EFFECTS OF RAPAMYCIN AND CAFFEINE ON TOR SIGNALING PATHWAY IN SACCHAROMYCES CEREVISIAE

by

Güray Kuzu

B.S., Chemical Engineering, Bogazici University, 2007

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfilment of the requirements for the degree of Master of Science

Graduate Program in Chemical Engineering Boğaziçi University 2009

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisors, Prof. Betül Kırdar and Assist. Prof. Elif Özkırımlı Ölmez, for their endless support. Everything they taught during my thesis is invaluable for me. It was a great honour for me to work under their supervision.

I would like to thank my thesis committee members, Prof. Zeynep Ilsen Önsan, Prof. Kutlu Ülgen and Assoc. Prof. Ebru Toksoy Öner for sparing their precious time for my thesis.

I gratefully acknowledge the financial support provided by TÜBİTAK-BİDEB graduate scholarship.

I gratefully thank to Elif Dereli for her patience and help during the experiments. This study could not be completed in that period without her. In addition, I would like to thank Deniz Rende very much for her help in topology study.

I am sincerely grateful to Ayça Cankorur, Duygu Dikicioğlu and Esra Börklü Yücel for their help in the organization of experiments. Besides, I would like to thank to the people that I shared a life with in Biosystems Engineering Research Laboratories; to Assist. Prof. Kazım Yalçın Arga, Ayça Cankorur, Aylin Şanoviç, Aysun Eren, Betül Kavun Özbayraktar, Deniz Rende, Dicle Hasdemir, Duygu Dikicioğlu, Ece Acuner, Ebru Demirci, Elif Dereli, Erkan Karabekmez, Esra Börklü Yücel, Pelin Ümit, Saliha Durmuş Tekir, Yasemen Güngörmez...

I would also like to thank to the beautiful people who always have a place in my heart.

Last but not least, I would like to thank to caffeine for its help in my sleepless nights.

ABSTRACT

EFFECTS OF RAPAMYCIN AND CAFFEINE ON TOR SIGNALING PATHWAY IN SACCHAROMYCES CEREVISIAE

The aim of this study is to understand the effect of caffeine and rapamycin on the growth of yeast cells and identify flux changes in the presence of these chemicals in yeast. The repression effect of different concentrations of caffeine and rapamycin on the growth of the yeast cells in both F1 and YPD media was observed. The higher the concentration of the chemicals, the more growth of the yeast cells was repressed. However the repression effects of caffeine and rapamycin were found to have different characteristics. Yeast cells treated with rapamycin or lower amount of caffeine for a longer time of period reached higher optical density values compared to the untreated cells, which may indicate extending life span effect of the chemicals. Well-controlled batch cultivations of Saccharomyces cerevisiae BY4743 were carried out inYPD media and samples were collected to obtain biomass and extracellular metabolite profiles in the absence or presence of chemicals. This data was used in flux balance analysis (FBA) to determine the distribution of metabolic fluxes under these conditions by using whole genome models. Ethanol production was successfully predicted by using FBA when the objective function was chosen as the maximization of ethanol production. The fluxes successfully predicted by FBA in the absence and presence of caffeine were analyzed by clustering via selforganizing maps methodology. A decrease in the magnitude of fluxes in glucose fermentation and glycerol biosynthesis pathways was observed, which may indicate that caffeine represses respiration and fermentation. Additionally, since it was reported that both caffeine and rapamycin affect the the TOR signalling pathway, a system based modular approach based on literature curated protein-protein interactions was developed within the framework for this thesis. TOR signalling network was found to have a scalefree property. Functional modules were identified using Bron-Kerbosch algorithm. Ras1p and Tor1p were the most common proteins among more than 3 member modules, indicating a possible interaction between TOR and RAS signalling. Tor1p and Gln3p were

found to have a central role in TOR signalling network. The proteins in modules are significantly annotated to gene ontology terms, indicating the organized structure of the TOR signalling network.

ÖZET

SACCHAROMYCES CEREVISIAE'DA RAPAMİSİN VE KAFEİNİN TOR SİNYAL İLETİ YOL İZİ ÜZERİNDEKİ ETKİLERİ

Bu tezin amacı rapamisin ve kafeinin maya hücrelerinin büyümesi üzeri üzerindeki etkilerini incelemek ve bu kimyasalların varlığında metabolik yollar üzerindeki akı değişimlerini incelenmektir F1 ve YPD ortamında gerçekleştirilen çalışmalarda kafein ve rapamisinin maya hücrelerinin büyümesini baskılayan etkileri gözlemlenmiş, fakat etkilerinin farklı olduğu bulunmuştur. Daha uzun zaman rapamisin ya da düşük miktarda kafein uygulanan hücreler uygulanmayanlara nazaran daha yüksek optik yoğunluk değerlerine ulaşmıştır; bu da kimyasalların ömür uzatma etkisine sahip olduklarını işaret edebilir. Saccharomyces cerevisiae BY4743 iyi kontrol edilen fermentörlerde kesikli üretim ile YPD ortamnda büyütülmüş, kimyasalların varlıklarında ve yokluklarındaki biyokütle ve metabolit profillerini elde etmek amacıyla örnekler toplanmıştır. Elde edilen bulgular, tüm genom modeli ve Akı Denge Analizi (AKD) kullanılarak bu kimyasalların varlığı ve yokluğundaki metabolik akı dağılımı belirlenmiştir. Etanol üretiminin en iyileştirilmesi objektif fonksiyon olarak kullanıldığında etanol üretimi AKD ile başarılı bir şekilde öngörülebimiştir. Kafeinin varlığında ve yokluğunda en iyi öngörülebilen koşullarda saptanan akılar kendi kendine düzenlenen şemalar yöntemi ile kümelere ayrılarak incelenmiştir. Kafein varlığında glikoz fermantasyon ve gliserol biyosentez yol izlerindeki akıların büyüklüklerinde azalma gözlemlenmesi, kafeinin solunumu ve fermantasyonu baskılayacı etkisi olduğunu işaret etmiştir. Bunlara ek olarak kafein ve rapamisinin TOR sinyal ileti yolu üzerinde etkileri bilindiği için, literatürde bu yol üzerinde islevi olduğu bilinen proteinlerden oluşturulan bir protin-protein etkileşim ağını temel alan sistem bazlı bir modüler yaklaşım geliştirilmiştir. TOR sinyal ileti ağının ölçekten bağımsız özelliğe sahip olduğu görülmüştür. Bron-Kerbosch işlem yolu kullanılarak işlevsel birimler saptanmıştır. Üçten fazla üyeye sahip birimlerde en yaygın olarak Ras1p ve Tor1p proteinlerinin bulunması, TOR ve RAS sinyal ileti yolizlerinin olası bir etkileşimini sezindirmektedir. Tor1p ve Gln3p'nin TOR sinyal ağında merkez işleve

sahip oldukları bulunmuştur. Birimlerdeki proteinlerin anlamlı bir biçimde gen ontoloji terimleri ile ilişkilendirilmeleri TOR sinyal ağının düzenli bir yapıya sahip oluğu işaret etmektedir.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ÖZET	vi
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	XV
LIST OF SYMBOLS / ABBREVIATIONS	xvii
1. INTRODUCTION	1
1.1. Two Drugs: Rapamycin and Caffeine	1
1.2. TOR, A Central Regulator	2
1.3. TOR Signalling	5
1.3.1. TOR Signalling as a Response to Nitrogen Sources	6
1.3.2. TOR Signalling as a Response to Mitochondrial Dysfunction	9
1.3.3. TOR Signalling as a Response to Carbon Sources	19
1.3.4. TOR Signalling as a Response to Stress	20
1.4. TOR Signalling and Regulation of Important Cellular Events	23
1.4.1. TOR and Regulation of Amino Acid Permease Activity	23
1.4.2. TOR and Ribosomal Biogenesis	27
1.4.2.1. Regulation of Pol I- and Pol III-Dependent Transcription	28
1.4.2.2. Regulation of Pol II-Dependent Transcription	30
1.4.3. TOR and Regulation of Cell Proliferation	34
1.4.4. TOR and Aging	34
1.4.5. TOR and Autophagy	37
1.5. Effect of Caffeine on TOR Signalling	38
1.6. Flux Balance Analysis	39
1.7. Topological Study of Protein-Protein Interactions	40
1.8. The Aim of the Thesis	41
2. MATERIALS AND METHODS	43
2.1. Materials	43
2.1.1. Microorganism	43

2.1	.2. Chemicals and Disposable Materials
	2.1.2.1. Culture Media
	2.1.2.2. Kits
	2.1.2.3. Miscellaneous
2.1	.3. Laboratory Equipment
2.2. M	ethods
2.2	.1. Sterilization
2.2	.2. Cultivation
2.2	.3. Sample Preparation and Storage
2.2	.4. Enzymatic Analyses for the Measurement of Metabolite Concentrations
	2.2.4.1. D-Glucose Concentration Measurement
	2.2.4.2. Ethanol Concentration Measurement
	2.2.4.3. Glycerol Concentration Measurement
2.2	.5. Biomass Measurement
2.2	.6. Determination of Growth Rate
2.2	.7. Determination of Maximum Growth Rate
2.2	.8. Flux Balance Analysis
2.2	.9. Topological Study of Protein-Protein Interactions
2.2	.10. Self-Organizing Maps
3. RESU	LTS
3.1. E	ffect of the Caffeine and Rapamycin on the Growth Characteristics of Yeast
C	Cells in F1 Medium
3.2. E	ffect of the Caffeine and Rapamycin on the Growth Characteristics of Yeast
3.2. Co	1. Crowth Characteristics of Veget Cells in YPD Medium
3.2	2. C = (1. C) = (1. C
3.2	2. Growth Characteristics of Yeast Cells in the Presence of Carreine
3.2	.3. Comparison of Growth Characteristics of Yeast Cells in the Absence and
	the Presence of Caffeine
5.3. Fl	ux Balance Analysis
3.4. Fl	ux Analysis via Clustering by Self-Organizing Maps
3.5. To	ppological study of TOR signalling proteins
4. DISCU	799101N

5. CONCLUSIONS AND RECOMMENDATONS	100
5.1. Conclusions	100
5.2. Recommendations	101
APPENDIX A: METABOLITES AND REACTIONS DESCRIBED IN FBA AND	
FLUX VALUES PREDICTED BY FBA	103
APPENDIX B: PROTEINS, PROTEIN INTERACTONS, MODULES AND	
TOPOLOGICAL STUDY of TOR SIGNALLING NETWORK	172
APPENDIX C: CODE OF FLUX BALANCE ANALYSIS PROGRAMME	197
REFERENCES	200

LIST OF FIGURES

Figure 1.1. Schematic representation of TORC1 and its mode of action	3
Figure 1.2. TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) of S. cerevisiae	4
Figure 1.3. TOR proteins respond to low-quality of both carbon and nitrogen sources (Schamji <i>et al.</i> , 2000)	6
Figure 1.4. Regulation of Gln3p by TOR (Crespo et al., 2002)	8
Figure 1.5. Retrograde control related to TCA cycle (Butow et al., 2004)	10
Figure 1.6. Mks1p and Bmh1p/2p act as a negative regulator of retrograde signalling	12
Figure 1.7. Phosphorylation of Mks1p under TOR control (Dilova et al., 2004)	13
Figure 1.8. Regulation of <i>RTG</i> -Dependent Gene Expression (Butow <i>et al.</i> , 2004)	15
Figure 1.9. Regulation of NCR and RTG target genes by TOR and retrograde signalling (Giannattasio <i>et al.</i> , 2005)	16
Figure 1.10. TOR signalling via the interaction of Tap42p-phosphatases	17
Figure 1.11. Possible interactions among Tip41p, Tap42p, Sit4p (Inoki et al., 2005)	18
Figure 1.12. Diagram of TOR signaling in yeast (De Virgilio et al., 2006)	20
Figure 1.13. Regulation TOR signalling by amino acids, EGO and VPS components	26
Figure 1.14. Transcriptional control of ribosome biogenesis by TORC1	28
Figure 1.15. Transcriptional regulation of ribosome biogenesis by TOR	30
Figure 1.16. Regulation of RP genes by TOR via Fhl1p (Martin et al., 2004)	32
Figure 1.17. Effect of cellular ROS in life span (Scheike et al., 2007)	36

Figure 1.18. Role of Msn2p/4p in life span extension (Medvedik <i>et al.</i> , 2007)	37
Figure 1.19. Comparison of expression data from cells treated with caffeine, rapamycin and $nda24$ mutant (Kuranda <i>et al.</i> 2006)	30
	57
Figure 3.1. Growth curve of yeast cells under chemical treatment	59
Figure 3.2. Growth curve of yeast cells under chemical treatment	60
Figure 3.3. Growth curve of yeast cells under chemical treatment	61
Figure 3.4. Growth curves of yeast cells in the presence of rapamycin and caffeine in YPD	62
Figure 3.5. Growth curve of yeast cells under rapamycin (400 ng/ml as the final	
concentration) and caffeine (15-50 mM as the final concentration)	
treatment in YPD medium (treatment at OD 1.8)	63
Figure 3.6. Growth curve of <i>S. cerevisiae</i> BY4743 in the absence of caffeine	64
Figure 3.7. Natural logarithmic values of biomass of yeast cells grown in the absence of caffeine	65
Figure 3.8. Extracellular metabolite profile of <i>S. cerevisiae</i> BY4743 in the absence of caffeine	66
Figure 3.9. Growth curve of <i>S. cerevisiae</i> BY4743 in the presence of caffeine	67
Figure 3.10. Natural logarithmic values of biomass of yeast cells grown in the presence of caffeine	67
Figure 3.11. Extracellular metabolite profile of <i>S. cerevisiae</i> BY4743 in the presence of caffeine	68
Figure 3.12. Growth curves of yeast cells in the absence and presence of caffeine	69

Figure 3.13. Comparison of extracellular metabolite profiles in the absence and	
presence of caffeine	70
Figure 3.14. Comparison of biomass profiles in the absence and the presence of caffeine	70
Figure 3.15. The period in which the growth of the cells were predicted by FBA	71
Figure 3.16. Comparison of experimental and predicted ethanol production	74
Figure 3.17. Comparison of experimental and predicted ethanol production	74
Figure 3.18. Clusters of the fluxes obtained via SOM	75
Figure 3.19. Protein-protein interaction of TOR signalling network	77
Figure 3.20. Cumulative degree distribution of the TOR signalling proteins	79
Figure 3.21. The distribution of clustering coefficients	80
Figure 3.22. The distribution of average clustering coefficients	81
Figure 3.23. The distribution of betweenness	82
Figure 3.24. The distribution of average betweenness	82
Figure 3.25. Comparison of clique member distributions of TOR signalling and random networks	84
Figure 3.26. Distribution of particular nodes present in more than three member modules	85
Figure 4.1. Comparison of ethanol and glycerol production in the absence and presence of caffeine	93
Figure 4.2. Glycerol synthesis pathway under the caffeine treatment	94
Figure 4.3. Glucose fermentation pathway under the caffeine treatment	95

Figure 4.4. Proline biosynthesis pathway under the caffeine treatment	96
Figure 4.5. Pentose phosphate shunt pathway under the caffeine treatment	97

LIST OF TABLES

Table 3.1. Comparison of experimental and predicted biomass production in the	
absence of caffeine when the maximization of growth was objected	72
Table 3.2. Comparison of experimental and predicted biomass production in the	
presence of caffeine when the maximization of growth was objected	72
Table 3.3. Comparison of experimental and predicted ethanol production in the	
absence of caffeine when the maximization of ethanol production was	
objected	73
Table 3.4. Comparison of experimental and predicted ethanol production in the	
presence of caffeine when the maximization of ethanol production was	
objected	73
Table 3.5. Gene ontology terms annotated to the members of the clusters c0 and c3	76
Table 3.6. Topological parameters of the TOR signalling and random networks	78
Table 3.7. The frequency, $p(k)$, and cumulative frequency, $n(k)$, of nodes	79
Table 3.8. Average betweenness centralities and average clustering coefficient	83
Table 3.9. Number of cliques with respect to number of members	84
Table 3.10. Most common nodes of more than 3 member cliques	85
Table 3.11. Top scored more than three member modules	86
Table 3.12. Bottom scored more than three member modules	86
Table A.1. Metabolites described in FBA	103
Table A.2. Reactions described in FBA	119

Table A.3. Flux measurements of the cells grown in YPD medium	171
Table A.4. Members of the SOM clusters	171
Table B.1. ORF of proteins found related to TOR signalling in the literature	172
Table B.2. Protein-protein interactions found using Osprey 1.2.0	173
Table B.3. Modules found in the TOR signalling network	176
Table B.4. Topology parameters of the TOR signalling network	181
Table B.5. Score table of more than three member modules	183
Table B.6. Gene ontology terms annotated to members of the modules	185

LIST OF SYMBOLS / ABBREVIATIONS

<c></c>	Average clustering coefficient
<k></k>	Average de gree
А	Absorbance
b	Betweenness
c	Concentration
C(k)	Clustering coefficient of node k
d	Light path
1	Interaction
n	Node
n(k)	Cumulative frequency of node k
Р	Protein
p(k)	Frequency of node k
S	Substrate
t	Time
V	Flux
v	Volume
Х	Metabolite
Γ	Number of the shortest paths
3	Extinction coefficient
μ	Growth Rate
μ_{max}	Maximum growth rate
ADH	Alcohol dehydrogenase
ADP	Adenosine diphosphate
AlDH	Aldehyde dehydrogenase
AMP	Adenosine monophosphate
АМРК	AMP-activated protein kinase
ATP	Adenosine triphosphate
cAMP	Cyclic adenosine monophosphate

ChIP	Chromatin immunoprecipitation
CR	Calorie restriction
DAL	Degredation of urea and allantoin
deg	Degredation
DNA	Deoxyribonucleic nucleic acid
EC	European commission
EGO	Exit from growth arrest
FBA	Flux balance analysis
FDA	Food and drug administration
FRB	FKBP12-rapamycin binding
G6P-DH	Glucose-6-phosphate dehydrogenase
GIDH	Glutamate dehydrogenase
GK	Glycerolkinase
GTP	Glutamine triphosphate
НК	Hexokinase
HXT	Hexose transporters
L-LDH	L-lactate dehydrogenase
LS	Life span
MAT	Mating
MW	Molecular weight
NCI	National cancer institute
NCR	Nitrogen catabolite repression
NDP	Nitrogen discrimination pathway
OAA	Oxaloacetate
PDS	Post-diauxic shift
PIKK	Phosphatidylinositol kinase-related kinase
РК	Pyruvate kinase
PP2A	Protein phosphate 2A
rDNA	Ribosomal deoxyribonucleic nucleic acid
Ribi	Ribosome biogenesis
RNA	Ribonucleic nucleic acid
RP	Ribosomal protein
rRNA	Ribosomal ribonucleic nucleic acid

RTG	Retrograde
SF	Scale free
SOM	Self-organizing maps
syn	Synthesis
TCA	Tricarboxylic acid
TOR	Target of rapamycin
trans	Transformation
VPS	Vacuolar protein sorting
YPD	Yeast extract-peptone-dextrose

1. INTRODUCTION

1.1. Two Drugs: Rapamycin and Caffeine

Rapamycin (Rapamune) was approved as an immunosuppressant in 1999 by the Food and Drug Administration (FDA) and in 2000 by the European Commission (EC). Although antitumor activity of rapamycin has been found against several solid-tumor models in the National Cancer Institute (NCI) screening program, its development as a cancer therapy has been far slower yet. Formulation and stability concerns in producing a parenteral formulation are playing the main role in this slow progress (Bjornsti and Houghton, 2004).

In the 1970s, the bacterial strain, *Streptomyces hygroscopicus*, which produced a potent antifungal metabolite, was found in a soil sample from Easter Island (it is called "Rapa Nui" in the local language). After the purification of this metabolite, a macrocyclic lactone, which was named rapamycin after its place of discovery, was found. Recently, it has been found that rapamycin, which possesses immunosuppressive properties, inhibits the proliferation of mammalian cells (Wullschleger *et al.*, 2006)

Rapamycin targets the TOR (Target of rapamycin) kinase which is a member of the phosphatidylinositol 3-kinase-like kinase family of protein kinases (Reinke *et al.*, 2006). It binds to the FKBP12–rapamycin binding (FRB) domain of TOR located immediately N-terminal to its kinase domain in conjunction with the highly conserved prolyl-isomerase FK506 binding protein (FKBP). Many *in vitro* studies have found that the rapamycin-FKBP complex inhibit TOR kinase activity; and alternatively, it has been proposed that rapamycin impairs the interaction with a regulatory partner (Loewith *et al.*, 2002). Rapamycin in complex with Fpr1p (a 112-residue cytosolic FKBP) binds TOR complex 1 (TORC1), but not TOR complex 2 (TORC2). Rapamycin treatment, similar to inactivation of the TOR proteins, mimics nutrient deprivation in various organisms like yeast, Drosophila, and mammalian cells. (Raught *et al.*, 2001; Peng *et al.*, 2002; Boer *et al.*, 2008) The similar effects of rapamycin have been found in animal cells and yeast suggesting that biochemical steps affected by rapamycin are conserved (Peng *et al.*, 2002).

It has been found that TOR is affected by a number of other pharmacological agents in addition to rapamycin, and among those agents members of the methylxanthine family of compounds such as caffeine (1, 3, 7-trimethylxanthine), an analogue of purine bases, exist. Caffeine has been shown to involve in various cellular processes related to cell growth, DNA metabolism, and cell cycle progression, most likely by acting as a low affinity ATP analog, in different organisms including mammals, plants and fungi (Kuranda *et al.*, 2006; Reinke *et al.*, 2006). Earlier studies had suggested that caffeine targets cAMP phosphodiesterase. However, that TORC1, and not cAMP phosphodiesterase, is found as a major target of caffeine in recent studies in yeast (Kuranda *et al.*, 2006). Both *in vitro* as well as *in vivo*, phosphorylation of TOR-dependent substrates is inhibited by caffeine. Although caffeine has a huge potential to be used as a tool for probing TOR function due to its pleiotropic behavior and interaction with TOR displaying relatively low affinity, *i.e.* in the submillimolar range, it has not been used widely (Reinke *et al.*, 2006).

1.2. TOR, a Central Regulator

TOR (target of rapamycin) was first genetically identified in the budding yeast *Saccharomyces cerevisiae*. *S. cerevisiae* and other yeasts harbour two homologous genes of this atypical serine/threonine kinase, TOR1 and TOR2, whereas there is only one TOR gene in all other eukaryotes. (Martin *et al.*, 2004)

TOR is highly conserved from yeast to mouse, rat and mammals-human. 95% identity at the amino-acid level is shared by TOR proteins. TOR is a member of the phosphatidylinositol kinase-related kinase (PIKK) family and its carboxyl terminus is homologous to the catalytic domain of phosphatidylinositol 3-kinase (PI3K). Its homologues have also been identified in plants (*Arabidopsis thaliana*), flies (*Drosophila melanogaster*) and worms (*Caenorhabditis elegans*). TOR seems to be an essential protein. Disruption of TOR activity causes to embryonic lethality in *D. melanogaster* and *C. elegans*, severe forebrain defects are found in mouse TOR mutants and they die at 12.5 days post coitus (Bjornsti and Houghton, 2004).

TOR1 and TOR2 encode two closely related factors which have a role in regulation of cell growth with respect to nutrient availability and cellular stresses. They, directly or indirectly regulates many cellular processes including protein synthesis, ribosome biogenesis, autophagy, transcriptional activation, meiosis, cell cycling, nutrient permease sorting and turnover, and actin organization.

Figure 1.1. Schematic representation of TORC1 and its mode of action (De Virgilio et al., 2006)

TOR1 and TOR2 are two main members of two functionally distinct TOR complexes in *S. cerevisiae*. The TOR complex 1 (TORC1) has been found to play a role in translation initiation, protein turnover inhibition, tetrad formation, and transcriptional repression of specific genes that are induced by nutrient starvation. It includes either Tor1p or Tor2p, together with Kog1p, Lst8p, and Tco89p (Figure 1.1). TOR complex 2 (TORC2) has a role in the regulation of actin cytoskeleton polarization during cell cycle progression, cell wall integrity, and receptor endocytosis. It consists of only Tor2p along with Avo1p, Avo2p, Tsc11p, Lst8p, Bit61p, Slm1p, and Slm2p. Although rapamycin inhibits TORC1, TORC2 is insensitive to rapamycin because the rapamycin-FKBP complex does not bind to Tor2p when it is present in TORC2. (Loewith *et al.*, 2002; Reinke *et al.*, 2006; Wullschleger *et al.*, 2006)

Figure 1.2. TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) of *S. cerevisiae* (Wullschleger *et al.*, 2006)

The TOR protein has a catalytic kinase domain, an FKBP12–rapamycin binding (FRB) domain, a putative auto-inhibitory domain which is the repressor domain near the C terminus and up to 20 tandemly repeated HEAT (an α-helical hairpin, HEAT is an acronym for four cytoplasmic proteins having this domain, Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast PI3-kinase Tor1p) motifs at the amino terminus, as well as FAT (FKBP-rapamycin-associated protein, FRAP-ATM-transformation/transcription domain-associated protein, TRRAP) and FATC (FAT C terminus) domains (Figure 1.2). HEAT motifs involve in protein–protein interaction domains; however FAT and FATC domains may have a role in the kinase activity of TOR. That TOR is conserved at the amino-acid level shows the significance of several domains in the cellular functions (Bjornsti and Houghton, 2004). It has found that binding of the rapamycin-FKBP complex to TOR is prevented by a single amino acid change at a highly conserved serine residue within the FRB domain both *in vivo* and *in vitro* (Loewith *et al.*, 2002).

1.3. TOR Signalling

For organisms, carbon and nitrogen are the two most basic nutrient sources. They are used in energy production and biomolecule synthesis. Energy metabolism and metabolic biosynthesis are carried out by several hundreds of individual chemical reactions, which are well organized along the centrally placed glycolysis and tricarboxylic acid (TCA) cycle. Regulation of those individual reactions is under the control of feedback, which adjusts the flux of metabolites through a particular pathway by temporarily increasing or decreasing the activity of crucial enzymes (Bertram *et al.*, 2002).

Therefore, regulation of cell growth in response to nutrients is crucial for the survival of all organisms. However, the questions, how nutrients are sensed, how nutrient-derived signals regulate cell growth and how these nutritional signals are integrated with growth factor pathways, remain to be answered. It is known that some kinases and signalling pathways are playing important roles in growth control and it is also known that those are well conserved in budding yeast, therefore this simple eukaryote offers a powerful opportunity to study mechanisms of nutrient sensing (De Virgilio *et al.*, 2006; Dechant *et al.*, 2008).

A complex change in the physiology of yeast cells occurs under the limitation of nutrients; they either reprogram their metabolism, so they can handle the results of the change in nutrient supply or activate a survival programme to outlive during the starvation (Drechant *et al.*, 2008). Studies with the whole-genome transcription profiling show that there is a remarkable similarity between shifting to low-quality carbon or nitrogen sources and with rapamycin treatment (Schamji *et al.*, 2000). Transcriptional profile observed under the rapamycin treatment is different from those observed under glucose, glutamine, or leucine deprivation but is most similar to that observed under amino acid deprivation. It was observed that TOR proteins are central sensors of the quality of carbon and nitrogen sources (Figure 1.3) (Schamji *et al.*, 2000; Peng *et al.*, 2002). Depending on the type of starvation, the TOR proteins can rearrrange a given pathway differentially (Schamji *et al.*, 2000). It has been suggested that rapamycin mimics a signal generated by the starvation of amino acids but that the signal is not likely to be the absence of amino acids themselves (Peng *et al.*, 2002).

Figure 1.3. TOR proteins respond to low-quality of both carbon and nitrogen sources (Schamji *et al.*, 2000)

1.3.1. TOR Signalling as a Response to Nitrogen Sources

In response to different nitrogen nutrients, the expression of genes encoding proteins responsible for the transport and degradation of small nitrogenous compounds is regulated in the cell. For a yeast cell, glutamine is the preferred nitrogen source compared to glutamate; and in the presence of a preferred nitrogen source, the expression of genes associated with transport and degradation of poor nitrogen sources is decreased in the cell (Bertram *et al.*, 2000). In other words, when excess nitrogen is available, yeast cells prefer to utilize good nitrogen sources instead of poor ones, and they down-regulate transcription of genes encoding proteins that transport and degrade poor nitrogen sources. This regulation is designated nitrogen catabolite repression (NCR) (Cox *et al.*, 2004).

Regulation of NCR-sensitive genes is a complex mechanism and there are several important transcriptional factors such as four GATA type transcriptional factors Gln3p, Gat1p, Dal80p, and Gzf3p, and the Zinc finger transcriptional factors Dal81p and Dal82p. Each NCR-sensitive gene appears to be regulated in a combinatorial manner by several transcription factors; however, among those transcriptional factors, Gln3p is responsible for the expression of a majority of NCR-sensitive genes. Gln3p activity is inhibited by a yeast pro-prion protein, Ure2p, in the presence of preferred nitrogen sources (Bertram *et al.*, 2000).

When NCR genes are expressed, Gln3p is rapidly dephosphorylated and its nuclear accumulation is observed under nitrogen starvation. Inhibition of TOR by rapamycin also leads to Gln3p dephosphorylation. Therefore, TOR is considered to be responsible for Gln3p phosphorylation and dephosphorylation. In addition, rapamycin resistance is observed in the studies with *GLN3* deleted strains, which indicates that Gln3p plays an important role in rapamycin-sensitive TOR signalling (Carvalho *et al.*, 2003). Nevertheless, this mechanism has not been very well understood. The interaction between TOR and Gln3p is observed to happen via binding through the HEAT domain of TOR, which is crucial for phosphorylation of Gln3p, the inhibition of Gln3p nuclear translocation, and repression of Gln3p-dependent genes (Bertram *et al.*, 2000). The activation of Gln3p is also affected by the mutations in at least two phosphatase groups, Tap42p-Sit4p and Pph3p. Another demonstration is that, although Ure2p protects Gln3p from dephosphorylation, it can bind to both phosphorylated and dephosphorylated Gln3p. Thus, it is thought that there exists a tripartite regulatory mechanism for the repression and activation of Gln3p (Bertram *et al.*, 2000; Schamji *et al.*, 2000).

Nuclear accumulation of the nitrogen-regulated Gln3p is prevented by TOR via Tap42p-mediated inhibition of the phosphatase Sit4p (Figure 1.4). Phosphorylation of Gln3p is observed and it is hold in the cytoplasm by Ure2p under good nitrogen conditions. On the other hand; under nitrogen starvation or rapamycin treatment, Gln3p is dephosphorylated by Sit4p, which is activated as it releases from Tap42p. Dephosphorylated Gln3p dissociates from Ure2p and translocates into the nucleus, where it activates transcription of target genes.

Figure 1.4. Regulation of Gln3p by TOR (Crespo et al., 2002)

When yeast cells are shifted to a good nitrogen source from a poor one, Gln3p starts to re-accumulate in the cytoplasm, but interestingly, Gln3p is not uniformly distributed in the cytoplasm. In the study that was done to determine whether the actin cytoskeleton has a role in intracellular Gln3p movement, latrunculin, a drug that disrupts the actin cytoskeleton by inhibiting actin polymerization, was used, and it was observed that nuclear accumulation of Gln3p, in consequence NCR-sensitive transcription are prevented in the cells which are transferred from ammonia to proline medium under the latrunculin treatment, however, cytoplasmic accumulation of Gln3p is not prevented when the cells are transferred from proline to glutamine medium under the latrunculin treatment. On the contrary, it was observed that latrunculin treatment does not affect nuclear accumulation of Gln3p due to rapamycin treatment. As a result it can be suggested that the actin cytoskeleton is required for nuclear localization of Gln3p upon the nitrogen limitation but not rapamycin treatment. The actin cytoskeleton either has a role in intracellular localization of Gln3p under nitrogen limitation before TOR, or it can be concluded that TOR does not directly regulate the mechanism that is affected under the nitrogen limitation; inhibition of TOR only mimics its outcome (Cox et al., 2004).

1.3.2. TOR Signalling as a Response to Mitochondrial Dysfunction

Mitochondrial retrograde signalling is a pathway of communication from mitochondria to the nucleus. It influences many cellular and organismal activities under both normal and pathophysiological conditions. The retrograde response has an important role in respiratory-deficient yeast cells, such as the maintenance of glutamate supplies. Otherwise, it would be compromised due to the respiratory-deficient state. At this time, metabolic readjustments become very significant, since a full TCA cycle cannot be operated, in other words succinate cannot be oxidized to fumarate in this cycle, which limits the production of oxaloacetate (OAA), and in turn α -ketoglutarate, the direct precursor to glutamate (Figure 1.5). In order to counterbalance this situation, cells induce the expression of many genes whose products function in anaplerotic pathways that are to resupply OAA and acetyl-CoA in mitochondria. As a result, for instance, acetyl-CoA production is increased via dramatic proliferation of peroxisomes and increase in fatty acid oxidation. Moreover, the activity of the citrate synthase isoform encoded by CIT2 in glyoxylate cycle is increased and expression of genes encoding transporters that function to facilitate acetyl-CoA into mitochondria and glutamate and other nitrogen sources into cells is observed to be increased. It can be concluded that α -ketoglutarate which is the product of the first three steps of the TCA cycle is under the control of retrograde-specific regulatory genes in respiratory deficient yeast cells. These findings show the role of the retrograde pathway in the synthesis of α -ketoglutarate and the maintenance of glutamate supplies.

In yeast cells, retrograde signalling is used as a sensor of mitochondrial dysfunction that initiates readjustments of carbohydrate and nitrogen metabolism. Retrograde signalling is linked to TOR signalling in both yeast and animal cells, but the connection is not still very well understood.

Figure 1.5. Retrograde control related to TCA cycle (Butow et al., 2004)

The relationship between the retrograde (RTG) pathway and nutrient sensing was found out with the discovery of increased Rtg1/3p-dependent gene expression in cells in which TOR signalling is inhibited by rapamycin. In addition, it was found that activation of Rtg1/3p in the cells under the treatment of rapamycin is completely dependent on Rtg2p, novel regulator of the yeast retrograde response pathway (Komeili *et al.*, 2000; Butow *et al.*, 2004).

Rtg2p has a role in the upstream of the Rtg1p/3p complex. It passes the mitochondrial signals to Rtg1/3p complex which activates transcription of target genes and it is a sensor of mitochondrial dysfunction. When the RTG pathway is off, Rtg3p is phosphorylated at multiple sites and both Rtg1p and Rtg3p are maintained in the cytoplasm; and when the retrograde pathway is activated, Rtg3p is partially dephosphorylated and both Rtg1p and Rtg3p enter the nucleus, then they assemble at R box sites to activate transcription. In the absence of Rtg2p, Rtg3p is hyperphosphorylated

and Rtg1p/3p complex is sequestered in the cytoplasm, and no transcriptional response is observed to the retrograde signals. Therefore it can be concluded that the intracellular localization of the Rtg1/3p complex is a key point for the RTG-dependent retrograde response and Rtg2p appears to play an important role in this mechanism.

The finding that Lst8p an integral component of TORC1 and TORC2 proceeds further the understanding the relation between TOR signalling and the RTG pathway. The experiments with the cells lacking Lst8p show that Rtg1/3p-dependent transcription is activated and this effect is similar to the one of rapamycin treatment (Loewith *et al.*, 2002; Butow *et al.*, 2004).

What is the role of Rtg2p in controlling the location of the Rtg1/ 3p complex? An answer to this question could be obtained with the study of genetic screens designed to elucidate mutant strains that could bypass the requirement for Rtg2p. One of the protein revealed by this screen was Mks1p, which also identified by other studies as a negative regulator of RTG-dependent gene expression (Dilova et al., 2002; Tate et al., 2002). When MKS1 is inactivated, like other negative regulators of the RTG pathway, the expression of *CIT2* is observed to be high, and this fact is independent of Rtg2p and insensitive to glutamate repression. The finding about the dynamical interaction of Rtg2p with Mks1p reveals that Rtg2p has a key role in regulation of the RTG pathway (Sekito et al., 2002; Liu et al., 2003). When the RTG pathway is active, the phosphoprotein Mks1p is dephosphorylated and forms a complex with Rtg2p; however, when the RTG pathway is off, Mks1p is more phosphorylated, is present in a complex with the 14-3-3 proteins Bmh1p and Bmh2p, instead of Rtg2p (Figure 1.6). It is thought that the complex that Mks1p forms with Bmh1p and Bmh2p act as a negative regulator of the RTG pathway via preventing nuclear accumulation of Rtg1/3p. In this respect, also Bmh1p and Bmh2p have a role in negative regulation of the pathway (Butow et al., 2004).

Figure 1.6. Mks1p and Bmh1p/2p act as a negative regulator of retrograde signalling (Butow *et al.*, 2004)

Research reveals that the phosphorylation state of Mks1p is influenced by different factors. Under different cellular conditions, distinct states of Mks1p phosphorylation can be observed (Figure 1.7). For instance, Mks1p is found in a hyperphosphorylated state, when glutamate is provided as the sole nitrogen source (Butow et al., 2004). Partial dephosphorylation of Mks1p was observed under rapamycin treatment, suggesting that Mks1p is responsive to TOR under these conditions. Nevertheless, due to partial dephosphorylation, Mks1p is still sufficiently phosphorylated and associated with Bmh1p/2p. Thus, the pathway is kept in a repressed state. On the other hand, when glutamine is used as the sole nitrogen source, or when either ammonia or glutamine is additionally provided to the growth medium, Mks1p is found as intermediately phosphorylated that may weaken the interactions with Bmh1p/Bmh2p. Under such conditions, rapamycin treatment contributes to further dephosphorylation of the protein so the pathway is de-repressed (Figure 7C). As a result it can be concluded that different metabolic conditions give rise to distinct states of Mks1p phosphorylation and in this respect that the pathway responds at the transcriptional level to loss of TOR activity could be investigated. It can be understood from the partial phosphorylation of Mks1p under

rapamycin treatment of cells grown in glutamate that there are TOR-independent phosphorylation sites in this protein, or, alternatively, there is a stochastic process with a common set of phosphorylation sites.

It has been found that glutamine starvation acts as an inducer of *RTG* target gene expression. In particular, several studies reveal that this response correlates with dephosphorylation of Mks1p and is independent from Gcn4p-mediated general amino acid control. Nuclear accumulation of the Rtg1p/3p complex is seen under glutamine starvation and this response involves the same regulatory scheme outlined above (Figure 1.7).

Figure 1.7. Phosphorylation of Mks1p under TOR control (Dilova et al., 2004)

Unlike rapamycin treatment, however, glutamine starvation appears to be completely dominant with respect to the phosphorylation state of Mks1p that is established during growth in glutamate. Thus, it can be thought that the response to the glutamine starvation is, at least in part, independent from TOR (Figure 1.7, *dashed line*) (Dilova *et al.*, 2004).

Studies have shown that, Rtg1/3p-dependent gene expression, but not Gln3p target genes, is activated in cells lacking Lst8p; although both pathways are activated under rapamycin treatment. Moreover, activation of the RTG pathway in those mutant strains

was observed to be done independently from Rtg2p. One of the reasons for that fact may be that signalling by the Lst8p-TOR complexes has different outcomes according to interactions of targets with Lst8p. Another reason may be that some cellular Lst8p are not functionally associated with TOR, which has been advocated by some biochemical studies (Loewith *et al.*, 2002; Chen *et al.*, 2003; Butow *et al.*, 2004).

There is a debate on the issue whether the effects of TOR on the RTG pathway are direct or indirect. It is known that both TOR and RTG are involved in nutrient sensing; however, how these mechanisms are operated is not very well understood. First, the RTGdependent retrograde response is very robust to mitochondrial dysfunction even when the cells are grown in rich medium, a condition in which the TOR kinases are active and the NCR genes are repressed. Second, rapamycin treatment of cells, which always leads to induction of NCR genes, sometimes fails to induce CIT2 expression, an effect that is dependent on the nitrogen source in the medium (Tate et al., 2003). Considering these results, it is difficult to conclude that TOR is a direct regulator of the RTG pathway. One explanation is that it affects the RTG pathway only indirectly, for instance, by regulating the activity of (SSY1, PTR3, SSY5) amino acid sensing system (Figure 1.8). The SPS sensor consists of Ssylp, a plasma membrane amino acid sensor resembling amino acid permeases, and at least two peripheral membrane proteins, Ptr3p and Ssy5p, which probably associate with Ssylp; together, these proteins function in a signal transduction cascade in response to external amino acids, such as glutamate. Inactivation of the SPS sensor system, or inactivation of SHR3, a gene that functions in the targeting of Ssylp to the plasma membrane, results in elevated CIT2 expression and a loss of glutamate repression. Nevertheless, CIT2 expression in SPS-inactivated cells still requires Rtg2p. That regulation SPS sensor by TOR could be a function of the TOR-Lst8p complex (Butow et al., 2004).

Figure 1.8. Regulation of RTG-Dependent Gene Expression (Butow et al., 2004)

On the other hand, some studies suggest that retrograde gene expression is separable from TOR regulation of RTG- and NCR responsive genes. It was shown that expression of these two classes of genes is differentially regulated by glutamate starvation whether in the cells with defective mitochondria or under rapamycin treatment, as well by glutamine or histidine starvation (Figure 1.9). It was also found that the role of Lst8p, a component of the TOR1/2 complexes and a negative regulator of the RTG pathway, is complex in the regulation of RTG- and NCR-sensitive genes. The expression of *CIT2* and *GLN1* is negatively regulated by Lst8p, but it does not have a role in the regulation of *DAL5* expression, which depends on Gln3p and Gat1p; and Gat1p is translocated to the nucleus only upon TOR inhibition by rapamycin. Considering these data it can be concluded that Rtg1/3p, Gln3p, and Gat1p can be differentially regulated through different nutrient-sensing pathways, such as TOR and retrograde signalling, and by multiple factors, such as Lst8p, which is suggested to have a role in connecting the RTG and TOR pathways (Giannattasio *et al.*, 2005).

Figure 1.9. Regulation of NCR and RTG target genes by TOR and retrograde signalling (Giannattasio *et al.*, 2005)

It has been suggested that retrograde signalling genes, like NCR and starvationspecific genes, are controlled by TOR signalling via the interaction between Tap42p, the type 2A phosphatase (PP2A) and the type 2A-related phosphatase Sit4p (Figure 1.10) (Scmelzle *et al.*, 2000; Cherkasova *et al.*, 2003; Rohde *et al.*, 2004; Santhanam *et al.*, 2004; Inoki *et al.*, 2005; Rohde *et al.*, 2008). PP2A is a multimetric serine/threonine phosphatase and it is highly conserved in various organisms, from yeast to humans. In yeast, Pph21p and Pph22p are the homologs of mammalian PP2A catalytic subunits and are associated with an A subunit, Tpd3p, and one of two regulatory B subunits, Cdc55p or Rts1p. Sit4p is a yeast PP2A-related catalytic subunit that associates with one of its four regulatory proteins, Sit4p-associated proteins (SAPs): Sap4p, Sap155p, Sap185p, or Sap190p. Loss of three of the SAPs, *SAP155*, *SAP185*, and *SAP190*, results in a phenotype similar to that caused by *SIT4* deletion, which indicates that these regulatory SAPs are necessary for Sit4p function (Inoki *et al.*, 2005). Tap42p is also an essential, conserved protein and it independently associates with Sit4p and with the catalytic subunits of PP2A in response to nutrient availability and TOR activity (Crespo *et al.*, 2002).

Figure 1.10. TOR signalling via the interaction of Tap42p-phosphatases (Inoki et al., 2005)

Although the mechanism has not been understood in detail, two models are considered to explain how TOR regulates the Tap42p-Pphs/Sit4p complex. In the first model, TOR phosphorylates Tap42p and increases Tap42p binding to Sit4p and/or Pph21/22p via inactivating their phosphatase activities (Figure 1.11). This model is in parallel with the finding that TOR phosphorylates Tap42p both *in vivo* and *in vitro* in response to rapamycin treatment. In addition, it was observed in the study with mutation of Cdc55p and Tpd3p regulatory subunits that Pphs are inactivated via phosphorylation of Tap42p and, thus, binding between Tap42p and Pphs/Sit4p is increased, which leads to rapamycin resistance. Therefore, it is suggested that Tap42p leads to Pphs/Sit4p-dependent dephosphorylation. Considering these data, reciprocal regulation by both TOR and Pphs/Sit4p determines the phosphorylation status of Tap42p (Inoki *et al.*, 2005).

Figure 1.11. Possible interactions among Tip41p, Tap42p and Sit4p (Inoki et al., 2005)

In the second model, TOR indirectly controls the binding of Tap42p to Sit4p via regulating an inhibitor of the interaction between Tap42p and Sit4p, Tip41p (Figure 1.11). Tip41p binds directly to and inhibits Tap42p, thereby negatively regulating the TOR pathway. Sit4p dephosphorylates Tip41p, which directly or indirectly associates with Tap42p. Tip41p dissociates from Tap42p, when it is phosphorylated under the control of TOR, and thereby Tap42p can bind to Sit4p. However, rapamycin leads to dephosphorylation of Tip41p via Sit4p, and, thus, to association of Tip41p and Tap42p; this suggests that Tip41p plays a role in the amplification of Sit4p phosphatase activity when TOR is inactive. These data indicate that TOR is responsible for the regulation of Tap42p both directly and indirectly through inhibiting Pphs/Sit4p phosphatase activity. It has been proposed that TOR inhibits the function of the phosphatase Pph21/22p and Sit4p via promoting the binding between Tap42p and Pphs/Sit4p (Jacinto *et al.*, 2001; Inoki *et al.*, 2005).
1.3.3. TOR Signalling as a Response to Carbon Sources

In a similar manner to nitrogen catabolite repression (NCR), there is a glucose repression mechanism in the cell, and the presence of glucose, the main carbon source of the cell, represses the expression of genes involved in transport and utilization of other carbon sources. The intracellular glucose sensor Snf1p, which is a yeast homolog of AMP-activated protein kinase (AMPK), mediates glucose repression and when the glucose level is low, it becomes activated. Snf1p phosphorylates and negatively regulates a transcriptional repressor involved in the utilization of alternative carbon sources, Mig1p. A second class of glucose sensors is involved in the glucose induction mechanism. Two plasma membrane proteins, Rgt2p and Snf3p, have a strong sequence similarity to hexose transporters (HXT). However, these proteins act as high- and low-glucose sensors, respectively, to activate transcription of HXT genes in response to extracellular glucose levels (Bertram *et al.*, 2000). Furthermore, it has been found that the TOR kinase pathway plays a role in the regulation of HXT1 expression by glucose, via affecting the activity of the Cdc55p–PP2A protein phosphatase complex (Tomas-Cobos *et al.*, 2005).

Although some researches show that TOR kinases are mainly activated by nitrogen and carbon sources activate PKA (cAMP-regulated protein kinase A) (Dechant *et al.*, 2008), several studies indicate that not only nitrogen, but also carbon nutrient, controls the expression of some NCR genes, as well as nitrogen availability regulates glucose repression genes. However, it is not very clear how cross talks between the NCR pathway and carbon signalling operate. It was found that Gln3p phosphorylation and, thus, subcellular localization via the Snf1p-AMPK pathway are regulated by glucose availability. TOR kinase has been shown to be responsible for negative regulation of Snf1p (Orlova *et al.*, 2006). Thus, nutrient signalling pathways can closely interact with each other. Such interplay between two key nutrient sensing and signalling pathways may be important for cells to rapidly adjust cellular metabolic activities as well as growth and proliferation in response to changing nutrient conditions (Bertram *et al.*, 2000; Orlova *et al.*, 2006).

1.3.4. TOR Signalling as a Response to Stress

It has been found that TOR signalling is responsible for the regulation of ribosomal protein, ribosomal biogenesis, retrograde signalling (RTG), degradation of urea and allantoin (DAL), nitrogen discrimination pathway (NDP), post-diauxic shift element (PDS) genes and amino acid synthesis genes, as well as stress-responsive element (STRE) genes (Figure 1.12). However, several lines of evidence suggest that TOR also promotes cell growth under stress conditions other than nutrient limitation (Crespo *et al.*, 2002; De Virgilio *et al.*, 2006; Bandhakavi *et al.*, 2008).

Figure 1.12. Diagram of TOR signaling in yeast (De Virgilio et al., 2006b)

Almost 90% of genes that are significantly affected under rapamycin treatment show transcriptomic changes in similar direction under conditions of heat/oxidative stress. Specifically, it can be demonstrated that activation of regulator(s) of heat/oxidative stress responses phenocopied TOR inhibition and sought to identify these putative TOR inhibitor(s). It is found that constitutive activation of the conserved stress regulator Hsflp confers rapamycin sensitivity and reduced TOR signaling via elevated expression of Hsflp

target genes. Considering these findings, Hsf1p has been identified as a putative inhibitor of TOR signaling and new insights into the relationship between stress signals and the inhibition of cell growth has emerged (Bandhakavi *et al.*, 2008).

It has been found that transcription factors Msn2p and Msn4p, which activate expression of genes in response to several different environmental stress conditions, including heat shock and H_2O_2 treatment, are also controlled by TOR. Inactivation of TOR by rapamycin also partially activates Msnp2p/4p. Both Msn2p and Msn4p respond to different types of cellular stress, including carbon source limitation. Inhibition of Msns (Msn2p and Msn4p) by TOR in response to nutrients may be done via promoting the association of MSNs with the abundant 14-3-3 proteins Bmh1p and/or Bmh2p. In addition, Bmh1p and Bmh2p may have a role as a positive regulator of rapamycin-sensitive signalling. A release of Msns from Bmh2p was indicated in the studies upon glucose withdrawal or rapamycin treatment. It was found that this process is not related to interaction of Tap42p and Sit4p, suggesting that there may be another, unknown TOR pathway regulating Msns (Crespo *et al.*, 2002).

On the other hand, studies with Msn2p show that rapamycin affects Msn2p by inactivating Tap42p function. In response to stress and nutrient starvation, the *Saccharomyces cerevisiae* transcription factor Msn2p accumulates in the nucleus and activates expression of a broad array of genes. Moreover, in response to stresses, such as heat and osmotic shock, as well as nitrogen, but not glucose, starvation, PP2A function has also a role in nuclear accumulation of Msn2p. Thus, it can be concluded that PP2A and the TOR kinase pathway transduce stress and nitrogen starvation signals to Msn2p (Santhanam *et al.*, 2004).

Furthermore, research reveals that Msn2p/Msn4p could control stress-induced expression of Thiol peroxidase type II (*cTPx II*) (*YDR453C*) which is regulated in response to various stresses (*e.g.* oxidative stress, carbon starvation, and heatshock). Rapamycin induction greatly increases the transcriptional activity of the *cTPx II* promoter, and studies with deletion mutants of *TOR1*, *TOR2*, *RAS1*, and *RAS2* show that *cTPx II* is regulated by Msn2p/Msn4p transcription factors under negative control of the Ras-protein kinase A and TOR signaling pathways (Hong *et al.*, 2002).

Additionally it was observed that *TOR1* deleted mutants are sensitive to high concentrations of salt, which suggests that TOR1 plays a role in the cell in response to saline stress. This mechanism is not very clear. But, it is thought that there is a connection between the TOR-controlled transcription factors Gln3p and Gat1p and the lithium and sodium extrusion pump Ena1p, which is essential for survival under saline stress conditions. Gln3p and Gat1p are responsible for induction of *ENA1* transcription in response to rapamycin treatment and, like *TOR1*, are required for growth under salt stress (Crespr *et al.*, 2001). It is also found that under osmostress conditions, the protein on the downstream of TORC1, Sch9p, seems to activate stress defense genes. At least upon stress, Sch9 has a direct role in the transcriptional activation at the chromatin structure (Pascual-Ahuir *et al.*, 2007).

TOR signalling also responds to chemical stress. It was found that the ubiquitous toxic metalloid arsenic, mercury and nickel, efficiently inhibit the TORC1 protein kinase. This is also demonstrated *in vivo* by the dephosphorylation and inactivation of Sch9p. Arsenic, mercury, and nickel cause reduction of transcription of ribosome biogenesis genes, which are under the control of Sfp1p, a TORC1-regulated transcriptional activator. Researches have found that the transcription factor Sfp1, plays a role in the control of cell size, and regulates RP gene expression in response to nutrients and stress. It is reported that upon arsenic stress, Sfp1p is deactivated by dephosphorylation, and dissociates from chromatin, and then accumulates in the nucleus. Indeed, it is shown that arsenic treatment activates Msn2p and Msn4p (Marion *et al.*, 2004; Hoiner *et al.*, 2009).

Studies with of the yeast deletion collection show that 15 deletion strains which are leading to partial rapamycin resistance also exhibit elevated levels of superoxide anions, and it is found that elevated levels of reactive oxygen species specifically modify TORC1 such that it is no longer able to fully bind FKBP12: rapamycin. Therefore, it is concluded that elevated oxidative stress modifies TORC1 and prevents its binding to the FKBP12: rapamycin complex, ultimately leading to rapamycin resistance (Neklesa *et al.*, 2002).

What is the reason for that TOR responds to environmental stress? It might be considered as an explanation that TOR, as a central controller of cell growth, may respond to several different types of stress to ensure that growth occurs only when overall conditions are favourable.

1.4. TOR Signalling and Regulation of Important Cellular Events

TOR promotes cell growth in response to nutrient availability and under stress conditions other than nutrient limitation. In addition, TOR is responsible for regulation of amino acid permease activity, ribosomal biogenesis and cell proliferation. TOR also controls aging and autophagy in the cell.

1.4.1. TOR and Regulation of Amino Acid Permease Activity

The role of amino acid permeases is important in cell growth and viability, since some amino acids (such as glutamine, glutamate, and asparagine) are also important in *S. cerevisiae*, because, besides taking place in the constitution of the building blocks for protein synthesis which makes them essential for cell growth, they also serve as nitrogen sources (Crespo *et al.*, 2002; Dechant *et al.*, 2008).

Yeast amino acid permeases can be classified into two groups based on their function and regulation (Crespo *et al.*, 2002). In first class of amino acid permeases, including the general amino acid permease Gap1p, permeases are regulated in response to the available nitrogen source. In the presence of a good nitrogen source, such as ammonium or glutamine, the uptake activity of these permeases is low, whereas in medium containing a poor nitrogen source, such as proline or urea, transport activity is strongly induced. Permeases of second class consist of transporters that are specific for single amino acids or a small set of structurally related amino acids. The histidine permease Hip1p and the tryptophan permease Tat2p belong to this group of specific amino acid permeases.

Studies in *S. cerevisiae* have revealed that the TOR pathway plays a prominent role in regulation of amino acid permease activity (Crespo *et al.*, 2002; Dechant *et al.*, 2008). Rapamycin-inhibited TOR or nitrogen starvation induces ubiquitination and degradation of Tat2p and, as a consequence, leads to a decrease in tryptophan import. Down-regulation of amino acid permeases due to starvation also applies to Hip1p and possibly to all specific amino acid permeases. In contrast to Tat2p and Hip1p, Gap1p protein is significantly increased under rapamycin treatment. Thus, the high-specificity permeases, such as Tat2p and Hip1p, and the broad-specificity permease Gap1p in response to nutrient availability are seem to be inversely regulated by TOR proteins.

Npr1p, the Ser/Thr nitrogen permease reactivator kinase, mediates upregulation of Gap1p upon nitrogen starvation. In the presence of a poor nitrogen source, Gap1p function is promoted by Npr1p. This is probably done via phosphorylation and it protects Gap1p from degradation. In agreement with the opposite regulation of Gap1p and Tat2p, Npr1p has been proposed to function as a negative regulator of Tat2p. Indeed, Npr1p overexpression causes a decrease in tryptophan import. How is Npr1p modulated to inversely regulate Gap1p and Tat2p according to the nitrogen source? Npr1p is a phosphoprotein and TOR signaling pathway controls its phosphorylation state in response to the nitrogen source. In response to a good nitrogen source, Npr1p is inactivated via phosphorylation by TOR and in this form; it is unable to protect Gap1p from ubiquitination. Under poor nitrogen conditions, Npr1p is activated via dephosphorylation by a Sit4p- and Tip41p-dependent manner. Activated Npr1p leads to Gap1p protection and ubiquitination and degradation of Tat2p. It is still unclear whether Npr1p directly phosphorylates Gap1p or Tat2p (Crespo *et al.*, 2002).

It has been suggested that nitrogen related regulation of TOR is activated by intracellular amino acid pools and this mechanism is controlled via EGO complex (Exit from growth arrest). Studies have identified a family of GTPases as potential upstream regulators of TORC1. A screen for genes required for recovery from rapamycin-induced growth arrest has identified the so-called EGO complex, which contains two small GTPases, Gtr1p and Gtr2p. Although the EGO complex is not necessary for the normal response to rapamycin, cells are unable to resume protein biosynthesis after relief from rapamycin treatment. Moreover, deletion of EGO components displays synthetic lethality with partial reduction of TORC1 activity, suggesting that the EGO complex acts upstream or parallel of TORC1; and it is conceivable that the EGO complex may activate TORC1 indirectly by increasing intracellular amino acid pools (Dechant *et al.*, 2008).

Although multiple pathways play a role in TORC1 activation in yeast and mammals, it is not very well understood which specific amino acids contribute to regulation of TORC1. Unlike in yeast cells, all amino acids cannot be synthesized de novo in mammalian cells, and thus, these amino acids may become limiting upon starvation. Indeed, a specific role for the essential amino acid leucine, and other branched chain amino acids have been shown in the activation of cell growth in mammalian cells by many studies. In humans, a rapid rise in intracellular concentration of Ca²⁺ is observed after amino acid stimulation of starved cells or stimulation with leucine alone. Thus, Ca^{2+} acts as a second messenger for amino acids, which directly links amino acid availability to TORC1 activity, and could therefore be used as a readout to study TORC1 activation in response to amino acid stimulation in mammalian cells. The related binding site in mammals has been mapped and is also found in the yeast protein, suggesting that Ca²⁺dependent activation might be conserved. In addition to that, deletion of *PMR1*, the Ca^{2+} ATPase which is required for Ca^{2+} storage in the Golgi, prevents efficient Gln3p activation in response to rapamycin treatment. It is possible that TORC1 may be hyperactivated due to higher cytosolic Ca^{2+} concentrations resulting from deletion of *PMR1*. Since both the vacuole and the Golgi are important storage sites for Ca^{2+} in yeast, some possible TORC1 regulators may be found at the endomembrane system (Dechant et al., 2005).

Considering these data, it is possible to consider that Ca^{2+} -dependent activation of TORC1 also exists in yeast. It has, however, been found that TORC1 activation depends on glutamine, rather than leucine, in yeast cells (Dechant *et al.*, 2005). In the study with a specific inhibitor of glutamine synthase, 1-methionine sulfoximine (MSX), it was observed that depletion of intracellular pools of glutamine leads to rapid inactivation of TORC1 and growth arrest. Similarly, it was found that addition of glutamate, the cellular precursor for glutamine, suppress the synthetic lethality of components of the EGO complex and TOR1. Therefore, it can be concluded that the intracellular concentration of glutamine, or a signal derived thereof, may play an important role in TORC1 activity (Figure 1.13).

Thus, TORC1 activation appears to depend on two structurally different amino acids, leucine and glutamine, in yeast and mammals (Dechant *et al.*, 2005). This discrepancy might indicate that TORC1 can be activated by multiple amino acids in both systems. Due to differences in the requirement or metabolism of different amino acids, depletion of a

specific amino acid can bring different quantitative effects in yeast and humans. Indeed, leucine is the most abundant amino acid found in proteins, but cannot be synthesized by mammalian cells. On the other hand, most other abundant amino acids are non-essential. Thus, starvation can affect intracellular leucine concentration more than any other, non-essential, amino acids.

Alternatively, there may be a functional linkage between leucine and glutamine. Intriguingly, leucine serves as a source for glutamine in mammalian cells by providing the amino group for transamination to glutamate, raising the possibility that leucine affects TORC1 activation indirectly via its effect on glutamine availability. In any case, the analysis of other essential amino acids as well as glutamine and leucine metabolism upon starvation will be crucial to identify the molecular mechanisms of TORC1 activation in yeast and mammalian cells (Dechant *et al.*, 2005).

Figure 1.13. Regulation TOR signalling by amino acids, EGO and VPS components (Dechant *et al.*, 2008)

Vacuolar protein sorting (VPS) components are also required for proper TOR signalling (Figure 1.13). Class C and D VPS components mediate Golgi-to-endosome vesicle transport. Studies with mutations in class C and D VPS components show that TOR signalling to nitrogen-regulated transactivators may occur on endosomal membranes (Puria

et al., 2008). It was indicated that the class C VPS complex is required for proper regulation of Gln3p (Zurita-Martinez *et al.*, 2007; Dechant *et al.*, 2008).

1.4.2. TOR and Ribosomal Biogenesis

The regulation of ribosome biogenesis is a key aspect of cell growth control. In a growing cell, ribosome biogenesis is a major consumer of cellular energy and building blocks. Thus, as the availability of nutrient resources change, cells must rapidly and accurately rebalance ribosome production. Ribosome biogenesis on its own consumes up to 80% of a proliferating cell's energy and represents about 95% of total transcription. Recent evidence suggests that in addition to growth, regulation of cell growth is controlled via ribosome biogenesis. The regulation of ribosome biogenesis occurs primarily at the transcriptional level and involves all three nuclear RNA polymerases (Pol I thru III) (Figure 1.14). RNA polymerase I (Pol I) synthesize 25S, 18S, and 5.8S ribosomal RNAs, RNA Pol III transcribes the 5S rRNA, and RNA Pol II produces messenger RNAs encoding 79 ribosomal proteins (RP), expressed from 138 genes in budding yeast. In order to generate mature ribosomal subunits, ribosomal components have to be transported, processed, and assembled, under the control of 200 different transacting factors. The second group of Pol II-transcribed genes, called *Ribi*, is co-regulated with the RP genes. (Martin *et al.*, 2006; Berger *et al.*, 2007)

Figure 1.14. Transcriptional control of ribosome biogenesis by TORC1 (Martin *et al.*, 2006)

<u>1.4.2.1. Regulation of Pol I- and Pol III-Dependent Transcription</u> Pol I carries out the transcription of rDNA in the nucleolus. In both yeast and mammals, rDNA transcription is regulated by TOR pathway. Rrn3p (homolog to TIF-IA in mammalian cell), which is the conserved evolutionarily, is the key transcription activator of Pol I for rDNA transcription via recruiting Pol I to the rDNA promoter. Recent studies have demonstrated that TOR pathway promotes the association of Rrn3p with Pol I, which becomes competent for transcription initiation after forming complex with the initiation factors on promoter. The study with chromatin immunoprecipitation (ChIP) analysis has revealed that the level of Rrn3p-Pol I complex is significantly reduced and the binding level of Rrn3p at 35S rDNA promoter is decreased under rapamycin treatment. In addition, TOR pathway regulates rDNA chromatin structure in yeast via the recruitment of histone deacetylase Rpd3p (Tsang *et al.*, 2007).

TOR is intimately involved in gene regulation. It was observed that Tor1p nuclear localization is crucial for 35S rRNA synthesis. Indeed, the study with chromatin immunoprecipitation (ChIP) analysis shows the association of Tor1p with 35S rDNA promoter under favorable growth conditions when 35S rRNA synthesis is robust. Tor1p

dissociates from 35S rDNA promoter in response to starvation or rapamycin treatment. Due to the fact that Kog1p but not Avo2p/3p also interacts with 35S rDNA promoter, it can be indicated that TORC1 but not TORC2 is involved in this mechanism. A putative helix-turn-helix (HTH) motif of Tor1p plays a crucial role in association of Tor1p with 35S rDNA promoter. Deletion of HTH demolishes the ability of Tor1p to bind to 35S rDNA promoter and to regulate 35S rRNA synthesis. Considering these data, it can be demonstrated that physical association of TOR with 35S rDNA promoter is crucial for 35S rDNA transcription. That Tor1p is, interestingly, not detected by ChIP at the Pol II-dependent target genes such as RP genes, is consistent with the observation that cytoplasmic Tor1p is sufficient for their regulation. (Tsang *et al.*, 2007)

Studies have previously shown that Hmo1p is a genuine Pol I ranscription factor. Recently, it has been shown that Hmo1p is bound to both rDNA and RP gene promoters. Although Hmo1p is not required for global RP gene expression, the assembly of Fhl1p and Ifh1p onto RP promoters requires Hmo1p. Moreover, Hmo1p binding to RP promoters requires Rap1p (Berger *et al.*, 2007).

Studies have established that Hmo1p is genetically linked to Pol I, to specific RP genes, and to TORC1 *in vivo*. Hmo1p is hypersensitive to TORC1 inhibition. Although Ifh1p is still essential for RP gene expression in the absence of Hmo1p, some specific RP genes are de-regulated. In addition, it is found that in the absence of Hmo1p, the cross-regulation of Pol I-RP gene transcription is alleviated. Therefore, it can be concluded that Hmo1p is required for the TORC1-regulatable expression of RP genes. (Berger *et al.*, 2007)

Furthermore, studies show that the late stage of ribosome maturation in the nucleoplasm also requires TOR activity and this is done via the nuclear GTP-binding protein Nog1p. Upon nutrient starvation or rapamycin treatment, Nog1p-containing complex is tethered to the nucleolus, and intranuclear transport of pre-60S complexes is consequently inhibited. Therefore, it can be proposed that the Nog1p complex plays an important role in the regulation of ribosome maturation in response to nutrient availability.

TOR is also directly involved in the Pol III-dependent gene regulation. Tor1p binds to 5S rDNA region, and deletion of HTH also interferes with the ability of Tor1p to promote 5S rRNA synthesis (Tsang *et al.*, 2007). Due to co-regulation of 5S and 35S rRNAs synthesis, it is tempting to speculate that Tor1p association with their promoters appears to serve as a simple mechanism to coordinate their expression (Figure 1.15). It is proposed that Pol I has an intrinsic ability to communicate with Pol II which may further coordinate the expression of all ribosomal genes.

Figure 1.15. Transcriptional regulation of ribosome biogenesis by TOR (Tsang *et al.*, 2007)

<u>1.4.2.2. Regulation of Pol II-Dependent Transcription</u> TORC1 also regulates the nucleocytoplasmic transport of Pol II transcription factors in the cytoplasm (Figure 1.15). This demonstration is supported by the observation that Tor1 (nuclear export sequence deleted) or cytoplasmic Tor1 is sufficient to regulate Pol II-transcribed genes (Tsang *et al.*, 2007).

Studies show that TOR controls the subcellular localization of protein kinase A (PKA) and the PKA-regulated kinase Yak1p. It is shown that the Forkhead-like transcription factor Fhl1p and the two cofactors Ifh1p (a coactivator) and Crf1p (a corepressor) are involved in the regulation of RP gene transcription via TOR and PKA in

yeast. TOR, via PKA, negatively regulates Yak1p and maintains Crf1p in the cytoplasm. When TOR is inactivated, Yak1p is activated, and it activates Crf1p via phosphorylation. As Crf1p is phosphorylated, starts to accumulate in the nucleus and competes with Ifh1p for binding to Fh11p at RP gene promoters, and thereby inhibits transcription of RP genes.

Studies have presented that TOR controls the expression of ribosomal protein genes via the Forkhead transcription factor Fhllp (Figure 1.16). TOR controls Fhllp via the RAS-PKA-Yak1p effector pathway and the two Fhl1p cofactors Ifh1p, a coactivator, and Crflp, a corepressor. Under favourable growth conditions, TOR inhibits the kinase Yak1p via PKA. In the absence of active Yak1p, the corepressor Crf1p is cytoplasmic and inactive. Consequently, Ifh1p binds Fhl1p at RP gene promoters and activates transcription, possibly by recruiting other transcription factors such as the histone acetylase subunit Esa1p. It was also found that TOR signalling is required for the maintenance of Esalp at RP gene promoters (Rohde et al., 2003; Martin et al., 2004). Targeting Ifh1p to a heterologous promoter is sufficient to activate the promoter; therefore the binding of Ifhlp to the promoter appears to be a key event in the expression of RP genes. On the other hand, upon unfavourable growth conditions, TOR and PKA are inactive and, consequently, Yak1p is active. Activated Yak1p phosphorylates Crf1p; and phosphorylated Crf1p accumulates in the nucleus and binds Fhl1p, thereby dislodging the coactivator Ifh1p from RP gene promoters. The binding of Crf1p to promoter bound Fhl1p may lead to repression of RP genes, firstly, by releasing the factors formerly recruited by Ifh1p and, second ly, by recruiting new factors such as the histone deacetylase subunit Rpd3p. Consistent with this notion, an RPD3 deletion confers rapamycin resistance and, as shown by others, the binding of Esa1p and Rpd3p to RP gene promoters is inhibited and induced, respectively, by rapamycin. Thus, the findings provide a pathway from TOR to RP gene expression and, thereby, a molecular link between the growth environment and the regulation of ribosome biogenesis. (Martin et al., 2004)

Figure 1.16. Regulation of RP genes by TOR via Fhl1p (Martin et al., 2004)

Ifh1p and Crf1p, which are two Fhl1p cofactors, have an FHB (Forkhead binding) domain and they bind the FHA (Forkhead associated) domain of Fhl1p. Whether the Forkhead factor acts as a transcriptional activator or repressor is determined by the mutually exclusive binding of Ifh1p and Crf1p to Fhl1p. The yeast Forkhead factor Fkh2p plays a role in the activation of transcription of cyclin genes via the coactivator Ndd1p, but there is also a role for a corepressor which remains to be identified in this mechanism. (Martin *et al.*, 2004)

Yak1p has an important role in the nuclear localization of Crf1p. However, how the nuclear localization of Crf1p is controlled by Yak1p is not very well understood. Crf1p is phosphorylated by Yak1p and this phosphorylation coincides with nuclear accumulation of Crf1p. Furthermore, Yak1p phosphorylates the Crf1p FHB domain which is required by Crf1p for both Fhl1p binding and nuclear accumulation. Finally, both Yak1p and Crf1p accumulate in the nucleus upon rapamycin treatment. Therefore it can be suggested that Yak1p-mediated phosphorylation of Crf1p enhances Fhl1p binding and, thereby, nuclear retention of Crf1p. However, in the absence of Fhl1p nuclear accumulation of Crf1p is still observed. Furthermore, interaction of Crf1p with Fhl1p still occurs in the two-hybrid system without rapamycin treatment (i.e., without Yak1p activation); and this suggests that a heterologous nuclear localization signal is sufficient for an interaction of Crf1p and

Fhllp. Thus, it can be concluded that Crf1p nuclear import rather than maintenance in the nucleus is controlled by Yak1p. It is still unclear whether the interaction of Crf1p with Fhl1p, with a factor mediating nuclear import, or both is stimulated via the phosphorylation of Crf1p. Although nuclear accumulation of Yak1p is significant for this mechanism but still not very well understood (Martin *et al.*, 2004)

Coordinated activity of all three RNA polymerases is required for ribosome biogenesis. *FHL1* was considered as a multicopy suppressor of a mutation affecting Pol III, and it was found that the Fhl1p interacts with Hmo1p which is a Pol I transcription factor. Furthermore, Rpd3p binds both Pol I-dependent promoters and Pol II-dependent RP gene promoters. Considering these data it can be suggeste that Fhl1p, Ifh1p, and Crf1p may play a role in the coordination of all three RNA polymerases by TOR-PKA pathway. (Martin *et al.*, 2004) Moreover, it has been proposed that Sch9p has a role in this mechanism (Pascual-Ahuir *et al.*, 2007).

TORC1, Yak1p, and FHA domain-containing Forkhead transcription factors (MNF and ILF1/2 in human) are conserved from yeast to human suggesting that this mechanism by which TORC1 regulates ribosome biogenesis via Yak1p may, at least in part, also be conserved (Martin *et al.*, 2004).

Moreover, some studies demonstrate that the transcription factor Sfp1p, which has a role in the control of cell size, regulates RP gene expression in response to nutrients and stress. Under optimal growth conditions, Sfp1p is localized to the nucleus, bound to the promoters of RP genes, and helps promote RP gene expression. In response to inhibition of TOR signalling, stress, or changes in nutrient availability, Sfp1p is released from RP gene promoters and leaves the nucleus, and RP gene transcription is down-regulated. Additionally, cells lacking Sfp1p fail to appropriately modulate RP gene expression in response to environmental cues. Therefore, it can be concluded that Sfp1p integrates information from nutrient- and stress-responsive signalling pathways to help control RP gene expression (Marion *et al.*, 2004)

In addition to those, it has been proposed that TOR regulation of the Tap42p-Pphs-Sit4p system in yeast is critical in ribosome biogenesis. It has been observed that polyribosome formation is inhibited in the *TAP42* deleted strains, suggesting that *TAP42* functions upstream of translation initiation. Moreover, *TPD3* (A subunit of PP2A) and *SIT4* have function upstream of RNA Pol III and Pol II, respectively. From these observations, it has been proposed that the Tap42p-Pphs-Sit4p system plays a major role in mediating TOR signalling to control ribosomal biogenesis. (Crespo *et al.*, 2002; Inoki *et al.*, 2005)

1.4.3. TOR and Regulation of Cell Proliferation

TOR signaling pathway also controls cell proliferation in response to nutrient availability in *Saccharomyces cerevisiae*. How the inhibition of TOR pathway regulates cell cycle progression and the mechanism is not completely understood. However, it has been found that rapamycin treatment causes cells to arrest growth in G1 phase due to the impairment of protein synthesis (Zinzalla *et al.*, 2007). In addition, Sch9p and Rim15p are shown to have a role in G0 entry (Wanke *et al.*, 2005; Urban *et al.*, 2007), and Sit4p involves in G1/S and G2/M transitions (Clotet *et al.*, 1999; Jiang *et al.*, 2006).

1.4.4. TOR and Aging

It has been known about 80 years that calorie restriction (CR) leads to life span extension. Although there are numerous suggestions about how CR affects aging, the underlying mechanism is still not very clear. Genetic studies with different organisms, from yeast to mammals points that nutrient-sensing/insulin/ insulin growth factor I (IGF-I) pathways have an important role of in life span modulation, which suggest that there is a common evolutionary origin of aging regulation. Furthermore, it has been implicated in the studies with yeast, flies, and mice that these signalling pathways are related with CR-induced life span extension (Wei *et al.*, 2008)

S. cerevisae has become one of the most valuable model organisms for ageing studies. In this uni-cellular eukaryote, longevity is measured by two distinct paradigms. The first paradigm is replicative life span (RLS), which is defined as the mean or

maximum number of daughter cells generated by individual mother cells. Alternatively, chronological life span (CLS) is a measure of the mean or maximum survival time of populations of non-dividing yeast. Yeast RLS has been proposed as a model for the ageing of dividing cells of higher eukaryotes, whereas CLS is believed to better model the ageing of post-mitotic cells. RLS was the first paradigm to be used for ageing studies. (Cheng *et al.*, 2007)

In order to determine RLS, about 50 genes have been implicated. On the other hand, it has been shown that the chronological ageing is regulated by fewer genes. Recent studies have indicated that three nutrient responsive yeast kinases: Sch9p, PKA, and TOR, act as major regulators of both types of ageing. Sch9p is a yeast kinase homologous to mammalian serine/threonine protein kinase Akt. RLS is increased by 30-40% and CLS is extended by nearly three folds as a result of inactivated Sch9p. Some researches show that induction of Gcn4p has a role in this mechanism (Steffen et al., 2008). High-throughput screenings have also been performed in yeast to identify genes that determine RLS and CLS, respectively. One of these studies identified 10 gene deletions that increase RLS, and 6 of them (including the deletion of TOR1) correspond to genes encoding proteins in the TOR pathways. In addition, several TOR-related gene deletions that increase CLS were identified by another one. In yeast, as well as in higher eukaryotes, Sch9p, PKA, and TOR coordinate signals from nutrients to regulate ribosome biogenesis, stress response, cell size, autophagy, and other cellular processes. That life span extension has been observed in researches with mutations that decrease the activity of the orthologs of these proteins in higher eukaryotes suggests that the roles of these kinases in the regulation of life span are conserved along evolution. (Cheng et al., 2007)

Furthermore several studies have proposed a complex and controversial relationships between mitochondrial respiration, reactive oxygen species (ROS), and life. It is shown that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. It is demonstrated that deletion of *TOR1* delays aging independently of the antioxidant gene *SOD2*. Furthermore, a difference was observed in life span of wild type and *TOR1* deleted strains only when respiration competent and grown in normal level of oxygen in the presence of glucose. It is proposed that inhibition of TOR signalling causes de-repression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span. (Figure 1.17) (Bonawitz *et al.*, 2007; Scheike *et al.*, 2007)

Figure 1.17. Effect of cellular ROS in life span (Scheike et al., 2007)

TOR inhibition extends lifespan also by increasing Sir2p activity and stabilizing the rDNA locus, which is a similar mechanism as how CR does. Further, it is shown that the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus lead to rDNA stabilization and lifespan extension related to CR and TOR signalling. Msn2p/4p increases expression of the nicotinamidase gene *PNC1*. Considering these findings, it can be suggested that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging (Figure 1.18) (Medvedik *et al.*, 2007).

Figure 1.18. Role of Msn2p/4p in life span extension (Medvedik et al., 2007)

1.4.5. TOR and Autophagy

One of the primary roles of autophagy is serving a response to stress, like nutrient limitation, in unicellular organisms. Autophagy is also considered to be involved in the extension of lifespan which is related to caloric restriction. TOR inhibits autophagy through RAS/PKA pathway under basal or nutrient-rich conditions, and it is one of the major regulatory components of autophagy (Klionsky *et al.*, 2005; De Virgilio *et al.*, 2006). TOR acts on autophagy in two ways. First, it directly or indirectly phosphorylates the autophagy protein Atg13p. This hyper-phosphorylated Atg13p has a lower affinity for the kinase Atg1p, which is a conserved component of the autophagic machinery, and autophagy may be inhibited due to this reduced interaction. Thus, TOR controls autophagy primarily at the induction step by activating the Atg1p kinase (Klionsky *et al.*, 2005; Diaz-Troya *et al.*, 2008). Partial dephosphorylation of Atg13p is observed in the inhibition of TOR through starvation or treatment with rapamycin which results in autophagic induction. Second, TOR acts in a signal transduction cascade and it controls phosphorylation of several effectors (e.g. Tap42p, Sit4p, Ure2p and Gln3p) that involve in

transcriptional and translational regulation of certain proteins, some of which are required for autophagy (Klionsky *et al.*, 2005). However, autophagy is also found to be regulated through different factors like protein kinase A, Gcn2p and Snf1p (Klionsky *et al.*, 2005; Orlova *et al.*, 2006).

1.5. Effect of Caffeine on TOR Signalling

Besides rapamycin, there are a number of other pharmacological agents that affect TOR, including caffeine, which is a member of the methylxanthine family of compounds. Caffeine affects a diverse array of cellular processes related to cell growth, DNA metabolism, and cell cycle progression, most likely by acting as a low affinity ATP analog. It has been shown that phosphorylation of TOR-dependent substrates is inhibited caffeine both *in vitro* and *in vivo*. Although caffeine has not been used widely as a tool for probing TOR function, it has a potential due to the pleiotropic behavior of this compound in addition to the fact that it interacts with TOR with relatively low affinity, *i.e.* in the submillimolar range (Reinke *et al.*, 2006).

It has been proposed that caffeine targets many cellular activities with cAMP phosphodiesterase. However, it is not very clear that caffeine really inhibits cAMP phosphodiesterase. Indeed, some studies in yeast (Kuranda *et al.*, 2006; Reinke *et al.*, 2006) have recently demonstrated that caffeine targets TORC1, but not cAMP phosphodiesterase. It has also been confirmed that TORC2 is not the growth-limiting target of caffeine in yeast. (Wanke *et al.*, 2008). Research reveals that high doses of caffeine (> 10 mM) have mutagenic effects in yeast cells; although similar effects have been observed, the effects of rapamycin and caffeine are not totally the same (Kuranda *et al.*, 2006). The figure below shows the comparison of expression data from *pde2* Δ mutant and wild type yeast cells treated with caffeine and rapamycin (data sets of rapamycin, Hardwick *et al.*, 1999; caffeine, Kuranda *et al.*, 2006; and *pde2* Δ mutant, Jones *et al.*, 2003) (Figure 1.19).

Figure 1.19. Comparison of expression data from cells treated with caffeine, rapamycin and $pde2\Delta$ mutant (Kuranda *et al.*, 2006)

Although several similarities between response to caffeine and rapamycin have been observed, some differences have been pointed out in the studies (Kuranda *et al.*, 2006). First, growth arrest in the early G1 phase was observed under rapamycin teatment; however, it was found that addition of caffeine did not cause growth arrest at any specific stage in cell division. Second, although genes in the Ras/cAMP signalling pathway responded to caffeine at the transcriptional level; it was observed that rapamycin did not cause significant change in expression of those genes. Finally, the expression data of caffeine overlapped 25% of the expression data of rapamycin; but it has to be considered that the experiments were not carried out under the same conditions.

1.6. Flux Balance Analysis

A cell is a complex system consisting of a numerous molecular components. Among those components, there are many complex interactions and the system works by the harmony of intricate cellular functions. This system could not be very well understood with the classical methods based solely on a description of the individual components; therefore, in order to understand the complexity of cellular networks, an approach based on the integrated cellular systems is required (Edward *et al.*, 1999; Edward *et al.*, 2000).

Alternative to the classical methods, in order to analyze the biological system the engineering approach focuses on mathematical and computational models which consist of fundamental physicochemical laws and principles. In this approach, the ultimate goal is to simulating the complete cellular metabolism by dynamic models; however, in the lack of kinetic information on the reactions in the cell, there is a huge obstacle in front of this approach. Nevertheless, it is still possible to evaluate the capabilities of the cell without kinetic information on the dynamics and regulation of metabolism, and this approach is called flux balance analysis (Edward *et al.*, 2000).

Flux balance analysis (FBA) is based on the fundamental physicochemical constraints on metabolic networks. In order to analyze the metabolic networks, it only uses the stoichiometry of metabolic pathways and the metabolic demands of the cell. A closed solution space is defined by using physicochemical constraints and the most appropriate solution is found by linear optimization within this space. FBA can also use the annotated genome sequence information to define the stoichiometric parameters; thus, additional information can be obtained when it is available (Palsson *et al.*, 2001). FBA has been used in several studies. This approach has been successfully used to predict by-product secretion (Edward *et al.*, 2000; Forster *et al.*, 2003), time course of growth (Palsson *et al.*, 2001; Beard *et al.*, 2002; Lee *et al.*, 2006), and effect of knock-outs and mutants (Mahadevan *et al.*, 2002; Motter *et al.*, 2008).

1.7. Topological Study of Protein-Protein Interactions

In the twentieth-century, biological phenomena were studied by investigating the behaviour of molecules. However, most biological functions have been attributed to interactions among many components in the cell, rather than an individual molecule. For example, the cell reacts to a chemical via detection and amplification of signals arisen due to the chemical and shows a coordination of reactions (Hartwell *et al.*, 1999). That living cells are composed of a large number of different molecules interacting with each other has directed scientists from molecular to modular biology (Rodriguez-Caso *et al.*, 2005).

A functional module is a distinct entity whose function is distinguishable from those of other modules. Modules can be connected to or insulated from each other. Connectivity of modules produces interactions among reactions; whereas, insulation prevents the cell from possible harm arisen from cross-talk between networks. Types of molecules in a module can be discrete and the interactions among these molecules (proteins, DNA, RNA and small molecules) bring modules distinct functions. These functions cannot easily be predicted by studying the properties of individual components. Therefore, a linkage between biology and synthetic disciplines such as computer science and engineering is necessary (Hartwell *et al.*, 1999).

Mapping molecular interactions within metabolic and signalling pathways into a network is a starting point in this integrative approach, and biological databases provide a unique opportunity to characterize biological networks under the perspective of a system. In addition to topological studies of cellular networks by analyzing genomic and metabolic maps, protein networks have also been being studied after the progress in massive two-hybrid system screening methodology. Protein–protein interactions are very valuable to understand regulation, signalling and gene expression in the cell, since proteins form supramolecular activator or inhibitory complexes, depending on their components and possible combinations (Rodriguez-Caso *et al.*, 2005). High- throughput data together with network topology is also studied to identify functional modules (Ulitsky *et al.*, 2007, Mobini *et al.*, 2009)

1.8. The Aim of the Thesis

The aim of this study is to understand the effect of the caffeine on the growth of the cells and identify flux changes in the presence of this chemical in yeast.

The wild type yeast cells were grown batch-wise in the absence or presence of rapamycin or caffeine. Samples were collected at different times during the cultivation. The impact of two chemicals on the yeast cells was investigated by observing the growth of cells under the chemical treatment.

Saccharomyces cerevisiae wild type strains were also grown in well-controlled batch cultures in the presence or absence of caffeine. Samples were collected at the midexponential phase. Biomass and extra-cellular metabolites were measured and this data was used in flux balance analysis to determine metabolic fluxes under these conditions by using the whole genome stoichiometric models. The fluxes in which significant changes were observed due to caffeine treatment were identified.

Additionally since it has been reported that both caffeine and rapamycin affect the TOR signalling pathway, a modular approach based on literature curated protein-protein interactions was developed within the framework of this thesis.

The materials and the experimental methods used are explained in the "Material and Methods" section. All findings that are obtained from this study are comprised in the "Results" section, and the obtained results are comprehensively argued in the "Discussion" section. Important key points and recommendation about possible future work are represented in the "Conclusions and Recommendations" section.

2. MATERIALS AND METHODS

2.1. Materials

2.1.1. Microorganism

BY4743 type (MATa/MATa his $3\Delta 1$ /his $3\Delta 1$ leu $2\Delta 0$ /leu $2\Delta 0$ lys $2\Delta 0$ /+ met 15Δ /+ ura $3\Delta 0$ /ura $3\Delta 0$) *Saccharomyces cerevisiae* strains which were kindly provided by Professor Stephen G. Oliver (Department of Biochemistry, University of Cambridge) were used in the experiments.

2.1.2. Chemicals and Disposable Materials

2.1.2.1. Culture Media Complex medium (YPD) and F1 medium were used as culture media in the experiments. The compositions were as follows:

YPD medium (per 1 litre culture) consists of 1 g Yeast Extract (Merck), 2 g Bacteriological Peptone (Merck), 2 g D-Glucose (Riedel de Haen), completed to 1 l with distilled H_2O . D-Glucose was added from previously sterilized stocks after the sterilization of the remaining of the medium.

F1 medium (per 1 litre culture) consists of 20 g D-Glucose (Riedel de Haen), 3.13 g $(NH_4)_2SO_4$ (Merck), 2 g KH₂PO₄ (Merck), 0.55 g MgSO₄.7H₂O (Merck), 0.1 g NaCl (Merck), 0.02 g Uracil (Fluka), 0.02 g Histidine (Merck), 0.1 g Leucine (Merck), 100 µl Trace Element Solution I (per 100 µl solution: 70 µg ZnSO₄.7H₂O (Merck), 10 µg CuSO₄.5H₂O (Merck), 10 µg H₃BO₃ (Merck), 10 µg KI (Merck), completed to 100µl with distilled H₂O), 100 µl Trace element Solution II (per 100 µl solution: 50 µg FeCl₃.6H₂O (BDH), completed to 100 µl with distilled H₂O), 1.67 µl Vitamin Stock Solution (per 100 ml solution: 3.72 g Inotisol (Merck), 0. 84 g Thiamine/HCl (Sigma), 0.24 g Capanthothenate (Fluka), 0.24 g Pyridoxine (Fluka), 0.018 g Biotine (Merck), completed to 100 ml with distilled H₂O), completed to 1 l with distilled H₂O. The medium was sterilized by filtration before use.

<u>2.1.2.2. Kits</u> Enzymatic kits to determine D-glucose, ammonia, ethanol and glycerol concentration were purchased from Boehringer Mannheim – Roche (Germany).

<u>2.1.2.3. Miscellaneous</u> Ethanol 96% (Laborteks), 0.20 μ m sterile filter units (Sartopore), disposable tubes of 1.5 ml (USA Scientific Inc.), disposable sterile pipettes of 5 and 50 ml (Roth) and sterile centrifuge tubes of 10 ml (Roth) were also used in various applications and processes.

2.1.3. Laboratory Equipment

•	Autoclave	ALP CL-40M (Japan)
•	Balance	Sartorius AC211C (Germany)
•	Blower	Nitto Kohki Co. Ltd. (Japan)
•	Centrifuge	Sigma 1-15P (Germany)
•	Dissolved Oxygen Sensor	Hamilton Oxyferm FDA 225 (Switzerland)
•	Fermentor	Sartorius Biostat B plus (Germany)
•	Freezer	New Brunswick Sci. U410 (England)
•	Incubator Shaker	New Brunswick Sci. Innova 4340 (England)
•	Laminar Flow Cabinet	Holten HBB 2460 LaminAir (Denmark)
•	Microwave Oven	Arçelik MD553 (Turkey)
•	Oven	MMM Group Incucell (Germany)
•	Probe, pH	Hamilton Easyferm K8 200 (Switzerland)
•	Refrigerator	Ariston +4°C (Italy)
•	Spectrophotometer	Beckman Coulter DU730 (USA)
•	Stirrer	Heidolph 3001 Magnetic Stirrer (Germany)
•	Vortex	Scientific Industries Vortex-Genie 2 (USA)
•	Water Bath	HETO CB 8-30e (Denmark)
•	Water Purification Systems	Millipore Milli Ro Plus (USA)
		Millipore Milli-Q UF Plus (USA)

2.2. Methods

2.2.1. Sterilization

Sterilization was performed in an effort to avoid contamination throughout this study. Two kinds of sterilization processes, steam and filter sterilization were applied for this purpose.

In the steam sterilization process, the materials or the solutions were kept under 15 psig pressure and 121°C temperature in an autoclave. The duration of this process was varied according to the nature of the material to be sterilized. Due to the possibility of caramelization or the Maillard reaction of the glucose molecules, glucose solution was sterilized for 3 minutes. For all other chemical solutions and all materials that were used in the processes related to cultivation, 15 minute steam sterilization process was done.

Large amounts of cultivation medium were preferred to be sterilized by filtration. $0.20 \ \mu m$ sterile Sartorious disposable filters (Germany) were used for this process and the medium was fed into the sterile fermentor via passing through the filter with the help of a pump.

2.2.2. Cultivation

The precultures to be used to inoculate batch cultivations were prepared by growing yeast cells from frozen stocks in 50 ml YPD medium. They were incubated in orbital shakers at 30°C and 180 rpm, and used for inoculation after yeast cells were grown two overnight periods.

In batch cultivations in flasks, yeast cells were grown in F1 or YPD medium. Inoculation was done from the precultures with the volume of one hundredth of the final working volume. Flasks were shaken at 180 rpm and kept at 30°C in orbital shakers. Growth of the cells was followed via optical density at 600 nm. Yeast cells were first grown in a large volume and then aliquots were taken into separate flasks just before the chemical treatment. They were treated with rapamycin (200 and 400 ng/ml as the final

concentration) or caffeine (1, 3, 4, 5, 6, 8, 10, 12, 14, 15, 18, 20, 30, and 50 mM as the final concentration).

Yeast cells were grown in a total volume of 1.5 litre F1 or YPD medium throughout the controlled batch cultivations in fermentors. The temperature was kept constant at 30°C with a PID controller and the agitation was set to 800 rpm. Inoculation was done from the precultures with the volume of one hundredth of the final working volume. The pH value of the culture was controlled by a PID controller with the automatic addition of 0.5 M NaOH or 0.5 M HCl, and was set to 5.5. Air was given into the cultures with a flow rate of 1 l/min by using a compressor. The dissolved oxygen concentration was monitored with the help of an oxygen probe.

Two different batch cultivations were done. They were carried out in the presence or absence of caffeine. In the controlled batch cultivation in F1 medium, samples were taken in 30 minutes intervals after yeast cells had an optical density of 0.2. In controlled batch cultivation in YPD medium, yeast cells were grown until the optical density reached 1.0, and then they were treated with caffeine. The batch cultures were treated with caffeine that the final concentration was 30 mM. To measure biomass and extracellular metabolite amounts, samples with the volume of 5 ml were collected every 30 minutes while the cells were growing in the exponential phase, and samples of 1 ml were taken throughout the whole experiment in order to measure optical density.

2.2.3. Sample Preparation and Storage

Collected samples of 1 ml were taken in 1.5 ml Eppendorf tubes (Germany). They were centrifuged for 6 minutes at 8000 rpm in the Eppendorf (Germany) centrifuge with rotor 5415C. The supernatant was transferred into a new Eppendorf tube to be used in extracellular metabolite analyses and was stored at -20° C. Prior to enzymatic analyses, they were incubated at 80°C for 15 minutes to cease any possible enzymatic activity that would have remained. The cells precipitated via centrifugation were washed three times with 1 ml distilled water and finally dissolved in distilled water. They were stored at -4° C before used in biomass measurement.

2.2.4. Enzymatic Analyses for the Measurement of Metabolite Concentrations

The concentrations of the metabolites, ammonia, D-glucose, ethanol and glycerol, were measured with the help of the enzymatic analysis kits (Boehringer – Mannheim, Germany). The procedures that were described by the manufacturers of the kits were followed in enzymatic analyses, and the necessary dilutions of supernatants were carried out as indicated in the protocols prior to the analyses.

<u>2.2.4.1. D-Glucose Concentration Measurement</u> D-Gluose is phosphorylated to D-glucose-6-phosphate (G-6-P) in the presence of the enzyme hexokinase (HK) and adenosine-5'-triphosphate (ATP) with the simultaneous formation of adenosine-5'-diphosphate (ADP).

$$D - Glu\cos e + ATP \xrightarrow{HK} G - 6 - P + ADP$$
(2.1)

G-6-P is oxidized by nicotinamide-adenine dinucleotide phosphate (NADP) to Dgluconate-6-phosphate with the formation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH), in the presence of the enzyme glucose-6-phosphate dehydrogenase (G6P-DH). The amount of NADPH formed in the below reaction is stoichiometric to the amount of D-glucose. The increase in NADPH was measured by means of its light absorbance at 340 nm.

$$G - 6 - P + NADP^{+} \xrightarrow{G6P - DH} D - gluconate - 6 - phosphate + NADPH + H^{+}$$

$$(2.2)$$

Solution I of the kit was prepared by solving powder consisting of triethanolamine buffer, pH 7.6, NADP, ATP, magnesium sulfate in distilled water. Solution II of the kit, consisting of hexokinase and glucose-6-phosphate dehydrogenase was used as undiluted.

1.000 ml of solution I, 0.100 ml of sample solution and 1.900 ml of distilled water were pipetted into a cuvette for each sample and mixed. In addition, 1.000 ml of solution I and 2.000 ml of distilled water were pipetted into a cuvette to be used as a blank solution and mixed. They were waited 3 minutes at room temperature, and then absorbances of the solutions were read and noted (A_1). The reaction was started with the addition of 0.020 ml of solution II to each cuvette. It was waited 15 minutes for the completion of the reaction and then absorbances of the solutions were read and noted again (A_2).

The absorbance difference for each cuvette was determined $(A_1 - A_2)$, and the absorbance difference of the blank was subtracted from the absorbance difference of each sample.

$$\Delta A = (A_1 - A_2)_{sample} - (A_1 - A_2)_{blank}$$
(2.3)

The concentration was calculated via the following equation as described in the procedure of the kit.

$$c = \frac{V \times MW}{\varepsilon \times d \times v \times 1000} \times \Delta A \left[g / l \right]$$
(2.4)

where V was the final volume [ml], v was the sample volume [ml], MW was the molecular weight of the substance to be assayed [g/mol], d was the light path [cm], and ε was the extinction coefficient of NADH at 340 nm, which was equal to 6.3 l/mmol.cm.

Then the equation is,

$$c = \frac{3.020 \, ml \times 180.16 \, g \, / \, ml}{6.3 \, l \, / \, mmol.cm \times 1.00 \, cm \times 0.100 \, ml \times 1000} \times \Delta A = \frac{0.5441}{6.3} [g \, glu \cos e \, / \, l \, solution]$$
(2.5)

<u>2.2.4.2. Ethanol Concentration Measurement</u> Ethanol is oxidized to acetaldehyde by nicotinamide-adenine dinucleotide (NAD) in the presence of the enzyme alcohol dehydrogenase (ADH).

$$E than ol + NAD^{+} \xleftarrow{ADH} a cetal dehyde + NADH + H^{+}$$
(2.6)

The equilibrium of this reaction lies on the side of ethanol and NAD. It can be completely displaced to the right side at alkaline conditions and by trapping of the acetaldehyde formed. Acetaldehyde is quantitatively oxidized to acetic acid in the presence of aldehyde dehydrogenase (Al-DH). NADH was determined by means of its light absorbance at 340 nm.

$$Acetaldehyde + NAD + H_2O \xrightarrow{Al-DH} acetic acid + NADH + H^+$$
(2.7)

Solution I of the kit, consisting of potassium diphosphate buffer, pH 9.0, was used as undiluted. One 4 mg tablet containing NAD and aldehyde dehydrogenase was dissolved with three ml solution I in a beaker for each assay depending on the number of determinations. Forceps were used for taking the tablets out of the bottle. Hereby reaction mixture was prepared. Solution III of the kit, consisting of ADH was also used as undiluted.

3.000 ml of reaction mixture and 0.100 ml of sample solution were pipetted into a cuvette for each sample and mixed. In addition, 3.000 ml of reaction mixture and 0.100 ml of distilled water were pipetted into a cuvette to be used as a blank solution and mixed. They were waited 3 minutes at room temperature, and then absorbances of the solutions were read and noted (A₁). The reaction was started with the addition of 0.050 ml of solution III to each cuvette. It was waited 10 minutes for the completion of the reaction and then absorbances of the solutions were read and noted solutions were read and noted again (A₂).

The absorbance differences for each cuvette were determined $(A_1 - A_2)$, and the absorbance difference of the blank was subtracted from the absorbance difference of each sample.

$$\Delta A = (A_1 - A_2)_{sample} - (A_1 - A_2)_{blank}$$
(2.8)

The concentration was calculated via the following equation as described in the procedure of the kit.

$$c = \frac{V \times MW}{\varepsilon \times d \times v \times 2 \times 1000} \times \Delta A \left[g / l \right]$$
(2.9)

where V is the final volume [ml], v is the sample volume [ml], MW is the molecular weight of the substance to be assayed [g/mol], d is the light path [cm], and ε is the extinction coefficient of NADH at 340 nm, which is equal to 6.3 l/mmol.cm. Then the equation is,

$$c = \frac{3.020 \, ml \times 46.07 \, g \, / \, ml}{6.3 \, l \, / \, mmol. cm \times 1.00 \, cm \times 0.100 \, ml \times 1000} \times \Delta A = \frac{0.7256}{6.3} [g \, ethanol / l \, solution]$$
(2.10)

<u>2.2.4.3. Glycerol Concentration Measurement</u> Glycerol is phosphorylated by adenosine-5'-triphosphate (ATP) to L-glycerol-3-phosphate in the reaction catalyzed by glycerokinase (GK).

$$Glycerol + ATP \xrightarrow{GK} L - glycerol - 3 - phosphate + ADP$$
(2.11)

The adenosine-5'-diphosphate (ADP) formed in the above reaction is reconverted into ATP by phosphoenolpyruvate (PEP) with the aid of pyruvate kinase (PK) with the formation of pyruvate.

$$ADP + PEP \xrightarrow{PK} ATP + pyruvate$$
 (2.12)

Pyruvate is reduced to L-lactate by reduced nicotinamide-addenine dinucleotide (NADH) with the oxidation of NADH to NAD, in the presence of the enzyme L-lactate dehydrogenase (L-LDH).

$$Pyruvate + NADH + H^{+} \xrightarrow{L-LDH} L - lactate + NAD^{+}$$

$$(2.13)$$

The amount of NADH oxidized in the above reaction is stoichiometric to the amount of glycerol. NADH was determined by means of its light absorption at 340 nm. Solution I

of the kit was prepared by solving powder consisting of glycylglycine buffer, pH 7.4, NADH, ATP, PEP-CHA, magnesium sulfate in eleven ml of distilled water, and the solution was allowed to stand for 10 minutes at room temperature. Solution II of the kit, consisting of pyruvate kinase and L-lactate dehydrogenase, was used as undiluted. Solution III of the kit, consisting of glycerokinase suspension, was also used as undiluted.

1.000 ml of solution I, 0.100 ml of sample solution, 1.900 ml of distilled water and 0.010 ml of solution II were pipetted into a cuvette for each sample and mixed. In addition, 1.000 ml of solution I, 2.000 ml of distilled water and 0.010 ml of solution II were pipetted into a cuvette to be used as a blank solution and mixed. They were kept 7 minutes at room temperature, and then absorbances of the solutions were recorded (A_1). The reaction was started with the addition of 0.010 ml of solution III to each cuvette. 10 minutes were allowed for the completion of the reaction and then absorbances of the solutions were recorded again (A_2).

The absorbance difference for each cuvette was determined $(A_1 - A_2)$, and the absorbance difference of the blank was subtracted from the absorbance difference of each sample.

$$\Delta A = (A_1 - A_2)_{sample} - (A_1 - A_2)_{blank}$$
(2.14)

The concentration was calculated via the following equation as described in the procedure of the kit.

$$c = \frac{V \times MW}{\varepsilon \times d \times v \times 1000} \times \Delta A \left[g / l \right]$$
(2.15)

where V was the final volume [ml], v was the sample volume [ml], MW was the molecular weight of the substance to be assayed [g/mol], d was the light path [cm], and ε was the extinction coefficient of NADH at 340 nm, which was equal to 6.3 l/mmol.cm.

Then the equation is,

$$c = \frac{3.020 \, ml \times 92.1 \, g \,/\,ml}{6.3 \, l \,/\,mmol.cm \times 1.00 \, cm \times 0.100 \, ml \times 1000} \times \Delta A = \frac{2.781}{6.3} [g \ glycerol / l \ solution]$$
(2.16)

2.2.5. Biomass Measurement

Filter papers were placed into clean petri dishes of 50 mm diameter. They were dried twice in microwave oven (Arçelik MD553, Turkey) for 20 minutes at 350 watt. They were kept in the desicator overnight to cool petridishes to the ambient temperature and to dehumidify thoroughly. After measuring the weight of petri dishes using Sartorious balance AC 211S (Germany), cells which were previously washed and dissolved in distilled water were pipetted onto the filter paper in the petri dishes. They were dried in the microwave, dehumidified thoroughly in the desicator and weighed with the balance. The differences in two weight measurements were recorded as the biomass of the collected 1 ml samples.

2.2.6. Determination of Growth Rate

Growth rate is the amount of biomass that that the cells has gained within a certain period. In this study, in order to calculate growth rate at time 't' was calculated with the biomass amounts at time 't' and one hour before the time 't' as in the following equation.

$$Growth Rate (t) = \frac{\frac{Biomass(t) - Biomass(t - 1hr)}{Biomass(t)}}{1 hr}$$
(2.17)

2.2.7. Determination of Maximum Growth Rate

The Michaelis-Menten equation for the single limiting substate enzyme kinetics in the absence of substrate or product inhibition is given as follows.

$$r_x = x_v \frac{\mu_m \times S}{k_s + S} \tag{2.18}$$

where x_v represents viable cells (kg cell.m⁻³), μ_m is maximum specific growth rate (hr⁻¹), *S* is the limiting substrate concentration (kg.m⁻³), k_s represents the saturation constant (kg.m⁻³) and r_x is the rate of reaction (kg S uptake.L⁻¹.hr⁻¹).

The rate of reaction equation can also be expressed in terms of growth rate, μ .

$$\frac{dx_v}{dt} = r_x = x_v \frac{\mu_m \times S}{k_s + S} = \mu \times x_v$$
(2.19)

Integrating both sides of the equation yields,

$$\ln(x_{\nu}) = \mu \times t \tag{2.20}$$

At the exponential phase of the batch processes, the plot for natural logarithm of the cells versus time has a constant slope and it gives the maximum growth rate.

2.2.8. Flux Balance Analysis

Flux balance analysis (FBA) is based on the fundamental physicochemical constraints on metabolic networks, and fundamentally it is based on the conservation of mass. In order to yield the dynamic mass balance equation in the network, a flux balance can be written for each metabolite (X_i) within the metabolic network.

$$\frac{dX_i}{dt} = V_{syn} - V_{deg} - V_{use} \pm V_{trans}$$
(2.21)

where V is flux, the subscripts 'syn' and 'deg' refer to the synthesis and degradation reactions of the metabolite, the subscripts 'use' corresponds to the requirements growth

and maintenance related to the metabolite, and the subscripts '*trans*' refers to exchange of the metabolite through the system boundary. This equation can be rearranged as follows.

$$\frac{dX_i}{dt} = V_{syn} - V_{deg} - V_{use} - b_i$$
(2.22)

where b_i is the net transport of the external metabolite X_i into the system. Afterwards, all material balances can be written in matrix form as follows.

$$\frac{dX}{dt} = S \bullet v - b \tag{2.23}$$

where the vector X represents the quantity of the metabolites in the cell, S is the stoichiometric matrix, v refers to a vector including metabolic fluxes and b is the vector which represents metabolic demands. The time constants of cell growth and process dynamics are typically very slow compared to the time constants characterizing metabolic transients; thus, the transient mass balances can be simplified as in the following equation. This equation considers only the steady-state behaviour.

$$S \bullet v = b \bullet I \tag{2.24}$$

where *I* is the identity matrix. This equation states a presence of a balance among all the formation, degradation, utilization, and transport fluxes in the cell; otherwise, there will be an accumulation of metabolites inside the cell. This equation defines the mass constraints on the system. Additional constraints, such as the stoichiometric constraints and the capacity constraints on the exchange fluxes, should also defined on the network. Those constraints, which represent the maximum and minimum allowable flux through the corresponding reaction, should also be placed on the value of the fluxes through each of the reactions.

$$\alpha_i \le v_i \le \beta_i \tag{2.25}$$
In this study, FBA was used to obtain the flux distributions in the cell. A stoichiometric matrix consists of 822 metabolites participating in 1172 irreversible reactions was used (Forster *et al.*, 2003). Metabolites and reactions described in FBA are given in Appendix (Tables A.1 and A.2, respectively). FBA predicts successfully for steady-state system; therefore, batch cultivations were considered as a series of chemostat cultivations, and the change of metabolites were calculated with respect to the initial point.

In FBA, maximization of growth, oxygen uptake and ethanol production was chosen as the objective function. Experimentally measured growth rate, biomass and metabolite concentrations given were converted into flux measurements, and those flux measurements were used in prediction of ethanol production using FBA. Alternate optima were found (Mahadevan *et al.*, 2003) and similar fluxes were eliminated.

Metabolite concentrations were normalized by biomass measurements and multiplied with growth rate to find flux measurements in the unit of g/(gDW.hr). Using molecular weight fluxes were converted in the unit of mmole/(gDW.hr).

Since only a number of metabolites, such as glucose, ethanol, glycerol, were measured experimentally, linear optimization was used in FBA analysis to obtain fluxes in the cell. Linear optimization was done with the help of MATLAB Optimization – TOMLAB 7.1 toolbox. The code of the FBA programme is given in Appendix.

2.2.9. Topological Study of Protein-Protein Interactions

Topology of TOR signalling proteins that were in the literature was studied by investigating protein-protein interactions. Protein-protein interactions among the proteins were obtained from BioGRID database using Osprey 1.2.0. The degree distribution, betweenness centrality and clustering, which gave global information about the network, were obtained by using Networkx Module programming in Python v2.5. Bron-Kerbosch algorithm (Bron *et al.*, 1973) was used as the module enumeration algorithm, which identifies modules with Q=1, where Q is the modularity and described as,

$$Q = \frac{2l}{n(n-1)} \tag{2.26}$$

where *l* is the number of interactions between *n* nodes. In this manner, functional modules are regarded as highly condensed subgraphs having maximum number of interactions within its members, *i.e.* Q = 1.

Protein-protein interaction maps are complex networks which are defined as sets of N nodes (the proteins, P_i , i = 1, ..., N) linked together with interactions represented by l. The number of links of a node is defined as the degree (k_i) of a node and $\langle k \rangle$ was the average degree. The number of neighbouring of l_i links between nodes divided by the total number allowed by its degree, k_i $(k_i - 1)$ is clustering coefficient (C_i) which shows the interconnection of the neighbours. The clustering coefficient of the whole network is,

$$< C > = \frac{1}{N} \sum_{i=1}^{N} \frac{2l_i}{k_i(k_i - 1)}$$
(2.27)

The number of short paths connecting each pair of nodes that contain the node P_i is indicated as betweenness centrality (b_i) for a node P_i . It is defined as,

$$b_i = \sum_{m \neq n} \frac{\Gamma(m, i, n)}{\Gamma(m, n)}$$
(2.28)

where $\Gamma(m, i, n)$ is the number of the shortest paths between proteins P_m and P_n , passing through P_i, whereas $\Gamma(m, n)$ is the total number of paths between those two proteins. The ratio $\Gamma(m, i, n) / \Gamma(m, n)$ shows the significance of the P_i role in connecting P_m and P_n .

In order to compare with the TOR signalling network and analyze if the network exhibits scale-free distribution, a random network was constructed by assigning the same number of interactions among the same number of nodes as in the TOR signalling network thousand times at random. Real networks also exhibit scale-free (SF) distributions of links, where the cumulative frequency of nodes with degree k, n(k), decays according to a powerlaw distribution,

$$n(k) = A.k^{-\gamma + 1}$$
(2.29)

where A is a constant and $2 < \gamma < 3$ for a scale-free property. SF networks also exhibit powerlaw correlations in clustering and betweenness vs. degree plots (Rodriguez-Caso *et al.*, 2005).

2.2.10. Self-Organizing Maps

Self-organizing maps (SOM) methodology has been used in biological applications due to its various features that make it particularly well suited to clustering and analysis of biological patterns (Tamayo *et al.*, 1999). In this study it was used to cluster fluxes in the cell that were obtained in the absence or presence of caffeine. An SOM has a set of nodes with a simple topology and a distance of the the nodes are described as the function $d(N_1,N_2)$. Those nodes are iteratively mapped into k-dimensional space, where $f_i(N)$ shows the position of node N at iteration. The initial mapping f_0 is calculated as random. Subsequently, a data point, P, is selected and the nearest node, N_P is identified on the map. Then points are moved by the following formula toward P to adjust the mapping of nodes.

$$f_{i+1}(N) = f_i(N) + \tau(d(N, N_P), i)(P - f_i(N))$$
(2.30)

As the distance of node N from N_P or iteration number, *i*, increases the learning rate, τ , decreases. At each iteration, the point, P, used is determined by random ordering of a certain number of data points generated once and recycled as needed. In this study, GeneCluster 2.0 was used to cluster fluxes in the cell that were obtained in the absence or presence of caffeine.

3. RESULTS

Batch cultivations were carried out in the absence and presence of caffeine or rapamycin in order to study the impact of those chemicals on yeast cells. *Saccharomyces cerevisiae* wild type BY4743 strains were grown in both F1 and YPD medium in flasks and fermentors and samples were collected to investigate the effects of the chemicals on the cells.

3.1. Effect of the Caffeine and Rapamycin on the Growth Characteristics of Yeast Cells in F1 Medium

Three preliminary experiments were carried out to observe growth characteristics of yeast cells in the presence or absence of caffeine and rapamycin in F1 medium. *S. cerevisiae* wild type BY4743 strains were grown in F1 medium in flasks that were shaken at 180 rpm at 30°C. The growth of the yeast cells were followed spectrophotometrically at 600 nm. In all experiments, yeast cells were treated with caffeine at the early exponential phase, when the OD_{600} values reached 0.2-0.4.

In the first experiment, yeast cells were they were treated with caffeine at various concentrations (1, 3, 5, 8, and 12 mM as the final concentration) or rapamycin (200 ng/ml as the final concentration). Growth curves are shown in Figure 3.1 and arrow indicates time of the treatment. Cells were treated at the second hour and the experiment lasted 11 hours. Yeast cells treated with the lowest amount of caffeine showed similar growth behaviour with cells grown in the control flask, but had a higher optical density between 9th and 11th hours. The yeast cells grown in the presence of 3 mM caffeine had a lower optical density than the cells grown in the control flask. The growth curve of the caffeine treated cells had higher values than the growth curve of the cells grown in the control flask and had a higher optical density within the last 2 hour period. The growth behaviour of the cells grown in the presence of 5 mM caffeine between the second and the sixth hours. Afterwards, it intersected with the growth curve of the cells grown in the presence of 8 mM caffeine.

Figure 3.1. Growth curve of yeast cells under chemical treatment for 9 hours in F1 medium

In order to investigate the effect of these chemicals on the growth of cells for a longer period of time, the yeast cells were grown in different flasks and, they were treated with caffeine at various concentrations (4, 6, 8, 10, 12 and 14 mM as the final concentration) or rapamycin (200 ng/ml as the final concentration). Growth of the cells in the presence of chemicals was followed for 27 hours. Arrow indicates time of the treatment. The growth curve of the cells grown in the presence of 200 ng/ml rapamycin reached higher values than the growth curve of the cells grown in the presence of 4 mM caffeine at the seventh hour, of the cells in the presence of 6 mM at the eighth hour and of the cells in the presence of 8 mM at the twelfth hour. Afterwards, it intersected with the growth curve of the cells grown in the growth of yeast cells twenty hours after the treatment; however 12 and 14 mM caffeine had more impact on the cells compared to 200 ng/ml rapamycin. Optical density of the cells grown in the presence of 4, 6 and 8 mM caffeine had a higher value than the optical density of the cells in the control flask after the 15th, 17th and 22nd hour, respectively. Growth curves are given in Figure 3.2.

Figure 3.2. Growth curve of yeast cells under chemical treatment in F1 medium for 27 hours

In the third experiment, yeast cells were treated with caffeine at various concentrations (6, 8, 10, 12 and 14 mM as the final concentration) or rapamycin (200 ng/ml as the final concentration). Growth curves are shown in Figure 3.3 and arrow indicates time of the treatment. The cells were treated at the ninth hour and the experiment lasted 169 hours. The growth curve of the cells grown in the presence of 200 ng/ml rapamycin reached higher values than the growth curve of the cells displayed very similar growth characteristics with the cells grown in the presence of 10 mM caffeine within a period between 20th and 40th hours. Growth curve of the rapamycin treated cells reached higher values than the growth curve of the rapamycin treated cells reached higher values than the growth curve of the cells reached higher values than the growth curve of the cells reached higher values than the growth curve of the rapamycin treated cells reached higher values than the growth curve of the cells at the 45th hour and after the 80th hour optical density of the cells grown in the presence of 6mM and 8mM caffeine. Yeast cells grown in the presence of 6mM and 10 mM, had a higher optical density than the cells grown in the control flask. Yeast cells grown in the presence

of higher concentrations of caffeine, 12 and 14 mM, never had an optical density value as high as the cells grown in the control flask.

Figure 3.3. Growth curve of yeast cells under chemical treatment for 160 hours in F1 medium

3.2. Effect of Caffeine and Rapamycin on Growth Characteristics of Yeast Cells in YPD Medium

Two preliminary experiments were carried out to observe the effect of caffeine and rapamycin on the growth characteristics of yeast cells in YPD medium. *S. cerevisiae* wild type BY4743 strains were grown in YPD medium in flasks, which were shaken at 180 rpm and the temperature were kept constant at 30°C. Samples were taken periodically to follow the growth of the yeast cells spectrophotometrically at 600 nm. Arrows indicate time of the treatment.

In the first experiment, yeast cells were grown to optical density of 1.8 in different flasks, and they were treated with caffeine at various concentrations (4, 8, 10, 12, 14, 18 mM as the final concentration) or rapamycin (200 ng/ml as the final concentration). Growth curves are given in Figure 3.4. Chemical treatment was done at 10th hour and optical density of yeast cells grown in the control flask or treated with low amounts of caffeine (4mM as the final concentration) or rapamycin was measured higher than 2.1 at the end of 70 hours. Yeast cells treated with higher amount of caffeine had an optical density lower than 2.1.

These results indicated that rapamycin (200ng/ml) has almost no effect on the growth of yeast cells in YPD. However caffeine has an inhibitory effect and this effect on the growth becomes more pronounced with the increasing caffeine concentrations under these experimental conditions.

Figure 3.4. Growth curves of yeast cells in the presence of rapamycin and caffeine in YPD

In the second experiment, yeast cells were treated with chemicals when the optical density values reached to 1.8. 35 hours after the treatment, caffeine effect on yeast cells could be seen easily. Although yeast cells in the control flask had an optical density higher than 2.0, optical density of caffeine treated cells were below 2.0. In addition, 50 hours after the treatment, although yeast cells in the control flask had an optical density higher than 2.1, the optical density of caffeine treated cells were still below 2.0. Moreover, a slight repression effect of rapamycin was observed on the cells grown under 400 ng/ml rapamycin. While an increase of 0.20 in optical density was observed for caffeine treated cells in 35 hours after the treatment, the optical density of cells in the control flask had increased 0.25 within this period. Growth curves of the cells are shown in Figure 3.5.

Figure 3.5. Growth curve of yeast cells under rapamycin (400 ng/ml as the final concentration) and caffeine (15-50 mM as the final concentration) treatment in YPD medium (treatment at OD 1.8)

3.3. Controlled Batch Cultivations of Yeast Cells in YPD Medium

In order to investigate the effect of caffeine on the yeast cells, controlled batch cultivations of *Saccharomyces cerevisiae* wild type BY4743 strains were carried out in the presence and absence of caffeine. In this study, growth of yeast cells was followed spectrophotometrically at 600 nm. Biomass was measured and extracellular metabolite profiles of ammonia, ethanol, glucose and glycerol were obtained. Metabolic fluxes in the presence and absence of the caffeine were calculated by using whole genome stoichiometric models and flux balance analysis.

3.3.1. Growth Characteristics of Yeast Cells in the Absence of Caffeine

Controlled batch cultivation of *S. cerevisiae* wild type BY4743 strain was carried out in YPD medium in the absence of caffeine. As described in the "Materials and Methods" section, the temperature of the culture was kept constant at 30°C and the agitation was set to 800 rpm. Air was given into the cultures with a flow rate of 11/min and the pH value of the culture was set to 5.5. The growth of the yeast cells were followed spectrophotometrically at 600 nm throughout the whole experiment. Samples for biomass and metabolite measurements were taken at 30 minute intervals when OD_{600} values reached 0.4.

Growth curve of yeast cells are given in Figure 3.6, where the first and the last sampling in the exponential phase and the sampling at the stationary phase are indicated by straight arrows. At the 3rd hour, the first sample was taken when the optical density was about 0.4. Afterwards, samples were taken at 30 minute intervals in the exponential phase and the last sample in this phase was taken 5.5 hours after the first sampling. In addition, one more sample was taken at the stationary phase, at the 28th hour of the experiment.

The plot for natural logarithm of biomass versus time for sampling period shows linearity with a R^2 value of 0.986 within a 6.5 hour period after the second hour. The maximum growth rate, which is the slope in Figure 3.7, was 0.37 hr⁻¹.

Figure 3.6. Growth curve of S. cerevisiae BY4743 in the absence of caffeine

Figure 3.7. Natural logarithmic values of biomass of yeast cells grown in the absence of caffeine

Biomass, growth rate and extracellular metabolite measurements of *S. cerevisiae* wild type BY4743 strain in the absence of caffeine were given in Figures 3.6 and 3.8. The biomass of the first sample was measured as 0.160 g/l. Biomass increased to 1 g/l in 2 hours after the first sampling, and continued to increase along the sampling time. It was measured as 3.125 g/l at the end of exponential phase and finally, it was 5.160 g/l at the stationary phase. Glucose concentration was 20 g/l in the fresh YPD medium and decreased to 19.69 g/l in 3 hours. Then it gradually decreased to 15.20 g/l in 5 hours and at the end of exponential phase it was measured as 10.71 g/l. Glucose concentration was 0.03 g/l at the stationary phase. It was 8.18 g/l at the stationary phase. Glycerol concentration was found as 0.11 g/l in the first sample and it was measured between 0.06 and 0.15 g/l along the exponential phase. Glycerol concentration was 0.03 g/l at the stationary phase.

Figure 3.8. Extracellular metabolite profile of *S. cerevisiae* BY4743 in the absence of caffeine

3.3.2. Growth Characteristics of Yeast Cells in the Presence of Caffeine

Controlled batch cultivation of yeast cells treated with caffeine was also carried out in YPD medium. During the experiment, the temperature was kept constant at 30°C and the agitation was set to 800 rpm. Air was supplied to the cultures with a flow rate of 11/min and the pH value was set to 5.5. The growth of the yeast cells was followed via optical density at 600 nm throughout the whole experiment. Yeast cells were treated with caffeine as the final concentration was 30 mM when the optical density was 1.3. Samples for biomass and metabolite measurements were taken at 30 minute intervals after reaching an optical density close to 0.4.

Growth curve of yeast cells are given in Figure 3.9, where the first and the last sampling in the exponential phase and the sampling at the stationary phase are indicated by straight arrows and time of caffeine treatment is indicated by a dashed arrow. At the 3^{rd} hour, the first sample was taken when the optical density was higher than 0.4. Afterwards, samples were taken at 30 minute intervals for 7 hours in the exponential phase and a sample was taken in the stationary phase, at the 24^{th} hour of the experiment.

The plot for natural logarithm of biomass versus time for sampling period shows linearity with a R^2 value of 0.965 within a 6.5 hour period after the second hour. The maximum growth rate, which is the slope in Figure 3.10, was 0.28 hr⁻¹.

Figure 3.9. Growth curve of S. cerevisiae BY4743 in the presence of caffeine

Figure 3.10. Natural logarithmic values of biomass of yeast cells grown in the presence of caffeine

Biomass, growth rate and extracellular metabolite measurements of yeast cells in the presence of caffeine are given in Figures 3.9 and 3.11. Arrows in Figure 3.11 indicate the the time of caffeine treatment. At the 3^{rd} hour of the experiment the biomass was measured as 0.180 g/l. It was 1.033 g/l at the treatment time, and increased to 3.100 g/l along the exponential phase. Biomass was 5.900 g/l at the stationary phase. Glucose concentration was 20 g/l in the fresh YPD medium and decreased to 18.80 g/l in 3 hours. Then it gradually decreased to 14.16g/l until the treatment time and at the end of exponential phase it was measured as 10.60 g/l. Glucose concentration was measured as 0.51 g/l at the stationary phase. Ethanol concentration was measured as 0.46 g/l in the first sample and it was 2.12 g/l at the treatment time. It increased to 3.29 g/l along the exponential phase and measured as 5.67 g/l at the stationary phase. Glycerol concentration was found as 0.12 g/l along the exponential phase. Glycerol concentration was 0.02 g/l at the stationary phase.

Figure 3.11. Extracellular metabolite profile of *S. cerevisiae* BY4743 in the presence of caffeine

3.3.3. Comparison of Growth Characteristics of Yeast Cells in the Absence and the Presence of Caffeine

Growth curves of the cells in the absence and presence of caffeine were compared in Figure 3.12. In this figure, caffeine treatment is indicated by an arrow. Growth is initially repressed after treatment; however cells reach to the same stationary phase within the same amount of period.

Figure 3.12. Growth curves of yeast cells in the absence and presence of caffeine

The plots of extracellular metabolite and biomass profiles versus optical density values for the cells grown in the absence and presence of caffeine are given in Figures 3.13 and 3.14. Arrows in the figures indicate the time of caffeine treatment. A decrease in ethanol and glycerol production was observed after treatment, while no significant change was observed in glucose. Biomass measurements were very close during the experiment in the untreated and treated cells.

Figure 3.13. Comparison of extracellular metabolite profiles in the absence and presence of caffeine

Figure 3.14. Comparison of biomass profiles in the absence and presence of caffeine

3.4. Flux Balance Analysis

Flux balance analysis (FBA) was performed for yeast cells grown in YPD medium in the absence or presence of caffeine. The stoichiometric model consists of 822 metabolites participating in 1172 irreversible reactions (Forster *et al.*, 2003). Objective function was chosen as the maximization of growth, oxygen uptake or ethanol production and the results obtained from FBA were compared with experimental results. FBA predicts the steadystate growth of the cells; it was used for the prediction of biomass or ethanol production within a period when the growth of the cells was linear. This period is indicated by straight arrows and the time of caffeine treatment is indicated by a dashed arrow in Figure 3.15. No biomass production (0 g/l) was predicted when the objective function was chosen as the maximization of oxygen uptake. Comparison of experimental and predicted biomass or ethanol production in the absence or presence of caffeine is given in Tables 3.1, 3.2, 3.3 and 3.4 when the objective function was chosen as the maximization of growth or ethanol production, respectively.

Figure 3.15. The period for which the growth of the cells were predicted by FBA

OD ₆₀₀	time (hr)	Experimental biomass production	Prediction of biomass production by FBA	per cent error
1.34	5.0	0.34	-0.11	132.35
1.48	5.5	0.24	0.19	19.25
1.59	6.0	0.32	0.17	47.58
1.73	6.5	0.44	0.02	95.47
1.83	7.0	0.30	0.06	79.68
1.94	7.5	0.28	0.06	78.69
2.02	8.0	0.26	-0.04	115.51
2.09	8.5	0.19	-0.09	148.08

 Table 3.1. Comparison of experimental and predicted biomass production in the absence of caffeine when the maximization of growth was objected

 Table 3.2. Comparison of experimental and predicted biomass production in the presence of caffeine when the maximization of growth was objected

OD ₆₀₀	time (hr)	Experimental biomass production	Prediction of biomass production by FBA	per cent error
1.31	5.0	0.32	0.17	37.53
1.44	5.5	0.33	0.35	48.38
1.52	6.0	0.21	0.19	40.56
1.62	6.5	0.22	0.13	27.41
1.7	7.0	0.25	0.17	37.11
1.78	7.5	0.15	0.11	43.59
1.84	8.0	0.13	0.10	45.36
1.90	8.5	0.20	0.12	37.33

OD ₆₀₀	time (hr)	Experimental ethanol production	Prediction of ethanol production by FBA	per cent error
1.34	5.0	16.34	15.61	4.5
1.48	5.5	9.82	12.62	28.53
1.59	6.0	10.21	12.73	24.74
1.73	6.5	18.22	18.45	1.29
1.83	7.0	10.98	11.71	6.62
1.94	7.5	8.69	9.44	8.69
2.02	8.0	9.61	9.37	2.48
2.09	8.5	6.67	6.14	7.98

 Table 3.3. Comparison of experimental and predicted ethanol production in the absence of caffeine when the maximization of ethanol production was objected

 Table 3.4. Comparison of experimental and predicted ethanol production in the presence of caffeine when the maximization of ethanol production was objected

OD ₆₀₀	time (hr)	Experimental ethanol production	Prediction of ethanol production by FBA	per cent error
1.31	5.0	19.78	14.38	37.53
1.44	5.5	17.92	12.08	48.38
1.52	6.0	10.80	7.68	40.56
1.62	6.5	9.14	7.17	27.41
1.70	7.0	10.12	7.38	37.11
1.78	7.5	6.33	4.41	43.59
1.84	8.0	5.44	3.74	45.36
1.90	8.5	7.34	5.34	37.33

Flux measurements used in FBA are given in Appendix (Table A.3). When FBA was used to predict biomass production, negative biomass values were found or biomass was predicted with relatively high errors. However, FBA predicted ethanol production in the absence of caffeine with less than 30 per cent error at the steady-state growth. It was also used to predict ethanol production in the cultivation treated with caffeine. Ethanol production was predicted with less than 50 percent error at the steady-state growth after the treatment. It was observed that prediction of ethanol production in the presence of caffeine was not as successful as in the absence of caffeine. Predicted and experimental ethanol fluxes are also shown in Figure 3.16 and 3.17.

Figure 3.16. Comparison of experimental and predicted ethanol production in the absence of caffeine

Figure 3.17. Comparison of experimental and predicted ethanol production in caffeine treated cells

3.5. Flux Analysis via Clustering by Self-Organizing Maps

In order to investigate the effect of caffeine on the fluxes, fluxes predicted by FBA were clustered using self-organizing maps (SOM) clustering methodology. GeneCluster 2.0 version 2.1.7 was used for clustering. Since the ethanol production at 1.5 hours after

the treatment was most successfully predicted both in the absence and presence of the caffeine, the fluxes at that time which were predicted by FBA were compared by clustering via SOM. Alternate optima were eliminated before clustering.

Absolute magnitudes of fluxes were normalized and clustered in 4 groups (2x2) and the clustering is shown in Figure 3.18. In the figure, cluster numbers are shown as from c0 to c3, and the numbers in boxes indicate fluxes which were clustered together. Dots represent the magnitude of fluxes. In each box, first dots stand for the fluxes of untreated cells and the next dots are of the caffeine treated cells.

Figure 3.18. Clusters of the fluxes obtained via SOM

A change was observed in totally 48 fluxes after the treatment and they were grouped in clusters c0 and c3. 42 fluxes which were repressed with the caffeine treatment were grouped in the cluster c0, 6 fluxes which were activated under the caffeine treatment were grouped in the cluster c3. No change was observed in 1236 fluxes which were grouped in the cluster c1. Significantly enriched biological process terms of the fluxes were found from Saccharomyces Genome Database. 13 members of the cluster c0 have a role in glucose catabolic process ($p = 1.46x10^{-20}$). 7 of them are significantly annotated to glycolysis ($p = 3.29x10^{-10}$) and 4 of them to gluconeogenesis ($p = 8.30x10^{-4}$). 12 members of the cluster c0 have a role in generation of precursor metabolites and energy (p = $1.23x10^{-9}$) and 8 members are associated with nucleotide metabolic process ($p = 5.14x10^{-6}$). In addition, 4 members of the cluster c0 were found to be significantly annotated to nitrogen compound metabolic process ($p = 6.20x10^{-4}$) and 3 of them are significantly annotated to proline biosynthetic process ($p = 9.31x10^{-6}$). Moreover, 5 members of the cluster c3 play a role in glucose metabolic process ($p = 3.73x10^{-9}$) and 4 of them are related to pentose-phosphate shunt ($p = 6.76x10^{-10}$) (Table 3.5).

	cluster c0					
GO term	<i>p</i> value	members				
		Adh5p	Glk1p	Pgk1p	Tpilp	Tdh3p
glucose catabolic process	1.46E-20	Pfk1p	Sol4p	Gnd 2p	Eno2p	Rpe1p
		Fba1p	Zwf1p	Rki 1p		
ahaahaa	2 20E 10	Glk1p	Pgk1p	Tpi1p	Tdh3p	Pfk1p
giycoiysis	3.29E-10	Eno2p	Fba1p			
		Atp1p	Adh5p	Glk1p	Pgk1p	Tpi1p
generation of precursor metabolites and	1.23E-09	Hor2p	Tdh3p	Pfk1p	Eno2p	Fba1p
energy		Mdh1p	Aac1p			
nucleotido motobolio processo	5 14E 06	Atp1p	Adh5p	Sol4p	Gnd 2p	Rpe1p
nucleotide metabolic process	J.14E-00	Zwf1p	Gpd 2p	Rki 1p		
proline biosynthetic process	9.31E-06	Pro1p	Pro2p	Pro3p		
glutamine family amino acid biosynthetic process	6.20E-04	Pro1p	Pro3p	Put1p	Pro2p	
gluconeogenesis	8.30E-04	Pgk1p	Tdh3p	Eno2p	Fba1p	
	cluster c3					
GO term	p value		1	nembers		
pentose-phosphate shunt	6.76E-10	Tkl2p	Tkl1p	Tal1p	Pgi1p	
glucose metabolic process	3.73E-09	Pgilp	Mdh2p	Tkl2p	Tkl1p	Tal1p

Table 3.5. Gene ontology terms annotated to the members of the clusters c0 and c3

Members of clusters c0 and c3 and the all fluxes described by Forster *et al.* (Forster *et al.*, 2003) are tabulated in the Appendix.

3.6. Topological study of TOR signalling proteins

The protein interaction network of TOR signalling proteins was constructed with the protein-protein interactions among proteins implicated in TOR signalling. Protein-protein interactions among 194 proteins which were reported to be related to TOR pathway in literature (Table B.1) were obtained using Osprey 1.2.0 (Figure 3.19). The topological properties of this protein interaction network were investigated.

Figure 3.19. Protein-protein interaction of TOR signalling network displayed by Osprey 1.2.0

Initially, Osprey resulted in 620 interactions for 162 proteins including selfinteractions. (Table B.2.). When self-interactions were excluded, 561 interactions were found among 162 proteins. The topological features of this network were analyzed by investigating degree, (k), clustering coefficient (C), and betweenness (b), which are the global measures that are used to determine the general characteristics of a biological network. Thus, for the complete network, average degree, which is the ratio of all interactions to the total number of nodes ($\langle k \rangle$), average clustering coefficient ($\langle C \rangle$) and average betweenness ($\langle b \rangle$) were calculated as 3.46, 0.344 and 329.08, respectively. The average clustering coefficient for 10³ random networks, generated by keeping the number of nodes and interactions constant, was calculated as 0.0409 (Table 3.6). This remarkable difference in the clustering coefficient for constructed TOR signalling protein interaction network and random network implies that the network of interest is scale free.

Topological parameters	TOR signalling network	Random network
N	162	162
1	561	561
<k></k>	3.46	3.46
<c></c>	0.34	0.04

Table 3.6. Topological parameters of the TOR signalling and random networks

Degree is the number of existing interactions that this particular node has. Degree distribution of the network is accepted as a primary measure that is frequently used to test scale-freeness. Hence, to determine whether TOR signalling protein interaction network is scale-free, degree for each of the nodes in the network was calculated. For this network, the degree of proteins in the network ranges from one to 36. It should be noted that, for the random network, the maximum degree was calculated as 19. In the TOR signalling protein interaction network, 26 out of 162 nodes had a degree of 3. Nodes with k value greater than 20 were Tor1p (k = 36), Esa1p (k = 22) and Ras2p (k = 21). Complete list of individual degree of nodes is given in Appendix (Table B.4). The frequency of nodes with degree k, p(k), and cumulative distribution of nodes with degree k, n(k) were presented in Table 3.7. As shown in Figure 3.20, the cumulative degree distribution follows power law with a slope of -1.53 with $R^2 = 0.8$. Hence the degree exponent for the network is $\gamma = 2.53$ as indicated with the equation $n(k) = A k^{-\gamma+1}$ (Rodriguez-Caos *et al.*, 2005). This linear trend in the cumulative degree distribution indicate that many proteins are linked to few proteins, on the other hand there are few proteins that are connected to many proteins, which provides additional evidence that TOR signalling protein interaction network is scale-free and biologically significant.

k	p(k)	n(k)	ln(k)	$\ln(n(k))$
36	1	1	1.56	0.00
22	1	2	1.34	0.30
21	1	3	1.32	0.48
20	1	4	1.30	0.60
19	2	6	1.28	0.78
18	1	7	1.26	0.85
17	4	11	1.23	1.04
16	3	14	1.20	1.15
15	2	16	1.18	1.20
14	1	17	1.15	1.23
13	3	20	1.11	1.30
12	4	24	1.08	1.38
11	7	31	1.04	1.49
10	11	42	1.00	1.62
9	14	56	0.95	1.75
8	2	58	0.90	1.76
7	11	69	0.85	1.84
6	9	78	0.78	1.89
5	16	94	0.70	1.97
4	15	109	0.60	2.04
3	26	135	0.48	2.13
2	15	150	0.30	2.18
1	12	162	0.00	2.21

Table 3.7. The frequency, p(k), and cumulative frequency, n(k), of nodes

and their natural logarithmic values

Figure 3.20. Cumulative degree distribution of the TOR signalling proteins

Clustering coefficient (*C*) is the fraction of the number of existing interactions among the neighbours of a particular node to the maximum allowable interactions among them. Clustering coefficients (*C*(*k*)) of all nodes are given in Appendix (Table B.4). For each degree, average clustering coefficient values (<C>), were also calculated by taking the average of clustering coefficient values for its corresponding degree, as shown in Table 3.8. The distribution of clustering coefficients and average clustering coefficients is shown on log-log scale in Figures 3.21 and 3.22. The clustering coefficient distribution with respect to degree shows a heterogeneous, skewed shape, indicating power–law behaviour. The average clustering coefficients on log-log scale shows linearity with $R^2 = 0.71$.

Figure 3.21. The distribution of clustering coefficients

Figure 3.22. The distribution of average clustering coefficients

Betweenness (*b*) for a node is the fraction of the number of shortest paths between two nodes that passes through a particular node to the total number of shortest paths between these two. The property is also accepted as another measure for scale-free behaviour, since the highest betweenness nodes act like a bridge in the network, and a few high betweenness nodes are present in a scale-free network. Betweenness (*b*(*k*)) for each of the nodes in the network, was calculated as given in Appendix (Table B.4). For each degree, average betweenness values (**), which are given in Table 3.8, were calculated by averaging the betweenness values for their corresponding degree. The distribution of betweenness and average betweenness is shown on log-log scale in Figures 3.23 and 3.24. The average betweenness on log-log scale shows linearity with R^2 of 0.95, indicating that there are few proteins located at the centre of the network, hence responsible for communication, and many proteins are located at the periphery. Tor1p had the highest betweenness value (*b* = 4754.2) implying that the most number of shortest paths passed through Tor1p in the network; thus, it provides evidence that Tor1p has a central role in the network.

Figure 3.23. The distribution of betweenness

Figure 3.24. The distribution of average betweenness

k	<i></i>	<c></c>	k	<i></i>	<c></c>
2	6.18	1.00	13	549.86	0.26
3	45.16	0.46	14	1248.45	0.10
4	53.08	0.38	15	750.45	0.21
5	106.90	0.31	16	847.99	0.21
6	180.98	0.22	17	1079.91	0.18
7	291.97	0.24	18	1207.81	0.17
8	175.77	0.52	19	1026.58	0.17
9	281.66	0.24	20	992.33	0.18
10	244.54	0.27	21	1195.46	0.19
11	244.01	0.29	22	1647.01	0.19
12	734.22	0.21	36	4754.24	0.08

Table 3.8. Average betweenness centralities and average clustering coefficient

of each degree values

To sum, the cumulative degree distribution, clustering coefficient and betweenness (γ = 2.53, R²=0.71, R²=0.95) show that protein interaction network constructed with the TOR signalling proteins exhibit scale-free behaviour. This indicates that most proteins are linked to only a few others, whereas most of them have many connections.

The scale-free behaviour of allows a more organized structure in the network. Proteins participate in similar functions tend to cluster in functional modules. These modules are regarded as highly condensed subgraphs within a network. The functional modules in the TOR signalling protein interaction networks was determined based on modularity measure, Q, with the Bron-Kerbosch (BK) algorithm (Bron et al., 1973). This measure is the fraction of the number of existing interactions to the maximum number of possible interactions within a set of particular nodes. 289 functional modules with Q = 1were identified within the TOR signalling protein interaction network using this algorithm implemented in Python scripting language. The complete list of functional modules is presented in Appendix (Table B.3). The size of the functional modules ranges from two to six, with a weighted average of 2.95. Three per cent (10 out of 289) of the functional modules contains six members. Eight per cent (23 out of 289) of the cliques consists of 5 or more nodes and 60 cliques (21 per cent of the total modules) include 4 or more nodes. Modules with respect to number of members present are given in Table 3.9. The diversity in the functional module size of TOR signalling protein interaction network implies that the network exhibit an organized structure. On the other hand, for 10^3 random networks, where the number of nodes and interactions were kept constant, the same algorithm yielded

475,745 functional modules, sizes ranging from two to four, with a weighted average module size 2. The comparison for the distribution of module size for TOR signalling protein interaction network and random network is given in Figure 3.25. Since the average size of the modules identified is 2.95. As indicated in the previous studies, modules having size four and above are biologically meaningful (Spirin and Mirny, 2003), therefore 60 modules having four or more members were considered for further investigation.

Number of clique members	Number of cliques
2	110
3	119
4	37
5	13
6	10

Table 3.9. Number of cliques with respect to number of members

Figure 3.25. Comparison of clique member distributions of TOR signalling and random networks

60 out of 289 functional modules comprise more than three members. Out of 162 proteins in the network, 79 (48.76 per cent) proteins are represented in these functional modules. Most frequent nodes, which were present in six and more functional modules, are shown in Table 3.10. The distribution of these particular nodes according to the size of the module is presented in Figure 3.26. The proteins showing frequent presence in functional modules form also functional modules. Five modules of which members are among those

most common nodes are Tor1p-Tor2p-Gln3p-Ure2p, Yak1p-Sch9p-Msn2p-Ras2p, Yak1p-Sch9p-Tpk1p-Ras2p, Yak1p-Tpk2p-Tpk1p-Ras2p, Yak1p-Tpk2p-Msn2p-Ras2p. Due to high connectivity of all members with the other cliques, those modules might have central roles in the network.

Protein name	Number of cliques	Protein name	Number of cliques
Ras2p	12	Pph22p	7
Tor1p	11	Tor2p	7
Gln 3p	10	Pep5p	6
Esa1p	9	Pph21p	6
Tpk1p	9	Rim15p	6
Bmh2p	8	Sit4p	6
Msn2p	8	Tpk2p	6
Pep3p	8	Ure 2p	6
Sch9p	8	Vps33p	6
Tap42p	8	Yak1p	6

Table 3.10. Most common nodes of more than 3 member cliques

Figure 3.26. Distribution of particular nodes present in more than three member modules

To determine how the functional modules are closely related with the rest of the network, each functional module was scored according to the interactions within the module and the modules' interactions to the rest of the network. The score is the fraction of the outer degrees of the module to the total number of degrees in the module. This score would be high, if the functional module is highly connected to the other nodes in the

network, and a low score indicates an isolated fragment. The score table is given in Appendix (Table B.5). The top highest scores corresponds to modules 24, 25, 27, 28, and 33, all of which include Tor1p (Table 3.11). Additionally, among these five top scored modules Gln3p is present in four of the modules. These indicate the central roles of Tor1p and Gln3p in the TOR signalling pathway. The list of the modules and their corresponding scores is given in the table below:

Module number	Module members				total-degree	number of members	in- degree	out- degree	score
24	Tor1p	Tor2p	Gln 3p	Ure 2p	83	4	12	71	5.92
25	Tor1p	Tor2p	Gln 3p	Lst8p	77	4	12	65	5.42
27	Tor1p	Tor2p	Tpd3p	Tap42p	74	4	12	62	5.17
28	Tor1p	Gat1p	Ure 2p	Gln 3p	72	4	12	60	5.00
33	Tor1p	Gcn4p	Ure 2p	Gln 3p	71	4	12	59	4.92

Table 3.11. Top scored more than three member modules

On the other hand, the lowest scores belong to modules 3, 4, 5, 16 and 57 (Table 3.12). The members on modules 3, 4 and 5 are related with vacuolar transport. Members in module 16 are function in translation initiation. Module 57, where the members are Hap2p, Hap3p, Hap4p and Hap5p, functions in respiration. Its score 0.33 indicates that this module is tightly bound within but is an isolated module.

Module number	Module members						total- degree	number of members	in- degree	out- degree	score
3	Esa1p	Vps16p	Pep5p	Pep3p	Vps33p	Pep7p	67	6	30	37	1.23
4	Esa1p	Vps16p	Pep5p	Pep3p	Vps33p	Vps3p	65	6	30	35	1.17
5	Esa1p	Vps16p	Pep5p	Pep3p	Vps45p	Pep7p	64	6	30	34	1.13
16	Tif4632p	Tif1p	Tif2p	Tif4631p	Cdc33p		39	5	20	19	0.95
57	Hap5p	Hap4p	Hap2p	Hap3p			16	4	12	4	0.33

Table 3.12. Bottom scored more than three member modules

To determine the significance of the functional modules, AmiGO Gene Ontology term enrichment tool (Harris *et al.*, 2008) was employed to find significantly enriched biological process terms. The terms are listed in Appendix (Table B.6).

The members in modules 1 - 5 are significantly enriched with vacuole organization (p < 9.15×10^{-4}). Esa1, Pep3 and Pep5 are co-located in all of six member functional modules. Six proteins, namely Esa1p, Rad27p, Vps33p, Pep5p, Pep3p and Pep7p, in

module 1 are related with post-Golgi vesicle-mediated transport ($p = 5.79x10^{-5}$) and vacuolar transport ($p = 5.56x10^{-4}$). Esa1 is the yeast histone acetylase that is required for cell growth (Reid *et al.*, 2000). This protein has found to function in the activation and repression of ribosomal proteins (RP) in yeast (Martin *et al.*, 2005). TOR pathway responds to nutrients by controlling expression of RP genes. The coordinated expression of RP genes is associated with recruitment of Esa1p to the RP gene promoters. It was shown that the association of Esa1p with the RP gene promoters is rapamycin sensitive and that the loss of Esa1p from these promoters resembles the kinetics of RP gene repression upon addition of rapamycin (Rohde *et al.*, 2003). Key components of the transport into the vacuole are the vesicle-mediated transport class that is essentially composed by vacuolar sorting proteins (VPS) that comprise multimeric complexes involved in the formation of vesicles responsible for intracellular trafficking between Golgi compartments, the endosome and the vacuole (Vps16p, Vps33p, Pep3p and Pep5p) (Mira *et al.*, 2008). The systematic deletion of class VPS strains showed as decreased chronological life span compared to wild type (Schauer *et al.*, 2009).

Six members in module 6, namely, Cdc55p, Tpd3p, Rrd2p, Tap42p, Pph22p and Pph21p are significantly associated with mitotic cell cycle spindle checkpoint assembly (p =1.81 \times 10⁻⁷). Through TORC1, rapamycin affects many nutrient-responsive gene expressions at several levels, including transcription, translation and protein trafficking and stability (Rohde et al., 2003). Many rapamycin sensitive events are mediated by several phosphatases, including protein phosphatase 2A (PP2A). In this module, PPH21 and PPH22 encode PP2A catalytic subunit. PP2A is one of the major protein serine/threonine phosphatases in the cell, which plays a role in several cellular processes, including metabolism, transcription, RNA splicing, translation, cell cycle progression, morphogenesis, signal transduction, development, and transformation. TPD3 encodes the only A subunit, whereas two other B subunits are encoded by CDC55 and RTS1 (Shu et al., 1997). Mutations of CDC55 are viable, but lead to defects in cytokinesis, spindle checkpoint and result in abnormal cell morphology (Koren et al., 2004). All of the units in PP2A interact with the Tap42p regulatory subunit (Jiang and Broach, 1999). In particular, these proteins have been shown to regulate the phosphorylation state and activity of distinct transcriptional regulators whose target genes are controlled by TORC1 (Jiang et al., 2008).

Co-location of Gis1p-Rim15p-Msn2p-Msn4p and Ras2p in two six member functional modules, modules 7 and 8, supports the evidence that TOR signalling pathway is related with cellular aging. The GO term enriched in these functional modules are agedependent general metabolic decline during chronological cell aging ($p = 9.15x10^{-10}$ and p= 2.45 $x10^{-6}$, respectively). Msn2p/4p and Gis1p are stress response transcription factors, which are positively regulated with Rim15p. It was also reported that, longevity regulation controlled by Tor1p, Sch9p and Ras2p converges on the protein kinase Rim15p (Wei *et al.*, 2009). Deletion of *MSN2/4* in *ras2* Δ and of *RIM15* in *sch9* Δ mutants reduces life span extension. TORC1 signaling is negatively regulated with Msn2p/4p and Rim15p. Deficiency in Gis1p led to a reversion of life span extension of the *sch9* Δ and, to a lesser extent, *RAS2* deleted mutants (Wei *et al.*, 2008). Recently, Gis1p and Rim15p are required for the upregulation of many of the genes that function upon starvation for different macronutrients (Zhang *et al.*, 2009).

Six members in module 9, namely Bcy1p, Tpk1p, Ras2p, Tpk2p, Msn4p and Rim15p, are significantly associated with RAS protein signal transduction ($p = 5.39x10^{-6}$). The RAS/PKA pathway plays an important role in regulation of growth in response to extracellular nutrients. In rich nutrient conditions, Ras1p and Ras2p are activated, in turn they activate adenylate cyclase (encoded by *CDC35* gene) to produce cAMP. PKA consists of three catalytic subunits, Tpk1p, Tpk2p, and Tpk3p, and a regulatory subunit, Bcy1p. Binding to cAMP allows the dissociation of Bcy1 from the catalytic subunits and activation of PKA. The RAS/PKA pathway is also associated with some TORC1-regulated responses other than autophagy (Schmelzle *et al.*, 2004). The activation of the RAS/cAMP pathway suppresses a TOR deficiency. Also, the regulation of PKA is achieved by TOR. These findings suggest that the RAS/cAMP pathway is a TOR effector pathway (Yorimitsu *et al.*, 2007).

Members in module 10 are involved in cytoskeleton organization ($p = 5.37x10^{-5}$). The members *PPH21* and *PPH22* encode protein phosphatase 2A (PP2A). On the other hand, *YPA1* and *YPA2* (also named *RRD1* and *RRD2* for Rapamycin-resistant deletion) encode Phosphotyrosyl Phosphatase Activator (PTPA). Inactivation of either gene renders yeast cells rapamycin resistant (Zheng *et al.*, 2005). Individual deletion of *YPA1* produces a more severe phenotype than deletion of *YPA2*. Deletion of *YPA1* leads to an abnormal actin distribution, growth defects, and rapamycin resistance (Van Hoof *et al.*, 2000; Van Hoof *et al.*, 2001). *YPA1* and *YPA2* deletions confer rapamycin resistance probably by indirect regulation of TOR (Leulliot *et al.*, 2006). Rrd1p and Rrd2p are shown to interact with TAP42-containing complexes (Zheng *et al.*, 2005).

The members in module 12 (Sap185p, Sap155p, Sap4p, Sap190p, Sit4p) are significantly associated with G1/S transition of mitotic cell cycle ($p = 1.59x10^{-9}$). It was known that Sit4p associates with the other four proteins and those are called Sit4p-associated proteins (SAPs) (Inoki *et al.*, 2005). In addition to cell cycle regulation (Luke *et al.*, 1996),Sit4p together with SAPs were found to be related with transcriptional and translational programs that couple cell growth to amino acid availability (Rohde *et al.*, 2004).

5 members of module 16 are involved in translational initiation ($p = 2.81 \times 10^{-9}$). Saccharomyces cerevisiae encodes the eukaryotic initiation factor 4E (eIF4E) protein by the CDC33 gene, the eIF4A protein by TIF1 and TIF2, and the two eIF4G proteins (eIF4G1 and eIF4G2) by the TIF4631 and TIF4632 genes, respectively. All these proteins physically associate and that this association performs an essential function for translational initiation (Neff *et al.*, 1999).

The members in module 24 (Tor1p, Tor2p, Ure2p, Gln3p), module 28 (Tor1p, Gat1p, Ure2p, Gln3p) and module 29 (Tor1p, Dal80p, Ure2p, Gzf3p) are significantly associated with the regulation of nitrogen utilization ($p = 2.55x10^{-3}$, $1.87x10^{-6}$, $1.71x10^{-6}$ respectively). Gat1p, Dal80p, and Gzf3p are four GATA type transcriptional factors which have roles in the regulation of nitrogen catabolite repression sensitive genes and it was found that Gln3p activity is inhibited by Ure2p in the presence of preferred nitrogen sources (Bertram *et al.*, 2000). Moreover, TOR complex 1, which includes Tor1p and Tor2p, is considered to be responsible for Gln3p phosphorylation and dephosphorylation (Carvalho *et al.*, 2003).

4 members of module 57 constitute Hap2p/3p/4p/5p complex in *Saccharomyces cerevisiae* (McNapp *et al.*, 2005). Four proteins are members of the CCAAT-binding factor, is an evolutionarily conserved multimeric transcriptional activator responsible for

the activation of many of the genes involved in respiratory metabolism. They are significantly associated with the regulation of carbohydrate metabolic process ($p = 5.48 \times 10^{-8}$).

4 members of module 58 are subunits of RNA polymerase I and/or III. Rpc40p is a subunit of RNA polymerase I and III, Rpa135p and Rpa49p are two subunits of RNA polymerase I, and Rpc34p is a subunit of RNA polymerase III. They are significantly associated with DNA dependent-transcription ($p = 5.76 \times 10^{-3}$).
4. DISCUSSION

In this study, the aim is to have a better understanding of the TOR signalling pathway and for this purpose; the impact of caffeine and rapamycin on the growth of yeast cells was investigated. *Saccharomyces cerevisiae* wild type BY4743 strains were grown in different type of media in both flasks and fermentors and samples were collected from these experiments to obtain biomass and extracellular metabolite profiles in the absence and the presence of the chemicals. This data was used in flux balance analysis (FBA) to determine metabolic fluxes under these conditions by using the whole genome stoichiometric models. The fluxes predicted by FBA were analyzed via self-organizing maps (SOM) methodology. Moreover, topology of TOR signalling proteins and the organization of functional modules were identified.

Saccharomyces cerevisiae wild type BY4743 strains were cultivated in F1 or YPD medium in both flasks and controlled fermentors. Growth characteristics of yeast cells were observed in the absence and presence of caffeine or rapamycin.

The effect of the caffeine and rapamycin on growth profiles of yeast cells in F1 medium was investigated and these chemicals were found to inhibit the growth of the yeast cells after the treatment. This observation is consistent with several studies (Kuranda *et al.*, 2006; Reinke *et al.*, 2006; Wullschleger *et al.*, 2006). The repression of growth by caffeine has increased with the increasing concentrations of. It had also been reported that (Reinke *et al.*, 2006; Wanke *et al.*, 2008) that the higher caffeine concentrations result in higher degrees of inhibition of the growth of yeast cells. Moreover, yeast cells treated with lower amount of caffeine (less than or equal to 10 mM as the final concentration) reached to higher optical density values compared to the cells grown in the control flask at the stationary phase. However yeast cells treated with higher amount of caffeine (more than 10 mM as the final concentration) could never reach to optical density level of the untreated cells. These results are consistent with the findings that low amount of caffeine extended life span of the cells grown on the plates (Wanke *et al.*, 2008). Wanke *et al.* counted more colonies of yeast cells living on the caffeine treated plates compared to untreated ones. In addition, it rapamycin treated cells also reached to higher optical density values than the

untreated cells indicating that a certain concentration of rapamycin may extend the life span as low concentrations of caffeine do

It was also observed that growth curve of the rapamycin treated cells reached higher values than the growth curves of the cells treated with different concentrations of caffeine at different time points. First, the growth curve of the rapamycin treated cells reached higher values than the growth curves of the cells treated with lower amounts of caffeine, as time passed the growth curve of the rapamycin treated cells reached higher values than the growth curves of the cells treated with lower amounts of caffeine, and at the end of exponential phase or at the stationary phase it had similar optical density values as high as the growth curves of the cells treated with lower amounts of caffeine. Furthermore, rapamycin treated cells reached to the stationary phase later than the caffeine treated or untreated cells. This shows that repression effects of caffeine and rapamycin were different on yeast cells, which was claimed by previous studies (Kuranda *et al.*, 2006; Reinke *et al.*, 2006).

Investigation of the effect of these chemicals on growth of yeast cells in YPD indicated that an increasing concentration of caffeine has an increasing inhibitory effect on the growth properties of the cells. However, growth behaviour of the cells was not affected when cells were treated with rapamycin at the final concentration of 200 ng/ml and only a slight inhibitory effect was observed when the concentration was doubled .The effect of rapamycin and caffeine on the growth was more pronounced on cells grown in F1 medium when compared to YPD which is a rich medium.

The effect of caffeine on the fermentation characteristics on *S. cerevisiae* BY4743 was comparatively investigated under controlled batch fermentation conditions in the present study and flux distribution was determined in both caffeine treated and control cultures

Figure 4.1. Comparison of ethanol and glycerol production in the absence and presence of caffeine

Decrease in the ethanol and glycerol production after caffeine treatment is shown in Figure 4.1. The decrease may be a result of caffeine repressing growth. Decreased ethanol and glycerol production indicates decrease in fermentation and respiration, respectively; and decrease in fermentation and respiration results in decrease in the energy production and consequently repression in the growth.

Although biomass production in YPD medium could not be successfully predicted by flux balance analysis (FBA) when the maximization of growth or oxygen uptake was used as objective function, ethanol production in YPD medium could be successfully predicted when the maximization of ethanol production was used as the objective function. Moreover, it was observed that prediction of ethanol production in the presence of caffeine was not as successful as in the absence of caffeine.

In order to investigate the effect of caffeine on the fluxes, fluxes predicted by FBA both in the absence and the presence of caffeine were clustered. FBA predicts the growth of the cells successfully in the steady-state growth period and since the ethanol production in that period was most successfully predicted 1.5 hours after the treatment both in the absence and presence of the caffeine, the fluxes at that time which were predicted by FBA

were compared via clustering. In order to consider the fluxes independent of their direction, absolute magnitudes of fluxes were normalized and clustered. Although the magnitude of 42 fluxes was observed to decrease, the magnitude of 6 fluxes increased after caffeine treatment. The repressed fluxes are significantly associated with glucose catabolic process, glycolysis, generation of precursor metabolites and energy, nucleotide metabolic process and glutamine family amino acid biosynthetic process; whereas, the activated fluxes are significantly associated with glucose phosphate shunt.

The repressed fluxes in glycerol synthesis and glucose fermentation pathways, which are indicated by green arrows, are given in Figures 4.2 and 4.3. This data is consistent with the decreased glycerol and ethanol production in response to caffeine treatment, which may indicate the repression of growth due to caffeine. Moreover, almost all fluxes in glycolysis were repressed under caffeine treatment, as is shown in Figure 4.3. In addition, fluxes playing role in glucose (Hxt4p), ethanol, glycerol (Fps1p), acetic acid (Fps1p), proton (Atp1p) and carbon dioxide transport, and transportation through mitochondrial membrane (Oac1p, Aac1p) as well as mitochondrial carriers (Mir1p, Dic1p) were repressed in response to caffeine treatment. The flux under the control of Mdh1p, which is in TCA cycle were also decreased under the caffeine treatment.

Figure 4.2. Glycerol synthesis pathway under caffeine treatment

Figure 4.3. Glucose fermentation pathway under caffeine treatment

Moreover, the fluxes in proline biosynthesis were repressed in response to caffeine, which are indicated by green arrows in Figures 4.4. The flux under the control of Put1p which has a role in proline utilization pathway was also repressed under the caffeine treatment. It is known that TOR signalling regulates protein synthesis (Hinnebusch *et al.*, 2005) and inhibition of TOR signalling by caffeine may repress proline biosynthesis and utilization.

Figure 4.4. Proline biosynthesis pathway under caffeine treatment

The repressed and activated fluxes in pentose phosphate shunt pathway, which are indicated by green and red arrows, respectively, are given in Figure 4.5. The pentose phosphate pathway is important for generating NADPH, which is a source of reducing energy, as well as a variety of sugar molecules that are required for the biosynthesis of nucleic acids and amino acids. This pathway is also important for protecting yeast from oxidative stress. It was observed that fluxes having a role in the synthesis of glyceraldehyde-3-phosphate and sedoheptulose-7-phosphate from xylulose-5-phosphate and ribose-5-phosphate were decreased; however, fluxes after this point in the pentose phosphate pathway were activated. Activation of those fluxes may derive from the alternative pathways in which glyceraldehyde-3-phosphate and sedoheptulose-7-phosphate are synthesized from degradation of deoxyribose-5-phosphate and D-sedoheptulose-1,7-bisphosphate. It was found that TOR signalling regulates nucleotide biosynthesis (Hinnebusch *et al.*, 2005) and inhibition of TOR signalling by caffeine may result in degradation of nucleotides.

Figure 4.5. Pentose phosphate shunt pathway under caffeine treatment

Topological analysis of the protein-protein interaction network related to TOR signalling is scale-free (SF) as expected for biological networks. The degree distribution and clustering are heterogeneous, and skewed shapes of clustering and betweenness centrality indicate power-law behaviour. Therefore, TOR signalling network shares the small-world behaviour of real networks. Compared to a random network, it also had a higher average clustering coefficient and higher maximum degree value. Most proteins in a scale-free network are linked to only a few others, whereas most of them have many connections. In addition, when nodes are removed at random, internal stability is maintained in the network. Otherwise, eliminating the most connected nodes fragments the network. However, a similar fragility is observed both if the nodes are removed at random or in order of increasing degree in random webs (Rodriguez-Caso *et al.*, 05).

Due to scale-free behaviour TOR signalling network had an organized structure. Proteins that participate in similar functions tended to cluster in functional modules. These modules constructed highly condensed subgraphs within the network The weighted average of functional module sizes were found as 2.95; however, modules of size four and above were considered as biologically meaningful, as indicated in previous studies (Spirin and Mirny, 2003). Most modules were found to be biologically meaningful; the members have a role in the same biological function. When the functions of the proteins in modules were investigated, it was observed that proteins have a role in vacuolar organization, mitotic cell cycle spindle check point assembly, cellular aging, RAS protein signal transduction, cytoskeleton organization, G1/S transition of mitotic cell cycle, translational initiation, regulation of nitrogen utilization, regulation of carbohydrate metabolic process and DNA dependent-transcription, were grouped in modules. This may indicate the organized structure of the TOR signalling network.

Ras2p and Tor1p were the most common proteins among those modules. This is consistent with the data that there is a functional interaction between TOR and the RAS/cAMP pathway (Schmelzle *et al.*, 2004), although it was observed that rapamycin did not cause significant change in expression of RAS signalling pathway genes (Kuranda *et al.*, 2005). TOR and RAS signalling were thought to work together in response to stress (Hong *et al.*, 2002), in transcription process of ribosomal protein genes (Martin *et al.*, 2004) and in autophagy (Klionsky *et al.*, 2005; De Virgilio *et al.*, 2006).

When the ratio of out-degree to the in-degree of the modules was compared, Tor1p and Gln3p were found in the highest scored modules and this may indicate the central roles of Tor1p and Gln3p in the TOR signalling pathway. On the other hand, the lowest scored modules were HAP complex and related to vacuolar transport. These modules may be considered as isolated modules due to low interaction with the other proteins.

5. CONCLUSIONS AND RECOMMENDATONS

5.1. Conclusions

In this thesis, the impact of caffeine and rapamycin on yeast cells was investigated in order to understand the TOR signalling pathway in deep. For this purpose, *Saccharomyces cerevisiae* wild type strain was cultivated in F1 and YPD medium in both flask and controlled fermentor and samples were collected to obtain biomass and extracellular metabolite profiles in the absence or presence of chemicals. This data was used in flux balance analysis (FBA) to determine metabolic fluxes under these conditions by using the whole genome stoichiometric models. Fluxes successfully predicted by (FBA) in the absence of caffeine were clustered via self-organizing maps methodology in order to analyze caffeine effect on the yeast cells. Moreover, topology of TOR signalling proteins was studied.

Caffeine and rapamycin repressed the growth of the yeast cells in both F1 and YPD mediums. The higher the concentration of the chemicals, the more the growth of the yeast cells was repressed. However, the repression effects of caffeine and rapamycin were found to have different characteristics. Furthermore, the repression effect of the chemicals were more effective in F1 medium, indicating that richness of the YPD medium in nutrients might decrease the repression effect of chemicals.

Moreover, yeast cells treated with lower amount of caffeine (less than or equal to 10 mM as the final concentration) were observed to reach to higher optical density values compared to the cells grown in the control flask, consistent with the effect of caffeine that extends the life span of the yeast cells. Rapamycin treated cells were also observed to reach to higher optical density values than the untreated cells, which may indicate a similar effect of rapamycin.

Ethanol and glycerol production was decreased under the caffeine treatment, which indicates respiration and fermentation were repressed in response to caffeine. This might be a result of repression effect of caffeine on the growth. Compared to the prediction of biomass production as the maximization of growth or oxygen uptake was objected, ethanol production in YPD medium was successfully predicted by using flux balance analysis when the objective function was chosen as the maximization of ethanol production. The fluxes successfully predicted by FBA in the absence and presence of caffeine were analyzed by clustering via self-organizing maps methodology. Clustering results showed that caffeine affected the glucose metabolism and therefore the generation of energy. Moreover, repression effect of caffeine was observed in glucose fermentation, glycerol biosynthesis and pentose phosphate and proline biosynthesis pathways.

Topology of TOR signalling proteins was also analyzed and it was found that TOR signalling network had a scale-free property. Like real networks, it exhibits high homeostasis when nodes are removed at random. It was found that most proteins are linked to only a few others, whereas most of them have many connections. Ras2p and Tor1p were the most common proteins among more than 3 member modules, indicating a possible interaction between TOR and RAS signalling. Moreover, Tor1p and Gln3p were found to have a central role in TOR signalling network. When the functions of the proteins in modules were investigated, it was found that they are significantly annotated to gene ontology terms, indicating the organized structure of the TOR signalling network.

5.2. Recommendations

In this study, fluxes that were significantly changed under caffeine treatment were determined with the help of flux balance analysis using whole genome metabolic models of *Saccharomyces cerevisiae*.

For further analysis of the genes that catalyze the reactions through which the fluxes have changed samples need to be collected for RNA extraction and extracellular metabolite analyses in similar experiment. Gene expression profiles can be obtained with the help of quantitative PCR methodology. Relative quantification of gene expression would provide information about transcriptional response of the genes under caffeine treatment. Moreover, the experiment can be carried out using mutant strains in which the genes implicated in TOR signalling are deleted. The role of those genes and their relationship with other genes may be investigated by studying significantly changed fluxes or gene expressions in the absence of those genes.

Genes significantly responding to the caffeine treatment can be identified using microarray technology to monitor transcriptional response of all genes.

It has been shown that both caffeine and rapamycin affect TOR signalling in the cell. A comparative study at all omics levels will be very helpful in elucidating the differences in response of organism to these drugs.

In the present study, the effect of caffeine on growth of yeast cells was investigated in rich medium. However, since our results showed that the repressive effect of rapamycin is not observable in this rich medium, controlled batch cultivations in the presence of these two chemicals should be carried out in a different medium such as chemically defined F1 medium.

Chemostat cultivations in the presence of these drugs may give better estimates for flux distribution and further information on the effect of these chemicals on the metabolism of the cells.

Analysis of the functional modules of the protein-protein interaction network constructed in the present study provided information about previously known functional relationships in the TOR signalling pathway Therefore extension of this preliminary network using the first neighbours of the genes in the network or functionally unknown genes may provide additional information about this important signalling pathway and enhance our understanding of the molecular mechanisms involved in the response to drugs.

APPENDIX A: METABOLITES AND REACTIONS DESCRIBED IN FBA AND FLUX VALUES PREDICTED BY FBA

Metabolites and reactions described in flux balance analysis (FBA) by Forster *et al.*, flux magnitudes used in self-organizing maps clustering (SOM) and SOM cluster members are included in this section.

Abbre viation	Metabolite
13GLUCAN	1,3-bet a-D-Glucan
13PDG	3-Phospho-D-glyceroyl phosphate
23DAACP	2,3-Dehydroacyl-[acyl-carrier-protein]
23PDG	2,3-Bisphospho-D-glycerate
2HDACP	Hexadecenoyl-[acp]
2MANPD	("alpha"-D-mannosyl)(,2)-"bet a"-D-mannosyl-diacetylchitobiosyldiphosphod olichol
2N6H	2-Nonaprenyl-6-hydroxyphenol
2NMHMBm	3-Demethylubiquinone-9M
2NPMBm	2-Nonaprenyl-6-methoxy-1,4-benzoquinoneM
2NPMMBm	2-Nonaprenyl-3-methyl-6-methoxy-1,4-benzoquinoneM
2NPMP	2-Nonaprenyl-6-methoxyphenol
2NPMPm	2-Nonaprenyl-6-methoxyphenolM
2NPPP	2-Nonaprenylphenol
2PG	2-Phospho-D-glycerate
3DDAH7P	2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate
3HPACP	(3R)-3-Hydroxypalmitoyl-[acyl-carrier protein]
3PG	3-Phospho-D-glycerate
3PSER	3-Phosphoserine
3PSME	5-O-(1-Carboxyvinyl)-3-phosphoshikimate
4HBZ	4-Hy drox y ben zo at e
4HLT	4-Hydroxy-L-threonine
4HPP	3-(4-Hydroxyphenyl)pyruvate
4PPNCYS	(R)-4'-Phosphopantothenoyl-L-cysteine
4PPNTE	Pantetheine 4'-phosphate
4PPNTEm	Pantetheine 4'-phosphateM
4PPNTO	D-4'Phosphopant othenate
5MTA	5'-Methylthioadenosine
6DGLC	D-Gal alpha 1->6D-Glucose
A6RP	5-Amino-6-ribitylamino-2,4 (1H, 3H)-pyrimidinedione

Table A.1. Metabolites described in FBA

Abbre viation	Metabolite
A6RP5P	5-Amino-6-(5'-phosphoribosylamino)uracil
A6RP5P2	5-Amino-6-(5'-phosphoribitylamino)uracil
AACCOA	Acetoacetyl-CoA
AACP	Acyl-[acyl-carrier-protein]
ABUTm	2-Aceto-2-hydroxy butyrateM
AC	Acetate
ACACP	Acyl-[acyl-carrier protein]
ACACPm	Acyl-[acyl-carrier protein]M
ACAL	Acetaldehyde
ACALm	AcetaldehydeM
ACAR	O-Acetylcamitine
ACARm	O-AcetylcamitineM
ACCOA	Acetyl-CoA
ACCOAm	Acetyl-CoAM
ACLAC	2-Acetolactate
ACLACm	2-Acetolact ateM
ACm	AcetateM
ACNL	3-Indoleacetonitrile
ACOA	Acyl-CoA
ACP	Acyl-carrier protein
ACPm	Acyl-carrier proteinM
ACTAC	Acetoacetate
ACT ACm	AcetoacetateM
ACYBUT	gamma-Amino-gamma-cyanobut anoate
AD	Adenine
ADCHOR	4-amino-4-deoxychorismate
ADm	AdenineM
ADN	Adenosine
ADNm	AdenonsineM
ADP	ADP
ADPm	ADPM
ADPRIB	ADPriboæ
ADPRIBm	ADPriboseM
AGL3P	Acyl-sn-glycerol 3-phosphate
AHHMD	2-Amino-7,8-dihydro-4-hydroxy-6-(diphosphooxymethyl)pteridine
AHHMP	2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine
AHM	4-Amino-5-hydroxymethyl-2-methylpyrimidine
AHMP	4-Amino-2-methyl-5-phosphomethylpyrimidine
AHMPP	2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate
AHTD	2-Amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)-dihydropteridine triphosphate
AICAR	1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarbox amide
AIR	Aminoimidazole ribotide
AKA	2-Oxoadipate
AKAm	2-OxoadipateM

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
AKG	2-Oxoglut arate
AKGm	2-Oxoglut arateM
АКР	2-Dehydropantoate
AKPm	2-DehydropantoateM
ALA	L-Alanine
ALAGLY	R-S-Alanylglycine
ALAm	L-AlanineM
ALAV	5-Aminolevulinate
ALAVm	5-AminolevulinateM
ALTRNA	L-Arginyl-tRNA(Arg)
AM6SA	2-Aminomuconate 6-semialdehyde
АМА	L-2-Aminoadipate
AMASA	L-2-Aminoadipate 6-semialdehyde
AMG	Met hyl-D-glucoside
AMP	AMP
AMPm	AMPM
AMUCO	2-Aminomuconate
AN	Anthranilate
AONA	8-Amino-7-oxononanoate
APEP	Nalpha-Acetylpeptide
APROA	3-Aminopropanal
APROP	alpha-Aminopropiononit rile
APRUT	N-Acetylput rescine
APS	Adenylylsulfate
ARAB	D-Arabinose
ARABLAC	D-Arabinono-1,4-lactone
ARG	L-Arginine
ARGSUCC	N-(L-Arginino)succinate
ASER	O-Acetyl-L-serine
ASN	L-Asparagine
ASP	L-Aspartate
ASPERMD	N1-Acetylspermidine
ASPm	L-AspartateM
ASPRM	N1-Acetylspermine
ASPSA	L-Aspartate 4-semialdehyde
ASPTRNA	L-Asparaginyl-tRNA(Asn)
ASPTRNAm	L-Asparaginyl-tRNA(Asn)M
ASUC	N6-(1,2-Dicarboxyethyl)-AMP
AT 3P2	Acyldihydroxyacetone phosphate
ATN	Allantoin
ATP	ATP
ATPm	АТРМ
ATRNA	tRNA(Arg)
AT RP	P1,P4-Bis(5'-adenosyl) tet raphosphate

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
ATT	Allantoate
bALA	beta-Alanine
BASP	4-Phospho-L-aspartate
bDG6P	bet a-D-Glucose 6-phosphate
bDGLC	beta-D-Glucose
BIO	Biotin
BT	Biotin
C100ACP	Decanoyl-[acp]
C120ACP	Dodecanoyl-[acyl-carrier protein]
C120ACPm	Dodecanoyl-[acyl-carrier protein]M
C140	Myristic acid
C140ACP	Myristoyl-[acyl-carrier protein]
C140ACPm	Myristoyl-[acyl-carrier protein]M
C141ACP	Tetradecenoyl-[acyl-carrier protein]
C141ACPm	Tetradecenoyl-[acyl-carrier protein]M
C160	Palmitate
C160ACP	Hexadecanoyl-[acp]
C160ACPm	Hexadecanoyl-[acp]M
C161	1-Hexadecene
C161ACP	Palmitoyl-[acyl-carrier protein]
C161ACPm	Palmitoyl-[acyl-carrier protein]M
C16A	C16_aldehydes
C180	Stearate
C180ACP	Stearoyl-[acyl-carrier protein]
C180ACPm	Stearoyl-[acyl-carrier protein]M
C181	1-Octadecene
C181ACP	Oleoyl-[acyl-carrier protein]
C181ACPm	Oleoyl-[acyl-carrier protein]M
C182ACP	Linolenoyl-[acyl-carrier protein]
CAASP	N-Carbamoyl-L-aspartate
CAIR	1-(5-Phospho-D-ribosyl)-5-amino-4-imidazolecarboxylate
CALH	2-(3-Carboxy-3-aminopropyl)-L-histidine
cAMP	3',5'-Cyclic AMP
CAP	Carbamoyl phosphate
CAR	Carnitine
CARm	CarnitineM
CBHCAP	3-Isopropylmalate
CBHCAPm	3-IsopropylmalateM
cCMP	3',5'-Cyclic CMP
cdAMP	3',5'-Cyclic dAMP
CDP	CDP
CDPCHO	CDPcholine
CDPDG	CDP diacy lglycerol

Table A.1. Metabolites described in FBA (continued)

Abbreviation	Metabolite
CDPDGm	CDP diacylglycerolM
CDPET N	CDPethanolamine
CER2	Ceramide-2
CER3	Ceramide-3
CGLY	Cys-Gly
cGMP	3',5'-Cyclic GMP
CHCOA	6-Carboxyhexanoyl-CoA
CHIT	Chitin
CHITO	Chitosan
СНО	Choline
CHOR	Chorismate
cIMP	3',5'-Cyclic IMP
CIT	Citrate
CITm	CitrateM
CITR	L-Citrulline
CLm	CardiolipinM
CMP	СМР
CMPm	СМРМ
CMUSA	2-Amino-3-carboxymuconate semialdehyde
CO2	C02
CO2m	CO2M
COA	CoA
COAm	CoAM
CPAD5P	1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate
СРР	Coproporphyrinogen
СТР	СТР
CTPm	СТРМ
CYS	L-Cysteine
CYTD	Cytidine
D45PI	1-Phosphatidyl-D-myo-inositol 4,5-bisphosphate
D6PGC	6-Phospho-D-gluconate
D6PGL	D-Glucono-1,5-lactone 6-phosphate
D6RP5P	2,5-Diamino-6-hydroxy-4-(5'-phosphoribosylamino)-pyrimidine
D8RL	6,7-Dimethyl-8-(1-D-ribityl)lumazine
DA	Deoxyadenosine
DADP	dADP
DAGLY	Diacylglycerol
DAMP	dAMP
DANNA	7,8-Diaminonon an oat e
DAPRP	1,3-Diaminopropane
DATP	dATP
DB4P	L-3,4-Dihydroxy-2-but an one 4-phosphate
DC	Deoxycytidine

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
DCDP	dCDP
DCMP	dCMP
DCTP	dCTP
DFUC	alpha-D-Fucoside
DG	Deoxyguanosine
DGDP	dGDP
DGMP	dGMP
DGPP	Diacylglycerol pyrophosphate
DGTP	dGTP
DHF	Dihydrofolate
DHFm	DihydrofolateM
DHMVAm	(R)-2,3-dihydroxy-3-methylbut an oat eM
DHP	2-Amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine
DHPP	Dihydroneopterin phosphate
DHPT	Dihydropteroate
DHSK	3-Dehydroshikimate
DHSP	Sphinganine 1-phosphate
DHSPH	3-Dehydrosphinganine
DHVALm	(R)-3-Hydroxy-3-methyl-2-oxobut anoat eM
DIMOP	D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate
DIN	Deoxyinosine
DIPEP	Dipeptide
DMPP	Dimethylallyl diphosphate
DMZYMST	4,4-Dimethylzymosterol
DOL	Dolichol
DOLMANP	Dolichyl beta-D-mannosyl phosphate
DOLP	Dolichyl phosphate
DOROA	(S)-Dihydroorot at e
DPCOA	Dephospho-CoA
DPTH	2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine
DQT	3-Dehydroquinate
DR1P	Deoxy-ribose 1-phosphate
DR5P	2-Deoxy-D-ribose 5-phosphate
DRIB	Deoxyribose
DSAM	S-Adenosylmethioninamine
DT	Thymidine
DTB	Dethiobiotin
DTBm	DethiobiotinM
DT DP	dT DP
DTMP	dTMP
DTP	1-Deoxy-d-threo-2-pentulose
DTTP	dTTP
DU	Deoxyuridine

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
DUDP	dUDP
DUMP	dUMP
DUTP	dUTP
E4P	D-Erythrose 4-phosphate
EPM	Epimelibiose
EPST	Episterol
ERGOST	Ergosterol
ERTEOL	Ergosta-5,7,22,24(28)-tetraenol
ERTROL	Ergosta-5,7,24(28)-trienol
ETH	Ethanol
ET Hm	EthanolM
ETHM	Ethanolamine
F1P	D-Fructose 1-phosphate
F26P	D-Fructose 2,6-bisphosphate
F6P	bet a-D-Fructose 6-phosphate
FAD	FAD
FADH2m	FADH2M
FADm	FADM
FALD	Formaldehyde
FDP	bet a-D-Fructose 1,6-bisphosphate
FERIm	Ferricytochrome cM
FEROm	Ferrocytochrome cM
FEST	Fecosterol
FGAM	2-(Formamido)-N1-(5'-phosphoribosyl)acet amidine
FGAR	5'-Phosphoribosyl-N-formylglycinamide
FGT	S-Formylglutathione
FKYN	L-Formylkynurenine
FMN	FMN
FMNm	FMNM
FOR	Formate
FORm	FormateM
FPP	trans,trans-Farnesyl diphosphate
FRU	D-Fructose
FTHF	10-Formyltetrahydrofolate
FT HFm	10-Formyltet rahydrofolat eM
FUACAC	4-Fumary lacet oacetat e
FUC	bet a-D-Fucose
FUM	Fumarate
FUMm	FumarateM
G1P	D-Glucose 1-phosphate
G6P	alpha-D-Glucose 6-phosphate
GA1P	D-Glucosamine 1-phosphate
GA6P	D-Glucosamine 6-phosphate

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
GABA	4-Aminobutanoate
GABAL	4-Aminobut yraldehyde
GABALm	4-Aminobut yraldehydeM
GABAm	4-AminobutanoateM
GAL1P	D-Galactose 1-phosphate
GAR	5'-Phosphoribosylglycinamide
GBAD	4-Guanidino-butanamide
GBAT	4-Guanidino-butanoate
GC	gamma-L-Glutamyl-L-cysteine
GDP	GDP
GDPm	GDPM
GDPMAN	GDPmannose
GGL	Galactosylglycerol
GL	Glycerol
GL3P	sn-Glycerol 3-phosphate
GL3Pm	sn-Glycerol 3-phosphateM
GLAC	D-Galactose
GLACL	1-alpha-D-Galactosyl-myo-inositol
GLAL	Glycolaldehyde
GLAM	Glucosamine
GLC	alpha-D-Glucose
GLN	L-Glutamine
GLP	Glycylpeptide
GLT	L-Glucitol
GLU	L-Glut amate
GLUGSAL	L-Glutamate 5-semialdehyde
GLUGSALm	L-Glut amate 5-semialdehydeM
GLUm	GlutamateM
GLUP	alpha-D-Glut amy l phosphate
GLY	Glycine
GLYCOGEN	Glycogen
GLYm	GlycineM
GLYN	Glycerone
GMP	GMP
GN	Guanine
GNm	GuanineM
GPP	Geranyl diphosphate
GSN	Guanosine
GSNm	GuanosineM
GTP	GTP
GTPm	GTPM
GTRNA	L-Glut amy l-t RNA(Glu)
GTRNAm	L-Glut amy l-tRNA(Glu)M

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
GT RP	P1,P4-Bis(5'-guanosyl) tetraphosphate
H2O2	H2O2
H2S	Hydrogen sulfide
H2SO3	Sulfite
НЗМСОА	(S)-3-Hydroxy-3-methylglutaryl-CoA
H3MCOAm	(S)-3-Hydroxy-3-methylglutaryl-CoAM
HACNm	But-1-ene-1,2,4-tricarboxylateM
HACOA	(3S)-3-Hydroxyacyl-CoA
HAN	3-Hydroxyanthranilate
HBA	4-Hydroxy-benzyl alcohol
HCIT	2-Hydroxybutane-1,2,4-tricarboxylate
HCITm	2-Hydroxybutane-1,2,4-tricarboxylateM
HCYS	Homocysteine
HEXT	H+EXT
HHT RNA	L-Histidyl-tRNA(His)
HICITm	HomoisocitrateM
HIS	L-Histidine
HISOL	L-Histidinol
HISOLP	L-Histidinol phosphate
HKYN	3-Hydroxykynurenine
Hm	H+M
НМВ	Hydroxymethylbilane
HOMOGEN	Homogentisate
HPRO	trans-4-Hydroxy-L-proline
HSER	L-Homoserine
HTRNA	tRNA(His)
HYXN	Hypoxanthine
IAC	Indole-3-acet ate
IAD	Indole-3-acet amide
ICITm	IsocitrateM
IDP	IDP
IDPm	IDPM
IGP	Indoleglycerol phosphate
IGST	4,4-Dimethylcholesta-8,14,24-trienol
IIMZYMST	Intermediate_Methylzymosterol_II
IIZYMST	Intermediate_Zymosterol_II
ILE	L-Isoleucine
ILEm	L-IsoleucineM
IMACP	3-(Imidazol-4-yl)-2-oxopropyl phosphate
IMP	IMP
IMZYMST	Intermediate_Methylzymosterol_I
INAC	Indoleacetate
INS	Inosine

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
IPC	Inosit ol phosphory lceramide
IPPMAL	2-Isopropylmalate
IPPMALm	2-IsopropylmalateM
IPPP	Isopent en yl diph o sphat e
ISUCC	a-Iminosuccinate
IT CCOAm	Itaconyl-CoAM
IT Cm	ItaconateM
ITP	ГГР
ITPm	ГГРМ
IZYMST	Intermediate_Zymosterol_I
К	Potassium
KYN	L-Kynurenine
LAC	(R)-Lactate
LACALm	(S)-LactaldehydeM
LACm	(R)-LactateM
LCCA	a Long-chain carboxylic acid
LEU	L-Leucine
LEUm	L-LeucineM
LGT	(R)-S-Lactoylglutathione
LGTm	(R)-S-Lactoylglut at hioneM
LIPOm	LipoamideM
LLACm	(S)-LactateM
LLCT	L-Cystathionine
LLT RNA	L-lysyltRNA(Lys)
LLT RNAm	L-lysyl-tRNA(Lys)M
LNST	Lanosterol
LTRNA	tRNA(Lys)
LTRNAm	tRNA(Lys)M
LYS	L-Lysine
MACOA	2-Methylprop-2-enoyl-CoA
MAL	Malate
MALACP	Malonyl-[acyl-carrier protein]
MALACPm	Malonyl-[acyl-carrier protein]M
MALCOA	Malonyl-CoA
MALm	MalateM
MALT	Malonate
MALTm	MalonateM
MAN	alpha-D-Mannose
MANIP	alpha-D-Mannose 1-phosphate
MAN2PD	bet a-D-Mannosyldiacetylchitobiosyldiphosphodolichol
MAN6P	D-Mannose 6-phosphate
MANNAN	Mannan
MELI	Melibiose

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
MELT	Melibitol
MET	L-Methionine
METH	Methanethiol
METHF	5,10-Met henylt etrahydrofolate
METHFm	5,10-Met henylt etrahydrofolateM
METTHF	5,10-Met hylenet etrahydrofolate
METTHFm	5,10-Met hy lenet etrahy drof o lat eM
MHIS	N(pai)-Methyl-L-histidine
MI	myo-Inositol
MI1P	1L-myo-Inositol 1-phosphate
MIP2C	Inositol-mannose-P-inositol-P-ceramide
MIPC	Mannose-inositol-P-ceramide
MLT	Maltose
MMET	S-Methylmethionine
MNT	D-Mannitol
MNT6P	D-Mannitol 1-phosphate
MTHF	5-Methyltetrahydrofolate
MT HFm	5-MethyltetrahydrofolateM
MTHGXL	Methylglyoxal
MTHN	Methane
MTHNm	MethaneM
MTHPTGLU	5-Methyltetrahydropteroyltri-L-glutamate
MTRNAm	L-Methionyl-tRNAM
MVL	(R)-Mevalonate
MVLm	(R)-MevalonateM
MYOI	myo-Inositol
MZYMST	4-Methylzymsterol
N4HBZ	3-Nonaprenyl-4-hydroxybenzoate
NA	Sodium
NAADm	Deamino-NAD+M
NAC	Nicotinate
NACm	NicotinateM
NAD	NAD+
NADH	NADH
NADHm	NADHM
NADm	NAD+M
NADP	NADP+
NADPH	NADPH
NADPHm	NADPHM
NADPm	NADP+M
NAG	N-Acetylglucosamine
NAGA1P	N-Acetyl-D-glucosamine 1-phosphate
NAGA6P	N-Acetyl-D-glucosamine 6-phosphate

Table A.1. Metabolites described in FBA (continued)

Abbreviation	Metabolite
NAGLUm	N-Acet yl-L-glut amateM
NAGLUPm	N-Acet yl-L-glut amate 5-phosphateM
NAGLUSm	N-Acet yl-L-glut amate 5-semialdehydeM
NAM	Nicotinamide
NAMm	NicotinamideM
NAMN	Nicotinate D-ribonucleotide
NAMNm	Nicotinate D-ribonucleotideM
NAORNm	N2-Acetyl-L-omithineM
NH3	NH3
NH3m	NH3M
NPP	all-trans-Nonaprenyl diphosphate
NPRAN	N-(5-Phospho-D-ribosyl)anthranilate
O2	Oxygen
O2m	OxygenM
OA	Oxaloacetate
OACOA	3-Oxoacyl-CoA
OAHSER	O-Acetyl-L-homoserine
OAm	OxaloacetateM
OBUT	2-Oxobut ano at e
OBUTm	2-Oxobut ano at eM
OFP	Oxidized flavoprotein
OGT	Oxidized glut athione
OHB	2-Oxo-3-hydroxy-4-phosphobutanoate
OHm	НО-М
OICAP	3-Carboxy-4-methyl-2-oxopentanoate
OICAPm	3-Carboxy-4-methyl-2-oxopentanoateM
OIVAL	(R)-2-Oxoisovalerate
OIVALm	(R)-2-OxoisovalerateM
OMP	Orotidine 5'-phosphate
OMVALm	3-Methyl-2-oxobut anoat eM
OPEP	Oligopeptide
ORN	L-Ornithine
ORNm	L-OrnithineM
OROA	Orotate
OSLHSER	O-Succinyl-L-homoserine
OSUC	Oxalosuccinate
OSUCm	OxalosuccinateM
OTHIO	Oxidized thioredoxin
OTHIOm	Oxidized thioredoxinM
OXA	Oxaloglutarate
OXAm	OxaloglutarateM
P5C	(S)-1-Pyrroline-5-carboxylate
P5Cm	(S)-1-Pyrroline-5-carboxylateM

Table A.1. Metabolites described in FBA (continued)

Abbreviation	Metabolite				
P5P	Pyridoxine phosphate				
PA	Phosphatidate				
PABA	4-Aminobenzoate				
PAC	Phenylacetic acid				
PAD	2-Phenylacetamide				
PALCOA	Palmitoyl-CoA				
PAm	PhosphatidateM				
PANT	(R)-Pantoate				
PANTm	(R)-PantoateM				
PAP	Adenosine 3',5'-bisphosphate				
PAPS	3'-Phosphoadenylylsulfate				
PBG	Porphobilinogen				
PC	Phosphatidykholine				
PC2	Sirohydrochlorin				
РСНО	Choline phosphate				
PDLA	Pyridoxamine				
PDLA5P	Pyridox amine phosphate				
PDME	Phosphat idyl-N-dimethylet hanolamine				
PE	Phosphat idy let hano lamine				
PEm	PhosphatidylethanolamineM				
PEP	Phosphoenolpyruvate				
PEPD	Peptide				
PEPm	PhosphoenolpyruvateM				
PEPT	Peptide				
PET HM	Ethanolamine phosphate				
PGm	PhosphatidylglycerolM				
PGPm	Phosphatidy1glycerophosphateM				
РНС	L-1-Pyrroline-3-hydroxy-5-carboxylate				
PHE	L-Phenylalanine				
PHP	3-Phosphonooxypyruvate				
PHPYR	Phenylpyruvate				
PHSER	O-Phospho-L-homoserine				
PHSP	Phytosphingosine 1-phosphate				
PHT	O-Phospho-4-hydroxy-L-threonine				
PI	Orthophosphate				
PIm	OrthophosphateM				
PIME	Pimelic Acid				
PINS	1-Phosphatidyl-D-myo-inositol				
PINS4P	1-Phosphatidyl-1D-myo-inositol 4-phosphate				
PINSP	1-Phosphatidyl-1D-myo-inositol 3-phosphate				
PL	Pyridoxal				
PL5P	Pyridoxal phosphate				
PMME	Phosphatidyl-N-methylethanolamine				

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
PMVL	(R)-5-Phosphomevalonate
PNTO	(R)-Pantothenate
PPHG	Protoporphyrinogen IX
PPHGm	Protoporphyrinogen IXM
PPI	Pyrophosphate
PPIm	PyrophosphateM
PPIXm	ProtoporphyrinM
PPMAL	2-Isopropylmaleate
PPMVL	(R)-5-Diphosphomevalonate
PRAM	5-Phosphoribosylamine
PRBAMP	N1-(5-Phospho-D-ribosyl)-AMP
PRBATP	N1-(5-Phospho-D-ribosyl)-ATP
PRFICA	1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide
PRFP	5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide
PRLP	N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5"-phospho-D-ribosyl)-4-imidazolecarboxamide
PRO	L-Proline
PROm	L-ProlineM
PRPP	5-Phospho-alpha-D-ribose 1-diphosphate
PRPPm	5-Phospho-alpha-D-ribose 1-diphosphateM
PS	Phosphatidylserine
PSm	PhosphatidylserineM
PSPH	Phytosphingosine
PTHm	HemeM
PTRSC	Putrescine
PURI5P	Pseudouridine 5'-phosphate
PYR	Pyruvate
PYRDX	Pyridoxine
PYRm	PyruvateM
QA	Pyridine-2,3-dicarboxylate
QH2m	UbiquinolM
Qm	Ubiquinone-9M
R1P	D-Ribose 1-phosphate
R5P	D-Ribose 5-phosphate
RAF	Raffinose
RFP	Reduced flavoprotein
RGT	Glutathione
RGT m	GlutathioneM
RIB	D-Ribose
RIBFLAV	Riboflavin
RIBFLAVm	RiboflavinM
RIPm	alpha-D-Ribose 1-phosphateM
RL5P	D-Ribulose 5-phosphate
RMN	D-Rhamnose

Table A.1. Metabolites described in FBA (continued)

Abbreviation	Metabolite
RTHIO	Reduced thioredox m
RIHIOM	
SI7P	Sedoheptulose 1,7-bisphosphate
S23E	(S)-2,3-Epoxysqualene
S/P	Sedoheptulose /-phosphate
SACP	N6-(L-1,3-Dicarboxypropyl)-L-lysme
SAH	S-Adenosyl-L-homocysteine
SAHm	S-Adenosyl-L-homocysteineM
SAICAR	1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole
SAM	S-Adenosyl-L-methionine
SAMm	S-Adenosyl-L-methionineM
SAMOB	S-Adenosyl-4-methylthio-2-oxobutanoate
SAPm	S-AminomethyldihydrolipoylproteinM
SER	L-Serine
SERm	L-SerineM
SLF	Sulfate
SLFm	SulfateM
SME	Shikimate
SME5P	Shikimate 3-phosphate
SOR	Sorbose
SOT	D-Sorbitol
SPH	Sphinganine
SPRM	Spermine
SPRMD	Spermidine
SQL	Squalene
SUC	Sucrose
SUCC	Succinate
SUCCm	SuccinateM
SUCCOAm	Succinyl-CoAM
T3P1	D-Glyceraldehyde 3-phosphate
T3P2	Glycerone phosphate
T3P2m	Glycerone phosphateM
TAG16P	D-T agatose 1,6-bisphosphate
TAG6P	D-T agatose 6-phosphate
TAGLY	Triacylglycerol
TCOA	Tetradecanoyl-CoA
TGLP	N-T etradecanoy1glycy1peptide
THF	Tetrahydrofolate
THFG	Tetrahydrofolyl-[Glu](n)
THFm	TetrahydrofolateM
THIAMIN	Thiamin
THMP	Thiamin monophosphate
THPT GLU	Tet rahydropteroyltri-L-glut amate

Table A.1. Metabolites described in FBA (continued)

Abbre viation	Metabolite
THR	L-Threonine
THRm	L-ThreonineM
THY	Thymine
THZ	5-(2-Hydroxyethyl)-4-methylthiazole
THZP	4-Methyl-5-(2-phosphoethyl)-thiazole
TPI	D-myo-inositol 1,4,5-trisphosphate
TPP	Thiamin diphosphate
TPPP	Thiamin triphosphate
TRE	alpha,alpha-Trehalose
T RE6P	alpha,alpha'-Trehalose 6-phosphate
TRNA	tRNA
TRNAm	tRNAM
T RP	L-Tryptophan
T RPm	L-TryptophanM
TRPTRNAm	L-Tryptophanyl-tRNA(Trp)M
TYR	L-Tyrosine
UDP	UDP
UDPG	UDP glucose
UDPGAL	UDP-D-galactose
UDPNAG	UDP-N-acetyl-D-galactosamine
UDPP	Undecaprenyl diphosphate
UGC	(-)-Ureidoglycolate
UMP	UMP
UPRG	Uroporphyrinogen III
URA	Uracil
UREA	Urea
UREAC	Urea-1-carboxylate
URI	Uridine
UTP	UTP
X5P	D-Xylose-5-phosphate
XAN	Xanthine
XMP	Xanthosine 5'-phosphate
XT SINE	Xanthosine
XUL	D-Xylulose
XYL	D-Xyloæ
ZYMST	Zymosterol

Table A.1. Metabolites described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION				
	# CARBOHYDRATE MET ABOLISM							
	# GLYCOLYSIS/GLUCONEOGENESIS							
YCL040W	2.7.1.2	GLK1	GLUCOKINASE	GLC + ATP -> G6P + ADP				
YCL040W	2.7.1.2	GLK1	GLUCOKINASE	MAN + ATP -> MAN6P + ADP				
YCL040W	2.7.1.2	GLK1	GLUCOKINASE	bDGLC + ATP -> bDG6P + ADP				
YFR053C	2.7.1.1	HXK1	HEXOKINASE I (PI) (ALSO CALLED HEXOKINASE A)	bDGLC + ATP -> G6P + ADP				
YFR053C	2.7.1.1	HXK1	HEXOKINASE I (PI) (ALSO CALLED HEXOKINASE A)	GLC + ATP -> G6P + ADP				
YFR053C	2.7.1.1	HXK1	HEXOKINASE I (PI) (ALSO CALLED HEXOKINASE A)	MAN + ATP -> MAN6P + ADP				
YFR053C	2.7.1.1	HXK1	HEXOKINASE I (PI) (ALSO CALLED HEXOKINASE A)	ATP + FRU -> ADP + F6P				
YGL253W	2.7.1.1	HXK2	HEXOKINASE II (PII) (ALSO CALLED HEXOKINASE B)	bDGLC + ATP -> G6P + ADP				
YGL253W	2.7.1.1	HXK2	HEXOKINASE II (PII) (ALSO CALLED HEXOKINASE B)	GLC + ATP -> G6P + ADP				
YGL253W	2.7.1.1	HXK2	HEXOKINASE II (PII) (ALSO CALLED HEXOKINASE B)	MAN + ATP -> MAN6P + ADP				
YGL253W	2.7.1.1	HXK2	HEXOKINASE II (PII) (ALSO CALLED HEXOKINASE B)	ATP + FRU -> ADP + F6P				
YBR196C	5.3.1.9	PGI1	GLUCOSE-6-PHOSPHATE ISOMERASE	G6P <-> F6P				
YBR196C	5.3.1.9	PGI1	GLUCOSE-6-PHOSPHATE ISOMERASE	G6P <-> bDG6P				
YBR196C	5.3.1.9	PGI1	GLUCOSE-6-PHOSPHATE ISOMERASE	bDG6P <-> F6P				
YMR205C	2.7.1.11	PFK2	PHOSPHOFRUCT OKINASE BETA SUBUNIT	F6P + ATP -> FDP + ADP				
YGR240C	2.7.1.11	PFKI	PHOSPHOFRUCT OKINASE ALPHA SUBUNIT	F6P + ATP -> FDP + ADP				
YGR240C	2.7.1.11	PFK1	PHOSPHOFRUCT OKINASE ALPHA SUBUNIT	ATP + TAG6P -> ADP + TAG16P				
YGR240C	2.7.1.11	PFKI	PHOSPHOFRUCT OKINASE ALPHA SUBUNIT	ATP + S7P -> ADP + S17P				
YKL060C	4.1.2.13	FBA1	FRUCT OSE-BISPHOSP HATE ALDOLASE	FDP <-> T3P2 + T3P1				
YDR050C	5.3.1.1	TPII	T RIOSEP HOSPHATE ISOMERASE	T3P2 <-> T3P1				
YJL052W	1.2.1.12	TDH1	GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE 1	T3P1 +PI +NAD <-> NADH +13PDG				
YJR009C	1.2.1.12	TDH2	GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE	T3P1 +PI + NAD <-> NADH + 13PDG				
YGR192C	1.2.1.12	TDH3	GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE 3	T3P1 +PI +NAD <-> NADH +13PDG				
YCR012W	2.7.2.3	PGK1	PHOSPHOGLYCERATE KINASE	13PDG + ADP <-> 3PG + ATP				
YKL152C	5.4.2.1	GPM1	PHOSPHOGLYCERATE MUTASE	13PDG <-> 23PDG				
YKL152C	5.4.2.1	GPM1	PHOSPHOGLYCERATE MUTASE	3PG <->2PG				

Table A.2. Reactions described in FBA

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YDL021W	5.4.2.1	GPM2	SIMILAR TO GPMI (PHOSPHOGLYCERATE MUTASE)	3PG <->2PG
YOL056W	5.4.2.1	GPM3	PHOSPHOGLYCERATE MUTASE	3PG <-> 2PG
YGR254W	4.2.1.11	ENO1	ENOLASE I	2PG <-> PEP
YHR174W	4.2.1.11	ENO2	ENOLASE	2PG <-> PEP
YMR323W	4.2.1.11	ERRI	PROTEIN WITH SIMILARITY TO ENOLASES	2PG <-> PEP
YPL281C	4.2.1.11	ERR2	ENOLASE RELATED PROTEIN	2PG <-> PEP
YOR393W	4.2.1.11	ERR1	ENOLASE RELATED PROTEIN	2PG <-> PEP
YAL038W	2.7.1.40	CDC19	P Y RUVAT E KINASE	PEP + ADP -> PYR + ATP
YOR347C	2.7.1.40	РҮК2	P YRUVAT E KINASE, GLUCOSE-REPRESSED ISOFORM	PEP + ADP -> PYR + ATP
YER178W	1.2.4.1	PDAI	PYRUVAT E DEHYDROGENASE (LIPOAMIDE) ALPHA CHAIN PRECURSOR, E1 COMPONENT, ALPHA UNIT	PYRm + COAm + NADm -> NADHm + CO2m + ACCOAm
YBR221C	1.2.4.1	PDB1	PYRUVAT E DEHYDROGENASE (LIPOAMIDE) BET A CHAIN PRECURSOR, EI COMPONENT, BET A UNIT	
YNL071W	2.3.1.12	LATI	DIHYDROLIPOAMIDE S- ACET YLT RANSFERASE, E2 COMPONENT	
			# CITRATE CYCLE (TCA CYCLE)	
YNR001C	4.1.3.7	CITI	CIT RATE SYNTHASE, NUCLEAR ENCODED MITOCHONDRIAL PROTEIN.	ACCOAm + OAm -> COAm + CITm
YCR005C	4.1.3.7	CIT2	CIT RATE SYNTHASE, NON- MITOCHONDRIAL CIT RATE SYNTHASE	ACCOA + OA -> COA + CIT
YPR001W	4.1.3.7	CIT3	CIT RATE SYNTHASE, MITOCHONDRIAL ISOFORM OF CIT RATE SYNT HASE	ACCOAm + OAm -> COAm + CITm
YLR304C	4.2.1.3	ACO1	ACONITASE, MITOCHONDRIAL	CITm <->ICITm
YJL200C	4.2.1.3	YJL200C	ACONITATE HYDRATASE HOMOLOG	CITm <-> ICITm
YNL037C	1.1.1.41	IDHI	ISOCIT RATE DEHYDROGENASE (NAD+) MITO, SUBUINT1	ICITm + NADm -> CO2m + NADHm + AKGm
YOR136W	1.1.1.41	IDH2	ISOCIT RATE DEHYDROGENASE (NAD+) MITO, SUBUNIT2	
YDL066W	1.1.1.42	IDP1	ISOCIT RATE DEHYDROGENASE (NADP+)	ICITm + NADPm -> NADPHm + OSUCm
YLR174W	1.1.1.42	IDP2	ISOCIT RATE DEHYDROGENASE (NADP+)	ICIT + NADP -> NADPH + OSUC
YNL009W	1.1.1.42	IDP3	ISOCIT RATE DEHYDROGENASE (NADP+)	ICIT + NADP -> NADPH + OSUC
YDL066W	1.1.1.42	IDP1	ISOCIT RATE DEHYDROGENASE (NADP+)	OSUCm -> CO2m + AKGm
YLR174W	1.1.1.42	IDP2	ISOCIT RATE DEHYDROGENASE (NADP+)	OSUC -> CO2 + AKG
YNL009W	1.1.1.42	IDP3	ISOCIT RATE DEHYDROGENASE (NADP+)	OSUC -> CO2 + AKG
YIL125W	1.2.4.2	KGD1	ALPHA-KET OGLUTARATE DEHYDROGENASE COMPLEX, E1 COMPONENT	AKGm + NADm + COAm -> CO2m + NADHm + SUCCOAm

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YDR148C	2.3.1.61	KGD2	DIHYDROLIPOAMIDE S- SUCCINYLT RANSFERASE, E2 COMPONENT	
YGR244C	6.2.1.4/6.2.1.5	LSC2	SUCCINAT ECOA LIGASE (GDP- FORMING)	ATPm + SUCCm + COAm <-> ADPm + PIm + SUCCOAm
YOR142W	6.2.1.4/6.2.1.5	LSC1	SUCCINAT E-COA LIGASE ALPHA SUBUNIT	ATPm + IT Cm + COAm <-> ADPm + PIm + ITCCOAm
		# I	ELECTRONTRANSPORT SYSTEM, COMPLEX	П
YKL141W	1.3.5.1	SDH3	SUCCINAT E DEHYDROGENASE CYT OCHROME B	SUCCm + FADm <-> FUMm + FADH2m
YKL148C	1.3.5.1	SDHI	SUCCINAT E DEHYDROGENASE CYT OCHROME B	
YLL041C	1.3.5.1	SDH2	SUCCINAT E DEHYDROGENASE (UBIQUINONE) IRON-SULFUR PROTEIN SUBUNIT	
YDR178W	1.3.5.1	SDH4	SUCCINAT E DEHYDROGENASE MEMBRANE ANCHOR SUBUNIT	
YLR164W	1.3.5.1	YLR164W	STRONG SIMILARITY TO SDH4P	
YMR118C	1.3.5.1	YMR118C	ST RONG SIMILARITY TO SUCCINATE DEHYDROGENASE	
YJL045W	1.3.5.1	YJL045W	STRONG SIMILARITY TO SUCCINATE DEHYDROGENASE FLAVOPROTEIN	
YEL047C	1.3.99.1	YEL047C	SOLUBLE FUMARATE REDUCTASE, CYT OPLASMIC	FADH2m + FUM -> SUCC + FADm
YJR051W	1.3.99.1	OSM1	MITOCHONDRIAL SOLUBLE FUMARATE REDUCTASE INVOLVED IN OSMOTIC REGULATION	FADH2m + FUMm -> SUCCm + FADm
YPL262W	4.2.1.2	FUM1	FUMARATASE	FUMm <-> MALm
YPL262W	4.2.1.2	FUM1	FUMARATASE	FUM <-> MAL
YKL085W	1.1.1.37	MDH1	MITOCHONDRIAL MALATE DEHYDROGENASE	MALm + NADm <-> NADHm + OAm
YDL078C	1.1.1.37	MDH3	MALATE DEHYDROGENASE, PEROXISOMAL	MAL + NAD <-> NADH + OA
YOL126C	1.1.1.37	MDH2	MALATE DEHYDROGENASE, CYT OPLASMIC	MAL + NAD <-> NADH + OA
	•		# ANAPLEROTIC REACTIONS	
YER065C	4.1.3.1	ICL1	ISOCIT RATE LYASE	ICIT -> GLX + SUCC
YPR006C	4.1.3.1	ICL2	ISOCIT RATE LYASE, MAY BE NONFUNCT IONAL	ICIT -> GLX + SUCC
YIR031C	4.1.3.2	DAL7	MALATE SYNTHASE	ACCOA + GLX -> COA + MAL
YNL117W	4.1.3.2	MLS1	MALATE SYNTHASE	ACCOA + GLX -> COA + MAL
YKR097W	4.1.1.49	PCK1	PHOSPHOENOLPYRUVATE CARBOXYLKINASE	OA + ATP -> PEP + CO2 + ADP

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YLR377C	3.1.3.11	FBP1	FRUCT OSE-1,6-BISPHOSP HAT ASE	FDP -> F6P + PI
YGL062W	6.4.1.1	PYC1	PYRUVATE CARBOXYLASE	$PYR + ATP + CO2 \rightarrow ADP + OA + PI$
YBR218C	6.4.1.1	PYC2	PYRUVATE CARBOXYLASE	$PYR + ATP + CO2 \rightarrow ADP + OA + PI$
YKL029C	1.1.1.38	MAEI	MITOCHONDRIAL MALIC ENZYME	MALm + NADPm -> CO2m + NADPHm + PYRm
			# PENTOSE PHOSPHATE CYCLE	
YNL241C	1.1.1.49	ZWF1	GLUCOSE-6-PHOSPHATE-1- DEHYDROGENASE	G6P + NADP <-> D6PGL + NADPH
YNR034W	3.1.1.31	SOLI	POSSIBLE 6- PHOSPHOGLUCONOLACTONASE	D6PGL -> D6PGC
YCR073W- A	3.1.1.31	SOL2	POSSIBLE 6- PHOSPHOGLUCONOLACTONASE	D6PGL -> D6PGC
YHR163W	3.1.1.31	SOL3	POSSIBLE 6- PHOSPHOGLUCONOLACTONASE	D6PGL->D6PGC
YGR248W	3.1.1.31	SOL4	POSSIBLE 6- PHOSPHOGLUCONOLACTONASE	D6PGL->D6PGC
YGR256W	1.1.1.44	GND2	6-PHOPHOGLUCONATE DEHYDROGENASE	D6PGC + NADP -> NADPH + CO2 + RL5P
YHR183W	1.1.1.44	GND1	6-PHOPHOGLUCONATE DEHYDROGENASE	D6PGC + NADP -> NADPH + CO2 + RL5P
YJL121C	5.1.3.1	RPE1	RIBULOSE-5-P 3-EPIMERASE	RL5P <-> X5P
YOR095C	5.3.1.6	RKI1	RIBOSE-5-P ISOMERASE	RL5P <-> R5P
YBR117C	2.2.1.1	TKL2	TRANSKETOLASE	R5P + X5P <-> T3P1 + S7P
YBR117C	2.2.1.1	TKL2	TRANSKETOLASE	X5P + E4P <-> F6P + T3P1
YPR074C	2.2.1.1	TKL1	TRANSKETOLASE	R5P + X5P <-> T3P1 + S7P
YPR074C	2.2.1.1	TKL1	TRANSKETOLASE	X5P + E4P <-> F6P + T3P1
YLR354C	2.2.1.2	TALI	TRANSALDOLASE	T3P1 + S7P <-> E4P + F6P
YGR043C	2.2.1.2	YGR043C	TRANSALDOLASE	T3P1 + S7P <-> E4P + F6P
YCR036W	2.7.1.15	RBK1	RIBOKINASE	$RIB + ATP \rightarrow R5P + ADP$
YCR036W	2.7.1.15	RBK1	RIBOKINASE	DRIB + ATP -> DR5P + ADP
YKL127W	5.4.2.2	PGMI	PHOSPHOGLUCOMUTASE	R1P <->R5P
YKL127W	5.4.2.2	PGM1	PHOSPHOGLUCOMUTASE 1	G1P <-> G6P
YMR105C	5.4.2.2	PGM2	PHOSPHOGLUCOMUTASE	R1P <-> R5P
YMR105C	5.4.2.2	PGM2	PHOSPHOGLUCOMUTASE	G1P <-> G6P
			# MANNOSE	
YER003C	5.3.1.8	PMI40	MANNOSE-6-PHOSPHATE ISOMERASE	MAN6P <-> F6P
YFL045C	5.4.2.8	SEC53	PHOSPHOMANNOMUTASE	MAN6P <-> MAN1P
YDL055C	2.7.7.13	PSA1	MANNOSE-1-PHOSPHATE GUANYLTRANSFERASE, GDP-MANNOSE PYROPHOSPHORYLASE	GTP + MAN1P -> PPI + GDPMAN

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
			# FRUCTOSE	
YIL107C	2.7.1.105	PFK26	6-PHOSPHOFRUCT OSE-2-KINASE	ATP + F6P -> ADP + F26P
YOL136C	2.7.1.105	PFK27	6-PHOSPHOFRUCT O-2-KINASE	ATP + F6P -> ADP + F26P
YJL155C	3.1.3.46	FBP26	FRUCT OSE-2,6-BIPHOSP HAT ASE	F26P -> F6P + PI
U1_	2.7.1.56	U1_	1-PHOSPHOFRUCT OKINASE (FRUCTOSE 1- PHOSPHATE KINASE)	F1P + ATP -> FDP + ADP
			# SORBOSE	
YJR159W	1.1.1.14	SOR1	SORBIT OL DEHYDROGENASE (L-IDITOL 2- DEHYDROGENASE)	SOT +NAD ->FRU +NADH
			# GALACTOSE METABOLISM	
YBR020W	2.7.1.6	GALI	GALACTOKINASE	GLAC + ATP -> GAL1P + ADP
YBR018C	2.7.7.10	GAL7	GALACT OSE-1-PHOSPHATE URIDYL TRANSFERASE	UTP + GAL 1P <-> PPI + UDP GAL
YBR019C	5.1.3.2	GAL10	UDP-GLUCOSE 4-EPIMERASE	UDPGAL <-> UDPG
YHL012W	2.7.7.9	YHL012W	UTPGLUCOSE 1-PHOSPHATE URIDYLYLTRANSFERASE	G1P + UTP <-> UDPG + PPI
YKL035W	2.7.7.9	UGP1	URIDINEPHOSPHOGLUCOSE PYROPHOSPHORYLASE	G1P + UTP <-> UDPG + PPI
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	MELI -> GLC + GLAC
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	DFUC -> GLC + GLAC
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	RAF -> GLAC + SUC
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	GLACL <-> MYOI + GLAC
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	EPM <->MAN + GLAC
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	$GGL \iff GL + GLAC$
YBR184W	3.2.1.22	YBR184W	ALPHA-GALACTOSIDASE (MELIBIASE)	MELT <-> SOT + GLAC
YBR299W	3.2.1.20	MAL32	MALTASE	MLT ->2 GLC
YGR287C	3.2.1.20	YGR287C	PUTATIVE ALPHA GLUCOSIDASE	MLT ->2 GLC
YGR292W	3.2.1.20	MAL12	MALTASE	MLT ->2 GLC
YIL172C	3.2.1.20	YIL172C	PUTATIVE ALPHA GLUCOSIDASE	MLT ->2 GLC
YJL216C	3.2.1.20	YJL216C	PROBABLE ALPHA-GLUCOSIDASE (MALTASE)	MLT ->2 GLC
YJL221C	3.2.1.20	FSP2	HOMOLOGY TO MALTASE(ALPHA-D- GLUCOSIDASE)	MLT ->2 GLC
YJL221C	3.2.1.20	FSP2	HOMOLOGY TO MALTASE(ALPHA-D- GLUCOSIDASE)	6DGLC -> GLAC + GLC
YBR018C	2.7.7.12	GAL7	UDPGLUCOSEHEXOSE-1-PHOSPHATE URIDYLYLTRANSFERASE	UDPG + GAL1P <-> G1P + UDPGAL
			# T REHALOSE	
YBR126C	2.4.1.15	TPS1	TREHALOSE-6-P SYNT HET ASE, 56 KD SYNT HASE SUBUNIT OF TREHALOSE-6- PHOSPHATE SYNT HASE\PHOSPHATASE COMPLEX	UDPG + G6P -> UDP + T RE6P

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YML100W	2.4.1.15	TSL1	TREHALOSE-6-P SYNTHETASE, 123 KD REGULATORY SUBUNIT OFTREHALOSE-6- PHOSPHATE SYNTHASE\/PHOSPHATASE COMPLEX\; HOMOLOGOUS TO TPS3 GENE PRODUCT	UDPG + G6P -> UDP + T RE6P
YMR261 C	2.4.1.15	TPS3	T REHALOSE-6-P SYNT HET ASE, 115 KD REGULAT ORY SUBUNIT OFT REHALOSE-6- PHOSPHATE SYNT HASE\PHOSPHATASE COMPLEX	UDPG + G6P -> UDP + T RE6P
YDR074W	3.1.3.12	TPS2	TREHALOSE-6-PHOSPHATE PHOSPHATASE	T RE6P ->T RE + PI
YPR026W	3.2.1.28	ATHI	ACID TREHALASE	TRE ->2 GLC
YBR001C	3.2.1.28	NTH2	NEUT RALT REHALASE, HIGHLY HOMOLOGOUS TO NTH1P	TRE->2 GLC
YDR001C	3.2.1.28	NTH1	NEUT RAL T REHALASE	TRE ->2 GLC
		# GLY	COGEN MET ABOLISM (SUCOROSE AND SUGAR	METABOLISM)
YEL011W	2.4.1.18	GLC3	BRANCHING ENZYME, 1,4-GLUCAN-6-(1,4- GLUCANO)-TRANSFERASE	GLYCOGEN + PI -> G1P
YPR160W	2.4.1.1	GPH1	GLYCOGEN PHOSPHORYLASE	GLYCOGEN + PI -> G1P
YFR015C	2.4.1.11	GSYI	GLYCOGEN SYNTHASE (UDP-GLUOCSE STARCH GLUCOSYLTRANSFERASE)	UDPG -> UDP + GLYCOGEN
YLR258W	2.4.1.11	GSY2	GLYCOGEN SYNTHASE (UDP-GLUOCSE STARCH GLUCOSYLTRANSFERASE)	UDPG -> UDP + GLYCOGEN
			# PYRUVATE METABOLISM	
YAL054C	6.2.1.1	ACSI	ACET YL-COENZYME A SYNT HET ASE	ATP + AC + COA -> AMP + PPI + ACCOA
YLR153C	6.2.1.1	ACS2	ACET YL-COENZYME A SYNT HET ASE	ATP + AC + COA -> AMP + PPI + ACCOA
YDL168W	1.2.1.1	SFA1	FORMALDEHYDE DEHYDROGENASE/LONG- CHAIN ALCOHOL DEHYDROGENASE	FALD + RGT + NAD <-> FGT + NADH
YJL068C	3.1.2.12	YJL068C	S-FORMYLGLUTATHIONE HYDROLASE	FGT <-> RGT + FOR
YGR087C	4.1.1.1	PDC6	PYRUVATE DECARBOXYLASE	PYR->CO2+ACAL
YLR134W	4.1.1.1	PDC5	PYRUVATE DECARBOXYLASE	PYR->CO2+ACAL
YLR044C	4.1.1.1	PDC1	PYRUVATE DECARBOXYLASE	PYR->CO2+ACAL
YBL015W	3.1.2.1	ACH1	ACET YL COA HYDROLASE	ACCOA -> COA + AC
YDL131W	4.1.3.21	LYS21	PROBABLE HOMOCITRATE SYNTHASE, MITOCHONDRIAL ISOZYME PRECURSOR	ACCOA + AKG -> HCIT + COA
YDL182W	4.1.3.21	LYS20	HOMOCIT RATE SYNT HASE, CYTOSOLIC ISOZYME	ACCOA + AKG -> HCIT + COA
YDL182W	4.1.3.21	LYS20	HOMOCIT RATE SYNT HASE	ACCOAm + AKGm -> HCITm + COAm

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YGL256W	1.1.1.1	ADH4	ALCOHOL DEHYDROGENASE ISOENZYME IV	ETH + NAD <-> ACAL + NADH
YMR083W	1.1.1.1	ADH3	ALCOHOL DEHYDROGENASE ISOENZYME III	ETHm + NADm <-> ACALm + NADHm
YMR303C	1.1.1.1	ADH2	ALCOHOL DEHYDROGENASE II	ETH + NAD <-> ACAL + NADH
YBR145W	1.1.1.1	ADH5	ALCOHOL DEHYDROGENASE ISOENZYME V	ETH + NAD <-> ACAL + NADH
YOL086C	1.1.1.1	ADH1	ALCOHOL DEHYDROGENASE I	ETH + NAD <-> ACAL + NADH
YDL168W	1.1.1.1	SFA1	ALCOHOL DEHYDROGENASE I	ETH + NAD <-> ACAL + NADH
			# GLYOXYLATE AND DICARBOXYLATE MET	ABOLISM
			# GLYOXALPATHWAY	
YML004C	4.4.1.5	GLO1	LACT OYLGLUTATHIONE LYASE, GLYOXALASE I	RGT + MTHGXL <-> LGT
YDR272W	3.1.2.6	GLO2	HYDROXYACYLGLUT ATHIONE HYDROLASE	LGT -> RGT + LAC
YOR040W	3.1.2.6	GLO4	GLYOXALASE II (HYDROXYACYLGLUTATHIONE HYDROLASE)	LGTm -> RGTm + LACm
			# ENERGY METABOLISM	
			# OXIDATIVE PHOSPHORYLATION	
YBR011C	3.6.1.1	IPP1	INORGANIC PYROPHOSPHATASE	PPI -> 2 PI
YMR267W	3.6.1.1	PPA2	MITOCHONDRIAL INORGANIC PYROPHOSPHATASE	PPIm -> 2 PIm
U2_	1.2.2.1	U2_	FORMATE DEHYDROGENASE	FOR + Qm -> QH2m + CO2 +2 HEXT
YML120C	1.6.5.3	NDI1	NADH DEHYDROGENASE (UBIQUINONE)	NADHm + Qm -> QH2m + NADm
YDL085W	1.6.5.3	NDH2	MITOCHONDRIAL NADH DEHYDROGENASE THAT CATALYZES THE OXIDATION OF CYTOSOLIC NADH	NADH + Qm -> QH2m + NAD
YMR145C	1.6.5.3	NDH1	MITOCHONDRIAL NADH DEHYDROGENASE THAT CATALYZES THE OXIDATION OF CYTOSOLIC NADH	NADH + Qm -> QH2m + NAD
YHR042W	1.6.2.4	NCP1	NADPHFERRIHEMOPROTEIN REDUCT ASE	NADPH+2 FERIm -> NADP+2 FEROm
YKL141W	1.3.5.1	SDH3	SUCCINAT E DEHYDROGENASE CYT OCHROME B	FADH2m + Qm <-> FADm + QH2m
YKL148C	1.3.5.1	SDH1	SUCCINAT E DEHYDROGENASE CYT OCHROME B	
YLL041C	1.3.5.1	SDH2	SUCCINAT E DEHYDROGENASE CYT OCHROME B	
YDR178W	1.3.5.1	SDH4	SUCCINATE DEHYDROGENASE CYTOCHROME B	

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION		
# ELECTRONTRANSPORT SYSTEM, COMPLEX III						
YEL024W	1.10.2.2	RIP1	UBIQUINOL-CYTOCHROME C REDUCTASE IRON-SULFUR SUBUNIT	QH2m + 2 FERIm + 1.5 Hm -> Qm + 2 FEROm		
Q0105	1.10.2.2	СҮТВ	UBIQUINOL-CYTOCHROME C REDUCTASE CYTOCHROME B SUBUNIT			
YOR065W	1.10.2.2	CYT1	UBIQUINOL-CYTOCHROME C REDUCTASE CYT OCHROME C1 SUBUNIT			
YBL045C	1.10.2.2	CORI	UBIQUINOL-CYTOCHROME C REDUCTASE CORE SUBUNIT 1			
YPR191W	1.10.2.2	QCR1	UBIQUINOL-CYTOCHROME C REDUCTASE CORE SUBUNIT 2			
YPR191W	1.10.2.2	QCR2	UBIQUINOL-CYTOCHROME C REDUCTASE			
YFR033C	1.10.2.2	QCR6	UBIQUINOL-CYTOCHROME C REDUCTASE SUBUNIT 6			
YDR529C	1.10.2.2	QCR7	UBIQUINOL-CYTOCHROME C REDUCTASE SUBUNIT 7			
YJL166W	1.10.2.2	QCR8	UBIQUINOL-CYTOCHROME C REDUCTASE SUBUNIT 8			
YGR183C	1.10.2.2	QCR9	UBIQUINOL-CYTOCHROME C REDUCTASE SUBUNIT 9			
YHROO1 W- A	1.10.2.2	QCR10	UBIQUINOL-CYTOCHROME C REDUCTASE SUBUNIT 10			
			# ELECTRONTRANSPORT SYSTEM, COMP	LEX IV		
Q0045	1.9.3.1	COX1	CYT OCHROME C OXIDASE SUBUNIT I	4 FEROm + O2m + 6 Hm -> 4 FERIm		
Q0250	1.9.3.1	COX2	CYT OCHROME C OXIDASE SUBUNIT I			
Q0275	1.9.3.1	COX3	CYT OCHROME C OXIDASE SUBUNIT I			
YDL067C	1.9.3.1	COX9	CYT OCHROME C OXIDASE SUBUNIT I			
YGL187C	1.9.3.1	COX4	CYT OCHROME C OXIDASE SUBUNIT I			
YGL191W	1.9.3.1	COX13	CYT OCHROME C OXIDASE SUBUNIT I			
YHR051W	1.9.3.1	COX6	CYT OCHROME C OXIDASE SUBUNIT I			
YIL111W	1.9.3.1	COX5B	CYT OCHROME C OXIDASE SUBUNIT I			
YLR038C	1.9.3.1	COX12	CYT OCHROME C OXIDASE SUBUNIT I			
YLR395C	1.9.3.1	COX8	CYT OCHROME C OXIDASE SUBUNIT I			
YMR256C	1.9.3.1	COX7	CYT OCHROME C OXIDASE SUBUNIT I			
YNL052W	1.9.3.1	COX5A	CYT OCHROME C OXIDASE SUBUNIT I			
	# ATP SYNTHASE					
YBL099W	3.6.1.34	ATP1	F1F0-ATPASE COMPLEX, F1 ALPHA SUBUNIT	ADPm + PIm -> ATPm + 3 Hm		
YPL271W	3.6.1.34	ATP15	F1F0-ATPASE COMPLEX, F1 EPSILON SUBUNIT			

Table A.2. Reactions described in FBA (continued)
ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YDL004W	3.6.1.34	ATP16	F-T YPE H+-T RANSPORTING ATPASE DELTA CHAIN	
Q0085	3.6.1.34	ATP6	F1F0-ATPASE COMPLEX, FO A SUBUNIT	
YBR039W	3.6.1.34	ATP3	F1F0-ATPASE COMPLEX, F1 GAMMA SUBUNIT	
YBR127C	3.6.1.34	VMA2	H+-ATPASE V1 DOMAIN 60 KD SUBUNIT, VACUOLAR	
YPL078C	3.6.1.34	ATP4	F1F0-ATPASE COMPLEX, F1 DELTA SUBUNIT	
YDR298C	3.6.1.34	ATP5	F1F0-ATPASE COMPLEX, OSCP SUBUNIT	
YDR377W	3.6.1.34	ATP17	ATP SYNTHASE COMPLEX, SUBUNIT F	
YJR121W	3.6.1.34	ATP2	F1F0-ATPASE COMPLEX, F1 BETA SUBUNIT	
YKL016C	3.6.1.34	ATP7	F1F0-ATPASE COMPLEX, FO D SUBUNIT	
YLR295C	3.6.1.34	ATP14	ATP SYNTHASE SUBUNIT H	
Q0080	3.6.1.34	ATP8	F-T YPE H+TRANSPORTING ATPASE SUBUNIT 8	
Q0130	3.6.1.34	ATP9	F-T YPE H+TRANSPORTING ATPASE SUBUNIT C	
YOL077W- A	3.6.1.34	ATP19	ATP SYNTHASE K CHAIN, MITOCHONDRIAL	
YPR020W	3.6.1.34	ATP20	SUBUNIT G OF THE DIMERIC FORM OF MITOCHONDRIAL F1F0-ATP SYNTHASE	
YML054C	1.1.2.3	CYB2	LACTIC ACID DEHYDROGENASE	2 FERIm + LLACm -> PYRm + 2 FEROm
YDL174C	1.1.2.4	DLD1	MITOCHONDRIAL ENZYME D-LACT ATE FERRICYTOCHROME C OXIDOREDUCTASE	2 FERIm + LACm ->PYRm + 2 FEROm
			# METHANE METABOLISM	
YPL275W	1.2.1.2	YPL275W	PUTATIVE FORMATE DEHYDROGENASE/PUTATIVE PSEUDOGENE	FOR + NAD -> CO2 + NADH
YPL276W	1.2.1.2	YPL276W	PUTATIVE FORMATE DEHYDROGENASE/PUTATIVE PSEUDOGENE	FOR + NAD -> CO2 + NADH
YOR388C	1.2.1.2	FDHI	PROTEIN WITH SIMILARITY TO FORMATE DEHYDROGENASES	FOR + NAD -> CO2 + NADH
	•		# NIT ROGEN METABOLISM	
YBR208C	6.3.4.6	DURI	UREA AMIDOLYASE CONTAINING UREA CARBOXYLASE / ALLOPHANATE HYDROLASE	ATP + UREA + CO2 <> ADP + PI + UREAC
YBR208C	3.5.1.54	DURI	ALLOPHANATE HYDROLASE	UREAC -> 2 NH3 + 2 CO2

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE GENE DESCRIPTION							
YJL126W	3.5.5.1	NIT2	NIT RILASE	ACNL -> INAC + NH3						
# SULFUR METABOLISM										
YJR137C	1.8.7.1	ECM17	SULFITE REDUCT ASE	H2SO3 + 3 NADPH <-> H2S + 3 NADP						
	# LIPID METABOLISM									
		# FA	ATTY ACID BIOSYNTHESIS							
YER015W	6.2.1.3	FAA2	LONG-CHAIN-FATTY-ACIDCOA LIGASE, ACYL-COA SYNTHETASE	ATP + LCCA + COA <-> AMP + PPI + ACOA						
YIL009W	6.2.1.3	FAA3	LONG-CHAIN-FATTY-ACIDCOA LIGASE, ACYL-COA SYNTHETASE	ATP + LCCA + COA <-> AMP + PPI + ACOA						
YOR317W	6.2.1.3	FAAI	LONG-CHAIN-FATTY-ACIDCOA LIGASE, ACYL-COA SYNTHETASE	ATP + LCCA + COA <-> AMP + PPI + ACOA						
YMR246W	6.2.1.3	FAA4	ACYL-COA SYNTHASE (LONG- CHAIN FATTY ACID COA LIGASE); CONTRIBUTES TO ACTIVATION OF IMPORTED MYRISTATE	ATP + LCCA + COA <-> AMP + PPI + ACOA						
YKR009C	1.1.1	FOX2	3-HYDROXYACYL-COA DEHYDROGENASE	HACOA + NAD <-> OACOA + NADH						
YIL160C	2.3.1.16	POTI	3-KETOACYL-COA THIOLASE	OACOA + COA -> ACOA + ACCOA						
YPL028W	2.3.1.9	ERG10	ACET YL-COA C- ACET YLT RANSFERASE, ACET OACETYL-COA T HIOLASE	2 ACCOA <-> COA + AACCOA						
YPL028W	2.3.1.9	ERG10	ACET YL-COA C- ACET YLT RANSFERASE, ACET OACETYL-COA T HIOLASE (MITOCH)	2 ACCOAm <-> COAm + AACCOAm						
		# FA	ATTY ACIDS METABOLISM							
		# MITOCHOND	RIAL TYPE II FATTY ACID SYNTHASE							
YKL192C	1.6.5.3	ACPI	ACYL CARRIER PROTEIN, COMPONENT OF MITOCHONDRIAL TYPE II FATTY ACID SYNTHASE	NADHm + Qm -> NADm + QH2m						
YER061C	-	CEMI	BET A-KETOACYL-ACP SYNTHASE, MITOCHONDRIAL (3-OXOACYL- [ACYL-CARRIER-PROTEIN] SYNTHASE)							
YOR221C	-	MCT1	MALONYL COA:ACYL CARRIER PROTEIN TRANSFERASE							
YKL055C	-	OARI	3-OXOACYL-[ACYL-CARRIER- PROTEIN] REDUCT ASE							
YKL192C	1.6.5.3/- /-/-	ACP1/CEM1/MCT1/OAR1	TYPE II FATTY ACID SYNTHASE	ACACPm +4 MALACPm +8 NADPHm ->8 NADPm + C100ACPm +4 CO2m +4 ACPm						
YKL192C	1.6.5.3/- /-/-	ACP1/CEM1/MCT1/OAR1	TYPE II FATTY ACID SYNTHASE	ACACPm + 5 MALACPm + 10 NADPHm -> 10 NADPm + C120ACPm + 5 CO2m + 5 ACPm						
YKL192C	1.6.5.3/- /-/-	ACP1/CEM1/MCT1/OAR1	TYPE II FATTY ACID SYNTHASE	ACACPm + 6 MALACPm + 12 NADPHm -> 12 NADPm + C140ACPm + 6 CO2m + 6 ACPm						

Table A.2. Reactions described in FBA (contiuned)

ORF	EC.#	GENE	GENE DESCRIPTION	REACTION
YKL192C	1.6.5.3/-/-/-	ACP1	TYPE II FATTY ACID SYNTHASE	ACACPm + 6 MALACPm + 11 NADPHm -> 11 NADPm + C141ACPm+6 CO2m + 6 ACPm
YKL192C	1.6.5.3/-/-/-	ACP2	TYPE II FATTY ACID SYNTHASE	ACACPm + 7 MALACPm + 14 NADPHm -> 14 NADPm + C160ACPm + 7 CO2m + 7 ACPm
YKL192C	1.6.5.3/-/-/-	ACP3	TYPE II FATTY ACID SYNTHASE	ACACPm +7 MALACPm +13 NADPHm -> 13 NADPm + C161ACPm +7 CO2m +7 ACPm
YKL192C	1.6.5.3/-/-/-	ACP4	TYPE II FATTY ACID SYNTHASE	ACACPm + 8 MALACPm + 16 NADPHm -> 16 NADPm + C180ACPm + 8 CO2m + 8 ACPm
YKL192C	1.6.5.3/-/-/-	ACP5	TYPE II FATTY ACID SYNTHASE	ACACPm + 8 MALACPm + 15 NADPHm -> 15 NADPm + C181ACPm + 8 CO2m + 8 ACPm
YKL192C	1.6.5.3/-/-/-	ACP6	TYPE II FATTY ACID SYNTHASE	ACACPm + 8 MALACPm + 14 NADPHm -> 14 NADPm + C182ACPm + 8 CO2m + 8 ACPm
	·	# CYT	OSOLIC FATTY ACID SYNTHESIS	
YNR016C	6.4.1.2 6.3.4.14	ACCI	ACET YL-COA CARBOXYLASE (ACC) / BIOTIN CARBOXYLASE	ACCOA + ATP + CO2 <-> MALCOA + ADP +PI
YKL182W	4.2.1.61	FAS1	FATTY-ACYL-COA SYNTHASE, BET A CHAIN	MALCOA + ACP <-> MALACP + COA
YPL231W	2.3.1.85;1.1.1.100;2.3.1.41	FAS2	FATTY-ACYL-COA SYNTHASE, ALPHA CHAIN	
YKL182W	4.2.1.61	FAS1	FATTY-ACYL-COA SYNTHASE, BET A CHAIN	ACCOA + ACP <-> ACACP + COA
YER061C	2.3.1.41	CEM1	3-OXOACYL-[ACYL-CARRIER- PROTEIN] SYNTHASE	MALACPm + ACACPm -> ACPm + CO2m + 3OACPm
YGR037C	6.4.1.2	ACB1	B-KETOACYL-ACP SYNTHASE (C10,0), FATTY ACYL COA SYNTHASE	ACACP +4 MALACP +8 NADPH -> 8 NADP + C100ACP +4 CO2 + 4 ACP
YGR037C	6.4.1.3	ACB2	B-KETOACYL-ACP SYNTHASE (C12,0), FATTY ACYL COA SYNTHASE	ACACP + 5 MALACP + 10 NADPH -> 10 NADP + C120ACP + 5 CO2 + 5 ACP
YGR037C	6.4.1.4	ACB3	B-KETOACYL-ACP SYNTHASE (C14,0)	ACACP + 6 MALACP + 12 NADPH -> 12 NADP + C140ACP + 6 CO2 + 6 ACP
YGR037C	6.4.1.5	ACB4	B-KETOACYL-ACP SYNTHASE I (C14,1)	ACACP + 6 MALACP + 11 NADPH -> 11 NADP + C141ACP + 6 CO2 + 6 ACP
YGR037C	6.4.1.6	ACB5	B-KETOACYL-ACP SYNTHASE I (C16,0)	ACACP + 7 MALACP + 14 NADPH -> 14 NADP + C160ACP + 7 CO2 + 7 ACP
YGR037C	6.4.1.7	ACB6	B-KETOACYL-ACP SYNTHASE I (C16,1)	ACACP + 7 MALACP + 13 NADPH -> 13 NADP + C161ACP + 7 CO2 + 7 ACP
YGR037C	6.4.1.8	ACB7	B-KETOACYL-ACP SYNTHASE I (C18,0)	ACACP + 8 MALACP + 16 NADPH -> 16 NADP + C180ACP + 8 CO2 + 8 ACP

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YGR037C	6.4.1.2	ACB7	B-KETOACYL-ACP SYNTHASE I (C18,1)	ACACP + 8 MALACP + 15 NADPH -> 15 NADP + C181ACP + 8 CO2 + 8 ACP
YGR037C	6.4.1.2	ACB7	B-KETOACYL-ACP SYNTHASE I (C18,2)	ACACP + 8 MALACP + 14 NADPH -> 14 NADP + C182ACP + 8 CO2 + 8 ACP
YKL182W	4.2.1.61	FAS1	3-HYDROXYPALMIT OYL-[ACYL-CARRIER PROTEIN] DEHYDRAT ASE	3HPACP <->2HDACP
YKL1 82 W	1.3.1.9	FAS1	ENOYL-ACP REDUCT ASE	AACP + NAD <-> 23DAACP + NADH
			# FATTY ACID DEGRADATION	
YGL205W	1.3.3.6	POXI	FATTY ACID DEGRADATION	C140 + ATP +7 COA +7 FADm +7 NAD -> AMP + PPI +7 FADH2m +7 NADH +7 ACCOA
YGL205W	1.3.3.6	POX2	FATTY ACID DEGRADATION	C160 + ATP + 8 COA + 8 FADm + 8 NAD -> AMP + PPI + 8 FADH2m + 8 NADH + 8 ACCOA
YGL205W	1.3.3.6	РОХЗ	FATTY ACID DEGRADATION	C180 + ATP +9 COA +9 FADm +9 NAD -> AMP + PPI +9 FADH2m +9 NADH +9 ACCOA
			# PHOSPHOLIPID BIOSYNT HESIS	
U3_		U3_	GLYCEROL-3-PHOSPHATE ACYLT RANSFERASE	GL3P +0.017 C100ACP +0.062 C120ACP +0.1 C140ACP +0.27 C160ACP +0.169 C161ACP +0.055 C180ACP +0.235 C181ACP +0.093 C182ACP -> AGL3P + ACP
U4_		U4_	GLYCEROL-3-PHOSPHATE ACYLT RANSFERASE	GL3P +0.017 C100ACP +0.062 C120ACP +0.1 C140ACP +0.27 C160ACP +0.169 C161ACP +0.055 C180ACP +0.235 C181ACP +0.093 C182ACP -> AGL3P + ACP
U5_		U5_	GLYCEROL-3-PHOSPHATE ACYLT RANSFERASE	T3P2 +0.017 C100ACP +0.062 C120ACP +0.1 C140ACP +0.27 C160ACP +0.169 C161ACP +0.055 C180ACP +0.235 C181ACP +0.093 C182ACP -> AT3P2 + ACP
U6_		U6_	GLYCEROL-3-PHOSPHATE ACYLT RANSFERASE	T3P2 +0.017 C100ACP +0.062 C120ACP +0.1 C140ACP +0.27 C160ACP +0.169 C161ACP +0.055 C180ACP +0.235 C181ACP +0.093 C182ACP -> AT3P2 + ACP
U7_		U7_	ACYLDIHYDROXYACETONEPHOSPHATE REDUCTASE	AT 3P2 + NADPH -> AGL3P + NADP
YDL052C	2.3.1.51	SLC1	1-ACYLGLYCEROL-3-PHOSPHATE ACYLT RANSFERASE	$\begin{array}{c} AGL3P + 0.017 \ C100 \ ACP + 0.062 \\ C120 \ ACP + 0.100 \ C140 \ ACP + 0.270 \\ C160 \ ACP + 0.169 \ C161 \ ACP + 0.055 \\ C180 \ ACP + 0.235 \ C181 \ ACP + 0.093 \\ C182 \ ACP -> PA + ACP \end{array}$
U8_	2.3.1.51	U8_	1-ACYLGLYCEROL-3-PHOSPHATE ACYLTRANSFERASE	AGL3P +0.017 C100ACP +0.062 C120ACP +0.100 C140ACP +0.270 C160ACP +0.169 C161ACP +0.055 C180ACP +0.235 C181ACP +0.093 C182ACP ->PA + ACP

Table A.2. Reactions described in FBA (contiuned)

Table A.2.	Reactions	described	in FBA ((contiuned)
------------	-----------	-----------	----------	-------------

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YBR029C	2.7.7.41	CDS1	CDP-DIACYLGLYCEROL SYNTHET ASE	PAm + CTPm <-> CDPDGm + PPIm

YBR029C	2.7.7.41	CDS1	CDP-DIACYLGLYCEROL SYNTHET ASE	PA + CTP <-> CDPDG + PPI
YER026C	2.7.8.8	CHO1	PHOSPHATIDYLSERINE SYNTHASE	CDPDG + SER <-> CMP + PS
YER026C	2.7.8.8	CHO1	PHOSPHATIDYLSERINE SYNTHASE	CDPDGm + SERm <-> CMPm + PSm
YGR170W	4.1.1.65	PSD2	PHOSPHATIDYLSERINE DECARBOXYLASE LOCATED IN VACUOLE OR GOLGI	PS->PE + CO2
YNL169C	4.1.1.65	PSD1	PHOSPHATIDYLSERINE DECARBOXYLASE 1	PSm -> PEm + CO2m
YGR157W	2.1.1.17	CHO2	PHOSPHATIDYLETHANOLAMINE N- METHYLT RANSFERASE	SAM + PE -> SAH + PMME
YJR073C	2.1.1.16	OPI3	METHYLENE-FATTY-ACYL-PHOSPHOLIPID SYNTHASE.	SAM + PMME -> SAH + PDME
YJR073C	2.1.1.16	OPI3	PHOSPHATIDYL-N- METHYLETHANOLAMINE N- METHYLT RANSFERASE	PDME + SAM -> PC + SAH
YLR133W	2.7.1.32	CKI1	CHOLINE KINASE	ATP + CHO -> ADP + PCHO
YGR202C	2.7.7.15	PCT1	CHOLINEPHOSPHATE CYTIDYLYLTRANSFERASE	PCHO + CTP -> CDPCHO + PPI
YNL130C	2.7.8.2	CPT1	DIACYLGLYCEROL CHOLINEPHOSPHOT RANSFERASE	CDPCHO + DAGLY -> PC + CMP
YDR147W	2.7.1.82	EKI1	ET HANOLAMINE KINASE	ATP + ETHM -> ADP + PETHM
YGR007W	2.7.7.14	MUQ1	PHOSPHOETHANOLAMINE CYTIDYLYLTRANSFERASE	PET HM + CTP -> CDPET N + PPI
YHR123W	2.7.8.1	EPTI	ET HANOLAMINEP HOSPHOT RANSFERASE.	CDPETN + DAGLY <-> CMP + PE
YJL153C	5.5.1.4	INO1	MYO-INOSIT OL-1-PHOSPHATE SYNT HASE	G6P -> MI1P
YHR046C	3.1.3.25	INM1	MYO-INOSIT OL-1(OR 4)- MONOPHOSP HATASE	MI1P -> MYOI + PI
YPR113W	2.7.8.11	PIS1	PHOSPHATIDYLINOSITOL SYNTHASE	CDPDG + MYOI -> CMP + PINS
YJR066W	2.7.1.137	TORI	1-PHOSPHATIDYLINOSITOL 3-KINASE	ATP + PINS -> ADP + PINSP
YKL203C	2.7.1.137	TOR2	1-PHOSPHATIDYLINOSITOL 3-KINASE	ATP + PINS -> ADP + PINSP
YLR240W	2.7.1.137	VPS34	1-PHOSPHATIDYLINOSITOL 3-KINASE	ATP + PINS -> ADP + PINSP
YNL267W	2.7.1.67	PIK1	PHOSPHATIDYLINOSITOL 4-KINASE (PI 4- KINASE), GENERATES PTDINS 4-P	ATP + PINS -> ADP + PINS4P
YLR305C	2.7.1.67	STT4	PHOSPHATIDYLINOSITOL 4-KINASE	ATP + PINS -> ADP + PINS4P
YFR019W	2.7.1.68	FAB1	PROBABLE PHOSPHATIDYLINOSIT OL-4- PHOSPHATE 5-KINASE, 1- PHOSPHATIDYLINOSITOL-4-PHOSPHATE KINASE	PINS4P + ATP -> D45PI + ADP

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YDR208W	2.7.1.68	MSS4	PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5- KINASE; REQUIRED FOR PROPER ORGANIZATION OF THE ACTIN CYT OSKELETON	PINS4P + ATP -> D45PI + ADP
YPL268W	3.1.4.11	PLC1	1-PHOSPHATIDYLINOSITOL-4,5- BISPHOSPHATE PHOSPHODIESTERASE	D45PI -> TPI + DAGLY
YCL004W	2.7.8.8	PGS1	CDP-DIACYLGLYCEROLSERINE O- PHOSPHATIDYLTRANSFERASE	CDPDGm + GL3Pm <-> CMPm + PGPm
U9_	3.1.3.27	U9_	PHOSPHATIDYLGLYCEROLPHOSPHATE PHOSPHATASE A	PGPm -> PIm + PGm
YDL142C	2.7.8.5	CRD1	CARDIOLIPIN SYNTHASE	CDPDGm + PGm -> CMPm + CLm
YDR284C		DPP1	DIACYLGLYCEROL PYROPHOSPHATE PHOSPHATASE	PA->DAGLY+PI
YDR503C		LPP1	LIPID PHOSPHATE PHOSPHATASE	DGPP ->PA +PI
			# SPHINGOGLYCOLIPID METABOLISM	1
YDR062W	2.3.1.50	LCB2	SERINE C-PALMITOYLT RANSFERASE	PALCOA + SER -> COA + DHSPH + CO2
YMR296C	2.3.1.50	LCB1	SERINE C-PALMITOYLT RANSFERASE	PALCOA + SER -> COA + DHSPH + CO2
YBR265W	1.1.1.102	TSC10	3-DEHYDROSPHINGANINE REDUCTASE	DHSPH + NADPH -> SPH + NADP
YDR297W		SUR2	SYRINGOMYCIN RESPONSE PROTEIN 2	SPH + O2 + NADPH -> PSPH + NADP
U10_		U10_	CERAMIDE SYNT HASE	PSPH + C260COA -> CER2 + COA
U11_		U11_	CERAMIDE SYNT HASE	PSPH + C240COA -> CER2 + COA
YMR272C		SCS7	CERAMIDE HYDROXYLASE THAT HYDROXYLATES THE C-26 FATTY-ACYL MOIETY OF INOSIT OL- PHOSPHORYLCERAMIDE	CER2 + NADPH + O2 -> CER3 + NADP
YKL004W		AURI	IPS SYNT HASE, AUREOBASIDIN A RESIST ANCE PROTEIN	CER3 +PINS -> IPC
YBR036C		CSG2	PROTEIN REQUIRED FOR SYNTHESIS OF THE MANNOSYLATED SPHINGOLIPIDS	IPC + GDPMAN -> MIPC
YPL057C		SURI	PROTEIN REQUIRED FOR SYNTHESIS OF THE MANNOSYLATED SPHINGOLIPIDS	IPC + GDPMAN -> MIPC
YDR072C	2	IPTI	MIP2C SYNTHASE, MANNOSYL DIPHOSPHORYLINOSITOL CERAMIDE SYNTHASE	MIPC +PINS -> MIP2C
YOR171C		LCB4	LONG CHAIN BASE KINASE, INVOLVED IN SPHINGOLIPID METABOLISM	$SPH + ATP \rightarrow DHSP + ADP$
YLR260W		LCB5	LONG CHAIN BASE KINASE, INVOLVED IN SPHINGOLIPID METABOLISM	$SPH + ATP \rightarrow DHSP + ADP$
YOR171C		LCB4	LONG CHAIN BASE KINASE, INVOLVED IN SPHINGOLIPID METABOLISM	$PSPH + ATP \rightarrow PHSP + ADP$

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YLR260W		LCB5	LONG CHAIN BASE KINASE, INVOLVED IN SPHINGOLIPID METABOLISM	$PSPH + ATP \rightarrow PHSP + ADP$
YJL134W		LCB3	SPHINGOID BASE-PHOSPHATE PHOSPHATASE, PUT ATIVE REGULATOR OF SPHINGOLIPID METABOLISM AND STRESS RESPONSE	DHSP -> SPH + PI
YKR053C		YSR3	SPHINGOID BASE-PHOSPHATE PHOSPHATASE, PUT ATIVE REGULATOR OF SPHINGOLIPID METABOLISM AND STRESS RESPONSE	DHSP -> SPH + PI
YDR294C		DPLI	DIHYDROSPHINGOSINE-1-PHOSPHATE LYASE	DHSP ->PETHM + Cl6A
			# STEROL BIOSYNTHESIS	
YML126C	4.1.3.5	HMGS	3-HYDROXY-3-METHYLGLUTARYL COENZYME A SYNTHASE	H3MCOA + COA <-> ACCOA + AACCOA
YLR450W	1.1.1.34	HMG2	3-HYDROXY-3-METHYLGLUTARYL- COENZYME A (HMG-COA) REDUCTASE ISOZYME	MVL + COA + 2 NADP <-> H3MCOA + 2 NADP H
YML075C	1.1.1.34	HMG1	3-HYDROXY-3-METHYLGLUTARYL- COENZYME A (HMG-COA) REDUCTASE ISOZYME	MVL + COA + 2 NADP <-> H3MCOA + 2 NADPH
YMR208W	2.7.1.36	ERG12	MEVALONATE KINASE	ATP + MVL -> ADP + PMVL
YMR208W	2.7.1.36	ERG12	MEVALONATE KINASE	CTP + MVL -> CDP + PMVL
YMR208W	2.7.1.36	ERG12	MEVALONATE KINASE	GTP + MVL -> GDP + PMVL
YMR208W	2.7.1.36	ERG12	MEVALONATE KINASE	$UTP + MVL \rightarrow UDP + PMVL$
YMR220W	2.7.4.2	ERG8	48 KDA PHOSPHOMEVALONATE KINASE	$ATP + PMVL \rightarrow ADP + PPMVL$
YNR043W	4.1.1.33	MVD1	DIPHOSPHOMEVALONATE DECARBOXYLASE	ATP + PPMVL -> ADP + PI + IPPP + CO2
YPL117C	5.3.3.2	IDII	ISOPENTENYL DIPHOSPHATE:DIMETHYLALLYL DIPHOSPHATE ISOMERASE (IPP ISOMERASE)	IPPP <-> DMPP
YJL167W	2.5.1.1	ERG20	PRENYLTRANSFERASE	DMPP + IPPP -> GPP + PPI
YJL167W	2.5.1.10	ERG20	FARNESYL DIPHOSPHATE SYNTHETASE (FPP SYNTHETASE)	GPP + IPPP -> FPP + PPI
YHR190W	2.5.1.21	ERG9	SQUALENE SYNTHASE.	2 FPP + NADPH -> NADP + SQL
YGR175C	1.14.99.7	ERG1	SQUALENE MONOOXYGENASE	$SQL + O2 + NADP \rightarrow S23E + NADPH$
YHR072W	5.4.99.7	ERG7	2,3-OXIDOSQUALENE-LANOSTEROL CYCLASE	\$23E -> LNST
YHR007C	1.14.14.1	ERG11	CYTOCHROME P450 LANOST EROL 14A- DEMETHYLASE	LNST + RFP + O2 -> IGST + OFP
YNL280C	1	ERG24	C-14 STEROL REDUCTASE	IGST + NADPH -> DMZYMST + NADP

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YGR060W	1	ERG25	C-4 STEROL METHYL OXIDASE	3 O2 + DMZYMST -> IMZYMST
YGL001C	5.3.3.1	ERG26	C-3 STEROL DEHYDROGENASE (C-4 DECARBOXYLASE)	IMZYMST -> IIMZYMST + CO2
YLR100C		YLR100C	C-3 STEROL KETO REDUCTASE	IIMZYMST + NADPH -> MZYMST + NADP
YGR060W	1	ERG25	C-4 STEROL METHYL OXIDASE	3 O2 + MZYMST -> IZYMST
YGL001C	5.3.3.1	ERG26	C-3 STEROL DEHYDROGENASE (C-4 DECARBOXYLASE)	IZYMST ->IIZYMST +CO2
YLR100C		YLR100C	C-3 STEROL KETO REDUCTASE	IIZYMST + NADPH -> ZYMST + NADP
YML008C	2.1.1.41	ERG6	S-ADENOSYL-METHIONINE DELTA-24- STEROL-C-METHYLT RANSFERASE	ZYMST + SAM -> FEST + SAH
YMR202W		ERG2	C-8 ST EROL ISOMERASE	FEST -> EPST
YLR056W	1	ERG3	C-5 STEROL DESATURASE	EPST + O2 + NADPH -> NADP + ERTROL
YMR015C	1.14.14	ERG5	C-22 STEROL DESATURASE	ERT ROL + O2 + NADP H -> NADP + ERT EOL
YGL012W	1	ERG4	STEROL C-24 REDUCTASE	ERTEOL + NADPH -> ERGOST + NADP
U12_		U12_		LNST + 3 O2 + 4 NADPH + NAD -> MZYMST + CO2 + 4 NADP + NADH
U13_		U13_		MZYMST + 3 O2 + 4 NADPH + NAD -> ZYMST + CO2 + 4 NADP + NADH
U14_	5.3.3.5	U14_	CHOLESTENOL DELTA-ISOMERASE	ZYMST + SAM -> ERGOST + SAH
			# NUCLEOTIDE METABOLISM	•
			# HISTIDINE BIOSYNTHESIS	
YOL061W	2.7.6.1	PRS5	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE	R5P + ATP <-> PRPP + AMP
YBL068W	2.7.6.1	PRS4	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE 4	R5P + ATP <-> PRPP + AMP
YER099C	2.7.6.1	PRS2	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE 2	R5P + ATP <-> PRPP + AMP
YHL011C	2.7.6.1	PRS3	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE 3	R5P + ATP <-> PRPP + AMP
YKL181W	2.7.6.1	PRS1	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE	R5P + ATP <-> PRPP + AMP
YIR027C	3.5.2.5	DALI	ALLANTOINASE	ATN <-> ATT
YIR029W	3.5.3.4	DAL2	ALLANTOICASE	ATT <-> UGC + UREA
YIR032C	3.5.3.19	DAL3	UREIDOGLYCOLATE HYDROLASE	UGC <-> GLX + 2 NH3 + CO2
			# PURINE METABOLISM	
<i>YJL005W</i>	4.6.1.1	CYR1	ADENYLATE CYCLASE	ATP -> cAMP +PPI
YDR454C	2.7.4.8	GUK1	GUANYLATE KINASE	GMP + ATP <-> GDP + ADP

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YDR454C	2.7.4.8	GUKI	GUANYLATE KINASE	DGMP + ATP <-> DGDP + ADP
YDR454C	2.7.4.8	GUK1	GUANYLATE KINASE	GMP + DATP <-> GDP + DADP
YMR300C	2.4.2.14	ADE4	PHOSPHORIBOSYLPYROPHOSPHATE AMIDOTRANSFERASE	PRPP + GLN -> PPI + GLU + PRAM
YGL234W	6.3.4.13	ADE5,7	GLYCINAMIDE RIBOT IDE SYNT HETASE AND AMINOIMIDAZOLE RIBOTIDE SYNTHETASE	PRAM + ATP + GLY <-> ADP + PI + GAR
YDR408C	2.1.2.2	ADE8	GLYCINAMIDE RIBOT IDE TRANSFORMYLASE	GAR + FT HF -> THF + FGAR
YGR061C	6.3.5.3	ADE6	5'-PHOSP HORIBOSYLFORMYL GLYCINAMIDINE SYNT HET ASE	$\begin{array}{l} FGAR + ATP + GLN \Rightarrow GLU + ADP + PI \\ + FGAM \end{array}$
YGL234W	6.3.3.1	ADE5,7	PHOSPHORIBOSYLFORMYLGLYCINAMIDE CYCLO-LIGASE	FGAM + ATP -> ADP + PI + AIR
YOR128C	4.1.1.21	ADE2	PHOSPHORIBOSYLAMINO-IMIDAZOLE- CARBOXYLASE	CAIR <-> AIR + CO2
YAR015W	6.3.2.6	ADEl	PHOSPHORIBOSYL AMINO IMIDAZOLESUCCINOCARBOZAMIDE SYNTHETASE	CAIR + ATP + ASP <> ADP + PI + SAICAR
YLR359W	4.3.2.2	ADE13	5'-PHOSPHORIBOSYL-4-(N- SUCCINOCARBOXAMIDE)-5- AMINOIMIDAZOLE LYASE	SAICAR <-> FUM + AICAR
YLR028C	2.1.2.3	ADE16	5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOTIDE (AICAR) T RANSFORMYLASE\/IMP CYCLOHYDROLASE	AICAR + FT HF <-> THF + PRFICA
YMR120C	2.1.2.3	ADE17	5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOTIDE (AICAR) TRANSFORMYLASE\/IMP CYCLOHYDROLASE	AICAR + FT HF <-> THF + PRFICA
YLR028C	3.5.4.10	ADE16	5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOTIDE (AICAR) TRANSFORMYLASE\/IMP CYCLOHYDROLASE	PRFICA <-> IMP
YMR120C	2.1.2.3	ADE17	IMP CYCLOHYDROLASE	PRFICA <-> IMP
YNL220W	6.3.4.4	ADE12	ADENYLOSUCCINATE SYNTHETASE	IMP + GTP + ASP -> GDP + PI + ASUC
YLR359W	4.3.2.2	ADE13	ADENYLOSUCCINATE LYASE	ASUC <-> FUM + AMP
YAR073W	1.1.1.205	FUN63	PUTATIVE INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE	IMP + NAD -> NADH + XMP
YHR216W	1.1.1.205	PUR5	PURINE EXCRETION	IMP + NAD -> NADH + XMP
YML056C	1.1.1.205	IMD4	PROBABLE INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (IMP	IMP + NAD -> NADH + XMP
YLR432W	1.1.1.205	IMD3	PROBABLE INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (IMP	IMP + NAD -> NADH + XMP

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YAR075W	1.1.1.205	YAR075W	PROTEIN WITH STRONG SIMILARITY TO INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE, FRAMESHIFTED FROM YAR073W, POSSIBLE PSEUDOGENE	IMP + NAD -> NADH + XMP
YMR217W	6.3.5.2, 6.3.4.1	GUAI	GMP SYNTHASE	XMP + ATP + GLN -> GLU + AMP + PPI + GMP
YML035C	3.5.4.6	AMD1	AMP DEAMINASE	AMP -> IMP + NH3
YGL248W	3.1.4.17	PDEl	3',5'-CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE, LOW AFFINIT Y	cAMP -> AMP
YOR360C	3.1.4.17	PDE2	3',5'-CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE, HIGH AFFINITY	cAMP -> AMP
YOR360C	3.1.4.17	PDE2		cdAMP -> DAMP
YOR360C	3.1.4.17	PDE2		cIMP -> IMP
YOR360C	3.1.4.17	PDE2		cGMP -> GMP
YOR360C	3.1.4.17	PDE2		cCMP -> CMP
YDR530C	2.7.7.53	APA2	5',5'''-P-1,P-4-TET RAPHOSPHAT E PHOSPHORYLASE II	$ADP + ATP \rightarrow PI + ATRP$
YCL050C	2.7.7.53	APA1	5',5'''-P-1,P-4-TET RAPHOSPHAT E PHOSPHORYLASE II	$ADP + GTP \rightarrow PI + ATRP$
YCL050C	2.7.7.53	APA1	5',5'''-P-1,P-4-TET RAPHOSPHAT E PHOSPHORYLASE II	GDP + GTP -> PI + GT RP
		•	# PYRIMIDINE METABOLISM	
YJL130C	2.1.3.2	URA2	ASPART ATE-CARBAMOYLT RANSFERASE	CAP + ASP -> CAASP +PI
YLR420W	3.5.2.3	URA4	DIHYDROORATASE	CAASP <-> DOROA
YKL216W	1.3.3.1	URA1	DIHYDROOROTATE DEHYDROGENASE	DOROA + O2 <-> H2O2 + OROA
YKL216W	1.3.3.1	PYRD	DIHYDROOROTATE DEHYDROGENASE	DOROA + Qm <-> QH2m + OROA
YML106W	2.4.2.10	URA5	OROT ATE PHOSPHORIBOSYLT RANSFERASE 1	OROA + PRPP <-> PPI + OMP
YMR271C	2.4.2.10	URA10	OROT ATE PHOSPHORIBOSYLT RANSFERASE 2	OROA + PRPP <-> PPI + OMP
YEL021W	4.1.1.23	URA3	OROTIDINE-5'-PHOSPHATE DECARBOXYLASE	OMP -> CO2 + UMP
YKL024C	2.7.4.14	URA6	NUCLEOSIDE-PHOSPHATE KINASE	ATP + UMP <-> ADP + UDP
YHR128W	2.4.2.9	FURI	UPRTASE, URACIL PHOSPHORIBOSYLT RANSFERASE	URA + PRPP -> UMP + PPI
YPR062W	3.5.4.1	FCY1	CYT OSINE DEAMINASE	CYTS->URA+NH3
U15_	2.7.1.21	U15_	THYMIDINE (DEOXYURIDINE) KINASE	DU + ATP -> DUMP + ADP
U16_	2.7.1.21	U16_	THYMIDINE (DEOXYURIDINE) KINASE	DT + ATP -> ADP + DTMP
YNR012W	2.7.1.48	URK1	URIDINE KINASE	URI + GTP -> UMP + GDP
YNR012W	2.7.1.48	URK1	CYT ODINE KINASE	CYTD + GTP -> GDP + CMP

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YNR012W	2.7.1.48	URK1	URIDINE KINASE, CONVERTS ATP AND URIDINE TO ADP AND UMP	URI + ATP -> ADP + UMP
YLR209C	2.4.2.4	PNPI	PROTEIN WITH SIMILARITY TO HUMAN PURINE NUCLEOSIDE PHOSPHORYLASE, THYMIDINE (DEOXYURIDINE) PHOSPHORYLASE, PURINE NUCLEOTIDE PHOSPHORYLASE	DU + PI <-> URA + DRIP
YLR209C	2.4.2.4	PNP1	PROTEIN WITH SIMILARITY TO HUMAN PURINE NUCLEOSIDE PHOSPHORYLASE, THYMIDINE (DEOXYURIDINE) PHOSPHORYLASE	DT +PI <-> THY + DR1P
YLR245C	3.5.4.5	CDD1	CYTIDINE DEAMINASE	CYTD -> URI + NH3
YLR245C	3.5.4.5	CDD1	CYTIDINE DEAMINASE	DC ->NH3 + DU
YJR057W	2.7.4.9	CDC8	DT MP KINASE	DT MP + ATP <-> ADP + DTDP
YDR353W	1.6.4.5	TRR1	THIOREDOXIN REDUCT ASE	OT HIO + NADPH -> NADP + RTHIO
YHR106W	1.6.4.5	TRR2	MITOCHONDRIAL THIOREDOXIN REDUCTASE	OTHIOm + NADPHm -> NADPm + RTHIOm
YBR252W	3.6.1.23	DUT1	DUTP PYROPHOSPHATASE (DUTPASE)	DUTP -> PPI + DUMP
YOR074C	2.1.1.45	CDC21	THYMIDYLATE SYNTHASE	DUMP + METTHF -> DHF + DTMP
U17_	2.7.4.14	U17_	CYT IDYLATE KINASE	DCMP + ATP <-> ADP + DCDP
U18_	2.7.4.14	U18_	CYT IDYLATE KINASE	CMP + ATP <-> ADP + CDP
YHR144C	3.5.4.12	DCD1	DCMP DEAMINASE	DCMP <-> DUMP + NH3
YBL039C	6.3.4.2	URA7	CTP SYNTHASE, HIGHLY HOMOLOGUS TO URA8 CTP SYNTHASE	UTP + GLN + ATP -> GLU + CTP + ADP + PI
YJR103W	6.3.4.2	URA8	CTP SYNT HASE	UTP + GLN + ATP -> GLU + CTP + ADP + PI
YBL039C	6.3.4.2	URA7	CTP SYNTHASE, HIGHLY HOMOLOGUSTO URA8 CTP SYNTHASE	ATP + UTP + NH3 -> ADP + PI + CTP
YJR103W	6.3.4.2	URA8	CTP SYNTHASE	ATP + UTP + NH3 -> ADP + PI + CTP
YNL292W	4.2.1.70	PUS4	PSEUDOURIDINE SYNTHASE	URA + R5P <->PURI5P
YPL212C	4.2.1.70	PUS1	INT RANUCLEAR PROTEIN WHICH EXHIBITS A NUCLEOTIDE-SPECIFIC INT RON- DEPENDENT TRNA PSEUDOURIDINE SYNTHASE ACTIVITY	URA + R5P <->PURI5P
YGL063W	4.2.1.70	PUS2	PSEUDOURIDINE SYNTHASE 2	URA + R5P <->PURI5P
YFL001W	4.2.1.70	DEGI	SIMILAR TO RRNA METHYLT RANSFERASE (CAENORHABDITIS ELEGANS) AND HYPOTHETICAL 28K PROTEIN (ALKALINE ENDOGLUCANASE GENE 5' REGION) FROM BACILLUS SP.	URA + R5P <->PURI5P

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
			# SALVAGE PATHWAYS	
YML022W	2.4.2.7	APTI	ADENINE PHOSPHORIBOSYLT RANSFERASE	AD + PRPP -> PPI + AMP
YDR441C	2.4.2.7	APT2	SIMILAR TO ADENINE PHOSPHORIBOSYLT RANSFERASE	AD + PRPP -> PPI + AMP
YNL141W	3.5.4.4	AAHI	ADENINE AMINOHYDROLASE (ADENINE DEAMINASE)	ADN -> INS + NH3
YNL141W	3.5.4.4	AAHI	ADENINE AMINOHYDROLASE (ADENINE DEAMINASE)	DA -> DIN + NH3
YLR209C	2.4.2.1	PNP1	PURINE NUCLEOT IDE PHOSPHORYLASE, XANTHOSINE PHOSPHORYLASE	DIN +PI <-> HYXN + DR1P
YLR209C	2.4.2.1	PNP1	XANTHOSINE PHOSPHORYLASE, PURINE NUCLEOTIDE PHOSPHORYLASE	DA + PI <-> AD + DRIP
YLR209C	2.4.2.1	PNP1	XANTHOSINEPHOSPHORYLASE	$DG + PI \iff GN + DR1P$
YLR209C	2.4.2.1	PNP1	XANTHOSINE PHOSPHORYLASE, PURINE NUCLEOTIDE PHOSPHORYLASE	HYXN + R1P <->INS + PI
YLR209C	2.4.2.1	PNP1	XANTHOSINE PHOSPHORYLASE, PURINE NUCLEOTIDE PHOSPHORYLASE	AD + R1P > PI + ADN
YLR209C	2.4.2.1	PNP1	XANTHOSINE PHOSPHORYLASE, PURINE NUCLEOTIDE PHOSPHORYLASE	GN + R1P > PI + GSN
YLR209C	2.4.2.1	PNP1	XANTHOSINE PHOSPHORYLASE, PURINE NUCLEOTIDE PHOSPHORYLASE	XAN + R1P <-> PI + XT SINE
YJR133W	2.4.2.22	XPTI	XANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE	XAN +PRPP -> XMP + PPI
YDR400W	3.2.2.1	URHI	PURINE NUCLEOSIDASE	GSN -> GN + RIB
YDR400W	3.2.2.1	URHI	PURINE NUCLEOSIDASE	ADN -> AD + RIB
YJR105W	2.7.1.20	YJR105W	ADENOSINE KINASE	ADN + ATP -> AMP + ADP
YDR226W	2.7.4.3	ADK1	CYT OSOLIC ADENYLATE KINASE	ATP + AMP <-> 2 ADP
YDR226W	2.7.4.3	ADK1	CYT OSOLIC ADENYLATE KINASE	GTP + AMP <-> ADP + GDP
YDR226W	2.7.4.3	ADK1	CYT OSOLIC ADENYLATE KINASE	ITP + AMP <-> ADP + IDP
YER170W	2.7.4.3	ADK2	ADENYLATE KINASE (MITOCHONDRIAL GTP:AMP PHOSPHOTRANSFERASE)	ATPm + AMPm <-> 2 ADPm
YER170W	2.7.4.3	ADK2	ADENYLATE KINASE (MITOCHONDRIAL GTP:AMP PHOSPHOTRANSFERASE)	GTPm + AMPm <-> ADPm + GDPm
YER170W	2.7.4.3	ADK2	ADENYLATE KINASE (MITOCHONDRIAL GTP:AMP PHOSPHOTRANSFERASE)	ITPm + AMPm <-> ADPm + IDPm
YGR180C	1.17.4.1	RNR4	RIBONUCLEOTIDE REDUCTASE, SMALL SUBUNIT (ALT), BETA CHAIN	
Y1L066C	1.17.4.1	RNR3	RIBONUCLEOTIDE REDUCTASE (RIBONUCLEOSIDE-DIPHOSPHAT E REDUCTASE) LARGE SUBUNIT, ALPHA CHAIN	ADP + RTHIO -> DADP + OT HIO

Table A.2. Reactions described in FBA (continued)

ORF	E.C. #	GENE	GENE DESC RIPTIO N	REACTION
YJL026W	1.17.4.1	RNR2	SMALL SUBUNIT OF RIBONUCLEOTIDE REDUCTASE, BETA CHAIN	
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	UDP + ATP <-> UTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	CDP + ATP <-> CTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	DGDP + ATP <-> DGTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	DUDP + ATP <-> DUTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	DCDP + ATP <-> DCTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	DT DP + ATP <-> DTTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE-DIPHOSPHATE KINASE	DADP + ATP <-> DATP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE DIPHOSPHATE KINASE	GDP + ATP <-> GTP + ADP
YKL067W	2.7.4.6	YNK1	NUCLEOSIDE DIPHOSPHATE KINASE	IDP + ATP <-> ITP + IDP
U19_	2.7.4.11	U19_	ADENYLATE KINASE, DAMP KINASE	DAMP + ATP <-> DADP + ADP
YNL141W	3.5.4.2	AAHI	ADENINE DEAMINASE	AD -> NH3 + HYXN
U20_	2.7.1.73	U20_	INOSINE KINASE	INS + ATP -> IMP + ADP
U21_	2.7.1.73	U21_	GUANOSINE KINASE	GSN + ATP -> GMP + ADP
YDR399W	2.4.2.8	HPTI	HYPOXANTHINE PHOSPHORIBOSYLT RANSFERASE	HYXN + PRPP -> PPI + IMP
YDR399W	2.4.2.8	HPTI	HYPOXANTHINE PHOSPHORIBOSYLT RANSFERASE	GN + PRPP -> PPI + GMP
U22_	2.4.2.3	U22_	URIDINE PHOSPHORYLASE	URI + PI <-> URA + R1P
YKL024C	2.1.4	URA6	URIDYLATE KINASE	UMP + ATP <-> UDP + ADP
YKL024C	2.1.4	URA6	URIDYLATE KINASE	DUMP + ATP <-> DUDP + ADP
U23_	3.2.2.10	U23_	CMP GLYCOSYLASE	$CMP \rightarrow CYTS + R5P$
YHR144C	3.5.4.13	DCD1	DCTP DEAMINASE	DCTP -> DUTP + NH3
U24_	3.1.3.5	U24_	5'-NUCLEOTIDASE	DUMP -> DU + PI
U25_	3.1.3.5	U25_	5'-NUCLEOTIDASE	$DTMP \rightarrow DT + PI$
U26_	3.1.3.5	U26_	5'-NUCLEOTIDASE	DAMP -> DA + PI
U27_	3.1.3.5	U27_	5'-NUCLEOTIDASE	$DGMP \rightarrow DG + PI$
U28_	3.1.3.5	U28_	5'-NUCLEOTIDASE	DCMP -> DC +PI
U29_	3.1.3.5	U29_	5'-NUCLEOTIDASE	CMP -> CYT D + PI
U30_	3.1.3.5	U30_	5'-NUCLEOTIDASE	AMP -> PI + ADN
U31_	3.1.3.5	U31_	5'-NUCLEOTIDASE	GMP -> PI + GSN
U32_	3.1.3.5	U32_	5'-NUCLEOTIDASE	IMP -> PI + INS
U33_	3.1.3.5	U33_	5'-NUCLEOTIDASE	$XMP \rightarrow PI + XTSINE$
U34_	3.1.3.5	U34_	5'-NUCLEOTIDASE	UMP -> PI + URI
YER070W	1.17.4.1	RNR1	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE	ADP + RTHIO -> DADP + OT HIO
YER070W	1.17.4.1	RNR1	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE	GDP + RTHIO -> DGDP + OT HIO

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION				
YER070W	1.17.4.1	RNR1	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE	CDP + RTHIO -> DCDP + OTHIO				
YER070W	1.17.4.1	RNR1	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE	UDP + RTHIO -> OTHIO + DUDP				
U35_	1.17.4.2	U35_	RIBONUCLEOSIDE-TRIPHOSPHATE REDUCTASE	ATP + RTHIO -> DATP + OTHIO				
U36_	1.17.4.2	U36_	RIBONUCLEOSIDE-T RIPHOSPHATE REDUCTASE	GTP + RTHIO -> DGTP + OTHIO				
U37_	1.17.4.2	U37_	RIBONUCLEOSIDE-TRIPHOSPHATE REDUCTASE	CTP + RTHIO -> DCTP + OTHIO				
U38_	1.17.4.2	U38_	RIBONUCLEOSIDE-T RIPHOSPHATE REDUCTASE	UTP + RTHIO -> OTHIO + DUTP				
U39_	3.6.1	U39_	NUCLEOSIDE TRIPHOSPHAT ASE	GTP -> GSN + 3 PI				
U40_	3.6.1	U40_	NUCLEOSIDE TRIPHOSP HAT ASE	DGTP -> DG + 3 PI				
YML035C	3.2.2.4	AMDI	AMP DEAMINASE	AMP -> AD + R5P				
YBR284W	3.2.2.4	YBR284W	PROTEIN WITH SIMILARITY TO AMP DEAMINASE	AMP -> AD + R5P				
YJL070C	3.2.2.4	YJL070C	PROTEIN WITH SIMILARITY TO AMP DEAMINASE	AMP -> AD + R5P				
	# AMINO ACID METABOLISM							
		# GI	LUTAMATE METABOLISM (AMINOSUGARS ME	TABOLISM)				
YMR250W	4.1.1.15	GAD1	GLUT AMATE DECARBOXYLASE B	GLU -> GABA + CO2				
YGR019W	2.6.1.19	UGAI	AMINOBUTYRATE AMINOT RANSAMINASE 2	GABA + AKG -> SUCCSAL + GLU				
YBR006W	1.2.1.16	YBR006W	SUCCINAT E SEMIALDEHYDE DEHYDROGENASE – NADP	SUCCSAL + NADP -> SUCC + NADPH				
YKL104C	2.6.1.16	GFA1	GLUT AMINE_FRUCTOSE-6-PHOSPHATE AMIDOT RANSFERASE (GLUCOSEAMINE-6- PHOSPHATE SYNTHASE)	F6P + GLN -> GLU + GA6P				
YFL017C	2.3.1.4	GNA1	GLUCOSAMINE-PHOSPHATE N- ACET YLT RANSFERASE	ACCOA + GA6P <-> COA + NAGA6P				
YEL058W	5.4.2.3	PCM1	PHOSPHOACETYLGLUCOSAMINE MUTASE	NAGA1P <> NAGA6P				
YDL103C	2.7.7.23	QRII	N-ACETYLGLUCOSAMINE-1-PHOSPHATE- URIDYLT RANSFERASE	UTP + NAGA1P <-> UDPNAG + PPI				
YBR023C	2.4.1.16	CHS3	CHITIN SYNTHASE 3	UDPNAG -> CHIT + UDP				
YBR038W	2.4.1.16	CHS2	CHITIN SYNTHASE 2	UDPNAG -> CHIT + UDP				
YNL192W	2.4.1.16	CHS1	CHITIN SYNTHASE 2	UDPNAG -> CHIT + UDP				
YHR037W	1.5.1.12	PUT2	DELTA-1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE	GLUGSALm + NADPm -> NADPHm + GLUm				
U41_		U41_		P5Cm + NADm -> NADHm + GLUm				
YDL171C	1.4.1.14	GLT1	GLUT AMATE SYNT HASE (NADH)	AKG + GLN + NADH -> NAD + 2 GLU				

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YDL215C	1.4.1.4	GDH2	GLUT AMATE DEHYDROGENASE	GLU + NAD -> AKG + NH3 + NADH
YAL062W	1.4.1.4	GDH3	NADP-LINKED GLUTAMATE DEHYDROGENASE	AKG + NH3 + NADPH -> GLU + NADP
YOR375C	1.4.1.4	GDHI	NADP-SPECIFIC GLUTAMATE DEHYDROGENASE	AKG + NH3 + NADPH -> GLU + NADP
YPR035W	6.3.1.2	GLN1	GLUT AMINE SYNTHETASE	GLU + NH3 + ATP -> GLN + ADP + PI
YEL058W	5.4.2.3	PCM1	PHOSPHOGLUCOSAMINE MUTASE	GA6P <-> GA1P
U42_	3.5.1.2	U42_	GLUT AMINASE A	GLN -> GLU + NH3
U43_	3.5.1.2	U43_	GLUT AMINASE B	GLN -> GLU + NH3
	•		# GLUCOSAMINE	
U44_	5.3.1.10	U44_	GLUCOSAMINE-6-PHOSPHATE DEAMINASE	GA6P -> F6P + NH3
	•	•	# ARABINOSE	
YBR149W	1.1.1.117	ARA1	D-ARABINOSE 1-DEHYDROGENASE (NAD(P)+).	ARAB + NAD -> ARABLAC + NADH
YBR149W	1.1.1.117	ARAI	D-ARABINOSE 1-DEHYDROGENASE (NAD(P)+).	ARAB + NADP -> ARABLAC + NADPH
			# XYLOSE	
YGR194C	2.7.1.17	XKS1	XYLULOKINASE	XUL + ATP -> X5P + ADP
	•	•	# MANNITOL	
U45_	1.1.1.17	U45_	MANNITOL-1-PHOSPHATE 5- DEHYDROGENASE	MNT6P + NAD <-> F6P + NADH
			# ALANINE AND ASPART ATE METABOLIS	SM
YKL106W	2.6.1.1	AATI	ASPARATE TRANSAMINASE	OAm + GLUm <-> ASPm + AKGm
YLR027C	2.6.1.1	AAT2	ASPARATE TRANSAMINASE	OA + GLU <-> ASP + AKG
YAR035W	2.3.1.7	YATI	CARNITINE O-ACETYLTRANSFERASE	COAm + ACARm -> ACCOAm + CARm
YML042W	2.3.1.7	CAT2	CARNITINE O-ACETYLTRANSFERASE	ACCOA + CAR -> COA + ACAR
YDR111C	2.6.1.2	YDR111C	PUTATIVE ALANINE TRANSAMINASE	PYR+GLU <-> AKG + ALA
YLR089C	2.6.1.2	YLR089C	ALANINE AMINOT RANSFERASE, MITOCHONDRIAL PRECURSOR (GLUT AMIC	PYRm + GLUm <-> AKGm + ALAm
YPR145W	6.3.5.4	ASNI	ASPARAGINE SYNTHET ASE	ASP + ATP + GLN -> GLU + ASN + AMP + PPI
YGR124W	6.3.5.4	ASN2	ASPARAGINE SYNTHET ASE	ASP + ATP + GLN -> GLU + ASN + AMP + PPI
YLL062C	2.1.1.10	MHTI	PUTATIVE COBALAMIN-DEPENDENT HOMOCYSTEINE S-METHYLTRANSFERASE, HOMOCYSTEINE S-METHYLTRANSFERASE	SAM + HCYS -> SAH + MET
YPL273W	2.1.1.10	SAM4	PUTATIVE COBALAMIN-DEPENDENT HOMOCYSTEINE S-MET HYLTRANSFERASE	SAM + HCYS -> SAH + MET

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
			# ASPARAGINE	
YCR024C	6.1.1.22	YCR024C	ASN-TRNA SYNTHETASE, MITOCHONDRIAL	ATPm + ASPm + TRNAm -> AMPm + PPIm + ASPTRNAm
YHR019C	6.1.1.23	DED81	ASN-TRNA SYNTHETASE	ATP + ASP + TRNA -> AMP + PPI + ASPT RNA
YLR155C	3.5.1.1	ASP3-1	ASPARAGINASE, EXTRACELLULAR	ASN -> ASP + NH3
YLR157C	3.5.1.1	ASP3-2	ASPARAGINASE, EXTRACELLULAR	ASN -> ASP + NH3
YLR158C	3.5.1.1	ASP3-3	ASPARAGINASE, EXTRACELLULAR	ASN -> ASP + NH3
YLR160C	3.5.1.1	ASP3-4	ASPARAGINASE, EXTRACELLULAR	ASN -> ASP + NH3
YDR321W	3.5.1.1	ASP1	ASPARAGINASE	ASN -> ASP + NH3
			# GLYCINE, SERINE AND THREONINE METAE	BOLISM
YER081 W	1.1.1.95	SER3	PHOSPHOGLYCERATE DEHYDROGENASE	$3PG + NAD \rightarrow NADH + PHP$
YIL074C	1.1.1.95	SER33	PHOSPHOGLYCERATE DEHYDROGENASE	$3PG + NAD \rightarrow NADH + PHP$
YOR184W	2.6.1.52	SER1	PHOSPHOSERINE TRANSAMINASE	PHP + GLU -> AKG + 3PSER
YGR208W	3.1.3.3	SER2	PHOSPHOSERINE PHOSPHAT ASE	3PSER -> PI + SER
YBR263W	2.1.2.1	SHM1	GLYCINE HYDROXYMETHYLT RANSFERASE	THFm + SERm <-> GLYm + METTHFm
YLR058C	2.1.2.1	SHM2	GLYCINE HYDROXYMETHYLT RANSFERASE	THF + SER <-> GLY + METTHF
YFL030W	2.6.1.44	YFL030W	PUTATIVE ALANINE GLYOXYLATE AMINOTRANSFERASE (SERINE PYRUVATE AMINOTRANSFERASE)	ALA + GLX <-> PYR + GLY
YDR019C	2.1.2.10	GCV1	GLYCINE CLEAVAGE T PROTEIN (T SUBUNIT OF GLYCINE DECARBOXYLASE COMPLEX	GLYm + THFm + NADm -> METTHFm + NADHm + CO2 + NH3
YDR019C	2.1.2.10	GCV1	GLYCINE CLEAVAGE T PROTEIN (T SUBUNIT OF GLYCINE DECARBOXYLASE COMPLEX	GLY + THF + NAD -> METTHF + NADH + CO2 + NH3
YER052C	2.7.2.4	НОМЗ	ASPARTATE KINASE, ASPARTATE KINASE I, II, III	$ASP + ATP \rightarrow ADP + BASP$
YDR158W	1.2.1.11	HOM2	ASPARTIC BETA SEMI-ALDEHYDE DEHYDROGENASE, ASPARTATE SEMIALDEHYDE DEHYDROGENASE	BASP + NADPH -> NADP + PI + ASPSA
YJR139C	1.1.1.3	НОМ6	HOMOSERINE DEHYDROGENASE I	ASPSA + NADH -> NAD + HSER
YJR139C	1.1.1.3	HOM6	HOMOSERINE DEHYDROGENASE I	ASPSA + NADPH -> NADP + HSER
YHR025W	2.7.1.39	THR1	HOMOSERINE KINASE	HSER + ATP -> ADP + PHSER
YCR053W	4.2.99.2	THR4	THREONINE SYNTHASE	PHSER -> PI + THR
YGR155W	4.2.1.22	CYS4	CYST ATHIONINE BETA-SYNT HASE	SER + HCYS -> LLCT
YEL046C	4.1.2.5	GLY1	THREONINE ALDOLASE	GLY + ACAL ->THR

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YMR 189W	1.4.4.2	GCV2	GLYCINE DECARBOXYLASE COMPLEX (P-SUBUNIT), GLYCINE SYNTHASE (P- SUBUNIT), GLYCINE CLEAVAGE SYSTEM (P-SUBUNIT)	GLYm + LIPOm <-> SAPm + CO2m
YCL064C	4.2.1.16	CHA1	THREONINE DEAMINASE	THR -> NH3 + OBUT
YER086W	4.2.1.16	ILVI	L-SERINE DEHYDRATASE	THRm -> NH3m + OBUTm
YCL064C	4.2.1.13	CHA1	CAT ABOLIC SERINE (THREONINE) DEHYDRATASE	SER -> PYR + NH3
YIL167W	4.2.1.13	YIL167W	CAT ABOLIC SERINE (THREONINE) DEHYDRATASE	SER -> PYR + NH3
U46_	1.1.1.103	U46_	THREONINE DEHYDROGENASE	THR + NAD -> GLY + AC + NADH
			# METHIONINE METABOLISM	
YFR055W	4.4.1.8	YFR055W	CYST ATHIONINE-B-LYASE	LLCT -> HCYS + PYR + NH3
YER043C	3.3.1.1	SAH1	PUTATIVE S-ADENOSYL-L- HOMOCYSTEINE HYDROLASE	SAH -> HCYS + ADN
YER091 C	2.1.1.14	MET6	VITAMIN B12-(COBALAMIN)- INDEPENDENT ISOZYME OF METHIONINE SYNTHASE (ALSO CALLED N5-METHYLTET RAHYDROFOLATE HOMOCYSTEINE METHYLT RANSFERASE OR 5-MET HYLTET RAHYDROPTEROYL T RIGLUT AMATE HOMOCYST EINE METHYLT RANSFERASE)	HCYS + MT HPT CLU -> THPT GLU + MET
U47_	2.1.1.13	U47_	METHIONINE SYNTHASE	HCYS + MTHF -> THF + MET
YAL012W	4.4.1.1	CYS3	CYST ATHIONINE GAMMA-LYASE	LLCT -> CYS + NH3 + OBUT
YNL277W	2.3.1.31	MET2	HOMOSERINE O-TRANS-ACETYLASE	ACCOA + HSER <-> COA + OAHSER
YLR303W	4.2.99.10	MET17	O-ACETYLHOMOSERINE (THIOL)-LYASE	OAHSER + METH -> MET + AC
YLR303 W	4.2.99.8	MET17	O-ACETYLHOMOSERINE (THIOL)-LYASE	OAHSER + H2S -> AC + HCYS
YLR 303 W	4.2.99.8, 4.2.99.10	MET17	O-ACETYLHOMOSERINE SULFHYDRYLASE (OAH SHLASE); CONVERTS O-ACETYLHOMOSERINE INTO HOMOCYSTEINE	OAHSER + H2S -> AC + HCYS
YML082W	4.2.99.9	YML082W	PUTATIVE CYSTATHIONINE GAMMA- SYNTHASE	OSLHSER <-> SUCC + OBUT + NH3
YDR502C	2.5.1.6	SAM2	S-ADENOSYLMETHIONINE SYNTHETASE	$MET + ATP \rightarrow PPI + PI + SAM$
YLR180W	2.5.1.6	SAMI	S-ADENOSYLMETHIONINE SYNTHETASE	$MET + ATP \rightarrow PPI + PI + SAM$
YLR172C	2.1.1.98	DPH5	DIPHTHINE SYNTHASE	SAM + CALH -> SAH + DPTH
			# CYSTEINE BIOSYNTHESIS	
YJR010W	2.7.7.4	MET3	ATP SULFURYLASE	SLF + ATP -> PPI + APS
YKL001C	2.7.1.25	MET14	ADENYLYLSULFATE KINASE	$APS + ATP \rightarrow ADP + PAPS$
YFR030W	1.8.1.2	MET10	SULFITE REDUCT ASE	H2SO3 + 3 NADPH <-> H2S + 3 NADP

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
U48_	2.3.1.30	U48_	SERINE T RANSACET YLASE	SER + ACCOA -> COA + ASER
YGR012W	4.2.99.8	YGR012W	PUTATIVE CYSTEINE SYNTHASE (O- ACET YLSERINE SULFHYDRYLASE) (O-	ASER + H2S -> AC + CYS
YOL064C	3.1.3.7	MET22	3' - 5' BISPHOSPHATE NUCLEOTIDASE	PAP -> AMP + PI
YPR167C	1.8.99.4	MET16	PAPS REDUCT ASE	PAPS + RTHIO -> OTHIO + H2SO3 + PAP
YCL050C	2.7.7.5	APAI	DIADENOSINE 5',5'''-P1,P4- TET RAPHOSPHATE PHOSPHORYLASE I	ADP + SLF <> PI + APS
	# BRA	NCHED CH	AIN AMINO ACID MET ABOLISM (VALINE, LEU	JCINE AND ISOLEUCINE)
YHR208W	2.6.1.42	BATI	BRANCHED CHAIN AMINO ACID AMINOT RANSFERASE	OICAPm + GLUm <-> AKGm + LEUm
YHR208W	2.6.1.42	BATI	BRANCHED CHAIN AMINO ACID AMINOT RANSFERASE	OMVALm + GLUm <>> AKGm + ILEm
<i>YJR14</i> 8W	2.6.1.42	BAT2	BRANCHED-CHAIN AMINO ACID TRANSAMINASE, HIGHLY SIMILAR TO MAMMALIAN ECA39, WHICH IS REGULATED BY THE ONCOGENE MYC	OMVAL + GLU <-> AKG + ILE
<i>YJR148W</i>	2.6.1.42	BAT2	BRANCHED CHAIN AMINO ACID AMINOT RANSFERASE	OIVAL + GLU <-> AKG + VAL
<i>YJR14</i> 8W	2.6.1.42	BAT2	BRANCHED-CHAIN AMINO ACID TRANSAMINASE, HIGHLY SIMILAR TO MAMMALIAN ECA39, WHICH IS REGULATED BY THE ONCOGENE MYC	OICAP + GLU <-> AKG + LEU
YMR 108 W	4.1.3.18	ILV2	ACET OLACTATE SYNTHASE, LARGE SUBUNIT	OBUTm + PYRm -> ABUTm + CO2m
YCL009C	4.1.3.18	ILV6	ACET OLACTATE SYNTHASE, SMALL SUBUNIT	
YMR 108 W	4.1.3.18	ILV2	ACET OLACTATE SYNTHASE, LARGE SUBUNIT	2 PYRm -> CO2m + ACLACm
YCL009C	4.1.3.18	ILV6	ACET OLACTATE SYNTHASE, SMALL SUBUNIT	
YLR355C	1.1.1.86	ILV5	KETO-ACID REDUCTOISOMERASE	ACLACm + NADPHm -> NADPm + DHVALm
YLR355C	1.1.1.86	ILV5	KETO-ACID REDUCTOISOMERASE	ABUTm + NADPHm -> NADPm + DHMVAm
YJR016C	4.2.1.9	ILV3	DIHYDROXY ACID DEHYDRATASE	DHVALm -> OIVALm
YJR016C	4.2.1.9	ILV3	DIHYDROXY ACID DEHYDRATASE	DHMVAm -> OMVALm
YNL104C	4.1.3.12	LEU4	ALPHA-ISOPROP YLMALATE SYNT HASE (2- ISOPROP YLMALATE SYNT HASE)	ACCOAm + OIVALm -> COAm + IPPMALm
YGL009C	4.2.1.33	LEUI	ISOPROP YLMALATE ISOMERASE	CBHCAP <-> IPPMAL
YGL009C	4.2.1.33	LEUI	ISOPROPYLMALATE ISOMERASE	PPMAL <-> IPPMAL

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YCL018W	1.1.1.85	LEU2	BET A-IPM (ISOPROPYLMALATE) DEHYDROGENASE	IPPMAL + NAD -> NADH + OICAP + CO2
			# LYSINE BIOSYNTHESIS/DEGRADATIO	DN
U49_	4.2.1.79	U49_	2-METHYLCITRATE DEHYDRATASE	HCITm <-> HACNm
YDR234W	4.2.1.36	LYS4	HOMOACONIT ATE HYDRAT ASE	HICITm <-> HACNm
YIL094C	1.1.1.155	LYS12	HOMOISOCIT RATE DEHYDROGENASE (ST RATHERN:1.1.1.87)	HICITm + NADm <-> OXAm + CO2m + NADHm
U50_		U50_	NON-ENZYMATIC	OXAm <-> CO2m + AKAm
U51_	2.6.1.39	U51_	2-AMINOADIPATETRANSAMINASE	AKA + GLU <-> AMA + AKG
YBRI 15C	1.2.1.31	LYS2	L-AMINOADIPATE-SEMIALDEHYDE DEHYDROGENASE, LARGE SUBUNIT	AMA + NADPH + ATP -> AMASA + NADP + AMP + PPI
YGL154C	1.2.1.31	LYS5	L-AMINOADIPATE-SEMIALDEHYDE DEHYDROGENASE, SMALL SUBUNIT	
YBR115C	1.2.1.31	LYS2	L-AMINOADIPATE-SEMIALDEHYDE DEHYDROGENASE, LARGE SUBUNIT	AMA + NADH + ATP -> AMASA + NAD + AMP + PPI
YGL154C	1.2.1.31	LYS5	L-AMINOADIPATE-SEMIALDEHYDE DEHYDROGENASE, SMALL SUBUNIT	
YNR050C	1.5.1.10	LYS9	SACCHAROPINE DEHYDROGENASE (NADP+, L-GLUTAMATE FORMING)	GLU + AMASA + NADPH <-> SACP + NADP
YIR034C	1.5.1.7	LYS1	SACCHAROPINE DEHYDROGENASE (NAD+, L-LYSINE FORMING)	SACP + NAD <-> LYS + AKG + NADH
YDR037W	6.1.1.6	KRS1	LYSYL-TRNA SYNTHETASE, CYTOSOLIC	ATP + LYS + LTRNA -> AMP + PPI + LLTRNA
YNL073W	6.1.1.6	MSK1	LYSYL-TRNA SYNTHETASE, MITOCHONDRIAL	ATPm + LYSm + LTRNAm -> AMPm + PPIm + LLTRNAm
YDR368W	1.1.1	YPR1	SIMILAR TO ALDO-KETO REDUCTASE	
			# ARGININE METABOLISM	
YMR062C	2.3.1.1	ECM40	AMINO-ACID N-ACETYLTRANSFERASE	GLUm + ACCOAm -> COAm + NAGLUm
YER069W	2.7.2.8	ARG5	ACET YLGLUTAMATE KINASE	NAGLUm + ATPm -> ADPm + NAGLUPm
YER069W	1.2.1.38	ARG5	N-ACETYL-GAMMA-GLUT AMYL- PHOSPHATE REDUCT ASE AND ACET YLGLUTAMATE KINASE	NAGLUPm + NADPHm -> NADPm + PIm + NAGLUSm
YOL140W	2.6.1.11	ARG8	ACET YLORNITHINE AMINOT RANSFERASE	NAGLUSm + GLUm -> AKGm + NAORNm
YMR062C	2.3.1.35	ECM40	GLUT AMATE N-ACETYLT RANSFERASE	NAORNm + GLUm -> ORNm + NAGLUm
YJL130C	6.3.5.5	URA2	CARBAMOYL-PHOPHATE SYNTHETASE, ASPARTATETRANSCARBAMYLASE, AND GLUTAMINE AMIDOTRANSFERASE	GLN + 2 ATP + CO2 -> GLU + CAP + 2 ADP + PI

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YJR109C	6.3.5.5	CPA2	CARBAMYL PHOSPHATE SYNTHETASE, LARGE CHAIN	$GLN + 2 ATP + CO2 \rightarrow GLU + CAP + 2$ $ADP + PI$
YOR303W	6.3.5.5	CPAI	CARBAMOYL PHOSPHATE SYNTHETASE, SAMLL CHAIN, ARGININE SPECIFIC	
YJL088W	2.1.3.3	ARG3	ORNITHINE CARBAMOYLT RANSFERASE	ORN + CAP -> CIT R +PI
YLR438W	2.6.1.13	CAR2	ORNITHINE TRANSAMINASE	ORN + AKG -> GLUGSAL + GLU
YOL058W	6.3.4.5	ARGI	ARGINOSUCCINATE SYNTHETASE	CIT R + ASP + ATP <-> AMP + PPI + ARGSUCC
YHR018C	4.3.2.1	ARG4	ARGININOSUCCINATE LYASE	ARGSUCC <-> FUM + ARG
YKL184W	4.1.1.17	SPE1	ORNITHINE DECARBOXYLASE	ORN ->PTRSC + CO2
YOL052C	4.1.1.50	SPE2	S-ADENOSYLMETHIONINE DECARBOXYLASE	SAM <-> DSAM + CO2
YPR069C	2.5.1.16	SPE3	PUTRESCINE AMINOPROPYLT RANSFERASE (SPERMIDINE SYNTHASE)	PTRSC + SAM -> SPRMD + 5MT A
YLR146C	2.5.1.22	SPE4	SPERMINE SYNT HASE	DSAM + SPRMD -> 5MTA + SPRM
YDR242W	3.5.1.4	AMD2	AMIDASE	GBAD -> GBAT + NH3
YMR293C	3.5.1.4	YMR293C	PROBABLE AMIDASE	GBAD -> GBAT + NH3
YPL111W	3.5.3.1	CARI	ARGINASE	ARG -> ORN + UREA
YDR341C	6.1.1.19	YDR341C	ARGINYL-TRNA SYNTHET ASE	ATP + ARG + ATRNA -> AMP + PPI + ALTRNA
YHR091C	6.1.1.19	MSR1	ARGINYL-TRNA SYNTHET ASE	ATP + ARG + ATRNA -> AMP + PPI + ALTRNA
YHR068W	1.5.99.6	DYS1	DEOXYHYPUSINE SYNTHASE	SPRMD + Qm -> DAPRP + QH2m
			# HISTIDINE MET ABOLISM	
YER055C	2.4.2.17	HIS1	ATP PHOSPHORIBOSYLT RANSFERASE	PRPP + ATP ->PPI + PRBATP
YCL030C	3.6.1.31	HIS4	PHOSPHORIBOSYL-AMP CYCLOHYDROLASE / PHOSPHORIBOSYL- ATP PYROPHOSPHOHYDROLASE / HISTIDINOL DEHYDROGENASE	PRBATP ->PPI + PRBAMP
YCL030C	3.5.4.19	HIS4	HISTIDINOL DEHYDROGENASE	PRBAMP ->PRFP
YIL020C	5.3.1.16	HIS6	PHOSPHORIBOSYL-5-AMINO-1- PHOSPHORIBOSYL-4- IMIDAZOLECARBOXIAMIDE ISOMERASE	PRFP -> PRLP
YOR202W	4.2.1.19	HIS3	IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE	DIMCP ->IMACP
YIL116W	2.6.1.9	HIS5	HISTIDINOL-PHOSPHATE AMINOT RANSFERASE	IMACP + GLU -> AKG + HISOLP
YFR025C	3.1.3.15	HIS2	HISTIDINOLPHOSPHATASE	HISOLP ->PI + HISOL

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YCL030C	1.1.1.23	HIS4	PHOSPHORIBOSYL-AMP CYCLOHYDROLASE / PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLASE / HISTIDINOL DEHYDROGENASE	HISOL + 2 NAD -> HIS + 2 NADH
YBR248C	2.4.2	HIS7	GLUT AMINE AMIDOT RANSFERASE:CYCLASE	PRLP + GLN -> GLU + AICAR + DIMGP
YPR033C	6.1.1.21	HTS1	HISTIDYL-TRNA SYNTHETASE	ATP + HIS + HTRNA -> AMP + PPI + HHT RNA
YBR034C	2.1.1	HMT1	HNRNP ARGININE N-METHYLTRANSFERASE	SAM + HIS -> SAH + MHIS
YCL054W	2.1.1	SPB1	PUTATIVE RNA METHYLT RANSFERASE	
YML110C	2.1.1	COQ5	UBIQUINONE BIOSYNTHESIS METHLYTRANSFERASE COQ5	
YOR201C	2.1.1	PET56	RRNA (GUANOSINE-2'-O-)- METHYLT RANSFERASE	
YPL266W	2.1.1	DIMI	DIMETHYLADENOSINE TRANSFERASE	
#	* PHENYL	ALANIN.	E, TYROSINE AND TRYPT OPHAN BIOSYNTHES	IS (AROMATIC AMINO ACIDS)
YBR249C	4.1.2.15	ARO4	3-DEOXY-D-ARABINO-HEPT ULOSONATE 7- PHOSPHATE (DAHP) SYNT HASE ISOENZYME	E4P + PEP ->PI + 3DDAH7P
YDR035W	4.1.2.15	ARO3	DAHP SYNTHASE\; A.K.A. PHOSPHO-2- DEHYDRO-3-DEOX YHEPTONATE ALDOLASE, PHENYLALANINE-INHIBITED\; PHOSPHO-2-KET O-3-DEOXYHEPTONATE ALDOLASE\; 2-DEHYDRO-3- DEOXYPHOSPHOHEPTONATE ALDOLASE\; 3- DEOXYP-D-ARABINE-HEPT ULOSONATE-7- PHOSPHATE SYNTHASE	E4P + PEP ->PI + 3DDAH7P
YDR127W	4.6.1.3	AROI	PENTAFUNCTIONAL AROM POL YPEPTIDE (CONTAINS: 3-DEHYDROQUINATE SYNT HASE, 3-DEHYDROQUINATE DEHYDRATASE (3-DEHYDROQUINASE), SHIKIMATE 5-DEHYDROGENASE, SHIKIMATE KINASE, AND EPSP SYNTHASE)	3DDAH7P -> DQT + PI
YDR127W	4.2.1.10	AROI	3-DEHYDROQUINATE DEHYDRATASE	DQT -> DHSK
YDR127W	1.1.1.25	AROI	SHIKIMATE DEHYDROGENASE	DHSK + NADPH -> SME + NADP
YDR127W	2.7.1.71	AROI	SHIKIMATE KINASE I, II	SME + ATP -> ADP + SME5P
YDR127W	2.5.1.19	AROI	3-PHOSPHOSHIKIMATE-1- CARBOXYVINYLTRANSFERASE	SME5P + PEP -> 3PSME + PI
YGL148W	4.6.1.4	ARO2	CHORISMATE SYNTHASE	3PSME -> PI + CHOR

 Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YPR060C	5.4.99.5	ARO7	CHORISMATE MUTASE	CHOR -> PHEN
YNL316C	4.2.1.51	PHA2	PREPHENATE DEHYDRATASE	PHEN -> CO2 + PHPYR
YHR137W	2.6.1	ARO9	PUTATIVE AROMATIC AMINO ACID AMINOTRANSFERASE II	PHPYR + GLU <-> AKG + PHE
YBR166C	1.3.1.13	TYR1	PREPHENATE DEHYDROGENASE (NADP+)	PHEN + NADP -> 4HPP + CO2 + NADPH
YGL202W	2.6.1	ARO8	AROMATIC AMINO ACID AMINOT RANSFERASE I	4HPP + GLU -> AKG + TYR
YHR137W	2.6.1	ARO9	AROMATIC AMINO ACID AMINOT RANSFERASE II	4HPP + GLU -> AKG + TYR
U52_	1.3.1.12	U52_	PREPHANATE DEHYDROGENASE	PHEN + NAD -> 4HPP + CO2 + NADH
YER090W	4.1.3.27	TRP2	ANT HRANILATE SYNTHASE	CHOR + GLN -> GLU + PYR + AN
YKL211C	4.1.3.27	TRP3	ANT HRANILATE SYNTHASE	CHOR + GLN -> GLU + PYR + AN
YDR354W	2.4.2.18	TRP4	ANT HRANILATE PHOSPHORIBOSYL T RANSFERASE	AN + PRPP -> PPI + NPRAN
YDR007W	5.3.1.24	TRP1	N-(5'-PHOSPHORIBOSYL)-ANTHRANILATE ISOMERASE	NPRAN -> CPAD5P
YKL211C	4.1.1.48	TRP3	INDOLEGLYCEROL PHOSPHATE SYNT HASE	CPAD5P -> CO2 + ICP
YGL026C	4.2.1.20	TRP5	T RYPT OPHAN SYNT HET ASE	IGP + SER -> T3P1 + TRP
YDR256C	1.11.1.6	CTA1	CAT ALASE A	2 H2O2 -> O2
YGR088W	1.11.1.6	CTT1	CYT OPLASMIC CATALASE T	2 H2O2 -> O2
YKL106W	2.6.1.1	AATI	ASPARATE AMINOT RANSFERASE	4HPP + GLU <-> AKG + TYR
YLR027C	2.6.1.1	AAT2	ASPARATE AMINOT RANSFERASE	4HPP + GLU <-> AKG + TYR
YMR170C	1.2.1.5	ALD2	CYT OSOLIC ALDEYHDE DEHYDROGENASE	ACAL + NAD -> NADH + AC
YMR169C	1.2.1.5	ALD3	STRONG SIMILARITY TO ALDEHYDE DEHYDROGENASE	ACAL + NAD -> NADH + AC
YOR374W	1.2.1.3	ALD4	MITOCHONDRIAL ALDEHYDE DEHYDROGENASE	ACALm + NADm -> NADHm + ACm
YOR374W	1.2.1.3	ALD4	MITOCHONDRIAL ALDEHYDE DEHYDROGENASE	ACALm + NADPm -> NADPHm + ACm
YER073W	1.2.1.3	ALD5	MITOCHONDRIAL ALDEHYDE DEHYDROGENASE	ACALm + NADPm -> NADPHm + ACm
YPL061W	1.2.1.3	ALD6	CYT OSOLIC ALDEHYDE DEHYDROGENASE	ACAL + NADP -> NADPH + AC
YJR078W	1.13.11.11	YJR078W	PROTEIN WITH SIMILARITY TO INDOLEAMINE 2,3-DIOXYGENASES, WHICH CATALYZE CONVERSION OF TRYPT OPHAN AND OTHER INDOLE DERIVATIVES INT O KYNURENINES, TRYPT OPHAN 2,3-DIOXYGENASE	T RP + O2 -> FKYN

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
U53_	3.5.1.9	U53_	KYNURENINE FORMAMIDASE	$FKYN \rightarrow FOR + KYN$
YLR231C	3.7.1.3	YLR231C	PROBABLE KYNURENINASE (L-KYNURENINE HYDROLASE)	KYN -> ALA + AN
YBL098W	1.14.13.9	YBL098W	KYNURENINE 3-HYDROXYLASE, NADPH- DEPENDENT FLAVIN MONOOXYGENASE THAT CAT ALYZES THE HYDROXYLATION OF KYNURENINE TO 3-HYDROXYKYNURENINE IN TRYPT OPHAN DEGRADATION AND NICOT INIC ACID SYNTHESIS, KYNURENINE 3-MONOOXYGENASE	KYN + NADPH + O2 -> HKYN + NADP
YLR231C	3.7.1.3	YLR231C	PROBABLE KYNURENINASE (L-KYNURENINE HYDROLASE)	HKYN -> HAN + ALA
YJR025C	1.13.11.6	BNA1	3-HYDROXYANTHRANILATE 3,4-DIOXYGENASE (3- HAO) (3- HYDROXYANTHRANILIC ACID DIOXYGENASE) (3- HYDROXYANTHRANILATEHYDROXYANTHRANILIC ACID DIOXYGENASE) (3-HYDROXYANTHRANILATE OXYGENASE)	HAN + O2 -> CMUSA
U54_	4.1.1.45	U54_	PICOLINIC ACID DECARBOXYLASE	CMUSA -> CO2 + AM6SA
U55_	1.2.1.32	U55_		AM6SA + NAD -> AMUCO + NADH
U56_	1.5.1	U56_		AMUCO + NADPH -> AKA + NADP + NH3
U57_	1.3.11.27	U57_	4-HYDROXYPHENYLPYRUVATE DIOXYGENASE	4HPP + O2 -> HOMOGEN + CO2
U58_	1.13.11.5	U58_	HOMOGENTISATE 1,2-DIOXYGENASE	HOMOGEN + O2 -> MACAC
U59_	5.2.1.2	U59_	MALEYL-ACET OACETATE ISOMERASE	MACAC -> FUACAC
U60_	3.7.1.2	U60_	FUMARYLACETOACETASE	FUACAC -> FUM + ACT AC
YDR268W	6.1.1.2	MSW1	T RYPT OPHANYL-T RNA SYNT HETASE, MITOCHONDRIAL	ATPm + TRPm + TRNAm -> AMPm + PPIm + TRPTRNAm
YDR242W	3.5.1.4	AMD2	PUTATIVE AMIDASE	PAD ->PAC + NH3
YDR242W	3.5.1.4	AMD2	PUTATIVE AMIDASE	IAD -> IAC + NH3
U61_	2.6.1.29	U61_	DIAMINE TRANSAMINASE	SPRMD + ACCOA -> ASPERMD + COA
U62_	1.5.3.11	U62_	POL YAMINE OXIDASE	ASPERMD + O2 -> APRUT + APROA + H2O2
U63_	1.5.3.11	U63_	POL YAMINE OXIDASE	APRUT + O2 -> GABAL + APROA + H2O2
U64_	2.6.1.29	U64_	DIAMINE T RANSAMINASE	SPRM + ACCOA -> ASPRM + COA
U65_	1.5.3.11	U65_	POLYAMINE OXIDASE	ASPRM + O2 -> ASPERMD + APROA + H2O2

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION		
			# PROLINE BIOSYNTHESIS			
YDR300C	2.7.2.11	PRO1	GAMMA-GLUTAMYL KINASE, GLUTAMATE KINASE	GLU + ATP -> ADP + GLUP		
YOR323C	1.2.1.41	PRO2	GAMMA-GLUTAMYLPHOSPHATE REDUCTASE	GLUP + NADH -> NAD +PI + GLUGSAL		
YOR323C	1.2.1.41	PRO2	GAMMA-GLUTAMYLPHOSPHATE REDUCTASE	GLUP + NADPH -> NADP + PI + GLUGSAL		
U66_		U66_	SPONT ANEOUS CONVERSION (STRATHERN)	GLUGSAL <-> P5C		
U67_		U67_	SPONT ANEOUS CONVERSION (ST RATHERN)	GLUGSALm <-> P5Cm		
YER023W	1.5.1.2	PRO3	PYRROLINE-5-CARBOXYLATE REDUCT ASE	P5C + NADPH -> PRO + NADP		
YER023W	1.5.1.2	PRO3	PYRROLINE-5-CARBOXYLATE REDUCT ASE	PHC + NADPH -> HPRO + NADP		
YER023W	1.5.1.2	PRO3	PYRROLINE-5-CARBOXYLATE REDUCT ASE	PHC + NADH -> HPRO + NAD		
YLR142W	1.5.3	PUTI	PROLINE DEHYDROGENASE	PROm + NADm -> P5Cm + NADHm		
			# METABOLISM OF OTHER AMINO AC	ID		
# BETA-ALANINE METABOLISM						
U68_	1.2.1.3	U68_	ALDEHYDE DEHYDROGENASE, MITOCHONDRIAL 1	GABALm + NADm -> GABAm + NADHm		
YER073W	1.2.1.3	ALD5	MITOCHONDRIAL ALDEHYDE DEHYDROGENASE	LACALm + NADm <-> LLACm + NADHm		
			# CYANOAMINO ACID METABOLISM	1		
YJL126W	3.5.5.1	NIT2	NITRILASE	APROP -> ALA + NH3		
YJL126W	3.5.5.1	NIT2	NITRILASE	ACYBUT -> GLU + NH3		
			# PROTEINS, PEPTIDES AND AMINO ACIDS ME	TABOLISM		
YLR195C	2.3.1.97	NMT1	GLYCYLPEPTIDE N- TET RADECANOYLT RANSFERASE	TCOA + GLP -> COA + TGLP		
YDL040C	2.3.1.88	NAT1	PEPTIDE ALPHA-N-ACETYLTRANSFERASE	ACCOA + PEPD -> COA + APEP		
YGR147C	2.3.1.88	NAT2	PEPTIDE ALPHA-N-ACETYLTRANSFERASE	ACCOA + PEPD -> COA + APEP		
			# GLUTATHIONE BIOSYNTHESIS			
<i>YJL101C</i>	6.3.2.2	GSHI	GAMMA-GLUTAMYLCYSTEINE SYNTHETASE	$CYS + GLU + ATP \rightarrow GC + PI + ADP$		
YOL049W	6.3.2.3	GSH2	GLUT ATHIONE SYNTHETASE	$GLY + GC + ATP \rightarrow RGT + PI + ADP$		
YBR244W	1.11.1.9	GPX2	GLUT ATHIONE PEROXIDASE	2 RGT + H2O2 <-> OGT		
YIR037W	1.11.1.9	HYR1	GLUT ATHIONE PEROXIDASE	2 RGT + H2O2 <-> OGT		
YKL026C	1.11.1.9	GPX1	GLUT ATHIONE PEROXIDASE	2 RGT + H2O2 <-> OGT		
YPL091W	1.6.4.2	GLR1	GLUT ATHIONE OXIDOREDUCTASE	NADPH + OGT -> NADP + RGT		

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION				
YLR299W	2.3.2.2	<i>ECM38</i>	GAMMA-GLUTAMYLTRANSPEPTIDASE	RGT + ALA -> CGLY + ALAGLY				
	# METABOLISM OF COMPLEX CARBOHYDRATES							
			# STARCH AND SUCROSE MET ABOLIS	М				
YGR032W	2.4.1.34	GSC2	1,3-BETA-GLUCAN SYNTHASE	UDPG ->13GLUCAN + UDP				
YLR342W	2.4.1.34	FKS1	1,3-BETA-GLUCAN SYNTHASE	UDPG ->13GLUCAN + UDP				
YMR306W	2.4.1.34	FKS3	PROTEIN WITH SIMILARITY TO FKSIP AND GSC2P	UDPG ->13GLUCAN + UDP				
YDR261C	3.2.1.58	EXG2	EXO-1,3-B-GLUCANASE	13GLUCAN -> GLC				
YGR282C	3.2.1.58	BGL2	CELL WALL ENDO-BETA-1,3-GLUCANASE	13GLUCAN -> GLC				
YLR300W	3.2.1.58	EXGI	EXO-1,3-BETA-GLUCANASE	13GLUCAN -> GLC				
YOR190W	3.2.1.58	SPR1	SPORULATION-SPECIFIC EXO-1,3-BETA- GLUCANASE	13GLUCAN -> GLC				
			# GLYCOPROTEIN BIOSYNTHESIS / DEGRAD	DATION				
YMR013C	2.7.1.108	SEC59	DOLICHOL KINASE	CTP + DOL -> CDP + DOLP				
YPR183W	2.4.1.83	DPMI	DOLICHYL-PHOSPHATE BETA-D- MANNOSYLTRANSFERASE	GDPMAN + DOLP -> GDP + DOLMANP				
YAL023C	2.4.1.109	PMT2	DOLICHYL-PHOSPHATE-MANNOSE PROTEIN MANNOSYLT RANSFERASE	DOLMANP -> DOLP + MANNAN				
YDL093W	2.4.1.109	PMT5	DOLICHYL-PHOSPHATE-MANNOSE PROTEIN MANNOSYLT RANSFERASE	DOLMANP -> DOLP + MANNAN				
YDL095W	2.4.1.109	PMT1	DOLICHYL-PHOSPHATE-MANNOSE PROTEIN MANNOSYLT RANSFERASE	DOLMANP -> DOLP + MANNAN				
YGR199W	2.4.1.109	PMT6	DOLICHYL-PHOSPHATE-MANNOSE PROTEIN MANNOSYLT RANSFERASE	DOLMANP -> DOLP + MANNAN				
YJR143C	2.4.1.109	PMT4	DOLICHYL-PHOSPHATE-MANNOSE PROTEIN MANNOSYLT RANSFERASE	DOLMANP -> DOLP + MANNAN				
YOR321W	2.4.1.109	РМТ3	DOLICHYL-PHOSPHATE-MANNOSE PROTEIN MANNOSYLT RANSFERASE	DOLMANP -> DOLP + MANNAN				
YBR199W	2.4.1.131	KTR4	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				
YBR205W	2.4.1.131	KTR3	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				
YDR483W	2.4.1.131	KRE2	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				
YJL139C	2.4.1.131	YURI	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				
YKR061W	2.4.1.131	KTR2	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				
YOR099W	2.4.1.131	KTR1	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				
YPL053C	2.4.1.131	KTR6	GLYCOLIPID 2-ALPHA- MANNOSYLT RANSFERASE	MAN2PD + 2 GDPMAN -> 2 GDP + 2MANPD				

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
			# AMINOSUGARS MET ABOLISM	
YER062C	3.1.3.21	HOR2	DL-GLYCEROL-3-PHOSPHATASE	GL3P ->GL + PI
YIL053W	3.1.3.21	RHR2	DL-GLYCEROL-3-PHOSPHATASE	GL3P ->GL + PI
YLR307W	3.5.1.41	CDA1	CHITIN DEACET YLASE	CHIT -> CHITO + AC
YLR308W	3.5.1.41	CDA2	CHITIN DEACET YLASE	CHIT -> CHITO + AC
			# METABOLSIM OF COMPLEX LIPIDS	5
			# GLYCEROL (GLYCEROLIPID MET ABOL	ISM)
YFL053W	2.7.1.29	DAK2	DIHYDROXYACETONE KINASE	GLYN + ATP -> T3P2 + ADP
YML070W	2.7.1.29	DAK1	PUTATIVE DIHYDROXYACETONE KINASE	GLYN + ATP -> T3P2 + ADP
YDL022W	1.1.1.8	GPDI	GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NAD)	T3P2 + NADH -> GL3P + NAD
YOL059W	1.1.1.8	GPD2	GLYCEROL-3-PHOSPHATE DEHYDROGENASE (NAD)	T3P2 + NADH -> GL3P + NAD
YHL032C	2.7.1.30	GUT1	GLYCEROL KINASE	GL + ATP -> GL3P + ADP
YIL155C	1.1.99.5	GUT2	GLYCEROL-3-PHOSPHATE DEHYDROGENASE	GL3P + FADm ->T3P2 + FADH2m
U69_		U69_		DAGLY + 0.017 C100ACP + 0.062 C120ACP + 0.100 C140ACP + 0.270 C160ACP + 0.169 C161ACP + 0.055 C180ACP + 0.235 C181ACP + 0.093 C182ACP -> TAGLY + ACP
		# MET	ABOLISM OF COFACTORS, VITAMINS, AND OTI	HER SUBSTANCES
			# THIAMINE (VITAMIN B1) METABOLI	SM
YOR143C	2.7.6.2	THI80	THIAMIN PYROPHOSPHOKINASE	ATP + THIAMIN -> AMP + TPP
YOR143C	2.7.6.2	THI80	THIAMIN PYROPHOSPHOKINASE	ATP + TPP -> AMP + TPPP
U70_		U70_	THIC PROTEIN	AIR -> AHM
Y0L055C	2.7.1.49	THI20	BIPART ITE PROTEIN CONSIST ING OF N- TERMINAL HYDROXYMETHYLPYRIMIDINE PHOSPHATE (HMP-P) KINASE DOMAIN, NEEDED FOR THIAMINE BIOSYNTHESIS, FUSED TO C-TERMINAL PET 18P-LIKE DOMAIN OF INDETERMINANT FUNCTION	AHM + ATP -> AHMP + ADP
YPL258C	2.7.1.49	THI21	BIPART ITE PROTEIN CONSIST ING OF N- TERMINAL HYDROXYMETHYLPYRIMIDINE PHOSPHATE (HMP-P) KINASE DOMAIN, NEEDED FOR THIAMINE BIOSYNTHESIS, FUSED T O C-TERMINAL PET18P-LIKE DOMAIN OF INDETERMINANT FUNCTION	AHM + ATP -> AHMP + ADP

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION	
YPRI 21 W	2.7.1.49	THI22	BIPART ITE PROTEIN CONSIST ING OF N- TERMINAL HYDROXYMETHYLPYRIMIDINE PHOSPHATE (HMP-P) KINASE DOMAIN, NEEDED FOR THIAMINE BIOSYNTHESIS, FUSED T O C-TERMINAL PET18P-LIKE DOMAIN OF INDETERMINANT FUNCTION	AHM + ATP -> AHMP + ADP	
YOL055C	2.7.4.7	THI20	HMP-PHOSPHATE KINASE	AHMP + ATP -> AHMPP + ADP	
U71_		U71_	HYPOTHETICAL	$T3P1 + PYR \rightarrow DTP$	
U72_		U72_	THIGPROTEIN	DTP + TYR + CYS -> THZ + HBA + CO2	
U73_		U73_	THIE PROTEIN	DTP + TYR + CYS -> THZ + HBA + CO2	
U74_		U74_	THIFPROTEIN	DTP + TYR + CYS -> THZ + HBA + CO2	
U75_		U75_	THIH PROTEIN	DTP + TYR + CYS -> THZ + HBA + CO2	
YPL214C	2.7.1.50	THI6	HYDROXYETHYLT HIAZOLE KINASE	$THZ + ATP \rightarrow THZP + ADP$	
YPL214C	2.5.1.3	THI6	TMP PYROPHOSPHORYLASE, HYDROXYETHYLT HIAZOLE KINASE	THZP + AHMPP -> THMP + PPI	
U76_	2.7.4.16	U76_	THIAMIN PHOSPHATE KINASE	THMP + ATP <-> TPP + ADP	
U77_	3.1.3	U77_	(DL)-GLYCEROL-3-PHOSPHATASE 2	THMP -> THIAMIN + PI	
	•	•	# RIBOFLAVIN MET ABOLISM		
YBL033C	3.5.4.25	RIB1	GTP CYCLOHYDROLASE II	GTP -> D6RP5P + FOR + PPI	
YBR153W	3.5.4.26	RIB7	HTP REDUCTASE, SECOND STEP IN THE RIBOFLAVIN BIOSYNTHESIS PATHWAY	D6RP5P -> A6RP5P + NH3	
YBR153W	1.1.1.193	RIB7	PYRIMIDINE REDUCTASE	A6RP5P + NADPH -> A6RP5P2 + NADP	
U78_		U78_	PYRIMIDINE PHOSPHATASE	A6RP5P2 -> A6RP + PI	
U79_		U79_	3,4 DIHYDROXY-2-BUTANONE-4- PHOSPHATE SYNTHASE	RL5P -> DB4P + FOR	
YBR256C	2.5.1.9	RIB5	RIBOFLA VIN BIOSYNTHESIS PAT HW AY ENZYME, 6,7-DIMETHYL-8- RIBIT YLLUMAZINE SYNT HASE, APHA CHAIN	DB4P + A6RP -> D8RL + PI	
YOL143C	2.5.1.9	RIB4	RIBOFLA VIN BIOSYNTHESIS PAT HW AY ENZYME, 6,7-DIMETHYL-8- RIBIT YLLUMAZINE SYNTHASE, BETA CHAIN		
YAR071W	3.1.3.2	PHO11	ACID PHOSP HAT ASE	FMN -> RIBFLAV + PI	
YDR236C	2.7.1.26	FMN1	RIBOFLAVIN KINASE	RIBFLAV + ATP -> FMN + ADP	
YDR236C	2.7.1.26	FMN1	RIBOFLAVIN KINASE	RIBFLAVm + ATPm -> FMNm + ADPm	

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION	
YDL045C	2.7.7.2	FADI	FAD SYNTHETASE FMN + ATP -> FAD +		
U80_	2.7.7.2	U80_	FAD SYNTHETASE	FMNm + ATPm -> FADm + PPIm	
		# \	VITAMIN B6 (PYRIDOXINE) BIOSYNTHESIS ME	Γ ABOLISM	
U81_	2.7.1.35	U81_	PYRIDOXINE KINASE	PYRDX + ATP -> P5P + ADP	
U82_	2.7.1.35	U82_	PYRIDOXINE KINASE	PDLA + ATP ->PDLA5P + ADP	
U83_	2.7.1.35	U83_	PYRIDOXINE KINASE	PL + ATP -> PL5P + ADP	
YBR035C	1.4.3.5	PDX3	PYRIDOXINE 5'-PHOSPHATE OXIDASE	PDLA5P + O2 ->PL5P + H2O2 + NH3	
YBR035C	1.4.3.5	PDX3	PYRIDOXINE 5'-PHOSPHATE OXIDASE	P5P + O2 <-> PL5P + H2O2	
YBR035C	1.4.3.5	PDX3	PYRIDOXINE 5'-PHOSPHATE OXIDASE	PYRDX + O2 <->PL + H2O2	
YBR035C	1.4.3.5	PDX3	PYRIDOXINE 5'-PHOSPHATE OXIDASE	PL + O2 + NH3 <-> PDLA + H2O2	
YBR035C	1.4.3.5	PDX3	PYRIDOXINE 5'-PHOSPHATE OXIDASE	PDLA5P + O2 ->PL5P + H2O2 + NH3	
YOR184W	2.6.1.52	SER 1	HYPOTHETICAL TRANSAMINASE/PHOSPHOSERINE TRANSAMINASE	OHB + GLU <-> PHT + AKG	
YCR053W	4.2.99.2	THR4	THREONINE SYNTHASE	PHT -> 4HLT + PI	
U84_	3.1.3	U84_	HYPOTHETICAL ENZYME	PDLA5P -> PDLA + PI	
			# PANT OTHENATE AND COA BIOSYNTHE	SIS	
U85_		U85_		3 MALCOA -> CHCOA + 2 COA + 2 CO2	
U86_	2.3.1.47	U86_	8-AMINO-7-OXONONANOATE SYNTHASE	ALA + CHCOA <-> CO2 + COA + AONA	
YNR058W	2.6.1.62	BIO3	7,8-DIAMINO-PELARGONIC ACID AMINOT RANSFERASE (DAPA) AMINOT RANSFERASE	SAM + AONA <-> SAMOB + DANNA	
YNR057C	6.3.3.3	BIO4	DETHIOBIOTIN SYNTHETASE	CO2 + DANNA + ATP <-> DT B + PI + ADP	
YGR286C	2.8.1.6	BIO2	BIOTIN SYNTHASE	DT B + CYS <-> BT	
			# FOLATE BIOSYNTHESIS		
YGR267C	3.5.4.16	FOL2	GTP CYCLOHYDROLASE I	GTP -> FOR + AHTD	
U87_	3.6.1	U87_	DIHYDRONEOPTERIN TRIPHOSPHATE PYROPHOSPHORYLASE	AHT D -> PPI + DHPP	
YDR481C	3.1.3.1	PHO8	GLYCEROPHOSPHATASE, ALKALINE PHOSPHATASE; NUCLEOSIDE TRIPHOSPHATASE	AHTD->DHP+3PI	
YDL100C	3.6.1	YDL100C	DIHYDRONEOPTERIN MONOPHOSPHATE DEPHOSPHORYLASE	DHPP -> DHP + PI	
YNL256W	4.1.2.25	FOLI	DIHYDRONEOPTERIN ALDOLASE	DHP -> AHHMP + GLAL	
YNL256W	2.7.6.3	FOLI	6-HYDROXYMETHYL-7,8 DIHYDROPTERIN PYROPHOSPHOKINASE	AHHMP + ATP -> AMP + AHHMD	
YNR033W	4.1.3	ABZI	AMINODEOXYCHORISMATE SYNTHASE	CHOR + GLN -> ADCHOR + GLU	
U88_	4	U88_	AMINODEOXYCHORISMATE LYASE	ADCHOR -> PYR + PABA	

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION REACTION	
YNL256W	2.5.1.15	FOLI	DIHYDROPTEROATE SYNTHASE	PABA + AHHMD -> PPI + DHPT
YNL256W	2.5.1.15	FOLI	DIHYDROPTEROATE SYNTHASE	PABA + AHHMP -> DHPT
U89_	6.3.2.12	U89_	DIHYDROFOLATE SYNTHASE	DHPT + ATP + GLU -> ADP + PI + DHF
YOR236W	1.5.1.3	DFR1	DIHYDROFOLATE REDUCTASE	DHFm + NADPHm -> NADPm + THFm
YOR236W	1.5.1.3	DFR1	DIHYDROFOLATE REDUCTASE	DHF + NADPH -> NADP + THF
U90_	6.3.3.2	U90_	5-FORMYLTET RAHYDROFOLATE CYCLO- LIGASE	ATPm + FTHFm -> ADPm + PIm + MT HFm
U91_	6.3.3.2	U91_	5-FORMYLTET RAHYDROFOLATE CYCLO- LIGASE	ATP + FTHF -> ADP + PI + MTHF
YKL132C	6.3.2.17	RMAI	PROTEIN WITH SIMILARITY TO FOLYLPOLYGLUTAMATE SYNTHASE; CONVERTS TET RAHYDROFOLYL-[GLU(N)] + GLUTAMATE TO TET RAHYDROFOLYL- [GLU(N+1)]	THF + ATP + GLU <-> ADP + PI + THFG
YMR113W	6.3.2.17	FOL3	DIHYDROFOLATE SYNTHETASE	THF + ATP + GLU <-> ADP + PI + T HFG
YOR241W	6.3.2.17	MET7	FOLYLPOLYGLUTAMATE SYNT HET ASE, INVOL VED IN METHIONINE BIOSYNTHESIS AND MAINTENANCE OF MITOCHONDRIAL GENOME	THF + ATP + GLU <-> ADP + PI + THFG
			# ONE CARBON POOL BY FOLATE	
YPL023C	1.5.1.20	MET12	METHYLENE TET RAHYDROFOLATE REDUCTASE	METTHFm + NADPHm -> NADPm + MTHFm
YGL125W	1.5.1.20	MET13	METHYLENE TET RAHYDROFOLATE REDUCTASE	METTHFm + NADPHm -> NADPm + MTHFm
YBR084W	1.5.1.5	MIS1	THE MIT OCHONDRIAL T RIFUNCTIONAL ENZYME C1-TET RAHYDROFLATE SYNT HASE	METTHFm + NADPm <-> METHFm + NADPHm
YGR204W	1.5.1.5	ADE3	THE CYTOPLASMICT RIFUNCTIONAL ENZYME C1-TET RAHYDROFOLATE SYNT HASE	METTHF + NADP <-> METHF + NADPH
YBR084W	6.3.4.3	MIS1	THE MIT OCHONDRIAL T RIFUNCTIONAL ENZYME C1-TET RAHYDROFLATE SYNT HASE	THFm + FORm + ATPm -> ADPm + PIm + FT HFm
YGR204W	6.3.4.3	ADE3	THE CYTOPLASMICT RIFUNCTIONAL ENZYME C1-TET RAHYDROFOLATE SYNT HASE	THF + FOR + ATP -> ADP + PI + FTHF
YBR084W	3.5.4.9	MIS1	THE MIT OCHONDRIAL TRIFUNCTIONAL ENZYME C1-TET RAHYDROFLATE SYNT HASE	METHFm <-> FT HFm

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION				
YGR204W	3.5.4.9	ADE3	THE CYTOPLASMICT RIFUNCTIONAL ENZYME C1-TET RAHYDROFOLATE SYNT HASE	METHF <>> FTHF				
YKR080W	1.5.1.15	MTD1	NAD-DEPENDENT 5,10- METHYLENETET RAHYDRAFOLATE DEHYDROGENASE	METTHF + NAD -> METHF + NADH				
YBL013W	2.1.2.9	FMT1	METHIONYL-TRNA TRANSFORMYLASE	FT HFm + MT RNAm -> THFm + FMRNAm				
	•	•	# COENZYME A BIOSYNTHESIS					
YBR176W	2.1.2.11	ECM31	KETOPENTOATE HYDROX YMETHYL TRANSFERASE	OIVAL + METTHF -> AKP + THF				
YHR063C	1.1.1.169	PAN5	PUTATIVE KETOPANTOATE REDUCT ASE (2- DEHYDROPANTOATE 2-REDUCTASE) INVOL VED IN COENZYME A SYNTHESIS, HAS SIMILARIT Y TO CBS2P, KETOPANTOATE REDUCT ASE	AKP + NADPH -> NADP + PANT				
YLR355C	1.1.1.86	ILV5	KETOL-ACID REDUCT OISOMERASE	AKPm + NADPHm -> NADPm + PANTm				
YIL145C	6.3.2.1	YIL145C	PANT OATE-B-ALANINE LIGASE	PANT + bALA + ATP -> AMP + PPI + PNTO				
YDR531W	2.7.1.33	YDR531W	PUTATIVE PANTOT HENATE KINASE INVOL VED IN COENZYME A BIOSYNT HESIS, PANTOTHENATE KINASE	PNTO + ATP -> ADP + 4PPNTO				
U92_	6.3.2.5	U92_	PHOSPHOPANTOTHENATE-CYSTEINE LIGASE	4PPNTO + CTP + CYS -> CMP + PPI + 4PPNCYS				
U93_	4.1.1.36	U93_	PHOSPHOPANTOTHENATE-CYSTEINE DECARBOXYLASE	4PPNCYS -> CO2 + 4PPNTE				
U94_	2.7.7.3	U94_	PHOSPHO-PANTETHIENE ADENYL YLT RANSFERASE	4PPNTE + ATP ->PPI + DPCOA				
U95_	2.7.7.3	U95_	PHOSPHO-PANTETHIENE ADENYL YLT RANSFERASE	4PPNTEm + ATPm -> PPIm + DPCOAm				
U96_	2.7.1.24	U96_	DEPHOSPHOCOA KINASE	DPCOA + ATP -> ADP + COA				
U97_	2.7.1.24	U97_	DEPHOSPHOCOA KINASE	DPCOAm + ATPm -> ADPm + COAm				
U98_	4.1.1.11	U98_	ASPARTATE ALPHA-DECARBOXYLASE	ASP -> CO2 + bALA				
YPL148C	2.7.8.7	PPT2	ACYL CARRIER-PROTEIN SYNTHASE, PHOSPHOPANTETHEINE PROTEIN TRANSFERASE FOR ACP1P	COA ->PAP + ACP				
	# NAD BIOSYNT HESIS							
YGL037C	3.5.1.19	PNC1	NICOTINAMIDASE	NAM <-> NAC + NH3				
YOR209C	2.4.2.11	NPT1	NAP RT A SE	NAC + PRPP -> NAMN + PPI				
U99_	1.4.3	U99_	ASPART ATE OXIDASE	ASP + FADm -> FADH2m + ISUCC				
U100_	1.4.3.16	U100_	QUINOLATE SYNT HASE	$ISUCC + T 3P2 \rightarrow PI + QA$				

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YFR047C	2.4.2.19	QPT1	QUINOLATE PHOSPHORIBOSYL T RANSFERASE	QA + PRPP -> NAMN + CO2 + PPI
YLR328W	2.7.7.18	YLR328W	NICOTINAMIDE MONONUCLEOTIDE (NMN) ADENYL YLT RANSFERASE	NAMN + ATP -> PPI + NAAD
YHR074W	6.3.5.1	QNS1	DEAMIDO-NAD AMMONIA LIGASE	NAAD + ATP + NH3 -> NAD + AMP + PPI
YJR049C	2.7.1.23	UTRI	NAD KINASE, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NAD + ATP -> NADP + ADP
YEL041W	2.7.1.23	YEL041W	NAD KINASE, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NAD + ATP -> NADP + ADP
YPL188W	2.7.1.23	POS5	NAD KINASE, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NAD + ATP -> NADP + ADP
U101_	3.1.2	U101_	NADP PHOSPHAT ASE	NADP -> NAD +PI
U102_	3.2.2.5	U102_		NAD -> NAM + ADPRIB
U103_	2.4.2.1	U103_	ST RONG SIMILARITY TO PURINE- NUCLEOSIDE PHOSPHORYLASES	ADN +PI <-> AD + RIP
U104_	2.4.2.1	U104_	STRONG SIMILARITY TO PURINE- NUCLEOSIDE PHOSPHORYLASES	GSN + PI <-> GN + RIP
			# NICOTINIC ACID SYNTHESIS FROM T	RP
YFR047C	2.4.2.19	QPTI	QUINOLATE PHOSPHORIBOSYL TRANSFERASE	QAm + PRPPm -> NAMNm + CO2m + PPIm
YLR328W	2.7.7.18	YLR328W	NAMN ADENYLYL TRANSFERASE	NAMNm + ATPm -> PPIm + NAADm
YLR328W	2.7.7.18	YLR328W	NAMN ADENYLYL TRANSFERASE	NMNm + ATPm -> NADm + PPIm
YHR074W	6.3.5.1	QNS1	DEAMIDO-NAD AMMONIA LIGASE	NAADm + ATPm + NH3m -> NADm + AMPm + PPIm
YJR049C	2.7.1.23	UTRI	NAD KINASE, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NADm + ATPm -> NADPm + ADPm
YPL188W	2.7.1.23	POS5	NAD KINASE, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NADm + ATPm -> NADPm + ADPm
YEL041W	2.7.1.23	YEL041W	NAD KINASE, POLYPHOSPHATE KINASE (EC 2.7.4.1) / NAD+ KINASE (EC 2.7.1.23)	NADm + ATPm -> NADPm + ADPm
U105_	3.1.2	U105_	NADP PHOSPHAT ASE	NADPm -> NADm + PIm
YLR209C	2.4.2.1	PNP1	STRONG SIMILARITY TO PURINE- NUCLEOSIDE PHOSPHORYLASES	ADNm + PIm <-> ADm + RIPm
YLR209C	2.4.2.1	PNP1	ST RONG SIMILARITY TO PURINE- NUCLEOSIDE PHOSPHORYLASES	GSNm + PIm <-> GNm + RIPm
YGL037C	3.5.1.19	PNC1	NICOTINAMIDASE	NAMm <-> NACm + NH3m
YOR209C	2.4.2.11	NPT1	NAPRTASE	NACm +PRPPm -> NAMNm + PPIm
U106_	3.2.2.5	U106_		NADm -> NAMm + ADP RIBm
			# UPTAKE PATHWAYS	
			# PORPHYRIN METABOLISM	
YDR232W	2.3.1.37	HEMI	5-AMINOLEVULINATE SYNTHASE	SUCCOAm + GLYm -> ALAVm + COAm + CO2m

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YGL040C	4.2.1.24	HEM2	AMINOLEVULINATE DEHYDRATASE	2 ALAV -> PBG
YDL205C	4.3.1.8	НЕМЗ	HYDROXYMET HYLBILANE SYNTHASE	4 PBG -> HMB + 4 NH3
YOR278W	4.2.1.75	HEM4	UROPORPHYRINOGEN-III SYNTHASE	HMB -> UPRG
YDR047W	4.1.1.37	HEM12	UROPORPHYRINOGEN DECARBOXYLASE	UPRG ->4 CO2 + CPP
YDR044W	1.3.3.3	HEM13	COPROPORPHYRINOGEN OXIDASE, AEROBIC	O2 + CPP -> 2 CO2 + PPHG
YER014W	1.3.3.4	HEM14	PROTOPORPHYRINOGEN OXIDASE	O2 +PPHGm ->PPIXm
YOR176W	4.99.1.1	HEM15	FERROCHELATASE	PPIXm ->PTHm
YGL245W	6.1.1.17	YGL245W	GLUT AMYL-TRNA SYNT HETASE, CYT OPLASMIC	GLU + ATP -> GT RNA + AMP + PPI
YOL033W	6.1.1.17	MSE1		GLUm + ATPm -> GT RNAm + AMPm + PPIm
YKR069W	2.1.1.107	MET1	UROPORPHYRIN-III C- METHYLT RANSFERASE	SAM + UPRG -> SAH + PC2
			# QUINONE BIOSYNTHESIS	
YKL211C	4.1.3.27	TRP3	ANTHRANILATE SYNTHASE COMPONENT II AND INDOLE-3-PHOSPHATE (MULTIFUNCTIONAL ENZYME)	CHOR ->4HBZ + PYR
YER090W	4.1.3.27	TRP2	ANTHRANILATE SYNTHASE COMPONENT I	CHOR ->4HBZ + PYR
YPR176C	2.5.1	BET2	GERANYLGERANYLT RANSFERASE T YPE II BET A SUBUNIT	4HBZ + NPP -> N4HBZ + PPI
YJL031C	2.5.1	BET4	GERANYLGERANYLT RANSFERASE T YPE II ALPHA SUBUNIT	
YGL155W	2.5.1	CDC43	GERANYLGERANYLT RANSFERASE T YPE I BET A SUBUNIT	
YBR003W	2.5.1	COQ1	HEXAPRENYL PYROPHOSPHATE SYNTHETASE, CATALYZES THE FIRST STEP IN COENZYME Q (UBIQUINONE) BIOSYNTHESIS PATHWAY	4HBZ + NPP -> N4HBZ + PPI
YNR041C	2.5.1	COQ2	PARA-HYDROXYBENZOATE POL YPRENYLT RANSFERASE	4HBZ + NPP -> N4HBZ + PPI
YPL172C	2.5.1	COX10	PROTOHEME IX FARNESYLT RANSFERASE, MITOCHONDRIAL PRECURSOR	4HBZ + NPP -> N4HBZ + PPI
YDL090C	2.5.1	RAM1	PROTEIN FARNESYLT RANSFERASE BETA SUBUNIT	4HBZ + NPP -> N4HBZ + PPI
YKL019W	2.5.1	RAM2	PROTEIN FARNESYLT RANSFERASE ALPHA SUBUNIT	
YBR002C	2.5.1	RER2	PUTATIVE DEHYDRODOLICHYL DIPHOSPATE SYNTHETASE	4HBZ + NPP -> N4HBZ + PPI

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YMR101C	2.5.1	SRTI	PUTATIVE DEHYDRODOLICHYL DIPHOSPATE SYNTHETASE	4HBZ + NPP -> N4HBZ + PPI
YDR538W	4.1.1	PADI	OCT APRENYL-HYDROXYBENZOATE DECARBOXYLASE	N4HBZ -> CO2 + 2NPPP
U107_	1.13.14	U107_	2-OCTAPRENYLPHENOL HYDROXYLASE	2NPPP + O2 -> 2N6H
YPL266W	2.1.1	DIMI		2N6H + SAM -> 2NPMP + SAH
U108_	1.14.13	U108_	2-OCTAPRENYL-6-METHOXYPHENOL HYDROXYLASE	2NPMPm + O2m -> 2NPMBm
YML110C	2.1.1	COQ5	2-OCTAPRENYL-6-METHOXY-1,4- BENZOQUINONE METHYLASE	2NPMBm + SAMm -> 2NPMMBm + SAHm
YGR255C	1.14.13	COQ6	COQ6 MONOOXYGENASE	2NPMMBm + O2m -> 2NMHMBm
YOL096C	2.1.1.64	COQ3	3-DIMETHYLUBIQUINONE 3- METHYLT RANSFERASE	2NMHMBm + SAMm -> QH2m + SAHm
	•		# MEMBRANE T RANSPORT	
		# MI	TOCHONDRIAL MEMBRANE TRANSPORT	
# THE FOLLO	WINGS DIFFU	SE T HROUG	H THE INNER MITOCHONDRIAL MEMBRANE IN A MANNER:	NON-CARRIER-MEDIATED
U109_		U109_		O2 <-> O2m
U110_		U110_		CO2 <-> CO2m
U111_		U111_		ETH <-> ETHm
U112_		U112_		NH3 <-> NH3m
U113_		U113_		MT HN <-> MTHNm
U114_		U114_		THFm <->THF
U115_		U115_		METTHFm <-> METTHF
U116_		U116_		SERm <-> SER
U117_		U117_		GLYm <-> GLY
U118_		U118_		CBHCAPm <-> CBHCAP
U119_		U119_		OICAPm <->OICAP
U120_		U120_		PROm <->PRO
U121_		U121_		CMPm <-> CMP
U122_		U122_		ACm <-> AC
U123_		U123_		ACAR -> ACARm
U124_		U124_		CARm -> CAR
U125_		U125_		ACLAC <-> ACLACm
U126_		U126_		ACTAC <-> ACTACm
U127_		U127_		SLF -> SLFm + Hm
U128_		U128_		THRm <-> THR
U129_		U129_		AKAm -> AKA
YMR056C		AACI	ADP/ATP CARRIER PROTEIN (MCF)	ADP + ATPm + PI -> Hm + ADPm + ATP + PIm

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YBL030C		PET9	ADP/ATP CARRIER PROTEIN (MCF)	ADP + ATPm + PI -> Hm + ADPm + ATP + PIm
YBR085W		AAC3	ADP/ATP CARRIER PROTEIN (MCF)	ADP + ATPm + PI -> Hm + ADPm + ATP + PIm
YJR077C		MIR1	PHOSPHATE CARRIER	PI <-> Hm + PIm
YER053C		YER053C	SIMILARITY TO C.ELEGANS MITOCHONDRIAL PHOSPHATE CARRIER	PI + OHm <->PIm
YLR348C		DIC1	DICARBOXYLATE CARRIER	MAL + SUCCm <-> MALm + SUCC
YLR348C		DICI	DICARBOXYLATE CARRIER	MAL + PIm > MALm + PI
YLR348C		DIC1	DICARBOXYLATE CARRIER	SUCC + PIm -> SUCCm +PI
U130_		U130_		MALT + PIm <-> MALTm + PI
YKL120W		OAC1	MITOCHONDRIAL OXALOACET ATE CARRIER	OA <-> OAm + Hm
YBR291C		CTP1	CIT RATE TRANSPORT PROTEIN	CIT + MALm <-> CITm + MAL
YBR291C		CTP1	CIT RATE TRANSPORT PROTEIN	CIT + PEPm <-> CITm + PEP
YBR291C		CTP1	CIT RATE TRANSPORT PROTEIN	CIT + ICITm <-> CITm + ICIT
U131_		U131_		IPPMAL <-> IPPMALm
U132_		U132_		LAC <-> LACm + Hm
U133_		U133_	PYRUVATE CARRIER	PYR <-> PYRm + Hm
U134_		U134_	GLUT AMATE CARRIER	GLU <-> GLUm + Hm
U135_		U135_		GLU + OHm -> GLUm
YOR130C		ORTI	ORNITHINE CARRIER	ORN + Hm <-> ORNm
YOR100C		CRC1	CARNITINE CARRIER	CARm + ACAR -> CAR + ACARm
U136_		U136_		OIVAL <-> OIVALm
U137_		U137_		OMVAL <-> OMVALm
YIL134W		FLXI	PROTEIN INVOLVED INTRANSPORT OF FAD FROM CYTOSOL INTO THE MITOCHONDRIAL MATRIX	FAD + FMNm -> FADm + FMN
U138_		U138_		RIBFLAV <-> RIBFLAVm
U139_		U139_		DT B <-> DT Bm
U140_		U140_		H3MCOA <-> H3MCOAm
U141_		U141_		MVL <->MVLm
U142_		U142_		PA <->PAm
U143_		U143_		4PPNTE <->4PPNTEm
U144_		U144_		AD <-> ADm
U145_		U145_		PRPP <->PRPPm
U146_		U146_		DHF <-> DHFm
U147_		U147_		QA <->QAm
U148_		U148_		OPP <-> OPPm
U149_		U149_		SAM <-> SAMm

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION			
U150_		U150_		SAH <-> SAHm			
YJR095W		SFC1	MITOCHONDRIAL MEMBRANE SUCCINATE- FUMARATE T RANSPORTER, MEMBER OF THE MIT OCHONDRIAL CARRIER FAMILY (MCF) OF MEMBRANE T RANSPORTERS	SUCC + FUMm -> SUCCm + FUM			
YPL134C		ODC1	2-OXODICARBOYLATE TRANSPORTER	AKGm + OXA <-> AKG + OXAm			
YOR222W		ODC2	2-OXODICARBOYLATE TRANSPORTER	AKGm + OXA <-> AKG + OXAm			
# MALATE ASPART ATE SHUTTLE							
# INCLUDED ELSEWHERE							
# GLYCEROL PHOSPHATE SHUTTLE							
U151_		U151_		T3P2m ->T3P2			
U152_		U152_		GL3P ->GL3Pm			
# PLASMA MEMBRANE T RANSPORT							
# CARBOHYDRATES							
YHR092C		HXT4	MODERATE- TO LOW-AFFINITY GLUCOSE TRANSPORTER	GLCxt -> GLC			
YLR081W		GAL2	GALACTOSE (AND GLUCOSE) PERMEASE	GLCxt -> GLC			
YOL156W		HXTI 1	LOW AFFINIT Y GLUCOSE T RANSPORT PROTEIN	GLCxt -> GLC			
YDR536W		STL1	PROTEIN MEMBER OF THE HEXOSE TRANSPORTER FAMILY	GLCxt -> GLC			
YHR094C		HXTI	HIGH-AFFINITY HEXOSE (GLUCOSE) TRANSPORTER	GLCxt -> GLC			
YOL156W		HXT11	GLUCOSE PERMEASE	GLCxt -> GLC			
YEL069C		HXT13	HIGH-AFFINITY HEXOSE TRANSPORTER	GLCxt -> GLC			
YDL245C		HXT15	HEXOSE TRANSPORTER	GLCxt -> GLC			
YJR158W		HXT16	HEXOSE PERMEASE	GLCxt -> GLC			
YFL011W		HXT10	HIGH-AFFINITY HEXOSE TRANSPORTER	GLCxt -> GLC			
YNR072W		HXT17	PUTATIVE HEXOSE TRANSPORTER	GLCxt -> GLC			
YMR011W		HXT2	HIGH AFFINITY HEXOSE TRANSPORTER-2	GLCxt -> GLC			
YHR092C		HXT4	HIGH-AFFINITY GLUCOSE TRANSPORTER	GLCxt -> GLC			
YDR345C		HXT3	LOW-AFFINITY GLUCOSE TRANSPORTER	GLCxt -> GLC			
YHR096C		HXT5	HEXOSE TRANSPORTER	GLCxt -> GLC			
YDR343C		НХТб	HEXOSE TRANSPORTER	GLCxt -> GLC			
YDR342C		HXT7	HEXOSE TRANSPORTER	GLCxt -> GLC			
YJL214W		HXT8	HEXOSE PERMEASE	GLCxt -> GLC			
YJL219W		HXT9	HEXOSE PERMEASE	GLCxt -> GLC			
YLR081W		GAL2	GALACT OSE PERMEASE	GLACxt ->GLAC			
YFL011W		HXT10	HIGH-AFFINITY HEXOSE TRANSPORTER	GLACxt ->GLAC			

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESCRIPTION	REACTION
YOL156W		HXT11	GLUCOSE PERMEASE	GLACxt ->GLAC
YNL318C		HXT14	MEMBER OF THE HEXOSE TRANSPORTER FAMILY	GLACxt ->GLAC
YJL219W		HXT9	HEXOSE PERMEASE	GLACxt ->GLAC
YDR536W		STL1	PROTEIN MEMBER OF THE HEXOSE TRANSPORTER FAMILY	GLACxt ->GLAC
YFL055W		AGP3	AMINO ACID PERMEASE FOR SERINE, ASPARTATE, AND GLUTAMATE	GLUxt <>> GLU
YDR536W		STL1	PROTEIN MEMBER OF THE HEXOSE TRANSPORTER FAMILY	GLUxt <>> GLU
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	GLUxt <-> GLU
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	GLUxt <>> GLU
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	GLUxt <-> GLU
YDR536W		STL1	PROTEIN MEMBER OF THE HEXOSE TRANSPORTER FAMILY	GLUxt <>> GLU
YHR094C		HXTI	HIGH-AFFINITY HEXOSE (GLUCOSE) T RANSPORTER	FRUxt -> FRU
YFL011W		HXT10	HIGH-AFFINITY HEXOSE TRANSPORTER	FRUxt -> FRU
YOL156W		HXT11	GLUCOSE PERMEASE	FRUxt -> FRU
YEL069C		HXT13	HIGH-AFFINITY HEXOSE TRANSPORTER	FRUxt -> FRU
YDL245C		HXT15	HEXOSE TRANSPORTER	FRUxt -> FRU
YJR158W		HXT16	HEXOSE PERMEASE	FRUxt -> FRU
YNR072W		HXT17	PUTATIVE HEXOSE TRANSPORTER	FRUxt -> FRU
YMR011W		HXT2	HIGH AFFINITY HEXOSE TRANSPORTER-2	FRUxt -> FRU
YDR345C		HXT3	LOW-AFFINITY GLUCOSE TRANSPORTER	FRUxt -> FRU
YHR092C		HXT4	HIGH-AFFINITY GLUCOSE TRANSPORTER	FRUxt -> FRU
YHR096C		HXT5	HEXOSE TRANSPORTER	FRUxt -> FRU
YDR343C		HXT6	HEXOSE TRANSPORTER	FRUxt -> FRU
YDR342C		HXT7	HEXOSE TRANSPORTER	FRUxt -> FRU
YJL214W		HXT8	HEXOSE PERMEASE	FRUxt -> FRU
YJL219W		HXT9	HEXOSE PERMEASE	FRUxt -> FRU
YHR094C		HXTI	HIGH-AFFINITY HEXOSE (GLUCOSE) T RANSPORTER	MANxt -> MAN
YFL011W		HXT10	HIGH-AFFINITY HEXOSE TRANSPORTER	MANxt -> MAN
YOL156W		HXT11	GLUCOSE PERMEASE	MANxt -> MAN
YEL069C		HXT13	HIGH-AFFINITY HEXOSE TRANSPORTER	MANxt -> MAN
YDL245C		HXT15	HEXOSE TRANSPORTER	MANxt -> MAN
YJR158W		HXT16	HEXOSE PERMEASE	MANxt -> MAN
YNR072W		HXT17	PUTATIVE HEXOSE TRANSPORTER	MANxt -> MAN

Table A.2. Reactions described in FBA (continued)
ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YMR011W		HXT2	HIGH AFFINITY HEXOSE TRANSPORTER-2	MANxt -> MAN
YDR345C		НХТЗ	LOW-AFFINITY GLUCOSE TRANSPORTER	MANxt -> MAN
YHR092C		HXT4	HIGH-AFFINITY GLUCOSE TRANSPORTER	MANxt -> MAN
YHR096C		HXT5	HEXOSE TRANSPORTER	MANxt -> MAN
YDR343C		HXT6	HEXOSE TRANSPORTER	MANxt -> MAN
YDR342C		HXT7	HEXOSE TRANSPORTER	MANxt -> MAN
YJL214W		HXT8	HEXOSE PERMEASE	MANxt -> MAN
YJL219W		HXT9	HEXOSE PERMEASE	MANxt -> MAN
YDR497C		ITR1	MYO-INOSIT OL TRANSPORTER	MIxt + HEXT -> MI
YOL103W		ITR2	MYO-INOSIT OL TRANSPORTER	MIxt + HEXT -> MI
U153_		U153_	MALTASE PERMEASE	MLTxt + HEXT -> MLT
YIL162W	3.2.1.26	SUC2	INVERTASE (SUCROSE HYDROLYZING ENZYME)	SUCxt -> GLCxt + FRUxt
U154_		U154_	SUCRO SE	SUCxt + HEXT -> SUC
YBR298C		MAL31	DICARBOXYLATES	MALxt + HEXT <-> MAL
U155_		U155_	A-KET OGLUTARATE/MALATE TRANSLOCATOR	MALxt + AKG <->MAL + AKGxt
U156_		U156_	A-METHYLGLUCOSIDE	AMGxt <-> AMG
U157_		U157_	SORBO SE	SORxt <-> SOR
U158_		U158_	ARABINOSE (LOW AFFINITY)	ARABxt <-> ARAB
U159_		U159_	FUCOSE	FUCxt + HEXT <-> FUC
U160_		U160_		GLTLxt + HEXT -> GLTL
U161_		U161_	GLUCIT OL	GLTxt + HEXT -> GLT
U162_		U162_	GLUCOSAMINE	GLAMxt + HEXT <-> GLAM
YLL043W		FPS1	GLYCEROL	GLxt <->GL
YKL217W		JEN1	LACT ATE T RANSPORT	LACxt + HEXT <-> LAC
U163_		U163_	MANNITOL	MNTxt + HEXT -> MNT
U164_		U164_	MELIBIOSE	MELIxt + HEXT -> MELI
U165_		U165_	N-ACETYLGLUCOSAMINE	NAGxt + HEXT -> NAG
U166_		U166_	RHAMNOSE	RMNxt + HEXT -> RMN
U167_		U167_	RIBOSE	RIBxt + HEXT -> RIB
U168_		U168_	TREHALOSE	TRExt + HEXT -> TRE
U170_		U170_		XYLxt <>> XYL
			# AMINO ACIDS	
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	ALAxt + HEXT <-> ALA
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	ALAxt + HEXT <-> ALA
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	ALAxt + HEXT <>> ALA
YOL020W		TAT2	T RYPT OPHAN PERMEASE	ALAxt + HEXT <-> ALA

 Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YOR348C		PUT4	PROLINE PERMEASE	ALAxt + HEXT <-> ALA
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	ARGxt + HEXT <-> ARG
YEL063C		CANI	PERMEASE FOR BASIC AMINO ACIDS	ARGxt + HEXT <-> ARG
YNL270C		ALPI	PROTEIN WITH STRONG SIMILARITY TO PERMEASES	ARGxt + HEXT <-> ARG
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	ASNxt + HEXT <-> ASN
YCL025C		AGP1	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	ASNxt + HEXT <-> ASN
YDR508C		GNP1	GLUT AMINE PERMEASE (HIGH AFFINITY)	ASNxt + HEXT <-> ASN
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	ASNxt + HEXT <-> ASN
YFL055W		AGP3	AMINO ACID PERMEASE FOR SERINE, ASPART ATE, AND GLUTAMATE	ASPxt + HEXT <-> ASP
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	ASPxt + HEXT <-> ASP
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	ASPxt + HEXT <-> ASP
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	CYSxt + HEXT <-> CYS
YDR508C		GNP1	GLUT AMINE PERMEASE (HIGH AFFINITY)	CYSxt + HEXT <-> CYS
YBR068C		BAP2	BRANCHED CHAIN AMINO ACIDPERMEASE	CYSxt + HEXT <>> CYS
YDR046C		BAP3	BRANCHED CHAIN AMINO ACID PERMEASE	CYSxt + HEXT <>> CYS
YBR069C		VAP1	AMINO ACID PERMEASE	CYSxt + HEXT <-> CYS
YOL020W		TAT2	T RYPT OPHAN PERMEASE	CYSxt + HEXT <-> CYS
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	GLYxt + HEXT <-> GLY
YOL020W		TAT2	T RYPT OPHAN PERMEASE	GLYxt + HEXT <-> GLY
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	GLYxt + HEXT <-> GLY
YOR348C		PUT4	PROLINE PERMEASE	GLYxt + HEXT <-> GLY
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	GLNxt + HEXT <-> GLN
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	GLNxt + HEXT <>> GLN
YDR508C		GNP1	GLUT AMINE PERMEASE (HIGH AFFINITY)	GLNxt + HEXT <-> GLN
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	GLNxt + HEXT <-> GLN
YGR191W		HIP1	HISTIDINEPERMEASE	HISxt + HEXT <-> HIS
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	HISxt + HEXT <-> HIS
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	HISxt + HEXT <-> HIS
YBR069C		VAP1	AMINO ACID PERMEASE	HISxt + HEXT <-> HIS
YBR069C		TATI	AMINO ACID PERMEASE THAT TRANSPORTS VALINE, LEUCINE, ISLEUCINE, TYROSINE, TRYPT OPHAN, AND THREONINE	ILExt + HEXT <-> ILE

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YKR039W		GAPI	GENERAL AMINO ACID PERMEASE	ILExt + HEXT <-> ILE
YCL025C		AGP1	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	ILExt + HEXT <->ILE
YBR068C		BAP2	BRANCHED CHAIN AMINO ACID PERMEASE	ILExt + HEXT <-> ILE
YDR046C		BAP3	BRANCHED CHAIN AMINO ACID PERMEASE	ILExt + HEXT <-> ILE
YBR069C		VAP1	AMINO ACID PERMEASE	ILExt + HEXT <-> ILE
YBR069C		TAT1	AMINO ACID PERMEASE THAT TRANSPORTS VALINE, LEUCINE, ISLEUCINE, TYROSINE, TRYPT OPHAN, AND THREONINE	LEUxt + HEXT <-> LEU
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	LEUxt + HEXT <-> LEU
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	LEUxt + HEXT <>>LEU
YBR068C		BAP2	BRANCHED CHAIN AMINO ACID PERMEASE	LEUxt + HEXT <-> LEU
YDR046C		BAP3	BRANCHED CHAIN AMINO ACIDPERMEASE	LEUxt + HEXT <>>LEU
YBR069C		VAP1	AMINO ACID PERMEASE	LEUxt + HEXT <-> LEU
YDR508C		GNP1	GLUTAMINE PERMEASE (HIGH AFFINITY)	LEUxt + HEXT <-> LEU
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	METxt + HEXT <-> MET
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	METxt + HEXT <-> MET
YDR508C		GNP1	GLUT AMINE PERMEASE (HIGH AFFINITY)	METxt + HEXT <-> MET
YBR068C		BAP2	BRANCHED CHAIN AMINO ACIDPERMEASE	METxt + HEXT <-> MET
YDR046C		BAP3	BRANCHED CHAIN AMINO ACIDPERMEASE	METxt + HEXT <-> MET
YGR055W		MUP1	HIGH-AFFINITY METHIONINE PERMEASE	METxt + HEXT <-> MET
YHL036W		MUP3	LOW-AFFINITY METHIONINE PERMEASE	METxt + HEXT <-> MET
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	PHExt + HEXT <->PHE
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	PHExt + HEXT <->PHE
YOL020W		TAT2	T RYPT OPHAN PERMEASE	PHExt + HEXT <->PHE
YBR068C		BAP2	BRANCHED CHAIN AMINO ACIDPERMEASE	PHExt + HEXT <->PHE
YDR046C		BAP3	BRANCHED CHAIN AMINO ACIDPERMEASE	PHExt + HEXT <->PHE
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	PROxt + HEXT <-> PRO
YOR348C		PUT4	PROLINE PERMEASE	PROxt + HEXT <-> PRO

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YBR069C		TAT1	AMINO ACID PERMEASE THAT TRANSPORTS VALINE, LEUCINE, ISLEUCINE, TYROSINE, TRYPTOPHAN, AND THREONINE	T RPxt + HEXT <-> TRP
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	TRPxt + HEXT <-> TRP
YBR069C		VAP1	AMINO ACID PERMEASE	T RPxt + HEXT <-> T RP
YOL020W		TAT2	T RYPT OPHAN PERMEASE	TRPxt + HEXT <-> TRP
YBR068C		BAP2	BRANCHED CHAIN AMINO ACIDPERMEASE	TRPxt + HEXT <-> TRP
YDR046C		BAP3	BRANCHED CHAIN AMINO ACID PERMEASE	TRPxt + HEXT <-> TRP
YBR069C		TAT1	AMINO ACID PERMEASE THAT TRANSPORTS VALINE, LEUCINE, ISLEUCINE, TYROSINE, TRYPTOPHAN, AND THREONINE	TYRxt + HEXT <->TYR
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	TYRxt + HEXT <->TYR
YCL025C		AGP1	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	TYRxt + HEXT <->TYR
YBR068C		BAP2	BRANCHED CHAIN AMINO ACIDPERMEASE	TYRxt + HEXT <->TYR
YBR069C		VAP1	AMINO ACID PERMEASE	TYRxt + HEXT <->TYR
YOL020W		TAT2	T RYPT OPHAN PERMEASE	TYRxt + HEXT <->TYR
YDR046C		BAP3	BRANCHED CHAIN AMINO ACID PERMEASE	TYRxt + HEXT <->TYR
YKR039W		GAPI	GENERAL AMINO ACID PERMEASE	VALxt + HEXT <-> VAL
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	VALxt + HEXT <>> VAL
YDR046C		BAP3	BRANCHED CHAIN AMINO ACIDPERMEASE	VALxt + HEXT <>> VAL
YBR069C		VAP1	AMINO ACID PERMEASE	VALxt + HEXT <-> VAL
YBR068C		BAP2	BRANCHED CHAIN AMINO ACID PERMEASE	VALxt + HEXT <-> VAL
YFL055W		AGP3	AMINO ACID PERMEASE FOR SERINE, ASPARTATE, AND GLUTAMATE	SERxt + HEXT <-> SER
YCL025C		AGP1	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	SERxt + HEXT <-> SER
YDR508C		GNP1	GLUT AMINE PERMEASE (HIGH AFFINITY)	SERxt + HEXT <-> SER
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	SERxt + HEXT <-> SER
YPL265W		DIP5	DICARBOXYLIC AMINO ACID PERMEASE	SERxt + HEXT <-> SER

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTIO N	REACTION
YBR069C		TAT1	AMINO ACID PERMEASE THAT TRANSPORTS VALINE, LEUCINE, ISLEUCINE, TYROSINE, TRYPTOPHAN, AND THREONINE	THRxt + HEXT <->THR
YCL025C		AGPI	AMINO ACID PERMEASE FOR MOST NEUT RAL AMINO ACIDS	THRxt + HEXT <->THR
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	THRxt + HEXT <->THR
YDR508C		GNP1	GLUTAMINE PERMEASE (HIGH AFFINITY)	THRxt + HEXT <->THR
YNL268W		LYP1	LYSINE SPECIFIC PERMEASE (HIGH AFFINITY)	LYSxt + HEXT <-> LYS
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	LYSxt + HEXT <->LYS
YLL061W		MMP1	HIGH AFFINITY S-METHYLMETHIONINE PERMEASE	MMETxt + HEXT -> MMET
YPL274W		SAM3	HIGH AFFINITY S-ADENOSYLMETHIONINE PERMEASE	SAMxt + HEXT -> SAM
YOR348C		PUT4	PROLINE PERMEASE	GABAxt + HEXT -> GABA
YDL210W		UGA4	AMINO ACID PERMEASE WITH HIGH SPECIFICITY FOR GABA	GABAxt + HEXT -> GABA
YBRI 32C		AGP2	PLASMA MEMBRANE CARNIT INE T RANSPORTER	CARxt <>> CAR
YGL077C		HNM1	CHOLINEPERMEASE	CHOxt + HEXT -> CHO
YNR056C		BIO5	T RANSMEMBRANE REGULATOR OF KAP A/DAP A TRANSPORT	BIOxt + HEXT -> BIO
YDL210W		UGA4	AMINO ACID PERMEASE WITH HIGH SPECIFICITY FOR GABA	ALAVxt + HEXT -> ALAV
YKR039W		GAP1	GENERAL AMINO ACID PERMEASE	ORNxt + HEXT <-> ORN
YEL063C		CANI	PERMEASE FOR BASIC AMINO ACIDS	ORNxt + HEXT <-> ORN
U171_		U171_	PUTRESCINE	PTRSCxt + HEXT -> PTRSC
U172_		U172_	SPERMIDINE & PUT RESCINE	SPRMDxt + HEXT -> SPRMD
YKR093W		PTR2	DIPEPTIDE	DIPEPxt + HEXT -> DIPEP
YKR093W		PTR2	OLIGOPEPTIDE	OPEPxt + HEXT -> OPEP
YKR093W		PTR2	PEPTIDE	PEPTxt + HEXT -> PEPT
YBR021W		FUR4	URACIL	URAxt + HEXT -> URA
U173_		U173_	NICOTINAMIDE MONONUCLEOTIDE T RANSPORTER	NMNxt + HEXT -> NMN
YER056C		FCY2	CYT OSINE PURINE PERMEASE	CYT Sxt + HEXT -> CYT S
YER056C		FCY2	ADENINE	ADxt + HEXT -> AD
YER056C		FCY2	GUANINE	GNxt + HEXT <-> GN
YER060W		FCY21	CYT OSINE PURINE PERMEASE	CYTSxt + HEXT -> CYTS
YER060W		FCY21	ADENINE	ADxt + HEXT -> AD
YER060W		FCY21	GUANINE	GNxt + HEXT <->GN

Table A.2. Reactions described in FBA (continued)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YER060W- A		FCY22	CYT OSINE PURINE PERMEASE	CYT Sxt + HEXT -> CYT S
YER060W- A		FCY22	ADENINE	ADxt + HEXT -> AD
YER060W- A		FCY22	GUANINE	GNxt + HEXT <-> GN
YGL186C		YGL186C	CYT OSINE PURINE PERMEASE	CYT Sxt + HEXT -> CYT S
YGL186C		YGL186C	ADENINE	ADxt + HEXT -> AD
YGL186C		YGL186C	GUANINE	GNxt + HEXT <->GN
U174_		U174_	G-SY ST EM	ADNxt + HEXT -> ADN
U175_		U175_	G-SY ST EM	GSNxt + HEXT ->GSN
YBL042C		FUII	URIDINE PERMEASE, G-SYSTEM	URIxt + HEXT -> URI
U176_		U176_	G-SY ST EM	CYTDxt + HEXT -> CYTD
U177_		U177_	G-SY ST EM (TRANSPORT S ALL NUCLEOSIDES)	INSxt + HEXT -> INS
U178_		U178_	G-SY ST EM	XT SINExt + HEXT -> XT SINE
U179_		U179_	G-SY ST EM	DT xt + HEXT -> DT
U180_		U180_	G-SY ST EM	DINxt + HEXT -> DIN
U181_		U181_	G-SY ST EM	DGxt + HEXT -> DG
U182_		U182_	G-SY ST EM	DAxt + HEXT -> DA
U183_		U183_	G-SY ST EM	DCxt + HEXT -> DC
U184_		U184_	G-SY ST EM	DUxt + HEXT -> DU
U185_		U185_	C-SYSTEM	ADNxt + HEXT -> ADN
YBL042C		FUII	URIDINE PERMEASE, C-SYSTEM	URIxt + HEXT -> URI
U186_		U186_	C-SYSTEM	CYTDxt + HEXT -> CYTD
U187_		U187_	C-SYSTEM	DT xt + HEXT -> DT
U188_		U188_	C-SYSTEM	DAxt + HEXT -> DA
U189_		U189_	C-SYSTEM	DCxt + HEXT -> DC
U190_		U190_	C-SYSTEM	DUxt + HEXT -> DU
U191_		U191_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	ADNxt + HEXT -> ADN
U192_		U192_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	GSNxt + HEXT ->GSN
YBL042C		FUII	URIDINE PERMEASE, NUCLEOSIDES AND DEOXYNUCLEOSIDE	URIxt + HEXT -> URI
U193_		U193_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	CYTDxt + HEXT -> CYTD
U194_		U194_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	INSxt + HEXT -> INS
U195_		U195_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	DT xt + HEXT -> DT
U196_		U196_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	DINxt + HEXT -> DIN
U197_		U197_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	DGxt + HEXT -> DG
U198_		U198_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	DAxt + HEXT -> DA
U199_		U199_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	DCxt + HEXT -> DC
U200_		U200_	NUCLEOSIDES AND DEOXYNUCLEOSIDE	DUxt + HEXT -> DU
U201_		U201_	HYPOXANTHINE	HYXNxt + HEXT <-> HYXN

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
U202_		U202_	XANTHINE	XANxt <-> XAN
			# METABOLIC BY-PRODUCTS	
YCR032W		BPH1	PROBABLE ACETIC ACID EXPORT PUMP, ACET ATE T RANSPORT	ACxt + HEXT <-> AC
U203_		U203_	FORMATE TRANSPORT	FORxt <-> FOR
U204_		U204_	ET HANOL T RANSPORT	ET Hxt <-> ET H
U205_		U205_	SUCCINATE TRANSPORT	SUCCxt + HEXT <-> SUCC
YKL217W		JEN1	PYRUVATE LACTATE PROTON SYMPORT	PYRxt + HEXT -> PYR
			# OTHER COMPOUNDS	
YHL016C		DUR3	UREA ACTIVE TRANSPORT	UREAxt +2 HEXT <-> UREA
YGR121C		MEP1	AMMONIA T RANSPORT	NH3xt <-> NH3
YNL142W		MEP2	AMMONIA TRANSPORT, LOW CAPACITY HIGH AFFINITY	NH3xt <>> NH3
YPR138C		MEP3	AMMONIA TRANSPORT, HIGH CAPACITY LOW AFFINITY	NH3xt <>> NH3
YJL129C		TRK1	POTASSIUM TRANSPORTER OF THE PLASMA MEMBRANE, HIGH AFFINITY, MEMBER OF THE POT ASSIUM TRANSPORTER (TRK) FAMILY OF MEMBRANE TRANSPORTERS	Kxt + HEXT <-> K
YBR294W		SULI	SULFATE PERMEASE	SLFxt -> SLF
YLR092W		SUL2	SULFATE PERMEASE	SLFxt -> SLF
YGR125W		YGR125W	SULFATE PERMEASE	SLFxt -> SLF
YML123C		PHO84	INORGANIC PHOSPHATE TRANSPORTER, TRANSMEMBRANE PROTEIN	PIxt + HEXT <-> PI
U206_		U206_	CITRATE	CIT xt + HEXT <-> CIT
U207_		U207_	DICARBOXYLATES	FUMxt + HEXT <-> FUM
U208_		U208_	FATTY ACID TRANSPORT	C140xt ->C140
U209_		U209_	FATTY ACID TRANSPORT	C160xt ->C160
U210_		U210_	FATTY ACID TRANSPORT	C161xt ->C161
U211_		U211_	FATTY ACID TRANSPORT	C180xt -> C180
U212_		U212_	FATTY ACID TRANSPORT	C181xt ->C181
U213_		U213_	A-KET OGLUTARATE	AKGxt + HEXT <-> AKG
YLR138W		NHA1	PUTATIVE NA+/H+ ANTIPORTER	NAxt <-> NA + HEXT
YCR028C		FEN2	PANTOTHENATE	PNTOxt + HEXT <-> PNTO
U214_		U214_	ATP DRAIN FLUX FOR CONST ANT MAINT ANENCE REQUIREMENT S	ATP -> ADP + PI

Table A.2. Reactions described in FBA (contiuned)

ORF	E.C.#	GENE	GENE DESC RIPTION	REACTION
YCR024C-A		PMP1	H+-ATPASE SUBUNIT, PLASMA MEMBRANE	ATP -> ADP + PI + HEXT
YEL017C-A		PMP2	H+-ATPASE SUBUNIT, PLASMA MEMBRANE	ATP -> ADP + PI + HEXT
YGL008C		PMA1	H+-TRANSPORTINGP-TYPE ATPASE, MAJOR ISOFORM, PLASMA MEMBRANE	ATP -> ADP + PI + HEXT
YPL036W		PMA2	H+-TRANSPORTINGP-TYPE ATPASE, MINOR ISOFORM, PLASMA MEMBRANE	ATP -> ADP + PI + HEXT
U215_		U215_	GLYCERALDEHYDE TRANSPORT	GLALxt <-> GLAL
U216_		U216_	ACET ALDEHYDE TRANSPORT	ACALxt <->ACAL
YLR237W		THI7	THIAMINE TRANSPORT PROTEIN	THMxt + HEXT -> THIAMIN
YOR071C		YOR071C	PROBABLE LOW AFFINITY THIAMINE TRANSPORTER	THMxt + HEXT -> THIAMIN
YOR192C		YOR192C	PROBABLE LOW AFFINITY THIAMINE TRANSPORTER	THMxt + HEXT -> THIAMIN
YIR028W		DAL4		AT Nxt -> ATN
YJR152W		DAL5		ATTxt -> ATT
U217_		U217_		MT HNxt <-> MTHN
U218_		U218_		PAPxt <->PAP
U219_		U219_		DTTPxt <-> DTTP
U220_		U220_		THYxt <-> THY + HEXT
U221_		U221_		GA6Pxt <-> GA6P
YGR065C		VHT1	H+/BIOTIN SYMPORTER AND MEMBER OF THE ALLANTOATE PERMEASE FAMILY OF THE MAJOR FACILITATOR SUPERFAMILY	BTxt +HEXT <-> BT
U222_		U222_		AONAxt + HEXT <-> AONA
U223_		U223_		DANNAxt + HEXT <-> DANNA
U224_		U224_		OGTxt -> OGT
U225_		U225_		SPRMxt -> SPRM
U226_		U226_		PIMExt -> PIME
U227_		U227_	OXYGEN TRANSPORT	O2xt <->O2
U228_		U228_	CARBON DIOXIDE TRANSPORT	CO2xt <->CO2
YOR011W		AUSI		ERGOST xt <-> ERGOST
YOR011W		AUSI	PUTATIVE STEROL TRANSPORTER	ZYMST xt <-> ZYMST
U229_		U229_		RFLAVxt + HEXT -> RIBFLAV

Table A.2. Reactions described in FBA (contiuned)

Flu xes in g/(gDW.hr)								
Cultivation in the absence of caffeine Cultivation in the presence of caffeine								
OD 600	Remaining Glucose	Glycerol	OD 600	Remaining Glucose	Glycerol			
0.86	3.63	0.1140	0.96	3.29	0.1064			
1.13	1.69	0.0575	1.18	1.34	0.0464			
1.34	1.46	0.0446	1.31	1.82	0.0361			
1.48	1.17	0.0275	1.44	1.65	0.0285			
1.59	1.18	0.0337	1.52	0.99	0.0158			
1.73	1.69	0.0278	1.62	0.84	0.0145			
1.83	1.08	0.0189	1.70	0.93	0.0159			
1.94	0.87	0.0153	1.78	0.58	0.0099			
2.02	0.85	0.0099	1.84	0.50	0.0080			
2.09	0.56	0.0036	1.90	0.67	0.0103			
		Fluxes in mm	ole/(gDW.hr)					
Cultivatio	n in the absence of	of caffeine	Cultivation	n in the presence	of caffeine			
OD 600	Remaining Glucose	Glycerol	OD 600	Remaining Glucose	Glycerol			
0.86	20.14	1.239	0.96	18.28	1.1563			
1.13	9.40	0.625	1.18	7.42	0.5039			
1.34	8.09	0.485	1.31	10.12	0.3924			
1.48	6.48	0.299	1.44	9.14	0.3099			
1.59	6.58	0.366	1.52	5.50	0.1715			
1.73	9.40	0.303	1.62	4.66	0.1581			
1.83	5.97	0.206	1.70	5.16	0.1726			
1.94	4.82	0.166	1.78	3.23	0.1077			
1.94 2.02	4.82 4.75	0.166 0.108	1.78 1.84	3.23 2.77	0.1077 0.0866			

Table A.3. Flux measurements of the cells grown in YPD medium

Table A.4. Members of the SOM clusters

Clusters		Members								
c0	PGI1	PGI1	MDH2	TKL2	TKL1	TAL1				
c3	GLK1	PFK1	FBA 1	TPI1	TDH3	PGK1	GPM 2			
	ENO2	PYK2	MDH1	ZWF1	SOL4	GND2	RPE1			
	RKI1	PDC6	ADH5	ATP1	LCB5	LCB3	U41_			
	PRO1	PRO2	U66_	PRO3	PUT1	HOR2	GPD2			
	U120_	AAC1	MIR1	DIC1	OAC1	U134_	HXT4			
	FPS1	U204_	U228_	CO2xt	ETHxt	GLxt	GLCxt			

APPENDIX B: PROTEINS, PROTEIN INTERACTIONS, MODULES AND TOPOLOGICAL STUDY OF TOR SIGNALLING NETWORK

Proteins, protein interactions (as binary interaction) and modules of the TOR signalling network, gene ontology terms annotated to module members and topological parameters are included in this section.

YAL003W	YDR040C	YFL001W	YGR162W	YJR090C	YLR291C	YNL189W	YPL015C
YAL016W	YDR055W	YFL014W	YGR163W	YJR094C	YLR304C	YNL216W	YPL045W
YAR071W	YDR075W	YFL021W	YGR191W	YJR152W	YLR396C	YNL229C	YPL048W
YBL014C	YDR096W	YFL033C	YGR218W	YKL006W	YLR403W	YNL244C	YPL081W
YBL021C	YDR099W	YFR029W	YGR246C	YKL009W	YML025C	YNL248C	YPL093W
YBL064C	YDR160W	YFR040W	YHR008C	YKL062W	YML097C	YNL262W	YPL111W
YBL103C	YDR174W	YGL009C	YHR030C	YKL092C	YMR028W	YNL298W	YPL152W
YBR001C	YDR204W	YGL035C	YHR094C	YKL109W	YMR037C	YNL314W	YPL154C
YBR077C	YDR216W	YGL037C	YHR136C	YKL113C	YMR068W	YNL330C	YPL180W
YBR092C	YDR223W	YGL049C	YHR186C	YKL125W	YMR131C	YNR001C	YPL203W
YBR097W	YDR283C	YGL062W	YHR205W	YKL166C	YMR146C	YNR003C	YPL207W
YBR251W	YDR323C	YGL073W	YIL021W	YKL203C	YMR231W	YOL020W	YPL211W
YCL025C	YDR380W	YGL095C	YIL033C	YKR007W	YMR239C	YOL067C	YPL265W
YCR005C	YDR453C	YGL118C	YIL153W	YKR028W	YNL006W	YOL139C	YPR010C
YCR027C	YDR477W	YGL167C	YIL155C	YKR034W	YNL015W	YOL151W	YPR040W
YDL042C	YDR495C	YGL180W	YIR023W	YKR059W	YNL037C	YOR014W	YPR104C
YDL047W	YDR507C	YGL187C	YJL035C	YLL041C	YNL039W	YOR036W	YPR110C
YDL060W	YEL009C	YGL190C	YJL098W	YLR060W	YNL068C	YOR101W	YPR160W
YDL102W	YER020W	YGL229C	YJL110C	YLR148W	YNL076W	YOR136W	YPR185W
YDL134C	YER040W	YGL237C	YJL138C	YLR155C	YNL098C	YOR161C	
YDL188C	YER093C	YGL252C	YJL141C	YLR179C	YNL102W	YOR178C	
YDL212W	YER119C	YGR032W	YJL156C	YLR223C	YNL135C	YOR244W	
YDL215C	YER148W	YGR054W	YJL164C	YLR240W	YNL142W	YOR358W	
YDR005C	YER150W	YGR083C	YJL172W	YLR249W	YNL160W	YOR361C	
YDR011W	YER177W	YGR095C	YJR066W	YLR258W	YNL183C	YOR372C	

Table B.1. ORF of proteins found related to TOR signalling in the literature

YAL003W	YLR249W	YDL188C	YPR010C	YDR477W	YER177W	YER177W	YNL076W
YAL016W	YDL134C	YDL212W	YDL212W	YDR477W	YGL180W	YER177W	YNL102W
YAL016W	YDL188C	YDL212W	YPL265W	YDR477W	YHR205W	YER177W	YNL330C
YAL016W	YMR028W	YDR005C	YNR003C	YDR477W	YJL110C	YFL001W	YKL009W
YAL016W	YPL152W	YDR005C	YPR110C	YDR477W	YLR258W	YFL001W	YKR059W
YBL014C	YBL014C	YDR011W	YDR011W	YDR477W	YMR037C	YFL001W	YNL135C
YBL014C	YDL042C	YDR011W	YHR094C	YDR477W	YNL330C	YFL021W	YDR099W
YBR077C	YGR163W	YDR011W	YPL265W	YDR477W	YOR178C	YFL021W	YJL164C
YBR077C	YJR066W	YDR075W	YBL103C	YDR477W	YPL180W	YFL021W	YNL098C
YBR092C	YDL047W	YDR075W	YDR099W	YDR477W	YPR185W	YFL021W	YNL229C
YBR092C	YPL152W	YDR075W	YKL113C	YDR495C	YLR148W	YFL033C	YDR096W
YBR251W	YGR162W	YDR096W	YKL062W	YDR495C	YLR396C	YFL033C	YFL033C
YCL025C	YCL025C	YDR096W	YMR037C	YDR495C	YMR231W	YFL033C	YMR037C
YCL025C	YDL212W	YDR099W	YBL103C	YDR495C	YPL045W	YFR029W	YFR029W
YCL025C	YPL265W	YDR099W	YBR001C	YDR507C	YDR507C	YFR029W	YJL156C
YCR005C	YCR005C	YDR099W	YDR099W	YEL009C	YEL009C	YFR040W	YGL229C
YCR005C	YOR101W	YDR099W	YER177W	YER020W	YDL042C	YFR040W	YIL153W
YDL042C	YDL042C	YDR099W	YGL252C	YER020W	YHR205W	YFR040W	YJL098W
YDL042C	YLR249W	YDR099W	YJL164C	YER020W	YNL037C	YFR040W	YJL141C
YDL047W	YDL047W	YDR099W	YNL330C	YER020W	YOR101W	YFR040W	YKR028W
YDL047W	YDL188C	YDR160W	YFR029W	YER020W	YPL203W	YFR040W	YPR040W
YDL047W	YDR075W	YDR160W	YJL156C	YER040W	YDL047W	YGL035C	YDR096W
YDL047W	YDR099W	YDR174W	YDR174W	YER040W	YDR099W	YGL035C	YDR099W
YDL047W	YDR283C	YDR174W	YER148W	YER040W	YDR477W	YGL035C	YDR174W
YDL047W	YFR040W	YDR174W	YJR066W	YER040W	YEL009C	YGL035C	YDR477W
YDL047W	YGL229C	YDR174W	YNL076W	YER040W	YFL021W	YGL037C	YGL037C
YDL047W	YIL153W	YDR174W	YPL180W	YER040W	YGR218W	YGL049C	YGR162W
YDL047W	YJL141C	YDR216W	YDR477W	YER040W	YJL164C	YGL073W	YDR477W
YDL047W	YKR028W	YDR216W	YDR507C	YER040W	YJR066W	YGL073W	YER040W
YDL047W	YMR028W	YDR216W	YER148W	YER040W	YNL098C	YGL073W	YFL033C
YDL047W	YNL229C	YDR216W	YNL330C	YER093C	YER177W	YGL073W	YHR030C
YDL047W	YNL298W	YDR283C	YDR174W	YER093C	YHR030C	YGL073W	YHR205W
YDL047W	YPL152W	YDR283C	YDR283C	YER093C	YKL203C	YGL073W	YKL062W
YDL060W	YGR054W	YDR283C	YEL009C	YER093C	YMR068W	YGL073W	YMR037C
YDL060W	YGR162W	YDR283C	YGR083C	YER093C	YNL006W	YGL073W	YNL135C
YDL102W	YKL113C	YDR283C	YLR291C	YER148W	YBL014C	YGL073W	YOR014W
YDL134C	YDL188C	YDR283C	YNL298W	YER148W	YEL009C	YGL073W	YOR178C
YDL134C	YDR075W	YDR323C	YLR148W	YER148W	YER148W	YGL095C	YDR323C
YDL134C	YKL203C	YDR323C	YLR240W	YER148W	YGR246C	YGL167C	YER040W
YDL134C	YMR028W	YDR323C	YMR231W	YER148W	YLR249W	YGL167C	YJR066W
YDL134C	YPR110C	YDR477W	YDL047W	YER148W	YOL067C	YGL167C	YNL006W
YDL188C	YDR075W	YDR477W	YDR040C	YER177W	YBL103C	YGL167C	YNL183C
YDL188C	YHR205W	YDR477W	YDR096W	YER177W	YDR216W	YGL180W	YDR099W
YDL188C	YJL141C	YDR477W	YDR099W	YER177W	YJL164C	YGL180W	YFL001W
YDL188C	YMR028W	YDR477W	YDR477W	YER177W	YLR258W	YGL180W	YFR029W

Table B.2. Protein-protein interactions found using Osprey 1.2.0

Table B.2. Protein-protein interactions found using Osprey 1.2.0 (continued)

YGL180W	YGL180W	YGR163W	YOL067C	YIL153W	YKL113C	YJR066W	YFL033C
YGL180W	YGL190C	YGR191W	YDL212W	YIL153W	YLR258W	YJR066W	YGL252C
YGL180W	YNL314W	YGR218W	YKR059W	YIL153W	YMR028W	YJR066W	YGR032W
YGL180W	YPR160W	YGR218W	YNL189W	YIL153W	YNL098C	YJR066W	YGR163W
YGL190C	YAL016W	YGR246C	YDR005C	YIL153W	YNL229C	YJR066W	YGR218W
YGL190C	YDL134C	YGR246C	YNR003C	YIL153W	YNL314W	YJR066W	YHR094C
YGL190C	YDL188C	YHR008C	YGL167C	YIL153W	YPL152W	YJR066W	YHR205W
YGL190C	YDR507C	YHR030C	YHR030C	YJL098W	YDL047W	YJR066W	YIR023W
YGL190C	YER177W	YHR030C	YJL138C	YJL098W	YGL229C	YJR066W	YJL110C
YGL190C	YHR030C	YHR030C	YJR066W	YJL098W	YJL098W	YJR066W	YKR034W
YGL190C	YKL113C	YHR030C	YNL037C	YJL098W	YKR028W	YJR066W	YLR148W
YGL190C	YLR249W	YHR094C	YDL212W	YJL098W	YLR249W	YJR066W	YLR240W
YGL190C	YMR028W	YHR094C	YER020W	YJL098W	YOL139C	YJR066W	YLR396C
YGL190C	YNL098C	YHR094C	YHR094C	YJL098W	YOR244W	YJR066W	YMR231W
YGL190C	YNL298W	YHR094C	YPL265W	YJL098W	YPR040W	YJR066W	YNL189W
YGL190C	YPL180W	YHR186C	YFL033C	YJL110C	YJL110C	YJR066W	YNL229C
YGL229C	YPR040W	YHR186C	YJR066W	YJL138C	YGL049C	YJR066W	YNL314W
YGL237C	YBL021C	YHR186C	YNL006W	YJL138C	YLR249W	YJR066W	YPL045W
YGL237C	YJL138C	YHR186C	YPL180W	YJL138C	YOL139C	YJR066W	YPL180W
YGL237C	YKR028W	YHR186C	YPR040W	YJL141C	YDR099W	YJR066W	YPR160W
YGL237C	YOL139C	YHR205W	YDR096W	YJL141C	YDR223W	YJR090C	YDR099W
YGL237C	YOR358W	YHR205W	YFL033C	YJL141C	YDR453C	YJR090C	YGL190C
YGL252C	YCR005C	YHR205W	YHR008C	YJL141C	YER177W	YJR090C	YHR094C
YGL252C	YER177W	YHR205W	YJL141C	YJL141C	YGL073W	YJR090C	YJL156C
YGL252C	YGL252C	YHR205W	YJL164C	YJL141C	YMR037C	YJR090C	YNL076W
YGL252C	YJR090C	YHR205W	YKL109W	YJL164C	YFL001W	YJR094C	YJR094C
YGL252C	YNL006W	YHR205W	YLR223C	YJL164C	YFL033C	YKL009W	YLR249W
YGL252C	YNL076W	YHR205W	YNL098C	YJL164C	YGL167C	YKL009W	YPL211W
YGL252C	YNR001C	YIL021W	YER148W	YJL164C	YIL033C	YKL062W	YFL033C
YGL252C	YOL067C	YIL021W	YFL001W	YJL164C	YJL110C	YKL062W	YGL037C
YGR054W	YGR054W	YIL021W	YIL021W	YJL164C	YJL141C	YKL062W	YHR205W
YGR054W	YJL138C	YIL033C	YFL033C	YJL164C	YJL164C	YKL109W	YBL021C
YGR054W	YKR059W	YIL033C	YIL033C	YJL164C	YKL062W	YKL109W	YGL237C
YGR054W	YOL139C	YIL033C	YJR094C	YJL164C	YKL166C	YKL109W	YOR358W
YGR095C	YGR095C	YIL033C	YKL062W	YJL164C	YLR258W	YKL113C	YDR323C
YGR095C	YNL189W	YIL033C	YMR239C	YJL164C	YNL189W	YKL113C	YDR495C
YGR162W	YGR162W	YIL033C	YOL139C	YJL164C	YPL203W	YKL113C	YGL167C
YGR162W	YJL138C	YIL033C	YPL048W	YJL164C	YPR040W	YKL113C	YJR090C
YGR162W	YKR059W	YIL033C	YPR040W	YJL164C	YPR160W	YKL113C	YLR148W
YGR162W	YLR249W	YIL153W	YAL016W	YJR066W	YAL016W	YKL113C	YLR240W
YGR162W	YNL244C	YIL153W	YDL134C	YJR066W	YBR097W	YKL113C	YLR396C
YGR162W	YNL262W	YIL153W	YDL188C	YJR066W	YDR011W	YKL113C	YLR403W
YGR162W	YOL139C	YIL153W	YDR075W	YJR066W	YDR040C	YKL113C	YMR231W
YGR163W	YGL252C	YIL153W	YDR477W	YJR066W	YEL009C	YKL113C	YNL298W
YGR163W	YGR163W	YIL153W	YHR030C	YJR066W	YFL021W	YKL125W	YBL014C

Table B.2. Protein-protein interactions found using Osprey 1.2.0 (continued)

YKL166C	YDL047W	YLR291C	YGR083C	YNL098C	YFL033C	YNL248C	YPR010C
YKL166C	YFL033C	YLR291C	YKR034W	YNL098C	YIL033C	YNL248C	YPR110C
YKL166C	YGL180W	YLR291C	YLR258W	YNL098C	YJL141C	YNL262W	YDL102W
YKL166C	YGL190C	YLR291C	YLR291C	YNL098C	YJL164C	YNL262W	YKL113C
YKL166C	YIL033C	YLR291C	YNL229C	YNL098C	YJR094C	YNL262W	YNL262W
YKL166C	YKL166C	YLR291C	YNL244C	YNL098C	YKL062W	YNL298W	YDR099W
YKL166C	YNL298W	YLR291C	YNL314W	YNL098C	YKL166C	YNL298W	YDR507C
YKL166C	YPR160W	YLR291C	YPR010C	YNL098C	YMR037C	YNL298W	YER177W
YKL203C	YAL016W	YLR304C	YNR001C	YNL098C	YNL098C	YNL298W	YHR030C
YKL203C	YDL047W	YLR396C	YDR323C	YNL098C	YNL183C	YNL298W	YIL021W
YKL203C	YDR011W	YLR396C	YLR396C	YNL098C	YOR101W	YNL298W	YIL153W
YKL203C	YDR040C	YLR396C	YOR036W	YNL098C	YPL203W	YNL298W	YJL098W
YKL203C	YER040W	YLR403W	YNL098C	YNL102W	YDL102W	YNL298W	YJR094C
YKL203C	YGR032W	YMR028W	YDR075W	YNL102W	YKL125W	YNL298W	YNL068C
YKL203C	YHR030C	YMR028W	YJR066W	YNL102W	YNL189W	YNL298W	YNL229C
YKL203C	YHR094C	YMR028W	YPR040W	YNL102W	YNL262W	YNL314W	YIR023W
YKL203C	YJR066W	YMR037C	YGL037C	YNL135C	YDR174W	YNL314W	YNL314W
YKL203C	YKL203C	YMR037C	YHR205W	YNL135C	YJR066W	YNL330C	YDL042C
YKL203C	YMR028W	YMR037C	YKL062W	YNL142W	YKR034W	YNL330C	YFL001W
YKL203C	YNL135C	YMR068W	YKL203C	YNL142W	YNL098C	YNL330C	YGR162W
YKL203C	YNL183C	YMR068W	YNL006W	YNL142W	YNL142W	YNL330C	YJR090C
YKL203C	YNL229C	YMR131C	YMR131C	YNL142W	YNL229C	YNL330C	YNL248C
YKR007W	YBR077C	YMR131C	YPL207W	YNL189W	YDR174W	YNL330C	YNL298W
YKR007W	YGR163W	YMR146C	YMR146C	YNL189W	YDR453C	YNL330C	YNL330C
YKR007W	YKR007W	YMR146C	YPL081W	YNL189W	YER040W	YNL330C	YPR104C
YKR028W	YDR283C	YMR231W	YGL095C	YNL189W	YGL037C	YNR001C	YCR005C
YKR028W	YER177W	YMR231W	YLR396C	YNL189W	YKL009W	YNR003C	YNL248C
YKR028W	YGL229C	YMR231W	YMR231W	YNL189W	YMR239C	YNR003C	YNR003C
YKR034W	YJL110C	YMR231W	YPL045W	YNL189W	YNL189W	YNR003C	YPR010C
YKR034W	YKR034W	YMR239C	YMR239C	YNL189W	YPL111W	YNR003C	YPR110C
YKR034W	YNL229C	YNL006W	YER040W	YNL216W	YER148W	YOL020W	YDL212W
YKR059W	YGL049C	YNL006W	YJR066W	YNL216W	YLR223C	YOL067C	YBL103C
YKR059W	YJL138C	YNL006W	YKL203C	YNL216W	YNL330C	YOL067C	YNR001C
YKR059W	YOL139C	YNL006W	YPL180W	YNL216W	YPR104C	YOL139C	YGL049C
YLR148W	YGL095C	YNL037C	YNR001C	YNL229C	YEL009C	YOL139C	YNL262W
YLR148W	YLR148W	YNL037C	YOR136W	YNL229C	YER040W	YOR014W	YAL016W
YLR148W	YLR396C	YNL039W	YER148W	YNL229C	YJL110C	YOR014W	YDL134C
YLR148W	YMR231W	YNL039W	YGR246C	YNL229C	YNL229C	YOR014W	YDL188C
YLR148W	YOR036W	YNL068C	YOR361C	YNL244C	YGL049C	YOR014W	YER177W
YLR148W	YPL045W	YNL068C	YOR372C	YNL244C	YMR146C	YOR014W	YFR040W
YLR240W	YBR097W	YNL076W	YDL102W	YNL248C	YDR174W	YOR014W	YKL113C
YLR249W	YPL048W	YNL076W	YNL229C	YNL248C	YFL001W	YOR014W	YPL152W
YLR258W	YLR258W	YNL098C	YDL060W	YNL248C	YKL125W	YOR036W	YDR323C
YLR258W	YOR178C	YNL098C	YDR096W	YNL248C	YMR239C	YOR036W	YGL095C
YLR291C	YGL252C	YNL098C	YER020W	YNL248C	YNL248C	YOR101W	YIL033C

Table B.2. Protein-protein interactions found using Osprey 1.2.0 (continued)

		1			0 1 0		,
YOR101W	YJL164C	YOR244W	YNL229C	YPL152W	YGL190C	YPR040W	YDL134C
YOR101W	YOL067C	YOR244W	YNL298W	YPL152W	YHR030C	YPR040W	YDL188C
YOR101W	YOR101W	YOR244W	YNL330C	YPL152W	YMR028W	YPR040W	YDR075W
YOR101W	YPL203W	YOR244W	YOL067C	YPL180W	YAL016W	YPR104C	YDR174W
YOR136W	YNR001C	YOR244W	YOR014W	YPL180W	YDR096W	YPR104C	YDR223W
YOR244W	YDL042C	YOR244W	YPL045W	YPL180W	YHR030C	YPR104C	YHR205W
YOR244W	YDR099W	YOR358W	YBL021C	YPL180W	YNL248C	YPR104C	YJL098W
YOR244W	YDR323C	YOR361C	YMR146C	YPL180W	YOR014W	YPR104C	YLR223C
YOR244W	YDR495C	YOR361C	YNL244C	YPL203W	YDR096W	YPR110C	YDR075W
YOR244W	YER177W	YOR361C	YOR361C	YPL203W	YFL033C	YPR110C	YDR216W
YOR244W	YFL001W	YPL045W	YDR323C	YPL203W	YGL035C	YPR110C	YDR453C
YOR244W	YFR040W	YPL045W	YGL095C	YPL203W	YIL033C	YPR110C	YDR495C
YOR244W	YGL095C	YPL045W	YLR396C	YPL203W	YJL141C	YPR110C	YGL062W
YOR244W	YGL252C	YPL048W	YAL003W	YPL203W	YKL062W	YPR110C	YKL113C
YOR244W	YIR023W	YPL048W	YKL009W	YPL203W	YMR037C	YPR110C	YNL229C
YOR244W	YJR090C	YPL093W	YKL009W	YPL203W	YPL203W	YPR110C	YOR014W
YOR244W	YKL113C	YPL093W	YPL093W	YPL211W	YPL093W	YPR110C	YOR136W
YOR244W	YLR148W	YPL111W	YPL111W	YPL265W	YPL265W	YPR110C	YPR010C
YOR244W	YLR396C	YPL152W	YDL134C	YPR010C	YDL042C	YPR110C	YPR110C
YOR244W	YMR231W	YPL152W	YDL188C	YPR010C	YKL125W	YPR185W	YGL180W

Table B.3. Modules found in the TOR signalling network

Module number	Module members									
1	YOR244W	YKL113C	YLR396C	YMR231W	YLR148W	YDR323C				
2	YOR244W	YKL113C	YLR396C	YMR231W	YLR148W	YDR495C				
3	YOR244W	YPL045W	YMR231W	YLR148W	YLR396C	YDR323C				
4	YOR244W	YPL045W	YMR231W	YLR148W	YLR396C	YDR495C				
5	YOR244W	YPL045W	YMR231W	YLR148W	YGL095C	YDR323C				
6	YGL190C	YAL016W	YPL152W	YMR028W	YDL188C	YDL134C				
7	YDR096W	YKL062W	YMR037C	YNL098C	YFL033C	YHR205W				
8	YDR096W	YKL062W	YMR037C	YNL098C	YFL033C	YPL203W				
9	YIL033C	YJL164C	YNL098C	YPL203W	YKL062W	YFL033C				
10	YPL152W	YAL016W	YDL188C	YDL134C	YMR028W	YIL153W				
11	YJR066W	YLR396C	YMR231W	YPL045W	YLR148W					
12	YFR040W	YJL098W	YGL229C	YDL047W	YKR028W					
13	YOR244W	YDR099W	YER177W	YNL298W	YNL330C					
14	YDL047W	YIL153W	YMR028W	YDL188C	YDR075W					
15	YDL047W	YIL153W	YMR028W	YDL188C	YPL152W					
16	YGL049C	YKR059W	YJL138C	YGR162W	YOL139C					
17	YPR040W	YDR075W	YMR028W	YDL188C	YDL134C					
18	YGL073W	YHR205W	YKL062W	YMR037C	YFL033C					
19	YIL033C	YJL164C	YNL098C	YPL203W	YOR101W					
20	YIL033C	YJL164C	YNL098C	YKL166C	YFL033C					
21	YDR075W	YDL134C	YMR028W	YDL188C	YIL153W					
22	YPL152W	YAL016W	YDL188C	YDL134C	YOR014W					
23	YKL062W	YNL098C	YFL033C	YHR205W	YJL164C					

 Table B.3. Modules found in the TOR signalling network (continued)

Module	Module members			Module	м	odule membe	rs
number			15	number	111		
61	YJR066W	YKL203C	YHR030C	105	YDR323C	YLR240W	YKL113C
62	YJR066W	YKL203C	YDR040C	106	YLR223C	YPR104C	YNL216W
63	YJR066W	YKL203C	YNL135C	107	YLR223C	YPR104C	YHR205W
64	YJR066W	YKL203C	YGR032W	108	YDR099W	YER177W	YBL103C
65	YJR066W	YBR097W	YLR240W	109	YDR099W	YDL047W	YJL141C
66	YJR066W	YGL252C	YGR163W	110	YDR099W	YDL047W	YDR075W
67	YJR066W	YGL252C	YNL006W	111	YDR099W	YDL047W	YNL298W
68	YJR066W	YNL189W	YDR174W	112	YDR099W	YDR075W	YBL103C
69	YJR066W	YHR205W	YFL033C	113	YDR099W	YGL035C	YDR477W
70	YJR066W	YHR186C	YFL033C	114	YKL113C	YDR495C	YPR110C
71	YJR066W	YIR023W	YNL314W	115	YKL113C	YGL190C	YNL298W
72	YJR066W	YDR174W	YNL135C	116	YKL113C	YGL190C	YJR090C
73	YJR066W	YDR174W	YPL180W	117	YKL113C	YDR075W	YPR110C
74	YJR066W	YBR077C	YGR163W	118	YKL113C	YDR075W	YIL153W
75	YJR066W	YPL180W	YHR030C	119	YKL113C	YNL298W	YIL153W
76	YJR066W	YPL180W	YAL016W	120	YKL113C	YOR014W	YPR110C
77	YFR040W	YJL098W	YOR244W	121	YDL047W	YIL153W	YDR477W
78	YFR040W	YJL141C	YDL047W	122	YDL047W	YKL203C	YMR028W
79	YFR040W	YIL153W	YDL047W	123	YDL047W	YJL141C	YDL188C
80	YFR040W	YOR014W	YOR244W	124	YDL047W	YKR028W	YDR283C
81	YJL098W	YDL047W	YNL298W	125	YDL047W	YBR092C	YPL152W
82	YJL098W	YOR244W	YNL298W	126	YDL047W	YDR283C	YNL298W
83	YPL211W	YKL009W	YPL093W	127	YDL047W	YKL166C	YNL298W
84	YCR005C	YGL252C	YNR001C	128	YJL156C	YDR160W	YFR029W
85	YGL180W	YDR477W	YDR099W	129	YNL244C	YGL049C	YGR162W
86	YGL180W	YDR477W	YPR185W	130	YNL244C	YOR361C	YMR146C
87	YGL180W	YGL190C	YKL166C	131	YJL141C	YHR205W	YDL188C
88	YGL180W	YPR160W	YKL166C	132	YGL190C	YAL016W	YPL180W
89	YER148W	YNL039W	YGR246C	133	YGL190C	YHR030C	YPL152W
90	YOR244W	YKL113C	YNL298W	134	YGL190C	YHR030C	YNL298W
91	YOR244W	YKL113C	YJR090C	135	YGL190C	YHR030C	YPL180W
92	YOR244W	YKL113C	YOR014W	136	YGL190C	YER177W	YNL298W
93	YOR244W	YGL252C	YOL067C	137	YGL190C	YDR507C	YNL298W
94	YOR244W	YER177W	YOR014W	138	YGL190C	YNL298W	YKL166C
95	YOR244W	YFL001W	YNL330C	139	YGL190C	YKL166C	YNL098C
96	YOR244W	YNL330C	YDL042C	140	YDR477W	YDR096W	YGL035C
97	YOR244W	YNL229C	YNL298W	141	YDR477W	YDR096W	YPL180W
98	YPL048W	YLR249W	YKL009W	142	YDR477W	YGL073W	YOR178C
99	YPL048W	YLR249W	YAL003W	143	YDR477W	YGL073W	YER040W
100	YKR007W	YBR077C	YGR163W	144	YDR477W	YER177W	YLR258W
101	YNL262W	YDL102W	YKL113C	145	YDR477W	YOR178C	YLR258W
102	YNL262W	YDL102W	YNL102W	146	YDR477W	YLR258W	YIL153W
103	YNL262W	YGR162W	YOL139C	147	YER020W	YNL098C	YHR205W
104	YGL037C	YKL062W	YMR037C	148	YOL067C	YGL252C	YNR001C

 Table B.3. Modules found in the TOR signalling network (continued)

Module	Module members			Module	Ν	Iodule members
number	111			number	11	
149	YOL067C	YGL252C	YGR163W	193	YER148W	YIL021W
150	YDL212W	YPL265W	YHR094C	194	YER148W	YNL216W
151	YDL212W	YPL265W	YCL025C	195	YER148W	YDR174W
152	YDR096W	YGL035C	YPL203W	196	YER148W	YEL009C
153	YJR094C	YIL033C	YNL098C	197	YER148W	YDR216W
154	YNL216W	YNL330C	YPR104C	198	YER148W	YLR249W
155	YNL076W	YGL252C	YER177W	199	YOR244W	YIR023W
156	YNL076W	YGL252C	YJR090C	200	YPL048W	YIL033C
157	YJL138C	YGR162W	YLR249W	201	YGL037C	YNL189W
158	YJL138C	YGL237C	YOL139C	202	YGR054W	YDL060W
159	YDR005C	YNR003C	YPR110C	203	YNL068C	YOR372C
160	YDR005C	YNR003C	YGR246C	204	YNL068C	YNL298W
161	YPR040W	YIL033C	YJL164C	205	YNL068C	YOR361C
162	YER093C	YKL203C	YHR030C	206	YDR099W	YBR001C
163	YGR083C	YDR283C	YLR291C	207	YBL014C	YKL125W
164	YER177W	YJL164C	YLR258W	208	YBL014C	YDL042C
165	YFL001W	YNL330C	YNL248C	209	YKL113C	YLR403W
166	YDR075W	YDL134C	YPR110C	210	YKL113C	YGL167C
167	YPL152W	YHR030C	YIL153W	211	YJL156C	YJR090C
168	YKL125W	YPR010C	YNL248C	212	YNL244C	YLR291C
169	YPL265W	YHR094C	YDR011W	213	YJL141C	YDR223W
170	YNL298W	YIL153W	YHR030C	214	YJL141C	YDR453C
171	YPR110C	YDL134C	YOR014W	215	YNL102W	YNL189W
172	YNL248C	YDR174W	YPL180W	216	YNL102W	YER177W
173	YNL142W	YKR034W	YNL229C	217	YNL102W	YKL125W
174	YJL164C	YNL189W	YER040W	218	YGL190C	YLR249W
175	YJL164C	YPR160W	YKL166C	219	YDR477W	YDR040C
176	YJL164C	YGL167C	YER040W	220	YDR477W	YJL110C
177	YNR001C	YOR136W	YNL037C	221	YER020W	YHR094C
178	YOR014W	YAL016W	YPL180W	222	YER020W	YDL042C
179	YLR291C	YKR034W	YNL229C	223	YER020W	YNL037C
180	YJR066W	YPR160W		224	YOL067C	YBL103C
181	YJL098W	YLR249W		225	YOL067C	YOR101W
182	YJL098W	YOL139C		226	YKR028W	YER177W
183	YJL098W	YPR104C		227	YKR028W	YGL237C
184	YMR131C	YPL207W		228	YIL021W	YFL001W
185	YOL020W	YDL212W		229	YIL021W	YNL298W
186	YGR191W	YDL212W		230	YJR094C	YNL298W
187	YCR005C	YOR101W		231	YDL102W	YNL076W
188	YGL180W	YFR029W		232	YKR059W	YFL001W
189	YGL180W	YFL001W		233	YKR059W	YGR218W
190	YGL180W	YNL314W		234	YPL111W	YNL189W
191	YER148W	YBL014C		235	YNL076W	YDR174W
192	YER148W	YOL067C		236	YNL076W	YNL229C

 Table B.3. Modules found in the TOR signalling network (continued)

Module	Module members	Module	Module members		
number	Wodule members	number	Wodule members		
237	YLR403W YNL098C	264	YPR010C YDL188C		
238	YJL138C YHR030C	265	YPR010C YLR291C		
239	YPR040W YHR186C	266	YDL060W YGR162W		
240	YDR223W YPR104C	267	YDL060W YNL098C		
241	YER093C YER177W	268	YMR146C YPL081W		
242	YGL073W YHR030C	269	YNL248C YMR239C		
243	YGL073W YNL135C	270	YGR095C YNL189W		
244	YGL073W YOR014W	271	YGL035C YDR174W		
245	YBR251W YGR162W	272	YNL142W YNL098C		
246	YKL009W YNL189W	273	YJR090C YHR094C		
247	YKL009W YFL001W	274	YHR008C YHR205W		
248	YIL033C YOL139C	275	YHR008C YGL167C		
249	YIL033C YMR239C	276	YJL164C YJL110C		
250	YFL001W YNL135C	277	YLR258W YLR291C		
251	YFL001W YJL164C	278	YNR001C YLR304C		
252	YDR283C YDR174W	279	YIL153W YNL314W		
253	YDR283C YEL009C	280	YIL153W YNL098C		
254	YDR507C YDR216W	281	YMR239C YNL189W		
255	YKL109W YHR205W	282	YNL183C YKL203C		
256	YNL330C YGR162W	283	YNL183C YGL167C		
257	YPR110C YDR216W	284	YNL183C YNL098C		
258	YPR110C YGL062W	285	YPR104C YDR174W		
259	YPR110C YNL229C	286	YDR453C YNL189W		
260	YPR110C YOR136W	287	YNL037C YHR030C		
261	YPR110C YDR453C	288	YLR291C YGL252C		
262	YDL042C YPR010C	289	YLR291C YNL314W		
263	YDL042C YLR249W				

Table B.3. Modules found in the TOR signalling network (continued)

OK K 0 C OKP K 0 C YAL03W 2 0.00 1.00 YFL033C 12 296.20 0.45 YAL016W 10 98.20 0.53 YFR029W 3 148.81 0.33 YBL014C 3 33.61 0.00 YGL035C 5 45.01 0.30 YBL03C 4 24.03 0.33 YGL037C 3 22.22 0.33 YBR001C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR092C 2 0.00 1.00 YGL049C 5 70.66 0.80 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR057C 3 26.31 0.33
TAL003W 2 0.00 1.00 TPL033C 12 296.20 0.43 YAL016W 10 98.20 0.53 YFR029W 3 148.81 0.33 YBL014C 3 33.61 0.00 YFR040W 9 126.63 0.33 YBL021C 3 0.00 1.00 YGL03SC 5 45.01 0.30 YBL01C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR07C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YDL025C 2 0.00 1.00 YGL180W 9 959.20 0.11 YCR005C 3 26.31
YAL016W 10 98.20 0.53 YFR029W 5 148.81 0.53 YBL014C 3 33.61 0.00 YFR040W 9 126.63 0.33 YBL021C 3 0.00 1.00 YGL035C 5 45.01 0.30 YBL103C 4 24.03 0.33 YGL037C 3 22.22 0.33 YBR001C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR097C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YBR057C 3 26.31 0.33 YGL095C 6 27.06 0.80 YDL025C 2 0.00 1.00 YGL29C 5 4.96 0.80 YDL042C 6 356.39 0.07 YGL29C 5 4.96 0.80 YDL060W 3 131.46
YBL014C 3 33.51 0.00 YPR040W 9 126.63 0.33 YBL021C 3 0.00 1.00 YGL035C 5 45.01 0.30 YBL103C 4 24.03 0.33 YGL037C 3 22.22 0.33 YBR001C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR077C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL025C 6 27.06 0.80 YBR05C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL29C 5 4.96 0.80 YDL047W 19 975.45 </td
YBL021C 3 0.00 1.00 YGL03SC 5 45.01 0.30 YBL03C 4 24.03 0.33 YGL037C 3 22.22 0.33 YBR001C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR097C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR092C 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YBR251W 1 0.00 1.00 YGL167C 7 235.86 0.19 YCL025C 2 0.00 1.00 YGL180W 9 595.20 0.11 YCR005C 3 26.31 0.33 YGL29C 5 4.96 0.80 YDL042C 6 356.39 0.07 YGL29C 5 4.96 0.80 YDL060W 3 131.46
YBL103C 4 24.03 0.33 YGL037C 3 22.22 0.33 YBR001C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR077C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR092C 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR05C 2 0.00 1.00 YGL073W 19 955.20 0.11 YCR05C 3 26.31 0.33 YGL29C 5 4.96 0.80 YDL042C 6 356.39 0.07 YGL23C 12 1082.24 0.20 YDL047W 19 975.45 0.22 YGL337C 6 341.60 0.27 YDL040W 3 131.
YBR001C 1 0.00 0.00 YGL049C 5 70.56 0.70 YBR077C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR092C 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YBR057C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL25C 12 0.00 1.00 YDL047W 19 975.45 0.22 YGL27C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL134C 13 30
YBR077C 3 103.89 0.67 YGL062W 1 0.00 0.00 YBR092C 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YBR251W 1 0.00 0.00 YGL167C 7 235.86 0.19 YCL025C 2 0.00 1.00 YGL180W 9 595.20 0.11 YCR005C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL229C 5 4.96 0.80 YDL047W 19 975.45 0.22 YGL237C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL180C 3 30
YBR092C 2 0.00 1.00 YGL073W 11 245.09 0.22 YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YBR251W 1 0.00 0.00 YGL167C 7 235.86 0.19 YCL025C 2 0.00 1.00 YGL180W 9 595.20 0.11 YCR005C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL229C 5 4.96 0.80 YDL047W 19 975.45 0.22 YGL37C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL188C 13 309.92 0.37 YGR083C 2 0.00 1.00 YDR018C 3 30
YBR097W 2 0.00 1.00 YGL095C 6 27.06 0.80 YBR251W 1 0.00 0.00 YGL167C 7 235.86 0.19 YCL025C 2 0.00 1.00 YGL180W 9 595.20 0.11 YCR005C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL229C 5 4.96 0.80 YDL047W 19 975.45 0.22 YGL237C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGL252C 12 1082.24 0.20 YDL102W 4 32.70 0.33 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL188C 13 309.92 0.37 YGR083C 2 0.00 1.00 YDR055C 3 <td< td=""></td<>
YBR251W 1 0.00 0.00 YGL167C 7 235.86 0.19 YCL025C 2 0.00 1.00 YGL180W 9 595.20 0.11 YCR005C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL229C 5 4.96 0.80 YDL047W 19 975.45 0.22 YGL237C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGL252C 12 1082.24 0.20 YDL102W 4 32.70 0.33 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL188C 13 309.92 0.37 YGR083C 2 0.00 1.00 YDR05C 3 30.55 0.67 YGR162W 10 923.81 0.20 YDR040C 3 <
YCL025C 2 0.00 1.00 YGL180W 9 595.20 0.11 YCR005C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL229C 5 4.96 0.80 YDL047W 19 975.45 0.22 YGL237C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGL252C 12 1082.24 0.20 YDL102W 4 32.70 0.33 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL188C 13 309.92 0.37 YGR083C 2 0.00 1.00 YDR05C 3 30.55 0.67 YGR162W 10 923.81 0.20 YDR011W 4 169.74 0.67 YGR163W 5 255.53 0.40 YDR040C 3
YCR005C 3 26.31 0.33 YGL190C 16 939.58 0.18 YDL042C 6 356.39 0.07 YGL29C 5 4.96 0.80 YDL047W 19 975.45 0.22 YGL237C 6 341.60 0.27 YDL060W 3 131.46 0.00 YGL252C 12 1082.24 0.20 YDL102W 4 32.70 0.33 YGR032W 2 0.00 1.00 YDL134C 11 155.31 0.49 YGR054W 4 10.99 0.50 YDL188C 13 309.92 0.37 YGR083C 2 0.00 1.00 YDL12W 5 750.71 0.20 YGR095C 1 0.00 0.00 YDR005C 3 30.55 0.67 YGR163W 5 255.53 0.40 YDR011W 4 169.74 0.67 YGR163W 5 255.53 0.40 YDR040C 3 <
YDL042C6356.390.07YGL229C54.960.80YDL047W19975.450.22YGL237C6341.600.27YDL060W3131.460.00YGL252C121082.240.20YDL102W432.700.33YGR032W20.001.00YDL134C11155.310.49YGR054W410.990.50YDL188C13309.920.37YGR083C20.001.00YDL212W5750.710.20YGR095C10.000.00YDR05C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR218W4175.130.50YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR096W20.001.00YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR232C7298.350.14YIL021W363.870.00YDR323C968.400.61Y
YDL047W19975.450.22YGL237C6341.600.27YDL060W3131.460.00YGL252C121082.240.20YDL102W432.700.33YGR032W20.001.00YDL134C11155.310.49YGR054W410.990.50YDL188C13309.920.37YGR083C20.001.00YDL212W5750.710.20YGR095C10.000.00YDR05C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR23W22.730.00YHR205W161450.150.23YDR23W22.730.00YHR205W161450.150.23YDR23C968.400.61YU.033C12592.530.27
YDL060W3131.460.00YGL252C121082.240.20YDL102W432.700.33YGR032W20.001.00YDL134C11155.310.49YGR054W410.990.50YDL188C13309.920.37YGR083C20.001.00YDL212W5750.710.20YGR095C10.000.00YDR005C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR218W4175.130.50YDR075W10184.990.38YGR246C461.950.33YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR08C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR233C7298.350.14YIL021W363.870.00YDR333C968.400.61YIL033C12592.530.27
YDL102W432.700.33YGR032W20.001.00YDL134C11155.310.49YGR054W410.990.50YDL188C13309.920.37YGR083C20.001.00YDL212W5750.710.20YGR095C10.000.00YDR005C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR08C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR233C7298.350.14YIL021W363.870.00YDR332C968.400.61YIL033C12592.530.27
YDL134C11155.310.49YGR054W410.990.50YDL188C13309.920.37YGR083C20.001.00YDL212W5750.710.20YGR095C10.000.00YDR005C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR233C7298.350.14YIL021W363.870.00YDR332C968.400.61YIL033C12592.530.27
YDL188C13309.920.37YGR083C20.001.00YDL212W5750.710.20YGR095C10.000.00YDR005C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR08C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR233C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDL212W5750.710.20YGR095C10.000.00YDR005C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR186C538.130.40YDR223W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR005C330.550.67YGR162W10923.810.20YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR08C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR23W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR011W4169.740.67YGR163W5255.530.40YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR08C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR23W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR040C322.500.33YGR191W10.000.00YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR23W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR075W10184.990.38YGR218W4175.130.50YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR223W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR096W962.400.53YGR246C461.950.33YDR099W17991.900.21YHR08C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR223W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR099W17991.900.21YHR008C25.470.00YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR223W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61XIL033C12592.530.27
YDR160W20.001.00YHR030C11833.830.15YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR223W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR174W10667.230.09YHR094C71469.230.24YDR216W6237.330.20YHR186C538.130.40YDR223W22.730.00YHR205W161450.150.23YDR283C7298.350.14YIL021W363.870.00YDR323C968.400.61YIL033C12592.530.27
YDR216W 6 237.33 0.20 YHR186C 5 38.13 0.40 YDR223W 2 2.73 0.00 YHR205W 16 1450.15 0.23 YDR283C 7 298.35 0.14 YIL021W 3 63.87 0.00 YDR323C 9 68.40 0.61 YIL033C 12 592.53 0.27
YDR223W 2 2.73 0.00 YHR205W 16 1450.15 0.23 YDR283C 7 298.35 0.14 YIL021W 3 63.87 0.00 YDR323C 9 68.40 0.61 YIL033C 12 592.53 0.27
YDR283C 7 298.35 0.14 YIL021W 3 63.87 0.00 YDR323C 9 68.40 0.61 YIL033C 12 592.53 0.27
YDR323C 9 68.40 0.61 VII 033C 12 502.53 0.27
$12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 \times$
YDR453C 3 104.07 0.00 YIL153W 16 447.53 0.23
YDR477W 19 1080.40 0.14 YIR023W 3 11.71 0.33
YDR495C 7 57.93 0.71 YJL098W 10 495.04 0.24
YDR507C 3 7.21 0.33 YIL110C 5 44.74 0.30
YEL009C 5 200.23 0.30 YIL138C 8 474.94 0.36
YER020W 7 467.74 0.19 YIL141C 13 509.18 0.22
YER040W 15 600 30 0.26 YIL156C 3 221 00 0.33
YER093C 5 70.21 0.40 YIL164C 20 992.33 0.18
YER 148W 10 938 78 0.02 VIR066W 36 4754 24 0.08
VER 177W 17 000 95 0.15 VIR0000 0 037 77 0.22
YEL001W 9 706.66 0.06 VIR094C 3 25.48 0.33
YEL021W 6 43.09 0.53 VKL000W 6 740.76 0.13

Table B.4. Topology parameters of the TOR signalling network

Table D.4. Topology parameters of the TOK signaming network (continued)							
ORF	k	b	С	ORF k		b	С
YKL062W	10	93.22	0.58	YNL229C	15	938.15	0.17
YKL109W	4	400.57	0.50	YNL244C	5	781.40	0.20
YKL113C	18	1207.81	0.17	YNL248C	9	480.75	0.17
YKL125W	4	54.76	0.17	YNL262W	5	222.07	0.30
YKL166C	9	200.62	0.33	YNL298W	17	1530.83	0.17
YKL203C	17	903.86	0.18	YNL314W	5	164.93	0.10
YKR007W	2	0.00	1.00	YNL330C	13	1053.49	0.21
YKR028W	7	281.53	0.33	YNR001C	6	400.90	0.20
YKR034W	5	90.12	0.50	YNR003C	5	89.69	0.50
YKR059W	7	242.70	0.38	YOL020W	1	0.00	0.00
YLR148W	10	200.46	0.64	YOL067C	7	376.87	0.14
YLR223C	3	23.73	0.67	YOL139C	9	445.12	0.28
YLR240W	4	53.93	0.33	YOR014W	11	258.80	0.22
YLR249W	9	978.59	0.08	YOR036W	4	0.33	0.83
YLR258W	6	159.56	0.27	YOR101W	7	218.16	0.38
YLR291C	9	913.37	0.06	YOR136W	3 76.99		0.33
YLR304C	1	0.00	0.00	YOR178C	3 3.46		0.67
YLR396C	9	167.03	0.67	YOR244W	R244W 22		0.19
YLR403W	2	15.80	0.00	YOR358W	358W 3 0.		1.00
YMR028W	11	145.07	0.53	YOR361C	YOR361C 3		0.33
YMR037C	10	104.81	0.56	YOR372C	1	0.00	0.00
YMR068W	3	0.00	1.00	YPL045W	8	65.05	0.75
YMR131C	1	0.00	0.00	YPL048W	4	94.53	0.33
YMR146C	3	316.00	0.33	YPL081W	1	0.00	0.00
YMR231W	9	83.13	0.72	YPL093W	2	0.00	1.00
YMR239C	3	43.97	0.00	YPL111W	1	0.00	0.00
YNL006W	9	174.10	0.33	YPL152W	10	92.16	0.51
YNL037C	4	166.49	0.17	YPL180W	11	343.84	0.20
YNL039W	2	0.00	1.00	YPL203W	11	125.70	0.47
YNL068C	3	552.14	0.00	YPL207W	1	0.00	0.00
YNL076W	6	130.47	0.13	YPL211W	2	0.00	1.00
YNL098C	21	1195.46	0.19	YPL265W	4	192.29	0.50
YNL102W	5	204.52	0.10	YPR010C	7	309.54	0.19
YNL135C	5	84.73	0.20	YPR040W	10	199.06	0.22
YNL142W	3	20.70	0.33	YPR104C	7	269.83	0.14
YNL183C	3	15.70	0.00	YPR110C	14	1248.45	0.10
YNL189W	12	1529.99	0.08	YPR160W	4	59.97	0.33
YNL216W	4	65.67	0.33	YPR185W	2	0.00	1.00

Table B.4. Topology parameters of the TOR signalling network (continued)

Module			Module	members			total-	in-	out-	score
number	TODI	TODA	CT NO	LIDES	1		degree	degree	degree	5000
24	TORI	TOR2	GLN3	URE2			83	12	71	5.92
25	TOR1	TOR2	GLN3	LST8			77	12	65	5.42
27	TORI	TOR2	TPD3	TAP42			74	12	62	5.17
28	TOR1	GAT1	URE2	GLN3			72	12	60	5.00
33	TOR1	GCN4	URE2	GLN3			71	12	59	4.92
43	BMH2	SIT4	SNF1	GLN3			70	12	58	4.83
49	YAK1	SCH9	TPK1	RAS2			70	12	58	4.83
35	ESA1	BMH2	BMH1	RTG2			68	12	56	4.67
30	TOR1	SRP1	CRM1	GLN3			67	12	55	4.58
32	TOR1	PMR1	GLN3	LST8			67	12	55	4.58
42	BMH2	BMH1	YAK1	TPK1			67	12	55	4.58
45	SIT4	RRD1	CLA4	URE2			67	12	55	4.58
41	BMH2	BMH1	RPD3	SNF1			66	12	54	4.50
46	SIT4	TOR2	URE2	GLN3			66	12	54	4.50
50	YAK1	TPK2	RAS2	TPK1			65	12	53	4.42
26	TOR1	TOR2	HXT1	SNQ2			64	12	52	4.33
60	TPK1	RAS2	GAT1	GLN3			62	12	50	4.17
29	TOR1	DAL80	URE2	GZF3			61	12	49	4.08
31	TOR1	KOG1	T CO89	LST8			61	12	49	4.08
37	ESA1	BMH2	GRR1	RPD3			61	12	49	4.08
36	ESA1	BMH2	GRR1	RTG2			60	12	48	4.00
48	YAK1	SCH9	MSN2	RAS2			60	12	48	4.00
44	BMH2	GAT1	TPK1	GLN3			58	12	46	3.83
53	SNF1	HSF1	SCH9	MSN2			56	12	44	3.67
51	YAK1	TPK2	RAS2	MSN2			55	12	43	3.58
54	SNF1	BMH1	RPD3	ADR1			55	12	43	3.58
52	SNF1	GIS1	SCH9	MSN2			54	12	42	3.50
13	ESA1	BMH2	BMH1	CLA4	RPD3		86	20	66	3.30
47	YAK1	SCH9	MSN2	HSF1			50	12	38	3.17
59	PPH21	TPD3	TAP42	TOR2			49	12	37	3.08
23	MSN4	RAS2	RIM15	SCH9	TPK1		79	20	59	2.95
55	GPA2	RAS2	RAS1	TPK2			46	12	34	2.83
20	BCY1	TPK1	RAS2	TPK3	RIM15		74	20	54	2.70
11	TOR1	VPS33	PEP5	VPS16	PEP3		72	20	52	2.60
19	BCY1	TPK1	RAS2	TPK2	RAS1		71	20	51	2.55
14	SIT4	RRD1	TAP42	PPH22	PPH3		69	20	49	2.45
15	SIT4	RRD1	TAP42	PPH22	RRD2		69	20	49	2.45
21	PPH3	PPH21	TAP42	PPH22	RRD1		61	20	41	2.05
18	HSF1	SCH9	MSN4	MSN2	RIM15		59	20	39	1.95
58	RPC34	RPC40	RPA135	RPA49		L	35	12	23	1.92
9	BCY1	TPK1	RAS2	TPK2	MSN4	RIM15	86	30	56	1.87
34	SAP155	SAP185	SAP4	TIP41			34	12	22	1.83
56	AVO2	TOR2	TSC11	LST8			34	12	22	1.83

Table B.5. Score table of more than three member modules

Module number			Modulen	nembers		total- degree	in- degree	out- degree	score	
17	TIP41	PPH3	TAP42	PPH22	PPH21		55	20	35	1.75
22	RRD2	TPD3	PPH22	PPH21	RT S1		55	20	35	1.75
39	PEP7	PEP3	VPS33	PEP12			32	12	20	1.67
7	GIS1	MSN4	MSN2	RAS2	RIM15	SCH9	78	30	48	1.60
1	ESA1	RAD27	VPS33	PEP5	PEP3	PEP7	77	30	47	1.57
2	ESA1	RAD27	VPS33	PEP5	PEP3	VPS3	75	30	45	1.50
12	SAP155	SAP185	SAP4	SIT4	SAP 190		50	20	30	1.50
8	GIS1	MSN4	MSN2	RAS2	RIM15	TPK2	73	30	43	1.43
40	PEP7	PEP3	VPS45	PEP12			29	12	17	1.42
6	CDC55	TPD3	RRD2	TAP42	PPH22	PPH21	71	30	41	1.37
10	RRD2	TPD3	PPH22	PPH21	TAP42	RRD1	71	30	41	1.37
38	YGR054W	TIF1	TIF2	CDC33			28	12	16	1.33
3	ESA1	VPS16	PEP5	PEP3	VPS33	PEP7	67	30	37	1.23
4	ESA1	VPS16	PEP5	PEP3	VPS33	VPS3	65	30	35	1.17
5	ESA1	VPS16	PEP5	PEP3	VPS45	PEP7	64	30	34	1.13
16	TIF4632	TIF1	TIF2	TIF4631	CDC33		39	20	19	0.95
57	HAP5	HAP4	HAP2	HAP3			16	12	4	0.33

Table B.5. Score table of more than three member modules (continued)

Module1					
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0006904 vesicle docking during exocytosis	3.46E-05	3/6 (50.0%)	13/6353 (0.2%)	PEP5PEP3PEP7	
GO:0006895 Golgi to endosome transport	3.46E-05	3/6 (50.0%)	13/6353 (0.2%)	PEP5 VPS33PEP3	
GO:0006892 post-Golgi vesicle-mediated transport	5.79E-05	4/6 (66.7%)	72/6353 (1.1%)	PEP5 VPS33PEP3 PEP7	
GO:0006944 membrane fusion	7.22E-05	4/6 (66.7%)	76/6353 (1.2%)	PEP5 VPS33PEP3 PEP7	
GO:0007034 vacuolar transport	5.56E-04	4/6 (66.7%)	126/6353 (2.0%)	PEP5 VPS33PEP3 PEP7	
	Modu	le2			
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0007033 vacuole organization	1.08E-05	4/6 (66.7%)	47/6353 (0.7%)	PEP5 VPS33PEP3 VPS3	
GO:0006895 Golgi to endosome transport	3.70E-05	3/6 (50.0%)	13/6353 (0.2%)	PEP5 VPS33PEP3	
GO:0042144 vacuole fusion, non-autophagic	4.70E-04	3/6 (50.0%)	29/6353 (0.5%)	PEP5 VPS33PEP3	
GO:0007034 vacuolar transport	5.95E-04	4/6 (66.7%)	126/6353 (2.0%)	PEP5 VPS33PEP3 VPS3	
GO:0045324 late endosome to vacuole transport	9.15E-04	3/6 (50.0%)	36/6353 (0.6%)	PEP5 VPS33PEP3	
	Modu	le3			
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0006895 Golgi to endosome transport	3.39E-08	4/6 (66.7%)	13/6353 (0.2%)	PEP5 VPS33 VPS16 PEP3	
GO:0006892 post-Golgi vesicle-mediated transport	2.08E-07	5/6 (83.3%)	72/6353 (1.1%)	PEP5 VPS33 VPS16 PEP3 PEP7	
GO:0006944 membrane fusion	2.74E-07	5/6 (83.3%)	76/6353 (1.2%)	PEP5 VPS33 VPS16 PEP3 PEP7	
GO:0042144 vacuole fusion, non-autophagic	1.12E-06	4/6 (66.7%)	29/6353 (0.5%)	PEP5 VPS33 VPS16 PEP3	
GO:0045324 late endosome to vacuole transport	2.78E-06	4/6 (66.7%)	36/6353 (0.6%)	PEP5 VPS33 VPS16 PEP3	
	Modu	le4			
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0007033 vacuole organization	2.40E-08	5/6 (83.3%)	47/6353 (0.7%)	PEP5 VPS33 VPS16 PEP3 VPS3	
GO:0006895 Golgi to endosome transport	3.57E-08	4/6 (66.7%)	13/6353 (0.2%)	PEP5 VPS33 VPS16 PEP3	
GO:0042144 vacuole fusion, non-autophagic	1.18E-06	4/6 (66.7%)	29/6353 (0.5%)	PEP5 VPS33 VPS16 PEP3	
GO:0045324 late endosome to vacuole transport	2.92E-06	4/6 (66.7%)	36/6353 (0.6%)	PEP5 VPS33 VPS16 PEP3	
GO:0007034 vacuolar transport	3.78E-06	5/6 (83.3%)	126/6353 (2.0%)	PEP5 VPS33 VPS16 PEP3 VPS3	

Table B.6. Gene ontology terms annotated to members of the modules

Module5					
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0006892 post-Golgi vesicle-mediated transport	2.07E-07	5/6 (83.3%)	72/6353 (1.1%)	PEP5 VPS16 VPS45 PEP3 PEP7	
GO:0006944 membrane fusion	2.73E-07	5/6 (83.3%)	76/6353 (1.2%)	PEP5 VPS16 VPS45 PEP3 PEP7	
GO:0007034 vacuolar transport	3.58E-06	5/6 (83.3%)	126/6353 (2.0%)	PEP5 VPS16 VPS45 PEP3 PEP7	
GO:0007033 vacuole organization	8.35E-06	4/6 (66.7%)	47/6353 (0.7%)	PEP5 VPS16 VPS45 PEP3	
GO:0048193 Golgi vesicle transport	2.29E-05	5/6 (83.3%)	182/6353 (2.9%)	PEP5 VPS16 VPS45 PEP3 PEP7	
	Mode	ule6			
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0007094 mitotic cell cycle spindle assembly checkpoint	1.81E-07	4/6 (66.7%)	20/6353 (0.3%)	CDC55PPH22 PPH21TPD3	
GO:0045841 negative regulation of mitotic met aphase/an aphase transition	1.81E-07	4/6 (66.7%)	20/6353 (0.3%)	CDC55PPH22 PPH21TPD3	
GO:0051784 negative regulation of nuclear division	3.31E-07	4/6 (66.7%)	23/6353 (0.4%)	CDC55PPH22 PPH21 TPD3	
GO:0045839 negative regulation of mitosis	3.31E-07	4/6 (66.7%)	23/6353 (0.4%)	CDC55PPH22 PPH21TPD3	
GO:0030071 regulation of mitotic met aphase/an aphase transition	3.98E-07	4/6 (66.7%)	24/6353 (0.4%)	CDC55PPH22 PPH21TPD3	
	Mode	ule7			
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0001323 age-dependent general metabolic decline during chronological cell aging	9.15E-10	4/6 (66.7%)	6/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4	
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	9.15E-10	4/6 (66.7%)	6/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4	
GO:0007571 age-dependent general metabolic decline	2.14E-09	4/6 (66.7%)	7/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4	
GO:0001306 age-dependent response to oxidative stress	2.14E-09	4/6 (66.7%)	7/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4	
GO:0007569 cell aging	1.14E-07	5/6 (83.3%)	61/6353 (1.0%)	MSN2 RIM15 SCH9 MSN4 RAS2	
GO:0007568 aging	1.84E-07	5/6 (83.3%)	67/6353 (1.1%)	MSN2 RIM15 SCH9 MSN4 RAS2	
	Mode	ule8			
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0001323 age-dependent general metabolic decline during chronological cell aging	2.45E-06	3/6 (50.0%)	6/6353 (0.1%)	MSN2 RIM15 MSN4	
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	2.45E-06	3/6 (50.0%)	6/6353 (0.1%)	MSN2 RIM15 MSN4	
GO:0007571 age-dependent general metabolic decline	4.29E-06	3/6 (50.0%)	7/6353 (0.1%)	MSN2 RIM15 MSN4	
GO:0001306 age-dependent response to oxidative stress	4.29E-06	3/6 (50.0%)	7/6353 (0.1%)	MSN2 RIM15 MSN4	
GO:0007569 cell aging	2.98E-05	4/6 (66.7%)	61/6353 (1.0%)	MSN2 RIM15 MSN4 RAS2	
GO:0007568 aging	4.37E-05	4/6 (66.7%)	67/6353 (1.1%)	MSN2 RIM15 MSN4 RAS2	

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module9						
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0007265 Ras protein signal transduction	5.39E-06	4/6 (66.7%)	41/6353 (0.6%)	TPK2 BCY1 TPK1 RAS2		
GO:0007264 small GTP ase mediated signal transduction	5.14E-05	4/6 (66.7%)	71/6353 (1.1%)	TPK2 BCY1 TPK1 RAS2		
GO:0007154 cell communication	2.83E-04	5/6 (83.3%)	293/6353 (4.6%)	TPK2 BCY1 TPK1 MSN4 RAS2		
GO:0007242 intracellular signaling cascade	1.65E-03	4/6 (66.7%)	168/6353 (2.6%)	TPK2 BCY1 TPK1 RAS2		
GO:0007165 signal transduction	6.60E-03	4/6 (66.7%)	238/6353 (3.7%)	TPK2 BCY1 TPK1 RAS2		
	Module	e10				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0007010 cytoskeleton organization	5.37E-05	5/6 (83.3%)	226/6353 (3.6%)	PPH22 PPH21 RRD2 RRD1 TPD3		
GO:0007094 mitotic cell cycle spindle assembly checkpoint	8.97E-05	3/6 (50.0%)	20/6353 (0.3%)	PPH22 PPH21 TPD3		
GO:0045841 negative regulation of mitotic metaphase/anaphase transition	8.97E-05	3/6 (50.0%)	20/6353 (0.3%)	PPH22 PPH21 TPD3		
GO:0051784 negative regulation of nuclear division	1.39E-04	3/6 (50.0%)	23/6353 (0.4%)	PPH22 PPH21 TPD3		
GO:0045839 negative regulation of mitosis	1.39E-04	3/6 (50.0%)	23/6353 (0.4%)	PPH22 PPH21 TPD3		
GO:0030071 regulation of mitotic metaphase/anaphase transition	1.59E-04	3/6 (50.0%)	24/6353 (0.4%)	PPH22 PPH21 TPD3		
GO:0000279 M phase	1.78E-04	5/6 (83.3%)	287/6353 (4.5%)	PPH22 PPH21 RRD2 RRD1 TPD3		
	Module	e11				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0006895 Golgi to endosome transport	9.22E-09	4/5 (80.0%)	13/6353 (0.2%)	PEP5 VPS33 VPS16 PEP3		
GO:0042144 vacuole fusion, non-autophagic	3.06E-07	4/5 (80.0%)	29/6353 (0.5%)	PEP5 VPS33 VPS16 PEP3		
GO:0045324 late endosome to vacuole transport	7.57E-07	4/5 (80.0%)	36/6353 (0.6%)	PEP5 VPS33 VPS16 PEP3		
GO:0007033 vacuole organization	2.29E-06	4/5 (80.0%)	47/6353 (0.7%)	PEP5 VPS33 VPS16 PEP3		
GO:0016197 endosome transport	7.63E-06	4/5 (80.0%)	63/6353 (1.0%)	PEP5 VPS33 VPS16 PEP3		
	Module	e12				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0000082 G1/S transition of mitotic cell cycle	1.59E-09	5/5 (100.0%)	45/6353 (0.7%)	SAP185 SAP155 SAP4 SAP190 SIT4		
GO:0051329 interphase of mitotic cell cycle	1.67E-07	5/5 (100.0%)	111/6353 (1.7%)	SAP185 SAP155 SAP4 SAP190 SIT4		
GO:0051325 interphase	2.09E-07	5/5 (100.0%)	116/6353 (1.8%)	SAP185 SAP155 SAP4 SAP190 SIT4		
GO:0000278 mitotic cell cycle	2.55E-05	5/5 (100.0%)	300/6353 (4.7%)	SAP185 SAP155 SAP4 SAP190 SIT4		
GO:0002098 tRNA wobble uridine modification	5.28E-05	3/5 (60.0%)	24/6353 (0.4%)	SAP185 SAP190 SIT4		

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module 13					
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0051436 negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle	5.72E-04	2/5 (40.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051444 negative regulation of ubiquitin-protein ligase activity	5.72E-04	2/5 (40.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051352 negative regulation of ligase activity	5.72E-04	2/5 (40.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051726 regulation of cell cycle	8.69E-04	4/5 (80.0%)	167/6353 (2.6%)	BMH1 BMH2 ESA1 CLA4	
GO:0034984 cellular response to DNA damage stimulus	2.62E-03	4/5 (80.0%)	220/6353 (3.5%)	BMH1 RPD3 BMH2 ESA1	
	Module14				
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0000082 G1/S transition of mitotic cell cycle	6.22E-04	3/5 (60.0%)	45/6353 (0.7%)	PPH22 RRD1 SIT4	
GO:0016311 dephosphorylation	8.58E-04	3/5 (60.0%)	50/6353 (0.8%)	PPH22 PPH3 SIT4	
GO:0051329 interphase of mitotic cell cycle	9.57E-03	3/5 (60.0%)	111/6353 (1.7%)	PPH22 RRD1 SIT4	
	Module15				
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0000082 G1/S transition of mitotic cell cycle	6.12E-04	3/5 (60.0%)	45/6353 (0.7%)	PPH22 RRD1 SIT4	
GO:0007010 cytoskeleton organization	1.41E-03	4/5 (80.0%)	226/6353 (3.6%)	PPH22 RRD2 RRD1 SIT4	
GO:0000278 mitotic cell cycle	4.37E-03	4/5 (80.0%)	300/6353 (4.7%)	PPH22 RRD2 RRD1 SIT4	
GO:0051329 interphase of mitotic cell cycle	9.41E-03	3/5 (60.0%)	111/6353 (1.7%)	SIT4	
	Module16	1		T	
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0006413 translational initiation	2.81E-09	5/5 (100.0%)	50/6353 (0.8%)	TIF4631 TIF4632 TIF1 TIF2 CDC33	
GO:0034063 stress granule assembly	5.64E-04	2/5 (40.0%)	5/6353 (0.1%)	TIF4631 TIF4632	
	Module17				
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0006470 protein amino acid dephosphorylation	1.28E-04	3/5 (60.0%)	30/6353 (0.5%)	PPH22 PPH21 PPH3	
GO:0016311 dephosphorylation	6.17E-04	3/5 (60.0%)	50/6353 (0.8%)	PPH22 PPH21 PPH3	

Table B.6. Gene ontology terms annotated to members of the modules (continued)

E

Module18						
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0001323 age-dependent general metabolic decline during chronological cell aging	1.97E-10	4/5 (80.0%)	6/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4		
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	1.97E-10	4/5 (80.0%)	6/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4		
GO:0007571 age-dependent general metabolic decline	4.59E-10	4/5 (80.0%)	7/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4		
GO:0001306 age-dependent response to oxidative stress	4.59E-10	4/5 (80.0%)	7/6353 (0.1%)	MSN2 RIM15 SCH9 MSN4		
GO:0001300 chronological cell aging	6.35E-08	4/5 (80.0%)	20/6353 (0.3%)	MSN2 RIM15 SCH9 MSN4		
GO:0006950 response to stress	3.31E-03	5/5 (100.0%)	721/6353 (11.3%)	MSN2 RIM15 SCH9 MSN4 HSF1		
	Module	19				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0007265 Ras protein signal transduction	1.76E-09	5/5 (100.0%)	41/6353 (0.6%)	TPK2 BCY1 RAS1 TPK1 RAS2		
GO:0007264 small GTP ase mediated signal transduction	3.05E-08	5/5 (100.0%)	71/6353 (1.1%)	TPK2 BCY1 RAS1 TPK1 RAS2		
GO:0007242 intracellular signaling cascade	2.46E-06	5/5 (100.0%)	168/6353 (2.6%)	TPK2 BCY1 RAS1 TPK1 RAS2		
GO:0007165 signal transduction	1.43E-05	5/5 (100.0%)	238/6353 (3.7%)	TPK2 BCY1 RAS1 TPK1 RAS2		
GO:0007154 cell communication	4.08E-05	5/5 (100.0%)	293/6353 (4.6%)	TPK2 BCY1 RAS1 TPK1 RAS2		
	Module	20				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0007265 Ras protein signal transduction	1.69E-06	4/5 (80.0%)	41/6353 (0.6%)	BCY1 TPK1 TPK3 RAS2		
GO:0007264 small GTP ase mediated signal transduction	1.61E-05	4/5 (80.0%)	71/6353 (1.1%)	BCY1 TPK1 TPK3 RAS2		
GO:0007242 intracellular signaling cascade	5.25E-04	4/5 (80.0%)	168/6353 (2.6%)	BCY1 TPK1 TPK3 RAS2		
GO:0007165 signal transduction	2.12E-03	4/5 (80.0%)	238/6353 (3.7%)	BCY1 TPK1 TPK3 RAS2		
GO:0007154 cell communication	4.85E-03	4/5 (80.0%)	293/6353 (4.6%)	BCY1 TPK1 TPK3 RAS2		
Module21						
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0006470 protein amino acid dephosphorylation	1.49E-04	3/5 (60.0%)	30/6353 (0.5%)	PPH22 PPH21 PPH3		
GO:0000082 G1/S transition of mitotic cell cycle	5.20E-04	3/5 (60.0%)	45/6353 (0.7%)	PPH22 PPH21 RRD1		
GO:0016311 dephosphorylation	7.17E-04	3/5 (60.0%)	50/6353 (0.8%)	PPH22 PPH21 PPH3		
GO:0051329 interphase of mitotic cell cycle	8.00E-03	3/5 (60.0%)	111/6353 (1.7%)	PPH22 PPH21 RRD1		
GO:0051325 interphase	9.13E-03	3/5 (60.0%)	116/6353 (1.8%)	PPH22 PPH21 RRD1		

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module22					
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0006470 protein amino acid dephosphorylation	3.26E-07	4/5 (80.0%)	30/6353 (0.5%)	PPH22 PPH21 RTS1 TPD3	
GO:0016311 dephosphorylation	2.74E-06	4/5 (80.0%)	50/6353 (0.8%)	PPH22 PPH21 RTS1 TPD3	
GO:0000279 M phase	2.95E-05	5/5 (100.0%)	287/6353 (4.5%)	PPH22 PPH21 RRD2 RT S1 TPD3	
GO:0007094 mitotic cell cycle spindle assembly checkpoint	4.31E-05	3/5 (60.0%)	20/6353 (0.3%)	PPH22 PPH21 TPD3	
GO:0045841 negative regulation of mitotic metaphase/anaphase transition	4.31E-05	3/5 (60.0%)	20/6353 (0.3%)	PPH22 PPH21 TPD3	
	Module23				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0001323 age-dependent general metabolic decline during chronological cell aging	1.15E-06	3/5 (60.0%)	6/6353 (0.1%)	RIM15 SCH9 MSN4	
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	1.15E-06	3/5 (60.0%)	6/6353 (0.1%)	RIM15 SCH9 MSN4	
GO:0007571 age-dependent general metabolic decline	2.01E-06	3/5 (60.0%)	7/6353 (0.1%)	RIM15 SCH9 MSN4	
GO:0001306 age-dependent response to oxidative stress	2.01E-06	3/5 (60.0%)	7/6353 (0.1%)	RIM15 SCH9 MSN4	
GO:0007569 cell aging	9.36E-06	4/5 (80.0%)	61/6353 (1.0%)	RIM15 SCH9 MSN4 RAS2	
	Module24				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0006808 regulation of nitrogen utilization	2.55E-03	2/4 (50.0%)	9/6353 (0.1%)	GLN3 URE2	
GO:0001558 regulation of cell growth	3.90E-03	2/4 (50.0%)	11/6353 (0.2%)	TOR1 TOR2	
GO:0051171 regulation of nitrogen compound metabolic process	3.90E-03	2/4 (50.0%)	11/6353 (0.2%)	GLN3 URE2	
GO:0040008 regulation of growth	6.45E-03	2/4 (50.0%)	14/6353 (0.2%)	TOR1 TOR2	
GO:0031929 T OR signaling pathway	8.50E-03	2/4 (50.0%)	16/6353 (0.3%)	TOR1 TOR2	
	Module25				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0001558 regulation of cell growth	2.84E-06	3/4 (75.0%)	11/6353 (0.2%)	LST8 TOR1 TOR2	
GO:0040008 regulation of growth	6.26E-06	3/4 (75.0%)	14/6353 (0.2%)	LST8 TOR1 TOR2	
GO:0031929 T OR signaling pathway	9.63E-06	3/4 (75.0%)	16/6353 (0.3%)	LST8 TOR1 TOR2	
GO:0031930 mitochondrial signaling pathway	8.20E-04	2/4 (50.0%)	6/6353 (0.1%)	LST8 TOR1	
GO:0016049 cell growth	1.94E-03	3/4 (75.0%)	89/6353 (1.4%)	LST8 TOR1 TOR2	

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module26						
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0001558 regulation of cell growth	2.81E-03	2/4 (50.0%)	11/6353 (0.2%)	TOR1 TOR2		
GO:0040008 regulation of growth	4.64E-03	2/4 (50.0%)	14/6353 (0.2%)	TOR1 TOR2		
GO:0031929 T OR signaling path way	6.12E-03	2/4 (50.0%)	16/6353 (0.3%)	TOR1 TOR2		
	Module27					
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0031929 T OR signaling pathway	1.06E-05	3/4 (75.0%)	16/6353 (0.3%)	TOR1 T AP42 TOR2		
GO:0001558 regulation of cell growth	3.31E-03	2/4 (50.0%)	11/6353 (0.2%)	TOR1 TOR2		
GO:0040008 regulation of growth	5.48E-03	2/4 (50.0%)	14/6353 (0.2%)	TOR1 TOR2		
	Module28					
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0006808 regulation of nitrogen utilization	1.87E-06	3/4 (75.0%)	9/6353 (0.1%)	GAT1 GLN3 URE2		
GO:0051171 regulation of nitrogen compound metabolic process	3.67E-06	3/4 (75.0%)	11/6353 (0.2%)	GAT1 GLN3 URE2		
GO:0019740 nitrogen utilization	1.82E-05	3/4 (75.0%)	18/6353 (0.3%)	GAT1 GLN3 URE2		
	Module29					
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0006808 regulation of nitrogen utilization	1.71E-06	3/4 (75.0%)	9/6353 (0.1%)	DAL80 URE2 GZF3		
GO:0051171 regulation of nitrogen compound metabolic process	3.35E-06	3/4 (75.0%)	11/6353 (0.2%)	DAL80 URE2 GZF3		
GO:0019740 nitrogen utilization	1.66E-05	3/4 (75.0%)	18/6353 (0.3%)	DAL80 URE2 GZF3		
	Module31					
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0001558 regulation of cell growth	7.54E-10	4/4 (100.0%)	11/6353 (0.2%)	LST8 T CO89 TOR1 KOG1		
GO:0040008 regulation of growth	2.29E-09	4/4 (100.0%)	14/6353 (0.2%)	LST8 T CO89 TOR1 KOG1		
GO:0031929 T OR signaling path way	4.16E-09	4/4 (100.0%)	16/6353 (0.3%)	LST8 T CO89 TORI KOG1		
GO:0016049 cell growth	5.58E-06	4/4 (100.0%)	89/6353 (1.4%)	LST8 T CO89 TORI KOG1		
GO:0031505 fungal-type cell wall organization	1.40E-05	3/4 (75.0%)	19/6353 (0.3%)	LST8 TCO89 TOR1		

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Modul	e32		× .	
GO Term	P-value	Sample frequency	Background frequency	Genes
GO:0031930 mitochondrial signaling path way	1.01E-03	2/4 (50.0%)	6/6353 (0.1%)	LST8 TOR1
GO:0001558 regulation of cell growth	3.71E-03	2/4 (50.0%)	11/6353 (0.2%)	LST8 TOR1
GO:0040008 regulation of growth	6.13E-03	2/4 (50.0%)	14/6353 (0.2%)	LST8 TOR1
GO:0031929 T OR signaling pathway	8.08E-03	2/4 (50.0%)	16/6353 (0.3%)	LST8 TOR1
Modul	e33			
GO Term	P-value	Sample frequency	Background frequency	Genes
GO:0006808 regulation of nitrogen utilization	2.78E-03	2/4 (50.0%)	9/6353 (0.1%)	GLN3 URE2
GO:0051171 regulation of nitrogen compound metabolic process	4.24E-03	2/4 (50.0%)	11/6353 (0.2%)	GLN3 URE2
Modul	e34			
GO Term	P-value	Sample frequency	Background frequency	Genes
GO:0000082 G1/S transition of mitotic cell cycle	8.20E-05	3/4 (75.0%)	45/6353 (0.7%)	SAP 185 SAP 155 SAP4
GO:0051329 interphase of mitotic cell cycle	1.27E-03	3/4 (75.0%)	111/6353 (1.7%)	SAP 185 SAP 155 SAP4
GO:0051325 interphase	1.45E-03	3/4 (75.0%)	116/6353 (1.8%)	SAP185 SAP155 SAP4
Modul	e35			
GO Term	P-value	Sample frequency	Background frequency	Genes
GO:0051436 negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle	2.09E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2
GO:0051444 negative regulation of ubiquitin-protein ligase activity	2.09E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2
GO:0051352 negative regulation of ligase activity	2.09E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2
GO:0051439 regulation of ubiquitin-protein ligase activity during mitotic cell cycle	6.95E-04	2/4 (50.0%)	5/6353 (0.1%)	BMH1 BMH2
GO:0051438 regulation of ubiquitin-protein ligase activity	1.04E-03	2/4 (50.0%)	6/6353 (0.1%)	BMH1 BMH2
Modul	e37			
GO Term	P-value	Sample frequency	Background frequency	Genes
GO:0006974 response to DNA damage stimulus	9.50E-04	4/4 (100.0%)	257/6353 (4.0%)	GRR1 RPD3 BMH2 ESA1
GO:0034401 establishment or maintenance of chromatin architecture during transcription	1.08E-03	2/4 (50.0%)	5/6353 (0.1%)	RPD3 ESA1
Modul	e38			
GO Term	P-value	Sample frequency	Background frequency	Genes
GO:0006413 translational initiation	3.84E-07	4/4 (100.0%)	50/6353 (0.8%)	YGR054W TIF1 TIF2 CDC33

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module39					
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0006892 post-Golgi vesicle-mediated transport	1.47E-06	4/4 (100.0%)	72/6353 (1.1%)	VPS33 PEP12 PEP3 PEP7	
GO:0006944 membrane fusion	1.84E-06	4/4 (100.0%)	76/6353 (1.2%)	VPS33 PEP12 PEP3 PEP7	
GO:0007034 vacuolar transport	1.43E-05	4/4 (100.0%)	126/6353 (2.0%)	VPS33 PEP12 PEP3 PEP7	
GO:0048193 Golgi vesicle transport	6.33E-05	4/4 (100.0%)	182/6353 (2.9%)	VPS33 PEP12 PEP3 PEP7	
GO:0016044 membrane organization	2.46E-04	4/4 (100.0%)	255/6353 (4.0%)	VPS33 PEP12 PEP3 PEP7	
Moo	dule40	•	•	•	
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0006892 post-Golgi vesicle-mediated transport	1.44E-06	4/4 (100.0%)	72/6353 (1.1%)	VPS45 PEP12 PEP3 PEP7	
GO:0006944 membrane fusion	1.80E-06	4/4 (100.0%)	76/6353 (1.2%)	VPS45 PEP12 PEP3 PEP7	
GO:0007034 vacuolar transport	1.40E-05	4/4 (100.0%)	126/6353 (2.0%)	VPS45 PEP12 PEP3 PEP7	
GO:0006896 Golgi to vacuole transport	2.04E-05	3/4 (75.0%)	25/6353 (0.4%)	VPS45 PEP12 PEP7	
GO:0048193 Golgi vesicle transport	6.20E-05	4/4 (100.0%)	182/6353 (2.9%)	VPS45 PEP12 PEP3 PEP7	
Mod	dule41				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0051436 negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle	3.20E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051444 negative regulation of ubiquitin-protein ligase activity	3.20E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051352 negative regulation of ligase activity	3.20E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051439 regulation of ubiquitin-protein ligase activity during mitotic cell cycle	1.07E-03	2/4 (50.0%)	5/6353 (0.1%)	BMH1 BMH2	
GO:0007124 pseudohyphal growth	1.53E-03	3/4 (75.0%)	66/6353 (1.0%)	SNF1 BMH1 BMH2	
Mod	dule42				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0051436 negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle	1.34E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051444 negative regulation of ubiquitin-protein ligase activity	1.34E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0051352 negative regulation of ligase activity	1.34E-04	2/4 (50.0%)	3/6353 (0.0%)	BMH1 BMH2	
GO:0007265 Ras protein signal transduction	1.49E-04	3/4 (75.0%)	41/6353 (0.6%)	BMH1 TPK1 BMH2	
GO:0051439 regulation of ubiquitin-protein ligase activity during mitotic cell cycle	4.46E-04	2/4 (50.0%)	5/6353 (0.1%)	BMH1 BMH2	

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module44						
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0006808 regulation of nitrogen utilization	2.28E-03	2/4 (50.0%)	9/6353 (0.1%)	GAT1 GLN3		
GO:0051171 regulation of nitrogen compound metabolic process	3.48E-03	2/4 (50.0%)	11/6353 (0.2%)	GAT1 GLN3		
GO:0019740 nitrogen utilization	9.66E-03	2/4 (50.0%)	18/6353 (0.3%)	GAT1 GLN3		
Mo	odule46	•				
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0006808 regulation of nitrogen utilization	2.77E-03	2/4 (50.0%)	9/6353 (0.1%)	GLN3 URE2		
GO:0051171 regulation of nitrogen compound metabolic process	4.23E-03	2/4 (50.0%)	11/6353 (0.2%)	GLN3 URE2		
GO:0031929 T OR signaling pathway	9.22E-03	2/4 (50.0%)	16/6353 (0.3%)	TOR2 SIT 4		
Mo	odule47					
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0001323 age-dependent general metabolic decline during chronological cell aging	7.00E-04	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	7.00E-04	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
GO:0007571 age-dependent general metabolic decline	9.79E-04	2/4 (50.0%)	7/6353 (0.1%)	MSN2 SCH9		
GO:0043620 regulation of transcription in response to stress	9.79E-04	2/4 (50.0%)	7/6353 (0.1%)	MSN2 SCH9		
GO:0043618 regulation of transcription from RNA polymerase II promoter in response to stress	9.79E-04	2/4 (50.0%)	7/6353 (0.1%)	MSN2 SCH9		
Mo	odule48					
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0001302 replicative cell aging	3.10E-04	3/4 (75.0%)	46/6353 (0.7%)	MSN2 SCH9 RAS2		
GO:0007569 cell aging	7.33E-04	3/4 (75.0%)	61/6353 (1.0%)	MSN2 SCH9 RAS2		
GO:0007568 aging	9.75E-04	3/4 (75.0%)	67/6353 (1.1%)	MSN2 SCH9 RAS2		
GO:0001323 age-dependent general metabolic decline during chronological cell aging	9.76E-04	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	9.76E-04	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
Module49						
GO Tem	P-value	Sample frequency	Background frequency	Genes		
GO:0006468 protein amino acid phosphorylation	4.02E-03	3/4 (75.0%)	109/6353 (1.7%)	TPK1 SCH9 YAK1		

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module50						
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0007265 Ras protein signal transduction	1.72E-04	3/4 (75.0%)	41/6353 (0.6%)	TPK2 TPK1 RAS2		
GO:0007264 small GTP ase mediated signal transduction	9.18E-04	3/4 (75.0%)	71/6353 (1.1%)	TPK2 TPK1 RAS2		
GO:0006468 protein amino acid phosphorylation	3.36E-03	3/4 (75.0%)	109/6353 (1.7%)	TPK2 TPK1 YAK1		
	Module	52				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0001302 replicative cell aging	3.65E-04	3/4 (75.0%)	46/6353 (0.7%)	MSN2 SNF1 SCH9		
GO:0007569 cell aging	8.64E-04	3/4 (75.0%)	61/6353 (1.0%)	MSN2 SNF1 SCH9		
GO:0007568 aging	1.15E-03	3/4 (75.0%)	67/6353 (1.1%)	MSN2 SNF1 SCH9		
GO:0001323 age-dependent general metabolic decline during chronological cell aging	1.15E-03	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	1.15E-03	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
	Module	53				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0001302 replicative cell aging	3.25E-04	3/4 (75.0%)	46/6353 (0.7%)	MSN2 SNF1 SCH9		
GO:0007569 cell aging	7.70E-04	3/4 (75.0%)	61/6353 (1.0%)	MSN2 SNF1 SCH9		
GO:0007568 aging	1.02E-03	3/4 (75.0%)	67/6353 (1.1%)	MSN2 SNF1 SCH9		
GO:0001323 age-dependent general metabolic decline during chronological cell aging	1.03E-03	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
GO:0001324 age-dependent response to oxidative stress during chronological cell aging	1.03E-03	2/4 (50.0%)	6/6353 (0.1%)	MSN2 SCH9		
	Module	55				
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0051349 positive regulation of lyase activity	1.81E-08	3/4 (75.0%)	3/6353 (0.0%)	GPA2 RAS1 RAS2		
GO:0045762 positive regulation of adenylate cyclase activity	1.81E-08	3/4 (75.0%)	3/6353 (0.0%)	GPA2 RAS1 RAS2		
GO:0031281 positive regulation of cyclase activity	1.81E-08	3/4 (75.0%)	3/6353 (0.0%)	GPA2 RAS1 RAS2		
GO:0007190 activation of adenylate cyclase activity	1.81E-08	3/4 (75.0%)	3/6353 (0.0%)	GPA2 RAS1 RAS2		
GO:0051339 regulation of lyase activity	7.23E-08	3/4 (75.0%)	4/6353 (0.1%)	GPA2 RAS1 RAS2		
Module56						
GO Term	P-value	Sample frequency	Background frequency	Genes		
GO:0030950 establishment or maintenance of act in cytoskeleton polarity	4.52E-10	4/4 (100.0%)	10/6353 (0.2%)	LST8 AVO2 TSC11 TOR2		
GO:0030952 establishment or maintenance of cytoskeleton polarity	4.52E-10	4/4 (100.0%)	10/6353 (0.2%)	LST8 AVO2 TSC11 TOR2		
GO:0001558 regulation of cell growth	7.11E-10	4/4 (100.0%)	11/6353 (0.2%)	LST8 AVO2 TSC11 TOR2		
GO:0040008 regulation of growth	2.16E-09	4/4 (100.0%)	14/6353 (0.2%)	LST8 AVO2 TSC11 TOR2		
GO:0031929 T OR signaling path way	3.92E-09	4/4 (100.0%)	16/6353 (0.3%)	LST8 AVO2 TSC11 TOR2		

Table B.6. Gene ontology terms annotated to members of the modules (continued)

Module57					
GO Term	P-value	Sample frequency	Background frequency	Genes	
GO:0006109 regulation of carbohydrate metabolic process	5.48E-08	4/4 (100.0%)	35/6353 (0.6%)	HAP5 HAP2 HAP3 HAP4	
GO:0005975 carbohydrate metabolic process	3.42E-04	4/4 (100.0%)	299/6353 (4.7%)	HAP5 HAP2 HAP3 HAP4	
GO:0006350 transcription	7.86E-03	4/4 (100.0%)	653/6353 (10.3%)	HAP5 HAP2 HAP3 HAP4	
	Module58				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0006360 transcription from RNA polymerase I promoter	7.30E-04	3/4 (75.0%)	90/6353 (1.4%)	RPC40 RPA135 RPA49	
GO:0006351 transcription, DNA-dependent	5.76E-03	4/4 (100.0%)	613/6353 (9.6%)	RPC40 RPA135 RPC34 RPA49	
GO:0032774 RNA biosynthetic process	5.83E-03	4/4 (100.0%)	615/6353 (9.7%)	RPC40 RPA135 RPC34 RPA49	
GO:0006350 transcription	7.42E-03	4/4 (100.0%)	653/6353 (10.3%)	RPC40 RPA135 RPC34 RPA49	
	Module59				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0007015 actin filament organization	7.01E-04	3/4 (75.0%)	64/6353 (1.0%)	PPH21 TOR2 TPD3	
GO:0030036 actin cytoskeleton organization	3.05E-03	3/4 (75.0%)	104/6353 (1.6%)	PPH21 TOR2 TPD3	
GO:0030029 act in filament - based process	3.71E-03	3/4 (75.0%)	111/6353 (1.7%)	PPH21 TOR2 TPD3	
GO:0031929 T OR signaling pathway	6.44E-03	2/4 (50.0%)	16/6353 (0.3%)	TAP42 TOR2	
GO:0040007 growth	9.55E-03	3/4 (75.0%)	152/6353 (2.4%)	PPH21 TOR2 TPD3	
	Module60				
GO Tem	P-value	Sample frequency	Background frequency	Genes	
GO:0006808 regulation of nitrogen utilization	2.24E-03	2/4 (50.0%)	9/6353 (0.1%)	GAT1 GLN3	
GO:0051171 regulation of nitrogen compound metabolic process	3.43E-03	2/4 (50.0%)	11/6353 (0.2%)	GAT1 GLN3	
GO:0045941 positive regulation of transcription	7.59E-03	3/4 (75.0%)	134/6353 (2.1%)	GAT1 GLN3 RAS2	
GO:0010628 positive regulation of gene expression	7.76E-03	3/4 (75.0%)	135/6353 (2.1%)	GAT1 GLN3 RAS2	
GO:0045935 positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	9.04E-03	3/4 (75.0%)	142/6353 (2.2%)	GAT1 GLN3 RAS2	

Table B.6. Gene ontology terms annotated to members of the modules (continued)

APPENDIX C: CODE OF FLUX BALANCE ANALYSIS PROGRAMME

Code of the flux balance analysis programme is included in this section.

```
Code of the programme is,
clear all
load stoich_sparse822_1172
load gene
load metname
load revirrev
extmet = textread('extmet.txt','%s','delimiter',',');
 for i = 1:length(extmet)
   extmet2{i} = [extmet{i} 'xt'];
 end
[metnum rxnnum] = size(stoich_sparse);
for i = 1:length(extmet2) % secreted
  a = strmatch(extmet2{i},metname,'exact');
  rxnnum = rxnnum + 1;
  stoich_sparse(a,rxnnum) = -1;
  lb(rxnnum) = 0; ub(rxnnum) = 1000;
end
upmet = {'SLF' 'ZYMST' 'ERGOST' 'O2' 'NH3' 'PI' 'GLC'};
upmet2 = {'SLFxt' 'ZYMSTxt' 'ERGOSTxt' 'O2xt' 'NH3xt' 'PIxt' 'GLCxt'};
for i = 1:length(upmet2)
  a = strmatch(upmet2{i},metname,'exact');
  rxnnum = rxnnum + 1;
  stoich_sparse(a,rxnnum) = -1;
  lb(rxnnum) = -1000; ub(rxnnum) = 0;
  end
revirrev = cellstr(revirrev');
for i = 1:length(revirrev)
```

```
if length(strfind(revirrev{i},'I')) ~= 0
```

lb(i) = 0; ub(i) = 1000;

else

lb(i) = -1000; ub(i) = 1000;

end

end

allrxnname = [gene; {'Growth'}; extmet2'; upmet2'];

```
lb(1125) = -1000; % JEN1- to allow PYR secretion
```

ub(1125) = 0;

f = zeros(1,length(allrxnname));

```
b = zeros(metnum,1);
```

% meas = [GLC BIOM GOH ETC]

 $Rm = [-5.5014 \ 0.2053 \ 0.1715 \ -2.3609];$

```
lb(strmatch('GLCxt',allrxnname,'exact')) = Rm(1);
ub(strmatch('GLC xt',allrxnname,'exact')) = Rm(1);
lb(strmatch('Growth', allrxnname, 'exact')) = Rm(2);
ub(strmatch('Growth', allrxnname, 'exact')) = Rm(2);
lb(strmatch('ETHxt',allrxnname,'exact')) = Rm(4);
ub(strmatch('ETHxt', allrxnname, 'exact')) = Rm(4);
lb(strmatch('GLxt', allrxnname, 'exact')) = Rm(3);
ub(strmatch('GLxt',allrxnname,'exact')) = Rm(3);
lb(strmatch('ZYMSTxt',allrxnname,'exact')) = 0;
ub(strmatch('ZYMSTxt',allrxnname,'exact')) = 0;
lb(strmatch('ERGOSTxt', allrxnname, 'exact')) = 0;
ub(strmatch('ERGOSTxt', allrxnname, 'exact')) = 0;
lb(strmatch('Growth', allrxnname, 'exact')) = 0;
ub(strmatch('Growth',allrxnname,'exact')) = 100;
lb(strmatch('PIxt',allrxnname,'exact')) = -1000;
ub(strmatch('PIxt',allrxnname,'exact')) = 1000;
lb(strmatch('U214_', allrxnname, 'exact')) = 1;
ub(strmatch('U214_',allrxnname,'exact')) = 1;
 e = zeros(length(allrxnname),1);
```

% metaboite units:mmole/gDW/hr - biomass unit:g/gDW/hr%
```
[X, objfun] = linprog(f,[],[],stoich_sparse,b,lb',ub'); %MOSEK- TOMLAB OR MATLAB
[Xcp,slack,vv,rc,f_k,ninf, sinf, Inform] = ...
```

```
cplex(f,stoich_sparse,lb,ub,b,[],cpxControl); % TOMLAB/CPLEX
```

Inform

display('-----'); display('FBA Solution'); display('-----');

sim_out(Xcp,allrxnname);

return

REFERENCES

- Berger, A. B., Decourty, L., Badis, G., Nehrbass, U., Jacquier, A., Gadal, O. 2007, Hmo1 is required for TOR-Dependent regulation of ribosomal protein gene transcription, *Molecular and Cellular Biology*, Vol 27, pp. 8015-8026, November.
- Bertram, P. G., Choi, J. H., Carvalho, J., Ai, W. D., Zeng, C. B., Chan, T. F., Zheng, X. F. S., 2000, Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases, *Journal of Biological Chemistry*, Vol. 275, pp. 35727-35733, November.
- Bertram, P. G., Choi, J. H., Carvalho, J., Chan, T. F., Ai, W. D., Zheng, X. F. S., 2002, Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3, *Molecular and Cellular Biology*, Vol. 22, pp. 1246-1252, February.
- Bjornsti, M. A., Houghton, P. J., 2004, The TOR pathway: A target for cancer therapy, *Nature Reviews Cancer*, Vol. 4, pp. 335-348, May.
- Boer, V. M., Amini, S., Botstein, D., 2008, Influence of genotype and nutrition on survival and metabolism of starving yeast, *Proceedings of the National Academy of Sciences* of the United States of America, Vol. 105, 6930-6935, May.
- Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y., Shadel, G. S., 2007, "Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression", *Cell Metabolism*, Vol.5, pp. 265-277, April.
- Bron, C., Kerbosch, J., 1973, "Finding all Cliques of an undirected Graph", *Communications of the Acm*, Vol. 16, pp. 575-577.
- Budovskaya, Y. V., Stephan, J. S., Reggiori, F., Klionsky, D. J., Herman, P. K.,2004," The Ras/PKA signaling pathway regulates an early step of the autophagy process in saccharomyces cerevisiae", *JBC Papers*, Vol.10, March.

- Butow, R. A., Avadhani, N. G., 2004, "Mitochondrial signaling: The retrograde response", Molecular Cell, Vol. 14, pp. 1-15, April.
- Carvalho, J., Zheng, X. F. S., 2003, "Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein", *Journal of Biological Chemistry*, Vol. 278, pp. 16878-16886, May.
- Chen, E. J., Kaiser, C. A., 2003, "LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway", *Journal of Cell Biology*, Vol. 161, pp. 333-347, April.
- Cheng, C., Fabrizio, P., Ge, H. Y., Longo, V. D., Li, L. M., 2007, "Inference of transcription modification in long-live yeast strains from their expression profiles", *Bmc Genomics*, Vol. 8, July.
- Cherkasova, V. A., Hinnebusch, A. G., 2003, "Translational control by TOR and TAP42 through dephosphorylation of eIF2 alpha kinase GCN2", *Genes & Development*, Vol.17, pp. 859-872, April.
- Clotet, J., Gari, E., Aldea, M., Arino, J., 1999, "The yeast Ser/Thr phosphatases Sit4 and Ppz1 play opposite roles in regulation of the cell cycle", *Molecular and Cellular Biology*, Vol.19, pp. 2408-2415, March.
- Cox, K. H., Tate, J. J., Cooper, T. G., 2003, "Actin cytoskeleton is required for nuclear localization of Gln3 during nitrogen limitation in Saccharomyces cerevisiae", *Yeast*, pp. S67-S67.
- Crespo, J. L., Daicho, K., Ushimaru, T., Hall, M. N., 2001, "The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae", *Journal of Biological Chemistry*, Vol.276, pp. 34441-34444, September.

- Crespo, J. L., Hall, M. N., 2002, "Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae", *Microbiology and Molecular Biology Reviews*, Vol. 66, pp. 579-590, December.
- De Virgilio, C., Loewith, R., 2006, "Cell growth control: little eukaryotes make big contributions", *Oncogene*, Vol. 25, pp. 6392-6415, October.
- De Virgilio, C., Loewith, R., 2006, "The TOR signalling network from yeast to man", International Journal of Biochemistry & Cell Biology, Vol. 38, pp. 1476-1481.
- Dechant, R., Peter, M., 2008, "Nutrient signals driving cell growth", *Current Opinion in Cell Biology*, Vol. 20, pp. 678-687, December.
- Diaz-Troya, S., Perez-Perez, M. E., Florencio, F. J., Crespo, J. L., 2008, "The role of TOR in autophagy regulation from yeast to plants and mammals", *Autophagy*, Vol. 4, pp. 851-865, October.
- Dilova, I., Aronova, S., Chen, J. C. Y., Powers, T., 2004, "Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1p center dot Rtg3p-dependent target genes", *Journal of Biological Chemistry*, Vol. 279, pp. 46527-46535, November.
- Dilova, I., Chen, C. Y., Powers, T., 2002, "Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S-cerevisiae", *Current Biology*, Vol. 12, pp. 389-395, March.
- Forster, J., Famili, I., Fu, P., Palsson, B. O., Nielsen, J., 2003, "Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network", *Genome Research*, Vol. 13, pp. 244-253, February.

- Giannattasio, S., Liu, Z. C., Thornton, J., Butow, R. A., 2005, "Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression", *Journal of Biological Chemistry*, Vol. 280, pp. 42528-42535, December.
- Hardwick, J. S., Kuruvilla, F. G., Tong, J. K., Shamji, A. F., Schreiber, S. L, 1999, "Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins", *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 96, pp. 14866-14870, December.
- Harris, M. A., Deegan, J. I., Lomax, J., 2008, "The Gene Ontology project in 2008", *Nucleic Acids Research*, Vol. 36, pp. D440-D444, January.
- Hinnebusch A. G., 2005, "Translational Regulation of GCN4 and the General Amino Acid Control Of Yeast", *Annual Review of Microbiology*, Vol. 59, pp. 407-450.
- Hong, S. K., Cha, M. K., Choi, Y. S., Kim, W. C., Kim, I. H., 2002, "Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II", *Journal of Biological Chemistry*, Vol. 277, pp. 12109-12117, April.
- Hosiner, D., Lempiainen, H., Reiter, W., Urban, J., Loewith, R., Ammerer, G., Schweyen, R., Shore, D., Schuller, C., 2009, "Arsenic Toxicity to Saccharomyces cerevisiae Is a Consequence of Inhibition of the TORC1 Kinase Combined with a Chronic Stress Response", *Molecular Biology of the Cell*, Vol. 20, pp. 1048-1057, February.
- Inoki, K., Ouyang, H., Li, Y., Guan, K. L., 2005, "Signaling by target of rapamycin proteins in cell growth control", *Microbiology and Molecular Biology Reviews*, Vol. 69, pp. 79-+, March.
- Jacinto, E., Guo, B., Arndt, K. T., Schmelzle, T., Hall, M. N., 2001, "TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway", *Molecular Cell*, Vol. 8, pp. 1017-1026, November.

- Jiang, Y. W., 2008, "An essential role of Tap42-associated PP2A and 2A-like phosphatases in Ty1 transcriptional silencing of S-cerevisiae", *Yeast*, Vol.25, pp. 755-764, October.
- Jiang, Y., 2006, "Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae", *Microbiology and Molecular Biology Reviews*, Vol. 70, pp. 440-+, June.
- Jiang, Y., Broach, J. R., 1999, "Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast", The EMBO Journal, Vol.18 No.10 pp.2782–2792.
- Jones, D. L., Petty, J., Hoyle, D. C., Hayes, A., Ragni, E., Popolo, L., Oliver, S. G., Stateva, L. I., 2003, "Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway", *Physiological Genomics*, Vol. 16, pp. 107-118, December.
- Klionsky, D. J., 2005, "The molecular machinery of autophagy: unanswered questions", *Journal of Cell Science*, Vol. 118, pp. 7-18, January.
- Komeili, A., Wedaman, K. P., O'Shea, E. K., Powers, T., 200, "Mechanism of metabolic control: Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors", *Journal of Cell Biology*, Vol. 151, pp. 863-878, November.
- Koren, R., Rainis, L., Kleinberger, T., 2004, "The scaffolding A/Tpd3 subunit and high phosphatase activity are dispensable for Cdc55 function in the Saccharomyces cerevisiae spindle checkpoint and in cytokinesis", *Journal of Biological Chemistry*, Vol. 279, pp. 48598-48606, November.

- Kuranda, K., Leberre, V., Sokol, S., Palamarczyk, G., Francois, J., 2006, "Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways", *Molecular Microbiology*, Vol. 61, pp. 1147-1166, September.
- Leulliot, N., Vicentini, G., Jordens, J., Quevillon-Cheruel, S., Schiltz, M., Barford, D., Van Tilbeurgh, H., and Goris, J., "Crystal Structure of the PP2A Phosphatase Activator: Implications for Its PP2A-Specific PPIase Activity", Molecular Cell, Vol. 23, pp. 413–424.
- Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P., Hall, M. N., 2002, "Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control", *Molecular Cell*, Vol. 10, pp. 457-468, September.
- Luke, M. M., Seta, F. D., Di Como, C. J., Sugimoto, H., Kobayashi, R, Arndt K. T., 1996,"The SAPs, a New Family of Proteins, Associate and Function Positively with the SIT4 Phosphatase", *Molecular and Cellular Biology*, pp. 2744–2755, June.
- Mahadevan, R., Schilling, C. H., 2003, "The effects of alternate optimal solutions in constraint-based genome-scale metabolic models", *Metabolic Engineering*, Vol. 5, pp. 264-276, October.
- Marion, R. M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N., O'Shea, E. K., 2004, "Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression", *Proceedings of the National Academy of Sciences of the United States* of America, Vol. 101, pp. 14315-14322, October.
- Martin, D. E., Hall, M. N., 2005, "The expanding TOR signaling network", *Current Opinion in Cell Biology*, Vol. 17, pp. 158-166, April.
- Martin, D. E., Powers, T., Hall, M. N., 2006, "Regulation of ribosome biogenesis: where is TOR?", *Cell Metabolism*, Vol. 4, pp. 259-260, October.

- Martin, D. E., Soulard, A., Hall, M. N., "TOR regulates ribosomal protein gene expression via PKA and the forkhead transcription factor FHL1", *Cell*, Vol. 119, pp. 969-979, December.
- McNabb, D. S., Pinto, I., 2005, "Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA Complex in Saccharomyces cerevisiae", Eukaryotic Cell, pp. 1829–1839, November.
- Medvedik, O., Lamming, D. W., Kim, K. D., Sinclair, D. A., 2007, "MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae", *Plos Biology*, Vol. 5, pp. 2330-2341, October.
- Mira, N. P., Lourenco, A. B., Fernandes, A. R., Becker, J. D., Sa-Correia, I., 2009, "The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids", *Fems Yeast Research*, Vol. 9, pp. 202-216, March.
- Neff, C. L., Sachs, A. B., 1999, "Eukaryotic Translation Initiation Factors 4G and 4A from Saccharomyces cerevisiae Interact Physically and Functionally", *Molecular and Cellular Biology*, pp. 5557–5564, August.
- Orlova, M., Kanter, E., Krakovich, D., Kuchin, S., 2006, "Nitrogen availability and TOR regulate the Snfl protein kinase in Saccharomyces cerevisiae", *Eukaryotic Cell*, Vol. 5, pp. 1831-1837, November.
- Pascual-Ahuir, A., Proft, M., 2007, "Control of stress-regulated gene expression and longevity by the Sch9 protein kinase", *Cell Cycle*, Vol. 6, pp. 2445-2447, October.
- Peng, T., Golub, T. R., Sabatini, D. M., 2002, "The immuno suppress ant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation", *Molecular and Cellular Biology*, Vol. 22, pp. 5575-5584, August.

- Puria, R., Zurita-Martinez, S. A., Cardenas, M. E., 2008, "Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae", *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 105, pp. 7194-7199, May.
- Raught, B., Gingras, A. C., Sonenberg, N., 2001, "The target of rapamycin (TOR) proteins", *Proceedings of the National Academy of Sciences of the United States of America*, pp. 7037-7044.
- Reid, J. L., Iyer, V. R., Brown, P. O., Struhl, K., 2000, "Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase", *Molecular Cell*, Vol.6, pp. 1297-1307, December.
- Reinke, A., Chen, J. C. Y., Aronova, S., Powers, T., 2006, "Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p", *Journal of Biological Chemistry*, Vol.281, pp. 31616-31626, October.
- Reinke, A., Chen, J. C. Y., Aronova, S., Powers, T., 2006, Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p, *Journal of Biological Chemistry*, Vol. 281, pp. 31616-31626, October.
- Rodriguez-Caso, C., Medina, M. A., Sole, R. V., 2005, "Topology, tinkering and evolution of the human transcription factor network", *Febs Journal*, Vol. 272, pp. 6423-6434, December.
- Rohde, J. R., Bastidas, R., Puria, R., Cardenas, M. E., 2008, "Nutritional control via Tor signaling in Saccharomyces cerevisiae", *Current Opinion in Microbiology*, Vol. 11, pp. 153-160, April.
- Rohde, J. R., Cardenas, M. E., 2003, "The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation", *Molecular and Cellular Biology*, Vol. 23, pp. 629-635, January.

- Santhanam, A., Hartley, A., Duvel, K., Broach, J. R., Garrett, S., 2004, "PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p", *Eukaryotic Cell*, Vol. 3, pp. 1261-1271, October.
- Schauer, A., Knauer, H., Ruckenstuhl, C., Fussi, H., Durchschlag, M., Potocnik, U., Frohlich, K. U., 2009, "Vacuolar functions determine the mode of cell death", *Biochimica Et Biophysica Acta-Molecular Cell Research*, Vol. 1792, pp. 540-545, March.
- Schieke, S. M., Finkel, T., 2007, "TOR and aging: Less is more", *Cell Metabolism*, Vol. 5, pp. 233-235, April.
- Schmelzle, T., Hall, M. N., 2000, "TOR, a central controller of cell growth", *Cell*, Vol. 103, October.
- Shamji, A. F., Kuruvilla, F. G., Schreiber, S. L., 2000, "Partitioning the transcriptional program induced by rapamycin among the effecters of the Tor proteins", *Current Biology*, Vol. 10, pp. 1574-1581, December.
- Shu, C. H., Yang, W. K., Shih, Y. L., Kuo, M. L., Huang, T. S., 1997, "Cell cycle G(2)/M arrest and activation of cyclin-dependent kinases associated with low-dose paclitaxel-induced sub-G(1) apoptosis", *Apoptosis*, Vol. 2, pp. 463-470, October.
- Spirin, V., Mirny, L. A., 2003, "Protein complexes and functional modules in molecular networks", *Proceedings of the National Academy of Sciences of the United States* of America, Vol. 100, pp. 12123-12128, October.
- Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuchiya, M., 2008, "Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4", *Cell*, Vol. 133, pp. 292-302, April.

- Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., Golub, T. R., 1999, "Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation", *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 96, pp. 2907-2912, March.
- Tate, J. J., Cooper, T. G., 2003, "Tor1/2 regulation of retrograde gene expression in Saccharomyces cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism", *Journal of Biological Chemistry*, Vol. 278, pp. 36924-36933, September.
- Tate, J. J., Cox, K. H., Rai, R., Cooper, T. G., 2002, "Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression", *Journal of Biological Chemistry*, Vol. 277, pp. 20477-20482, June.
- Tomas-Cobos, L., Viana, R., Sanz, P., 2005, "TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1, a yeast low-affinity glucose transporter", *Yeast*, Vol. 22, pp. 471-479, April.
- Tsang, C. K., Zheng, X. F. S., 2007, "TOR-in(g) the nucleus", *Cell Cycle*, Vol.6, pp. 25-29, January.
- Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke,
 V., Anrather, D., Ammerer, G., Riezman, H., Broach, J. R., De Virgilio, C., Hall,
 M. N., Loewith, R., 2007, "Sch9 is a major target of TORC1 in Saccharomyces cerevisiae", *Molecular Cell*, Vol. 26, pp. 663-674, June.
- Van Hoof, C., Janssens, V.,De Baere, I., de Winde, J. H., Winderickx J., Dumortier, F., Thevelein, J. M., Merlevede W., and Goris J., 2000, "The Saccharomyces cerevisiae Homologue YPA1 of the Mammalian Phosphotyrosyl Phosphatase Activator of Protein Phosphatase 2A Controls Progression through the G1 Phase of the Yeast Cell Cycle", *Journal of Molecular Biology*, Vol. 302, pp. 103-119.

- Van Hoof, C., Janssens, V.,De Baere, I., de Winde, J. H., Winderickx J., Dumortier, F., Thevelein, J. M., Merlevede W., and Goris J., 2001, "The Saccharomyces cerevisiae Phosphotyrosyl Phosphatase Activator Proteins Are Required for a Subset of the Functions Disrupted by Protein Phosphatase 2A Mutations", Experimental Cell Research, Vol. 264, pp. 372–387.
- Wanke, V., Cameroni, E., Uotila, A., Piccolis, M., Urban, J., Loewith, R., De Virgilio, C., 2008, "Caffeine extends yeast lifespan by targeting TORC1", *Molecular Microbiology*, Vol. 69, pp. 277-285, July.
- Wanke, V., Pedruzzi, I., Cameroni, E., Dubouloz, F., De Virgilio, C., 2005, "Regulation of G(0) entry by the Pho80-Pho85 cyclin-CDK complex", *Embo Journal*, Vol. 25, pp. 4271-4278, December.
- Wei, M., Fabrizio, P., Hu, J., Ge, H. Y., Cheng, C., Li, L., Longo, V. D., 2008, "Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9", *Plos Genetics*, Vol. 4, January.
- Wullschleger, S., Loewith, R., Hall, M. N., 2006, "TOR signaling in growth and metabolism", *Cell*, Vol. 124, pp. 471-484, February.
- Yasuda, J., Tsuchiya, A., Yamada, T., Sakamoto, M., Sekiya, T., and Hirohashi, S., 2003,
 "Nemo-like kinase induces apoptosis in DLD-1 human colon cancer cells", Biochem Biophys Res Commun, Vol. 308, pp. 227-33.
- Zhang, N., Wu, J., Oliver, S. G., 2009, "Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast", *Microbiology*, Vol. 155, pp. 1690-1698.
- Zheng, Y., Jiang, Y., 2005, "The Yeast Phosphotyrosyl Phosphatase Activator Is Part of the Tap42–Phosphatase Complexes", *The American Society for Cell Biology*, Vol. 16, pp. 2119–2127, April.

- Zinzalla, V., Graziola, M., Mastriani, A., Vanoni, M., Alberghina, L., 2007, "Rapamycinmediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae", *Febs Journal*, pp. C4-23.
- Zurita-Martinez, S. A., Puria, R., Pan, X. W., Boeke, J. D., Cardenas, M. E., 2007, "Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae", *Genetics*, Vol. 176, pp. 2139-2150, August.