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ABSTRACT 
 

 

DATA COMPRESSION AND RECONSTRUCTION 

IN PROCESS ENGINEERING APPLICATIONS 

 

 

Recent improvements in sensor technology have resulted in huge amount of 

measured process data along with the increasing need for compression prior to storage. 

Hence, efficient process data compression and reconstruction techniques gain importance 

in various tasks such as process monitoring, system identification, and fault detection to 

save storage space and facilitate data transmission between a data collecting node and a 

data processing node. Main purpose of this thesis work is to be able to achieve the highest 

degree of compression and de-noising while preserving the key features of the original data 

upon retrieval and decompression. With this aim, the employed are the most appropriate 

dimensionality reduction technique among Piecewise Aggregate Approximation (PAA), 

One Dimensional and Two Dimensional Discrete Cosine Transform (1D-DCT and 2D-

DCT) and One Dimensional and Two Dimensional Discrete Wavelet Transform (1D-DWT 

and 2D-DWT) by adjusting the threshold parameter in filtering. The data sets used are 

PortSimHigh, PortSimLow, SELDI-TOF MS and TEP. These techniques are evaluated in 

terms of compression ratio, reconstruction error norm, % relative global error and % 

relative maximum error for different α-% thresholding levels. It is concluded that high 

compression levels cannot be generated with thresholding percentile values less than 90% 

in both DCT and DWT methods whereas the quality of reconstruction deteriorates at 

higher threshold levels in return for better compression. Furthermore, it is revealed that the 

efficacy of the compression methods strongly depends on the data characteristics. DCT is 

suitable for smooth data sets with random trends whereas DWT is preferred for the noisy 

data sets with high peak content. 2D-DCT and 2D-DWT are favored for the multivariable 

data sets with highly correlated columns. 
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ÖZET 
 

 

PROSES MÜHENDİSLİĞİ UYGULAMALI 

VERİ SIKIŞTIRMA VE YENİDEN OLUŞTURMA 

 

 

Sensor teknolojisindeki son gelişmeler sayesinde büyük miktarlarda proses verisi 

toplanabilmektedir. Fakat bu durum, veri arşivlemeyi kolaylaştırmak için yapılan veri 

sıkıştırma işlemine duyulan ihtiyacı arttırmıştır. Bunun sonucu olarak, verilerin daha az yer 

kaplaması ve veri toplayan ve işleyen düğümler arasındaki iletimi hızlandırmak için proses 

izleme, sistem tanımlama ve hata saptama gibi birçok alanda proses verisi sıkıştırma ve bu 

veriyi yeniden oluşturma teknikleri önem kazanmıştır. Bu tez çalışmasının ana amacı, 

orijinal veri setlerinin temel özelliklerini koruyarak yüksek derecelerde sıkıştırma oranları 

elde edebilmek ve bunun yanında gürültülü verilerden kurtulabilmektir. Bu amaçla, 

süzgeçleme işlemindeki eşik seviyesi ayarlanarak parçalı kümelemeyle yaklaşımlama, bir 

ve iki boyutlu ayrık kosinüs dönüşümü ve bir ve iki boyutlu ayrık dalgacık dönüşümü 

tekniklerinin verimlilikleri değerlendirilmiştir. Bu çalışmada, birbirinden farklı özellikleri 

olan PortSimHigh, PortSimLow, SELDI-TOF MS ve TEP veri setleri kullanılmıştır. Bahsi 

geçen sıkıştırma teknikleri, değişik eşik seviyeleri kullanılarak sıkıştırma oranı, yeniden 

oluşturma hata normu, % göreli global hata ve % göreli maksimum hata değerleri baz 

alınarak karşılaştırılmıştır. Ayrık kosinüs ve dalgacık dönüşümü metotları ile %90’dan 

küçük eşik seviyeleri kullanıldığında yüksek sıkıştırma oranlarının elde edilemediği fakat 

yüksek eşik seviyelerinde daha iyi sıkıştırma oranları karşılığında veriyi yeniden oluşturma 

kalitesinin kötüleştiği sonucuna varılmıştır. Ayrıca, sıkıştırma tekniklerinin verimliliğinin 

büyük oranla kullanılan veri setlerinin özelliklerine bağlı olduğu anlaşılmıştır. Ayrık 

kosinüs dönüşümü metodu rastgele eğilimleri olan düzgün veri setleri için tercih edilirken, 

ayrık dalgacık dönüşümü metodu çok fazla tepe noktası olan gürültülü veri setleri için daha 

uygundur. Üstelik, kolonları arasında ilişiği olan çok değişkenli veri setleri için iki boyutlu 

ayrık kosinüs ve dalgacık dönüşümü metotlarını kullanmak daha kazanımlıdır. 
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1.  INTRODUCTION 

 

 

Due to advances in information systems technology, plant historians can archieve 

vast amount process data. In many applications, such as process monitoring, fault 

detection, fault identification, fault classification, image processing and signal processing, 

dealing with multi-dimensional data such as image data, stock market data and chemical 

process data, data compression is often required to save storage space and speed up 

retrieval time. The objective of this study is to be able to achieve the highest degree of 

compression while retaining the prominent features of the original data upon retrieval and 

decompression by selecting the most appropriate transform method and the optimum 

thresholding limit used in filtering. 

 

There have been only a few studies related to process data storage and compression 

although there are many publications in the areas of image and signal compression. Hale 

and Sellars (1981) published one of the earliest papers on piecewise linear compression 

methods (boxcar and backward slope) that have been used on process monitoring and 

control systems in Du Pont factories. Afterwards, swinging door (Bristol, 1990) and 

piecewise linear online trending (PLOT) algorithms (Mah et al., 1995) were developed by 

modifying the boxcar and backward slope algorithms. Piecewise linear compression 

techniques are the simplest dimensionality reduction methods and, thus, they are generally 

preferred in the chemical process industries. 

 

Bakshi and Stephanopoulos (1996) and Misra et al. (2000) modified existing 

wavelet-packet decomposition algorithms for on-line data compression concluding that 

better compression can be achieved compared to batch methods due to efficient indexing 

and bookkeeping schemes in on-line compression methods. Furthermore, Vedam et al. 

(1998) developed B-Spline based data compression and de-noising algorithm, achieving 

high compression with small reconstruction error. On the other hand, Thornhill et al. 

(2004) showed that data compression can sometimes give misleading information about 

statistical properties of the data (e.g. mean and variance), concluding that compressed data 

can be useless for some tasks such as statistical monitoring. 
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Watson et al. (1998) compared the effectiveness of the piecewise linear compression 

techniques (boxcar and backward slope), transform compression methods (discrete Fourier, 

discrete cosine and discrete wavelet transform) and vector quantization by using plant data 

and concluded that the wavelet transform performs best in reconstruction since wavelets 

are well suited for describing localized changes. Only one dimensional transform 

techniques were studied in this paper, whereas two dimensional transform techniques could 

also be investigated for analyzing multiple time series with column-correlations in order to 

improve the compression/reconstruction performance. Hence, the central aim of this thesis 

is to extend the work of Watson et al. (1998) by investigating two dimensional discrete 

cosine and two dimensional discrete wavelet transform algorithms along with data sets 

with different column-correlation characteristics. Therefore this thesis work can be 

perceived as an overhauling of the work of Watson et al. (1998) using techniques that have 

become popular since then in mainly image processing. 

 

The main purpose of this thesis is to compare different data compression and 

lossy/lossless reconstruction methods Piecewise Aggregate Approximation (PAA), One 

Dimensional and Two Dimensional Discrete Cosine Transform (1D-DCT and 2D-DCT) 

and One Dimensional and Two Dimensional Discrete Wavelet Transform (1D-DWT and 

2D-DWT), including the thresholding method as a lossy compression step and ZIP as the 

lossless encoding algorithm by measuring compression ratio, reconstruction error norm, % 

relative global error and % relative maximum error for different α-% thresholding levels 

using the data sets PortSimHigh, PortSimLow, SELDI-TOF MS and TEP. 

 

In Chapter 2, the fundamentals of data compression and lossy/lossless reconstruction 

including the compression methods (direct and transform methods), the algorithms used in 

lossless compression (Lempel-Ziv, Run-Length Encoding and Huffman Coding) and the 

filtering methods (thresholding and zero padding methods) are briefly reviewed. 

Definitions of compression ratio, % reduction and Shannon entropy which are used to 

measure the degree of compression are given. Illustrations of the filtering methods applied 

to transform coefficients are also presented in Section 2.4. 
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In Chapter 3, the characteristics of the data sets used in thesis (PortSimHigh, 

PortSimLow, SELDI-TOF MS and TEP) are given in detail to facilitate the interpretation 

of the compression/reconstruction results presented in later chapters. 

 

Chapter 4 covers the two irreversible techniques; Piecewise Aggregate 

Approximation (PAA) which is the simplest data compression technique and data 

quantization. PAA technique is studied by using single representative columns of the 

PortSimHigh, SELDI-TOF MS and TEP data sets for different segment sizes. The effect of 

the frame size on compression is measured in terms of compression ratio, error norm and 

the Shannon entropy. Furthermore, quantization technique is studied to be able to improve 

the compression performance of PAA. Optimum frame size used in PAA and optimum 

number of digits kept after the decimal in quantization are also investigated. 

 

In Chapter 5, Discrete Cosine Transform (DCT) is explained in detail. The formulas 

used for calculating 1D-DCT and 2D-DCT coefficients are given. Detailed 1D-DCT and 

2D-DCT analyses are presented in Section 5.3 for the overall PortSimHigh, PortSimLow, 

SELDI-TOF MS and TEP data sets. Furthermore, 1D-DCT and 2D-DCT techniques are 

compared by using the overall data sets for different thresholding percentile values in the 

[15%-99.8%] range. The effect of the percentile values used in thresholding step on 

compression is measured in terms of compression ratio, mean error norm, % relative global 

error and % relative maximum error. 

 

Chapter 6 is devoted to Discrete Wavelet Transform (DWT) which is favored in 

various applications such as on-line data compression and pattern-matching. The formulas 

used for calculating multi-level 1D and 2D wavelet transform coefficients (approximation 

and detail coefficients) are given. Detailed 1D-DWT and 2D-DWT analyses are presented 

in Section 6.3 using wavelet types db1 for the PortSimHigh and PortSimLow data sets, 

db4 for the SELDI-TOF MS data set, and sym4 for the TEP data set at different wavelet-

decomposition levels. In addition, the illustrations of the three-level wavelet 

decompositions with 1D-DWT and 2D-DWT using the wavelet type db1 for the 

PortSimHigh and PortSimLow data sets are given in Sections 6.1.1 and 6.2.1, respectively. 

The decomposition level in DWT is selected so as to generate the same compression level 

produced by DCT at the percentile value of 99.5%, and thus, reconstruction error norms 
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produced in DCT and DWT can be compared at the same compression level. Furthermore, 

1D-DWT and 2D-DWT techniques are compared by using the overall data sets for 

different thresholding percentile values in the [15%-99.8%] range. The effect of the 

percentile values used in thresholding step on compression is measured in terms of 

compression ratio, mean error norm, % relative global error and % relative maximum 

error. 

 

Chapter 7 deals with the construction of a trajectory matrix for its use in two 

dimensional compression of one dimensional data. The transformation of one dimensional 

data into two dimensional data for compression and reconstruction is studied by composing 

the trajectory matrix and then applying the 2D-DCT method using single representative 

columns of the PortSimHigh and TEP data sets. 

 

Chapter 8 is the overall summary of the previous chapters stating the results of this 

thesis work. A few comments are given related to future work in the light of the 

conclusions obtained in this study. 

 

All of the computations are performed in MATLAB. The MATLAB codes used in 

this study are given in Appendix A. 
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2.  FUNDAMENTALS OF DATA COMPRESSION AND 

RECONSTRUCTION 

 

 

Data compression is required to save storage space and to speed up data transmission 

between a data collecting node and a data processing node. Data compression can be 

achieved by the elimination of redundant data. Compression algorithms transform a data 

set by removing repetitions and by removing or filtering noise in the data. Most algorithms 

consist of the combination of transformation, quantization and coding steps (Watson et al., 

1998) as illustrated in Figure 2.1. 

 

2.1.  Data Compression Methods 

 

Compression methods can be classified into two groups: 

 

   (i)   Direct Methods 

 Piecewise Linear Compression 

(i)  Boxcar, Backward Slope and Swinging Door algorithms 

 

  (ii)   Transform Methods 

 Karhunen-Loeve Transform (KLT) 

 Discrete Fourier Transform (DFT) 

 Discrete Cosine Transform (DCT) 

 Discrete Wavelet Transform (DWT) 

 

The transform methods generally give better results than direct ones in which linear 

interpolation is used for reconstruction. Piecewise linear compression techniques perform 

well for steady-state operations and signals that have little noise (Bakshi and 

Stephanopoulos, 1996). However they do not take into account changes in other variables 

and this may affect correlation between signals leading to the loss of valuable correlation 

information (Imtiaz and Choudhury, 2007). 
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Figure 2.1. Components of a Data Encoding/Decoding Algorithms. 

.
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Karhunen-Loeve Transform (KLT), or Principal Components Analysis (PCA), 

mostly used in multivariate data analysis, gives the best possible compression ratio, 

however its application is difficult since transformation kernel is not separable and data 

dependent. On the other hand, Discrete Fourier Transform (DFT) is fast and easy method 

using both sine and cosine functions, its transformation kernel is linear, separable and 

symmetric, however compression ratio is not adequate. Discrete Cosine Transform (DCT) 

is asymptotically equivalent to KLT and it is the easiest method using only cosine waves 

(Khayam, 2003). It performs mapping from time to frequency domain. Discrete Wavelet 

Transform (DWT) is generally preferred when dealing with smaller details consisting of 

high frequencies as wavelets are suitable for sudden changes. Wavelets can also describe 

discontinuities in signal analysis as they deal with both time and frequency domains 

simultaneously whereas DCT operates only in frequency domain (Stark, 2005). 

 

Piecewise Aggregate Approximation (PAA) is a fast and easy dimensionality 

reduction technique in which data are divided into equal sized frames within which the 

data are averaged to a constant value without transformation, however some important 

patterns can easily be discarded (Lkhagva et al., 2006). 

 

In this thesis work, the DCT and DWT methods will be used on the data sets that are 

described in Chapter 3. The PAA and quantization techniques will also be applied for 

further dimensionality reduction. 

 

2.2.  Data Compression Algorithms 

 

There are two types of compression (encoding): 

 

   (i)   Lossless (Reversible) Compression 

 Restored data file is identical to the original data. 

 It is used in ZIP, RAR, GIF and TIFF applications. 

 

  (ii)   Lossy (Irreversible) Compression 

 Restored data file is an approximation of the original data. 
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 It is used for visual and audio data such as JPEG and MPEG applications 

and also on Internet. 

 

Modeling used in lossless data compression can be classified into two groups; 

statistical and dictionary-based. Statistical modeling encodes a symbol based on its 

occurrence probability, however in dictionary-based modeling, strings of symbols are 

encoded by a single code (Nelson and Gailly, 1996). 

 

In lossless data compression, efficient redundancy removal is required. Following 

algorithms are generally used in reversible compression (Nelson and Gailly, 1996); 

 

 Lempel-Ziv (LZ) Coding, in which a dictionary of previously seen strings of symbols 

is composed and these groups are replaced by a single code. 

 Run-Length Encoding (RLE), in which repetitions are stored as a single data. 

 Huffman Coding is the most commonly used algorithm, in which codes are assigned 

to symbols and a symbol with high occurrence probability generates a shorter code. 

 

WinZIP is a file archiving application generally compressing files to roughly half the 

size of the original file (Sayood, 2003). RAR software is another application achieving 

somewhat better compression with high speed, for instance WinRAR can compress files up 

to 8589 billion GB (Salomon, 2007). Compression ratio is higher for data having repeated 

patterns. 

 

For lossless compression algorithms, compression effect is measured by following 

definitions; compression ratio, % reduction and entropy; 

 

                   
                       

                      
 (2.1) 

 

                
                      

                       
      (2.2) 
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In information theory, Shannon entropy is generally used to measure encoded 

information in a message. Large entropy means that the message has high information 

content and data compression causes entropy reduction. Shannon entropy is defined in bits 

as following (Nelson and Gailly, 1996); 

 

                
 
    (2.3) 

 

where, H denotes the Shannon entropy of a discrete random variable                

having the probability mass function                satisfying the following 

constraints; 

             
    

 

In lossy compression, a slight distortion in images and sounds (almost unnoticeable 

to human eye and ear) can be accepted for better compression. In irreversible compression, 

data are firstly transformed into a transform domain by using one of the discrete transform 

techniques mentioned earlier. Then, the transform coefficients are rounded off according to 

a defined quality level in the quantization step, where the loss of signal occurs. Finally, 

quantized coefficients are compressed with lossless encodings such as ZIP and RAR 

(Nelson and Gailly, 1996). 

 

2.3.  Data Quantization and Transform Coefficients Filtering 

 

Quantization step reduces number of bits (or, decreases number of digits) 

representing the data. It is expected that error in reconstruction will increase as the number 

of bits representing data decreases (Khayam, 2003). On the other hand, filtering of the 

transform coefficients discards most of the transform coefficients having relatively small 

amplitudes without causing significant reconstruction error (i.e., with acceptably 

insignificant loss of information content of the original data). 

 

There are mainly two types of filtering applied to transform coefficients: 

 

 Truncating/shrinking the number of transform coefficients by cutting from the end of 

the transform-coefficients vector 
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 Thresholding the insignificant transform coefficients throughout the transform-

coefficients vector 

 

In the first method, only the first few coefficients (the largest ones) are kept and rest 

of them are set to zero. In the reconstruction step, zero padding method inserts zeros to the 

end of the cut transform coefficients and then inverse transform (decoding) is applied. It is 

expected that there will be nearly no loss of information when zero padding is used for 

smooth signals with low-frequency content that do not contain significant noise since their 

transform coefficients die out exponentially towards almost zero. This method is not 

applicable for signals with high-frequency content since their transform coefficients do not 

die out, they persist to be significant throughout the transform-coefficients vector. 

 

In thresholding, the transform coefficients the magnitudes of which are between 

user-defined threshold limits are set to zero. Information loss should be minimized by 

adjusting these upper and lower thresholds. Taking of the absolute values of transform 

coefficients, sorting them out, and setting the threshold limits by considering a percentile 

of the frequency distribution of the transform coefficients magnitudes may be necessary. 

For signals with high-frequency content, the thresholding method is the preferred one. 

 

In the later chapters of this thesis work, the data compression and lossy/lossless 

reconstruction will be investigated by using compression techniques PAA, DCT and DWT, 

including the thresholding method as a lossy-compression step and ZIP as the encoding 

algorithm. These techniques will be compared by measuring compression ratio, % 

reduction, entropy and reconstruction error norm for different α-% thresholding levels. 

 

2.4.  Illustration of Transform Coefficients Filtering 

 

PortSimHigh data set (stock market prices and their return values) described in 

Chapter 3 will be used here for the illustration of the zero padding and thresholding 

methods using the DCT technique. Return data series are generally used instead of price 

data series in stock market calculations and portfolio optimization. 
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Figure 2.2a and Figure 2.2b show the low frequency content (price) and high 

frequency content (return) data series (50
th
 column of PortSimHigh data set) and their 

complete DCT coefficients are shown in Figure 2.2c and Figure 2.2d. Figure 2.2e and 

Figure 2.2f are given to illustrate the first 1000 DCT coefficients. Figure 2.2g and Figure 

2.2h are given to show the zoomed first 100 DCT coefficients. As it is seen from these 

figures, the last 9000 transform coefficients of the price data are basically zero, thus they 

can easily be eliminated in order to achieve high compression levels without causing 

significant reconstruction error. However, unlike of the price transform coefficients, the 

transform coefficients of the return data persist to exist without any decay, therefore they 

cannot be eliminated as directly as those of the price data. 

 

 

Figure 2.2. Stock Prices, Their Return Values, Full and Zoomed DCT Coefficients. 

 

In the zero padding method, the first 100 transform coefficients are kept and the rest 

(9900 coefficients) are truncated (thus storing only the first 100 coefficients that are 

significant as shown in Figure 2.3c and Figure 2.3d) for both the price and return series. 

Actually, transform coefficients of the return data cannot be eliminated directly as they do 

not die out exponentially towards zero. However, for illustration purposes, transform 
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short DCT coefficient vector is padded with 9900 zeros to complete its length to 10000 

(original data length) as illustrated in Figure 2.3a and Figure 2.3b. 

 

 

Figure 2.3. Cut and Zero Padded Full and Zoomed DCT Coefficients. 
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return, as illustrated in Figure 2.4a and Figure 2.4b. Transform coefficients between these 

limits are set to zero. Thresholded transform coefficients are shown in Figure 2.4c and 

Figure 2.4d. Figure 2.4e and Figure 2.4f illustrate the zoomed first 100 thresholded 

transform coefficients. 
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applying the zero padding method to the discarded 9900 transform coefficients are given in 
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show the reconstruction errors ( = original - reconstructed). The zoomed reconstruction 

errors of the first 1000 prices and returns are also given in Figure 2.5e and Figure 2.5f. In 

addition, if fewer transform coefficients were truncated, there is no doubt that 

reconstruction would be better with less distortion. 

 

Plots of the original and reconstructed signals for price and return data series after 

applying the thresholding method are given in Figure 2.6a and 2.6b. Return data set is 

reconstructed much better as compared to Figure 2.5b. The reconstruction errors of the 

return data set are slightly larger than those of the price data set as illustrated in Figure 2.6c 

and Figure 2.6d although smaller α-% is taken when thresholding the return data set. Fewer 

transform coefficients could be eliminated by using smaller α-% leading to a better 

reconstruction. 

 

 

Figure 2.4. DCT Coefficients with Threshold Limits, Full and Zoomed Thresholded DCT 

Coefficients. 
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Figure 2.5. Original versus Reconstructed Signals and Reconstruction Errors after 

Applying the Zero Padding Method. 

 

 

Figure 2.6. Original versus Reconstructed Signals and Reconstruction Errors after 

Applying the Thresholding Method. 
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Error in the reconstruction step increases as the number of discarded transform 

coefficients increases. It is important to adjust threshold limits and the number of cut 

transform coefficients in lossy quantization step as the difference between reconstructed 

and original signal should be minimized while maximizing compression. 

 

  



16 

 

3.  DATA SETS USED AND THEIR CHARACTERISTICS 

 

 

Vast variety of data sets are available for various applications. Each data set has 

specific features. It is usually said “Let the data speak for itself!” to emphasize the 

importance of the original untreated data itself. Statistical algorithms tailored to specific 

applications such as process monitoring, fault detection, image and signal processing 

dealing with multi-dimensional data such as image data, audio data, earthquake data, stock 

market data, bioinformatics data and chemical process data are gaining importance. In this 

chapter, the data sets used in compression studies are characterized in terms of smoothness, 

noise content and frequency distribution of their correlation coefficients. Thus, this chapter 

is expected to provide valuable insight on properties of the data sets used and facilitate the 

interpretation of the compression/reconstruction results presented in later chapters. 

 

3.1.  Synthetic Stock Market Data Sets 

 

The synthetic stock market price data sets were generated using a MATLAB code 

that was developed based on hyperspherical decomposition algorithm. This algorithm and 

the code are parts of an unpublished work of the thesis advisor Prof. Uğur Akman enabling 

the generation of set of stock prices for arbitrary number of equities of arbitrary length 

with adjustable overall market correlation structure. 

 

Each synthetic stock market data set is an ASCII text file of about 52.5 MB size 

consisting of 10000 rows and 500 columns. As far as Figure 3.1 and Figure 3.2 are 

concerned, it can easily be seen that data are highly correlated in case of PortSimHigh 

leading to higher correlations among the columns of PortSimHigh data set, whereas there 

is less correlation between those of PortSimLow data set. 
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Figure 3.1. PortSimHigh Data Set Consisting of 10000 Rows and 500 Columns 

Representing Highly Correlated 500 Stock Prices. 

 

 

Figure 3.2. PortSimLow Data Set Consisting of 10000 Rows and 500 Columns 

Representing Less Correlated 500 Stock Prices. 
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3.2.  Ovarian Cancer Mass Spectrometry (MS) Data Set 

 

The surface-enhanced laser desorption/ionization time-of-flight mass spectrometry 

(SELDI-TOF MS) data are used to detect a disease from the circulating proteome such as 

plasma (Liu, 2012). MS produces high dimensional data consisting of molecule intensities 

for certain mass to charge (m/z) ratios. Each SELDI-TOF MS data set for a cancer sample 

provided by the home page of the National Cancer Institute
1
 is a text file of about 5.5 MB 

size and six ovarian cancer samples (columns of data) with 337988 features (rows of data) 

are used in thesis. 

 

 

Figure 3.3. Scaled Intensities of the SELDI-TOF MS Data Set of Size 3379886  

for Ovarian Cancer Samples. 

 

3.3.  Tennessee-Eastman Plant (TEP) Data Set 

 

The Tennessee-Eastman process (TEP) has been widely used as a benchmark 

simulation developed by Downs and Vogel (1993) for a real plant of the Eastman 

Chemical Company operating at Tennessee. The TEP deals with a multivariable, non-

linear and unstable open-loop chemical plant in which product rate and composition should 

be maintained at desired levels while other variables are kept within shutdown limits 

                                                
1 http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp 
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(Zerkaoui et al., 2010). TEP benchmark also includes various sensor measurement errors 

and possibilities for generating operational faults. McAvoy and Ye (1994) proposed a 

multi-loop (decentralized) PID control system for the TEP and then a nonlinear model 

predictive control (NMPC) strategy is followed by Ricker and Lee (1995). Besides the 

control issue, an optimization problem should be solved to minimize the operating cost of 

the plant by using techniques such as mixed-integer linear programming (MILP) or non-

linear programming (NLP) (McAvoy, 1999). 

 

The TEP, illustrated in Figure 3.4, produces two liquid products (G and H) and one 

by-product (F) from four gaseous reactants (A, C, D and E) and one inert component (B) 

by using the following five unit operations; a two-phase exothermic reactor, a condenser, a 

flash separator, a recycle compressor and a product stripper. The reactions are 

approximately first-order with respect to the reactant concentrations, irreversible and 

exothermic of the following form; 

 

                         

                            

                     

                

 

 

Figure 3.4. TEP Process (Downs and Vogel, 1993). 
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The gaseous reactants are fed to the reactor where the liquid products are formed in 

the presence of a non-volatile catalyst dissolved in the liquid phase. The product stream 

exiting the reactor passes through a condenser and a vapor-liquid (V/L) separator 

respectively. B and F are purged as vapor from the V/L separator. Non-condensed 

components recycle back to the reactor through a compressor, whereas condensed ones are 

pumped through a product stripper where G and H exit the base (Downs and Vogel, 1993). 

 

There are six modes of process operation at three different G/H mass ratios where the 

ratio of 50/50 (G/H) with a production rate of 7038 kg/h for each product is the base mode 

(Ricardez-Sandoval et al., 2009). The closed-loop control system requires the G/H ratio 

feedback to adjust the D/E ratio (Lu et al., 2004). 

 

Table 3.1. Operation Modes of the TEP (Zhao et al., 2004). 

mode desired G/H mass ratio desired production (kg/h) 

1 50/50 14076 

2 10/90 14077 

3 90/10 11111 

4 50/50 maximum 

5 10/90 maximum 

6 90/10 maximum 

 

The process has 12 manipulated and 41 measured variables consisting of 22 

continuous and 19 composition measurements (Ge and Song, 2007). It is assumed that all 

of the process measurements include Gaussian noise. 

 

Table 3.2. Continuously Measured Process Variables (Ge and Song, 2007). 

1 A feed 12 Product separator level 

2 D feed 13 Product separator pressure 

3 E feed 14 Product separator underflow 

4 Total feed 15 Stripper level 

5 Recycle flow 16 Stripper pressure 

6 Reactor feed rate 17 Stripper underflow 

7 Reactor pressure 18 Stripper temperature 

8 Reactor level 19 Stripper steam flow 

9 Reactor temperature 20 Compressor work 

10 Purge rate 21 Reactor cooling water outlet temperature 

11 Product separator temperature 22 Separator cooling water outlet temperature 
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Table 3.3. Manipulated Process Variables (Ge and Song, 2007). 

1 D feed flow  

2 E feed flow  

3 A feed flow 

4 Total feed flow 

5 Compressor recycle valve 

6 Purge valve 

7 Separator pot liquid flow  

8 Stripper liquid product flow  

9 Stripper steam valve 

10 Reactor cooling water flow 

11 Condenser cooling water flow 

12 Agitator speed 

 

There are eight different disturbance scenarios given in Table 3.4 which can be 

simulated in order to test disturbance rejection and robustness of PI controllers. The 

process should recover quickly and smoothly from these disturbances (Downs and Vogel, 

1993). 

 

Table 3.4. Disturbance Scenarios for the TEP (Conradie and Aldrich, 2005). 

Disturbance description Type 

A, B, C feed composition Random variation 

D feed temperature Random variation 

C feed temperature Random variation 

Reactor cooling water inlet temperature Random variation 

Condenser cooling water inlet temperature Random variation 

Reaction kinetics Slow drift 

Reactor cooling water valve Sticking 

Condenser cooling water valve Sticking 

 

Table 3.5. Process Operating Constraints (Jockenhövel et al., 2003). 

Process variable 

 

Normal operating limits Shut down limits 

Low limit High limit Low limit High limit 

Reactor pressure (kPa) None 2895 None 3000 

Reactor level (m
3
) 11.8 21.3 2.0 24.0 

Reactor temperature (K) None 423 None 448 

Separator level (m
3
) 3.3 9.0 1.0 12.0 

Stripper base level (m
3
) 3.5 6.6 1.0 8.0 

 

Dynamic simulations of the TEP were performed in MATLAB by giving different 

fault disturbances to the process to obtain the data set to study its compression. The 
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Simulink code, “MultiLoop Skoge Model 1” available at Prof. Ricker’s home page (http:// 

depts.washington.edu/control/LARRY/TE/download.html) was executed in MATLAB to 

simulate the closed-loop dynamic behavior of the plant. In configuration parameters, solver 

type was set to “ODE 1” which is the Euler method by default. Simulation time and sample 

rate were taken as 500 hours and 100 samples per hour respectively. There are eight 

different disturbance options. The TEP simulation begins without any faults, however a 

disturbance was given after 100 hours and the simulation proceeds without any 

disturbances at the end of a time period of 100 hours. Thus, in this way, three different 

consecutive disturbances were given to the system till the end of the simulation and finally 

the output file having 50001 rows and 41 columns of about 23 MB size, containing sensor 

measurements from all available spots, was obtained. 

 

 

Figure 3.5. Complete Output Signals of the TEP as a result of Three Consecutive Fault 

Disturbances in Simulink in Scaled Format. 
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3.4.  Correlation Properties of the Data Sets 

 

Correlation matrix is generated by calculating the correlation coefficients between 

the columns of a data set. The diagonal elements of this symmetric matrix are one denoting 

the correlation of a column with itself. There is a high correlation between columns if most 

of the correlation coefficients are close to either one or minus one (minus values indicate 

inverse correlation), whereas coefficients approaching zero imply less correlation. In this 

section, correlation matrix of each data set mentioned above (PortSimHigh, PortSimLow, 

SELDI-TOF MS and TEP) is calculated and histograms of the matrix coefficients 

excluding the diagonal elements are plotted. 

 

As far as Figure 3.6 is concerned, it is seen that almost all of the correlation 

coefficients of the PortSimHigh data set are around one, meaning that this data set has the 

highest correlation between its columns, whereas the correlation coefficients of the 

PortSimLow data set spread over the interval [-1,1] indicating less correlation. There is 

virtually no correlation between columns of both TEP and SELDI-TOF MS data sets as all 

of their correlation coefficients are close to zero. It can also be stated that there are equal 

number of column pairs with positive and negative valued coefficients of the TEP data set 

since the correlation coefficients are distributed symmetrically around zero. The effect of 

the correlation properties of these data sets will be investigated for 

compression/reconstruction studies in the following chapters. 

 

The data sets to be used in compression studies can be characterized in terms of 

smoothness, noise content and frequency distribution of their correlation coefficients as 

shown in Table 3.6. 
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Figure 3.6. The Frequency Distributions of the Columnwise  

Correlation Coefficients of the Data Sets. 

 

Table 3.6. Characteristics of the Data Sets used. 

Data Set Characteristics 

PortSimHigh 

Increasing and decreasing trend 

White noise 

Highly correlated 

PortSimLow 

Increasing and decreasing trend 

White noise 

Less correlated, including inverse correlation 

SELDI-TOF MS  

Sparse sharp peaks 

Significant baseline noise 

Highly uncorrelated 

TEP 

Upward and downward jumps at the location of fault disturbances  

Mixture of almost pure noise and level jumps in trendy signals 

Highly uncorrelated, including inverse correlation 
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4.  DATA COMPRESSION VIA PIECEWISE AGGREGATE 

APPROXIMATION AND DATA QUANTIZATION 

 

 

4.1.  Piecewise Aggregate Approximation 

 

Piecewise Aggregate Approximation (PAA) proposed by Keogh et al. (2000) is a 

dimensionality reduction technique in which data set in n dimensions is divided into w 

equal sized frames in each of which the data portions are represented with their arithmetic 

averages. As a result, n dimensional data set is reduced to w dimensions by composing 

another (approximating) data set consisting of the mean values as horizontal line segments. 

 

A vector c of length n can be represented by another vector x having w dimensions 

and the i
th

 element of x is computed by the following equation (Keogh et al., 2000); 

 

    
 

 
   

 

 
 

  
 

 
       

 (4.1) 

where       

 

The segmented data set composed by the PAA cannot be reconstructed like other 

transformed data sets (such as those obtained via DCT or DWT), and for this reason, the 

PAA is a lossy compression method where the loss depends on the segment size. If only a 

few large segments are used, some important patterns in the original data can be lost. 

However, high compression ratios can be achieved by keeping only the segment 

coordinates instead of the point values on the horizontal segments. Maximum compression 

ratios are expected as the segmented data consist of repeating patterns which are favored in 

lossless compression algorithms, such as the ones used in ZIP or RAR archiving softwares. 

 

In this chapter, the PAA technique is studied by using the 50
th
 column of the 

PortSimHigh data set, second column of the SELDI-TOF MS data set and the 30
th

 column 

of the TEP data set for 10 different segment sizes in the [15-150] range. The effect of the 

frame size on compression is measured in terms of compression ratio, error norm and the 
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Shannon entropy. Internal ZIP command in MATLAB version 7.7.0 (R2008b) is used as 

the lossless compression algorithm. 

 

Two vectors are composed in PAA; x in w dimensions used in entropy calculation 

and y in n dimensions used in compression ratio and error norm calculations. Plots of these 

vectors composed for frame sizes 15 and 150 and the original data set are given in Figure 

4.1 and Figure 4.2 for the PortSimHigh data set and Figure 4.5 and Figure 4.6 for the TEP 

data set. However, frame sizes are taken as 15 and 1000 for the SELDI-TOF MS data set 

as shown in Figure 4.3 and Figure 4.4. Plots of the complete output signals of the TEP data 

set and their segmented values generated for 150 and 1000 segments are also given in 

Figure 4.7, Figure 4.8 and Figure 4.9 respectively. 

 

As far as Figure 4.1 and Figure 4.2 are concerned, it is seen that the segmented data 

set is not continuous, unlike the relatively smooth original data containing white noise. 

Besides, as the number of frames decreases, more data, especially the peak points, are 

missed. However, PAA is a useful method for visualization of the raw data. For instance, 

even as low as 15 segments as illustrated in Figure 4.1 may be considered as adequate to 

follow the major trends of the original data set of length 10000 visually. On the other hand, 

for 150 segments, the segmented values (bottom sub-window of Figure 4.2 that contains 

150 points) and the original data (upper sub-window of Figure 4.2 that contains 10000 

points) may even be undistinguishable to human eye. 

 

As it can be seen from Figure 4.3 and Figure 4.4, in the SELDI-TOF MS data, there 

are sparse sharp peaks and significant baseline noise. For this reason, segmented values 

appear almost as a horizontal line for 15 segments since the sharp peak points are missed 

as shown in Figure 4.3. However, for 1000 segments, locations of the major peak points 

can be detected by segmented values (bottom sub-window of Figure 4.4) illustrating the 

process trends of the original data set (upper sub-window of Figure 4.4) of length 337988 

visually. 
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Figure 4.1. Original versus Segmented Data with 15 Segments 

using the 50
th 

column of the PortSimHigh Data Set. 

 

 

Figure 4.2. Original versus Segmented Data with 150 Segments 

using the 50
th 

column of the PortSimHigh Data Set. 
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Figure 4.3. Original versus Segmented Data with 15 Segments 

using the Second column of the SELDI-TOF MS Data Set. 

 

 

Figure 4.4. Original versus Segmented Data with 1000 Segments 

using the Second
 
column of the SELDI-TOF MS Data Set. 
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As it can be seen from Figure 4.5 and Figure 4.6, the TEP data points are too close to 

each other and there are peaks and shifts in the data set. It is difficult to divide this noisy 

data set containing non-uniformly occurring peaks into equal sized frames, and thus, large 

segment sizes are required to visualize the original data thoroughly. For this reason, 15 

segments are not adequate to illustrate the major trends of the original data set of length 

10000 visually as shown in Figure 4.5. However, segmented values containing 150 points 

(bottom sub-window of Figure 4.6) do show peaks and shifts besides the process trends 

approximating the original data (upper sub-window of Figure 4.6). 

 

Output signals of the TEP including all of the 41 measured variables and their 

segmented values generated for 150 and 1000 segments are shown in Figure 4.7, Figure 

4.8 and Figure 4.9 respectively. 50001 dimensional data set is reduced to 150 and 1000 

dimensions by composing the segmented data set consisting of the mean values of the 

horizontal line segments. The segmented data set composed by using 1000 segments 

approximates the output signals better than the data set consisting of 150 points as 

expected, since the loss in compression decreases as the segment size increases. However, 

segmented values consisting of only 150 points instead of the original data set of length 

50001 are adequate for the visualization of the raw data which is favored in specific 

applications such as process monitoring and fault detection, as the major process events 

including important peak points, upward/downward shifts (observed in measurements one 

and four) and decreasing/increasing trends (observed in measurements 28 and 34) occurred 

due to the consecutive fault disturbances can easily be followed by plant operators as 

illustrated in Figure 4.8.  

 

In addition, noise removal is one of the major advantages of the dimensionality 

reduction technique, PAA as it can be seen from Figure 4.8 that for 150 points, segmented 

values of the measurements consisting of almost pure noise (measurements nine and 19) 

are smoothened around a straight line. However, the amplitudes of the segmented data set 

generated by using 1000 segments are very close to those of the output signals of the TEP, 

thus noisy measurements cannot be removed thoroughly as it can be seen from Figure 4.9 

although original data set is approximated perfectly. 
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Figure 4.5. Original versus Segmented Data with 15 Segments  

using the 30
th 

column of the TEP Data Set. 

 

 

Figure 4.6. Original versus Segmented Data with 150 Segments 

using the 30
th
 column of the TEP Data Set. 
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Figure 4.7. Complete Output Signals of the TEP as a result of Three Consecutive Fault 

Disturbances in Simulink in Scaled Format. 

 

Figure 4.8. Segmented Values of the TEP Output Signals with 150 Segments as a result of 

Three Consecutive Fault Disturbances in Simulink in Scaled Format. 
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Figure 4.9. Segmented Values of the TEP Output Signals with 1000 Segments as a 

result of Three Consecutive Fault Disturbances in Simulink in Scaled Format. 

 

Compression ratios, error norms and entropies of the segmented data (as computed 

using the equations given in Chapter 2) for different frame sizes are given in Figure 4.10, 

Figure 4.11 and Figure 4.12 for three data sets, respectively. Compression ratios and error 

norms increase steadily as the number of segments decreases. Reduction ratios of the 

segmented data set composed from both the TEP and SELDI-TOF MS data are much 

lower than those of the PortSimHigh data due to their high noise content with sudden 

changes. As a result, it is more difficult to visualize these two data sets by the PAA with 

higher error norms, compared to PortSimHigh data set. 

 

Since the entropy of the original data is independent of the frame size, it is shown as 

constant via the thick horizontal line. As the number of segments decreases, entropies of 

the segmented data also decrease since original data set is represented by fewer bits. For 

instance, the Shannon entropy of the segmented data with 90 frames is almost half of that 

of the original data, in other words, the information content of the original data is reduced 

by half, as it can be seen from Figure 4.10, Figure 4.11 or Figure 4.12. 
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Figure 4.10. Compression Ratio, Error Norm and Entropy versus Number of 

Segments using the 50
th 

column of the PortSimHigh Data Set. 

 

 

Figure 4.11. Compression Ratio, Error Norm and Entropy versus Number of 

Segments using the Second column of the SELDI-TOF MS Data Set. 
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Figure 4.12. Compression Ratio, Error Norm and Entropy versus Number of 

Segments using the 30
th
 column of the TEP Data Set. 

 

4.2.  Data Quantization 

 

Quantization is generally applied to the transformed/dimensionality-reduced data sets 

for further compression by eliminating insignificant digits (Mitra and Acharya, 2003). 

Quantization is simply the rounding of numbers to the nearest integer or to a specified 

decimal place. The remaining digits consisting of repeating zeros can provide large 

compression. Amount of digit cutting depends on the magnitude of data value. For instance 

cutting all of the digits after decimal may be reasonable for large numbers such as large 

magnitude flow rate measurements in units cm
3
/day. On the other hand, one or more digits 

after the decimal should be kept for small numbers such as mole fractions varying in the 

[0-1] range. Quantization is a lossy method depending on the amount of discarded digits 

and the quantized data become stepwise if quantization is significant. 

 

0 15 30 45 60 75 90 105 120 135 150
8

10

12

14

Number of segmentsC
o
m

p
re

s
s
io

n
 r

a
ti
o

0 15 30 45 60 75 90 105 120 135 150
2000

3000

4000

5000

Number of segments

E
rr

o
r 

n
o
rm

0 15 30 45 60 75 90 105 120 135 150
2
5
8

11
14
17

Number of segments

E
n
tr

o
p
y

 

 

Segmented data

Original data



35 

 

         

Figure 4.13. The Procedure used in Data Compression 

via PAA Technique Followed by Quantization. 

 

In this section, quantization is applied to the segmented data set produced by the 

PAA in order to increase compression ratios a bit more without any significant increase in 

error norms. The segmented data set consists of numbers having 15 digits after decimal 

thus insignificant digits can easily be discarded for further compression. The vectors x and 

y composed in PAA are quantized by keeping only the first digit and the first three digits 

after the decimal respectively, then the effect of quantization on compression ratio, error 

norm and entropy are studied. Optimum frame size used in PAA and optimum number of 

digits kept after the decimal in quantization are also determined so as to maximize the ratio 

of compression ratio to error norm.  

 

The segmented 50
th 

column of the PortSimHigh data set with 150 segments 

consisting of numbers having 15 digits after the decimal and its quantized form generated 

by keeping only the first three digits after the decimal are given in Figure 4.14. The effect 

of quantization step is not clear since these two data sets are overlapped. 
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Figure 4.14. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=3) 

with 150 Segments using the 50
th 

column of the PortSimHigh Data Set. 

 

 

Figure 4.15. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=1)  

with 150 Segments using the 50
th 

column of the PortSimHigh Data Set. 
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quantization step as one. Thus, quantized data become stepwise as the quantization is more 

significant. 

 

The segmented data set of the second column of the SELDI-TOF MS data composed 

for 1000 segments consisting of numbers having 15 digits after the decimal and its 

quantized form generated by cutting all of the digits after the third digit after the decimal 

are given in Figure 4.16. However, the quantized data set cannot be differentiated from the 

segmented data set by taking the number of digits as low as three. For this reason, another 

plot is given in Figure 4.17 by taking the number of digits used in quantization step as one 

obtaining stepwise quantized data. 

 

The segmented 30
th 

column of the TEP data set with 150 segments consisting of 

numbers having 15 digits after the decimal and its quantized form generated by keeping 

only the first three digits after the decimal are given in Figure 4.18. The effect of 

quantization step cannot be noticed apparently by taking the number of digits as three since 

these two data sets are overlapped. Thus, the number of digits used in quantization step is 

taken as one in order to observe the significance of the quantization step as illustrated in 

Figure 4.19. 

 

 

Figure 4.16. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=3) 

with 1000 Segments using the Second column of the SELDI-TOF MS Data Set. 
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Figure 4.17. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=1) 

with 1000 Segments using the Second column of the SELDI-TOF MS Data Set. 

 

 

Figure 4.18. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=3)  

with 150 Segments using the 30
th 

column of the TEP Data Set. 
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Figure 4.19. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=1)  

with 150 Segments using the 30
th 

column of the TEP Data Set. 
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Entropies of the quantized data with one digit cannot be computed for the 

PortSimHigh and TEP data sets since small numbers become zero after quantization and 

the logarithm of zero is undefined. For that reason, entropies of the original data, 

segmented data with 15 digits and quantized segmented data with three digits are given for 

these two data sets. Entropy of the segmented data is not affected from quantization step as 

it is seen from Figure 4.20, Figure 21 and Figure 4.22, in other words information content 

of the segmented data remains the same after quantization. 

 

Figure 4.23, Figure 4.24 and Figure 4.25 are given to determine the optimum frame 

size used in the PAA and the optimum number of digits kept after decimal in quantization 

so as to maximize the ratio of compression ratio to error norm. It is seen that optimum 

frame size is 150 with one digit for the TEP data, whereas the optimum point is obtained 

with 120 frames and one digit for the PortSimHigh data and 150 frames with three digits 

for the SELDI-TOF MS data. 

 

 

Figure 4.20. Segmented (ndigits=15) versus Quantized Segmented Data  

(ndigits=1 and ndigits=3) Results using the 50
th 

column of the PortSimHigh Data Set. 
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Figure 4.21. Segmented (ndigits=15) versus Quantized Segmented Data (ndigits=1 and 

ndigits=3) Results using the Second column of the SELDI-TOF MS Data Set. 
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Figure 4.22. Segmented (ndigits=15) versus Quantized Segmented Data  

(ndigits=1 and ndigits=3) Results using the 30
th 

column of the TEP Data Set. 

 

 

Figure 4.23. Compression Ratio/Error Norm versus Number of Segments 
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Figure 4.24. Compression Ratio/Error Norm versus Number of Segments 

using the Second column of the SELDI-TOF MS Data Set. 

 

 

Figure 4.25. Compression Ratio/Error Norm versus Number of Segments 

using the 30
th 
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In this chapter, data compression is improved by using the hybrid method consisting 

of two irreversible techniques; the PAA and quantization. PAA is a fast and simple 

dimensionality reduction technique mostly used for the visualization of the original data 

which is favored for yielding high compression ratios due to the repeating patterns in 

segmented data. Furthermore, in process monitoring and fault detection/identification 

tasks, the major process events, upward/downward shifts and decreasing/increasing trends 

can easily be followed visually by the plant operators. However, high error norms are 

obtained in the PAA and there is also the possibility of discarding some important patterns 

in the original data set if large frame widths are used. In addition, it can be stated that PAA 

is not an appropriate method for noisy data sets especially the ones containing peak points. 

Compression ratios can further be increased by quantization due to the repeating zeros 

replaced with discarded digits without any significant increase in error norms. Quantization 

step becomes more effective as the number of frames used in PAA increases. The Discrete 

Cosine Transform (DCT) will be studied in the following chapter in order to reduce error 

norms considerably while maximizing reduction ratios. 
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5.  DATA COMPRESSION VIA DISCRETE COSINE TRANSFORM 

 

 

In transform methods, original data set is transformed into a different domain where 

it can be compressed better by using orthogonal basis functions such as sine, cosine and 

wavelets. Rao and Yip (2001) proposed that these basis functions should be independent to 

achieve high decorrelation, in other words, to reduce autocorrelation within a signal. The 

transform will be more efficient if most of the energy is packed in a few transform 

coefficients (Sayood, 2006). 

 

Discrete Cosine Transform (DCT) shows strong energy compaction property 

meaning that the first few transform coefficients representing lower frequencies contain the 

most important information, whereas the rest of the coefficients representing higher 

frequencies contain the less important information which are not essential in reconstructing 

the original signal (Salomon, 2008). In other words, the amount of energy is mostly packed 

in the first few transform coefficients. Due to this property, high frequency coefficients 

which are close to zero can easily be discarded prior to encoding in order to achieve large 

compression without any significant loss of information. 

 

DCT, similar to Discrete Fourier Transform (DFT), operates on a function at finite 

number of discrete data points using only cosine function as the basis function, whereas 

DFT uses both cosine and sine functions. DCT is used in many applications such as 

process monitoring, noise filtering, image processing, signal processing, etc. DCT is the 

easiest dimensionality reduction technique to achieve large compression. In DCT, each 

transform coefficient is encoded independently. DCT is a lossless transformation that does 

not actually perform compression, the amount of loss and compression is determined by 

the quantization step following transformation (Nelson and Gailly, 1996). 

 

Large compression can be obtained by quantization due to the repeating zeros 

replaced with transform coefficients with small amplitudes without any significant 

distortion. Quantized transform coefficients are encoded and finally Inverse DCT is 

performed on the transform coefficients for decompression. 
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5.1.  One Dimensional Discrete Cosine Transform 

 

DCT performs reversible mapping from time to frequency domain. It is a fast, linear, 

invertible, separable and data independent transform utilizing Fast Fourier Transform 

conventions. One Dimensional Discrete Cosine Transform (1D-DCT) coefficients are 

calculated by using the following formula (MATLAB (version R2008b) Signal Processing 

Toolbox); 

 

                  
            

  

 
    (5.1) 

            

where 

 

       

 

  
    

 
 

 
      

  (5.2) 

 

where o denotes the set of data values with the length N and e is the set of N DCT 

transform coefficients. 

 

Decompression is performed by the Inverse Discrete Cosine Transform (IDCT) on 

the transform coefficients. IDCT takes DCT coefficients and multiplies them with cosine 

functions and adds them to reconstruct the original data by using the following formula 

(MATLAB (version R2008b) Signal Processing Toolbox); 

 

                  
            

  

 
    (5.3) 

            
 

 

where r(k) is defined in Equation 5.2. 

 

DCT can operate on both one dimensional data oNx1 and two dimensional data matrix 

ONXC and can be represented in matrix form as; 
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If DCT is applied to two dimensional data matrix, O then DCT transforms its 

columns. 

 

               

      
                                
                                

                          

  

 

5.2.  Two Dimensional Discrete Cosine Transform 

 

Two Dimensional Discrete Cosine Transform (2D-DCT) is computed by applying 

DCT in one dimension to each row of a data set, then to each column of the result, that is 

why it is also called “Blocked Transform” (Salomon, 2008). Following formula is used 

(MATLAB (version R2008b) Signal Processing Toolbox); 

 

                 
        

  
   

        

  

   
   

   
    (5.4) 

     
       
       

  

 

where 

 

     

 

  
    

 
 

 
        

  (5.5) 

 

     

 

  
    

 
 

 
        

  (5.6) 

 



48 

 

where A denotes the data matrix with dimensions M by N and B is the 2D-DCT 

transform coefficients with dimensions M by N. 

 

IDCT is similarly defined as (MATLAB (version R2008b) Signal Processing 

Toolbox); 

 

                 
        

  

   
   

   
      

        

  
 (5.7) 

     
       
       

  

 

where dp and dq are given in Equation 5.5 and Equation 5.6. 

 

The topmost coefficient, called “DC Coefficient”, is the average value of the sample 

sequence having the most important information content than the high frequency 

components. All other transform coefficients are called as “AC Coefficients”. Magnitudes 

of these coefficients decrease as they move farther from the DC coefficient (Nelson and 

Gailly, 1996). 

 

2D-DCT can be represented in matrix form, if A is a square matrix, as the following; 

 

         
          

       
                                    

                              
                        

  

 

5.3.  Applications of One Dimensional and Two Dimensional 

Discrete Cosine Transforms 

 

In this section, data compression and lossy reconstruction will be investigated by 

using the 1D-DCT and 2D-DCT compression techniques, the thresholding method as a 

lossy compression step and ZIP as the lossless encoding algorithm using the data sets 

PortSimHigh, PortSimLow, SELDI-TOF MS and TEP mentioned in Chapter 3 for 10 

different percentile values of the frequency distribution of the transform coefficients in the 
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[15%-99.8%] range. Furthermore, for the percentile value 99.5%, detailed 1D-DCT and 

2D-DCT analyses are given for each of the data sets. 

 

The thresholding method is applied instead of zero padding in filtering since the data 

sets have high-frequency content. The effect of the percentile values used in thresholding 

step on compression is measured in terms of compression ratio, mean error norm, % 

relative global error and % relative maximum error. In addition, ratios of compression ratio 

to mean error norm are computed to determine the optimum percentile level. Shannon 

entropies of the thresholded transform coefficients cannot be computed since coefficients 

between threshold limits become zero after filtering and the logarithm of zero is undefined. 

 

The computations were done in MATLAB (version R2008b) using MATLAB’s 

dct, dct2, idct and idct2 commands for calculating 1D-DCT and 2D-DCT 

coefficients and reconstructed signals, and MATLAB’s internal zip command is used as 

the lossless compression algorithm. 

 

Besides mean error norm, % relative global error and % relative maximum error are 

calculated to determine the effectiveness of 1D-DCT and 2D-DCT giving the overall and 

localized measure of error respectively (Watson et al., 1998). They are defined as; 

 

                             
         

 
 

     
 

 
 (5.8) 

 

                              
              

          
 (5.9) 

 

where fi implies the i
th

 element of the original signal and f’i is the i
th

 element of the 

reconstructed signal (Watson et al., 1998). 

 

5.3.1.  One Dimensional Discrete Cosine Transform of the PortSimHigh Data Set 

 

In this section, 1D-DCT is applied to the overall PortSimHigh data set (consisting of 

500 stock prices) and for illustration purposes, only the first 16 stock prices of the 
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PortSimHigh data set are presented. All of the 16 columns of the data set show similar 

features as shown in Figure 5.1. 

 

 

Figure 5.1. First 16 Stock Prices of the PortSimHigh Data Set in Scaled Format. 

 

Transform coefficients of the first 16 stock prices of the PortSimHigh data set 

obtained with 1D-DCT before and after thresholding, in which the percentile value is taken 

as 99.5%, are shown in Figure 5.2 and Figure 5.3. Almost all of the coefficients after about 

first 100 die out exponentially towards zero. Thus, zero padding method could be applied 

for this case. Nevertheless, thresholding method is used to minimize distortion. After 

thresholding, most of the coefficients with small amplitudes become to zero. Actually, 

these two figures seem alike as most of the transform coefficients are very close to zero 

already before thresholding. 

 

Semilog-log (upper sub-window of Figure 5.4) and log-log (bottom sub-window of 

Figure 5.4) plots of the sorted absolute values of the 1D-DCT coefficients of the overall 

PortSimHigh data set which are padded into a vector of size 5000000 and the threshold 

limit of 0.7969 denoted by the red horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 99.5% are given in Figure 5.4. 

Transform coefficients above and below the threshold limit can be identified clearly in the 

log-log plot. The coefficients below the threshold limit (4975000 coefficients) are set to 

zero for compression, in other words 99.5% of the transform coefficients become zero. The 
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number of nonzero coefficients kept is 25000, which is only 0.5% of the number of data 

points. 

 

 

Figure 5.2. 1D-DCT coefficients of the PortSimHigh Data Set. 

 

 

Figure 5.3. 1D-DCT coefficients of the PortSimHigh Data Set 

after Thresholding with α=99.5 %. 
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Figure 5.4. Semilog-log and Log-log Plots of Sorted Absolute 1D-DCT Coefficients 

of the Overall PortSimHigh Data Set for α=99.5 %. 
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addition, the amplitudes of the reconstructed data set (shown in red) are almost same as 

those of the original stock prices as shown in Figure 5.7 concluding that there is not any 

significant loss in information content. 

 

 

Figure 5.5. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimHigh Data Set for α=99.5 % with 1D-DCT. 

 

 

Figure 5.6. Reconstructed PortSimHigh Data Set with Inverse 1D-DCT. 
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Figure 5.7. Original and Reconstructed Signals of the PortSimHigh Data Set 

with Inverse 1D-DCT. 

 

In Figure 5.8, the original and reconstructed signals are plotted around the y=x line. 

Reconstructed data points around the y=x line indicates that reconstructed signals are very 

close to the original signals (all of the 16 measurements) whereas, reconstructed data 

points around the y=0 line shows that they are completely different from the original 

signals. 

 

Error norms between original and reconstructed data sets are calculated per data 

column. Minimum error norm, that is 446.45, is obtained in the 267
th

 column and the 

maximum error norm, that is 476.62, is obtained in the 62
nd 

column of the PortSimHigh 

data set. As it can be seen from both the upper and the middle sub-windows of Figure 5.9, 

all of the reconstructed data points cluster around the y=x line meaning that reconstructed 

signals are very close to the original signals providing small error norms. Furthermore, 

reconstruction error norm values of each of the 500 columns of the PortSimHigh data set 

are given in the bottom sub-window of Figure 5.9. 
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Figure 5.8. Reconstructed versus Original Signals of the PortSimHigh Data Set 

with Inverse 1D-DCT. 

 

 

Figure 5.9. Reconstruction Error Norm Values of the PortSimHigh Data Set 

with Inverse 1D-DCT. 
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5.3.2.  Two Dimensional Discrete Cosine Transform of the PortSimHigh Data Set 

 

In this section, 2D-DCT is applied to the overall PortSimHigh data set (consisting of 

500 stock prices), however, for illustration purposes, only the related figures of the first 16 

stock prices of the PortSimHigh data set are presented. The first 16 stock prices were given 

before in the previous section in scaled format with Figure 5.1. 

 

Transform coefficients of the stock prices of the PortSimHigh data set obtained with 

2D-DCT before and after thresholding, in which the percentile value is taken as 99.5%, are 

shown in Figure 5.10 and Figure 5.11. It is seen that the first few transform coefficients 

(with large magnitudes) in the first column of the coefficients matrix store the most 

important information content than the high frequency components as mentioned in 

Section 5.2. Due to the energy compaction property, high-frequency coefficients which are 

close to zero (after about first 100 ones in all columns) can become zero (columns six, 12 

and 15 in Figure 5.11) in the thresholding step. Such thresholding achieves high 

compression without any significant loss of information after reconstruction. It is also 

observed that most of the 2D-DCT coefficients are smaller than 1D-DCT coefficients 

indicating that 2D-DCT should be the preferred technique for the highly correlated 

PortSimHigh data set. Thus, larger compression ratios are expected with minimum amount 

of distortion due to these smaller coefficients as they can easily be discarded in the 

quantization step. 

 

 

Figure 5.10. 2D-DCT Coefficients of the PortSimHigh Data Set. 
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Figure 5.11. 2D-DCT Coefficients of the PortSimHigh Data Set 

after Thresholding with α=99.5 %. 

 

Semilog-log (upper sub-window of Figure 5.12) and log-log (bottom sub-window of 

Figure 5.12) plots of the sorted absolute values of the 2D-DCT coefficients of the overall 

PortSimHigh data set which are padded into a vector of size 5000000, and the threshold 

limit of 0.042, denoted by the horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 99.5% are given in Figure 5.12. 

Transform coefficients above and below the threshold limit can be identified clearly in the 

log-log plot. The coefficients below the threshold limit (4975000 coefficients) are set to 

zero for compression, in other words 99.5% of the transform coefficients become zero. The 

number of nonzero coefficients kept is 25000, which is only 0.5% of the number of data 

points. In addition, the threshold limit is much smaller than that found with 1D-DCT, that 

is 0.7969, since smaller 2D-DCT coefficients are produced for the highly correlated data 

set. 

 

Sizes of the ZIP files of the original and encoded data sets are compared in Figure 

5.13. The ZIP file of the overall PortSimHigh data set is nearly 49.8 MB, whereas the ZIP 

file of the filtered transformed data set is nearly 0.89 MB. Thus, compression can be 

increased 55.7 times by applying 2D-DCT technique and taking the percentile value as 

99.5% in thresholding step. It can also be stated that the compression ratio obtained with 
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2D-DCT is slightly larger than that obtained with 1D-DCT, which was 55 as mentioned in 

Section 5.3.1. 

 

 

Figure 5.12. Semilog-log and Log-log Plots of Sorted Absolute 2D-DCT Coefficients 

of the Overall PortSimHigh Data Set for α=99.5 %. 

 

 

Figure 5.13. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimHigh Data Set for α=99.5 % with 2D-DCT. 
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Reconstructed data are generated with 2D-iDCT (inverse DCT). The reconstructed 

data and their overlay with the originals are shown in Figure 5.14 and Figure 5.15 

respectively. It is seen that original and reconstructed data are similar as illustrated in 

Figure 5.15 concluding that there is almost no distortion in the reconstructed data set 

(shown in red). It can also be stated that better reconstruction is obtained with 2D-DCT 

rather than 1D-DCT as the former technique is more appropriate for the highly correlated 

PortSimHigh data set. 

 

 

Figure 5.14. Reconstructed PortSimHigh Data Set with Inverse 2D-DCT. 

 

 

Figure 5.15. Original and Reconstructed Signals of the PortSimHigh Data Set 

with Inverse 2D-DCT. 
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The original and reconstructed signals generated with 2D-iDCT are plotted around 

the y=x line as shown in Figure 5.16. It is seen that all of the reconstructed data points are 

located around the y=x line showing that reconstructed signals are very close to the 

original signals (observed in all of the representative 16 stock prices). 

 

 

Figure 5.16. Reconstructed versus Original Signals of the PortSimHigh Data Set 

with Inverse 2D-DCT. 

 

Reconstruction error norm values of the overall PortSimHigh data set calculated per 

data column are given in the bottom sub-window of Figure 5.17. Minimum error norm of 

5.688, is obtained in the 474
th

 column and the maximum error norm of 48.96, is obtained 

in the 426
th 

column of the PortSimHigh data set after applying 2D-DCT. As it can be seen 

from both the upper and the middle sub-windows of Figure 5.17, original signals are 

decoded perfectly as reconstructed data points are located around the y=x line, representing 

small reconstruction error norms. It should also be mentioned that smaller reconstruction 

error norms (nearly 12-fold smaller than those produced with 1D-DCT) and slightly higher 

compression ratios are generated with 2D-DCT, concluding that this technique is clearly 

superior to 1D-DCT when they are applied to the highly correlated PortSimHigh data set. 
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Figure 5.17. Reconstruction Error Norm Values of the PortSimHigh Data Set 

with Inverse 2D-DCT. 
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Figure 5.18. First 16 Stock Prices of the PortSimLow Data Set in Scaled Format. 

 

Transform coefficients of the first representative 16 stock prices of the PortSimLow 

data set obtained with 1D-DCT before and after thresholding, in which the percentile value 

is taken as 99.5%, are shown in Figure 5.19 and Figure 5.20. Most of the transform 

coefficients after about first 100 are very small already and after thresholding, they become 

zero. Hence, there is not much difference between Figure 5.19 and Figure 5.20. 

 

 

Figure 5.19. 1D-DCT Coefficients of the PortSimLow Data Set. 

0 5000 10000
-1

0

1

1

V
a
lu

e

0 5000 10000
-1

0

1

2

V
a
lu

e

0 5000 10000
-1

0

1

3

V
a
lu

e

0 5000 10000
-1

0

1

4

V
a
lu

e

0 5000 10000
-1

0

1

5

V
a
lu

e

0 5000 10000
-1

0

1

6

V
a
lu

e

0 5000 10000
-1

0

1

7

V
a
lu

e

0 5000 10000
-1

0

1

8

V
a
lu

e

0 5000 10000
-1

0

1

9

V
a
lu

e

0 5000 10000
-1

0

1

10

V
a
lu

e

0 5000 10000
-1

0

1

11

V
a
lu

e

0 5000 10000
-1

0

1

12

V
a
lu

e

0 5000 10000
-1

0

1

13

V
a
lu

e

0 5000 10000
-1

0

1

14

V
a
lu

e

0 5000 10000
-1

0

1

15
V

a
lu

e
0 5000 10000

-1

0

1

16

V
a
lu

e

10
0

10
2

10
4

-100

0

100

1

V
a
lu

e

10
0

10
2

10
4

-50

0

50

2

V
a
lu

e

10
0

10
2

10
4

-50

0

50

3

V
a
lu

e

10
0

10
2

10
4

-100

0

100

4

V
a
lu

e

10
0

10
2

10
4

-50

0

50

5

V
a
lu

e

10
0

10
2

10
4

-50

0

50

6

V
a
lu

e

10
0

10
2

10
4

-50

0

50

7

V
a
lu

e

10
0

10
2

10
4

-50

0

50

8

V
a
lu

e

10
0

10
2

10
4

-50

0

50

9

V
a
lu

e

10
0

10
2

10
4

-100

0

100

10

V
a
lu

e

10
0

10
2

10
4

-50

0

50

11

V
a
lu

e

10
0

10
2

10
4

-100

0

100

12

V
a
lu

e

10
0

10
2

10
4

-50

0

50

13

V
a
lu

e

10
0

10
2

10
4

-50

0

50

14

V
a
lu

e

10
0

10
2

10
4

-50

0

50

15

V
a
lu

e

10
0

10
2

10
4

-50

0

50

16

V
a
lu

e



63 

 

 

Figure 5.20. 1D-DCT Coefficients of the PortSimLow Data Set 

after Thresholding with α=99.5 %. 

 

Semilog-log (upper sub-window of Figure 5.21) and log-log (bottom sub-window of 

Figure 5.21) plots of the sorted absolute values of the 1D-DCT coefficients of the overall 

PortSimLow data set, which are padded into a vector of size 5000000, and the threshold 

limit of 0.5722 denoted by the horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 99.5% are given in Figure 5.21. 

Transform coefficients above and below the threshold limit can be identified clearly in the 

log-log plot. Transform coefficients below the threshold limit (99.5% of the transform 

coefficients) are set to zero and the number of nonzero coefficients kept is 25000, which is 

only 0.5% of the number of data points. 

 

Sizes of the ZIP files of the original and encoded data sets are compared in Figure 

5.22. It is seen that the ZIP file of the overall PortSimLow data set is nearly 51.1 MB, 

whereas the ZIP file of the filtered transformed data set is nearly 0.93 MB improving 

compression 54.8 times with 1D-DCT technique and taking the percentile value as 99.5% 

in thresholding step. 
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Figure 5.21. Semilog-log and Log-log Plot of Sorted Absolute 1D-DCT Coefficients 

of the Overall PortSimLow Data Set for α=99.5 %. 

 

 

Figure 5.22. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimLow Data Set for α=99.5 % with 1D-DCT. 
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Reconstructed data generated with 1D-iDCT (inverse DCT) and their overlay with 

the originals are shown in Figure 5.23 and Figure 5.24 respectively. It is seen that the 

major features of the stock prices including peaks and decreasing/increasing trends in the 

original data set are reconstructed thoroughly as shown in Figure 5.24 concluding that 

there is not any significant distortion in the decoded data set. 

 

 

Figure 5.23. Reconstructed PortSimLow Data Set with Inverse 1D-DCT. 

 

 

Figure 5.24. Original versus Reconstructed Signals of the PortSimLow Data Set 

with Inverse 1D-DCT. 
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The original and reconstructed signals generated with 1D-iDCT are plotted around 

the y=x line in Figure 5.25. Reconstructed data points around the y=x line indicate that 

original signals are decoded perfectly (prices of the first and 10
th

 stocks), whereas there are 

some small distortions in reconstruction of the prices of the third and ninth stocks. 

 

 

Figure 5.25. Reconstructed versus Original Signals of the PortSimLow Data Set 

with Inverse 1D-DCT. 

 

Reconstruction error norm values of the overall PortSimLow data set calculated per 

data column are given in the bottom sub-window of Figure 5.26. Minimum error norm of 

204.19 is obtained in the 115
th

 column and the maximum error norm of 492.96 is obtained 

in the 122
nd 

column of the PortSimLow data set. As it can be seen from the upper and the 

middle sub-windows of Figure 5.26, 115
th 

column is reconstructed better than the 122
nd

 

column as most of the reconstructed data points of the 115
th

 column are around the y=x 

line. 
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Figure 5.26. Reconstruction Error Norm Values of the PortSimLow Data Set 

with Inverse 1D-DCT. 

 

5.3.4.  Two Dimensional Discrete Cosine Transform of the PortSimLow Data Set 
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first column of the coefficients matrix are the largest in magnitude having the most 

important information content than the high-frequency components exhibiting better 

energy compaction property than 1D-DCT. Furthermore, it should also be stated that 2D-

DCT coefficients of the PortSimHigh data set are much smaller than those of the 

PortSimLow data set, revealing that smaller coefficients are obtained when highly 

correlated data set is used. Consequently, these small coefficients can be discarded in 

quantization prior to encoding without significant distortion while achieving maximum 

amount of compression. 

 

Semilog-log (upper sub-window of Figure 5.29) and log-log (bottom sub-window of 

Figure 5.29) plots of the sorted absolute values of the 2D-DCT coefficients of the overall 

PortSimLow data set, which are padded into a vector of size 5000000, and the threshold 

limit of 0.5622 denoted by the horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 99.5% are given in Figure 5.29. The 

coefficients below the threshold limit (4975000 coefficients), which are identified clearly 

in the log-log plot, are set to zero for compression, in other words 99.5% of the transform 

coefficients become zero. The number of nonzero coefficients kept is 25000, which is only 

0.5% of the number of data points. 

 

 

Figure 5.27. 2D-DCT Coefficients of the PortSimLow Data Set. 
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Figure 5.28. 2D-DCT Coefficients of the PortSimLow Data Set 

after Thresholding with α=99.5 %. 

 

 

Figure 5.29. Semilog-log and Log-log Plots of Sorted Absolute 2D-DCT Coefficients 

of the Overall PortSimLow Data Set for α=99.5 %. 
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Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 5.30, the ZIP file of the original data set is nearly 51.1 MB, whereas the ZIP 

file of the filtered transformed data set is nearly 0.93 MB. Thus, compression can be 

increased 54.9 times by applying 2D-DCT technique and taking the percentile value as 

99.5% in thresholding step (similar to the 1D-DCT results). 

 

 

Figure 5.30. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimLow Data Set for α=99.5 % with 2D-DCT. 

 

Reconstructed data generated with 2D-iDCT (inverse DCT) and their overlay with 

the originals are shown in Figure 5.31 and Figure 5.32 respectively. It is seen that original 

and reconstructed data sets are overlapped as illustrated in Figure 5.32 concluding that 

there is not any significant loss in the decoded data set. 

 

 

Figure 5.31. Reconstructed PortSimLow Data Set with Inverse 2D-DCT. 
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Figure 5.32. Original and Reconstructed Signals of the PortSimLow Data Set 

with Inverse 2D-DCT. 

 

In Figure 5.33, the original and reconstructed signals produced with 2D-iDCT are 

plotted around the y=x line. It can be said that almost each of the reconstructed signals is 

similar to the original ones as most of the data points are located around the y=x line. 

 

 

Figure 5.33. Reconstructed versus Original Signals of the PortSimLow Data Set 

with Inverse 2D-DCT. 
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Error norms between original and reconstructed data sets are calculated per data 

column. Reconstruction error norm values of the overall PortSimLow data set are given in 

the bottom sub-window of Figure 5.34. Minimum error norm of 199.94 is obtained in the 

482
nd

 column and the maximum error norm of 641.03 is obtained in the 122
nd

 column of 

the PortSimLow data set after applying 2D-DCT. It can be concluded that 2D-DCT 

technique is not superior to 1D-DCT when they are applied to the less correlated 

PortSimLow data set as compression ratios produced in these two methods are almost the 

same and smaller distortion is produced in the latter technique. 

 

 

Figure 5.34. Reconstruction Error Norm Values of the PortSimLow Data Set 

with Inverse 2D-DCT. 
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5.3.5.  One Dimensional Discrete Cosine Transform of the SELDI-TOF MS Data Set 

 

In this section, 1D-DCT is applied to the overall SELDI-TOF MS data set (consisting 

of six ovarian cancer samples). The complete scaled intensities of the SELDI-TOF MS 

data set containing baseline noise and sparse peaks are shown in Figure 5.35. 

 

 

Figure 5.35. Scaled Intensities of the SELDI-TOF MS Data Set. 

 

Transform coefficients of the scaled intensities of the SELDI-TOF MS data set 

obtained with 1D-DCT before and after thresholding, in which the percentile value is taken 

as 99.5%, are shown in Figure 5.36 and Figure 5.37. It is seen that the first few transform 

coefficients in each column of the coefficients matrix are large in magnitude having the 

most important information content. In thresholding step, these coefficients remain 

unchanged, whereas most of the high-frequency components become zero. In addition, 

baseline noise effect is observed in transform coefficients (especially in cancer samples 

one and two) as illustrated in Figure 5.36 whereas these coefficients are zeroed after 

thresholding concluding that 1D-DCT also provides de-noising. Hence, higher 

compression levels are expected as noise removal is achieved besides dimensionality 

reduction. 
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Figure 5.36. 1D-DCT Coefficients of the SELDI-TOF MS Data Set. 

 

 

Figure 5.37. 1D-DCT Coefficients of the SELDI-TOF MS Data Set 

after Thresholding with α=99.5 %. 
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Semilog-log (upper sub-window of Figure 5.38) and log-log (bottom sub-window of 

Figure 5.38) plots of the sorted absolute values of the 1D-DCT coefficients of the overall 

SELDI-TOF MS data set, which are padded into a vector of size 2027928 and the threshold 

limit of 0.2101 denoted by the horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 99.5% are given in Figure 5.38. 

Transform coefficients above and below the threshold limit can be identified clearly in the 

log-log plot. Transform coefficients below the threshold limit (2017788 coefficients) are 

set to zero for compression. The number of nonzero coefficients kept is 10140, which is 

only 0.5% of the number of data points. 

 

 

Figure 5.38. Semilog-log and Log-log Plots of Sorted Absolute 1D-DCT Coefficients 

of the Overall SELDI-TOF MS Data Set for α=99.5 %. 

0 0.5 1 1.5 2 2.5

x 10
6

10
-10

10
-5

10
0

10
5

Order of DCT Coefficients

S
o
rt

e
d
 A

b
s
o
lu

te
 D

C
T

 C
o
e
ff

ic
ie

n
ts

10
0

10
2

10
4

10
6

10
8

10
-10

10
-5

10
0

10
5

Order of DCT Coefficients

S
o
rt

e
d
 A

b
s
o
lu

te
 D

C
T

 C
o
e
ff

ic
ie

n
ts



76 

 

Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 5.39, the ZIP file of the original data set is nearly 20.7 MB, whereas the ZIP 

file of the filtered transformed data set is nearly 0.35 MB. Thus, ZIP compression can be 

increased 58.6 times by applying 1D-DCT technique and taking the percentile value as 

99.5% in the thresholding step. 

 

 

Figure 5.39. ZIP Compression Comparison of the Original and Encoded 

Overall SELDI-TOF MS Data Set for α=99.5 % with 1D-DCT. 

 

Reconstructed data generated with 1D-iDCT (inverse DCT) and their overlay with 

the originals are shown in Figure 5.40 and Figure 5.41 respectively. It is seen that original 

and reconstructed data sets are similar as illustrated in Figure 5.41. However, there are 

some distortions observed in the magnitudes of the major peaks. Furthermore, it can be 

seen that reconstructed signals are de-noised, in other words removal of the irrelevant data 

is achieved. 

 

The original and reconstructed signals produced with 1D-iDCT are plotted around 

the y=x line in Figure 5.42. It can be stated that scaled intensities having the magnitudes 

over 0.5 and the magnitudes between [-1,-0.5] cannot be reconstructed thoroughly 

(observed in all of the six cancer samples) due to the sharp peaks occurred in these regions. 
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Figure 5.40. Reconstructed SELDI-TOF MS Data Set with Inverse 1D-DCT. 

 

 

Figure 5.41. Original and Reconstructed Signals of the SELDI-TOF MS Data Set 

with Inverse 1D-DCT. 
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Figure 5.42. Reconstructed versus Original Signals of the SELDI-TOF MS Data Set 

with Inverse 1D-DCT. 

 

Error norms between original and reconstructed data sets are calculated per data 

column. Reconstruction error norm values of the overall SELDI-TOF MS data set are 

given in the bottom sub-window of Figure 5.43. Minimum error norm of 2029.2 is 

obtained in the third column and the maximum error norm of 3447.8 is obtained in the fifth
 

column of the SELDI-TOF MS data set after applying 1D-DCT. As it can be seen from the 

upper and the middle sub-windows of Figure 5.43, third column is reconstructed better 

than the fifth
 
column as most of the reconstructed data points of the third column are 

located around the y=x line. Even so, it can be concluded that reconstruction error norms 

are generally quite large in magnitude as SELDI-TOF MS data set contains sharp peaks 

and baseline noise. 
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Figure 5.43. Reconstruction Error Norm Values of the SELDI-TOF MS Data Set 

with Inverse 1D-DCT. 

 

5.3.6.  Two Dimensional Discrete Cosine Transform of the SELDI-TOF MS Data Set 

 

In this section, 2D-DCT is applied to the overall SELDI-TOF MS data set (consisting 

of six ovarian cancer samples). The complete scaled intensities of the SELDI-TOF MS 

data set were given before in the previous section in scaled format with Figure 5.35. 

 

Transform coefficients of the scaled intensities of the SELDI-TOF MS data set 

obtained with 2D-DCT before and after thresholding, in which the percentile value is taken 

as 99.5%, are shown in Figure 5.44 and Figure 5.45. It is seen that the first few transform 

coefficients (with large magnitudes) in the first column of the coefficients matrix store the 

most important information content than the high frequency components exhibiting better 

energy compaction property than 1D-DCT. High-frequency coefficients which are close to 

zero (after about first 10000 rows in all columns) become zero in thresholding. The effect 
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of the baseline noise in the original data set is also observed in the columns of the 

coefficients matrix. 

 

 

Figure 5.44. 2D-DCT Coefficients of the SELDI-TOF MS Data Set. 

 

 

Figure 5.45. 2D-DCT Coefficients of the SELDI-TOF MS Data Set 

after Thresholding with α=99.5 %. 
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Semilog-log (upper sub-window of Figure 5.46) and log-log (bottom sub-window of 

Figure 5.46) plots of the sorted absolute values of the 2D-DCT coefficients of the overall 

SELDI-TOF MS data set, which are padded into a vector of size 2027928 and the threshold 

limit of 0.1694 denoted by the horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 99.5% are given in Figure 5.46. The 

coefficients below the threshold limit (2017788 coefficients), which are identified clearly 

in the log-log plot, are set to zero for compression, in other words 99.5% of the transform 

coefficients become zero. The number of nonzero coefficients kept is 10140, which is only 

0.5% of the number of data points. In addition, the threshold limit is slightly smaller than 

that found with 1D-DCT, which was 0.2101 as mentioned in Section 5.3.5, since 2D-DCT 

coefficients are rather small. 

 

 

Figure 5.46. Semilog-log and Log-log Plots of Sorted Absolute 2D-DCT Coefficients 

of the Overall SELDI-TOF MS Data Set for α=99.5 %. 
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Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 5.47, the ZIP file of the original data set is nearly 20.7 MB, whereas the ZIP 

file of the filtered transformed data set is nearly 0.35 MB. Thus, ZIP compression can be 

increased 58.4 times (similar to 1D-DCT results) by applying 2D-DCT technique and 

taking the percentile value as 99.5% in the thresholding step. 

 

 

Figure 5.47. ZIP Compression Comparison of the Original and Encoded 

Overall SELDI-TOF MS Data Set for α=99.5 % with 2D-DCT. 

 

Reconstructed data are generated with 2D-iDCT (inverse DCT). The reconstructed 

data and their overlay with the originals are shown in Figure 5.48 and Figure 5.49 

respectively. It is seen that original and reconstructed data sets are overlapped as illustrated 

in Figure 5.49. However, there are some small distortions observed in reconstructed peaks 

(observed in all of the six cancer samples). 

 

In Figure 5.50, the original and reconstructed signals obtained with 2D-iDCT are 

plotted around the y=x line. It can be stated that the scaled intensities having the 

magnitudes over 0.5 and magnitudes between [-1,-0.5] cannot be reconstructed thoroughly 

(similar to 1D-DCT results) due to the peaks observed in these regions since corresponding 

reconstructed data points are quite far from the y=x line. 
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Figure 5.48. Reconstructed SELDI-TOF MS Data Set with Inverse 2D-DCT. 

 

 

Figure 5.49. Original and Reconstructed Signals of the SELDI-TOF MS Data Set 

with Inverse 2D-DCT. 
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Figure 5.50. Reconstructed versus Original Signals of the SELDI-TOF MS Data Set 

with Inverse 2D-DCT. 

 

Reconstruction error norm values of the overall SELDI-TOF MS data set calculated 

per data column are given in the bottom sub-window of Figure 5.51. Minimum error norm 

of 1965.2 is obtained in the third column and the maximum error norm of 3325.1 is 

obtained in the fifth
 
column of the SELDI-TOF MS data set after applying 2D-DCT. As it 

can be seen from the upper and the middle sub-windows of Figure 5.51, third
 
column is 

reconstructed better than the fifth
 
column as most of the reconstructed data points of the 

third
 
column are located around the y=x line. It can also be stated that slightly smaller 

reconstruction error norms are produced with 2D-DCT than 1D-DCT although these two 

techniques give almost the same compression ratios, concluding that 2D-DCT can be the 

preferred technique when highly uncorrelated SELDI-TOF MS data set is used. 
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Figure 5.51. Reconstruction Error Norm Values of the SELDI-TOF MS Data Set 

with Inverse 2D-DCT. 

 

5.3.7.  One Dimensional Discrete Cosine Transform of the TEP Data Set 

 

In this section, 1D-DCT is applied to the overall TEP data set (consisting of 41 

measurements). Overall output signals of the TEP including all of the 41 measured 

variables are shown in Figure 5.52. Each process measurement exhibits different features 

such as upward/downward shifts (observed in measurements one and four) and 

decreasing/increasing trends (observed in measurements 28 and 34) occurred due to the 

consecutive fault disturbances introduced. 
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Figure 5.52. Complete Output Signals of the TEP Data Set as a result of Three Consecutive 

Fault Disturbances in Scaled Format. 

 

Transform coefficients of the output signals of the TEP obtained with 1D-DCT 

before and after thresholding, in which the percentile value is taken as 99.5%, are shown in 

Figure 5.53 and Figure 5.54. Only the first 400 of the 50001 transform coefficients are 

given to observe the coefficient magnitudes in detail. It is seen that transform coefficients 

do not die out exponentially towards zero (measurements nine, 37, 40 and 41), they persist 

to be significant throughout the vector. Thus, thresholding method is applied instead of 

zero padding. After thresholding, most of the coefficients with small amplitudes become 

zero (measurements one, 10, 30 and 34), whereas the coefficients out of the threshold 

limits (measurements 25, 27, 40 and 41) are stored as illustrated in Figure 5.54. 
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Figure 5.53. First 400 1D-DCT Coefficients of the Complete Output Signals 

of the TEP Data Set. 
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Figure 5.54. First 400 1D-DCT Coefficients of the Complete Output Signals 

of the TEP Data Set after Thresholding with α=99.5 %. 

 

Semilog-log (upper sub-window of Figure 5.55) and log-log (bottom sub-window of 

Figure 5.55) plots of the sorted absolute values of the 1D-DCT coefficients of all 41 

columns, which are padded into a vector of size 2050041 and the threshold limit of 0.967 

denoted by the horizontal line, specified by taking the percentile of the frequency 

distribution of the transform coefficients as 99.5% are given in Figure 5.55. Transform 

coefficients below the threshold limit (2039791 coefficients), which can be identified 

clearly in the log-log plot, are set to zero for compression. The number of nonzero 

coefficients kept is 10250, in other words 0.5% of the transform coefficients remain 

unchanged. Error in reconstruction step will increase as the number of zeroed transform 

coefficients increases as mentioned in Chapter 2. 
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Figure 5.55. Semilog-log and Log-log Plots of Sorted Absolute 1D-DCT Coefficients 

of the Overall TEP Data Set for α=99.5 %. 

 

Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 5.56, the ZIP file of the original data set is nearly 21 MB, whereas the ZIP file 

of the filtered transformed data set is nearly 0.38 MB. Thus, ZIP compression can be 

increased 55.5 times by applying 1D-DCT technique and taking the percentile value as 

99.5% in the thresholding step. Large compression is expected as the filtered transform 

coefficients consist of repeating patterns (zeros) which are favored in lossless compression 

algorithms, such as the ones used in ZIP software. 
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Figure 5.56. ZIP Compression Comparison of the Original and Encoded 

Overall TEP Data Set for α=99.5 % with 1D-DCT. 

 

Reconstructed data generated with 1D-iDCT (inverse DCT) and their overlay with 

the originals are shown in Figure 5.57 and Figure 5.58 respectively. The major process 

features including important peak points, upward/downward shifts (observed in 

measurements one and four) and decreasing/increasing trends (observed in measurements 

28 and 34) occurred due to the consecutive fault disturbances are reconstructed thoroughly 

as illustrated in Figure 5.57. In addition, noise in measured data makes compression 

difficult. For this reason, noise removal, in other words loss of the irrelevant data, is one of 

the major advantages of the dimensionality reduction technique, DCT (due to its 

decorrelation property); improving compression. It can be seen from Figure 5.58 that 

reconstructed values of the measurements consisting of almost pure noise (measurements 

nine and 19) are smoothened around a straight line. Except these noisy measurements, the 

amplitudes of the reconstructed data set are almost same as those of the output signals of 

the TEP data set concluding that there is not any significant loss in information content. 
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Figure 5.57. Reconstructed TEP Data Set with Inverse 1D-DCT. 
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Figure 5.58. Original and Reconstructed Signals of the TEP Data Set 

with Inverse 1D-DCT. 

 

In Figure 5.59, the original and reconstructed signals are plotted around the y=x line. 

Reconstructed data points around the y=x line indicates that reconstructed signals are very 

close to the original signals (measurements one, 11 and 34) whereas, reconstructed data 

points around the y=0 line shows that they are completely different from the original 

signals (measurements two, three and 19). 
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Figure 5.59. Reconstructed versus Original Signals of the TEP Data Set 

with Inverse 1D-DCT. 

 

Error norms between original and reconstructed data sets are calculated per data 

column. Minimum error norm of 1283.5 is obtained in the 34
th

 column of the TEP data set, 

the measurement showing decreasing trend with less noise. As it can be seen from the 

upper sub-window of Figure 5.60, reconstructed data points cluster around the y=x line 

meaning that reconstructed signals are very close to the original signals. On the other hand, 

the maximum error norm of 9669.5 is obtained in the 19
th 

column of the TEP data set. 

Actually, it can be said that the information loss is appropriate for this measurement which 

consists of almost pure noise, as noise removal is achieved providing better compression. 

Reconstructed data points are located on the y=0 line as illustrated in the middle sub-

window of Figure 5.60, in other words, reconstructed signals are completely different from 

the original signals. Furthermore, reconstruction error norm values of each column of the 

TEP data set are given in the bottom sub-window of Figure 5.60. 
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Figure 5.60. Reconstruction Error Norm Values of the TEP Data Set 

with Inverse 1D-DCT. 

 

5.3.8.  Two Dimensional Discrete Cosine Transform of the TEP Data Set 

 

In this section, 2D-DCT is applied to the overall TEP data set (consisting of 41 

measurements). The complete output signals of the TEP data set were given before in the 

previous section in scaled format with Figure 5.52. 

 

Transform coefficients of the output signals of the TEP obtained with 2D-DCT 

before and after thresholding, in which the percentile value is taken as 99.5%, are shown in 

Figure 5.61 and Figure 5.62. Only the first 400 of the 50001 transform coefficients are 

given to be able to observe the magnitudes of the coefficients in detail. 
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Unlike PortSimHigh and SELDI-TOF MS data sets, the first few coefficients of the 

first column of the coefficients matrix do not store the most important information content, 

in other words 2D-DCT does not exhibit good energy compaction property when TEP data 

set is used. Furthermore, transform coefficients of the TEP data set do not die out 

exponentially towards zero (measurements nine, 37, 40 and 41), they persist to be 

significant throughout the vector as shown in Figure 5.61. After thresholding, high-

frequency coefficients with small amplitudes become zero (measurements 27, 38 and 40), 

whereas the coefficients out of the threshold limits (measurements three, 11 and 24) are 

kept as illustrated in Figure 5.62. 

 

 
Figure 5.61. First 400 2D-DCT Coefficients of the Complete Output Signals 

of the TEP Data Set. 
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Figure 5.62. First 400 2D-DCT Coefficients of the Complete Output Signals 

of the TEP Data Set after Thresholding with α=99.5 %. 

 

Semilog-log (upper sub-window of Figure 5.63) and log-log (bottom sub-window of 

Figure 5.63) plots of the sorted absolute values of the 2D-DCT coefficients of the overall 

TEP data set, which are padded into a vector of size 2050041 and the threshold limit of 

0.879 denoted by the horizontal line, specified by taking the percentile of the frequency 

distribution of the transform coefficients as 99.5% are given in Figure 5.63. The 

coefficients below the threshold limit (2039791 coefficients), which are identified clearly 

in the log-log plot, are set to zero for compression, in other words 99.5% of the transform 

coefficients become zero. The number of nonzero coefficients kept is 10250, which is only 

0.5% of the number of data points. Although the threshold limit specified in 2D-DCT is 

smaller than that specified in 1D-DCT, which was 0.967 as mentioned in Section 5.3.7, the 

number of zeroed transform coefficients in 2D-DCT and 1D-DCT are same due to the fact 

that 2D-DCT coefficients are smaller than 1D-DCT coefficients. 
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Figure 5.63. Semilog-log and Log-log Plots of Sorted Absolute 2D-DCT Coefficients 

of the Overall TEP Data Set for α=99.5 %. 

 

Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 5.64, the ZIP file of the original data set is nearly 21 MB, whereas the ZIP file 

of the filtered transformed data set is nearly 0.38 MB. Thus, ZIP compression can be 

increased 54.5 times by applying 2D-DCT technique and taking the percentile value as 

99.5% in the thresholding step. It can also be stated that compression ratio obtained in 1D-

DCT is slightly larger than that obtained in 2D-DCT. 

0 0.5 1 1.5 2 2.5

x 10
6

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Order of DCT Coefficients

S
o
rt

e
d
 A

b
s
o
lu

te
 D

C
T

 C
o
e
ff

ic
ie

n
ts

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Order of DCT Coefficients

S
o
rt

e
d
 A

b
s
o
lu

te
 D

C
T

 C
o
e
ff

ic
ie

n
ts



98 

 

 
Figure 5.64. ZIP Compression Comparison of the Original and Encoded 

Overall TEP Data Set for α=99.5 % with 2D-DCT. 

 

Reconstructed data generated with 2D-iDCT (inverse DCT) and their overlay with 

the originals are shown in Figure 5.65 and Figure 5.66 respectively. Like 1D-DCT, 

important features such as upward/downward shifts (observed in measurements one and 

four) and decreasing/increasing trends (observed in measurements 28 and 34) occurred due 

to disturbances are reconstructed perfectly as illustrated in Figure 5.65. However, a little 

distortion is observed in signal amplitudes (measurements 32, 37 and 40) unlike 1D-DCT. 

Thus, higher reconstruction error norms are expected. Noise removal is also achieved as it 

can be seen from Figure 5.66 that reconstructed values of the measurements consisting of 

almost pure noise (measurements nine and 19) are smoothened around a straight line. 
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Figure 5.65. Reconstructed TEP Data Set with Inverse 2D-DCT. 
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Figure 5.66. Original and Reconstructed Signals of the TEP Data Set 

with Inverse 2D-DCT. 

 

In Figure 5.67, the original and reconstructed signals obtained with 2D-iDCT are 

plotted around the y=x line. Reconstructed data points around the y=x line indicates that 

original signals are reconstructed perfectly (measurements one, 34 and 38) whereas, 

reconstructed data points around the y=0 line shows that they are completely different from 

the original signals (measurements two, nine and 19). 
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Figure 5.67. Reconstructed versus Original Signals of the TEP Data Set 

with Inverse 2D-DCT. 

 

Reconstruction error norms between original and reconstructed data sets calculated 

per data column are given in the bottom sub-window of Figure 5.68. Minimum error norm 

of 1572.3 is obtained in the first column of the TEP data set, the measurement showing 

upward shift with less noise. Thus, reconstructed data points cluster around the y=x line 

stating that reconstructed signals are almost identical with the original signals as illustrated 

in upper sub-window of Figure 5.68. On the other hand, the maximum error norm of 

9742.5 is obtained in the 19
th 

column of the TEP data set (similar to 1D-DCT), 

measurement containing almost pure noise. Reconstructed data points are scattered around 

the y=0 line meaning that reconstructed signals are different from the original signals as 

shown in the middle sub-window of Figure 5.68. It can be said that the information loss is 

appropriate as irrelevant data are removed. It can be concluded that 1D-DCT should be the 

preferred technique when highly uncorrelated TEP data set is used as smaller 
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reconstruction error norm values and slightly higher compression ratios are generated with 

1D-DCT. 

 

 
Figure 5.68. Reconstruction Error Norm Values of the TEP Data Set 

with Inverse 2D-DCT. 

 

5.3.9.  Comparison of One Dimensional and Two Dimensional Discrete Cosine 

Transform Methods 

 

In this section, 1D-DCT and 2D-DCT techniques are compared by using the overall 

data sets (PortSimHigh, PortSimLow, SELDI-TOF MS and TEP) mentioned in Chapter 3 

for 10 different percentile values of the frequency distribution of the transform coefficients 

in the [15%-99.8%] range. The effect of the percentile values used in thresholding step on 

compression is measured in terms of compression ratio, mean error norm, % relative global 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Original

R
e
c
o
n
s
tr

u
c
te

d

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Original

R
e
c
o
n
s
tr

u
c
te

d

0 5 10 15 20 25 30 35 40 45
0

5000

10000

Column Number

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r 

N
o
rm

Column no: 19

Max error: 9742.5

Column no: 1

Min error: 1572.3



103 

 

error and % relative maximum error as shown in Figure 5.69. % Relative global error of a 

data set is calculated by first applying Equation 5.6 to each data column and then taking 

the mean of the results and % relative maximum error of a data set is calculated by 

dividing the maximum reconstruction error norm to the sum of the absolute values of each 

original data in the column which has the maximum error norm. In addition, ratios of 

compression ratio to mean error norm are computed to determine the optimum percentile 

level. 

 

 

Figure 5.69. The Procedure used in Data Compression via DCT Technique 

Measuring the Effect of the Percentile Value on Compression. 

 

In addition, to be able to compare the DCT technique with the hybrid method 

consisting of PAA and quantization mentioned in Chapter 4, 1D-DCT and 2D-DCT 

methods are applied to the 50
th
, second and 30

th 
columns of the PortSimHigh, SELDI-TOF 

MS and TEP data sets, respectively. 
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Compression ratios and mean error norms calculated for the overall PortSimHigh 

data set for 10 different percentile values are given in Figure 5.70. As the percentile value 

increases from 90% to 99.8%, the compression ratio increases almost seven times 

(approximately from 10 to 70) as shown in Figure 5.70. Thus it can be said that the 

maximum compression levels are obtained with the percentile values higher than 90% used 

in DCT methods. The important point is to obtain the maximum compression ratio while 

minimizing the reconstruction error norm. It can be said that compression ratios of the 

PortSimHigh data set obtained with 1D-DCT and 2D-DCT are the same. However, mean 

error norm values between reconstructed and original signals obtained with 1D-DCT are 

much higher than those obtained with 2D-DCT, especially for large percentile values used 

in thresholding step as illustrated in Figure 5.70. In addition, the value of the mean error 

norm obtained with 2D-DCT at the percentile level of 99.5% can be maintained with 1D-

DCT at the percentile level of 60%. However, the achieved compression ratio becomes 

approximately one instead of 60. 

 

 

Figure 5.70. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the PortSimHigh Data Set with DCT. 
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% Relative global and % relative maximum errors calculated for the overall 

PortSimHigh data set for 10 different percentile values are given in Figure 5.71. % 

Relative global and % relative maximum errors obtained with 1D-DCT are much larger 

than those obtained with 2D-DCT as it can be seen from Figure 5.71. 

 

 

Figure 5.71. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the PortSimHigh Data Set with DCT. 

 

Figure 5.72 is given to visually locate the optimum percentile value used in 

thresholding step. However, as the percentile values increase, the ratios of compression 

ratio to mean error norm decrease sharply for 2D-DCT, thus it is difficult to specify a 

reasonable optimum percentile value as high compression ratios are obtained with large 

percentiles. On the other hand, it can be concluded that 2D-DCT gives better results than 

1D-DCT for the PortSimHigh data set. Also, the percentile value does not show a 

noticeable effect on the ratio of compression ratio to mean error norm for 1D-DCT as 

illustrated in Figure 5.72. 

 

10 20 30 40 50 60 70 80 90 100
0

2

4

6

Percentile

%
 R

e
la

ti
v
e
 g

lo
b
a
l 
e
rr

o
r

 

 

1D-DCT

2D-DCT

10 20 30 40 50 60 70 80 90 100
0

50

100

150

Percentile

%
 R

e
la

ti
v
e
 m

a
x
im

u
m

 e
rr

o
r

 

 

1D-DCT

2D-DCT



106 

 

 

Figure 5.72. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the PortSimHigh Data Set with DCT. 

 

In Chapter 4, the optimum frame size used in the PAA and the optimum number of 

digits kept after decimal in quantization had been determined so as to maximize the ratio of 

compression ratio to error norm. The optimum frame size was 120 with one-digit 

quantization for the 50
th 

column of the PortSimHigh data set, yielding compression ratio of 

55 with the error norm close to 500, as shown in Figure 4.20. Same compression level is 

obtained with the percentile value of 99.5% with the same error norm by applying DCT 

technique. 1D-DCT and 2D-DCT results are the same when they are applied to single data 

column, as illustrated in Figure 5.73. Thus, it can be concluded that the hybrid method 

consisting of PAA and quantization applied in Chapter 4 is as effective as the DCT 

technique for the highly correlated PortSimHigh data set. 

 

Compression ratios and mean error norms calculated for the overall PortSimLow 

data set for 10 different percentile values are given in Figure 5.74. Both compression ratio 

and error norm values obtained with 1D-DCT and 2D-DCT are almost same as shown in 
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high correlation among its columns, whereas 2D-DCT has not any superiority over 1D-

DCT for the data sets having low correlation among its columns. 

 

 

Figure 5.73. Compression Ratio and Error Norm versus Thresholding Percentile 

for the 50
th
 column of the PortSimHigh Data Set with DCT. 

 

 
Figure 5.74. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the PortSimLow Data Set with DCT. 
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% Relative global and % relative maximum errors calculated for the overall 

PortSimLow data set for 10 different percentile values are given in Figure 5.75. % Relative 

global errors obtained with 1D-DCT and 2D-DCT are nearly the same, whereas % relative 

maximum error obtained with 2D-DCT is slightly larger than that obtained with 1D-DCT 

as it can be seen from Figure 5.75. Thus, it can be stated that localized measure of error is 

more distinctive than the overall measure. 

 

 
Figure 5.75. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the PortSimLow Data Set with DCT. 

 

The ratio of compression ratio to error norm values computed for the overall 

PortSimLow data set for 10 different percentile values are given in Figure 5.76 to 

determine the optimum percentile level. The ratio of compression ratio to error norm 

values calculated with 1D-DCT and 2D-DCT methods are almost overlapped as illustrated 

in Figure 5.76. Optimum percentile value cannot be determined since the ratios decrease as 

the percentile value increases. The curves are similar to the 2D-DCT curve of the overall 

PortSimHigh data set illustrated in Figure 5.72. Whereas, the ratio of compression ratio to 

error norm values for 2D-DCT applied to the PortSimHigh data set are much larger than 

those for both DCT techniques applied to the PortSimLow data set. As a result, it can be 
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stated that 2D-DCT is a very efficient method for highly correlated data sets, whereas 2D-

DCT may not be the appropriate compression technique for the less correlated data sets. 

 

 

Figure 5.76. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the PortSimLow Data Set with DCT. 

 

Compression ratios and mean error norms calculated for the overall SELDI-TOF MS 

data set for 10 different percentile values are given in Figure 5.77. 1D-DCT and 2D-DCT 

methods give the same results for the SELDI-TOF MS data set as shown in Figure 5.77 

similar to the PortSimLow data set. As the SELDI-TOF MS data set is highly uncorrelated, 

it is expected that 2D-DCT method will not give better results than 1D-DCT as mentioned 

before. 

 

% Relative global and % relative maximum errors calculated for the overall SELDI-

TOF MS data set for 10 different percentile values are given in Figure 5.78. % Relative 

global and % relative maximum errors are too small as illustrated in Figure 5.78 when 

compared with large mean error norms shown in Figure 5.77. This situation may be related 

to the data having sharp peaks with large amplitudes. In addition, % relative maximum 

error obtained with 2D-DCT is slightly larger than that obtained with 1D-DCT. According 

to the high mean error norms, it is expected that there will be a significant distortion in the 
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reconstructed SELDI-TOF MS data set (especially the regions where sharp peaks are 

observed) as mentioned in Sections 5.3.5 and 5.3.6. 

 

 
Figure 5.77. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the SELDI-TOF MS Data Set with DCT. 

 

 

Figure 5.78. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the SELDI-TOF MS Data Set with DCT. 
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The ratio of compression ratio to error norm values computed for the overall SELDI-

TOF MS data set for 10 different percentile values are given in Figure 5.79. Unlike 

PortSimHigh and PortSimLow data sets, the optimum percentile value can be specified as 

99.5% (the isolated maximum) for the SELDI-TOF MS data set as illustrated in Figure 

5.79. The reason may be related with the sparse sharp peaks in SELDI-TOF MS data set as 

mentioned in Chapter 3. In addition, it can be said that 1D-DCT generally gives slightly 

better results than 2D-DCT for the highly uncorrelated SELDI-TOF MS data set including 

baseline noise. However, for the percentile level 99.5%, 2D-DCT is the preferred 

technique as mentioned in Section 5.3.6, revealing that the gap between these two 

techniques narrows as the percentile values increase. 

 

 

Figure 5.79. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the SELDI-TOF MS Data Set with DCT. 

 

In Chapter 4, the optimum frame size used in the PAA and the optimum number of 

digits kept after decimal in quantization had been determined as 150 frames and three-digit 

quantization for the second column of the SELDI-TOF MS data set respectively, yielding 

compression ratio as 9.5 with the error norm close to 4000 as shown in Figure 4.21. 

However, by applying DCT technique, compression ratio can be obtained as 70 with the 
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same error norm at a percentile level of 99.8% as shown in Figure 5.80. Thus, it can be 

concluded that DCT technique gives superior results, increasing the compression ratio 

nearly seven times, than the hybrid method consisting of PAA and quantization as applied 

in Chapter 4 for the highly uncorrelated SELDI-TOF MS data set consisting of sparse 

peaks. 

 

 

Figure 5.80. Compression Ratio and Error Norm versus Thresholding Percentile 

for the Second Column of SELDI-TOF MS Data Set with DCT. 

 

Compression ratios and mean error norms calculated for the overall TEP data set for 

10 different percentile values are given in Figure 5.81. Unlike PortSimHigh data set, mean 

error norm values obtained with 1D-DCT are much smaller than those obtained with 2D-

DCT for the TEP data set, although these two techniques give almost the same 

compression ratios as shown in Figure 5.81. However, there is not much difference 

between mean error norms obtained at percentile levels higher than 95%. In addition, the 

value of the mean error norm obtained with 1D-DCT at the percentile level of 95% can be 

maintained with 2D-DCT at the percentile level of 75%. However, the achieved 

compression ratio becomes approximately five instead of 15. 

 

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Percentile

C
o
m

p
re

s
s
io

n
 r

a
ti
o

 

 

1D-DCT

2D-DCT

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

Percentile

E
rr

o
r 

n
o
rm

 

 

1D-DCT

2D-DCT



113 

 

 
Figure 5.81. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the TEP Data Set with DCT. 

 

% Relative global and % relative maximum errors calculated for the overall TEP data 

set for 10 different percentile values are given in Figure 5.82. % Relative global and % 

relative maximum errors obtained with 2D-DCT are larger than those obtained with 1D-

DCT as illustrated in Figure 5.82. Besides, maximum % relative errors obtained with the 

TEP data set are the largest of the four data sets, consistent with the largest mean error 

norms. The reason is that TEP data set is highly uncorrelated including too much noisy 

measurements with level jumps. Compression of this type of data sets is very difficult, thus 

the efficacy of the DCT technique decreases. 

 

The ratio of compression ratio to error norm values computed for the overall TEP 

data set for 10 different percentile values are given in Figure 5.83. It is seen that 1D-DCT 

should be the preferred technique for the TEP data set as the ratios of the compression ratio 

to error norm are higher than those obtained with 2D-DCT as shown in Figure 5.83. 

However, the gap between these two techniques narrows as the percentile values increase. 
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Figure 5.82. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the TEP Data Set with DCT. 

 

 
Figure 5.83. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the TEP Data Set with DCT. 
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In Chapter 4, the optimum frame size used in the PAA and the optimum number of 

digits kept after decimal in quantization had been determined as 150 frames and one-digit 

quantization for the 30
th 

column of the TEP data set respectively, yielding compression 

ratio as 12 with the error norm close to 3000 as shown in Figure 4.22. However, by 

applying DCT technique, compression ratio can be obtained as 70 with the same error 

norm at the percentile level of 99.8% as illustrated in Figure 5.84. Thus, it can be 

concluded that DCT technique gives superior results, increasing the compression ratio 

nearly six times, than the hybrid method consisting of PAA and quantization for the highly 

uncorrelated TEP data set which consists of trendy signals with almost pure noise and level 

jumps. 

 

 
Figure 5.84. Compression Ratio and Error Norm versus Thresholding Percentile 

for the 30
th 

column of the TEP Data Set with DCT. 

 

To sum up, DCT is the easiest data compression method achieving high compression 

by performing reversible mapping from time to frequency domain while exhibiting 

excellent decorrelation and energy compaction properties. The important process features 

such as upward/downward shifts and decreasing/increasing trends except sharp peaks can 

be reconstructed thoroughly by IDCT without any significant distortion in information 
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content. Measurements consisting of almost pure noise do not contain information, and 

noise removal is well achieved by DCT, besides providing better compression. 

 

2D-DCT technique is the preferred technique for the highly correlated data sets. It 

can also be stated that for the data sets consisting of almost pure noise with level jumps, 

higher compression levels can be obtained with the DCT method instead of the hybrid 

method consisting of PAA and quantization mentioned in Chapter 4. Nevertheless, 2D-

DCT may not be the appropriate compression technique for the highly uncorrelated data 

sets as the efficacy of this method decreases a lot. 

 

As the percentile values used in thresholding step increase, compression ratio, mean 

error norm, % relative global error and % relative maximum error values increase steadily. 

Mean error norms calculated for the TEP and SELDI-TOF MS data sets are much higher 

(nearly five times) than those of the PortSimHigh and PortSimLow data sets for the same 

compression level of 80 due to their high noise content with sudden changes. Thus, it is 

more difficult to reconstruct these two data sets by the DCT without any significant loss. 

However, % relative global and % relative maximum errors calculated for the SELDI-TOF 

MS data set are much smaller than those of the three data sets for the compression level of 

80. This situation may be explained with the presence of sharp peaks (signals with large 

amplitudes) in SELDI-TOF MS data set. 

 

As the percentile values used in thresholding step increase, both compression ratio 

and mean error norm values increase steadily. However, high compression levels cannot be 

achieved with percentile values less than 90% in DCT method. High compression ratios 

can be obtained by further filtering the transform coefficients in thresholding step. The 

amount of distortion and compression can be adjusted via proper setting of the threshold 

limits as explained in Chapter 2. The important point is to adjust these limits beyond which 

amount of distortion cannot be identified in filtering. 

 

The Discrete Wavelet Transform (DWT) will be studied in the following chapter in 

order to reduce reconstruction error norms further while maximizing reduction ratios. 
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6.  DATA COMPRESSION VIA DISCRETE WAVELET TRANSFORM 

 

 

Discrete Wavelet Transform (DWT) is generally used in signal processing to remove 

undesirable noisy data which are short-lived high frequency signals (Blelloch, 2010). DWT 

is gaining popularity in various applications such as on-line data compression, data 

rectification, pattern-matching and image processing. DWT analyzes a signal both in time 

and frequency domain by multi-scale representation whereas DCT works only in frequency 

domain. Hence, DWT can be used to identify the signal frequencies in a specific time 

interval, for instance DWT can detect the instant of a localized change in a signal whereas 

DCT cannot (Salomon, 2008). Thus, DWT is superior to DCT in analyzing non-stationary 

signals containing spikes or discontinuities (Pu, 2006). 

 

DWT is useful in revealing signal trends hidden in noisy measurements by dividing 

the original data set into different frequency components which are called “sub-bands”. 

Filters allowing certain sub-bands to pass are called “band-pass filters”, for instance, a 

low-pass filter (LPF) allows the low-frequency components (approximations), whereas a 

high-pass filter (HPF) allows the high-frequency components (details) as illustrated in 

Figure 6.1 (Pu, 2006). 

 

 

Figure 6.1. One-Stage Filtering of a Signal (Mathworks, 2011). 

 

If the original signal (S) consists of 1000 data points, at the end of the filtering 

process, each resulting signal (A and D) will have 1000 data points, a total of 2000 data 

points are produced, in other words the number of data points is doubled. Hence, 

downsampling is applied to these signal components producing approximation coefficients 



118 

 

(cA) and detail coefficients (cD) each having 500 values, namely a total of 1000 data 

points will be produced as shown in Figure 6.2. 

 

 

Figure 6.2. Filtering and Downsampling of a Signal Producing DWT Coefficients 

(Mathworks, 2011). 

 

The scheme of the wavelet transform including decomposition and reconstruction 

filters is shown in Figure 6.3. The choice of reconstruction filters is important for perfect 

reconstruction of the original signal from the approximation and detail coefficients 

(Mathworks, 2011). 

 

 

Figure 6.3. Decomposition and Reconstruction Filters (Mathworks, 2011). 

 

Multilevel wavelet decomposition tree is presented in Figure 6.4 and Figure 6.5 for 

the original signal S, where cA’s are the approximation coefficients and cD’s are the detail 

coefficients. Approximation coefficients are the coarse representation and detail 
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coefficients are the small representation of the original data set. Multilevel decomposition 

is generally preferred to get rid of noisy measurements since the first levels of 

decomposition eliminate noise. As the level used in decomposition increases, the number 

of noisy data eliminated also increases. Thus, smaller reconstruction error norms with 

higher compression ratios are expected. 

 

 

Figure 6.4. Multilevel Wavelet Decomposition Tree (Mathworks, 2011). 

 

 

Figure 6.5. Detailed Multilevel Wavelet Decomposition Tree (Mathworks, 2011). 

 

With regard to Figure 6.4 and Figure 6.5, in a three-level wavelet decomposition, 

original signal (S) is the sum of the approximation at level three (A3) and the details at 

levels three, two and one (D3, D2, D1), as illustrated in Figure 6.6. Approximation and 

detail components are firstly reconstructed from the wavelet coefficients by applying the 

inverse wavelet transform before they are assembled to reproduce the original signal. 
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Figure 6.6. Reconstructed Signal Components (Mathworks, 2011). 

 

In MATLAB, the third-level approximation coefficients (cA3) and the first three 

levels of detail coefficients (cD1, cD2, cD3) produced in the third-level wavelet 

decomposition are assembled into one vector, C as illustrated in Figure 6.7. 

 

 

Figure 6.7. Third-Level Decomposition Coefficients (Mathworks, 2011). 

 

Length of the signal’s wavelet coefficients decreases by half in each decomposition 

level, where approximation and detail coefficients are produced. In MATLAB, these 

coefficients are assembled into the ‘coefs’ vector and lengths of the coefficients and the 

‘coefs’ vector are stored in the ‘longs’ vector as illustrated in Figure 6.8. 

 

 

Figure 6.8. Third-Level Decomposition Coefficients and Their Lengths 

(Mathworks, 2011). 
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In DWT filtering/de-noising, the signal is first decomposed into detail coefficients 

(differences) representing the high-frequency components including noisy measurements 

and approximation coefficients (averages) representing the low-frequency components at 

multiple levels of resolution. Then, the detail coefficients below certain threshold are set to 

zero. Thus, noise removal is achieved by quantizing the differences during compression 

(Bakshi and Stephanopoulos, 1996). These approximation and detail coefficients are 

encoded separately. Finally, the original signal is reconstructed by applying the inverse 

wavelet transform over both the detail and approximation coefficients before combining 

them. Information loss will be more towards the high-frequency region as most of the 

detail coefficients representing this region are eliminated. 

 

6.1.  One Dimensional Discrete Wavelet Transform 

 

DWT does not have a single set of basis functions, unlike DCT. The family of basis 

functions are scaled and translated versions of a mother wavelet function such as the Haar, 

the Daubechies family and the Symlet family of orthogonal wavelet functions (Blelloch, 

2010). The efficacy of the DWT depends directly on the preferred mother wavelet function 

(Bakshi and Stephanopoulos, 1996). 

 

Wavelets are irregular and often non-symmetrical having a limited duration. They 

are suited to localized changes (Watson et al., 1998). Wavelets can detect overall trend of a 

signal. However, detecting discontinuity is difficult in presence of noise. 

 

Haar wavelets are the most described wavelets, but the least used although their 

simple form resembling a step function is easy to illustrate, which are derived from the 

following mother function, ψ(t) (Singhal and Seborg, 2005); 

 

            
                

             
               

  (6.1) 

 

Daubechies and Symlet family wavelets are denoted by dbN and symN respectively 

where N is the order. Haar, Daubechies 4 (db4) and Symlet 4 (sym4) wavelets are given in 

Figure 6.9. Haar wavelet is discontinuous representing the same wavelet as Daubechies 1 
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(db1) and generally used for smooth data sets whereas Daubechies and Symlet wavelets 

are generally preferred for noisy data sets (Benouaret et al., 2012). 

 

 

Figure 6.9. Examples of Types of Wavelets (Mathworks, 2011). 

 

The integral wavelet transform of a time-varying signal f(t) is defined as follows 

(Watson et al., 1998); 

 

                       
   

 
   

 

  
  (6.2) 

 

where a denotes the frequency scale (dilation) at which the signal is decomposed and 

b denotes its position in time (translation). The wavelet transform f’(a,b) is calculated at 

the position        and with dilation       where j and k are integers. If these dilate 

and translate components are orthonormal, wavelet function can be represented as follows 

(Watson et al., 1998); 

 

                       (6.3) 

 

The number of wavelet coefficients that are close to zero can be increased by 

choosing the most appropriate wavelet function ψ(t) to obtain better compression. 

Furthermore, if a wavelet function has large vanishing moments, then the wavelet 

coefficients will be small (Chau et al., 2004). 

 

Wavelet coefficients denoted by gj,k are also defined as (Watson et al., 1998); 

 

         
 

   
 

     (6.4) 
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1D-DWT is a linear and orthogonal transform, in which a time-varying signal f(t) 

can be represented as (Watson et al., 1998); 

 

                   
 
    

 
      (6.5) 

 

The wavelet decomposition coefficients representing the frequency content of the 

signal f(t) at different times are defined by using an orthonormal wavelet basis as follows 

(Watson et al., 1998); 

 

                        
      (6.6) 

 

where f(l) is the l
th
 element of the signal. 

 

6.1.1.  Illustration of Multilevel Wavelet Decomposition with One Dimensional 

Discrete Wavelet Transform 

 

50
th
 column of the PortSimHigh data set will be used here for the illustration of the 

third-level wavelet decomposition with wavelet type db1 using the graphical user interface 

tools (1-D Wavelet Analysis Tool in the Wavelet Toolbox Main Menu) of MATLAB 

(version R2008b). In addition, MATLAB’s appcoef and detcoef commands will be 

used for extracting 1D-DWT approximation and detail coefficients respectively. 

 

Original signal (s, of length 10000) is the sum of the approximation at level three (a3) 

and the details at levels three, two and one (d3, d2, d1) as illustrated in Figure 6.10. Details 

are the noisy part of the original signal, it can even be stated that detail at level one is 

almost pure noise, whereas the overall trend of the signal (increasing/decreasing trends) is 

revealed in the approximation part. Original signal and its approximation at level three are 

almost similar as shown in Figure 6.10, in other words detail components can easily be 

discarded in thresholding step to improve compression without any significant loss in 

information content. Thus, original signal can be reconstructed by using only 

approximation at level three. 
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Figure 6.10. Three-Level Decomposition of the 50
th
 Column 

of the PortSimHigh Data Set with Wavelet Type db1. 

 

Wavelet-tree mode of the previous figure is shown in Figure 6.11. The original signal 

and its reconstructed approximation at level three (de-noised part of the signal which 

represents its overall trend) are almost same. 
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Figure 6.11. Original Signal of the 50
th
 Column of the PortSimHigh Data Set 

and its Approximation at Level Three with Wavelet Type db1. 

 

The original signal having 10000 data points (first sub-window), third-level 

approximation coefficients (second sub-window) having 1250 data points and detail 

coefficients from level three to one (third, fourth and fifth sub-windows) having 1250, 

2500 and 5000 data points, respectively are shown in Figure 6.12. Magnitudes of the 

wavelet coefficients increase as the decomposition level also increases, meaning that most 

important information content is stored in the third-level coefficients. It can be concluded 

that original signal with dimension 10000 can be reconstructed by using only 

approximation coefficients at level three with dimension 1250 without any important 

distortion in the original signal while both dimensionality reduction and de-noising are 

achieved. 
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Figure 6.12. Third-Level Decomposition Coefficients of the 50
th
 Column 

of the PortSimHigh Data Set with Wavelet Type db1. 

 

Since the first and second-level detail coefficients are close to zero, they are 

discarded in thresholding step. In addition, the most largest first 100 third-level detail 

coefficients out of 1250 ones are selected, in other words, only third-level approximation 

coefficients with dimension 1250 and third-level detail coefficients with dimension 100 are 

stored. Synthesized signal is similar to the original signal as it is seen from Figure 6.13 

concluding that if the detail coefficients of the first few levels (noisy parts of the signal) are 

eliminated, there will not be any important distortion in the original signal while high 

compression ratios are obtained by using de-noised signal components. 
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Figure 6.13. Thresholded Third-Level Decomposition Coefficients of the 50
th
 Column 

of the PortSimHigh Data Set with Wavelet Type db1. 

 

Wavelet coefficients of the 50
th

 column of the PortSimHigh data were generated for 

three-level decomposition with wavelet type db1 using MATLAB’s wavedec function. 

These coefficients are then packed into a single coefficient vector C as depicted in Figure 

6.7 as C = [cA3 | cD3 | cD2 | cD1]. These packed coefficients before and after thresholding, 

in which the percentile value is taken as 90%, are shown in the upper and bottom sub-

windows of Figure 6.14. It is seen that the number of non-zero coefficients (of size 10000) 

becomes 1000 after thresholding. Log-log plot of the sorted absolute values of the 1D-

DWT coefficients of size 10000 and the threshold limit of 0.3564 denoted by the red 

horizontal line, specified by taking the percentile of the frequency distribution of the 

transform coefficients as 90% is given in the middle sub-window of Figure 6.14. The 

coefficients below the threshold limit (9000 coefficients) are set to zero for compression, in 
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other words 90% of the transform coefficients become zero. The number of non-zero 

coefficients kept is 1000, which is only 10% of the number of data points. 

 

 

Figure 6.14. Sorted and Thresholded Three-Level Decomposition Coefficients of the 

50
th
 Column of the PortSimHigh Data Set with Wavelet Type db1 for α=90 %. 

 

Reconstructed data generated with inverse DWT and their overlay with the originals 

are shown in the upper sub-window of Figure 6.15. The major features of the stock prices 

such as decreasing/increasing trends are reconstructed with some distortion in the sharpest 
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points leading to higher reconstruction errors ( = original - reconstructed) at these regions 

as illustrated in the bottom sub-window of Figure 6.15. 

 

 

Figure 6.15. Original versus Reconstructed Signals and Reconstruction Errors after 

Applying Three-Level Decomposition with Wavelet Type db1 for α=90 %. 

 

6.2.  Two Dimensional Discrete Wavelet Transform 

 

Two Dimensional Discrete Wavelet Transform (2D-DWT) is computed by applying 

1D-DWT in the horizontal and vertical directions of a data set (Weeks, 2007). Two-

dimensional wavelet decomposition tree is presented in Figure 6.16 for the original signal 

s, where cA’s are the approximation coefficients and cD
(h)

, cD
(d)

 and cD
(v)

’s are the 

horizontal, diagonal and vertical detail coefficients respectively. Horizontal detail 

coefficients can be thought as the 1D-DWT detail coefficients, whereas diagonal and 

vertical detail coefficients are generally used for analyzing interactions between multiple 

series and adjusting the scale in these series respectively (Dillard and Shmueli, 2004). 
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Figure 6.16. Two-Dimensional Wavelet Decomposition Tree (Mathworks, 2011). 

 

In an n-level wavelet decomposition, approximation coefficients at level n (cAn) and 

horizontal, vertical and diagonal detail coefficients (cHn, cVn, cDn ,…, cH1, cV1, cD1) at 

each level are assembled into the ‘coefs’ vector consisting of 3n+1 sections and sizes of 

these coefficients (cAn, cVn ,…, cV1) and the original signal (X) are stored in the ‘sizes’ 

matrix with dimension (n+2)2 in MATLAB as illustrated in Figure 6.17 (Mathworks, 

2011). The number of data rows in the signal’s wavelet coefficients decreases by half in 

each decomposition level, where approximation and detail (horizontal, vertical and 

diagonal) coefficients are produced. It should also be mentioned that the total number of 

2D-DWT coefficients (later to be compressed) and the number of original data points can 

be different from each other unlike 1D-DWT. 

 

 

Figure 6.17. n-Level Decomposition Coefficients and Their Lengths 

(Mathworks, 2011). 
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In wavelet analysis, the scaling function, ϕ, and the wavelet function, ψ, represent 

approximation and detail components of a signal, respectively having the following 

properties (Mathworks, 2011); 

 

           (6.7) 

           (6.8) 

 

In two-dimensional analysis, one scaling function ϕ(x,y) and three wavelets ψV(x,y), 

ψH(x,y) and ψD(x,y) in three orientations (vertical, horizontal and diagonal) are defined as 

follows (Mathworks, 2011); 

 

                 (6.9) 

                 

                 

                 

 

Approximation coefficients denoted by Wϕ (j0,m,n) at level j0 and detail coefficients 

denoted by Wψ (j,m,n) at each level are defined as follows (Liu, 2010); 
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Finally, the data set f(x,y) can be represented as (Liu, 2010); 
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The 2D-DWT is employed mostly in image processing. Approximation (A1) and 

horizontal (H1), vertical (V1) and diagonal (D1) detail components generated by one-step 

decomposition of a benchmark image are presented in Figure 6.18. It is seen that the image 

can be represented thoroughly by using only its approximation, whereas details consisting 

of the high-frequency components are not adequate to describe the image. Thus, all of the 

detail parts can be eliminated in order to improve compression without any detectable 

distortion in the image. 

 

 

Figure 6.18. One-Step Decomposition of an Image (Mathworks, 2011). 

 

Approximation (A1, A2) and horizontal (H1, H2), vertical (V1, V2) and diagonal 

(D1, D2) details of an image generated by second-level decomposition are presented in 

Figure 6.19. It can be stated that the image can be synthesized by using only its second-

level approximation without any deterioration in the image quality (compared to the 

original image or its first-level approximation). 
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Figure 6.19. Two-Level Decomposition of an Image (Mathworks, 2011). 

 

6.2.1.  Illustration of Multilevel Wavelet Decomposition with Two Dimensional 

Discrete Wavelet Transform 

 

Three inversely correlated columns of the PortSimLow data set (500
th
, 253

th
 and 18

th
 

columns) and three columns of the PortSimHigh data set (350
th
, 400

th
 and 15

th 
columns) 

will be used here for the illustration of the three-level wavelet decomposition with wavelet 

type db1 using MATLAB (version R2008b). MATLAB’s appcoef2 and detcoef2 

commands will be used for extracting the 2D-DWT approximation and detail 

coefficients. In addition, MATLAB’s wrcoef2 command will be used for 

reconstructing approximation and detail components of the original data set. The graphical 

user interface tools (2-D Wavelet Analysis Tool in the Wavelet Toolbox Main Menu) of 

MATLAB cannot be used for analyzing the multiple data series as these tools are 

implemented for image processing applications. 

 

Original signals of the PortSimLow data set of size 100003 are the sum of the 

approximation at level three (A3), two (A2) and one (A1) and horizontal, vertical and 

diagonal details at levels three (H3, V3, D3), two (H2, V2, D2) and one (H1, V1, D1) as 

illustrated in Figure 6.20. It is observed that the most prominent patterns in the original 

series are preserved in the approximations and vertical details at level one (A1 and V1). 

However, horizontal and diagonal details at each level contain most of the high-frequency 

components, in other words they can safely be eliminated in thresholding step to improve 
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compression. Thus, the original signals can be synthesized by using only the 

approximations and vertical details at level one without any significant loss in the 

information content while both dimensionality reduction and de-noising are achieved. 

 

 

Figure 6.20. Three-Level Decomposition of the PortSimLow Data Set 

of Size 100003 with Wavelet Type db1. 

 

The original signals each having 10000 data rows, approximation and horizontal, 

vertical and diagonal detail coefficients at level three (cA3, cH3, cV3, cD3), two (cA2, 

cH2, cV2, cD2) and one (cA1, cH1, cV1, cD1) having 1250, 2500 and 5000 data rows 

respectively are shown in Figure 6.21. Magnitudes of the wavelet coefficients increase as 

the level in decomposition increases, meaning that most important information content is 

stored in the third-level coefficients. It is also observed that the approximation and vertical 

detail coefficients are the largest in magnitude, and thus, the diagonal and horizontal detail 

coefficients can be eliminated safely without any significant distortion. It can also be stated 

that for an n-level decomposition, n+1 series may be used in order to generate non-zero 

vertical and diagonal detail coefficients in the deepest levels. 
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Figure 6.21. Three-Level Decomposition Coefficients of the PortSimLow Data Set 

of Size 100003 with Wavelet Type db1. 

 

Wavelet coefficients of the PortSimLow data set of size 100003 were generated for 

three-level decomposition with wavelet type db1 using MATLAB’s wavedec2 function. 

These coefficients are then concatenated into a single coefficient vector C as shown in 

Figure 6.17, where C = [cAn | cHn | cVn | cDn |…| cH1 | cV1 | cD1]. These packed 

coefficients before and after thresholding, where the percentile value is taken as 90%, are 

shown in the upper and bottom sub-windows of Figure 6.22. It is seen that the number of 

non-zero coefficients (of size 30000) becomes 4250 after thresholding. Log-log plot of the 

sorted absolute values of the 2D-DWT coefficients of size 42500 (the number of 

coefficients is higher than the number of data points of 30000) and the threshold limit of 

0.8933 denoted by the red horizontal line, specified by taking the percentile of the 

frequency distribution of the transform coefficients as 90% is given in the middle sub-

window of Figure 6.22. The coefficients below the threshold limit (38250 coefficients) are 

set to zero for compression, in other words 90% of the transform coefficients become zero. 

It can also be stated that all of the horizontal and diagonal detail coefficients are set to zero 

as they are smaller than the specified threshold limit as it can be seen from Figure 6.21. 
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Figure 6.22. Sorted and Thresholded Three-Level Decomposition Coefficients of the 

PortSimLow Data Set of Size 100003 with Wavelet Type db1 for α=90 %. 

 

Reconstructed data series generated with inverse 2D-DWT and their overlay with the 

originals are shown in the sub-windows of Figure 6.23 on the left side. The prominent 

patterns of the stock prices are reconstructed by using only the largest approximations and 

vertical details with some distortion leading to reconstruction errors ( = original - 

reconstructed) as illustrated in the sub-windows of Figure 6.23 on the right side. It is seen 

that minimum reconstruction error is generated in the 18
th
 column of the PortSimLow data 

set. 
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Figure 6.23. Original versus Reconstructed Signals and Reconstruction Errors of the 

PortSimLow Data Set of Size 100003 for α=90 %. 

 

Original signals of the PortSimHigh data set of size 100003 (series are highly 

correlated that they overlap as shown in Figure 6.24) are the sum of the approximation at 

level three (A3), two (A2) and one (A1) and horizontal, vertical and diagonal details at 

levels three (H3, V3, D3), two (H2, V2, D2) and one (H1, V1, D1) as illustrated in Figure 

6.24. It is observed that approximations at each level are similar to the original series, 

whereas horizontal, vertical and diagonal details at each level contain the most noisy parts, 

in other words they can simply be eliminated in thresholding step to improve compression. 

Thus, the original signal can be reconstructed by using only the approximations in any 

level without any significant loss in the information content. 
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Figure 6.24. Three-Level Decomposition of the PortSimHigh Data Set 

of Size 100003 with Wavelet Type db1. 

 

The original signals each having 10000 data rows, approximation and horizontal, 

vertical and diagonal detail coefficients at level three (cA3, cH3, cV3, cD3), two (cA2, 

cH2, cV2, cD2) and one (cA1, cH1, cV1, cD1) having 1250, 2500 and 5000 data rows 

respectively are shown in Figure 6.25. Magnitudes of the wavelet coefficients increase 

through the deepest levels, revealing that the most important information content is stored 

in the third-level approximation coefficients. Also, original series having a total of 30000 

data points can be synthesized by using only the approximation coefficients at level three 

with dimension 1250 without any deterioration while both dimensionality reduction and 

de-noising are achieved simultaneously. In addition, it is observed that vertical and 

diagonal detail coefficients of the PortSimHigh data set are much smaller than those of the 

PortSimLow data set as the inversely correlated series of the PortSimLow data set have 

different scales, requiring a proper scale adjustment represented by the vertical detail 

coefficients. Moreover, it is observed that differential changes represented by the diagonal 

detail coefficients are more pronounced in these inversely correlated series. Furthermore, 

these small detail coefficients of the highly correlated series can simply be set to zero in 

the thresholding step in order to maximize compression while perfect reconstruction is 

retained. 
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Figure 6.25. Three-Level Decomposition Coefficients of the PortSimHigh Data Set 

of Size 100003 with Wavelet Type db1. 

 

Wavelet coefficients of the PortSimHigh data set of size 100003 generated for 

three-level decomposition with wavelet type db1 using MATLAB’s wavedec2 function 

are concatenated into a single coefficient vector C as shown in Figure 6.17, where C = 

[cAn | cHn | cVn | cDn |…| cH1 | cV1 | cD1]. These packed coefficients before and after 

thresholding, in which the percentile value is taken as 97%, are shown in the upper and 

bottom sub-windows of Figure 6.26. It is seen that the number of non-zero coefficients (of 

size 30000) becomes 1275 after thresholding. Log-log plot of the sorted absolute values of 

the 2D-DWT coefficients of size 42500 (the number of coefficients is higher than the 

number of data points of 30000) and the threshold limit of 0.2155 denoted by the red 

horizontal line, specified by taking the percentile of the frequency distribution of the 

transform coefficients as 97% is given in the middle sub-window of Figure 6.26. The 

coefficients below the threshold limit (41225 coefficients) are set to zero for compression, 

in other words 97% of the transform coefficients become zero. The number of non-zero 

coefficients kept is 1275, which is only 3% of the number of coefficients. It can also be 

stated that the horizontal detail coefficients at the first two levels and all of the vertical and 

diagonal detail coefficients are set to zero as they are smaller than the specified threshold 

limit as illustrated in Figure 6.25. 
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Figure 6.26. Sorted and Thresholded Three-Level Decomposition Coefficients of the 

PortSimHigh Data Set of Size 100003 with Wavelet Type db1 for α=97 %. 

 

Reconstructed data series generated with inverse 2D-DWT and their overlay with the 

originals are shown in the sub-windows of Figure 6.27 on the left side. The major features 

of the stock prices are reconstructed by using only the largest horizontal details at level 

three and approximations without any significant distortion leading to small reconstruction 

errors ( = original - reconstructed) as illustrated in the sub-windows of Figure 6.27 on the 

right side. It is observed that PortSimHigh data series are reconstructed better than the 

PortSimLow data series although the percentile value used in thresholding of the former 
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data set is larger. This almost perfect reconstruction is due to high correlations among the 

PortSimHigh data series. 

 

 
Figure 6.27. Original versus Reconstructed Signals and Reconstruction Errors of the 

PortSimHigh Data Set of Size 100003 for α=97 %. 

 

6.3.  Applications of One Dimensional and Two Dimensional 

Discrete Wavelet Transforms 

 

In this section, data compression and lossy reconstruction will be studied by using 

the 1D-DWT and 2D-DWT compression techniques, the thresholding method as a lossy 

compression step and ZIP as the lossless encoding algorithm using the data sets 

PortSimHigh, PortSimLow, SELDI-TOF MS and TEP mentioned in Chapter 3 for 10 

different percentile values of the frequency distribution of the transform coefficients in the 

[15%-99.8%] range by using wavelet types db1 for the PortSimHigh and PortSimLow 

data sets, db4 for the SELDI-TOF MS data set and sym4 for the TEP data set at different 

decomposition levels. The efficacy of the DWT depends directly on the selected mother 

wavelet function. Hence, db1 is used for smoother data sets (PortSimHigh and 
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PortSimLow), whereas db4 and sym4 are preferred for noisy data sets (SELDI-TOF MS 

and TEP). 

 

Detailed 1D-DWT and 2D-DWT analyses are given for each of the data sets for the 

percentile value 99.5%. However, the figures of the transform coefficients before and after 

thresholding are not presented as all of the approximation and detail coefficients at each 

decomposition level cannot be demonstrated in a compact form. Examples of 1D-DWT 

and 2D-DWT coefficients can be seen in Sections 6.1.1 and 6.2.1, respectively. 

Furthermore, the total number of coefficients and the number of original data points can be 

different from each other as discussed in Section 6.2. In addition, the decomposition level 

in DWT is selected so as to yield the same compression level generated by DCT at the 

percentile value 99.5%. Consequently, reconstruction error norms produced in DCT and 

DWT can be compared at the same compression level. Furthermore, the effect of the 

percentile values used in thresholding step on compression is measured in terms of 

compression ratio, mean error norm, % relative global error and % relative maximum 

error. Ratios of compression ratio to mean error norm are also computed to determine the 

optimum percentile level. 

 

The computations were done in MATLAB (version R2008b) using MATLAB’s 

wavedec, wavedec2, waverec and waverec2 commands from the Wavelet Toolbox 

for multi-level 1D and 2D wavelet decomposition and reconstruction and MATLAB’s 

internal zip command is used as the lossless compression algorithm. 

 

6.3.1.  One Dimensional Discrete Wavelet Transform of the PortSimHigh Data Set 

 

In this section, 1D-DWT with 10-level decomposition and the wavelet type db1 is 

applied to the overall PortSimHigh data set (consisting of 500 stock prices) and for 

illustration purposes, only the first 16 stock prices of the PortSimHigh data set are 

presented. The first 16 stock prices were given before in Chapter 5 in scaled format with 

Figure 5.1. 

 

Semilog-log (upper sub-window of Figure 6.28) and log-log (bottom sub-window of 

Figure 6.28) plots of the sorted absolute values of the 1D-DWT coefficients of the overall 
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PortSimHigh data set which are padded into a vector of size 5002000 (the number of 

coefficients is higher than the number of data points of 5000000, unlike 1D-DCT) and the 

threshold limit of 1.1315 denoted by the red horizontal line, specified by taking the 

percentile of the frequency distribution of the transform coefficients as 99.5% are given in 

Figure 6.28. Transform coefficients above and below the threshold limit can be identified 

clearly in the log-log plot. The coefficients below the threshold limit (4976990 

coefficients) are set to zero for compression, in other words 99.5% of the transform 

coefficients become zero. The number of nonzero coefficients kept is 25010, which is only 

0.5% of the number of data points. 

 

 

Figure 6.28. Semilog-log and Log-log Plots of Sorted Absolute 1D-DWT Coefficients 

of the Overall PortSimHigh Data Set for α=99.5 %. 
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The sizes of the ZIP files of the original and encoded data sets are compared in 

Figure 6.29. It is seen that the ZIP file of the overall PortSimHigh data set is nearly 51.1 

MB, whereas the ZIP file of the filtered transformed data set is nearly 0.93 MB. Thus, 

compression can be increased 54.9 times by applying 1D-DWT technique and taking the 

percentile value as 99.5% in thresholding step (similar to the 1D-DCT result). 

 

 

Figure 6.29. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimHigh Data Set for α=99.5 % with 1D-DWT. 

 

Stepwise reconstructed data generated with 1D-iDWT (inverse DWT) and their 

overlay with the originals are shown in Figure 6.30 and Figure 6.31 respectively. The 

prominent features of the stock prices such as decreasing/increasing trends are 

reconstructed without any significant loss, whereas the sharpest features are smoothened as 

most of the detail coefficients keeping the high-frequency information are eliminated as 

illustrated in Figure 6.31. 

 

The original and reconstructed signals are plotted around the y=x line in Figure 6.32. 

It can be stated that reconstructed signals are similar to the original signals as reconstructed 

data points are scattered around the y=x line (all of the 16 example columns). 
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Figure 6.30. Reconstructed PortSimHigh Data Set with Inverse 1D-DWT. 

 

           

Figure 6.31. Original and Reconstructed Signals of the PortSimHigh Data Set 

with Inverse 1D-DWT. 
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Figure 6.32. Reconstructed versus Original Signals of the PortSimHigh Data Set 

with Inverse 1D-DWT. 

 

Error norms between original and reconstructed data sets are calculated per data 

column. Minimum error norm of 576.88 is obtained in the 441
th

 column and the maximum 

error norm of 617.85 is obtained in the 463
th 

column of the PortSimHigh data set. As it can 

be seen from both the upper and the middle sub-windows of Figure 6.33, most of the 

reconstructed data points are located around the y=x line meaning that reconstructed 

signals are close to the original signals providing small error norms. Furthermore, 

reconstruction error norm values of each of the 500 columns of the PortSimHigh data set 

are given in the bottom sub-window of Figure 6.33. It can be concluded that, for 

PortSimHigh data set, slightly larger reconstruction error norms are produced with 1D-

DWT at the same compression level of 55 as compared to 1D-DCT studied in Section 

5.3.1 of Chapter 5. 
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Figure 6.33. Reconstruction Error Norm Values of the PortSimHigh Data Set 

with Inverse 1D-DWT. 

 

6.3.2.  Two Dimensional Discrete Wavelet Transform of the PortSimHigh Data Set 

 

In this section, 2D-DWT with 10-level decomposition and the wavelet type db1 is 

applied to the overall PortSimHigh data set (consisting of 500 stock prices), however, for 

illustration purposes, only the related figures of the first 16 stock prices of the 

PortSimHigh data set are presented. 

 

Semilog-log (upper sub-window of Figure 6.34) and log-log (bottom sub-window of 

Figure 6.34) plots of the sorted absolute values of the 2D-DWT coefficients of the overall 

PortSimHigh data set which are concatenated into a vector of size 5003830 (the number of 

coefficients is higher than the number of data points of 5000000 unlike 2D-DCT) and the 
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threshold limit of 0.2003 denoted by the horizontal line, specified by taking the percentile 

of the frequency distribution of the transform coefficients as 99.5% are given in Figure 

6.34. The coefficients below the threshold limit (4978811 coefficients) which are identified 

clearly in the log-log plot, are set to zero for compression, in other words 99.5% of the 

transform coefficients become zero. The number of nonzero coefficients kept is 25019, 

which is only 0.5% of the number of data points. In addition, the threshold limit is much 

smaller than that found with 1D-DWT, that is 1.1315, as 2D-DWT coefficients produced 

for the highly correlated data set are smaller. 

 

 

Figure 6.34. Semilog-log and Log-log Plots of Sorted Absolute 2D-DWT Coefficients 

of the Overall PortSimHigh Data Set for α=99.5 %. 
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Sizes of the ZIP files of the original and encoded data sets are compared in Figure 

6.35. The ZIP file of the overall PortSimHigh data set is nearly 49.9 MB, whereas the ZIP 

file of the filtered transformed data set is nearly 0.84 MB. Thus, compression can be 

increased 59.3 times by applying 2D-DWT technique and taking the percentile value as 

99.5% in thresholding step. It can also be stated that the compression ratio obtained with 

2D-DWT is slightly larger than that obtained with 1D-DWT, which was 54.9 as mentioned 

in Section 6.3.1. In addition, higher compression is yielded with 2D-DWT compared to 

2D-DCT with which the compression ratio had been calculated as 55.7 in Section 5.3.2. 

 

 

Figure 6.35. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimHigh Data Set for α=99.5 % with 2D-DWT. 

 

Reconstructed data generated with 2D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.36 and Figure 6.37 respectively. It is seen that original 

and reconstructed data are overlapped as illustrated in Figure 6.37 concluding that there is 

almost no distortion in the reconstructed data set. It can also be stated that better 

reconstruction is obtained with 2D-DWT compared to 1D-DWT, where the reconstructed 

data were stepwise. The 2D-DWT technique is therefore more appropriate for the highly 

correlated PortSimHigh data set. 

 

The original and reconstructed signals generated with 2D-iDWT are plotted around 

the y=x line as shown in Figure 6.38. It is observed that all of the reconstructed data points 

are located around the y=x line representing that perfect reconstruction is retained in all of 

the representative 16 stock prices. 
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Figure 6.36. Reconstructed PortSimHigh Data Set with Inverse 2D-DWT. 

 

         

Figure 6.37. Original and Reconstructed Signals of the PortSimHigh Data Set 

with Inverse 2D-DWT. 
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Figure 6.38. Reconstructed versus Original Signals of the PortSimHigh Data Set 

with Inverse 2D-DWT. 

 

Reconstruction error norm values of the overall PortSimHigh data set calculated per 

data column are given in the bottom sub-window of Figure 6.39. Minimum error norm of 

139.33 is obtained in the 60
th
 column and the maximum error norm of 432.25 is obtained 

in the 62
nd

 column of the PortSimHigh data set after applying 2D-DWT. As it can be seen 

from both the upper and the middle sub-windows of Figure 6.39, original signals are 

decoded thoroughly as reconstructed data points are scattered around the y=x line. It 

should also be mentioned that smaller reconstruction error norms (nearly three-fold smaller 

than those produced with 1D-DWT) and slightly higher compression ratios are generated 

with 2D-DWT, concluding that this technique is clearly superior to 1D-DWT when they 

are applied to the highly correlated PortSimHigh data set. However, 2D-DCT technique 

yielded much smaller reconstruction error norms (nearly 10-fold smaller than those 

produced with 2D-DWT) although compression levels were slightly smaller as 

demonstrated in Section 5.3.2. To sum up, 2D-DWT provides the highest compression, 

while 2D-DCT generates more perfect reconstruction when PortSimHigh data set is used. 
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Figure 6.39. Reconstruction Error Norm Values of the PortSimHigh Data Set 

with Inverse 2D-DWT. 

 

6.3.3.  One Dimensional Discrete Wavelet Transform of the PortSimLow Data Set 
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applied to the overall PortSimLow data set (consisting of 500 stock prices), however, for 

illustration purposes, only the first 16 stock prices of the PortSimLow data set are 

presented. The first 16 stock prices were given before in Chapter 5 in scaled format with 

Figure 5.18. 
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coefficients is higher than the number of data points of 5000000, unlike 1D-DCT), and the 

threshold limit of 0.7485 denoted by the horizontal line, specified by taking the percentile 

of the frequency distribution of the transform coefficients as 99.5% are given in Figure 

6.40. Transform coefficients below the threshold limit (99.5% of the transform 

coefficients) which are identified clearly in the log-log plot, are set to zero and the number 

of nonzero coefficients kept is 25010, which is only 0.5% of the number of data points. 

 

 
Figure 6.40. Semilog-log and Log-log Plots of Sorted Absolute 1D-DWT Coefficients 

of the Overall PortSimLow Data Set for α=99.5 %. 

 

Sizes of the ZIP files of the original and encoded data sets are compared in Figure 

6.41. It is seen that the ZIP file of the overall PortSimLow data set is nearly 50.9 MB, 

whereas the ZIP file of the filtered transformed data set is nearly 0.93 MB improving 
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compression 54.6 times with 1D-DWT technique and taking the percentile value as 99.5% 

in thresholding step (same compression level generated with 1D-DCT). 

 

 
Figure 6.41. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimLow Data Set for α=99.5 % with 1D-DWT. 

 

Reconstructed data generated with 1D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.42 and Figure 6.43 respectively. It is seen that the 

major features of the stock prices including peaks and decreasing/increasing trends in the 

original data set are reconstructed accurately as shown in Figure 6.43 concluding that 

wavelet transform performs well in reconstructing sudden changes without any significant 

distortion although the decoded data set is stepwise. 

 

 
Figure 6.42. Reconstructed PortSimLow Data Set with Inverse 1D-DWT. 

Original = 50979773 Encoded = 934554
0

2

4

6
x 10

7

B
y
te

s

0 5000 10000
-1

0

1

1

V
a
lu

e

0 5000 10000
-1

0

1

2

V
a
lu

e

0 5000 10000
-1

0

1

3

V
a
lu

e

0 5000 10000
-1

0

1

4

V
a
lu

e

0 5000 10000
-1

0

1

5

V
a
lu

e

0 5000 10000
-1

0

1

6

V
a
lu

e

0 5000 10000
-1

0

1

7

V
a
lu

e

0 5000 10000
-1

0

1

8

V
a
lu

e

0 5000 10000
-1

0

1

9

V
a
lu

e

0 5000 10000
-1

0

1

10

V
a
lu

e

0 5000 10000
-1

0

1

11

V
a
lu

e

0 5000 10000
-1

0

1

12

V
a
lu

e

0 5000 10000
-1

0

1

13

V
a
lu

e

0 5000 10000
-1

0

1

14

V
a
lu

e

0 5000 10000
-1

0

1

15

V
a
lu

e

0 5000 10000
-1

0

1

16

V
a
lu

e



155 

 

 
Figure 6.43. Original and Reconstructed Signals of the PortSimLow Data Set 

with Inverse 1D-DWT. 

 

The original and reconstructed signals generated with 1D-iDWT are plotted around 

the y=x line in Figure 6.44. Reconstructed data points located around the y=x line reveals 

that all of the representative 16 stock prices are decoded without any deterioration. 

 

 
Figure 6.44. Reconstructed versus Original Signals of the PortSimLow Data Set 

with Inverse 1D-DWT. 
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Reconstruction error norm values of the overall PortSimLow data set calculated per 

data column are given in the bottom sub-window of Figure 6.45. Minimum error norm of 

278.45 is obtained in the 20
th
 column and the maximum error norm of 650.63 is obtained 

in the 122
nd 

column of the PortSimLow data set. As it can be seen from the upper and the 

middle sub-windows of Figure 6.45, 20
th 

column is reconstructed better than the 122
nd

 

column as most of the reconstructed data points of the 20
th

 column are located around the 

y=x line. It can also be stated that slightly smaller reconstruction error norms were 

produced with 1D-DCT at the same compression level of 54.6 as demonstrated in Section 

5.3.3. 

 

 
Figure 6.45. Reconstruction Error Norm Values of the PortSimLow Data Set 

with Inverse 1D-DWT. 
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6.3.4.  Two Dimensional Discrete Wavelet Transform of the PortSimLow Data Set 

 

In this section, 2D-DWT with 10-level decomposition and the wavelet type db1 is 

applied to the overall PortSimLow data set (consisting of 500 stock prices), however, for 

illustration purposes, only the first 16 stock prices of the PortSimLow data set are 

presented. 

 

Semilog-log (upper sub-window of Figure 6.46) and log-log (bottom sub-window of 

Figure 6.46) plots of the sorted absolute values of the 2D-DWT coefficients of the overall 

PortSimLow data set, which are concatenated into a vector of size 5003830 (the number of 

coefficients is higher than the number of data points of 5000000, unlike 2D-DCT), and the 

threshold limit of 2.3662 denoted by the horizontal line, specified by taking the percentile 

of the frequency distribution of the transform coefficients as 99.5% are given in Figure 

6.46. The coefficients below the threshold limit (4978811 coefficients), which are 

identified clearly in the log-log plot, are set to zero for compression, in other words 99.5% 

of the transform coefficients become zero. The number of nonzero coefficients kept is 

25019, which is only 0.5% of the number of data points. In addition, the threshold limit is 

much larger than that found with 1D-DWT, that is 0.7485. Hence, higher reconstruction 

error norms are expected with 2D-DWT for the less correlated PortSimLow data set. 

 

Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 6.47, the ZIP file of the original data set is nearly 50.5 MB, whereas the ZIP 

file of the filtered transformed data set is nearly 0.84 MB. Thus, compression can be 

increased 60.4 times by applying 2D-DWT technique and taking the percentile value as 

99.5% in thresholding step. It can also be stated that the compression ratio obtained with 

2D-DWT is larger than that obtained with 1D-DWT, which was 54.6 as mentioned in 

Section 6.3.3. In addition, higher compression is yielded with 2D-DWT compared to 2D-

DCT with which compression ratio had been calculated as 54.9 in Section 5.3.4. 
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Figure 6.46. Semilog-log and Log-log Plots of Sorted Absolute 2D-DWT Coefficients 

of the Overall PortSimLow Data Set for α=99.5 %. 

 

 

Figure 6.47. ZIP Compression Comparison of the Original and Encoded 

Overall PortSimLow Data Set for α=99.5 % with 2D-DWT. 
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Reconstructed data generated with 2D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.48 and Figure 6.49 respectively. It is seen that 

reconstructed data cannot represent the original data accurately as illustrated in Figure 6.49 

concluding that there is a significant loss in the decoded data set (except prices of the 13
th 

and 16
th

 stocks). This situation may stem from the discarded approximation coefficients 

representing the major trends in the original data. It is obvious that much better 

reconstruction was obtained with 1D-DWT compared to 2D-DWT concluding that 2D-

DWT technique is not adequate for the reconstruction of the less correlated PortSimLow 

data set. 

 

In Figure 6.50, the original and reconstructed signals produced with 2D-iDWT are 

plotted around the y=x line. It can be said that almost each of the reconstructed signals is 

completely different from the original ones (except prices of the 13
th 

and 16
th

 stocks) as 

most of the data points are located around the y=0 line. 

 

 
Figure 6.48. Reconstructed PortSimLow Data Set with Inverse 2D-DWT. 
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Figure 6.49. Original and Reconstructed Signals of the PortSimLow Data Set 

with Inverse 2D-DWT. 

 

 
Figure 6.50. Reconstructed versus Original Signals of the PortSimLow Data Set 

with Inverse 2D-DWT. 
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Error norms between original and reconstructed data sets are calculated per data 

column. Reconstruction error norm values of the overall PortSimLow data set are given in 

the bottom sub-window of Figure 6.51. Minimum error norm of 1290.5 is obtained in the 

138
th
 column and the maximum error norm of 7651.3 is obtained in the 461

th
 column of the 

PortSimLow data set after applying 2D-DWT. It can be concluded that 1D-DWT performs 

well in reconstruction, whereas 2D-DWT achieves the maximum compression although 

this technique fails in reconstruction (error norms are nearly 10-fold higher than those 

produced with 1D-DWT) when less correlated PortSimLow data set is used. Actually, it 

was decided that 2D-DWT was superior to 1D-DWT in both compression and 

reconstruction when highly correlated PortSimHigh data set was used in Section 6.3.2. 

Therefore, it can be said that the efficacy of the 2D-DWT technique depends on the 

characteristics of the data set. 

 

 
Figure 6.51. Reconstruction Error Norm Values of the PortSimLow Data Set 

with Inverse 2D-DWT. 
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6.3.5.  One Dimensional Discrete Wavelet Transform of the SELDI-TOF MS Data Set 

 

In this section, 1D-DWT with eight-level decomposition and the wavelet type db4 is 

applied to the overall SELDI-TOF MS data set (consisting of six ovarian cancer samples). 

The complete scaled intensities were given before in Chapter 5 with Figure 5.35. 

 

Semilog-log (upper sub-window of Figure 6.52) and log-log (bottom sub-window of 

Figure 6.52) plots of the sorted absolute values of the 1D-DWT coefficients of the overall 

SELDI-TOF MS data set, which are padded into a vector of size 2028234 (the number of 

coefficients is higher than the number of data points of 2027928, unlike 1D-DCT), and the 

threshold limit of 0.0815 denoted by the horizontal line, specified by taking the percentile 

of the frequency distribution of the transform coefficients as 99.5% are given in Figure 

6.52. Transform coefficients below the threshold limit (99.5% of the transform 

coefficients) which are identified clearly in the log-log plot, are set to zero and the number 

of nonzero coefficients kept is 10141, which is only 0.5% of the number of data points. 

 

Sizes of the ZIP files of the original and encoded data sets are compared in Figure 

6.53. It is seen that the ZIP file of the overall SELDI-TOF MS data set is nearly 20.6 MB, 

whereas the ZIP file of the filtered transformed data set is nearly 0.34 MB improving 

compression 60.1 times with 1D-DWT technique and taking the percentile value as 99.5% 

in thresholding step (slightly higher than the compression level generated with 1D-DCT, 

that was 58.6, as mentioned in Section 5.3.5). 

 

Reconstructed data generated with 1D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.54 and Figure 6.55 respectively. It is seen that perfect 

reconstruction is retained (observed in all of the six cancer samples) while de-noising is 

also achieved as illustrated in Figure 6.55. It should also be mentioned that there were 

some distortions in the magnitudes of the major peaks in the decoded SELDI-TOF MS data 

set with 1D-iDCT, whereas these sudden changes can be reconstructed thoroughly with 

1D-iDWT. 
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Figure 6.52. Semilog-log and Log-log Plots of Sorted Absolute 1D-DWT Coefficients 

of the Overall SELDI-TOF MS Data Set for α=99.5 %. 

 

 
Figure 6.53. ZIP Compression Comparison of the Original and Encoded 

Overall SELDI-TOF MS Data Set for α=99.5 % with 1D-DWT. 
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Figure 6.54. Reconstructed SELDI-TOF MS Data Set with Inverse 1D-DWT. 

 

 
Figure 6.55. Original and Reconstructed Signals of the SELDI-TOF MS Data Set 

with Inverse 1D-DWT. 
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The original and reconstructed signals generated with 1D-iDWT are plotted around 

the y=x line in Figure 6.56. Original signals are decoded without any detectable distortion 

(observed in all of the six cancer samples) as reconstructed data points are located on the 

y=x line. However, scaled intensities having the magnitudes over 0.5 and the magnitudes 

between [-1,-0.5] (regions where sharp peaks occurred) could not have been reconstructed 

thoroughly with 1D-iDCT as illustrated in Section 5.3.5. 

 

 
Figure 6.56. Reconstructed versus Original Signals of the SELDI-TOF MS Data Set 

with Inverse 1D-DWT. 

 

Reconstruction error norm values of the overall SELDI-TOF MS data set calculated 

per data column are given in the bottom sub-window of Figure 6.57. Minimum error norm 

of 1128 is obtained in the third column and the maximum error norm of 2885.9 is obtained 

in the fifth
 
column of the SELDI-TOF MS data set. It can also be stated that smaller 

reconstruction error norms are generated with 1D-DWT compared to 1D-DCT at the same 

compression level of 60 as DWT is superior to DCT in analyzing noisy data sets 

containing localized changes. 
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Figure 6.57. Reconstruction Error Norm Values of the SELDI-TOF MS Data Set 

with Inverse 1D-DWT. 

 

6.3.6.  Two Dimensional Discrete Wavelet Transform of the SELDI-TOF MS Data Set 

 

In this section, 2D-DWT with eight-level decomposition and the wavelet type db4 is 

applied to the overall SELDI-TOF MS data set (consisting of six ovarian cancer samples). 

 

Semilog-log (upper sub-window of Figure 6.58) and log-log (bottom sub-window of 

Figure 6.58) plots of the sorted absolute values of the 2D-DWT coefficients of the overall 

SELDI-TOF MS data set, which are concatenated into a vector of size 6068778 (the 

number of coefficients is nearly three-fold higher than the number of data points of 

2027928, unlike 2D-DCT), and the threshold limit of 0.2510 denoted by the horizontal 

line, specified by taking the percentile of the frequency distribution of the transform 

coefficients as 99.5% are given in Figure 6.58. The coefficients below the threshold limit 
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(6038434 coefficients), which are identified clearly in the log-log plot, are set to zero for 

compression, in other words 99.5% of the transform coefficients become zero. The number 

of nonzero coefficients kept is 30343, which is only 0.5% of the number of data points. In 

addition, the threshold limit is much larger than that found with 1D-DWT, that is 0.0815. 

Hence, higher reconstruction error norms are expected with 2D-DWT for the SELDI-TOF 

MS data set. 

 

 
Figure 6.58. Semilog-log and Log-log Plots of Sorted Absolute 2D-DWT Coefficients 

of the Overall SELDI-TOF MS Data Set for α=99.5 %. 

 

Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 6.59, the ZIP file of the original data set is nearly 61.7 MB (nearly three-fold 

higher than the ZIP file in Section 6.3.5 as the number of 2D-DWT coefficients to be 
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compressed is much larger than the number of 1D-DWT coefficients), whereas the ZIP file 

of the filtered transformed data set is nearly 1.1 MB. Thus, compression can be increased 

59.6 times by applying 2D-DWT technique and taking the percentile value as 99.5% in 

thresholding step. It can be concluded that there is not much difference between the 

compression ratios obtained with 1D-DWT and 2D-DWT. However, it is obvious that 2D-

DWT is not the appropriate technique for the data sets having large number of data rows as 

the number of wavelet coefficients (approximation and detail coefficients in three 

orientations as mentioned in Section 6.2) increases in each decomposition level resulting a 

dimensionality increase which is not favored in data compression applications. 

 

 

Figure 6.59. ZIP Compression Comparison of the Original and Encoded 

Overall SELDI-TOF MS Data Set for α=99.5 % with 2D-DWT. 

 

Reconstructed data generated with 2D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.60 and Figure 6.61 respectively. It is seen that 

reconstructed data set is similar to the original data set as illustrated in Figure 6.61 

concluding that there is not a detectable loss in the decoded signals of the six cancer 

samples. It can also be stated that more perfect reconstruction is generated with 1D-iDWT 

compared to 2D-iDWT. 

 

In Figure 6.62, the original and reconstructed signals produced with 2D-iDWT are 

plotted around the y=x line. It can be said that almost each of the reconstructed signals is 

scattered around the y=x line indicating that synthesized data set is similar to the original 

data set. 
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Figure 6.60. Reconstructed SELDI-TOF MS Data Set with Inverse 2D-DWT. 

 

 
Figure 6.61. Original and Reconstructed Signals of the SELDI-TOF MS Data Set 

with Inverse 2D-DWT. 
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Figure 6.62. Reconstructed versus Original Signals of the SELDI-TOF MS Data Set 

with Inverse 2D-DWT. 

 

Reconstruction error norm values of the overall SELDI-TOF MS data set are given in 

the bottom sub-window of Figure 6.63. Minimum error norm of 2045.9 is obtained in the 

sixth column and the maximum error norm of 4066.6 is obtained in the first column of the 

SELDI-TOF MS data set after applying 2D-DWT. It can be concluded that 1D-DWT 

performs well in reconstruction compared to 2D-DWT (higher error norms are produced 

with 2D-DWT) although these two techniques provide the same compression level when 

highly uncorrelated SELDI-TOF MS data set is used. It should also be stated that 2D-DWT 

is not the appropriate method for data series having a large number of data rows as the 

number of wavelet coefficients increases in each decomposition level leading to a 

significant increase in dimension, and thus, making compression less viable. 
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Figure 6.63. Reconstruction Error Norm Values of the SELDI-TOF MS Data Set 

with Inverse 2D-DWT. 

 

6.3.7.  One Dimensional Discrete Wavelet Transform of the TEP Data Set 

 

In this section, 1D-DWT with four-level decomposition and the wavelet type sym4 

is applied to the overall TEP data set (consisting of 41 measurements). Overall output 

signals of the TEP including all of the 41 measured variables were given before in Chapter 

5 in scaled format with Figure 5.52. 

 

Semilog-log (upper sub-window of Figure 6.64) and log-log (bottom sub-window of 

Figure 6.64) plots of the sorted absolute values of the 1D-DWT coefficients of the overall 

TEP data set, which are padded into a vector of size 2051107 (the number of coefficients is 

higher than the number of data points of 2050041, unlike 1D-DCT), and the threshold limit 

of 2.0796 denoted by the horizontal line, specified by taking the percentile of the frequency 
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distribution of the transform coefficients as 99.5% are given in Figure 6.64. Transform 

coefficients below the threshold limit (99.5% of the transform coefficients) which are 

identified clearly in the log-log plot, are set to zero and the number of nonzero coefficients 

kept is 10256, which is only 0.5% of the number of data points. 

 

 
Figure 6.64. Semilog-log and Log-log Plots of Sorted Absolute 1D-DWT Coefficients 

of the Overall TEP Data Set for α=99.5 %. 

 

Sizes of the ZIP files of the original and encoded data sets are compared in Figure 

6.65. It is seen that the ZIP file of the overall TEP data set is nearly 20 MB, whereas the 

ZIP file of the filtered transformed data set is nearly 0.36 MB improving compression 55.4 

times with 1D-DWT technique and taking the percentile value as 99.5% in thresholding 
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step (corresponding to the same compression level generated with 1D-DCT as mentioned 

in Section 5.3.7). 

 

 
Figure 6.65. ZIP Compression Comparison of the Original and Encoded 

Overall TEP Data Set for α=99.5 % with 1D-DWT. 

 

Reconstructed data generated with 1D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.66 and Figure 6.67 respectively. It can be mentioned 

that reconstructed data cannot represent the original data accurately concluding that 1D-

iDWT fails in reconstructing the highly uncorrelated TEP data set containing level jumps 

and noisy measurements. Only a few process events such as important peak points, 

upward/downward shifts (observed in measurements one and four) and 

decreasing/increasing trends (observed in measurements 28, 34 and 39) occurred due to the 

consecutive fault disturbances can be followed from the reconstructed data set as illustrated 

in Figure 6.67. However, there was not any deterioration in information content in the 

decoded TEP data set with 1D-iDCT while the loss of the irrelevant data was also achieved 

in noisy measurements as mentioned in Section 5.3.7. 

 

The original and reconstructed signals generated with 1D-iDWT are plotted around 

the y=x line in Figure 6.68. It is seen that original signals cannot be reconstructed 

accurately with 1D-iDWT, whereas reconstructed signals (except measurements consisting 

of almost pure noise) produced with 1D-iDCT were very close to the original signals as 

illustrated in Section 5.3.7. 
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Figure 6.66. Reconstructed TEP Data Set with Inverse 1D-DWT. 
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Figure 6.67. Original and Reconstructed Signals of the TEP Data Set 

with Inverse 1D-DWT. 
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Figure 6.68. Reconstructed versus Original Signals of the TEP Data Set 

with Inverse 1D-DWT. 

 

Reconstruction error norm values of the overall TEP data set calculated per data 

column are given in the bottom sub-window of Figure 6.69. Minimum error norm of 

4234.7 is obtained in the 22
nd

 column and the maximum error norm of 15805 is obtained in 

the 10
th 

column of the TEP data set. It can be concluded that higher reconstruction error 

norms are generated with 1D-DWT compared to 1D-DCT (error norms are nearly two-fold 

higher than those generated with 1D-DCT) at the same compression level of 55.5. 

Actually, it was decided that 1D-DWT performs well in reconstruction (especially 

reconstructing sharp peaks) compared to 1D-DCT when highly uncorrelated SELDI-TOF 

MS data set was used in Section 6.3.5 as DWT is superior to DCT in analyzing noisy data 

sets containing localized changes. However, DCT should be the preferred technique when 

highly uncorrelated TEP data set containing level jumps and noisy measurements is used. 
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Figure 6.69. Reconstruction Error Norm Values of the TEP Data Set 

with Inverse 1D-DWT. 

 

6.3.8.  Two Dimensional Discrete Wavelet Transform of the TEP Data Set 

 

In this section, 2D-DWT with four-level decomposition and the wavelet type sym4 

is applied to the overall TEP data set (consisting of 41 measurements). 

 

Semilog-log (upper sub-window of Figure 6.70) and log-log (bottom sub-window of 

Figure 6.70) plots of the sorted absolute values of the 2D-DWT coefficients of the overall 

TEP data set, which are concatenated into a vector of size 2682177 (the number of 

coefficients is much higher than the number of data points of 2050041, unlike 2D-DCT), 

and the threshold limit of 2.1153 denoted by the horizontal line, specified by taking the 

percentile of the frequency distribution of the transform coefficients as 99.5% are given in 
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Figure 6.70. The coefficients below the threshold limit (2668766 coefficients), which are 

identified clearly in the log-log plot, are set to zero for compression, in other words 99.5% 

of the transform coefficients become zero. The number of nonzero coefficients kept is 

13411, which is only 0.5% of the number of data points. In addition, the threshold limit is 

slightly larger than that found with 1D-DWT, that is 2.0796. Hence, higher reconstruction 

error norms are expected with 2D-DWT for the TEP data set. 

 

 
Figure 6.70. Semilog-log and Log-log Plots of Sorted Absolute 2D-DWT Coefficients 

of the Overall TEP Data Set for α=99.5 %. 

 

Sizes of the ZIP files of the original and encoded data sets are compared as it is seen 

from Figure 6.71, the ZIP file of the original data set is nearly 26.1 MB (size of the ZIP file 
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is higher than that generated with 1D-DWT as mentioned in Section 6.3.7 as the number of 

2D-DWT coefficients to be compressed is much larger than the number of 1D-DWT 

coefficients), whereas the ZIP file of the filtered transformed data set is nearly 0.44 MB. 

Thus, compression can be increased 58.8 times by applying 2D-DWT technique and taking 

the percentile value as 99.5% in thresholding step. It can be concluded that slightly higher 

compression levels are generated with 2D-DWT compared to 1D-DWT although 2D-DWT 

produces a large number of wavelet coefficients for large data series, and thus, resulting an 

undesirable dimensionality increase. 

 

 

Figure 6.71. ZIP Compression Comparison of the Original and Encoded 

Overall TEP Data Set for α=99.5 % with 2D-DWT. 

 

Reconstructed data generated with 2D-iDWT (inverse DWT) and their overlay with 

the originals are shown in Figure 6.72 and Figure 6.73 respectively. It is observed that 

none of the process events (upward/downward shifts and decreasing/increasing trends) can 

be monitored from the reconstructed data set as illustrated in Figure 6.73 concluding that 

there is a significant deterioration in each process measurement. It can also be stated that 

reconstruction is worsened with 2D-iDWT compared to 1D-iDWT. 

 

In Figure 6.74, the original and reconstructed signals produced with 2D-iDWT are 

plotted around the y=x line. It can be stated that synthesized data set is completely different 

from the original data set as almost each of the reconstructed signals is located around the 

y=0 line. 
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Figure 6.72. Reconstructed TEP Data Set with Inverse 2D-DWT. 
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Figure 6.73. Original and Reconstructed Signals of the TEP Data Set 

with Inverse 2D-DWT. 

 

0 5

x 10
4

-1

0

1

1

V
a
lu

e

0 5

x 10
4

-1

0

1

2

V
a
lu

e

0 5

x 10
4

-1

0

1

3

V
a
lu

e

0 5

x 10
4

-1

0

1

4

V
a
lu

e

0 5

x 10
4

-1

0

1

5

V
a
lu

e

0 5

x 10
4

-1

0

1

6

V
a
lu

e

0 5

x 10
4

-1

0

1

7

V
a
lu

e

0 5

x 10
4

-1

0

1

8

V
a
lu

e
0 5

x 10
4

-1

0

1

9

V
a
lu

e

0 5

x 10
4

-1

0

1

10

V
a
lu

e

0 5

x 10
4

-1

0

1

11

V
a
lu

e

0 5

x 10
4

-1

0

1

12

V
a
lu

e

0 5

x 10
4

-1

0

1

13

V
a
lu

e

0 5

x 10
4

-1

0

1

14

V
a
lu

e

0 5

x 10
4

-1

0

1

15
V

a
lu

e

0 5

x 10
4

-1

0

1

16

V
a
lu

e

0 5

x 10
4

-1

0

1

17

V
a
lu

e

0 5

x 10
4

-1

0

1

18

V
a
lu

e

0 5

x 10
4

-1

0

1

19

V
a
lu

e

0 5

x 10
4

-1

0

1

20

V
a
lu

e

0 5

x 10
4

-1

0

1

21

V
a
lu

e

0 5

x 10
4

-1

0

1

22

V
a
lu

e

0 5

x 10
4

-1

0

1

23

V
a
lu

e

0 5

x 10
4

-1

0

1

24

V
a
lu

e

0 5

x 10
4

-1

0

1

25

V
a
lu

e

0 5

x 10
4

-1

0

1

26

V
a
lu

e

0 5

x 10
4

-1

0

1

27

V
a
lu

e

0 5

x 10
4

-1

0

1

28

V
a
lu

e

0 5

x 10
4

-1

0

1

29

V
a
lu

e

0 5

x 10
4

-1

0

1

30

V
a
lu

e

0 5

x 10
4

-1

0

1

31

V
a
lu

e

0 5

x 10
4

-1

0

1

32

V
a
lu

e

0 5

x 10
4

-1

0

1

33

V
a
lu

e

0 5

x 10
4

-1

0

1

34

V
a
lu

e

0 5

x 10
4

-1

0

1

35

V
a
lu

e
0 5

x 10
4

-1

0

1

36

V
a
lu

e

0 5

x 10
4

-1

0

1

37

V
a
lu

e

0 5

x 10
4

-1

0

1

38

V
a
lu

e

0 5

x 10
4

-1

0

1

39

V
a
lu

e

0 5

x 10
4

-1

0

1

40

V
a
lu

e

0 5

x 10
4

-1

0

1

41

V
a
lu

e



182 

 

 
Figure 6.74. Reconstructed versus Original Signals of the TEP Data Set 

with Inverse 2D-DWT. 

 

Reconstruction error norm values of the overall TEP data set are given in the bottom 

sub-window of Figure 6.75. Minimum error norm of 4813 is obtained in the seventh 

column and the maximum error norm of 25747 is obtained in the 34
th

 column of the TEP 

data set after applying 2D-DWT. It can be concluded that both 1D-DWT and 2D-DWT fail 

in reconstruction while 2D-DWT generates slightly higher compression levels when highly 

uncorrelated TEP data set is used. 
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Figure 6.75. Reconstruction Error Norm Values of the TEP Data Set 

with Inverse 2D-DWT. 

 

6.3.9.  Comparison of One Dimensional and Two Dimensional Discrete Wavelet 

Transform Methods 
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SELDI-TOF MS data set and sym4 with four-level decomposition for the TEP data set. 
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maximum error. % Relative global error and % relative maximum error of a data set were 

defined before in Chapter 5 with Equation 5.8 and Equation 5.9. In addition, ratios of 

compression ratio to mean error norm are calculated to determine the optimum percentile 

level. 

 

Compression ratios and mean error norms calculated for the overall PortSimHigh 

data set for 10 different percentile values are presented in Figure 6.76. It can be stated that 

slightly higher compression levels and much smaller mean error norm values are generated 

with 2D-DWT compared to 1D-DWT at thresholding percentiles higher than 95% as 

illustrated in Figure 6.76. Consequently, 2D-DWT should be the preferred technique for 

the highly correlated PortSimHigh data set as minimum distortion is obtained while 

maximum compression is achieved. 

 

 

Figure 6.76. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the PortSimHigh Data Set with DWT. 

 

% Relative global and % relative maximum errors calculated for the overall 

PortSimHigh data set for 10 different percentile values are given in Figure 6.77. Both % 
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than those obtained with 2D-DWT for percentile values higher than 95% as it can be seen 

from Figure 6.77. 

 

 

Figure 6.77. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the PortSimHigh Data Set with DWT. 

 

Figure 6.78 is given to determine the optimum percentile value used in thresholding 

step. However, a reasonable optimum percentile value cannot be determined as the ratios 

of compression ratio to mean error norm decrease sharply for 2D-DWT as the percentile 

values increase. Nevertheless, it can be stated that 2D-DWT technique is more efficient for 

the PortSimHigh data set as the 2D-DWT curve is above the 1D-DWT curve for the 

percentiles higher than 95%. 

 

Compression ratios and mean error norms calculated for the overall PortSimLow 

data set for 10 different percentile values are given in Figure 6.79. Slightly higher 

compression levels and higher mean error norm values are generated with 2D-DWT 
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reconstruction. 
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Figure 6.78. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the PortSimHigh Data Set with DWT. 

 

 
Figure 6.79. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the PortSimLow Data Set with DWT. 
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% Relative global and % relative maximum errors calculated for the overall 

PortSimLow data set for 10 different percentile values are given in Figure 6.80. Both % 

relative global and % relative maximum errors obtained with 2D-DWT are much larger 

than those obtained with 1D-DWT for thresholding percentiles higher than 70% 

concluding that perfect reconstruction cannot be retained by 2D-DWT for the less 

correlated PortSimLow data set. 

 

 
Figure 6.80. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the PortSimLow Data Set with DWT. 
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PortSimLow data set for 10 different percentile values are given in Figure 6.81 to visually 

locate the optimum percentile level. However, optimum percentile value cannot be 
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Figure 6.81. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the PortSimLow Data Set with DWT. 
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Figure 6.82. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the SELDI-TOF MS Data Set with DWT. 

 

 

Figure 6.83. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the SELDI-TOF MS Data Set with DWT. 
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The ratio of compression ratio to error norm values computed for the overall SELDI-

TOF MS data set for 10 different percentile values are given in Figure 6.84. Unlike 

PortSimHigh and PortSimLow data sets, the optimum percentile value can be specified as 

99.5% (the isolated maximum produced with 1D-DWT) for the SELDI-TOF MS data set 

as shown in Figure 6.84. 

 

 

Figure 6.84. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the SELDI-TOF MS Data Set with DWT. 
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Figure 6.85. Compression Ratio and Mean Error Norm versus Thresholding Percentile 

for the TEP Data Set with DWT. 

 

% Relative global and % relative maximum errors calculated for the overall TEP data 

set for 10 different percentile values are given in Figure 6.86. Larger % relative global and 

% relative maximum errors are produced with 2D-DWT compared to 1D-DWT as 

illustrated in Figure 6.86. 
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Figure 6.86. % Relative Global and % Relative Maximum Error versus Thresholding 

Percentile for the TEP Data Set with DWT. 

 

 
Figure 6.87. Compression Ratio/Mean Error Norm versus Thresholding Percentile 

for the TEP Data Set with DWT. 
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To sum up, multilevel decomposition is generally preferred in DWT to eliminate 

noisy measurements, and thus, providing small reconstruction error norms. Magnitudes of 

the wavelet coefficients also increase as the level in decomposition increases, revealing 

that the most important information content is stored in the deepest level coefficients. In 

addition, the most prominent patterns in the original series are preserved in the 

approximations, whereas the high-frequency components are kept in details. Compression 

is achieved by truncating wavelet coefficients below a certain threshold limit. Therefore, 

the sharpest features will be smoothened if the detail coefficients are eliminated, whereas 

there will be a significant deterioration in the reconstructed data set if some of the 

approximation coefficients are discarded. 

 

The efficacy of the DWT depends directly on the selected mother wavelet function. 

Hence, db1 is used for smoother data sets (PortSimHigh and PortSimLow), whereas db4 

and sym4 are preferred for noisy data sets (SELDI-TOF MS and TEP). Furthermore, the 

decomposition level in DWT is selected so as to yield the same compression level 

generated by DCT at the percentile value 99.5%, and thus, reconstruction error norms 

produced in DCT and DWT can be compared at the same compression level. 

 

High compression levels cannot be achieved with percentile values less than 90% in 

both DCT and DWT methods, whereas the quality of reconstructed signal can be 

deteriorated at higher threshold values. Consequently, thresholding percentile should be 

selected so as to maximize compression while preserving major information content. As 

the percentile values used in thresholding step increase, compression ratio, mean error 

norm, % relative global error and % relative maximum error values increase steadily. 

Mean error norms, % relative global and % relative maximum errors calculated for the 

TEP data set are much higher than those of the SELDI-TOF MS, PortSimHigh and 

PortSimLow data sets for the same compression level of 80 due to its high noise content 

with level jumps. Furthermore, it can be stated that the efficacy of the DWT method 

increases when highly correlated PortSimHigh data set is used as the highest compression 

ratio to mean error norm ratios are generated. 

 

More perfect reconstruction is obtained with 1D-DWT compared to 2D-DWT 

although these two techniques provide almost the same compression levels for 
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PortSimLow, SELDI-TOF MS and TEP data sets. However, 2D-DWT is superior to 1D-

DWT in both compression and reconstruction when highly correlated PortSimHigh data set 

is used. Furthermore, 2D-DWT is not the appropriate technique for the data sets having 

large number of data rows such as SELDI-TOF MS data set as the number of wavelet 

coefficients (approximation and detail coefficients in three orientations (horizontal, vertical 

and diagonal) as mentioned in Section 6.2) increases in each decomposition level resulting 

a dimensionality increase which is not favored in data compression applications. 

Therefore, it can be said that the efficacy of the 2D-DWT technique depends on the 

characteristics of the data set. 

 

Both 1D-DWT and 2D-DWT fail in reconstruction of the highly uncorrelated TEP 

data set containing level jumps and noisy measurements, and thus, 1D-DCT should be the 

preferred technique for the TEP data set. In addition, 2D-DCT generates more perfect 

reconstruction compared to 2D-DWT although 2D-DWT provides the highest compression 

when highly correlated PortSimHigh data set is used. Furthermore, 1D-DCT produces 

slightly smaller reconstruction error norms compared to 1D-DWT at the same compression 

level when less correlated PortSimLow data set is used. However, better reconstruction can 

be retained with 1D-DWT (especially reconstructing sharp peaks) compared to 1D-DCT at 

the same compression level when highly uncorrelated SELDI-TOF MS data set is used, 

and confirming the claim that DWT is superior to DCT in analyzing noisy data sets 

containing localized changes as DWT analyzes a signal both in time and frequency 

domain, whereas DCT works only in frequency domain. 
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7.  TWO DIMENSIONAL COMPRESSION OF ONE 

DIMENSIONAL DATA VIA TRAJECTORY MATRIX APPROACH 

 

 

The Singular Spectrum Analysis (SSA) is generally used for analyzing and 

forecasting time series with complex components. The main idea of SSA is to apply 

principal component analysis to the “trajectory matrix” composed from the original time 

series (Moskvina and Zhigljavsky, 2003). The SSA technique consists of two stages; 

decomposition and reconstruction. At the first stage, time series are decomposed into small 

number of time series so that oscillatory components can be identified, then at the second 

stage, original time series are reconstructed (Hassani et al., 2009). In this chapter, the 

interest will only be in the construction of the trajectory matrix for its use in two 

dimensional compression of one dimensional data. 

 

mT is a real-valued nonzero time series of sufficient length T; 

               (7.1) 

Defining 

          (7.2) 

where L is the window length with the assumption       

 

The Trajectory Matrix (TM) is defined as; 

                         

   
  (7.3) 

  
 
      

      
       

  

  

 
 

  

    

      
           

  
 

      

 
 

 
  

     

 

N is a Hankel matrix, meaning that its (i,j)
th 

entries depend only on the sum (i+j), in 

other words; 

               (7.4) 
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After obtaining the TM, the original vector, mT, having T rows becomes a 

multivariate data with L characteristics and K observations. Columns of the trajectory 

matrix lie in a space R
L
 (Hassani et al., 2009). 

 

SSA method requires the selection of some parameters but the choice of these 

parameters should depend on the characteristics of the original series. According to 

Moskvina and Zhigljavsky (2003), a general rule is to choose T reasonably large. However 

if T is too small, then any change in the time series can be missed. The window length L is 

the single parameter that should be selected at the decomposition stage. Golyandina et al. 

(2001) proposed that there are some suggestions in the literature for selecting parameters 

such as keeping the ratio L’/T’ fixed, where L’ is the window length for the subseries of 

length T’=T/k, where k is the number of subseries. 

 

In this chapter, the transformation of one dimensional data into two dimensional data 

for compression and reconstruction is studied by composing a trajectory matrix and then 

analyzing the effects of L/K ratio and length of T using the PortSimHigh and Tennessee-

Eastman Plant (TEP) data sets via two dimensional Discrete Cosine Transform (2D-DCT) 

method. 

 

 

Figure 7.1. The Procedure used in the 2D-DCT Compression of One Dimensional Data 

via Trajectory Matrix. 
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At the α-% level of 99.5, 2D-DCT is applied by using 50
th

 and 30
th 

columns of the 

PortSimHigh and TEP data sets respectively at three different T lengths; 100, 500 and 

1500. The L/K ratio is also varied in the [0.1-4.5] range. 

 

Compression ratios of both the original data vector and its TM for different L/K 

values are given in Figure 7.2. Since one dimensional data compression is independent of 

the L/K ratio, compression ratio (at the same α-% level of 99.5) of the original data is 

shown as constant via the thick horizontal line. The reduction ratio increases nearly four 

times when one dimensional data is transformed into two dimensional data. This is mainly 

due to the high correlation occurred between columns of the composed TM. It can be said 

that varying the L/K ratio does not show a certain effect on the compression ratio, whereas 

the error norms increase steadily as L/K ratio increases. It should also be stated that the 

highest error norms are obtained in the case of one dimensional data compression. 

 

As far as Figure 7.2 and Figure 7.3 are concerned, it is seen that error norms of the 

reconstructed TMs composed from the TEP data are much higher than those of the 

PortSimHigh data due to the fact that there is a higher correlation (as demonstrated in 

Chapter 3) between the columns of PortSimHigh data leading to a better 

compression/reconstruction. However, there is not much difference in the compression 

ratios between these two different data sets. 

 

As the length of T is increased from 500 to 1500 in the TEP data, it is seen from 

Figure 7.4 that compression ratios of both the original data and TMs increase, but the error 

norms also increase. However, as the length of T is decreased from 500 to 100 in the same 

data, both the compression ratios and error norms decrease. For instance, the maximum 

compression ratio drops from 53% to nearly 38%, however it is obviously seen from 

Figure 7.5 that, the optimum L/K value can be set in the range [1.0-1.5] leading to the 

result that when window length L is greater than K, in which case the higher compression 

can be obtained. 
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Figure 7.2. Compression Ratio and Error Norm versus L/K ratio using 

50
th 

column of the PortSimHigh Data Set (T=500). 

 

 

Figure 7.3. Compression Ratio and Error Norm versus L/K ratio using 

30
th 

column of the TEP Data Set (T=500). 
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Figure 7.4. Compression Ratio and Error Norm versus L/K ratio using 

30
th 

column of the TEP Data Set (T=1500). 

 

 

Figure 7.5. Compression Ratio and Error Norm versus L/K ratio using 

30
th 

column of the TEP Data Set (T=100). 
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8.  CONCLUSIONS AND RECOMMENDATIONS 

 

 

In this thesis work, the lossy/lossless data compression and reconstruction were 

investigated by using the dimensionality reduction techniques Piecewise Aggregate 

Approximation (PAA), One Dimensional and Two Dimensional Discrete Cosine 

Transform (1D-DCT and 2D-DCT) and One Dimensional and Two Dimensional Discrete 

Wavelet Transform (1D-DWT and 2D-DWT), including the thresholding method as a 

lossy compression step and ZIP as the lossless encoding algorithm using the data sets 

PortSimHigh, PortSimLow, SELDI-TOF MS and TEP, the properties of which were 

presented in Chapter 3. These techniques were compared by measuring compression ratio, 

reconstruction error norm, % relative global error and % relative maximum error for 

different α-% thresholding levels. All of the computations were performed in MATLAB. 

 

8.1.  Conclusions 

 

In Chapter 2, filtering methods, applied to transform coefficients to generate higher 

compression, were studied. It can be stated that thresholding method should be preferred 

for data series having high-frequency content, whereas zero padding method is more 

suitable for smoother data series since their transform coefficients die out exponentially 

towards almost zero. It is important to adjust threshold limits in lossy quantization step as 

the reconstruction error norm increases with the number of discarded transform 

coefficients. 

 

In Chapter 4, the simplest dimensionality reduction technique Piecewise Aggregate 

Approximation (PAA), in which high compression ratios are achieved by keeping only the 

segment coordinates, was studied. However, the segmented data set composed by the PAA 

cannot be reconstructed like other transformed data sets (such as those obtained via DCT 

or DWT), and thus, the PAA is a lossy compression method and the amount of distortion 

increases as the number of segments used in PAA decreases. Compression ratios can 

further be improved by the quantization technique due to discarded digits that are 

negligible and that will not cause any significant increase in error norms. Quantization step 

becomes more effective as the number of frames used in PAA increases. 
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As the number of segments decreases, entropies (information content) of the 

segmented data also decrease since original data set is represented by fewer bits. However, 

compression ratios and error norms increase steadily as the number of segments decreases. 

Reduction ratios of the segmented data set composed from both the TEP and SELDI-TOF 

MS data are much lower than those of the PortSimHigh data due to their high noise content 

with sudden changes. It is concluded that PAA is not an appropriate method for noisy data 

sets especially the ones containing frequent peaks. 

 

In Chapter 5, Discrete Cosine Transform (DCT) was investigated to generate higher 

compression ratios while minimizing information loss in reconstruction. DCT performs 

reversible mapping from time to frequency domain while exhibiting excellent decorrelation 

and energy compaction properties providing both compression and noise removal. 

Compression is achieved by truncating transform coefficients below a certain threshold 

limit. The original data set can be reconstructed thoroughly by the inverse DCT without 

any significant distortion in information content. 

 

High compression levels cannot be achieved with percentile values less than 90% in 

both DCT and DWT methods, whereas the quality of reconstructed signal can be 

deteriorated at higher threshold values. Consequently, thresholding percentile should be 

selected so as to maximize compression while preserving major information content. 

 

Mean error norms calculated for the highly uncorrelated TEP and SELDI-TOF MS 

data sets were much higher (nearly five times) than those of the PortSimHigh and 

PortSimLow data sets for the same compression level of 80 due to their high noise content 

with sudden changes. As the compression of this type of data sets is very difficult, the 

efficacy of the DCT technique decreases a lot. It can also be stated that for the data sets 

consisting of almost pure noise with level jumps, higher compression levels can be 

produced with the DCT method instead of the hybrid method consisting of PAA and 

quantization. In addition, 2D-DCT is the preferred technique for the highly correlated data 

sets. 

 

In Chapter 6, Discrete Wavelet Transform (DWT) was investigated to increase 

compression ratios further while reducing reconstruction error norms. Hierarchical 
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structure in DWT is favored in eliminating noisy measurements providing smaller 

reconstruction error norms while dimensionality reduction and de-noising are achieved 

simultaneously. As the decomposition level increases, both compression ratios and 

reconstruction error norms decrease. Furthermore, the most important information content 

is stored in the deepest level coefficients. In addition, the most prominent patterns in the 

original series are preserved in the approximations, whereas the high-frequency 

components are kept in the details. Compression is achieved by truncating wavelet 

coefficients below a certain threshold limit. Therefore, successive approximations become 

less noisy as more detail coefficients are filtered. The original signal is reconstructed by 

applying the inverse DWT over both the detail and approximation coefficients before 

combining them. 

 

DWT does not have a single set of basis functions, unlike DCT. The family of basis 

functions are scaled and translated versions of a mother wavelet function which strongly 

affects the efficacy of the DWT. Hence, db1 was used for smoother data sets 

(PortSimHigh and PortSimLow), whereas db4 and sym4 were preferred for noisy data 

sets (SELDI-TOF MS and TEP). Furthermore, the decomposition level in DWT was 

selected so as to yield the same compression level generated by DCT at the percentile 

value 99.5%, and thus, reconstruction error norms produced in DCT and DWT could be 

compared at the same compression level. 

 

As the percentile values used in thresholding step increase, compression ratio, mean 

error norm, % relative global error and % relative maximum error values increase steadily. 

Mean error norms, % relative global and % relative maximum errors calculated for the 

TEP data set are much higher than those of the SELDI-TOF MS, PortSimHigh and 

PortSimLow data sets for the same compression level of 80 due to its high noise content 

with level jumps. 

 

2D-DWT was superior to 1D-DWT in both compression and reconstruction when 

highly correlated PortSimHigh data set was used. However, 2D-DWT was not favored for 

PortSimLow, SELDI-TOF MS and TEP data sets as more perfect reconstruction was 

obtained with 1D-DWT although these two techniques provided almost the same 

compression levels. Furthermore, 2D-DWT should not be the preferred technique for the 
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data sets having large number of data rows, such as SELDI-TOF MS data set, since the 

number of wavelet coefficients (approximation and detail coefficients in three orientations; 

horizontal, vertical and diagonal) increases in each decomposition level, resulting a 

significant increase in dimension, and thus, making compression less viable. 

 

To conclude, 1D-DCT is the most appropriate compression technique for the highly 

uncorrelated TEP data set containing level jumps and noisy measurements as both 1D-

DWT and 2D-DWT fail in reconstruction of the TEP data set, unless the thresholding level 

is decreased further at the expense of less compression. In addition, 2D-DWT provides the 

highest compression and 2D-DCT generates the best reconstruction when highly correlated 

PortSimHigh data set is used. Furthermore, slightly smaller reconstruction error norms are 

obtained with 1D-DCT compared to 1D-DWT at the same compression level when less 

correlated PortSimLow data set is used. However, better reconstruction is retained with 

1D-DWT (especially in reconstructing sharp peaks) compared to 1D-DCT at the same 

compression level when highly uncorrelated SELDI-TOF MS data set containing baseline 

noise is used. DWT is advantageous for the non-stationary and noisy data sets with sudden 

changes, whereas DCT is more suitable for smooth and random-walk-type data sets. 

 

In Chapter 7, the transformation of one dimensional data into two dimensional data 

for compression and reconstruction was studied by composing a trajectory matrix and then 

using the 2D-DCT method. After obtaining the trajectory matrix, the original vector having 

T rows becomes a multivariate data with L characteristics and K observations. It was 

concluded that compression ratios increase and error norms decrease when one 

dimensional data is transformed into two dimensional data due to the high correlation 

occurred between columns of the composed trajectory matrix. Furthermore, higher 

compression can be obtained in the case of window length L is greater than K. As the L/K 

ratio increases, error norms increase steadily. In addition, as the length of T decreases, both 

the compression ratios and error norms decrease. 

 

To sum up, the efficacy of the compression methods depends on the data 

characteristics such as smoothness, correlation among columns, presence of peaks, noise 

content and presence of level jumps as illustrated in Table 8.1 where n/a stands for not 
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applicable since the efficacy of 1D-DCT, 1D-DWT and PAA does not depend on the 

correlation property of the data sets. 

 

Table 8.1. Efficacy of the Compression Methods 

 Compression Methods 

Data 

Characteristics 

PAA with 

Quantization 

1D-DCT 2D-DCT 1D-DWT 2D-DWT 

Smooth 

 PortSimHigh 

 PortSimLow 

▲▲▲ ▲▲▲ ▲▲▲ ▲▲▲ ▲▲ 

High peak content 

 SELDI-TOF MS 
▲ ▲▲ ▲▲ ▲▲▲ ▲ 

Noisy 

 TEP 

 SELDI-TOF MS 

▲ ▲▲ ▲▲ ▲▲ ▲ 

High jump content 

 TEP 
▲ ▲▲ ▲ ▲ ▲ 

Correlated 

 PortSimHigh 
n/a n/a ▲▲▲ n/a ▲▲▲ 

Uncorrelated 

 PortSimLow 

 TEP 

 SELDI-TOF MS 

n/a n/a ▲ n/a ▲ 

▲▲▲: very efficient, ▲▲: efficient, ▲: inefficient 

 

8.2.  Recommendations for Future Work 

 

In this thesis work, it is stated that in process monitoring, the key features of the 

original data set can easily be followed visually from the segmented data set composed by 

the PAA. However, PAA is an irreversible technique, unlike DCT and DWT, and thus, 

important data points may sometimes be overlooked depending on the segment size. 

Furthermore, algorithms used in DCT and DWT consist of the combination of 
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transformation, filtering, encoding and reconstruction steps, whereas the algorithm used in 

PAA consists of only segmentation and encoding steps. Consequently, it takes less CPU 

time to compose the segmented data set by PAA than the reconstruction of data sets by 

DCT and DWT. In addition, DWT performs best in reconstructing the non-stationary and 

noisy data sets containing frequent peaks although DCT and DWT almost give the same 

degree of compression. To conclude, DWT is the preferred technique in many applications 

such as process monitoring, fault detection and signal processing. As a result of the 

experience gained in this thesis work and in the light of the conclusions mentioned above 

there may be a few recommendations for future work. 

 

Data compression and reconstruction can be improved by using the following hybrid 

methods that capitalize on advantageous properties of two techniques; the DCT followed 

by quantization, the DWT followed by quantization, the DCT followed by the PAA and the 

DWT followed by the DCT. In the first and second methods, transform coefficients can be 

quantized before the encoding step in order to improve compression ratios further without 

any significant increase in reconstruction error norms. In the third method, PAA can be 

applied to the DCT coefficients to increase compression. However, desired reconstruction 

may not be retained depending on the segment size used in PAA. In the fourth method, 

DCT can be applied to the wavelet transform coefficients to improve the compression 

performance. 

 

It is often the case that the stored data are retrieved from time to time for various 

tasks such as pattern recognition, classification and fault detection. In transform 

compression methods, compression is achieved by the combination of transformation and 

filtering steps. Thus, the transform method and the thresholding limit in filtering step 

should be selected so as to maintain the major features of the raw data in the retrieved data 

(decompressed data). For instance, it can be investigated that up to what thresholding 

percentile, the raw data and the retrieved data show the same operational fault 

disturbances. In the same manner, it can be studied that beyond which thresholding 

percentile, the plant operator cannot distinguish faulty and normal operating conditions 

visually in the retrieved and the reconstructed data. 
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APPENDIX A:  MATLAB CODES USED 

 

 

A.1.  Matlab Code used in Piecewise Aggregate Approximation 

followed by Quantization 

 

% using 50th column of the PortSimHigh data set 

load PortSimHigh.txt; 

D=PortSimHigh(:,50); 

[TotR TotC]=size(D); 

D=[mapminmax(D')]'; 

% calculating Shannon entropy of the original data 

EntropyD=EntropyUA(D); 

 

fid=fopen('SAVE_ORIGINAL_DATA.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],D); 

zip('SAVE_ORIGINAL_DATA.zip','SAVE_ORIGINAL_DATA.txt'); 

fclose(fid); 

 

% f is the segment size 

f=[15,30,45,60,75,90,105,120,135,150]; 

 

for iLOOP=1:length(f) 

 % composing the segmented data 

 [CS,CD]=UAMovAvgDecimate(D, f(iLOOP)); 

 % calculating Shannon entropy of the segmented data 

 Entropy(iLOOP)=EntropyUA(CD); 

  

 % applying quantization 

 ndigits=1; 

 Q=quant(CS,10^-ndigits); 

 ndigits2=3; 

 Z=quant(CS,10^-ndigits2); 

 A=quant(CD,10^-ndigits2); 

  

 fid=fopen('SAVE_DCTCOEF_QUANTIZED.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],CS); 

 zip('SAVE_DCTCOEF_QUANTIZED.zip','SAVE_DCTCOEF_QUANTIZED.txt'); 
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 fclose(fid); 

  

 ORIGINAL_DATA=dir('SAVE_ORIGINAL_DATA.zip'); 

 BYTES_ORIGINAL_DATA=ORIGINAL_DATA.bytes 

 ENCODED_DATA=dir('SAVE_DCTCOEF_QUANTIZED.zip'); 

 BYTES_ENCODED_DATA=ENCODED_DATA.bytes 

 PerCentReduction=(1-BYTES_ENCODED_DATA/BYTES_ORIGINAL_DATA)*100 

 RatioReduction(iLOOP)=BYTES_ORIGINAL_DATA/BYTES_ENCODED_DATA 

 ERROR_NORM(iLOOP)=sum(abs(D-CS),1); 

  

 fid=fopen('SAVE_QDCTCOEF_QUANTIZED.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],Q); 

 zip('SAVE_QDCTCOEF_QUANTIZED.zip','SAVE_QDCTCOEF_QUANTIZED.txt'); 

 fclose(fid); 

  

 ENCODED_QDATA=dir('SAVE_QDCTCOEF_QUANTIZED.zip'); 

 BYTES_ENCODED_QDATA=ENCODED_QDATA.bytes 

 PerCentReductionQ=(1-BYTES_ENCODED_QDATA/BYTES_ORIGINAL_DATA)*100 

 RatioReductionQ(iLOOP)=BYTES_ORIGINAL_DATA/BYTES_ENCODED_QDATA 

 ERROR_NORMQ(iLOOP)=sum(abs(D-Q),1); 

  

 fid=fopen('SAVE_ZDCTCOEF_QUANTIZED.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],Z); 

 zip('SAVE_ZDCTCOEF_QUANTIZED.zip','SAVE_ZDCTCOEF_QUANTIZED.txt'); 

 fclose(fid); 

  

 ENCODED_ZDATA=dir('SAVE_ZDCTCOEF_QUANTIZED.zip'); 

 BYTES_ENCODED_ZDATA=ENCODED_ZDATA.bytes 

 PerCentReductionZ=(1-BYTES_ENCODED_ZDATA/BYTES_ORIGINAL_DATA)*100 

 RatioReductionZ(iLOOP)=BYTES_ORIGINAL_DATA/BYTES_ENCODED_ZDATA 

 ERROR_NORMZ(iLOOP)=sum(abs(D-Z),1); 

 % calculating Shannon entropy of the quantized segmented data 

 EntropyA(iLOOP)=EntropyUA(A); 

end 

 

% compression ratio/error norm vs number of segments plots 

P=RatioReduction./ERROR_NORM; 

R=RatioReductionQ./ERROR_NORMQ; 

S=RatioReductionZ./ERROR_NORMZ; 
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plot(f(1,:),P(1,:),'rx-');grid on;hold on; 

plot(f(1,:),R(1,:),'bo-');grid on;hold on; 

plot(f(1,:),S(1,:),'m*-');grid on;hold on; 

xlabel('Number of segments','FontSize',10) 

ylabel('Compression ratio/Error norm','FontSize',10); 

legend('Segmented data (ndigits=15)','Quantized data 

(ndigits=1)','Quantized data (ndigits=3)'); 

% compression ratio vs number of segments plots 

subplot(3,1,1) 

plot(f(1,:),RatioReduction(1,:),'rx-');grid on;hold on; 

plot(f(1,:),RatioReductionQ(1,:),'bo-');grid on;hold on; 

plot(f(1,:),RatioReductionZ(1,:),'m*-');grid on;hold on; 

xlabel('Number of segments','FontSize',10) 

ylabel('Compression ratio','FontSize',10); 

legend('Segmented data (ndigits=15)','Quantized data 

(ndigits=1)','Quantized data (ndigits=3)'); 

% error norm vs number of segments plots 

subplot(3,1,2) 

plot(f(1,:),ERROR_NORM(1,:),'rx-');grid on;hold on; 

plot(f(1,:),ERROR_NORMQ(1,:),'bo-');grid on;hold on; 

plot(f(1,:),ERROR_NORMZ(1,:),'m*-');grid on;hold on; 

xlabel('Number of segments','FontSize',10) 

ylabel('Error norm','FontSize',10); 

legend('Segmented data (ndigits=15)','Quantized data 

(ndigits=1)','Quantized data (ndigits=3)'); 

% entropy vs number of segments plots 

subplot(3,1,3) 

plot(f(1,:),Entropy(1,:),'rx-');grid on;hold on; 

plot(f(1,:),EntropyA(1,:),'m*-');grid on;hold on; 

line([0 150],[EntropyD EntropyD],'Color','b','LineWidth',2);grid on;hold 

on; 

xlabel('Number of segments','FontSize',10) 

ylabel('Entropy','FontSize',10); 

legend('Segmented data (ndigits=15)','Quantized data 

(ndigits=3)','Original data'); 

 

function: UAMovAvgDecimate 

 

function [CS, CD]=UAMovAvgDecimate(P, f) 

 % f : fraction of the number of data points to be represented, 



209 

 

 %     every f th, CS will show f linear (horizontal) segments 

 [nr,nc]=size(P); 

 nf=ceil(nr/f); 

 ic=ceil(nr/nf); 

  

 for k=1:nc 

  for i=1:ic 

  sumC=0; 

  k0=(nf*(i-1)+1); 

  k1=min(nf*i,nr); 

   for j=k0:k1 

   sumC=sumC+P(j,k); 

   end 

  L=k1-k0+1; 

  CS(k0:k1,k)=sumC/L; 

  CD(i,k)=sumC/L; 

  end 

 end 

end 

 

function: EntropyUA 

 

function S=EntropyUA(x) 

 %-- Entropy Calculation (matrix) 

 % The entropy of a sequence X = { x_1  x_2  x_3 ... x_N } 

 % is defined as  H(X) = sum_1_to_N ( p_i log( p_i ) ) 

 % where p_i = | x_i | / || X || 

 % and || X || = sum_1_to_N ( | x_i | ). 

 absx=abs(x); 

 px=absx./repmat(sum(absx),size(x,1),1); 

 S=-sum(px.*log2(px)); 

end 

 

A.2.  Matlab Code used in One Dimensional and Two Dimensional 

Discrete Cosine Transform 

 

% using overall PortSimHigh data set 

load PortSimHigh.txt; 
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D=PortSimHigh(:,1:500); 

[TotR TotC]=size(D); 

D=[mapminmax(D')]'; 

% discrete cosine transform coefficients 

DCTD2=dct2(D); 

DCTD1=dct(D); 

 

% pct is the thresholding percentile 

pct=[15, 30, 45, 60, 75, 85, 90, 95, 99.5, 99.8]; 

 

fid=fopen('SAVE_ORIGINAL_DATA1.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD1); 

zip('SAVE_ORIGINAL_DATA1.zip','SAVE_ORIGINAL_DATA1.txt'); 

fclose(fid); 

 

fid=fopen('SAVE_ORIGINAL_DATA2.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD2); 

zip('SAVE_ORIGINAL_DATA2.zip','SAVE_ORIGINAL_DATA2.txt'); 

fclose(fid); 

 

LDCT1=reshape(DCTD1,TotR*TotC,1); 

LDCT2=reshape(DCTD2,TotR*TotC,1); 

for iLOOP=1:length(pct) 

 p1=prctile(abs(LDCT1),pct(iLOOP)); 

 p2=prctile(abs(LDCT2),pct(iLOOP)); 

  

 % thresholding discrete cosine transform coefficients 

 DCTD1(find(abs(DCTD1)<p1))=0; 

 DCTD2(find(abs(DCTD2)<p2))=0; 

  

 fid=fopen('SAVE_DCTCOEF_FILTERED1.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD1); 

 zip('SAVE_DCTCOEF_FILTERED1.zip','SAVE_DCTCOEF_FILTERED1.txt'); 

 fclose(fid); 

  

 fid=fopen('SAVE_DCTCOEF_FILTERED2.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD2); 

 zip('SAVE_DCTCOEF_FILTERED2.zip','SAVE_DCTCOEF_FILTERED2.txt'); 

 fclose(fid); 
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 ORIGINAL_DATA1=dir('SAVE_ORIGINAL_DATA1.zip'); 

 BYTES_ORIGINAL_DATA1=ORIGINAL_DATA1.bytes 

 ENCODED_DATA1=dir('SAVE_DCTCOEF_FILTERED1.zip'); 

 BYTES_ENCODED_DATA1=ENCODED_DATA1.bytes 

 PerCentReduction1=(1-BYTES_ENCODED_DATA1/BYTES_ORIGINAL_DATA1)*100 

 RatioReduction1(iLOOP)=BYTES_ORIGINAL_DATA1/BYTES_ENCODED_DATA1 

  

 ORIGINAL_DATA2=dir('SAVE_ORIGINAL_DATA2.zip'); 

 BYTES_ORIGINAL_DATA2=ORIGINAL_DATA2.bytes 

 ENCODED_DATA2=dir('SAVE_DCTCOEF_FILTERED2.zip'); 

 BYTES_ENCODED_DATA2=ENCODED_DATA2.bytes 

 PerCentReduction2=(1-BYTES_ENCODED_DATA2/BYTES_ORIGINAL_DATA2)*100 

 RatioReduction2(iLOOP)=BYTES_ORIGINAL_DATA2/BYTES_ENCODED_DATA2 

  

 % reconstruction 

 IDCTD1=idct(DCTD1); 

 IDCTD2=idct2(DCTD2); 

  

 ERROR_NORM1=sum(abs(D-IDCTD1),1); 

 ERROR_NORM2=sum(abs(D-IDCTD2),1); 

  

 Mean1(iLOOP)=mean(ERROR_NORM1); 

 Mean2(iLOOP)=mean(ERROR_NORM2); 

  

 Relativeglobal_error1(iLOOP)= 

 mean(100*(sum((D-IDCTD1).^2))./sum(D.^2)); 

 Relativeglobal_error2(iLOOP)= 

 mean(100*(sum((D-IDCTD2).^2))./sum(D.^2)); 

  

 iErrMax1=find(max(ERROR_NORM1)==ERROR_NORM1); 

 iErrMin1=find(min(ERROR_NORM1)==ERROR_NORM1); 

 MINERROR_NORM1(iLOOP)=ERROR_NORM1(iErrMin1) 

 MAXERROR_NORM1(iLOOP)=ERROR_NORM1(iErrMax1) 

  

 iErrMax2=find(max(ERROR_NORM2)==ERROR_NORM2); 

 iErrMin2=find(min(ERROR_NORM2)==ERROR_NORM2); 

 MINERROR_NORM2(iLOOP)=ERROR_NORM2(iErrMin2) 

 MAXERROR_NORM2(iLOOP)=ERROR_NORM2(iErrMax2) 

 MaxD1=abs(sum(D(:,iErrMax1))); 
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 Relativemax_error1(iLOOP)=100*MAXERROR_NORM1(iLOOP)/MaxD1; 

 MaxD2=abs(sum(D(:,iErrMax2))); 

 Relativemax_error2(iLOOP)=100*MAXERROR_NORM2(iLOOP)/MaxD2; 

end 

 

% compression ratio vs percentile plots 

subplot(2,1,1) 

plot(pct(1,:),RatioReduction1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),RatioReduction2(1,:),'bo-') 

xlabel('Percentile','FontSize',10) 

ylabel('Compression ratio','FontSize',10) 

legend('1D-DCT','2D-DCT') 

% mean error norm vs percentile plots 

subplot(2,1,2) 

plot(pct(1,:),Mean1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),Mean2(1,:),'bo-');grid on;hold on; 

xlabel('Percentile','FontSize',10) 

ylabel('Mean error norm','FontSize',10) 

legend('1D-DCT','2D-DCT') 

 

figure(2) 

% % relative global error vs percentile plots 

subplot(2,1,1) 

plot(pct(1,:),Relativeglobal_error1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),Relativeglobal_error2(1,:),'bo-');grid on;hold on; 

xlabel('Percentile','FontSize',10) 

ylabel('% Relative global error','FontSize',10) 

legend('1D-DCT','2D-DCT') 

% % relative maximum error vs percentile plots 

subplot(2,1,2) 

plot(pct(1,:),Relativemax_error1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),Relativemax_error2(1,:),'bo-');grid on;hold on; 

xlabel('Percentile','FontSize',10) 

ylabel('% Relative maximum error','FontSize',10) 

legend('1D-DCT','2D-DCT') 

% compression ratio/mean error norm vs percentile plots 

plot(pct(1,:),RatioReduction1(1,:)./Mean1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),RatioReduction2(1,:)./Mean2(1,:),'bo-');grid on;hold on; 

xlabel('Percentile','FontSize',10) 

ylabel('Compression ratio/Mean error norm','FontSize',10) 
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legend('1D-DCT','2D-DCT') 

fclose('all'); 

 

A.3.  Matlab Code used in One Dimensional and Two Dimensional 

Discrete Wavelet Transform 

 

% using overall TEP data set 

load simout.mat; 

D=simout(:,1:41); 

[TotR TotC]=size(D); 

D=[mapminmax(D')]'; 

Wlet='sym4'; 

WLevel=4; 

% one dimensional discrete wavelet transform coefficients 

for k=1:TotC 

 [C,L1]=wavedec(D(:,k),WLevel,Wlet); 

 C1(:,k)=C; 

end 

% two dimensional discrete wavelet transform coefficients 

[C2,L2]=wavedec2(D,WLevel,Wlet); 

 

[TotR1 TotC1]=size(C1); 

[TotR2 TotC2]=size(C2); 

 

% pct is the thresholding percentile 

pct=[15, 30, 45, 60, 75, 85, 90, 95, 99.5, 99.8]; 

 

fid=fopen('SAVE_ORIGINAL_DATA1.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],C1); 

zip('SAVE_ORIGINAL_DATA1.zip','SAVE_ORIGINAL_DATA1.txt'); 

fclose(fid); 

 

fid=fopen('SAVE_ORIGINAL_DATA2.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],C2); 

zip('SAVE_ORIGINAL_DATA2.zip','SAVE_ORIGINAL_DATA2.txt'); 

fclose(fid); 

 

LDCT1=reshape(C1,TotR1*TotC1,1); 
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LDCT2=reshape(C2,TotR2*TotC2,1); 

 

for iLOOP=1:length(pct) 

 p1=prctile(abs(LDCT1),pct(iLOOP)); 

 p2=prctile(abs(LDCT2),pct(iLOOP)); 

 % thresholding discrete wavelet transform coefficients 

 C1(find(abs(C1)<p1))=0; 

 C2(find(abs(C2)<p2))=0; 

  

 fid=fopen('SAVE_DWTCOEF_FILTERED1.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],C1); 

 zip('SAVE_DWTCOEF_FILTERED1.zip','SAVE_DWTCOEF_FILTERED1.txt'); 

 fclose(fid); 

  

 fid=fopen('SAVE_DWTCOEF_FILTERED2.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],C2); 

 zip('SAVE_DWTCOEF_FILTERED2.zip','SAVE_DWTCOEF_FILTERED2.txt'); 

 fclose(fid); 

  

 ORIGINAL_DATA1=dir('SAVE_ORIGINAL_DATA1.zip'); 

 BYTES_ORIGINAL_DATA1=ORIGINAL_DATA1.bytes 

 ENCODED_DATA1=dir('SAVE_DWTCOEF_FILTERED1.zip'); 

 BYTES_ENCODED_DATA1=ENCODED_DATA1.bytes 

 PerCentReduction1=(1-BYTES_ENCODED_DATA1/BYTES_ORIGINAL_DATA1)*100 

 RatioReduction1(iLOOP)=BYTES_ORIGINAL_DATA1/BYTES_ENCODED_DATA1 

  

 ORIGINAL_DATA2=dir('SAVE_ORIGINAL_DATA2.zip'); 

 BYTES_ORIGINAL_DATA2=ORIGINAL_DATA2.bytes 

 ENCODED_DATA2=dir('SAVE_DWTCOEF_FILTERED2.zip'); 

 BYTES_ENCODED_DATA2=ENCODED_DATA2.bytes 

 PerCentReduction2=(1-BYTES_ENCODED_DATA2/BYTES_ORIGINAL_DATA2)*100 

 RatioReduction2(iLOOP)=BYTES_ORIGINAL_DATA2/BYTES_ENCODED_DATA2 

  

 % reconstruction 

 for k=1:TotC 

  C=C1(:,k); 

  A1(:,k)=waverec(C,L1,Wlet); 

 end 

 A2=waverec2(C2,L2,Wlet); 
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 ERROR_NORM1=sum(abs(D-A1),1); 

 ERROR_NORM2=sum(abs(D-A2),1); 

  

 Mean1(iLOOP)=mean(ERROR_NORM1); 

 Mean2(iLOOP)=mean(ERROR_NORM2); 

  

 Relativeglobal_error1(iLOOP)=mean(100*(sum((D-A1).^2))./sum(D.^2)); 

 Relativeglobal_error2(iLOOP)=mean(100*(sum((D-A2).^2))./sum(D.^2)); 

  

 iErrMax1=find(max(ERROR_NORM1)==ERROR_NORM1); 

 iErrMin1=find(min(ERROR_NORM1)==ERROR_NORM1); 

 MINERROR_NORM1(iLOOP)=ERROR_NORM1(iErrMin1) 

 MAXERROR_NORM1(iLOOP)=ERROR_NORM1(iErrMax1) 

  

 iErrMax2=find(max(ERROR_NORM2)==ERROR_NORM2); 

 iErrMin2=find(min(ERROR_NORM2)==ERROR_NORM2); 

 MINERROR_NORM2(iLOOP)=ERROR_NORM2(iErrMin2) 

 MAXERROR_NORM2(iLOOP)=ERROR_NORM2(iErrMax2) 

  

 MaxD1=abs(sum(D(:,iErrMax1))); 

 Relativemax_error1(iLOOP)=100*MAXERROR_NORM1(iLOOP)/MaxD1; 

 MaxD2=abs(sum(D(:,iErrMax2))); 

 Relativemax_error2(iLOOP)=100*MAXERROR_NORM2(iLOOP)/MaxD2; 

end 

 

% compression ratio vs percentile plots 

subplot(2,1,1) 

plot(pct(1,:),RatioReduction1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),RatioReduction2(1,:),'b*-') 

xlabel('Percentile (%)','FontSize',10) 

ylabel('Compression ratio','FontSize',10) 

legend('1D-DWT','2D-DWT') 

% mean error norm vs percentile plots 

subplot(2,1,2) 

plot(pct(1,:),Mean1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),Mean2(1,:),'b*-');grid on;hold on; 

xlabel('Percentile (%)','FontSize',10) 

ylabel('Mean error norm','FontSize',10) 

legend('1D-DWT','2D-DWT') 
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figure(2) 

% % relative global error vs percentile plots 

subplot(2,1,1) 

plot(pct(1,:),Relativeglobal_error1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),Relativeglobal_error2(1,:),'b*-');grid on;hold on; 

xlabel('Percentile (%)','FontSize',10) 

ylabel('% Relative global error','FontSize',10) 

legend('1D-DWT','2D-DWT') 

% % relative maximum error vs percentile plots 

subplot(2,1,2) 

plot(pct(1,:),Relativemax_error1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),Relativemax_error2(1,:),'b*-');grid on;hold on; 

xlabel('Percentile (%)','FontSize',10) 

ylabel('% Relative maximum error','FontSize',10) 

legend('1D-DWT','2D-DWT') 

% compression ratio/mean error norm vs percentile plots 

plot(pct(1,:),RatioReduction1(1,:)./Mean1(1,:),'ro-');grid on;hold on; 

plot(pct(1,:),RatioReduction2(1,:)./Mean2(1,:),'b*-');grid on;hold on; 

xlabel('Percentile (%)','FontSize',10) 

ylabel('Compression ratio/Mean error norm','FontSize',10) 

legend('1D-DWT','2D-DWT') 

fclose('all'); 

 

A.4.  Matlab Code used in the Trajectory Matrix Construction and 

Two Dimensional Discrete Cosine Transform 

 

% using 30th column of the TEP data set 

load simout.mat; 

A=simout(1:100,30); 

[TotR TotC]=size(A); 

A=[mapminmax(A')]'; 

pct=99.5; 

% discrete cosine transform coefficients 

DCTD1=dct2(A); 

 

fid=fopen('SAVE_ORIGINAL_DATA.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD1); 

zip('SAVE_ORIGINAL_DATA.zip','SAVE_ORIGINAL_DATA.txt'); 

fclose(fid); 
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LDCT1=reshape(DCTD1,TotR*TotC,1); 

p1=prctile(abs(LDCT1),pct) 

% thresholding discrete cosine transform coefficients 

DCTD1(find(abs(DCTD1)<p1))=0; 

 

fid=fopen('SAVE_DCTCOEF_FILTERED.txt', 'wt'); 

fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD1); 

zip('SAVE_DCTCOEF_FILTERED.zip','SAVE_DCTCOEF_FILTERED.txt'); 

fclose(fid); 

 

ORIGINAL_DATA=dir('SAVE_ORIGINAL_DATA.zip'); 

BYTES_ORIGINAL_DATA=ORIGINAL_DATA.bytes 

ENCODED_DATA=dir('SAVE_DCTCOEF_FILTERED.zip'); 

BYTES_ENCODED_DATA=ENCODED_DATA.bytes 

PerCentReduction1=(1-BYTES_ENCODED_DATA/BYTES_ORIGINAL_DATA)*100 

RatioReduction1=BYTES_ORIGINAL_DATA/BYTES_ENCODED_DATA 

 

% reconstruction 

IDCTD1=idct2(DCTD1); 

ERROR_NORM1=sum(abs(A-IDCTD1),1); 

Mean1=mean(ERROR_NORM1); 

 

% composing trajectory matrix 

N=TotR; 

LK_ratio=[0.1, 0.4, 1, 1.6, 2, 2.5, 3, 3.6, 4, 4.5]; 

for iLOOP=1:length(LK_ratio) 

 L=floor((LK_ratio(iLOOP))*(N+1)/(1+LK_ratio(iLOOP))) 

 K=N-L+1 

 D=zeros(L,K); 

 for i=1:K 

  D(1:L,i)=A(i:L+i-1); 

 end 

  

 % discrete cosine transform coefficients 

 DCTD=dct2(D); 

  

 fid=fopen('SAVE_ORIGINAL_DATA.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD); 

 zip('SAVE_ORIGINAL_DATA.zip','SAVE_ORIGINAL_DATA.txt'); 

 fclose(fid); 
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 LDCT=reshape(DCTD,K*L,1); 

 p=prctile(abs(LDCT),pct) 

 % thresholding discrete cosine transform coefficients 

 DCTD(find(abs(DCTD)<p))=0; 

  

 fid=fopen('SAVE_DCTCOEF_FILTERED.txt', 'wt'); 

 fprintf(fid,[repmat('%30.20f ',1,52) '\n'],DCTD); 

 zip('SAVE_DCTCOEF_FILTERED.zip','SAVE_DCTCOEF_FILTERED.txt'); 

 fclose(fid); 

  

 ORIGINAL_DATA=dir('SAVE_ORIGINAL_DATA.zip'); 

 BYTES_ORIGINAL_DATA=ORIGINAL_DATA.bytes 

 ENCODED_DATA=dir('SAVE_DCTCOEF_FILTERED.zip'); 

 BYTES_ENCODED_DATA=ENCODED_DATA.bytes 

 PerCentReduction(iLOOP)= 

 (1-BYTES_ENCODED_DATA/BYTES_ORIGINAL_DATA)*100 

 RatioReduction(iLOOP)=BYTES_ORIGINAL_DATA/BYTES_ENCODED_DATA 

  

 % reconstruction 

 IDCTD=idct2(DCTD); 

 ERROR_NORM=sum(abs(D-IDCTD),1); 

 Mean(iLOOP)=mean(ERROR_NORM); 

  

 iErrMax=find(max(ERROR_NORM)==ERROR_NORM) 

 iErrMin=find(min(ERROR_NORM)==ERROR_NORM) 

 MINERROR_NORM(iLOOP)=ERROR_NORM(iErrMin) 

 MAXERROR_NORM(iLOOP)=ERROR_NORM(iErrMax) 

end 

 

% compression ratio vs L/K ratio plots 

subplot(2,1,1) 

plot(LK_ratio(1,:),RatioReduction(1,:),'ro-');grid on;hold on; 

line([0 4.5],[RatioReduction1 RatioReduction1],'Color','b','LineWidth',2) 

grid on;hold on; 

xlabel('L/K ratio','FontSize',10) 

ylabel('Compression ratio','FontSize',10) 

legend('trajectory matrix','original data') 

% error norm vs L/K ratio plots 

subplot(2,1,2) 
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plot(LK_ratio(1,:),MINERROR_NORM(1,:),'ro-');grid on;hold on; 

plot(LK_ratio(1,:),Mean(1,:),'bx-');grid on;hold on; 

plot(LK_ratio(1,:),MAXERROR_NORM(1,:),'m.-');grid on;hold on; 

xlabel('L/K ratio','FontSize',10) 

ylabel('Error norm','FontSize',10) 

legend('min error norm','mean error norm','max error norm') 
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