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ABSTRACT

COMPUTATIONAL APPROACHES TO ASSESS THE BINDING

PROPERTIES OF LIGANDS: THE CASE OF THE NMDA

RECEPTOR

One of the important issues in drug design is the identification of the biological activ-

ity of receptor ligands. Development, synthesis and activity measurements of ligands have a

major importance in drug design. However, there are certain limits in experimental studies;

synthesis of a large number of compounds to cover all the potentially active molecules is

unrealistic. Computational studies could therefore provide a valuable aid to experimental

studies on ligand design for glutamate receptors. By combining the strengths of Molecular

Dynamics and Quantum Chemical approaches, a more focused inspection, characterisation

and rationalization of the drug design studies is allowed to be established. In this disser-

tation, computational methods have been used to investigate the intrinsic properties of the

biologically active molecules that cause the selectivity. The results of this study will be in-

troduced in 4 chapters. In Chapters 4 and 5, we aimed to differentiate between agonists,

antagonists and partial agonists based on Quantum Chemical descriptors and binding Gibbs

free energies. Several molecular properties that could play a role in ligand binding to the

glycine GluN1 subunit of NMDA and calculated binding Gibbs free energies were further

used to provide a link between the efficacies and binding affinities of the ligands. Predic-

tion of the acid dissociation constants of amino acids in proteins and ligands allows us to

have information about the binding affinity and efficacy of the ligand to its target protein.

Considering the significance of pKa’s, how atomic charges of carboxylic acids can be related

to the prediction of pKa of the ligands have been explored in Chapter 6. In order to shed

light on the origins of the stereoselectivity of biologically active ligands, several mechanis-

tic pathways have been evaluated for 2-thiohydantoins which are potent androgen receptor

antagonists and the results are given in Chapter 7.
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ÖZET

LİGAND BAĞLANMA ÖZELLİKLERİNİN

DEĞERLENDİRİLMESİNDE HESAPSAL YAKLAŞIMLAR: NMDA

RESEPTÖRÜ OLGUSU

İlaç tasarımında önemli konulardan biri, reseptör ligantlarının biyolojik aktivitesinin

tanımlanmasıdır. Ligantların geliştirilmesi, sentezi ve aktivite ölçümleri büyük öneme sahip-

tir. Ancak, deneysel çalışmalarda belirli sınırlamalar vardır; potansiyel olarak aktif olan

tüm molekülleri kapsayan çok sayıda bileşiğin sentezi gerçekçi değildir. Bu nedenle bil-

gisayar destekli çalışmalar glutamat reseptörleri için tasarlanan ligantlar ile ilgili deney-

sel çalışmalara değerli bir yardımcı olabilir. Moleküler Dinamik ve Kuantum Kimyasal

yaklaşımların güçlü yönlerini birleştirerek, ilaç tasarım çalışmalarının daha odaklanmış bir

denetimi, karakterizasyonu ve rasyonalizasyonunun oluşturulmasına izin verilir. Bu tezde,

biyolojik olarak aktif moleküllerin seçiciliğe neden olan kendine özgü özelliklerini araştırmak

için hesapsal yöntemler kullanılmıştır. Bu çalışmanın sonuçları 4 bölümde tanıtılacaktır. 4.

ve 5. bölümlerde agonistler, antagonistler ve kısmi agonistler arasında kuantum kimyasal

tanımlayıcılara ve serbest Gibbs bağlanma enerjilerine dayanarak ayrım yapılması amaçlan-

mıştır. Ligantların NMDA reseptörü GluN1 altünitesine bağlanmasında rol oynayabilen

çeşitli moleküler özellikler ve hesaplanan Gibbs serbest enerjileri ligantların etkinlikleri

ve bağlanma afiniteleri arasında bir bağlantı sağlamak için ayrıca kullanılmıştır. Protein-

lerdeki amino asitlerin ve ligantların asitlik sabitlerinin öngörülmesi, ligandın hedef proteine

bağlanma ilgisi ve etkinliği hakkında bilgi sahibi olmamızı sağlar. pKa’ların önemini göz

önüne alarak, karboksilik asitlerin atomik yüklerinin ligantların pKa tahminiyle nasıl ilişkili

olabileceği Bölüm 6’da açıklanmıştır. Biyolojik olarak aktif ligantların stereo seçiciliğinin

kökenlerine ışık tutmak için, potansiyel androjen reseptörü antagonistleri olan 2-tiyohidantoin-

ler için çeşitli mekanik yollar değerlendirilmiş ve sonuçlar Bölüm 7’de verilmiştir.
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1. INTRODUCTION

Glutamate, one of the major neurotransmitters in the brain and spinal cord, exerts its

post-synaptic effects through a series of membrane receptors. Ionotropic glutamate recep-

tors (iGluRs) are located at the membranes of neuronal cells and play key roles in synaptic

plasticity. There are four different subtypes of iGluRs based on their pharmacology and se-

quence similarity: N-methyl-D-aspartate receptor (NMDAR), kainic acid receptor (KAR),

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and Delta re-

ceptor [6] (Figure 1.1).

Figure 1.1. Subtypes of ionotropic glutamate receptors: AMPAR, KAR, NMDAR and Delta

receptor (from left to right)

AMPA and kainate receptors mediate fast synaptic transmission in the central nervous

system [7]. In the NMDA receptor, postsynaptic currents increase and decrease more slowly

compared to AMPA and kainate receptors. The NMDA receptor is also more sensitive to

voltage-dependent blocking, the receptor’s ion channels permit the passage of the calcium

ions in addition to monovalent sodium and potassium ions, and it needs the simultaneous

binding of glycine and glutamate for the activation of the ion channel [8]. On the other hand,

Delta receptors are completely unresponsive to glutamate and their functional significance

has not yet been understood [9].



2

Monomers of iGluRs are formed of an extracellular N terminal domain (NTD), an in-

tracellular C terminal domain (CTD), three transmembrane domains (M1, M2 and M3), a

re-entrant membrane loop (P-loop), and a ligand binding domain (LBD) [10] (Figure 1.2).

The receptor consists of two GluN1 and two GluN2 or GluN3 subunits. While GluN1 is

responsible from the activation of the ion channel, GluN2 and GluN3 are responsible from

the functional properties such as glutamate affinity, receptor desensitization and pharmaco-

logical sensitization [11, 12]. It is known that NMDA receptor plays a key role in excitatory

synaptic transmission such as learning, memory and synaptic plasticity, thus the malfunction-

ing of the receptor is involved in many neurodegenerative disorders like epilepsy, parkinson’s

disease, alzheimer and schizophrenia. Under normal conditions of synaptic transmission the

ion channel of the receptor is blocked by the magnesium ions. The binding of native agonist

glycine to the GluN1 subunit and co-agonist glutamate to the GluN2 subunit activates the ion

channel and permits the flux of calcium, potassium and sodium ions into neurons and this

process is very important in memory formation and neurotoxicity [13–16]. The receptor can

be inactivated during its resting period or can be exposed to ‘excitotoxic cell death’ due to the

prolonged stimulation of the receptor. Thus, the GluN1 subunit is the allosteric modulatory

site which makes it unique in receptor activation [17]. Regulation of receptor activity by in-

troducing agonist-antagonist ligands to the glycine and glutamate sites became a promising

strategy for the treatment of neuropsychiatric disorders, which are related to dysfunction of

NMDA. Hence, the binding sites of these subunits are important targets of extensive medical

research.

According to the ligand binding essays and functional investigations, the receptor func-

tion is modified by the competition of the interacting ligands with glycine at the glycine

binding site [18]. Agonists keep the LBDs closed, resulting in the opening of the NMDA ion

channel, while antagonists act as a wedge between the LBDs, as such preventing the opening

of the ion channel and overstimulation of the receptor (Figure 1.3) [19]. However, it is well

known that complete activation or blockage of the receptor has many serious side effects like

memory impairment, neurotoxicity or psychotomimetics [20]. On the other hand, a partial

agonist can act either as a full agonist or antagonist, i.e. in the presence of excess antagonist,

a partial agonist acts like an agonist to reduce the full inhibition effects of the antagonist, de-

pending on the glycine concentration at the receptor. For this reason, employment of partial
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Figure 1.2. Schematic representation of iGluR subunit topology (left) and heterotetrameric

GluN1-GluN2 NMDA receptor (right)

agonists is becoming more applicable since these compounds are able to regulate the activity

at a certain level [21].

Binding affinity (Ki) and efficacy data of a drug molecule together determine the po-

tency of that drug. Interaction of a ligand with its target receptor through intermolecular

forces such as hydrogen bonds, Coulombic interactions and Van der Waals forces is charac-

terized with its binding affinity. Once the ligand binds to its receptor, the extent to which

the receptor is activated is determined by its efficacy [22]. Antagonists have almost zero ef-

ficacy, inactivating the receptor, while full agonists have 100% efficacy which is interpreted

as full activation, with partial agonists having efficacy scaling up to an agonist and down to

an antagonist.

A large number of chemical and biological systems contain acidic and basic groups

which govern the interactions with the surroundings and therefore the function of the system.

At a particular pH, the extent to which an ionizable species can be protonated or deprotonated

by the hydrogen transfers from/to the environment is determined by the pKa of the species.

Most of the drug molecules are weak acids or weak bases and when they are in solution

they are in their both ionized and nonionized states. The pKa of a drug molecule effects its
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Figure 1.3. Cartoon representation of the GluN1 subunit of the NMDA receptor. Glycine

(GLY) bound structure (PDB code: 1PB7) refers to the closed-cleft conformation (A),

whereas 5,7-dichlorokynurenic acid (DCKA) bound structure (PDB code: 1PBQ) refers to

open-cleft conformation (B) [1]

solubility in lipid, and thus its diffusion, since only the uncharged ligands can penetrate into

the cell membrane [23]. Besides, the interactions between the ionizable functional groups

of a drug molecule with the residues of the protein, which effects the affinity, activity and

efficacy of the ligand, is higly dependent on the pKa’s of the side chains in the active site

and the drug molecule. On the other hand, the changes in the protonation states of the

aminoacids in the residues have a direct impact on establishing the protein conformation

and stability [24], solubility and folding [25], catalytic activity of enzymes [26] and binding

ability. Therefore, gaining insights of relative pKa’s of ligands and the protonation sites of

the receptor may explain the key features of ligand binding.

Besides the factors governing the interactions of a ligand with its environment, it is

important to understand the intrinsic properties of the ligand. It is well known that, stereoiso-

mers of a chiral molecule may show different biological activities. A ligand can be stere-

oselective or regioselective depending on the differences in electronic and steric environ-

ment. For this reason, the demonstration of configurational stabilities of drug candidates and
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mechanisms by which they racemize are important issues. Recently, Sarigul and Dogan [2]

synthesized 2-thiohydantoin derivatives as racemic and nonracemic diastereomeric pairs of

atropisomers, a specific class of compounds which are considered to be among the privi-

leged scaffolds in drug discovery with their agonistic-antagonistic activities. The synthesis

of 5-methyl-3-phenyl-2-thiohydantoin, which lacks chiral axes, gave racemic mixtures. The

axially chiral 5-methyl-3-o-bromophenyl-2-thiohydantoin may exist in SP, RM, SM and RP

isomeric forms. SP/RM is transoid, whereas is SM/RP is cisoid with respect to the sub-

stituent at C5 and the o-aryl substituent. Using computational tools to model the reaction

mechanisms is important for understanding the details of the racemization steps in order to

synthesize enantiomerically pure products.

One of the important issues in drug design is the identification of the biological activity

of receptor ligands. Development, synthesis and activity measurements of ligands have a

major importance in drug design. However, there are certain limits in experimental studies;

synthesis of a large number of compounds to cover all the potentially active molecules is

unrealistic. Computational studies could therefore provide a valuable aid to experimental

studies on ligand design for glutamate receptors. By combining the strengths of Molecular

Dynamics and Quantum Chemical approaches, a more focused inspection, characterisation

and rationalization of the drug design studies is allowed to be established.
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2. OBJECTIVE AND SCOPE

The proper function of N-methyl-D-Aspartate (NMDA) receptor is critical in memory

formation and synaptic plasticity; complete activation or blockage of the receptor has many

serious side effects like memory impairment, neurotoxicity or psychotomimetics. Therefore,

regulation of receptor activity by introducing agonist and antagonist ligands to the glycine

site (GluN1 subunit) became a promising strategy for the treatment of neuropsychiatric dis-

orders. The identification of the biological activity (agonism versus antagonism) of receptor

ligands is one of the crucial issues in drug design. In the present work, we wish to verify

which intrinsic properties of structurally resembling ligands cause differentiation between

antagonistic and agonistic behaviour by using various computational tools. The interactions

between the ligand and the ligand binding domain will be inspected in order to gain insights

into the activation/inhibition mechanisms of the receptor. Moreover, the stereoselectivity of

a class of ligands will be elucidated.

In the previous section of the dissertation, a brief introduction about the NMDA recep-

tor, agonism-antagonism activity of ligands, factors governing the interactions of a ligand

with its environment and importance of the selectivity of a ligand are provided. A more

detailed discussion of each one will be given in the following chapters.

In Chapter 3, the fundamental principles of the performed computations, including

Density Functional Theory, Molecular Dynamics and docking methods, are introduced. Within

the relevant chapters comprehensive explanations on the methodologies are presented.

Following the brief overview of the theoretical methods, the results of this study will

be introduced in 4 chapters. In the following two chapters, we aim to differentiate between

agonists, antagonists and partial agonists based on Quantum Chemical descriptors (Chapter

4) and binding Gibbs free energies (Chapter 5). Several molecular properties that could play

a role in ligand binding to the glycine GluN1 subunit of NMDA and calculated binding Gibbs

free energies are further used to provide a link between the efficacies and binding affinities

of the ligands. Prediction of the acid dissociation constants of amino acids in proteins and
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ligands allows us to have information about the binding affinity and efficacy of the ligand

to its target protein. In Chapter 6, we will explore how atomic charges of carboxylic acids

can be related to the prediction of pKa of the ligands. A special case will be presented in

Chapter 7 in order to understand the stereoselectivity of thiohydantoin ligands, which are po-

tent androgen receptor antagonists, by investigating various mechanistic synthesis pathways.

The crucial conclusions drawn from each chapter and concluding remarks are highlighted in

Chapter 8.
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3. THEORETICAL BACKGROUND

This chapter provides basic principles of most commonly used theoretical approaches

in this dissertation including Quantum Mechanics, Molecular Dynamics and Molecular Dock-

ing methods.

3.1. Quantum Mechanics

3.1.1. The Schrödinger Equation

Quantum mechanics provides mathematical tools in order to describe properties of

microscopic systems. The behaviour of electrons in molecules under the influence of the

electromagnetic field exerted by nuclear charges is described by Schrödinger equation

Ĥψ = Eψ (3.1)

where the total energy of the system E is expressed as an eigenvalue of the Hamiltonian

H and ψ is the wave function which is the mathematical function that describes the spatial

distribution of electrons and nuclei in the system. The Hamiltonian operator is the sum of

kinetic energy operator and potential energy operator:

Ĥ = T̂ +V̂ (3.2)

For a particle with mass m, the kinetic energy operator (T̂ ) can be expressed in three

dimensions as:

T̂ =− h̄2

2m
∇

2 (3.3)
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where

∇
2 =

[
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

]
(3.4)

and

h̄ =
h

2π
(3.5)

For an n particle system, the kinetic energy operator is represented as:

T̂ =− h̄2

2mi

n

∑
i=1

∇
2 (3.6)

The potential energy operator for a system of charged particles i and j is

V̂ (r) = ∑
i> j

ZiZ je2

4πε0

1
|ri− r j|

(3.7)

where the atomic number of particle is represented as Z, charge on the electron is e and the

distance between particles is r.

For a molecular system composed of electrons and nuclei, the potential energy operator

in Equation 3.7 becomes:

V̂ (r) =−∑
A,i

ZAe2

4πε0

1
|rA− ri|

+ ∑
A>B

ZAZBe2

4πε0

1
|rA− rB|

+∑
i> j

e2

4πε0

1
|ri− r j|

(3.8)

In Equation 3.8, the electron-nuclei attraction is defined with the first term, nuclei-

nuclei repulsion is accounted in the second term and electron-electron repulsion is repre-

sented in the last term.
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Therefore Equation 3.2 can be written as:

Ĥ = Tn +Te +Ve−n +Vn−n +Ve−e (3.9)

The Schrödinger equation can be solved accurately for systems of two particles. For

many particle systems, the motions of all of the particles are considered as correlated and

thus some approximations are needed to solve the Schrödinger equation. The nuclei are

much heavier than electrons therefore their motions are much slower than electron motions

and the electronic wave function depends upon the nuclear positions but not upon their ve-

locities. Born-Oppenheimer Approximation assumes that the positions of the nuclei can be

considered to be fixed. This allows the separation of the Hamiltonian into nuclear Ĥn and

electronic Ĥel parts. Equation 3.9 can be written as:

Ĥ = Tn +Vn−n +Ĥel (3.10)

The nuclear kinetic energy term in Equation 3.9 is therefore neglected, and nuclear-

nuclear potential energy term is considered as a constant. Thus, the electronic structure of a

molecule can be computed by the electronic Schrödinger equation:

Ĥelψel = Eelψel (3.11)

And the total energy of the system is given by:

Etotal = Eel +Vn−n (3.12)

One of the main approximation methods used in quantum mechanics in order to solve

Equation 3.11 is the variational method which allows us to estimate the energy of the ground

state of a many particle system. Variational principle states that the expectation value of the



11

Hamiltonian which is computed with any trial wave function (Φ) is always higher than or

equal to the energy of the ground state (ε0). Mathematically,

∫
Φ∗ĤΦ∫
Φ∗Φ

≥ ε0, (3.13)

An approximation to the ground state can be found by varying Φ inside a given set of

functions and looking for the function that minimizes the expectation value of the Hamilto-

nian. Hartree-Fock Theory and Density Functional Theory are based on variational principle.

3.1.2. Hartree-Fock Theory

In the Hartree-Fock method, the electrons are considered as occupying single-particle

orbitals making up the many-electron wave function. By an effective potential each electron

experiences the presence of electrons in other orbitals. The overall electronic wave function

of a system composed of N number of electrons is defined as a Slater determinant which is

constructed by antisymmetrized product of one-electron wave functions, satisfying the Pauli

Exclusion Principle.

Ψ
SD(~x1,~x2, ..., ~xN) =

1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) . . . χN(~x1)

χ1(~x2) χ2(~x2) . . . χN(~x2)

...
...

...

χ1(~xN) χ2(~xN) . . . χN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.14)

A spin orbital (χ) is simply the product of a spatial orbital (ϕ) and the spin function

(g) in a given coordinate r. The value of g(ms) can be either α or β depending on the value

of the quantum number ms.

χi(r) = ϕ(r)g(ms) (3.15)
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Molecular orbital coefficients are varied according to the variational principle and the

overall wave function is optimized in an iterative manner until no further changes occur.

This procedure is called the Self-Consistent Field (SCF). Hartree-Fock equation is used for

the minimum energy calculations of the corresponding orbital of energy εi:

F̂ = εiχi (3.16)

The Fock operator for each electron i (F̂i) is expressed by:

F̂i =−
1
2

∇
2
i

nuclei

∑
k

Zk

rik
+VHF(i) (3.17)

VHF(i) is the Hartree-Fock potential which accounts for the average repulsive potential

experienced by each electron due to the other electrons. The SCF strategy uses some guess

wave functions to construct the Fock operator, and then solve the Schrödinger equation. The

procedure is then iterated by using the output functions as new input functions or with more

sophisticated methods until the input and output functions are the same. If the convergence

fails, the trial functions are varied and the process is iterated upon till self-consistency is

attained to yield numerical solutions to the Hartree-Fock potential.

Figure 3.1. General procedure for Self Consistent Field strategy

Electrons as charged particles expose Coulomb repulsions and the motion of one elec-
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tron has an impact on the motion of the others. Hartree-Fock theory stems from the descrip-

tion of the dynamic electron correlation as induced by their instantaneous mutual repulsion.

Methods based on the calculation of the wave function including the electron correlation ef-

fects like Configuration Interaction, Moller-Plesset Perturbation Theory and Coupled Cluster

are computationally very expensive. Density functional methods are potentially capable of

very accurate results at low cost.

3.1.3. Semi-Empirical Methods

Semi-empirical methods are established upon the HF equations and they involve exper-

imental data, approximations or assumptions. Since the core orbitals do not contribute to the

chemical properties as much as valence orbitals, they are not treated by semi-empirical meth-

ods. In these methods, many of the integrals are either manipulated or parametrized in order

to overcome the computational cost. Thus, parametrization quality determines the accuracy

of these methods. Several semi-empirical methods have been developed on parametrization

with different approximations.

Most of the modern semi-empirical methods are based on the Zero Differential Overlap

approximation (ZDO) which neglets the overlap between different basis functions centered

on different atoms:

χ
A
µ (i)χ

B
µ (i) = 0 i f A 6= B (3.18)

The various ZDO models can be grouped according to their approximations for the one

and two electron integrals:

CNDO: complete neglect of differential overlap [27]

INDO: intermediate neglect of differential overlap model [28]
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NDDO: neglect of diatomic differential overlap model [29]

Many methods have been developed based on NDDO approximation. In the MNDO

method (modified neglect of diatomic overlap) [30], the repulsions between atoms which are

separated by their van der Waals distances are overestimated. AM1 (Austin Model 1) [31]

treats the hydrogen bondings better than MNDO but the misrepresentation of the hydrogen

bonds is still a problem. PM3 (parametrized model number 3) [32] method uses the same

equations and formalism as the AM1 method but the number of parameters for each element

is different.

3.1.4. Density Functional Theory

For the past 30 years, Density Functional Theory (DFT) has been the method of choice

for the quantum mechanical simulations of many-body systems. DFT, in contrast to Hartree-

Fock Theory which deals directly with the wave function, is based on the electron density.

The foundations of the current application of DFT is the Kohn and Sham formalism. In the

Kohn-Sham approach, a fictitious non-interacting system of electrons is constructed with

single particle orbital wave functions in which the same external potential energy function

acts on all non-interacting electrons. Then the energy functional can be divided into:

E[ρ(r)] = EKE [ρ(r)]+EH [ρ(r)]+EXC[ρ(r)] (3.19)

where EKE[ρ(r)] is the kinetic energy of the non-interacting electrons (Equation 3.20),

EH[ρ(r)] represents the electron-electron Coulombic energy which does not take into ac-

count the correlation between motions of electrons (Equation 3.21) and EXC[ρ(r)] corre-

sponds to the exchange-correlation energy which accounts for the correction to the kinetic

energy arising from the interacting nature of electrons of opposite spin (correlation term)

and non-classical corrections to the repulsion energy between electrons of the same spin

(exchange term) (Equation 3.22).

EKE [ρ(r)] =
N

∑
i

∫
ψi(r) −

∇2

2
ψi(r)dr (3.20)
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where ψi(r) represents the Kohn-Sham molecular orbitals.

EH [ρ(r)] =
1
2

∫ ∫
ρ(r1)ρ(r2)

|r1− r2|
dr1dr2 (3.21)

EXC[ρ(r)] =
∫

ρ(r)εX [ρ(r)]dr+
∫

ρ(r)εC[ρ(r)]dr (3.22)

The wave function of this system with N number of electrons can be expressed as a

Slater determinant of one-electron functions χi and the electron density can be defined as:

ρ(r) =
N

∑
i
< χi|χi > (3.23)

From the Equations 3.19, 3.20, 3.21 and 3.22, the hamiltonian hKS
i of the Kohn Sham

equations

hKS
i χi = εiχi (3.24)

can be expressed as:

hKS
i =−∇2

2
−

nucleus

∑
k

Z2
k

|ri− rk|
+
∫

ρ(r)
|ri− r j|

dr+VXC (3.25)

The exchange correlation potential VXC is obtained by differentiating Equation 3.22.

VXC[ρ(r)] = εX [ρ(r)]+ εC[ρ(r)]+
∂εX(r)

∂ρ
+

∂εC(r)
∂ρ

(3.26)

Since the evaluation of the exchange-correlation term is not easy, one can use approx-

imations. This term includes the contributions of exchange and correlation together with
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the difference in kinetic energy between the real system and the fictitious non-interacting

system. Construction of EXC[ρ(r)] by Local Density Approximation (LDA) which assumes

that the electron density is uniform everywhere gives:

ELDA
XC [ρ(r)] = ELDA

X [ρ(r)]+ELDA
C [ρ(r)] =

∫
ρ(r)εLDA

X ρ(r)dr+
∫

ρ(r)εLDA
C ρ(r)dr (3.27)

where

ELDA
X [ρ(r)] =CX

∫
ρ(r)4/3dr (3.28)

and εLDA
X representing the exchange energy per electron:

ε
LDA
X =CX ρ

1/3 (3.29)

with CX being a constant equal to 0.7386. The correlation energy EC[ρ(r)] is based on the

results of Monte Carlo calculations for a homogeneous electron gas of different densities

[33–36].

Local Spin Density Approximation (LSDA) allows different orbitals for electrons with

different spins for the spin polarized systems. ELSDA
XC [ρ(r)] is expressed as:

ELSDA
XC [ρ(r)] = ELSDA

XC [ρα(r),ρβ (r)] = ELSDA
X [ρα(r),ρβ (r)]+ELSDA

C [ρα(r),ρβ (r)] (3.30)

where ELSDA
X [ρα(r),ρβ (r)] is

ELSDA
X [ρα(r),ρβ (r)] =−21/3CX

∫
[ρ

4/3
α (r)+ρ

4/3
β

(r)]dr (3.31)

and exchange energy per electron εLSDA
X is described as:

ε
LSDA
X =−21/3CX [ρ

1/3
α +ρ

1/3
β

] (3.32)
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In contrast to LDA methods, generalized gradient approximation (GGA) assumes that

the electron density is inhomogeneous and includes gradients for the variation of ρ with

position.

EGGA
XC [ρα(r),ρβ (r)] =

∫
f (ρα(r),ρβ (r),∆ρα ,∆ρβ ) (3.33)

where f is a function of ρα and ρβ , and their gradients. EGGA
XC is divided into exchange and

correlation parts and each part is modelled independently.

The most popular EX functionals are PW86, B88, PW91, PBE and the EC functionals

are LYP, PW91, PBE, P86 [37] and any exchange functional can be used with any correla-

tion functional; BLYP functional [38, 39] is an example for combination of B88 exchange

functional and Lee-Yang-Parr correlation functional [38,40]. Hybrid DFT functionals incor-

porate a portion of non-local Hartree-Fock exchange (HFX) with local/semi-local DFT/GGA

exchange in the EXC term obtained from Kohn-Sham orbitals.

EXC[ρ(r)] = a0EHFX
X [{ψi}]+ (1−a0)EDFT

X [ρ(r)]+EDFT
C [ρ(r)] (3.34)

where a0 coefficient denotes the fraction of HFX [41]. The hybrid functionals used in this

dissertation are B3LYP [38, 42], OLYP [38, 43], PBE [44], PBE0 [45], M06 [46, 47], M06L

[47, 48] and M06-2X [46, 47].

3.1.5. Basis Sets

A basis set is a set of functions used to build the molecular orbitals, which are expanded

as a linear combination with coefficients to be determined. Slater type orbitals (STO) are the

natural basis functions due to their similarity with the eigenfunctions of the hydrogen atom.

They are simply defined as:

Sv(r) = e−ςvr (3.35)
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Nevertheless, difficulties in mathematical integration has restricted the use of STOs.

Therefore Gaussian Type Orbitals (GTO) were suggested as an alternative where the expo-

nential e−ςvr2
is evaluated rather than e−ςvr of the STOs in Equation 3.35. Contracted GTOs

which are constructed from primitive Gaussian functions are recommended to be used since

GTOs do not represent the electron density of the real situation as well as the STOs. The

simplest form of contracted Gaussians are the STO-nG minimal basis sets which attempt to

approximate STOs by n-Primitive Gaussians. Although they are much cheaper, they provide

rough results as they include only one contracted Gausssian per atomic orbital. Split va-

lence basis sets were introduced by Pople which exhibit more flexibility in the valence basis

functions than in the core since valence electrons are more active in chemical bonding [49].

For example, the split valence double-ς basis set uses only one basis function for each core

atomic orbital, and uses two basis functions for the valence atomic orbitals. 3-21G, 6-21G,

4-31G, 6-31G are the split valence double-ς basis sets and 6-311G is the split valence triple-

ς basis set. The first number represents the number of primitive gaussians used in the core

functions and the numbers after the hypen are the number of functions used for the valence

orbitals.

Including polarization functions in the basis set improves the flexibility of the basis set

and allows the atomic electron densities to be polarized in order to represent the electron den-

sity better in bonding regions. Polarization functions add higher angular momentum orbital

to heavy atoms and they are denoted in Pople’s sets by an asterisk (*) or (d). Polarization

can also be added on light atoms like hydrogen and helium by a second asteriks or (d,p).

In circumstances where electrons may be far from the nucleus, diffuse basis functions are

added to the basis set to broaden the electron distributions. Diffuse functions are important

when considering anions, excited states and other large, soft molecular systems to accurately

represent the tail portion of the atomic orbitals, which are distant from the atomic nuclei.

One plus (+) adds a set of diffuse s and p orbitals to the heavy atoms and the second plus

adds a set of diffuse s functions to hydrogen.

The level of DFT functional and the basis sets should be selected according to the

properties and the behavior of the system modeled. Diffuse functions can also be added

along with polarisation functions. This leads, for example, to the 6-31+G*, 6-31++G*, 6-
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31+G** and 6-31++G** basis sets.

3.1.6. Atomic Charges

Although many different methods have been developed for assigning quantitative val-

ues to the amount of electron density for each atom in a molecule, the partial atomic charge

on an atom is not a quantum mechanical observable. The partial atomic charge on a posi-

tively charged atomic center (ZA) which is shielded by an electron cloud can be determined

by [50]:

qA = ZA−
∫

ρA(r)dr (3.36)

The total number of electrons (N) is the integration over all electron density part in

Equation 3.36 and it is expressed as:

N =
AO

∑
µ

(PS)µµ (3.37)

where P is the electron density and S is the overlap population summed over all atomic or-

bitals. In Mulliken population analysis [51], all electronic charge contributions from atomic

orbitals are summed up and electronic overlap clouds between two atoms are divided be-

tween atomic orbitals which contribute to the corresponding overlap. The charge qA is then

expressed as the difference between the number of electrons on the free atom which is equal

to the atomic number ZA and the total number of electrons:

qA = ZA−
AO

∑
µ∈A

(PS)µµ (3.38)

Mulliken population analysis is applicable if basis functions centered on the nuclei are

used. Since the partial charges calculated from Mulliken analysis are very sensitive to basis

set size, comparisons at different level of theories have no meaning. Löwdin charge [52] is
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an effort for improvement of Mulliken charge by eliminating the problem of overlap parti-

tion. Thus Löwdin charges are much less sensitive to basis functions compared to Mulliken

charges.

qA = ZA−
AO

∑
µ∈A

(S1/2PS1/2)µµ (3.39)

Another orbital based atomic charge is the Natural Population Analysis (NPA) [53] in

which the orbitals are orthogonalized and localized to form one or two center natural bond

orbitals. These orbitals are partitioned to core, valence and Rydberg orbitals in order to

provide the most accurate Lewis structure of the molecule.

Hirshfeld population analysis [54] partitions the molecular electron density ρmol(r)

into a sum of atomic densities ρA(r) according to the Equation 3.40. Then the atomic charges

are computed by using the Equation 3.36

ρA(r) =
ρ0

A(r)

∑B ρ0
B(r)

ρmol(r) (3.40)

The last population analysis method used in this dissertation is the CM5 scheme [55]

which builds upon the Hirshfeld charges by including parametrized-charge dependent ob-

servables such as dipole moment.

3.1.7. Solvation Models

In quantum chemical calculations, the effect of the solvent should be taken into ac-

count for reactions that occur in solution phase. For this purpose, solvation models are

useful in order to mimic the solvent environment of molecular systems. Description of the

solvent effects can be done by explicitly or implicitly. In explicit solvation models all sol-



21

vent molecules are explicitly represented, whereas in implicit solvation models the solvent

is represented as a continuous medium.

In implicit solvation models, the solute molecules are placed in a cavity in the uni-

form and polarizable continuum medium with fixed dielectric constant and the solvation free

energy of a system (∆Gsol) is computed by:

∆Gsol = ∆Gelec +∆Gcav +∆Gdisp (3.41)

in which electrostatic solute-solvent interaction energy is represented by ∆Gelec term, free

energy required to form the solute cavity is the ∆Gcav term and the dispersion energy due to

the solvent-solvent dispersion forces corresponds to ∆Gdisp term.

Polarizable Continuum Model (PCM) [56] has been implemented in various quantum

mechanical calculation packages. The solute is embedded in a cavity based on union of

spheres centered on each atom with a radii defined by van der Waals radius and the polar-

ization charges are placed into the small domains called tesserae. In Conductor like PCM

(CPCM) model [57], the surrounding medium is modeled as a conductor instead of a dielec-

tric. Integral Equation Formalism PCM (IEFPCM) model [58, 59] overcomes the problem

of assumption of entire encapsulation of solute charge density in the cavity by reformulation

of dielectric PCM. The solvation model based on density (SMD) [60] applies the IEFPCM

protocol, solves the non-homogeneous Poisson equation using atomic Coulomb radii. The

non-electrostatic contributions are calculated on the basis of a parameterised function which

includes terms for atomic and molecular surface tensions as well as the solvent accessible

surface area.

3.2. Molecular Mechanics

Molecular Mechanics (MM) treats atoms as perfect spheres and the bonds between

atoms as springs. The energy of molecular systems which contain significant number of

atoms is calculated by classical mechanics due to the very high computational costs arising

from quantum mechanical calculations. The potential energy of the system is defined by
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force fields which are parametrized mathematical expressions and consists of the addition

of the bond stretching energy (Vstr), the energy due to the bond-angle bending (Vbend), the

energy due to the internal rotation about bonds (torsion) (Vtors), the energy due to the van der

Waals (VvdW ) and electrostatic (Velec) interactions. First three terms in Equation 3.42 repre-

sent the energies due to the bonded interactions and last two terms represents the energies

due to the non-bonded interactions.

V = ∑
bonds

Vstr + ∑
angles

Vbend + ∑
dihedrals

Vtors + ∑
pairs

VvdW + ∑
pairs

Velec (3.42)

One of the force fields that was developed for proteins, nucleic acids, and many re-

lated organic molecules in condensed phases is the Assisted Model Building with Energy

Refinement (AMBER) [61] and the potential energy is given by:

V = ∑
bonds

Kstr(r− r0)
2 + ∑

angles
Kbend(θ −θ0)

2 + ∑
dihedrals

Vn

2
[1+ cos(nφ − γ)]

+ ∑
pairs

Ai j

R12
i j
−

Bi j

R6
i j
+ ∑

pairs

qiq j

εRi j

(3.43)

where Kstr is the bond force constant and Kbend is the angle bending force constant, r is the

bond length, θ is the bond angle, Vn is the amplitude of the barrier in the potential energy

surface of rotations about dihedral angle φ , over periodicity of n, with the minimum phase

angle of γ , Ri j is the distance between the centers of the non-bonded atoms i and j, q is the

point charge on atoms i and j and ε is the dielectric constant of the medium. MM provides

static ideal geometry of a system by finding the minimum of a potential energy surface. Since

the interactions of atoms are dynamic and the molecules are in continuous motion in real-

ity, one can obtain motion dependent conformational changes through Molecular Dynamics

simulations.

3.2.1. Molecular Dynamics Simulations

Molecular Dynamics (MD) calculates the time dependent behavior of a molecular sys-

tem. Detailed information on the fluctuations and conformational changes of proteins and
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nucleic acids is achieved by integrating Newton’s laws of motion. The force acting on an

accelerating particle with mass mi is given by:

Fi = miai (3.44)

Force is derived from the potential energy function with respect to the internal coordi-

nates:

Fi =−
∂U(r)

∂ ri
(3.45)

Combining Equation 3.44 and Equation 3.45 gives the Newton’s second law:

−∂U(r)
∂ ri

= mi
∂ 2r
∂ t2 (3.46)

Since the motions of all the particles are coupled together, analytical solution to the

Equation 3.46 is not possible. There are many methods in order to perform step-by-step

numerical integration of the coupled ordinary differential equations such as Verlet Algorithm

[62], Leap-Frog Algorithm [63] and Velocity-Verlet Algorithm [64].

In MD simulations, infinitely large systems are represented by a set of boundary con-

ditions using a small part called a unit cell. This unit cell is replicated throughout the space

in all three cartesian directions to form an infinite lattice. All the periodic copies of the par-

ticles, which are called images, move solidary in the same direction during the simulation so

that the number of particles within the simulation box is always conserved. This procedure is

called periodic boundary conditions (PBC) and the Ewald sum technique is commonly used

to efficiently threat long range interactions [65].

Thermodynamic properties of the systems are obtained by using statistical ensembles.

Ensemble is the probability distribution of the states of a system and it is defined by a small
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set of parameters such as the pressure (P), the temperature (T), energy (E), volume (V),

chemical potential (µ) and the number of particles (N). The most common ensembles in

molecular dynamics are microcanonical ensemble, canonical ensemble, isobaric-isothermal

ensemble and grand canonical ensemble. In the microcanonical ensemble (NVE) the system

is isolated with constant number of particles, volume and energy. In the canonical ensemble

(NVT) the number of particles in the system, the volume and the temperature are fixed. The

isobaric-isothermal ensemble (NPT) is characterized by constant number of atoms, pressure

and temperature. The thermodynamic state of grand canonical ensemble (µVT) is described

by a fixed chemical potential, volume and temperature.

For the simulations of biological systems, the canonical ensemble is preferred due

to its computational efficiency. Different thermostat algorithms are used in order to adjust

constant temperature during the simulations. These algorithms use the relationship between

the kinetic energy (EK), and the instantaneous temperature (T):

EK =
Nd f

2
kβ T =

1
2

Nd f

∑
i

p2
i

mi
(3.47)

where Nd f represents the number of degrees of freedom, kβ is the Boltzmann’s constant, pi

and mi express the linear momentum and the mass of the particle i respectively.

In the Andersen thermostat [66] the system is thermally coupled with a fictitious heat

bath that imposes the desired temperature. The method is stochastic and randomly alters the

velocity of thermostated particles by choosing from a Maxwell-Boltzmann distribution. The

Berendsen thermostat [67] uses velocity rescaling periodically to maintain the temperature.

In this approach the system is assumed to be weakly coupled to a heat bath and the velocities

of particles are rescaled at each time step based on targeted average kinetic energy. In the

Langevin thermostat [49] at each time step all particles are exposed to a random force and

by a constant friction their velocities are lowered. The momentum of the particles follow a

Maxwell-Boltzmann distribution at the desired temperature.
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3.2.2. Binding Free Energy Calculation Methods

The free energy behaviour of chemical and biochemical processes is among the most

critical thermodynamic quantities. Protein-ligand binding constants and membrane-water

partition coefficients can be calculated accurately by the knowledge of the associated free

energy changes. Most of the free energy calculation approaches are generally based on

estimating the relative free energy differences between two states since ∆G values reflect the

difference in the thermodynamic properties.

Free Energy Perturbation (FEP) [68] and Thermodynamic Integration (TI) [69] are the

most accurate and rigorous methods among the ones that directly calculate the free energy

difference and these calculations are based on the changes in the molecular structure during

the molecular dynamics or Monte-Carlo simulations. However, these methods are compu-

tationally very expensive. Molecular Mechanics-Poisson Boltzmann/Surface Area (MM-

PB/SA) and Molecular Mechanics-Generalized Born/Surface Area (MM-GB/SA) methods

[70, 71] are computationally more efficient in terms of cost and simplicity. These methods

require the direct simulation of end-points of only the bound and unbound states by using

implicit solvation. The procedure can briefly be described in three steps. In the first step, co-

ordinate sampling is prepared for the MD simulations of the protein-ligand complex in order

to sample configurations for energy analysis. In the second step, gas phase potential ener-

gies and solvation free energies are calculated from an ensemble average. In the final step,

estimated change in entropy is calculated. Then the final binding free energy is calculated

by:

∆G0
bind,solv = ∆G0

bind,vacuum +∆G0
solv,complex−∆G0

solv,ligand−∆G0
solv,receptor (3.48)

and ∆G0
bind,vacuum is obtained by:

∆G0
bind,vacuum = ∆E0

MolecularMechanics−T ∆S0 (3.49)

The solvation energy term Gsolv is typically obtained by solving the Poisson-Boltzmann
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(PB) equation or by using the generalized Born (GB) model.

3.3. Molecular Docking

Molecular docking is one of the most used computational tools for understanding and

predicting the molecular recognition of a ligand by its target receptor both structurally and

energetically. The docking process involves the prediction of the ligand’s most favourable

configuration (pose) and assessment of its binding affinity inside the binding cavity of a

receptor. Search algorithms implemented in docking software sample the conformations of

the ligand in the active site of the protein and scoring functions rank these conformations.

Computationally generating all possible conformations is very expensive, thus search

algorithms are used to create an optimum number of configurations that include the experi-

mentally determined binding modes. Search methods can either be systematic or stochastic.

Systematic search methods change the conformation of the ligands gradually by varying

the structural parameters sligthly [72]. The energy landscape of conformational space is

explored and then convergence of the minimum energy for the most likely binding mode

is achieved. Unfortunately in some cases the algorithm may fail to converge to a local

minima instead of global minima. Systematic search methods are more suitable for rigid

protein-protein dockings and are used in softwares such as DOT [73], GRAMM [74] and

ZDOCK [75]. In contrast to systematic search algorithms, stochastic methods change the

conformation of the ligands by random modifications [72]. A wide range of conformational

ensembles are generated and thus probability of finding a global minimum is increased.

Stochastic search methods are commonly used in flexible ligand-protein dockings and Monte

Carlo [76, 77] and Genetic Algorithm [78–80] belong to the class of stochastic methods.

The distinction between the binding poses from the non-binding poses or active com-

pounds from inactive compounds is enabled by scoring functions. Binding free energies are

estimated by these functions adopting various assumptions and simplifications and can be

force field based, empirical or knowledge based [81]. Force field based scoring functions

calculate the binding energy by summing the bonded (bond stretching, angle bending, di-

hedral variation) and non-bonded (electrostatic and van der Waals interactions) terms using
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the equations of classical mechanics [82]. These methods fail in estimating of the entropic

contribution. DOCK [83] and GoldScore [79] are examples of force field based scoring

functions. In empirical scoring functions, each energy component involved in the formation

of the ligand-receptor complex (hydrogen bonding, ionic and apolar interactions, hydropho-

bic effect and binding entropy) is multiplied by a coefficient and then summed up to give

the binding energy [82]. Coefficients are obtained from regression analysis fitted to a series

of ligand-protein complexes with known binding affinities, thus the accuracy of the obtained

data relies on the accuracy of the data used to develop the model. Surflex [84] and FlexX [85]

are examples derived from empirical scoring functions. Knowledge based scoring functions

utilize the interatomic contact frequencies and distances between the ligand and protein by

the analysis of complex crystal structures to obtain a general potential function. PMF [86]

and DrugScore [87] are examples of knowledge-based functions.
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4. DISCRIMINATION OF THE AGONIST AND ANTAGONIST

ACTIVITY OF LIGANDS BINDING TO THE NMDA RECEPTOR

4.1. Introduction

Quantitative structure-activity relationships (QSAR) derive models which correlate the

ligand’s biological activities with its molecular structure either by physicochemical param-

eters (Hansch analysis), by indicator variables encoding different structural features (Free

Wilson analysis), or by three-dimensional molecular property profiles of the compounds

(comparative molecular field analysis, CoMFA). 1962 may be considered as the year of birth

of modern QSAR methodology with the first QSAR publication of Corwin Hansch [88].

Quantum chemical descriptors encode chemical information about intrinsic properties

of ligands, which then can be associated with their biological activities. Different methodolo-

gies have been applied over the recent years in order to associate structural properties of lig-

ands with their biological activities. A CoMFA model was suggested in 2003 by Tikhonova

et al. for selectivity of ligands between AMPA and NMDA receptors [15]. This has been an

important approach in protein-ligand selectivity problem for the synthesis of novel biotar-

geting drugs. In order to predict pKi values of partial agonists binding to the NMDA GluN1

subunit, Cheng et al. developed a QSAR model derived from Radial Distribution Function

in which Van der Waals volume and mass were used as descriptors [89]. The experimen-

tal activities were reproduced by the model they suggested. Thus, it would be possible to

have information about activity of molecules which have not yet been synthesized. Based on

semi-empirical quantum-chemical, electro-topological state, molecular property and shadow

index descriptors, Zhu et al. constructed a reliable computational model for the classification

of agonists and antagonists of the 5-HT1A receptor by machine learning and genetic algo-

rithm techniques [90]. Electronegativity, atomic polarizability, van der Waals volume and

mass, atomic charge and partition coefficient (logP) as descriptors appear to be important in

the most recent QSAR studies performed to identify both agonist and antagonists for the A3

Adenosine receptor [91]. Djeradi et al. used Fukui indices as descriptors in order to predict
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IC50 values of flavonoids [92].

Concerning the NMDA receptor, Yosa et al. showed in 2009 that GluN1 subunit se-

lective agonists and partial agonists could be differentiated from antagonists by their LUMO

energies [3]. In their paper, the authors state, however, that the two classes of compounds

they investigated, i.e. (partial) agonist versus antagonist compounds, belong to separate

chemical compound classes, so that no structural overlap exists between them to allow for

similar LUMOs to be found amongst the two populations. They suggest to test their results

for antagonists that chemically resemble the existing agonists set, or vice versa.

In this study, intrinsic properties of structurally resembling GluN1 subunit selective

ligands for NMDAR that cause differentiation between antagonistic and agonistic behavior

were verified by quantum chemical calculations. Several global and local molecular proper-

ties that could play a role in ligand binding to the GluN1 subunit of NMDA were examined

and these descriptors were then used to discriminate the partial agonism-antagonism nature

of the ligands. In addition, it was verified whether these chemical descriptors could provide a

link between the chemical traits of molecules and their efficacies, i.e. the degree of agonistic

effect.

4.2. Methodology

30 ligands with antagonist activity [3,4] and 30 ligands with partial agonist activity [5]

have been selected from the literature (2D structures are given in Table 4.1 and Table 4.2) All

possible conformations of the ligands were located with the semi-empirical PM3 method [32]

by using the SPARTAN software [93]. Free rotations around single bonds were taken into ac-

count and all the geometries corresponding to stationary points have been considered for fur-

ther study. It is known that DFT methods [94,95] give better accuracies than semi-empirical

methods in geometry optimizations and prediction of structural, electrostatic and spectro-

scopic properties of organic molecules [96]. All the stationary points emerging from free

rotations around single bonds have been evaluated with PM3 and were re-optimized with

the Gaussian09 program package [97], using B3LYP/6-311G**, the best conformer for each

molecule was used further for the calculation of the descriptors. The B3LYP [38, 39] func-
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tional is known to be good in reflecting the geometries of organic compounds to eventually

detect the conformation with the lowest energy. This is especially important to account for

intramolecular hydrogen bonds, which play a role in the electronic charge distribution of

the various conformers for the same species. The same procedure was applied to a ran-

domly selected set of ligands (189, 192, 210, 213, 217, 29, 41, 24, 38, 44; Z9, Z15, Z19,

Z22, Z26, Z29, Z35, Z39, Z46, Z51) by using M06-2X/6-311G** to test the functional

dependency of the descriptors used. ‘Z’ prefix is used within the text for partial agonists

which are in their zwitterionic states. Note that all the results reported in this study were ob-

tained with the B3LYP/6-311G** unless otherwise mentioned. The biological environment

is water; therefore, the optimizations were performed with the Polarizable Continuum Model

(PCM) [58, 59, 98].

Table 4.1. Two-dimensional representations of selected antagonist molecules (* [3]; ** [4]).

ID 2D Structure pKi ID 2D Structure pKi

189* 8.5 24** 8.9

190* 8.2 26** 8.4

191* 7.8 28** 7.6

192* 8.5 29** 8.1

194* 8.2 31** 7.5
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Table4.1 – continued from previous page

ID 2D Structure pKi ID 2D Structure pKi

195* 8.2 32** 8.3

210* 5.9 33** 8.3

211* 5.6 34** 7.2

212* 7.5 35** 8.0

213* 7.4 36** 7.9

214* 7.4 37** 7.0

215* 7.1 38** 8.2

216* 4.6 39** 8.3

217* 6.5 41** 6.9
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Table4.1 – continued from previous page

ID 2D Structure pKi ID 2D Structure pKi

22** 8.3 44** 6.7

Table 4.2. Two-dimensional representations of selected partial agonist molecules [5]

ID 2D Structure pKi ID 2D Structure pKi

8 4.4 25 6.6

9 4.9 26 7.6

10 4.9 27 6.2

11 5.1 29 5.9

13 5.5 32 5.5

14 5.3 33 6.3

15 5.4 34 4.7
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Table4.2 – continued from previous page

ID 2D Structure pKi ID 2D Structure pKi

17 5.9 35 4.9

18 5.2 36 5.5

19 5.6 37 6.0

20 5.9 38 5.9

21 5.9 39 5.6

22 7.0 46 4.9

23 4.3 47 6.5

24 6.4 51 6.8

Global and local quantum chemical descriptors have been used frequently since they

are useful tools in rationalizing the local aspects of reactivity and activity [99, 100]. HOMO

and LUMO energies, hardness, carbonyl stretching frequency, atomic charges (Mulliken
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[51]/NPA [53]/Hirshfeld [54]/CM5 [55]) and isotropic shielding constants were calculated,

and then associated with their affinities for the NMDA glycine binding site.

The chemical hardness, η , is defined as the second order derivative of the energy with

respect to the number of electrons at constant external potential [101].

η =

(
∂ 2E
∂N2

)
v(r)

(4.1)

The chemical hardness expresses the resistance of the chemical potential of a system to

a change in the number of electrons, so to how easily the system can accommodate additional

charge. This descriptor can be computed using the finite difference approach, allowing for

orbital relaxation upon charge intake:

η ∼= I−A (4.2)

with I the vertical ionisation potential and A the vertical electron affinity, or using the frozen

core approximation:

η ∼= εLUMO− εHOMO (4.3)

Magnetic properties can be useful in creating a clearer picture about the electronic

structure of a molecule [102]. Nuclear magnetic resonance (NMR) chemical shifts reflect

to what extent the nucleus j is shielded by the electrons around the nuclei from an applied

external magnetic field Bo. The actual magnetic field Bj at nucleus j is therefore always less

than the external field Bo:

Bj = (1−σ j)Bo (4.4)

In Equation 4.4, σ j refers to the shielding tensor of nucleus j. The isotropic magnetic chem-
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ical shielding constant is calculated with the following formula:

σ j,iso =
1
3
(σ j,xx +σ j,yy +σ j,zz) (4.5)

Increasing the electron density around a nucleus produces a stronger induced magnetic

field that opposes the external field, shielding the nucleus more and resulting in lower chem-

ical shifts in the NMR spectrum. Conversely, as the electron density decreases, the nucleus

is deshielded, and the peak appears more to the left of the spectrum. In the present study,

isotropy calculations were performed with the gauge independent atomic orbital method

(GIAO) [103, 104].

4.3. Results and Discussion

Chemical descriptors are associated with chemical reactivity and selectivity, and are

therefore often used to estimate and quantify molecular behaviour. In this study, molecular

descriptors have been applied to help discriminating between partial agonist and antagonist

nature. The investigated molecules have a similar structural pattern, since all the ligands

contain at least one amide group, and 1-3 aromatic rings. The amide group is important in

receptor recognition with a carbonyl group that can form a hydrogen bond with a positively

charged hydrogen donor site and an amino group that can form a hydrogen bond with a nega-

tively charged hydrogen acceptor site of the receptor. All the investigated antagonists contain

a substituted aryl group on the amine side of their backbone. Regarding the substituents on

the carbonyl side, three types of antagonists can be identified, indicated as Anta1, Anta2 and

Anta3 (Figure 4.1).

Concerning the set of partial agonists, several ligands with partial agonistic behaviour

derived from the full agonist D-serine were introduced in 2009 by Urwyler et al. [5]. The

hydroxyl group in D-serine was replaced by an amide group to retain the hydrogen bond

donor function of the hydroxyl group, while allowing for further substitution (see R in Fig-

ure 4.2). It has been reported that ligands containing an amino acid group are found to be

in their zwitterionic state at physiological pH [105–108]. Therefore, chemical descriptor



36

Figure 4.1. The three types of antagonists under investigation.

calculations were performed for both the neutral and zwitterionic states, and the resulting

descriptor values are compared separately with those for the antagonists. The novel class of

partial agonists at the glycine site on the N-Methyl-D-aspartate (NMDA) receptor complex

are displayed in Figure 4.2.

Figure 4.2. 3-acylamino-2-aminopropionic acid derivatives as partial agonists under

investigation.

On the average, the size of the partial agonists considered in this work is somewhat

smaller than that of the studied antagonists as can be observed in Figure 4.3, but still sig-

nificantly larger than full agonists such as D-alanine, D-serine and aminocyclopropane car-
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boxylic acid (ACC). Both smaller and larger partial agonists display intrinsic activities well

over 50% relative to the maximal effect of glycine (100%) [5]. This suggests that agonist

behaviour is not governed solely by structural topology. Several global and local molecular

descriptors were thus examined for the differentiation of partial agonists from antagonists.

Figure 4.3. Partition of the number of partial agonists and antagonists according to the

number of heavy atoms present in their structures.

4.3.1. Global Molecular Descriptors

Firstly, the HOMO and LUMO energies of the listed structures have been considered.

These molecular descriptors have been used before, to distinguish between agonists and an-

tagonists of different receptors. It was found that the HOMO energy was one of four quantum

mechanical properties necessary to reliably classify 5-HT1A receptor agonists and antago-

nists, next to other descriptor classes such as electro-topological state, molecular property,

and shadow index descriptors [90]. In 2009, Yosa et al. reported that it is a necessary, but

not sufficient, condition for agonists to possess a significantly higher LUMO energy than the

average LUMO energy of the antagonists of the NMDA receptor [3]. In their set of ligands,

antagonists’ LUMO orbitals are generally present in the ring system, so the LUMO are the

delocalized π orbitals of these rings, whereas the agonists’ LUMO orbitals are located on

the carbonyl and carboxyl groups. The authors, however, mentioned that this distinction

in LUMO energies might exist because there is no structural overlap between the two sets

of ligands. Figure 4.4 depicts the HOMO and LUMO energies, respectively, for the list of

partial agonists and antagonists, with the partial agonists in their zwitterionic and neutral
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states.

Figure 4.4. HOMO (left) and LUMO (right) energies for the partial agonists in their

zwitterionic (up) and neutral (down) states and the antagonists in a.u. (B3LYP/6-311G**).

The results for the neutral state partial agonists are very similar with the zwitterionic

state. We observe that the HOMO energies of the partial agonists are on average lower than

those of the antagonists, whereas the reverse is seen for the LUMO energies, in accordance

with the results of Yosa et al. [3]. However, no clear bimodal distribution is found. When we

focus on highly similar structures within the antagonist (Anta1, Anta2, Anta3) and partial

agonist sets, some trends can be observed (Figure 4.5).

Anta1 set contains the antagonist ligands 189, 22, 24, 26, 28, 29, 31, 32, 33, 34, 35,

36, 37, 38, 39, 41, and 44. For these ligands, the HOMO and LUMO energies are within

quite a wide range; see blue colored marks in Figure 4.5. When the phenyl ring in Figure 4.1

is substituted by a strongly electron-donating group such as NH2 or NMe2 (ligand 36 in

Figure 4.6 and Figure 4.7), the HOMO is significantly higher in energy than for the reference

ligand 189. The effect is the largest when the amino group is in para position and the smallest
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Figure 4.5. HOMO (left) and LUMO (right) energies for a selection of partial agonists (in

their zwitterionic state) and the antagonist sets Anta1, Anta2, Anta3 (B3LYP/6-311G**).

in meta. When the phenyl ring contains a strongly electron-withdrawing group such as NO2

(ligand 32 in Figure 4.6 and Figure 4.7), the LUMO is clearly stabilized compared to ligand

189. The effect is the largest when the nitro group is in the meta position and the smallest in

the ortho position. Figure 4.6 and Figure 4.7 show that for the ligands 32 and 36 the HOMO

and LUMO are localized on different ends of the structure and include the π orbitals of the

nearby lying ring system(s).

Anta2 set contains the antagonists 190, 191, 192, 194, and 195, indicated by the yellow

marks in Figure 4.5. There is a large variation in HOMO energies, whereas the LUMO

energies are very similar. This can be traced back to the substituted amino groups on the

phenyl ring (R in Figure 4.1). The HOMO and LUMO of the reference Anta2 ligand are

depicted in Figure 4.6 and Figure 4.7, respectively. For the amino substituted versions, the

HOMO looks like a combination of ligand 190 and ligand 36 from the Anta1 set.

Anta3 set contains the antagonists 210, 211, 212, 213, 214, 215, 216, and 217. No

dissimilarity in HOMO and LUMO energies is observed; see red marks in Figure 4.5. Sub-

stitution on the saturated 7-membered ring (Figure 4.1) does not affect the highest occupied

and lowest unoccupied orbitals, since those orbitals originate from the π system of the ligand.

Antagonist 216 is given as an example in Figure 4.6 and Figure 4.7.
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Figure 4.6. Highest Occupied Molecular Orbital (HOMO) (MO isovalue 0.04) for

antagonists 32 (pKi = 8.3, εHOMO = -0.2291 a.u.), 36 (pKi = 7.9, εHOMO = -0.1884 a.u.), 190

(pKi = 8.2, εHOMO = -0.2310 a.u.), 216 (pKi = 4.6, εHOMO = -0.2309 a.u.), and partial

agonists Z26 (pKi = 7.6, εHOMO = -0.2238 a.u.), Z34 (pKi = 4.7, εHOMO = -0.2324 a.u.)

(B3LYP/6-311G**).
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Figure 4.7. Lowest Unoccupied Molecular Orbital (LUMO) (MO isovalue 0.04) for

antagonists 32 (pKi = 8.3, εLUMO = -0.1038 a.u.), 36 (pKi = 7.9, εLUMO = -0.0925 a.u.), 190

(pKi = 8.2, εLUMO = -0.0723 a.u.), 216 (pKi = 4.6, εLUMO = -0.0727 a.u.), and partial

agonists Z26 (pKi = 7.6, εLUMO = -0.0626 a.u.), Z34 (pKi = 4.7, εLUMO = -0.0666 a.u.)

(B3LYP/6-311G**).
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Finally, we also consider a selection of partial agonists for a more detailed comparison,

containing the ligands 14, 22, 26, 32, 33, 34, 35, 36, 37, 38, 39, 47, and 51. We observe a

slightly larger variation in HOMO than in LUMO energies (Figure 4.5). Both the HOMO

and the LUMO are delocalized over the aromatic rings and in the case of the LUMO also

the carbonyl group is included, as shown for partial agonists Z26 and Z34 in Figure 4.6 and

Figure 4.7. Notably, the additional aromatic ring in Z26 does not participate in forming

the HOMO or LUMO. When we compare these orbitals to the respective orbitals for a full

agonist like D-serine, as depicted in Figure 4.8 for both the neutral and the zwitterionic

states, a different picture appears. For D-serine, the HOMO and LUMO are located mainly

on the carboxyl group, as indicated before by Yosa et al. [3]. This results in a deeper-

lying HOMO energy and higher-lying LUMO energy compared to all our examined partial

agonists and especially antagonists. This means that there is a distinct difference between the

partial agonists we consider and full agonists. Both our partial agonists and antagonists have

HOMO and LUMO present on the aromatic rings and their substituents. This observation is

different from Yosa’s et al., since the authors did not consider partial agonists with aromatic

rings.

In addition, note that, although they might play a role, the HOMO and LUMO energies

do not univocally determine the pKi values, as can be witnessed in Figure 4.4 and Figure 4.5,

and from the comparison in orbital energies of Anta1 36 versus PA Z26, and Anta1 32 versus

Anta2 190.

Since the antagonists and partial agonists cannot be differentiated completely using the

energy and location of their HOMO and LUMO, we turn to a molecular descriptor that com-

bines both properties, namely the chemical hardness. From the frozen core approximation

for the chemical hardness (see Equation 4.3), it is known that hard molecules have a large

HOMO-LUMO energy gap, and soft molecules have a small HOMO-LUMO energy gap.

In this work, we have computed the chemical hardness via the finite difference approach

in Equation 4.2 using B3LYP for all set of ligands and M06-2X for selected set of ligands

(Figure 4.9).

Although the correlation in Figure 4.9 does not show a clear bimodal distribution,
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Figure 4.8. Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied

Molecular Orbital (LUMO) (MO isovalue 0.04) for the full agonist D-serine in neutral state

(pKi = 6.5, εHOMO = -0.2525 a.u., εLUMO = -0.0140 a.u.) and in zwitterionic state (pKi =

6.5, εHOMO = -0.2540 a.u., εLUMO = -0.0130 a.u.) (B3LYP/6-311G**).
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Figure 4.9. Chemical hardness computed via the finite difference approach for the

antagonists and partial agonists in eV.
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the partial agonists are more or less separated from the antagonists. Partial agonists seem

to be harder species than antagonists. Based on the hard and soft acids and bases (HSAB)

principle [109–111], which states that hard acids prefer to bind to hard bases and soft acids to

soft bases, this could indicate that the two types of ligands interact stronger or weaker with

the residues on the binding sites of the receptor, depending on their hardness values. The

M06-2X/6-311G** calculations also show the same trend with a slight separation but with

no clear bimodal distribution. In harmony with B3LYP results, antagonists are softer species

than partial agonists according to M06-2X calculations. When we go back to the HOMO-

LUMO energy gap description of the chemical hardness, a very good correlation is found

between the two approaches in Equation 4.2 and Equation 4.3 (Figure 4.10). Accordingly,

partial agonists display a larger energy gap than antagonists.

Figure 4.10. Correlation plot for the chemical hardness computed via the finite difference

approach and the frozen core approximation for the partial agonists in their zwitterionic

form (B3LYP/6-311G**).

4.3.2. Local Molecular Descriptors

Intermolecular forces such as Coulombic attraction, hydrogen bonding, π-π stacking,

van der Waals contacts, hydrophobic interactions, etc., form the basis of ligand-receptor
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binding. These interactions are mainly activated by the phenyl, amide, amine, keto, or car-

boxylate functional groups present as ligand binding sites on the NMDA receptor [112–115].

Docking studies of the NMDA GluN1 subunit in complex with various ligands (1PB9 [1],

3QEM [115], 4KFQ [116]; Protein Data Bank) show that the carbonyl oxygen is the primary

binding core since most electron-rich regions are localized around it. In order to under-

stand the differences between reactivity centers in ligand-receptor interactions of antagonists

and partial agonists, local descriptors were applied to the nitrogen, hydrogen and oxygen

atoms of the amide group (Figure 4.1 and Figure 4.2). Note, however, that some antagonist

molecules contain more than one amide group. For a reliable comparison with the partial

agonists, the amide group on the chain is selected rather than the one in the ring.

Chemical behavior and reactivity of a molecule can be interpreted by investigating

the charge distribution around the system. Ligand-receptor recognition is mostly driven by

interactions between partially charged atoms such as hydrogen bonding, halogen bonding,

and other electrostatic interactions. Figure 4.11 depicts the amide’s oxygen partial charge

separation between the examined partial agonists (in their zwitterionic and neutral states)

and antagonists. Two different population analyses were used, namely Mulliken and Natural

Population Analysis (NPA). Although the values are rather different, both schemes show

approximately the same trend for the carbonyl oxygen atom, antagonist ligands having less

negative oxygen partial charges than partial agonists. This differentiation is for an important

part due to the charge separation present in the amino acid group of the partial agonists.

This can be verified by looking into the charge plots comparing the neutral partial agonists

and the antagonists. Note that for both types of ligands the charges are spread over several

hundredths of atomic units. This indicates that there is a significant effect on the oxygen

charge from the adjacent substituted aromatic rings (R in Figure 4.1 and Figure 4.2).

Surprisingly, the trend for the charge on the nitrogen atom in the amide group is oppo-

site for Mulliken and NPA schemes, though both population analyses clearly show differen-

tiation (Figure 4.12). Based on the Mulliken charges, the amide nitrogen of the antagonists

is richer in electron population than that of the partial agonists. The reverse is true for the

NPA charges.
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Figure 4.11. Amide oxygen partial charges using the Mulliken and Natural Population

Analysis (NPA) schemes for the partial agonists and the antagonists (B3LYP/6-311G**).
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Figure 4.12. Amide nitrogen partial charges using the Mulliken and Natural Population

Analysis (NPA) schemes for the partial agonists and the antagonists (B3LYP/6-311G**).
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The same Mulliken charge distribution trend is also obtained by the M06-2X/6-311G**

calculations (Figure 4.13).

Figure 4.13. Oxygen and amide nitrogen partial charges using the Mulliken scheme for the

selected set of partial agonists and the antagonists (M06-2X/6-311G**).

To resolve this discrepancy for the nitrogen atom, we have computed the partial charge

on the amide nitrogen using two additional population schemes, namely the Hirshfeld scheme

and Charge Model 5 (CM5), which is a recently introduced extension of the Hirshfeld pop-

ulation analysis (Figure 4.14). Again, the absolute values differ from the other population

scheme values. The trends, however, are very similar to the results obtained with the NPA

scheme.

The discrepancy for the nitrogen atom between Mulliken and NPA has been further

investigated by magnetic descriptors. Since the calculation of atomic isotropies (σ j,iso) us-

ing DFT is independent of performing population analyses, comparison of 17O and 15N

isotropies in both antagonists and partial agonists would give insights into their partial charge

trends (Figure 4.15). The more positive isotropic constants σ |O| and σ |N| in the partial ag-

onist ligands show that their amide oxygen and amide nitrogen are more shielded compared

to the respective nuclei in the antagonists. According to these results, there is less electron

density around the antagonist’s amide oxygen and nitrogen nuclei than in case of the partial

agonists. This is in accordance with the NPA partial charge results.
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Figure 4.14. Amide nitrogen partial charges using the Hirshfeld and Charge Model 5

(CM5) population schemes for the partial agonists (in their zwitterionic state) and the

antagonists (B3LYP/6-311G**).

Figure 4.15. Isotropic shielding constant for the amide oxygen (left plot) and nitrogen (right

plot) versus pKi for the partial agonists (in their zwitterionic state) and the antagonists

(B3LYP/6-311G**).
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The amide oxygen and nitrogen of the partial agonists are therefore more negatively

charged than those of the antagonists. This suggests stronger hydrogen bonding acceptor

and donor ability of the partial agonists’ amide group. Remarkably, a separation based on

the hydrogen atom bonded to the amide nitrogen is not observed.

The last local descriptor probed is the carbonyl stretching frequency (Figure 4.16). The

partial agonists, whether they are in the neutral or zwitterionic state, have frequencies around

1650 cm−1, whereas the antagonist molecules have frequencies around or above 1700 cm−1.

The lower wavenumber observed in partial agonists can be attributed to a stronger hydrogen

bonding ability of the carbonyl oxygen.

Figure 4.16. Carbonyl stretching frequency (in cm−1) for the partial agonists and the

antagonists (B3LYP/6-311G**).

The question now arises as to which of the discriminating molecular descriptors can be

used to predict the efficacy of a ligand. The efficacy of NMDA receptor ligands is calculated

relative to the maximal effect of glycine (=100%). This means that full agonists have an effi-

cacy of 100%, antagonists an efficacy of 0%, and partial agonists an efficacy between 0 and

100%. In the next part, we will confirm which of the previously rationalized molecular de-

scriptors are truly distinguishing partial agonist ligands from antagonist ones by introducing

a multiple linear regression model linking the respective molecular descriptors to the efficacy

of the ligands.
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4.3.3. Linking Molecular Descriptors to Ligand’s Efficacy

In their paper, Urwyler et al. listed the efficacy for 15 possible partial agonists. Ten

of the ligands already belong to the examination set (Z9, Z10, Z11, Z14, Z22, Z26, Z29,

Z33, Z47, Z51). For the remaining five, all relevant molecular descriptor values have been

additionally computed (Z40, Z41, Z43, Z44, Z31). The additional molecular structures are

given in Table 4.3.

Table 4.3. Two-dimensional representations of additional partial agonist molecules [5]

ID 2D Structure pKi

40 6.5

41 7.3

43 6.0

44 5.8

31 4.7

The data to be modeled are denoted as the y-vector, in this case the ligand efficacies.

The molecular descriptors are denoted as the X-matrix. A quantitative structure-activity

relationship, where efficacy (y) is a function of one or more descriptors (X), can be obtained
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using multiple linear regression (MLR) analysis. The model can be described by a simple

mathematical equation of the form:

y = ŷ+ e = X · c+ e (4.6)

where y is the experimentally measured efficacy vector, ŷ is the efficacy vector pre-

dicted by the model, c is the regression coefficients vector, and e is the so-called error vector.

Then, through a minimization of the residual sum of squares (RSSQ), which corresponds

to the squared difference between the efficacies predicted by the model (ŷi) and the experi-

mental efficacies (yi), the regression coefficients can be estimated. The molecular properties

considered for this regression are the chemical hardness, the HOMO and LUMO energies,

and the amide’s oxygen charge using the NPA scheme, indicating that at least four regres-

sion coefficients will be estimated. In addition, a fifth regression coefficient is estimated,

the constant in the model. Notably, this constant is not the error vector in Equation 4.6 but

a value to shift the sum of the regression terms as close as possible to the actual efficacies.

The MLR analysis is performed under constraints for the chemical hardness and the oxy-

gen charge regression coefficients. Both descriptors have to follow the observations made

in their respective partial agonist/antagonist differentiation plots. For the chemical hardness,

this implies that its regression coefficient needs to be positive, since the η values of the par-

tial agonists are larger than those of the antagonists. For the oxygen charge, the reverse is

applicable: its regression coefficient needs to be negative, since the qO values of the antago-

nists are less negative than those of the partial agonists. We have used the ligands Z9, Z10,

Z11, Z14, Z22, Z26, Z29, Z33, Z47 and Z51 to estimate the model; their experimental pKi

and efficacy values and the calculated properties are presented in Table 4.4.

The equation of the MLR model becomes:

ŷi = 91.88η +2314εHOMO−1653εLUMO +69.40 (4.7)

First of all, the regression coefficient for the oxygen charge is zero. This denotes that
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Table 4.4. pKi values and efficacies for a set of partial agonists and one antagonist (Z31),

also their respective chemical hardness values (η), HOMO and LUMO energies (εHOMO

and εLUMO), and amide’s oxygen NPA charges (qO) are given (B3LYP/6-311G**).

ligand pKi efficacy (%) η [eV] εHOMO [a.u.] εLUMO [a.u.] qO [a.u.]

Z9 4.9 63±7 5.198 -0.236 -0.041 -0.729

Z10 4.9 81±5 5.110 -0.241 -0.056 -0.708

Z11 5.1 63±3 4.837 -0.241 -0.066 -0.714

Z14 5.3 42±1 4.304 -0.226 -0.061 -0.717

Z22 7.0 45±4 4.210 -0.229 -0.067 -0.713

Z26 7.6 55±2 4.193 -0.224 -0.062 -0.717

Z29 5.9 22±2 4.018 -0.243 -0.091 -0.702

Z33 6.3 28±1 4.180 -0.220 -0.060 -0.726

Z47 6.5 38±2.5 4.104 -0.223 -0.065 -0.721

Z51 6.8 32±2 4.181 -0.234 -0.073 -0.708

Z40 6.5 62±4 4.190 -0.224 -0.063 -0.716

Z41 7.3 64±1 4.207 -0.224 -0.062 -0.717

Z43 6.0 55±10 4.086 -0.222 -0.063 -0.718

Z44 5.8 59±2 3.730 -0.206 -0.062 -0.717

Z31 4.7 0 4.132 -0.238 -0.078 -0.707

the oxygen charge does not determine or influence the efficacy of the ligands. The equation

can be further interpreted as follows: a preliminary efficacy of 70% is assumed and the

molecular property contributions provide corrections to this value. The harder is the ligand,

the higher is its efficacy, as observed in Figure 4.9. The effect of the chemical hardness is

being compensated partly by the orbital energy terms in Equation 4.7. This suggests that the

HOMO cannot be too low, i.e. the ionization potential should be small enough, whereas the
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LUMO cannot be too high, i.e. the electron affinity should be sufficiently positive. Table 4.5

compares the efficacies obtained by the model with the experimentally measured ones and

lists the contribution terms of the various descriptors in Equation 4.7 for each ligand.

Table 4.5. Measured efficacies (with their experimental deviation), efficacies obtained by

the model, and the difference between the measured and model efficacies (∆eff) (in %) for a

set of partial agonists and one antagonist (Z31). Also the contributions from their chemical

hardness values (η), HOMO and LUMO energies (εHOMO, εLUMO), and amide’s oxygen

NPA charges (qO) are given.

Ligand effexp effmodel ∆eff c1 η c2 εHOMO c3 εLUMO c4 qO

Z9 63±7 69 -6 478 -545 67 0

Z10 81±5 75 6 470 -557 93 0

Z11 63±3 64 -1 444 -558 109 0

Z14 42±1 43 -1 395 -523 101 0

Z22 45±4 37 8 387 -531 111 0

Z26 55±2 40 15 385 -518 103 0

Z29 22±2 28 -6 369 -561 151 0

Z33 28±1 44 -16 385 -509 98 0

Z47 38±2.5 37 1 377 -516 107 0

Z51 32±2 32 0 384 -542 120 0

Z40 62±4 40 22 385 -518 104 0

Z41 64±1 41 23 387 -518 103 0

Z43 55±10 37 18 375 -513 105 0

Z44 59±2 38 21 343 -477 103 0

Z31 0 27 -27 380 -552 129 0

For most ligands, the agreement between model and experiment is relatively good,
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often within experimental deviations. Exceptions are Z26 and Z33. Based on the diversity

in the various molecular descriptor contributions listed in Table 4.5, the chemical hardness

seems indeed the most essential descriptor. Moreover, correlating the chemical hardness

with the experimentally measured efficacy for the partial agonists used to perform the MLR

analysis, but excluding the ones that do not follow that trend (Z26 and Z33), already results

in a correlation coefficient R2 of 0.85. Including also the HOMO and LUMO energies further

improves the correlation with an R2 value of 0.93 (Figure 4.17).

Figure 4.17. Correlation between the estimated and measured efficacies for the partial

agonists listed in Table 4.5, with indication of the ligands that deviate because of

topological reasons.

When the efficacy of the ligands have been estimated in Table 4.5 which were not in-

cluded in the MLR equation derivation, namely Z40, Z41, Z43, Z44, and Z31, relatively

big differences have been observed with their experimental values. Z40 to Z43, however,

are very similar in structure to Z26. Based on their electronic properties, a lower efficacy

is suggested, and this is despite their bulky aryl substituent on one of the aromatic rings.

Urwyler et al. attributed the increase in ligand activity of these partial agonists to the exis-

tence of a separate attachment site within a specifically shaped lipophilic area of the glycine

site that can be reached by the alkyl group of the aryl substituent. It may well be that this

hydrophobic pocket is essential for the ligand to bind properly, making the ligand-domain

complex more compact. On the other hand, the efficacy of ligands Z31 and Z33 is very

much overestimated. Again, this can probably be linked to the structural topology of the
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ligand with respect to the attachment sites in the receptor. A relatively long propyl side chain

on the five-membered part of the indole ring is noticed in ligand Z33. Although Urwyler

et al. observed an increase in glycine site affinity for ligand Z33 w.r.t. the reference ligand

Z14, there is no mention of a possible hydrophobic pocket that can be reached [5]. This

could mean that, although this particular bulky partial agonist links the two domain lobes, it

evidently prevents the full closure of the receptor cleft. The same propyl side chain on the

indole ring is present in ligand Z47. However, the pKi values indicate that the bromine lo-

cated on the indole nucleus is more favorable for glycine site affinity (compare ligands Z14,

Z22 and Z47) than the n-propyl side chain. In other words, the long propyl substituent in

Z47 is not required to bind effectively to the NMDA receptor and therefore this substituent

can adapt a more favorable conformation. Internal rotations with and within the propyl sub-

stituent indeed confirm that its position hardly affects the energy of the ligand. Z31, on the

other hand, contains a 2,4-dichlorophenyl group on the benzothiophene part of the structure.

The ligand has a very low glycine site affinity (pKi value of 4.7), which was attributed to the

increasing steric bulk at the sulfur atom of the bicyclic ring system in combination with the

large 2,4-dichlorophenyl substituent located on the other side of the six-membered ring [5].

It is not surprising that this enormous steric bulk acts as a wedge between the ligand binding

domains.

It is clear from this discussion that the efficacy as predicted by the model introduced

in Equation 4.7 can be labeled as the intrinsic efficacy of the ligand, only considering the

characteristics of that ligand and not the topology of the binding sites on the receptor. How-

ever, when additional bulky side groups on the ligand’s aromatic ring systems increase the

ligand volume even more, the intrinsic efficacy might need to be corrected. This correction

can improve or worsen the intrinsic efficacy, depending on the fitting of these side groups

into the ligand binding domains and the importance of the binding interactions within.

Using the proposed MLR model, the intrinsic efficacy for the remaining partial ago-

nists, as well as for the listed antagonists have been predicted. The results for the former are

presented in Table 4.6 and for the latter in Table 4.7.
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Table 4.6. Intrinsic efficacies (in %) obtained by the model for the set of partial agonists and

the contributions from their chemical hardness values (η), and HOMO and LUMO energies

(εHOMO, εLUMO)

Ligand c1 η c2 εHOMO c3 εLUMO effmodel

Z8 447 -557 115 74

Z9 478 -545 67 69

Z10 470 -557 93 75

Z11 444 -558 109 64

Z13 396 -549 118 35

Z14 395 -523 101 43

Z15 439 -525 72 56

Z17 387 -549 123 31

Z18 416 -559 117 44

Z19 386 -557 141 39

Z20 394 -544 115 34

Z21 401 -543 110 37

Z22 387 -531 111 37

Z23 441 -529 72 53

Z24 376 -554 133 24

Z25 380 -550 127 26

Z26 385 -518 103 40

Z27 379 -545 125 29

Z29 369 -561 151 28

Z32 385 -509 98 43

Z33 386 -510 98 44
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Table4.6 – continued from previous page

Ligand c1 η c2 εHOMO c3 εLUMO effmodel

Z34 396 -538 110 38

Z35 393 -532 109 39

Z36 393 -535 110 38

Z37 389 -532 111 38

Z38 372 -491 95 44

Z39 366 -509 107 34

Z46 391 -515 98 43

Z47 377 -516 107 37

Z51 384 -542 120 32

max-min 112 70 83 50

For the partial agonists, the intrinsic efficacies are ranging from 24 to 75%. Ligands

with a high intrinsic degree of partial agonism are Z8-Z11, and to a lesser degree Z15 and

Z23, whereas Z24, Z25, Z27, and Z29 are nearly antagonistic in nature. Because of the bulky

aryl substituent on the one side (the same as for Z26) and the larger sulfur atom (w.r.t. an NH-

group) on the other side, the actual efficacy of Z27 might even be lower than predicted by the

model, suggesting that we might be dealing with an antagonist in this case. Concerning the

antagonists, the intrinsic efficacies of the Anta1 set are all very small, with values ranging

from 1 to 11% (Table 4.7). For the Anta2 and Anta3 sets, somewhat larger values were

obtained, though still no more than 30%. Also in these cases, the structural topology of the

ligands could play a role. Agarwal and Taylor found for the 5-HT1A receptor that agonists

tend to be “flatter”, i.e. more coplanar, than antagonists, for which greater bulk is protruding

out of the plane of the aromatic ring system [117]. Except for the amino acid group at the

end, the structures of our partial agonists are completely planar. This is also the case for the

Anta1 antagonists. The structures of the Anta2 and Anta3 ligands, however, are out-of-plane

because of the presence of nonaromatic six- and seven-membered rings, respectively, which
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could explain the observed zero efficacy.

Table 4.7. Intrinsic efficacies (in %) obtained by the model for the set of antagonists and the

contributions from their chemical hardness values (η), and HOMO and LUMO energies

(εHOMO, εLUMO)

Ligand c1 η c2 εHOMO c3 εLUMO effmodel

189 300 -518 156 8

190 334 -507 126 23

191 298 -461 120 26

192 323 -495 126 23

194 329 -508 130 21

195 331 -507 128 22

210 372 -533 121 30

211 369 -536 125 28

212 368 -536 126 28

213 372 -535 123 29

214 371 -534 122 29

215 370 -534 123 28

216 375 -534 120 30

217 369 -537 126 28

22 245 -458 153 9

24 280 -530 182 2

26 300 -530 172 11

28 303 -527 161 6

29 225 -446 155 3

31 272 -488 155 9
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Table4.7 – continued from previous page

Ligand c1 η c2 εHOMO c3 εLUMO effmodel

32 272 -530 189 1

33 302 -522 158 8

34 257 -473 155 9

35 299 -529 170 9

36 295 -513 157 8

37 286 -532 180 2

38 292 -531 174 4

39 217 -436 153 4

41 299 -517 156 8

44 273 -487 154 10

Finally, an intrinsic efficacy value of 124% is computed for the full agonist D-serine,

well above the 100% limit for full agonists (calculated chemical hardness value of 6.698 eV,

HOMO and LUMO energies of -0.252 and -0.014 a.u., respectively). Overall, two data sets

have been constructed, one for partial agonists and one for antagonists, that structurally look

very similar in size, presence of at least one amide group, inclusion of one or more aromatic

rings. Unfortunately, only a very limited set of experimental data is available to test the

suggested MLR model.

4.4. Conclusions

In this study, differentiation of partial agonists and antagonists for glutamate receptors

has been attempted using both global and local quantum chemical descriptors. The design

of partial agonists for NMDA receptor is an attractive approach as they have less side ef-

fects. The outcome of this DFT experiment can be summarized as: (1) Combining HOMO

and LUMO energies in the chemical hardness results in a separation between the two types
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of ligands. (2) the NPA charge distributions of the ligands have shown the amide oxygen

and nitrogen of the partial agonists to be more negatively charged than those of antagonists.

Therefore, stronger hydrogen bonding acceptor and donor ability of the partial agonists’

amide group is to be expected and this was confirmed by the lower carbonyl stretching fre-

quencies. (3) The MLR has shown that for all the ligands the chemical hardness is the

most differentiating and important factor regarding the efficacy. However, the LUMO en-

ergy seems to be more influential for the set of partial agonists, while for the antagonists this

role is played by the HOMO energy. (4) The suggested MLR model cannot be tested by us

since not enough experimental data are available, but the predictions might be a guideline

for experimentalists. Nonetheless, the training set used for constructing the model is a good

representation of the full data set of both partial agonists and antagonists, even though no

antagonists were included in the training set. Overall, this study has shown that quantum

chemical calculations can provide a valuable aid to experimental studies on ligand design for

glutamate receptors.
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5. USAGE OF HYBRID COMPUTATIONAL TOOLS TO

RATIONALIZE THE BINDING OF AGONISTS AND

ANTAGONISTS IN THE NMDA RECEPTOR

5.1. Introduction

The NMDA protein makes conformational rearrangements from open to closed state

upon binding of an agonist to the protein’s flexible clamshell-shaped ligand binding domain

(LBD) [118]. The ligand’s efficacy is directly related to the amount of cleft closure such

that full agonists make strong interactions with the residues in the LBD tightly closing the

clamshell. Fluctuations occur between partially open and closed states upon binding of par-

tial agonists since these type of ligands exert weaker forces [119]. The functional properties

that determine the role of a receptor in signal transmission are determined by the structural

characteristics of the ion channel and the mechanism of the ion flux. The crystallographic

structures of glutamate receptors that contain many functional information show that the

ligand binding region communicates through short links with the helices forming the ion

channel [119, 120]. The ligand binding region consists of rigid S1 and flexible S2 regions

and the changes in the S2 region directly affect the spirals connected to the ion channel. The

current viable model for the activation mechanism of the ion channel suggests the opening of

the ion channel by conformational transitions following the closure of the LBD upon bind-

ing of an agonist [121, 122]. To understand the activation or inhibition mechanisms of the

receptor, it is important to elucidate the conformational behaviours of the LBD upon binding

of different ligands.

The isolated agonist-binding domain of the GluN1 subunit was crystallized as a com-

plex with full agonists glycine (PDB code:1PB7) and D-serine (PDB code:1PB8) [1], par-

tial agonists D-cycloserine (PDB code:1PB9) [1], 1- aminocyclopropane-1-carboxylic acid

(ACPC) (PDB code:1Y20) and 1-aminocyclobutane-1- carboxylic acid (ACBC) (PDB code:1Y1Z)

[118]; antagonists cycloleucine (PDB code:1Y1M) [118], 5,7-dichlorokynurenic acid (DCKA)

(PDB code:1PBQ) [1] and 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one
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(TK40) (PDB code:4KFQ) [116]. These studies suggest that the angles between the S1-S2

regions in three different ligand types are different. Glycine-site antagonists DCKA and cy-

cloleucine stabilize the open conformation of this region. Cycloleucine, a larger ligand in

size compared to partial agonists ACPC and ACBC, causes the opening of the LBD, thus

allows the water molecules to enter and eliminates the hydrophobic effects between the side

chains of Phe484 and the indole group of Trp731. Finally the open-cleft conformation is

stabilized to provide conformational changes in the ion channel and to regulate the receptor

flow. Especially the effects of partial agonists on the receptor function have not yet been

fully understood. In case of AMPA receptor partial agonists, it is known that the amount of

cleft closure is directly proportional to the activity of the ligand [119,123,124]. On the other

hand, it is reported that some NMDA receptor partial agonists exert the same degree of cleft

closure as observed in agonists [1, 118, 125–128].

Ligand-docking is one of the most popular techniques in estimating the binding affin-

ity of a ligand to its target receptor [129]. A basic docking process aims to predict the most

favourable configuration (conformation, position and orientation) of a ligand inside the bind-

ing cavity of a receptor [130]. Hydrogen bonds formed between the ligand and the protein as

well as Van der Waals and Coloumbic interactions account for the docking score [131]. There

are more than 60 docking softwares in use such as FlexX [85], GOLD [79], AutoDock [132],

Surflex [84], ICM [133], LigandFit [134], FRED [135], Glide [136], AutoDock Vina [137],

MOE-Dock [138], LeDock [139], rDock [140], UCSF Dock [141]. Despite the ease of use

of these docking softwares, poor scoring functions are obtained due to the restricted number

of conformational degrees of freedom, lack of protein flexibility and utilization of implicit

solvent models. It is important to develop methods that can accurately estimate the free en-

ergy of binding, ∆Gbinding, which allows the prediction of the binding strength of any drug

candidate prior to its synthesis. Therefore it is more interesting to apply molecular dynamics

simulations to different poses coming from docking scheme and to calculate the binding free

energies with methods such as Free Energy Perturbation (FEP) [68], Thermodynamic Inte-

gration (TI) [69], Linear Response (LR) [142], Molecular Mechanics-Generalized Born Sur-

face Area (MM-GB/SA) and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-

PB/SA) methods [70, 71]. Among these methods, the most accurate and rigorous ones are

FEP and TI [143]. Despite their accuracy, they have found little use in drug design due to
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their convergence only for rather similar ligands and computational cost [144, 145]. The

MM-GB/SA and MM-PB/SA methods that combine molecular mechanics energy and im-

plicit solvation models, are simple and faster than FEP and have been widely used for free

energy calculations in computational medicinal chemistry [146, 147].

There are large number of molecular dynamics simulation studies that have been car-

rying out in order to understand the conformational behaviours of glutamate receptors with a

series of ligands and their interactions [10,21,127,148–151]. It was shown that interdomain

hydrogen bonding (IHB) distances could be used as indicators for the biological activity

(agonism-antagonism) of the kainate receptor ligands [149]. Following this study, a rela-

tionship was derived between IHB distances and experimental efficacies of various NMDA

GluN1 (partial) agonists: the smaller the IHB distance, the more effective the ligand [21].

Recently, Cifci et al. was able to show the correlation between the binding energies and half

maximal inhibitory concentration (IC50) values of Phosphodiesterase IV-B system [152].

They could reproduce the experimental IC50 values with the suggested protocol.

In this study, the binding Gibbs free energy for the natural receptor-ligand complexes

(NMDAR-ligand) are calculated and correlated with their experimental efficacy or binding

affinity pKi. The ultimate goal is to predict the binding energies of the ligands proposed

and finally to differentiate between agonists, antagonists and partial agonists based on their

estimated binding Gibbs free energies.

5.2. Methodology

5.2.1. Protein and Dataset Preparation

All available X-ray crystal structures of NMDA receptor with GluN1 subunit in the

PDB database have been collected (1PB7, 1PB8, 1PB9, 1PBQ, 1Y1M, 1Y1Z, 1Y20, 2A5T,

4KCC, 4KFQ, 4NF4, 4NF5, 4NF6, 4NF8, 5DEX, 5I57, 5I58, 5I59, 5JTY, 5U8C, 5VIH,

5VII, 5VIJ). All these protein sources have sequence homology larger than 95%. GluN1

ligand binding domains have been isolated and the ligands have been removed. Root Mean

Square Deviations from the reference crystal structure (PDB code: 1PB7) have been calcu-
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lated for all PDBs in order to group them with respect to their conformational differences

(Table 5.1). Most distinct ones were selected as representatives of different receptor confor-

mations for docking; 1PB7 and 1PB8 representing the closed conformation of LBD; 1PB9,

1Y1Z and 1Y20 representing the partially closed conformations; 1Y1M, 1PBQ, 4KFQ and

4KCC representing the open conformations (Table 5.2).

Table 5.1. RMSD values (in Å) of the NMDA X-ray crystal structures with respect to their

conformational differences in their GluN1 subunit.

PDB ID RMSD PDB ID RMSD PDB ID RMSD PDB ID RMSD

1PB7 0.000 2A5T 0.080 5U8C 0.118 4KCC 1.691

5VII 0.065 4NF8 0.091 1Y1Z 0.119 4KFQ 1.726

5VIJ 0.065 5I57 0.097 5DEX 0.162 5JTY 1.927

4NF5 0.067 5I59 0.103 5I58 0.168 4NF4 1.957

1PB8 0.077 1Y20 0.104 1PB9 0.188 1PBQ 2.135

4NF6 0.079 5VIH 0.111 1Y1M 0.810

Table 5.2. Families of representative NMDA crystal structures with respect to their

conformational differences in GluN1 subunit.

1PB7 1PB8 1Y20 1Y1Z 1PB9 1Y1M 4KCC 4KFQ 1PBQ

5VII 4NF6 5I57 5U8C 5DEX 5JTY

5VIJ 2A5T 5I59 5I58 4NF4

4NF5 4NF8 5VIH

The extent of the receptor activation is determined by the bound ligand’s efficacy [22].

Antagonists inactivate the receptor which is interpreted having 0% efficacy, agonists fully

activate the receptor with 100% efficacy and partial agonists have efficacies scaling up to

an agonist and down to an antagonist. In fact, there is a direct relation between the con-
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formations of the ligand binding domain of a receptor and activation/inhibition of the ion

channel.

Experimental binding affinity (Ki) is a measure of the interaction of a ligand with its

target receptor. The relationship between the binding energy and the binding affinity can be

represented as:

∆Gbinding =−RT log10Ki (5.1)

where R is the ideal gas constant and T is the temperature.

pKi =−log10Ki (5.2)

Therefore Equation 5.1 becomes:

∆Gbinding =−RT (pKi) (5.3)

From Equation 5.3 we observe a linear dependency between ∆G and pKi. Eight ligands

with varying efficacies from 0 to 100 (%) were chosen for binding free energy calculations

as the training set and their 2D chemical structures are given in Table 5.3.

Two partial agonists from the study of Urwyler [5] were randomly selected for the test

set (Table 5.4).

5.2.2. Docking Procedure

In order to obtain the most favorable orientation of eight guest ligands given in Ta-

ble 5.3 in the nine host protein structures which have been chosen with respect to the Ta-

ble 5.2 (1PB7 [1], 1PB8 [1], 1Y20 [118], 1PB9 [1], 1Y1Z [118], 1Y1M [118], 4KCC [127],

4KFQ [116], 1PBQ [1], docking process has been applied by using the AutoDock v4.2 soft-



68

Table 5.3. 2D chemical sketches and experimental efficacies of the selected ligands for the

training set.

Ligand ID 2D Structure Activity Efficacy (%) pKi

Glycine Agonist 100 6.9

D-serine Agonist 98 6.5

ACPC Partial Agonist 80 6.8

D-cycloserine Partial Agonist 75 3.9

ACBC A Partial gonist 42 4.8

Cycloleucine Antagonist 0 2.7

TK40 Antagonist 0 7.1

DCKA Antagonist 0 7.4
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Table 5.4. 2D chemical sketches and experimental efficacies of the selected ligands for the

test set.

Ligand ID 2D Structure Activity Efficacy (%) pKi

11 Partial Agonist 63 5.1

51 Partial Agonist 32 6.8

ware [153] and different poses have been obtained. For each ligand 20 independent runs

were performed. Grid maps were calculated with AutoGrid program before docking of lig-

ands with a grid box of 50 Å x 50 Å x 50 Å which contains the ligand binding domain

with interacting residues. Gasteiger charges and solvation parameters were assigned using

AutoDock Tools. In order to find optimal conformation with the lowest binding energy

Lamarckian Genetic Algorithm is chosen as the docking search parameter. The population

size is set to 150; maximum number of energy evaluations is set to 10 000 000; the number

of generations is set to 27 000. The remaining parameters are set as the default values. At

the end of each run the docked poses of each ligand were clustered based on their RMSD

values and the best pose with the lowest binding energy (∆Gbind) was selected.

5.2.3. Molecular Dynamics Simulations

Molecular dynamics simulations have been performed for each lowest energy host:guest

complex conformations obtained from the docking process. Hydrogen atoms were added to

the systems with the tleap module of AMBER17 [154]. The systems were solvated with

TIP3P [155] water molecules in a cubic box of 8 Å. Chlorine and sodium ions were added to

neutralize the systems. The Amber ff14SB force field [156] was used to model the NMDA

protein with general Amber force field GAFF [157] parameters to model the ligands. In order
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to constrain the bond lengths the SHAKE algorithm [158] was chosen. For the minimiza-

tion steps, the Andersen temperature coupling algorithm was applied to ensure a constant

temperature ensemble (NVT). The time step was set to 2 fs.

A short gas phase minimization was performed to optimize the hydrogen atom posi-

tions for 100 ps with a force constant of 200 kcal mol−1 Å−2 applied on all heavy atoms

before solvation. Minimization was carried out in 5 steps. In the first step, only the hydro-

gen atoms were allowed to move for 100 ps at 10 K with a force constant of 50 kcal mol−1

Å−2 applied on all heavy atoms on the protein. In the second, third and fourth steps, water

molecules were allowed to move for 100 ps at 10 K with a force constant of 10 kcal mol−1

Å−2 applied on all heavy atoms on the protein. In the final step, the thermostat tempera-

ture was increased from 10 K to 300 K for the next 2 ns with the same force applied on

heavy atoms. After the equilibration, 40 independent NPT (isothermal-isobaric ensemble)

MD simulations were performed for each ligand:protein complex during 1 ns at 300 K with

different initial velocities.

5.2.4. Molecular Mechanics-Generalized Born Surface Area (MM-GB/SA) Post Pro-

cessing

Converged MM-GB/SA results were obtained by averaging multiple independent tra-

jectories. In MM-GB/SA method, the free energy of binding between a ligand and a receptor

to form a complex is calculated as

∆Gbinding = Gcomplex−Greceptor−Gligand (5.4)

Each free energy is calculated from the formula

G = EMM +Gsolvation−T SMM (5.5)

Where EMM is the molecular mechanics gas phase energy of the reactant, Gsolvation is the sol-

vation energy coming from a continuum representation of the solvent for the polar part with
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a relation to the solvent accessible surface area for the non-polar part, TSMM is the product

of entropy and absolute temperature. In this study, the entropy term was not included in our

calculations due to the high computational cost. The aim of this study is to relate the com-

puted free energy values to experimental activity of ligands, not to estimate the experimental

binding free energies of the ligands.

EMM and Gsolvation terms were calculated by MMGBSA.py module of Amber17. Five

different solvation models have been evaluated for the calculation of polar solvation free en-

ergy: GBHCT [159–161], GBOBC [162], GBOBC−2 [162], GBneck [163], and GBneck2 [164].

The Linear Combinations of Pairwise Overlaps (LCPO) method [165] was used to approxi-

mate the hydrophobic contribution.

5.3. Results and Discussion

5.3.1. Docking of Ligands

We have selected nine NMDA receptor X-ray crystal structures from the PDB database;

two in complex with an agonist ligand (glycine and D-serine in 1PB7 and 1PB8, respec-

tively), three in complex with a partial agonist ligand (D-cycloserine, ACBC and ACPC

in 1PB9, 1Y1Z and 1Y20, respectively), three in complex with an antagonist ligand (cy-

cloleucine, DCKA and TK40 in 1Y1M, 1PBQ and 4KFQ, respectively) and one apo struc-

ture (4KCC). We removed the ligands from the crystal structures to form the host proteins

and docked eight guest ligands to these nine crystal structures (from close to open confor-

mations of the ligand binding domain) with AutoDock v4.2. At the end of each docking

process, 20 docked poses of each ligand were clustered based on their RMSD values. The

best pose (top ranked) with the lowest binding energy (∆Gbind ) was selected (Table 5.5).

This multiple docking process was performed in order to find a correlation between the

binding energies and the activity of ligands (agonism vs antagonism). We could reproduce

the expected ligand-receptor interactions but in some cases we failed to obtain the lowest

binding energies for the original protein structures (see Table 5.5: in red, the lowest bind-

ing energy for a given ligand; in orange, the binding energy of a given ligand towards its



Ta
bl

e
5.

5.
B

in
di

ng
fr

ee
en

er
gi

es
of

ea
ch

do
ck

in
g

st
ud

y
(k

ca
l/m

ol
).

G
LY

C
IN

E
D

-S
E

R
IN

E
A

C
PC

D
-C

Y
C

L
O

SE
R

IN
E

A
C

B
C

C
Y

C
L

O

L
E

U
C

IN
E

T
K

40
D

C
K

A

E
ffi

ca
cy

(%
)

pK
i

PD
B

co
de

10
0

6.
9

98 6.
5

80 6.
8

75 3.
9

42 4.
8

0 2.
7

0 7.
4

0 7.
1

1P
B

7
-6

.1
0

-6
.9

5
-5

.4
2

-6
.3

0
-4

.8
2

-3
.9

0
-5

.6
3

-5
.7

9

1P
B

8
-6

.1
0

-7
.1

2
-6

.9
9

-6
.8

5
-7

.3
9

-3
.9

1
-5

.6
5

-5
.8

2

1Y
20

-6
.0

2
-6

.9
2

-7
.0

2
-6

.3
7

-7
.4

7
-5

.6
8

-5
.8

6
-6

.4
7

1P
B

9
-5

.9
1

-7
.1

9
-6

.7
9

-6
.6

4
-6

.5
6

-3
.7

6
-5

.5
8

-5
.7

7

1Y
1Z

-5
.8

4
-6

.6
0

-7
.1

2
-6

.5
0

-8
.0

3
-8

.4
5

-6
.1

6
-6

.2
1

1Y
1M

-5
.4

6
-5

.8
2

-6
.4

3
-5

.7
9

-7
.1

7
-7

.7
2

-6
.2

2
-7

.3
1

4K
C

C
-4

.8
7

-5
.2

6
-5

.4
8

-5
.0

8
-5

.9
1

-6
.6

7
-6

.9
7

-6
.6

7

4K
FQ

-4
.0

9
-4

.2
7

-4
.7

5
-4

.3
2

-5
.1

8
-5

.5
7

-7
.7

1
-7

.5
7

1P
B

Q
-3

.8
1

-3
.9

7
-4

.4
6

-3
.7

1
-4

.8
1

-5
.0

8
-6

.8
3

-8
.7

6



73

respective host structure). For glycine, ACBC, TK40 and DCKA the best host proteins are

1PB7, 1Y1Z, 4KFQ and 1PBQ respectively, which match their experimental complex. For

D-serine, ACPC, D-cycloserine and cycloleucine, although the lowest binding energies from

AutoDock results do not correspond to their experimental protein match (numbers in orange

color in Table 5.5), we observed very close binding energies. The interacting residues with

the ligands are given in Figure 5.1.

From Figure 5.1 we observe that all ligands fit well in ligand binding domain of the

NMDA receptor by the docking procedure applied. Two randomly selected partial agonists

from the paper of Urwyler [5] are also docked to all nine crystal structures (Table 5.6).

Table 5.6. Binding free energies of ligands 11 and 51 (in kcal/mol).(NA indicates when a

ligand could not enter into the LBD due to its large size therefore the AutoDock binding

energy has no meaning.)

11 51

Efficacy (%)

pKi

PDB code

63

5.1

32

6.8

1PB7 NA NA

1PB8 NA NA

1Y20 NA NA

1PB9 -6.31 NA

1Y1Z NA NA

1Y1M -8.53 -10.16

4KCC -6.62 -8.93

4KFQ -6.07 -7.18

1PBQ -5.64 -6.76
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Figure 5.1. Ligand-receptor interactions of the docking structures and the interactions taken

from corresponding original PDB crystal structures.
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A linear regression fit between the lowest Autodock ∆Gbinding values and the experi-

mental affinity constants of the ligands, namely pKi’s, was obtained for the eight ligands (Fig-

ure 5.2). No linear correspondance exists with a correlation coefficient of 0.038 which means

that there is no relationship between the AutoDock ∆G scoring function and the pKi values in

case of NMDA. Another linear regression fit between the lowest Autodock ∆Gbinding values

Figure 5.2. Correlations between experimental pKi values and the lowest ∆G scores

obtained from a multiple docking scheme by AutoDock. (The black line represent the linear

fit between the lowest AutoDock ∆Gbinding values and the experimental pKi’s.)

and the experimental efficacies of the ligands was obtained for all the ligands in the training

set and for five ligands (glycine, D-serine, ACPC, D-cycloserine and ACBC) discarding the

antagonists since they have zero efficacies (Figure 5.3). Relatively good correspondances

are observed with correlation coefficients of 0.658 and 0.748 which means that AutoDock

is capable of predicting the most favorable configuration of the ligands inside the LBD, but

fails in estimating experimental ∆Gbinding values.

The two derived models have been applied to the ligands in the test set (Table 5.7).

The efficacies of the ligands are very much underestimated especially with Model1 which

has a higher correlation coefficient R2 (0.748 vs 0.658 in Model2). While the ligands 11

and 51 have partial agonism activity, according to these estimations they are supposed to be

antagonists. Prediction with Model2 gives a more realistic efficacy at least for ligand 11, but

51 is still predicted to be an antagonist.
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Figure 5.3. Correlations between experimental efficacies and the lowest ∆G scores obtained

from a multiple docking scheme by AutoDock for all ligands in the training set (a) and for

five ligands with agonist and partial agonist activity (b). (The black line represent the linear

fit between the lowest AutoDock ∆Gbinding values and the experimental efficacies.)

Table 5.7. Intrinsic efficacies (in %) obtained by the Model1 and Model2 for the set of

ligands in the test set

11 51

Effexp 63 32

EffModel1 = 43.743∆G + 378.600 -5 -66

EffModel2 = 27.337∆G + 271.940 39 -6
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5.3.2. MM-GB/SA Binding Free Energies

MM-GB/SA approach can give more reliable binding free energies when compared

with the docking methods. Following the protocol developed by Cifci et al. [152] we per-

formed multiple independent molecular dynamics of host-guest systems starting from the

AutoDock poses. The average binding energies of the receptor:ligand complexes were ob-

tained by post processing 40 independent 1 ns MD runs using MM- GB/SA approach.

When independent constraint-free molecular dynamics simulations were performed,

the protein structure unfolded. This is due to the fact that the X-ray LBD is only a fraction

of the total protein assembly and it is not stable when it is modeled isolated. To prevent

the unfolding of the protein we have applied constraint by restraining the backbone atoms

(C, Cα N, O) into their initial positions with an harmonic force of 10 kcal mol−1 Å−2.

Following the equilibration and sampling steps with restraints, binding free energies have

been calculated with the MM-GB/SA methodology. Five different solvation models have

been utilized (GBHCT , GBOBC, GBOBC2, GBneck and GBneck2) and the results are given in

Table 5.8 for each ligand in each target protein. Protein‘s and ligand‘s maximum deviations

from the starting structure have also been provided. PDB codes written in bold denote the

original host of the corresponding ligand and the red colored numbers denote the lowest

binding free energies for the set of host structures in each solvation model.

We sometimes observed high RMSD values for the ligand; for example 12.52 Å for

glycine :4KCC complex. That means that the ligand left the LBD during the simulation. It

can be explained by the fact that the LBD in 4KCC is open and the ligand is relatively small.

The reverse case is valid for cycloleucine:1PB7 complex with 24.83 Å RMSD value; the

large ligand is prevented from entering the closed cleft conformation of the LBD. Glycine

gave the lowest binding energy with 1PB7 (GBHCT model), ACPC with 1Y20 (GBOBC2,

GBOBC and GBneck models), D-cycloserine with 1PB9 (GBHCT and GBOBC models), TK40

with 4KFQ (GBHCT , GBOBC, GBOBC2, GBneck and GBneck2 models) and DCKA with 1PBQ

(GBHCT , GBOBC, GBOBC2, GBneck and GBneck2 models) which match the experimental crys-

tal structures of the ligands. Among the solvation models used in free energy calculations,

GBHCT and GBOBC models seem to be suitable to be utilized in this system. We failed to re-
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produce the lowest binding energies for D-serine, ACBC and cycloleucine with their original

crystal structures 1PB8, 1Y1Z and 1Y1M respectively.

Table 5.8. Binding free energies calculated by MM-GB/SA method with different solvation

models and corresponding maximum root mean square deviations from the beginning

conformations of the protein and the ligand (10 kcal mol−1 Å−2 explicit constraint force

introduced).

Ligand
Target

Protein
GBHCT GBOBC GBOBC2 GBneck GBneck2

RMSD

max

Protein

RMSD

max

Ligand

G
LY

C
IN

E

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-51.80

-49.93

-51.66

-50.41

-51.37

-39.61

-11.93

-27.19

-27.61

-47.80

-46.02

-49.31

-47.21

-47.42

-36.20

-9.27

-22.80

-22.24

-54.40

-52.26

-56.31

-53.33

-53.69

-40.28

-10.35

-25.33

-24.36

-46.61

-44.73

-49.57

-45.99

-44.24

-31.82

-8.43

-16.93

-15.87

-38.52

-37.11

-38.55

-39.79

-36.76

-30.34

-8.84

-18.20

-18.50

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.72

0.86

1.03

0.91

0.76

1.19

12.52

1.84

1.74

D
-S

E
R

IN
E

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-54.51

-54.20

-56.42

-50.57

-58.60

-40.11

-30.03

-29.82

-29.34

-54.87

-56.12

-57.57

-53.41

-60.96

-45.30

-30.03

-25.53

-25.44

-62.02

-63.35

-64.48

-60.64

-68.85

-51.05

-33.61

-28.36

-28.07

-54.74

-56.76

-57.35

-54.01

-63.71

-44.68

-27.40

-18.07

-17.66

-44.53

-46.12

-45.89

-42.39

-49.47

-35.39

-24.96

-19.77

-20.15

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

1.16

1.10

0.95

1.30

0.73

1.40

1.73

1.47

2.31
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Table5.8 – continued from previous page

Ligand
Target

Protein
GBHCT GBOBC GBOBC2 GBneck GBneck2

RMSD

max

Protein

RMSD

max

Ligand

A
C

PC

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-57.67

-55.48

-56.42

-56.23

-56.56

-46.74

-28.56

-30.53

-29.12

-53.65

-53.01

-55.17

-54.52

-53.87

-44.53

-27.97

-27.05

-24.75

-59.65

-59.30

-61.85

-61.19

-60.14

-49.13

-32.01

-30.36

-27.55

-48.14

-48.01

-51.78

-50.32

-46.76

-36.90

-26.63

-20.07

-17.77

-38.15

-40.31

-40.73

-42.73

-39.32

-32.99

-23.19

-19.24

-17.99

0.19

0.19

0.19

0.19

0.19

0.19

0.18

0.19

0.19

1.30

0.76

0.92

0.94

0.99

1.37

2.11

2.18

1.78

D
-C

Y
C

L
O

SE
R

IN
E

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-47.53

-49.31

-48.52

-51.23

-46.49

-39.61

-17.76

-21.78

-19.70

-34.71

-33.55

-36.20

-36.19

-33.72

-27.92

-10.01

-16.00

-12.57

-33.25

-30.19

-34.35

-33.33

-31.65

-16.71

-8.88

-16.07

-11.73

-15.03

-11.63

-18.32

-14.20

-15.86

-10.59

-3.83

-11.70

-4.64

-27.06

-28.70

-29.11

-31.48

-26.69

-21.26

-8.05

-13.18

-10.23

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

1.71

1.49

1.30

1.12

1.34

1.80

5.03

13.99

4.16

A
C

B
C

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-55.15

-57.61

-58.19

-57.21

-57.76

-46.42

-31.61

-36.04

-25.62

-51.19

-53.35

-54.80

-53.04

-54.06

-43.09

-30.56

-32.41

-22.02

-57.46

-60.08

-61.82

-59.98

-60.99

-48.03

-34.80

-35.67

-24.26

-48.32

-49.92

-52.30

-49.55

-50.68

-39.52

-29.82

-29.07

-17.48

-39.24

-41.87

-41.02

-41.62

-39.86

-36.29

-25.00

-25.97

-17.97

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.74

0.61

0.94

0.75

0.78

1.14

2.57

1.26

1.51
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Table5.8 – continued from previous page

Ligand
Target

Protein
GBHCT GBOBC GBOBC2 GBneck GBneck2

RMSD

max

Protein

RMSD

max

Ligand

C
Y

C
L

O
L

E
U

C
IN

E

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-4.75

-24.42

-60.76

-16.94

-59.34

-49.39

-35.59

-37.25

-34.35

-2.45

-18.31

-57.14

-12.75

-55.11

-45.80

-33.79

-33.26

-29.44

-1.75

-19.47

-63.92

-12.75

-61.56

-50.63

-37.70

-36.47

-32.05

1.00

-14.09

-55.45

-6.60

-52.16

-42.59

-32.62

-27.63

-22.20

-3.02

-15.07

-42.89

-9.94

-41.26

-39.09

-28.07

-25.62

-23.54

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

24.83

1.46

1.02

9.76

0.93

0.94

1.79

2.14

2.02

T
K

40

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-21.48

-22.25

-22.13

-20.56

-24.05

-24.28

-27.25

-34.97

-29.05

-18.35

-18.92

-18.60

-17.58

-21.07

-21.81

-23.62

-31.21

-24.79

-18.87

-19.48

-19.05

-18.16

-22.07

-23.90

-25.43

-33.19

-26.29

-17.51

-17.60

-17.38

-16.87

-19.74

-20.82

-22.98

-31.11

-24.62

-13.36

-15.21

-14.44

-12.35

-17.31

-14.69

-19.49

-27.05

-21.49

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

3.72

2.96

3.61

4.31

3.34

3.61

3.17

1.54

1.86

D
C

K
A

1PB7

1PB8

1Y20

1PB9

1Y1Z

1Y1M

4KCC

4KFQ

1PBQ

-21.45

-22.78

-22.91

-22.71

-22.44

-22.96

-27.42

-29.80

-42.36

-19.13

-19.21

-19.68

-19.57

-19.33

-21.01

-24.01

-30.22

-40.76

-21.98

-21.70

-22.33

-22.36

-22.09

-23.45

-25.66

-33.65

-46.15

-19.39

-18.96

-19.45

-19.93

-20.07

-19.91

-22.62

-29.42

-41.84

-12.87

-15.72

-14.61

-14.43

-14.61

-15.53

-18.81

-20.38

-31.20

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

2.50

2.30

2.35

2.74

1.79

3.89

1.49

2.24

1.63
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In order to find a correlation between the calculated MM-GB/SA lowest ∆Gbinding

values and the experimental binding affinity (Figure 5.4) or the efficacy values (Figure 5.5)

of the ligands, we applied linear regression to the training set.

Figure 5.4. Correlations between experimental binding affinities (pKi) and lowest

MM-GB/SA averaged ∆Gbinding free energies of eight ligands in the training set. (The black

lines represent the linear fit between MM-GB/SA ∆Gbinding values and the experimental

affinities.)

.

From the correlation graphs in Figure 5.4, a very slight improvement in establishing

a linearity between ∆G and pKi is observed only in GBHCT model, which is still poor for

constructing a method for pKi prediction.
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Figure 5.5. Correlations between experimental efficacies (%) and lowest MM-GB/SA

averaged ∆Gbinding free energies of eight ligands in the training set. (The black lines

represent the linear fit between MM-GB/SA ∆Gbinding values and the experimental

efficacies.)

.
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The correlation graphs in Figure 5.5 give poorer relationships between the efficacies of

the ligands and the binding free energies calculated by MM-GB/SA approach compared to

AutoDock results. GBHCT and GBneck2 models give the highest R2 values but the suggested

MM-GB/SA protocol fails in estimating the efficacies of the NMDA GluN1 sub-site specific

ligands. On the other hand, the calculated binding free energies between each ligand in the

training set and each X-ray crystal structure give correlations with the activity of ligands

(agonism-antagonism) (Figure 5.6). By these correlations one can discriminate a ligand’s

agonism activity from antagonism activity, but not agonists from partial agonists. There is a

clear trend in agonism nature with a positive slope (glycine, D-serine, ACPC, D-cycloserine

and ACBC), while in antagonism nature there is a negative slope (cycloleucine, TK40 and

DCKA).

5.4. Conclusions

In this study, the interactions of the NMDA receptor GluN1 subunit ligand binding

domain with various ligands have been studied and the conformational responses of the lig-

and binding domain to the ligand’s activity (agonism vs antagonism) have been investigated.

All available X-ray crystal structures from PDB database have been collected. GluN1 LBDs

have been isolated and the ligands have been removed. RMS fit to a reference crystal struc-

ture (1PB7) has been performed and grouped with respect to their differences in LBDs as

open, partially open and closed conformations.

Eight ligands in the training set have been docked to nine PDBs and lowest binding

energy for each docking procedure was selected as the best pose. A linear regression fit

between the lowest Autodock ∆Gbinding values and the experimental affinity constants of the

ligands were obtained for the training set but no relationship was found. The same study

was performed in order to find a link between efficacy of ligands and the lowest Autodock

∆Gbinding values and relatively good correspondances were observed with correlation coeffi-

cients of 0.748 and 0.658 in two suggested models which means that AutoDock is capable

of predicting the most favorable configuration of the ligands inside the LBD, but fails in

estimating experimental ∆Gbinding values.
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Figure 5.6. Correlation of binding free energies (solvation model GBHCT ) to the

corresponding X-ray crystal structures. The PDBs are sequenced from closest conformation

of LBD (1PB7) to the open conformation (1PBQ).

.
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40 independent molecular dynamics simulations have been performed for each best

pose starting from the docking process. We first applied free MD but it resulted in partial

unfolding of the proteins. Therefore an harmonic force of 10 kcal mol−1 Å−2 has been

applied to the protein’s backbone atoms, constrained MD was succesfully performed. Five

different solvation models have been used for each calculation. GBHCT and GBOBC solvation

models were succesful in reproducing the original co-crystal structures by giving the low-

est binding energies in five calculations (glycine:1PB7, ACPC:1Y20, D-cycloserine:1PB9,

TK40:4KFQ, DCKA:1PBQ). Correlations between experimental efficacy and affinity values

of ligands with the calculated binding free energies have been checked, but poor linearities

have been obtained with all solvation models. This might be because the receptor’s func-

tionality is tightly linked to the NMDA subunits including the ion channel. This should be

taken into account when performing the simulations. On the other hand, there is a good cor-

relation between the ligand’s agonism-antagonism activity and the receptor’s conformational

state. By these correlations one can discriminate between a ligand’s agonism activity from

antagonism activity, but not agonists from partial agonists.

Unfortunately modeling the full NMDA assembly will yield a biomolecular system of

several hundreds thousands of atoms but also a membrane and water as a solvent. Limited

computational resources do not allow the simulation of the whole receptor at the moment.
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6. USING ATOMIC CHARGES TO DESCRIBE CARBOXYLIC

ACID pKa’s

6.1. Introduction

The solubility, lipophilicity and permeability of a drug ligand in cell membrane is

governed by the pKa’s of the acidic and basic sites within the molecule . When the ligand is

in the target protein environment, its affinity, activity and efficacy is dependent on the pKa’s

of the interacting residues of the active site.

Carboxylic acids are the main acidic functional groups in biological systems. Gluta-

mate and aspartate have carboxylic acid groups in their side chains and these groups help in

holding the peptide together by hydrogen bonds. More than 30% of the ionizable residues

(32% of the Arg residues, 19% of the Asp residues, 13% of the Glu residues, and 6% of

the Lys) [166] are buried inside the hydrophobic cavities which limits the contact with sol-

vent [167]. Since the protein matrix is heterogeneous, the fluctuations in the electrostatic

environment alter the interactions between buried charges which in turn leads to modifica-

tions in the affinities of the protonation sites for ionization; and thus their pKa values are

re-adjusted [168]. Eventually, in polar parts of the protein the pKa of the acidic groups in the

residues shifts to the higher values and the pKa of the basic groups shifts to the lower values

from that of the isolated amino acids [169]. Hydrogen bondings between the amino acid’s

functional groups and the side chain or the backbone atoms also tend to result in pKa devi-

ations; especially when the number of H-bonds increases and if they are rigid the effect is

larger such that the pKa for acidic side chains are perturbed above their intrinsic pKa values

and for the basic groups the reverse is observed [25,170]. Salt-bridge formation between two

residues, which contributes to protein stability, is also reported to result in lower or higher

pKa values with the same trends in polarization and hydrogen bonding effects [171].

Dissociation constants of organic compounds can be determined experimentally by po-

tentiometric, spectrophotometric, chromatographic, electrophoresis, calorimetric, conducto-
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metric and NMR techniques but among them only NMR titrations estimate the pKa values

accurately when applied to amino acids. In case of non-soluble membrane proteins, where

NMR is inapplicable, one needs X-ray crystal structures but there is only a limited number

of structures present in the literature [172]. On the other hand, poor resolution of the crys-

tals and lack of conformational flexibility restrict the X-ray crystallography applications. A

more reliable technique for producing high resolution crystallographic protein structures is

neutron diffraction method. Despite its strong accuracy in determining hydrogen locations

on the amino acids, this technique is much more limited in use with respect to NMR and X-

ray crystallography, since there is a little number of instruments available for measurements

and it needs long data collection times and larger volumes of crystals [173].

Due to the difficulties in pKa measurements of molecules in large complex mediums

and short-lived intermediates with experimental means as discussed above, the need for accu-

rate pKa estimations by the applications of theoretical approaches is necessary. The features

that determine the acidities of different classes of chemical compounds can be explained by

the molecular structure. The traditional method for the calculation of pKa’s is based on the

free energy changes in the thermodynamic cycle (Figure 6.1) in which desolvation of HA to

gas phase and then deprotonation of HA is considered. Typically electrostatic interactions

are obtained by numerically solving the linearized Poisson-Boltzmann equation (LPBE).

Figure 6.1. Thermodynamic cycle.

Despite the enormous number of successful pKa predictions by using the deprotonation

energies and solvation free energies [174–177], these calculations usually fail in its purpose
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due to the instability of the ion in gas phase and the conformational differences between the

solvent and gas phase calculations [178]. Besides empirical methods such as PROPKA and

the methods based on Poisson-Boltzmann equation, Generalized Born equation, QM/MM

or Molecular Dynamics or a combination of one or more; quantitative structure property

relationship (QSPR) is a widely used technique in which several molecular descriptors are

successfully linked to pKa’s of organic molecules such as topological state [179, 180], atom

type [181, 182], group philicity [183], bond length and frequency [184, 185], maximum

surface potential [186], HOMO and LUMO energies [187, 188], atomic charge [189, 190].

Among them, the concept of partial atomic charges is closely related to the relative acidity

and basicity of a molecule.

A Multiple Linear Regression model was developed by Dixon and Jurs with an ac-

curacy of 0.5 units for the calculation of pKa’s of oxyacids by using the empirical atomic

charges of atoms in a molecule [190]. The model is based on the changes in the σ and π

charges upon going from the neutral to ionic state, concerning the resonance and inductive

effects of nearby atoms. Citra constructed four linear regression models by using the par-

tial atomic charges on oxygen and hydrogen atoms which are involved in deprotonation and

O-H bond order for the set of phenols, alcohols and aromatic and non-aromatic carboxylic

acids [191]. Various combinations of different level of theories, basis sets and charge models

were tested by Vareková et al. in order to create a model for phenols [192]. Recently, Ugur

et al. made use of a similar approach with an extended study for the prediction of amino acid

pKa’s in proteins and developed an accurate protocol by computing the atomic charge on the

anionic form of alcohols and thiols [193]. Among the tested DFT functionals, basis sets,

semiempirical methods, solvation and charge models, they observed the best combination

is NPA charge calculation in CPCM model at the B3LYP/3-21G (R2=0.995) level of theory

for alcohols and M06-2X/6-311G (R2=0.986) level of theory for thiols in order to reproduce

the experimental pKa’s. Moreover, they tested the stability of the calculated pKa’s in amino

acids by MM-MD and DFT-MD calculations.

Regarding the successful applications of QM charges as descriptors, in this study we

aim to suggest an accurate protocol for the fast prediction of pKa’s of carboxylic acids.
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6.2. Methodology

6.2.1. Experimental Database

From literature [194, 195], we have selected a total of 59 carboxylic acid compounds

with pKa’s ranging from 0.65 to 5.12. One of our criterion of selection has been to identify

molecules that are able to represent the widest range of experimental pKa’s as possible. Most

of these molecules are also small and rather rigid molecules. The reason for avoiding flexible

molecules is to overcome the risk of failing to obtain the global minimum during geometry

optimization, which would raise systematical errors in pKa predictions [195]. A training set

of 30 small molecules (see Table 6.1 and Figure 6.2) and a test set of 29 small molecules (see

Table 6.2 and Figure 6.3) have been extracted from the ensemble.

Table 6.1. Carboxylic Acid Training Set: CAS Number, Molecule Name, Experimental

pKa, Predicted pKa, and Differences between Experimental and Predicted pKa values

CAS Number Molecule Name pKa (exp.) pKa (pred.) a ∆ pKa

129-66-8 2,4,6-Trinitrobenzoic acid 0.65 [194] 0.63 -0.02

610-30-0 2,4-Dinitrobenzoic acid 1.42 [195] 1.39 -0.03

471-25-0 Propiolic acid 1.89 [195] 1.85 -0.04

552-16-9 2-Nitrobenzoic acid 2.21 [195] 2.60 0.39

1460-34-0 α-Keto-β -methylvaleric acid 2.30 [195] 2.18 -0.12

590-93-2 2-Butynoic acid 2.62 [194] 2.52 -0.10

298-12-4 2-Oxoacetic acid 2.98 [195] 2.38 -0.60

69-72-7 2-Hydroxybenzoic acid 2.98 [194] 2.89 -0.09

122-59-8 Phenoxyacetic acid 3.17 [194] 3.62 0.45

88-14-2 2-Furoic acid 3.27 [195] 3.52 0.25

62-23-7 4-Nitrobenzoic acid 3.43 [194] 3.45 0.02

480-63-7 2,4,6-Trimethylbenzoic acid 3.55 [195] 3.74 0.19
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Table6.1 – continued from previous page

CAS Number Molecule Name pKa (exp.) pKa (pred.) a ∆ pKa

625-45-6 Methoxyacetic acid 3.57 [195] 3.93 0.36

1877-72-1 3-Cyanobenzoic acid 3.60 [194] 3.66 0.06

33445-07-7 Isopropoxyacetic acid 3.69 [195] 3.97 0.28

64-18-6 Formic acid 3.76 [195] 3.86 0.10

627-03-2 Ethoxyacetic acid 3.84 [195] 3.96 0.12

488-93-7 3-Furoic acid 3.90 [194] 4.05 0.15

99-06-9 3-Hydroxybenzoic acid 4.08 [194] 4.07 -0.01

93-09-4 2-Naphtoic acid 4.16 [194] 4.04 -0.12

190965-42-5 3-Propoxybenzoic acid 4.20 [195] 4.08 -0.12

99-04-7 3-Methylbenzoic acid 4.25 [194] 4.18 -0.07

103-82-2 Phenylacetic acid 4.31 [194] 4.37 0.06

99-50-3 3,4-Dihydroxybenzoic acid 4.48 [194] 4.41 -0.07

79-31-2 Isobutyric acid 4.64 [195] 4.74 0.10

1759-53-1 Cyclopropanecarboxylic acid 4.83 [194] 4.64 -0.19

142-62-1 Hexanoic acid 4.85 [194] 4.94 0.09

6202-94-4 trans-2-Methylcyclopropane-

carboxylic acid

5.00 [195] 4.75 -0.25

6142-57-0 cis-2-Methylcyclopropane-

carboxylic acid

5.02 [195] 4.72 -0.30

541-47-9 3-Methyl-2-butenoic acid 5.12 [195] 4.64 -0.48

a pKa values are computed for each molecule on the anionic form, optimized with M06L/6-

311G(d,p) and SMD, using the highest NPA atomic charge of the two oxygen atoms of the

carboxylate fragment
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Figure 6.2. 2D structures of the carboxylic acids selected for the training set. Naming of the

molecules is based on their CAS registry numbers and their experimental pKa values are

provided in parenthesis.
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Table 6.2. Monocarboxylic Acid Test Set: CAS Number, Molecule Name, Experimental

pKa, Predicted pKa, and Differences between Experimental and Predicted pKa values

CAS Number Molecule Name pKa (exp.) pKa (pred.) a ∆ pKa

625-75-2 Nitroacetic acid 1.48 [194] 2.19 0.71

372-09-8 Cyanoacetic acid 2.47 [194] 3.34 0.87

127-17-3 Pyruvic acid 2.60 [195] 2.59 -0.01

5699-58-1 Acetopyruvic acid 2.61 [195] 2.11 -0.50

121-92-6 3-Nitrobenzoic acid 3.46 [194] 3.57 0.11

619-65-8 4-Cyanobenzoic acid 3.55 [194] 3.62 0.07

2516-93-0 Butoxyacetic acid 3.66 [195] 3.96 0.30

54497-00-6 Propoxyacetic acid 3.69 [195] 3.94 0.25

50-21-5 2-Hydroxypropanoic acid 3.83 [195] 3.95 0.12

79-14-1 Hydroxyacetic acid 3.83 [194] 3.90 0.07

118-90-1 2-Methylbenzoic acid 3.98 [195] 3.79 -0.19

586-38-9 3-Methoxybenzoic acid 4.09 [195] 4.07 -0.02

65-85-0 Benzoic acid 4.19 [195] 4.12 -0.07

2529-39-7 2,3,4,5-Tetramethylbenzoic acid 4.22 [195] 4.06 -0.16

86-55-5 1-Naphtoic acid 3.69 [194] 3.71 0.02

79-10-7 Acrylic acid 4.25 [194] 3.95 -0.30

1077-07-2 3-Allylbenzoic acid 4.32 [195] 4.12 -0.20

99-94-5 4-Methylbenzoic acid 4.37 [194] 4.27 -0.10

5438-19-7 4-Propoxybenzoic acid 4.46 [195] 4.43 -0.03

100-09-4 4-Methoxybenzoic acid 4.50 [194] 4.42 -0.08

1498-96-0 4-Butoxybenzoic acid 4.53 [195] 4.43 -0.10

99-96-7 4-Hydroxybenzoic acid 4.58 [195] 4.45 -0.13
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Table6.2 – continued from previous page

CAS Number Molecule Name pKa (exp.) pKa (pred.) a ∆ pKa

64-19-7 Acetic acid 4.76 [195] 4.81 0.05

107-92-6 Butyric acid 4.82 [195] 4.90 0.08

109-52-4 Pentanoic acid 4.86 [195] 4.93 0.07

79-09-4 Propanoic acid 4.87 [194] 4.87 -0.00

98-89-5 Cyclohexanecarboxylic acid 4.90 [195] 5.05 0.15

3400-45-1 Cyclopentanecarboxylic acid 4.99 [194] 4.93 -0.06

75-98-9 Trimethylacetic acid 5.05 [195] 4.63 -0.42

a pKa values are computed for each molecule on the anionic form, optimized with M06L/6-

311G(d,p) and SMD, using the highest NPA atomic charge of the two oxygen atoms of the

carboxylate fragment

6.2.2. Quantum Mechanical Calculations

All of the Quantum Mechanical (QM) calculations were performed using the Gaus-

sian 09 program package [97]. Eight different density functionals (BLYP [38, 39], B3LYP

[38, 42], OLYP [38, 43], PBEPBE [44], PBE1PBE [45], M06 [46, 196], M06L [48, 196],

M06-2X [46, 196]) and 15 different basis sets were used. To interpret the aqueous solvent

environment, the solvation model based on density (SMD [60]), the polarizable continuum

model (PCM [197]), and the polarizable conductor solvent model (CPCM [198]) were used

with a dielectric constant (ε) of 78.5. Three different types of atomic charge models were

tested: Mulliken population analysis [51], Löwdin population analysis [52], Natural Pop-

ulation Analysis (NPA) [53]. Compared to the study from Ugur et al. [193], Electrostatic

Potential (ESP) derived atomic charges, like the Merz-Kollman (MK) model [199] and the

CHelpG model [200] are not reported here since preliminary studies have shown us that,

as in the cases of thiols and alcohols, they do not perform better than NPA atomic charges

(data not shown). Unless otherwise stated, all the charge calculations were performed on

the optimized geometries (after including or not the solvent effect) that do not contain any
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Figure 6.3. 2D structures of the carboxylic acids selected for the test set. Naming of the

molecules is based on their CAS registry numbers and their experimental pKa values are

provided in parenthesis.
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imaginary frequency.

6.2.3. Molecular Dynamics Calculations

Molecular dynamics simulations have been performed using the AMBER biomolec-

ular package [154]. All simulated molecules have been modeled with the AMBER ff14SB

protein force field [156]. The aqueous polar environment was mimicked by the implicit

modified generalized Born model with α , β , γ are 1.0, 0.8, and 4.8555 as implemented in

AMBER 18 (igb = 5). Following minimization, the systems were heated up to 300 K using

the Langevin thermostat during 50 ps with a collision frequency ϒ = 10 ps−1, and a timestep

of 1 fs. Then, NVT production runs were performed for another 150 ps using the same ther-

mostat algorithm. From each of these molecular dynamics, 1500 frames were extracted, one

every 0.1 ps.

6.3. Results and Discussion

6.3.1. Linearity of the Relationship Between Experimental pKa’s and Atomic Charges

The linear relationship between atomic charges and experimental pKa’s depends on

many factors: the choice of the DFT method, the choice of the basis set, the use (or not) of

an implicit solvent model, the type of the atomic charge model, and which atomic charges are

considered. From the overall present study, we have found that the best combination of all

these factors is to consider the highest oxygen atomic charge of each carboxylate fragment

computed with NPA at the M06L/6-311G(d,p) level using the SMD implicit solvent model.

In what follows, we present the linear relationship between experimental pKa’s and atomic

charges computed using the theoretical framework detailed above. Then, using these results

as a reference, we discuss the choice of charge descriptor, charge model, solvent model, DFT

functional and basis set by changing one of these parameters while the others remain fixed

to their best combination.

For each molecule of the training set, a geometry optimization was performed at the

M06L/6-311G(d,p) level using the SMD implicit solvent model. We ensure that no imagi-
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Figure 6.4. Linear regression between calculated NPA atomic charges and experimental

pKa. Calculations were done using M06L/6-311G(d,p)//SMD.

nary frequency remains for any molecule. Atomic charges were computed using the natural

population analysis. For each carboxylate fragment, we extracted the highest of the two

oxygen atomic charges and we compared it with the experimental pKa of the corresponding

molecule. Figure 6.4 shows the relationship between experimental pKa and computed NPA

charge for the training set. A linear equation is obtained by a least-square fit:

pKa = a ·Q+b with Q = max{q(O1),q(O2)} (6.1)

where a and b are the fitted parameters and Q = max{q(O1),q(O2)} is the highest atomic

charges of the two carboxylate oxygens, respectively. The parameters a and b and the squared

Pearson correlation coefficient (R2) are also illustrated in Figure 6.4. The predicted pKa’s

are computed using Equation 6.1 (i.e., by reporting max{q(O1),q(O2)} of a given molecule

into the parametrized equation).

For carboxylate molecules, the R2 value has been found to be 0.955. No strong out-

lier molecule was observed for the training set. The maximum difference between the pre-

dicted and experimental pKa among all the molecules was found as -0.60 units (see Ta-



97

ble 6.1). These results indicate a strong correlation between experimental pKa’s and the

oxygen charges. In order to analyze the influence of the charge descriptor, charge model and

solvent model on the quality of the fit, the same protocol was applied with four other charge

descriptors, two other charge models, two other solvent models and gas phase calculations.

6.3.2. Influence of the Charge Descriptor

Compared to alcohols and thiols that were analyzed by Ugur et al. [193], the negative

charge of the base form in the case of carboxylate can be shared between different atoms:

the carbon and the two oxygen atoms of the carboxylate fragment. Thus, there are different

ways to extract atomic charges for this fragment and then to compare them with experimental

pKa’s. We have analyzed different atomic extraction schemes for the negative charge Q of

the carboxylate fragment composed of atoms C, O1 and O2:

Q = max{q(O1),q(O2)} (6.2)

Q = min
{

q(O1),q(O2)
}

(6.3)

Q =
1
2

[
q(O1)+q(O2)

]
(6.4)

Q = q(C)+q(O1)+q(O2) (6.5)

Q = q(C) (6.6)

From the two oxygen atomic charges, it is possible to extract the highest value (Equa-

tion 6.2), the lowest value (Equation 6.3) or the average (Equation 6.4). The carbon atomic

charge can also be taken into account via the sum of all 3 atomic charges (Equation 6.5) or

by itself (Equation 6.6).

Figure 6.5 shows the relationship between carboxylate atomic charges expressed by

Equations 6.3-6.6 and experimental pKa’s using M06L/6-311G(d,p)//SMD. When the lowest

(i.e., the most negative) oxygen atomic charge is considered, the linear relationship is less

accurate than with the highest oxygen atomic charge scheme: R2 = 0.866 for the ”min”

scheme vs. R2 = 0.955 for the ”max” scheme, respectively. This is somewhat unexpected,
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(a) Q = min
{

q(O1),q(O2)
}

(b) Q = 1
2

[
q(O1)+q(O2)

]

(c) Q = q(C)+q(O1)+q(O2) (d) Q = q(C)

Figure 6.5. Effect of the charge descriptor on the linear regression between calculated

atomic charges and experimental pKa’s. Calculations were done with

M06L/6-311G(d,p)//SMD: (a) Minimum atomic charge on O1 and O2; (b) Average sum of

atomic charges on O1 and O2; (c) Sum of atomic charges on C, O1 and O2; (d) Atomic

charge on C.
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since if one considers a proton, one could expect it to be more attracted by the most negative

oxygen atoms. Therefore, one could expect that the Q = min
{

q(O1),q(O2)
}

scheme should

better reflect the experimental pKa’s. In all our linear regressions with different density

functionals, basis sets, etc., we have never found a better regression with the scheme Q =

min
{

q(O1),q(O2)
}

than with its Q = max{q(O1),q(O2)} counterpart. As a consequence,

the scheme Q = 1
2

[
q(O1) + q(O2)

]
that computes the average of the two oxygen atomic

charges is placed in between the two previous scheme with R2 = 0.924.

Another possibility to search for a relationship between experimental pKa and atomic

charge is to take into account the atomic charge on the carboxylate carbon. Figure 6.5(d)

shows the (lack of) relationship between the carbon atomic charges and experimental pKa’s.

With a R2 = 0.055, the carbon charge cannot be regarded as a descriptor of the experimental

pKa. As a consequence,when the three atomic charges on the carboxylate fragment are

considered together (Equation 6.5), the correlation coefficient (R2 = 0.536) is worse than

when the carbon atom is not included.

6.3.3. Influence of the Charge Model

In a pKa prediction model, the variations in the pKa during the dissociation process

should be reflected precisely by the electronic changes. Three different charge schemes were

tested for their predictivity power to generate charges that associate with the experimen-

tal pKa’s: NPA as well as Mulliken and Löwdin population analysis. These methods are

based on charge partition schemes and define the atomic orbitals by wave functions. In the

Mulliken population analysis, the calculated electron density is equally shared through the

adjacent atoms in a molecule without taking into account the electronegativity and polariz-

ability differences in atom types. Löwdin population analysis is very similar to the Mulliken

method with only difference in usage of orthogonal basis functions. Neither Löwdin or Mul-

liken schemes are able to reproduce the values of the dipole moments and they are both

dependent on the basis set that is used. Natural population analysis localizes and classifies

the orbitals into core, valence and Rydberg each of which contribute differently to the den-

sity. This partititoning of the atomic orbitals makes the NPA method less basis set dependent

than its counterparts.
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(a) Mulliken (b) Löwdin

Figure 6.6. Effect of the charge model on the linear regression between calculated atomic

charges and experimental pKa’s. Calculations were done with M06L/6-311G(d,p)//SMD:

(a) Mulliken atomic charge model; (b) Löwdin atomic charge model

The strength of a carboxylic acid is determined by the strength of its conjugate base

and the strength of a base is proportional to the charge density on the carboxylate oxy-

gens. The lesser the charge density on the oxygen atoms means more stability and thus it

becomes a weaker base and finally a stronger acid. Figure 6.6 presents the linear regres-

sions between the highest oxygen atomic charge and experimental pKa for the training set

at the M06L/6-311G(d,p)//SMD using the Mulliken population analysis (Figure 6.6(a)) and

the Löwdin population analysis (Figure 6.6(b)). The charge analysis show that the oxygen

charges become more negative with increasing pKa, suggesting that an oxygen atom with

more associated electron density readily accepts a proton; indication of a stronger conjugate

base and thus a weaker acid. On the other hand, Mulliken and Löwdin charges give R2 co-

efficients lower than that of NPA with values of 0.733 and 0.788 respectively. This result

is similar to those obtained for alcohols and thiols by Ugur et al. [193]: atomic charges ex-

tracted from natural population analysis are more linearly correlated to pKa’s than using the

Mulliken’s or Löwdin’s schemes. Using Equation 6.1, the calculated pKa of the strongest

outlier is 1.35 unit different from the experimental pKa when Löwdin charges are used. In

case of Mulliken scheme, all predicted pKa’s are within ±1 unit range, no strong outliers are

observed.
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6.3.4. Influence of the Solvent Model

The description of the surrounding environment that the charged species is exposed

to accounts for the ideal charge derivation scheme. Implicit solvent models offer some ad-

vantages for modeling the interactions between the solute and solvent. In this part of the

study, we have tested the accuracy of PCM and CPCM implicit solvation models in addi-

tion to SMD model calculations. Besides, due to its smaller computational costs, gas phase

calculations have been taken into consideration. Figure 6.7 presents the linear regression

fits of CPCM, PCM and gas phase calculations using NPA charges and the DFT methods as

discussed in the previous sections.

Both PCM and CPCM calculations are as accurate as SMD calculations with R2 ≥

0.930 (Figures 6.4 and 6.7). The predictivity of gas phase model is poorer (R2 = 0.826)

compared to other models where PCM, CPCM and SMD solvation methods are applied

since in this study we have extracted the water phase acidities rather than gas-phase pro-

ton affinities. SMD model is different from PCM and CPCM models in considering the

dispersion-repulsion energies in addition to electronic energy. These additional terms seem

to contribute in finding the global minimum in geometry optimizations and assigning the

atomic charges. Maximum deviations of the predicted pKa’s from the experimental pKa’s

are found to be 0.75, 0.80 and 1.13 units for PCM, CPCM and gas phase calculations respec-

tively.

6.3.5. Density Functionals and Basis Set Benchmarks

A deep analysis of DFT functionals and basis sets influence on pKa prediction capabil-

ity for carboxylic acids have been performed by applying the same protocol to the training

set. Highest NPA charge on the oxygen atoms of carboxylate fragment calculated at various

level of theories with SMD model were extracted to obtain R2, a and b values in Equa-

tion 6.1 from the linear fit with experimental pKa’s. In Figure 6.8 for each combination of

DFT functional and basis set, the Mean Absolute Deviations (MADs) are presented as box

representations. The differences between the experimental and predicted pKa’s (∆pKa) have

been calculated for each level of theory and the maximum value of this difference (MAX-
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(c) Gas Phase

Figure 6.7. Effect of the implicit solvent model on the linear regression between calculated

atomic charges and experimental pKa’s. Calculations were done with M06L/6-311G(d,p):

(a) PCM model (b) CPCM model (c) gas phase.
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Figure 6.8. Mean Absolute Deviation (MAD) and maximum difference between predicted

and experimental pKa (MAX-∆pKa for eight different DFT functionals and fifteen different

basis sets considered in this work. Geometry optimizations and NPA charge calculations

were done using the SMD model.

∆pKa) is represented as black colored lines in Figure 6.8.

All of the DFT methods gave strong correlations between calculated NPA atomic

charges and experimental pKa’s with R2 range of 0.702 ≤ R2 ≤ 0.955. The largest MADs

and MAX-∆pKa’s were found for the combinations of 3-21G basis set with all the function-

als except M06L. Removing the 3-21G basis set combinations from the benchmark study,

we obtained high accuracy range of MAD and ∆pKa values (0.17 ≤ MAD ≤ 0.36 and 0.56

≤ MAX-∆pKa ≤ 1.13). The power of the predictivity slightly diminishes with the addition

of diffuse functions to the basis set for any of the DFT functionals (i.e. 6-31+G* has higher

MAD and MAX-∆pKa compared to 6-31G*). On the other hand, polarization functions did

not cause any significant improvement. Regarding the performance of the functionals, in

all subsets the largest MADs were obtained with either M06-2X or OLYP functionals. The

smallest MADs were found for the combinations of all basis sets with the M06L functional

(except 6-31G) and among all the tested methods M06L/6-311G(d,p) gave the most accurate

result with MAD value of 0.174. When we applied the Equation 6.1 to the test set, the MAD

value for the predicted pKa’s was found to be 0.199 and the MAX-∆pKa was found to be
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Figure 6.9. Predicted pKa over all the DFT functionals and basis sets (3-21G discarded)

versus experimental pKa for the Training (a) and Test (b) sets (solvation model=SMD,

charge model=NPA). Circles show the average pKa, and the error bars denote minimum and

maximum predicted pKa.

0.87.

The average predicted pKa over all the methods has been calculated in order to have

an overview on the efficiency of the level of theory. The minimum and maximum predicted

pKa’s among all the methods (except 3-21G basis set due to its large MAD and MAX-∆pKa)

were added to the average predicted pKa of each molecule as error bars. The predicted pKa

is plotted versus experimental values for both training and test sets (Figure 6.9). Minimum,

maximum and average values of the predicted pKa were found to be within the range of ±1

unit compared to the experimental value.

6.3.6. Stability of the Prediction Along Geometry Changes

The stability of the calculated pKa’s with respect to geometrical changes is crucial for

the pKa predictions of proteins. Short molecular dynamics simulations (150 ps) for N-acetyl

alanine and dipeptide forms of aspartate and glutamate were performed in order to provide

multiple geometries around the optimum structures and to establish the variability of the

pKa prediction with respect to geometrical changes. A total of 1500 frames were extracted
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from these MD simulations and single point NPA charge calculations were performed on

these geometries by using SMD with M06L/6-311G(d,p) method. The predicted pKa’s were

obtained using a and b values derived from the fit. The experimental pKa’s (pKa [aspar-

tate]=3.94 [201], pKa [glutamate]=4.25 [202], pKa [alanine]=3.67 [202]) were taken as a

reference and the fluctuations of the calculated pKa’s with respect to geometrical changes

were observed. The average value over all the frames were calculated and found to be in

very good agreement with the experimental values for three of the peptides (red line in Fig-

ure 6.10). Almost 95% of the predictions are within ±1 pKa unit. These results point out

that the suggested protocol can accurately and efficiently predict pKa’s of aspartate, gluta-

mate and alanine in solution.

6.3.7. Application of Protocol to the NMDAR Ligands

Glycine is the natural agonist in the NMDA receptor and its presence is a prerequisite

for channel activation. Therefore the drug-design strategy for selective high affinity agonists

and antagonists at the GluN1 subunit of NMDA receptor suggests the presence of an acidic

moiety to mimic the receptor binding of glycine [203]. We applied our protocol to the set of

partial agonists and antagonists listed in Table 4.2 and Table 4.1 which are potential NMDA

GluN1 subunit selective ligands in order to predict the pKa’s of their carboxylate fragment.

The pKa’s of agonists and partial agonists should be calculated by considering their zwitteri-

onic states in physiological pH; this is confirmed by applying the protocol to the both anionic

and zwitterionic states of glycine ligand which has an experimentally determined pKa value

2.35 [204]. The predicted pKa for anionic form is 4.73 whereas the predicted pKa for zwitte-

rionic state is 2.68. Taking this information into account, calculations have been performed

on anionic forms of antagonists and zwitterionic state of partial agonists. NPA charges on the

oxygen atoms of carboxylate fragments have been calculated at M06L/6-311G(d,p) level of

theory with SMD model and the predicted pKa’s are computed using Equation 6.1. The re-

sults are given in Table 6.3. Our results indicate that all partial agonists and antagonists bear

pKa’s lower than 4.00. This means that all considered ligands for NMDAR GluN1 subunit

are in a carboxylate form at physiological pH in aqueous solution.
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Figure 6.10. Deviations of predicted pKa with respect to geometrical changes. Geometries

were obtained from aqueous phase MD calculations. M06L/6-311G(d,p) method was used

for single point NPA calculations using SMD. The red line shows the numerical average of

the pKa deviations.
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Table 6.3. Predicted pKa’s of selected set of potential partial agonists and antagonists that

are represented in Table 4.2 and Table 4.1

Ligand ID

(Partial Agonists)
pKa (pred.)

Ligand ID

(Antagonists)
pKa (pred.)

8 2.87 189 2.56

9 2.86 190 3.72

10 2.88 191 3.75

11 2.90 192 3.74

13 2.92 194 3.70

14 2.90 195 3.72

15 2.97 212 4.01

17 2.89 22 2.57

18 2.84 24 2.63

19 2.85 26 2.58

20 2.92 28 2.46

21 2.95 29 2.61

22 2.69 31 2.46

23 2.92 32 2.53

24 2.91 33 2.55

25 2.94 35 2.52

26 2.92 36 2.66

27 2.91 37 2.37

29 2.87 38 2.58

32 2.45 39 2.63

33 2.90 41 2.56
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Table6.3 – continued from previous page

Ligand ID

(Partial Agonists)
pKa (pred.)

Ligand ID

(Antagonists)
pKa (pred.)

34 2.90 44 2.61

35 2.91

36 2.89

37 2.87

38 2.90

39 2.93

46 2.90

47 2.94

51 2.87

The protonation states of the receptor, ligand and complex should be taken into account

in order to perform successful docking, screening and free energy calculations. The role of

protonation states in the initial steering is understood by the accurate pKa predictions of the

ionizable groups of the unbound receptor and the ligand. In the next step of this study, this

protocol will be transferred to the prediction of pKa’s of aspartate, glutamate and alanine

within proteins.

6.4. Conclusions

In this study, a protocol has been suggested in order to obtain fast and accurate pKa

predictions for small carboxylic acids. According to the suggested protocol, pKa’s are com-

puted by using the equation derived from the linear regression of the experimental pKa’s

with the atomic charges on the carboxylate fragment. Five charge descriptors, three charge

models, three solvent models, gas phase calculations and several DFT methods (combina-

tion of eight DFT functionals and fifteen basis sets) were tested. Among those, NPA charge

calculations performed with the SMD solvation model on optimized geometries gave the
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most accurate results. The best combination of DFT functionals and basis sets were found to

be M06L/6-311G(d,p) (R2 = 0.955). The strongest linearity is found by selecting the max-

imum atomic charge on carboxylic oxygen atoms and relating it to the experimental pKa.

Molecular dynamics simulations have been performed for a set of aspartate, glutamate and

alanine peptides in order to test the stability of the prediction. The protocol was applied to a

randomly selected set of frames which were extracted from MD simulations and the calcu-

lations showed that the predicted pKa’s were scattered within ±1 unit from the experimental

value. The suggested protocol will be transferred to the pKa prediction of aspartate, gluta-

mate and alanine within protein environment. By reporting the calculated atomic charge of

the carboxylate form in to the linear relationship derived in this work, it should be possible

to estimate the pKa’s of aspartate, glutamate and alanine.
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7. ELUCIDATION OF THE ATROPOSELECTIVITY IN THE

SYNTHESIS OF AXIALLY CHIRAL THIOHYDANTOIN

DERIVATIVES

7.1. Introduction

Hydantoins, a class of cyclic imides, have a broad range of biological and agricultural

activities; they are also important precursors in the synthesis of several amino acids and

pyruvic acid derivatives [205]. Sulfur analogs of hydantoins, thiohydantoins, are the priv-

ileged scaffolds in modern synthetic organic chemistry due to their anticarcinogenic [206],

antiviral [207], antimicrobial [208], antithyroidal [209], hypolipidemic [210, 211], antimu-

tagenic [212, 213] applications besides their usage as pesticides [214], reagents for dyes

[215], anti-ulcer and anti-inflammatory agents [216], C-terminal protein sequencing [217]

and metal-cation complexation agents [218]. The importance of thiohydantoins comes from

the presence of sulfur and oxygen atoms which act as H-bond proton acceptors and hydrogen

atom bonded to nitrogen which acts as a H-bond donor [219].

There are a number of methods for the synthesis of thiohydantoins in the literature

[220]. Sarigul and Dogan synthesized a number of diastereomerically enriched axially chi-

ral atropoisomeric 2-thiohydantoins via the chiral pool strategy by the reaction of L-amino

acid ester salts and o-aryl isothiocyanates in the presence of triethyl amine under reflux in

dichloromethane [2] (Figure 7.1). The synthesized compounds possess a chiral center at C5

position and a chiral axis along Nsp2-Caryl with an ortho substituent attached to the phenyl

ring (Figure 7.2). The nonaxially chiral 2-thiohydantoins are racemic products irrespective

of the R1 and R2 substituents. It is a well known phenomenon that as the size of the or-

tho substituent gets larger, the rotation around the Nsp2-Caryl bond is more restricted, and

this hindered rotation gives rise to atropisomeric compounds [221–230]. The experimental

data of Sarigul and Dogan [2] shows that C5 racemization in 5-methyl-3-o-bromophenyl-2-

thiohydantoin is avoided by the bulky o-aryl substituent and eventually chirality of L-alanine

methyl ester salt is preserved in the final product (SP configuration is dominant in which
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bromine atom is transoid with respect to C5 methyl).

Figure 7.1. Synthesis of atroposelective compounds by Sarigul and Dogan. [2]

Using computational tools to model the reaction mechanisms is important for under-

standing the details of the racemization steps in order to synthesize enantiomerically pure

products. The aim of this study is to rationalize the atroposelectivity observed in the syn-

thesis of the axially chiral 2-thiohydantoin derivatives and compare the results with the cur-

rent and the previous experimental data [2]. Herein, several questions are addressed: Does

racemization occur before or after cyclization? Does racemization occur via the assistance

of triethyl amine which is already present in the reaction medium or methanol which is a

side product or through unassisted keto-enol tautomerization? Plausible mechanisms have

been proposed for the racemization and cyclization of the intermediate adduct (3S) formed

from the initial attack of nitrogen of the amino acid to the isothiocyanate thiocarbonyl carbon

(Figure 7.2).

This study is composed of two parts: In Part I, the synthesis mechanisms have been

investigated by DFT methods in order to answer the addressed questions by modeling the

various possibilities for the formation of chiral 2-thiohydantoins. In Part II, the stereo con-

version mechanism of atroposelective 2-thiohydantoin derivatives have been addressed with

computational tools.
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7.2. Methodology

Geometry optimizations and frequency calculations were performed at the M06-2X/6-

311+ G(d,p) level of theory by using the Gaussian09 program package. The 6-311++G(3df,3pd)

basis set was used for Br. The M06-2X functional [46,47] is known to be efficient in reflect-

ing the properties of organic reaction mechanisms by including the contribution of disper-

sive effects [231–237]. The nature of the corresponding reactants and products was verified

by performing intrinsic reaction coordinate (IRC) calculations on the transition state struc-

tures [238]. All free energies were calculated at room temperature. Implicit solvation by

dichloromethane or ethanol using the integral equation formalism polarizable continuum

model (IEFPCM) has been taken into account in the calculations [98, 239]. The charges re-

ported were calculated with Mulliken Population Analysis scheme unless otherwise stated.

7.3. Results And Discussion

7.3.1. Computational Approach to the Elucidation of the Atroposelectivity in the Syn-

thesis of 2-Thiohydantoin Derivatives

Recently, Sarigul and Dogan [2] have reported the synthesis of several 2-thiohydantoin

derivatives where it was stated that although the synthesis started with an enantiomerically

pure amino acid (single stereoisomer having an S configuration) the product thiohydantoin

was obtained as a racemic mixture if the thiohydantoin was not axially chiral. If, on the other

hand, the product thiohydantoin was axially chiral, the racemization took place at various

extents. In this part of the study, DFT calculations were performed for modeling possible

mechanisms in order to investigate if the observed racemization occurs before or after the

cyclization and the factors that drive the racemization, together with the influence of axial

chirality on the stereo outcome of the reaction. For this purpose, we have selected the racemic

5-methyl-3-phenyl-2-thiohydantoin (X:H, R1:CH3 in Figure 7.1; hereafter denoted as H-

8S and H-8R) and the nonracemic axially chiral 5-methyl-3-o-bromophenyl-2-thiohydantoin

(X:Br, R1:CH3 in Figure 7.1; hereafter denoted as Br-8S and Br-8R) as model compounds

since they represent very specific distributions of their isomers: H-8S:H-8R=50:50 and Br-

8SM:Br-8RP:Br-8SP:Br-8RM=3:14:83:0.
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The very first step of the proposed mechanism starts with the nucleophilic addition of

the amino acid (2S) to the o-aryl isothiocyanate (1) yielding intermediate 3S (Figure 7.2).

We propose a route following 3S→ 6S transformation and then the formation of the cyclized

product 8S.

Figure 7.2. Suggested mechanism for the synthesis of the cyclized product 8S.

Cyclization. The study started with locating the lowest energy conformer of H-3S

and Br-3S (Figure 7.3). Steric effects and electrostatic interactions between the phenyl ring

and lone pairs on N3 atom disfavor the planar conformation and H-3S has a torsion angle

(C2-N3-C7-C8) of 56.2◦. The corresponding torsion angles are 102.9◦in Br-3S and -87.4◦in

Br-3S-2. In Br-3S, Br has favorable attractive interactions with hydrogen atom bonded to C5

(3.44 Å) and the closest hydrogen of the methyl group (3.19 Å) at the stereocenter C5; these

interactions are absent in Br-3S-2 which is 1.2 kcal/mol higher in energy. Sarigul and Dogan

have reported the relative proportions of all synthesized isomers of Br-8 (SM:RP:SP:RM as

3:14:83:0) in which 97% of the products were in P configuration [2]. The formation of Br-8

starting from Br-3S gives a transoid conformation of Br with respect to the C5 methyl (Br-

8SP), whereas cyclization from Br-3S-2 would give a cisoid conformation of Br with respect

to the C5 methyl (Br-8SM). Hence, transfer of central chirality at stereogenic carbon to the

axial chirality in the final product as suggested by Kawabata et al. [240], took place where

the central chirality at C5 of Br-3S (the lowest energy conformer) is to be expected to orient

the chiral axis in the final product Br-8SP.
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Figure 7.3. Charges (Mulliken Population Analysis) and distances (italics) for H-3S, Br-3S,

Br-3S-2 and the rotational transition state Br-TS[3S 3S-2]

Figure 7.4. Free energy profile for the suggested mechanism.
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Due to the presence of charge separation in 3S, proton transfer from the positively

charged thioamide nitrogen (N1) to the negatively charged arylamine nitrogen (N3) occurs

as expected yielding structure 4S (Figure 7.2). Our calculations show that this step is a very

exothermic reaction for both X:H and Br (-20.5 kcal/mol for H-4S and -19.2 kcal/mol for Br-

4S) with respect to H-3S and Br-3S respectively (Figure 7.4). Steric effects and electrostatic

interactions between the phenyl ring and hydrogen on N3 disfavor the planar conformation

with a torsion angle (C2-N3-C7-C8) of 55.6◦in H-4S; this angle is 86.1◦in Br-4S and -82.0◦in

Br-4S-2 (Figure 7.5). The relative stability (0.6 kcal/mol) of Br-4S as compared to Br-4S-2

can be ascribed to the steric encumbrance in the latter. So, the synperiplanar conformation of

bromine atom with respect to methyl group attached to stereocenter C5 in Br-3S is retained

in Br-4S.

Figure 7.5. Charges (Mulliken Population Analysis) and distances (italics) for H-4S, Br-4S,

Br-4S-2 and the rotational transition state Br-TS[4S 4S-2].

Upon the formation of 4S, there are three possible sites of deprotonation by TEA:

N1, N3 or C5 (Figure 7.6). Locating the transition states for hydrogen abstraction from N1,

N3 and C5 then optimizing the final formed anions showed that H-6S (13 kcal/mol higher

in energy with respect to H-4S) is the most stable anion when compared to H-18S (16.2

kcal/mol higher in energy with respect to H-4S) and H-15 (27.1 kcal/mol higher in energy

with respect to H-4S); this is due to the resonance stabilization of the resulting anion (H-6S)

through N3-aryl ring (the deprotonation of 4S at C5 will be discussed in the part entitled as
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‘Reactions of 4S’). The activation barriers for each proton abstraction step from complex

structures of 4S (5S, 14S and 17S) are displayed in Figure 7.6.

Figure 7.6. Deprotonation pathways of 4S

The formation of H-6S and Br-6S from 4S via complexation with TEA (5S) and hy-

drogen abstraction from N3 has the corresponding activation barriers; 11.6 kcal/mol and 9.3

kcal/mol respectively (Figure 7.4). Formation of H-6S and Br-6S are slightly exergonic with

respect to the starting materials H-3S and Br-3S respectively.

In structure H-6S the planar conformation is not favored (C2-N3-C7-C8=63.9◦) due to

the steric effects and electrostatic interactions between the phenyl ring and lone pairs on N3

as in structure H-3S (Figure 7.7). The same torsion angles are 118.6◦in uncomplexed Br-

6S and -88.1◦in Br-6S-2. In Br-6S, Br has favorable attractive interactions with the closest

hydrogen of the methyl group (3.05 Å) at the stereocenter C5; these interactions are absent in

Br-6S-2 which is 1.7 kcal/mol higher in energy. As a result, the synperiplanar conformation

of bromine atom with respect to methyl group attached to C5 in Br-3S which is retained in Br-

4S, is still in the synperiplanar position in Br-6S. Therefore, as Br-6S undergoes cyclization,

brominated aryl ring will tend to keep its conformation, thus yielding Br-8SP in which Br is
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transoid with respect to the C5 methyl.

Figure 7.7. Charges (Mulliken Population Analysis) and distances (italics) for H-6S, Br-6S,

Br-6S-2 and the rotational transition state Br-TS[6S 6S-2].

Cyclization reactions may occur spontaneously, by heating or may require a catalyst

like a Bronsted or Lewis acid or base [241]. In the case of the cyclization of 6S, the proto-

nated TEA in 6S sticks on the methoxy oxygen, N3-C4 bond formation occurs in the first step

(TS[6S 7S], Figure 7.2) and this ring closure barrier is low (9.7 kcal/mol for H-TS[6S 7S]

and 13.9 kcal/mol for Br-TS[6S 7S]) (Figure 7.4). In the second step, methanol release by

the hydrogen transfer from protonated TEA occurs very fast with less than 1.0 kcal/mol for

H-TS[7S 8S] and Br-TS[7S 8SP]. The experimental findings by Sarigul and Dogan are in

harmony with the computational cyclization data, since they reported a very fast cyclization

step.

Racemization After Cyclization. Sarigul and Dogan [2] have reported variable ex-

tents of racemization at C5 of the heterocyclic ring in their set of synthesized axially chiral

thiohydantoin derivatives (Figure 7.1). In order to clarify whether the enolization is a viable
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process in racemization of thiohydantoins or not, the intramolecular proton transfer from C5

to O6 is modeled with and without a base catalyst. The upper path (red line in Figure 7.8)

shows that keto-enol tautomerization without a catalyst is not kinetically favorable with a

very high activation barrier (77.0 kcal/mol). As one mole of methanol is released during the

cyclization step (TS[7S 8S], Figure 7.2), it can abstract the hydrogen atom at stereocenter

(C5) by transferring its OH hydrogen to O6 yielding the enolate H-8S-Enol. Methanol acts

like a base catalyst which explicitly assists the deprotonation and reprotonation of C5 lower-

ing the enolization barrier to 37.4 kcal/mol (green line in Figure 7.8) which is still too high

for a reaction to occur under the reaction conditions.

Since keto-enol tautomerization in the thiohydatoin ring with or without the assis-

tance of methanol has been found to be unplausable due to the high activation barriers,

triethyl amine mediated deprotonation-reprotonation at C5 is suggested (Figure 7.9). The

activation barrier for the deprotonation at C5 by TEA is 14.3 kcal/mol for H-TS[9S 10] and

13.6 kcal/mol for Br-TS[9SP 10]; these are relatively low barriers that can be reached un-

der the reaction conditions. H-10 is only 0.9 kcal/mol lower in energy with respect to the

H-TS[9S 10] and H-TS[10 9R]; both the forward and reverse reactions are equally favored.

Even though both interconversions from Br-9SP to Br-9RP or Br-9RP to Br-9SP are attain-

able under reaction conditions, the backward path is slightly (1.2 kcal/mol) more favored

than the forward path yielding an S/R ratio of 88/12 according to the Boltzmann distribution

function, which is in very good agreement with the reported experimental ratio (S/R:86/14).

Racemization Before Cyclization. In this part of the study, we have evaluated several

possible racemization mechanisms of 3S, 4S and 6S with and without TEA in order to un-

derstand whether racemization occurs before the cyclization as well. We have also discussed

the formation of 8S and 8R by cyclization of 3S, 3R, 4S and 4R.

Note that Zhang et al. have synthesized hydantoins from enantiomerically pure amino

amides and observed that triethylamine was not the only species responsible for the racem-

ization [242]. They have used 1,1’-carbonyldiimidazole (CDI) instead of TEA and the reac-

tion progressed with still some enantiomerization.
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Figure 7.8. Free energy profile for the racemization of H-8S through enolate formation with

(green lines) and without (red lines) a base catalyst (methanol).
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Figure 7.9. Triethylamine assisted racemization mechanism for the thiohydantoin

derivatives.
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(i) Reactions of 3S

The intermediate 3S either cyclizes via TS[3S 8S] to give 8S or undergoes racemization

via TS[3S 13] without any assistance or TS[11S 12] with the assistance of TEA, and then

cyclizes to 8R (Figure 7.10).

Figure 7.10. Alternative cyclization and racemization routes of 3S with and without the

assistance of TEA.

The activation barriers for proton migration from the stereocenter (C5) to the negatively
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charged arylamine nitrogen (N3) via TS[3S 13] are 23.4 and 23.2 kcal/mol for compounds

H and Br respectively giving the slightly stable intermediate 13 (Figure 7.11). Following the

free rotation about the N1-C5 bond in intermediate 13, the arylamine nitrogen N3 transfers

the proton back to the sp2 carbon (C5) (TS[13 3R]) to give the enantiomer 3R.

Figure 7.11. Free energy profile for 3S to 3R transformation.

The racemization of 3S may be achieved with the help of TEA through TS[11S 12]

(Figure 7.10). 3S and TEA form the complex 11S, and this complex is 8.3 kcal/mol and

8.0 kcal/mol higher in energy as compared to the uncomplexed ligands for H-11S and Br-

11S respectively due to the steric effects caused by TEA as it approaches to form the re-

spective complexes (Figure 7.12). The complexation to H-11S and hydrogen abstraction

in H-TS[11S 12] has a barrier of 23.0 kcal/mol, the formation of complex Br-11S and Br-

TS[11S 12] requires 23.4 kcal/mol. The electron delocalization is weaker in intermediate

12, and this leads to a relatively unstable structure which lies slightly higher in energy with

respect to the transition state structures. After the proton transfer from the protonated TEA

to the intermediate 12 via TS[12 11R], 11R is formed as a complex of TEA. The isolated

uncomplexed racemized product 3R further cyclizes to give 8R.
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Figure 7.12. Free energy profile for 3S to 3R transformation with the help of TEA.

The two potential energy surfaces displayed in Figure 7.11 and Figure 7.12 indicate the

formation of racemic mixtures for both H-3 and Br-3, since the barriers for the reverse and

forward reactions are equal. In Br-3R, bromine is in antiperiplanar conformation with respect

to methyl group attached to C5 and Br-3R is 2.9 kcal/mol more stable than Br-3R-2 (Br atom

in synperiplanar conformation) (Figure 7.13), due to the similar favorable interactions as

observed in Br-3S. Thus, upon the cyclization of Br-3R, Br-8RM atropoisomer is expected

to be formed.

3S and 3R can undergo cyclization via a concerted reaction mechanism: Following

some conformational reorganizations, the nucleophilic attack of electron rich nitrogen atom

(N3) to the carbonyl carbon (C4) (TS[3 8]) initiates the ring closure simultaneously promot-

ing the hydrogen movement from the amidic nitrogen (N1) to the methoxy oxygen, yielding

the thiohydantoin ring (8) and methyl alcohol (Figure 7.10). This ring-closure transition

state embodies a 5-endo-trig nucleophilic cyclization which has been considered as a geo-

metrically disfavored process according to Baldwin’s rules [243–246]. There are a number

of 5-endo-trig cyclizations which are reported in the recent literature [245]. In the case of
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Figure 7.13. Charges (Mulliken Population Analysis) and distances (italics) for Br-3R,

Br-3R-2 and the rotational transition state Br-TS[3R 3R-2].

cyclization of 3, there are no steric or electrostatic repulsions between N3 and C4. The

carboxyl oxygen readily abstracts the hydrogen from N1 and releases methanol as the ring

closes. This concerted cyclization reaction requires 29.7 kcal/mol for the formation of the

racemic H-8, 30.5 kcal/mol for Br-8SP and 30.2 kcal/mol for Br-8RM (Figure 7.14). Despite

the relatively high activation barrier (compared to racemization of 3S or conversion of 3S

to 4S) needed for cyclization of 3, there is a tremendous gain in thermodynamic stability in

reaching the cyclized products; and this suggests a thermodynamically driven process. The

exergonic character of this step can be attributed to the delocalization gained in the cyclic

products.

The enol tautomer of 3S can be generated via the transfer of the C5 proton to O6. In

dichloromethane, the relative energy of the enol tautomer (H-3-Enol) is found to be 22.0

kcal/mol higher with respect to the keto isomer (H-3S) (Figure 7.15), and its formation re-

quires 76.2 kcal/mol indicating the presence of the keto isomer in the reaction medium only.

(ii) Reactions of 4S

The intermediate 4S may either cyclize through TS[4S 8S] to give 8S or is assisted by
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Figure 7.14. Free energy profile for cyclization from 3S (left) and 3R (right).

Figure 7.15. Free energy profile for the racemization of H-3S via keto-enol tautomerization.
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TEA, it may enantiomerize via TS[14S 15] and then cyclize to 8R (Figure 7.16). The pos-

sibility of keto-enol tautomerizations of 4S is also evaluated for the observed racemizations.

Figure 7.16. Transformations of 4S with and without the assistance of TEA.

TEA can form the complex 14S by interacting with the hydrogen atom of the stereocen-

ter. The complexation to H-14S and hydrogen abstraction in H-TS[14S 15] overcomes a bar-

rier of 25.3 kcal/mol, while the same barrier is 26.3 kcal/mol for Br-14S and Br-TS[14S 15]

(Figure 7.17). In TS[15 14R] the protonated TEA transfers the proton to the sp2 carbon (C5)

from the Re face of 15 to give the 14R. The potential energy surface (PES) in Figure 7.17

indicates the formation of racemic mixtures for both H-4 and Br-4 compounds, since reach-

ing the summit of the potential energy surface requires equal energies in both forward and

reverse reactions which is in agreement with experimental data for the formation of H-8 but

does not satisfy the expectation for Br-8 for which the S isomer is dominant experimentally.

On the other hand, as observed in Br-3R, bromine is in antiperiplanar conformation with

respect to the C5 methyl in Br-4R, which yields the RM atropoisomer upon the cyclization

of Br-4M to Br-8R. Br-4R-2 conformer, in which bromine is in synperiplanar conformation,
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is 0.5 kcal/mol less stable than Br-4R (Figure 7.18).

Figure 7.17. Free energy profile for 4S to 4R transformation

On the other hand, 4S can undergo keto-enol tautomerization by the transfer of C5

proton to O6. The calculated barrier is 75.1 kcal/mol and the relative energy of the enol

tautomer (H-4-Enol) is found to be 26.3 kcal/mol higher with respect to the keto isomer H-

4S (Figure 7.19), indicating the presence of the keto isomer in the reaction medium only.

Structure 4 can undergo a concerted ring closure via the simultaneous hydrogen trans-

fer from arylamine nitrogen (N3) to the methoxy oxygen to release methyl alcohol with the

attack of N3 to C4 (Figure 7.20). The transition state structure corresponding to the cycliza-

tion of 4S resembles the product; the activation barriers for this cyclization step are 49.6

kcal/mol for the formation of racemic mixture of H-8, 48.4 kcal/mol for Br-8SP and 48.4

kcal/mol for Br-8RM. These barriers are not attainable under the reaction conditions.
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Figure 7.18. Charges (Mulliken Population Analysis) and distances (italics) for Br-4R,

Br-4R-2 and the rotational transition state Br-TS[4R 4R-2].

Figure 7.19. Free energy profile for the racemization of H-4S via keto-enol tautomerization.
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Figure 7.20. Free energy profile for cyclization from 4S (left) and 4R (right).

(iii) Reactions of 6S

The intermediate 6S either cyclizes to 8S in two-steps with the assistance of TEA as

discussed in cyclization part or follows an independent enantiomerization via TS[6S 16],

and then yields 8R by cyclization (Figure 7.21).

Figure 7.21. Main features for the racemization of 6S.

The electron rich N3 abstracts the hydrogen atom from the stereocenter via TS[6S 16]

with activation barriers of 21.2 kcal/mol for H and 22.6 kcal/mol for Br. After the free

rotation about the N1-C5 bond in H-16 and Br-16, hydrogen at N3 is transferred back to

the sp2 C5 to give H-6R and Br-6R. The potential energy surface in Figure 7.22 indicates the
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formation of racemic mixtures for both H-6 and Br-6; the barriers for the reverse and forward

reactions are the same. Moreover, as in the case of Br-3R and Br-4R, the bromine arranges

itself in the antiperiplanar conformation with respect to C5 methyl, indicating that the M

atropoisomer should be dominant in the final cyclized Br-8R product. Favorable interactions

between Br and H atoms render Br-6R 1.8 kcal/mol more stable than its other conformer

Br-6R-2 in which bromine is in synperiplanar conformation (Figure 7.23).

Figure 7.22. Free energy profile for 6S to 6R transformation.

Summary of the Results. The reactions for the suggested mechanisms in this study

are gathered in Figure 7.24. Note that in spite of the error margin of M06-2X, one of the

most recent hybrid meta density functionals which is generally successful in modeling or-

ganic reactions [247], the proposed mechanism is in agreement with the experimental results

of Sarigul and Dogan [2] who observed 86% S enantiomer dominance for Br-8 (∆∆G6==

-1.1 kcal/mol). As Br-3S forms in the medium, the most favorable path for cyclization fol-

lows the Br-3S→Br-4S→Br-6S→Br-8S route. The direct cyclizations of the intermediates
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Figure 7.23. Charges (Mulliken Population Analysis) and distances (italics) for the lowest

energy isomers of Br-6R, Br-6R-2 and the rotational transition state Br-TS[6R 6R-2].

(Br-3S→Br-8SP) and (Br-4S→Br-8SP) are quite demanding (Figure 7.24). Experimental-

ists have observed variable extents of racemization at C5 of the heterocyclic ring, thus we

have undertaken the task of clarifying computationally whether racemization occurs dur-

ing the synthesis or after the thiohydantoin ring is formed. For this purpose four possible

racemization mechanisms have been evaluated (Br-3S→Br-3R, Br-4S→Br-4R, Br-6S→Br-

6R, Br-8SP→Br-8RP) and their Gibbs energy barriers have been evaluated. Although the

barriers to overcome for enantiomerizations (Br-3S→Br-3R, Br-4S→Br-4R, Br-6S→Br-6R)

would be reachable under the reaction conditions, the corresponding competing reactions

(Br-3S→Br-4S→Br-6S→Br-8SP→Br-8RP) are highly preferred due to their lower barriers;

the route favored during the reaction is highlighted in Figure 7.24. It is also worth noting

that if racemization occured before cyclization, the cyclized species Br-8R would have the

M configuration in disagreement with experiment: calculations have shown that most stable

conformers of Br-3R, Br-4R and Br-6R have Br in the antiperiplanar position with respect

to the methyl group at C5. Eventually, the preferred synperiplanar position of Br is kept

starting from Br-3S to the final thiohydantoin formed, thus yielding atropoisomer Br-8SP in

which bromine is transoid with respect to C5 methyl. The rotation of bromoaryl ring, thus

the transformation of Br-8SP to Br-8SM, has an experimentally determined barrier, 27.8

kcal/mol [2], and this relatively high barrier explains the fact that Br-8SP has 83% abun-
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dance whereas Br-8SM is only 3%. Calculations have shown that after racemization occurs

at C5 of Br-8SP, Br-8RP will be formed and the rotation of the bromoaryl ring (RP
RM)

requires 27.5 kcal/mol to yield Br-8RM.

Figure 7.24. Summary of all pathways for the formation of Br-8SP and Br-8RM.

7.3.2. Computational Approach to the Elucidation of Stereoconversion of Thiohydan-

toin Derivatives

Recently, 5-Benzyl-3-aryl-2-thiohydantoin and 5-isobutyl-3-aryl-2-thiohydantoin deriva-

tives were synthesized by using S-phenyl alanine methyl ester and S-leucine methyl ester

hydrochloride with the corresponding aryl isothiocyanates in the presence of triethylamine

by Dogan’s group, following the procedure as described earlier [2]. When R1 substituent in
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Figure 7.1 is benzyl group and X substituent is bromine atom, distribution of the isomers are

reported as Benzyl-8SM:Benzyl-8RP:Benzyl-8SP:Benzyl-8RM=2:41:51:6. The stereoiso-

mers of compounds were resolved and kept in ethanol to follow the kinetics of conversion

of the stereoisomers and the energy barriers for racemization have been calculated. For the

racemization of Benzyl-8SP compound the experimental barrier is 24.4 kcal/mol. In this

part of the study, we have elucidated the mechanism of racemization of 2-thiohydantoins in

ethanol environment.

Keto-enol tautomerization is suggested to be one of the main mechanisms responsi-

ble from the racemization of cyclized products [248–250]. Therefore, in order to clarify

whether the enolization is a viable process in racemization of thiohydantoins or not, we have

modeled the intramolecular proton transfer from C5 to O6 with and without a base catalyst

(Figure 7.25).

The data in Figure 7.25 demonstrates that the keto-enol tautomerization without a cat-

alyst is not kinetically driven because of the very high activation barrier (79.4 kcal/mol,

blue line in Figure 7.25). Thus we propose a proton relay racemization process, in which

explicit ethanol molecules assist the intramolecular proton transfer from C5 to O6 form-

ing the enol intermediate. We have modeled the entire reaction with one (Figure 7.25, red

line) and two (Figure 7.25, green line) explicit ethanol molecules. The located transition

states for the deprotonation/reprotonation at C5 of the heterocyclic ring via one ethanol assis-

tance embodies a six membered cyclic structure between Benzyl-8SP and ethanol molecule

(Benzyl-TS[8SP 8-Enol] and Benzyl-TS[8-Enol 8RP]). Following a concerted bond reor-

ganization in which double proton transfer occurs between C5, ethanol and O6, the enol

intermediate (Benzyl-8-Enol) is formed. The activation energy for this deprotonation step

is 35.9 kcal/mol. On the other hand, deprotonation by two ethanol molecules assistance has

much lower activation barrier (22.4 kcal/mol), in which the transition state structures em-

body an eight-membered cyclic structure involving triple proton transfer. Shorter hydrogen

bond lengths in two ethanol assisted mechanism indicates more stabilized transition states

for both enolization (Benzyl-TS[8SP 8-Enol]) and ketonization (Benzyl-TS[8-Enol 8RP]).

Reprotonation step in order to give R enantiomer requires 28.5 kcal/mol and 19.0 kcal/mol

for one and two ethanol assisted mechanisms respectively. Suggested two ethanol assisted
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Figure 7.25. One ethanol (red line) and two ethanol molecules (green line) assisted

racemization mechanism based on keto-enol tautomerization.
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mechanism with 22.4 kcal/mol activation energy (rate determining step is the deprotonation

step) is in very good agreement with the experimentally determined value.

Finally we have calculated the relative proportions for Benzyl-8 in terms of S/R isomer

ratios according to the TEA assisted racemization mechanism suggested in the first part of

this study, the obtained ratio of 56/44 is in very good agreement with the experimentally

reported data which is 53/47 (Figure 7.26). Table 7.1 shows the computed NPA charges

for the reactants and the transition states of deprotonation and reprotonation steps for Br-

8SP and Benzyl-8SP which differ in their C5 substituents; Br-8SP has a methyl group and

Benzyl-8SP has a benzyl group attached. These substituents have direct impact on the extent

of racemization at C5 of the heterocyclic rings. Benzyl substituent turns out the ring more

prone to racemization while methyl substituent suppresses the racemization. NPA charges

on C5 of Br-9SP (qC=-0.164 e) and Benzyl-9SP (qC=-0.150 e), the TEA complexes of Br-

8SP and Benzyl-8SP, are closely related to the electron donating power of the substituents

at C5. Comparing the activation energies for deprotonation steps, replacing the methyl sub-

stituent with benzyl group lowers the barrier by 0.7 kcal/mol (Br-TS[9SP 10] in Figure 7.9

and Benzyl-TS[9SP 10] in Figure 7.26). This small barrier difference can be interpreted in

terms of the C5-H bond lengths which is 1.50 Å in Br-TS[9SP 10] and 1.51 Å in Benzyl-

TS[9SP 10]. Slightly shorter bond length in Br-TS[9SP 10] is due to the fact that electron

donating methyl group enhances the electron density between C5 and H, thus intensifies

the bond strength and the stronger bond leads to a higher activation energy (13.6 kcal/mol

for Br-TS[9SP 10] and 12.9 kcal/mol for Benzyl-TS[9SP 10]). On the other hand, charges

on the hydrogen atoms at stereocenter are 0.292 e and 0.298 e for Br-9SP and Benzyl-9SP

respectively, and the relatively higher electron density observed in H of Br-9SP accounts

for the higher barrier in Br-TS[9SP 10]. In the reprotonation step, relative barrier heights

are 11.5 kcal/mol for Br-TS[10 9RP] and 11.1 kcal/mol for Benzyl-TS[10 9RP]. C5 at Br-

TS[10 9RP] is richer in electron population (qC=-0.252 e) compared to Benzyl-TS[10 9RP]

(qC=-0.244 e) and the transferring proton at Br-TS[10 9RP] has lower charge compared to

Benzyl-TS[10 9RP], thus, as a result, a stronger electron density is observed between C5 and

H in Br-TS[10 9RP] with a shorter bond length 1.48 Å; where the same bond length is 1.50

Å in Benzyl-TS[10 9RP].
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Figure 7.26. Racemization of Benzyl-8SP through TEA assisted mechanism.

Table 7.1. Calculated NPA atomic charges for the transition states of TEA assisted

racemization at C5 of Br-8SP and Benzyl-8SP (M06-2X/6-311+G(d,p) for C, H, O, N and S

atoms; M06-2X/6-311++G(3df,3pd) for Br atom).

Structure H N1 C2 N3 C4 C5

Br-9SP 0.292 -0.622 0.329 -0.559 0.751 -0.164

Br-TS[9SP 10] 0.451 -0.594 0.327 -0.553 0.684 -0.261

Br-TS[10 9RP] 0.445 -0.595 0.325 -0.561 0.685 -0.252

Benzyl-9SP 0.298 -0.628 0.335 -0.568 0.755 -0.150

Benzyl-TS[9SP 10] 0.456 -0.596 0.330 -0.556 0.689 -0.250

Benzyl-TS[10 9RP] 0.453 -0.601 0.328 -0.564 0.697 -0.244
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7.4. Conclusions

In this study, the racemization differences observed in axially chiral atropoisomeric

and nonaxially chiral 2-thiohydantoins have been explored by quantum mechanical meth-

ods. We have suggested a plausible mechanism by modeling various possibilities for the for-

mation of 2-thiohydantoins. The computational data shows that the most plausible pathway

starts with the nucleophilic addition of the amino acid (2S) to the o-aryl isothiocyanate (1)

yielding intermediate 3S which then follows the Br-3S→Br-4S→Br-6S→Br-8S route. Once

2-thiohydantoin ring (8S) is formed it can undergo racemization with triethyl amine which

is already present in the reaction medium. Racemization via the formation of methanol as-

sisted enol intermediate is not favorable due to very high activation barriers (37.4 kcal/mol).

The proposed mechanisms corroborate the experimental findings regarding the dominance

of the S isomer in the final product 8 when X:Br. When X:H on the other hand, the S and

R configured intermediates are equally stable, thus racemic products are obtained. Over-

all, the atroposelectivity in the synthesis of axially chiral thiohydantoin derivatives can be

attributed to the synperiplanar position of Br atom with respect to methyl group at C5 in

Br-3S which keeps its conformation through the intermediate states. Moreover, we have

shown that the diversity in the extent of racemization at C5 of 5-methyl-3-o-bromophenyl-2-

thiohydantoin (Br-8) and 5-benzyl-3-o-bromophenyl-2-thiohydantoin (Benzyl-8) arises from

the differences in the electron donating power of C5 substituents. Additionally, DFT calcu-

lations were performed for the elucidation of racemization mechanism in ethanol, and we

suggested a two-ethanol assisted enolization/ketonization process which is in good agree-

ment with the experimentally determined activation barriers.

The computational methods utilized in this study can be used with confidence to predict

the chirality in the atroposelective synthesis of axially chiral thiohydantoin derivatives.
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8. CONCLUDING REMARKS

In this dissertation, different approaches have been used to get a deeper understand-

ing of the characterization and rationalization of the ligands that can be regarded as drug

candidates. Biological activity and selectivity of ligands have been identified and the ligand-

protein interactions in NMDA receptor have been investigated.

Quantum chemical calculations were performed on several NMDAR-GluN1 subunit

selective ligands which have antagonistic and partial agonistic activity. Several global and

local molecular properties that could play a role in ligand binding to the GluN1 subunit

of NMDA were examined and these descriptors were then used to discriminate the partial

agonism-antagonism nature of the ligands. The HOMO energies of the partial agonists were

calculated to be on average lower than those of the antagonists, whereas the reverse has

been seen for the LUMO energies. Calculated chemical hardness values pointed out that the

partial agonists are harder species than antagonists. Based on the hard and soft acids and

bases principle, which states that hard acids prefer to bind to hard bases and soft acids to soft

bases, this could indicate that the two types of ligands interact stronger or weaker with the

residues on the binding sites of the receptor, depending on their hardness values.

In order to understand the differences between reactivity centers in ligand-receptor

interactions of antagonists and partial agonists, local descriptors were applied to the ni-

trogen and oxygen atoms of the amide group. Since ligand-receptor recognition is mostly

driven by interactions between partially charged atoms, the charge distribution on the amide

group atoms were calculated. The results showed that the amide oxygen and nitrogen of

the partial agonists are more negatively charged than those of the antagonists. This suggests

stronger hydrogen bonding acceptor and donor ability of the partial agonists’ amide group.

These findings can be used in NMDAR targeted drug design strategies in order to predict the

agonism-antagonism activity of drug candidates. Moreover, we have suggested a multiple

linear regression model for calculating the intrinsic efficacies of the ligands and the predic-

tions might be a guideline for experimentalists. It is expected that the quantum chemical

calculations performed in this study will be tested and improved by theoreticians and exper-
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imentalists by expanding the application to the other iGluRs, namely AMPA and Kainate

receptors.

Docking studies and molecular dynamics simulations have been performed in order

to calculate the binding Gibbs free energies for the natural receptor’s GluN1 subunit lig-

and binding domain-ligand complexes and obtained values have been correlated with their

experimental efficacy and binding affinity (pKi). Correlations have been checked, but poor

linearities have been obtained. The results obtained in this study point out that the receptor’s

functionality is tightly linked to the other subunits including the ion channel. This should

be taken into account when performing the simulations; GluN1 subunit should be modeled

within the full NMDA receptor to obtain a complete picture of the ligand activity. On the

other hand, a good correlation has been found between the ligand’s agonism-antagonism ac-

tivity and the receptor’s conformational states. By these correlations it is possible to discrim-

inate between a ligand’s agonism activity from antagonism activity. The preliminary results

promisingly show that a mathematical model can be derived by extending the training set of

ligands. For binding Gibbs free energy calculations of the NMDAR-ligand systems, GBHCT

and GBOBC implicit solvation models can be used with confidence.

The solubility of a drug ligand is governed by the pKa’s of the acidic and basic sites

within the molecule. When the ligand is in the target protein environment, its affinity, ac-

tivity and efficacy is dependent on the pKa’s of the interacting residues of the active site.

Regarding the successful applications of quantum mechanical charges as descriptors, an ac-

curate protocol has been suggested for the fast prediction of pKa’s of ligands and amino

acids bearing a carboxyl group. According to the suggested protocol, pKa’s are computed

by using the equation derived from the linear regression of the experimental pKa’s with the

maximum atomic charge on the oxygen atoms of the carboxylate fragment. Molecular dy-

namics simulations have been performed for a set of peptides and the prediction was found

to be stable with respect to the geometrical changes. The protocol was also applied to the

set of partial agonists and antagonists which have high affinity for NMDA receptor GluN1

subunit. With the suggested protocol, it is possible to predict the protonation states of the

ionizable residues. The extension of the suggested protocol includes the application to the

pKa prediction of aspartate, glutamate and alanine within protein environment. In a next
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step, a new protocol will be suggested for pKa prediction of a very important class of organic

compounds, namely amines.

Stereoisomers of a chiral molecule may show different biological activities. A ligand

can be stereoselective or regioselective depending on the differences in electronic and steric

environment. For this reason, the demonstration of configurational stabilities of drug can-

didates and mechanisms by which they racemize are important issues. Therefore, in order

to highlight the enantioselectivity differences observed in axially chiral atropoisomeric and

nonaxially chiral 2-thiohydantoins, a plausible mechanism has been suggested by model-

ing various possibilities for the formation of 2-thiohydantoins. The observed racemization

at C5 of the heterocyclic ring was investigated; we have computationally clarified that the

racemizaton occurs after the thiohydantoin ring is formed. Overall, it has been found that

the reason for the observation of atroposelectivity in the synthesis of axially chiral thiohy-

dantoin derivatives is the synperiplanar position of Br atom with respect to methyl group

at C5 position in the reactant, which keeps its conformation through the intermediate states

formed. Moreover, we have shown that the diversity in the extent of racemization arises

from the differences in the electron donating power of C5 substituents. The computational

methods utilized in this study can be used with confidence to predict the chirality in the

atroposelective synthesis of axially chiral thiohydantoin derivatives.
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106. Bischoff, R. and H. Schlüter, “Amino acids: Chemistry, Functionality and Selected

Non-Enzymatic Post-Translational Modifications”, Journal of Proteomics, Vol. 75,

No. 8, pp. 2275–2296, 2012.
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