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ABSTRACT 
 

 

APPLICATION OF ROBUST STATISTICS ON A CRUDE 

DISTILLATION UNIT 

 

 

Refineries are highly complex and integrated systems, separating and transforming crude 

oil into valuable products. One of the most important processes in refineries is the Crude 

Distillation Unit (CDU) process, in which raw crude oil is separated into various fractions 

to be further processed in other parts of the refinery. In the refinery, Heavy Diesel (HD) 

T95 value is very important quality indicator. In the current study, conventional and robust 

statistical methods were employed on the historical data of a CDU process in TUPRAS 

İzmit Refinery for monitoring and HD T95 prediction purposes. Process data consisted of 

online measurements of process variables and laboratory measurements of HD T95 values 

for a one-year period. In the first part of the study, trajectories of process variables were 

analyzed to identify relations between process variables and to distinguish normal from 

abnormal operating conditions in the distillation history. For this purpose, skipped-

Principal Components Analysis (PCA) and Minimum Covariance Determinant 

(MCD)+PCA methods were applied to process data and MCD+PCA method was found as 

more efficient method in detecting disturbances in the operation conditions. In the second 

part of the study, Monte Carlo (MC) simulations were applied by creating clean and 

contaminated datasets to evaluate predictive performances of LS and various robust 

regression methods, and to assess the metrics (RMSE, MAE) for evaluating the quality of 

predictions under contamination. LTS10%+LS and LTS20%+LS were found as best 

predictive models, and RMSE was found to be reliable in assessing models when 70%-

90% of the highest absolute prediction errors were taken into account. In the last section, 

LS and robust regression methods were applied and compared to select the most 

convenient prediction method for HD T95 values. The best predictive performance was 

obtained by LTS30% model with 97.5% CL. By applying this method to historical dataset, 

15% of training dataset was detected as outliers and when these outliers were excluded 

from dataset, the model can predict HD T95 value with a maximum 7 0C error.  
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ÖZET 
 

 

HAM PETROL DESTİLASYON ÜNİTESİNDE SAĞLAM 

İSTATİSTİKLERİN UYGULANMASI 
 

 

Rafineriler, ham petrolü ayrıştıran ve değerli ürünlere dönüştüren oldukça karmaşık ve entegre 

sistemlerdir. Rafinerilerdeki en önemli süreçlerden birisi ham petrolün rafinerinin diğer 

bölümlerinde işlenmek üzere ayrıldığı Ham Petrol Destilasyon Ünitesidir (CDU). Ağır Dizel 

(HD) T95 değeri rafineride önemli bir kalite göstergesidir. Bu çalışmada, süreç değişkenlerini 

izleme ve HD T95 tahmini için geleneksel ve dayanıklı istatistiksel yöntemler, TÜPRAS İzmit 

Rafinerisi CDU süreci geçmiş verileri üzerinde uygulanmıştır. Süreç verileri, bir yıllık döneme 

ait 23 süreç değişkeninin çevrimiçi ölçüm değerlerini ve HD T95’in laboratuvar ölçüm 

değerlerini içermektedir. Çalışmanın ilk bölümünde, süreç değişkenleri arasındaki ilişkileri 

tespit edebilmek ve destilasyon sürecindeki anormal çalışma koşullarını ayırt edebilmek için 

süreç değişkenleri arasındaki ilişkiler analiz edilmiştir. Bu amaçla, süreç verisine Atlanan-

Temel Bileşenler Analizi (PCA) ve En Küçük Varyans-Kovaryans Determinantı (MCD)+PCA 

yöntemleri uygulanmıştır. MCD+PCA yönteminin çalışma koşullarındaki bozuklukların 

tespitinde daha etkili olduğu tespit edilmiştir. Çalışmanın ikinci bölümünde, En Küçük Kareler 

yöntemi (LS) ve çeşitli dayanıklı regresyon yöntemlerinin tahmin edici performansları ve 

kontaminasyon altında tahminlerin kalitelerini belirlemek için RMSE ve MAE metriklerinin 

kullanım uygunluğunu değerlendirmek amacıyla temiz ve kontamine veriler oluşturularak 

Monte Carlo (MC) benzetimleri yapılmıştır. En iyi tahmin edici modeller En Küçük Kırpılmış 

Kareler (LTS) 10%+ En Küçük Kareler (LS) ve LTS20%+LS olarak bulunmuştur. Ayrıca, en 

yüksek mutlak tahmin hatalarının %70-90’ı dikkate alındığında, RMSE’nin daha güvenilir bir 

değerlendirme yöntemi olduğu belirlenmiştir. Son bölümde, HD T95 değerleri tahmininde en 

uygun tahmin yöntemini belirlemek için LS ve dayanıklı regresyon yöntemleri uygulanmış ve 

karşılaştırılmıştır. En iyi tahmin performansı, %97,5 güven düzeyinde %30 kırpma ile (LTS) 

yöntemiyle elde edilmiştir. Bu yöntemin tarihsel veri seti üzerine uygulanmasıyla, veri setinin 

%15’i aykırı gözlem olarak tespit edilmiş ve bu gözlemler veri setinden çıkarıldığı zaman, HD 

T95 değeri en çok 7 0C hata ile tahmin edilebilmektedir.  
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1. INTRODUCTION 
 

 

A crude oil is a naturally occurring, unrefined petroleum product, composed of 

hydrocarbon deposits.  It is trapped in different reservoirs of the world, and according to 

the region of reservoir, chemical and physical characteristics of crude oil changes [1]. 

Classification of crude oil is based on the differences in specific gravities and the 

proportions with which it is formed. Product demand is met by blending different crudes as 

required proportion [2]. 

 

Petroleum refineries are highly complex and integrated systems, separating and 

transforming crude oil into a wide variety of high value products with respect to boiling 

range and carbon distribution [3]. The main products are liquefied petroleum gas (LPG), 

gasoline, kerosene, diesel and fuel oil. In many refineries, crude oil is not only distilled but 

also converted and blended into different products. Refineries consist of different process 

units, such as Crude Distillation Unit (CDU), Continuous Catalytic Reactor Unit (CCR), 

Isomerization Unit, Diesel/Kerosene Hydroprocessing Unit (DHP), Hydrodesulfurizer 

Unit, LPG-Amine Treating Unit. 

 

The first process unit of the petroleum refinery is CDU, in which raw crude oil is 

separated, based on their boiling points, into various fractions, each of which is then 

processed further in other parts of the refinery. Boiling point is a reliable indicator of the 

molecular weight (or length of the carbon chain) of different products. In CDU, the top, or 

lightest fractions comprise fuel gas, LPG and gasoline. The middle fraction is made up of 

kerosene and diesel, while and the heaviest fraction mainly consists of fuel oil.  

 

Process control has a significant role for safe and efficient operation of CDU. Using 

improved process control systems, a refinery plant can be operated closer to optimum 

values [5]. To collect data for process control, refinery is instrumented with a large number 

of on-line sensors, measuring temperatures, pressures, and flow rates, as frequent as every 

second. The resulting data from these measurements are high-dimensional and possibly 

time-dependent, and stored in a database, which may be used as a reference dataset for 

further studies. Multivariate process monitoring methods are used for dimensional 
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reduction and analysis of the historical data. Using multivariate statistical methods, on-line 

monitoring of the process may be performed to identify process failures, and improve 

process quality [19].  

 

In refinery process units, process variables, such as temperature, pressure, flow rates, 

and quality variables, such as gravity, flash point, boiling points, viscosity, are monitored 

to evaluate the performance of the processes. Process variables directly related with 

product quality cannot usually be measured on-line by hardware sensors, since on-line 

measurements of quality indicators are expensive, slow and sometimes unreliable. In this 

case, quality variables are measured at a lower and variable frequency, compared to the 

sampling of process variables [7], usually determined by laboratory analyses, which are 

performed periodically such as 1-3 times in a day, or sometimes 1-3 times in a week. Thus, 

it is not a straightforward task to monitor the final product quality on-line, and control the 

quality variable [8].  

 

Overall structure of the refinery industry has changed in recent years because of a 

growing demand for lighter products; demand for heating (fuel) oil is decreasing, and 

demand for gasoline, jet fuel and diesel is increasing [3]. This demand has led to more 

complex refineries with increased conversion capacities. Increased conversion will 

unavoidably lead to increase in energy consumption, but will also yield a product with a 

higher quality. Refinery products must be synchronous with sales specifications based on 

product qualities, in order to be sold. When the market demand and process requirements 

in the refinery are taken into consideration, operational efficiency and economic benefit 

highly depend on accurate prediction of the product qualities. Since on-line measurement 

of quality variables, as discussed above, is not an easy task, on-line measured process 

variables are used for on-line prediction of the product quality variables.  Functional 

relation between the process and quality variables is estimated, and the resulting “soft-

sensor” model may be used to predict the level of a quality variable, -corresponding to a 

set of measured process variables, without the need for laboratory analysis. Using soft 

sensors, operators can assess the process performance on-line, and they can adjust the 

manipulated variables in the process in the correct direction to obtain the desired level of 

the quality variable. Furthermore, soft-sensors may also be used by automatic controllers.  
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 A significant difficulty in measuring quality variables lies in low reliability of the 

laboratory measurements compared to on-line process measurements. Although it is a 

common assumption, held by many engineers and researchers, that measurement errors are 

normally distributed, there may be “contaminated” data, particularly in the laboratory 

measurements. Here, contamination in data refers to existence of outliers, which come 

from an error distribution different than the error distribution of the “clean” data. 

Contaminated data may result from inhomogeneity in experimental equipment, personnel 

and conditions, and may be basically revealed as biased measurements, or heteroscedastic 

variance. Application of least-squares (LS) on linear regression (LR) models is a common 

technique for constructing soft-sensor models from historical data, and a convenient 

method when measurement errors are normally distributed. In the presence of outliers, 

however, regression model parameters determined by LS may be biased and/or have high 

variance, hence predictions from LS models may be unreliable and misdirect the operators 

and the control system. When data are high dimensional, it is not straightforward to 

identify outliers, so alternatives to LS regression is required. The main focus of the current 

thesis is to construct soft-sensor models from real industrial data sets, possibly 

contaminated with outliers, for process monitoring and quality prediction, using robust 

statistical techniques. 

 

The current study involves CDU in TUPRAS İzmit Refinery, in which fuel gas, 

LPG, naphtha, kerosene, diesel and fuel oil are fractionated according their boiling points. 

These products are sent to the storage, or to other process units as feedstock.  Diesel 

product is fractionated as light diesel (LD) and heavy diesel (HD). HD T95 value, which is 

the temperature at which 95% of diesel volume is evaporated, is an important variable for 

HD. T95 value is measured once in a day by laboratory analysis. Although quality tests are 

repeated for at least three times in the TUPRAS laboratory for products offered for sale, 

HD T95 measurements is performed once, since HD in CDU is an intermediate product to 

be processed later. Therefore, accurate on-line predictions of HD T95 is crucial for the 

operation to be adjusted for the sales specifications. 

 

In the current thesis, conventional and robust statistical tools are performed on the 

historical data of CDU process in TUPRAS İzmit Refinery for process monitoring and 

quality (HD T95) prediction.  Sections 2 to 4 consist of three descriptive sections: i) 
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description of conventional and robust linear statistical methods used to construct soft-

sensor models from historical data, ii) process description, in which refinery, distillation 

process and the CDU of TUPRAS İzmit Refinery are discussed, and iii) an overall 

description of the historical dataset. Section 5 is the Results and Discussion, which consists 

of three subsections: i) process monitoring using historical data, ii) Monte Carlo (MC) 

simulations to asses various models and metrics in the presence of contaminated data, and 

iii) predictive model construction using historical data. Main findings and suggestions for 

further studies are summarized in the Conclusion section. 
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2. LINEAR STATISTICAL METHODS FOR EXPLORATORY 

AND PREDICTIVE MODELING 
 

 

Modeling is a representation of a system, or a process, aimed to give some 

information on how something behaves in real life. There are mainly two types of 

modeling: mechanistic and statistical modeling. Mechanistic models are the models based 

upon fundamental principles. For the complex processes, constructing mechanistic models 

is hard and time-consuming to develop. Statistical models are data based models, using 

statistical relationship between the variables in the historical data set. They are easy to 

develop and more practical than mechanistic models. Statistical model building, based on 

historical plant data, is usually the most cost-effective way to obtain a process model. 

There are various statistical modeling and analysis methods. The most popular techniques 

are the Multiple Linear Regression (MLR), Principle Component Analysis (PCA), Partial 

Least Squares (PLS), Artificial Neural Networks (ANN), Neuro-Fuzzy Systems, Support 

Vector Machines. In this section, only linear statistical methods will be discussed. 

Furthermore, robust exploratory and predictive modeling techniques such as Least Median 

Squares (LMS), Least Trimmed Squares (LTS), Minimum Covariance Determinant 

(MCD), M-Estimator and S-Estimator will be discussed [11].  

 

2.1. Least Squares (LS) Analysis 

 

LR is a statistical method used to model the relation between dependent and 

independent variables. As reported by a study on Japanese chemical and refining 

industries, LR models yield sufficient prediction accuracy for most distillation and reaction 

processes [17]. LR may be classified as simple LR and multiple LR, and LR model 

parameters are conventionally determined using the LS method. LS is one of the oldest and 

easiest techniques of the modern statistics. LS analysis is used to estimate regression 

parameters by minimizing the squared error between the observed data and fitted values. 

LS is developed in the late 1700's and the early 1800's by a number of mathematicians; 

Adrien Marie Legendre, Karl Friedrich Gauss and (possibly) Robert Adrain working in 

France, Germany and America, respectively [12]. LS was firstly published by the French 

mathematician Adrien Marie in 1805 in his work “Nouvelles Methodes pour la 
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Determination des Orbites des Cometes” [13]. The technique is described as an algebraic 

procedure for fitting linear equations to data. In 1809, the German mathematician Karl 

Friedrich Gauss published his method of calculating the orbits of celestial bodies, in which 

he claimed that he has previously discovered LS and used it as early as 1795 in estimating 

the orbit of an asteroid [14]. In 1886, Galton used LS in his work on the heritability of size, 

laying down the foundations of correlation and regression analysis [14]. Pearson and 

Fisher, who did so much in the early development of statistics, used and developed it in 

different contexts (factor analysis for Pearson, and experimental design for Fisher) [14]. 

 

LS analysis is widely used to estimate the parameters of a function fit to a dataset, 

and to characterize the statistical properties of estimates [14]. By using LS, the best fitting 

line can be found by minimizing the sum of the squares of the vertical distance from each 

data point on the line [15]. The simplest version of the LS is Ordinary LS (OLS) and more 

sophisticated version is Weighted LS (WLS).  

 

OLS is a method for estimating the unknown parameters in a LR model by 

minimizing the sum of the squares of the error, which is the vertical distance between data 

points and the regression line. OLS method is used to minimize error ! by determining 

estimators !! and !!: 

 

 ! = (!! − !!)!
!

= [!! − !! + !!!! ]!
!

 (2.1) 

 

Here {!!, !!} is a set of N pairs of observations where Y represents dependent (response) 

variables, X represent independent (predictor) variables. OLS estimators are linear, 

unbiased and have small variances. However, when error does not have a constant 

variance, WLS method, also called as Generalized LS, provides better estimate [14]. 

 

In WLS, the idea is to assign each observation a weight, !!!  that reflects the 

uncertainty of the measurement. Weight !!  is a function of the variance of the !!! 

observation. In many cases, the variance !!! depends on !!. Observations where !!! is large 

are less accurate so they should play a smaller role in the estimation of !! [16]. As in OLS 

method, WLS method also aims to minimize error !! to find estimators. 
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 !! = !!(!! − !!)!
!

= !![!! − !! + !!!! ]!
!

 (2.2) 

 

2.1.1. Simple Linear Regression 

 

The simple LR model is used to find the straight line that best fits the data. It 

illustrates the relation between the dependent variable y and the independent variable x 

based on the regression equation. In simple LR, the error distribution is assumed to be 

normal. A simple LR model can be written as: 

 

 ! = !!! + !!! + !  (2.3) 

 

where X and !, usually taken to be measurement error, represent the independent variable 

and the random error, respectively, and ! has mean 0 and standard deviation !.  

 

In fitting a line to a data set using simple LR, it is aimed to find coefficients !! and 

!! minimizing the square of the errors between observed and the fitted values of Y. The 

fitted value of Y for a given X is determined as follows: 

 

 ! = !!!+ !!!! (2.4) 

 

Here, !  is predicted response variable, !!! and !!! are the estimates of the regression 

parameters. 

 

2.1.2. Multiple Linear Regression (MLR) 

 

MLR is used to fit a model with two or more independent variables. In MLR 

analysis, the method of LS may be used to estimate the regression coefficients. The 

regression coefficients represent the partial contribution of each predictor variable to the 

response variable. Unlike the simple LR, contribution of the order of independent variables 

and interactions between independent variables should be taken into consideration. In 

fitting MLR, the aim is to find the best estimates of the coefficients via minimizing the 
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sum of squares of the errors between observed and the fitted responses. The general 

equation of MLR model for k variables is [15]: 

 

 !! = !! + !!!!! + !!!!! +!∙!∙!∙+!!!!" + !!!!,!!!! = 1,2,…… ,! (2.5) 

  

The MLR model can also be written in matrix notation as: 

 

 ! = !" + !! (2.6) 

 

where Y is a !×1 dimensional random vector, X is an !× ! + 1  matrix, consisting of 

predictors, ! is a (! + 1)×1 vector of unknown parameters, and ! is an !×1 vector of 

random errors. To be able to determine the LS estimates of the model coefficients (!), 

Equation 2.7 should be solved: 

 

 !!!! = !!!! (2.7) 

 

By multiplying both sides with (!!!)!!, we obtain [15]: 

 

 ! = !! (!!!)!!!!! (2.8) 

 

Mahalanobis distance (MD) is used to determine the scaled distance of a sample 

point to the centroid of all the data points in the predictor space. MD depends on the 

variance of each variable and covariance between process variables. MD of each 

measurement !! is calculated by following formula. 

 

 !" !! = (!! − !!)!Σ!!!(!! − !!) (2.9) 

 

where, !! is the arithmetic mean and Σ! is classical covariance matrix [18]. Data points 

with high MD statistics are likely to affect the LS model more. 
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Data points making substantial differences in regression models are called influential 

points. Influential points are outliers and leverage points. Outliers are the observations that 

are far from the pattern described by other data points. In industry, these data points may 

be produced as a result of operation conditions, measurement errors, etc.  LS method is 

highly sensitive to outliers, and even one outlier may change the fitted plane dramatically. 

It is difficult to detect outliers with the exploratory data analysis techniques. Leverage 

points are observations deviating from the majority in x-space, i.e. high MD. Leverage 

points are categorized according to their place on regression line. “Good” leverage points 

follow the pattern of the majority data points, while “bad” leverage points do not follow 

this pattern [18]. For the low dimensional datasets, outliers and leverage points can be 

detected by visual inspection. However, this is not a straightforward task for high 

dimensional datasets. As discussed below, robust estimators are needed for the reliable 

analysis of the regression in the presence of outliers. 

 

2.2. Principle Component Analysis (PCA) 
 

Statistical process control (SPC) is a tool for detecting changes in industrial 

processes, achieving and maintaining product quality [7]. The most widely used SPC 

techniques are univariate analysis and multivariate analysis (MVA) methods. Univariate 

analysis is the simplest form of statistical analysis; individual quality measurements are 

collected, these measurements are visualized and analyzed sequentially [7]. MVA is the 

analysis of more than one variable, and comprised of exploratory data analysis, 

classification, regression analysis and predictive modeling methods. In MVA, all data are 

analyzed simultaneously, and directionality of the common variations in the variables is 

used to extract information from the process.  

 

PCA is probably the oldest and best-known technique in multivariate analysis. This 

technique was first introduced by Karl Pearson 1901, and later developed by Harold 

Hotelling in 1930s. PCA is generally accepted as revolution in the use of multivariate 

methods [20]. Nowadays, it is generally used in statistical data analysis, communication 

theory, pattern recognition, and image processing. In chemical processes, measurement of 

process variables, such as temperature, flow, pressure by sensors yield high-dimensional 

and time dependent data, which may be challenging for SPC. PCA is a mathematical 
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transformation method, used to identify the patterns, and reduce the dimensions in plant 

measurements data [21].  

 

PCA is utilized to extract the components with the largest variances, to explain and 

simplify the description of the dataset, to analyze the structure of observations and 

variables, to detect outlier observations and for warning for potential malfunctions [21]. 

PCA is used to compute new variables called principal components (PCs). The 

uncorrelated PCs are weighted sum of the original process variables. The first PC is the 

linear combination of the process variables having largest variance to describe greatest 

amount of variability of dataset. The second PC is the linear combination of the process 

variables having next largest variance, and subject to the constraint of being orthogonal to 

the first PC [7]. This procedure is repeated until an adequate number of PCs is obtained in 

the same way.  

 

In PCA application, the mean-centered data matrix X is of size (!!!!m), in which ! is 

the number of samples, and !  is number of process variables. Using eigenvalue 

decomposition on !!!, ! eigenvectors (P), which correspond to the largest ! eigenvalues, 

are selected. Hence, data matrix ! may be decomposed into the sum of the outer product of 

! pairs of vectors: 

 

 ! = !!! + ! (2.10) 

 

where, ! (!!!!!), ! (!!!!!) and ! (!!!!!) are PC scores, loadings and residuals matrix, 

respectively, while ! is the number of PCs [22]. A data vector of original dimensions 

!! !(1!!!!) may be reconstructed in the PC subspace, using the following transformation 

formula: 

 

 !! = !!!!! = !!!!!!! (2.11) 

 

where, !! is a vector of scores for sample !! [22]. Illustration of the PCA method is given 

in Figure 2.1. 

 



11 
!

 
Figure 2.1. Data projection on two PCs [22].  

 

There are mainly two statistics used to evaluate PCA models: Hotteling’s Q and T2 

statistics. Q statistics shows how well a single observation is fitted by PC plane. It is 

calculated by taking the squared difference between the original data and its projection on 

PC plane. T2 statistic is used to measure the variation within the PC subspace. T2 statistic is 

calculated by the summation of the squares of the adjusted (unit variance) scores on each 

of the PCs in the model [22]. Observations falling outside the confidence limits of Q and 

T2 statistics are deemed to be outliers, and generally removed from the dataset. 

 

 !! = !!!!! (2.12) 

 

Here, !! = !! − !!!. 
 

 
!! = (!!!!

)!
!

!!!
 (2.13) 

 

 PCA is known to be sensitive to outliers. It should be noted that outlier detection 

potential of PCA is deteriorated by the very same outliers in the dataset, i.e. outliers in the 

reference set perturb the estimation of the true model hence, outliers cannot be detected by 

the constructed model. Robust PCA procedures have been developed to overcome this 

problem [23]. 
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2.3. Multivariate Robust Statistics and Robust Regression Methods 

 

Robust regression is a statistical method designed to increase stability of estimates 

and reliability of models in the case that parametric model assumptions are not valid. 

Robust regression methods have been developed to improve the performance of LS, in the 

presence of outliers [24]. Robust regression estimators are not easily affected by outliers, 

hence provide stable fits even in the presence of outliers. In order to achieve this stability, 

robust regression, basically, limits the influence of outliers (Figure 2.2). 

 

 
Figure 2.2. (a) Linear regression problem with vertical outliers and leverage points, and (b) 

result of LS regression and robust regression [25]. 

 

Three important properties of robust estimators, breakdown point, influence function 

and efficiency, are discussed below. 

 

Breakdown point (BDP): The breakdown point is defined as the smallest fraction of 

anomalous data that can render estimator useless [26]. The BDP deals with the problem of 

large contamination. It characterizes the smallest amount of contamination that can cause 

an estimator to yield arbitrary values. Robust estimators have a positive BDP, meaning that 

a certain part of the data could be “outliers”, and the estimator gives still useful results 

[25]. For sample ! = !! ,!! , BDP !∗ !,! !of the estimator T at X is calculated as [27]: 

 

 !∗ !,! = !"# ! ! ;! !;!,! !"!!"#!"!$%  (2.14) 
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Here, m and n refer to the number of contaminated and total observations, respectively. 

High-BDP regression estimators have been developed to provide reliable estimates in the 

presence of a large percentage of outlying observations. These estimators can achieve up to 

a 50% BDP and are also known as resistant estimators. They are useful for outlier 

detection and initial estimators [26]. Different regression methods have different BDPs, 

e.g. LS has, a BDP of 0, while BDP is 50% for Least Median of Squares (LMS). 

 

Influence function: The influence function is used to examine the response of an 

estimator upon an infinitesimal contamination [25]. Robust estimators ideally have a 

bounded influence function, which means that there is a small effect on the estimator. 

 

Statistical efficiency: The efficiency is defined as the ratio of the variances of OLS 

estimator and the robust estimator in the absence of outliers, usually for normal distributed 

data. It can be shown that the efficiency is in the interval 0-1, where 1 refers to highly 

efficient estimator [25]. 

 

There are various types of robust regression estimators: Theil–Sen estimator, Least 

Median of Squares Estimator (LMS), Least Trimmed Squares Estimator (LTS), Least 

Trimmed Absolute Value Estimator (LTA), M-Estimators, MM-Estimators, S-Estimators 

etc. [28]. Most of these estimators work on a similar principle; a smaller weight is given to 

observations that would otherwise influence the regression line. 

 

2.3.1. Least Median Squares (LMS) 

 

LMS originate to Tukey who proposed an estimator based on the shortest half of the 

sample [29]. Then, Hampel modified and generalized it to regression and stated that the 

resulting estimator has a 50% BDP [30]. However, LMS was firstly proposed, in its full 

form, by Rousseeuw (1984). Rousseeuw provided the theory and algorithm for estimators 

having 50% BDP. LMS was further developed by Rousseeuw and Leroy (1987) [31].  

While the mean of the squared residuals is minimized in LS regression, mean of the 

squared residuals is replaced with the median of the squared residuals in LMS regression. 

Hence, the median-based LMS parameter estimators are resistant to outliers. 
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For the dataset including n observations and p parameters, !! ,!! = (!!!,… , !!",!!) 
is (p+1) dimensional linear space. The estimates ! of LMS are found by solving the 

optimization equation: 

 

 min!"# (!! − !!"!!)! = min!"#(!!!) (2.15) 

 

where !!!  denotes the ith residual [32]. If the number of parameters is higher than 1 (p>1), 

and the observations are in general position, BDP of LMS method is calculated with the 

following formula [27]: 

 

 ( ! 2 − ! + 2)/! (2.16) 

 

Here [.] represents the integer part of the quantity inside the squared brackets. 

Although LMS has high BDP, its asymptotic efficiency relative to the OLS estimator is 0. 

Also, it does not have a well-defined influence function because of its low convergence 

rate !!/!  [32]. Hence, especially for high-dimensional datasets and high number of 

observations, computation time is too long. Due to these disadvantages of LMS method, 

Least Trimmed Squares (LTS) method may be used. 

 

2.3.2. Least Trimmed Squares (LTS) 

 

LTS method was introduced by Rousseeuw in 1983 [33]. The objective function of 

LTS method is defined as: 

 

 
!!"#,!,! = argmin

!
! !! (!)

!

!!!
 (2.17) 

 

where !! ! = !! − !!!! ! [34]. For a dataset with n observations, trimming parameter h is 

selected, such that ( (! + ! + 1)/2 ≤ ℎ ≤ !). Generally, trimming parameter h can be 

based on the trimming proportion!!: 
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 ℎ = !(1− !) + 1. (2.18)!

 

In LTS method, residuals are written in ascending order: !(!) ≤ ! ! ≤ ⋯ ≤ !(!) , 

and the LTS estimator is determined via minimizing the sum (or mean) of the smallest h 

squared residuals. For small datasets, exact solution to the LTS estimator is easily 

determined, but this is not a simple task for large datasets. Rousseeuw and Leroy 

determine LTS estimators, using exact fits on subsets of size k, representing the number of 

total parameters in the model [33]: When the number of the observations is small enough, 

the following procedure can be applied for computation of LTS [34]. 

 

• Firstly, the trimming parameter, h is selected. 

• All possible subsets with k observations are generated, and regression parameters are 

computed via solving each exact fit equation. 

• By using all observations, residuals are calculated, and LTS criterion is applied on 

the ranked square residuals. 

• The LTS objective function to estimate of LTS (!!"#,!,!) is applied. 

 

Taking h = (! + ! + 1)/2 , LTS regression has ~50% BDP. When h = n, LTS 

regression is equivalent to the standard LS regression. LTS estimator converges at a rate 

of!!!/!, faster than that of LMS estimator.  LTS is usually preferred over LMS, since LTS 

converges faster and has smoother objective function [34]. However, LTS suffers from low 

efficiency and computation complexity. Due to its low efficiency, LTS may be suggested 

as starting point for more efficient procedures or estimators.  

 

Due to low efficiency of LTS method, some additional procedures are proposed to 

increase efficiency. The following method suggested by Rousseeuw and Hubert is called 

“reweighted LTS” in the current study [34]: 

 

• Firstly, trimming parameter h is selected to obtain estimate !!"#,!,! and the variance 

is derived from LTS.  
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!!! = !
1− !!

1− ! − 2!!!(!!)
!!"#,!,!!  (2.19) 

where ! = (! − ℎ)/!  and !! = !!!(1− !
!). 

 

• After constructing estimated variance; t-statistics for all n residuals are constructed: 

 

 !!,! = (!! − !!!!!!"#)/!!  (2.20) 

 

• To find an updated scale estimate, use the following weights: 

 

 !! = ! !!,! ≤ !! !!!!!!!!!!!!!!!! = 1,… ,! (2.21) 

 

where I[.] is the indicator function, and !! is usually taken to be equal to 2.5. In the current 

study, !! is taken to be equal to !!!(1− !.!"#
! ). 

 

 
!!! = !

1
!!

!
!!! − ! !!

!

!!!
(!! − !!!!!!"#)! (2.22) 

 

• then, new t-statistics are: 

 

 !!,! = (!! − !!!!!!"#)/!!. (2.23) 

 

• By selecting observations according to !!,! ≤ !! criteria, a clean sample is obtained 

and OLS method is applied this data [34]. 

 

2.3.3. M and GM-Estimators 

 

Being one of the first robust regression methods, M-Estimator was proposed by 

Huber in 1964 [18]. “M“ in M-Estimator indicates maximum likehood estimation. M-

Estimator is an alternative robust estimator to the LS. It can also be considered as a WLS 
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method, in which weights are determined by the residuals [35]. In this method, e2 in the LS 

objective function is replaced with a symmetric, positive-definite and minimum at zero 

weight function of residuals, ! ! .  The aim of the M-estimation is to minimize the sum of 

the residual function: 

 

 
!"# !(!!)

!

!!!
. (2.24) 

 

In Generalized M Estimators (GM-Estimators), model residuals are scaled with 

respect to their leverage values, named Schweppe weighting: 

 

 ! = !/(!×!× 1− ℎ)  (2.25) 

 

where h  is the vector of leverage values, and s is an estimate of the standard deviation of 

the error term [36]. 

 

M-estimators can also be derived in the form of WLS. Weighting function ρ can be 

taken in various forms. Table 2.1 shows weighting functions commonly used in MATLAB. 

 

Table 2.1.  Weighting functions in MATLAB [36].  

Weight Function Equation Default k 

‘andrews’ ! = (!"#(!) < !)×sin!(!)/! 1.339 

‘bisquare’ ! = (!"#(!) < 1)×(1− !!)! 4.685 

‘cauchy’ ! = 1/(1+ !!) 2.385 

‘huber’ ! = 1/max!(1,!"# ! ) 1.345 

‘logistic’ ! = tanh ! /! 1.205 

‘welsh’ ! = exp!(− !! ) 2.985 
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2.3.4. S-Estimator 

 

S-Estimators of regression was proposed by Rousseeuw and Yohai (1984) [37]. S 

estimator is the generalization of LMS and finds a line minimizing a robust estimate of the 

scale of the residuals [38]. It is called as “S “, because it is based on estimators of scale. 

The method is highly resistant to outliers, yielding a high BDP, and S-estimator has a 

convergence rate of n-1/2. S-estimators show same asymptotic properties as M-estimators 

[38]. The S-regression parameter estimates minimize the following objective function: 

 

 !"#!!(!) (2.26) 

 

where !(!)  is certain type of robust M-estimate of the scale of the residuals 

!! ! ,… , !! ! , and satisfying the following constraint:  

 

 
! = !1! !(!!! )

!

!!!
 (2.27) 

 

where, K is taken to be !! ! , and ! is the standard normal distribution [37]. For a specific 

BDP, K value is determined, Equations 2.26 and 2.27are solved to yield S-regression 

parameter estimates.  

 

2.3.5. Minimum Covariance Determinant (MCD) 

 

It is usually difficult to determine location and scatter of high-dimensional datasets 

using robust estimators. In 1984, Rousseeuw has introduced the MCD estimator, which is a 

highly robust estimator of multivariate location and scatter [18].  MCD estimator is used to 

determine h observations out of n observations, with the classical covariance matrix having 

the smallest determinant. The MCD estimate of location (!) is the mean of the determined 

h observations, and the MCD estimate of the scatter (!) is the covariance matrix of h 

observations [39]. 
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An iterative procedure is used to compute MCD estimator. Taking a dataset 

!! = !!,… , !!  with p variables, and is defining !! ⊂ 1,… ,!  with !! = ℎ  The 

location and scatter estimates are computed as follows [39]. 

 

 !! =
1
ℎ !!
!∈!!

 (2.28) 

 

 !! =
1
ℎ (!! − !!!)(!! − !!!)!
!∈!!

 (2.29) 

 

If det(!!) ≠ 0, then the the relative distances are defined: 

 

 !! ! = (!! − !!!)!!!!!(!! − !!!)!!!!  for ! = 1,… ,!. (2.30) 

 

Next, !!is taken, with the condition that !! ! ; !! ∈ !! = ! (!!)!:!,… , (!!)!:! , 

where (!!)!:! ≤ !! !:! ≤ ⋯ ≤ (!!)!:! are the ordered distances. Using the data points 

with the indices in !!, !! and !! are computed. Then, the following condition is checked, 

 

 det!(!!) ≤ det!(!!) (2.31) 

 

The equality is obtained if and only if !! = !! and !! = !!. Repeating an iterative 

process, the algorithm is stopped if det !! = 0, or det !! = det !! . 

 

As mentioned in Section 2.2, PCA is probably the oldest and best-known technique 

of multivariate analysis. However, PCA method is sensitive to outliers so it may produce 

unreliable results if dataset contains outlier observations [23]. Hence, to eliminate the 

effect of outliers in PCA application, robustification methods are used. MCD is a well-

known PCA robustification method in the literature.  

!  
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3. PROCESS DESCRIPTION 
 

 

In this section, refinery sector (Section 3.1), distillation theory (Section 3.2), CDU in 

TUPRAS İzmit Refinery (Section 3.3) and laboratory test method of HD T95 (Section 3.4) 

are briefly discussed.  

 

3.1. Refinery Sector 

 

Petroleum is a naturally occurring complex mixture of organic liquids, consisting of 

crude oil and natural gas. Petroleum is composed of different organic hydrocarbon 

molecules, such as paraffins, naphthenes, aromatics, asphaltenes, and also contains 

nitrogen, oxygen, sulfur and some metals like iron, nickel and copper.  It is extracted from 

different reservoirs in the world, and most of the reservoirs are located in the Middle East. 

Refineries are highly complex, capital-intensive and integrated industrial plants, in which 

crude oil is separated and transformed into more valuable products such as LPG, gasoline, 

kerosene, jet fuel, diesel, asphalt, fuel oil and coke.  

 

There is large number of refineries all over the world, and each refinery has a unique 

configuration and operating characteristic. However, all refineries have common chemical 

processes, such as desalting, distillation, hydrotreating, reforming, cracking, alkylation, 

isomerization and polymerization in different process units: CDU, CCR, DHP, 

Isomerization Unit, LPG-Amine Treating Unit. Figure 3.1, shows a schematic 

representation of process units in a refinery. 

 

CDU, also called as atmospheric distillation unit, is one of the most important units 

in the refinery, since it affects all the downstream refining process units. In this unit, crude 

oil is separated into fractions with respect to their boiling points under atmospheric 

pressure. Products are LPG, naphta, kerosene, diesel and atmospheric residue, which are 

sent to the downstream units for further treatment. Atmospheric residue is sent to the 

Vacuum Distillation Unit (VDU), from which light vacuum gas oil (LVGO), heavy 

vacuum gas oil (HVGO), and asphalt is obtained. Hydrocracking Unit is operated at high 

pressure, and hydrogen is used for the catalytic cracking process, by which HVGO from 
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VDU is converted to LPG, HSRN, kerosene and diesel products. In this unit, sulfur and 

aromatic contents in hydrocracked streams are also eliminated. In CCR, heavy naphtha 

streams are processed. With catalytic reactions, inverting hydrocarbons to aromatics 

increases the octane number of naphtha streams. The product, called reformate, goes to the 

gasoline blending.  In addition, reformers produce hydrogen as side product and it is sent 

to the refinery hydrogen network to be used in refinery processes. In Isomerization Unit, 

low-octane C5- C6 paraffin molecules are rearranged to form high-octane C5-C6 iso-

paraffins, in order to produce high-quality Light Straight-Run Naphtha (LSRN) gasoline 

blend stock [40]. The product of this unit is called isomerate, which does not include any 

sulfur or benzene. In DHP, LD, HD from crude distillation and LVGO from vacuum 

distillation are used as feedstock. In this unit, components such as sulfur, and nitrogen are 

removed via hydrotreating, i.e. catalytic reactions under hydrogen environment, and diesel 

product is obtained.  

 

!
Figure 3.1. General process schema of refinery. 
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In refineries, beside process units, there are utilities such as hydrogen production, 

wastewater treatment, electricity generation, steam generation and fuel gas recovery 

systems [40]. By this way, refineries reduce dependency to external sources. 

 

The primary economic objective of the refineries is to maximize the value added to 

the final products to make the properties of final products, such as octane level, sulfur 

content, and T95 value, comply with those in the sales spectrum [40]. Objective of 

refineries may change for different regions of the world. For example, most of the 

refineries aim to maximize gasoline production in North America, while refineries in the 

other regions of the world mostly aim to maximize diesel production, due to growing 

demand in the world [40]. 

 

3.2. Distillation Theory 

 

Distillation is an essential process for refineries and almost all process units include 

distillation section. Distillation is a method of separation for purifying liquid mixtures by 

maintaining vapor and liquid phases at essentially the same temperature and pressure as 

coexisting zones. As the system moves toward equilibrium, each species in the mixture 

attains a different concentration value in each zone [42]. There are various types of 

distillation columns equipped with trays, or packing to provide interphase for vapor and 

liquid phases. Depending on the process, distillation may be batch or continuous, and 

refinery processes are generally continuous processes. 

 

Distillation is usually grouped into two: simple distillation and fractional distillation. 

In simple distillation, two liquids having different boiling points are separated. For this 

purpose, mixture is heated to carry the volatile components up at the entrance of the 

column. Mixture is separated into two products with the help of the condenser and reboiler, 

Fractional distillation is used, when boiling points of the mixture components are very 

close to each other.  

 

In Figure 3.2, a typical two-product distillation column is shown. The feed entering 

the column is separated into fractions. Due to density difference, after the feed enters the 

column, it is flashed and liquid phase runs down, while vapor phase flows up contacting to 
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each tray [42]. With respect to the feed location, the upper part of the column is called 

“rectifying” section, while the bottom part is named “stripping” section. In the rectifying 

section, vapor at the top of the column is condensed in the condenser, and some of this 

condensed liquid is given back to the column as reflux to provide overflow, while the rest 

is withdrawn as the distillate. In the stripping section, some part of the liquid running down 

to the bottom is sent to the reboiler and vaporized to provide the boil-up, which is sent 

back up the column. The remaining part is withdrawn from the bottom of the column as the 

bottom product [42]. 

 

3.3. Crude Distillation Process in TUPRAS  

 

The CDU is the first process unit of the petroleum refinery, in which raw crude oil is 

separated into various fractions of different boiling ranges, and each of these fractions is 

then processed in other parts of the refinery. The CDU is composed of atmospheric 

distillation column, naphtha splitter column, debutanizer column and vacuum column.  

 

In the CDU of TUPRAS İzmit Refinery, crude oil coming from the storage tanks is 

sent to preheat exchangers, in which crude oil is passed against hot process streams. 

Preheated crude is sent to the desalter, in which salt content in the crude oil is removed to 

prevent corrosion in piping systems and equipment (top row in Figure 3.3). Following the 

desalter, crude oil is passed through a second group of preheat exchangers, and then sent to 

furnaces, in which they are heated to the required distillation temperature. The charge 

leaving the furnace is fed to the atmospheric distillation column. 

 

In the atmospheric distillation column, crude oil is separated into Naphtha, Kerosene, 

LD, HD and Atmospheric residue. Steam is given to the column from the bottom to 

enhance separation by decreasing vapor pressure in the column [44]. Top stream of the 

column is sent to naphta splitter column, in which Heavy Straight Run Naphta (HSRN) is 

drawn from the bottom of the column to be sent to the Naphta Hydrotreater and Reformer 

Units, and the top product is sent to the Debutanizer column to be separated as LPG and 

LSRN. LSRN is sent to Isomerization Unit and LPG goes to LPG treatment. Atmospheric 

Residue leaving from the bottom of the atmospheric distillation column is sent to the VDU, 

in which atmospheric residue is separated to LVGO, HVGO and Fuel Oil under vacuum. 



24 
!

Side cuts Kerosene, LD and HD leaving from the atmospheric distillation column are sent 

to the side strippers. Here, by injecting stripping steam, the flash points of the products are 

fixed. Kerosene, LD and HD leaving the strippers are sent to the storage, or to other 

process units as feedstock. LD and HD drawn from the column are sent to DHP, which has 

hydrotreating and hydrocracking capabilities. Also, LVGO leaving the vacuum column is 

sent to DHP. For this unit, planning department determined a single target value for the 

mixed feed T95 value, limited by catalyst operation requirements. So, independent of the 

individual boiling points of LD, HD and LVGO, the unit is deemed to be optimized, when 

T95 of their mixture is reached. 

 

 

Figure 3.2. Distillation column assembly [43]. 

 

In CDU of TUPRAS İzmit Refinery, there are a number of variables, which carry 

high importance for the quality of the refinery products: gravity, color, distillation 

temperatures, boiling points, flash point, etc. Since there are no online distillation 

analyzers installed in CDU, these variables are usually analyzed once in a day in the 

laboratories of TUPRAS.  

 



!

!
!

 
 

Figure 3.3. Flowchart of the CDU in TUPRAS İzmit Refinery
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3.4. Laboratory Test Method for HD T95 Measurements 

 

Boiling ranges of hydrocarbons give information about their composition and 

properties. Hence, distillation temperatures of refinery products are important indicators of 

the safety and efficiency of operation. The distillation temperature ranges of products, 

which are also called as distillation limits, are determined by planning department and 

process units with respect to the optimum, efficient operation conditions and sales 

demands. In order to keep required distillation temperature of product within the limits, 

process operation is interfered.  

 

In the CDU of TUPRAS İzmit Refinery, two diesel cuts are fractionated as LD and 

HD between kerosene and residuum. For the diesel products, T95 value is one of the most 

important variables related with the refinery profit. T95 represents the temperature at 

which 95% of diesel by volume would vaporize. Decrease in HD T95 represents an 

undesirable contribution of LD to HD products, while increase in HD T95 represents an 

undesirable contribution of residual to HD products. Properties of catalysts used in DHP 

reactors, i.e. catalyst life, amount of coke on catalyst, play highly important roles in 

determining the distillation limits of HD T95. The other important variable is the sales 

specifications of diesel product. Target HD T95 value is maintained at a constant value, 

unless there is a disturbance in the type of crude oil. Hence, keeping HD T95 within an 

optimum range is very important for the efficiency and profitability of the operation.  

 

HD T95 value of the HD stream (shown with Y for the HAD stream in Figure 3.3) is 

analyzed in the laboratory once in a day using ASTM-D86 method. This method is used to 

determine boiling range characteristics of products like light and middle distillates 

(naphtha, kerosene, and diesel) quantitatively using distillation [45]. In Figure 3.4, 

representative ASTM D86 distillation curves for various products are shown. In ASTM-

D86 method, sample may be classified into four groups, with respect to composition, vapor 

pressure, initial and final boiling points. The group characteristics are shown in Table 3.1. 

According to Table 3.1, HD is included in Group 4. 

 

In ASTM-D86 method, sample taken from process units is distilled in a laboratory 

batch distillation unit under desired conditions to reflect reality. During the test, 
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temperature and volume of the distilled sample are recorded, measured temperature values 

are corrected via barometric pressure. If any of the desired conditions is not met, the test is 

repeated. Finally, test results are reported as percent evaporated, or percent recovered 

versus corresponding temperature [46]. 

 

 

Figure 3.4. Representative ASTM D 86 distillation curves [42]. 

 

Table 3.1. Groups according to sample characteristics [46]. 

 Group 1 Group 2 Group 3 Group 4 
Sample characteristics 
Distillate type Vapor 

pressure at 37.8 0C, kPa 
≥ 65.5 < 65.5 < 65.5 < 65.5 

100 0F, psi ≥ 9.5 < 9.5 < 9.5 < 9.5 
(Test Methods D323, 

D4953, D5190, D5191, 
D5842, IP 60 or IP 394) 

Distillation, IBP 0C 

  ≤ 100 > 100 

0F   ≤ 212 > 212 
EP 0C ≤ 250 ≤ 250 > 250 > 250 

0F ≤ 482 ≤ 482 > 482 > 482 
!

Repeatability and reproducibility are two important parameters in laboratory 

measurements. Repeatability is the difference between successive test results, obtained by 

the same operator using the same apparatus under constant operating conditions on 
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identical test material. Reproducibility is the difference between two independent test 

results, obtained by different operators working in different laboratories on identical test 

material [46]. Table 3.2 shows repeatability and reproducibility relations for Group 4 

samples. In the given relations, T is the temperature at which the reported volume percent 

of the sample is distilled. For HD produced in TUPRAS İzmit refinery CDU, according to 

Table 3.2, repeatability of the HD T95 value changes between 3.15 and 3.9 0C, while 

reproducibility changes between 8.48 and 10.9 0C. 

 

Table 3.2. Repeatability and Reproducibility for Group 4 [46]. 

Percent Recovered Repeatability 0C Reproducibility 0C Valid Range 0C 
IBP 0.02T 0.055T 145 to 220 

10 % 0.009T 0.022T 160 to 265 
50 % 1.0T 3.0 170 to 295 
90 % 0.004T 0.015T 180 to 340 
95 % 0.015(T-140) 0.042(T-140) 260 to 340 
FBP 2.2 7.1 195 to 365 
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4. HISTORICAL DATA COLLECTION 
 

 

For the CDU in TUPRAS İzmit Refinery, 23 process variables, which are deemed to 

affect HD T95 value, are selected. Locations of these measured variables are shown in 

Figure 3.3, and the designations of the variables are shown in Table 4.1. TUPRAS 

historical database was used to obtain the trajectories of the process variables for a one-

year period. The laboratory measures HD T95 value once in a day; hence, process variable 

measurements were averaged over 4 hours about the laboratory sampling times to filter 

noise and make the process variable measurements more faithfully represent the process 

conditions, under which laboratory quality measurements are performed. The total number 

of collected observations is 323, and these observations were divided into two sets: the first 

200 observations were used for constructing the models (training), while the remaining 123 

data points were used for testing the model. Figure 4.1 shows the individual time 

trajectories of the process variables used for training, with the 99% confidence limits (CLs) 

shown with dashed lines, obtained via normal distribution assumption of the data. 

!
Table 4.1. CDU process variables used for modeling. 

Process Variable 

Designation 
Explanation 

x1 Crude charge flow 

x2 Desalter pressure 

x3 2nd group heat exchangers exit temperature 

x4 HD reflux flow 

x5 Column exit temperature of HD reflux 

x6 Column pressure 

x7 Column top temperature 

x8 Condenser drum temperature 

x9 Flow to Naphtha Splitter column 

x10 Top reflux temperature 

x11 Air cooler exit temperature 

x12 Stripping Steam temperature 



!

!

30 

Process Variable 

Designation 
Explanation 

x13 Column bottom flow 1 

x14 Column bottom flow 2 

x15 Fired heater transfer temperature 1 

x16 Fired heater transfer temperature 2 

x17 HD reflux reboiler exit temperature 

x18 Kerosene temperature 

x19 LD temperature 

x20 HD temperature 

x21 LD flow 

x22 HD flow 

x23 Top reflux flow 

Y HD T95 
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Figure 4.1. Time trajectories of CDU process variables in the training set. 
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5. RESULTS AND DISCUSSION 
 

 

Results section is divided into three parts: Monitoring historical operation (Section 

5.1), MC simulations (Section 5.2) and model prediction (Section 5.3). In Section 5.1, 

application of PCA and MCD methods on CDU process to identify the relationship 

between process variables are described in detail. In Section 5.2, evaluation of predictive 

performances of LS and various robust regression methods using MC simulations are 

explained. In Section 5.3, application of LS and robust regression methods to predict HD 

T95 in detail. 

 

5.1. Monitoring Historical Operation 

 

In this section, it is aimed to determine relations between the 23 processes variables 

used in modeling the CDU. It is also aimed to determine a convenient and efficient method 

for monitoring CDU. For this purpose, PCA (see Section 2.2) was applied on the process 

dataset to extract the essential operating conditions and reduce the dimensions of the 

process, while robust MCD (see Section 2.3.5) method was employed to prevent the 

detrimental effect of outliers on the identification of the covariance structure between the 

variables.  

 

In monitoring CDU, two different methods were used. First, PCA was applied to the 

process variables, and observations exceeding the 99% CLs were removed from the dataset 

and PCA was employed on the reduced dataset. The resulting model was called as 

“skipped-PCA” in the current study. Second, MCD with 25% BDP was applied to the 

process variables. Outliers identified by 99% CLs in MCD were removed from the dataset 

and PCA was employed on the remaining data. Like that in the first method, observations 

exceeding 99% CL were removed, and PCA model was reconstructed for the remaining 

data. This model will be called as “MCD+PCA” in the current study. PCA functions and 

MCD functions (FSDA-Toolbox) in MATLAB were used for calculations [47].  
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5.1.1. Application of the Skipped-PCA Method on Historical Data 

 

After auto scaling, i.e. subtracting each variable from its mean and dividing to its 

standard deviation, PCA was employed on the 200 observations from 23 process variables. 

In PCA, it is important to know how many principal components (PCs) should be used in 

order to account for most of the data variability [48]. This quantity was found by applying 

cross-validation (CV) method, which yields prediction residual sum of squares (PRESS) 

for different number of PCs. PRESS residuals from a model represents the model’s ability 

of prediction, and smaller PRESS value indicates a better prediction performance. The 

optimum number of PCs is usually chosen to be the first minimum point in the PRESS 

residuals profile. It is seen in Figure 5.1 that six PCs has the smallest PRESS residuals 

from CV analysis. 

 

 

Figure 5.1. PRESS residuals vs. number of PCs. 

 

Percentage and the cumulative percentage explanations of variables obtained via 

PCA are shown in Figure 5.2. In Figure 5.2-a, dashed lines represent the explanation 

percentage when process variables are randomly and independently distributed, and 

intersection of both lines is another indicator for the optimum number of PCs. Here, 
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similar to that found by CV, optimum PC number is found to be six. Cumulative 

percentage explanation plot shows that the six-PC model explains ~83% of variation in the 

process data. 

 

 

Figure 5.2. (a) Percentage explanation of PCs and (b) Cumulative percentage explanation 

of PCs. 

 

Next a PCA model with six PCs was constructed. In Figure 5.3, contribution of 

process variables to each PC is showed. Colors from darkest to lightest match with the 

indices of PCs, i.e. the darkest color correspond to first PC, while the lightest color 

corresponds to the sixth PC. It is seen that variables x3, x9, x17, x19, x20 and x23 are highly 

correlated with PC 1, while variables x12, x13 and x14 dominate PC 2. 

 

Figure 5.4 shows the two-dimensional distribution of t-scores, which are the 

projections of the data in the reduced PC spaces. It is seen that the bivariate distributions 

are somewhat like multivariate normal distribution. There are not any samples out of CLs, 

representing different operation condition. On the other hand, it is also possible that 
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outliers may be masked by the presence of a group of samples, which come from a 

different distribution than the one representing normal operation data. 

 

 

Figure 5.3. Percentage explanation of variables in each PC. 

 

The T2 and Q-residual measures are commonly used statistics for PCA diagnostics. 

As mentioned in Section 2.2, the Hotteling's T2 measures the variation within the PCA 

model, e.g. a high T2 value shows that process is currently in an excessive operation point.  

On the other hand, the Q-residual measures the lack of model fit for each sample, e.g. a 

high Q-residual statistic shows that relation (covariance structure) between the variables is 

perturbed. The T2 and Q-residual statistics are shown in Figure 5.5, in which the dashed 

lines represent 99% CLs, used to identify possible outliers. Between the 115th and 140th 

observations, there are a number of observations exceeding the 99% limit of Q-residual 

plot. By this method, five observations, which make up of 2.5% of the reference dataset, 

are deemed to be outliers (Table 5.1). Removing these outliers yielded a new dataset 

(dataset-1) having 195 observations. PCA was again employed on the new dataset, and the 

smallest PRESS residuals were obtained for six PCs (Figure 5.6), which explain %84.04 of 
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the dataset-1 (Figure 5.7). Percentage explanations of the variables (Figure 5.8) and 

distribution of the scores (Figure 5.9) have not substantially changed compared to those 

from the previous model (Figure 5.3 and Figure 5.4). 

 

 

 

Figure 5.4. Distribution of t-scores in two-dimensional spaces. 

 

Table 5.1. Outliers detected by PCA. 

Outliers found by 

PCA application 118, 130, 132, 136, 137 
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Figure 5.5. (a) T2 statistics of the PCA model with six PCs, (b) Q statistics of the PCA 

model with six PCs. 

 

 

Figure 5.6. PRESS residuals vs. number of PCs in the skipped-PCA model. 
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Figure 5.7. (a) Percentage explanation of new PCs and (b) Cumulative percentage 

explanation of PCs in the skipped-PCA model. 

 

 

Figure 5.8. Percentage explanation of variables in PCs in the skipped-PCA model.  
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Figure 5.9. Distribution of t-scores in two-dimensional space of the skipped-PCA model. 

 

In Figure 5.10, T2 and Q-residual statistics of the new constructed model with the 

dataset-1 is shown. Q-residuals of all observations are below the 99% CL. Only, 

observation number 96 and 145 are approximately on the limit and observation number 

129 is very close to the CL.  

 

To validate the performance of the skipped-PCA model, 123 data points taken from 

the TUPRAS historical database was used as test dataset. Figure 5.11 shows the T2 and Q-

residuals statistics for the test dataset. It is seen that the last ~10 observations are 

significantly out of the 99% CL, showing that the process had operated out of its normal 

operational conditions during these time intervals. Furthermore, there are other temporary 

time intervals, during which relations between process variables were violated, such as 

observation 54 to 58, 106 to 111, and 115 to 123.  
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Figure 5.10 (a) T2 statistics on the new model with six PCs, (b) Q statistics with six PCs in 

the skipped-PCA model. 

!

 

Figure 5.11. (a) T2 statistics and (b) Q statistics on test data.!
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5.1.2. Application of MCD+PCA on Historical Data 

 

The second method used in monitoring historical data involved MCD method, which 

is a well-known PCA robustification method. In application of this method, highly 

correlated variables out of 23 process variables were eliminated from the dataset, reducing 

the dataset to 20 variables. Eliminated variables are x14 (column bottom flow2), x16 (fired 

heater temperature2) and x20 (HD temperature). MCD was employed on 200 observations 

and 19 process variables. BDP and CL were selected as 25% and 99%, respectively, and 

MCD model was iterated for 2×105 times. MCD model yielded 43 outliers, comprising 

20% of the reference dataset (Table 5.2). After applying MCD estimator, skipped-PCA 

method was followed. By eliminating identified outliers from the dataset, a new dataset 

(dataset-2) was constructed. Then, PCA method was applied for the dataset-2. As seen in 

Figure 5.12, there are possibly two minimum points indicating five PCs and seven PCs, 

however Krzanowski recommends five PCs to select. At this step, five PCs were selected 

and the model was constructed over five PCs. Figure 5.13 shows that five PCs can explain 

~82% of dataset. It should be noted that MCD+PCA model yields a smaller subspace 

compared to skipped-PCA method. 

 

Table 5.2. Outliers detected by MCD application. 

Outliers found by 

MCD application 

1, 14, 52, 53, 54, 55, 56, 59, 60, 96, 114, 115, 116, 
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 
127, 130, 131, 132, 136, 137, 151, 152, 153, 158, 
159, 160, 161, 162, 163, 164, 165, 166, 167, 168 

 

By using the dataset-2 and 5 PCs, PCA model was constructed. Figure 5.14 shows 

how effectively the PC’s can explain the variables. x1, x2, x9, x17, x19, x20 and x23 have very 

high contribution to PC 1. It should be recalled that skipped-PCA method yielded variables 

x3, x9, x17, x19, x20 and x23 with high contribution to PC 1 (Figure 5.3), showing that results 

obtained by skipped-PCA and MCD+PCA methods are slightly but not negligibly 

different. 
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Figure 5.12. PRESS residuals vs. number of PCs of MCD based PCA method. 

!

 

Figure 5.13. (a) Percentage explanation of PCs and (b) Cumulative percentage explanation 

of PCs of MCD based PCA method. 
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Figure 5.14. Percentage explanation of variables in PCs of MCD based PCA method. 

 

Figure 5.15 shows the distribution of t-scores in two-dimensional PC spaces. It 

should be recall that there was not any evidence of perturbed operation conditions by the 

PCA method (Figure 5.4). However, in Figure 5.15, there is a region where data points are 

out of the CL in t2-t1 plot. It shows that MCD+PCA method can identify the perturbed 

process conditions more efficiently.  

!
Figure 5.16 shows the T2 and Q statistics of the MCD based PCA model with the 

dataset-2. According to Q-statistics, there are only 2 observations on the %99 CL. 

 

The resulting MCD+PCA model was validated using the test dataset. Figure 5.17 

shows the T2 and Q-residual statistic of the test data, projected on the MCD+PCA model. 

Similar to that seen in Figure 5.11, there are four main time periods, during which relation 

between the processes variables had been changed with respect to the historical process 

operation: the last ~10 observations, and observations 54 to 58, 106 to 111, and 115 to123.  
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Figure 5.15. Distribution of t-scores in two-dimensional space of MCD based PCA 

method. 

!

 

Figure 5.16.  T2 statistics and Q statistics results of MCD based PCA method. 
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Figure 5.17. T2 statistics and Q statistics on test data based on MCD+PCA model. 

 

Figure 5.18 shows the Q-residual values of skipped-PCA and MCD+PCA methods. 

According to Figure 5.18, observations 118, 130, 132, 136, 137 are common outliers for 

both methods. Moreover, there are many outliers, shown at the right bottom region, 

detected only by the MCD+PCA model. 

 

 

Figure 5.18.  Q-residuals of skipped-PCA and MCD+PCA models. 



!

!

46 

Figure 5.19 and Figure 5.20 show the Q-residuals of skipped-PCA method and 

MCD+PCA models, respectively, with respect to time. In these figures, filled circles 

denote the outliers, which can only be detected using MCD+PCA model, i.e. these data 

points are outside of the 99% CL of MCD+PCA model, but inside the 99% CL determined 

by the skipped-PCA method. It is seen that MCD+PCA method can detect many samples 

between observations 120 and 170, which seem to represent process operation out of 

normal conditions, while only a number of incidental outliers are detected by the skipped-

PCA method for the same region. 

 

 

Figure 5.19. Q-residuals of the skipped-PCA method. 

 

By using PCA for process diagnostics, process variables with the deemed 

perturbation were identified. The most highly disturbed process variable was found to be 

x5, which is the column exit temperature of HD reflux, i.e. x5 was found to be the single 

most important process variable in determining whether the process is in the normal 

operating range, or not. Figure 5.21 shows the relationship between x5 and x6. Filled data 

points indicate observations detected only by MCD+PCA method. As seen, x5 tends to take 

values out of the boundary of the bulk of the data, and the correlation between x5 and other 

process variables, such as x6, is deteriorated. Time trajectory of x5 is given in Figure 5.22, 
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where wide fluctuations in x5 are only seen for the samples between 120 and 170, the very 

same time interval deemed to be problematic by MCD+PCA method. 

 

 

Figure 5.20. Q-residuals of the MCD+PCA method. 

 

!

Figure 5.21.  x6 vs. x5 for the training data. 

!
!
!
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!

!

Figure 5.22. Time trajectory of x5. 

 

After constructing skipped-PCA and MCD+PCA methods using the reference data, 

test data was monitored using these two models to see how effectively abnormality in 

operation could be detected. Figure 5.23 shows the Q-residuals of skipped-PCA method vs. 

MCD+PCA method for the test data. Furthermore, Figure 5.24 and Figure 5.25 show the 

Q-residuals trajectories of the test data obtained by skipped-PCA and MCD+PCA models. 

Like that in Figure 5.19 and Figure 5.20, the filled circles denote the observations deemed 

to be outliers solely by the MCD+PCA method. It is seen that samples shown with filled 

circles are also very close to the 99% CL of the skipped-PCA model (Figure 5.24), 

showing that performances of MCD+PCA and skipped-PCA models in identifying out-of-

control samples in test data are similar. Both in Figure 5.24 and Figure 5.25, the last 10 

observations seem to be operating out of normal operational conditions. In Figure 5.26, the 

filled data circles represent the last 10 observations in the test data. As seen, x2 values take 

significantly differently values, compared with the historical data.  
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Figure 5.23. Q-residuals of Skipped-PCA method vs. MCD+PCA method testing. 

 

 

Figure 5.24. Q-residuals of Skipped-PCA method testing. 
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Figure 5.25. Q-residuals of MCD+PCA method testing. 

!

!
!

Figure 5.26. x7 vs x2 for the test data. 
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5.2. Monte Carlo Simulations 
 

In this section, predictive performances of LS and various robust regression methods 

are evaluated using MC simulations. The following regression model is assumed: 

 

 !!"# = 1+ 2!! − !! + ! (5.1) 

 

For training and testing the model, 200 and 105 (x1, x2) data points were randomly 

selected from two N(0, 1) distributions with a correlation of 0.3. Random error terms are 

assumed to be N(0, 1) and N(2, 1) distributed for “clean” and contaminated data, 

respectively. Contaminated data comprise 10% of the whole set. Two versions of the test 

set are produced: one containing only clean observations, and the other one containing 

10% contaminations, as in the training data set. Clean test set is produced to test the 

accuracy of predictions, while contaminated test set serves the purpose of assessing the 

metrics, such as root mean squared error (RMSE) and mean absolute error (MAE), used to 

evaluate the quality of predictions under contamination. MC simulations are repeated for 

2000 different datasets, and means of the results are reported. 

 

For robust regression methods, in the current study, firstly, LS model was 

constructed. Secondly, LTS models were constructed with 10%, 20%, 30%, 40%, 50% 

trimming with 97.5% CL. The detected outliers by LTS models were removed from the 

dataset by various methods, and LS method was applied to remaining data. This method is 

called as “LTS+LS”. Finally, reweighted LTS and LTS with a modified two-step 

procedure were applied. In these methods, constructed LTS model was used as basis.  

Designations of models are given in Table 5.3.  

 

In order to select the best method for prediction, test results of all models with clean 

test data were compared in Figure 5.27.  It is seen that none of the pure LTS estimators and 

modified-two-step LTS estimators give smaller RMSE values compared to LS model. On 

the other hand, LTS10%+LS, LTS20%+LS, and all the reweighted LTS estimators yield 

smaller predictions compared to those from LS model. One may say that prediction quality 

gets worse as trimming percentage in LTS models reach 40-50%, hence it’s not 

recommended to use LTS models with more than 30% trimming. It should also be noted 
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that as contamination percentage in the data is increased, the difference in the prediction 

performance between LTS-based estimators and LS estimators will increase in favor of 

LTS based estimators. 

 

Table 5.3.  Predictive models used in MC simulations. 

Model 

Notation 

Model 

Definition 

L_c LS 

Lt1_c LTS10% 

Lt2_c LTS20% 

Lt3_c LTS30% 

Lt4_c LTS40% 

Lt5_c LTS 50% 

LtL1_c LTS10% + LS 

LtL2_c LTS20% + LS 

LtL3_c LTS30% + LS 

LtL4_c LTS40% + LS 

LtL5_c LTS 50% + LS 

LtL1_nc Reweighted LTS10% 

LtL2_nc Reweighted LTS20% 

LtL3_nc Reweighted LTS30% 

LtL4_nc Reweighted LTS40% 

LtL5_nc Reweighted LTS 50% 

LtL1_n2c Modified two step LTS10% 

LtL2_n2c Modified two step LTS20% 

LtL3_n2c Modified two step LTS30% 

LtL4_n2c Modified two step LTS40% 

LtL5_n2c Modified two step LTS 50% 
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Figure 5.27.  RMSE values of various models tested with clean data. 

 



!

!

54 

In order to compare the reliability of prediction measures, i.e. of applied methods, 

mean absolute error (MAE) and root mean squared error (RMSE), in assessing the 

prediction quality of models, MAE and RMSE values were computed for different 

percentiles of ranked prediction errors in values test sets including contaminations. MAE 

and RMSE values of different residual percentages were compared.  For this purpose, 

absolute values of residuals prediction errors were written sorted in ascending order and 

MAE and RMSE values of the first 100%, 90%, 80%, 70%, 60% and 50% of residuals 

errors were used to calculate MAE and RMSE computed.  The dataset used in simulation 

study was created with random variables so whenever the program runs, dataset changes. 

For this reason, by running the MATLAB code for 2000 times, average MAE and RMSE 

values of runs were calculated and used to compare models. 

 

Figure 5.28 shows the RMSE values of various models for different percentages of 

ranked absolute residuals. In Figure 5.27, LTS20%+LS was found to be the best predictive 

model, but RMSE values using all of the ranked absolute prediction errors shows that the 

predictive performances of LS, LTS10%+LS, LTS20%+LS and LTS30%+LS are 

indistinguishable. It is important to note that LS model predictions are at least as accurate 

as those of LTS10%+LS, LTS20%+LS, when all of the RMSE of all of the prediction 

errors are computed. However, when RMSE values of the first 90% of the ranked 

prediction errors are taken into consideration, LTS10%+LS and LTS20%+LS methods are 

seen to have smaller RMSE values, consistent with the results obtained for clean test data. 

As the percentage of error terms in RMSE is decreased to 50%, LTS30%+LS model is 

seen to have a comparable RMSE with those of LTS10%+LS and LTS20%+LS, showing 

that excessively decreasing the percentage of error terms in RMSE calculation gives 

erroneous results. This shows that RMSE of 70%-90% the highest absolute prediction 

errors is a better model assessing method compared to taking RMSE of all the prediction 

error terms, in order to evaluate the predictive performance of models on contaminated test 

data. In Figure 5.29, similar computations are performed using MAE. It is seen that results 

obtained by MAEs of all the prediction errors are compatible with the results obtained 

clean test data: LTS10%+LS, LTS20%+LS have clearly better prediction performance 

compared to LS. As a smaller percentage of prediction errors are taken into consideration 

for MAEs, the same picture is consistently obtained, particularly for 70% to 90% of the 
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residuals range. This shows that using MAE as a measure of predictive performance on test 

data is an alternative to using RMSE on all error terms.  

 

 

Figure 5.28.  RMSE values of LS and LTS+LS models. 

!

 

Figure 5.29.  MAE values of LS and LTS+LS models. 
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5.3. Model Prediction 

 

In this section, it is aimed to estimate HD T95 values using the process variables 

(Table 4.1 and Figure 3.3) measured in CDU. First, conventional LS method, which is 

known to be sensitive to outliers, (see Section 2.1) was used. Then, robust regression 

methods, LTS, GM-regression and S-regression, were employed on the same set of data, 

and predictive performance of the conventional and robust methods was compared. In 

constructing the predictive models, as employed in the previous sections, the first 200 data 

points in the historical dataset were used for training the models, while the last 123 data 

points were used for testing the models. 

 

5.3.1. Modeling Using LS 

 

Here, process variables used as predictors in the model were selected with the help of 

stepwise regression. First order, interaction and quadratic terms of process variables were 

included into the model, using the p-values in stepwise regression. Furthermore, R2 and 

RMSE values of the model were taken into consideration. The resulting model consisted of 

nine process variables, and 15 predictors, including three cross product and three quadratic 

terms. Point estimates, standard error of coefficients (SE) and p-values of the LS model 

parameters are shown in Table 5.4, Table 5.5 and Table 5.6 respectively. R2 statistics of 

the model is 0.49, with MAE and RMSE statistics equal to 3.67 and 4.62 oC. The process 

variables used in LS model are x2 (desalter pressure), x3 (2nd group heat exchangers exit 

temperature), x9 (flow to Naphtha Splitter column), x16 (Fired heater transfer temperature 

2), x18 (Kerosene temperature), x19 (LD temperature), x21 (LD flow), x22 (HD flow) and x23 

(Top reflux flow). The resulting model is plausible in terms of expected causal relations. 

As seen in Table 5.4, while there is positive correlation between flow to Naphtha splitter 

column (x9) and HD T95 value, showing that HD T95 increases with the upward shift of 

products in the column yielding heavier products. LD temperature (x19) is also positively 

correlated with HD T95. LD is drawn from upper tray of the HD, so increase in 

temperature of LD would necessarily increase the HD temperature and HD T95 value. 

Increase in top reflux flow (x23) may render lighter components to stay in the bottom of the 

column, so there may be downward movement of products inside the column. This is 
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likely to yield a lower HD T95 value, consistent with the sign of estimated model 

parameter.  

 

Table 5.4. Estimates of LS model parameters. 

Model parameters Estimate Model parameters Estimate 

Intercept 59690 x22 0.7347 

x2 26.719 x23 -0.0217 

x3 6.7078 x2 × x3 -0.2189 

x9 0.0229 x16 × x22 -0.0018 

x16 -353.91 x21 × x22 5.908 × 10-5 

x18 -2.2304 x3
2 -0.0127 

x19 2.1702 x16
2 0.52148 

x21 -0.1245 x22
2 -3.144 × 10-5 

 

Table 5.5. SE of LS model parameters. 

!

Table 5.6. P-values of LS model parameters. 

Model parameters p-value Model parameters p-value 

Intercept 0.00019 x22 0.03422 

x2 0.00014 x23 2.698 × 10-10 

Model parameters SE Model parameters SE 

Intercept 15665 x22 0.344 

x2 6.879 x23 0.00324 

x3 1.368 x2 × x3 0.0587 

x9 0.004 x16 × x22 0.00098 

x16 91.126 x21 × x22 1.93 × 10-5 

x18 0.481 x3
2 0.004 

x19 0.423 x16
2 0.132 

x21 0.034 x22
2 9.51× 10-6 
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Model parameters p-value Model parameters p-value 

x3 2.075 × 10-6 x2 × x3 0.00025 

x9 3.774 × 10-8 x16 × x22 0.06065 

x16 0.00014 x21 × x22 0.00252 

x18 6.656 × 10-6 x3
2 0.00177 

x19 7.361 × 10-7 x16
2 0.00012 

x21 0.00034 x22
2 0.00114 

 

Experimental and fitted HD T95 values using the LS model are shown in Figure 

5.30. Though the LS fit generally, captures the time trend of the T95 values, residuals of 

the last ~20 observations seem to be high, and there seems to occasional spikes in HD T95, 

which have not been captured well. 

 

 

Figure 5.30. Experimental and fitted HD T95 values of training set by LS method. 

 

Figure 5.31 shows the scatter plot of the experimental vs. fitted T95 values (filled 

circles to be explained in the next subsection). It is desired that T95 values fall close to the 

45o dashed line. Though one cannot observe a trend in the residuals, the wide scatter of the 

points brings doubt on the fitting quality of the model.  
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Figure 5.31. Experimental vs. fitted HD T95 values of LS model on training set. 
 

Normal probability plot of residuals (Figure 5.32a) is used to check whether model 

error terms are normally distributed. Though one is temped to conclude that residuals are 

non-normally distributed, since the only the middle portion of the distribution fits well to 

the line representing normal distribution, normal probability plot of a simulated random 

sample of normal distributed data consisting of 200 observations (Figure 5.32b) shows that 

a certain degree of discrepancy between normal distribution and small sample distribution 

from a normal distributed population is unavoidable. Hence, one cannot conclude that the 

residuals are not normally distributed. 

 

 

Figure 5.32. (a) normal probability plot of LS model residuals and (b) simulated random 

data of 200 points. 
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Figure 5.33 shows the standardized LS residuals vs. MD. Here, it is aimed to 

examine potential outliers, both in x- and y-space, influencing the LS model. Here the 

vertical and horizontal dashed lines represent 97.5% confidence limits for residuals, found 

to be equal to 2.26 using Student’s t-distribution, and MD, found to be equal to 4.36 using 

the square root of a chi-square distribution with 9 degrees of freedom. Data points on the 

upper left (with respect to dashed lines) are vertical outliers. Data points on the lower right 

are “good” leverage points, while those on the upper right are “bad” leverage points. 

Observations exceeding MD limit, 96, 136, 160, 161, 162, and 168 are considered to be 

“good” leverage points, since none of these points exceeds the regression residual limit. 

Overall, there are 4 observations, which comprise 2% of all data, out of the CLs. However, 

it should be recalled that LS residuals and MD may suffer from masking effect, so one 

cannot be confident that data points within the CLs are free from contamination [18]. 

 

 

Figure 5.33. Plot of LS residual versus Mahalanobis distance. 

!
Predictive performance of the constructed LS model was evaluated using the test 

data. When the LS model was applied to the test data, MAE and RMSE statistics were 

found to be equal to 3.93 and 5.09 oC. It should be recalled that MAE and RMSE statistics 

for the training set were found to be equal to 3.67 and 4.62 oC respectively, hence 
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prediction errors are slightly higher than the fitted model errors, leaving room for 

predictive model improvement. 

 

Experimental and predicted T95 trajectories of the test data are shown in Figure 5.34 

and compared in Figure 5.35. Superposition of test and predicted HD T95 values (Figure 

5.34) shows the existence of poor predictions during a number of time intervals. 

 

 

Figure 5.34. Experimental and predicted HD T95 values of LS model for the test data. 

!

 
Figure 5.35. Test and predicted HD T95 values of LS model. 
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Standardized LS prediction residuals vs. MD statistics for the test set are shown in 

Figure 5.36. It is seen that 110th and 123rd data points have high MD statistics, meaning 

that these points are far from the bulk of the training data in the predictor space, and high 

prediction residuals, showing that experimental and predicted T95 values of these points 

highly differ. Moreover, data points 38, 59, 62, 67 are on the upper left region, and hence 

can be regarded as outliers in the test set. Furthermore, it is seen that these six poor 

predicted samples in the test dataset are all underpredicted, showing that there may be a 

bias in the predicted values. 

 

 

Figure 5.36. Plot of LS prediction error versus Mahalanobis distance. 

 
5.3.2. Modeling Using Robust Regression  

 

Here, robust regression methods, LTS, GM-regression and S-regression, were 

applied and their predictive performance was compared with that of LS model. On 

MATLAB, FDSA toolbox was used for LTS and S-regression, while Statistics and 

Machine Learning Toolbox was used for GM regression [47]. In all the reported LTS 

models, outliers are first trimmed at the given confidence level, and then LS models are fit 

to the remaining data. To assess the predictive quality of the models, MAE and RMSE 

values at different percentages of ranked absolute residuals were computed. RMSE and 
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MAE of the model residuals and prediction errors obtained from various LS and robust 

regression models are shown in Table 5.7, and Table 5.8, where, the regressions denoted 

LTS10%, LTS20%, LTS30% and LTS40% are actually LTS10%+LS, LTS20%+LS, 

LTS30%+LS and LTS40%+LS. 

 

In the LTS models, trimming parameter h was selected as 10%, 20%, 30% and %40. 

Outliers in each reweighted LTS method was identified using confidence limits of 95%, 

97.5% and 99%. The initial model, used by the robust methods, was obtained by the LS 

method (see the previous section). Since LTS models were obtained using random search, 

a large number of initial seeds, as much as 105, were used to obtain reliable results. GM-

estimator was applied for three different tuning values of Huber estimation: 1.1, 1.345, 1.5 

while S-estimator was applied at 97.5% confidence level with three different breakdown 

point: 20%, 30%, 40%. 

 

When the RMSE and MAE values of the model residuals are compared, LTS20% at 

95% CL and LTS30%at 97.5% CL models have slightly lower MAE 100% values 

compared to that of LS model, which has the smallest RMSE 100% values (Table 5.7). It 

should be recalled that LS solution guarantees that RMSE 100% values is minimized 

among all possible linear estimators. As lower percentages of error terms considered, for 

instance at RMSE 80%, LS model gives a RMSE value of 3.01 oC, while LTS20% at 95% 

CL, LTS30% at 97.5% CL and S-estimator at BDP of 40% give RMSE values of 2.86, 

2.84 and 2.83 oC, respectively. These results suggest that RMSE at lower percentages than 

100% and MAE of residuals should also be checked to evaluate the quality of fitting of the 

models to the data.  

 

As seen in Table 5.8, most of the robust regression methods yield prediction errors 

with lower MAE and RMSE values when compared with LS method. Even using RMSE 

100% values, LTS20% at 95% CL, LTS30% at 97.5% CL models are seen to make 

superior predictions compared to LS model. When RMSE 80% values, for instance, are 

compared, LS model gives a predictive RMSE of 3.18 oC, while LTS20% at 95% CL, and 

LTS30% at 97.5% CL models give predictive RMSEs of 2.96 and 2.96 oC. A similar 

picture emerges, when MAE values are compared: using 100% of test data, MAE values of 

LS, LTS20% at 95% CL, and LTS30% at 97.5% CL models are 3.93, 3.74 and 3.75 oC, 
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respectively. It should also be noted that S-estimator at BDP of 40%, which have yielded 

promising results during fitting procedure, was only marginally superior to LS model. As a 

result, LTS30% with 97.5% CL was selected as the best model for predicting HD T95. The 

following analysis focuses solely on this estimator. 

 

Removing the outliers by the LTS30% model at 97.5% CL, and employing LS 

analysis on the remaining data yields a model with a R2 of 0.69. The estimates, SE of 

model parameters and their P-values are listed in Table 5.9, Table 5.10 and Table 5.11, 

respectively. When compared with LS method, none of the parameter estimates have 

changed signs, and most of the terms have increased their significance, while only x22 and 

x2×x3 terms have decreased their significance. When SE values are compared, it is seen 

that almost all SE values are less than LS model. The SE values were taken into 

consideration when comparing and examining the estimators of LS and LTS30%. For 

instance, parameter estimate of x2 is 26.7 and 19.3 (Table 5.4) in LS and LTS30% models, 

respectively. SEs of parameter estimate of x2 are found to be 6.8 and 5.1 in LS and 

LTS30%, respectively, showing that SE has not significantly changed, but the parameter 

estimate has changed by more than one SE. Furthermore, parameter estimates of x9, x22, x2 

× x3, x16 × x22, and x3
2 have also changed by more than one SE upon robust regression. 

These show that robust regression has significantly changed the model parameter 

estimates.  

 

Figure 5.37 shows the trajectories of experimental and fitted HD T95 values using 

the LTS30% model. Fitted values, generally, captures the time trend of the experimental 

HD T95 values. 30 outliers are detected by LTS30% model, comprising ~15% of the 

training data, and these outliers are indicated with filled circles in Figure 5.37.  Most of the 

outlier data seem to be sampled from the highest and lowest HD measurements, as 

represented by spikes with respect to time. Moreover, more than ten of the outliers are 

from successive samples of two observations. This hints the possibility of a dynamic effect 

of contamination, i.e. the experimental conditions of the current daily measurement may be 

correlated with the experimental conditions of the next daily measurement. 
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Table 5.7. RMSE and MAE of the model residuals by various robust estimators. 

 LS 
Model 

LTS10% LTS20% LTS30% LTS40% M Estimator (Huber) S Estimator (CL .975) 

 
 

CL 
95% 

CL 
975% 

CL 
99% 

CL 
95% 

CL 
975% 

CL 
99% 

CL 
95% 

CL 
975% 

CL 
99% 

CL 
95% 

CL 
975% 

CL 
99% 

TV        
1.1 

TV 
1.345 

TV       
1.5 bdp.20 bdp.30 bdp.40 

MAE 100% 3.67 3.66 3.64 3.65 3.62 3.64 3.66 3.62 3.62 3.66 4.17 3.70 3.65 3.62 3.64 3.64 3.61 3.60 3.62 

MAE 90% 3.00 2.94 2.95 2.97 2.84 2.91 2.94 2.85 2.84 2.91 3.24 2.92 2.87 2.93 2.96 2.97 2.89 2.84 2.84 

MAE 80% 2.54 2.48 2.48 2.50 2.34 2.42 2.46 2.29 2.32 2.41 2.54 2.33 2.30 2.44 2.48 2.49 2.41 2.32 2.27 

MAE 70% 2.14 2.10 2.08 2.11 1.94 2.03 2.07 1.87 1.91 2.01 1.92 1.85 1.87 2.06 2.09 2.10 2.01 1.93 1.83 

MAE 60% 1.78 1.73 1.71 1.74 1.58 1.67 1.71 1.50 1.55 1.67 1.44 1.47 1.45 1.69 1.72 1.73 1.64 1.56 1.46 

MAE%50 1.46 1.40 1.39 1.43 1.24 1.34 1.39 1.19 1.21 1.36 1.13 1.18 1.09 1.36 1.40 1.41 1.31 1.22 1.15 
RMSE 
100% 4.62 4.71 4.65 4.64 4.79 4.73 4.73 4.82 4.79 4.76 5.73 4.95 4.91 4.63 4.62 4.62 4.67 4.76 4.86 

RMSE 90% 3.62 3.57 3.60 3.61 3.55 3.56 3.58 3.63 3.58 3.57 4.32 3.76 3.71 3.58 3.60 3.60 3.56 3.56 3.64 

RMSE 80% 3.01 2.95 2.96 2.98 2.86 2.89 2.93 2.82 2.84 2.89 3.33 2.92 2.89 2.92 2.96 2.97 2.90 2.83 2.83 

RMSE 70% 2.52 2.48 2.47 2.48 2.35 2.41 2.45 2.28 2.33 2.37 2.43 2.25 2.35 2.44 2.48 2.49 2.41 2.34 2.25 

RMSE 60% 2.06 2.03 2.00 2.01 1.91 1.96 1.99 1.80 1.87 1.95 1.72 1.73 1.81 1.98 2.01 2.02 1.94 1.87 1.77 

RMSE 50% 1.67 1.63 1.62 1.64 1.4854  1.53 1.60 1.42 1.46 1.57 1.29 1.37 1.33 1.57 1.62 1.63 1.52 1.45 1.39 
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Table 5.8. RMSE and MAE of the prediction errors by different estimators. 

! LS 
Model 

LTS10% LTS20% LTS30% LTS40% M Estimator (Huber) S Estimator (CL .975) 

!

CL 
95% 

CL 
975% 

CL 
99% 

CL 
95% 

CL 
975% 

CL 
99% 

CL 
95% 

CL 
975% 

CL 
99% 

CL 
95% 

CL 
975% 

CL 
99% 

TV      
1.1 

TV 
1.345 

TV      
1.5 bdp.20 bdp.30 bdp.40 

MAE 100% 3.93 3.84 3.96 3.96 3.74 3.74 3.93 3.95 3.75 4.12 4.22 4.15 4.26 3.86 3.89 3.91 3.88 3.81 3.93 

MAE 90% 3.16 3.07 3.18 3.19 3.02 2.98 3.16 3.17 3.02 3.30 3.54 3.38 3.41 3.11 3.14 3.15 3.11 3.05 3.15 

MAE 80% 2.65 2.57 2.69 2.68 2.52 2.49 2.64 2.63 2.50 2.76 3.04 2.84 2.84 2.61 2.63 2.64 2.62 2.56 2.62 

MAE 70% 2.24 2.19 2.25 2.25 2.16 2.10 2.22 2.22 2.13 2.33 2.59 2.46 2.43 2.21 2.23 2.23 2.21 2.17 2.22 

MAE 60% 1.88 1.83 1.89 1.88 1.82 1.75 1.85 1.84 1.79 1.95 2.13 2.12 2.05 1.86 1.87 1.87 1.85 1.80 1.85 

MAE%50 1.53 1.50 1.54 1.53 1.51 1.40 1.51 1.47 1.49 1.60 1.71 1.79 1.69 1.52 1.53 1.53 1.51 1.44 1.47 
RMSE 
100% 5.09 4.99 5.13 5.14 4.81 5.09 5.12 5.16 4.84 5.36 5.23 5.21 5.55 5.00 5.04 5.06 5.03 4.97 5.12 

RMSE 90% 3.84 3.70 3.85 3.87 3.64 3.82 3.84 3.88 3.67 4.01 4.26 4.01 4.12 3.77 3.80 3.82 3.77 3.72 3.85 

RMSE 80% 3.18 3.06 3.22 3.22 2.96 3.15 3.16 3.16 2.97 3.31 3.67 3.28 3.35 3.12 3.15 3.16 3.14 3.07 3.14 

RMSE 70% 2.67 2.58 2.67 2.68 2.52 2.65 2.63 2.65 2.50 2.76 3.14 2.81 2.85 2.63 2.65 2.66 2.63 2.60 2.66 

RMSE 60% 2.24 2.14 2.23 2.23 2.11 2.18 2.18 2.20 2.09 2.31 2.57 2.41 2.40 2.22 2.23 2.23 2.20 2.16 2.22 

RMSE 50% 1.83 1.75 1.81 1.82 1.74 1.77 1.77 1.74 1.75 1.89 2.07 2.03 1.97 1.83 1.84 1.84 1.80 1.73 1.75 
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Table 5.9. Estimates of LTS30% model parameters. 

Model parameters Estimate Model parameters Estimate 

Intercept 65095 x22 0.3852 

x2 19.298 x23 -0.0207 

x3 6.8454 x2 × x3 -0.1546 

x9 0.0179 x16 × x22 -0.0007 

x16 -382.98 x21 × x22 6.833 × 10-5 

x18 -1.9565 x3
2 -0.0172 

x19 1.8328 x16
2 0.5607 

x21 -0.1363 x22
2 -3.797 × 10-5 

 

Table 5.10. SE of LTS30% model parameters. 

Model parameters SE Model parameters SE 

Intercept 12004 x22 0.242 

x2 5.141 x23 0.002 

x3 1.043 x2 × x3 0.044 

x9 0.0031 x16 × x22 0.0007 

x16 69.82 x21 × x22 1.49 × 10-5 

x18 0.383 x3
2 0.003 

x19 0.329 x16
2 0.102 

x21 0.026 x22
2 7.18 × 10-6 

 

Table 5.11. P-values of LTS30% model parameters. 

Model parameters p-value Model parameters p-value 

Intercept 2.23 × 10-7 x22 0.114 

x2 0.00024 x23 4.61 × 10-14 

x3 7.60 × 10-10 x2 × x3 0.00062 

x9 4.06 × 10-8 x16 × x22 0.268 

x16 1.66 × 10-7 x21 × x22 9.70 × 10-6 
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Model parameters p-value Model parameters p-value 

x18 9.81 × 10-7 x3
2 6.92 × 10-8 

x19 1.09× 10-7 x16
2 1.44 × 10-7 

x21 7.76 × 10-7 x22
2 4.25 × 10-7 

 

 

Figure 5.37. Experimental and fitted HD T95 values of training set of LTS30% model. 

 

A MCD model at breakdown point of 25% was constructed to predictor variables x2, 

x3, x9, x16, x18, x19, x21, x22 and x23. MDs (robust distances) were computed using the 

sample mean and covariance matrix estimates determined by MCD, and robust residuals 

vs. robust distances were plotted (Figure 5.38). LTS30% outliers were indicated with filled 

circles and CLs of regression and MDs were drawn at 2.26 and 4.36, respectively. 

Comparing Figure 5.38 with Figure 5.33 the most significant difference is the location of 

data points 159 and 160 in the regression residual and MD spaces obtained using 

conventional and robust statistics. Both of these points are identified as “bad leverage” 

points and excluded from the regression by LTS30% model, while only sample 159 is 

barely out of the regression residual CL, and cannot be classified as a leverage point using 

MD. Data points 124 and 131 also show different locations when Figure 5.38 and Figure 

5.33 are compared. While sample 131 is out of the CL in Figure 5.33, it is bad leverage 

point in Figure 5.38. Similarly, while data point 124 is not out of but very close to CL limit 
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in Figure 5.33, it is in bad leverage region in Figure 5.38, so samples 124 and 131 are also 

excluded from the regression by LTS30% model beside data points 159 and 160. 

Furthermore, there are four more leverage points, which are identified by the LTS30% 

model, but not by the LS model. These data points seem to be sufficient in perturbing the 

fitted plane to a significantly different direction, as also evidenced by the changes in some 

of the parameter estimates (see Table 5.10). 

 

 
Figure 5.38.  LTS30% residuals vs. robust distance.  

!

Similar to Figure 5.31, experimental vs. fitted HD T95 values determined by 

LTS30% model is plotted in Figure 5.39, in which outliers were indicated with filled 

circles. It is seen that outliers are generally far to the 45o dashed line.  Figure 5.40 shows 

the residuals with respect to fitted values. Outlier data points have residuals between 6 0C 

and 16 0C. 

 

For the training set, LTS30% model yielded MAE value as 3.62 0C. In order to 

determine robust estimate of RMSE, the relation !"#$ = !"#/0.796 was used and 

robust estimate of RMSE was calculated as 4.54 0C. As stated in Section 3.4, in laboratory 

tests, reproducibility is an important parameter indicating the difference between two 

single and independent test results, obtained by different operators working in different 
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laboratories on identical test material [46]. The relation between reproducibility and RMSE 

value is given with the equation: !"#!$%!"#$#%#&' = 1.96 2!"#$. When this equation is 

used, LTS30% method yields an estimate of 13.0 0C for the reproducibility, which is 

slightly higher than the tabulated value (8.48 0C - 10.9 0C), but still acceptable.   

 

 

Figure 5.39. Experimental vs. fitted HD T95 values of training set of LTS30% model. 

!

 

Figure 5.40. Model residuals vs. fitted T95 values of LTS30% Model. 
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Predictive performance of the constructed LTS30% model was evaluated using test 

data. When the LTS30% model was applied to the test data, MAE value was found as 3.75 
0C, whereas RMSE value was found as 4.84 0C, which are slightly higher than the fitted 

model errors. It is also found that 74% of prediction errors are lower than 5 0C. 

Experimental and predicted T95 trajectories of the test data are shown in Figure 5.41 and 

compared in Figure 5.42. There are a number of poorly predicted samples, similar to that 

LS model predictions (see Figure 5.34 and Figure 5.35), hence one cannot, visually, 

discern a striking difference in the predictions of the test set using LS and LTS30% 

methods.  

 

 
Figure 5.41. Tested and predicted HD T95 values of LTS30% model. 

!

 
Figure 5.42. Test vs predicted HD T95 values of LTS30% model. 
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5.3.3. Comparison of fitted and predicted residuals in LS and LTS30% models 

 

Absolute residuals (in the original units of oC) of the LS and LTS30% model were 

compared in Figure 5.43. Almost all the absolute residuals above ~7.5 oC were found to be 

higher in the LTS30% regression, showing the LTS30% regression moved the LS fitted 

plane farther away from these data points. While absolute residuals of the rest of the data 

points are generally in agreement in both regression models, there are four data points, 

with high LS regression residuals and low LTS30% regression residuals; showing that 

LTS30% plane is “fine-tuned”, as compared to the LS plane, to be more representative of 

the rest of the data points. Excluding the outliers, LTS30% model can predict HD T95 

value with maximum 7 0C error, which is an efficient estimation when the error range of 

test method is considered. 

 

 

Figure 5.43. Absolute values of LTS30% residuals vs. LS residuals of training data.!

 

LS and LTS30% model predictions of the test data are compared in Figure 5.44. 

There are two significant differences in the predictions. First, most of test data points, 

while residing in a narrow band, are consistently and slightly overpredicted by the 

LTS30% method, compared to LS model. Second, six out seven data points with the 

lowest T95 predictions by the LS method are significantly overpredicted by the LTS30%. 
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Figure 5.44. LTS30% predicted T95 values vs. LS predicted T95 values of test data. 

 

LS and LTS30% prediction errors of test data were compared in Figure 5.45. 

Prediction errors from LTS30% model generally are positively biased compared to those 

from LS model, as also observed in Figure 5.44. Out of the six data points with significant 

changes in their predictions by the two methods, while the rest of them can be better 

predicted by the LS method. Medians of the prediction errors of test data were found as 

1.46 0C for LS and 0.04 0C for LTS30% model. This shows that prediction errors from 

LTS30% model are practically unbiased, while LS model yields biased predictions, 

possibly due to contamination bias in the model construction step. 

 

 
Figure 5.45. LTS30% residuals vs. LS residuals of test data. 
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6. CONCLUSIONS AND RECOMMENDATIONS 
 

 

In this thesis, conventional and robust statistical methods are used for monitoring and 

HD T95 prediction of a CDU process in TUPRAS İzmit Refinery. Trajectories of the 

process variables are obtained from TUPRAS historical database for a one-year period, and 

on-line process variable measurements are averaged over 4 hours about the laboratory 

sampling times. Out of the totally collected 323 observations, the first 200 observations 

were used for constructing the exploratory and predictive models, while the remaining 123 

data points were used for testing the models. Though it is not possible to say anything 

definite, operational changes, disturbances, and crude oil feed changes in the refinery 

processes may increase the possibility of outliers in the data set. It should also be pointed 

out that all of the samples, deemed to be outliers by a certain model, are not necessarily 

outliers. When multiple outliers are found in the data set, they may mask other outliers, 

and/or cause clean data point to be regarded as outlier values. Hence, to be able to detect 

and reduce the effect of outlier observations, robust methods are generally preferred in the 

literature. 

 

In the current study, in order to identify relations between the process variables and 

to determine a convenient and efficient method for monitoring CDU process, skipped-PCA 

and MCD+PCA models were employed. Skipped-PCA method consists of two 

successively employed PCA models, the second of which is applied on the data points free 

from the outliers detected by the first PCA model. MCD+PCA method, on the other hand, 

consists of the application of the robust MCD method on the data, and employing PCA on 

the remaining data points, from which outliers deemed by the MCD method are removed. 

In the training set, while observation numbers 118, 130, 132, 136, 137 were detected as 

outliers by both methods, there is a large number of additional outlier observations, which 

were detected only by the MCD+PCA method. In summary, while 43 outliers (~21% of 

training set) were detected by MCD method, only 5 outlier observations were detected by 

PCA method. It is also seen that subtle perturbations in operation conditions can be 

detected by the MCD+PCA method, but not by the skipped-PCA method. Using PCA for 

process diagnostics, the column exit temperature of HD reflux (x5) was found to be the 

most important single process variable in determining whether the process is in the normal 
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operating range or not. The common disturbance pattern in the historical data is seen as the 

perturbation of the correlation of x5 with other process variables, and both x5 and x6, 

column pressure, taking outlying values. Monitoring the test data shows that the last 10 

observations operated out of normal operational conditions. Examining these observations 

showed that the desalter pressure (x2) was significantly perturbed. 

 

HD T95 is one of the most important physical properties affecting the refinery profit; 

hence online prediction of HD T95, which is measured by ASTM D86 method in TUPRAS 

İzmit Refinery laboratory, is a great assistance to plant operators and engineers in CDU. 

The dataset including laboratory measurements of HD T95 may include contaminations, 

which may result from inhomogeneity in experimental equipment, personnel and 

conditions, and may be revealed as biased measurements, or heteroscedastic variance. 

Furthermore, contaminated data may not have normal error distribution due to existence of 

outliers. Robust statistics aim to give reliable results when error terms do not have normal 

distribution and/or when there are outliers in dataset. If errors come from nonnormal 

distributions, the results obtained via LS estimators will not be reliable. Robust regression 

analysis firstly aims to adapt the majority of the data, and then discovers data points having 

large residuals from the robust solution, and more accurate models can be built giving less 

weight those data points. For this purpose, various prediction methods, including LS and 

robust regression methods, were applied to historical CDU process dataset. Moreover, in 

order to evaluate the predictive performances of LS and various robust regression methods, 

MC simulations were used. 

 

In MC simulation study, 200 and 105 data points were randomly selected from N(0, 

1) distributions with a correlation coefficient of 0.3 for training and testing sets, 

respectively. Also, random error terms are assumed to be N(0, 1) and N(2, 1) distributed 

for clean and contaminated data, which comprise 10% of the whole set. For the testing, 

two sets were produced. While one set contains only clean observations, the other one 

contains 10% contaminations, as in training set. The aim of using clean test set is testing 

the prediction accuracy, whereas the aim of using contaminated test set is assessing the 

metrics (RMSE, MAE) to evaluate the quality of predictions under contamination. Results 

were obtained by repeating MC simulations for 2000 times. When the LS and various 

robust regression methods were applied to clean dataset, it was observed that 
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LTS10%+LS, LTS20%+LS, and all the reweighted LTS estimators yield smaller 

prediction errors, compared to those from the LS model, sole LTS and modified-two-step 

LTS estimators. Also, it was detected that when trimming percentage in LTS models reach 

40-50%, prediction quality gets worse, so it is not recommended to use LTS models with 

more than 30% trimming. When the LS and various robust regression methods were 

applied to contaminated dataset, with the purpose of comparing the efficiencies reliability 

of prediction measures, MAE and RMSE values were computed for different percentiles of 

ranked prediction errors (100%, 90%, 80%, 70%, 60% and 50%). Results show that RMSE 

of 70%-90% and the highest absolute prediction errors are better model assessing methods, 

compared to 100% RMSE, which is the default metric for assessing predictive capability 

of models in most of the literature, and, LTS10%+LS and LTS20%+LS methods have 

smaller RMSE values, consistent with the results obtained for clean test data.  The similar 

picture is obtained for MAEs. One may say that MAE can be used as an alternative to 

using RMSE on all error terms to measure the predictive performance of a model on test 

data.  

 

In the model prediction section, in order to construct predictive models for the HD 

T95 value, first LS method was applied to the training set of the process data. The resulting 

LS model consists of nine process variables, and 15 predictors, including three cross 

product and three quadratic terms. R2 statistics of the LS model is equal to 0.49, with MAE 

and RMSE statistics equal to 3.67 and 4.62 0C, respectively. When the LS model is applied 

to the test data, MAE and RMSE statistics were found to be equal to 3.93 and 5.09 0C. 

Four observations (2% of training dataset) were found to be regression outliers using the 

confidence limits on the LS model. Then, robust regression methods, LTS, M-regression 

and S-regression, on the same training set were applied. In the LTS method, trimming 

value was selected as 10%, 20%, 30% and %40. Reweighted LTS were applied via 

detecting outliers at CLs of 95%, 97.5% and 99%, eliminating the outliers and employing 

the LS method on the remaining data. GM-estimator was applied for three different tuning 

values of Huber weight function: 1.1, 1.345, 1.5. S-estimator was applied at three different 

breakdown points, 20%, 30%, 40%, and at a 97.5% CL. To assess the predictive quality of 

the models, MAE and RMSE values at different percentages of ranked absolute residuals 

were computed for all model types and compared to find best predictive model. LTS30% 

with 97.5% CL was selected as the best model for predicting HD T95, and the analyses 
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were performed on this estimator. For the training set, LTS30% model yielded MAE, 

RMSE and R2 values as 3.62 0C, 4.79 0C and 0.69. There are 30 outliers detected by 

LTS30% model, comprising ~15% of training dataset and these outliers were excluded 

from dataset. Most of the outliers detected by LTS30% model seem to be sampled from the 

highest and lowest HD measurements. Moreover, more than ten of the outliers are from 

successive samples of two observations. This implies the possibility of a dynamic effect of 

contamination in conditions of two successive days.  When the LTS30% model was 

constructed using test data to evaluate predictive performance, MAE and RMSE statistics 

were found to be equal to 3.75 0C and 4.84 0C, and 74% of the absolute values of the 

prediction residuals were found to be smaller than 5 0C. The repeatability of the HD T95 

changes between 3.15 0C and 3.9 0C, while its reproducibility is between 8.48 0C and 10.9 
0C, according to ASTM D86 method. LTS30% method yields an estimate of 13.0 0C for 

the reproducibility, which is slightly higher than the tabulated value, but still acceptable.  

 

When compared with LS method, none of the parameter estimates of LTS30% model 

has changed signs, and most of the terms have increased their significance. Also, 

comparing SE values of LS and LTS30% models; it was observed that robust regression 

has significantly changed the model parameter estimates, such as x9, x22, x2 × x3, x16 × x22, 

and x3
2. LTS30% model identified eight leverage points, which LS model could not 

identify, and these data points might possibly perturb parameter estimates. Furthermore, 

almost all the absolute residuals above ~7.5 oC were found to be higher in the LTS30% 

regression. In order to see the difference in prediction errors clearly, medians of prediction 

errors of test data were calculated as 1.46 for LS and 0.04 for LTS30% model. From this 

perspective, it can be concluded that prediction errors from LTS30% model is not biased, 

while LS model predictions are ~1.5 oC biased, possibly due to contamination bias in the 

training set.  These all results show that LTS30% model is a more reliable model for HD 

T95 prediction, and can be used for necessary operational interventions for efficient 

operation. 

 

Recommendations regarding the present work can be classified in two distinct 

groups: monitoring and model prediction. For monitoring, other robust multivariate 

methods, such as Minimum Volume Ellipsoid (MVE), S and MM estimators can be used 

to detect the sampling periods, in which normal operating conditions are perturbed, and 



!

!

78 

outliers. To reduce the dimensions of the process, PLS, which is a technique generalizing 

and combining features from PCA and multiple regression, can be used. Beside PCA and 

PLS, there are various different methods, such as ANN, Neuro-Fuzzy Systems and Support 

Vector Machines, which can also be applied to CDU process data. To increase the 

prediction accuracy, various other robust regression methods, such as R-Estimators, MM-

Estimators, Theil-Sen Estimators, can be used. Furthermore, other process variables and 

lagged observations of HD T95 values (as in an autoregressive model) may be included in 

the predictive models. In refinery processes, there is large number of quality variables. 

Hence, robust predictive models may also be constructed for other quality variables, such 

as flash point, T5 and T95 of products, viscosity, and penetration. Another future study is 

to employ Robust Principal Component Regression (PCR) and Robust PLS methods. 

These methods reduce the dimension of multivariable regressors and regress with predicted 

variable. By this way, there is no need to select regressors as done in LS method with 

stepwise regression. 

!  
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