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ABSTRACT 

 

 

DEVELOPING PREDICTIVE MODELS FOR BIODIESEL FROM ALGAE USING 

DATA IN PUBLISHED LITERATURE 

 

The aim of this thesis was to develop a comprehensive database from published 

articles about the lipid production from microalgae; then, to use this database for knowledge 

extraction by employing data mining algorithms to estimate the results of unperformed 

experiments. A total number of 106 articles were used to construct the database with 5908 

instances. Dataset was divided into two groups with respect to reported output variables, 

which were biomass production (mg/L d), and lipid content (w/w). As the preliminary 

analysis, the effect of each input variable was investigated by comparing the related articles. 

Then, for knowledge extraction and prediction-classification purposes, association rule 

mining, decision tree, and artificial neural network algorithms were applied to both datasets, 

by using libraries and functions of MATLAB and R. Association rule mining algorithm was 

implemented to all continuous and categorical variables to examine their effects on output 

variable, where Chlorella, Chlorococcum, and Nannocholoropsis species are found to yield 

high biomass production and high lipid content. Models were compared and evaluated by 

their accuracy in classification and standard error, root mean square error, and r-squared 

values in predictive analysis. Parameter tuning was done by randomly dividing the dataset 

into two sets, as the testing and the training sets, where the training set was used to construct 

the model, and the testing set was used to calculate the root mean square error and the r-

squared values. The optimum models constructed using decision tree algorithm for 

classification gave 77.8% overall accuracy for biomass production, and 62.2% for lipid 

content. Artificial neural network algorithm was used for predictive modeling. Absolute 

error, root mean square error, and r-squared values of the optimum model for biomass 

production was, 50, 80, and 0.7, and 7, 11, 0.3 for lipid content. Predictive power of the 

constructed models for lipid content was not as strong as biomass production. The input 

significance analysis showed that nutritional variables were found to be the most 

deterministic variables for biomass production, whereas microalgae type was found to be the 

most deterministic variable for lipid content.   
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ÖZET 

 

 

YAYINLANMIŞ MAKALELERDEN ALGLERİN BİODİZEL ÜRETİMİ İLE 

İLGİLİ ÖNGÖRÜLÜ MODEL GELİŞTİRİLMESİ 

Bu tezin amacı mikroalglerden lipit üretimi üzerine yayınlanmış makaleleri 

inceleyerek kapsamlı bir veri tabanı geliştirmek, bu veri tabanını kullanarak bilgi çıkarımı 

yapmak ve daha önce yapılmamış deneylerin sonuçlarını tahmin etmek için veri madenciliği 

algoritmalarını kullanmaktır. Veri tabanı 106 farklı makaleden 5908 veriyle oluşturulmuş 

olup veritabanı raporlanan sonuç değişkenine göre iki gruba ayrılmıştır. Sonuç değişkenleri 

biyokütle üretimi (mg / Ld) ve lipit içeriği (w / w) olarak alınmıştır. Giriş değişkenlerinin 

sonuç değişkenlerine etkisi, aynı giriş değişkeninin etkisiyle ilgilenen makalelerin 

karşılaştırılması yoluyla ön analiz olarak incelenmiştir. Bilgi çıkarımı ve tahmin-

sınıflandırma amaçları için, MATLAB ve R'nin kütüphaneleri ve fonksiyonları kullanılarak 

her iki veri setine ilişkilendirme kural madenciliği, karar ağacı ve yapay sinir ağı 

algoritmaları uygulanmıştır. İlişkilendirme kural madenciliği ile Chlorella, Chlorococcum 

ve Nannochloropsis mikroalg türlerinin yüksek miktarda biyokütle üretimi ve lipit içeriğine 

sahip olabileceği bulunmuştur.  Sınıflandırma amaçlı modeller doğruluğa, tahmin amaçlı 

modeller, standart hata, karesel ortalama hata ve determinasyon katsayılarına göre 

karşılaştırılmış ve değerlendirilmiştir. Veri tabanı rastgele olarak eğitim ve test setine 

bölünmüş ve eğitim seti model kurmak için kullanılırken test seti karesel ortalama hata ve 

determinasyon katsayısını bulmak için kullanılmıştır. Sınıflandırma için karar ağacı 

algoritması kullanılarak oluşturulan optimum modeller, biyokütle üretimi için % 77.8, lipit 

içeriği için % 62.2 doğruluk ile sonuçlanmıştır. Öngörülü modelleme için yapay sinir ağı 

algoritması kullanılmıştır. Standart hata, karesel ortalama hata ve determinasyon katsayıları, 

biyokütle üretimi ve lipit içeriği modelleri için 50, 80 ve 0.7 ve 7, 11, 0.3 şeklinde 

bulunmuştur. Lipit içeriği için yapılandırılmış modellerin tahmin gücü, biyokütle üretimi 

kadar güçlü çıkmamıştır. Girdi önem analizi, biyokütle üretimi için besinsel değişkenlerin 

en belirleyici değişkenler olduğunu, mikroalg tipinin ise lipit içeriği için en belirleyici 

değişken olduğunu göstermiştir.   
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1.  INTRODUCTION 

 

1.1.  Microalgae Biodiesel 

Among the major energy sources as gaseous fuels and electricity, liquid fuels have 

certain advantages in storage, transportation and energy density. However, deriving them 

from fossil resources is becoming controversial with the increased concerns about the 

environment [1]. A promising alternative for liquid fuels derived from fossil resources is 

biofuels produced from biomass. A wide range of biofuels are being produced from biomass 

and can be divided as; solid fuels (biochar), liquid fuels (bioethanol, biodiesel) and gaseous 

fuels (biogas, biosyngas, biohydrogen) as similar to fossil-based fuels [2]. The  biodiesel is 

produced from food crops, lignocellulosic crops and from microalgae, and named as first, 

second and third generation biodiesel [2]. First and second generations are open to 

discussions because of the arable land use for their production and competition with food 

sources[3]. Production of biodiesel from microalgae stands as a good candidate for a 

alternative to fossil-based liquid fuels as their growth rate is higher than both the first and 

second generation resources and the production area does not compete with food production.  

Various microalgae strains are studied for their suitability for biodiesel production.  

The potential of a microalgae strain for biodiesel production is measured by their lipid 

productivity, which is a combination of biomass productivity and lipid content. Lipid content 

of different microalgae strains is reported by Rodolfi et al., as being varied from 9.5% to 

39.8%. Lipid productivity –as well as biomass production and lipid content- also depends 

on cultivation conditions and extraction methods aside from microalgae type [4].  

Biodiesel is produced from transesterification of lipids in the biomass. However, not 

all the lipid content in the biomass is convertible to biodiesel. Lipids can be classified as 

polar and neutral lipids [5]. Polar lipids (phospholipids and glycolipids) are not easy to 

recover, have stronger bonds, and hard to convert to biodiesel. Neutral lipids can also be 

divided into two categories as, fatty acid free and fatty acid containing components. The 

fatty acid free content composes of pigments (carotenes and chlorophylls), hydrocarbons, 

sterols, wax, sterol esters, and free alcohols, and they are also not suitable for biodiesel 
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production [6]. Only the fatty acid containing neutral content of lipid, which is mainly 

triglycerides (TAGs) are the suitable fraction which can be transesterified to form biodiesel 

[4]. TAGs are compounds that consist of three fatty acid chains, with generally 16 or 18 long 

carbon chains. TAGs do not have any structural role in cells, instead they are used as storage 

for carbon and energy in the cytoplasm [7].  

Table 1.1.  Microalgae Lipid Classes. 

  Neutral Lipids Polar Lipids 

fatty acid containing 

components: 

Triglycerides (TAGs) Phospholipids 

Free fatty acids Glycolipids 

fatty acid free components: 

  

Hydrocarbons 
 

Sterols 
 

Wax 
 

Sterol esters 
 

Free alcohols 
 

Pigments (carotenes, 

chlorophylls)   

 

1.2.  Microalgae Biodiesel Production Process 

The biodiesel production process consists of microalgae cultivation, harvesting 

(dewatering, thickening), drying, pretreatment for lipid extraction, lipid extraction and 

transesterification [2]. Transesterification process can be associated with cracking used in 

petroleum industry. The lipids are transesterified to fatty acid esters to increase the volatility, 

resulting in production of biodiesel which has similar properties to conventional petroleum 

diesel [8]. 
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Figure 1.1. Microalgae Biodiesel Production Process. 

Microalgae cultivation requires aquatic habitat with appropriate salinity level for 

selected microalgae. Aquatic habitats can be divided as freshwater, brackish, marine, and 

hypersaline corresponding to the salinity levels of close to 0%i lower than 3.5%, equal to 

3.5%, and higher than 3.5% respectively [9]. Depending on the natural environment of the 

microalgae strain, the optimum salinity level for microalgal growth and lipid content varies. 

Freshwater species best grow in salinity level of 0%; whereas, marine species have best 

biomass productivity at salinity levels around 3.5%. Aside from the salinity level, microalgae 

requires certain nutrients in the growth medium. Nitrogen and phosphorus are major 

nutrients for microalgae growth, and other than those, a variety of different compounds are 

also required in relatively smaller amounts, which are classified as micronutrients and trace 

elements. Grobbelaar calculated an approximate molecular composition of microalgae as 

CO0.48H1.83N0.11P0.01 [10]. Petkov stated that, although the cost of nutrients required for 

microalgae cultivation is low compared to other processes, like harvesting and drying, still 

the cost of nutrients needed to produce 1lt of biodiesel is higher than the price of 1lt 

petroleum diesel [11]. The nutrients are not the only sources needed for microalgae growth. 

Also, depending on the cultivation type, a carbon source and an energy source is needed, 

which in the case of photoautotrophic cultivation is CO2 as carbon source and light as the 
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energy source. The optimum amount of salinity, nutrient concentration, light and CO2 should 

be satisfied for maximum algal growth. However, in most cases, the conditions for maximum 

growth do not ensure maximum lipid production Applying stress in cultivation process to 

increase the lipid content is a common strategy to achieve high lipid productivity. However, 

in stress conditions although the lipid synthesis is increased in microalgae cell, the growth 

mechanism slows down. A two-stage process is developed to overcome this problem, in 

which, the maximum growth is achieved at first, and a stress condition is applied to increase 

the lipid content of the microalgae before the harvesting [12].   

Harvesting and drying of microalgae are processes that are needed to thicken and 

increase the concentration of microalgae biomass before the lipid extraction. Water content 

of the microalgae creates a barrier, which makes mass transfer harder during the lipid 

extraction process and decreases the efficiency of lipid extraction, resulting in low biodiesel 

yield.  

Microalgae has similar density as water and they are usually around 3-30 micrometer 

in diameter. These two characteristics are the obstacles for both cost effective (20-30% of 

total biomass producing cost) and efficient recovery for harvesting process [13][14]. Most 

extraction methods are effective when the water content of dried microalgae is less than 

10%. However, harvesting step only reduces this content to about 60%, resulting in a very 

high energy consumption for drying step (around 89% percent of all the required energy 

input used in microalgae biodiesel production) [15][16]. Some methods used in harvesting 

are; screening, flocculation, filtration, gravity sedimentation, flotation and centrifugation 

[17]. In most of the laboratory scale experiments, centrifugation and microfiltration are the 

choices of methods. However, they are not cost effective with high energy and capital costs 

for large-scale processes [3][14]. As the most used method in the literature, centrifugation is 

tested for its recovery efficiency, and Heasman et al. found that the centrifugation efficiency 

decreases with decreased centrifugation speed [18]. The growth and lipid content do not 

depend on the harvesting method used.  

The cellular water content of microalgae is also needed to be vaporized for effective 

lipid extraction. Although the wet extraction, which avoids the cost of drying is becoming 

popular, the research intensity is not dense as drying [19]. Three major methods of drying 
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are; oven drying, freeze drying and solar drying. Solar drying is slower compared to other 

methods, but it uses solar energy as the energy source, and stands as an alternative method 

as the cost effective solutions [3]. Comparison of these methods shows that, the lipid yield 

of microalgae does not change with the drying method [20][21]. However, lipid quality can 

be changed with the result of high temperatures caused from oven drying [22].  

The cell disruption (pretreatment for lipid extraction) process is mainly used for 

increasing the efficiency of lipid extraction process. The variety of cell disruption methods 

can be classified as mechanical and non-mechanical methods [23]. Wet biomass can also be 

subjected to pretreatment methods; however, some methods are not suitable for wet samples, 

like grinding or pressing [24].  

Lipid extraction process is a mass transfer reaction, where the lipid in microalgae 

transferred to solvents used to extract. The efficiency of mass transfer primarily depends on 

the solvent used and the reaction conditions [25]. The methods used for lipid extraction can 

be categorized as; solvent extraction, accelerated fluid extraction and supercritical fluid 

extraction. All extraction processes uses polar and/or nonpolar solvents to selectively extract 

lipids [2]. The primary consideration in extraction is the use of harmful solvents. Chloroform 

and methanol are the two most common used solvents in extraction processes with harmful 

effects to environment [26]. Use of organic solvents such as hexane, ethyl acetate, and CO2 

in supercritical fluid extraction is an option to reduce this effect, and studied extensively for 

their lipid extraction efficiencies in microalgae lipid [27][28][29]. As the lipid content of 

most microalgae are not too high (15-30%), it must be recovered almost entirely [28]. The 

methods and solvents used are selected to obtain as much transesterifiable lipid as possible 

in the microalgae cell. This means the process should not only be lipid specific but also 

selective to desirable lipid fractions, which is mostly TAGs.[30][31][26]. 
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2.  THESIS BACKGROUND AND LITERATURE SURVEY 

 

2.1.  Microalgae Species 

There are over 100,000 reported microalgae species with different set of 

characteristics [32]. The ideal strain selection for biodiesel production is a challenging task 

due to this variety of the characteristics. Biomass productivity and lipid content of the 

microalgae are two of the most valued ones to compare microalgae for biodiesel production 

[13]. Unfortunately, high biomass productivity and high lipid content are generally 

contradictory to each other and if one is found to be high, the other is usually low [33]. Other 

than those characteristics, high tolerance to environmental stresses, being able to dominate 

wild strains in open ponds, having limited nutrient requirements, having a high 

photosynthetic efficiency are other characteristics to choose the ideal strain [14]. 

The microalgae species that seem to be promising for biodiesel production and being 

frequently studied are from Botryococcus, Chlorella, Scenedesmus, Chlamydomonas, 

Dunaliella, and Nannochloropsis strains because of their suitable characteristics [34].  

Lv reported that Botryococcus braunii has a high lipid content (50%) and low 

biomass productivity (28 mg/Ld), and chlorella vulgaris has a low lipid content (20%) and 

high biomass productivity (doubling time of 19h) [33]. Dunaliella sp. are also important 

because of robustness to high salinity and light, and high growth rate [35]. The composition 

of the accumulated lipid in the microalgae is another important factor. TAGs are the easily 

transesterifiable to biodiesel component of the lipid content [36]. The study of Doan reports 

that the Nannochloropsis species have a lipid content of 42-45% where the FAME content 

is 16-22%[37]. 

2.2.  Cultivation Conditions 

High biomass productivity, oil content and eventually high lipid production can be 

achieved by various techniques including genetic modification of microalgae to use of 

advanced bioreactors. However, a more direct and effective approach is to optimize the 
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cultivation conditions. Temperature, irradiance, nutrients, pH, CO2, salinity, initial inoculum 

density, reactor type and cultivation type are the variables that affect the growth and lipid 

content of microalgae, and ultimately affecting the economic feasibility of algal biodiesel 

[38][39][40]. The conditions for maximum biomass productivity generally yields low lipid 

content, which may result with low lipid production. To achieve high lipid content, 

microalgae is generally kept under environmental stress conditions. However, stress 

conditions lead to low biomass production, which can also cause low lipid production [41]. 

For most of the cases, increasing the value of an environmental factor increases the biomass 

production to a certain degree, while a further increase leads to stress condition and results 

in degradation of growth and even cell death. Maximum tolerances of some species for 

temperature and CO2 is given by Ono Cuello [42]. 

2.2.1.  Initial Inoculum Density 

In the process of microalgae cultivation, initial inoculum density affects the growth 

rate of the microalgae. Several articles state that higher initial inoculum density results with 

high growth rate, increased nutrient removal and high biomass production because of the 

higher adaptability to the cultivation environment [39][43][44]. However, low inoculum 

density results in high lipid content, because of the stress condition created for the inoculum 

(Table 2.1). 

2.2.2.  Temperature 

The optimum temperature for maximum growth is strain dependent, but in most cases 

25 oC is regarded as the optimum temperature. Most of the microalgae can survive in 

temperatures, which are 15 oC lower than their optimal, a 2-4 oC higher temperatures cause 

a substantial decrease in growth rate or even to the loss of the entire culture [3].  

2.2.3.  pH 

The solubility of CO2 and other essential nutrients are determined by pH level of the 

cultivation process [48]. However, because of this dependence with CO2, the effect of pH 

levels and CO2 in growth rate are not fully separated. Some researchers investigated the 

effect of pH on biomass production by using chemical buffers to uncouple the effects 
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[49][50][51]. The maximum lipid content is not necessarily achieved at pH level where the 

maximum biomass production is achieved. Instead, lipid content is maximum in pH values 

which are slightly lower or higher then the optimum pH value for maximum biomass 

production. The results obtained from the database are given in Table 2.2 

Table 2.1. Effect of Initial Inoculum Density on Biomass Production and Lipid Content. 

  

Chlorococcum 

pamirum [45] Chlorella sp. [39] 

Chlamydomonas 

sp. [46] 

Chlorococcum 

sp. [5] 

Scenedesmus 

abundans [47] 

  BP LC BP LC BP LC BP LC BP LC 

 .9 5.5 71.1 18.1 339.9 24.4 58.0 36.3 38.2 15.8 

initial biomass conc. 0.035 0.035 0.15 0.15 0.03 0.03     

init. cell. dens. (105 cells/mL)      10 10 0.02 0.02 

 6.3 62.7 75.0 18.7 367.5 30.1 137.3 41.3 38.8 21.6 

initial biomass conc. 0.07 0.07 0.25 0.25 0.06 0.06     

init. cell. dens. (105 cells/mL)      100 100 0.1 0.1 

 110.0 56.5 88.3 16.5 384.7 27.2     

initial biomass conc. 0.3 0.3 0.35 0.35 0.09 0.09     

 160.0 46.6   432.9 28.5     

initial biomass conc. 0.5 0.5   0.12 0.12     

 217.5 41.4   446.6 28.4     

initial biomass conc. 0.9 0.9   0.15 0.15     

 02.5 35.5         

initial biomass conc. 1.72 1.72                 

 

Table 2.2. Effect of pH on Biomass Production and Lipid Content. 

  

Scenedesmus 

sp. [49] 

Scenedesmus 

sp. [50] 

Scenedesmus 

abundans [51]   

Scenedesmus 

sp. [49] 

Scenedesmus 

abundans [51] 

pH level Biomass Production (mg L-1 d-1) pH level Lipid Content (%) 

3 
106.7   3 17.2  

4 
535.0   4 30.4  

5 
  70.5 5  17.3 

6 
558.3  84.0 6 42.7 26.2 

7 
580.0 79.2 91.5 7 43.6 22.5 

8 
 93.6 124.0 8  21.2 

9 
565.0 85.2 103.2 9 44.1 21.1 

10 
 75.3  10   

11 
555.0   11 41.2  

12 
131.7     12 17.7   
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2.2.4.  Growth Phase 

The growth phases of a microalga can be divided as it given in Figure 2.1 [3]: 

(i)   Lag phase 

(ii)   Early exponential phase 

(iii)  Exponential (logarithmic) phase  

(iv)   Late exponential phase 

(v)   Linear (early stationary) phase 

(vi)   Stationary phase 

(vii) Decline (late stationary) or death phase 

 

Figure 2.1. Growth Phase of Microalgae. 

The length of the lag phase is closely related to adaptation of the microalgae to the 

cultivation environment, in which a few or no cell division occurs.  

Cells in different growth phases have different lipid compositions and lipid contents 

[52]. Exponential growth phase represents the phase where the maximum growth rate and 

maximum biomass productivity is achieved [53]. The cell division rates decrease after the 

exponential phase and approach to zero, which is named as stationary phase [54].  In early 

stationary phase, microalgae starts to accumulate more lipid, so called the lipid-accumulating 

phase [55]. Lipid composition generally increases with stationary phase.  Polar lipid content 

is higher in logarithmic phase, but TAG and monounsaturated fatty acid content is higher in 

stationary phase. Batch cultures are generally harvested at late exponential or stationary 

phase [54]. Lipid content is increasing towards the late stages, higher than exponential 
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phases. For production, higher rates are achieved at exponential phases. The effects of 

growth phase on biomass production and lipid content are presented in Table 2.3 and 2.4 

respectively. 

Table 2.3. Effect of Growth Phase on Biomass Production. 

Cultivation 

Stage 

Isochry

sis 

galbana 
[56] 

Isochry

sis sp. 

[57] 

Rhodomo

nas sp. 

[57] 

Tetrasel

mis sp. 

[57] 

Scenedes

mus 

abundans 
[47] 

Leptolyng

bya sp. 

[58] 
 

Botryococ

cus braunii 

[59] 

Botryococ

cus 

terribilis 
[59] 

Chlorel

la 

vulgari
s [59] 

early 

exponential 
        37.7         

exponential 52.5 49.6 62.3 103.8           

late 
exponential 

          129.2 235.0 244.0 310.0 

early 

stationary 
81.8 43.3 45.8 65.6           

stationary   17.5 32.8 36.3   77.2       

late stationary         38.2   62.2 60.5 90.2 

 

Table 2.4. Effect of Growth Phase on Lipid Content. 

Cultivatio
n Stage 

Isoch
rysis 

galba

na 
[56] 

Neochl
oris 

oleoabu

ndans 
[60] 

Isoch
rysis 

sp. 

[57] 

Nannochl
oropsis 

sp. [57] 

Rhodo
monas 

sp. [57] 

Tetras
elmis 

sp. 

[57] 

Scened
esmus 

abunda

ns [47] 

Leptoly
ngbya 

sp. [58] 

Botryoc
occus 

braunii 

[59] 

Botryoc
occus 

terribili

s [59] 

Chlor
ella 

vulga

ris 
[59] 

early 

exponenti

al             5.8         

exponenti

al 24.4 19.1 23.0 21.6 12.7 11.9           

late 

exponenti
al               17.9 31.8 30.1 19.5 

early 

stationary 23.2 22.1 29.4 32.1 15.5 14.5           

stationary   35.7 28.0 34.6 13.5 18.2   21.0       

late 
stationary   37.0         15.8   43.1 41.7 27.0 

 

2.2.5.  Cultivation Type 

Microalgae can be grown in photoautotrophic, heterotrophic, mixotrophic and 

photoheterotrophic conditions. The discrimination between cultivation types are done by the 

energy source and carbon source used as in Table 2.5. [61]: 
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Table 2.5. Energy and Carbon Source of Different Cultivation Types. 

Cultivation Type Energy source Carbon source 

Photoautotrophic Light Inorganic carbon 

Heterotrophic Organic carbon Organic carbon 

Mixotrophic Light and organic carbon Organic and inorganic carbon 

Photoheterotrophic Light Organic carbon 

 

For optimum growth, sufficient amount of light and inorganic carbon must be 

available for photoautotrophic condition. Different carbon sources can also affect the growth 

of microalgae for heterotrophic, mixotrophic and photoheterotrophic conditions making 

choice of carbon source an important factor. Glucose and acetate are the mainly used carbon 

sources for heterotrophic and mixotrophic conditions [62]. Heterotrophic condition is 

reported to be yield higher biomass production compared to photoautotrophic condition. 

Chlorella vulgaris is reported to grow 4.8 higher [63], whereas Chlorella protothecoides and 

Chlorella sorokiniana grow 3.4 [64] and 3.3 higher [65] compared to photoautotrophic 

growth. 

Biomass production from mixotrophic growth is not a simple summation of 

heterotrophic growth and autotrophic growth; instead, it is higher than their combination 

[62]. Study of Chojnacka and Noworyta showed that mixotrophic condition also shifts the 

photoinhibitory effect of high light intensities, suggesting better harnessing of  high level of 

light energy. [66].  

Although lipid content depends more heavily on other variables, some researchers 

suggest that autotrophic condition yields higher lipid content. The effects of cultivation type 

on biomass production and lipid content are presented in Table 2.6 and 2.7 respectively. 

Table 2.6. Effect of Cultivation Type on Biomass Production. 

Cultivation 

condition 

Chaetoceros 

sp. [62] 

Chlorella 

sp. [62] 

Nannochloro

psis sp. [62] 

Chlorella 

vulgaris [67] 

Scenedesmus 

obliquus [68] 

Chlorella 

sorokiniana [69] 

autotrophic 21.1 55.9 51.3 256.3   17.3 

heterotrophic 29.0 70.3 60.3 338.3 345.3 14.5 

mixotrophic 34.6 200.9 160.7 639.3 654.9  

photoheterotrophic         63.3 
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Table 2.7. Effect of Cultivation Type on Lipid Content. 

Cultivation 

condition 

Chaetoceros 

sp. [62] 

Chlorella 

sp. [62] 

Nannochlorop

sis sp. [62] 

Chlorella 

vulgaris [62] 

Scenedesmus 

obliquus [68] 

Chlorella 

sorokiniana [69] 

autotrophic 30.0 30.0 27.9 13.7   26.2 

heterotrophic 22.2 21.4 21.6 13.8 14.4 12.9 

mixotrophic 25.2 26.4 27.1 8.8 22.8  

photoheterotrophic         20.0 

 

2.3.  Light 

The properties of light source, as light intensity and wavelength, along with 

photoperiod are other critical variables that effect microalgae growth and lipid content.  

2.3.1.  Light Wavelength 

Microalgae cells do not uniformly absorb all the wavelengths; instead, certain 

wavelengths are optimal for the growth of microalgae species. Mostly, blue or blue green 

(450-475 nm) and red (630-675nm) wavelengths are reported to improve the growth 

[70][71]. 

2.3.2.  Light Intensity 

Light intensity is important for photoautotrophic, photoheterotrophic and 

mixotrophic conditions. Low light intensity results with insufficient energy input and low 

biomass production, whereas high light intensity results with photoinhibition/photooxidation 

[71]. Blanchemain and Grizeau reported that Skeletonema costatum achieves specific 

growth rate of 0.04h-1 and lipid content of 44-47% under 50 and 100 micromol photons m-2 

s-1; however, relatively low (20) and high (400) light intensities lead to specific growth rate 

of 0.01h-1 and lipid content of 35-40%[72]. The effect of different light intensities on 

biomass production and lipid content are presented in Table 2.8 and 2.9 respectively. 
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Table 2.8. Effect of Light Intensity on Biomass Production. 

  

Chlorell

a 
vulgaris 

[33] 

Dunali

ella 
tertiole

cta [73] 

Chlorell

a 
minutissi

ma [74] 

Chlorel
la sp. 

[75] 

Chlor

ella 
sp. 

[39] 

Scenede

smus 
abundan

s [51] 

Chlorell

a 
minutissi

ma [76] 

Chlorel
la sp. 

[77] 

Tetras

elmis 
suecic

a [78] 

Chlorella 
sorokinia

na [69] 

BP 50.8 45.0 70.0 165.0 41.7 104.5 90.1 49.7 69.7 5.9 

light intensity 24 100 100 40 27 40.5 60 47 60 15 

BP 188.7 47.5 105.7 239.8* 43.3 109.0 91.8 100.4* 83.7 10.6 

light intensity 60 200 200 200 54 54 80 60 90 35 

BP 190.0* 48.8* 142.9 202.8 83.1 97.5 93.3 97.6 103.1 14.6 

light intensity 120 350 350 400 81 67.5 100 80 120 80 

BP    147.1*  84.2* 119.5* 95.8 96.6 111.4 23.5* 

light intensity     400   108 81 120 120 150 100 

BP       83.4  96.6*  

111.7
* 20.7 

light intensity         135   140   180 150 

BP          94.2     

light intensity             160       

  

Table 2.9. Effect of Light Intensity on Lipid Content. 

  

Dunaliella 

tertiolecta[73] 

Chlorella 
minutissim

a [74] 

Chlorella 

sp. [75] 

Chlorella 

sp. [39] 

Scenedesmus 
abundans 

[51] 

Chlorella 
minutissi

ma [76] 

Chlorel
la sp. 

[77] 

Chlorella 
sorokinia

na [69] 

LC 21.7 35.7 26.8 26.9 21.2 22.2 41.7* 12.0 

light intensity 100 100 40 27 40.5 60 47 15 

LC 22.2 37.1* 33.8 29.8 22.6 23.9 40.5 16.1 

light intensity 200 200 200 54 54 80 60 35 

LC 23.4* 32.3 38.3* 31.5 27.1 26.1 26.6 15.7 

light intensity 350 350 400 81 67.5 100 80 80 

LC  30.3  33.0 32.8* 28.5 23.6 20.0* 

light intensity   400   108 81 120 120 100 

LC     33.6*  31.3*  17.0 

light intensity       135   140   150 

LC        29.3   

light intensity           160     

 

2.3.3.  Photoperiod 

The light/dark cycle can be manipulated by using artificial light sources to increase 

microalgae growth. In general, the relationship between photoperiod and biomass 

productivity is an increasing one. The effect of different light intensities on biomass 

production and lipid content are presented in Table 2.10. However, light intensity and 
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photoperiod have a coupled relationship between growth. Higher light intensity together 

with a longer photoperiod causes a decrease in microalgae growth or even cell death (Table 

2.11) [77].  

Table 2.10. Effect of Photoperiod on Biomass Production and Lipid Content. 

  

Chlorella 

vulgaris [79] 

Chlorella 

protothecoides 

[80] 

Chlorella sp. 

[77] 

Chlorella 

sorokinian

a [69]   

Chlorell

a sp. 

[77] 

Chlorella 

sorokiniana 

[69] 

BP      5.2 LC   14.0 

photoperiod       8 photoperiod   8 

BP 15.7 69.5 67.0 15.2 LC 33.4 16.3 

photoperiod 12 12 12 12 photoperiod 12 12 

BP 18.7*     LC    

photoperiod 14       photoperiod     

BP 16.6 119.5 97.6* 22.1* LC 30.4 16.0 

photoperiod 16 16 16 16 photoperiod 16 16 

BP 15.1     LC    

photoperiod 18       photoperiod     

BP 15.5 144.0* 19.4 16.5 LC 39.4* 17.1* 

photoperiod 24 24 24 24 photoperiod 24 24 

 

Table 2.11. Combined Effect of Light Intensity and Photoperiod on Biomass Production. 

light intensity / photoperiod [77] 12 16 24 

47 37.3 49.7 112.4 

60 48.3 100.4 121.7 

80 67.0 97.6 19.4 

120 80.3 96.6  

 

2.4.  CO2 

Many microalgae are capable of using inorganic carbon sources from CO2 and from 

soluble carbonates [81]. Under natural conditions, the CO2 content present in the air is 

between 0.03-0.04% [82]. The concentration of CO2 used to aerate the microalgae cells has 

an optimum value for efficient growth while any decrease or increase has a negative effect 

on growth [43]. It had been reported that increasing the CO2 content from 0.035% to 0.28% 

increased the lipid content of Nannochloropsis sp. [83]. Also Hsueh et al. reported that 

increasing CO2 content from 0.04 to 8% increased both the lipid content and biomass 
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productivity, however increasing it to 10% resulted the decrease in both [84]. The effect of 

CO2 content on biomass production and lipid content are presented in Table 2.12 and 2.13 

respectively. Also, the effect of aeration rate on biomass and lipid content are presented in 

Table 2.14. 

Table 2.12. Effect of CO2 Content on Biomass Production. 

  

Nannoch

loropsis 
oculata 

[85] 

Chlorel

la 
vulgari

s [33] 

Chloro
coccum 

sp. [5] 

Chlorel

la 
vulgari

s [86] 

Chlor

ella 
vulgar

is [59] 

Chlorel
la sp. 

[87] 

Scenedes

mus 
obliquus 

[88] 

Chlore

lla 
vulgari

s [53] 

Chlore
lla sp. 

[77] 

Chlor

ella 
sp. 

[89] 

Tetrasel

mis 
suecica 

[78] 

BP               21.2   

CO2 %                   0   

BP 43.0 192.1* 53.0 34.0 43.9 194.1 94.5 107.4 131.0* 17.7 93.2 

CO2 % 0.03 0.5 0.04 0.03 2.5 0.03 6 0.03 10 0.03 0.04 

BP 184.3* 187.0 104.0 212.0 66.7 224.7 144.3 116.0 92.5 27.0* 105.8 

CO2 % 2 1 1 2 5 1 12 5 20 3 5 

BP 16.0 143.3 103.0 216.0 71.0* 284.7 205.9* 184.9* 111.6  114.8* 

CO2 % 5 6 3 4 10 2 15 15 30   10 

BP 4.5 126.4 132.0* 247.0* 42.5 328.2 163.3     76.0 

CO2 % 10 12 6 8 20 3 20       15 

BP 4.5  23.0 232.0   408.2*         

CO2 % 15   10 16   5           

BP         224.7         

CO2 %           10           

 

Table 2.13. Effect of CO2 Content on Lipid Content. 

  

Chlorococc

um sp. [5] 

Chlorella 

vulgaris 

[86] 

Chlorella 

vulgaris 

[59] 

Chlorell

a sp. 

[87] 

Scenedesm

us obliquus 

[88] 

Chlorella 

vulgaris 

[53] 

Chlorell

a sp. 

[77] 

Chlorella 

sp. [89] 

lipid content (%)            25.1*   

CO2 %               0   

lipid content (%) 10.3 11.1 35.7 19.1 17.1 6.5 36.8* 14.5   

CO2 % 0.04 0.03 2.5 0.03 6 0.03 10 0.03   

lipid content (%) 16.2* 11.2 36.4 24.6* 19.0 12.4 27.9 24.9   

CO2 % 1 2 5 1 12 5 20 3   

lipid content (%) 14.5 11.5 37.3* 24.2 20.8* 26.0* 35.8    

CO2 % 3 4 10 2 15 15 30     

lipid content (%) 14.6 12.0* 34.8 7.2 15.4       

CO2 % 6 8 20 3 20         

lipid content (%) 6.1 10.7   5.6         

CO2 % 10 16   5           

lipid content (%)      4.8         

CO2 %       10           
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Table 2.14. Effect of Aeration Rate on Biomass Production and Lipid Content. 

  

Chlorella 

sp. [39] 

Scenedesmus 

obliquus [88] 

Chlorella sp. 

[77]  

Chlorella sp. 

[39] 

Scenedesmus 

obliquus [88] 

Chlorella 

sp. [77] 

BP 58.5 139.3 100.0 LC 15.1 17.9 33.4* 
aeration rate 

(vvm) 0.067 0.05 0.1 

aeration 

rate (vvm) 0.067 0.05 0.1 

BP 73.5 220.2 107.1 LC 32.0* 21.4 32.9 

aeration rate 
(vvm) 0.133 0.1 0.5 

aeration 
rate (vvm) 0.133 0.1 0.5 

BP 95.7* 233.9* 143.0* LC 28.1 22.8* 32.3 

aeration rate 

(vvm) 0.2 0.15 0.9 

aeration 

rate (vvm) 0.2 0.15 0.9 

BP 49.1 225.9   LC 24.8 21.4   
aeration rate 

(vvm) 0.267 0.2   

aeration 

rate (vvm) 0.267 0.2   

BP 29.7 194.4   LC 24.1 18.7   

aeration rate 
(vvm) 0.333 0.25   

aeration 
rate (vvm) 0.333 0.25   

 

2.5.  Nutrients 

The required nutrients in the growth medium for microalgae cultivation can be 

classified as macronutrients, micronutrients, trace elements and vitamins (depending on the 

auxotrophy for vitamin B) [90].  

The key essential macronutrients are nitrogen and phosphorus. The concentration of 

these elements influences the growth rate and lipid synthesis of the microalgae. 

Micronutrients (such as sulfur, iron, magnesium, and calcium) and trace elements (such as 

manganese, zinc, molybdenum, cobalt, copper and boron) are also required for efficient 

growth of microalgae in relatively small amounts compared to macronutrients. Also, a great 

amount of microalgae are auxotrophs for vitamin B, and require vitamin B12 (cobalamin), 

vitamin B1 (thiamin), and vitamin B7 (biotin) [91].  

2.5.1.  Nitrogen 

The nitrogen concentration as well as the source of nitrogen is important for 

microalgae growth. The nitrogen source is important as it controls the pH of the medium. 

Nitrogen can be supplied in three forms; as nitrate (NO3), as ammonia (NH4), or as urea [92]. 

The effect of different nitrogen sources on biomass production and lipid content are 

presented in Table 2.15 and 2.16 respectively. 
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Table 2.15. Effect of Nitrogen Source on Biomass Production. 

Nitrogen 

source 

Neochloris 

oleoabundans [93] 

Scenedesmus 

sp.[49] 

Monoraphidi

um sp. [94] 

Nannochlorops

is gaditana [95] 

Chlorella 

sp. [96] 

NaNO3 389.5 578.3   89.6 33.8 

KNO3    93.0     

(NH2)2CO 333.0 496.7   52.1 33.6 

NH4Cl    49.5   12.4 

NH4HCO3 169.2         

NH4NO3  55.0 35.0     

 

Table 2.16. Effect of Nitrogen Source on Lipid Content. 

Nitrogen 

source 

Neochloris 

oleoabundans [93] 

Scenedesmus 

sp. [49] 

Nannochloropsis 

gaditana [95] 

Isochrysis 

galbana [97] 

NaNO3 38.0 43.3 34.7 19.9 

KNO3       18.1 

(NH2)2CO 17.5 7.6 23.0 24.8 

NH4Cl       30.9 

NH4HCO3 19.0     36.1* 

NH4NO3   22.0   31.8 

 

The optimum concentration of nitrogen for highest biomass production varies with 

other parameters, like microalgae type, but the general trend is that in low concentrations the 

microalgae growth is limited due to nitrogen deprivation, and in high concentrations, the 

inhibitive effect of nitrogen limits the cell growth. The effect of NO3 concentration on 

biomass production and lipid content are presented in Table 2.17 and 2.18 respectively. 

2.5.2.  Phosphorus 

The molar composition of microalgae contains less than 1% P by weight. Although 

the content of P in the molar composition is low, it is significantly required for the 

microalgae growth [92]. The normal trend is higher biomass production with the increase in 

phosphate concentration in the growth medium. However, some studies showed a decrease 

in biomass production with further increase in phosphate [51][105].  The effect of PO4 

concentration on biomass production and lipid content are presented in Table 2.19 and 2.20 

respectively. 
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Table 2.17. Effect of NO3 Concentration on Biomass Production. 

  

Neoc

hloris 

oleoa
bund

ans 

[93] 

Nann

ochlo
ropsi

s 

ocula
ta 

[98] 

Chlor

ococc
um 

sp. [5] 

Scene
desm

us 

obliqu
us 

[99] 

Chlor
ococc

um 

pamir
um 

[45] 

Scene

desm
us sp. 

[100] 

Chlor

ella 
sp. 

[87] 

Chlor

ella 

vulgar
is 

[101] 

Chlor

ella 

minut
issima 

[102] 

Chlor

ella 
vulgar

is [41] 

Chlam

ydomo
nas sp. 

[46] 

Chlor

ella 
sp. 

[103] 

Scen

edes

mus 
sp. 

[104] 

BP      47.5 28.6 8.3 9.4  20.7    19.0 11.8 

NO3 

conc.       0 0 0 0   0     0 0 

BP 287.8 103.5 26.0 153.0 132.0 21.4 19.1 429.6 80.2 30.2 292.6 26.0 106.3 

NO3 

conc. 0.255 0.075 0.017 0.300 0.100 0.015 0.187 0.100 0.425 0.001 0.188 0.375 0.750 

BP 375.0 104.6 51.0 173.8 242.0 23.2 38.4 571.8 88.3 84.0 364.2 42.0 134.9 
NO3 

conc. 0.425 0.150 0.100 0.600 0.250 0.031 0.280 1.500 0.850 0.021 0.375 0.750 1.500 

BP 602.4 127.0 48.0 172.5 353.0 25.2 83.8 498.0 95.8 130.1 327.0 46.0 131.6 

NO3 

conc. 0.850 0.300 0.750 0.900 1.000 0.062 0.375 3.750 1.275 0.043 0.750 1.500 2.250 

BP 552.4 132.6 63.0 162.5 284.0 26.7 75.7  98.3 131.0 318.8 33.0 128.1 

NO3 

conc. 1.275 0.375 1.500 1.500 1.500 0.124 0.467   1.700 0.085 1.125 3.000 3.000 

BP 514.0 142.2 47.0    23.8    96.7 121.2 281.6    
NO3 

conc. 1.700 0.750 3.000     0.247     2.125 0.165 1.500     

BP   138.3                  

NO3 

conc.   1.500                       

 

Table 2.18. Effect of NO3 Concentration on Lipid Content. 

  

Neochlo
ris 

oleoabun

dans 
[93] 

Nannoch

loropsis 

oculata 
[98] 

Chloro

coccum 
sp. [5] 

Scened

esmus 
sp. [49] 

Chlorell

a 

vulgaris 
[67] 

Nannoc
hlorops

is 

gaditan
a [95] 

Scened

esmus 

sp. 
[100] 

Chlor
ella 

minut

issima 
[102] 

Chlor

ella 

vulgar
is [41] 

Chla
mydo

mona

s sp. 
[46] 

Scen
edes

mus 

sp. 
[104] 

LC        23.9   27.9 17.1    33.7 

NO3 conc.         0   0 0     0 

LC 38.0 15.9 43.0 52.7 19.6 40.2 20.0 33.1  19.5 29.1 

NO3 conc. 0.255 0.075 0.017 0.200 0.150 0.075 0.015 0.425   0.188 0.750 

LC 33.0 13.0 32.0 48.7 12.1 35.6 20.3 32.6  30.1 25.7 

NO3 conc. 0.425 0.150 0.100 0.400 1.500 0.925 0.031 0.850   0.375 1.500 

LC 16.0 7.9 18.0 43.3  32.5 19.7 32.0 30.8 28.9 21.8 

NO3 conc. 0.850 0.300 0.750 0.600   1.775 0.062 1.275 0.043 0.750 2.250 

LC 8.0 15.3 13.0 30.3  30.6 19.8 30.3 31.4 28.1 18.1 

NO3 conc. 1.275 0.375 1.500 0.800   2.625 0.124 1.700 0.085 1.125 3.000 

LC 8.0 14.4 9.0 13.8    18.9 29.8 15.3 29.2   

NO3 conc. 1.700 0.750 3.000 1.000     0.247 2.125 0.165 1.500   

LC   5.9                

NO3 conc.   1.500                   
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Table 2.19. Effect of PO4 Concentration on Biomass Production. 

  

Scenedesmu
s obliquus 

[106] 

Dunaliella 
tertiolecta 

[107] 

Chlorococc

um 
pamirum 

[45] 

Chlorella 

sp. [87] 

Scenedes

mus 
abundans 

[51] 

Chlorella 
minutissi

ma [102] 

Chlorella 

sp. [103] 

Chlorella 
regularis var.  

[108] 

BP 8.5  35.1     10.0  

PO4 conc. 0   0       0   

BP 44.4 18.7 160.0 8.4 39.5 25.0 24.0 540.9 

PO4 conc. 3.16×10-4 1.92×10-5 4.38×10-5 3.97×104 1.15×104 3.97×104 8.76×105 1.75×104 

BP 38.1 28.3 347.0 15.7 73.5 68.1 28.0 574.2 

PO4 conc. 6.32×10-4 9.61×10-5 1.75×10-4 5.50×104 2.30×104 8.45×104 1.75×104 7.97×104 

BP 38.1 29.0 433.0 27.5 134.0 93.4 33.0 720.5 

PO4 conc. 1.05×10-3 4.81×10-4 3.51×10-4 7.08×104 3.44×104 1.30×103 2.63×104 1.43×103 

BP   26.1 432.0 89.0 110.5 95.9 34.0   

PO4 conc.   1.76×10-3 8.76×10-4 1.02×103 4.59×104 1.75×103 3.51×104   

BP   16.0 217.0 69.9   99.9     

PO4 conc.   1.20×10-2 1.75×10-3 1.32×103   2.19×103     

BP       60.5   96.7     

PO4 conc.       1.63×103   2.65×103     

BP           94.9     

PO4 conc.           3.10×103     

 

Table 2.20. Effect of PO4 Concentration on Lipid Content. 

  

Scenedesmus 

obliquus [106] 

Dunaliella 

tertiolecta [107] 

Scenedesmus 

abundans [51] 

Chlorella 

minutissima [102] 

Chlorella regularis 

var.  [108] 

LC 20.9*      

PO4 conc. 0         

LC 6.8 43.5* 24.7* 22.8 24.8 

PO4 conc. 3.16×10-4 1.92×10-5 1.15×10-4 3.97×10-4 1.75×10-4 

LC 13.1 35.0 23.3 32.8* 35.7 

PO4 conc. 6.32×10-4 9.61×10-5 2.30×10-4 8.45×10-4 7.97×10-4 

LC 10.8 31.1 23.0 30.7 42.5* 

PO4 conc. 1.05×10-3 4.81×10-4 3.44×10-4 1.30×10-3 1.43×10-3 

LC   35.5 22.2 29.0   

PO4 conc.   1.76×10-3 4.59×10-4 1.75×10-3   

LC   32.0   27.6   

PO4 conc.   1.20×10-2   2.19×10-3   

LC       26.8   

PO4 conc.       2.65×10-3   

LC       25.5   

PO4 conc.       3.10×10-3   
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2.6.  Choice of reactor 

Microalgae can be cultivated in flasks, photobioreactors, or in open ponds. 

Controlling the culture conditions in open ponds is hard and not suitable for finding optimal 

conditions for microalgae growth, but valuable for scale-up experiments because of their 

low cost [109]. Pulz compared the biomass concentrations during production in open ponds 

and photobioreactors and stated that biomass production can be as high as 0.1-0.2 g/l and 2-

8 gl/L, respectively in those two kind of reactors [110].  Photobioreactors and flasks are 

commonly used reactors in experiments. The effect of oxygen transfer and uniformity of 

light are the variables determining the effectiveness of the flask or photobioreactors. Light 

uniformity can achieved by smaller reactor diameter, as in photobioreactor where the 

diameter is generally smaller than 0.1m [111]. The suitable agitation is required for flasks 

whereas in photobioreactors due to the small diameter, agitation is not needed [112].   

2.7.  Stress Conditions 

Some microalgae species significantly increase their lipid content under stress 

conditions. The total lipid content may vary from 1% to 85% in microalgae, while values 

higher than 40% is achieved typically in stress conditions [113]. Stress conditions can be 

classified as; imposed by chemical stimuli (nutrient starvation, salinity, pH), physical stimuli 

(temperature, light intensity), and growth phase and aging [7]. Stress is imposed mainly to 

increase the lipid content, however while increasing the lipid content, stress conditions also 

decrease the growth rate. The optimal stress condition is where the maximum lipid 

production is achieved. A two-stage cultivation process is also another approach, where the 

maximum biomass production is achieved at first, and the stress condition is created to favor 

the lipid synthesis [12].  

Limiting major nutrients such as nitrogen and phosphorus is commonly used method 

to achieve stress conditions, as it is easy to manipulate. The lipid content and also lipid 

composition in the favor of TAGs are reported to be increased by limiting nutrients 

[114][52]. The growth rate does not instantly drop down after the nutrient is limited; instead, 

the intracellular nitrogen reservoir creates a buffer period which postpones the decrease in 

the cell growth [41]. 
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Microalgae can be divided into three groups with respect to their natural habitat, as 

freshwater, and marine microalgae, and the halotolerants, which can grow both in the 

absence and in presence of salts [115]. Stress conditions can be achieved by changing the 

natural habitat’s salt content to enhance the lipid accumulation in the microalgae cells. Salt 

stress are easy to achieve, as the NaCl is cheap and, the concentration can be easily controlled 

[116]. Takagi et al. achieved 67.8% lipid content in 1M NaCl culture, and 60.6% in 0.5 M 

[117]. Kaewkannetra et al reported lipid content of 36% in 0.3M NaCl, and 9.5% in absence 

of NaCl [118]. The effect of salinity concentration on biomass production and lipid content 

are presented in Table 2.21 and 2.22 respectively. 
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Table 2.21. Effect of Salinity on Biomass Production. 

 marine species halotolerant freshwater species 

  

mixed 

sp. 

[119] 

Dunaliella 

tertiolecta 

[107] 

Nannoch

loropsis 

sp. [120] 

Amphor
a 

subtropi

ca [121] 

Dunal
iella 

sp. 

[121] 

Dunal
iella 

salina 

[122]  

Leptoly

ngbya 

sp. [58] 

Nannochl
oropsis 

oceanica 

[123] 

Chlorell
a 

vulgaris 

[111] 

Dunaliella 

tertiolecta 

[124] 

Chlor
ococc

um 

sp. [5] 

mixed 

sp. 

[125] 

Chloro
coccum 

pamiru

m [45] 

mixed 

sp. 

[126] 

Scene
desm

us sp. 

[127] 

mixed 

sp. 

[111] 

Scene
desm

us sp. 

[115] 

Acutode
smus 

dimorph

us [116] 

BP 6.8 29.7 316.0 21.5 24.2 38.4 82.1 714.1 120.0 96.4 60.0 54.9 335.0 45.0 22.8 134.3 235.2 16.5 

salinity 10 29 14 1 1 29 0 0 0 29 0 0 0 0 0 0 0 0 

BP 9.5 34.8 296.0 31.4 40.4 38.4 60.6 654.1 111.0 102.5 65.0 56.7 235.0 45.5 19.7 13.3 206.5 13.7 

salinity 15 88 27 29 29 58 35 27 19 58 5 1 1 10 3 19 9 1 
BP 9.4 26.9 135.0 44.7 50.0 55.7   531.3 87.0 88.9 64.0 53.2 185.0 41.5 15.3 13.7 188.9 14.5 

salinity 20 146 54 59 59 88   40 38 88 10 3 10 20 6 38 14 3 
BP 9.6 17.8 48.5 39.4 75.3 59.0      87.0 14.0 47.7 135.0 35.2 9.1  172.2 12.5 

salinity 25 205 81 117 117 117       117 20 5 20 30 9   23 6 

BP 10.6 1.8   13.3 93.3 51.9      75.3   44.1    5.6  159.3 9.7 
salinity 30 263   176 176 146       146   7     12   29 12 

BP 11.3    10.1 73.3       52.3   32.5    3.9     
salinity 35     293 293         175   9     23       
BP               38.2             
salinity                   205                 

 

Table 2.22. Effect of Salinity on Lipid Content. 

 marine species halotolerant freshwater species 

  

mixed 

sp. 
[119] 

Dunaliella 

tertiolecta 
[107] 

Nannoch

loropsis 
sp. [120] 

mixed 

sp. 
[121] 

Dunaliel

la salina 
[122] 

Leptolyngby
a sp. [58] 

Chlorella 

vulgaris 
[111] 

Dunaliella 

tertiolecta 
[124] 

Chloro

coccum 
sp. [5] 

mixed 

sp. 
[125] 

Chlorococcu

m pamirum 
[45] 

mixed 

sp. 
[126] 

Scenede

smus sp. 
[127] 

mixed 

sp. 
[111] 

Scenede

smus sp. 
[115] 

Acutodesmu

s dimorphus 
[116] 

LC 29.0 30.2 23.3 10.1 6.35 20 15.3 38.9 10.3 11.6 35.3 19.2 19 20.5 22.4 14.4 

salinity 10.0 29.2 13.5 1.5 29 0 0.0 29 0 0.0 0 0 0 0 0 0 
LC 29.2 27.5 22.7 15.3 8.04 16 26.4 34.9 15.4 18.9 39.5 28.1 22 39.7 38.9 17.7 

salinity 15.0 87.7 27.0 29.3 58 35 19.0 58 5 1.0 1 10 3 19 9 1 

LC 28.9 27.1 41.8 22.0 14.7  33.4 34.3 17.7 29.6 50.9 33.6 23.4 37.5 41.1 20.4 
salinity 20.0 146.1 54.0 58.5 88   38 88 10 3.0 10 20 6 38 14 3 

LC 28.6 30.6 36.3 39.1 20.7    23.1 29.8 38.8 56.2 37.1 24.5  45.7 18.1 

salinity 25.0 204.5 81 117.0 117     117 20 5.0 20 30 9   23 6 
LC 30.5 74.8   19.8 22    16.1   28.6    24.6  52.1 27.8 

salinity 30.0 263   175.5 146     146   7.0     12   29 12 

LC 30.4    19.4      11.2   21.2    33.1     
salinity 35     293       175   9     23       

LC            12.2             
salinity               205                 
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2.8.  Cell Disruption Methods 

Preprocessing microalgae by cell disruption before lipid extraction is reported to 

increase the lipid content recovered from microalgae. Various articles investigated the effect 

of different cell disruption methods with comparing the lipid recovered from microalgae 

with different methods and with non-disruption. Table 2.24 shows that, almost all the cell 

disruption methods recover more lipid compared to non-disrupted cases. Cell disruption with 

microwave is reported to be the most efficient cell disruption method in most articles. More 

advanced methods as liquid nitrogen and steam explosion is also found to be effective.    

2.9.  Lipid Extraction Solvents 

Microalgae lipid is mostly recovered with solvents. The nature of the lipid is 

important to selectively extract the desired lipid content from microalgae paste. Various 

polar and non-polar, organic and inorganic solvents are studied in the literature. Although 

there are differences in the lipid recovered, the lipid composition is also important in 

biodiesel studies. For this work, solvents that extracts the most lipid are investigated. In most 

studies, CHCl3 with an alcohol performs highly efficiently (Table 2.23).   

Table 2.23. Effect of Different Solvents and Mixtures on Lipid Content. 

  

Scenedesmus sp. 

[128] 

Nannochloropsis gaditana 

[129] 

Nannochloropsis oculata 

[130] 

CHCl3-

CH3OH 6.0 10.6 8.5 

n-Hexane 0.8 0.7 5.7 

CH3OH   33.0   

Ethanol     20.1 

 

2.10.  Data Mining Methods 

2.10.1.  Association Rule Mining 

Association rule mining is interested in finding rules where an antecedent results with 

a consequent. It is usually shown as: 
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Table 2.24. Effect of Different Cell Disruption Methods on Lipid Content. 

Cell Disruption 

Method 

Botryococcu

s sp. [131] 

Chlorella 

vulgaris 

[131] 

Scenedesmu

s sp. [131] 

Chlorell

a sp. 

[132] 

Nosto

c sp. 

[132] 

Tolypothri

x sp. [132] 

Chlorella 

vulgaris 

[133] 

Scenedes

mus sp. 

[20] 

Chlorococcu

m sp. [134] 

Chlorella 

sorokinian

a [134] 

Nannochloropsi

s gaditana 

[135] 

Chlorella 

sorokinian

a [135] 

Microwave 28.5* 10.1* 10.3* 18.0 16.0 16.0* 18.0 28.6* 24.0* 34.3 11.1 14.5 
  (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo)           (+ lyo) 

Bead milling 28.1 7.7 8.4 16.0 12.1 13.0 10.0      
  (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo)             

Osmotic Shock 10.8 7.9 7.0 15.0 13.0 14.0   18.2 36.0*   
  (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo)             

Autoclaving 11.9 9.7 5.5 20.5* 18.0* 14.0   14.3 33.4 10.8 14.4 
  (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo)           (+ lyo) 

Sonication 8.9 6.1 7.4 11.0 10.0 8.1 15.0 18.8   10.6 14.2 
  (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo)           (+ lyo) 

none 7.9 5.0 2.2 8.0 7.6 3.6 3.0  12.5 28.8 9.8 11.3 
  (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo) (+ lyo)           (+ lyo) 

Liquid nitrogen       28.4*      
                          

Steam 

explosion           18.2* 18.4* 
                        (+ lyo) 
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𝑋 → 𝑌 (2.1) 

where, X is called antecedent and Y is called consequent. It can easily be generalized 

to more than two items with introducing more than one antecedent. 

Association rule mining has three common arguments that are widely used to assess 

the effectiveness of the rule; support, confidence and lift. Calculations of these arguments 

are done as Equation 2.1-2.3follows: 

Support(𝑋 → 𝑌)  = 𝑃(𝑋, 𝑌) =  
number of instances with both X and Y

total number of instances
  

 

(2.2) 

Confidence(𝑋 → 𝑌)  =  𝑃(𝑌|𝑋)  =  
number of instances with both X and Y

number of instances with X
  

 

(2.3) 

Lift(𝑋 → 𝑌)  = 
confidence(XY) 

proportion of  instances with Y to total number of instances
  

 

(2.4) 

Confidence is the conditional probability of finding an antecedent (X) and a 

consequent (Y) together. The strength of the rule is quantified by confidence and to treat a 

rule as strong it should be close to 1, and significantly higher than sole probability of a 

consequent. The second argument is formulated and named as lift by the proportion of 

confidence to the probability of a consequent. Lift values higher than 1 suggests that 

antecedent (X) resulting with consequent (Y) is more likely; whereas, values lower than 1 

suggests the opposite. Support of a rule, on the other hand, is the measurement for the 

statistical significance. Low support shows that there are not enough instances to accept the 

rule as significant [136].   

2.10.2.  Decision Tree 

Decision tree method is a nonparametric supervised learning method, which can be 

used both for classification and regression. Decision tree is a hierarchical model, where the 

output is predicted with a sequence of serial splits. The first node with all the instances is 

called the root of the decision tree, the final nodes are called terminal leaves and the nodes 

in between are internal decision nodes. Each split has a criterion defined on a specific input 



26 

value. The prediction is done by taking the suitable branch and continued until hitting to a 

leaf node. Figure 2.2 shows a sample decision tree.  

 

Figure 2.2. A simple Decision Tree Model. 

The performance of a decision tree heavily depends on the goodness of the split. The 

goodness of the split is measured by impurity measures. A split is successful if the nodes are 

pure after the split. Mainly three functions are used to measure impurity, namely; Entropy, 

Gini index, and Misclassification error [136]. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝜃(𝑝, 1 − 𝑝) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) 

 

(2.5) 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 𝜃(𝑝, 1 − 𝑝) = 2𝑝(1 − 𝑝) 

 

(2.6) 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝜃(𝑝, 1 − 𝑝) = 1 − max(𝑝, 1 − 𝑝) 

 

(2.7) 

where, p is the purity in two class-problems.  

2.10.3.  Artificial Neural Network 

The basic processing element of artificial neural network is perceptron, which has 

inputs, connection weights associated with each input and the output. In the simplest case, 
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the output is the sum of the inputs multiplied by their weights. A simple perceptron model 

is given in Figure 2.3, in which: 

 

Figure 2.3. A Simple One-Layer Perceptron Model. 

xj’s are the inputs, wj’s are connection weights of inputs to the output, and y is the 

output. wo and x0 covers the intercept value, which is added to the model to make it more 

general. xo is equal to 1, and w0 is just the intercept value. Described simplistic case, where 

the output is the weighted sum of inputs can be written as: 

𝑦 = ∑ 𝑥𝑗𝑤𝑗 + 𝑤0 

 
(2.8) 

Given the input variables, the artificial neural network algorithm needs to learn the 

weights to predict the output variable. A training set with both input variables and output 

variable should be given to the model to learn the weights.   

Artificial neural network can be used to both classification and prediction problems. 

For classification problems, the output is divided into several classes. For the cases where 

the output is more than 1, an equal number of parallel perceptrons are added to the model.   

Single layered perceptrons can only be used to predict linear functions. Multilayer 

perceptrons (MLP), in which inputs are not directly connected to output, instead, one or more 

additional layers are added to the model, where the output of one layer is used as the input 

of the following layer, can be used in highly nonlinear models. An example of two-layer 

perceptron is given in Figure 2.4, where xj’s are inputs, zh’s are the hidden units, wj’s are the 

weight of the first layer, vh’s are the weights of the second layer, and y is the output.  
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Figure 2.4. A Two-Layered Perceptron Model. 

Although there is not a limitation for the number of hidden layers, one hidden layer is 

generally used in practice. However, in some practices multiple hidden layers can be 

preferred to have a narrow and long networks instead of short and fat ones [136].  
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3.  COMPUTATIONAL DETAILS 

 

3.1.  Experimental Data Collection 

3.1.1.  Dataset 

Dataset was constructed from 113 articles published between 1994 to 2017. 

However, after preprocessing articles used in database is decreased to 106 articles, with total 

of 5356 instances. Figure 3.1 shows the increasing interest in the microalgae biodiesel 

through years. The dataset included 41 input variables (categorical and numeric) and three 

output variables (biomass production, lipid content and lipid production). Although data for 

lipid production was also collected, it was not modeled or studied because of the strong 

correlation with the other two outputs. The effect of input variables in biomass production 

and lipid content were analyzed separately. However, instance number of these outputs are 

different because in some research papers, only one of the output is reported. The number of 

data points for biomass production and lipid content are 4989 and 2572, respectively. Figure 

3.2 illustrates two database in terms of number of data points. 

The number of articles published about microalgae biodiesel over years is presented 

in Figure 3.1. 

 

Figure 3.1. Number of Articles Published on Microalgae Biodiesel Through Years. 
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Lipid content of the microalgae biomass is determined after the lipid extraction step. 

However, for simplicity, only microalgae cultivation step is considered in analysis and 

modeling. 

 

Figure 3.2. Number of Instances in the Database with respect to Output Variable. 

3.1.2.  Variables 

Variables affecting the biomass production and lipid content of microalgae in 

cultivation stage are composed of the ones that are analyzed previously in the literature, and 

shown to affect the outputs. Some other variables are also included into database although 

the affect is not studied in the articles used in the database. The variables can be categorized 

as microalgae type, water type, reactor type and volume, cultivation type, temperature and 

pH, growth phase and time, light, nutrients and CO2.  

Different microalgae species are studied throughout these articles; these species are 

given in Table 3.1, and classification is done starting from the very top of the classification 

tree: 

Figure 3.3 summarizes the overall dataset in terms of microalgae. The band widths 

are related with the number of data in the overall dataset of that microalgae. Taxonomies of 

all microalgae are gathered from AlgaeBase website. Domain, phylum, class, family, genus, 

and species names are noted and number of data of all taxonomical classes is given in 

following chart. If the number of data of the related branch is lower than 10, it is not plotted 
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in the graph. 90% of data belong to Eukaryota. 80% of Eukaryota’s belongs to Chlorophyta. 

57% of Chlorophyta’s belongs to Trebouxiophyceae, and so on. Most common microalgae 

specie, Chlorella Vulgaris, has 1007 data points, which account for 21% of all data. 

Table 3.1. Number of Different Microalgae Types in the Dataset. 

classification Total Eukaryota Prokaryota 

Domain 2 1 1 

Phylum 10 9 1 

Class 23 22 1 

Family 61 54 7 

Genus 87 78 9 

Species 190 181 9 

Microalgae can also be divided into two groups as marine and freshwater microalgae. 

The number of data is also given in Table 3.2.  

Table 3.2. Water Types and Their Data Number in the Dataset. 

Input Variable Categories Number of Data 

Water type 
freshwater 3778 

marine 1578 

 

The reactor used for cultivation is divided into two categories; flask and 

photobioreactor. Photobioreactors are optimized reactors, where light and CO2 are uniformly 

distributed for optimum growth. Open pond is another type of a reactor used for large scale 

experiments, however the control level of these reactors are low, and are not reliable in 

comparative analysis, so they are not included in the dataset. The range of cultivation reactor 

volume and the number of data points for each reactor type is given in Table 3.3. In Figure 

3.4, distribution of reactor volume is shown in more detail. 
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Figure 3.3. Classification of Microalgae in the Dataset represented by Number of 

Instances. 

Table 3.3. Reactor Type and Volume. 

Input Variable Categories Range Number of Data 

Type of Reactor 
flask 

   
2695 

photobioreactor 
   

2661 

Culture medium volume (mL)   10 - 10000   
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Figure 3.4. Distribution of Culture Volume in Database. 

Cultivation type of microalgae is categorized into four categories; autotrophic, 

heterotrophic, mixotrophic, and photoheterotrophic with respect to energy and carbon source 

available for microalgae growth. Table 3.4 shows the number of data for each category in 

the dataset. 

Table 3.4. Microalgae Cultivation Types in Database. 

Input Variable Categories Number of Data 

Cultivation type 

autotrophic 4632 

heterotrophic 151 

mixotrophic 443 

photoheterotrophic 130 

 

Temperature and pH of the cultivation medium are important variables affecting the 

biomass production and lipid content of microalgae. Although temperature of the medium 

can be held constant, constant pH value is achieved with the help of buffer solutions because 

of the effect of changes in nutrient concentrations and CO2 level on pH level. In some of the 

data, buffer solutions are used to achieve constant pH value. Table 3.5 shows the range of 

temperature and pH values, and number of data of pH control. Following graphs shows the 

distribution of temperature and pH in more detail. 
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Table 3.5. Temperature and pH range in Database. 

Input Variable Categories Range Number of Data 

Temperature (°C) 
 

10 - 50 
 

pH 
 

3 - 12 
 

pH control 
constant-pH 

   
302 

varying pH initial       5054 

 

The difference in the stage of microalgae when the cultivation is stopped affects the 

output variables. Growth stage is categorized as; lag phase, early exponential phase, 

exponential phase, late exponential phase, early stationary phase, stationary phase, and late 

stationary phase. Time required to reach the stage where the cultivation ceased is also 

recorded into dataset. Table 3.6 shows the number of data for each cultivation stages and 

range of cultivation time.  

Table 3.6. Cultivation Stages in Database. 

Input Variable Categories Range Number of Data 

Cultivation time (days) 
 

0.2 - 68 
 

Cultivation Stage 

early exponential 
   

491 

early stationary 
   

558 

exponential 
   

1198 

lag 
   

262 

late exponential 
   

501 

late stationary 
   

424 

stationary       1922 

 

Nine different light sources used in the articles composes the dataset; white LEDs, 

blue LEDs, green LEDs, yellow LEDs, orange LEDs, red LEDs, fluorescent, white lamps, 

and sunlight. The number of data for each light source is given in Table 3.7, with the range 

of light intensity and photoperiod. In graph and, the distribution of light intensity and 

photoperiod is shown in more detail.  
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Table 3.7 Light wavelengths in Database with ranges of light intensity and photoperiod. 

Input Variable Categories Range Number of Data 

μmol photons m−2 s−1 
 

0 - 700 
 

Light wavelength 

380-760nm (white LEDs) 
   

224 

400-800nm (fluorescent) 
   

4454 

460-475nm (blue LEDs) 
   

77 

515-540nm (green LEDs) 
   

77 

587-595nm (yellow LEDs) 
   

77 

590-610nm (orange) 
   

77 

620-645nm (red LEDs) 
   

79 

none 
   

131 

Sunlight 
   

39 

white lamps 
   

121 

Photoperiod(h)   0 - 24   

 

For simplicity and for better comparison, nutrients are converted to molar 

concentration, if reported otherwise, as individual components instead of molecules. Only 

nitrogen and carbon sources added, aside from their total concentration, to dataset for 

analyzing the effect of different nitrogen and carbon sources. Table 3.8 shows the most 

common molecules used in the cultivation mediums and their corresponding nutritional 

components.  

Table 3.8. Major Nutritional Components of Corresponding Molecules. 

Molecule Components 

KH2PO4 PO4 - K 
  

K2HPO4 PO4 - K 
  

Na2HPO4 PO4 - Na 
  

NaH2PO4 PO4 - Na 
  

(NH4)2HPO4 PO4 - N 
  

NH4Cl N - Cl 
  

(NH2)2CO N 
    

NH4HCO3 N - C   
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Table 3.9. Major Nutritional Components of Corresponding Molecules. (cont.) 

KNO3 N - K 
  

Ca(NO3)2 N - Ca 
  

NH4NO3 N 
    

NaNO3 N - Na 
  

NaHCO3 C - Na 
  

Na2CO3 C - Na 
  

acetate C 
    

acetic acid C 
    

Sodium acetate C - Na 
  

Glucose C 
    

Citric acid C 
    

Ferric Citrate Fe - C 
  

Ferric Ammonium Citrate Fe - N - C 

MgSO4 Mg - SO4 
  

MgCl2 Mg - Cl 
  

NaCl Na - Cl 
  

CaCl2 Ca - Cl 
  

FeCl3 Fe - Cl 
  

FeSO4 Fe - SO4 
  

Fe(NH4)2(SO4)2 Fe - N - SO4 

Na2SiO3 Si - Na 
  

MnCl2 Mn - Cl 
  

MnSO4 Mn - SO4 
  

ZnCl2 Zn - Cl 
  

ZnSO4 Zn - SO4 
  

Na2MoO4 Mo - Na 
  

(NH4)6Mo7O24 Mo - N 
  

MoO3 Mo 
    

CoCl2 Co - Cl 
  

CoSO4 Co - SO4 
  

Co(NO3)2 Co - N 
  

CuSO4 Cu - SO4 
  

CuCl2 Cu - Cl 
  

H3BO3 B         
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The concentration of most important elements required for microalgae growth is 

given in Table 3.9, with their range. The range of the concentrations are higher in 

macronutrients, following by micronutrients. Trace elements are required in relatively low 

concentrations (up to 10-4mol/L) but equally essential for high growth and lipid content. 

For autotrophic and mixotrophic modes, microalgae require inorganic carbon as 

carbon source, mostly carbon dioxide is used by aerating the cultivation medium. Feed gas 

flow and CO2 content of the feed gas are important variables affecting the microalgae growth 

and lipid content. VVM*CO2 is a combined variable of two variables. The range of these 

variables are summarized in Table 3.10.  

Cell Disruption and extraction solvents are other important input parametrs for lipid 

content database. Different methods for cell disruption are considered in database (Figure 

3.5). Also, lipid extraction solvents are considered as mixtures. Seven different mixtures are 

considered in database (Table 3.11).  

 

Figure 3.5 Cell Disruption Methods in Database. 

The variables investigated in the articles used in the construction of the database are 

summarized in Figure 3.6 , where 40 different articles out of 106 used in the database are 

investigated the effect of microalgae species on biomass production and/or lipid content, and 
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38 different articles are investigated the effect of NO3 concentration on biomass production 

and/or lipid content and so on. 

Table 3.10. Range of Nutrients used in Database. 

 
Input Variable Range 

Nutrients (mol/L) 

PO4 0 - 0.012 

N 0 - 0.237 

NH4 0 - 0.063 

NO3 0 - 0.237 

C 0 - 3.331 

Cautotrphic 0 - 0.200 

Cheterotrophic 0 - 3.331 

NAHCO3 0 - 0.200 

NA2CO3 0 - 4E-04 

Acetic acid 0 - 0.140 

Sodium acetate 0 - 0.561 

Glucose 0 - 3.330 

Tris base 0 - 0.040 

EDTA 0 - 0.002 

SO4 0 - 0.045 

Mg 0 - 0.054 

K 0 - 0.054 

Na 0 - 5.007 

Ca 0 - 0.012 

Fe 0 - 2E-04 

Si 0 - 1E-04 

Mn 0 - 4E-04 

Zn 0 - 3E-04 

Mo 0 - 5E-05 

Co 0 - 2E-05 

Cu 0 - 6E-05 

B 0 - 0.002 

Vitamin B12 0 - 3 

Vitamin B1 0 - 3 

Vitamin B7 0 - 0.08 
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Table 3.11.  Range of Feed Gas Flow, CO2 Content, and Feed CO2 Flow in Database. 

Input Variable Range 

feed gas flow (vvm) 0 - 2.915 

CO2 content (%) 0 - 30 

Feed CO2 flow (vvm) 0 - 0.27 

 

Table 3.12 Lipid Extraction Solvents in Database. 

Parameter Input Variables Number of Data 

Lipid Extraction 

Solvents 

CHCl3-CH3OH 1726 

n-Hexane 168 

CH3OH-Dichloromethane 39 

Ethyl Ether 21 

n-Hexane-Isopropanol 16 

CH3OH 13 

Ethanol 3 

 

Table 3.13. Range of Biomass Production. 

Output Variable Range 

Biomass Production (mg/L d) -14 - 1193 

 

Table 3.14. Range of Lipid Content. 

Output Variable Range 

Lipid Content (%) 0 - 74.8 

 

3.1.3.  Preprocessing 

The articles with unique methods or materials were discarded. Some articles reported 

the microalgae growth in other forms that cannot be converted into biomass production in 

terms of mgL-1d-1 without any further information for calibration, like cell density, and 



40 

optical density measurements. The lipid content measurements in some articles also had the 

same problem, like fluorescence intensity. Although fluorescence intensity has a meaning 

within the experiment to compare the lipid contents, it is not reliable to compare the 

fluorescence intensity of different experiments. The articles with outputs, which were not 

going to be reliable to compare between articles were discarded. 

A clustering analysis was used to detect the outliers in the dataset. Some values were 

so off that they created a cluster on their own, as shown in Table 3.14. The instances in 

clusters 2 and 4 were also deleted from the dataset.  

 

Figure 3.6. Variables Investigated in the Articles used in the Dataset. 

Table 3.15. Number of Data in Each Cluster in Cluster Analysis. 

Cluster # of data in clusters 

1 1541 

2 9 

3 4011 

4 20 
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In case of a missing data, the average value of the missing variable was substituted. 

For some variables, the mean values are calculated from subcategories of other variables that 

are accepted to be related with the variable of interest. Also for conversion of numeric values 

into same unit, some conversion assumptions were made, like converting lux to μmol 

photons m−2 s−1. Tables 3.15-3.23 summarize the assumptions made to fill the missing 

values.  

Table 3.16. Assumed Temperature Values of Different Microalgae Types. 

variable subcategory value 

Temperature (oC) 

Chlorococcum sp. 25 

Chlorella sp. 25 

Phaeodactylum tricornutum 24 

Nannochloropsis gaditana 24 

Chaetoceros calcitrans 23 

Scenedesmus sp. 25 

Scenedesmus acutus 25 

Desmodesmus abundans 26 

Desmodesmus sp. 26 

Desmodesmus intermedius 26 

Scenedesmus obtusus 25 

Scenedesmus pectinatus var 25 

Nannochloropsis oculata 23 

Chlorella sorokiniana 26 

Neochloris oleoabundans 27 

 

Table 3.17. Conversion Factors of Some Variables. 

variable conversion Multiplier 

Fe-EDTA solution  liter to gram multiplied by 5.11 

Light intensity lux to μmol photons m−2 s−1 multiplied by 0.0135 

Light intensity W/m2 To Photons multiplied by  4.59 
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Table 3.18. NaCl Concentration of Different Water Types. 

variable subcategory value 

NaCl 
Distilled water 0.025 

Filtered natural seawater 27 

 

Table 3.19. Assumed Reactor Sizes of Different Reactor Types. 

variable subcategory value 

culture medium(ml) 
photobioreactor 3000 

flask 1000 

 

Table 3.20. Assumed Light Intensity and Photoperiod Values for Autotrophic Growth. 

variable subcategory value 

μmol photons m−2 s−1 autotrophic 160 

Photoperiod(h) autotrophic 24 

 

Table 3.21. Assumed Aeration Rates for Different Reactor Types. 

variable subcategory value 

feed gas flow (vvm) 

General 1 

flask 0.5 

photobioreactor 1.2 

 

Table 3.22. Assumed Days of Cultivation for Different Growth Phases. 

variable subcategory value 

Cultivation time (days) 

early exponential 3 

exponential 5 

late exponential 7.6 

early stationary 8.6 

stationary 12.4 

late stationary 16.5 
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Table 3.23. Assumed pH Values of Different Microalgae Types. 

variable subcategory value 

pH 

GENERAL 7.16 

Isochrysis galbana 8.3 

Bracteacoccus grandis 6.6 

Neochloris oleoabundans 6.8 

Phaeodactylum tricornutum 7.5 

Nannochloropsis sp. 7.3 

Chlorella vulgaris 6.9 

Nannochloropsis oculata 7.6 

Isochrysis sp. 8.3 

Tetraselmis sp. 7.8 

Rhodomonas sp. 8.3 

Chlorococcum sp. 7.4 

Ankistrodesmus falcatus 6.8 

Scenedesmus sp. 7 

Cylindrotheca fusiformis 8 

Pavlova sp. 7.5 

Tetraselmis suecica 8.2 

Scenedesmus abundans 7 

Isochrysis sphacrica 8.3 

Nannochloropsis gaditana 7.1 

Chaetoceros calcitrans 7.5 

Chaetoceros muelleri 7.5 

Dunaliella salina 7.7 

Chlorella sp. 7 

Nannochloropsis oceanica 7.4 

Scenedesmus acutus 7 

Chlorococcum sp. 7.4 

Botryococcus sp. 7 

Chlorella sorokiniana 6.7 

Scenedesmus obliquus 7 

Scenedesmus incrassatulus 7 

Desmodesmus spinosus 7 

Dunaliella tertiolecta  7.7 

Chlorella minutissima 6.8 
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Table 3.24. Assumed CO2 Content for Photobioreactors. 

variable subcategory value 

CO2 content (%) photobioreactor 3 

 

The correlation coefficients between the variables were investigated. Highly 

correlated variables were eliminated from the dataset. High degree of correlation was 

assumed to be higher than 0.7. Figure 3.7 shows the correlation between input variables. 

 

Figure 3.7. Correlation Table of the Input Variables. 

Correlation between Mn- Zn- Mo- Co- Cu- B and EDTA was found to be higher than 

0.7 in most cases. The Mn data was selected as representative of those seven components 

and named as “trace elements”.  

Na- Ca- SO4 and Mg had also high degree of correlation. These nutrients are 

abundantly available in sea salt, creating a correlation with water type used in the culture 

medium as well. These nutrients were all deleted from dataset, and Mg was kept as the 

representative for these salts.  
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The relation between these variables were also tested by Factor analysis of mixed 

data (FAMD) analysis. The graph shows the contribution of quantitative variables to the first 

two “new” dimensions created by FAMD algorithm. The direction of the arrows indicate the 

relation between the variables, where the same direction means correlation. The same 

variables are observed as related.   

 

Figure 3.8. FAMD Analysis of the Input Variables. 

For decision tree and artificial neural network algorithms, k-fold cross validation is 

implemented to achieve more stable results. Algorithms like decision tree and neural 

network are supervised learning algorithms, in which dataset is divided into testing and 

training sets. The training set is used to build the model and testing set is used to test the 

performance of the model. However, although the split between train and test instances are 



46 

random, there may still class imbalance problem. The instances of one group of a variable 

may be present significantly higher in either group which lowers the stability of the model. 

K-fold cross validation overcomes this problem by dividing dataset into k folds, uses k-1 

folds for training and one fold for testing, and repeats that process by changing the test set 

with another fold. 

3.1.3.  Association Rule Mining 

Association rule mining algorithm was employed to dataset with use of arules 

package of R. The function apriori in the arules package was used to find the rules. The tuned 

parameters in the algorithms was; minimum number of variables considered to construct the 

rule (minlen), maximum number of variables considered to construct the rule (maxlen), 

support value of the rule (supp), and confidence value of the rule (conf). Individual and 

combined effects of the input variables on the output variable were investigated through 

tuning minlen and maxlen parameters. Then reliability of a rule was decided by their support 

and confidence levels. A rule was accepted as reliable if the support value is higher than 0.01 

and confidence level is higher than 0.5. 

3.1.4.  Decision Tree 

Decision tree algorithm was constructed by using the fitctree function of MATLAB®. 

The tuned parameters were maximum number of splits in the tree (MaxNumSplits), and 

minimum number of data allowed in the leaf nodes (MinLeafSize). Although low 

MinLeafSize resulted in better models, values lower than 1% of number of data used to 

construct the model was not favored, because of the possible misleading caused by data 

points coming from a single article. MaxNumSplits were also limited for having simple, 

understandable and easily interpretable trees. All possible candidate trees yielding high 

accuracy were compared, with respect to overall accuracy, accuracy for predicting high, 

medium, low classes, and error in predicting data points as high which were actually low, 

and vice versa. For minimizing deviations in the error and accuracy values, the averages of 

a hundred trees with same parameters were used in the comparative analysis. The errors and 

accuracies were computed from confusion matrix as follows: 

 



47 

Table 3.25. A Sample Confusion Matrix. 

  
Predicted 

  
Low Medium High 

Actual 

Low A B C 

Medium D E F 

High G H I 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑖𝑡𝑠 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎

=  
𝐴 + 𝐸 + 𝐼

𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 + 𝐺 + 𝐻 + 𝐼
 

(3.1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 ℎ𝑖𝑔ℎ 𝑐𝑙𝑎𝑠𝑠

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 ℎ𝑖𝑔ℎ 𝑐𝑙𝑎𝑠𝑠

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 ℎ𝑖𝑔ℎ 𝑐𝑙𝑎𝑠𝑠
=

𝐼

𝐺 + 𝐻 + 𝐼
 

(3.2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑚𝑒𝑑𝑖𝑢𝑚 𝑐𝑙𝑎𝑠𝑠

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑚𝑒𝑑𝑖𝑢𝑚 𝑐𝑙𝑎𝑠𝑠

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑚𝑒𝑑𝑖𝑢𝑚 𝑐𝑙𝑎𝑠𝑠

=
𝐸

𝐷 + 𝐸 + 𝐹
 

(3.3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑙𝑜𝑤

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑙𝑜𝑤 𝑐𝑙𝑎𝑠𝑠

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑙𝑜𝑤 𝑐𝑙𝑎𝑠𝑠

=
𝐴

𝐴 + 𝐵 + 𝐶
 

(3.4) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = (1 − 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) ∗ 100 (3.5) 

 

5-fold cross validation was applied, in which data was divided into five equal sized 

subclasses randomly, and five trees constructed with changing the test set in each tree with 

these subclasses by turns. The error and accuracy values were calculated as being the average 

of these trees.  

In decision tree algorithm, standardization of variables is not a necessary step before 

modeling, as all variables are evaluated within themselves for finding the optimum split. The 

differences of means and variances between all variables do not affect the model structure 

and performance. 
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The criterion used for splitting was specified as Gini diversity index.  The importance 

of the input variables in the model was determined by predictorImportance function of 

MATLAB®.  

3.1.5.  Artificial Neural Network 

Before applying artificial neural network algorithm to dataset, the input variables 

under consideration were standardized to eliminate the bias stemming from the differences 

in the variances of the input variables. The “normalizeData” function of R was used for this 

purpose, where the mean and variance of all input variables were changed to 0 and 1, 

respectively. The standardization was done as follows: 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝜇

𝜎
 

(3.6) 

 

k-fold cross validation (CV) method was applied for constructing and training of the 

neural network model. In CV method, one fold of the k-folds was reserved as the test set, 

and the remaining k-1 folds were used for training and constructing the model. This 

procedure was applied k times, at which test set was selected from different fold at each 

time. k was chosen as 10 in the artificial neural network models in this study. 

The “mlp” function of RSNNS package of R was used to built artificial neural 

network model. Error back propagation is the default function used for training set. Other 

input arguments for “mlp” function that were tuned for optimum model are; size, maxit, 

hiddenActfunc, and learnFunc.  

Size represents the number of units in the hidden layer(s). Maxit represents the 

maximum iteration to learn. HiddenActFunc is the activation function of all hidden units. 

And learnFunct is the learning function to be used. 

The choice of the activation function is very crucial for the model efficiency. Each 

activation function performs differently for different kind of dataset and finding the best one 

for the dataset is an important step for modeling. For this purpose, 47 activation functions 

available in the RSNNS package was applied to the models. Together with activation 



49 

function, learning function has the same characteristics for model efficiency. Eight learning 

function available in the RSNNS package was also applied to the models. Table 3.25 

summarizes the activation and learning functions tried for finding the optimum models.  

Table 3.26. Hidden Activation and Learning Functions Employed in ANN algorithm. 

hiddenActFunct's 

Act_Logistic Act_Elliott Act_BSB Act_TanH 

Act_TanH_Xdiv2 Act_Perceptron Act_Signum Act_Signum0 

Act_Softmax Act_StepFunc Act_HystStep Act_BAM 

Logistic_notInhibit Act_MinOutPlusWeight Act_Identity Act_IdentityPlusBias 

Act_LogisticTbl Act_RBF_Gaussian 

Act_RBF_MultiQuadr

atic Act_RBF_ThinPlateSpline 

Act_less_than_0 Act_at_most_0 Act_at_least_2 Act_at_least_1 

Act_exactly_1 Act_Product Act_ART1_NC Act_ART2_Identity 

Act_ART2_NormP Act_ART2_NormV Act_ART2_NormW Act_ART2_NormIP 

Act_ART2_Rec Act_ART2_Rst Act_ARTMAP_NCa Act_ARTMAP_NCb 

Act_ARTMAP_DRh

o Act_LogSym Act_CC_Thresh Act_Sinus 

Act_Exponential Act_TD_Logistic Act_TD_Elliott Act_Euclid 

Act_Component Act_RM Act_TACOMA   

learnFunct's 

Std_Backpropagation BackpropBatch BackpropMomentum 

Quickprop Rprop RpropMAP 

BackpropWeightDecay SCG 
 

 

The models with different size, maxit, hiddenActFunc, and learnFunc were  

compared with each other with respect to mean absolute error (MAE), root mean square 

error (RMSE), and r-squared (R2) values. The one with minimum MAE, and RMSE, with 

maximum R2 value was chosen to be optimum model, which are calculated as follows: 

Mean Absolute Error (MAE) = 
1

𝑛
∑ |𝑝𝑖 − 𝑟𝑖|

𝑛
𝑖=1  (3.7) 

Root Mean Square Error (RMSE) = √
1

𝑛
∑ (𝑝𝑖 − 𝑟𝑖)

2𝑛
𝑖=1  

(3.8) 

Rsquared (R2) =1 −
∑ (𝑝𝑖−𝑟𝑖)2𝑛

𝑖=1

∑ (𝑟𝑖−𝑟̅)2𝑛
𝑖=1

 (3.9) 
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Where pi and ri are predicted and real value of the output variable of the ith data point, 

respectively. n is the number of data, and 𝑟̅ is the mean vale of real values.  

After artificial neural network model was tuned, analysis of relative importance of 

variables was done by the use of “garson” function of R. Importance is evaluated as either 

increase in accuracy or decrease in node impurity by the use of the selected variable.  

Standardized residual analysis is an important indicator for model adequacy. The 

relation between error and an input variable should be unrelated. If it is not the case, it means 

that the selected input variable has an effect in the error, which suggests inadequate 

modeling. Standardized residuals were calculated difference between real and predicted 

values divided by standard deviation of real values.  

 

 

 

  



51 

4.  RESULTS AND DISCUSSION 

 

The dataset gathered from the published data in the literature was used mainly for three 

purposes. First, data was used to make simple analysis to find direct relations of input 

variables to output variables. This was done by using principal component analysis (PCA) 

and presented in the first section of this part. Secondly, decision tree (DT) algorithm was 

implemented to dataset for both biomass production and lipid content. The aim was to 

present heuristics for high output, which is presented in the second section. Finally, artificial 

neural network (ANN) algorithm is implemented to find relatively significant inputs for the 

process, and also asses the prediction power of the ANN model, which is presented in the 

third section. 

4.1.  Association Rule Mining 

Dataset gathered from literature composed of continuous and discrete variables. For 

association rule mining, continuous variables are also needed to be discretized. Output 

variables, biomass production and lipid content were also discretized into three classes, each 

having equal number of instances. The discretization is summarized in Table 4.1 and Table 

4.2. 

Table 4.1. Discretized Classes of Input Variables. 

  Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Temperature [10,22) [22,26) [26,31) [31,50]    

Light 

intensity 
[0] [11,42.4) [42.4,80) [80,125) [125,216) [216,700]  

Photoperiod [0] [8,14) [14,16) [16,21) [21,24]   

CO2 content 

(%) 
[0] [0.03,0.28) [0.28,1) [1,3) [3,8) [8,20) [20,30] 

PO4 conc. 
(mol/L) 

[0,8.76×
10-5) 

[8.76×10-5 
,0.000344) 

[0.000344,0.0
00845) 

[0.000845,0.0
01615) 

[0.001615,0.0
09185) 

[0.009185,0.0
12018] 

 

N conc. 

(mol/L) 

[0,0.000

442) 

[0.000442,0.0

01471) 

[0.001471,0.0

02929) 

[0.002929,0.0

05602) 

[0.005602,0.0

12186) 

[0.012186,0.0

26477) 

[0.026477,0.2

37204] 
Aeration rate 

(vvm) 
[0] 

[0.000025,0.1

5) 
[0.15,0.4) [0.4,0.8333) [0.8333,1.5) [1.5,2.915]  

CO2 

(aeration 
rate*CO2 

content) 

[0] 
[7.5×10-9 

,0.000002) 

[0.000002,0.0

0025) 

[0.00025,0.00

4) 
[0.004,0.025) [0.025,0.06) [0.06,0.27] 
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Table 4.2. Discretized Classes of Output Variables. 

  Low Medium High 

Biomass production (mg/ L day) [-14,60) [60,160) [160,990] 

Lipid content (%) [0,13) [13,25) [25,74.8] 

 

The rules gathered from association rule mining algorithm are interpreted with their 

support, confidence and lift values. To interpret a rule as significant, high confidence and 

support values, together with lift value higher or lower than 1 is expected.  

4.1.1.  Association Rule Mining for Biomass Production 

Some of the general rules are given in the Table 4.3 and Table 4.4 to reach both high 

and low biomass production rate.  

Table 4.3. Selected ARM Rules Yielding High Biomass Production. 

Input Variable 

Biomass 

productivity 

(mg/L d) support confidence lift count 

Feature A Class B Fraction of all 

data to data 

that is in class 

B and has 

feature A 

Fraction of data 

that has feature A 

to data that is in 

class B and has 

feature A 

Fraction 

of 

confidence 

to data 

that is in 

class B 

Number 

of data 

that has 

feature A 

and in 

class B 

CO2%= Class 4 HIGH 0.07 0.78 2.28 331 

VVM* CO2%= Class 4 HIGH 0.08 0.69 2.02 396 

VVM=Class 3 HIGH 0.10 0.55 1.63 482 

CO2%=Class 6 HIGH 0.05 0.54 1.59 234 

CO2%=Class 3 HIGH 0.04 0.53 1.54 218 

Cultivation type=mixotrophic HIGH 0.05 0.51 1.50 227 

VVM* CO2%=Class 5 HIGH 0.04 0.50 1.47 223 

Cultivation Stage=early exponential HIGH 0.05 0.49 1.43 233 

Type of Reactor=photobioreactor HIGH 0.25 0.49 1.43 1265 

Cultivation Stage=exponential HIGH 0.10 0.47 1.37 494 

Photoperiod =Class 5 HIGH 0.29 0.45 1.32 1428 

CO2%=Class 5 HIGH 0.07 0.44 1.29 335 

Type of Reactor=photobioreactor 

HIGH 0.24 0.58 1.70 1174 Photoperiod=Class 5 

Type of Reactor=photobioreactor 

HIGH 0.05 0.98 2.88 259 

Photoperiod=Class 5 

CO2%=Class 4 
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Table 4.4. Selected ARM Rules Yielding Low Biomass Production. 

Input Variable 

Biomass productivity 

(mg/L d) 

suppo

rt 

confiden

ce lift 

cou

nt 
Feature A Class B Fraction 

of all 

data to 

data that 
is in 

class B 

and has 
feature A 

Fraction of 
data that has 

feature A to 

data that is 
in class B 

and has 

feature A 

Fraction 
of 

confiden

ce to 
data that 

is in 

class B 

Numb
er of 

data 

that 
has 

featur

e A 
and in 

class 

B 

Photoperiod = Class 2 LOW 0.11 0.81 2.46 530 

N conc.=Class 1 LOW 0.05 0.72 2.18 256 

NO3 conc.=Class 2 LOW 0.08 0.62 1.88 403 

N conc.=Class 2 LOW 0.09 0.62 1.86 426 

Cultivation Stage=late 

stationary LOW 0.05 0.61 1.85 258 

PO4 conc.=Class 1 LOW 0.06 0.53 1.62 275 

NO3 conc.= Class 1 LOW 0.07 0.52 1.57 335 

VVM= Class 1 LOW 0.14 0.52 1.57 713 

VVM *CO2% = Class 1 LOW 0.14 0.51 1.54 719 

CO2%= Class 2 LOW 0.26 0.50 1.53 1277 

VVM *CO2%= Class 2 LOW 0.08 0.49 1.50 383 

Type of Reactor=flask LOW 0.23 0.48 1.44 1134 

Cultivation Stage=lag LOW 0.02 0.42 1.28 108 

NH4 conc.= Class 1 LOW 0.20 0.38 1.14 1007 

NH4 conc.= Class 1, 

LOW 0.17 0.70 2.13 841 CO2%= Class 2 

Type of Reactor=flask, 

LOW 0.19 0.58 1.76 944 CO2%= Class 2 

NH4 conc.= Class 1, 

LOW 0.17 0.71 2.14 827 

Glucose conc.=Class 1, 

CO2%=Class 2 

 

The support, confidence, and lift values are computed as the following equations: 

Support(𝑋 → 𝑌) = 𝑃(𝑋, 𝑌) = 
number of instances with both antecedent and consequent

total number of instances
  

Confidence(𝑋 → 𝑌) = 𝑃(𝑌|𝑋) = 
number of instances with both antecedent and consequent

number of instances with antecedent
  

Lift(𝑋 → 𝑌)  = 
confidence(XY) 

proportion of number of instances with consequent to total number of instances
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In the case when reactor type used is photobioreactor; support, confidence and lift 

values for high biomass production is calculated as follows: 

Support(𝑋 → 𝑌) = 𝑃(𝑋, 𝑌) = 
1265

4989
= 0.2536  

Confidence(𝑋 → 𝑌) = 𝑃(𝑌|𝑋) = 
1265

2606
= 0.4854  

Lift(𝑋 → 𝑌)  =
0.4854

1699/4989
= 1.4254  

The effect of the variables is analyzed individually with all its classes, and the trends 

are investigated if there is any in the following sections. Then the most common microalgae 

strains in the dataset are analyzed separately to compare the variable classes of nitrogen and 

phosphorus concentration that lead to high or low biomass production. 

4.1.1.1.  Cultivation Stage. Figure 4.1 shows that highest biomass production rates are 

achieved at early exponential, exponential, late exponential and early stationary phases. 

Exponential phase is described as the stage where maximum growth rate is achieved, which 

is in agreement with the findings. In lag stage almost no cell growth occurs, whereas in late 

stationary phase even cell death can be observed, and both have high lift values for low 

biomass production. This result is in consistency with literature, where the biomass 

production is reported to be in its maximum level in exponential phases (Figure 2.3)  

[57][58][59]. 

4.1.1.2. Cultivation Type. In the database, 86% of the experiments were done in autotrophic 

cultivation conditions. The lift values of autotrophic condition was found to be close to 1 

because of this reason. However mixotrophic and heterotrophic cultivation conditions yield 

high biomass production. Figure 4.2 shows higher lift values for best biomass production 

rates, and shows lower lift values for worst production rates. Belotti et al. also reported 

biomass production of 338mg L-1 d-1, 639 mg L-1 d-1, 256 mg L-1 d-1 for heterotrophic, 

mixotrophic, and autotrophic cultivation respectively [67], which are in agreement with 

findings in Figure 4.2 . 
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4.1.1.3.  Light Wavelength. Microalgae absorb light with different efficiencies in different 

wavelengths. The instances where red and blue light is used as light source, high biomass 

production values are achieved, with lift values around 2 (Figure 4.3). Wang et al. and Teo 

et al. also reported that wavelengths corresponding to blue and red lights results with high 

biomass production [70] [71]. 

 

Figure 4.1. Lift and Count Values of Different Stages for Biomass Production. 

4.1.1.4.  Light Intensity. As seen in Figure 4.4, the lowest level of light intensity is 0, which 

is heterotrophic cultivation condition. The high biomass production of lowest light intensity 
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class is related to cultivation condition rather than light intensity effect. In following two 

classes, the possibility of having low biomass production is favorable compared to having 

high biomass production. With increased light intensity lift is also increased for high biomass 

production, and decreased for low biomass production. The articles [33] [39] and [69] report 

that biomass production was steadily increased with increasing light intensity. 

 

Figure 4.2. Lift and Count Values of Different Cultivation Types for Biomass Production. 

 

Figure 4.3. Lift and Count Values of Different Light Wavelengths for Biomass Production. 
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4.1.1.5. CO2 Content. Figure 4.5 shows that in lowest two concentration levels, biomass 

production is in the favor of low production rates. When the concentration is increased, the 

result is in favor of high production rates. The highest lift value is achieved at fourth 

concentration level, which is in agreement with the trend that biomass production increases 

with increased CO2 concentration until a certain value, in which cell growth is inhibited. 

 

Figure 4.4. Lift and Count Values of Different Light Intensities for Biomass Production. 

4.1.1.7. N concentration. Figure 4.6 shows that increasing the concentration increases the lift 

of high biomass production and decreases the lift of low biomass production. After fourth 

level, the trend slows down and stabilizes. Qi et al., Converti et al., Pancha et al., and 



58 

Chakraborty et al. were studied the effect of nitrogen concentration on biomass production 

and also found that increasing concentration of nitrogen in the culture medium result with 

increased biomass production rate [41] [98] [100] [102]. 

4.1.1.8.  PO4 concentration. Aside from the third level PO4 concentration, Figure 4.7 shows 

that biomass production is increases with increasing PO4 concentration until a certain level 

than starts to decrease. 

 

Figure 4.5. Lift and Count Values of Different CO2 Contents for Biomass Production. 
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Table 4.5. ARM Results of Selected Microalgae Types for Biomass Production. 

Microalgae Type 

Biomass productivity  

(mg L-1 day-1) support confidence lift count 
Feature A Class B Fraction of all 

data to data that 
is in class B and 

has feature A 

Fraction of data that 

has feature A to data 
that is in class B and 

has feature A 

Fraction of 

confidence to 
data that is in 

class B 

Number of 

data that has 
feature A and 

in class B 

Chlamydomonas LOW 0.017 0.512 1.548 87 

 MEDIUM 0.011 0.318 0.966 54 

 HIGH 0.006 0.171 0.501 29 

Chlorella LOW 0.101 0.257 0.778 506 

 MEDIUM 0.151 0.382 1.160 751 

 HIGH 0.143 0.361 1.061 711 

Chlorococcum LOW 0.012 0.276 0.834 62 

 MEDIUM 0.008 0.187 0.568 42 

 HIGH 0.024 0.538 1.579 121 

Dunaliella LOW 0.034 0.835 2.526 172 

 MEDIUM 0.003 0.063 0.192 13 

 HIGH 0.004 0.102 0.299 21 

Isochrysis LOW 0.018 0.650 1.967 91 

 MEDIUM 0.002 0.086 0.261 12 

 HIGH 0.007 0.264 0.776 37 

Nannochloropsis LOW 0.028 0.305 0.922 142 

 MEDIUM 0.023 0.249 0.757 116 

 HIGH 0.042 0.446 1.311 208 

Scenedesmus LOW 0.044 0.341 1.032 221 

 MEDIUM 0.045 0.346 1.051 224 

 HIGH 0.041 0.313 0.920 203 

Tetraselmis LOW 0.023 0.487 1.474 115 

 MEDIUM 0.018 0.377 1.147 89 

 HIGH 0.006 0.136 0.398 32 

 

4.1.1.9. Temperature. Figure 4.8 shows that the microalgae biomass production is optimum 

at second and third temperature levels. In first and fourth levels, extremes, the lift of low 

production is around 1.5. All of the instances tested with highest temperature class resulted 

with low biomass production, whereas there are still high class instances available in the 

lowest temperature class. This observation is also reported by Mata et al., which states that 

microalgae can tolerate temperatures lower than its optimum values, however even a slight 

increase in temperature can result in cell death [3]. 
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Figure 4.6. Lift and Count Values of Different Nitrogen Concentrations for Biomass 

Production. 
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Figure 4.7. Lift and Count Values of Different Phosphorus Concentrations for Biomass 

Production. 

 

Figure 4.8. Lift and Count Values of Different Temperatures for Biomass Production. 
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4.1.2.  Association Rule Mining for Lipid Content 

Some of the general rules are given in Table 4.6 and Table 4.7 to reach both high and 

low lipid content. 

Table 4.6. Selected ARM Rules Yielding High Lipid Content. 

Input Variable Lipid content (%) support confidence lift count 
Feature A Class B Fraction of 

all data to 

data that is 
in class B 

and has 

feature A 

Fraction of 

data that has 

feature A to 
data that is in 

class B and has 

feature A 

Fraction 

of 

confidence 
to data 

that is in 

class B 

Number 

of data 

that has 
feature 

A and in 

class B 

N conc.=Class 1 HIGH 0.053 0.757 2.399 140 

CO2%=Class 7 HIGH 0.020 0.720 2.282 54 

EDTA conc.=Class 1 HIGH 0.044 0.712 2.256 116 

Salinity level =freshwater high HIGH 0.011 0.612 1.941 30 

VVM =Class 6 HIGH 0.032 0.585 1.855 86 

Fe conc.=Class 5 HIGH 0.048 0.574 1.820 128 

VVM*CO2 =Class 6 HIGH 0.028 0.544 1.725 74 

C conc.=Class 3 HIGH 0.087 0.481 1.525 230 

LightIntensity =Class 4 HIGH 0.061 0.478 1.515 162 

Salinity level=marine high HIGH 0.017 0.473 1.500 44 

PO4 conc.=Class 2 HIGH 0.114 0.434 1.375 301 

 

Table 4.7. Selected ARM Rules Yielding Low Lipid Content. 

Input Variable Lipid content (%) support confidence lift count 
Feature A Class B Fraction of 

all data to 
data that is 

in class B 

and has 
feature A 

Fraction of data 

that has feature 
A to data that is 

in class B and 

has feature A 

Fraction 

of 
confidence 

to data 

that is in 
class B 

Number 

of data 
that has 

feature 

A and in 
class B 

CO2%=Class 3 LOW 0.065 0.637 1.847 172 

LightIntensity =Class 6 LOW 0.072 0.525 1.522 190 

Cultivation Stage=exponantial LOW 0.078 0.504 1.460 207 

VVM =Class 3 LOW 0.076 0.476 1.381 202 

 

The effect of the variables is analyzed individually with all its classes, and the trends 

are investigated if there is any in the following sections. 
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4.1.2.1.  Cultivation Stage. From literature, the lipid content is reported to be increased with 

culture age. From association rule mining of the lipid content data, lift values shows that 

lipid content is lower in lag, and exponential phases, and higher in stationary phases (Figure 

4.9). In Table 2.4 the same trend can be seen in results gathered from [47] [57]-[60]. 

 

Figure 4.9. Lift and Count Values of Different Cultivation Stages for Lipid Content. 
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4.1.2.2.  Fe concentration. Figure 4.10 shows a correlation with increasing Fe concentration 

in the culture medium and lipid content.  

 

Figure 4.10. Lift and Count Values of Different Iron Concentrations for Lipid Content. 

4.1.2.3.  N concentration. N limitation is a common technique used to create stress condition 

for microalgae. As seen in Figure 4.11, N limitation results with increased lipid content, 

although low nitrogen concentration decreases the growth rate. First level of nitrogen 

concentration’s lift value is found to be around 2.5 from association rule mining algorithm. 

This result is in agreement with the experiments done by Li et al., Converti et al, and Pancha 

et al, which are investigated the effect of nitrogen concentration on lipid content, and also 

found that the nitrogen limitation triggers the lipid accumulation mechanism [93] [98] [100]. 
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Figure 4.11. Lift and Count Values of Different Nitrogen Concentrations for Lipid 

Content. 

4.1.2.4.  PO4 concentration. Phosphorus is another major nutrient required for microalgae 

growth, with nitrogen. High values of phosphorus yields high biomass concentration. 

Nevertheless, phosphorus limitation increases the lipid content of the microalgae. Figure 

4.12 shows that highest lipid content is achieved in the lowest second PO4 concentration 

level gathered from the dataset. 
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Figure 4.12. Lift and Count Values of Different Phosphorus Concentrations for Lipid 

Content. 

4.1.2.5.  Salinity Stress. Salinity stress is another method used to create stress and force 

microalgae to accumulate lipid. Although number of data for salinity stress was limited, the 

lift values of high salt levels for both marine and freshwater species is found as 1.5 and 2 

(Figure 4.13). Higher biomass production in high salinity for both freshwater and marine 

microalgae is also observed in the works done by Harwati et al, Arora et al., Dahmen et al., 

and Ahmed et al.[5] [115] [121] [122]. 
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Figure 4.13. Lift and Count Values of Different Salinity Levels for Lipid Content. 

4.1.2.6.  Species. From data gathered from the literature most common eight microalgae 

species are tested with association rule mining to investigate their lipid content. Some 

microalgae species are found to have high lipid content, like Chlorococcum and 

Nannochloropsis species, which have lift value around 2 for high lipid content, as seen in 

Table 4.8. On the other side, Tetraselmis, Isochrysis, and Chlamydomonas species have high 

lift values for low lipid content.  

4.1.2.7.  VVM*CO2 content. The combined variable CO2 rate shows that lift values are 

increased with increased level for high lipid content and decreases for low lipid 

content(Figure 4.14). 
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Table 4.8. Lift and Count Values of Selected Microalgae Species for Lipid Content. 

Microalgae Species Lipid Content (%) Support Confidence Lift Count 

Feature A Class B Fraction 

of all 

data to 

data that 

is in class 

B and has 

feature A 

Fraction of 

data that has 

feature A to 

data that is 

in class B 

and has 

feature A 

Fraction of 

confidence 

to data that 

is in class 

B 

Number 

of data 

that has 

feature 

A and in 

class B 

Chlamydomonas LOW 0.025 0.434 1.259 66 

 MEDIUM 0.020 0.349 1.027 53 

  HIGH 0.012 0.217 0.688 33 

Chlorella LOW 0.073 0.263 0.763 192 

 MEDIUM 0.108 0.392 1.154 286 

  HIGH 0.095 0.345 1.094 252 

Chlorococcum LOW 0.008 0.171 0.496 20 

 MEDIUM 0.009 0.205 0.604 24 

  HIGH 0.028 0.624 1.978 73 

Dunaliella LOW 0.017 0.387 1.121 46 

 MEDIUM 0.013 0.294 0.866 35 

  HIGH 0.014 0.319 1.012 38 

Isochrysis LOW 0.016 0.430 1.247 43 

 MEDIUM 0.015 0.410 1.207 41 

  HIGH 0.006 0.160 0.507 16 

Nannochloropsis LOW 0.017 0.178 0.515 46 

 MEDIUM 0.021 0.212 0.625 55 

  HIGH 0.060 0.610 1.934 158 

Scenedesmus LOW 0.077 0.394 1.142 204 

 MEDIUM 0.077 0.394 1.160 204 

  HIGH 0.042 0.212 0.673 110 

Tetraselmis LOW 0.017 0.880 2.551 44 

 MEDIUM 0.002 0.080 0.236 4 

  HIGH 0.000 0.000 0.000 0 

 

4.1.2.8.  Cell Disruption Method. As given in Figure 4.15, any of the cell disruption method 

employed before the lipid extraction method, generally favors (lift value higher than 1) high 

lipid content. The instance numbers are very low to make a comparative analysis within the 

methods used for cell disruption, instead comparison with non-disrupted case can be made. 

The high lift values for high lipid content class suggests that more extraction is possible with 

cell disruption. 
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Figure 4.14. Lift and Count Values of Different CO2 Flows for Lipid Content. 

4.1.2.9.  Solvents Used for Extraction. From lift values given in Figure 4.16, n-hexane has 

tendency to yield low lipid content. Experiments done by Ranjan et al., Menendez et al., and 

Servaes et al. also shows that n-hexane recovers low lipid that other solvents that are 

commonly used like methanol-chloroform mixture [128] [129] [130]. Majority of instances 

were using CHCl3-CH3OH mixture as solvent. Other mixtures are rarely available in the 

dataset for making statistically significant rules. 
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Figure 4.15. Lift and Count Values of Different Cell Disruption Methods for Lipid 

Content. 
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Figure 4.16. Lift and Count Values of Different Solvents for Lipid Content. 

4.2.  Decision Tree 

Two output variables, biomass production and lipid content, are modeled with 

decision tree algorithm for classification purposes. In both cases, the output is categorized 

into three classes as low, medium and high. Then the decision tree model is constructed to 

classify a given instance with its known input variables. The model is constructed with 

“fitctree” function of MATLAB®. Two model parameters, maxnumsplit and minleafsize, 

are tuned with using a train set to build the model and testing the performance of this model 

by using a test set. Performance is quantified by overall accuracy, accuracy of low class, 

accuracy of medium class, and accuracy of high class. 

4.2.1.  Decision Tree for Biomass Production 

Decision tree analysis for biomass production is performed for the subset of 

autotrophic growth, as the 86% of data belong to that subset, in which the resulting tree 

would give more simplistic heuristics for autotrophic growth then heuristics for all growth 

conditions.  
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Number of nodes and errors for both training and testing sets are noted. Number of 

nodes in the decision tree model is regarded as the complexity of the model. The output 

variable, biomass production (mgL-1day-1) is divided into three classes, as low, medium and 

high biomass production. The division is done by both to yield equal-sized classes to avoid 

class imbalance problem and also to have a meaningful division within the nature of the 

dataset. Classes, their ranges, and number of data points are summarized in Table 4.9. 

Table 4.9. Class Ranges of Biomass Production for Decision Tree Analysis. 

Class Range Number of Data 

Low [-14,56) 1566 

Medium [56,155) 1669 

High [155,990) 1754 

 

From numerous trials for estimating the biomass production, number of nodes and 

error values are plotted for comparison of the models. Figure 4.17 shows that when the 

number of nodes (complexity of the model) increases, error decreases. However, after a 

certain complexity, error stabilizes and even starts to increase in test case, which suggest 

overfitting. 

 

Figure 4.17. Error of Test and Train Sets for Biomass Production Prediction with Different 

Number of Decision Tree Nodes. 
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Although error values are minimized at around 150 nodes, for the sake of simplicity 

of the model, node number is selected to be around 50 nodes, in which difference between 

the error values for train and test set starts to increase. Tree with 250 nodes may have 

significant smaller errors, however, this implies overlearning, which is not an improvement 

of the tree performance. Also, a large tree can hinder the practical results that become too 

complex for practical use. The best possible models are given inFigure 4.18, in which the 

model parameters; maxnumsplit and minleafsize are tuned to give high accuracies in 

predicting high biomass production, low biomass production and overall dataset.  

 

Figure 4.18. Test Set Accuracy of Overall Set and Individual Classes with Different 

Parameter Values for Biomass Production. 

Accuracy of medium class was treated as not vitally important, as finding a rule for 

high biomass production and avoiding a way that results with low biomass production is 

more important. As can be seen from Figure 4.18, accuracy of low class was not changing 

too much between tested parameters. Maximizing accuracy of high class while keeping the 

overall accuracy in a reasonable value and keeping the model as simple as possible, 

maxnumsplit is selected as 30 and minleafsize is selected as 30 as well. 
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Confusion matrix of all test results from cross validation is given in Table 4.10. The 

rows of the confusion matrix symbolize the actual data number for each class, whereas 

columns represents number of data predicted to be in each class. 

Table 4.10. Confusion Matrix of Test Set for Biomass Production. 

  
Predicted 

  
Low Medium High 

Actual 

Low 719 177 43 

Medium 98 685 149 

High 23 137 789 

The optimized decision tree model is employed to the whole dataset and resulting 

tree is given in Figure 4.19. The first split is 17h photoperiod is the split value calculated by 

the decision tree algorithm. Although it is not an exact limit, it is valid for the instances in 

the dataset. The splits of the numerical variables should be thought as empirical 

approximations. Overall error is 22.2%. 

 

Figure 4.19. Decision Tree of Whole Dataset for Biomass Production. 
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In relative importance of input variables (Figure 4.20), obtained from decision tree 

algorithm, most important variables can be named as CO2%, vvm, photoperiod, and nitrogen 

conc., where the first two are main carbon sources for microalgae growth, third is main 

energy source, and fourth is the most common element found in microalgae cells. 

 

Figure 4.20. Predictor Importance Estimates of Whole Dataset for Biomass Production. 

Table 4.11. Confusion Matrix of Whole Dataset for Biomass Production. 

  
Predicted 

  
Low Medium High 

Actual 

Low 1126 225 73 

Medium 143 912 356 

High 20 124 1247 

 

Table 4.11 shows the confusion matrix of test and training set. It can be seen that 

above 75% of the low and high classes are correctly classified. Also, the majority of the 

misplaced instances are located in the neighboring classes. The low accuracy of the medium 

class is expected, and can be reasoned as due to the leakage of the instances to both sides. 
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The low accuracy of the medium class is expected, which can be rationalized by saying that 

the medium classes are prone to impurity because of the leakage of instance from both 

neighboring classes.  

4.2.2.  Decision Tree for Lipid Content 

Decision tree algorithm was also used for classification of lipid content (w/w). 

Categorization of the output, lipid content, was done by dividing the dataset into three equal-

instanced categories. Categories are summarized in Table 4.12: 

Table 4.12. Class Ranges of Lipid Content for Decision Tree Analysis. 

Class Range Number of Data 

Low [0,13) 857 

Medium [13,24.5) 858 

High [24.5,74.8] 857 

 

The error rates of train and test sets are plotted with respect to complexity of the 

model in Figure 4.21, where number of nodes corresponds to complexity. The optimum 

number of nodes of the model is decided to be around 30. Further increasing the complexity 

of the model slightly decreases the error values. 

 

Figure 4.21. Error of Test and Train Sets for Lipid Content Prediction with Different 

Number of Decision Tree Nodes. 
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Maxnumsplit and minleafsize parameters are tuned to find the optimum tree having 

node number around 30. Figure 4.22 shows the results of accuracies of each class together 

with the accuracy of the overall model for the test set. The optimum values for maxnumsplit 

and minleafsize are decided to be 30 and 65, which maximizes overall accuracy, without 

losing accuracies in low and high class predictions. 

 

Figure 4.22. Test Set Accuracy of Overall Set and Individual Classes with Different 

Parameter Values for Lipid Content. 

Confusion matrix of all test results is given in Table 4.13.  

Table 4.13. Confusion Matrix of Test Set for Lipid Content. 

  
Predicted 

  
Low Medium High 

Actual 

Low 194 26 61 

Medium 102 110 95 

High 33 45 191 

 

The optimized decision tree model is employed to the whole dataset. As seen in 

Figure 4.23, first and second splits are made with microalgae family, as lipid content of 
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microalgae strongly depends on their metabolism. Error of the optimized decision tree model 

using whole databasewas 37.8%. 

 

Figure 4.23. Decision Tree of Whole Dataset for Lipid Content. 

In relative importance of input variables (Figure 4.24), obtained from decision tree 

algorithm, most important variables can be named as microalgae family, iron concentration, 

and nitrogen concentration. Microalgae family is the most specific classification parameter 

given into decision tree algorithm. This importance of microalgae family on lipid content 

suggest that some microalgae are more likely to accumulate more/less lipid than others. 

Unlike biomass production, lipid content is highly related with microalgae type. The 

importance of iron concentration was also observed in association rule mining, where high 

concentrations of iron results with high lipid content. Nitrogen concentration was also found 

to be highly important, which can be explained by stress conditions created by nitrogen 

limitation that results with lipid accumulation in microalgae cells. 

The confusion matrix of test and training set shows that higher than 60% of the low 

and high classes are correctly classified. Also, the majority of the misplaced instances are 

located in the neighboring classes, as same as biomass production. 
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Figure 4.24. Predictor Importance Estimates of Whole Dataset for Lipid Content. 

Table 4.14. Confusion Matrix of Whole Dataset for Lipid Content. 

  
Predicted 

  
Low Medium High 

Actual 

Low 607 181 77 

Medium 204 466 183 

High 174 154 525 

 

4.3.  Artificial Neural Network 

4.3.1.  Artificial Neural Network for Biomass Production 

For artificial neural network algorithm, RSNNS package of R was used. The mlp 

function of this package requires one hidden activation function and one learning function 

for modeling. Forty-three different activation functions and eight different learning functions 

were tested for their performance quantified by their error, RMSE, and R2 values. The 

possible candidates for reasonable models were studied further by increasing the maximum 

iteration number. Number of nodes is the tuned parameter in the mlp function. Number of 
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neurons were changed between 2 and 50. The data was filtered to only include autotrophic 

cultivation type. Data was divided into 434 groups, in which each group represents data from 

one experiment, to prevent the accuracies which are higher than the true potential of the 

model.  

All combinations of hidden activation and learning functions are tested for their 

performance, and best four model combinations are selected for further analysis. The 

selected functions were as shown in Table 4.15. 

Table 4.15. Hidden Activation and Learning Function Combinations Used for ANN 

optimization for Biomass Production. 

models hidden activation functions learning function 

1 Act_Logistic 

SCG 
2 Act_LogisticTbl 

3 Act_Sinus 

4 Act_TD_Logistic 

 

Four most promising models were compared to each other with respect to error, 

RMSE, and R2 values. Figure 4.25-4.27 show the comparison with respect to different node 

numbers. 

 

Figure 4.25. Error Value of Different Function Combinations for Biomass Production. 
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Figure 4.26. RMSE Value of Different Function Combinations for Biomass Production. 

 

Figure 4.27. R2 Value of Different Function Combinations for Biomass Production. 

Model1 (where hidden activation function is Act_Logistic and learning function is 

SCG) was selected as the model which describes data best. The values of error, RMSE, and 

R2 stabilizes after 30 neuron, which is where the model is accepted and further analyzed. 

Maximum number of iterations were tuned to be 100, as the higher values result with 

overlearning. 

The observed values of the output -biomass production- was plotted with the 

predicted values of the model inFigure 4.28. Different colors show different experiments in 

the test set.  

Relative importances of variables were determined by garson function in R. Figure 

4.29 shows that volume, reactor type, photoperiod, and cultivation time is most important 
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four variables. Although in which stage of microalgae growth the microalgae cultivated is 

more explanatory, data for cultivation day was also become important, in the sense that 

dataset composes of instances that microalgae growth was monitored for days, in which 

although the growth stage does not change, the biomass production changes in small values. 

For capturing that trend, cultivation day becomes important variable that minimizes error. 

 

Figure 4.28. Test Results of MLP for Biomass Production with leave-one-out Method. 

 

Figure 4.29. Relative Importance of Variables for Biomass Production. 
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The predictive power of the model was varient from experiment to experiment. Some 

experiments were poorly predicted. The poorly predicted experiments were individually 

examined to investigate the inadequacy of the model to predict those experiments. It was 

mainly resulting from three major problems. The most common problem was including 

experiments which investigate the effect of an input variable which is not included in the 

model, because of high number of categories of that input (like microalgae type) and because 

most of the other experiments did not mentioned that variable (like initial cell density). Other 

problem was stemming from underestimating the effect of an input variable, mostly 

autotrophic carbon source. Last problem was stemming from differences in the optimum 

culture condition for different microalgae species. If one article is investigating extreme 

conditions for one microalgae species whereas this condition was not an extreme in the 

general dataset, prediction gets poorer. This last problem can also be associated with the 

general problem that prediction is not as strong as where the input space is highly populated. 

Table 4.16. shows individual RMSE values for articles used in the database.  

4.3.2.  Artificial Neural Network for Lipid Production 

All combinations of hidden activation and learning functions are tested for their 

performance, and best eighteen model combinations are selected for further analysis. The 

selected functions were as shown in Table 4.17. 

Table 4.16. Hidden Activation and Learning Function Combinations Used for ANN 

optimization for Lipid Content. 

models hidden activation functions learning function 

1-2-3 Act_Logistic 

SCG 

BackPropBatch 

Rprop 

4-5-6 Act_Elliott 

7-8-9 Act_TanH 

10-11-12 Act_LogisticTbl 

13-14-15 Act_Sinus 

16-17-18 Act_Exponential 
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Table 4.17. RMSE Values for Different Articles Used in the Dataset for Biomass 

Production. 

Article 

# of 

Data 

# of 

Experiment RMSE   Article # of Data 

# of 

Experiment RMSE 

Renaud et al. 18 3 4.3  Wu 15 1 69.9 

Zhu 24 2 176.4  Qv 35 7 33.2 

Illman 10 1 87.0  Teo 55 5 38.7 

Takagi 6 1 150.2  Wu 140 10 41.9 

Renaud 20 4 25.2  Feng 180 16 104.1 

Hu 20 2 41.8  Singh 45 4 34.7 

Li et al. 53 8 64.6  Abdelaziz 16 2 63.5 

Converti 13 1 68.7  Ren 24 4 95.6 

Chiu et al. 34 5 130.4  Muthuraj 21 4 66.5 

Mandal 83 8 21.4  Ma 99 9 63.5 

Rodolfi 30 1 89.7  Solovchenko 18 2 106.8 

Lee et al. 18 1 88.5  Pancha 6 1 14.6 

Arora 6 1 107.5  Roldan 16 4 195.0 

Chokshi 5 1 103.4  Montoya 157 5 98.0 

Lv 98 12 63.2  Xia 8 1 130.0 

Huerlimann 35 11 35.1  Karpagam 26 6 13.0 

Tang et al. 6 1 30.3  Vidyashankar 32 1 15.4 

Chen 21 3 80.5  Tripathi 23 4 52.1 

Prabakaran 18 1 8.7  Krzeminska 66 6 30.7 

Shanab 5 5 17.4  Ra 200 20 12.9 

Tang et al. 10 3 92.3  He 36 6 88.2 

Zheng 15 2 89.4  Demirel 4 1 13.2 

Xin 4 1 19.6  Ghosh 60 6 73.7 

Wang 13 1 55.4  Han 169 13 33.3 

Pal 36 4 232.7  Pancha 6 1 20.1 

Cheirslip 6 1 22.0  Huang 9 1 154.4 

Harwati 16 3 47.0  Slocomobe 117 1 14.9 

Ho 14 3 149.8  Bagchi 56 8 30.5 

Liu 18 3 102.5  Mohsenpour 462 36 45.1 

Mallick 10 1 20.4  Mandotra 13 3 39.5 

Griffiths 388 22 58.1  Qi 69 5 52.4 

Wu 19 3 50.9  Mondal 42 6 19.7 

Chellamboli 68 5 158.6  Dahmen 12 2 56.7 

Frumento 5 1 27.6  Tan 29 4 78.0 

Belotti 245 26 128.6  Arora 60 6 26.6 

Gorain 9 1 12.9  Li 131 8 38.8 

Song 20 1 128.7  Mondal 96 22 17.1 

Ratha 31 4 10.3  Ahmed 5 1 38.8 

Zhou 16 1 68.5  Luangpipat 24 1 65.9 

Welter 10 1 39.4  Liang 37 4 23.8 

Gao 32 4 45.8  Sivamakrishnan 45 9 39.0 

Chu  12 1 45.4  Mondal 28 5 36.5 

Nascimento 45 7 212.5           
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Best model was achieved with the parameters; maximum number of iterations of 50, 

hidden activation function was selected as Act_Logistic, learning function was selected as 

SCG, number of neurons was 10 with one layer. The resulting models error was 7.73, RMSE 

is 10.05, and R2 of 0.32. 

The observed values of the output –lipid content- is plotted with the predicted values 

of the model in Figure 4.30. Different colors show different folds in the test set.  

 

Figure 4.30. Test Results of MLP for Lipid Content. 

Figure 4.31 shows that there is a trend with the output variable and residuals, which 

tells incomplete modeling. Maybe from latent variables that we did not get into account. 
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Figure 4.31. Residual versus Output (Lipid Content) of ANN model. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

 

5.1.  Conclusions 

In this thesis, a comprehensive database was constructed from articles published in 

the literature from1994 to 2017. 113 articles were gathered to form the dataset with 5908 

instances. After cleaning and preprocessing the dataset, the number of articles and the 

number of instances used in the analyses were reduced to 106 and 5356, respectively. Three 

output variables, biomass production (mg/L d), lipid content (w/w), and lipid production 

were available in the dataset. Some articles reported these output variables in uncommon 

units. Unit conversion of outputs were made if possible, however some could not be 

converted into desired units without any further information for calibration. When the unit 

conversion was not possible, the instances were deleted in preprocessing step. Same 

procedure was also performed for input variables. Filling missing values, removing outliers, 

and reducing number of input variables are other steps involved in preprocessing.  

Two of the three output variables were independent from each other. However, lipid 

production was simply calculated as multiplication of other two output variables, biomass 

production and lipid content. To examine the effect of input variables to two independent 

output variables, only biomass production and lipid content were studied. Database was 

divided into two subsets, where one had instances with reported biomass productions, and 

other with reported lipid contents. Association rule mining, decision tree, and artificial neural 

network analyses were applied to both database. K-fold cross validation was used in all 

models constructed.  

In association rule mining analysis for biomass production and lipid content, 

algorithm needs minimum support and confidence values for compiling rules, and 0.01 and 

0.3 for these values were selected respectively. Although more than one antecedents can be 

employed into the algorithm, the most useful, practical, and general rules are gathered with 

one antecedent cases. Some of the general rules gathered from association rule mining for 

biomass production and lipid content are given in Table 5.1. and Table 5.2. 
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Table 5.1. General Rules extracted from ARM for Biomass Production. 

Cultivation Stage: Unfavorable production in lag phase 

  Probability of high production increases until Exponential phase 

  Maximum (1.5) at Exponential Phase 

  Probability of high production starts to decrease after Exponential Phase 

  Unfavorable production after Early Stationary Phase 

Cultivation Type: Favorable production in heterotrophic and mixotrophic cultivation types 

Light Wavelength: Favorable production in blue and red light wavelengths 

Light Intensity: Favorable production in high light intensities 

  Unfavorable production in low light intensities 

CO2 Content: Unfavorable production in low CO2 content 

  Maximum at moderate concentration levels 

  Unfavorable production in highest CO2 content 

Microalgae Species: 

Favorable production in Chlorella, Chlorococcum, and Nannochloropsis 

species 

  

Unfavorable production in Chlamydomonas, Dunaliella, Isochrysis, and 

Tetraselmis species 

N concentration: 

Gradual increase in the probability of high production from lowest to 

highest N concentration levels 

PO4 concentration: 

Gradual increase in the probability of high production until the highest 

PO4 concentration level 

Temperature: Unfavorable production in low and high temperature levels 

 

Table 5.2. General Rules extracted from ARM for Lipid Content. 

Cultivation Stage: 

Unfavorable lipid content in lag, early exponential, and exponential 

phases 

  
Favorable lipid content in late exponential, early stationary, 

stationary, and late stationary phases. 

Fe concentration: 

Gradual increase in the probability of high lipid content with 

increasing Fe concentration 

  Unfavorable lipid content in lowest three Fe concentration levels 

  Favorable lipid content in moderate Fe concentration levels 

N concentration: 

Gradually decrease in the probability of high lipid content from 

lowest to highest N concentration levels 

  Unfavorable lipid content in highest three N conc. levels 

Salinity Stress: Favorable lipid content in high salinity  

Microalgae Species: 

Favorable lipid content in Chlorella, Chlorococcum,and 

Nannochloropsis species 

  
Unfavorable lipid content in Chlamydomonas, Isochrysis, 

Scenedesmus and Tetraselmis species. 

VVM*CO2: 

Gradual increase in the probability of high lipid content with 

increasing CO2 flow rate 

  Favorable lipid content in highest three levels 

Cell Disruption Method: Almost all cell disruption methods favors high lipid recovery 

Solvent used in Extraction: n-Hexane is not a good candidate for high lipid recovery 
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Decision tree analysis was done for classification purposes. Both of the output 

variables were categorized into three categories, and named as low, medium and high. 

Decision tree analyses were done in MATLAB using “fitctree” function, where two 

parameters were tuned for finding the optimum model; “maxnumsplit” and “minleafsize”. 

For biomass production these values were 30, 30 and for lipid content they were 30, 65. 

Performance of the decision tree for classification was quantified by model accuracy. 

Accuracies of both models are given in Table 5.3. The decision tree model for biomass 

production was highly powerful in classifying high results, whereas model for lipid content 

was more powerful in classifying low results. Overall accuracy of lipid content was not high 

as biomass production. It was found that cultivation conditions are the most significant 

variables in biomass production model, whereas microalgae type is the most significant 

variable in lipid content model.  

Table 5.3.  Accuracies of the Decision Tree Models. 

  

Overall 

Accuracy 

Accuracy of 

High Class 

Accuracy of 

Medium Class 

Accuracy of 

Low Class 

Biomass Production 77.7% 89.6% 64.6% 79.1% 

Lipid Content 62.2% 61.5% 54.6% 70.2% 

 

Artificial neural network analyses were performed for predictive purposes. Analyses 

were done in R, using “mlp” function, where four parameters were tuned for finding the 

optimum model; maximum number of iterations, number of neurons, learning function, and 

activation function. For biomass production database these parameters were tuned as 500, 

20, SCG, Act_Logistic, and for lipid content database 50, 10, SCG, Act_Logistic. The 

analyses are done by implementing 10-fold cross validation, with ensuring instances from 

same experiments would be in the same folds. Performance of artificial neural network was 

quantified by mean absolute error, root mean square error, and r-squared values. The results 

were summarized in Table 5.4. The lipid content model was not reliable as residual analysis 

showed that there was a correlation between residuals and output.  
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Table 5.4. Results of the artificial neural network models with distribution of the outputs. 

  

Average of 

the output 

Standard 

deviation of the 

output 

Mean 

Absolute 

Error 

Root Mean 

Square 

Error R2 

Biomass Production 141.31 140.54 48.24 70.61 0.71 

Lipid Content 20.38 12.21 7.73 10.05 0.32 

 

5.2.  Recommendations 

Recommendations for more detailed and accurate knowledge extractions and for better 

models can be offered as follows: 

 More data will improve the models. In some regions of the input space, instances got 

very sparse, which lowers the prediction ability of the models. 

 In lipid content models, it is obvious that some variables affecting the output is not 

considered. More detailed database would result with better models. In addition, 

quantification of lipid content, and the concept of lipid differs from article to article. 

Construction of the database with clearly described experiments to include these 

variables will improve the model. 

 Input variables that are already known to affect the output variable, like initial cell 

density, can be added to the model if sufficient number of experiments presents the 

information about those variables.. Species of microalgae can also be considered in 

modeling, either by modeling separately modeling each specie or by using high 

performance computers to handle large number of categories present as microalgae 

species.  

 Other data mining algorithms can be applied to reach better prediction results, or 

more detailed information about the process. 
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Articles Reference 
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