------------------------------------------------------------------- 

[WCoh,phaseDif,powerX,powerY,coiX,coiY,period] = wtcUA([t' d1], [t' d2],  

 'DJ',DJ, 'MinScale',0.12/1, 'MaxScale',UPer/1, 'Mother','MORLET', 

 'MakeFigure',1, 'MonteCarloCount',10, 'pictEnh',1, 

 'ArrowDisplayThreshold',0.01, 'ArrowDensity',[30 30],  

 'ArrowSize',1.5, 'ArrowHeadSize',1.5); 

coi=min(coiX,coiY); hold on; 

plot(t,log2(coi),'w','LineWidth',3,'LineStyle','--'); 

%------------------------------------------------------------------------- 

 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Period (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

title('(b) Wavelet Coherence'); 
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c=colorbar('southoutside'); 

c.Label.String = 'Magnitude-Squared Coherence'; 

c.Label.FontSize = 10; 

c.FontSize = 10; 

c.Ticks = [0.0: 0.1 : 1.0]; 

colormap(parula) 

 

%--- Plot Phase-Differences & Instantaneous Time-Lags 

labels = {'c','d','e'}; 

for i=1:length(LPhaseDif) 

clear irow meanPer timeLag 

subtightplot(4,2,4+2*(i-1),[0.06,0.],[0.05,0.025],[0.25,0.015]) 

 

%--- Mean Phase Difference 

[irow,~]=find((period >= LPhaseDif(i)) & (period <= UPhaseDif(i))); 

PM(i,:) = mean(phaseDif(irow,:)); 

 

[mn,rowix]=min(abs(period-UPhaseDif(i))); 

PM(i,:) = phaseDif(rowix,:); 

%-END- Mean Phase Difference 

 

%--- Instantaneous Time-Lag 

meanPer=mean(period(irow)); timeLag(i,:)=(PM(i,:)*meanPer)/(2*pi); 

%-END- Instantaneous Time-Lag 

 

erbars=std(phaseDif(irow,:));  Standard Deviation 

shadedErrorBar(t',PM(i,:)',erbars,'lineprops','r','patchSaturation',0.1); hold on; 

legend('Mean Phase Difference','Location','northwest' ) 

ylim([-pi +pi]) 

set(gca,'YTick',-pi:pi/2:pi)  

set(gca,'YTickLabel',{'-\pi','-\pi/2','0','+\pi/2','+\pi'}) 

hrline=refline(0,0); hrline.Color='k'; hrline.LineWidth=2; 

ylabel('Phase Difference','FontName',' ','FontSize',10); 

title(['(',labels{i},') ',num2str(LPhaseDif(i)),'~',num2str(UPhaseDif(i)),' period 

band'],'FontName',' ','FontSize',10); 

set(get(get(hrline,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 

box on 

if i==length(LPhaseDif) 

   xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

    

end 

end 

 

tightfigUA(); 

movegui(hFig2,'northeast'); 

%-END- Plot Phase-Differences & Instantaneous Time-Lags 

 

%--- Plot Mean Coherence & Mean Phase-Difference Spectra Across All Periods 

hFig15=figure(15); set(hFig15,'Position',[400, 100, 680, 500],'Name','AGToolbox 

Example'); 

subtightplot(2,2,1,[0.15,0.09],[0.08,0.04],[0.08,0.015]) 

shadedErrorBar(t,mean(WCoh,1),std(WCoh,0,1),'lineprops',{'r','LineWidth',2},'patchSatura

tion',0.15); hold on; 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',9); 

ylabel('Coherence Spectrum','FontName',' ','FontSize',9); 

title('a) Mean Coherence Spectrum Across Periods','FontName',' ','FontSize',9); 
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grid on 

box on 

 

subtightplot(2,2,3,[0.15,0.09],[0.08,0.00],[0.08,0.015]) 

shadedErrorBar(t,mean(phaseDif,1),std(phaseDif,0,1),'lineprops',{'r','LineWidth',2},'pat

chSaturation',0.15); hold on; 

ylim([-pi +pi]); 

set(gca,'YTick',-pi:pi/2:pi)  

set(gca,'YTickLabel',{'-\pi','-\pi/2','0','+\pi/2','+\pi'}) 

hrline=refline(0,0); hrline.Color='k'; hrline.LineWidth=2; 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',9); 

ylabel('Phase-Difference Spectrum','FontName',' ','FontSize',9); 

title('b) Mean Phase-Difference Spectrum Across Periods','FontName',' ','FontSize',9); 

grid on 

box on 

 

subtightplot(2,2,2,[0.15,0.09],[0.08,0.04],[0.08,0.015]) 

 

[uu,~]=find(period<=30); 

shadedErrorBar(period(uu),mean(WCoh(uu,:),2),std(WCoh(uu,:),0,2),'lineprops',{'b','LineW

idth',2},'patchSaturation',0.2); hold on; 

xlabel(['Period (',strvcat(tunit),')',],'FontName',' ','FontSize',9); 

ylabel('Coherence Spectrum','FontName',' ','FontSize',9); 

title('c) Mean Coherence Spectrum Across Time','FontName',' ','FontSize',9); 

grid on 

box on 

 

subtightplot(2,2,4,[0.15,0.09],[0.08,0.00],[0.08,0.015]) 

shadedErrorBar(period,mean(phaseDif,2),std(phaseDif,0,2),'lineprops',{'b','LineWidth',2}

,'patchSaturation',0.2); hold on; 

ylim([-pi +pi]); 

set(gca,'YTick',-pi:pi/2:pi)  

set(gca,'YTickLabel',{'-\pi','-\pi/2','0','+\pi/2','+\pi'}) 

hrline=refline(0,0); hrline.Color='k'; hrline.LineWidth=2; 

xlabel(['Period (',strvcat(tunit),')',],'FontName',' ','FontSize',9); 

ylabel('Phase-Difference Spectrum','FontName',' ','FontSize',9); 

title('d) Mean Phase-Difference Spectrum Across Time','FontName',' ','FontSize',9); 

xlim([0 30]) 

grid on 

box on 

tightfigUA(); 

%--- Plot Mean Coherence & Mean Phase-Difference Spectra Across All Periods 

 

%--- PLOTs for individual series (univariate) 

hFig1=figure(20); set(hFig1,'Position',[800, 100, 800, 700],'Name',' ');  

for i=1:2 

    if i==1; d=d1; power=powerX; coi=coiX; 

    else;    d=d2; power=powerY; coi=coiY;  end; 

    clear yticks 

 

%--- Plot of Series 

subtightplot(3,2,i,[0.15,0.09],[0.05,0.03],[0.08,0.015]) 

 

if i==1; plot(t,d,'r-','LineWidth',1.0); else; plot(t,d,'b-','LineWidth',1.0); end; 

title(['Series ',strvcat(names(i))],'FontName',' ','FontSize',10);  

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 
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ylabel('Normalized Series Values','FontName',' ','FontSize',10); 

yticks([0 : 0.2 : 1]); 

%-END- Plot of Series 

 

%--- Plot WPS 

pictEnh = 0.2; % Picture enhancer  

grid on 

 

subtightplot(3,2,2+i,[-0.05,0.09],[0.05,0.03],[0.08,0.015]) 

 

imagesc(t,log2(period),power.^pictEnh); 

yticks = 2.^(fix(log2(min(period))) : 1 : fix(log2(max(period)))); 

title(['Wavelet Power Spectrum of ',strvcat(names(i))],'FontName',' ','FontSize',10); 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Period (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

set(gca,'YLim',ylim,'YDir','reverse','YTick',log2(yticks), ... 

        'YTickLabel',yticks,'YGrid','on'); 

colormap('jet');  

hold on 

%-END- Plot WPS 

 

plot(t,log2(coi),'w','LineWidth',3,'LineStyle','--'); 

 

%--- Compute and Plot Fourier Power Spectrum 

subtightplot(3,2,4+i,[0.17,0.09],[0.06,0.01],[0.08,0.015]) 

 

minPeriod = 1; 

maxPeriod = 20; 

 

spP=FourierSpectrum(d, 40, 0, 2, dt,minPeriod,maxPeriod); % From ASToolbox 

xticks = 2.^(fix(log2(minPeriod)):fix(log2(maxPeriod))); 

set(gca,'XTick',xticks,'XTickLabel',xticks,'FontSize',10); 

grid on; 

xlabel(['Period (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel('PSD','FontName',' ','FontSize',10); 

title(['Power Sepctral Density of ',strvcat(names(i))],'FontName',' ','FontSize',10); 

grid on 

 

end 

tightfigUA(); 

movegui(hFig1,'northwest'); 

%-END- PLOTs for individual series (univariate) 

  

%--- Image of Phase Angles 

hFig4=figure(35); 

 

ConLev = 3; % Adjust this w.r.t. WCA arrows  

 

imagesc(t,log2(period),phaseDif,[-pi +pi]); hold on; grid on; 

contour(t,log2(period),phaseDif, ConLev, 'color','k','LineWidth',1.5,'ShowText','off') 

 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Period (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period)))); 

set(gca,'YLim',log2([min(period),max(period)]),'YDir','reverse', ... 

        'layer','top','YTick',log2(Yticks(:)),'YTickLabel',num2str(Yticks')); 
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title('Distribution of Phase Angles') 

axis square 

c=colorbar('eastoutside'); 

c.Label.String = 'Phase Angle'; 

c.FontSize = 10; 

c.Ticks = [-pi:pi/2:pi]; 

c.TickLabels={'-\pi','-\pi/2','0','+\pi/2','+\pi'}; 

colormap(jet(4))  

grid on 

tightfigUA(1.25); 

%-END- Image of Phase Angles 

 

%-END- AGToolbox 

 

%--- Correlation Analysis 

figure (105) 

subtightplot(2,1,1,[-0.2,0.09],[0.08,0.04],[0.08,0.05]) 

MAXLAG=60; 

WINDOW=72; 

NOVERLAP=WINDOW-1; 

[C,L,T]=corrgram(d1,d2,MAXLAG,WINDOW,NOVERLAP); grid on; hold on; 

ConLev=8; 

c=colorbar; 

c.Label.String = 'Correlation Coefficient'; 

c.Label.FontSize = 10; 

contour(T,L,C, ConLev, 'color','k','LineWidth',1.5,'ShowText','off') 

hrline=refline(0,0); hrline.Color='k'; hrline.LineWidth=2; 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

title(['a) Windowed and Lagged Correlation, Window Length = 

',num2str(round(WINDOW*dt,1)),' ',strvcat(tunit)],'FontName',' ','FontSize',10); 

ylabel(['Lag (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

xlim([0 length(t)]) 

set(gca,'XTick',0:96:length(t)) 

set(gca,'XTickLabel',ceil(0:96*dt:length(t)*dt)) 

 

set(gca,'YTick',-MAXLAG:12:MAXLAG) 

set(gca,'YTickLabel',round(-MAXLAG*dt:12*dt:MAXLAG*dt)) 

 

subtightplot(2,1,2,[0.5,0.09],[0.08,0.04],[0.08,0.1665]) 

R_move=movcorr(d1,d2,WINDOW,'Endpoints','shrink'); 

plot(t,R_move); grid on; 

title(['b) Windowed Correlation at Lag = 0, Window Length = 

',num2str(round(WINDOW*dt,1)),' ',strvcat(tunit)],'FontName',' ','FontSize',10); 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel('Correlation Coefficient','FontName',' ','FontSize',10); 

xlim([0 t(end)]) 

hold off; 

tightfigUA(1.75); 

 

 

WINDOWs=fix([0.5 1 2 4 6 8 12 16 20]/dt); 

MAXLAG=80; 

hFig110=figure(110); set(hFig110,'Position',[400, 40, 700, 600],'Name','Windowed & 

Lagged Correlation'); 

for i=1:length(WINDOWs) 

subtightplot(3,3,i,[0.09,0.065],[0.07,0.03],[0.055,0.02]) 



151 
 

WINDOW=WINDOWs(i); NOVERLAP=WINDOW-1; 

[C,L,T]=corrgram(d1,d2,MAXLAG,WINDOW,NOVERLAP); grid on; hold on; 

colorbar('off') 

ConLev=3; 

contour(T,L,C, ConLev, 'color','k','LineWidth',1.5,'ShowText','off') 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylim([-MAXLAG +MAXLAG]) 

title(['Period ',num2str(round(WINDOW*dt,1))],'FontName',' ','FontSize',10); 

grid on; 

hrline=refline(0,0); hrline.Color='k'; hrline.LineWidth=2; 

xticklabels(round((xticks./max(xticks))*t(end),1)) 

end 

hold off; 

tightfigUA(); 

 

 

% clear Lwin RMovCor 

k0=2; 

for k=k0:fix(Lt/2)-k0 

    n=k-k0+1; LWin(n)=k; R=movcorr(d1,d2,k,'Endpoints','shrink'); 

    RMovCor(n,:)=R; 

end 

figure(115) 

imagesc(t,t(LWin),RMovCor); grid on; hold on; 

ConLev=3; 

contour(t,t(LWin),RMovCor, ConLev, 'color','k','LineWidth',1.5,'ShowText','off') 

c=colorbar; 

c.Label.String = 'Correlation Coefficient'; 

c.Label.FontSize = 10; 

xlabel(['Time (',strvcat(tunit),')',],'FontName',' ','FontSize',10); 

ylabel(['Centered Window Length (Period (',strvcat(tunit),'))'],'FontName',' 

','FontSize',10) 

title('Moving Centered Window Correlation') 

hold off; 

tightfigUA(1.75); 

%-END- Correlation Analysis 

 




