COMPUTATIONAL PREDICTION OF PROTEIN-PROTEIN INTERACTIONS IN SPHINGOLIPID SIGNALING NETWORK

by

Yasemen Güngörmez B.S., Chemical Engineering, Yıldız Technical University, 2006

> Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science

Graduate Program in Chemical Engineering Boğaziçi University 2010

To my mother..

ACKNOWLEDGMENTS

I would like to express my gratitude to my thesis advisor Prof. Kutlu Özergin Ülgen and co-advisor Assist. Prof. Elif Özkırımlı Ölmez for their support, counsel and motivation.

I am also grateful to the members of the thesis committee Prof. Z. Ilsen Önsan, Prof. Türkan Haliloğlu, Assoc. Prof. Özlem Keskin for their time devoted to read and comment on my thesis.

I am also deeply grateful to my best friends Pınar Kanlıkılıçer and Ayşe Ezgi Akkaya for their priceless friendship, everlasting support, encouraging words, helping me out, being the most tolerant and understanding friends during my hardest times. I also thank to Özge Cinel for her never-ending help and friendship.

Heartful thanks are due to Betül Kavun Özbayraktar for her everlasting understanding and willingness to help for not only my studies but also daily life problems. I gratefully thank to Ahmet Özcan for his entertaining friendship and his precious help during my project.

I would like to thank to all my former and present friends in KB 440 and in KB 407: Aysun Eren, Kübra Büyükyanbolu, Saliha Durmuş, Esra Yücel, Elif Dereli, Ceyda Kasavi, and Burcu Özkaral, Celal Ceylan, Aslıgül Doğan, İhsan Ömür Akdağ, Tarık Can, Dilek Eren for sharing all the bad and good moments and making life easier during my work. I wish to thank Hacer Güneş, Arman Bamacıoğlu for their friendship and support.

I gratefully acknowledge, this thesis has been financially supported by YG 2210-TÜBİTAK Graduate Scholarships.

Last but certainly not least, I am forever indebted to my mother. Thank for her endless support, understanding, love and patience throughout my life. I feel lucky for having such a perfect mother. This thesis is dedicated to my mother.

ABSTRACT

COMPUTATIONAL PREDICTION OF PROTEIN-PROTEIN INTERACTIONS IN SPHINGOLIPID SIGNALING NETWORK

Proteins carry out most of the work in the cell such as immunological recognition, DNA repair and replication, enzymatic activity, cell signaling by interacting with other proteins. Therefore deciphering protein-protein interactions can give useful information about various mechanisms in the cell and hence provide important clues on disease states such as cancer and apoptosis. In this work, protein-protein interactions involved in sphingolipid metabolism were investigated in an effort to elucidate sphingolipid metabolism. Three categories of proteins were examined; proteins with previously identified partners, proteins with no known partners and clusters (Cluster A, Cluster B and Cluster C). First, the missing interaction partners of six proteins with no known interactions were identified by sequence based prediction methods and then filtered using the GO annotations of protein partners. The putative interaction partners were determined as; YHR135C with YDR294C; YHL020C with YER019W; YKL126W with YGR143W; YPL204W and YHR135C with YGR212W; YAR033W and YGL051W with YJL134W; YAR033W and YGL051W with YKR053C. The structures for these proteins were predicted by homology modeling and the structures of protein complexes were predicted by protein-protein docking. Nearly half of the complexes of the proteins with predicted partners formed biological contacts which mean these model interactions may occur in real systems. Next, the hotspots in every model of interacting protein pairs were identified by KFC. The model with the maximum number of closest hotspots was selected as the putative model structure for that protein complex. The hotspots were then classified according to their chemical features such as acidity, polarity, hydrophobicity and enrichment of certain amino acids. More than 60% of the hotspot residues in all categories of protein complexes are hydrophobic. The most repeated hotspot residue was found to be TYR in Clusters A and B, whereas it was LEU (15.04%) in Cluster C and in protein complexes with known interaction partners.

ÖZET

SFİNGOLİPİD SİNYAL AĞINDAKİ PROTEİN-PROTEİN ERKİLEŞİMLERİNİN HESAPSAL TAHMİNİ

Bağısıklık sisteminin sağlanması, DNA onarımı ve kopyalanması, enzimsel faaliyetler, proteinlerin diğer proteinlerle etkileşimi sonucunda oluşan hücre sinyallerinin iletimi gibi hücre içi birçok iş proteinler tarafından yürütülmektedir. Bu nedenle, protein etkileşim ağının aydınlatılması hücre içi çeşitli mekanizmalar hakkında bilgi vererek kanser ve apoptozis gibi hastalıklar hakkında önemli ipuçları sağlayacaktır. Bu çalışmada, sfingolipid metabolizmasını aydınlatmak amacıyla sfingolipid metabolizmasındaki protein-protein etkileşimleri araştırılmıştır. Proteinler üç kategoride incelenmiştir. Bunlar; eşleri daha önce tanımlanmış proteinler, eşleri bilinmeyen proteinler ve kümelerdir (Küme A, Küme B ve Küme C). İlk olarak, altı tane etkilesim esi bilinmeyen proteinlerin etkilesim esleri dizi tabanlı tahmin yöntemleri kullanılarak tanımlanmış, daha sonra bu sonuçlar GO açıklamalarından yararlanılarak filtrelenmiştir. Olası etkileşim eşleri; YHR135C ile YDR294C; YHL020C ile YER019W; YKL126W ile YGR143W; YPL204W ve YHR135C ile YGR212W; YAR033W ve YGL051W ile YJL134W; YAR033W ve YGL051W ile YKR053C olarak belirlenmiştir Yapılar bireysel proteinler için homoloji modellemesi ile, protein kompleksleri için ise protein-protein kenetlenmesi ile tahmin edilmiştir. Eşleri tahmin edilen protein komplekslerinin neredeyse yarısı biyolojik etkilesimler kurmakta, bu da bu model etkilesimlerinin gerçek hayatta da olabileceğini göstermektedir. Daha sonra, etkileşim halinde bulunan protein çiftlerinin her modeli için KFC ile işlevsel noktalar belirlenmiştir. Birbirine yakın işlevsel noktaları en fazla bulunan model, o protein kompleksi için olası model olarak belirlenmiştir. İşlevsel noktalar daha sonra kimyasal özelliklerine göre asidik, polar, hidrofobik ve belirli aminoasitlerle zenginleştirilmiş olarak sınıflandırıldı. Bütün kategorilerdeki protein komplekslerinin işlevsel noktalarının %60 dan fazlasının hidrofobik olduğu görüldü. En fazla tekrarlanan aminoasit Küme A ve Küme B de TYR; Küme C de ve etkileşim eşleri bilinen protein komplekslerinde LEU (%15.04) olarak bulunmuştur.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iv
ABSTRACT	v
ÖZET	vi
LIST OF FIGURES	X
LIST OF TABLES	xii
LIST OF SYMBOLS / ABBREVATIONS.	xvi
1. INTRODUCTION	1
1.1. Sphingolipids	1
1.2. Protein-Protein Interaction	1
1.3. Objectives and Plan of the Study	2
2. THEORETICAL BACKGROUND	4
2.1. Sphingolipids	4
2.2. Predicting Protein-Protein Interactions	5
2.2.1. Sequence Based Prediction Methods	6
2.2.2. Domain Based Prediction Methods	8
2.2.3. Structure Based Prediction Methods	8
2.3. Modeling Protein Structures	10
2.4. Structural Analysis of Interacting Proteins	16
2.5. Analysis of Hotspots	18
3. METHODS	20
3.1. Prediction of protein interaction partners	20
3.2. Modeling Individual Protein Structures	20
3.3. Modeling Structures of the Interacting Protein Pairs: Docking of Proteins	21
3.4. Biological Relevance by NOXclass	21
3.5. Identifying Interface Residues and Hotspots	22

4. RESULTS AND DISCUSSION	24
4.1. Protein-Protein Interactions in the Sphingolipid (SL) Pathway	24
4.1.1. Interaction Partners of Sphingolipid Pathway Proteins Identified Using the BIOGRID	24
4.1.2. Predictions of Interaction Partners for SL Pathway Proteins with No Known Partners	27
4.1.2.1. Interactions with YDR294C	28
4.1.2.2. Interactions with YER019W	29
4.1.2.3. Interactions with YGR143W	30
4.1.2.4. Interactions with YGR212W	32
4.1.2.5. Interactions with YJL134W	33
4.1.2.6. Interactions with YKR053C	34
4.1.3. Clusters / Modules	38
4.2. Prediction of Protein Structure	39
4.2.1. Proteins with known partners	39
4.2.2. Proteins with predicted partners	42
4.2.3. Clusters / Modules	43
4.3. Prediction of Complex Structures	46
4.3.1 Biological relevance of the predicted complex structures	46
4.4. Prediction of Hotspots	48
4.4.1. Proteins with known interaction partners	49
4.4.2. Proteins with predicted partners	50
4.4.3. Clusters / Modules	54
4.5. Analysis of Hotspots	57
4.5.1. Hydrophobicity	57
4.5.1.1. Proteins with Known Interaction Partners	58
4.5.1.2. Proteins with predicted interaction partners	68

4.5.1.3. Clusters/ Modules	70
5. CONCLUSIONS AND RECOMMENDATIONS	79
5.1. Conclusions	79
5.2. Recommendations	81
APPENDIX A: HOTSPOT DISTANCES	83
A.1. Proteins with Known Interaction Partners	83
A.2. Proteins with Predicted Partners	95
A.3. Clusters\Modules	98
REFERENCES	103

LIST OF FIGURES

Figure 2.1.	Illustration of the four main steps in the PIPE algorithm (Pitre, S., et al., 2006)	7
Figure 2.2.	Steps in the comparative protein structure modeling (Eswar et al., 2007).	13
Figure 3.1.	Flow chart of the algorithm used to identified protein interaction network	23
Figure 4.1.	PIPE interaction graph for proteins YDR294C-YHR135C	29
Figure 4.2.	PIPE interaction graph for proteins YER019W-YHL020C	30
Figure 4.3.	PIPE interaction graph for proteins YGR143W-YKL126W	31
Figure 4.4.	PIPE interaction graph for proteins YGR212W-YPL204W	32
Figure 4.5.	PIPE interaction graph for proteins YGR212W-YHR135C	33
Figure 4.6.	PIPE interaction graph for proteins YJL134W-YAR033W	34
Figure. 4.7.	PIPE interaction graph for proteins YJL134W-YGL051W	34
Figure. 4.8.	PIPE interaction graph for proteins YKR053C-YAR033W	35
Figure. 4.9.	PIPE interaction graph for proteins YKR053C-YGL051W	35
Figure 4.10.	Complex structure of YDL015C-YBR094W (Model 10)	49
Figure 4.11.	Complex structure of YER093C-YKL203C (Model 8)	50

Figure 4.12.	Complex structure of YGR212W-YPL204W (Model 8)	51
Figure 4.13.	Complex structure of YDR294C-YHR135C (Model 7)	51
Figure 4.14.	Complex structure of YER019W-YHL020C (Model 10)	52
Figure 4.15.	Complex structure of YGR143W-YKL126W (Model 3)	52
Figure 4.16.	Complex structure of YJL134W-YAR033W (Model 3)	53
Figure 4.17.	Complex structure of YKR053C-YAR033W (Model 5)	53
Figure 4.18.	Complex structure of YOR171C-YOR034C (Model 4) in Cluster A	54
Figure 4.19.	Complex structure of YOR034C-YOR171C (Model 6) in Cluster A	55
Figure 4.20.	Complex structure of YMR298W-YMR298W (Model 3) in Cluster B	55
Figure 4.21.	Complex structure of YGR060W-YGR060W (Model 4) in Cluster B	56
Figure 4.22.	Complex structure of YEL027W-YHR026W (Model 1) in Cluster C	56
Figure 4.23.	Complex structure of YEL027W-YOR016C (Model 2) in Cluster C	57

LIST OF TABLES

Table 2.1.	Qualification of hotspots (Moreira et al., 2007 and Orfan and Rost, 2007)	17
Table 4.1.	Interaction partners of proteins in the SL pathway identified using the BIOGRID database (http://www.thebiogrid.org/)	24
Table 4.2.	Putative physical interaction partners of YDR294C	28
Table 4.3.	Putative physical interaction partners of YER019W	29
Table 4.4.	Putative physical interaction partners of YGR143W	30
Table 4.5.	Putative physical interaction partners of YGR212W	32
Table 4.6.	Putative physical interaction partners of YJL134W	33
Table 4.7.	Putative physical interaction partners of YKR053C	35
Table 4.8.	GO annotations of Putative interaction partners. IDA: Inferred from Direct Assay, IGI: Inferred from Genetic Interaction, IMP: Inferred from Mutant Phenotype, ISS: Inferred from Sequence or Structural Similarity, IPI: Inferred from Physical Interaction	36
Table 4.9.	Proteins in Cluster A and their interaction partners	38
Table 4.10.	Proteins in Cluster B and their interaction partners	38
Table 4.11.	Proteins in Cluster C and their interaction partners	38

Table 4.12.	The templates used in building modeling SL proteins with known partners (Set A). The coverage, sequence, identity and E-value of the alignment are also listed.	40
Table 4.13.	The templates used in building models of interaction partners of set A. The coverage, sequence, identity and E-value of the sequence alignment are also listed	40
Table 4.14.	The templates used in building modeling SL proteins with predicted partners (Set B). The coverage, sequence, identity and E-value of the alignment are also listed.	42
Table 4.15.	The templates used in building models of interaction partners of set B. The coverage, sequence, identity and E-value of the sequence alignment are also listed.	43
Table 4.16.	The templates used in building modeling SL proteins in Cluster A. The coverage, sequence, identity and E-value of the alignment are also listed	44
Table 4.17.	The templates used in building modeling SL proteins in Cluster B. The coverage, sequence, identity and E-value of the alignment are also listed. Template-region-coverage values of Cluster B	44
Table 4.18.	The templates used in building modeling SL proteins in Cluster C. The coverage, sequence, identity and E-value of the alignment are also listed	45
Table 4.19.	The templates used in building modeling interaction partners of Cluster C. The coverage, sequence, identity and E-value of the alignment are also listed) 45
Table 4.20.	Biological relevance of proteins with predicted partners	47

Table 4.21.	Chemical types of proteins with known interaction partners	58
Table 4.22.	Amino acid propensities of hotspots in proteins with known interaction partners	67
Table 4.23.	Distribution of the hotspot residues of proteins with known interaction partners according to chemical features	68
Table 4.24.	Chemical types of proteins with predicted interaction partners	68
Table 4.25.	Amino acid propensities of hotspots in proteins with predicted Interactions	70
Table 4.26.	Distribution of hotspot residues of proteins with predicted interactions partners according to chemical types	70
Table 4.27.	Chemical types of hotspot residues of proteins in Cluster A	71
Table 4.28.	Amino acid propensities of hotspots of proteins in Cluster A	72
Table 4.29.	Distribution of hotspot residues of proteins in Cluster A according to the chemical features	72
Table 4.30.	Chemical types of hotspots residues of proteins in Cluster B	73
Table 4.31.	Amino acid propensities of hotspots of proteins in Cluster B	74
Table 4.32.	Distribution of hotspot residues of proteins in Cluster B according to the chemical features	74
Table 4.33.	Chemical types of hotspots residues of proteins in Cluster C	76

Table 4.34.	Amino acid propensities of hotspots of proteins in Cluster C	77
Table 4.35.	Distribution of hotspot residues of proteins in Cluster C according to the chemical features	76
Table 4.36.	Percentage of Chemical types of Hotspots	78
Table A.1.	The protein pair, hotspots on each protein, and the distances between hotspot residues in proteins with known partners	83
Table A.2.	The protein pair, hotspots on each protein, and the distances between hotspot residues in proteins with predicted partners	95
Table A.3.	The protein pair, hotspots on each protein, and the distances between hotspot residues of proteins in Cluster A for 10 models	98
Table A.4.	The protein pair, hotspots on each protein, and the distances between hotspot residues of proteins in Cluster B	100
Table A.5.	The protein pair, hotspots on each protein, and the distances between hotspot residues of proteins in Cluster C	101

LIST OF SYMBOLS / ABBREVATIONS

3D

AvgAF	Average score after filtering
BIND	Biomolecular Interaction Network Database
BIOGRID	Database of Protein and Genetic Interactions
BLAST	Basic Local Alignment Search Tool
DBID	Database of interacting domains
DIP	Database of interacting proteins
DNA	Deoxyribonucleic acid
EDG	Endothelial-differentiating gene
ExPDB	Expert Protein Data Bank
FASTA	Fast All
FFAS03	Fold & Function Assignment System
GO	Gene Ontology
HOMCOS	Homology Modeling of Complex Structure
InterpreTS	Predicting protein-protein interactions through tertiary structure
IMPALA	Integral Membrane Protein and Lipid Association
IPPRED	Server for proteins interactions inference
K-CON	Knowledge-based Biochemical Contacts analysis
K-FADE	Knowledge-based Fast Atomic Density Evaluation
KFC	Knowledge-based FADE and Contacts
LCB	Long-chain base
MINT	Molecular Interactions Database
MIPS	Munich Information Center for Protein Sequences
MSA	Multiple sequence alignment
NMR	Nuclear magnetic resonance
ORF	Open Reading Frame
PDB	Protein data bank
PIPE	Protein-protein interactions engine
PIPS	Protein-protein Interaction Prediction Server
PPIs	Protein-protein interactions

PreSPI	Prediction system for protein-protein interactions
PRISM	Protein Interactions by Structural Matching
PSI-BLAST	Position-Specific Iterated Basic Local Alignment Search Tool
RasMol	Raster Molecules
RMSD	Root mean square deviation
SL	Sphingolipid
SVM	Support vector machine
ТАР	Tandem affinity purification
VMD	Visualization of Molecular Dynamics
Y2H	Yeast-two-hybrid

1. INTRODUCTION

1.1. Sphingolipids

Sphingolipids are a structurally diverse group of molecules based on long-chain sphingoid bases (Worrall et al., 2003). The structural components of sphingolipids are classified into three parts: a sphingoid long-chain base (LCB), which forms the backbone of the sphingolipids, a fatty acid, and a polar head group (Ozbayraktar and Ulgen, 2009).

Sphingolipid signaling was first implicated in human cancers and then their different roles in other human illnesses such as diabetes and heart disease, microbial infections, neurological disorders including Alzheimer's and immune dysfunctions have been realized (Dickson, 2008). To learn how and why the sphingolipid metabolism has evolved and to elucidate mammalian sphingolipid signaling with the information from simple model organisms is very important. Gaining knowledge on sphingolipid metabolism, which induces apoptosis in cancer cells, is expected to improve the efficiency of cancer therapeutics (Ozbayraktar and Ulgen, 2009).

1.2. Protein-Protein Interaction

Proteins carry out the majority of the biological processes in cells. It is generally accepted that protein-protein interactions (PPIs) are responsible for the cell's behavior and its responses to various stimuli (Pitre et al., 2006). Characterizing interacting protein pairs and interaction sites is necessary to fully understand the molecular mechanism of cellular activities (Fukuhara and Kawabata, 2008). The detailed knowledge of the full network of protein-protein interactions, i.e. the distribution and the number of interactions as well as the presence of key nodes in these networks, is expected to provide new insights into the structures and properties of biological systems (Aytuna et al., 2005).

1.3. Objectives and Plan of the Study

Proteins carry out most of the work in the cell such as immunological recognition, DNA repair and replication, enzymatic activity, cell signaling by interacting with other proteins. Therefore, predicting PPI network will assist understanding molecular mechanism of cellular activities. Deciphering PPI networks can provide insight into human diseases and ultimately for the intelligent design of therapeutics. To this end, in this study, the network of sphingolipid (SL) signaling proteins was constructed using computational prediction to contribute to the list of missing interactions among the components of sphingolipid PPI network by using new advances in PPI predictions. Protein-protein interactions and interaction regions were predicted by sequence-based (use only sequence information such as PIPE) and structure-based methods (uses structure information such as NOXclass) and the properties of these interactions were analyzed. Calculations of this study were carried out in three groups which are proteins with known partners, proteins with no known partners and proteins in clusters (Cluster A, Cluster B, Cluster C. The new predictions identified by this research can guide the rational design of new experiments.

In this study, protein-protein interactions in sphingolipid signaling pathway of *Saccharomyces cerevisiae* were identified. The yeast *Saccharomyces cerevisiae* is a model system representing a simple eukaryote whose genome can be easily manipulated. Yeast has only a slightly greater genetic complexity than bacteria, and they share many of the technical advantages that permitted rapid progress in the molecular genetics of prokaryotes and their viruses. Some of the properties that make yeast particularly suitable for biological studies include rapid growth, dispersed cells, the ease of replica plating and mutant isolation, a well defined genetic system, and most important, a highly versatile DNA transformation system. Being nonpathogenic, yeast can be handled with little precautions (Sherman, 2002). The reason for choosing *S. cerevisiae* as a model organism is that all the genes encoding the enzymes in sphingolipid metabolism are known in *S. cerevisiae* and most of the enzymes of this organism which are acting in sphingolipid pathway have homologs or orthologs in mammalian species (Ozbayraktar and Ulgen, 2009). This believed that elucidation of sphingolipid metabolism can provide information towards

understanding apoptosis, cancer and many other critical cellular processes coupled with major diseases.

2. THEORETICAL BACKGROUND

2.1. Sphingolipids

There are more than 300 sphingolipid molecular species which exist in all eukaryotic cells and which are enriched in plasma membranes, Golgi Apparatus membranes and lysosomes (Ohanian et al., 2001). Lipids provide structure to cell membranes, which produce a long lasting obstacle between extracellular and intracellular compartments through their ability to form a bilayer. It is believed that microdomains called lipid rafts are responsible for membrane-localized signaling by organization of components.. Lipids are essential for signal transduction in response to agonist stimulation as their hydrolysis produces bioactive molecules known to trigger many downstream signaling cascades (Ohanian et al., 2001). At the level of whole multicellular organism, signaling controls growth and development together with the aspects of metabolism and behavior (Durmuş, 2006).

Sphingolipids are characterized by their sphingoid backbone. In yeast and plant cells, phytosphingosine is the most common sphingoid base while in mammalian cells sphingosine is more common (Ohanian et al., 2001). In yeast and mammalian cells, research on sphingolipids and their metabolites, ceramide, sphingosine and sphingosine-1-phosphate is a growing field due to their participation in the control of different cellular phenomena such as growth, cell proliferation, stress responses, differentiation and apoptosis (Worrall et al., 2003). Ceramide, which is a second messenger, is produced by sphingomyelinase-induced hydrolysis of sphingomyelin and by de novo synthesis and its cellular levels are increased with many stimuli such as growth factors, cytokines, G protein-coupled receptor agonists and stress (UV irradiation) (Ogretmen, 2006). Other metabolities of sphingolipids such as sphingosine and sphingosine-1-phosphate can act extracellularly through endothelial-differentiating gene (EDG) family G protein-coupled receptors and extracellularly through direct interactions with target proteins and it especially participates in proliferation, differentiation and apoptosis (Ohanian et al., 2001).

2.2. Predicting Protein-Protein Interactions

Various experimental methods have been developed to identify protein–protein interactions in various organisms. These involve the traditional top-down proteomic approach where the experiments have been individually designed to identify and validate a small number of specifically targeted interactions or the bottom-up genomic approach, the recently developed high-throughput experiments designed to probe all the potential interactions within entire genome exhaustively (Shen et al., 2006). A number of experimental methodologies are available for solving the three-dimensional (3D) structure of protein interactions; X-ray crystallography; nuclear magnetic resonance (NMR) spectroscopy; electron microscopy and electron tomography, yeast-two-hybrid (Y2H) method, tandem affinity purification (TAP), gene co-expression and synthetic lethality (Fukuhara and Kawabata, 2008; Cockell et al., 2006). Current PPI pairs obtained with experimental methods can provide useful information for the prediction of PPIs (Shen et al., 2006).

Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory (Shoemaker and Panchenko, 2007). The major need now is to explore this disparate data to find biologically relevant interactions and pathways (Tien et al., 2003). Thus in the post-genomic era, a body of research has been allocated to the development of algorithms that can accurately predict novel protein-protein interaction networks in silico. Computational methods can address protein-protein interactions at different levels (Aytuna et al., 2005). Genomic and protein sequence analysis can be useful to infer whether proteins do interact, or structural analysis of proteins and their complexes may provide interaction details essential for understanding processes at the microscopic level (Aytuna et al., 2005). Computational methods used for the prediction of protein interaction partners can be classified into two groups based on their functional associations and physical interactions. Gene fusion, gene neighbourhood and phylogenetic profiles predict functional associations between proteins (Cockell et al., 2006). There are several approaches to the computational prediction of physical interactions which are; (1) finding and analyzing subsequences affecting protein-protein interactions from raw protein

sequences, (2) prediction of protein interactions by analyzing the physicochemical properties or tertiary structure of proteins, (3) domain-based protein-protein interaction prediction (Han et al., 2004). Recent advances in the prediction of new physical associations between proteins have adopted a threading based approach (Cockell et al., 2006). *In silico* methods have the advantage of being fast in comparison with the experimental techniques and allow mechanistic details that are sometimes difficult to trace experimentally to be highlighted (Rousseau and Schymkowitz, 2005). Examples of computational protein-protein interaction prediction methods and their web servers are mentioned below.

2.2.1. Sequence Based Prediction Methods

Prediction of protein-protein interactions based only on sequence information is an ideal approach for both the computational and experimental senses (Shen et al., 2006). On one hand, they are apt to encounter the problem of overfitting and results that are datadependent; on the other hand, these methods have not been used to predict PPI networks among many proteins (Shen et al., 2006). Methods using protein genomic and protein sequence data include analysis of presence or absence of genes in related species, conservation of gene neighbourhood, gene fusion events, similarity of phylogenetic trees, correlated mutations on protein surfaces and co-occurrences of sequence domains (Aytuna et al., 2005).

IPPRED is a web based server to infer protein-protein interactions through homology search between candidate proteins and those described as interacting. BLAST program is used for similarity searches and subsequent prediction of homology. A list of inferred interactions between candidate proteins is the output of the IPPRED (Gaffard et al., 2002).

PIPE is capable of predicting protein-protein interactions for any target pair of the yeast, *Saccharomyces cerevisiae*, proteins from primary structure and without the need for any additional information about the proteins. The prediction algorithm relies on previously determined interactions (Pitre, S., et al., 2006). PIPE is able to identify some interactions which cannot be identified by other methods (Pitre, S., et al., 2006). This tool is optimized to predict the likelihood of an interaction between a given pair of proteins.

The PIPE method predicts the likelihood of interaction between two query proteins A and B by measuring how often pairs of subsequences in A and B co-occur in pairs of protein sequences in the dataset that are known to interact. The principle of this method is as follows: assume to have two query proteins A and B, along with the knowledge that certain proteins C and D are interacting. If a region (subsequence) a1 in A resembles a region in C, and a sequence b1 in B resembles a region in D, there is a possibility that A and B are also interacting via an interaction between the corresponding a1 and b1 sequences, which co-occur in both protein pairs A-B and C-D (Figure 2.1).

Figure 2.1. Illustration of the four main steps in the PIPE algorithm (Pitre, S., et al., 2006)

PIPE's sensitivity is calculated as (TP/(TP+FN)) [%], its specificity as (TN/(TN+FP)) [%], and its accuracy as ((TP+TN)/(TP+FN+FP+TN)) [%] where TP is the number of true positive, FN the number of false negatives, TN the number of true negatives, and FP the number of false positives.

2.2.2. Domain Based Prediction Methods

Domains are conserved modular structures important for expressing protein functions (Dohkan et al., 2006). Predicted domain interactions are evaluated using structural data or higher quality interaction sets such as MIPS (Shoemaker and Panchenko, 2007). Accounting for domains in proteins and domain interaction networks can in turn help in predicting protein interactions (Shoemaker and Panchenko, 2007). However, most techniques have many limitations and they usually suffer from low accuracy in prediction and do not provide any interaction possibility ranking method for multiple protein pairs (Han et al., 2004).

PreSPI is a domain combination based prediction system for protein-protein interactions. The validity of the prediction model was evaluated using an interacting set of the protein pairs in yeast and artificially generated non-interacting set of protein pairs. Although the proposed domain combination based prediction method certainly improves the prediction accuracy of the conventional domain based prediction method, it is not without limitations, because domain cannot explain all the details of complex protein-protein interactions and accumulated data are insufficient and erroneous (Han et al., 2004).

Protein-protein Interaction Prediction Server (PIPS) can predict physical proteinprotein interactions between yeast, mouse, and human proteins. This support vector machine (SVM)-based method predicts interactions on the existence/absence of domains and amino acid compositions of proteins (Dohkan et al., 2006). This method can be used to extract likely interactions from high-throughput interactions, which is an important problem in obtaining reliable interaction maps (Dohkan et al., 2006).

2.2.3. Structure Based Prediction Methods

Through structural analysis of proteins and their complexes, they may provide interaction details, essential for understanding processes at the microscopic level (Aytuna et al., 2005). Methods making use of structural data, usually strive to identify functional protein interfaces and rely on considerations of the solvent accessible surface area buried upon association, free energy changes upon alanine-scanning mutations, *in silico* two-

hybrid systems, scoring functions based on statistical potentials, physicochemical and genomic properties of the surface, such as electrostatics, hydrophobicity, amino acid composition, shape complementarity and planarity and evolutionary conservation (Aytuna et al., 2005). Structure based protein interaction prediction methods can be of three types, i.e. secondary structure based, tertiary structure based and quaternary structure based. Only tertiary structure based web servers will be mentioned below.

InterpreTS is a web-based version of method of predicting protein-protein interactions through tertiary structure. Given a pair of query sequences, homologues in a database of interacting domains (DBID) of known three-dimensional complex structures were searched. The method assesses the fit of two potential interacting partners on a complex of known 3D structure and infers molecular details of how the interaction is likely to occur (i.e. which residues are in contact) (Aloy and Russell, 2002).

The 3D-partner is a web tool to predict interacting partners and binding models of a query protein sequence through structure complexes and a new scoring function. The 3D-partner utilizes IMPALA and PSI-BLAST to identify homologous structures (templates) and interacting partners of a query protein sequence from a 3D-dimer template library and protein sequence databases respectively. These homologous structures and interacting partners were evaluated by a scoring function which considered steric and special-bond matrices (i.e. hydrogen bonds, electrostatic interactions and disulfide bonds) but also the template consensus scores (couple-conserved residue score and template similarity) (Chen et al., 2007).

HOMCOS (Homology Modeling of Complex Structure) is a server which uses homology modeling of complex structures to predict interacting protein pairs and interacting sites. The server has tree services which are heterodimers modeling from two query amino acid sequences which are taken from the users, homodimers modeling from one query sequence, and potentially interacting proteins identification from one query sequence respectively. For prediction of new interactions and their interacting sites, homology to a known 3D structure protein complex is known as the most successful tool. Although this tool assumed all the homologues protein pairs interact in a same way there are some exceptions. For instance, proteins belonging to multigene families often show different interaction specificities, even if their sequence similarity is high and homologous interacting protein pairs sometimes show completely different interacting structural topologies. In spite of having simple concept, HOMCOS can meet a wide range research needs because of the updated dimer database and various output types for model complexes (Fukuhara and Kawabata, 2008).

Prism is a website for protein interface analysis and prediction of putative proteinprotein interactions which can also give summary information about related proteins and an interactive protein interface viewer. The algorithm of the server is that, if any two structures contain particular regions on their surfaces that resemble the complementary partners of a known interface, they 'possibly interact' through these regions. In order to measure the structural similarity of a target structure to a template, binding site surfaces of target protein are extracted and successive structural alignments between these surfaces and the partner chains of interfaces in the template interface dataset are performed. If the surfaces of two target proteins (A and B) contain regions 'similar' to complementary partner chains of a template interface, it is possible to say that A and B may interact through these 'similar' regions. Also the presence of the hotspots on the target structure is checked to use the match ratio for the calculation of an 'evolutionary similarity score'. Combination of these scores contributes to the overall prediction score. In the 'Predictions' section of PRISM, users can obtain results in two different ways which are searching for the presence of similarities between a template interface and a target structure, and entering the PDB ID or the sequence of a protein and checking for any predicted proteinprotein interactions that the input protein participates in (Ogmen et al., 2005)

2.3. Modeling Protein Structures

Three-dimensional (3D) protein structures provide valuable insights into the molecular basis of protein function, allowing an effective design of experiments, such as site-directed mutagenesis, studies of disease-related mutations or the structure based design of specific inhibitors (Schwede et al2003). In the absence of an experimentally determined structure, comparative or homology modeling can be used to build a 3D model of the protein if the protein is related to at least one known protein structure. This method predicts the 3D structure of a given protein sequence (target) based primarily on its

alignment to one or more proteins of known structure (templates) (Eswar et al., 2007). Comparative modeling consists of four main steps; (i) fold assignment; which identifies similarity between the target and at least one known template structure (Eswar et al., 2007). This step is facilitated by numerous protein sequence and structure databases, and web available database scanning software. For fold identification there are three main classes of useful protein comparison methods. In the first class, the target sequence is compared with each of the sequences in databases independently, using the pair wise sequence-sequence comparison. FASTA and BLAST are the mostly used programs in this class. In the second class, multiple sequence comparison methods are used to improve the sensitivity of the search, and PSI-BLAST which iteratively expands the set of homologs of the target sequence is the widely employed tool (Marti-Renom et al., 2002). The third class of methods is 3D template matching methods which rely on pair wise comparison of a protein sequence and a protein of known structure. When there are no sequences clearly related to the modeling target, these methods are very useful. (ii) Alignment of the target sequence and the template(s); after the template is selected, alignment method is used to align the target sequence with the template structures. If the identity is higher than 40% for closely related protein sequences, the alignment is almost always true. Regions of low local sequence similarity become common when the overall sequence identity is below 40%. As the sequence similarity decreases, alignments contain an increasingly large number of gaps and alignment errors, regardless of whether they are prepared automatically or manually (Marti-Renom et al., 2002). (iii) Building a model based on the alignment with the chosen template(s); the original and still widely used method to construct a 3D model for the target protein is modeling by rigid body assembly. Modeling by segment matching relies on the approximate positions of conserved atoms in the templates is another method. The third group of methods, modeling by satisfaction of spatial restraints, uses either distance geometry or optimization techniques to satisfy spatial restraints obtained from the alignment. (iv) Predicting model error; the first step in model evaluation is to determine whether the model has the correct fold. If the correct template is picked and if that template is aligned at least approximately correctly with the target sequence, the model has correct fold. Once the fold of a model is accepted, a more detailed evaluation of the overall model accuracy can be obtained based on the similarity between the target and template sequences. A sequence identity above 30% is considered to be relatively good predictor of the expected accuracy. If the target-template sequence identity

falls below 30%, the sequence identity becomes unreliable as a measure of expected accuracy of a single model (Marti-Renom et al., 2002).

MODELLER is one of the programs for modeling protein structure with comparative protein structure modeling. The inputs given to MODELLER are the amino acid sequences of the proteins to be modeled, their alignment with template structures and the atomic coordinates of the templates (Figure 2.2). Once a target- template alignment is constructed, MODELLER calculates automatically a 3-D model containing all non-hydrogen atoms of the target, within minutes with no user invention (Eswar et al., 2007). In the template selection part generally, a sequence identity value above ~ 25% indicates a potential template, unless the alignment is too short (i.e., < 100 residues). If several models are calculated for the same target, the best model can be selected by picking the model with the lowest value of the MODELLER objective function. The value of the objective function in MODELLER is not an absolute measure, in the sense that it can only be used to rank models calculated from the same alignment (Eswar et al., 2007). Once a final model is selected, there are many ways to assess it, such as DOPE program.

Figure 2.2. Steps in the comparative protein structure modeling (Eswar et al., 2007).

SWISS-MODEL is an automated comparative modeling server to model three dimensional (3D) protein structures (Schwede et al., 2003). SWISS-MODEL provides several levels of modes. In the 'first approach mode' only an amino acid sequence of a protein is submitted to build a 3D model. This mode provides a simple interface and requires only an amino acid sequence as input data. The server will automatically select suitable templates. Optionally, the user can specify up to five template structures, either from the ExPDB library or uploaded coordinate files. The automated modeling procedure will start if at least one modeling template is available that has a sequence identity of more than 25% with the submitted target sequence. However, the model reliability decreases as the sequence identity decreases and that target-template pairs sharing less than 50% sequence identity may often require manual adjustment of the alignment (Schwede et al., 2003). In the 'alignment mode', the modeling process is based on a user-defined target

template alignment. In this mode the modeling procedure is initiated by submitting a sequence alignment. The user specifies which sequence in the given alignment is the target sequence and which one corresponds to a structurally known protein chain from the ExPDB template library. The server builds the model based on the given alignment. The 'project mode' allows the user to submit a manually optimized modeling request to the SWISS-MODEL server. Complex modeling tasks can be handled with the 'project mode'. The starting point for this mode is a DeepView project file. It contains the superposed template structures, and the alignment between the target and the templates. This mode gives the user control over a wide range of parameters, e.g. template selection or gap placement in the alignment. Furthermore, the project mode can also be used to iteratively improve the output of the 'first approach mode'. The accuracy of a model can vary significantly, even within different regions of the same protein: usually highly-conserved core regions can be modeled much more reliably than variable loop regions or surface residues. SWISS-MODEL result files consist of a C-score, which gives an estimate of the variability of the template structures at this position. Parts of the model where no template information could be used for model building (insertions or deletions) are assigned a Cscore of 99. A detailed log file listing all steps performed by the modeling server is provided to the user. This includes force field energy for the overall structure and for each individual residue to identify regions with obvious conformational or electrostatic problems (Schwede et al., 2003).

Robetta is an internet based server that provides automated structure prediction and analysis tools that can be used to infer protein structural information from genomic data (Kim et al., 2004). The ultimate goal of Robetta is to provide structural information of sufficient quality to aid research, infer function and assist drug design. For structure prediction, Robetta parses input sequences into domains and builds structure models in two ways. If a confident match to a protein of known structure can be found with sequence homology it uses comparative modeling; if cannot, it uses the Rosetta *de novo* structure prediction method. Robetta uses a fully automated and slightly modified implementation of the Rosetta software package for protein structure prediction. However, as the original protocol, Robetta generates three- and nine-residue fragment libraries that represent local conformations seen in the PDB, and then assembles models by fragment insertion using a scoring function that favors protein-like features (Kim et al., 2004). In an attempt to predict

structures for full-length protein sequences, Robetta uses a domain prediction method called 'Ginzu' as the initial step for structure prediction. Ginzu is a hierarchical screening procedure that first uses BLAST, PSIBLAST, FFAS03 and 3D-Jury to detect regions in the query sequence that are homologous to experimentally determined structures, and then proceeds with multiple sequence alignment (MSA) based methods to predict putative domains (Kim et al., 2004). If a query is parsed into multiple domains, the final step in this structure prediction procedure is to assemble the domain models into a continuous fulllength structure. Robetta uses an iterative domain assembly protocol that starts with the Nterminal domain, and attempts domain association by fragment insertion in the putative linker region assigned by Ginzu using the same scoring method as in de novo protocol. If the chain contains more than two domains, the third domain is added to the previously assembled model, and the procedure continues until the whole chain is assembled. The procedure identifies residues that are involved in the protein-protein interface, and uses a simple free energy function to calculate the changes in the binding free energy upon single substitutions of each side-chain to alanine. Domain predictions and molecular coordinates of models spanning the full length query are given as results. The server can also utilize nuclear magnetic resonance (NMR) constraints data provided by the user to determine protein structures using the RosettaNMR protocol. The de novo protocol is optimized for small single domain proteins (<120 residues) (Kim et al., 2004). Within this limit, models are frequently around 3–7 Å RMSD to more than half of the native structure. Above this limit, models are still likely to have at least 50 residues within 4 Å RMSD. Quality of the model is greatly dependent on the correct selection of the best possible parent template and alignment. Because of these factors, results are highly dependent on the accuracy of the domain assignments.

GRAMM-X is a protein docking web server and its web interface extend the original GRAMM Fast Fourier Transformation methodology by employing smoothed potentials, refinement stage, and knowledge based scoring (Tovchigrechko and Vakser, 2006). Recent progress in docking algorithms and computer hardware makes it possible to implement such procedures as automated web servers. While a number of existing docking methods based on scanning of large database, such as PSI-BLAST searches for evolutionary conserved residues (Tovchigrechko and Vakser, 2006), this method uses a fine-grid

projection of a softened Lennard-Jones potential function calculated for a probe atom (Tovchigrechko and Vakser, 2006):

$$V_{ij}(r) = \frac{1}{\alpha \sigma_{ij}^6 + r^6} \left(\frac{4\varepsilon_{ij} \sigma_{ij}^{12}}{\alpha \sigma_{i,j}^6 + r^6} - 4\varepsilon_{ij} \sigma_{ij}^6 \right)$$
(2.1)

An important feature of GRAMM is the ability to smooth the protein surface representation to account for possible conformational change upon binding within the rigid body docking approach. The degree of conformational change of the input structures is the main factor that affects the quality of the docking prediction, especially the degree of such change at the interface area is very important (Tovchigrechko and Vakser, 2006). The usage of the server starts with a simple web interface which accepts two PDB protein structures from the user, forms a job request and submits it to the execution queue on the cluster. A temporary page is created by the web server for the future simulation results. The output PDB file contains 10 models ranked as the most probable prediction candidates according to our scoring function.

2.4. Structural Analysis of Interacting Proteins

Structural analysis of interacting proteins focus on physicochemical properties such as interface topology, accessible surface area, hydrophobicity, free energy changes for the stability of the complex. There are several methods explained below which are used for structural analysis of interacting proteins.

NOXclass combines six interface properties (interface area, ratio of interface area to protein surface area, amino acid composition of the interface, correlation between amino acid compositions of interface and protein surface, interface shape complementarity, and conservation of the interface) using a support vector machine algorithm, resulting in NOXclass, which is used as a classifier for distinguishing obligate, non-obligate and crystal packing interactions. NOXclass allows the interpretation and analysis of protein quaternary structures. In particular, it generates testable hypotheses regarding the nature of protein-protein interactions, when experimental results are not available (Zhu et al., 2006).

One other analyzing method of protein interactions is finding surface residues and hotspots. The stability of protein complexes is mediated by a collection of biophysical properties therefore hot spot searches typically focus on mutations that disrupt hydrogen bonds, van der Waals contacts and chemical complementarity. Hot spot identification requires the experimental characterization of a mutation's effect on binding affinity. Hotspots can be specified corresponding to their qualifications listed in Table 2.1.

Area		Energy		Residues	Hydrophobicity	O-ring structure
Low	1150–1200 A °	Low	< 2 kcal/mol	Tryptophan (21%),	Frequently hydrophobic and	Hot spots are usually
Standard	1200–2000 A °	Standard	2 kcal/mol	Arginine (13.3%),	buried	surrounded by residues not
High	2000–4660 A °	High	→ 4 kcal/mol	Tyrosine (12.3%).	A large extent of nonpolar surface area	important for binding, whose role would be to shelter the hot spots from the solvent

Table 2.1. Qualification of hotspots (Moreira et al., 2007 and Orfan and Rost, 2007)

KFC (Knowledge-based FADE and Contacts) is a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's binding free energy. The KFC server is a web-based implementation of this machine learning approach. To predict whether an interface residue is hot spot or not, KFC Server characterizes local structural environment of this residue, compares its environment to the environments of experimentally determined hot spots and this procedure is done for each residue in the interface. The KFC model is comprised of two decision tree-based classifiers: K-FADE and K-CON. K-FADE predicts hot spots using the size of the residue and the radial distribution of shape specificity and interface points. Local shape specificity can be derived from atomic density within the interface (Darnell et al., 2008). The local atomic density is high in a crevice surrounded by nearby atoms and the density is characterized by an atomic density exponent (k), which is higher in a crevice than a protrusion (Darnell et al., 2007). K-CON predicts hot spots in terms of a residue's intermolecular atomic contacts, hydrogen bonds, interface points and chemical type. These models do not analyze site-directed mutations or remote regions of the complex, they analyze the intermolecular geometric contacts within a known protein complex structure and predict binding hot spots within the protein-protein interface (Darnell et al., 2007).

No single method can adequately discover the interactome fully. Converging toward an ideal solution will involve unification of different methods that take up the problem from different, innovative perspectives. This will provide a more complete picture of protein network, leading to a better understanding of biological processes (Shen et al., 2006).

2.5. Analysis of Hotspots

Protein-protein interfaces are frequently hydrophobic and bury a large extent of nonpolar surface area. Hence, hydrophobicity is a leading force in protein-protein interactions. Hydrophobic interactions are also a major driving force in protein folding. Hydrophobic interactions are also important in the formation of secondary structure elements such as α -helices and β -sheets. The peptide backbone is relatively hydrophillic because of the C=O and N-H groups of each peptide bond. Hydrophobic interactions in proteins occur between nonpolar regions of their amino acid residues through van der Waals contacts and are driven by the gain in free energy that results from their movement from polar (aqueous) to nonpolar environment (Moreira et al., 2007). Therefore, hot spots (an area of high energy and binding around an amino acid residue), surrounded by hydrophobic pockets, are found in clusters rather than scattered throughout the interface. They usually do not include hydrogen bonding and electrostatic interactions, because hydrogen bonding between the peptide atoms decreases the hydrophobicity of the backbone and electrostatic complementarity of interacting protein surfaces promotes complex formation and defines the lifetime of complexes (Moreira et al., 2007). A necessary condition for high-affinity binding is the exclusion of bulk solvent from the interacting residues. As the hydrophobic effect has an essential role in stabilizing proteinprotein complexes and probably provides the driving force for association in most cases, it is important to establish whether a residue's hydrophobic contribution to binding depends on its local environment or overall position (central or peripheral) in the interface (Orfan and Rost, 2007). Hydrophobic interactions are essential for stabilizing protein-protein complexes, whose interfaces generally consist of a central cluster of hot spot residues surrounded by less important peripheral residues. (Li et al., 2005). Hot spot residues almost always occur in clusters at the centers of interfaces, with relatively few such residues at the edges. Determination of the magnitude of the hydrophobic effect in macromolecular recognition in general, and a residue's hydrophobic contribution to binding in particular, is critical to improving methods of designing specific small molecule inhibitors of proteinprotein interaction targets. For some amino acids there are significant differences between hotspot and non-hotspot interface residues, while for others there are no substantial differences. Usually, the hot spot of one face packs against the hot spot of the other face establishing a region determinant for complex binding, which may provide sites for drug discovery. At present, protein-protein contact areas are considered to be new prospective drug targets because numerous physiological and pathological cell processes depend on them, and thus can be influenced by external compounds. Most drugs produce their effect by interacting with a biological macromolecule by entirely nonbonded forces or, in some cases, by a covalent interaction. Drugs that interact with proteins present a tight-binding, and often have a high degree of complementarity with the target. The drug often forms hydrogen bonds with the receptor. However, some targets have hydrophobic pockets into which the drug can put perhaps a hydrophobic group of an appropriate size. Therefore, the identification of these critical binding residues on proteins permits a rational design of complexes of high affinity and specificity as well as that of small molecules that can mimic the large interface, which is typical of protein-protein complexes. This is fundamental to the development of small molecule competitive inhibitors of protein-protein interactions, which is crucial in structure based drug design (Moreira et al., 2007).

3. METHODS

3.1. Prediction of protein interaction partners

For the prediction of interaction partners of the proteins in the sphingolipid signaling pathway, 32 proteins known to function in the sphingolipid metabolism were taken into consideration. The interaction information for most of them can be found from databases such as BIOGRID, BIND, DIP, MINT. In this study, BIOGRID was mostly used database because it includes both physical and functional interaction details. However, interaction partners of some proteins in the sphingolipid signaling pathway are unknown. In order to get interaction details of this pathway, the unknown interactions were first identified with the PIPE (Protein-Protein Interaction Engine) server. In this study, the proteins without any interacting partner were matched all 6400 proteins in the yeast with PIPE program and interaction scores were obtained. By looking the average scores after filtering, the most probable interaction partners of each protein were chosen. If the scores are greater than 0.06, it was detected as an interaction by the filter and the corresponding protein was chosen probable interaction partner. The results obtained from the PIPE server was included not only the proteins from the sphingolipid signaling pathway, but also all yeast proteins. Therefore, proteins not related to sphingolipid pathway were eliminated using the Gene Ontology (GO) terms.

3.2. Modeling Individual Protein Structures

Structures and interactions of proteins in a pathway can provide useful information about the signaling mechanism in that pathway. Structure information can be obtained from the PDB (Protein Data Bank) (http://www.rcsb.org/pdb/). Unfortunately, none of the protein structures in the sphingolipid signaling pathway could be found in PDB. Therefore comparative modeling was used to get information on structure and interacting regions of the proteins in the sphingolipid pathway.

In the present study, the MODELLER program was used for comparative modeling of protein structures in the sphingolipid signaling pathway and their interaction partners. In
order to start structure modeling, amino acid sequences of the proteins to be modeled, alignment of these proteins with template structures and the atomic coordinates of the templates were given as inputs. For each protein, MODELLER built a few models based on the templates used. The numbers of models could be changed depending on the similarity of that protein with the different templates. The most appropriate model was chosen for each protein according to their E values, the size of the modeled range, and the identity between the template and the model.

3.3. Modeling Structures of the Interacting Protein Pairs: Docking of Proteins

In order to identify the interaction regions of the interacting proteins, structures of the protein complexes should be modeled and examined. To this end, docking was done to the interacting proteins by the GRAMM-X server and complex structures of the protein pairs were obtained, i.e. the MODELLER predicted structures of the proteins in the sphingolipid signaling pathway and their interaction partners were docked by GRAMM-X server.

The usage of the server starts with a simple web interface which accepts two protein structures in PDB format. The output file contains 10 models ranked as the most probable complex structure candidates. With any of the standard structure analysis and visualization tools, such as RasMol, VMD or Swiss PDB Viewer, the user can freely process or view the PDB formatted results. In the present study, VMD (Visualization of Molecular Dynamics) software was used for visualization of the 3D structures of the protein complexes.

3.4. Biological Relevance by NOXclass

Protein complexes obtained from GRAMM-X are 3D protein structures built with the calculations of fine-grid projection of softened Lennard-Jones potential function, however biological relevance of these protein complexes were not known. Therefore, in order to have information whether these complexes' structures are biologically significant or not, NOXclass (Zhu et al., 2006) server was used. By using this server protein complexes were classified as "Biological" "Non-biological" and in addition to this biological protein complexes were grouped as "Obligate" and "Non-obligate".

3.5. Identifying Interface Residues and Hotspots

The complex structures of interacting proteins obtained from GRAMM-X were then examined to obtain interface properties. The 10 most probable complex structure models predicted by GRAMM-X were analyzed using the KFC server to identify hotspots and the interface residues (http://www.mitchell-lab.org/).

The KFC Server starts to work with the submission of the protein-protein complex structure and the interface to analyze. There are three main sections in the server: the submission page, the queue and the job viewer. KFC model can only analyze structures containing proteins and nucleic acids. After submission of the data, the jobs are processed in a queue. When the job is activated, the server begins to calculate the structural features surrounding each residue in the interface. A hotspot is defined as a residue with at least one atom within 4Å of the opposite binding partner. First, a FADE analysis is performed and the radial distribution of shape specificity markers is calculated about each residue. Next, each residue's intermolecular contacts and hydrogen bonds are tabulated. Finally, the K-FADE (Knowledge-based Fast Atomic Density Evaluation) and K-CON (Knowledgebased Biochemical Contacts analysis) models are applied to the calculated features and the putative hot spots are selected (Darnell et al., 2008). The interactive job viewer enables user to quickly highlight predicted hot spots and surrounding structural features within the protein structure. It displays each interface residue and predicted hot spot, and provides summary information about each residue. After obtaining the hotspot residues, VMD (Visualization of Molecular Dynamics) software was used to calculate the distance between the hotspot residues of each model of protein pairs (complex structures). Among the 10 models of complex structures built by GRAMM-X, the one which has the closest hotspots between the interacting protein pairs was assigned the most appropriate model.

The algorithm which was followed in this study can be seen Figure 3.1. The stages until predicting putative interaction partners were only applied to proteins with unknown interaction partners. However, all the other stages after assigning putative partners were applied to each group of proteins (proteins with known interaction partners, proteins with predicted interaction partners and Clusters).

Figure 3.1. Flow chart of the algorithm used to identified protein interaction network

4. RESULTS AND DISCUSSION

32 proteins existing in the sphingolipid signaling pathway were investigated in the present study. First, the structures of these proteins and their interaction partners were predicted by MODELLER. Next, the complex structures were built by GRAMM-X. Hotspots were determined by KFC and analyzed for distance values thoroughly. The results were collected under three categories: proteins with known interaction partners, proteins with unknown interaction partners, and proteins in modules / (clusters).

4.1. Protein-Protein Interactions in the Sphingolipid (SL) Pathway

4.1.1. Interaction Partners of Sphingolipid Pathway Proteins Identified by BIOGRID

26 proteins known to function in sphingolipid metabolism were searched for their interaction partners in databases. The interaction information of these proteins was obtained from BIOGRID database (http://www.thebiogrid.org/). BIOGRID reports both physical and functional interaction details. According to the information obtained from BIOGRID, some proteins had only one interaction partner while some others had many. The proteins in the sphingolipid pathway and their interaction partners were listed in Table 4.1 with their ORF and gene names.

Table 4.1. Interaction partners of proteins in the SL pathway identified using the BIOGRID database (http://www.thebiogrid.org/)

ORF name of	Gene name of SL protein	ORF name of interaction	Gene name of interaction
SL protein		partner	partner
YLR242C	ARV1	YOR393W	ERR1
		YPL057C	SUR1
		YJL196C	ELO1
YKL004W	AUR1	YJR105W	ADO1
		YMR010W	NA
		YPL264C	NA
	CSG2	YBR036C	CSG2
		YBR161W	CSH1
YBR036C		YCR034W	FEN1
		YHL003C	LAG1
		YLR372W	SUR4

		YDL015C	TSC13
		YJL196C	ELO1
		YOR016C	ERP4
		YMR306W	FKS3
		YML048W	GSF2
		YLR018C	POM34
		YLL048C	YBT1
		YKL065C	YET1
		YHR140W	NA
		YHR110W	ALG1
		YHR026W	PPA1
		YGL051W	MST27
		YEL027W	CUP5
		YBR159W	IFA38
		YBR106W	PHO88
		YAL018C	NA
		YAL007C	ERP2
YBR161W	CSH1	YBR036C	CSG2
YCR034W	FEN1	YDL015C	TSC13
YDR072C	IPT1	YNL307C	MCK1
	LAC1	YKL008C	LAC1
		YHL003C	LAG1
		YMR298W	LIP1
YKL008C		YLR372W	SUR4
		YKL065C	YET1
		YBR159W	IFA38
		YPR048W	TAH18
VIII 002C	LAG1 —	YKL008C	LAC1
THLOUSE		YMR298W	LIP1
		YDR062W	LCB2
YMR296C	LCB1	YBR058C-A	TSC3
		YBR036C	CSG2
		YMR296C	LCB1
		YNR058C-A	NA
		YGR218W	CRM1
		YLR342W	FKS1
YDR062W	LCB2	YKL104C	GFA1
		YBR017C	KAP104
		YER110C	KAP123
		YIL094C	LYS12
		YJR077C	MIR1
YOR171C	LCB4	YOR034C	AKR2
		YGL137W	SEC27
YLR260W	LCB5	YLR213C	CRR1
YMR298W	LIP1	YKL008C	LAC1
		1	

Table 4.1. Interaction partners of proteins in the SL pathway identified using the BIOGRID database (http://www.thebiogrid.org/) (continued)

VMD200W	L ID1	YHL003C	LAG1
YMR298W	LIPI	YMR298W	LIP1
YPL006W	NCR1	YGL006W	PMC1
YJL097W	PHS1	YBR159W	IFA38
YMR272C	SCS7	YOR081C	TGL5
YPL057C	SUR1	YBR036C	CSG2
		YCR034W	FEN1
		YLR372W	SUR4
		YOR016C	ERP4
		YML048W	GSF2
		YKL065C	YET1
VDP207W	SUP2	YBR159W	IFA38
1 DR297 W	50K2	YBR106W	PHO88
		YPL264C	NA
		YGR125W	NA
		YHR007C	ERG11
		YML012W	ERV25
		YKL088W	NA
YLR372W	SUR4	YDL015C	TSC13
YBR265W	TSC10	YJL151C	NA
		YBR270C	BIT2
		YNL006W	LST8
YER093C		YKL203C	TOR2
		YKL003C	MRP17
		YMR068W	AVO2
VDD050C A	T CC2	YMR296C	LCB1
I BR058C-A	1503	YDR062W	LCB2
	YDC1	YDL015C	TSC13
YPL087W		YML012W	ERV25
		YNR065C	NA
		YCR034W	FEN1
		YLR372W	SUR4
		YOR016C	ERP4
		YML048W	GSF2
		YLR018C	POM34
		YKL065C	YET1
		YHR140W	NA
YBR183W	YPC1	YBR159W	IFA38
		YBR106W	PHO88
		YAL007C	ERP2
		YJL117W	PHO86
	F	YGR060W	ERG25
		YFL041W	FET5
		YDR506C	NA
<u> </u>		YMR104C	YPK?
YKL126W	YPK1	YNL106C	INP52

Table 4.1. Interaction partners of proteins in the SL pathway identified using the BIOGRID database (http://www.thebiogrid.org/) (continued)

		YCR034W	FEN1
		YKL008C	LAC1
		YLR372W	SUR4
		YPL087W	YDC1
		YDL015C	TSC13
		YJL196C	ELO1
		YOR016C	ERP4
	TSC13	YML048W	ERP4
VDI 015C		YKL065C	YET1
TDL015C		YBR159W	IFA38
		YBR106W	PHO88
		YBR017C	KAP104
		YJL117W	PHO86
		YDR506C	NA
		YPR028W	YOP1
		YBR110W	ALG1
		YBR094W	PBY1
		YKL182W	FAS1

Table 4.1. Interaction partners of proteins in the SL pathway identified using the BIOGRID database (http://www.thebiogrid.org/) (continued)

The gene names for some of the proteins were not known; therefore they were defined as "NA" (not available).

4.1.2. Predictions of Interaction Partners of SL Pathway Proteins by PIPE

For six of the proteins functioning in the sphingolipid pathway (YDR294C, YER019W, YGR143W, YGR212W, YJL134W, YKR053C), there have been no interacting partners reported in databases. In this study, the missing interaction partners were identified using the sequence based protein-protein interaction prediction program, PIPE (http://pipe.cgmlab.org/). PIPE was used to match each of these six proteins with all 6400 proteins in the yeast proteome using the default values of sensitivity (57%) and specificity (%89). Proteins with average score after filtration (AvgAF) higher than 0.06 were chosen as probable interaction partners. The highest peak on the PIPE graph shows the interaction point with maximum possibility, while a peak with a score higher than 10 (maximum score before filtering) indicates that PIPE is predicting an interaction. However these interacting proteins include not only the sphingolipid signaling pathway proteins but other yeast proteins as well; therefore, the resulting protein list was filtered using GO terms related to the sphingolipid signaling pathway such as "signal", "endoplasmic", "golgi",

"sphingo" and "lipid" and putative interaction partners of sphingolipid signaling pathway proteins were thus selected. GO terms of these proteins were obtained from Saccharomyces Genome Database (http://www.yeastgenome.org/). For these six proteins, the keywords used to select the relevant interaction partners in the sphingolipid signaling pathway and the interaction scores (before and after filtering) are listed in Tables 4.2 to 4.7. PIPE reports a contact map between the two interacting proteins and maximum scores for interacting proteins. The maximum scores before filtration are more than 10 and the average scores after filtering (AvgAF) are more than 0.06 for most of the interactions. The interacting residues between the proteins are shown by peaks in the contact map (Figures 4.1-4.13).

<u>4.1.2.1. Interactions with YDR294C:</u> Table 4.2 lists the putative physical interaction partners of YDR294C protein identified by PIPE. As a result of the elimination process based on the GO annotations, it was found that some of the putative interacting proteins are related to signaling, some of them are related to the endoplasmic reticulum and one of them is related to the Golgi Apparatus. According to the results given in Table 4.2, YHR135C was selected as the most probable interaction partner of the YDR294C. It has the highest peak value (22) in PIPE interaction graph (Figure 4.1). In addition to this, YHR135C may be involved in the sphingolipid pathway due to its location, endoplasmic reticulum. Figure 4.1 shows the interaction map between the YDR294C (sequence A) and YHR135C (sequence B) and the maximum interaction score is 22. The highest interaction score was occurred between the residue 113 of YDR294C and the residue 459 of YHR135C.

ORF NAME	Average score after	Maximum PIPE score	Keyword
	filtering	before filtering	
YHR135C	0.0786	22	Endoplasmic reticulum
YPL203W	0.0662	18	Signal
YPL204W	0.0779	14	Golgi
YBR160W	0.0807	12	Endoplasmic reticulum
YPL031C	0.0768	12	Signal
YGR040W	0.0728	12	Signal
YBL016W	0.0722	12	Signal
YLR113W	0.0625	12	Signal

Table 4.2. Putative physical interaction partners of YDR294C

Figure 4.1. PIPE interaction map for proteins YDR294C (Sequence A)-YHR135C (Sequence B)

<u>4.1.2.2. Interactions with YER019W:</u> In Table 4.3, while all PIPE interaction AvgAF scores are higher than 0.06, the scores before filtering vary between 5 and 24. The GO annotations of these putative interaction partners also show a variety in terms of keywords such as lipids, signaling, endoplasmic reticulum and Golgi. The highest maximum PIPE score before filtering, 24, is obtained for the interaction between YER019W and YIL015C, but when selecting the most probable interaction partner of YER019W the values of both AvgAF and maximum PIPE score before filtering and the keywords "lipid" and "endoplasmic" were taken into consideration, and consequently, YHL020C was selected as the most probable interaction partner of YER019W. Figure 4.2 shows the interaction map between YER019W and YHL020C. According to the PIPE results, the maximum peak value in the contact map for these two proteins is 22 between the residue 82 of YER019W and the residues 283 and 284 of YHR020C.

Table 4.3. Putative physical interaction partners of YER019W

ORF NAME	Average score after	Maximum PIPE score	Keyword
	filtering	before filtering	
YHR030C	0.0894	26	Signal, Endoplasmic
YIL105C	0.0602	24	Signal
YDR099W	0.0953	23	Signal
YHL020C	0.1344	22	Lipid, Endoplasmic
YEL036C	0.0741	22	Golgi
YHR135C	0.1491	21	Endoplasmic

YER177W	0.0624	19	Signal
YJR086W	0.1722	15	Signal
YPL203W	0.0628	15	Signal
YPL204W	0.1133	14	Golgi
YKL063C	0.0728	8	Golgi
YNL283C	0.2027	7	Signal
YHL028W	0.1833	7	Endoplasmic
YOL105C	0.1353	7	Signal
YOR008C	0.0821	6	Signal
YJL079C	0.0662	5	Endoplasmic
YNL146W	0.0665	3	Endoplasmic

Table 4.3. Putative physical interaction partners of YER019W (continued)

Figure 4.2. PIPE interaction map for proteins YER019W (Sequence A)-YHL020C (Sequence B)

<u>4.1.2.3.</u> Interactions with YGR143W: Table 4.4 shows the interaction partners of YGR143W. YKL126W was selected as the most probable interaction partner despite a low PIPE score (maximum PIPE score before filtering: 10) because it has the GO keywords lipid and sphingo. In addition, a maximum PIPE score before filtering of 10 is sufficient to indicate a physical interaction (Pitre et al., 2006). Figure 4.3 shows the interaction map between the YGR143W and YKL126W, the maximum peak value in this graph is 10 between the residue 128 of YGR143W with the residue 458 of YKL126W.

ORF NAME	Average score after	Maximum PIPE score	Key word
	filtrering	before filtering	-
YIL105C	0.0769	45	Signal
YHR030C	0.1968	43	Signal, Endolpasmic
YDR099W	0.1009	41	Signal
YHR135C	0.1552	37	Endoplasmic
YNL298W	0.0964	37	Signal

Table 4.4. Putative physical interaction partners of YGR143W

YER177W	0.0781	36	Signal
YHL020C	0.1145	37	Endoplasmic
YJR086W	0.1640	34	Signal
YPL203W	0.2310	32	Signal
YPL204W	0.1272	27	Golgi
YBR288C	0.0692	27	Golgi
YDR477W	0.2127	20	Signal
YDR477W	0.2127	20	Signal
YHL007C	0.0800	14	Signal
YHR082C	0.0616	14	Signal
YJL164C	0.1653	12	Signal
YFR014C	0.1000	12	Signal
YLR362W	0.0646	12	Signal
YKL166C	0.1574	11	Signal
YLR113W	0.1363	11	Signal
YOL016C	0.0899	11	Signal
YBL016W	0.1823	10	Signal
YGR040W	0.1510	10	Signal
YLR248W	0.0923	10	Signal
YKL126W	0.0902	10	Lipid, Sphingo
YPL140C	0.0874	10	Signal
YOR231W	0.0821	10	Signal
YKL116C	0.0747	10	Signal
YBL105C	0.0654	10	Signal
YBR160W	0.1494	9	Endoplasmic
YDL214C	0.0676	9	Signal
YHL019C	0.1190	5	Golgi
YBR254C	1.0000	4.5	Golgi
YPL259C	0.7290	4	Golgi
YFR042W	0.7280	3	Endoplasmic
YDR373W	0.1704	3	Signal, Golgi
YDL047W	0.0701	3	Signal
YLL017W	0.0678	3	Signal
YDR246W	0.0617	3	Golgi

 Table 4.4. Putative physical interaction partners of YGR143W (continued)

Figure 4.3. PIPE interaction map for proteins YGR143W (Sequence A)-YKL126W (Sequence B)

<u>4.1.2.4. Interactions with YGR212W:</u> YHR135C and YPL204W were chosen as the potential interaction partners of YGR212W due to their average PIPE scores after and before filtering. In addition, their GO terms are related to those of sphingolipid signaling pathway proteins. Figure 4.4 shows the interaction map between YGR212W and YPL204W and Figure 4.5 shows the interaction map between YGR212W and YHR135C. In Figure 4.4, the maximum peak score is 12 between the residue 346 of YGR212W and the residue 316, 118, 119, 120 of YPL204W, and in Figure 4.5, it is 16 between the residue 346 of YGR212W and the residue 458 of YHR135C.

ORF NAME	Average score after	Maximum PIPE score	Keyword
	filtering	before filtering	
YHR135C	0.0935	16	Endoplasmic
YDR099W	0.0660	15	Signal
YLR423C	0.0610	15	Signal
YHR030C	0.0846	14	Signal, Endoplasmic
YBR160W	0.0744	14	Endoplasmic
YPL203W	0.0703	13	Signal
YPL031C	0.0743	12	Signal
YPL204W	0.0688	12	Golgi
YPL204W	0.0688	12	Golgi
YJR086W	0.0656	10	Signal

Table 4.5. Putative physical interaction partners of YGR212W

Figure 4.4. PIPE interaction map for proteins YGR212W (Sequence A)-YPL204W (Sequence B)

Figure 4.5. PIPE interaction map for proteins YGR212W (Sequence A)-(YHR135C Sequence B)

4.1.2.5. Interactions with YJL134W: Table 4.6 shows putative interaction partners of YJL134W. YAR033W and YGL051W were chosen as the putative interaction partners of YJL134W. Even though PIPE maximum interaction scores before filtering are lower than 10 indicating no interaction, the average scores after filtering are higher than 0.06, suggesting a possible interaction. In addition both proteins are related to endoplasmic reticulum and Golgi apparatus. The maximum interaction scores in the PIPE interaction maps between YJL134W and YAR033W (Figure 4.6) and YJL134W and YGL051W (Figure 4.7) are 3 and there are not any distinctive interaction points. For this reason, it is difficult to indicate distinct interaction regions for these couples of proteins. Interacting residues in pairs are (21-9), (21-10), 49-37), (50-37), (142-138), (142-139), (142-140), (142-141). First residues' numbers are of YJL134W and second ones are of YAR033W. For interactions between YJL134W and YGL051W, the interacting residue pairs are found as follows, respectively; (21-9), (21-10), (49-37), (50-37), (142-37), (142-138), (142-139), (142-140), (142-140), (142-140), (142-142).

ORF NAME	Average score after	Maximum PIPE score	Keyword
	filtering	before filtering	
YGL053W	1.0000	3	Endoplasmic
YGL051W	0.6746	3	Endoplasmic, Golgi
YAR033W	0.6745	3	Endoplasmic, Golgi
YAR031W	0.6059	3	Endoplasmic
YNR075W	0.08995	2	Endoplasmic

Table 4.6. Putative physical interaction partners of YJL134W

Figure 4.6. PIPE interaction map for proteins YJL134W (Sequence A)-YAR033W (Sequence B)

Figure. 4.7. PIPE interaction map for proteins YJL134W (Sequence A)-YGL051W (Sequence B)

<u>4.1.2.6. Interactions with YKR053C:</u> YAR033W and YGL051W were chosen as the potential interaction partners of YKR053C because their AvgAF scores were higher than 0.06. In addition, their GO terms are related to endoplasmic reticulum which was a significant reason for assuming their interaction in the sphingolipid signaling pathway. However, maximum PIPE scores of these interactions were not good enough to define an interaction between any these proteins and YKR053C. The interaction map between YKR053C and YAR033W (Figure 4.8) and between YKR053C and YGL051W (Figure 4.9) show no distinctive interaction. The interaction regions with maximum score between YKR053C and YAR033W protein pair are as follows: (142-140), (108-316), (108-317),

(108-318), (108-319); and between YKR053C with YGL051W protein pair are (142-140), (108-316), (108-317), (108-318), (108-319).

ORF NAME	Average score after filtering	Maximum PIPE score before filtering	Keyword
YAR033W	0.4732	3	Endoplasmic
YGL051W	0.4732	3	Endoplasmic
YGL053W	1.0000	3	Endoplasmic

Table 4.7. Putative physical interaction partners of YKR053C

Figure. 4.8. PIPE interaction map for proteins YKR053C (Sequence A)-YAR033W (Sequence)

Figure. 4.9. PIPE interaction map for proteins YKR053C (Sequence A)-YGL051W (Sequence B)

Table 4.8 is a summary of the putative interaction partners of the six proteins with previously unknown interaction partners in sphingolipid signaling pathway and their GO annotations. These putative interaction partners were selected based on their PIPE scores as well as their GO annotations. From this table, the relationships of the GO annotations of these putative interaction partners with sphingolipid signaling pathway can be seen.

Table 4.8. GO annotations of Putative interaction partners. IDA: Inferred from Direct Assay, IGI: Inferred from Genetic Interaction, IMP: Inferred from Mutant Phenotype, ISS: Inferred from Sequence or Structural Similarity, IPI: Inferred from Physical Interaction

Protein	Putative partner	Function	Process	Component
YDR294C	YHR135C	Manually curated protein serine/threonine kinase activity (IDA)	Manually curated cell morphogenesis (IGI) cytokinesis (IGI) endocytosis (IGI) protein amino acid phosphorylation (IMP, ISS) response to glucose stimulus (IMP)	Manually curated plasma membrane (IDA) High-throughput endoplasmic reticulum (IDA) mitochondrion (IDA)
YER019W	YHL020C	Manually curated transcription corepressor activity (IPI)	Manually curated endoplasmic reticulum unfolded protein response (IMP) negative regulation of transcription from RNA polymerase II promoter (IMP) phospholipid biosynthetic process (IMP) positive regulation of transcription from RNA polymerase II promoter (IMP)	Manually curated endoplasmic reticulum (IDA) nuclear envelope (IDA) nuclear membrane (IDA) nucleoplasm (IDA) nucleus (IDA)
YGR143W	YKL126W	Manually curatedprotein serine/threonine kinase activity (IMP, ISS)	Manually curated endocytosis (IMP) protein amino acid phosphorylation (IMP, ISS) sphingolipid metabolic process (IMP)	Manually curated cellular bud neck (IDA) cytosol (IDA) plasma membrane (IDA)
YGR212W	YPL204W	Manually curatedprotein serine/threonine kinase activity (IDA, IMP)	Manually curated attachment of spindle microtubules to kinetochore during meiosis I (IMP) DNA repair (IMP) ER to Golgi vesicle-mediated transport (IMP) mitosis (IMP) protein amino acid phosphorylation (IMP) ribosomal small subunit biogenesis (IMP)	Manually curated cellular bud neck (IDA) cellular bud tip (IDA) chromosome, centromeric region (IDA) monopolin complex (IDA, IMP, IPI) nucleus (IDA) plasma membrane (IDA)

Table 4.8. GO annotations of Putative interaction partners. IDA: Inferred from Direct Assay, IGI: Inferred from Genetic Interaction, IMP: Inferred from Mutant Phenotype, ISS: Inferred from Sequence or Structural Similarity, IPI: Inferred from Physical Interaction (continued)

YGR212W	YHR135C	Manually curatedprotein serine/threonine kinase activity (IDA)	Manually curated cell morphogenesis (IGI) cytokinesis (IGI) endocytosis (IGI) protein amino acid phosphorylation (IMP, ISS) response to glucose stimulus (IMP)	Manually curated plasma membrane (IDA) High-throughput endoplasmic reticulum (IDA) mitochondrion
				(IDA)
	YAR033W	Manually curated protein binding (IDA)	Manually curated vesicle organization (IGI, IPI)	Manually curated endoplasmic reticulum (IMP, IPI)
YJL134W				Golgi apparatus (IPI) integral to membrane (IDA) plasma membrane (IMP)
	YGL051W	Manually curated protein binding (IDA)	Manually curated vesicle organization (IGI, IPI)	Manually curated endoplasmic reticulum (IDA, IMP)
				Golgi apparatus (IDA) integral to membrane (IDA) plasma membrane (IMP)
	YAR033W	Manually curated protein binding (IDA)	Manually curated vesicle organization (IGI, IPI)	Manually curated endoplasmic reticulum (IMP, IPI)
				Golgi apparatus (IPI) integral to membrane (IDA) plasma membrane (IMP)
	YGL051W	Manually curated protein binding (IDA)	Manually curated vesicle organization (IGI, IPI)	Manually curated endoplasmic reticulum (IDA, IMP)
YKR053C				Golgi apparatus (IDA) integral to membrane (IDA) plasma membrane (IMP)

4.1.3. Clusters / Modules

Some closely related groups (clusters) in the SL pathway (Tables 4.9, 4.10, 4.11) were previously identified by Betul Kavun Özbayraktar within the framework of her PhD thesis by selecting highly interconnected regions in the sphingolipid pathway, i.e. determining the clusters which consist of only core proteins and their first neighbours among all interaction pairs.

Table 4.9. Proteins in Cluster A and their interaction partners

Proteins in Cluster A	Interaction partners
YOR171C	YOR034C
YOR034C	YOR171C

Table 4.10. Proteins in Cluster B and their interaction partners

Proteins in Cluster B	Interaction partners
YMR298W	YMR298W
	YGR060W
YHL003C	YMR298W
YGR060W	YGR060W
	YHL003C

Table 4.11. Proteins in Cluster C and their interaction partners

Proteins in Cluster C	Interaction partners
YLL006W	YLL006W
	YCR034C
YNL307C	YNL307C
	YAL007C
YDR297W	YOR016C
	YCR034W
YMR058W	YOR016C
	YCR034W
YHR026W	YAL007C
	YHR026W
	YOR016C
YEL027W	YEL027W
	YHR026W
	YOR016C
YHR110W	YAL007C
	YOR016C
	YHR110W
	YCR034W

4.2. Prediction of Protein Structure

In the previous section, the interaction partners of 32 proteins involved in the sphingolipid (SL) pathway were identified using the BIOGRID database (http://www.thebiogrid.org/) (Table. 4.1) or they were predicted using PIPE (Table 4.8). As a next step, the structures of these proteins were built using MODELLER (http://www.salilab.org/modeller/). MODELLER uses homology modeling to build a protein structure based on one or more templates with high sequence identity to the protein of unknown structure. If there are more than one templates, more than one model structure may be built based on them. The best model was selected based on "coverage of sequence alignment", "sequence identity of alignment", and "E values" of each model. The most important point considered was the E value when choosing the appropriate model for each protein. If the E value is smaller than or equal to 0.01 that model was accepted. In general, a sequence identity value above ~25% indicates a potential template, unless the alignment is too short (i.e., <100 residues). Therefore, the models with low E value and high identity and maximum coverage were chosen for each protein. However, for some proteins MODELLER could not build models that satisfy all of the above criteria due to the absence of an experimentally verified template structure appropriate for that protein to modeling. In such cases, the best model among the obtained structure models was selected. The most appropriate models chosen for each protein, the templates used for modeling, the region of target sequences, the length of the target sequences, the coverage of the modeled structure for target sequences, the sequence identity of the alignment, and the E values are given in Tables 4.12-4.19. The results were analyzed under three categories; proteins with known partners, proteins with predicted partners, and clusters.

4.2.1. Proteins with known partners

Assigning a successful template for modeling the structure is not always possible. Identifying a template which covers several criteria at the same time is very difficult. The coverage of the modelled target structure is sometimes as low as 13% indicating that only 13% of the protein was successfully modelled. Besides, some E values are not low enough. However, many models have sequence identities higher than 25%. Consequently, some proteins with known interaction partners could not be modelled properly because there was not any suitable template.

Protein ORF	Template	Region of	Length of	Coverage	Sequence	E value
	PDB code	modelled	target	(%)	identity of	
		target	sequence		the	
		sequence			alignment	
YLR242C	2ga9D	69-223	321	47.975	16	0
YKL004W	2ckpA	238-314	341	22.287	29	0.064
YBR036C	-	No model	-	-	-	-
YBR161W	-	No model	-	-	-	-
YCR034W	-	No model	-	-	-	-
YDR072C	2bjiA	357-437	527	15.180	34	0.15
YKL008C	2j67A	90-176	418	20.574	24	0.13
YHL003C	1h5uA	190-283	411	22.63	25	0.27
YMR296C	2jg2A	92-421	558	58.960	27	0
YDR062W	1fc4A	158-524	561	65.240	33	0
YOR171C	2qv7A	219-411	624	30.769	29	0.00093
YLR260W	2qv7A	273-398	687	18.195	28	0.00033
YMR298W	1ivyA	43-120	150	51.333	26	0.52
YPL006W	2dhhA	1002-1152	1170	12.820	26	1.9e-07
YJL097W	2g84A	37-111	217	34.101	24	0.2
YMR272C	2ibjA	6-95	384	21.177	40	1.9e-11
YPL057C	-	No model	-	-	-	-
YDR297W	1kcmA	250-309	349	16.905	33	0.081
YLR372W	2uvpA	90-182	345	26.666	28	0
YBR265W	1geeA	5-43	320	11.875	46	0.14
YER093C	1z3hB	7-829	1430	57.482	13	0
YBR058C-A	2gv8A	12-74	80	77.500	33	0.59
YPL087W	3dtuA	159-252	317	29.337	26	0.17
YBR183W	1qleC	199-276	316	24.367	31	0.35
YKL126W	2r5tA	332-624	680	42.941	54	0
YDL015C	1wjnA	1-82	310	26.129	15	0

Table 4.12. The templates used in building modeling SL proteins with known partners (Set A). The coverage, sequence, identity and E-value of the alignment are also listed.

Table 4.13. The templates used in building models of interaction partners of set A. The coverage, sequence, identity and E-value of the sequence alignment are also listed.

Protein ORF	Template	Region of	Length of	Coverage	Sequence	E value
	PDB code	modeled target	target	(%)	identity of	
		sequence	sequence		the	
					alignment	
YOR393W	2al1A	2-437	437	99.54	68	0
YJL196C	1c17M	197-254	310	18.34	24	0.59

Table 4.13. The templates used in building models of interaction partners of set A. The coverage, sequence, identity and E-value of the sequence alignment are also listed. *(continued)*

YJR105W	1bx4A	8-334	340	95.88	41	0
YMR010W	2bs2C	166-345	405	44.19	24	0.048
YPL264C	2dyrC	13-137	353	35.12	17	0
YHL003C	3emlA	69-310	411	58.63	13	0
YKL065C	2eflA	67-192	206	60.67	10	0
YBR159W	2zatA	63-313	347	72.04	29	2.7e-12
YPR048W	1amoA	1-623	623	99.83	23	0
YDR062W	2jg2A	103-524	561	75.04	27	0
YMR296C	2jg2A	92-421	558	58.96	27	0
YGR218W	2q5dB	18-940	1084	85.05	15	0
YLR342W	1ajkA	8-165	1876	8.36	18	0
YKL104C	2pocA	350-705	717	49.51	81	0
YBR017C	1qbkB	4-917	918	99.45	34	0
YER110C	1ibrB	37-332	1113	26.50	29	6.8e-05
YIL094C	1x0lA	23-371	371	93.80	49	0
YOR034C	2dvwA	14-214	749	26.70	28	4.9e-11
YLR213C	1umzA	149-355	422	48.81	26	0
YNL307C	1j1bA	36-370	375	89.06	43	0
YHL003C	3emlA	69-310	411	58.63	13	0
YBR159W	2zatA	63-313	347	72.04	29	2.7e-12
YOR081C	1ayzA	552-690	749	18.42	19	0
YLR372W	2uvpA	90-182	345	26.66	28	0
YKL065C	2eflA	67-192	206	60.67	10	0
YBR106W	2nvpA	23-110	188	46.27	31	0.18
YGR125W	3cucA	89-294	1036	19.78	17	0
YHR007C	1x8vA	55-525	530	88.67	27	0

Table 4.13. The templates used in building models of interaction partners of set A. The coverage, sequence, identity and E-value of the sequence alignment are also listed. *(continued)*

YML012W	1g3kA	47-138	211	43.12	31	0.51
YKL088W	1e20A	307-497	571	33.27	46	0
YGL137W	2ovrB	66-294	889	25.64	34	0
YGL006W	209jA	65-971	1173	77.23	34	0
YMR104C	2r5tA	329-620	677	42.98	54	0
YPL087W	3dtuA	159-252	317	29.33	26	0.17
YBR110W	2bisA	46-443	449	88.41	15	0
YBR094W	2phjA	101-215	753	15.13	41	3.5e-09
YBR270C	1w99A	6-284	545	36.91	15	0
YNL006W	1erjA	26-300	303	90.42	27	0
YKL203C	2qizA	455-1413	2474	38.72	14	0
YMR068W	1n11A	9-213	426	47.88	30	2.7e-12
YNR065C	3f6kA	301-918	1116	55.86	23	0

4.2.2. Proteins with predicted partners

Table 4.14 lists the templates, used in the models of the six proteins with predicted partners. As shown in Table 4.14, the coverage values of the sequence alignment are higher than 40% and E values are smaller than 0.01 for all model structures. Even though, the sequence identities of the alignments are not higher than 25% for any of the proteins the low E values were used to select the template.

Table 4.14. The templates used in building modeling SL proteins with predicted partners (Set B). The coverage, sequence, identity and E-value of the alignment are also listed.

Protein ORF	Template PDB code	Region of modeled target	Length of target	Coverage (%)	Sequence identity of	E value
		sequence	sequence		the	
					alignment	
YDR294C	3f9Ta	138-532	589	66.893	23	0

Table 4.14. The templates used in building modeling SL proteins with predicted partner	S
(Set B). The coverage, sequence, identity and E-value of the alignment are also listed.	
(continued)	

YERO19W	1i9Za	33-379	477	72.536	17	0
YGR143W	2hykA	379-712	771	43.190	23	0
YGR212W	1q9Jb	3-451	468	95.726	15	0
YJL134W	3c08H	24-193	409	41.320	11	0
YKR053C	2ipbA	67-241	404	43.069	16	0

Table 4.15 shows the region and the coverage values of models of the predicted partners of proteins. The coverage and sequence identity of the alignments are high for all the templates, but the E values of YAR033W and YGL051W are very high as 0.81 and 0.82 respectively. Although these two values are not preferable values these models were chosen due to the absence of other appropriate templates.

Table 4.15. The templates used in building models of interaction partners of set B. The coverage, sequence, identity and E-value of the sequence alignment are also listed.

Protein ORF	Template PDB code	Region of modeled target sequence	Length of target sequence	Coverage (%)	Sequence identity of the alignment	E value
YHR135C	1csnA	64-355	538	54.08	67	0
YHL020C	1bg1A	280-404	404	30.69	16	0
YKL126W	2r5tA	332-624	680	42.94	54	0
YPL204W	1ckiA	1-295	494	59.51	66	0
YAR033W	2dhkA	143-219	234	32.47	30	0.81
YGL051W	2dhkA	143-219	234	32.47	33	0.82

4.2.3. Clusters / Modules

The MODELLER results for clusters are listed in Tables 4.16- 4.19. Tables show the some important values of the model structures which built with homology modeling. When the specifications of the structures in three tables examined it is appeared that the sequence identities of the alignments are generally higher than 25% except three proteins, YHL003C, YGR060W, YHR110W. However, the E values of some protein models are generally higher than 0.01 due to the absence of good template structures which are used in

modeling the structures of the proteins of our clusters. Interaction partners of proteins in Cluster A and Cluster B exist in their own clusters, so they are shown in the same table. However, the interaction partners of proteins in Cluster C are different from the proteins in Cluster C, so they are shown in a separate table. Table 4.16 shows the specifications of the modelled structures in Cluster A. In Cluster A, there are two proteins which interact with each other. The results in Table 4.16 show that, the structures which were obtained with homology modeling using MODELLER are quite good to accept them as convenient for these two proteins. The E values of both structures are smaller than 0.01 and the sequence identities are higher than 25%. Moreover the regions of modeled target sequences are longer than 100 residues. Based on these values obtained these two structures are suitable to further use in modeling the complex structures.

Table 4.16. The templates used in building modeling SL proteins in Cluster A. The coverage, sequence, identity and E-value of the alignment are also listed.

Protein	Template	Region of	Length of	Coverage	Sequence	E value
ORF	PDB code	modeled	target	(%)	identity of	
		target	sequence		the alignment	
		sequence				
YOR171C	2qv7A	219-411	624	30.929	29	0.00093
YOR034C	2dvwA	58-265	749	27.777	28	4.9e-11

Table 4.17 gives important information on the model structures of the proteins in Cluster B. The proteins in Cluster B interact with each other; therefore, the proteins in Table 4.17 are both members of Cluster B and their interaction partners. Based on values in Table 4.17, the E values of YHL003C and YGR060W are very good (E values are 0); however, the sequence identity of YMR298W is only higher than 25%. These values show that, none of the proteins in Cluster B meet three criteria at the same time. Nevertheless, the coverage of all three proteins are higher than 50%.

Table 4.17. The templates used in building modeling SL proteins in Cluster B. The coverage, sequence, identity and E-value of the alignment are also listed. Template-region-coverage values of Cluster B

Protein ORF	Template	Region of	Length of	Coverage	Sequence	E value
	PDB code	modeled target	target	(%)	identity of	
		sequence	sequence		the	
					alignment	
YMR298W	1ivyA	43-120	150	52.000	26	0.52

Table 4.17. The templates used in building modeling SL proteins in Cluster B. The
coverage, sequence, identity and E-value of the alignment are also listed. Template-region-
coverage values of Cluster B (continued)

YHL003C	3emlA	69-310	411	62.206	13	0
YGR060W	1fftA	1-282	309	91.262	8	0

Table 4.18 shows the proteins in Cluster C while Table 4.19 shows the interaction partners of the proteins in Cluster C. Both tables give good sequence identities, for example in Table 4.18, the sequence identities of 8 proteins out of 9 proteins are higher than 25%. In Table 4.19 the sequence identities of 7 proteins out of 9 proteins are higher than 25%. Besides, one protein (YAL007C) cannot be modeled due to the absence of any suitable template. E values are not good for proteins in both tables; for instances, in Table 4.18, the proteins with E values are smaller than 0.01 are only YEL027W, YHR110W, YMR058W, YNL307W while in Table 4.19 they are YNL307W, YEL027W, YHR110W.

Table 4.18. The templates used in building modeling SL proteins in Cluster C. The coverage, sequence, identity and E-value of the alignment are also listed.

Protein ORF	Template	Region of	Length of	Coverage	Sequence	E value
	PDB code	modeled target	target	(%)	identity of	
		sequence	sequence		the	
					alignment	
YCR034W	3gjcA	183-250	347	19.596	35	0.67000
YDR297W	1kcmA	250-309	349	17.191	33	0.08500
YEL027W	2bl2A	4-154	160	94.375	25	0
YHR026W	1h2sB	150-206	213	26.760	44	0.81000
YHR110W	2qihA	123-180	212	27.358	12	0
YLL006W	1w0bA	168-249	426	19.248	28	0.83999
YMR058W	1zpuA	22-550	636	83.176	100	0
YNL307C	1j1bA	57-379	375	86.133	43	0
YOR016C	1ve3A	31-107	207	37.198	31	0.20000

Table 4.19. The templates used in building modeling interaction partners of Cluster C. The coverage, sequence, identity and E-value of the alignment are also listed.

Protein ORF	Template	Region of	Length of	Coverage	Sequence	E value
	PDB code	modeled target	target	(%)	identity of	
		sequence	sequence		the	
					alignment	
YLL006W	1w0bA	168-249	426	19.248	28	0.83999
YNL307C	1j1bA	57-379	375	86.133	43	0
YAL007C	No Template					
YOR016C	1ve3A	76-155	207	38.16	31	0.59999

YCR034W	3gjcA	183-250	347	19.30	35	0.67000
YEL027W	2bl2A	4-154	160	94.375	25	0
YCR034W	3gjcA	183-250	347	19.596	35	0.67000
YHR026W	1h2sB	150-206	213	26.760	44	0.81000
YHR110W	2qihA	123-180	212	27.358	12	0

Table 4.19. The templates used in building modeling interaction partners of Cluster C. The coverage, sequence, identity and E-value of the alignment are also listed. *(continued)*

4.3. Prediction of Complex Structures

The selected model structures for each protein and their interaction partners in the sphingolipid signaling pathway were used in docking calculations with the GRAMM-X server (http://vakser.bioinformatics.ku.edu/resources/gramm/grammx) in order to predict complex structures. GRAMM-X built ten complex structures for each protein pair. These 10 models mean 10 different binding styles between the protein pairs. In order to select the ideal complex model for each protein complex, the determination of the most convenient binding style is necessary. To this end, hotspots were identified and the distance values between them were calculated. After these calculations, the complex model which has hotspots with smallest distance values was selected as the most probable protein complex for interaction. The data related to the selected protein complex models and hotspots of those protein complexes are listed in the Appendix A in Table A.1, Table A.2, Table A.3, Table A.4, Table A.5 for all groups.

4.3.1 Biological relevance of the predicted complex structures

Structural models of the complexes resulting from protein-protein interactions are necessary to understand those processes at the molecular level. To this purpose, in this study, first individual structures and then complex structures were modeled for proteins. In an effort to determine biological relevance of the predicted complex structure models, NOXclass (Zhu et al., 2006) was used (Table 4.46). NOXclass classified the protein pairs as "biological" or "non-biological". Here, "non-biological" means biologically irrelevant interactions resulting from crystal packing contacts; while "biological" means biologically relevant interactions. Crystal packing contacts are non-specific and have no biological function associated. Biological interactions are then divided into two groups which are "Obligate" and "Non-obligate". In obligate interactions, interface residues were reported to be significantly more conserved than those in transient interactions. In addition, the coevolution rate was observed to be lower for obligate interaction partners than for transient interaction partners. In general, obligate and non-obligate proteins have been shown to have distinct interaction preferences. Interface residues in obligate and non-obligate interactions are more highly conserved than those in crystal packing contacts. Obligate interfaces have more contacts than non-obligate interfaces and these contacts are mainly nonpolar. The approaches are based on the assumption that the key residues are involved in biologically relevant interactions.

For proteins predicted partners, the protein complex structures which were selected as ideal ones among the GRAMM-X structure models were examined using NOX-class to understand their biological relevance. As can be seen from the Table 4.20, in consequence of these calculations, protein complexes identified as biological are YGR143W-YGR212W-YHR135C, YJL134W-YAR033W, YJL134W-YGL051W, YKL126W, especially the results of YJL134W-YAR033W and YJL134W-YGL051W are very good such that they are 100% biological. Moreover, the obligate percentages are very high for these protein couples, they are 96.47% and 91.81%, respectively. However, some protein complexes identified as non biological are YDR294C-YHR135C, YER019W-YHL020C, YGR212W-YPL204W, YKR053C-YAR033W, YKR053C-YGL051W. These undesired results may due to the absence of known structures of these proteins in literature so that the model structures obtained by MODELLER and GRAMM-X are not the proper ones. These model structures do not include whole sequences of the proteins, but only some part of them, therefore accepting these models as real structures is not possible. Therefore, obtaining a result such as "non-biological" for these protein complexes is possible.

Protein Complex	Biological (%)	Non-biological (%)	Obligate (%)	Non-obligate (%)
YDR294C- YHR135C	0.00	100.00	0.00	0.00
YER019W- YHL020C	0.00	100.00	0.00	0.00
YGR143W- YKL126W	17.49	82.51	96.47	3.53

Table 4.20. Biological relevance of proteins with predicted partners

YGR212W- YPL204W	0.00	100.00	0.00	0.00
YGR212W- YHR135C	14.43	85.57	91.81	8.19
YJL134W- YAR033W	100.00	0.00	3.82	96.18
YJL134W- YGL051W	100.00	0.00	4.12	95.88
YKR053C- YAR033W	0.00	100.00	0.00	0.00
YKR053C- YGL051W	0.00	100.00	0.00	0.00

Table 4.20. Biological relevance of proteins with predicted partners (*continued*)

4.4. Prediction of Hotspots

Hotspots are small subset of residues that account for a significant part of a protein interface's free energy of binding (Darnell et al., 2008). In this study, hotspots of the above mentioned complex structures were identified by KFC. The server first calculates, the structural features surrounding each residue in the interface and an interface residue was defined as a residue with at least one atom within 4Å of the opposite binding partner. Then, through this server, residues were classified as hot spots if their mutation to alanine resulted in a change of binding energy ($\Delta\Delta G$) greater than 2 kcal/mol. Then, predictive models were created from many different combinations of structurally-derived chemical and physical features that describe the interface residues, and those that best described the hot spot environment were selected as features for the K-FADE (based on shape specificity features calculated by the Fast Atomic Density Evaluator) and K-CON (based on biochemical contact features) models. Finally, the K-FADE and K-CON models are applied to the calculated features and the putative hot spots were selected (Darnell et al., 2008). KFC provides summary information about each residue and chemical properties of hotspots, such as hydrophobicity, polarity, acidity and so on. Hotspots were identified for 10 models of each protein complex and in order to select the ideal model for each protein complex, the distances between all binary combinations of hotpots in protein A and protein B were calculated by VMD (Visual Molecular Dynamics). After this calculation, some hotspot combinations, distances of which higher than 10 Å were eliminated. The distance threshold between hotspots is generally preferred to be less than 10 Å to obtain accurate results; however in this study it was assigned 10 Å due to low number of the hotspot combinations with a distance value smaller than 10 Å. The residue numbers of hotspots, values of hotspot distances and interaction energies of selected models were listed in Tables A.1, A.2, A.3, A.4, A.5 in Appendix A. The model for each protein complex which had the shortest distances was noted. Finally, according to the distance, the most appropriate complex model which had the shortest hotspot distance was chosen for each protein pair. As a result of these calculations the best models and their hotspots were identified for each protein complex (They can be seen in Appendix A).

4.4.1. Proteins with known interaction partners

Hotspots are identified by KFC for all complex structures of proteins with known interaction partners. Below, two of them, which have better model structures, are shown as typical examples. Figure 4.10 shows the structure of YDL015C-YBR094W protein complex and its hotspots. While PHE89, CYS90, HIS99, LEU101 are hotspots of YDL015C (blue), PRO112, SER148, SER149, GLY150 are hotspots of YBR094W (green). Here, pink spheres are representing the hotspot residues.

Figure 4.10. Complex structure of YDL015C-YBR094W (Model 10)

Figure 4.11 shows the structure of YER093C-YKL203C protein complex and its hotspots. While SER41, ASN45, LEU68 are hotspots of YER093C (blue), VAL2316, PRO2317, THR2321, MET2323, GLN2238 are hotspots of YKL203C (green).

Figure 4.11. Complex structure of YER093C-YKL203C (Model 8)

As mentioned before, the distances between the hotspots were calculated in order to select the best model for each protein complex. Among the distances between the hotspots of proteins with known interaction partners, the smallest distance is 3.09Å. This is quite good value because 4Å is enough as a distance value from one atom to the opposite binding partner. Nevertheless, in this study the distance threshold between the hotspots is taken as 10Å. All these distance values are listed in the Appendix A.

4.4.2. Proteins with predicted partners

Figure 4.12 shows the structure of YGR212W-YPL204W protein complex and its hotspots. While ASN210, ILE214, PHE216 are hotspots of YGR212W (blue); LEU244, PRO, LYS297, LEU280 are hotspots of YPL204W (green).

Figure 4.12. Complex structure of YGR212W-YPL204W (Model 8)

Figure 4.13 shows the structure of YDR294C-YHR135C protein complex and its hotspots. VAL429, TRP432, VAL436, ASN437, GLY439, GLU440 are hotspots of YDR294C (blue) and MET89, ILE90, ASN91, GLY92, PRO94, GLN201, ASP203 are hotspots of YHR135C (green).

Figure 4.13. Complex structure of YDR294C-YHR135C (Model 7)

Figure 4.14 shows the structure of YER019W-YHL020C protein complex and its hotspots. While ALA158, PHE160, ASP211 are hotspots of YER019W (blue), ALA328, VAL332, LEU333, ALA336, LYS337, LEU340 are hotspots of YHL020C (green).

Figure 4.14. Complex structure of YER019W-YHL020C (Model 10)

Figure 4.15 shows the structure of YGR143W-YKL126W protein complex and its hotspots. While PHE585, ILE586, TYR589, ALA625, ILE692 are hotspots of YGR143W (blue), LEU494, GLY521, THR523, LYS524 are hotspots of YKL126W (green).

Figure 4.15. Complex structure of YGR143W-YKL126W (Model 3)

Figure 4.16 shows the structure of YJL134W-YAR033W protein complex and its hotspots. While TRP103(H), TYR106(H), PHE107(H), GLU108 are hotspots of YJL134W (blue), ASN178(P), PRO180(H), LEU198 are hotspots of YAR033W (green).

Figure 4.16. Complex structure of YJL134W-YAR033W (Model 3)

Figure 4.17 shows the structure of YKR053C-YAR033W protein complex and its hotspots. While VAL98, PRO102, VAL103, PRO185 are hotspots of YKR053C (blue), TYR148, PHE149, TYR150, GLU164 are hotspots of YAR033W (green).

Figure 4.17. Complex structure of YKR053C-YAR033W (Model 5)

The smallest distance between the hotspots of the proteins with predicted partners is 4.26Å. This value is still good as a hotspot distance. However the distances between the hotspots are generally higher than 5Å among the proteins with predicted partners. All these distance values are listed in Table A.2 Appendix A.

4.4.3. Clusters / Modules

Figure 4.18 shows the complex structure of YOR171C (blue)-YOR034C (green) pair. Using KFC, the interface residues and the binding hotspots of this complex structure were identified. The hotspots shown as pink spheres belonging to YOR171C and YOR034C pair are close to each other and are therefore on the binding regions of the proteins. The hotspots of this complex structure are MET 357, TYR 364, TRP 368, PRO 369, ARG 370 on YOR171C (blue) and VAL 232, ARG 237, VAL 238, CYS 240, LEU 244 on YOR034C (green).

Figure 4.18. Complex structure of YOR171C-YOR034C (Model 4) in Cluster A

Figure 4.19 shows the structure of YOR034C-YOR171C protein complex and its hotspots. Blue chain represents the protein structure of YOR034C (blue) while green chain represents the protein structure of YOR171C. In this complex structure, TYR132, THR145, TYR169, VAL174, VAL175, ASN176 are hotspots of YOR034C; GLN361, PRO362, LEU374, TYR378, ILE381, PHE399, LEU401 are the hotspots of YOR171C (green).

Figure 4.19. Complex structure of YOR034C-YOR171C (Model 6) in Cluster A

The reasons for choosing model 4 for YOR171C and YOR034C complex and model 6 for YOR034C and YOR171C complex are same and they both stem from the distance value between the of hotspots of the protein complex. The models which had closest hotspots were selected as ideal among the 10 models built by GRAMM-X.

Figure 4.20 shows the structure of YMR298W-YMR298W protein complex and its hotspots. THR44, ILE46 are hotspots of YMR298W (blue); SER74, VAL112, TYR114 are the hotspots of YMR298W (green).

Figure 4.20. Complex structure of YMR298W-YMR298W (Model 3) in Cluster B

Figure 4.21 shows the structure of YGR060W-YGR060W protein complex and its hotspots. While PHE5, GLY12, GLN15 are hotspots of YGR060W (blue); HIS109, GLY146, LEU147 are hotspots of YGR060W (green).

Figure 4.21. Complex structure of YGR060W-YGR060W (Model 4) in Cluster B

Figure 4.22 shows the structure of YEL027W-YHR026W protein complex and its hotspots. While ILE21, LEU26, ALA29, TYR76 are hotspots of YEL027W (blue); VAL163, THR166, GLU188, ILE193, LEU196, LEU197, ILE200 are hotspots of YHR026W (green).

Figure 4.22. Complex structure of YEL027W-YHR026W (Model 1) in Cluster C
Figure 4.23 shows the structure of YEL027W-YOR016C protein complex and its hotspots. While ILE 21, LEU 26, ALA 28, ALA 29 are hotspots of YEL027W (blue); LYS 96, TYR 97, LEU 101, THR 115 are hotspots of YOR016C (green).

Figure 4.23. Complex structure of YEL027W-YOR016C (Model 2) in Cluster C

Distance values between the hotspots for the proteins in clusters are generally variable, while some hotspots are quite close to the each other some ones are very far away. For instance, the smallest distance between the hotpots of proteins is 4.49Å for Cluster A, 3.73Å for Cluster B, and 3.73Å for Cluster C. However, distances between some hotspots are again very high only if being less than the threshold value (10Å).

4.5. Analysis of Hotspots

4.5.1. Hydrophobicity

Protein–protein interfaces are frequently hydrophobic and bury a large extent of nonpolar surface area. Hence, hydrophobicity is a leading force in protein–protein interactions. Therefore, hot spots (an area of high energy and binding around an amino acid residue), surrounded by hydrophobic pockets, are found in clusters rather than scattered throughout the interface. They usually do not include hydrogen bonding and electrostatic interactions, because hydrogen bonding between the peptide atoms decreases the hydrophobicity of the backbone and electrostatic complementarity of interacting protein surfaces promotes complex formation and defines the lifetime of complexes (Moreira et al., 2007).

Here, in order to determine the hydrophobicity of the hotspot residues of the proteins of the sphingolipid pathway, chemical characteristics of these hotspots were identified by KFC. According to the results obtained from KFC they were classified as hydrophobic, acidic, polar and basic. The chemical features of hotspots of proteins and their interaction partners in sphingolipid pathway were given in the tables below (Tables 4.21-4.35).

<u>4.5.1.1. Proteins with Known Interaction Partners:</u> Table 4.21 shows the chemical types of the hotspot residues belonging to the proteins with known interaction partners. Based on the results obtained from KFC, the majority of the hotspot residues are hydrophobic. There are some hotspots which are of other chemical types such as polar, acidic and basic but the percentages of them are quite low compared to those of hydrophobic residues.

Protein couples	Potein	Hydrophobic	Polar	Acidic	Basic
	partners				
YLR242C-	YLR242C	ILE174	-	-	-
YOR033W		LEU177			
		ALA180			
		PHE190			
	YOR033W	GLY162	ASN208	-	LYS60
		GLY163			
YKL004W-	YKL004W	ALA241	SER243	CYS267	ARG268
YJL196C		PRO259			
		ILE260			
	YJL196C	ALA203	-	-	-
		PHE235			
		VAL242			
		TYR243			
YKL004W-	YKL004W	PRO259	-	ASP262	-
YJR105W		PRO296		GLU293	
		LEU297			
	YJR105W	ALA79	-	GLN81	-
		GLY80			
YKL004W-	YKL004W	PHE266	-	GLU293	LYS254
YMR010W					HIS257
	YMR010W	LEU183	ASN182	ASP325	-
		PHE186			
		GLY329			
YKL004W-	YKL004W	TYR271	THR272	GLU275	LYS281
YPL264C					
	YPL264C	ILE49	-	-	-
		ILE120			
		LEU131			

Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners

YKL008C-	YKL008C	TYR95	ASN131	ASP132	-
YKL008C		ILE130	CYS134		
	YKL008C	ILE130	-	ASP132	-
		PHE135			
		TYR138			
YKL008C-	YKL008C	ILE130	ASN131	-	-
YHL003C		LEU162	THR165		
		VAL164			
	YHL003C	LEU100	ASN103	-	-
		GLY102			
YKL008C-	YKL008C	VAL153	-	ASP152	-
YMR298W		VAL154			
		ILE155			
	YMR298W	PRO73	THR83	-	-
		PRO111			
		VAL112			
YKL008C-	YKL008C	LEU91	ASN103	-	-
YKL065C		ALA97			
	YKL065C	TYR76	THR120	ASP158	
YKL008C-	YKL008C	ILE92	-	-	-
YBR159W		LEU150			
		VAL153			
		PHE158			
		ILE173			
	YBR159W	ILE215	GLN231	GLU312	-
		ILE310	THR313		
YHL003C-	YHL003C	TYR267	THR281	-	HIS270
YMR298W		VAL268			
	VMD200W	H E94	TUD02		1110112
	1 WIK298 W	ILE04	ТПКОЗ	-	пізтіз
VDP062W	VDP062W	CI V272			
YMR296C	1 DR002 W		-	-	
11/11/2/00		VAI 482			
	YMR296C	MFT371	THR 194	_	HIS374
	1 1011(2)00	VAL 396	GLN201		1115574
YDR062W-	YDR062W	TYR226	-	_	_
YGR218W	1010021	MET307			
101121011		MET466			
		PRO467			
	YGR218W	VAL1042	THR1031	GLU1041	_
YDR062W-	YDR062W	ILE349	_	GLU348	_
YLR342W		PHE350		ASP356	
		GLY351			
	YLR342W	GLY10	ASN72	_	_
YDR062W-	YDR062W	MET307	-	-	-
YKL104C		PRO467			
		VAL482			
		ALA484			
		TYR485			
		PRO486			
		LEU490			

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YDR062W-	YKL104C	GLY482	-	-	ARG487
YKL104C		VAL488			HIS490
YDR062W-	YDR062W	ILE446	-	GLU492	ARG471
YBR017C		TYR461			
		PRO463			
		MET472			
	YBR017C	ILE413	ASN412	-	HIS416
		PRO415			
YDR062W-	YDR062W	MET466	-	-	ARG471
YER110C		PRO467			
		ALA468			
		VAL481			
	YER110C	PHE163	-	-	-
		LEU164			
		LEU166			
YDR062W-	YDR062W	TYR226	THR255	-	ARG254
YJR077W		VAL483			
		TYR485			
		PRO486			
	YJR077W	ILE166	-	GLU164	-
		PRO175			
		LEU257			
YOR171C-	YOR171C	MET357	-	-	-
YOR034C		TYR364			
		TRP368			
		PRO369			
	YOR034C	VAL232	CYS240	-	-
		VAL238			
		LEU244			
YLR260W-	YLR260W	TYR383	SER374	-	HIS376
YGL137W			THR378		
			CYS387		
	YGL137W		ASN256	GLU263	LYS264
YLR260W-	YLR260W	ILE315	-	ASP322	LYS325
YLR213C		ILE323			
	YLR213C	LEU240	-	-	
		GLY311			
		GLY312			
YMR298W-	YMR298W	GLY72	SER74	ASP76	-
YKL008C		PRO73	CYS75		
		PRO111	THR83		
	YKL008C	TYR95	-	LYS128	
		PHE99			
YMR298W-	YMR298W	TRP68	-	ASP76	ARG78
YHL003C		GLY72			
	YHL003C	TYR95	SER96	-	-
		GLY129			
YMR298W-	YMR298W	TYR48	-	-	-
YMR298W		TRP50			
		PHE51			
	1	VAL64	1	1	

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YMR298W-	YMR298W	TYR81	-	-	ARG90
YMR298W					
YJL097W-	YJL097W	ILE58	GLN54	-	-
YBR159W		LEU73	CYS55		
		VAL103	THR75		
		VAL104			
	YBR159W	PRO218	-	-	-
		LEU219			
YPL006W-	YPL006W	LEU1002	THR1034	-	_
YGL006W	1120000	LEU1009			
I GLOUD II		ALA1030			
	YGL006W	LEU904	_	_	LYS898
	I GLOOD II	ILE904			215070
		ILE905			
		ILE903			
		LEU969			
		IL E970			
YDR297W-	YDR297W	ILE272	_	_	_
YBR106W	10(2)/ ((ILE272 ILE279			
IBRIOOW	VBR106W	PRO26	_	GLU67	
	I DICIOUW	GL Y102		GLU77	
YDR297W-	YDR297W	TYR252	CY\$250	-	
VI R372W	TDR277W	ΔΙ Δ253	GI N285	_	
1 ER372 W		PHF290	THR289		
	VI R372W	TYR135	THR163	_	L VS164
	1 ER3 / 2 W	GL Y138	1111(105		LISIO
		PHF140			
		PHF173			
		I FU174			
VMR272C-	VMR272C	TYR30	GLN31	GLU71	L V\$65
YOR081C	1 10112720	11130	GLIGI	OLC/1	HIS70
TOROUTE	YOR081C	II F564	_	ASP573	ARG689
	ronoore	ALA593		101575	/iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
		PR0594			
YDR297W-	TRP261	-	_	_	_
YKL 065C	AL A267				
TREOOSC	VAL 268				
	TYR106		_		_
	GLV109	_	_	_	
	AL A157				
VDR297W-	VDR297W	GI Y251	CY\$250	_	_
VBR159W	TDR277W	TYR252	015250	_	
I BRISS W		AI A253			
	VPP150	DUE158			
	101137	I FU21/	-	-	_
		LE0214 II E215			
		I FU281			
VDD207W	VDD207W	DUE201			+
VDI 264C	1 DK29 / W	ГПЕ203 ЛТ Л 294	-	-	_
11L204C	VDL 264C	АLA204 П Е21			-
	1 FL204C	ILE21 DHE120	-	-	-
1	1	LUCION L	1	1	1

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YDR297W-	YDR297W	LEU256	-	ASP257	-
YGR125W		TRP261			
	YGR125W	LEU148	ASN154	-	-
YDR297W-	YDR297W	LEU254	-	ASP257	-
YHR007C		LEU256			
		PRO258			
	YHR007C	PRO503	-	-	-
		PRO504			
YDR297W-	YDR297W	VAL268	GLN275	ASP257	-
YML012W			GLN276		
	YML012W	LEU62	THR89	-	ARG75
		PHE88			LYS138
		PRO91			
YDR297W-	YDR297W	GLY251	THR281	-	-
YKL088W		ALA253	ASN282		
		PHE277	GLN285		
	YKL088W	LEU414	THR457	-	HIS455
		TYR463	SER458		
		PHE465			
YLR372W-	YLR372W	TRP141	THR163	-	-
YDL015C		TYR161			
		PHE173			
		VAL175			
	YDL015C	PRO56	-	GLU60	ARG45
		VAL57			
		ILE58			
YER093C-	YER093C	ALA101	SER81	ASP124	LYS149
YNL006W		LEU102	THR97		
		LEU103	THR99		
		LEU105			
	YNL006W	VAL68	ASN87	-	LYS45
YER093C-	YER093C	LEU232	THR226	GLU230	-
YBR270C		GLY238	THR239		
	YBR270C	PRO21	ASN22	ASN39	-
		LEU45	GLN43		
YER093C-	YER093C	LEU68	SER41	-	-
YKL203C			ASN45		
	YKL203C	VAL2316	GLN2238	-	-
		PRO2317	THR2321		
		MET2323			
YER093C-	YER093C	PRO88	ASN65	-	-
YMR068W		LEU103	THR86		
		LEU105			
	YMR068W	MET118	ASN119	GLU15	HIS50
		TYR121		ASN120	LYS85
		TYR152			HIS87
YER093C-	YMR068W	MET118	ASN119	GLU15	HIS50
YMR068W		TYR121		ASN120	LYS85
		TYR152			HIS87
YBR058C-A-	YBR058C-A	LEU46	-	-	-
YMR296C					

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YBR058C-A-	YMR296C	GLY329	THR331	ASP404	-
YMR296C		GLY332	ASN406		
		MET403	ASN407		
YBR058C-A-	YBR058C-A	TYR43	-	-	HIS45
YDR062W		LEU46			
	YDR062W	ALA179	-	-	-
		LEU180			
		VAL183			
		PRO399			
		PRO401			
YPL087W-	YPL087W	TYR182	-	-	HIS241
YDL015C		LEU234			
		LEU240			
		TRP244			
	YDL015C	LEU78	-	-	HIS99
		LEU86			
		LEU101			
YBR183W-	YBR183W	PHE205	-	-	-
YLR372W		PRO233			
		LEU237			
		PRO240			
	YLR372W	LEU139	GLU129	GLU128	-
		TYR157	ASN160		
		TYR158			
YBR183W-	YBR183W	GLY201	-	GLU239	-
YOR016C		LEU204			
		GLY235			
	YOR016C	PHE92	SER91	-	-
		ILE138			
YBR183W-	YBR183W	PHE275	ASN272	-	-
YLR018C	YKL065C	TYR187	SER189	-	-
		VAL188			
YBR183W-	YBR183W	PHE254	-	-	-
YKL065C		TYR255			
		ILE256			
	YKL065C	-	SER159	-	-
			THR160		
YBR183W-	YBR183W	LEU204	-	-	HIS241
YHR140W		LEU230			
		LEU234			
		LEU237			
		LEU238			
		PRO240			
YBR058C-A-	YBR058C-A	LEU46	-	-	-
YMR296C	YMR296C	GLY329	THR331	ASP404	-
		GLY332	ASN406		
		MET403	ASN407		

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners

 (continued)

YBR058C-A-	YBR058C-A	TYR43	-	-	HIS45
YDR062W		LEU46			
	YDR062W	ALA179	-	-	-
		LEU180			
		VAL183			
		PRO399			
		PRO401			
YPL087W-	YPL087W	TYR182	-	-	HIS241
YDL015C		LEU234			
		LEU240			
		TRP244			
	YDL015C	LEU78	-	-	HIS99
		LEU86			
NDD 1000U		LEUI0I			
YBR183W-	YBR183W	PHE205	-	-	-
YLK3/2W		PRO233			
		LEU237			
	VI D272W	LEU120	CL11120	CLU129	
	ILK5/2W	TVD157	GLU129	GLU128	-
		TVD159	ASINIOU		
		CL V201		CLU220	
VOR016C	1 DK105 W	UE1201 LEU204	-	0L0239	-
TOROTOC		GL V235			
	YOR016C	PHF92	SFR91	_	_
	TOROTOC	ILE138	SLI()1	_	_
YBR183W-	YBR183W	PHE275	ASN272	_	_
YLR018C	YKL065C	TYR187	SER189	_	_
1210100	TRECODE	VAL188	SERTO		
YBR183W-	YBR183W	PHE254	_	-	-
YKL065C	12110011	TYR255			
		ILE256			
	YKL065C	-	SER159	-	-
			THR160		
YBR183W-	YBR183W	LEU204	-	-	HIS241
YHR140W		LEU230			
		LEU234			
		LEU237			
		LEU238			
		PRO240			
	YHR140W	ILE65	-	GLU98	-
		LEU97			
YBR183W-	YBR183W	VAL264	-	-	-
YBR159W		ILE265			
		PHE275			
	YBR159W	LEU214	THR313	-	-
		TYR254			
YBR183W-	YBR183W	-	-	-	-
YBR106W	YBR106W	ILE99	-	-	ARG33

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YBR183W-	YBR183W	PHE205	ASN272	-	-
YGR060W		VAL236			
		PRO240			
		TRP243			
		TRP244			
		LEU247			
		TYR253			
		LEU267			
		PHE275			
		ILE276			
	YGR060W	TRP43	ASN25	_	HIS28
		MET47	ASN48		
YBR183W-	YBR183W	PHE205	-	-	_
YFL041W	1211100	TYR209			
11201111		VAL236			
		TRP243			
	YFI 041W	I FU379	SFR 381	ASP341	L YS401
	11 2041 W	GL Y382	ASN403	101 541	L15401
		VAI 516	GI N519		
VBR183W-	VBR183W		GERGIT		
YDR506C	1011051	IL F203			
TDR500C		LEL205			
		TYR200			
		I F210			
		VAL 236			
	VDD506C	VAL230			LVS247
VVI 126W	VKL 126W	ILE02	- A SN405	- A SD500	L15247
I KL120W-	I KL120W	- I EU441	ASIN493	ASEJUU	L13497
I MINI04C	IMR104C		SER005	-	-
		ALA442			
		PKU397			
		TRP604			
		PRO615		CLUE (O	
YKL126W-	YKL126W	PRO561	-	GLU560	-
YNL106C		LEU562			
		VAL563			
		PHE564			
		PRO565		~ ~ ~ ~ ~ ~ ~	
	YNL106C	VAL574	THR759	GLU576	LYS758
		TYR749		ASP/64	HIS762
		VAL897			HIS763
YDL015C-	YDL015C	PRO109	-	ASP69	LYS41
YKL008C					ARG43
	YKL008C	TYR126	ASN131	-	-
YDL015C-	YDL015C	LEU86	-	-	ARG85
YLR372W		LEU93			
		VAL96			
		LEU97			
		VAL98			
YDL015C-	YLR372W	PHE108	-	GLU109	-
YLR372W		MET133			
		MET134			
YDL015C-	YDL015C	VAL111	THR110	-	-
YPL087W		VAL112			

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YDL015C-	YPL087W	TYR166	-	-	-
YPL087W		LEU169			
		VAL206			
		PHE209			
YDL015C-	YDL015C	VAL55	SER120	-	-
YDL015C		PRO56			
	YDL015C	LEU46	SER61	GLU66	-
		TYR48	~~~~~		
YDL015C-	YDL015C	LEU101	CYS90	-	HIS99
YIL196C	1220100	TRP115	SER100		11077
1121/00	YIL196C	ALA203	-	ASP238	-
	1021/00	LEU207		1101 200	
		PHE213			
		LEU239			
		TYR243			
YDL015C-	YDL015C	TRP84	_	-	_
YOR016C	1020100	TYR104			
TOROTOC	YOR016C	ILE138	SER91	GLU139	_
	TOROTOC	ILLISO	THR115	GLUIS	
			ASN136		
YDL015C-	YDI 015C	PHF63	SFR117	_	_
YKL065C	TDL015C	TRP115	SERTT/		
1111100000	YKL065C	GLY82	SER81	_	ARG98
YDL015C-	YDL015C	VAL111	-	ASP113	-
YBR017C	TDL015C	VILLIII		1101 115	
I DR017C	YBR017C	_	GLN179	_	_
	TEROTIC		THR225		
YDL015C-	YDL015C	LEU78	-	-	-
YBR106W	1020100	LEU101			
TDRI00W		TYR103			
	YBR106W	IL E92	_	ASP93	_
	I DICIOO W	ILE92		1151 75	
YDL015C-	YDL015C	ILE) C	_	GLU16	HIS37
YBR159W	1020100			ASP18	111557
121107 (YBR159W	TYR254	THR296	GLU292	-
	1 Ditto / W	TYR294	1111(2)0	0102/2	
		MET297			
YDL015C-	YDL015C	ALA67	THR110	ASP113	LYS10
YDR506C	YDR506C	PRO392	-	ASP405	-
1210000	1210000	VAL 395		1151 105	
		PHE424			
YDL015C-	YDL015C	VAL55	SER117	ASP121	-
YPR028W	1220100	TRP115	SER120	ASN123	
11102011		ALA118	SER120	1101(125	
		TYR122			
YDL015C-	YPR028W	TYR47	_	-	-
YPR028W	111102011	LEU48			
		TYR73			
		VAL77			
YDL015C-	YDL015C	TYR92	-	-	-
YBR110W		PRO95			
		LEU97			
		VAL98			
	1				

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

YDL015C-	YBR110W	ILE168	SER167	-	-
YBR110W			GLN170		
YDL015C-	YDL015C	PHE89	CYS90	-	HIS99
YBR094W		LEU101			
	YBR094W	PRO112	SER148	-	-
		GLY150	SER149		
YDL015C-	YDL015C	LEU78	-	ASP121	-
YKL182W		TRP84			
		LEU101			
		TYR103			
		TYR104			
		TYR122			
	YKL182W	PHE1664	-	-	-
		LEU1792			
		LEU1797			
		LEU1798			

 Table 4.21. Chemical types of hotspot residues in proteins with known interaction partners (continued)

Table 4.22 shows the distribution of the hotspot residues belonging to the proteins with known interaction partners. Among the hotspots of the proteins with known partners, LEU is the most prevalent hotspot residue with the percentage of 13.47. However, CYS is the least appeared hotspot residue with the percentage of 1.68. In addition to this, as shown in the Table 4.23, LEU also has the highest percentage, 21.40%, among the hydrophobic hotspot residues of proteins with known partners while MET has the lowest percentage, 3.74%.

 Table 4.22. Amino acid propensities of hotspots in proteins with known interaction partners

Names of the Hotspot	% of the Residues in	Name of the Hotspot	% of the Residues in
Residues	proteins with known	Residues	proteins with known
	interaction		interaction
ILE	7.41	PRO	7.07
LEU	13.47	VAL	7.57
ALA	3.37	TYR	8.58
PHE	6.06	ASP	4.71
GLY	4.38	GLU	4.38
ASN	5.05	GLN	2.36
LYS	3.20	HIS	3.53
SER	3.87	THR	5.89
CYS	1.68	MET	2.36
ARG	2.36	TRP	2.69

Hydrophobic	% Presence	Polar	%	Acidic	%	Basic	%
Hotspot	of Residues	Hotspot	Presence	Hotspot	Presence	Hotspot	Presence
Residues	in	Residues	of	Residues	of	Residues	of
	Hydrophobic		Residues		Residues		Residues
	Hotspots		in Polar		in Acidic		in Basic
			Hotspots		Hotspots		Hotspots
ILE	11.76	ASN	25.0	CYS	1.69	LYS	33.96
LEU	21.40	SER	21.30	ASP	47.46	ARG	26.41
ALA	5.35	THR	32.41	GLU	42.37	HIS	39.62
PHE	9.62	CYS	8.33	GLN	1.69		
GLY	6.95	GLN	12.04	LYS	1.69		
PRO	11.23	GLU	0.92	ASN	5.08		
VAL	12.03						
TYR	13.64						
MET	3.74						
TRP	4.28						

 Table 4.23. Distribution of the hotspot residues of proteins with known interaction partners according to chemical features

4.5.1.2. Proteins with predicted interaction partners: Table 4.24 shows the chemical features of the hotspot residues of the proteins with predicted interaction partners. The hydrophobic residues are highly dominating in this group compared to polar, acidic or basic residues.

Table 4.24. Chemical types of hotspots residues in proteins with predicted interaction partners

Protein	Protein	Hydrophobic	Polar	Acidic	Basic
couples	partners				
YDR294C-	YDR294C	VAL429	ASN437	GLU440	-
YHR135C		TRP432			
		VAL436			
		GLY439			
	YHR135C	MET89	ASN91	ASP203	-
		ILE90	GLN201		
		GLY92			
		PRO94			
YER019W-	YER019W	ALA158	-	ASP211	-
YHL020C		PHE160			
	YHL020C	ALA328	-	-	LYS337
		VAL332			
		LEU333			
		ALA336			
		LEU340			
YJL134W-	YJL134W	TRP103	-	GLU108	-
YAR033C		TYR106			
		PHE107			
	YAR033C	PRO180	ASN178	-	-
		LEU198			

YJL134W-	YJL134W	TYR106	THR109	-	LYS111
YGL051W		PHE107	THR110		
		PRO136			
	YGL051W	PHE149	-	-	-
		TYR150			
		TRP219			
YGR143W-	YGR143W	PHE585	-	-	-
YKL126W		ILE586			
		TYR589			
		ALA625			
		ILE692			
		TYR696			
	YKL126W	LEU494	THR523	-	LYS524
		GLY521			
YKR053C-	YKR053C	VAL98	-	-	-
YAR033W		PRO102			
		VAL103			
		PRO185			
	YAR033W	TYR148	-	GLU164	-
		PHE149			
		TYR150			
YKR053W-	YKR053W	ILE115	ASN239	-	-
YGL051W		GLY119			
		VAL233			
	YGL051W	GLY165	THR167	ASP154	-
		VAL166			
YGR212W-	YGR212W	PRO222	ASN384	ASP224	-
YHR135C	YHR135C	LEU67	ASN91	-	-
		GLY92			
		VAL93			
		PRO94			
YGR212W-	YGR212W	ILE214	ASN201	-	-
YPL204W		PHE216			
	YPL204W	LEU244	-	-	LYS297
		PRO245			/
		LEU280			
l	1	220200	1	1	1

 Table 4.24. Chemical types of hotspots residues in proteins with predicted interaction partners (continued)

Table 4.25 shows the participation percentages of amino acids among all the hotspot residues belonging to the proteins with predicted interaction partners. When Table 4.25 is examined it is observed that the mostly appeared amino acids are VAL (10.13 %) and PRO (10.13 %), whereas the rarely appeared amino acids are MET (1.26%) and GLN (1.26%).

Table 4.26 gives the distribution of amino acids based on their chemical types. As we know from Table 4.24, the majority of the hotspot residues are hydrophobic for the proteins with predicted interaction partners and to this end the percentages of the amino acids among hydrophobic hotspots is similar to the results of the whole group. In other words, the mostly appeared amino acids are again VAL (14.0%) and PRO (14.28%) and the rarely appeared amino acid is MET (1.78%) in hydrophobic case.

Name of the Hotspot	% of the Residues in	Name of the Hotspot	% of the Residues in
Residues	proteins with predicted	Residues	cluster proteins with
	interactions		predicted interactions
VAL	10.13	GLN	1.26
ASN	8.86	PRO	10.13
GLU	3.80	ALA	5.06
TRP	3.80	PHE	8.86
GLY	7.59	LYS	5.06
MET	1.26	LEU	8.86
ASP	5.06	TYR	8.86
ILE	6.33	THR	5.06

Table 4.25. Amino acid propensities of hotspots in proteins with predicted Interactions

 Table 4.26. Distribution of hotspot residues of proteins with predicted interactions partners according to chemical features

Hydrophobic	% Presence	Polar	%	Acidic	%Presence	Basic	%
Hotspot	of Residues	Hotspot	Presence	Hotspot	of	Hotspot	Presence
Residues	in	Residues	of	Residues	Residues	Residues	of
	Hydrophobic		Residues		in Acidic		Residues
	Hotspots		in Polar		Hotspots		in Basic
			Hotspots				Hotspots
VAL	14.0	ASN	58.33	GLU	42.86	LYS	100.0
TRP	5.36	GLN	8.33	ASP	57.14		
GLY	10.71	THR	33.33				
MET	1.78						
ILE	8.93						
PRO	14.28						
ALA	7.14						
PHE	12.5						
LEU	12.5						
TYR	12.5						

<u>4.5.1.3. Clusters/ Modules:</u> Table 4.27 shows the chemical types of the hotspot residues of Cluster A. These results were obtained from KFC server. As it is seen from Table 4.27, the majority of the hotspots are hydrophobic in Cluster A. Secondly, polar residues are predominant. However, there are no acidic hotspot residues (Aspartic Acid (Asp) and Glutamic acid (Glu)) in Cluster A.

Protein couples	Potein partners	Hydrophobic	Polar	Acidic	Basic
YOR171C-	YOR171C	MET357	-	-	PRO370
YOR034C		TYR364			
		TRP368			
		PRO369			
	YOR034C	VAL232	CYS240	-	ARG237
		VAL238			
YOR034C-	YOR034C	TYR132	THR145	-	-
YOR171C		TYR169	ASN176		
		VAL174			
		VAL175			
	YOR171C	PRO362	GLN361	-	-
		LEU374			
		ILE381			
		PHE399			
		LEU401			

Table 4.27. Chemical types of hotspot residues of proteins in Cluster A

Table 4.28 shows the frequency distribution of the amino acids in hotspots of Cluster A. Based on these results in Table 4.28, VAL has the maximum percentage (19.05%) among the hotspot amino acids of Cluster A. Secondly, TYR (14.28%) and PRO (14.28%) are the mostly appearing amino acids. Besides, MET, TRP, CYS, ARG, THR, ASN, GLN, ILE, PHE have the same minimum appearance percentage of 4.76%.

 Table 4.28. Amino acid propensities of hotspots of proteins Cluster A

Name of the Hotspot	% of the Residues	Name of the Hotspot	% of the Residues in
Residues	in Cluster A	Residues	Cluster A
MET	4.76	THR	4.76
PRO	14.28	ASN	4.76
TYR	14.28	GLN	4.76
TRP	4.76	LEU	9.52
VAL	19.05	ILE	4.76
CYS	4.76	PHE	4.76
ARG	4.76		

The percentage of the amino acids belonging to four main chemical types of hotspots is listed in Table 4.29. According to the values in Table 4.29, VAL has the maximum percentage through hydrophobic hotspot residues (26.67%). However, for other chemical types, the percentages of the amino acids are same.

Hydrophobic	% Presence	Polar	%Presenc	Acidic	%Presence	Basic	%
Hotspot	of Residues	Hotspot	e of	Hotspot	of	Hotspot	Presence
Residues	in	Residues	Residues	Residues	Residues	Residues	of
	Hydrophobi		in Polar		in Acidic		Residue
	с		Hotspots		Hotspots		s in
	Hotspots						Basic
							Hotspots
MET	6.67	CYS	25.0	-	-	PRO	50.0
TYR	20.0	THR	25.0			ARG	50.0
TRP	6.67	ASN	25.0				
PRO	13.33	GLN	25.0				
VAL	26.67						
LEU	13.33						
ILE	6.67						
PHE	6.67						

Table 4.29. Distribution of hotspot residues of proteins in Cluster A according to chemical features

Table 4.30 shows the chemical types of the hotspots residues in the proteins of Cluster B. According to the data obtained from KFC, the results are nearly same as those of Cluster A concerning the abundances of the hydrophobic residues. Besides, there is not any acidic hotspot residue in Cluster B as well as in the Cluster A.

Protein	Protein partners	Hydrophobic	Polar	Acidic	Basic
couples					
YMR298W-	YMR298W	ILE46	THR44	-	
YMR298W	YMR298W	VAL112	SER74	-	-
		TYR114			
YHL003C-	YHL003C	VAL154	SER186	-	-
YMR298W		GLY187			
	YMR298W	PHE51	CYS53	-	HIS52
		GLY62			
YGR060W-	YGR060W	PHE5	GLN15	-	-
YGR060W		GLY12			
	YGR060W	GLY146	-	-	HIS109
		LEU147			
YMR298W-	YMR298W	TYR81	-	-	ARG90
YHL003C		TYR114			
		PRO115			
		ILE116			
	YHL003C	PHE230	GLN233	-	LYS205
			GLN234		
YGR060W-	YGR060W	MET65	-	-	HIS191
YHL003C		VAL223			

Table 4.30. Chemical types of hotspot of residues of proteins in Cluster B

YGR060W-	YHL003C	LEU85	-	-	-
YHL003C		PRO87			
		PHE307			
YMR298W-	YMR298W	TYR81	-	-	ARG90
YHL003C		TYR114			
		PRO115			
		ILE116			
	YHL003C	PHE230	GLN233	-	LYS205
			GLN234		

Table 4.30. Chemical types of hotspot of residues of proteins in Cluster B (continued)

Table 4.31 shows the percentages of the hotspot amino acids of proteins in Cluster B. The majority of the hotspot residues are TYR (11.90%), PHE (11.90%), GLN (11.90%) while the minority of them are THR (2.38%), CYS (2.38%), MET (2.38%). When the results of Cluster A and Cluster B are compared it is seen that in both of the clusters TYR has higher percentage values whereas THR, CYS, MET have lower percentage values.

Name of the Hotspot	% of the Residues in	Name of the Hotspot	% of the Residues in
Residues	Cluster B	Residues	Cluster B
ILE	7.14	HIS	7.14
THR	2.38	GLN	11.90
VAL	7.14	LEU	4.76
SER	4.76	ARG	4.76
TYR	11.90	PRO	7.14
GLY	9.52	LYS	4.76
PHE	11.90	MET	2.38
CYS	2.38		

Table 4.31. Amino acid propensities of hotspots of proteins in Cluster B

Table 4.32 shows amino acids distribution of hotspot residues of proteins in Cluster B in terms four main chemical types (hydrophobic, polar, acidic, basic). TYR (19.23%) and PHE (19.23%) are the mostly appearing amino acids through hydrophobic hotspot residues. Besides, GLN (55.55%) has the maximum percentage among the polar residues while HIS (42.86%) has it among the basic residues.

Hydrophobic	% Presence	Polar	% Presence	Acidic	%	Basic	%
Hotspot	of Residues	Hotspot	of Residues	Hotspot	Presence	Hotspot	Presence
Residues	in Hydroph	Residues	in Polar	Residues	of	Residues	of
	obic		Hotspots		Residues		Residues
	Hotspots				in Acidic		in Basic
					Hotspots		Hotspots
ILE	11.54	THR	11.11	-	-	HIS	42.86
VAL	11.54	SER	22.22			ARG	28.57
TYR	19.23	CYS	11.11			LYS	28.57
GLY	15.38	GLN	55.55				
PHE	19.23						
LEU	7.69						
PRO	11.54						
MET	3.85						
1	1			1	1		1

Table 4.32. Distribution of hotspot residues of proteins in Cluster B according to chemical features

Table 4.33 shows the distribution of the hotspots of the proteins in Cluster C in according to chemical types. As in the other clusters, hydrophobic residues have the majority in Cluster C. However, the significant difference here is the existence of acidic hotspot residues. There are five acidic hotspot residues, GLN231, GLU188, ASP283, ASP433, ASP160 belonging to protein complexes in Cluster C.

Table 4.33. Chemical types of hotspot residues of proteins in Cluster C

Protein	Potein	Hydrophobic	Polar	Acidic	Basic
couples	partners				
YLL006W-	YLL006W	GLY231	-	-	-
YLL006W		LEU237			
		LEU241			
	YLL006W	GLY231	ASN202	-	-
		LEU237			
YNL307C-	YNL307C	PRO71	CYS214	-	-
YNL307C		GLY213	THR215		
	YNL307C	PRO71	CYS214	-	-
		PRO195			
		GLY213			
YNL307C-	YNL307C	-	-	-	-
YAL007C	YAL007C	No templates	No templates	No templates	No templates
YDR297W-	YDR297W	ILE272	GLN275	-	-
YOR016C		ILE279			
		PHE287			

YDR297W-	YDR297W	ILE272	GLN275	-	-
YOR016C		ILE279			
		PHE287			
	YOR016C	-	ASN103		LYS129
			THR107		LYS147
			ASN135		
			ASN146		
			LYS147		
YMR058W-	YMR058W	VAL284	-	-	-
YOR016C	YOR016C	ILE194	CYS100	-	LYS96 HIS126
YDR297W-	YDR297W	GLY278	GLN285	-	-
YCR034W		PHE288			
		PRO286			
	YCR034W	VAL233	-	-	ARG235
YHR026W-	YHR026W	-	-	-	-
YAL007C	YAL007C	No templates	-	-	-
YEL027W-	YEL027W	PRO10	CYS17	-	LYS81
YEL027W		PHE11	CYS40		
		GLY36	GLN80		
		VAL37			
		ILE39			
		VAL57			
	YEL027W	ALA33	THR32	-	LYS81
		GLY36	CYS40		
		VAL37	ASN53		
		ILE39	SER71		
		ILE65	GLN80		
		LEU78			
		GLY79			
YLL006W-	YLL006W	LEU237	-	-	ARG232
YCR034C					LYS233
	YCR034C	LEU220	THR234	GLN231	ARG223
		ILE238			
YEL027W-	YEL027W	ILE21			
YHR026W		LEU26			
		ALA29			
		TYR76			
	YHR026W	VAL163	THR166	GLU188	
		ILE193			
		LEU196			
		LEU197			
		ILE200			
YMR058W-	YMR058W	PRO181	THR182	ASP283	
YCR034C		VAL284	THR410	ASP433	
		MET345			
	YCR034C	TRP216			
		LEU220			
		GLY224			
YHR110W-	YHR110W	-	-	-	-
YAL007C	YAL007C	No templates	No templates	No templates	No templates

Table 4.33. Chemical types of hotspot residues of proteins in Cluster C (continued)

YHR026W-	YHR026W	ILE158	SER155	-	-
YHR026W		ILE165			
		ILE184			
	YHR026W	ALA154	SER155	-	LYS183
		ILE158	THR169		
		ILE165			
		LEU180			
YEL027W-	YEL027W	ILE21	-	-	-
YOR016C		LEU26			
		ALA28			
		ALA29			
	YOR016C	TYR97	THR115	-	LYS96
		LEU101			
YHR026W-	YHR026W	GLY195	-	-	-
YOR016C		LEU199			
		GLY202			
		LEU203			
	YOR016C	ILE176	SER91	-	LYS96
		VAL177			
		LEU89			
		GLY93			
		ILE94			
YHR110W-	YHR110W	LEU141	-	-	-
YOR016C		VAL145			
		LEU152			
	YOR016C	TYR154	-	-	LYS82
		LEU155			
YHR110W-	YHR110W	ALA129	-	-	-
YHR110W		GLY143			
	YHR110W	MET138	-	-	LYS135
YHR110W-	YHR110W	-	-	ASP160	ARG156
YCR034W					LYS157
	YCR034W	ILE239	-	-	-
		LEU243			

Table 4.33. Chemical types of hotspot residues of proteins in Cluster C (continued)

Table 4.34 shows the percentage of the amino acids belonging to the hotspots of proteins in Cluster C. In this group, ILE (14.28%) and LEU (15.04%) are the residues which have the maximum percentage, and TRP (0.75%), GLU (0.75%), HIS (0.75%), MET (1.5%) have the minimum percentages. As it is understood from these values, MET and TRP again get the minimum percentages.

Table 4.34. Amino acid propensities of hotspots of proteins in Cluster C

Name of the Hotspot	% of the Residues in	Name of the Hotspot	% of the Residues in
Residues	Cluster C	Residues	Cluster C
GLY	9.77	VAL	6.77
LEU	15.04	HIS	0.75
ASN	3.76	ARG	3.00

PRO	4.51	ALA	4.51
CYS	4.51	SER	3.00
THR	6.77	TYR	2.25
ILE	14.28	GLU	0.75
GLN	3.76	ASP	2.25
PHE	2.25	MET	1.50
LYS	9.77	TRP	0.75

Table 4.34. Amino acid propensities of hotspots of proteins in Cluster C (continued)

Table 4.35 shows the amino acid distribution of the hotspot residues of proteins in Cluster C in terms of four main chemical groups (hydrophobic, polar, acidic, basic). The results show that the distributions of the amino acids in hydrophobic hotspots are consistent with those of the whole Cluster C. In other words, LEU (24.39%) and ILE (23.17%) are the mostly appearing residues again and TRP (1.22%) and MET (2.44%) are the least apparent ones.

Name of the	% Presence	Name of	%	Name of	%	Name of	% Presence of
Hydrophobic	of Residues in	the Polar	Presence	the	Presence	the Basic	Residues in
Hotspot	Hydrophobic	Hotspot	of	Acidic	of	Hotspot	Basic
Residues	Hotspots	Residues	Residues	Hotspot	Residues	Residues	Hotspots
			in Polar	Residues	in Acidic		
			Hotspots		Hotspots		
CL V	15.05	A (1) I	17.04	CLN	20.0	LVO	70.50
GLY	15.85	ASN	17.24	GLN	20.0	LYS	70.59
LEU	24.39	CYS	20.69	GLU	20.0	HIS	5.88
PRO	7.32	THR	31.03	ASP	60.0	ARG	23.53
ILE	23.17	GLN	13.79				
PHE	3.66	LYS	3.45				
VAL	10.97	SER	13.79				
ALA	7.32						
TYR	3.66						
MET	2.44						
TRP	1.22						

Table 4.35. Distribution of hotspot residues of proteins in Cluster C according to chemical features

When the amino acids concentrations were examined for all groups, it is seen that some results are quite good and consistent with the literature findings albeit some results in contradiction with the literature. Literature reporting that tryptophan (21%), arginine (13.3%) and tyrosine (12.3%) have very high concentrations as hotspots. As consistent

with the literature, Tyr has very high concentration in Cluster A (14.28%) and in Cluster B (11.90%). However, Trp has very low concentration in proteins with known partners (2.69%) and also in Cluster C (0.75%). For the examples of other contradictory results, Val has very high concentration in proteins with predicted partners (10.13%) and in Cluster A (14.28%); and Leu has also quite high concentration in proteins with known partners (13.47%) and in Cluster C (15.64%) although in the literature it is reported that leucine, serine, threonine, and valine residues are disfavored and essentially absent as hot spots albeit their importance for distinct protein structures.

Table 4.36 shows the distribution percentages of chemical types of the hotspot residues in five groups which are proteins with known interactions, proteins with predicted interactions, Clusters A, B and C. According to the results, the hotspots mostly appeared as hydrophobic at very high percentages for each group changing between 62-75%. The percentages of the hydrophobic residues are higher than half the amount of whole hotspots for each group. These results are consistent with the literature which shows that protein–protein interfaces are frequently hydrophobic. Hence, hydrophobic interactions are essential for stabilizing protein-protein complexes, whose interfaces generally consist of a central cluster of hot spot residues surrounded by less important peripheral residues (Li et al., 2005). On the other hand, the chemical type of hotspots at minimum appearance is basic for proteins with known interaction partners (5.06%), while it is acidic for proteins in Clusters A (0.0%), B (0.0%) and C (3.76%).

	Hydrophobic	Polar	Acidic	Basic
Known Interactions	62.96	18.19	9.93	8.92
Predicted	70.89	15.19	8.86	5.06
Interactions				
Cluster A	71.43	19.05	0.0	9.52
Cluster B	61.90	21.43	0.0	16.67
Cluster C	61.65	21.80	3.76	12.78

Table 4.36. Percentage of Chemical types of Hotspots

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

In this study, the protein interaction map of sphingolipid (SL) signaling proteins was constructed using the new advances in computational prediction methods in order to decipher the missing interactions among the components of sphingolipid PPI network and to get an insight about the metabolism. The conclusions obtained from the study are as follows:

- The interaction partners of YDR294C, YER019W, YGR143W, YGR212W, YJL134W, YKR053C were identified by PIPE and the putative interaction partners were determined as; YHR135C with YDR294C; YHL020C with YER019W; YKL126W and YHL020C with YGR143W; YPL204W and YHR135C with YGR212W; YAR033W and YGL051W with YJL134W.
- MODELLER built more than one model for most of the proteins therefore in order to select the best one, filtering was performed based on E values, sequence identities and the sequence coverage of the models. The ideal models were those with parameters such as; E values smaller than 0.01, sequence identity higher than 25% and modeled regions longer than 100 residues.

i) For proteins with known partners, the coverage of the modelled target structure is sometimes as low as 13% indicating that only 13% of the protein was successfully modeled. Besides, some E values were higher than 0.01. Nevertheless, many models have sequence identities higher than 25%.

ii) When the models of proteins with predicted partners were examined, the sequence coverage of the model structures is more than 40% and E values are smaller than 0.01 for all model structures. It means that first two criteria (E value <0.01 and modeled sequence >100 residue) were met when selecting ideal templates for each target protein. However, the sequence identities of the alignments are lower than 25% for this set of the proteins. Therefore, the model which can ensure maximum criteria at the same time was selected for each protein.

• The calculations were repeated for some interconnected regions (clusters) of the network to obtain more information about sphingolipid signaling pathway. Proteins

of these clusters were defined as follows: YOR171C and YOR034C were the proteins of Cluster A; YMR298W, YGR060W and YHL003C were the proteins of Cluster B; YDR297W, YLL006W, YMR058W, YNL307C, YAL007C, YEL027W, YHR026W, YOR016C, YHR110W and YCR034W were the proteins of Cluster C. For clusters the sequence identities of the alignments were generally higher than 25% except three proteins, YHL003C, YGR060W, YHR110W. However, the E values of some protein models were generally higher than 0.01.

When the biological relevance of the proteins with predicted interactions was examined, it was seen that only some protein complexes formed biological contacts. For example; YGR143W-YKL126W, YGR212W-YHR135C, YJL134W-YAR033W, YJL134W-YGL051W are "Biological" protein complexes, with 100% biological contacts between YJL134W-YAR033W and YJL134W-YGL051W.

- 62-75% of the hotspots (obtained from KFC) of the protein complexes are hydrophobic. (Proteins with known interactions: 62.96%, proteins with predicted interactions: 70.89%, Cluster A: 71.43%, Cluster B: 61.90%, Cluster C: 61.65%). The second highest ratio of hotspots belongs to polar residues. The chemical type of hotspots of minimum percentage is basic both for protein complexes with known interactions (8.92%) and for protein complexes with predicted interactions (5.06%), while it is acidic for protein complexes in Cluster A (0.0%), cluster B (0.0%) and Cluster C (3.76%).
- Among the hotspots of the protein complexes with known partners, LEU is the most observed hotspot residue at a percentage of 13.47 whereas CYS is the least observed hotspot residue (1.68%). LEU also has the highest percentage, 21.40%, among the hydrophobic hotspot residues of proteins with known partners while MET has the lowest percentage, 3.74%. When the proteins with predicted partners are examined it is observed that most of the amino acids are VAL (10.13 %) and PRO (10.13 %), whereas the rarely observed amino acids are MET (1.26%).
 - The most prevalent hotspot residues were reported as tryptophan, arginine and tyrosine by (Moreira et al., 2007). When the amino acid enrichments were analyzed for the Clusters, it is seen that some results are consistent with the literature. For instance, TYR has very high concentration in Cluster A (14.28%) and in Cluster B

(11.90%) in agreement with the literature. However, the maximum repeated hotspot residue in Cluster C was LEU with 15.04%.

5.2. Recommendations

In this study, the aim was to elucidate the protein-protein interaction network of sphingolipid signaling pathway and the important regions for interactions. Therefore the most important part of this study was modeling the structures because the models selected were found to affect the rest of the process. However, homology modeling is limited by the sequence alignment. Indeed, for some of the proteins, no structures that could be a template for them either because of low sequence similarity or low structural coverage exist. For this reason, threading might be used in further studies to achieve more successful models than those obtained here. In threading all core elements are aligned with subsequence fragments, and the domains are searched for within each sequence that adopt one of the predefined "folds." The sequence length determines the number of alternative alignments possible for each core motif, and may exclude domains requiring more residues, but no gap penalties are employed and there is no a priori preference for core motifs of a given size (Madej et al., 1995).

KFC server detects hotspot residues if the residues from protein A and protein B have a distance equal to or smaller than 4Å. The server shows hotspot residues individually in two groups which are hotspots in protein A and hotspots in protein B. However from these results it is not possible to understand which residue in protein B is interacting with a hotspot residue from protein A. Therefore in order to find which hotspot residue is interacting with which residue in protein B, the distances between all the combinations of hotspots of protein A and protein B were calculated, and the hotspot combinations which had a distance lower than 10Å were selected in the present study. In order to find accurate hotspot combinations, it is still necessary to find all protein B residues which had equal to or less than 4Å distance to the hotspots in protein A and this process should be repeated for every hotspot in each protein complex. Due to huge number of proteins and their complex structures in sphingolipid signaling pathway it was very time consuming for this study; so instead of this procedure, only hotspot combinations were taken into consideration here. However, in order to identify the best complex structure, in further studies, all the residues in each protein in the complex should be tested for distance values and the consistency of the results obtained should be checked.

In order to investigate the interaction regions, protein complexes were built, however there is no information about the energetical stability of these complexes. Calculation of the free energy of a macromolecule based on its high-resolution 3D structure will give information about the energetic contribution to protein stability. Therefore in later studies interaction energies of these protein complexes should be calculated.

APPENDIX A: HOTSPOT DISTANCES

A.1. Proteins with Known Interaction Partners

Table A.1. The protein pair, hotspots on each protein, and the distances between hotspot residues in proteins with known interaction partners

Protoin complex	Hotspots residues	Residue pair in Potein A and	Distance (Å)	Number of the
r toteni complex	model	Protein B	Distance (11)	model
YLR242C-	YLR242C	174-162	3.85	model 5
YOR033W	174, 177, 180	174-163	6.04	_
	YOR033W	177-162	6.24	
	162, 163, 208	177-163	9.71	
		180-162	8.49	_
		180-208	4.67	
YKL004W-	YKL004W	241-203	8.29	model 10
YJL196C	241, 243, 260,	241-242	7.20	
	267, 268	241-243	5.55	-
	,	243-242	4.94	-
	YJL196C	243-243	6.12	-
	203, 235, 242,	260-235	8.62	
	243	267-203	9.58	-
		268-203	7.22	-
		268-243	8.93	-
YKL004W-	YKL004W	259-79	6.36	model 9
YJR105W	259, 262, 293,	259-80	7.42	-
	296, 297	259-81	7.05	-
		262-79	5.78	-
	YJR105W	262-80	5.82	
	79, 80, 81	262-81	7.21	
		293-79	4.94	
		293-80	3.96	
		293-81	6.92	
		296-79	5.60	
		296-80	6.96	
		297-79	7.27	
		297-80	8.57	
YKL004W-	YKL004W	254-325	4.43	model 10
YMR010W	254, 266, 293	254-329	6.58	
	YMR010W	266-182	9.97	
	182, 183, 186,	293-182	8.07	
	525, 529	293-183	6.41	-
		293-186	9.43	1
YKL004W-	YKL004W	271-131	5.68	model 9
YPL264C	271, 272, 281	272-49	8.95	1
		272-131	6.44	1

		275.10	0.05	
	YPL264C	275-49	8.35	
	49, 120, 131	275-120	7.27	
		281-131	7.24	
YKL008C-	YKL008C	95-130	9.66	model 4
YKL008C	95, 130, 131, 132,	130-132	7.98	
	134	130-138	7.66	
		131-132	4.51	
	YKL008C	131-135	9.94	
	130, 132, 135,	131-138	5.09	1
	138	132-130	8.58	
		132-132	4.88	
		132-135	8.12	
		132-138	6.33	
		134-132	9.30	
		134-135	7.93	
		134-138	6.18	
YKL008C-	YKL008C	130-100	7.86	model 7
YHL003C	130, 131, 162,	130-102	3.35	
	164, 165	130-103	4.21	
		131-102	6.28	
	YHL003C	131-103	4.64	
	100, 102, 103	162-100	7.03	
		162-102	6.79	
		164-100	8.15	
		164-102	5.17	
		164-103	7.89	_
		165-102	8.90	
YKL008C-	YKL008C	152-83	8.07	model 1
YMR298W	152, 153, 154,	152-112	9.43	_
	155	153-83	5.01	_
	VMD208W	153-112	8.97	_
	83 111 112	154-83	5.92	
	03, 111, 112	154-112	9.35	-
		155-83	7.55	-
	_	155-111	9.46	
VIZI 009C	VVI 009C	155-112	7.50	
1 KL008C- VKL065C	1 KL008C	91-120	8.87	model 1
I KL003C	91,97	91-158	9.34	
	YKL065C	97-76	9.70	
	76, 120, 158	97-120	7.04	
	,,	97-158	9.82	
YKL008C-	YKL008C	92-215	7.64	model 3
YBR159W	92, 150, 153, 173	150-231	8.22	1
		150-312	9.03	
	YBR159W	150-313	7.39	1
	215, 231, 310,	153-312	6.64	1
	312, 313	153-313	4.94	
		173-310	9.42	
	T T	173-312	8.39	1
YHL003C-	YHL003C	267-83	5.95	model 6
YMR298W	267, 268, 270,	267-84	4.40]
	281	268-83	5.73]
	Γ Γ	268-84	5.29	
	YMR298W	270-83	8.61]
	83, 84, 113	270-113	7.53	

		281-83	7.71	
		281-84	9.68	
		281-113	6.74	
YDR062W-	YDR062W	372-371	5.41	model 1
YMR296C	372, 474, 482	372-374	9.03	
		474-194	8.81	
	YMR296C	474-396	9.12	
	194, 201, 371,	482-194	9.66	
	374, 396	482-201	7.21	
		482-396	9.54	
YDR062W- YGR218W	YDR062W 226 467 484	226-1041	7.97	model 5
10021000	485	226-1042	4.62	
	YGR218W	467-1031	9.67	
	1031, 1041, 1042	484-1031	5.08	
		485-1031	5.26	
YDR062W-	YDR062W	348-10	9.07	model 3
YLK342W	348, 349, 350, 351, 356	349-10	6.95	
		350-10	5.44	
	YLR342W 10,	351-10	3.09	
	,	356-10	5.68	
YDR062W-	YDR062W	307-482	8.61	model 6
YKL104C	307, 467, 482,	307-487	9.75	
	484, 485, 486,	467-488	7.73	
	490	467-489	8.19	_
	VIZI 104C	467-490	7.20	_
	1 KL104C	482-487	6.47	_
	402, 407, 400,	482-488	4.79	_
	407, 470	482-489	7.44	
		482-490	7.98	
		484-482	9.27	
		484-487	4.66	
		484-488	6.24	
		484-489	6.51	
	-	484-490	5.84	-
	-	485-482	8.59	
	-	485-487	6.18	
	-	485-488	8.56	
	-	485-489	/./1	
	-	485-490	/.10	
	-	486-482	6.69	
	-	486-487	6.42	
	-	486-488	9.41	
	-	486-489	8.75	-
	+	400-490	9.15	4
YDR062W-	YDR062W	446-412	8 41	model 9
YRR017C	446 461 492	446-413	6 53	model 2
	110, 401, 472	461_412	5.63	1
	YBR017C	461-413	8 26	1
	412, 413, 415.	461-415	9.10	1
	416	492-412	7.08	-
		492-413	9.08	1
1				i i

		492-415	6.95	
		492-416	9.64	
YDR062W-	YDR062W	466-166	8.85	model 9
YER110C	466, 467, 468,	467-163	8.85	-
	471, 481	467-164	8.41	-
		467-166	5.18	-
	YER110C	468-163	9.02	-
	163, 164, 166	468-166	7.11	-
		471-163	4.60	
		471-163	6.15	
		471-166	6.25	
		481-163	9.63	
		481-164	6.60	
		481-166	8.40	
YDR062W- YIL094C	YDR062W	No structure	No structure	No structure
YDR062W-	YDR062W	226-164	9.17	model 2
YJR077W	226, 254, 255,	226-166	9.85	
	483, 485, 486	255-166	8.81	1
		483-257	5.23	1
	YJR077W	485-175	7.32	
	164, 166, 175,	485-257	7.38	
	257	486-175	4.51	
	-	486-257	7 42	-
YOR171C-	YOR171C	357-237	9.11	model 4
YOR034C	357, 364, 368,	357-238	8.11	
	369.370	357-240	8.61	
	,	364-238	9.35	
	YOR034C	364-240	9.38	
	232, 237, 238,	368-232	6.92	-
	240	368-237	6.20	
		368-238	4 49	
	-	368-240	9.03	-
	-	369-232	5.03	-
	-	369-232	7 22	-
	_	369-238	4 74	-
	_	369-240	7.51	-
	-	370-232	9.32	-
		370-232	8.42	
		370-237	4.81	
		370-230	5 32	
VI P260W	VI R260W	374 256	9.66	model 7
YGI 137W	374 376 378	376 256	9.80	model /
10213710	387	376 263	7.00	
	507	376.263	8.18	
	YGL137W	378 264	0.10	
	256, 263, 264	387 263	9.40	
	200, 200, 201	387 264	5.78	
VI D260W	VI D260W	215 240	J.70 4 75	modal 2
I LK200W-	315 322 222	313-240	4.73	model 5
111/2130	315, 522, 525,	322-311	4.72	
	525	322-312	7.60	
	YI R213C	323-312	8.27	
	240 311 312	325-311	4.72	1
	, 511, 512	325-312	6.67	1
YMR298W-	YMR298W	72-95	4 74	model 3
YKL008C	72, 73, 74, 75, 76	72-99	9.83	
				-

	83,	73-95	3.99	
		73-99	8.28	
	YKL008C	74-95	5.77	
	95, 99, 128	74-99	9.22	
		47-128	9.12	
		75-95	7.33	
		75-128	7.67	
		76-128	8.18	
		83-128	7.99	
YMR298W-	YMR298W	72-95	5.19	model 1
YHL003C	72, 76, 78	72-96	8 48	
	,,	72-129	5.87	
	YHL003C	76-95	5.89	
	95, 96, 129	76-96	5.05	
		78.05	8.05	
	_	78.06	6.05	
VMD200W	VMD200W	70-90 50.91	0.20	madal 9
I MR298W-	1 MR298 W	30-81	8.74	model 8
1 IVIK290 VV	50, 51, 04	50-90	8.08	
	VMD200W	51-81	6.98	
	1 MR298W	51-90	5.86	
	81,90	64-90	8 97	
VII 007W	VII 007W	59.019	0.57	
YDD150W	YJL09/W	58-218	8.65	model 5
IBK159W	58, 75, 75, 105,	58-219	8.13	
	104	73-218	8.95	
	VDD150W	73-219	6.07	
	YBK159W	75-218	3.90	
	218, 219	75-219	4.61	
		103-218	6.97	
		103-219	6.69	
		104-218	4.88	
		104-219	6.30	
YPL006W-	YPL006W	1002-905	7.73	model 1
YGL006W	1002, 1009, 1030,	1009-898	8.61	
	1034	1009-905	8.33	
		1030-898	8.41	
	YGL006W	1030-904	9.58	
	898, 904, 905,	1030-905	8.44	
	970	1030-970	7.63	
		1034-904	7.18	
		1034-905	4 68	
YDR297W-	YDR297W	272-26	9.83	model 1
YBR106W	272 279	272 20	2.05	model I
I DICIOU W	212, 219	272-77	6 59	
	YBR106W	2,2,,,	0.09	
	26 67 77 102	279-102	3 90	
	20, 07, 77, 102	279 102	5.50	
YDR297W-	YDR297W	250-138	8 73	model 8
YLR372W	250 252 253	250-140	4 36	moder o
121(3) 2 ()	285 289	252-135	6.33	
		252 133	4.40	
	YLR372W	252-138	4.40	
	135, 138, 140	252-140	7.42	
	163, 164, 173	253-155	/.43	
	174	253-138	0.50	
		255-140	9.64	
		285-163	5.67	
		285-164	9.02	

		285-173	5.04	
		285-174	7.14	
		289-163	8.52	
		289-173	8.81	
		289-174	8.02	
YMR27C-	YMR272W	30-594	9.02	model 4
YOR081C	30, 31, 65, 70, 71	31-593	9.88	
		31-594	6.67	
	YOR081C	31-689	9.30	
	564, 593, 594,	65-594	9.98	
	689	65-689	8.70	
		70-593	7.05	
		70-594	7.16	
		70-689	9.25	
		71-594	7.38	
YDR297W-	YDR297W	261-152	9.60	model 10
YKL065C	261, 267, 268	267-106	4.28	
	VIII 0650	267-109	4.00	
	YKL065C	268-106	6.38	
	100, 109, 132	268-109	3 76	
VDD207W	VDP207W	250 291	7 57	model 4
VRR150W	250 251 252	251 215	9.3/	model 4
I DR157W	250, 251, 252,	251 281	5.17	
	255	252 214	9.07	
	YBR159W	252-214	6.07	
	214, 215, 281	252-213	4.12	
		252-201	9.49	
		253-211	6.29	
	-	253-281	6.15	
YDR297W-	YDR297W	283-21	6.20	model 5
YPL264C	283, 284	200 21	0.20	1110 0001 0
	,	283-130	6.46	
	YPL264C			
	21, 130	284-21	3.93	
YDR297W-	YDR297W	256-154	5.59	model 5
YGR125W	256, 257, 261	257-148	9.72	
		207 110	2.12	
	YGR125W	257-154	4.90	
	148, 154	261-148	6.92	
VDR297W-	VDR297W	256-503	5.13	model 2
YHR007C	256 257 258	256-503	5.15	model 2
TIRCOVC	230, 237, 230	256-504	0.08	
	YHR007C	257-503	5.63	
	503, 504	257-504	6.40	
		258-503	5.53	
		258-504	5.45	
YDR297W-	YDR297W	257-89	7.77	model 3
YML012W	257, 268, 275,	257-91	5.35	
	276	257-138	6.00	
		268-62	4.10	
	YML012W	268-89	8.39	
	62, 88, 89, 91,	275-88	9.90	
	138	275-89	8.42	
		275-138	9.35	

		276-89	8.75	
		276-91	9.82	
YDR297W-	YDR297W	251-457	9.99	model 2
YKL088W	251, 253, 277,	251-463	5.40	
	281, 282, 285	251-465	5.89	
		253-463	8.52	-
	YKL088W	253-465	6.18	
	414, 455, 457, 458, 463, 465	277-463	9.83	
		277-465	8.90	
		281-414	9.08	
		281-455	8.50	
		281-457	8.08	
		281-458	4.37	
		281-463	6.89	-
		281-465	9.61	-
		282-455	8.88	
		282-457	9.24	
		282-458	5 84	
		282-463	9 47	-
		285-455	6 34	
		285-457	5.83	-
		285-458	4 24	-
		285-463	6.48	
YLR372W-	YLR372W	161-45	8.85	model 2
YDL015C	161, 163, 173,	163-45	9.09	
1220100	175	163-57	8 49	-
		163-58	6.19	
	YDL015C	173-45	6.06	
	45, 56, 57, 58, 60	173-56	8.53	-
		173-57	8.21	
		173-58	6.76	
		175-56	5.90	
		175-57	6.02	
		175-58	7.23	
YER093C-	YER093C	81-68	4.88	model 1
YNL006W	81, 99, 101, 102,	99-68	6.52	
	103, 124	101-68	4.74	1
		102-68	7.44	-
	YNL006W	103-45	8.80	-
	45, 68, 87	103-68	5.90	-
		103-87	8.89	
		124-87	7.51	
YER093C-	YER093C	226-21	6.51	model 2
YBR270C	226, 230, 232,	226-22	5.86	
	238, 239	226-43	9.94	
		230-21	6.49	
	YBR270C	230-22	9.78	
	21, 22, 39, 43, 45	230-43	6.54	-
		230-45	7.24	
		232-43	5.86	
		232-45	5.10	1
		238-21	9.30	1
		238-43	7.28	
		239-21	7.80	1
		238-22	9.48	1
		239-39	7.97	1

		220 42	7 12	
VEP003C	VEP003C	<u> </u>	7.15 8.96	model 8
YKL 203C	41 45 68	41-2310	8.90 2.50	
1112030	41, 45, 00	41-2321	3.50	_
	YKL203C	41-2323	7.84	
	2238, 2316, 2321,	45-2238	8.54	
	2323	45-2321	3.65	
		45-2323	5.30	
	-	68-2316	9.98	
YER093C-	YER093C	65-119	8.12	model 5
YMR068W	65, 86, 88, 103,	65-120	6.74	
	105	65-121	6.87	
		86-85	6.96	
	YMR068W	86-119	8.11	
	15, 85, 118, 119,	88-118	5.79	
	120, 121, 152	88-119	4.52	
		88-120	7.67	
		88-152	6.99	
		103-15	5.89	
		105-15	9.06	
YBR058C-A-	YBR058C-A	46-331	5.83	model 5
YMR296C	46	46-332	8.05	
	YMR296C	46-403	4.88	
	331, 332, 403, 404, 406, 407	46-404	3.61	
	-0-, -00, -07	46-406	7.59	
		46-407	7.82	
YBR058C-A-	YBR058C-A	43-179	8.60	model 4
YDR062W	43, 45, 46	43-183	9.56	
		43-399	6.38	
	YDR062W	43-401	6.33	
	1/9, 180, 183,	45-179	4.16	_
	399,401	45-180	5.34	_
	-	45-183	7.27	_
		45-399	9.81	_
	-	45-401	5./1	_
	-	46-179	6.49	_
	-	46-180	0.4/	_
VDI 097W	VDI 097W	40-401	9.57	model 5
YDL015C	182 234 240	234.86	0.32	model 5
TDE015C	241, 244	234-00	8.41	-
	,	234-101	6 38	-
	YDL015C	240-78	7.14	
	78, 86, 99, 101	240-101	5.37	
	-	241-78	9.89	-
	-	241-101	8.45	-
		244-78	8.57	
YBR183W-	YBR183W	205-139	8.57	model 4
YLR372W	205, 233, 237,	205-158	9.08	
	240	205-160	7.50	
		233-128	9.53	
	YLR372W	233-139	8.04	
	128, 129, 139,	233-158	8.42	
	157, 158, 160	233-160	8.72	

		237-128	5.69	
	T T	237-129	6.36	1
		237-157	9.18	
		237-158	7.44	-
		240-128	7.82	-
		240-129	8.65	-
		240-157	7.08	-
	-	240-158	7.00	-
VBR183W-	VBR183W	201-91	5 52	model 5
YOR016C	201 204 235	201-91	8.12	model 5
TOROTOC	201, 204, 255,	201-92	0.12 7.22	-
	237	201-136	0.02	-
	YOR016C	204-91	9.02	_
	91 92 138	204-138	5.34	_
	71, 72, 150	235-91	5.28	_
	-	235-92	5.55	_
	-	239-91	8.84	_
		239-92	7.60	
YBR183W-	YBR183W	272-187	3.86	model 8
YLR018C	272, 275	272-188	5.47	
		272-189	5.99	
	YLR018C	275-187	7.00	
	187, 188, 189	275-188	5.59	
		275-189	7.50	7
YBR183W-	YBR183W	254-159	4.38	model 8
YKL065C	254, 255, 256	254-160	6.31	-
		255-159	5.41	
	YLR018C	255-160	6.34	-
	159, 160	256-159	7.60	-
		256-160	6.76	-
YBR183W-	YBR183W	234-56	7.96	model 9
YHR140W	234 237 238	234-98	8.48	modely
1 AL140W	240 241	237-56	8.84	-
	,	237.97	7 58	-
	YHR140W	237-98	4 41	-
	56, 97, 98	238-56	6.67	_
	, ,	238-50	8.70	-
	-	230-37	6.77	-
	-	230-90	6.71	-
		240-97	0./1	4
		240-98	0.31	4
		241-30	9.15	4
		241-97	5.14	_
		241-98	5.65	
YBR183W-	YBR183W	264-313	5.14	model 2
YBR159W	264, 265, 275	265-214	8.10	
	YBR159W	265-313	3.78	
	214, 254, 313	275-254	6.95	
YBR183W-	YBR183	213-67	7.32	model 10
YBR106W	213, 214, 215,	213-75	9.30	1
	217	214-67	6.43	1
		214-75	5.81	-
	YBR106W	215-67	5.84	1
	67,75	215-07	5.67	-
		215-15	0.02	-
		21/-0/	9.92	4
VDD100W	VDD102W	21/-/5	8.00	1 1 4
YBR183W-	YBR183W	205-25	6.69	model 4

YGR060W	205, 236, 240,	205-28	8.12	
	243, 244, 247,	236-25	6.68]
	253, 267, 272,	236-28	4.41	
	275, 276	240-28	7.52	
		243-47	9.08	
	YGR060W	244-43	8.14	
	25, 28, 43, 47, 48	244-47	7.64	
		247-43	7.90	
		247-47	7.53	
		247-48	9.31	
		253-43	5.87	
		267-47	9.63	
		267-48	8.66	
		272-48	9.46	
		275-47	8.60	
		275-48	5.78	
		276-48	8.87	
YBR183W-	YBR183W	205-379	9 02	model 5
YFL041W	205, 209, 236	205-381	7.32	
		205-382	5.22	
	YFL041W	209-379	8.46	
	379, 381, 382,	209-381	8.66	
	516, 519	209-382	8.96	
		236-381	9.75	
		236-382	6.06	
		236-516	7.19	
		236-519	8.34	
YBR183W-	YBR183W	199-247	6.86	model 4
YDR506C	199, 203, 206,	203-247	8.67	
	209, 210, 236	206-62	8.14	
		206-247	9.67	
	YDR506C	209-62	8.85	
	62, 247	210-62	5.88	
		236-247	6.18	
YKL126W-	YKL126W	495-441	9.21	model 10
YMR104C	495, 497, 500	495-442	5.58	
		495-615	6.58	
	YMR104C	497-441	5.68	-
	441, 442, 597	/97_//2	4.22	-
		500 507	7 .22	-
		300-397	5.89	115
YKL126W-	YKL126W	560-576	7.71	model 5
YNL106C	560, 561, 562,	561-574	9.57	-
	563, 565	561-576	9.11	-
	VNI 106C	561-897	8.99	-
	574 576 807	562-574	8.92	-
	574, 570, 897	562-576	9.94	-
		562-897	8.23	-
		563-574	6.10	-
		563-576	9.01	-
		563-898	5.48	-
		564-5/4	8.28	4
		564-897	6.84	-
		565-574	7.85	4
	VDL015C	265-897	/./4	
YDL015C-	YDL015C	41-131	4.79	model 6
1 KL008C	41, 45, 69, 109	43-131	0.58	
		69-126	7.42	
-----------	----------------------	----------	------	----------
	YKL008C	69-131	9.98	
	126, 131	109-1126	5 43	
		109-131	9.74	
VDL015C-	VDI 015C	85-133	8 59	model 6
VI R372W	85 86 93 96 97	85 134	6.89	model o
1 LK372 W	98	86 100	0.09	-
		86-109	9.42	-
	VI R372W	80-133	0.85	-
	108 109 133 134	86-134	5.86	-
	100, 107,155, 154	93-108	4.43	
	-	93-109	4.10	-
		96-108	7.39	-
		96-109	4.80	_
		97-108	9.79	
		97-109	6.93	
		97-134	9.58	
		98-109	7.62	
		98-133	7.76	
		98-134	6.97	
YDL015C-	YDL015C	110-166	7.83	model 5
YPL087W-	110, 111, 112	110-209	6.55	
		111-166	4.53	
	YPL087W	111-169	7.02	
	166, 169, 206,	111-209	5.57	
	209	112-166	7.53	
		112-169	7 49	
	-	112-206	9.42	
	-	112-209	5.81	
YDL015C-	YDL015C	55-46	7.16	model 1
VDL015C	55 56 120	56.46	8.21	inoder 1
TDL015C	55, 50, 120	56.48	8 70	-
	YDL015C	56 61	7.41	
	46 48 61 66	120.46	0.52	-
	10, 10, 01, 00	120-40	9.32	-
	-	120-01	5.98	-
VDI 0150	VDL 0150	120-00	0.49	112
YDL015C-	YDL015C	90-203	8.69	model 3
YJL196C	90, 99, 100, 101,	90-207	6.00	
	115	90-239	7.55	
	VII 10CC	90-243	8.81	-
	1JL190C	99-203	8.68	_
	205, 207, 258,	99-207	7.72	-
	239, 245	99-238	8.43	
		99-239	5.52	
		99-243	5.06	
		100-203	7.87	
		100-207	9.66	
		100-239	8.85	
		100-243	4.98	
		101-203	7.19]
		101-243	7.34	
	ļ Į	115-207	7.92	1
YDL015C-	YDL015C	84-91	6.67	model 8
Y UKU16C	84, 104	84-136	9.38	
	YOR016C	84-138	5.04	
1	1 91. 113. 130. 138.	84-139	6 96	1

139 104-115 8.67 YDL015C- YKL065C YDL015C 63.81 6.98 model 9 YKL065C 63,115,117 115.81 7.57 model 9 YKL065C 81,82,98 117.81 4.15 model 9 YDL015C- YBR159W YDL015C 16.254 7.49 model 4 YDL015C- YBR159W YDL015C 16.294 4.67 model 4 YBR159W 16,17,18,37 16-294 4.67 17.294 7.78 17-294 7.75 17.294 7.75 17.294 7.78 17-297 7.90 18.254 6.20 37.297 8.48 YDL015C- YDR017C YDL015C 111-179 8.11 111-225 5.75 YBR017C 113-179 8.11 113-225 6.38 model 4 YDR506C 190, 67, 110, 113 10.395 7.28 6.57 YDR506C 392, 395, 424 110-424 9.65 113-424 7.94 YPR028W 118,73 6.57 120-7					
YDL015C- YKL065C YDL015C 63, 115, 117 Gas and 115.81 6.98 model 9 YKL065C 81, 82, 98 115.82 9.02 model 9 YDL015C- YBR159W YDL015C 115.82 9.02 model 4 YDL015C- YBR159W YDL015C 16.2254 7.49 model 4 YDL015C- YBR159W 16,17,18, 37 16.292 8.29 model 4 1524, 292, 294, 296, 297 16.297 7.19 model 4 model 4 YDL015C- YBR017C YDL015C 111-179 5.63 model 6 YDL015C- YDR506C YDL015C 113-179 8.11 model 6 YDL015C- YDR506C YDL015C 10.392 9.00 model 4 YDR506C 10, 67, 110, 113 67-392 9.11 model 4 YDR028W 55, 115, 117, 118, 115, 77 8.85 model 3 model 3 YDR028W 55, 115, 117, 118, 115, 77 8.85 model 3 model 3 YDR028W 55, 115, 117, 118, 115, 77 8.85 model 3 112, 17, 73 8.55		139	104-115	8.67	
YKL065C 63, 115, 117 YKL065C 115.81 115.82 7.57 9.02 YKL065C 81, 82, 98 117.82 4.04 YDL015C- YBR159W YDL015C 16-254 7.49 model 4 YDL015C- YBR159W YDL015C 16-294 4.67 model 4 YDL015C- YBR159W YDL015C 16-294 4.67 model 4 17.297 7.90 17-294 7.58 model 5 YDL015C- YBR017C YDL015C 111-179 8.11 model 6 YDL015C- YDR06C YDL015C 111-179 8.11 model 4 YDL015C- YDR06C YDL015C 113-179 8.11 model 4 YDR506C 10, 67, 110, 113 10-392 9.00 model 4 YDR506C 10, 67, 110, 113 10-392 9.01 model 4 YDL015C- YPR028W YDL015C 113-424 7.94 113-424 9.65 YPR028W 112, 123 117-77 8.48 120 121, 123 model 3 YPR028W YPR028W 112, 124, 124	YDL015C-	YDL015C	63-81	6.98	model 9
YKL065C \$1, 82, 98 115.82 115.98 9.02 6.29 YDL015C YBR159W YDL015C 16, 17, 18, 37 17.81 4.15 YBR159W 16, 17, 18, 37 16-292 8.29 YBR159W 16, 29, 29, 29, 294, 296, 297 7.19 7.53 YDL015C YDL015C 113.729 7.19 YBR159W 254, 292, 294, 296, 297 7.79 7.90 18.254 6.20 737-297 8.48 YDL015C YDL015C 111.179 5.63 model 6 YBR017C 111, 113 111-225 5.75 model 4 YDL015C YDL015C 113.179 8.11 113-225 6.38 YDL015C YDL015C 10.392 9.00 model 4 YDR506C 10.67, 10, 113 10-392 9.11 YDR506C 110.424 7.94 113-424 7.94 YPR028W 55, 115, 117, 118, 115-77 8.85 110-424 9.65 YPR028W 47, 48, 73, 77 120-48 9.91 121-47 9.15	YKL065C	63, 115, 117	115-81	7.57	
YKL065C 115-98 6.92 81, 82, 98 117.81 4.15 YDL015C- YBR159W YDL015C 16-254 7.49 YBR159W 16, 17, 18, 37 16-292 8.29 16, 17, 18, 37 16-297 7.19 YBR159W 16-297 7.19 296, 297 77.254 7.75 17-297 7.90 18:254 6.20 37:297 8.48 YDL015C- YBR017C YDL015C 111.1179 8.11 113-179 8.11 113-225 6.38 YDL015C- YDR06C YDL015C 10-392 9.00 YDR506C 10-67, 110, 113 10-395 7.28 YDL015C- YDR028W YDL015C 10-44 9.65 YDL015C- YPR028W YDL015C 113-177 8.85 120, 71, 118, 115-177 8.85 113-424 7.94 YPR028W 118-73 6.57 112-73 8.10 121-73 8.10 121-73 8.10			115-82	9.02	
81, 82, 98 117.81 4.15 YDL015C- YBR159W YDL015C 16-254 7.49 model 4 YBR159W 16, 17, 18, 37 16-292 8.29 16-294 4.67 YBR159W 254, 292, 294, 296, 297 17-254 7.75 17-294 7.58 17-297 7.90 18-254 6.20 37-297 8.48 YDL015C- YBR017C YDL015C 111-179 5.63 model 6 YDL015C- YDR06C YDL015C 113-179 8.11 111-225 6.38 YDL015C- YDR506C YDL015C 10-392 9.00 model 4 YDR506C 392, 395, 424 110-392 3.46 120, 12, 122, 123 117-73 8.855 113-225 YDR028W 55, 115, 117, 118, 112-73 113-73 6.57 YPR028W 55, 115, 117, 118, 120, 121, 122, 123 117-73 8.85 YPR028W 47, 48, 73, 77 120-73 5.22 120-77 9.08 121-148 6.80 121-48 6.63 121-47 <t< td=""><td></td><td>YKL065C</td><td>115-98</td><td>6.92</td><td></td></t<>		YKL065C	115-98	6.92	
YDL015C- YBR159W YDL015C 16, 17, 18, 37 YBR159W Int-R2 16, 17, 18, 37 YBR159W Int-R2 16, 17, 18, 37 YBR159W Int-R2 16, 17, 18, 37 YBR159W model 4 YDL015C- YBR017C YDL015C 111, 113 16-296 8,07 17-254 7,75 7,794 model 6 YDL015C- YBR017C YDL015C 111, 113 111-179 8.11 model 6 YDL015C- YDR018C YDL015C 10, 67, 110, 113 113-179 8.11 model 4 YDL015C- YDR050C YDL015C 10, 67, 110, 113 10-392 9.00 model 4 YDL015C- YDR028W YDL015C 113-179 8.11 model 4 6.532 YDL015C- YPR028W YDL015C 113-173 8.85 model 3 YDL015C- YPR028W YDL015C 55, 115, 117, 118, 115-77 8.85 model 3 YPR028W 55, 115, 117, 118, 115-77 8.85 model 3 YPR028W 118-73 6.57 model 3 YPR028W 118-73 5.22 120-77 9.08 121-48 6.80 121-48 6.80 121-48 6.66 121-73 8.167 6.93 9.5167		81, 82, 98	117-81	4.15	-
YDL015C- YBR159W YDL015C 16, 17, 18, 37 16, 19, 18, 38 YBR159W Information 16, 292 Response 8, 29 16, 297 model 4 YBR159W 16, 17, 18, 37 296, 297 16, 292 8, 29 16, 297 model 4 YDL015C 296, 297 7, 19 17, 294 7, 58 7, 7, 90 model 6 YDL015C- YBR017C YDL015C 111, 113 111-225 5, 75 YBR017C 113, 179 8, 11 model 6 YDL015C- YDR506C YDL015C 10, 392 9, 00 YDL015C- YDR506C YDL015C 10, 392 9, 00 YDL015C- YDR028W YDL015C 10, 392 9, 00 YDL015C- YDR028W YDL015C 55, 115, 117, 118, 113-225 6, 38 YDL015C- YPR028W YDL015C 55-84 9, 20 YPR028W 55, 115, 117, 118, 118-77 118-77 8, 85 120-73 5, 22 120-77 9, 08 121-48 6, 630 121-48 6, 632 121-73 8, 10 121-73 8, 10 121-73 8, 107 6, 66 122-47			117-82	4.64	-
YBR159W 16, 17, 18, 37 16-292 8.29 YBR159W 16, 17, 18, 37 16-292 8.29 YBR159W 254, 292, 294, 296, 297 16-297 7.19 YDL015C- YDL015C 17-297 7.90 YBR017C 111, 113 111-225 5.75 YBR017C 113, 179 8.11 111-225 YDL015C- YDL015C 10.392 9.00 model 6 YDL015C- YDL015C 10-392 9.00 model 4 YDR506C 10, 67, 110, 113 10-395 7.28 model 4 YDL015C- YDL015C 110-424 9.65 113-424 7.94 YDR028W YDL015C 55, 115, 117, 118, 115-77 8.85 110-424 9.65 YDR028W YDR028W 118-77 6.57 model 3 YPR028W 118-77 5.43 112-48 6.680 121-47 9.15 121-48 6.630 121-47 9.15 121-48 6.630 121-47 9.15	YDL015C-	YDL015C	16-254	7.49	model 4
YBR159W 16-294 4.67 YBR159W 16-297 7.19 296,297 17-254 7.75 17-294 7.38 17-297 7.90 18-254 6.20 37-297 8.48 YDL015C YDL015C YBR017C 111.113 111-125 5.75 YBR017C 113-179 179,225 6.38 YDL015C YDL015C YDL015C 10.67,110,113 10-392 9.00 YDR506C 10,67,110,113 YDR506C 110.392 3.46 392,395,424 110-424 9.65 YDR028W 55,115,117,118, 115-77 8.85 120,121,122, 117-73 8.55 YPR028W 47,48,73,77 120-48 9.91 121-48 6.80 121-47 9.16 122-47 6.666 123-48 7.10 YPR028W 121-48 6.32 121-48 6.80	YBR159W	16, 17, 18, 37	16-292	8.29	_
YBR 159W 254, 292, 294, 296, 297 16-296 8.07 296, 297 17-254 7.75 17-294 7.58 17-297 7.90 18-254 6.20 37-297 8.48 YDL015C- YBR017C YDL015C 111-179 5.63 model 6 YDL015C- YDR05C YDL015C 111-179 8.11 model 4 179, 225 5.75 900 model 4 YDL015C- YDR506C 10, 67, 110, 113 10-395 7.28 67-392 9.11 10-395 7.28 YDL015C- YDR506C YDL015C 110-424 9.65 113-424 7.94 9.65 110-322 3.46 110-424 110-424 9.65 113-424 YPR028W 55, 115, 117, 118, 115-77 8.85 120, 121, 122, 117-73 8.55 123 117-77 5.43 YPR028W 118-73 6.57 YPR028W 112-47 9.15 121-48 6.32 <tr< td=""><td></td><td></td><td>16-294</td><td>4.67</td><td>-</td></tr<>			16-294	4.67	-
254, 292, 294, 296, 297 16297 7.19 17-294 7.58 17-297 7.90 18-254 6.20 37-297 8.48 YDL015C- YBR017C YDL015C 111-179 5.63 model 6 YBR017C 113-179 8.11 111-225 5.75 YBR017C 113-179 8.11 111-225 6.38 YDL015C- YDR506C YDL015C 10-392 9.00 model 4 YDR506C 10, 67, 110, 113 10-392 3.46 392, 395, 424 110-424 9.65 YDL015C- YDR028W YDL015C 55-48 9.20 model 3 model 3 YPR028W 113-424 7.94 113-424 7.94 112-173 8.85 120, 121, 122, 122, 127, 7 5.43 112-173 8.10 121-173 8.11 120-73 5.22 123 117-77 5.43 121-48 6.30 121-47 9.15 121-47 6.96 122-47 6.98 122-47 6.98 122-47 6.96		YBR159W	16-296	8.07	-
296, 297 17-254 7.75 17-297 7.90 18-254 6.20 37-297 8.48 YDL015C- YBR017C YDL015C 111, 113 111-179 5.63 YDL015C- YBR017C 111, 113 111-225 5.75 YDL015C- YDR506C 70, 67, 110, 113 10-392 9.00 YDR506C 10, 67, 110, 113 10-395 7.28 67-392 9.11 113-424 7.94 YDR506C 10, 67, 110, 113 10-392 3.46 110-392 3.46 110-392 3.46 111, 424 7.94 7.84 110-424 YDR0506C 110-392 3.46 110-392 3.46 110-424 9.65 111-424 7.94 111-173 YPR028W 118-77 6.37 118-17 111-173 120, 121, 122, 123 117-73 8.55 112-147 9.15 121-47 9.15 121-47 6.98 121-47 6.98		254, 292, 294,	16-297	7.19	-
YDL015C- YBR017C YDL015C 111, 113 T17-294 7.58 (200) YDL015C- YBR017C YDL015C 111-179 8.48 YDL015C- YBR017C 111, 113 111-225 5.75 YBR017C 113-179 8.11 179, 225 113-225 6.38 YDL015C- YDR506C YDL015C 10-392 9.00 YDL015C- YDR506C YDL015C 10-392 9.11 YDL015C- YDR028W YDL015C 10-392 9.46 YDL015C- YPR028W YDL015C 55.48 9.20 YDL015C- YPR028W YDL015C 55.48 9.20 YPR028W 115-77 8.85 118-73 YPR028W 118-73 6.57 1120-173 5.22 120-77 120-73 5.22 120-77 121-48 6.80 121-48 121-48 6.32 121-48 121-48 6.32 122-48 121-48 6.32 121-48 121-48 6.32 121-48 12		296, 297	17-254	7.75	-
YDL015C- YBR017C YDL015C 111, 113 YDL015C 111, 113 model 6 YDL015C- YBR017C YDL015C 111, 113 111-225 5.75 YBR017C 113-179 8.11 179, 225 113-225 6.38 YDL015C- YDR506C YDL015C 10-392 9.00 YDR506C 10, 67, 110, 113 10-395 7.28 67-392 9.11 113-424 9.65 YDL015C- YDR028W YDL015C 110-424 9.65 YDL015C- YPR028W YDL015C 115-77 8.85 120, 121, 122, 123 117-77 5.43 120, 121, 122, 123 117-77 5.43 YPR028W 118-73 6.57 YPR028W 118-73 6.57 YPR028W 112-48 6.98 121-47 9.15 122-48 121-48 6.08 121-47 121-48 6.08 122-47 122-48 6.12 123-48 121-48 6.66 123-48 YDL015C- YBR110W			17-294	7.58	
YDL015C- YBR017C YDL015C 111, 113 YDL015C 111, 1225 model 6 YDL015C- YDR017C YBR017C 111-179 5.63 model 6 YDL015C- YDR050C YDL015C 113-179 8.11 model 6 YDL015C- YDR506C YDL015C 10-392 9.00 model 4 YDR506C 10, 67, 110, 113 10-395 7.28 model 4 YDR506C 10, 67, 110, 113 10-392 3.46 392, 395, 424 113-424 9.65 YDL015C- YPR028W YDL015C 55-48 9.20 model 3 model 3 YPR028W YPR028W 118-77 8.85 110-424 9.65 1120, 121, 122, 123 117-77 5.43 118-73 6.57 YPR028W 118-73 6.57 1120-73 5.22 120-77 9.08 121-47 6.98 121-47 6.98 121-47 6.66 121-47 6.98 121-47 6.66 123-48 7.10 YBR110W 92, 95, 97, 98 92-168 9.69			17-297	7.90	-
YDL015C- YBR017C YDL015C 111, 113 111-179 8.48 YDL015C- YBR017C 111, 113 111-225 5.75 YBR017C 113-179 8.11 179, 225 113-225 6.38 YDL015C- YDR06C YDL015C 10-392 9.00 YDR506C 392, 395, 424 10-392 9.01 YDR506C 392, 395, 424 110-424 9.65 YDR015C- YPR028W YDL015C 55.48 9.20 model 3 YPR028W 113-424 7.94 model 3 YPR028W 118-73 6.57 model 3 YPR028W 118-73 6.57 model 3 YPR028W 118-73 6.57 121-47 120-77 9.08 122-48 6.32 122-47 6.98 122-48 6.32 122-48 7.10 123-47 6.66 123-47 6.66 123-48 7.10 YBR110W 92-167 8.97 92-168 9.69 92-168 9.			18-254	6.20	
YDL015C- YBR017C YDL015C 111, 113 YDL015C 111-179 5.63 model 6 YBR017C 179, 225 111-179 5.63 model 6 YDL015C- YDR506C YDL015C 10.392 9.00 model 4 YDR506C 10, 67, 110, 113 10-392 9.00 model 4 YDR506C 392, 395, 424 110-392 3.46 model 4 YDL015C- YDR028W YDL015C 55-48 9.20 model 3 YDL015C- YPR028W YDL015C 55-48 9.20 model 3 YPR028W 55, 115, 117, 118, 120, 121, 122, 123 117-77 5.43 model 3 YPR028W 47, 48, 73, 77 1120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-47 9.15 121-48 6.80 121-47 6.98 122-48 6.32 121-48 7 6.98 123-47 6.666 123-47 6.666 123-48 7.10 9.5168 8.87 YBR110W 92, 95, 97, 98			37-297	8.48	
YBR017C 111, 113 111-225 5.75 YBR017C 179, 225 113-179 8.11 YDL015C- YDL015C 10.392 9.00 YDR506C 10, 67, 110, 113 10-395 7.28 G7.392 9.11 10.395 7.28 YDL015C- YDL015C 110-392 3.46 392, 395, 424 110-424 9.65 113-424 YDL015C- YDL015C 55.48 9.20 YPR028W 55, 115, 117, 118, 115-77 8.85 120, 121, 122, 123 117-77 123 117-77 5.43 1120, 121, 122, 123 117-77 123 118-73 6.57 112, 124 120-77 YPR028W 47, 48, 73, 77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 6.66 121-47 9.15 121-48 6.632 123-48 7.10 122-48 6.32 YDL015C- YDL015C 92-167 8.27 95-168 9.69	YDL015C-	YDL015C	111-179	5.63	model 6
YBR017C 179, 225 III 2.1 III 3 YDL015C- YDR506C YDL015C 10, 67, 110, 113 10.392 9.00 model 4 YDR506C 10, 67, 110, 113 10.395 7.28 67.392 9.11 YDR506C 392, 395, 424 110.424 9.65 9.11 10.424 9.65 YDL015C- YPR028W YDL015C 55.48 9.20 model 3 YPR028W 55, 115, 117, 118, 115.777 8.855 113.424 7.94 YDL015C- YPR028W YDR028W 118.73 6.57 model 3 123 117.77 5.43 112.47 9.15 121.48 6.680 121.47 9.15 121.48 6.632 121.48 6.632 123.48 7.10 122.47 6.98 YDL015C- YBR110W 92, 95, 97, 98 92-167 8.27 92.168 9.69 92, 95, 97, 98 92-168 9.69 95-167 6.93 YBR110W 95-168 8.87 167 6.80 97-167 6.80	YBR017C	111, 113 —	111-225	5 75	-
TBR017C 113-179 8.11 179, 225 113-225 6.38 YDL015C- YDR506C YDL015C 10.392 9.00 YDR506C 10, 67, 110, 113 10-392 9.11 YDR506C 110-392 3.46 392, 395, 424 110-424 9.65 YDL015C- YPR028W YDL015C 55-48 9.20 YPR028W 55, 115, 117, 118, 120, 121, 122, 123 117-77 8.85 YPR028W 118-73 6.57 YPR028W 118-73 6.57 YPR028W 118-73 6.57 YPR028W 1121-47 9.15 121-47 9.15 121-47 121-47 9.15 122-47 122-48 6.32 123-47 123-48 7.10 122-47 YBR110W 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-168 6.41 97-170 7.39 98-168 5.35 98-167 6.80 <td></td> <td>VDD017C</td> <td>112 170</td> <td>0.11</td> <td>4</td>		VDD017C	112 170	0.11	4
YDL015C- YDR506C YDL015C 10, 67, 110, 113 10-392 10-392 9.00 9.00 model 4 YDR506C 10, 67, 110, 113 10-392 9.11 model 4 YDR506C 392, 395, 424 110-424 9.65 model 3 YDL015C- YPR028W YDL015C 55-48 9.20 model 3 YDR028W 55, 115, 117, 118, 120, 121, 122, 123 117-77 8.85 model 3 YPR028W 118-73 6.57 120-73 5.22 model 4 YPR028W 118-73 6.67 120-73 5.22 120-73 5.22 120-73 5.22 120-77 9.08 121-47 9.15 121-47 9.15 121-48 6.680 121-47 6.66 123-47 6.666 123-48 7.10 92.95,97,98 92-167 8.27 model 7 YBR110W 95-167 6.93 95-167 6.93 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-168 6.41 97-168 6.41 <td></td> <td>179 225</td> <td>113-179</td> <td>8.11</td> <td></td>		179 225	113-179	8.11	
YDL015C- YDR506C YDL015C 10, 67, 110, 113 10-392 9.00 model 4 YDR506C 392, 395, 424 10-395 7.28 67-392 9.11 YDR506C 392, 395, 424 110-424 9.65 9.65 9.00 model 3 YDL015C- YPR028W YDL015C S5.48 9.20 model 3 9.11 YPR028W 55, 115, 117, 118, 115-77 8.855 117-77 5.43 118-73 6.57 YPR028W 118-73 6.57 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-48 6.80 121-47 9.15 121-48 6.80 121-47 9.15 121-47 9.15 121-48 6.32 123-47 6.666 123-47 6.666 123-48 7.10 120-48 9.69 YDL015C- YBR110W 92, 95, 97, 98 92-167 8.27 92-168 9.69 YBR10W 95-167 6.93 97-168 6.41 97-168 <t< td=""><td></td><td>177, 225</td><td>113-225</td><td>6.38</td><td></td></t<>		177, 225	113-225	6.38	
YDR506C 10, 67, 110, 113 10-395 7.28 YDR506C 392, 395, 424 67-392 9.11 110-322 3.46 110-424 9.65 YDL015C- YDL015C 55-48 9.20 YPR028W 55, 115, 117, 118, 115-77 8.85 113-424 7.94 YPR028W 55, 115, 117, 118, 115-77 8.85 111-77 5.43 YPR028W 118-73 6.57 1120-73 5.22 120-73 5.22 120-73 5.22 120-73 5.22 120-73 8.10 121-47 9.15 121-48 6.80 121-47 9.15 121-48 6.80 121-47 9.15 121-48 6.98 122-48 6.32 123-47 6.66 123-47 6.66 123-48 7.10 YBR110W 92-167 8.27 model 7 YBR110W 95-167 6.93 95-167 6.93 YBR110W 95-168 8.87 97-168 6.41 97-168 6.41 97-168 6.41	YDL015C-	YDL015C	10-392	9.00	model 4
YDR506C 392, 395, 424 67-392 9.11 YDL015C- YPR028W YDL015C 3.46 YDL015C- YPR028W YDL015C 55.418 9.20 113-424 7.94 YDR028W 55,115,117,118, 120,121,122, 123 115-77 8.85 YPR028W 118-77 6.57 YPR028W 118-77 6.77 47,48,73,77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-47 9.15 121-48 6.80 122-47 6.98 122-47 6.98 122-48 6.32 123-47 6.66 123-47 6.66 123-48 7.10 YBR110W 92,95,97,98 92-167 8.27 YBR110W 95-167 167,168,170 97-167 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.8	YDR506C	10, 67, 110, 113	10-395	7.28	
YDR506C 392, 395, 424 110-392 3.46 YDL015C- YPR028W YDL015C 55.48 9.20 YDL015C- YPR028W 55, 115, 117, 118, 120, 121, 122, 123 115.77 8.855 YPR028W 120, 121, 122, 123 117.77 5.43 YPR028W 47, 48, 73, 77 120-48 9.91 120-77 9.08 121.47 9.15 121-47 9.15 121.47 6.66 122.47 6.98 122.48 6.32 123-48 7.10 123-48 7.10 YDL015C- YBR110W 92, 95, 97, 98 92-167 8.27 model 7 YBR110W 95-167 6.93 95-167 6.93 YBR110W 167, 168, 170 97-167 6.82 9.69 97-167 6.80 98-167 6.80 98-167 98-167 6.80 98-167 6.80 98-170 6.01			67-392	9.11	
392, 395, 424 110-424 9.65 YDL015C- YPR028W YDL015C 55.48 9.20 115-77 8.85 115.77 8.85 120, 121, 122, 123 117-73 8.55 115.77 YPR028W 47, 48, 73, 77 118-77 6.57 YPR028W 47, 48, 73, 77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-47 9.15 121-47 6.98 122-47 6.98 122-47 6.98 123-47 6.66 123-47 6.66 123-48 7.10 YDL015C- YBR110W 92, 95, 97, 98 92-167 8.27 model 7 YBR110W 95-167 6.93 95-167 6.93 YBR110W 95-168 8.87 97-167 6.82 97-167 6.82 98-167 6.80 98-167 6.80 98-167 6.80 98-167 6.80 98-167 6.80 97-170 7.		YDR506C	110-392	3.46	
YDL015C- YPR028W YDL015C S5, 115, 117, 118, 120, 121, 122, 123 113-424 7.94 YPR028W 55, 115, 117, 118, 120, 121, 122, 123 115-77 8.85 YPR028W 118-73 6.57 YPR028W 47, 48, 73, 77 118-73 6.57 YPR028W 118-73 5.22 117-73 120-43 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-47 9.15 121-48 6.80 121-73 8.10 122-47 6.98 122-47 6.98 122-47 6.66 123-48 7.10 92, 95, 97, 98 92-167 8.27 YBR110W 92, 95, 97, 98 92-167 6.93 95-167 6.93 YBR110W 92, 95, 97, 98 95-168 8.87 95-167 6.82 97-167 6.82 97-167 6.82 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35		392, 395, 424	110-424	9.65	
YDL015C- YPR028W YDL015C 55-48 9.20 model 3 YPR028W 55, 115, 117, 118, 120, 121, 122, 123 115-77 8.85 118-73 6.57 YPR028W 118-73 6.57 118-77 5.43 118-73 6.57 YPR028W 47, 48, 73, 77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-48 6.80 121-47 9.15 122-47 6.98 122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YBR110W 92, 95, 97, 98 92-167 8.27 9.09 95-167 6.93 YBR110W 95-167 6.93 95-167 6.93 95-167 6.82 97-167 6.82 97-167 6.82 97-167 6.82 98-167 6.80 98-167 6.80 98-167 6.80 98-168 5.35 98-170 6.01			113-424	7.94	
YPR028W 55, 115, 117, 118, 120, 121, 122, 123 115-77 8.85 YPR028W 117-73 8.55 YPR028W 118-73 6.57 YPR028W 118-77 6.77 47, 48, 73, 77 120-48 9.91 120-77 9.08 121-47 9.15 121-47 9.15 121-47 6.66 122-48 6.32 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C YDL015C YBR110W 92.168 9.69 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-168 5.35 98-168 5.35 98-168 5.35 98-168 5.35 98-168 5.35	YDL015C-	YDL015C	55-48	9.20	model 3
YPR028W 117-73 8.55 YPR028W 118-73 6.57 47, 48, 73, 77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-48 6.80 122-47 6.98 122-48 6.32 123-47 6.66 123-47 6.66 123-47 6.66 123-48 7.10 YBR110W 92, 95, 97, 98 92-167 8.27 YBR110W 95-167 6.93 95-167 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-167 6.80 98-167 6.01 98-167 6.80 98-167 6.01 98-168 5.35 98-170 6.01	YPR028W	55, 115, 117, 118,	115-77	8.85	
123 117-77 5.43 YPR028W 118-73 6.57 47, 48, 73, 77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-48 6.80 122-47 6.98 122-48 6.32 123-47 6.66 123-47 6.66 123-47 6.66 123-48 7.10 YDL015C- YDL015C 92-167 8.27 YBR110W 92, 95, 97, 98 92-168 9.69 95-167 6.93 95-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-167 6.80 98-167 6.01 98-168 5.35 98-170 6.01 98-168 5.35 98-170 6.01		120, 121, 122,	117-73	8.55	
YPR028W 118-73 6.57 47, 48, 73, 77 118-77 6.77 120-48 9.91 120-73 5.22 120-77 9.08 121-47 9.15 121-48 6.80 121-73 8.10 122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YDL015C 92, 95, 97, 98 92-168 95-167 6.93 YBR110W 95-168 167, 168, 170 97-167 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-167 6.80 98-168 5.35 98-168 5.35 98-167 6.01		123	117-77	5.43	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			118-73	6.57	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		YPR028W	118-77	6.77	
I20-73 5.22 120-77 9.08 121-47 9.15 121-48 6.80 121-73 8.10 122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C 92-167 8.27 YBR110W 92, 95, 97, 98 92-168 9.69 95-167 6.93 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-168 5.35 98-170 6.01 YDL015C- YDL015C 98-148 3.16 model 10		47, 48, 73, 77	120-48	9.91	
YDL015C- YBR110W YDL015C YDL015C 92-168 9.68 98-167 6.82 97-170 7.39 98-168 5.35 98-160 98-160			120-73	5.22	
121-47 9.15 121-48 6.80 121-73 8.10 122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YDL015C 92-167 8.27 YBR110W 92, 95, 97, 98 92-168 9.69 95-167 6.93 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-168 5.35 98-170 6.01			120-77	9.08	
121-48 6.80 121-73 8.10 122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YDL015C 92-167 8.27 YBR110W 92, 95, 97, 98 92-168 9.69 YBR110W 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01			121-47	9.15	
121-73 8.10 122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YDL015C 92, 95, 97, 98 92-167 8.27 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-168 5.35 98-170 6.01			121-48	6.80	
122-47 6.98 122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YBR110W YDL015C 92-167 8.27 92, 95, 97, 98 92-168 9.69 YBR110W 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01			121-73	8.10	
122-48 6.32 123-47 6.66 123-48 7.10 YDL015C- YBR110W YDL015C 92-167 8.27 92, 95, 97, 98 92-168 9.69 YBR110W 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01			122-47	6.98	
123-47 6.66 123-48 7.10 YDL015C- YDL015C 92-167 8.27 YBR110W 92, 95, 97, 98 92-168 9.69 YBR110W 95-167 6.93 95-167 YBR110W 95-168 8.87 167, 168, 170 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01 model 10			122-48	6.32	
YDL015C- YBR110W YDL015C 92-167 8.27 model 7 YBR110W 92, 95, 97, 98 92-168 9.69 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-168 6.41 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-168 5.35 98-170 6.01 YDL015C- YDL015C 89-148 3.16 model 10			123-47	6.66	
YDL015C- YBR110W YDL015C 92-167 8.27 model 7 YBR110W 92, 95, 97, 98 92-168 9.69 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-167 6.80 98-168 5.35 98-170 6.01 YDL015C- YDL015C 89-148 3.16 model 10			123-48	7.10	
YBR110W 92, 95, 97, 98 92-168 9.69 YBR110W 95-167 6.93 YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01	YDL015C-	YDL015C	92-167	8.27	model 7
YBR110W 95-167 6.93 167, 168, 170 95-168 8.87 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01	YBR110W	92, 95, 97, 98	92-168	9.69	
YBR110W 95-168 8.87 167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01			95-167	6.93	
167, 168, 170 97-167 6.82 97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01		YBR110W	95-168	8.87	1
97-168 6.41 97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01		167, 168, 170	97-167	6.82	1
97-170 7.39 98-167 6.80 98-168 5.35 98-170 6.01			97-168	6.41	1
98-167 6.80 98-168 5.35 98-170 6.01 YDL015C- XDL015C 89-148 3.16 model 10			97-170	7.39	1
98-168 5.35 98-170 6.01 YDL015C- XDL015C			98-167	6.80	1
YDL015C- YDL015C 89-148 3.16 model 10			98-168	5.35	1
YDL015C- YDL015C 89-148 3.16 model.10			98-170	6.01	1
	YDL015C-	YDL015C	89-148	3.16	model 10

YBR094W	89, 90, 99, 101	89-149	6.30	
		89-150	7.14	
	YBR094W	90-148	4.60	
	112, 148, 149,	90-149	7.74	
	150	90-150	8.34	
		99-112	9.39	
		99-148	6.50	
		99-149	7.60	
		99-150	6.25	
		101-112	6.37	
		101-148	6.78	
		101-149	5.80	
		101-150	3.66	
YDL015C-	YDL015C	78-1664	5.38	model 6
YKL182W	78, 101, 103	101-1664	9.00	
	YKL182W	101-1792	7.26	
	1664, 1792, 1797	101-1797	9.65	
		103-1664	9.05	
		103-1797	9.80	

A.2. Proteins with Predicted Partners

Table A.2. The protein pair, hotspots on each protein, and the distances between hotspot residues in proteins with predicted partners

Protein	Hotspots residues	Hotspots at Potein	Distance (Å)	Number of the
complex	of the identified	A and Protein B		selected
	model			complex model
YDR294C-	YDR294C	429-201	6.17	model 7
YHL135C	429, 432, 436, 437,	432-92	9.87	
	439, 440	432-94	9.70	
		432-201	7.55	-
	YHL135C	436-91	8.93	•
	90, 91, 92, 94, 201,	436-92	8.79	•
	203	436-94	6.47	•
		436-201	9.06	-
		437-94	9.54	•
		437-201	9.42	-
		437-203	8.94	-
		439-91	7.78	
		439-92	9.52	-
		439-94	8.92	

		440-90	8.07	
		440-91	6.55	-
		440-92	9.42	-
YER019W-	YER019W	158-332	5.28	model 10
YHL020C	158, 160, 211	158-333	5.28	-
		158-336	5.19	-
	YHL020C	158-337	5.92	-
	332, 333, 336, 337,	158-340	9.97	-
	340	160-336	7.28	-
		160-337	6.79	-
		160-340	7.63	-
		211-332	6.78	-
		211-333	8.87	-
		211-336	4.50	-
		211-337	8.10	-
		211-340	8.29	-
YJL134W-	YJL134W	103-178	8.00	model 3
YAR033W	103, 106, 107, 108	103-180	4.83	-
		106-180	8.56	-
	YAR033W	106-198	4.26	-
	178, 180, 198	107-180	9.34	-
	-	108-180	8.43	
		108-198	9.07	-
YJL134W-	YJL134W	106-219	9.42	model 3
YGL051W	106, 107, 109, 110,	107-149	9.86	
	111, 136	107-219	8.17	
		109-149	4.82	
	YGL051W	109-150	8.21	
	149, 150, 219	110-149	4.95	
		110-150	8.57	
		111-149	5.72	
		111-150	8.28	
		136-149	5.81	
		136-150	6.34	
YGR143W-	YGR143W	585-521	5.22	model 3
YKL126W	585, 586, 589, 625,	585-523	5.60	1
	692, 696	585-524	8.58	
		586-521	6.89	

YKL126W	586-523	4.77	
494, 521, 523, 524	586-524	7.31	
	589-523	9.04	
	625-523	10.00	
-	625-524	9.99	
-	692-494	6.95	
-	696-494	8.72	
-	696-521	6.95	
YKR053C	98-164	8.55	model 5
98, 102, 103, 185	102-148	8.59	
-	102-149	6.75	
YAR033W	102-150	8.84	-
148, 149, 150, 164	102-164	6.8	-
-	103-149	7.94	-
-	103-150	8.49	
-	103-164	9.94	-
-	185-148	6.32	-
-	185-149	4.92	
-	185-150	6.28	
YKR053C	115-167	7.91	model 4
115, 119, 233, 239	119-154	9.52	-
-	119-165	9.56	-
YGL051W	119-166	6.91	-
154, 165, 166, 167	119-167	4.86	
-	233-165	4.95	-
-	233-166	7.00	_
	255-100	7.00	
-	233-167	8.94	_
-	233-160 233-167 239-165	8.94 9.44	_
-	233-160 233-167 239-165 239-166	7.00 8.94 9.44 9.74	_
	233-160 233-167 239-165 239-166 239-167	7.00 8.94 9.44 9.74 7.02	-
YGR212W	233-160 233-167 239-165 239-166 239-167 222-91	7.00 8.94 9.44 9.74 7.02 6.63	model 2
YGR212W 222, 224, 384	233-160 233-167 239-165 239-166 239-167 222-91 222-92	7.00 8.94 9.44 9.74 7.02 6.63 8.72	 model 2
YGR212W 222, 224, 384	233-160 233-167 239-165 239-166 239-167 222-91 222-92 222-93	7.00 8.94 9.44 9.74 7.02 6.63 8.72 6.87	model 2
YGR212W 222, 224, 384 YHR135C	233-160 233-167 239-165 239-166 239-167 222-91 222-92 222-92 222-93 222-94	7.00 8.94 9.44 9.74 7.02 6.63 8.72 6.87 9.22	model 2
YGR212W 222, 224, 384 YHR135C 91, 92, 93, 94	233-160 233-167 239-165 239-166 239-167 222-91 222-92 222-93 222-93 222-94 224-91	7.00 8.94 9.44 9.74 7.02 6.63 8.72 6.87 9.22 9.65	model 2
YGR212W 222, 224, 384 YHR135C 91, 92, 93, 94	233-160 233-167 239-165 239-166 239-167 222-91 222-92 222-93 222-93 222-94 224-91 384-91	7.00 8.94 9.44 9.74 7.02 6.63 8.72 6.87 9.22 9.65 5.58	model 2
YGR212W 222, 224, 384 YHR135C 91, 92, 93, 94	233-160 233-167 239-165 239-166 239-167 222-91 222-92 222-93 222-93 222-94 224-91 384-91 384-92	7.00 8.94 9.44 9.74 7.02 6.63 8.72 6.87 9.22 9.65 5.58 5.77	
	YKL126W 494, 521, 523, 524 494, 521, 523, 524 YKR053C 98, 102, 103, 185 YAR033W 148, 149, 150, 164 148, 149, 150, 164 YKR053C 115, 119, 233, 239 YGL051W 154, 165, 166, 167	YKL126W586-523494, 521, 523, 524586-524589-523625-523625-524692-494696-494696-494696-521696-521YKR053C98-16498, 102, 103, 185102-148102-149102-150YAR033W102-150148, 149, 150, 164103-164103-150103-164103-164185-149103-150103-164185-148185-149185-150115-167115, 119, 233, 239119-154154, 165, 166, 167119-166154, 165, 166, 167119-167233-165232-166	YKL126W 586-523 4.77 494, 521, 523, 524 586-524 7.31 589-523 9.04 625-523 10.00 625-524 9.99 692-494 6.95 696-494 8.72 696-521 6.95 YKR053C 98-164 8.55 98, 102, 103, 185 102-148 8.59 102-149 6.75 9.4 YAR033W 102-150 8.84 148, 149, 150, 164 102-164 6.8 103-149 7.94 103-150 103-150 8.49 103-164 103-150 8.49 103-164 103-150 8.49 103-164 115, 119, 233, 239 115-167 7.91 115, 119, 233, 239 119-154 9.52 YGL051W 119-165 9.56 YGL051W 119-166 6.91 154, 165, 166, 167 119-167 4.86 233-165 4.95 105.65

A.3. Clusters\Modules

Protein	Model	Hotspots residues of	Hotspots at Potein	Distance (Å)
complex		the model	A and Protein B	
YOR171C-	Model 1	YOR171C	243-184	9.85
YOR034C		243, 267, 381	243-213	9.35
			243-214	9.41
		YOR034C	267-184	8.82
		177, 184, 213, 214	381-177	9.44
	Model 2	YOR171C		
		359	359-250	9.94
		YOR034C		
		250		
	Model 3	No Hotspot found	-	-
	Model 4	YOR171C	357-237	9.11
		357, 364, 368, 369,	357-238	8.11
		370	357-240	8.61
		VOD024C	364-238	9.35
		Y OK 034C	364-240	9.38
		232, 237, 238, 240,	368-232	6.92
			368-237	6.20
			368-238	4.49
			368-240	9.03
			369-232	5.91
			369-237	7.22
			369-238	4.74
			369-240	7.51
			370-232	9.32
			370-237	8.42
			370-238	4.81
	N 115		370-240	5.32
	Model 5	Distance of Hotspots	-	-
	Madal 6	> 10A VOD171C		
	Wodel o	10R1/1C 333	333 114	6.83
		555	555-114	0.05
		YOR034C		
		114		
	Model 7	YOR171C	370-203	9.27
		370, 391	370-204	5.67
			391-203	8.88
		YOR034C		
		203, 204, 240	391-240	6.09
	Model 8	YOR171C	359-240	9.35
		359, 360		

Table A.3. The protein pair, hotspots on each protein, and the distances between hotspot residues of proteins in Cluster A for 10 models

			360-240	8.26
		YOR034C	200 210	0.20
		240		
	Model 9	VOR171C	236 250	0.72
	Widdel 9	236 370	230-230	9.12
		250, 579		
		VOP034C	270 215	0.70
		250, 215	579-215	9.19
	Madal 10	Distance of Hotenet >		
	Widdel 10	10Å	-	-
VOD024C	Model 1	10A VOD024C	222.260	0.76
10R034C-	Model 1	1 OK034C	232-300	9.70
TORI/IC		252, 250, 258, 244,	232-301	7.32
		239	236-361	8.54
		VOD171C	238-270	9.29
		YURI/IC	238-360	9.27
		270, 359, 360, 361	238-361	5.87
			244-359	9.42
			259-360	6.79
			259-361	7.57
	Model 2	No Hotspot found	-	-
	Model 3	YOR034C	175-294	4.87
		175, 177, 212, 213,	177-294	9.98
		214	212-240	6.82
			213-240	3.77
		YOR171C	214-240	6.17
		240, 294	214-294	7.69
	Model 4	YOR034C		
		250		
			250-399	4.72
		YOR171C		
		399		
	Model 5	Distance of Hotspots	_	-
		> 10Å		
	Model 6	YOR034C	132-399	4.87
		132, 145, 169, 174,	132-401	8.31
		175, 176	145-361	9.44
		-	169-374	7.80
		YOR171C	169-381	9.85
		361, 362, 374, 381,	174-362	8 75
		399, 401	174-381	9.02
		-	175 362	0.32
			175 201	9.32 8.76
			176.262	0.20
			176.274	1.38
			1/0-3/4	/./0
		HODGOVG	1/6-381	8.37
	Model 7	YOR034C	62-408	6.68
		62, 63		
			63-408	5 49
		YOR171C	05 100	5.77
		408		

Model 8	No Hotspot found	-	-
Model 9	YOR034C	204-373	8.62
	204, 212, 240, 245	204-387	6.44
		212-408	9.66
	YOR171C	240-391	6.09
	387, 391, 408	245-408	6.54
Model 10	YOR034C	260-234	9.60
	260	260-235	8.79
		2 (0, 22 (<u> </u>
	YOR171C	260-236	6.90
	234, 235, 236		

Table A.4.	The protein pair,	hotspots on	each protein,	and the d	listances	between	hotspot
		residues of p	proteins in Clu	uster B			

Protein complex	Hotspots residues	Hotspots at Potein	Distance (Å)	Number of the
_	of the identified	A and Protein B		selected complex
	model			model
YMR298W-	YMR298W	44-112	6.24	model 3
YMR298W	44, 46	44-114	5.52	
		46-74	6.29	
	YMR298W	46-112	5.05	
	74, 112, 114	46-114	9.12	
YHL003C-	YHL003C	154-51	7.62	model 1
YMR298W	154, 186, 187	186-51	5.64	
		186-52	5.15	
	YMR298W	186-53	5.71	
	51, 52, 53, 62	186-62	9.59	
		187-51	6.03	
		187-52	3.73	•
		187-53	6.20	
YGR060W-	YGR060W	212-4	4.61	model 8
YGR060W	212, 216, 223, 269,	216-158	9.51	
	274, 275	223-4	9.88	
		269-161	9.74	
	YGR060W	274-252	9.09	
	4, 158, 161, 252	275-252	7.21	
YMR298W-	YMR298W	81-230	7.36	model 6
YHL003C	81, 90, 114, 115,	90-205	9.06	
	116	90-230	7.10	
		114-230	9.10	
	YHL003C	114-233	4.00	
	205, 230, 233, 234	114-234	5.01	1
		115-233	7.13	1
		115-234	8.07	

		116-233	8.44	
		116-234	9.54	
YGR060W-	YGR060W	65-307	9.67	model 5
YHL003C	65, 191, 223	191-85	9.31	
		223-85	5.84	
	YHL003C 85, 87, 307	223-87	9.50	

Table A.5. The protei	n pair, hotspots on each	protein, and the c	listances between l	hotspot
	residues of protei	ns in Cluster C		

Protein complex	Hotspots residues	Hotspots at Potein	Distance (Å)	Number of the
	of the identified	A and Protein B		selected complex
	model			model
YMR298W-	YMR298W	44-112	6.24	model 3
YMR298W	44, 46	44-114	5.52	
		46-74	6.29	
	YMR298W	46-112	5.05	
	74, 112, 114	46-114	9.12	
YHL003C-	YHL003C	154-51	7.62	model 1
YMR298W	154, 186, 187	186-51	5.64	
		186-52	5.15	
	YMR298W	186-53	5.71	
	51, 52, 53, 62	186-62	9.59	
		187-51	6.03	
		187-52	3.73	
		187-53	6.20	
YGR060W-	YGR060W	212-4	4.61	model 8
YGR060W	212, 216, 223, 269,	216-158	9.51	
	274, 275	223-4	9.88	
		269-161	9.74	
	YGR060W	274-252	9.09	
	4, 158, 161, 252	275-252	7.21	
YMR298W-	YMR298W	81-230	7.36	model 6
YHL003C	81, 90, 114, 115,	90-205	9.06	
	116	90-230	7.10	
		114-230	9.10	
	YHL003C	114-233	4.00	
	205, 230, 233, 234	114-234	5.01	
		115-233	7.13	
		115-234	8.07	
		116-233	8.44	
		116-234	9.54	1
YGR060W-	YGR060W	65-307	9.67	model 5
YHL003C	65, 191, 223	191-85	9.31	1
		223-85	5.84	1

YHL003C	223-87	9.50	
85, 87, 307			

REFERENCES

- Aloy, P. and R.B. Russell., 2002, "InterPreTS: protein Interaction Prediction through Tertiary Structure", Bioinformatics, Vol. 19, No. 1, pp. 161-162.
- Aytuna, A.S., et al., 2005, "Prediction of protein- protein interactions by combining structure and sequence conservation in protein interfaces", Bioinformatics, Vol. 21, No. 12, pp. 2850-2855.
- Chen, Y., et al., 2007, "3D-partner: a web server to infer interacting partners and binding models", Nucleic acid Research, Vol. 35, Web server issue W561-W567.
- Cockell, S.J., et al., 2006, "Stucture-based evaluation of in silico predictions of protein-protein interactions using Comparative Docking", Bioinformatics, Vol. 23, No. 5, pp. 573-581.
- Darnell, S. J., D. Page, and J. C. Mitchell, 2007, "An automated decision-tree approach to predicting protein interaction hot spots", Proteins 2007; 68:813–823, Wiley-Liss, Inc., DOI: 10.1002/prot.21474.
- Darnell, S. J., L. LeGault, and J. C. Mitchell, 2008, "KFC Server: interactive forecasting of protein interaction hot spots", Nucleic Acids Research, 2008, Vol. 36, W265–W269, Web Server issue doi:10.1093/nar/gkn346.
- Dickson, R.C., 2008, "New insights into sphingolipid metabolism and function in budding yeast", Journal of Lipid Research, Vol. 49, pp. 909-921, DOI 10.1194/jlr.R800003-JLR200.
- Dohkan, S., et al., 2006, "Improving the performance of an SVM-based method for predicting protein-protein interactions", In Silico Biology 6, 0048, Bioinformation Systems e.V.
- Durmuş, S., 2006, Constraint-Based Analysis of Signaling Networks: Yeast Signal Transduction and Mammalian Epidermal Growth Factor Receptor Signaling, M.S. Thesis, Boğaziçi University.

- Eswar, N., et al., 2007, "Comparative Protein Structure Modeling Using MODELLER", Current Protocol in Protein Science 2.9.1-2.9.31, November 2007, DOI: 10.1002/0471140864.ps0209s50.
- Fukuhara, N. and T. Kawabata, 2008, "HOMCOS: a server to predict interacting protein pairs and interacting sites by homology modeling of complex structures", Nucleic Acid Research, Vol. 36, Web Server issue W185-W189 doi:10.1093/nar/gkn218.
- Gaffard, N., et al., 2002, "*IPPRED: server for proteins interactions inference*", Bioinformatics, Vol. 19, No. 7, pp. 903-904.
- Han, D., et al., 2004, "PreSPI: a domain based prediction system for protein-protein interaction", Nucleic Acids Research, Vol. 32, No. 21, pp. 6312-6320.
- Kim, D.E., D. Chivian and D. Baker, 2004, "Protein structure prediction and analysis using the Robetta server", Nucleic Acids Research, Vol. 32, W526–W531, Web Server issue, DOI: 10.1093/nar/gkh468, Oxford University Press.
- K. Ozbayraktar, F. B., and K.O. Ulgen, 2009, "Molecular facets of sphingolipids: Mediators of diseases", Biotechnol. J., DOI 10.1002/biot.200800322.
- Kortemme, T., D. E. Klm, and D. Baker, 2004, "Computational Alanine Scanning of Protein-Protein Interfaces", pl2. [DOI: 10.1126/stke.2192004pl2].
- Li, Y., et al., 2005, "Magnitude of the Hydrophobic Effect at Central versus Peripheral Sites in Protein-Protein Interfaces", Elsevier, Structure, Vol. 13, 297–307, DOI 10.1016/j.str.2004.12.012.
- Madej, T., J.-F. Gibrat, and S.H. Bryant, 1995, "Threading a Database of Protein Cores", PROTEINS: Structure, Function, and Genetics, 23:356-369.

- Marti-Renom, M.A., B. Yerkovich, A. Sali, 2002, "Modeling Protein Structure From Its Sequence", Laboratories of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, The Rockefeller University, 1230 York Ave, New York, NY 10021, USA.
- Moreira, I. S., P. A. Fernandes, and M. J. Ramos, 2007, "Hot spots—A review of the protein– protein interface determinant amino-acid residues", Proteins, 68:803–812, Wiley-Liss, Inc., DOI: 10.1002/prot.21396.
- Ogmen, U., O. Keskin, A.S Aytuna, R. Nussinov and A.Gursoy, 2005, "PRISM: protein interactions by structural matching", Nucleic Acids Research, Vol. 33, Web Server issue W331–W336, doi:10.1093/nar/gki585.
- Ogretmen, B., 2006, "Sphingolipids in cancer: Regulation of pathogenesis and therapy", FEBS Letters 580, pp. 5467–5476.
- Ohanian, J., and V. Ohanian, 2001, "Sphingolipids in mammalian cell signalling", Cell. Mol. Life Sci., 58, pp. 2053–2068, Birkhäuser Verlag, Basel.
- Orfan, Y., and B. Rost, 2007, "Protein–Protein Interaction Hotspots Carved into Sequences", PLoS Comput Biol 3(7): e119. doi:10.1371/journal.pcbi.0030119.
- Pitre, S., et al., 2006, "PIPE: a protein-protein interaction prediction engine based on the reoccuring short polypeptide sequences between known interacting protein pairs", BMC Bioinformatics, 7:365, doi:10.1186/1471-2105-7-365.
- Rousseau, F. and J. Schymkowitz, 2005, "A systems biology perspective on protein structural Dynamics and signal transduction", Current Opinion in Structural Biology, Vol. 15, pp. 23-30.
- Sanchez, I.E., P. Beltrao, F. Schymkowitz, J. Ferkinghoff-Borg, J., Rousseau, F., Serrano, L., 2008, "Genome-Wide Prediction Prediction of SH2 Domain Targets Using Structural Information and the FoldX Algorithm", PNAS Comput Biol 4(4): e1000052.

- Schwede, T., J. Kopp, N. Guex., M. C. Peitsch, 2003, "SWISS-MODEL: an automated protein homology-modeling server", Nucleic Acids Research, Vol. 31, No. 13 pp. 3381–3385, DOI: 10.1093/nar/gkg520.
- Shen, J., et al., 2006, "Predicting protein-protein interactions based only on sequences information", PNAS, Vol. 104, No. 11, pp. 4337-4341.
- Shoemaker, B.A., and A.R. Panchenko, 2007, "Depichering Protein-Protein Interactions.Part II. Computational methods to predict protein and domain interaction partners", Plos Comput Biol 3(3): e43. doi:10.1371/journal.pcbi.0030043.
- Sherman, F., 2002, "Getting Started with Yeast", Methods Enzymol. 350, 3-41.
- Tien, A., et al., 2003, "Identification of the Substrates and Interaction proteins of Aurora Kinases from a Protein Interaction Model", pp. 93-103, MCP Papers in Press.
- Tovchigrechko, A., and I.A. Vakser, 2006, "GRAMM-X public web server for protein-protein Docking", Nucleic Acids Research, 2006, Vol. 34, W310-W314, Web Server issue doi:10.1093/nar/gkl206.
- Worrall, D., C. K-Y. Ng, A. M. Hetherington, 2003, "Sphingolipids, new players in plant signaling", TRENDS in Plant Science, Vol.8, No.7, pp. 317-320, Elsevier, July.
- Zhu, H. et al. 2006, "NOXclass: prediction of protein-protein interaction types", BMC Bioinformatics, 7:27 doi:10.1186/1471-2105-7-27.