SYNTHESIS AND REACTIONS OF THIOUREAS, THEIR CYCLIZED DERIVATIVES AND OXAZOLIDINDIONES

by
Şenel Teke Tunçel
B.S., Chemistry, Niğde Ömer Halisdemir University, 2008
M.S., Chemistry, Gaziantep University, 2011

Submitted to Institute for Graduate Studies in Science and Engineering in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Graduate Program in Chemistry
Bogazici University
2019

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Professor İlknur Doğan for her endless patience, help, encouragement and support. It was hard to finish this study without her support. Her depth knowledge has illuminated my way at every stage of this work.

I also would like to express my thanks to my PhD thesis committee Associate Prof. Ali Ersin Acar ,Professor Safiye Erdem, Asistant Prof. Sevgi Sarıgül and Prof. Duygu Avcı Semiz for their contributions.

I sincerely thank to my lab friends Dr. Şule Erol Günal, Asistant Prof. Sevgi Sarıgül, Ari Hakgör, Melis Bacak for their friendships, support and great times we spend in and out of the lab.

I would also like to thank my dear friends Ayşe Çağlayan, Çimen Özgüç Önal, Elif Kurnaz, Ekmel Helvacıoğlu, Jesmi Çavuşoğlu and Sedef Özcan for their friendships and support during my graduate years.

My final thanks go to my husband Serhat Tunçel and my family for their love, support and encouragement.

This project has been supported by TUBITAK with research number 114Z172 and Bogazici University Research Fund with project number 9760 (15B05M5 coded project) and with project number 11982 (16B05D7 coded project).

Abstract

\section*{SYNTHESIS AND REACTIONS OF THIOUREAS, THEIR CYCLIZED} DERIVATIVES AND OXAZOLIDINDIONES

In this study, several single enantiomer thioureas were synthesized and converted to their cyclic derivatives: 2-imino-thiazolidin-4-ones and 5-benzylidene derivatives. The conformations of the thioureas were determined in solution and in the solid state. In solution; an interconversion between the E, Z and Z, E conformations was observed with $\Delta \mathrm{G}^{\neq}$values of around $50 \mathrm{~kJ} /$ mole. However in the solid state X-Ray crystal structure analyses revealed that they possess a Z, Z conformation. The thiazolidin-4-ones were found to be present only in the anti-conformation. Chiral hemiaminals were synthesized from the corresponding 2-iminothiazolidine-4-ones by LiAlH_{4} reductions stereoselectively and were converted to single enantiomer thiazol-2-imines by a water elimination reaction. The optical purities of thiazol-2-imines were proven by polarimetric measurements. The kinetics of the dehydration reactions which occured spontenaously both in the solid state and in solution were followed by time dependent ${ }^{1} \mathrm{H}$ NMR spectroscopy. The corresponding first order rate constants and free energies of activation for the conversions were reported. It was found that the N -naphthalen-1-yl)ethyl derivatized hemiaminals were the most stable of all, the half-lives amounting to 267 days in the solid state and 96 hours in soluton. A series of axially chiral pyridine compounds carrying 2-iminothiazolidin-4one core were also reduced to their hemiaminal derivatives using LiAlH_{4}. Due to the restricted rotation around the N_{3}-aryl single bond, the M / P isomerization was observed. Single enantiomers of the new 5-methyl-3-aryloxazolidine-2,4-diones were synthesized by an asymmetric synthesis using chiral pool strategy and their optical purities were proven. Enantiomerically pure 5-methyl-3-aryloxazolidine-2,4-diones were reduced to their hemiaminal derivatives and ring opening products in the presence of LiAlH_{4} and NaBH_{4}, respetively. Partial racemization was observed due to enolization of the molecules because of the acidic α-hydrogen at $\mathrm{C}-5$ of the ring during these reactions.

ÖZET

TiYOÜRELER, HALKALAŞMIŞ TÜREVLERİ VE OKSAZOLİDİNDİONLARIN SENTEZİ VE REAKSİYONLARI

Bu çalışmada, çeşitli tiyoüre türevleri tek enantiyomer olarak sentezlendi ve halkalı türevleri olan 2-imino-tiyoazolidin-4-on ve 5-benzilidenlere dönüştürüldü. Tiyoürelerin konformasyonları çözeltide ve katı halde saptantı. Çözeltide , E, Z ve Z, E konformasyonları arasında bir denge olduğu $50 \mathrm{~kJ} / \mathrm{mol}$ civarında $\Delta \mathrm{G}^{\neq}$değeriyle gözlemlendi. Ancak katı halde X-Ray kristal yapı analizi, bileşiklerin Z, Z konformasyonuna sahip olduğunu gösterdi. Tiyoazolidin-4-onların sadece anti-konformasyonda mevcut oldukları bulundu. Kiral hemiaminaller LiAlH_{4} indirgemesiyle 2-imino-tiyoazolidin-4-onlardan stereoseçimli olarak sentezlendi ve tek enantiyomer tiyoazol-2-iminlere su eliminasyonu reaksiyonu ile dönüştürüldü. Tiyoazol-2-iminlerin optik saflıkları polarimetrik ölçümlerle kanıtlandı. Hem katı halde hem de çözeltide kendiliğinden oluşan dehidrasyon reaksiyonlarının kinetikleri zamana bağlı ${ }^{1} \mathrm{H}$ NMR spektroskopisiyle takip edildi. Dönüşümler için birinci derece hız sabitleri ve serbest aktivasyon enerjisi değerleri tayin edildi. N-naftil-1-il)etil türevli hemiaminallerin hepsinin en kararlısı olduğu, yarı ömürlerinin katı halde 267 gün çözeltide 96 saat kadar olduğu bulundu. 2-İmino-tiyoazolidin-4-on halkası taşıyan aksiyel olarak kiral bir seri piridin bileşiği de LiAlH_{4} kullanılılarak hemiaminal türevlerine indirgendi. N_{3}-aril tek bağı çevresindeki dönmeden dolayı M / P izomerlerinin oluştuğu gözlemlendi. Yeni 5-metil-3-ariloksazolidin-2,4-dionlar kiral havuz yaklaşımı kullanılarak tek enantiyomer olarak elde edildi ve optik saflıkları kanıtlandı. Enantiyomerik olarak saf 5-metil-3-ariloksazolidin-2,4-dionlar hemiaminal ve halka açılma ürünlerine sırasıyla LiAlH_{4} ve NaBH_{4} kullanılılarak indirgendi. Bu reaksiyonlar sırasında halkanın C-5 karbonundaki asidik α-hidrojenden dolayı molekülün enolizasyonu sebebiyle kısmi rasemizasyon gözlemlendi.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT iv
ÖZET v
TABLE OF CONTENTS vi
LIST OF FIGURES xiii
LIST OF TABLES xxii
LIST OF SYMBOLS xxiii
LIST OF ACRONYMS/ABBREVIATIONS xxiv

1. INTRODUCTION 1
1.1. Chirality 1
1.2. Biological Importance of Chirality 5
1.3. Methods Used for the Evaluation of Enantiomeric Purity and Assigment of Absolute Chemistry of Chiral Molecules 9
1.3.1. HPLC with a Chiral Stationary Phase 9
1.3.2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in the presence of a Chiral Auxilary Compound 9
1.3.3. By X-Ray Crystallography 10
1.4. Determination of Rotational Barrier by Low Temperature NMR 10
1.5. Thioureas 11
1.6. 2-Imino-Thiazolidin-4-ones and Their 5-Benzylidene Derivatives 12
1.7. Oxazolidindiones 14
1.8. Hemiaminals 15
2. AIM OF THE STUDY 18
3. RESULTS AND DISCUSSION 20
3.1. Chiral Thioureas and Their Cyclized Derivatives [80] 20
3.1.1. Synthesis of Chiral Thioureas, 2-Imino-Thiazoidin-4-ones and 5- Benzylidenes 20
3.1.2. Conformational Analysis of Thioureas 21
3.1.3. 2-Imino-Thiazolidine-4-ones and Their 5-Benzylidene Derivatives 31
3.2. 2,4-Oxazolidinediones [87] 35
3.2.1. Asymmetric Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones 35
3.3. Chiral Hemiaminals from Chiral 2-imino-thiazolidine-4-ones 37
3.3.1. Synthesis of Chiral Hemiaminals 37
3.3.2. Transformation of the Chiral Hemiaminals to Single Enantiomer Thiazol-2-Imine Derivatives 40
3.4. Bromination of Compound 23SS 44
3.4.1. Synthesis of Compound 27 44
3.5. Stable Hemiaminals from Axially Chiral Pyridine Compounds 46
3.5.1. Synthesis of Stable Hemiaminals from Axially Chiral Pyridine Compounds 46
3.6. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH_{4} 51
3.6.1. Synthesis of Hemiaminals from Single Enantiomer 5-Methyl-3- aryloxazolidine-2,4-diones 51
3.6.2. Diastereoselectivity in Reduction of 5-Methyl-3-aryloxazolidine- 2,4-dione Derivatives with LiAlH_{4} 52
3.7. Reduction of 5-Methyl-3-Aryloxazolidine-2,4-Diones with NaBH_{4} 56
3.7.1. Synthesis of the Ring Opening Products from 5-Methyl-3- Aryloxazolidine-2,4-Diones 56
4. EXPERIMENTAL 59
4.1. Synthesis of $N, N^{\prime}-$ Bis-Thioureas 59
4.1.1. General procedure 59
4.1.1.1. N, N '-bis ((R)-1-phenylethyl)thiourea ($1 R R$) 59
4.1.1.2. $N, N^{\prime}-\operatorname{bis}((S)-1-$ phenylethyl $)$ thiourea ($1 S S$) 59
4.1.1.3. N, N^{\prime}-bis(1-phenylethyl)thiourea (1DL) 59
4.1.1.4. N, N '-bis((R)-1-(naphtalen-1-yl)ethyl)-thiourea (2RR) 60
4.1.1.5. N, N^{\prime}-bis((S)-1-(naphtalen-1-yl)ethyl)-thiourea (2SS) 60
4.1.1.6. N, N '-bis(1-(Naphtalen-1-yl)ethyl)thiourea (2DL) 60
4.1.1.7. N, N '-bis((R)-1-cyclohexylethyl)thiourea (3RR) 61
4.1.1.8. N, N '-bis $((S)$-1-cyclohexylethyl)thiourea (3SS) 61
4.1.1.9. N, N '-bis $((R)$-1-(4-methoxyphenyl)ethyl)thiourea (4RR). 61
4.1.1.10.N, N '-bis((S)-1-(4-methoxyphenyl)ethyl)thiourea (4SS) 61
4.1.1.11. N, N '-bis((R)-1-benzylpyrrolidine-3-yl)thiourea (5RR) 62
4.1.1.12. N, N^{\prime} '-bis((S)-1-benzylpyrrrolidine-3-yl)thiourea (5SS) 62
4.2. Synthesis of 2-Imino-Thiazolidine-4-ones 62
4.2.1. General procedure 62
4.2.1.1. 3-((R)-1-phenylethyl)-2-((R)-1- phenylethylimino)thiazolidine-4-one ($6 R R$). 63
4.2.1.2. -((S)-1-phenylethyl)-2-((S)-1- phenylethylimino)thiazolidine-4-one (6SS). 63
4.2.1.3. 3-(1-phenylethyl)-2-(1-phenylethylimino)thiazolidine-4- one ($6 D L$). 63
4.2.1.4. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-naphthalen-1- yl)ethylimino)thiazolidine-4-one ($7 R R$). 64
4.2.1.5. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-naphthalen-1- yl)ethylimino) thiazolidine-4-one (7SS) 64
4.2.1.6. 3-(1-(naphthalen-1-yl)ethyl)-2-(1-naphthalen-1- yl)ethylimino)thiazolidine-4-one (7DL) 64
4.2.1.7. 3-((R)-1-cyclohexylethyl)-2-((R)-1- cyclohexylethylimino)thiazolidine-4-one ($8 R R$) 65
4.2.1.8. 3-((S)-1-cyclohexylethyl)-2-((S)-1- cyclohexylethylimino)thiazolidine-4-one (8SS) 65
4.2.1.9. 3-((R)-1-(4-methoxyphenylethyl)-2-((R)-1-(4- methoxyphenylethylimino)thiazolidin-4-one ($9 R R$) 65
4.2.1.10.3-((S)-1-(4-methoxyphenylethyl)-2-((S)-1-(4- methoxyphenylethylimino)thiazolidin-4-one (9SS) 66
4.2.1.11.3-((R)-1-benzylpyrrolidin-3-yl)-2-((R)-1- benzylpyrrolidine-3-ylimino)thiazolidine-4-one (10RR) 66
4.2.1.12.3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1- benzylpyrrolidine-3-ylimino)thiazolidine-4-one (10SS) 66
4.3. Synhesis of 5-Benzylidene-2-Imino-thiazolidine-4-ones and 5- Benzylidene-thiazolidine-2,4-diones 67
4.3.1. General procedure 67
4.3.1.1. 5-Benzylidene-3-((R)-1-phenylethyl)-2-((R)-1- phenylethylimino)thiazolidin-4-one (11RR). 67
4.3.1.2. 5-Benzylidene-3-((S)-1-phenylethyl)-2-((S)-1- phenylethylimino)thiazolidin-4-one (11SS) 67
4.3.1.3. 5-Benzylidene-3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)- 1-naphthalen-1-yl)ethylimino)thiazolidine-4-one (12RR). 68
4.3.1.4. 5-Benzylidene-3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1- naphthalen-1-yl)ethylimino)thiazolidine-4-one (12SS) 68
4.3.1.5. 5-Benzylidene-3-((R)-1-cyclohexylethyl)-2-((R)-1- cyclohexylethylimino)thiazolidine-4-one (13RR) 68
4.3.1.6. 5-Benzylidene-3-((S)-1-cyclohexylethyl)-2-((S)-1- cyclohexylethylimino)thiazolidine-4-one (13SS). 69
4.3.1.7. 5-Benzylidene-3-((R)-1-(4-methoxyphenylethyl)- thiazolidine-2,4-dione (14R) 69
4.3.1.8. 5-Benzylidene-3-((S)-1-(4-methoxyphenylethyl)- thiazolidine-2,4-dione (14S) 69
4.3.1.9. 5-Benzylidene-3-((R)-1-benzylpyrrolidine-3-yl)-2-((R)-1- benzylpyrrolidine-3-ylimino)thiazolidine-4-one (15RR) 70
4.3.1.10.5-Benzylidene-3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1- benzylpyrrolidine-3-ylimino)thiazolidine-4-one (15SS) 70
4.4. Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones. 70
4.4.1. General procedure 70
4.4.1.1. (5R)-Methyl-3-phenyloxazolidine-2,4-dione (+16R) 71
4.4.1.2. (5S)-Methyl-3-phenyloxazolidine-2,4-dione (-16S) 71
4.4.1.3. (5R)-Methyl-3-(m-tolyl)oxazolidine-2,4-dione (+17R). 71
4.4.1.4 (5S)-Methyl-3-(m-tolyl)oxazolidine-2,4-dione (-17S) 71
4.4.1.5. (5S)-Methyl-3-(o-tolyl)oxazolidine-2,4-dione (-18S) 72
4.5. Reduction of 2-Imino-Thiazolidine-4-ones with LiAlH_{4} 72
4.5.1. General Procedure 72
4.5.1.1. 3-((R)-1-phenylethyl)-2-((R)-1- phenylethylimino)thiazolidine-4-ol (19RR) 72
4.5.1.2. 3-((S)-1-phenylethyl)-2-((S)-1- phenylethylimino)thiazolidine-4-ol (19SS) 73
4.5.1.3. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-(naphthalen-1- yl)ethylimino)thiazolidin-4-ol (20RR) 73
4.5.1.4. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-(naphthalen-1- yl)ethylimino)thiazolidin-4-ol (20SS). 73
4.5.1.5. 3-((R)-1-cyclohexylethyl)-2-((R)-1- cyclohexylethylimino)thiazolidine-4-ol (21RR) 74
4.5.1.6. 3-((S)-1-cyclohexylethyl)-2-((S)-1- cyclohexylethylimino)thiazolidine-4-ol (21SS) 74
4.5.1.7. 3-((R)-1-(4-methoxyphenyl)ethyl)-2-((R)-1-(4- methoxyphenyl)ethylimino) thiazolidin-4-ol (22RR). 75
4.5.1.8. 3-((S)-1-(4-methox yphenyl)ethyl)-2-((S)-1-(4- methoxypheyl)ethylimino) thiazolidin-4-ol (22SS) 75
4.6. Transformation of Chiral Hemiaminals to Thiazol-2-imines 76
4.6.1. General Procedure 76
4.6.1.1. 3-((R)-1-phenylethyl)-2-((R)-1- phenylethylimino)thiazoline (23RR). 76
4.6.1.2. 3-((S)-1-phenylethyl)-2-((S)-1- phenylethylimino)thiazoline (23SS) 76
4.6.1.3. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-(naphthalen-1- yl)ethylimino)thiazoline (24RR) 76
4.6.1.4. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-(naphthalen-1- yl)ethylimino)thiazoline (24SS) 77
4.6.1.5. 3-((R)-1-cyclohexylethyl)-2-((R)-1- cyclohexylethylimino)thiazoline (25RR) 77
4.6.1.6. 3-((S)-1-cyclohexylethyl)-2-((S)-1- cyclohexylethylimino)thiazoline (25SS) 77
4.6.1.7. 3-((R)-1-(4-methox yphenyl)ethyl)-2-((R)-1-(4- methoxyphenyl)ethylimino)thiazoline (26RR) 77
4.6.1.8. 3-((S)-1-(4-methoxyphenyl)ethyl)-2-((S)-1-(4- methoxyphenyl)ethylimino) thiazoline (26SS) 77
4.7. Bromination of Compound 23SS. 78
4.7.1. General Procedure 78
4.7.1.1. (S)-N-(4,5-dibromo-3-((S)-1-phenylethyl)thiazolidin-2- ylidene)-1-phenylethanamine (27) 78
4.8. Reduction of Axially Chiral Pyridine Compounds with LiAlH_{4} 78
4.8.1. General Procedure 78
4.8.1.1. (\pm)-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4- ol (32) 78
4.8.1.2. (\pm)-3-(3-methylpyridin-2-yl)-2-(3-methylpyridin-2- ylimino)thiazolidin-4-ol (33) 79
4.8.1.3. (\pm)-5-methyl-3-(pyridin-2-yl)-2-(pyridin-2- ylimino)thiazolidin-4-ol (34) 79
4.8.1.4. (\pm)-5-methyl-3-(3-methylpyridin-2-yl)-2-(3- methylpyridin-2-ylimino)thiazolidin-4-ol (35) 79
4.9. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH_{4} 80
4.9.1. General Procedure 80
4.9.1.1. (\pm)-4-hydroxy-5-methyl-3-phenyloxazolidin-2-one (36) 80
4.9.1.2. (\pm)-4-hydroxy-5-methyl-3-m-tolyloxazolidin-2-one (37) 80
4.10. Ring Opening Reaction of 5-Methyl-3-aryloxazolidine-2,4-diones with NaBH_{4} 81
4.10.1. General Procedure 81
4.10.1.1.(\pm)1-hydroxypropan-2-yl phenylcarbamate (38) 81
4.10.1.2.(\pm)1-hydroxypropan-2-yl m-tolylcarbamate (39) 81
4.10.1.3.(\pm)1-hydroxypropan-2-yl o-tolylcarbamate (40) 82
5. CONCLUSION 83
REFERENCES 85
APPENDIX A: SPECTROSCOPIC DATA 97

LIST OF FIGURES

Figure 1.1. R and S enantiomers derived from central chirality. 1
Figure 1.2. The structures of axially chiral biaryl atropisomers.2
Figure 1.3. Fast interconversion between the atropisomers of 1 -substituted methyl (S)-[5-(2-nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates. 3
Figure 1.4. Structures of biaryls showing $\Delta \mathrm{G}^{\neq}$values needed for slow interconversion between the atropisomers. 3
Figure 1.5. Selected examples of axial chirality about C-N single bond. 4
Figure 1.6. Structure of axially chiral N-(o-aryl)-2-thioxo-oxazolidine-4-one and rhodanine derivatives 5
Figure 1.7. The chemical structures of transoid $-(-)$-and transoid-(+)-paroxetine. 6
Figure 1.8. The chemical structure of L-Histidine. 6
Figure 1.9. Atropoisomers of Pyrimido[1,2-a][1,4]benzodiazepine 7
Figure 1.10. Enantiomers of axially chiral lamellarin N derivates.7
Figure 1.11. Chemical structures of maleopimaric acid N -aryl imides. 8
Figure 1.12. Structures of biologically active axially chiral natural products. 8
Figure 1.13. The proposed solvation model 10
Figure 1.14. Biologically active 1,3-thiazolidin-4-ones described in the literature. 13
Figure 1.15. Biologically active 5-ene- thiazolidin-4-ones described in the literature. 14
Figure 1.16. Commercial drugs containing oxazolidinone structure 15
Figure 1.17. Stabilization of hemiaminals through the H -bonding and amidine conjugation. 16
Figure 1.18. Chemical structure of 1-benzoyl-4-(4-nitrophenyl)-3-b-D-glucopyranosyl-thiazol-2(3H)-imine.17

Figure 3.1. Synthesis of N, N^{\prime}-bis-thioureas $1-5$, the axially chiral 2-iminothiazolidin-4-ones 6-10 and the corresponding 5-benzylidene-2-imino-thiazolidine-4ones 11-13 and 15.21
Figure 3. 2. Interconverting conformers of N, N-bis-thioureas 22
Figure 3.3. Crystal structures of compounds $2 R R, 2 S S, 4 R R$ and $4 S S$ 23
Figure 3.4. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $2 S S\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$showing the temperature dependance of the $\mathrm{NH}, \mathrm{CH}(\mathrm{I})$ and the CH_{3}(II) proton signals. Assignment of ${ }^{1} \mathrm{H}$ NMR shifts of compound $2 S S$at 233 K are given with the coupling constants (Hz) in parenthesis(III)27
Figure 3.5. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 S S\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the NH and CH protons 28
Figure 3.6. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $4 S S\left(\mathrm{CDCl}_{3}\right)$ showing the aromatic, NH and CH protons. 28
Figure 3.7. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $4 S S\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the NH and CH protons 29
Figure 3.8. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $4 S S\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the OCH_{3} protons. 29
Figure 3.9. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $4 S S\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the CH_{3} protons. 30
Figure 3.10. Resonance structures of $9 R R$ showing a higher electron density on the imino nitrogen. 32
Figure 3.11. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $7 R R$ in CDCl_{3} showing AB type splitting for diastereotopic methylene protons at $\mathrm{C}-5$ 32

Figure 3.12. The NOESY spectrum of $9 R R$ in CDCl_{3} showed a crosspeak between the methine proton bonded to the imino nitrogen $\left(\mathrm{H}_{\mathrm{b}}\right)$ and the phenyl hydrogen bonded to N_{3} through a methine linkage.34

Figure 3.13. Synthesis of 5-benzylidene-thiazolidine-2,4-diones $14 R$ and $14 S$ starting from the 2-imino-thiazolidine-4-ones 9RR and 9SS.......................... 35

Figure 3.14. Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones 36

Figure 3.15. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compounds (\pm) 16 and (-)-16S showing quartets for CH protons at $\mathrm{C}-5$ (I) and the doublets for methyl groups at C-5 (II) in the presence of six equivalent of chiral auxiliary (R)-TFAE in CDCl_{3}. (III) The HPLC chromotograms of compounds $(\pm)-16,(+)-16 R$ and (-)-16S on Chiralpak IC. Retetion times (min) are writen the on top of the chromatographic peaks. Eluting solvent: Hexane:Ethanol (95:5), flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$.

Figure 3.16. Synthesis of chiral hemiaminal derivatives and their elimination products.

Figure 3.17. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of hemiaminal $19 R R$.
 39

Figure 3.18. ${ }^{1} \mathrm{H}$ NMR signals of the H_{e} protons on C 4 for the major and the minor diastereomers of the hemiaminals $19 R R, 20 R R, 21 R R$ and $22 R R(\mathrm{dr}=3: 1)$.

Figure 3.19. The major and the minor diastereomers of the compound $19 R R$.
Figure 3.20. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of hemiaminal $19 R R$ showing its transformation to thiazol-2-imine $23 R R$ in CDCl_{3} with time. $(*)=$ hemiaminal and $(\mathbf{\Delta})=$ thiazol-2-imine .

Figure 3.21. (a) The $\%$ consumption of compound $19 R R$ and the formation of compound $23 R R$ in CDCl_{3}. (b) the plot of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time. $\mathrm{C}_{0} / \mathrm{C}$ the ratio of the initial amou1nt of hemiaminal consumption to the elimination product.
Figure 3.22. The plot of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time for compound $19 R R$ and $20 R R$ in solvent free media.43
Figure 3.23. Bromination of compound 23SS. 44
Figure 3.24. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of the compound 27 showing the diastereoselectivity on $\mathrm{C}-4$ and $\mathrm{C}-5$ protons. 45
Figure 3.25. Synthesis of stable hemiaminals from pyridine compounds. 46
Figure 3.26. The NOESY spectrum of 33 47

Figure 3.27. The partial ${ }^{1} \mathrm{H}$ NMR spectra of compound 33 in the absence of chiral auxiliary (a) and showing the enantiomer ratio in the presence of chiral auxiliary (R)- TFAE showing the enantiomer ratio (b)48

Figure 3.28. The expected eight isomers for compound 35 (the different sized balls under the molecules represent the enantiomeric pairs on the partial ${ }^{1} \mathrm{H}$ NMR in Figure 3.29).49
Figure 3.29. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound 35 showing the quartet for CH proton at C-5 (a) and the CH_{3} groups at C-5 and attached to pyridine rings (b). 50
Figure 3.30. The chemical structures of the major and the minor isomers of compound 34 51
Figure 3.31. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones. 52
Figure 3.32. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound 36 showing the diastereoselectivity for $\mathrm{C}-4, \mathrm{C}-5$ and OH protons ($\mathrm{dr}=2: 1$). 53
Figure 3.33. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound 37 showing the diastereoselectivity for $\mathrm{C}-4, \mathrm{C}-5$ and OH protons ($\mathrm{dr}=2: 1$). 53

Figure 3.34. The HPLC chromatogram showing the diastreomeric pairs for compound 36 (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention times: $\mathrm{t}_{1}: 11.028 \mathrm{~min}, \mathrm{t}_{2}: 17.07 \mathrm{~min}$,
$\left.\mathrm{t}_{3}: 21.06 \mathrm{~min}, \mathrm{t}_{4}: 38.432 \mathrm{~min}\right)(\mathrm{dr}=2: 1$ and racemization ratio $=$ 90:10) 54
Figure 3.35. The HPLC chromatogram showing the diastreomeric pairs for compound 37 (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention times: $\mathrm{t}_{1}: 11.073 \mathrm{~min}, \mathrm{t}_{2}: 17.833$ $\left.\mathrm{min}, \mathrm{t}_{3}: 22.5 \mathrm{~min}, \mathrm{t}_{4}: 41.848 \mathrm{~min}\right)(\mathrm{dr}=2: 1$ and racemization ratio $=$ 90:10) 54
Figure 3.36. 2D-NOESY spectrum of compound 37. 55
Figure 3.37. Ring-opening reaction of oxazolidin-2,4-diones $16 S, 17 S$ and $18 S$. 56
Figure 3.38. The HPLC chromatograms of compounds 38 (I), 39 (II), 40 (III) showing the racemization ratios on Chiralpak AD-H, mobile phase: Hexane:Ethanol (95:5) 57
Figure 3.39. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound 38 containing just the ring opening product (I) and the progression of the reaction through hemiaminal formation (II) $(\bullet=$ ring opening product and $\bullet=$ hemiaminal). 58
Figure A. $1{ }^{1} \mathrm{H}$ NMR of compounds $1 R R, 1 S S$ and $1 D L\left(\mathrm{CDCl}_{3}\right)$. 98
Figure A.2. ${ }^{13} \mathrm{C}$ NMR of compounds $1 R R, 1 S S$ and $1 D L\left(\mathrm{CDCl}_{3}\right)$. 99
Figure A.3. ${ }^{1} \mathrm{H}$ NMR of compounds $2 R R, 2 S S$ and $2 D L\left(\mathrm{CDCl}_{3}\right)$. 100
Figure A.4. ${ }^{1} \mathrm{H}$ NMR of compound $2 S S$ in Pyridine- d_{5} 101
Figure A.5. ${ }^{1} \mathrm{H}$ NMR of compound $2 S S$ in Methanol- d_{4}. 102
Figure A.6. ${ }^{1} \mathrm{H}$ NMR of compound $2 S S$ in DMSO- d_{6}. 103
Figure A.7. ${ }^{1} \mathrm{H}$ NMR of compound $2 S S$ at 233 K in CDCl_{3}. 104
Figure A.8. ${ }^{13} \mathrm{C}$ NMR of compounds $2 R R, 2 S S$ and $2 D L\left(\mathrm{CDCl}_{3}\right)$. 105
Figure A.9. ${ }^{1} \mathrm{H}$ NMR of compounds $3 R R$ and $3 S S\left(\mathrm{CDCl}_{3}\right)$. 106
Figure A.10. ${ }^{1} \mathrm{H}$ NMR of compound $3 S S$ at 243 K in CDCl_{3} 107
Figure A.11. ${ }^{1} \mathrm{H}$ NMR of compounds $3 R R$ and $3 S S\left(\mathrm{CDCl}_{3}\right)$. 108
Figure A.12. ${ }^{1} \mathrm{H}$ NMR of compounds $4 R R$ and $4 S S\left(\mathrm{CDCl}_{3}\right)$. 109
Figure A.13. ${ }^{1} \mathrm{H}$ NMR of compound $4 S S$ at 233 K in CDCl_{3}. 110
Figure A.14. ${ }^{13} \mathrm{C}$ NMR of compounds $4 S S$ and $4 R R\left(\mathrm{CDCl}_{3}\right)$ 111
Figure A.15. ${ }^{1} \mathrm{H}$ NMR of compounds $5 S S$ and $5 R R\left(\right.$ DMSO- $\left.d_{6}\right)$. 112
Figure A.16. ${ }^{1} \mathrm{H}$ NMR of compounds $5 R R$ and $5 S S$ (DMSO- d_{6}). 113
Figure A.17. ${ }^{1} \mathrm{H}$ NMR of compounds $6 R R$ and $6 S S\left(\mathrm{CDCl}_{3}\right)$ 114
Figure A.18. ${ }^{13} \mathrm{C}$ NMR of compounds $6 R R$ and $6 S S\left(\mathrm{CDCl}_{3}\right)$ 115
Figure A.19. ${ }^{1} \mathrm{H}$ NMR of compounds $7 R R$ and $7 S S\left(\mathrm{CDCl}_{3}\right)$. 116
Figure A.20. ${ }^{13} \mathrm{C}$ NMR of compounds $7 R R$ and $7 S S\left(\mathrm{CDCl}_{3}\right)$ 117
Figure A.21. ${ }^{1} \mathrm{H}$ NMR of compounds $8 R R$ and $8 S S\left(\mathrm{CDCl}_{3}\right)$. 118
Figure A.22. ${ }^{13} \mathrm{C}$ NMR of compounds $8 R R$ and $8 S S\left(\mathrm{CDCl}_{3}\right)$ 119
Figure A.23. ${ }^{1} \mathrm{H}$ NMR of compounds $9 R R$ and $9 S S\left(\mathrm{CDCl}_{3}\right)$. 120
Figure A.24. ${ }^{13} \mathrm{C}$ NMR of compounds $9 R R$ and $9 S S\left(\mathrm{CDCl}_{3}\right)$, 121
Figure A.25. ${ }^{1} \mathrm{H}$ NMR of compounds $10 R R$ and $10 S S\left(\right.$ DMSO- d_{6}). 122
Figure A.26. ${ }^{13} \mathrm{C}$ NMR of compounds $10 R R$ and $10 S S$ (DMSO- d_{6}). 123
Figure A.27. ${ }^{1} \mathrm{H}$ NMR of compounds $11 R R$ and $11 S S\left(\mathrm{CDCl}_{3}\right)$. 124
Figure A.28. ${ }^{13} \mathrm{C}$ NMR of compounds $11 R R$ and $11 S S\left(\mathrm{CDCl}_{3}\right)$. 125
Figure A.29. ${ }^{1} \mathrm{H}$ NMR of compounds $12 R R$ and $12 S S\left(\mathrm{CDCl}_{3}\right)$. 126
Figure A.30. ${ }^{13} \mathrm{C}$ NMR of compounds $12 R R$ and $12 S S\left(\mathrm{CDCl}_{3}\right)$. 127
Figure A.31. ${ }^{1} \mathrm{H}$ NMR of compounds $13 R R$ and $13 S S\left(\mathrm{CDCl}_{3}\right)$. 128
Figure A.32. ${ }^{13} \mathrm{C}$ NMR of compounds $13 R R$ and $13 S S\left(\mathrm{CDCl}_{3}\right)$. 129
Figure A.33. ${ }^{1} \mathrm{H}$ NMR of compounds $14 R$ and $14 S\left(\mathrm{CDCl}_{3}\right)$. (major/minor=4.54). 130
Figure A.34. ${ }^{13} \mathrm{C}$ NMR of compounds $14 R$ and $14 S\left(\mathrm{CDCl}_{3}\right)$. 131
Figure A. $35 .{ }^{1} \mathrm{H}$ NMR of compounds $15 R R$ and $15 S S$ (DMSO- d_{6}). 132
Figure A.36. ${ }^{13} \mathrm{C}$ NMR of compounds $15 R R$ and $15 S S$ (DMSO- d_{6}). 133
Figure A.37. ${ }^{1} \mathrm{H}$ NMR of compounds $16 S$ and $16 R\left(\mathrm{CDCl}_{3}\right)$. 134
Figure A.38. ${ }^{13} \mathrm{C}$ NMR of compounds $16 S$ and $16 R\left(\mathrm{CDCl}_{3}\right)$. 135
Figure A.39. ${ }^{1} \mathrm{H}$ NMR of compounds $17 S$ and $17 R\left(\mathrm{CDCl}_{3}\right)$. 136
Figure A. $40 .{ }^{13} \mathrm{C}$ NMR of compounds $17 S$ and $17 R\left(\mathrm{CDCl}_{3}\right)$ 137
Figure A.41. ${ }^{1} \mathrm{H}$ NMR of compound $18 S\left(\mathrm{CDCl}_{3}\right)$. 138
Figure A.42. ${ }^{13} \mathrm{C}$ NMR of compound $18 S\left(\mathrm{CDCl}_{3}\right)$. 139
Figure A.43. ${ }^{1} \mathrm{H}$ NMR of compounds $19 R R$ and $19 S S\left(\mathrm{CDCl}_{3}\right)$. 140
Figure A.44. ${ }^{13} \mathrm{C}$ NMR of compounds $19 R R$ and $19 S S\left(\mathrm{CDCl}_{3}\right)$. 141
Figure A.45. ${ }^{1} \mathrm{H}$ NMR of compounds $20 R R$ and $20 S S\left(\mathrm{CDCl}_{3}\right)$. 142
Figure A.46. ${ }^{13} \mathrm{C}$ NMR of compounds $20 R R$ and $20 S S\left(\mathrm{CDCl}_{3}\right)$. 143
Figure A.47. ${ }^{1} \mathrm{H}$ NMR of compounds $21 R R$ and $21 S S\left(\mathrm{CDCl}_{3}\right)$. 144
Figure A.48. ${ }^{13} \mathrm{C}$ NMR of compounds $21 R R$ and $21 S S\left(\mathrm{CDCl}_{3}\right)$. 145
Figure A.49. ${ }^{1} \mathrm{H}$ NMR of compounds $22 R R$ and $22 S S\left(\mathrm{CDCl}_{3}\right)$. 146
Figure A.50. ${ }^{13} \mathrm{C}$ NMR of compounds $22 R R$ and $22 S S\left(\mathrm{CDCl}_{3}\right)$. 147
Figure A.51. ${ }^{1} \mathrm{H}$ NMR of compounds $23 R R$ and $23 S S\left(\mathrm{CDCl}_{3}\right)$. 148
Figure A.52. ${ }^{13} \mathrm{C}$ NMR of compounds $23 R R$ and $23 S S\left(\mathrm{CDCl}_{3}\right)$ 149
Figure A.53. ${ }^{1} \mathrm{H}$ NMR of compounds $24 R R$ and $24 S S\left(\mathrm{CDCl}_{3}\right)$ 150
Figure A. $54 .{ }^{13} \mathrm{C}$ NMR of compounds $24 R R$ and $24 S S\left(\mathrm{CDCl}_{3}\right)$. 151
Figure A.55. ${ }^{1} \mathrm{H}$ NMR of compounds $25 R R$ and $25 S S\left(\mathrm{CDCl}_{3}\right)$ 152
Figure A.56. ${ }^{13} \mathrm{C}$ NMR of compounds $25 R R$ and $25 \mathrm{SS}\left(\mathrm{CDCl}_{3}\right)$. 153
Figure A.57. ${ }^{1} \mathrm{H}$ NMR of compounds $26 R R$ and $26 S S\left(\mathrm{CDCl}_{3}\right)$. 154
Figure A.58. ${ }^{13} \mathrm{C}$ NMR of compounds $26 R R$ and $26 S S\left(\mathrm{CDCl}_{3}\right)$ 155
Figure A.59. ${ }^{1} \mathrm{H}$ NMR of compound $27\left(\mathrm{CDCl}_{3}\right)$ 156
Figure A. $60 .{ }^{13} \mathrm{C}$ NMR of compound $27\left(\mathrm{CDCl}_{3}\right)$. 157
Figure A.61. ${ }^{1} \mathrm{H}$ NMR of compound $32\left(\mathrm{CDCl}_{3}\right)$. 158
Figure A.62. ${ }^{13} \mathrm{C}$ NMR of compound $32\left(\mathrm{CDCl}_{3}\right)$. 159
Figure A.63. ${ }^{1} \mathrm{H}$ NMR of compound $33\left(\mathrm{CDCl}_{3}\right)$. 160
Figure A.64. ${ }^{13} \mathrm{C}$ NMR of compound $33\left(\mathrm{CDCl}_{3}\right)$. 161
Figure A.65. ${ }^{1} \mathrm{H}$ NMR of compound $34\left(\mathrm{CDCl}_{3}\right)$. 162
Figure A.66. ${ }^{13} \mathrm{C}$ NMR of compound $34\left(\mathrm{CDCl}_{3}\right)$ 163
Figure A.67. ${ }^{1} \mathrm{H}$ NMR of compound $35\left(\mathrm{CDCl}_{3}\right)$. 164
Figure A.68. ${ }^{13} \mathrm{C}$ NMR of compound $35\left(\mathrm{CDCl}_{3}\right)$. 165
Figure A.69. ${ }^{1} \mathrm{H}$ NMR of compound $36\left(\mathrm{CDCl}_{3}\right)$. 166
Figure A.70. ${ }^{13} \mathrm{C}$ NMR of compound $36\left(\mathrm{CDCl}_{3}\right)$. 167
Figure A.71. ${ }^{1} \mathrm{H}$ NMR of compound $37\left(\mathrm{CDCl}_{3}\right)$. 168
Figure A.72. ${ }^{13} \mathrm{C}$ NMR of compound $37\left(\mathrm{CDCl}_{3}\right)$. 169
Figure A.73. ${ }^{1} \mathrm{H}$ NMR of compound $38\left(\mathrm{CDCl}_{3}\right)$. 170
Figure A.74. ${ }^{13} \mathrm{C}$ NMR of compound $38\left(\mathrm{CDCl}_{3}\right)$. 171
Figure A.75. ${ }^{1} \mathrm{H}$ NMR of compound $39\left(\mathrm{CDCl}_{3}\right)$. 172
Figure A.76. ${ }^{13} \mathrm{C}$ NMR of compound $39\left(\mathrm{CDCl}_{3}\right)$. 173
Figure A.77. ${ }^{1} \mathrm{H}$ NMR of compound $40\left(\mathrm{CDCl}_{3}\right)$. 174
Figure A. 78. ${ }^{13} \mathrm{C}$ NMR of compound $40\left(\mathrm{CDCl}_{3}\right)$. 175

LIST OF TABLES

Table 3.1. Data from cyrstal structures of compounds $2 R R$ and $2 S S$.

Table 3.2. Data from cyrstal structures of compounds $4 R R$ and $4 S S$.

Table 3.3. Selected Thermodynamic and Kinetic Parameters for Compounds 2SS, $3 S S$ and $4 S S$ Determined by ${ }^{1} \mathrm{HNMR}$ in CDCI_{3} (* at 233 K and ${ }^{* *}$ at 243 K).26
Table 3.4. The polarimetric and the HPLC data for compounds 6-10 and 11-15 33

Table 3.5. Experimental first order rate constants (k), $\Delta \mathrm{G}^{\neq}$and $\mathrm{t}_{1 / 2}$ for the
transformation of chiral hemiaminals to chiral thiazol-2-imines 42

Table 3.6. Experimental first order rate constants $(\mathrm{k}), \Delta \mathrm{G}^{\neq}$and $\mathrm{t}_{1 / 2}$ for chiral hemiaminals $19 R R$ and $20 R R$ during their transformation to chiral thiazol-2-imines in solvent free media.43
Table 3.7. The polarimetric data for compounds 23-26. 43
Table 3.8. Racemization ratios of compounds 38, 39 and 40 during the ringopening reaction with NaBH_{4} on Chiralpak AD-H, mobile phase:Hexane:Ethanol (95:5).57

LIST OF SYMBOLS

$[\alpha]$	Specific Rotation
dr	Diastereomeric ratio
h	Hour
h	Planck's constant
H	Hertz
J	Joule
K	Kelvin
kb	Boltzman constant
s	Second
t	Time
T	Temperature
$\mathrm{t}_{1 / 2}$	Half-life
t_{R}	Retention time
δ	Chemical shift
$\Delta \mathrm{G}^{+}$	Free energy of activation

LIST OF ACRONYMS/ABBREVIATIONS

$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid
CDCl_{3}	Deuterated chloroform
$\mathrm{C}_{6} \mathrm{D}_{6}$	Deuterated benzene
CS_{2}	Carbon Disulfide
COX	Cyclooxygenase
CSA	Chiral solvating agent
CSP	Chiral stationary phase
EtOH	Ethanol
$\mathrm{GABA}_{\mathrm{A}}$	γ-Aminobutyric acid type A
$\mathrm{HPLC}^{\text {HIV }}$	High-Performance Liquid Chromatography
IC	Human Immunodeficiency Virus
LiAlH	The Half Maximal Inhibitory Concentration
LOX	Lithium aluminium hydride
S-TFAE	Lipooxygenase
S1P	S-(+)-1-(9-antryl)-2,2,2-trifluoro ethanol
MAO	Sphingosine-1-phosphate
NaBH	Monoamineoxidase
NaOAc	Sodium borohydride
R-TFAE	Sodium acetate
THF	R-(-)-1-(9-antryl)-2,2,2-trifluoro ethanol
VOSO	Tetrahydrofuran
	Vanadium(IV) oxide

1. INTRODUCTION

1.1. Chirality

Chirality stems from different orientations of the groups attached to the threedimensional objects. If a molecule is chiral, it can not be superimposed on its mirror image. A chiral molecule and its non-superimposible mirror image reflection are enantiomers of each other. The existence of enantiomers is generally associated with the presence of a chiral center or a chiral axis. On the other hand, diastereomers contain more than one of these elements.

A great deal of chiral molecules exist in central chirality (Figure 1.1) where four different groups are attached to a tetrahedral central atom (C, N, P, S). The transformation of one enantiomer of a centrally chiral molecule to other one requires bond-breakage and this process is called as racemization.

Figure 1.1. \boldsymbol{R} and \boldsymbol{S} enantiomers derived from central chirality.

Axial chirality results from restricted rotation about a single bond. The typical and well-known examples of this type of chirality are BINOL and BINAP derivatives (Figure 1.2) [1].

(S)-BINOL

(S)-BINAP

Figure 1.2. The structures of axially chiral biaryl atropisomers.

The 180° rotation about the chiral axis gives rise to the formation of interconvertible stereoisomers. The interconvertable stereoisomers are defined as atropisomers if they have life-times greater than 1000 seconds at a given temperature [2]. The atropisomers are usually nomenclatured according to their helicities P (positive helix) and M (negative helix) or R (or R_{a}) and S (or S_{a}), (Cahn-Ingold-Prelog rules) [3].

Although the interconversion of the classical stereoisomers requires a bondbreakage, axially chiral compounds resulting from an intramolecular restricted rotation can interconvert to one another with time through slow bond rotation. The rate of rotation depends on the steric hindrance to rotation and on the temperature of the medium [4]. The rotational barier ($\Delta \mathrm{G}^{\not}$) value is an important parameter for the evaluation of the stability of the axially chiral compounds. LaPlante et al. (2011) divided the axially chiral compounds into three classes. Class 1: Compounds with rotational barrier less than 20 $\mathrm{kcal} / \mathrm{mol}$ have fast axial rotation rates on the order of seconds or faster, show no axial chirality at room temperature ($25^{\circ} \mathrm{C}$). Class 2: Compounds with rotational barrier greater than $20 \mathrm{kcal} / \mathrm{mol}$ are atropisomeric at ambient temperature. Class 3: Compounds with rotational barrier greater than $30 \mathrm{kcal} / \mathrm{mol}$ have very small axial rotation rates and their racemizations take years [5].

Šenica et al. (2016) synthesized a series of 1 -substituted methyl (S)-[5-(2-nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates (I) (Figure 1.3) and determined the free energy barriers of rotation, ($\Delta \mathrm{G}^{\neq}$) using temperature-dependant ${ }^{1} \mathrm{H}$ NMR spectroscopy. However, they could not succeed to isolate the isomers due to the low rotational bariers $\Delta \mathrm{G}^{\neq}{ }_{298}$ values of $19.5-20.5 \mathrm{kcal} / \mathrm{mol}$ at [6].

Figure 1.3. Fast interconversion between the atropisomers of 1-substituted methyl (S)-[5-(2-nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates.

Patel et al. (2017) investigated thermal racemization of BINOL (II), BINAM (III), NOBIN (IV), Phenap (V) and TriChlophbin (VI) and they found that the compounds were atropisomeric. They reported that the free energy barrier of rotation $\left(\Delta \mathrm{G}^{\neq}\right)$about the $\mathrm{C}_{\text {aryl }}-$ $\mathrm{C}_{\text {aryl }}$ single bond changed in the range of $26-43 \mathrm{kcal} / \mathrm{mol}$ [7] (Figure 1.4).

II
$\Delta \mathrm{G}^{\#}{ }_{463}=39.5 \mathrm{kcal} / \mathrm{mol}$,

III
$\Delta \mathrm{G}^{\#}{ }_{473}=40.8 \mathrm{kcal} / \mathrm{mol}$

V
$\Delta \mathrm{G}^{\#}{ }_{333}=29.9 \mathrm{kcal} / \mathrm{mol}$,

IV

$$
\Delta \mathrm{G}_{483}^{\#}=42.6 \mathrm{kcal} / \mathrm{mol}
$$

$\Delta \mathrm{G}^{\#}{ }_{298}=26.3 \mathrm{kcal} / \mathrm{mol}$

Figure 1.4. Structures of biaryls showing $\Delta \mathrm{G}^{\neq}$values needed for slow interconversion between the atropisomers.

The hindered rotation about C-N single bond may also result in the formation of axial chirality. There are extended studies in the literature about such type of axial chirality and rotational barier studies over the years [8-13]. Suzumura et al. (2012) reported the activation barier ($\Delta \mathrm{G}^{\neq}$) value of a highly rotationally stable C-N axially chiral compound 1-(2,5-di-tert-buthyphenyl)-dihydroquinazolin-2-one (VII) as $30 \mathrm{kcal} / \mathrm{mol}$ (Figure 1.5) [14]. Suzuki et al. (2015) reported a rotational barier $\left(\Delta \mathrm{G}^{\neq}\right)$of $32 \mathrm{kcal} / \mathrm{mol}$ for N-(2-tert-butylphenyl)-3,4-dihydroquinolin-2-one (VIII) (Figure 1.5) [15].

Hagesawa et al. (2017) compared the rotational bariers ($\Delta \mathrm{G}^{\neq}$) of axially chiral 1-phenyl-6-aminouracil derivatives (IX) and the corresponding biaryl compounds and reported that shorter $\mathrm{C}-\mathrm{N}$ bond length than the $\mathrm{C}-\mathrm{C}$ bond in the biaryl systems contributes to the stability of the molecules via hindering the rotation around the chiral axis with a high rotational barier value. They found a $\Delta \mathrm{G}^{\neq}$value for 1-phenyl-6-aminouracil derivatives ($\mathbf{I X}$) as $30.5 \mathrm{kcal} / \mathrm{mol}$ with a racemization half-life 81.2 years (Figure 1.5) [16].

Figure 1.5. Selected examples of axial chirality about C-N single bond.

Another factor affecting the rotational barier $\Delta \mathrm{G}^{\neq}$value of axially chiral compounds is a bulky group attached at ortho-positition. Yılmaz et al. (2008) synthesized a series of axially chiral 5,5-dimethyl-3-(o-aryl)-2-thioxo-4-oxazolidinones (X), 5,5-dimethyl-3-(o-aryl)-2-thioxo-4-thiazolidinones (XI), and 3-(o-aryl)-2-thioxo-4thiazolidinones (XII). They found the barriers to rotation about the $\mathrm{N}_{\text {sp2 }}-\mathrm{C}_{\text {aryl }}$ single bond $\left(\Delta \mathrm{G}^{\neq}\right)$in the range of $19.6-30.8 \mathrm{kcal} / \mathrm{mol}$ depending on the the size of the substituents at ortho-position (Figure 1.6) [17].

X

XI

XII
$\mathrm{Z}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

Figure 1.6. Structure of axially chiral N-(o-aryl)-2-thioxo-oxazolidine-4-one and rhodanine derivatives.

1.2. Biological Importance of Chirality

Chirality posseses a crucial importance for living organisms due to the fact that the components of a living organism such as proteins, peptides, most amino acids, saccharides, enzymes and many metabolites are chiral [18] and only one form of these molecules is selected by the organism while the other is eliminated [19]. Enantiomers have the same physical and chemical properties in achiral media but they have different properties if the medium is chiral. Therefore, they cause different effects on a living organism due to the fact that living systems are stereoselective against an enantiomeric pair of a chiral molecule. In other words, although one enantiomer of a chiral drug has the positive influence (eutomer) and the other may not have (distomer) [20]. The cases experienced with the racemic drugs thalidomide and perhexiline underline the importance of the stereochemistry in medicinal chemistry. Due to the rapid interconvertion between the thalidomide enantiomers in vivo, the drug caused catastrophic effects in 1960s [21]. Also, perhexiline was used as an antianginal agent in its racemic form and it was withdrawn from the markets in 1980s because of serious hepatic and neurological toxic effects of its $(+)$ enantiomer. The studies revealed that the drug underwent a series of oxidative reactions to form the active metabolite cis-4-monohydroxyperhexiline. (-)-Perhexiline was more quickly transformed into this metabolite than its (+) enantiomer and in this way the concentration of the toxic (+)-perhexiline in the body was found to increase [22].

Paroxetine which is used as an antidepressant drug contains two stereogenic centers and has four stereoisomers two in cisoid and two in transoid configurations. However, just the (-)-transoid configuration, (-)-trans-4-(4-fluorophenyl)-3-(3,4ethylenedioxyphenoxymethyl)piperidine is the active stereoisomer (Figure 1.7) [23].

transoid-(-)-paroxetine

transoid-(+)-paroxetine

Figure 1.7. The chemical structures of transoid -(-)-and transoid-(+)-paroxetine.
L-Histidine (L-His) is one of the essential amino acids which is important for human health and participates in many biological activities in the human body. L-His is converted into histamine which is a neurotransmitter in the brain however its D-form is not active (Figure 1.8) [24].

Figure 1.8. The chemical structure of L-Histidine.

Atropisomers act in the same way as stereoisomers with classical chiral centers, however the presence of atropoisomeric forms increase the complexity of drug molecules due to their isomerization rates [25]. In recent years there have been extended studies demonstrating different biological activities of atropisomers. Lee et al. (2008) investigated selectivity of 1,4 -benzodiazepines at the $\mathrm{GABA}_{\mathrm{A}}$ receptor and they found that the atropisomers of pyrimido $[1,2-a][1,4]$ benzodiazepines derivatives had different selectivities at the receptor; the R atropisomer had 50 fold stronger potency than its S one. (Figure 1.9) [26].

\boldsymbol{R}-form
$\mathrm{IC}_{50}=46 \mathrm{nM}$

S-form
$\mathrm{IC}_{50}=2320 \mathrm{nM}$

Figure 1.9. Atropoisomers of Pyrimido[1,2-a][1,4]benzodiazepine.

Yoshida et al. (2013) synthesized axially chiral lamellarin N derivates and seperated the atropisomers. They found that each atropisomer had different selectivity in terms of their protein kinase inhibitory activity (Figure 1.10) [27].

S-form

Selective inhibitor activity

\boldsymbol{R}-form

Non-selective inhibitor activity

Figure 1.10. Enantiomers of axially chiral lamellarin N derivates.

Yao et al. (2013) synthesized maleopimaric acid N -aryl imides and methyl maleopimaric acid N -aryl imides and seperated the enantiomerically pure forms of atropisomers (R and S) (Figure 1.11). They investigated the cytotoxicity of atropisomers against several cancer cell lines. They found that the R atropisomer had stronger cytotoxicity than the S one [28].

Maleopimaric acid N -aryl imide

\boldsymbol{R} Configuration

Methyl maleopimaric acid N -aryl imide

S Configuration

Figure 1.11. Chemical structures of maleopimaric acid N -aryl imides.

The axial chirality also exist in the natural products having important biological activities. Hallock et al. (1994) isolated atropisomers of korupensamines from the Cameroonian tropical liana Ancistrocladus korupensis and found that these axially chiral alkaloids have different antiviral activities against HIV-1, HIV-2 and antimalarial activity (Figure 1.12) [29].

$\mathrm{IC}_{50}=0.31 \mu \mathrm{~g} / \mathrm{mL}$ aganist P. falciparum $\mathrm{IC}_{50}=0.56 \mu \mathrm{~g} / \mathrm{mL}$ aganist P. berghei

Korupensamine A

$\mathrm{IC}_{50}=0.18 \mu \mathrm{~g} / \mathrm{mL}$ aganist P. falciparum $\mathrm{IC}_{50}=0.41 \mu \mathrm{~g} / \mathrm{mL}$ aganist P. berghei

Korupensamine B

Figure 1.12. Structures of biologically active axially chiral natural products.

1.3. Methods Used for the Evaluation of Enantiomeric Purity and Assigment of Absolute Chemistry of Chiral Molecules

1.3.1.HPLC with a Chiral Stationary Phase

Seperation of enantiomers has a crucial importance in drug chemistry and the HPLC on a chiral stationary phase method is the most efficient and reliable technique. The ordinary stationary phases cannot work to seperate the enantiomeric pair because of the same retention times. Therefore a chiral medium is needed. Commercially available chiral stationary phases (CSP) are successfully used to resolve the chiral compounds. One enantiomer of a chiral compound binds strictly to the stationary phase to form a transient diastereomeric complex and a result of this binding they retain at different retention times. The factors affecting the binding to CSP are hydrogen bonding, $\pi-\pi$ interactions and dipole-dipole interactions. The advantage of this technique is the fact that even a small amount of sample is enough to take measurement.

1.3.2. ${ }^{1}$ H-NMR in the presence of a Chiral Auxilary Compound

Enantiomers exhibit identical NMR spectra in an achiral medium. However, absolute configuration (AC) of a chiral compound can be assigned via creating a chiral environment. There are two approaches for qualitative enantioseperation by NMR: The first approach comprises the addition of an enantiomerically pure chiral solveting agent (CSA) or a chiral solvent into the mixture of the sample and an achiral NMR solvent and so that they form transient association complexes through non-covalent interactions. Thus the two enantiomers of the sample become distinguishable by differences (may be very small) in chemical shifts. At the second approach, an enantiopure sample is reacted with the two enantiomers of a chiral derivatizing agent (CDA) to produce two diasteromeric derivatives. As a result of covalent binding between the auxiliary reagent and the substrate, much larger differences in chemical shifts can be observed than the CSAs method [30].

Demir-Ordu et al. (2004) proposed an association complex model between (S)TFAE and 5,5-dimethyl-3-(o-aryl)-2,4-oxazolidinedione derivatives. According to their model, the formation of the association complex is related with hydrogen bonding between
the hydroxyl group of chiral auxiliary (S)-TFAE and oxygen atoms of the heterocyclic ring and also $\pi-\pi$ interaction between anthryl group and benzene ring [31] (Figure 1.13).

Figure 1.13. The proposed solvation model.

1.3.3.By X-Ray Crystallography

X-ray crystolography which is the most reliable method provides two types of stereochemical information: relative configration of chiral centers can be determined and absolute configuration can be established [32].

1.4. Determination of Rotational Barrier by Low Temperature NMR

Nuclear Magnetic Resonance (NMR) at ambient temperature cannot detect the conformational exchanges or transitions and shows only an ensemble of all conformations undergoing rapid interconversions. However, if the exchange is slowed down, the NMR signals of exchanging conformations become distinguishable [33]. Dynamic Nuclear Magnetic Resonance (DNMR) is a process used to detect rapid interconversions of stereoisomers at variable temperature. In DNMR spectroscopy; if $k \ll \Delta v$, the exchange is slow, the two signals having different chemical environment are merged into one signal by increasing the temperature. However; if $\mathrm{k} \gg \Delta \mathrm{v}$, the exchange is fast, one signal undergoes exchanging by decreasing the temperature and the stereoisomers become distinguishable. In this process the temperature at which the peaks coalesce is called the coalescence temperature, T_{c}.

For the coalescence temperature, T_{c}, the pseudo first order rate constant k_{c} was determined using the equation (1.1):

$$
\begin{equation*}
\mathrm{k}_{\mathrm{c}}=\pi \Delta \mathrm{v} / 2^{1 / 2} \tag{1.1}
\end{equation*}
$$

$\Delta \mathrm{v}$: the chemical shift difference between ${ }^{1} \mathrm{H}$ NMR signals of certain protons in Hz at low temperature.

This rate constant is substituted into the appropriately modified Eyring equation (1.2) to find free enegy of activation values $\left(\Delta \mathrm{G}^{\neq}\right)$:

$$
\mathrm{k}_{\mathrm{c}}=\left[\left(\mathrm{k}_{\mathrm{b}} \cdot \mathrm{~T}_{\mathrm{c}}\right) / \mathrm{h}\right] \mathrm{e}^{-\Delta \mathrm{G} \neq / \mathrm{RT}}
$$

R : the gas constant ($=8.3143 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$)
T: temperature (K)
k_{b} : the boltzman constant $\left(=1.3805 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
h: the planck's constant $\left(=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$

1.5. Thioureas

Thioureas have long been attracting considerable attention due to their biological importance and versatile usage in organic chemistry. The facile synthesis of thioureas enabled the preparation of their numerous derivatives, most of which have been evaluated for their biological activities [34]. In the last years, several optically active thioureas and their thiazole derivatives were shown to posses antitumor activites and therefore have been proposed as a novel class of anticancer agents [35]. Indolyl and acridine conjugated thiourea analogues were found to be monoamine oxidase and cholinesterase inhibitors respectively, were proposed for the Alzheimer's disease treatment [36, 37]. Recently an iridium complex of a thiourea derivative has been shown to have a good antimicrobial activity against the Gram-positive bacteria [38].

The \boldsymbol{E} and \boldsymbol{Z} conformations of thioureas have been shown to influence the binding and biological properties of the compounds [39, 40]. Chiral thioureas, in addition to their bioactivities are also highly effective organocatalysts used in asymmetric syntheses [4145].

1.6. 2-Imino-Thiazolidin-4-ones and Their 5-Benzylidene Derivatives

There have been an increasing interest for 1,3-thiazolidin-4-ones over the years in organic and medicinal chemistry since this heterocyclic core display diverse biological activities [46]. Qi et al. (2018) synthesized N^{l}-(2-aryl-1, 3-thiazolidin-4-one)- N^{3}-aryl urea derivatives which have potent multi-tyrosine kinase inhibitory activities [47] (Figure 1.14 (a)). Angapelly et al. (2017) developed a simple method using VOSO_{4} as a catalyst under ultrasonic irradiation for the synthesis of indazole-4-thiazolidinone derivatives which have encouraging antimicrobial activity [48] (Figure 1.14 (b)). Filho et al. (2015) examined the chemistry and pharmacology of thiazolidinones derived from a thiosemicarbazone which is a highly potent cruzain inhibitor [49] (Figure 1.14 (c)). Ruiz et al. (2011) found that N -(aminoalkyl)thiazolidin-4-one derivatives had best in vitro and in vivo antimalarial activity and low cytotoxicity compared to the reference drug chloroquine [50] (Figure 1.14 (d)).

$$
\begin{aligned}
& \mathrm{IC}_{50}=5.9 \mu \mathrm{M} \text { aganist } T . \text { cruzi } \\
& \text { Trypanocidal activity }
\end{aligned}
$$

Figure 1.14. Biologically active 1,3-Thiazolidin-4-ones described in the literature.

5-Ene derivatives of thiazolidin-4-ones are also among the most promising molecules as drug candidates due to their wide range biological activities such as anticancer [51], antiamoebic [52] HCV NS5B polymerase inhibitor [53] activities as well dual cyclooxygenase (COX-2) and 15-lipooxygenase (15-LOX) inhibitor activity in the treatmet of inflammatory disorders [54], sphingosine-1-phosphate (S1P) receptor agonist for autoimmune disorders [55] (Figure 1.15),

COX-2 IC $_{50}=0.085 \mu \mathrm{M}$ 15-LOX $\mathrm{IC}_{50}=5.74 \mu \mathrm{M}$
Anti-inflammatory
Anticancer agent

$\mathrm{IC}_{50}=0.47 \mu \mathrm{M}$

Antiamobeic activity
Sphingosine-1-phosphate (S1P) receptor agonist

Figure 1.15. Biologically active 5 -ene- thiazolidin-4-ones described in the literature.

1.7. Oxazolidindiones

Compounds carrying oxazolidinone skeleton attract considerable interest in synthetic and medicinal chemistry due to the fact that this skeleton exists in the structure of many biologically active drugs [56]. Linezolid which is an antibiotic drug belonging to the class of marketed chiral drugs containg oxazolidinone moeity is highly effective molecule against serious Gram-positive bacteria strains [57] (Figure 1.16). Tedizolid is used in the treatment of acute bacterial skin and skin-structure infections [58] (Figure 1.16).

Toloxatone (5-(hydroxymethyl)-3-(3-methylphenyl)-1,3-oxazo lidin-2-one) is used as a selective monoamine oxidase inhibitor MAO-A [59] (Figure 1.16).

Tedizolid (antibacterial)

Toloxatone (antidepressant)

Figure 1.16. Commercial drugs containing oxazolidinone structure.

The importance of this hetereocyclic core prompted the researchers to develope new synthetic routes. Demir et al. (2003) synthesized 5-methyl-3-(o-aryl)-2,4-oxazolidinediones from the reaction of (S)-(-)-ethyl lactate and o aryl isocyanates in the presence of sodium metal [60]. Farsbhaf et al. (2018) synthesized various 2-oxazolidinones through dehydrative condensation of β-amino alcohols with carbon dioxide [61]. Zhang et al. (2015) synthesized chiral oxazolidinone derivatives enantioselectively through enzyme-catalyzed reaction of 1,2 aminoalchols with diphenyl carbonate [62].

1.8. Hemiaminals

Hemiaminals (carbinolamines) are unstable intermediates containing a hydroxyl group and a nitrogen atom attached to tetrahedral carbon atom. The characterizations and isolations of these unstable intermediates are almost impossible [63] and they are easily
subject to dehydration to give the imine or the related compond [64]. Theoretical studies showed that H -bonding had an important role in the stabilization of hemiaminals [65]. Suni et al. (2005) obtained a stable hemiaminal as single crystal from the condensation reaction of di-2-pyridyl ketone with 4-cyclohexyl-3-thiosemicarbazide and X-ray diffraction result showed that the intermolecular hydrogen bonding interactions affect the stability of the molecule [66]. A recent study about the X-ray-diffractions of hemiaminals obtained from 4-amino-3,5-dipyridyn-2-yl-1,2,4- triazole revealed that the crystals are stabilized by strong hydrogen bonds between hydroxyl group and the nitrogen atom of the triazole ring [67].

In 2016, our research group synthesized stable hemiaminals in the solute state but, undergoing elimination of water in solution to give the thiazol-2-imines. We found that the half-life of the o-methoxyphenyl derivative of the hemiaminals in the solution was longer than the others due to the intramolecular H -bonding and even the amidine conjugation of the hemiaminal nitrogen contributed to the stabilities of all hemiaminals in the solid state [68] (Figure 1.17).

Figure 1.17. Stabilization of hemiaminals through the H -bonding and amidine conjugation.

Hemiaminals were also proposed as intermediates during enzymatic Schiff base forming processes by the reaction of the amino acid lycine and the ring opened form of fructose 1,6-bisphosphate [69].

Thiazol-2-imines which are the dehydration products of hemiaminals are biologically active compounds whose synthesis by various different methods have received considerable attention [70-76]. Murru et. al. (2008) succeeded the one-pot synthesis of substituted thiazol-2-imines by the condensation reaction of carbonyl compounds with thioureas and 1,3-disubstituted thioureas [70]. Zhao et. al. (2010) synthesized glycosyl thiazol-2-imines from the hydrolysis of thiazol-2(3H)-imine-linked glycoconjugates and
found that 1-benzoyl-4-(4-nitrophenyl)-3-b-D-glucopyranosyl-thiazol-2(3H)-imine derivative of the series was the most potent antitumor agent (Figure 1.18) [71].

Figure 1.18. Chemical structure of 1-benzoyl-4-(4-nitrophenyl)-3-b-D-glucopyranosyl-thiazol-2(3H)-imine.

The single enantiomer thiazol-2-imines can be used in asymmetric chemistry as chiral substrates, such as in the preparation of chiral α-aminonitriles [77], in asymmetric hydrogenations [78] or as catalysts in converting olefins to primary amides [79].

2. AIM OF THE STUDY

In this study, we aimed to synthesize N, N '-bis thiourea, chiral thiazolidine-4-one, and their corresponding 5-benzylidene derivatives as single enantiomers and investigate their antimicrobial activity. We also aimed to obtain oxazolidine-2,4-dione derivatives by an asymmetric synthesis using chiral pool strategy to investigate their in vitro monoamine oxidase (hMAO) inhibitory activities In addition, we aimed to synthesize the hemiaminal derivatives of thiazolidine-4-ones and oxazolidine-2,4-diones. Therefore, we planned to carry out the followings:

- To synthesize N, N^{\prime}-bis thioureas as single enantiomer from the reaction of chiral amines with carbon disulfide and to determine the conformations of N, N^{\prime}-bis thioureas in solution and solid state.
- To synthesize chiral 2-imino-thiazolidine-4-ones from the cyclization of N, N^{\prime}-bis thioureas with α-bromo acetic acids in the presence of sodium acetate. To synthesize 5-benzylidene derivatives of the corresponding chiral 2-imino-thiazolidine-4-ones by the reaction of benzaldehyde and prove their enantiomeric purities by chiral HPLC.
- To synthesize single enantiomer oxazolidine-2,4-diones from the reaction of enantiomerically pure R - and S - ethyl lactate with the aryl isocyanates and prove their enantiomeric purities by HPLC on chiral stationary phase and by ${ }^{1} \mathrm{H}$ NMR spectroscopy using optically active chiral auxiliary (R)-(-)-1-(9-antryl)-2,2,2trifluoro ethanol ((R)-TFAE).
- To reduce the on C-4 carbonyl group of chiral 2-imino-thiazolidine-4-ones distereoselectively and to determine their elimination kinetics to the corresponding single enantiomer thiazol-2-imines in solution and in solvent free media.
- To reduce axially chiral pyridine compounds to their hemiaminal derivatives and examine their stabilities.
- To reduce the single enantiomer oxazolidine-2,4-diones regioselectively from the carbonyl group at the C-4 instead of $\mathrm{C}-2$ with LiAlH_{4} and NaBH_{4} and determine the racemization ratio by HPLC on chiral stationary phase.

3. RESULTS AND DISCUSSION

3.1. Chiral Thioureas and Their Cyclized Derivatives [80]

3.1.1.Synthesis of Chiral Thioureas, 2-Imino-Thiazoidin-4-ones and 5-Benzylidenes

Chiral amines were reacted with carbon disufide $\left(\mathrm{CS}_{2}\right)$ under N_{2} atmosphere in proper solvent to obtain the single enantiomer N, N '-bis-thioureas. The reaction of the thioureas with α-bromoacetic acid yielded 2-imino-thiazolidin-4-ones which were converted to their benzylidene derivatives in the presence of benzaldehyde and sodium acetate (Figure 3.1) [10].

G= Phenyl	$\mathbf{1 R R}$ and $\mathbf{1 S S}$
Naphtyl	$\mathbf{2 R R}$ and 2SS
Cyclohexyl	$\mathbf{3 R R}$ and $\mathbf{3 S S}$
p-Methoxyphenyl	4RR and $\mathbf{4 S S}$

and

5RR and 5SS
$\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{NaOAc}$

G= Phenyl Naphtyl Cyclohexyl

and
$11 R R$ and 11SS
$12 R R$ and $12 S S$
$13 R R$ and 13SS

Figure 3.1. Synthesis of N, N '-bis-thioureas 1-5, the axially chiral 2-iminothiazolidin-4ones 6-10 and the corresponding 5-benzylidene-2-imino-thiazolidine-4ones 11-13 and $\mathbf{1 5}$.

3.1.2.Conformational Analysis of Thioureas

Thioureas can in principle exist in four different conformations: $\boldsymbol{E E}, \boldsymbol{E Z}, \boldsymbol{Z E}$ and $\boldsymbol{Z Z}$ due to the partial double bond character of the $\mathrm{C}-\mathrm{N}$ bond resulting from the thiourea resonance (Figure 3.2).

Figure 3. 2. Interconverting conformers of N, N-bis-thioureas.

X-ray analyses of the thioureas $2 R R, 2 S S, 4 R R$ and $4 S S$ showed that the molecules prefer to stay at $\boldsymbol{Z}, \boldsymbol{Z}$ conformation in the solid state (Figure 3.3). The data obtained from crystal structures of compounds $\mathbf{2 R R}, \mathbf{2 S S}, \mathbf{4 R R}$ and $\mathbf{4 S S}$ are summarized in Table 3.1 and

Table 3.2. Room temperature (298 K) ${ }^{1} \mathrm{H}$ NMR of the thioureas on the other hand showed a broadening in all of their proton signals (Figure 3.4) in CDCl_{3} solution. When ${ }^{1} \mathrm{H}$ NMR spectra were taken at 233 K , two different set of signals for each proton of the molecule were observed with equal intensities (Figure 3.4, Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8, Figure 3.9). This result indicated the presence of two different conformations of the molecule at low temperature and a rapid interconversion between them at room temperature. Variable temperature analyses of the spectra enabled us to determine the free energy of activation, $\Delta \mathrm{G}^{\neq}$values for the interconversions (Figure 3.4, Table 3.3). The results revealed a $\Delta \mathrm{G}^{\neq}$value of about $50 \mathrm{~kJ} / \mathrm{mole}$ independent from the size of the G group in the molecule (Figure 3. 2Hata! Başvuru kaynağı bulunamadı., Table 3.3). A $\Delta \mathrm{G}^{\neq}$value of $53.5 \mathrm{~kJ} / \mathrm{mol}(12.8 \mathrm{kcal} / \mathrm{mol})$ has been determined previously by Rang et. al. for the compound $\mathbf{1 S S}$ [81] where $\mathrm{G}=$ phenyl.

2RR

$4 R R$

4SS

Figure 3.3. Crystal structures of compounds $\mathbf{2 R R}, \mathbf{2 S S}, \mathbf{4 R R}$ and $\mathbf{4 S S}$.

Table 3.1. Data from cyrstal structures of compounds $\mathbf{2 R R}$ and $\mathbf{2 S S}$.

	2RR	2SS
	Bond Distances (\AA)	
$\mathrm{S}(1)-\mathrm{C}(1)$	1.7056	1.6998
$\mathrm{C}(1)-\mathrm{N}(1)$	1.3470	1.3450
$\mathrm{C}(1)-\mathrm{N}(2)$	1.3420	1.3388
$\mathrm{~N}(1)-\mathrm{C}(2)$	1.4623	1.4574
$\mathrm{~N}(2)-\mathrm{C}(14)$	1.4643	1.4586
$\mathrm{C}(2)-\mathrm{C}(3)$	1.5386	1.5348
$\mathrm{C}(14)-\mathrm{C}(15)$	1.5330	1.5259
$\mathrm{C}(2)-\mathrm{C}(4)$	1.5328	1.5257
$\mathrm{C}(14)-\mathrm{C}(16)$	1.5309	
	Bond Angles $\left(^{\circ}\right)$	121.88
$\mathrm{~S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	121.87	123.55
$\mathrm{~S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	123.33	114.55
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	114.79	126.31
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	126.45	126.48
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(14)$	126.82	108.05
$\mathrm{~N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.13	112.93
$\mathrm{~N}(2)-\mathrm{C}(14)-\mathrm{C}(15)$	108.07	112.26
$\mathrm{~N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	112.90	110.60
$\mathrm{~N}(2)-\mathrm{C}(14)-\mathrm{C}(16)$	112.29	110.99
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	110.45	
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(16)$	111.06	-9.69
	Dihedral Angles $\left({ }^{\circ}\right)$	-4.78
$\mathrm{~S}(1)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	9.50	142.63
$\mathrm{~S}(1)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(14)$	4.70	141.94
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-142.56	-94.72
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(15)$	-141.88	-95.43
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	94.94	
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(16)$	95.29	
$\mathrm{~N}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	21.01	
$\mathrm{~N}(2)-\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(17)$	19.51	

Table 3.2.Data from cyrstal structures of compounds $\mathbf{4 R R}$ and $\mathbf{4 S S}$.

	4RR	4SS
Bond Distances (\AA)		
$\mathrm{S}(1)-\mathrm{C}(1)$	1.6973	1.6955
$\mathrm{C}(1)-\mathrm{N}(1)$	1.3605	1.3839
$\mathrm{C}(1)-\mathrm{N}(2)$	1.3458	1.3430
$\mathrm{N}(1)-\mathrm{C}(2)$	1.4660	1.4667
$\mathrm{N}(2)-\mathrm{C}(11)$	1.4664	1.4760
$\mathrm{C}(2)-\mathrm{C}(3)$	1.5277	1.5290
$\mathrm{C}(11)-\mathrm{C}(12)$	1.5272	1.5280
$\mathrm{C}(2)-\mathrm{C}(4)$	1.5195	1.5170
$\mathrm{C}(11)-\mathrm{C}(13)$	1.5240	1.5210
$\mathrm{C}(7)-\mathrm{O}(1)$	1.3737	1.3708
$\mathrm{C}(16)-\mathrm{O}(2)$	1.3702	1.3669
$\mathrm{O}(1)-\mathrm{C}(10)$	1.4173	1.4170
$\mathrm{O}(2)-\mathrm{C}(19)$	1.4239	1.4246
Bond Angles (${ }^{\circ}$)		
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	121.45	121.78
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	123.89	123.96
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	114.65	114.26
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	124.14	122.99
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	125.22	125.18
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.11	106.23
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	109.74	110.21
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	113.44	113.83
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	110.58	110.13
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	110.42	110.70
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	113.73	113.75
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(10)$	117.77	117.73
$\mathrm{C}(16)-\mathrm{O}(2)-\mathrm{C}(19)$	117.65	117.65
Dihedral Angles (${ }^{\circ}$)		
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	2.96	-2.92
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	0.70	1.3
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-162.02	162.60
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	-116.02	114.30
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	75.10	-75.32
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	117.7	-119.4
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	-153.75	154.51
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(18)$	-28.40	28.2

Table 3.3. Selected Thermodynamic and Kinetic Parameters for Compounds 2SS, 3SS and 4SS Determined by ${ }^{1} \mathrm{HNMR}$ in CDCI_{3} (* at 233 K and $* *$ at 243 K).

$\begin{array}{\|l} \hline \text { Com } \\ \text { pd. } \end{array}$	Type of proton	$\Delta \mathrm{v}_{0}$	$\mathbf{T}_{\mathrm{c}}(\mathbf{K})$	\mathbf{k}_{c} (s^{-1})	$\begin{aligned} & \Delta \mathbf{G}_{\mathrm{c}}^{\neq} \\ & (\mathbf{k J} / \\ & \mathrm{mol}) \end{aligned}$
$2 S S$	CH	60.0*	258	131.0	52.4
	CH_{3}	80.0*	258	177.6	52.0
3SS	CH	479.2**	273	1064	50.8
	NH	201.6**	263	447.6	50.7
4SS	CH	87.6*	273	194.5	52.6
	OCH_{3}	26.0*	253	58.6	53.0
	CH_{3}	27.6*	253	61.3	52.9

Figure 3.4. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 S S}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ showing the temperature dependance of the $\mathrm{NH}, \mathrm{CH}(\mathbf{I})$ and the $\mathrm{CH}_{3}(\mathbf{I I})$ proton signals. Assignment of
${ }^{1}$ H NMR shifts of compound $\mathbf{2 S S}$ at 233 K are given with the coupling constants (Hz) in parenthesis (III).

Figure 3.5. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 S S}\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the NH and CH protons.

Figure 3.6. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 S S}\left(\mathrm{CDCl}_{3}\right)$ showing the aromatic, NH and CH protons.

Figure 3.7. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 S S}\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the NH and CH protons.

Figure 3.8. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 S S}\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the OCH_{3} protons.

Figure 3.9. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 S S}\left(\mathrm{CDCl}_{3}\right)$ showing the temperature dependance of the CH_{3} protons.

3.1.3.2-Imino-Thiazolidine-4-ones and Their 5-Benzylidene Derivatives

There are only few atropisomeric axially chiral molecules resulting from rotations around $\mathrm{Csp}^{2}-\mathrm{Csp}^{3}$ single bonds in literature [82]. Among compounds showing restricted rotations about a $\mathrm{Csp}^{2}-\mathrm{Csp}^{3}$ single bond, conformational analysis of N -phenylethyl substituted thiazoline-2-thiones [83] and rhodanines [84] showed that the molecules are axially chiral, however only with small barriers to rotation. In addition, the molecules were found to be oriented such that N_{3}-methine proton (the proton on the methine carbon which is bonded to N_{3} of the heterocylic ring) was pointing towards the larger exocylic group of the heterocyclic ring. The corresponding conformation has been called as the anti conformation [84]. The ${ }^{1} \mathrm{H}$ NMR of $6-10 R R$ and $S S$ studied in this work showed the presence of only one rotamer at ambient temperature and based on the earlier work done on structurally similar compounds [84], we assigned an anti confirmation to 6-10. This assignment has been supported by the NOESY experiments as will be explained further in the text.

Compounds 6-10 have an amidine linkage in their structures. For this reason there exists a resonance structure (Figure 3.10) whose contribution increases the electron density in the vicinity of the group bonded to the imino nitrogen $\left(\mathrm{C}=\mathrm{N}_{\mathrm{b}}\right)$. Accordingly in NMR, these groups are expected to appear more shielded with respect to the groups attached to the amido nitrogen $\left(\mathrm{N}_{\mathrm{a}}\right) .{ }^{1} \mathrm{H}$ NMR of the compounds supports this expectation (Figure 3.11).

Figure 3.10. Resonance structures of $\mathbf{9 R R}$ showing a higher electron density on the imino nitrogen.

Figure 3.11. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\boldsymbol{7} \boldsymbol{R} \boldsymbol{R}$ in CDCl_{3} showing AB type splitting for diastereotopic methylene protons at C-5.

The NOESY spectrum taken for $\mathbf{9 R R}$, did not show any cross peak between the protons of the two methoxyphenyl rings of the molecule but did show a cross peak between the methine proton bonded to the imino nitrogen $\left(\mathrm{H}_{\mathrm{b}}\right)$ and a hydrogen phenyl
bonded to N_{3} through a methine linkage (Figure 3.12). This observation enabled us to draw the conformation shown in Figure 3.12.

Additionally, the ${ }^{1} \mathrm{H}$ NMR spectra of the compounds $\mathbf{6 R R}, \mathbf{6 S S}, \boldsymbol{7 R R}, 7 \boldsymbol{T S}$, and 9RR, $\mathbf{9 S S}$ have shown that the diastereotopic protons at C-5 gave AB type splitting at around 3.60 ppm with coupling constants of $16.8 \mathrm{~Hz}\left(J_{\mathrm{AB}}=16.8 \mathrm{~Hz}\right)$ regardless of the attached group G (Figure 3.1). On the other hand, the compounds $\mathbf{8 R R}, \mathbf{8 S S}, 10 R R$ and 10SS gave a singlet for these C-5 protons. The HPLC and the polarimetric results are summarized in Table 3.4.

Table 3.4. The polarimetric and the HPLC data for compounds 6-10 and 11-15.

Compd.	$[\alpha]^{26}{ }_{360}$	Stationary phase	Mobile phase	Flow rate ($\mathbf{m l} / \mathbf{m i n}$)	Retetion time (min.)
6RR	(+) 2597.5°	Chiralpak	Hexane:Ethanol	0.6	20.14
6SS	(-) 2597.5°	IC	(99:1)		16.51
7RR	(+)6050.9 ${ }^{\circ}$	Chiralpak	Hexane:Ethanol	0.6	14.82
7SS	(-)6050.9 ${ }^{\circ}$	IC	(95:5)		12.66
8RR	(-) $744.9{ }^{\circ}$	Chiralpak	Hexane:Ethanol	0.6	6.48
8SS	(+)744.9 ${ }^{\circ}$	IB	(99:1)		6.30
9RR	(+) 1180.6°	Chiralpak	Hexane:Ethanol	0.6	34.91
9SS	(-)1180.6 ${ }^{\circ}$	IC	(95:5)		23.72
10RR	-*	Chiralpak	Hexane:Ethanol	0.6	25.09
10SS		IC	(95:5)		22.99
11RR	(+)444.4 ${ }^{\circ}$	Chiralpak	Hexane:Ethanol	0.8	12.76
11SS	(-)488.9 ${ }^{\circ}$	IA	(99:1)		9.94
12RR	(-) $177.8{ }^{\circ}$	Chiralpak	Hexane:Ethanol	0.8	19.35
12SS	(+)133.3 ${ }^{\circ}$	AD-H	(90:10)		39.08
13RR	(+)88.9 ${ }^{\circ}$	Chiralpak	Hexane:Ethanol	0.8	8.33
13SS	(-)88.9 ${ }^{\circ}$	IB	(99:1)		7.98

Table 3.4. The polarimetric and the HPLC data for compounds 6-10 and 11-15.

$\mathbf{1 4 R}$	$(+) 222.2^{\circ}$	Chiralpak	Hexane:Ethanol	1.0	40.21
$\mathbf{1 4 S}$	$(-) 222.2^{\circ}$	IC	$(90: 10)$		55.50
$\mathbf{1 5 R \boldsymbol { R }}$	$-*$	Chiralpak	Hexane:Ethanol	0.6	12.33
$\mathbf{1 5 S S}$		IC	$(95: 5)$		14.42

*measurements could not be performed due to the color of the compound (even in lower concentration).

Figure 3.12. The NOESY spectrum of $\mathbf{9 R R}$ in CDCl_{3} showed a crosspeak between the methine proton bonded to the imino nitrogen $\left(\mathrm{H}_{\mathrm{b}}\right)$ and the phenyl hydrogen bonded to N_{3} through a methine linkage.

The 5-benzylidene derivatives $\mathbf{1 1 - 1 5}$ were synthesized from 2-imino thiazolidine-4ones by reaction with benzaldehyde in the presence of sodium acetate [10]. The disapperance of CH_{2} protons at C-5 of starting compounds (6-10) and the appearance of $=\mathrm{CHPh}$ proton as a singlet at about $\delta 7.70 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 1}$ 15 proved the formation of the benzylidene bond on the fifth position of the heterocyclic ring. All the 2-imino thiazolidine-4-ones except the 4-methoxyphenyl derivative of the
series have been found to give the corresponding 2-imino-5-benzylidene derivatives. The 4-methoxyphenyl derivatives $9 \boldsymbol{R R}$ and $9 \boldsymbol{S S}$ were found to give the 5-benzylidene-thiazolidine-2,4-diones $\mathbf{1 4 R}$ and $\mathbf{1 4 S}$ (Figure 3.13). For compounds $\mathbf{1 1 - 1 5} \boldsymbol{E}$ or \boldsymbol{Z} conformation steaming from the $\mathrm{C}-\mathrm{C}$ double bond at $\mathrm{C}-5$ is possible. But the literature ${ }^{1} \mathrm{H}$ NMR and X-ray studies have revealed that these compounds have preferred to be on \boldsymbol{Z} configuration [85, 86].

Figure 3.13. Synthesis of 5-benzylidene-thiazolidine-2,4-diones $\mathbf{1 4 R}$ and $\mathbf{1 4 S}$ starting from the 2 -imino-thiazolidine-4-ones $9 R R$ and $9 S S$.

3.2. 2,4-Oxazolidinediones [87]

3.2.1.Asymmetric Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones

The synthesis of 5-methyl-3-aryloxazolidine-2,4-diones starting with S-ethyl lactate were carried out by our research group before. However we found out that the chiral center at C 5 of the oxazolidinone ring coming from the lactate has been racemized during the synthesis in the presence of sodium metal [88]. Therefore enantiomerically pure R - and S ethyl lactate was reacted with the aryl isocyanates under reflux conditions in xylene without any sodium metal, and then acid catalyzed cyclization of the formed carbamate yielded the enantiomerically pure oxazolidindiones (Figure 3.14).

$\xrightarrow[\text { 2) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1) } \triangle}$

$(+)-16 R$	$\mathrm{R}=\mathrm{H}$
$(-)-16 S$	$\mathrm{R}=\mathrm{H}$
$(+)-17 \boldsymbol{R}$	$\mathrm{R}=\mathrm{CH}_{3}$
$(-)-17 S$	$\mathrm{R}=\mathrm{CH}_{3}$

Figure 3.14. Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones.
In order to determine the enantiomeric purities of chiral compounds, optically active auxiliary compounds were used. In this method, the single enantiomer auxiliary is expected to associate with each enantiomer and form two ${ }^{1} \mathrm{H}$ NMR distinguishable complexes [89]. Thus if the oxazolidinedione is racemic, the doubled signals will be observed as at the ${ }^{1} \mathrm{H}$ NMR spectrum. On the other hand if it is enantiomerically pure, only one set of signals will be observed. The optical purities of the synthesized oxazolidinediones were proved by ${ }^{1} \mathrm{H}$ NMR in the presence of the optically active auxiliary compound (R)-2,2,2-trifluoro-1-(9-anthryl)ethanol $((R)$-TFAE) and by HPLC on an optically active stationary phase (Figure 3.15). The observation of only one set of signals in NMR in the presence of (R)-TFAE and one chromatographic peak in the HPLC chromatogram (Figure 3.15) have been taken as proofs for the existence of $\mathbf{1 6}$ and $\mathbf{1 7}$ as single enantiomers. The enantiomeric purity of axially chiral compound $\mathbf{1 8 S}$ was proved on Chiralpak IB by HPLC (Eluting solvent: Hexane:Ethanol (99:1), flow rate: $0.7 \mathrm{~mL} / \mathrm{min}$, Retention time: 67.22 min.).

Figure 3.15. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compounds $(\pm) \mathbf{1 6}$ and $(-)-\mathbf{1 6 S}$ showing quartets for CH protons at $\mathrm{C}-5$ (I) and the doublets for methyl groups at $\mathrm{C}-5$ (II) in the presence of six equivalent of chiral auxiliary (R)-TFAE in CDCl_{3}. (III) The HPLC chromotograms of compounds (\pm)-16, (+)-16R and (-)-16S on Chiralpak IC. Retetion times (min) are writen the on top of the chromatographic peaks. Eluting solvent: Hexane:Ethanol (95:5), flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$.

3.3. Chiral Hemiaminals from Chiral 2-imino-thiazolidine-4-ones

3.3.1.Synthesis of Chiral Hemiaminals

Chiral hemiaminals 19-22 were synthesized from the corresponding chiral 2-iminothiazolidine-4-ones $\mathbf{6 - 9}$ by LiAlH_{4} reductions diastereoselectively in THF at room temperature and they were found to convert to chiral thiazol-2-imines 23-26 with time (Figure 3.16).

Figure 3.16. Synthesis of chiral hemiaminal derivatives and their elimination products.
The ${ }^{1} \mathrm{H}$ NMR spectra of hemiaminals $\mathbf{1 9 - 2 2}$ showed the formation of major and minor isomers with a 3:1 ratio. The isomers of the hemiaminal 19RR have been identified based on the observation of a doublet for H_{e} proton at C-4 (at 5.03 and 5.50 ppm for the major and the minor isomers respectively) coupling with H_{c} at C-5 ($\left.{ }^{3} J_{H c H e}=4.8 \mathrm{~Hz}\right)$ which is $c i s$ to it however not coupling with H_{d} which is trans to it. (${ }^{3} J_{H d H e}=\sim 0 \mathrm{~Hz}$) (Figure 3.17). The cis-trans assignment has been done based on the ${ }^{1} \mathrm{H}$ NMR spectra of the trans vicinal dibromides obtained from 23SS, as will be explained further in the text. The methylene protons at C-5 H_{c} and H_{d} gave an AB type splitting (at $\delta_{\mathrm{A}}=3.17$ and $\delta_{\mathrm{B}}=3.01 \mathrm{ppm}$ for the major and at $\delta_{\mathrm{A}}=3.32$ and $\delta_{\mathrm{B}}=3.03 \mathrm{ppm}$ for the minor isomers respectively) having a geminal coupling between H_{c} and $H_{d}\left({ }^{2} J_{H c H d}=11.2 \mathrm{~Hz}\right)$ and a vicinal coupling between H_{c} and $H_{e}\left({ }^{3} J_{H C H e}=4.8 \mathrm{~Hz}\right)$ (Figure 3.17).

Figure 3.17. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of hemiaminal 19RR.
A new chiral center on C-4 is formed from the reaction of 2-imino-thiazolidine-4ones with LiAlH_{4}. The ${ }^{1} \mathrm{H}$ NMR signal of H_{e} bonded to $\mathrm{C}-4$ of the major diastereomers were found to appear more shielded than their minor counterparts for $19 R R, 20 R R$, and $\mathbf{2 2 R R}$ but not for $\mathbf{2 1 R R}$. The former three compounds carry an aromatic group G , bonded to the methine carbon, whereas the latter has a cyclohexyl group on CH (Figure 3.18). The aromatic groups apparently have a shielding effect on the H_{e} proton signal. This in turn gave a clue about the configuration of the C 4 carbon atom. Previously, the X-ray analysis of 3-(S)-(1-Phenylethyl)-5-methylrhodanines revealed that the 1-phenylethyl group is oriented so that the $\mathrm{Ph}-\mathrm{C}-\mathrm{Me}$ angle is approximately bisected by the rhodanine plane with the methine proton pointing towards the more bulky exocyclic group [84]. Therefore for the hemiaminal obtained from the compound $\mathbf{1 9 R R}$, the major isomer's C-4 configuration was assigned as \boldsymbol{R} and that of the minor one as \boldsymbol{S} (Figure 3.19). The diastereomeric ratios of the hemiaminals 19RR-22RR and 19SS-22SS were all found as 3:1 (Figure 3.18).

Figure 3.18. ${ }^{1} \mathrm{H}$ NMR signals of the H_{e} protons on C 4 for the major and the minor diastereomers of the hemiaminals 19RR, 20RR, 21RR and 22RR (dr=3:1).

Major

Minor

Figure 3.19. The major and the minor diastereomers of the compound $\mathbf{1 9 R R}$.

3.3.2.Transformation of the Chiral Hemiaminals to Single Enantiomer Thiazol-2Imine Derivatives

The chiral hemiaminal derivatives can be transformed into thiazol-2-imine via an elimination of a water molecule (Figure 3.16). It was observed that chiral hemiaminals 19-

22 underwent elimination of water even in solvent free media. First, the formation of the elimination product $\mathbf{2 3 R R}$ of chiral hemiaminal $\mathbf{1 9 R R}$ was examined by ${ }^{1} \mathrm{H}$ NMR analysis. The peaks of H_{e} on C-4 at 5.48-5.03 ppm and those of H_{c} and H_{d} on the $\mathrm{C}-5 \mathrm{H}$ at 3.33-3.01 ppm of the major and minor isomers of $\mathbf{1 9 R R}$ disappered, whereas the peaks of the proton on C-4 at 6.46 ppm and of proton on C-5 at 5.76 ppm of $\mathbf{2 3 R R}$ appeared as doublets with time (Figure 3.20). For the transformation of compound $\mathbf{1 9 R R}$ to $\mathbf{2 3 R R}$, the rate constant was found as $6 \times 10^{-5} \mathrm{~s}^{-1}, \Delta \mathrm{G}^{\neq}$as $97.1 \mathrm{~kJ} / \mathrm{mol}$ and the half life as 3.20 h in CDCl_{3} (Figure 3.21). The kinetics of the process was found to be solvent dependent. The rate constant was found as $2 \times 10^{-5} \mathrm{~s}^{-1}, \Delta \mathrm{G}^{\neq}$as $99.8 \mathrm{~kJ} / \mathrm{mol}$ and the half life as 9.63 h in $\mathrm{C}_{6} \mathrm{D}_{6}$. The transformation of compound $19 \boldsymbol{R} \boldsymbol{R}$ to $\mathbf{2 3 R} \boldsymbol{R}$ has been shown in Figure 3.20. The elimination kinetics for compounds $19 R R, 20 R R, 21 R R, 22 S S$ followed similarly by ${ }^{1} \mathrm{H}$ NMR with time. The results for the transformation kinetics of compounds 19-22 to their elimination products are summarized in Table 3.5.

Figure 3.20. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of hemiaminal $\mathbf{1 9 R R}$ showing its transformation to thiazol-2-imine 23RR in CDCl_{3} with time. $(\star)=$ hemiaminal and $(\boldsymbol{\Delta})=$ thiazol-2-imine.

Figure 3.21. (a) The \% consumption of compound $19 R R$ and the formation of compound $\mathbf{2 3 R R}$ in CDCl_{3}. (b) the plot of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time. $\mathrm{C}_{0} / \mathrm{C}$ the ratio of the initial amount of hemiaminal consumption to the elimination product.

Table 3.5. Experimental first order rate constants $(\mathrm{k}), \Delta \mathrm{G}^{\neq}$and $\mathrm{t}_{1 / 2}$ for the transformation of chiral hemiaminals to chiral thiazol-2-imines.

Compounds	Solvent	$\mathbf{k}\left(\mathbf{s}^{-1}\right)$	$\Delta \mathbf{G}^{\neq}$ $(\mathbf{k J} / \mathbf{m o l})$	$\mathbf{t}_{1 / 2}$ (hour)
19RR	CDCl_{3}	6×10^{-5}	97.1	3.20
	$\mathrm{C}_{6} \mathrm{D}_{6}$	2×10^{-5}	99.8	9.63
$\mathbf{2 0 R R}$	CDCl_{3}	6×10^{-6}	102.8	32.10
	$\mathrm{C}_{6} \mathrm{D}_{6}$	2×10^{-6}	105.5	96.27
	CDCl_{3}	5×10^{-5}	97.5	3.85
$\mathbf{2 1 R R}$	$\mathrm{C}_{6} \mathrm{D}_{6}$	2×10^{-5}	99.8	9.63
	CDCl_{3}	5×10^{-5}	97.5	3.85
$\mathbf{2 2 S S}$	$\mathrm{C}_{6} \mathrm{D}_{6}$	3×10^{-5}	99.1	6.42

The stabilities of compounds $\mathbf{1 9 R R}$ and $\mathbf{2 0 R R}$ in solvent free media were also investigated. The solid state samples taken at time intervals have been dissolved in the NMR solvent and the spectrum was taken immediatelly. The rate constants were found as
$2 \times 10^{-7} \mathrm{~s}^{-1}$ for $\mathbf{1 9 R} \boldsymbol{R}$ and $3 \times 10^{-8} \mathrm{~s}^{-1}$ for $\mathbf{2 0 R R}$ (Figure 3.22). The results are summarized in Table 3.6.

Figure 3.22. The plot of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time for compound $\mathbf{1 9 R R}$ and $\mathbf{2 0 R R}$ in solvent free media.

Table 3.6. Experimental first order rate constants $(\mathrm{k}), \Delta \mathrm{G}^{\neq}$and $\mathrm{t}_{1 / 2}$ for chiral hemiaminals $\mathbf{1 9 R R}$ and $20 R R$ during their transformation to chiral thiazol-2-imines in solvent free media.

Compounds	Solvent	$\mathbf{k}\left(\mathbf{s}^{-1}\right)$	$\Delta \mathbf{G}^{\neq}$ $(\mathbf{k J} / \mathbf{m o l})$	$\mathbf{t}_{1 / 2}$ (day)
$\mathbf{1 9 R R}$	CDCl_{3}	2×10^{-7}	111.2	40.1
$\mathbf{2 0 R R}$	CDCl_{3}	3×10^{-8}	115.9	267.4

The polarimetric measurments done for compounds 23-26 are shown in Table 3.7.

Table 3.7. The polarimetric data for compounds 23-26.

Compound	$[\alpha]_{360}^{26}$
$\mathbf{2 3 R R}$	+1111.11
$\mathbf{2 3 S S}$	-1200.00
$\mathbf{2 4 R R}$	+1555.56
$\mathbf{2 4 S S}$	-1644.44

Table 3.7. The polarimetric data for compounds 23-26.

$\mathbf{2 5 R R}$	+88.89
$\mathbf{2 5 S S}$	-88.89
$\mathbf{2 6 R R}$	+666.67
$\mathbf{2 6 S S}$	-755.56

3.4. Bromination of Compound 23SS

3.4.1.Synthesis of Compound 27

The double bond of the chiral compound thiazol-2-imine 23SS was brominated as shown in Figure 3.23.

Compound 27

Figure 3.23. Bromination of compound 23SS.

The addition mechanism of bromine to alkene is essentially related with the formation of a bromonium ion and the formation of a trans-addition product by anti-attack of bromide to a cyclic ion [90]. From the reaction of compound 23SS with Br_{2}, compound 27 was obtained as a diastereomeric pair as expected (Figure 3.23). The ratio of diastereomers for compound 27 was found as 2.4:1 (Figure 3.24). Due to the presence of PhCHCH_{3} group on N_{3} of the thiazol ring, the bromide ion is tought to prefer to attack from the opposite site of CH_{3} group to form the major product and the minor has been
formed by the attack from the same site as CH_{3}. The vicinal protons on the newly forming chiral centers on C-4 and C-5 appeared as singlets and the protons did not couple with each other. According to Karplus if the dihedral angle is about $90^{\circ},{ }^{3} \mathrm{~J}$ coupling is in the range of $0-2 \mathrm{~Hz}$. This points to the fact that dihedral angle between the H_{a} and H_{b} (Figure 3.23) is close to 90° which points to a trans orientation. In this way, it was shown that there exists no coupling between the trans protons of the 5-membered heterocyclic ring. Also, due to the shielding effect of the phenyl group, the C-4 proton of the major isomer (which is on the same site with the phenyl group) appeared at a higher field than the $\mathrm{C} 4-\mathrm{H}$ of the minor isomer (Figure 3.24).

Figure 3.24. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of the compound 27 showing the diastereoselectivity on C-4 and C-5 protons.

3.5. Stable Hemiaminals from Axially Chiral Pyridine Compounds

3.5.1.Synthesis of Stable Hemiaminals from Axially Chiral Pyridine Compounds

As a part of this study, we synthesized a series of stable 3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (32-33) and 5 -methyl-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (34-35) derivatives (hemiaminals) regioselectively from 2 -iminothiazolidin-4-one derivatives using LiAlH_{4} (Figure 3.25).

and

Figure 3.25. Synthesis of stable hemiaminals from pyridine compounds.

The hemiaminals 32-35 obtained from axially chiral pyridine compounds [11] did not undergo an elimination reaction to form the corresponding thiazole-2-imines. The formation of an intramolecular hydrogen bond between the N_{3} pyridine nitrogen and the hemiaminal OH (Figure 3.26) has been deduced from ${ }^{1} \mathrm{H}$ NMR where the OH signal was observed to shift to more down field (from 2.43 ppm to 6.22 ppm). The $R M$ and $S P$
enantiomeric pair of compound $\mathbf{3 3}$ has been isolated by crystallization and the enantiomeric ratio has been determined as $1: 1$ by ${ }^{1} \mathrm{H}$ NMR for in the presence of chiral auxiliary (R)-TFAE (Figure 3.27). By the 2D-NOESY experiment (Figure 3.26), the OH group was found to prefer to be on the same side with the N_{3} pyridine nitrogen probably because of the possibility for an intramolecular H -bond formation. As a matter of fact, the OH signal was shifted towards more down field in ${ }^{1} \mathrm{HNMR}$ taken in CDCl_{3} (Figure 3.27).

Figure 3.26. The NOESY spectrum of $\mathbf{3 3}$.

SP

Figure 3.27. The partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 3}$ in the absence of chiral auxiliary
(a) and showing the enantiomer ratio in the presence of chiral auxiliary (R) - TFAE showing the enantiomer ratio (b).

When an 87.2:12.8 isomeric mixture ($S P / R M: S M / R P$) of compound 31 was reduced to its hemiaminal derivative, the formation of eight isomers were expected due to the presence of the chiral center at C-5, the $\mathrm{N}_{3}-\mathrm{C}_{\text {(aryl) }}$ chiral axis and the newly formed chiral center at C-4. (Figure 3.28). However, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 35 showed three sets of peaks for three enantiomeric pairs (Figure 3.29). The larger groups OH at $\mathrm{C}-4$ and CH_{3} group at C-5 stay anti to each other and OH group prefered to make an H -bond with the nitrogen atom of the pyridine at N_{3}. Consequently, $4 R, 5 R, P / 4 S, 5 S, M$ enantiomeric pair became the major and the $4 R, 5 S, P / 4 S, 5 R M$ enantiomeric pair, the minor products. The ratio of the isomers (major:minor:trace) was determined as 69.9:26.4:3.7.

$S P$

$R P$

RM

SM
Isomeric ratios of isomers of compoud 31
(SP: RM: RP: SM)
87: 13

4R,5S, P

$4 S, 5 R, M$
26.4%
minor

$4 S, 5 S, P$

$4 R, 5 R, M$
3.70\%
trace

Compound 35

Figure 3.28. The expected eight isomers for compound $\mathbf{3 5}$ (the different sized balls under the molecules represent the enantiomeric pairs on the partial ${ }^{1} \mathrm{H}$ NMR in Figure 3.29).

Figure 3.29. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 5}$ showing the quartet for CH proton at $\mathrm{C}-5$ (a) and the CH_{3} groups at $\mathrm{C}-5$ and attached to pyridine rings (b).

Two sets of peaks were observed from the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 34 belonging to $4 S, 5 S, M / 4 R, 5 R, P$ enantiomeric pair as the major isomer and $4 S, 5 R, M /$ $4 R, 5 S, P$ enantiomeric pair as the minor one. The diastereomeric ratio of the major to minor isomers were determined as 77:23 (Figure 3.30).

$4 S, 5 S, M$

$4 R, 5 R, P$

$4 S, 5 R, M$

$4 R, 5 S, P$
23.4\%
minor

Figure 3.30. The chemical structures of the major and the minor isomers of compound 34.

3.6. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH_{4}

3.6.1.Synthesis of Hemiaminals from Single Enantiomer 5-Methyl-3-aryloxazolidine-

2,4-diones

The single enantiomers of 5-Methyl-3-aryloxazolidine-2,4-diones $\mathbf{1 6 S}$ and $\mathbf{1 7 S}$ were reduced to their hemiaminal derivatives $\mathbf{3 6}$ and $\mathbf{3 7}$ regioselectively from the carbonyl group at the $\mathrm{C}-4$ instead of $\mathrm{C}-2$ in the presence of LiAlH_{4} (Figure 3.31).

Figure 3.31. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones.

3.6.2.Diastereoselectivity in Reduction of 5-Methyl-3-aryloxazolidine-2,4-dione Derivatives with LiAlH_{4}

From the reductions of oxazolidin-2,4-dione derivatives $\mathbf{1 6 S}$ and $\mathbf{1 7 S}$ with LiAlH_{4}, the formation of a diastereomeric pair was expected by the attack of hydride ion. The ${ }^{1} \mathrm{H}$ NMR spectra showed the formation of the diasteromers with a ratio of $2: 1$ as shown in Figure 3.32 and Figure 3.33 for hemiaminal 36 and 37 respectively. In addition, the HPLC chromatogram revealed that although the starting oxazolidin-2,4-diones $\mathbf{1 6 S}$ and $\mathbf{1 7 S}$ were enantiomerically pure, the obtained hemiaminals 36 and 37 were found to partially racemize at C-5 (Figure 3.34 and Figure 3.35, racemization ratio 90:10). This result can be explained by the enolization of the molecule due to the presence of the acidic α-hydrogen at $\mathrm{C}-5$ of the ring. Thus, the configuration of oxazolidin-2,4-dione derivatives at $\mathrm{C}-5$ could not be retained completely.

Figure 3.32. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 6}$ showing the diastereoselectivity for $\mathrm{C}-4, \mathrm{C}-5$ and OH protons ($\mathrm{dr}=2: 1$).

Figure 3.33. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 7}$ showing the diastereoselectivity for $\mathrm{C}-4, \mathrm{C}-5$ and OH protons ($\mathrm{dr}=2: 1$).

Figure 3.34. The HPLC chromatogram showing the diastreomeric pairs for compound $\mathbf{3 6}$ (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention times: $\left.\mathrm{t}_{1}: 11.028 \mathrm{~min}, \mathrm{t}_{2}: 17.07 \mathrm{~min}, \mathrm{t}_{3}: 21.06 \mathrm{~min}, \mathrm{t}_{4}: 38.432 \mathrm{~min}\right)(\mathrm{dr}=2: 1$ and racemization ratio $=90: 10$).

Figure 3.35. The HPLC chromatogram showing the diastreomeric pairs for compound $\mathbf{3 7}$ (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, retention times: $\left.\mathrm{t}_{1}: 11.073 \mathrm{~min}, \mathrm{t}_{2}: 17.833 \mathrm{~min}, \mathrm{t}_{3}: 22.5 \mathrm{~min}, \mathrm{t}_{4}: 41.848 \mathrm{~min}\right)(\mathrm{dr}=2: 1$ and racemization ratio $=90: 10$).

Figure 3.36. 2D-NOESY spectrum of compound 37.

To clarify the stereochemistry of the compound 37, a 2D-NOESY spectrum was taken in CDCl_{3} (Figure 3.36). A crosspeak between the CH proton at $\mathrm{C}-4$ and CH proton at C-5 was observed not only for the major isomer but also for the minor one due to being adjacent to one another. This result did not give a satisfactory information about the stereochemistry. However when the $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR result was examined, CH proton at $\mathrm{C}-4$ of the minor isomer was found to couple with both OH and CH at $\mathrm{C}-5$ protons (which is cis to CH at $\mathrm{C}-4)$ and splitted into a doublet of a doublet which appeared as a triplet. However, the CH proton at $\mathrm{C}-4$ of major isomer just coupled with the OH proton and splitted into a doublet (protons at C-4 and C-5 are trans to each other). In the light of all these results it was concluded that the hyride ion prefered to attack from the same side of the directing methyl group at $\mathrm{C}-5$ so that the configuration where the larger groups $\left(\mathrm{CH}_{3}\right.$ and OH$)$ are trans to each other was favored and formed as the major product.

3.7. Reduction of 5-Methyl-3-Aryloxazolidine-2,4-Diones with $\mathbf{N a B H}_{4}$

3.7.1. Synthesis of the Ring Opening Products from 5-Methyl-3-Aryloxazolidine-2,4-Diones

The reduction of compounds $\mathbf{1 6 S}, \mathbf{1 7 S}$ and $\mathbf{1 8 S}$ were also carried out using 4 equivalents NaBH_{4} in THF at room temperature. The reaction was found to produce a reductive ring opened product. The reduction proceeded regioselectively where only the carbonyl group at C-4 was reduced (Figure 3.37). The racemization ratio of compound $\mathbf{4 0}$ was found to be less than the other ring opened products $\mathbf{3 8}$ and $\mathbf{3 9}$ because of the steric hindrance of ortho methyl group that hindered the approach of the hydride ion.

Figure 3.37. Ring-opening reaction of oxazolidin-2,4-diones $\mathbf{1 6 S}, \mathbf{1 7 S}$ and $\mathbf{1 8 S}$.

The apperance of two peaks on the HPLC chromatograms of compounds 38, 39, 40 on chiralpak AD-H showed that a partial racemization at $\mathrm{C}-5$ also took place during the reduction with NaBH_{4} (Table 3.8, Figure 3.38).

Table 3.8. Racemization ratios of compounds (obtained from the integration of the HPLC peaks) 38, $\mathbf{3 9}$ and $\mathbf{4 0}$ during the ring opening reaction with NaBH_{4} on Chiralpak AD-H, mobile phase: Hexane:Ethanol (95:5).

Compd.	Racemization
	ratio
$\mathbf{3 8}$	$60: 40$
$\mathbf{3 9}$	$60: 40$
$\mathbf{4 0}$	$90: 10$

Figure 3.38. The HPLC chromatograms of compounds $\mathbf{3 8}$ (I), $\mathbf{3 9}$ (II), $\mathbf{4 0}$ (III) showing the racemization ratios on Chiralpak AD-H, mobile phase: Hexane:Ethanol (95:5).

It was interfered from the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 38 that, during the reduction with NaBH_{4} the ring opening process occured through the formation of hemiaminal as an intermediate product and then the hemiaminal went to ring opening (Figure 3.39).

Figure 3.39. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 8}$ containing just the ring opening product (\mathbf{I}) and the progression of the reaction through hemiaminal formation (II) $(\bullet=$ ring opening product and = hemiaminal).

4. EXPERIMENTAL

4.1. Synthesis of $N, N^{\prime}-$ Bis-Thioureas

4.1.1.General procedure

The appropriate amine derivative was dissolved in the appropriate solvent (ethanol or pyridine) after which CS_{2} was added. The mixture was refluxed overnight under N_{2}. Next, the solution was concentrated by evaporating the solvent and then cooled to give a precipitate. The precipitated product was isolated by vacuum filtration. The crude $N, N^{\prime}-$ bis-thiourea was purified by recrystallization from ethanol.
4.1.1.1. N, N^{\prime}-bis $((R)$-1-phenylethyl)thiourea ($1 R R$). The compound was synthesized according to the general procedure using $(R)-(+)-1-$ Phenylethylamine $10.91 \mathrm{~g}(90 \mathrm{mmol})$, carbon disulfide $13.71 \mathrm{~g}(180 \mathrm{mmol})$ and ethanol (50 mL). Yield: $12.13 \mathrm{~g}(95 \%), \mathrm{mp}: 186-$ $188{ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.01$ (m, 10H, ArH), 6.01 (br, 2H, NH), $5.04(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}), 1.47\left(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.3,142.4,129.1,127.8,125.8,54.3,23.4 \mathrm{ppm}$. ATR-FTIR: 3240 , $1541 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 71.79$; $\mathrm{H}: 7.09$; $\mathrm{N}: 9.85$. Found: C: 71.84; H: 7.03; N: 9.05. $[\alpha]^{26}{ }_{360}=(+) 163.4^{\circ}$.
4.1.1.2. N, N^{\prime}-bis((S)-1-phenylethyl)thiourea (1SS). The compound was synthesized according to the general procedure using (S)-(-)-1-Phenylethylamine $10.91 \mathrm{~g}(90 \mathrm{mmol})$, carbon disulfide $13.71 \mathrm{~g}(180 \mathrm{mmol})$ and ethanol (50 mL). Yield: 12.8 (100%), mp: 186$188{ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.01$ (m, 10H, ArH), 6.01 (br, 2H, NH), 5.04 (br, 2H, CH), 1.47 (d, $6 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.3,142.4,129.1,127.8,125.8,54.3,23.4 \mathrm{ppm}$. ATR-FTIR: 3237, $1542 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 71.79$; $\mathrm{H}: 7.09$; $\mathrm{N}: 9.85$. Found: C: 72.19; H: 6.88; $\mathrm{N}: 9.58 .[\alpha]^{26}{ }_{360}=(-) 163.4^{0}$.
4.1.1.3. N, N^{\prime}-bis(1-phenylethyl)thiourea ($1 D L$). The compound was synthesized according to the general procedure using $D L-1$-Phenylethylamine $10.91 \mathrm{~g}(90 \mathrm{mmol})$, carbon disulfide $13.71 \mathrm{~g}(180 \mathrm{mmol})$ and ethanol (50 mL). Yield: 11.72 (92%), mp: $120-122{ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.01(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.01
(br, 2H, NH), $5.04(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}), 1.47\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 180.3,142.4,129.1,127.8,125.8,54.3,23.4 \mathrm{ppm}$. ATR-FTIR: $3257,1544 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 71.79 ; \mathrm{H}: 7.09$; $\mathrm{N}: 9.85$. Found: C: 72.18; H: 7.14; $\mathrm{N}: 9.16$.
4.1.1.4. $\quad N, N^{\prime}$-bis((R)-1-(naphtalen-1-yl)ethyl)-thiourea $(2 R R)$. The compound was synthesized according to the general procedure using $(R)-(+)-1-(1-N a p h t y l)$ ethylamine 5 g (30 mmol), carbon disulfide $4.42 \mathrm{~g}(60 \mathrm{mmol})$ and ethanol (30 mL). Yield: $4.8 \mathrm{~g}(83.2 \%)$, mp: 178-180 ${ }^{0} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.02$ (m, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.79 (br, 4H, CH and NH) 1.58 (d, $6 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9,137.1,133.9,130.3,129.1,128.5,126.8,125.9,125.3,122.8,50.6$, 31.1, 21.8 ppm . ATR-FTIR: $3251,1540 \mathrm{~cm}^{-1}$. Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 78.09$; H : 6.29; N: 7.28. Found: C: 78.32; H: 6.49; N: 6.85. $[\alpha]^{26}{ }_{360}=(-) 1535.0^{\circ}$.
4.1.1.5. $\quad N, N^{\prime}$-bis((S)-1-(naphtalen-1-yl)ethyl)-thiourea $\quad(2 S S)$. The compound was synthesized according to the general procedure using (S)-(-)-1-(1-Naphtyl)ethylamine 5 g (30 mmol), carbon disulfide $4.42 \mathrm{~g}(60 \mathrm{mmol})$ and ethanol (30 mL).Yield: $4.97 \mathrm{~g}(86.3 \%)$, mp: 178-180 ${ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.02(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.79 (br, 4H, CH and NH) 1.58 (d, $6 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Pyridine $\left.-d_{5}\right): \delta 8.60(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.92-7.32(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.79$ (br, $2 \mathrm{H}, \mathrm{CH}$), $1.72\left(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}): $\delta 8.12-7.38(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.29 (br, 2H, NH), 6.18 (br, 2H, CH), 1.53 (d, $6 \mathrm{H}, J=6.64 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.17-7.47$ (m, 14H, Ar-H), 6.20 (br, 2H, CH) 1.50 (d, 6H, J $=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9,137.1,133.9,130.3,129.1$, $128.5,126.8,125.9,125.3,122.8,50.6,31.1,21.8 \mathrm{ppm}$. ATR-FTIR: $3254,1541 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 78.21$; $\mathrm{H}: 6.29$; $\mathrm{N}: 6.87$. Found: C: 78.09; H: 6.29; N: 7.28. $[\alpha]_{360}^{26}=(+) 1534.9^{\circ}$.
4.1.1.6. N, N '-bis(1-(Naphtalen-1-yl)ethyl)thiourea (2DL). The compound was synthesized according to the general procedure using $D L-1-(1-N a p h t y l)$ ethylamine 5 g (30 mmol), carbon disulfide $4.42 \mathrm{~g}(60 \mathrm{mmol})$ and ethanol (30 mL). Yield: $5.03(87.3 \%)$, mp: 156-160 ${ }^{0} \mathrm{C}$, (white coloured solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.02(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.79$ (br, $4 \mathrm{H}, \mathrm{CH}$ and NH) $1.58\left(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $179.9,137.1,133.9,130.3,129.1,128.5,126.8,125.9,125.3,122.8,50.6,31.1,21.8 \mathrm{ppm}$.

ATR-FTIR: 3252, $1540 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S} ; \mathrm{C}: 78.09 ; \mathrm{H}: 6.29 ; \mathrm{N}: 7.28$. Found: C: 78.43; H: 6.29; N: 6.72.
4.1.1.7. N, N^{\prime}-bis $((R)-1$-cyclohexylethyl)thiourea ($3 R R$). The compound was synthesized according to the general procedure using $(R)-(-)-1$-cyclohexylethylamine 7.62 g (60 $\mathrm{mmol})$, carbon disulfide $9.12 \mathrm{~g}(120 \mathrm{mmol})$ and pyridine (20 mL). Yield: $2.70 \mathrm{~g}(27 \%), \mathrm{mp}$: 178-180 ${ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.49$ (br, 2H, NH), 3.91 (br, 2H, CH), 1.78-0.94 (m, 22H, cyclohexyl protons) 1.15 (d, $6 \mathrm{H}, J=6.8 \mathrm{~Hz} \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.0,54.6,43.2,29.4,28.8,26.3,26.2,26.1,17.5$ ppm. ATR-FTIR: $3225,1538 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 68.86 ; \mathrm{H}: 10.88 ; \mathrm{N}$: 9.45. Found: C: 68.83; H: 11.31; N: 8.74. $[\alpha]^{26}{ }_{360}=(+) 163.5^{\circ}$.
4.1.1.8. N, N^{\prime}-bis ((S)-1-cyclohexylethyl)thiourea (3SS). The compound was synthesized according to the general procedure using $(S)-(+)-1$-cyclohexylethylamine 7.62 g (60 mmol), carbon disulfide $9.12 \mathrm{~g}(120 \mathrm{mmol})$ and pyridine (20 mL). Yield: 2.70 (27%), mp : 178-180 ${ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.49$ (br, 2H, NH), 3.91 (br, $2 \mathrm{H}, \mathrm{CH}$), 1.78-0.94 (m, 22H, cyclohexyl protons) 1.15 (d, $6 \mathrm{H}, J=6.8 \mathrm{~Hz} \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.0,54.6,43.2,29.4,28.8,26.3,26.2,26.1,17.5$ ppm. ATR-FTIR: 3223, $1536 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}: 68.86 ; \mathrm{H}: 10.88 ; \mathrm{N}: 9.45$. Found: C: 68.72; H: 10.47; N: 8.02. $[\alpha]^{26}{ }_{360}=(-) 163.5^{\circ}$.
4.1.1.9. N, N^{\prime}-bis $((R)$-1-(4-methoxyphenyl)ethyl)thiourea ($4 R R$). The compound was synthesized according to the general procedure using $(R)-(+)-1-(4-$ Methoxyphenyl)ethylamine $7.56 \mathrm{~g}(50 \mathrm{mmol})$, carbon disulfide $7.61 \mathrm{~g}(100 \mathrm{mmol})$ and ethanol (30 mL). Yield: $4.00 \mathrm{~g}(46.5 \%)$, mp: $136-140{ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94-6.73(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.93(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}), 4.96(\mathrm{br}, 2 \mathrm{H}$, NH), $3.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.44\left(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.1,159.2,134.3,127.1,114.4,110.2,55.4,53.8,23.2 \mathrm{ppm}$. ATR-FTIR: 3269, 3232, $1533 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}: 66.25$; $\mathrm{H}: 7.02$; $\mathrm{N}: 8.13$. Found: $\mathrm{C}: 65.29 ; \mathrm{H}$: 6.83; $\mathrm{N}: 7.69 .[\alpha]^{26}{ }_{360}=(+) 1108.0^{\circ}$.
4.1.1.10. N, N^{\prime}-bis((S)-1-(4-methoxyphenyl)ethyl)thiourea (4SS). The compound was synthesized according to the general procedure using (S)-(-)1-(4Methoxyphenyl)ethylamine $7.56 \mathrm{~g}(50 \mathrm{mmol})$, carbon disulfide $7.61 \mathrm{~g}(100 \mathrm{mmol})$ and ethanol (30 mL). Yield: $5.57 \mathrm{~g}(64.7 \%)$, m.p: $136-140{ }^{\circ} \mathrm{C}$, (white coloured crystal). ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94-6.73$ (m, 8 H, Ar-H protons), 5.93 (br, 2H, CH), 4.96 (br, $2 \mathrm{H}, \mathrm{NH}), 3.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.44\left(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta 180.1,159.2,134.3,127.1,114.4,110.2,55.4,53.8,23.2 \mathrm{ppm}$. ATR-FTIR: $3269,3233,1537 \mathrm{~cm}^{-1}$. Calculated for: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}: 66.25 ; \mathrm{H}: 7.02 ; \mathrm{N}: 8.13$. Found: C: 66.12; H: 7.10; N: 7.92. $[\alpha]^{26}{ }_{360}=(-) 1108.0^{\circ}$.
4.1.1.11. N, N^{\prime}-bis ((R)-1-benzylpyrrolidine-3-yl)thiourea (5RR). The compound was synthesized according to the general procedure using $5.28 \mathrm{~g}(30 \mathrm{mmol})(3 R)-(-)-1$-Benzyl-3-aminopyrrolidine, carbon disulfide $4.42 \mathrm{~g}(60 \mathrm{mmol})$ and ethanol (30 mL). Yield: 6.40 (98%), mp :124-126 ${ }^{\circ} \mathrm{C}$, (yellow coloured solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.37$ (br, 2H, NH), 7.49-7.30 (m, 10H, Ar-H), $4.89(\mathrm{~m}, 2 \mathrm{H}$ at C-3 pyrrolidine ring), $4.27(\mathrm{~m}, 4 \mathrm{H}$, benzyl $-\mathrm{CH}_{2}$ protons), 3.43-1.97 (m, 12 H , pyrrolidine protons) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 214.8,198.5,181.5,139.0-127.4,62.4-49.5 \mathrm{ppm}$. ATR-FTIR: $3213,1541 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{SH}+$: 394,22 Found: $395,2268 .[\alpha]^{26}{ }_{360}=$ (-) 36.3°.
4.1.1.12. N, N^{\prime}-bis((S)-1-benzylpyrrrolidine-3-yl)thiourea $(5 S S)$: The compound was synthesized according to the general procedure using $5.28 \mathrm{~g}(30 \mathrm{mmol})(3 S)-(+)-1$-Benzyl-3-aminopyrrolidine, carbon disulfide $4.42 \mathrm{~g}(60 \mathrm{mmol})$, ethanol (30 mL). Yield: 6.43 (98%), mp:124-126 ${ }^{\circ} \mathrm{C}$, (yellow coloured solid): ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.37$ (br, 2H, NH), 7.49-7.30 (m, 10H, Ar-H), 4.89 (m, 2H at C-3 pyrrolidine ring), $4.27(\mathrm{~m}, 4 \mathrm{H}$, benzyl $-\mathrm{CH}_{2}$ protons), 3.43-1.97 (m, 12 H , pyrrolidine protons) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 214.8,198.5,181.5,139.0-127.4,62.4-49.5 \mathrm{ppm}$. ATR-FTIR: $3208,1541 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{SH}+$: 394,22 Found: $395,2374 .[\alpha]^{26}{ }_{360}=$ (+) 36.3°.

4.2. Synthesis of 2-Imino-Thiazolidine-4-ones

4.2.1.General procedure

The appropriate N, N '-diarylthiourea and α-bromoacetic acid were refluxed for $7 / 12$ h in absolute ethanol in the presence of sodium acetate. At the end of this period, the excess of ethanol was evoporated. The compounds were purified from a mixture of ethyl
acetate and hexane (a minimum amount of ethyl acetate was used to dissolve the crude product and then hexane was added until the precipitation was observed).
4.2.1.1. 3-((R)-1-phenylethyl)-2-((R)-1-phenylethylimino)thiazolidine-4-one $(6 R R)$ The compound was synthesized according to the general procedure using $1.42 \mathrm{~g}(5 \mathrm{mmol}) 1 R R$, $0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6 \mathrm{mmol})$ sodium acetate, and ethanol (30 $\mathrm{mL})$. Yield: $0.94 \mathrm{~g}(58 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $5.94\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 4.38\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.77,3.69$ (AB quartet, 1 H for each, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}\right), 1.88\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.37\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,145.2,139.9,128.5,128.1,127.9,127.5$, 127.0, 126.5, 61.9, 53.3, $32.6,25.0,16.1 \mathrm{ppm}$. ATR-FTIR: $1716,1633 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSH}+: 325,1375$; Found: $325,1368 \cdot[\alpha]^{26}{ }_{360}=(+)$ 2597.5°.
4.2.1.2. 3-((S)-1-phenylethyl)-2-((S)-1-phenylethylimino)thiazolidine-4-one (6SS). The compound was synthesized according to the general procedure using 1.42 g (5 mmol) $1 S S$, $0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6 \mathrm{mmol})$ sodium acetate, and ethanol (30 mL). Yield: $0.88 \mathrm{~g}(54 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $5.94\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 4.38\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.77,3.69(\mathrm{AB}$ quartet, 1 H for each, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}\right), 1.88\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.37\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,145.2,139.9,128.5,128.1,127.9,127.5$, 127.0, 126.5, $61.9,53.3,32.6,25.0,16.1 \mathrm{ppm}$. ATR-FTIR: 1716,1633 cm^{-1}. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSH}+: ~ 325,1375$; Found:325,1361. $[\alpha]^{26}{ }_{360}=(-)$ 2597.5°.
4.2.1.3. 3-(1-phenylethyl)-2-(1-phenylethylimino)thiazolidine-4-one ($6 D L$). The compound was synthesized according to the general procedure using $1.42 \mathrm{~g}(5 \mathrm{mmol}) 1 \mathrm{DL}, 0.84 \mathrm{~g}(6$ $\mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6 \mathrm{mmol})$ sodium acetate, and 30 ml ethanol. Yield: 1.2 $\mathrm{g}(76 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-6.96(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.94\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$, $J=7.2 \mathrm{~Hz}), 5.50\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 4.38\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 4.30\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$, $J=6.4 \mathrm{~Hz}$), $3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}-5\right), 3.69,3.62\left(\mathrm{AB}\right.$ quartet, 1 H for each, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}\right), 1.81$ $\left(\mathrm{d}, 6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.40\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right), 1.37\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,145.2,139.9,128.5,128.1,127.9,127.5$, 127.0, 126.5, 61.9, $53.3,32.6,25.0,16.1 \mathrm{ppm}$. ATR-FTIR: $1716,1633 \mathrm{~cm}^{-1}$. HRMS (TOF

MS ES+): Calculated for: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSH}+$: 325,1375 ; Found:325,1388.

4.2.1.4. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-naphthalen-1-yl)ethylimino)

thiazolidine-4-one $(7 R R)$. The compound was synthesized according to the general procedure using $1.92 \mathrm{~g}(5 \mathrm{mmol}) 2 R R, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6$ mmol) sodium acetate, and ethanol (30 mL). Yield: $0.58 \mathrm{~g}(27 \%), \mathrm{mp}: 72-74{ }^{\circ} \mathrm{C}$ (white coloured solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29-6.89(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.57(\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 5.17\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.67,3.54\left(\mathrm{AB}\right.$ quartet, 1 H for each, J_{AB} $=16.8 \mathrm{~Hz}), 1.99\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4,150.9,141.0,134.3,134.2,133.7,131.8,130.8,129.2,128.9$, $128.6,127.8,127.6,126.4,126.1,125.8,125.6,125.4,124.8,124.4,123.9,123.7,59.2$, $50.4,32.4,24.3,16.4 \mathrm{ppm}$. ATR-FTIR: $1708,1620 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OSH}+: 425,1688$; Found: $425,1686 .[\alpha]^{26}{ }_{360}=(+) 6050.9^{\circ}$.
4.2.1.5. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-naphthalen-1-yl)ethylimino)
thiazolidine-4-one ($7 S S$). The compound was synthesized according to the general procedure using $1.92 \mathrm{~g}(5 \mathrm{mmol}) 2 S S, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6$ mmol) sodium acetate, and ethanol (30 mL). Yield: $0.69 \mathrm{~g}(32.5 \%), \mathrm{mp}: 72-74{ }^{\circ} \mathrm{C}$ (white coloured solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29-6.89(\mathrm{~m}, 14 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.57(\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 5.17\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.67,3.54\left(\mathrm{AB}\right.$ quartet, 1 H for each, J_{AB} $=16.8 \mathrm{~Hz}), 1.99\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4,150.9,141.0,134.3,134.2,133.7,131.8,130.8,129.2,128.9$, 128.6, 127.8, 127.6, 126.4, 126.1, 125.8, 125.6, 125.4, 124.8, 124.4, 123.9, 123.7, 59.2, $50.4,32.4,24.3,16.4 \mathrm{ppm}$. ATR-FTIR: $1708,16189 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+):Calculated for: $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OSH}+: 425,1688$; Found: $425,1671 .[\alpha]^{26}{ }_{360}=(-) 6050.9^{\circ}$.
4.2.1.6. 3-(1-(naphthalen-1-yl)ethyl)-2-(1-naphthalen-1-yl)ethylimino)thiazolidine-

4-one (7DL). The compound was synthesized according to the general procedure using 1.92 g (5 mmol) 2DL, $0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6 \mathrm{mmol})$ sodium acetate and ethanol (30 mL). Yield: $0.82 \mathrm{~g}(37 \%)$, $\mathrm{mp}: 172-178{ }^{\circ} \mathrm{C}$ (white coloured solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29-6.89(\mathrm{~m}, 28 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.63\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right)$, $6,57\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 5.17\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.67,3.54$ (AB quartet, 1 H for each, $J_{\mathrm{AB}}=16.8 \mathrm{~Hz}$), $3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}-5\right), 2.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.99(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right) 1.76\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right), 1.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta 171.4,150.9,141.0,134.3,134.2,133.7,131.8,130.8,129.2$, $128.9,128.6,127.8,127.6,126.4,126.1,125.8,125.6,125.4,124.8,124.4,123.9,123.7$, $59.2,50.4,32.4,24.3,16.4 \mathrm{ppm}$. ATR-FTIR: $1709,1619 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OSH}+$: 425,1688 ; Found:425.1678.
4.2.1.7. 3-((R)-1-cyclohexylethyl)-2-((R)-1-cyclohexylethylimino)thiazolidine-4-one $(8 R R)$. The compound was synthesized according to the general procedure using $1.48 \mathrm{~g}(5$ $\mathrm{mmol}) 3 R R, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6 \mathrm{mmol})$ sodium acetate, and ethanol (30 mL). Yield: $0.83 \mathrm{~g}(49 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.14$ (br, 1 H , CH_{a}), $3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\left.\mathrm{C}-5\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right), 2.15-0.74(\mathrm{~m}, 22 \mathrm{H}$ cyclohexyl protons), $1.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta 172.8,148.444 .7,38.7,32.4,30.8,30.1,29.2,26.8,26.6,26.5,24.4,26.1,26.0$, 18.7, 15.6 ppm . ATR-FTIR: $1715,1635 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OSH}+: 337,2314$; Found: 337,2317. $[\alpha]_{360}^{26}=(-) 744.9^{\circ}$.
4.2.1.8. 3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)thiazolidine-4-one (8SS). The compound was synthesized according to the general procedure using $1.48 \mathrm{~g}(5 \mathrm{mmol})$ $3 S S, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6 \mathrm{mmol})$ sodium acetate, and ethanol (30 mL). Yield: $0.74 \mathrm{~g}(44 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.14$ (br, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}$), 3.67 (s , $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-5$), $2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right), 2.15-0.74(\mathrm{~m}, 22 \mathrm{H}$ cyclohexyl protons), $1.31(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}$), $1.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,148.4$ 63.8, 44.7, 38.7, 32.4, 30.8, 30.1, 29.2, 26.8, 26.6, 26.5, 24.4, 26.1, 26.0, 18.7, 15.6 ppm . ATR-FTIR: $1716,1636 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OSH}+: 337,2314$; Found:337,2313. $[\alpha]^{26}{ }_{360}=(+) 744.9^{\circ}$.

4.2.1.9. 3-((R)-1-(4-methoxyphenylethyl)-2-((R)-1-(4-methoxyphenylethylimino)

thiazolidin-4-one $(9 R R)$. The compound was synthesized according to the general procedure using $1.72 \mathrm{~g}(5 \mathrm{mmol}) 4 R R, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6$ $\mathrm{mmol})$ sodium acetate, and ethanol (30 mL). Yield: $1.33 \mathrm{~g}(69.3 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44-6.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.87(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHa}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.33\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$, $J=6.4 \mathrm{~Hz}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{~b}}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{a}}\right), 3.73,3.65(\mathrm{AB}$ quartet, 1 H for each, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}\right), 1.85\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, \mathrm{J}=7.2 \mathrm{~Hz}\right), 1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.6,159.0,158.4,137.5,133.6,132.1,129.4,127.8,127.5$, 114.4, 113.9, 113.4, 110.2, 61.3, 55.9, 55.4, 52.9, 32.6, 25.2, 16.3ppm. ATR-FTIR: 1714,
$1633 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SH}+: 385,1586$; Found: 385,1642. $[\alpha]^{26}{ }_{360}=(+) 1180.6^{\circ}$.
4.2.1.10. 3-((S)-1-(4-methoxyphenylethyl)-2-((S)-1-(4- methoxyphenylethylimino)
thiazolidin-4-one $(9 S S)$. The compound was synthesized according to the general procedure using $1.72 \mathrm{~g}(5 \mathrm{mmol}) 4 S S, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6$ $\mathrm{mmol})$ sodium acetate, and ethanol (30 mL). Yield: $0.78 \mathrm{~g}(40.6 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-6.76(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.87(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHa}, J=7.2 \mathrm{~Hz}), 4.33\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$, $J=6.4 \mathrm{~Hz}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{~b}}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{a}}\right), 3.73,3.65(\mathrm{AB}$ quartet, 1 H for each, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}\right), 1.85\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,159.0,158.4,137.5,133.6,132.1,129.4,127.8,127.5$, $114.4,113.9,113.4,110.2,61.3,55.9,55.4,52.9,32.6,25.2,16.3 \mathrm{ppm}$. ATR-FTIR:1714, $1632 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+):Calculated for: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SH}+: 385,1586$; Found: $385,1591 .[\alpha]^{26}{ }_{360}=(-) 1180.6^{\circ}$.
4.2.1.11. 3-((R)-1-benzylpyrrolidin-3-yl)-2-((R)-1-benzylpyrrolidine-3-ylimino)
thiazolidine-4-one $(10 R R)$. The compound was synthesized according to the general procedure using $1.97 \mathrm{~g}(5 \mathrm{mmol}) 5 R R, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6$ mmol) sodium acetate, and ethanol (30 mL). Yield: $0.87 \mathrm{~g}(40 \%), \mathrm{mp}: 78-80{ }^{\circ} \mathrm{C}$ (red coloured solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.48-7.20$ (m, 10H, Ar-H), 4.77 (br, 1 H , pyrrolidine CH_{a} proton at $\mathrm{C}-3$), $4.63\left(\mathrm{br}, 1 \mathrm{H}\right.$, pyrrolidine CH_{b} proton at $\mathrm{C}-3$), $4.00(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ protons at C-5), 4.04 (b, 2 H , benzyl $\mathrm{CH}_{2 \mathrm{a}}$ protons), 4.04 (br, 2 H , benzyl $\mathrm{CH}_{2 \mathrm{~b}}$ protons), 3.89-0.82 (m, 12H, pyrrolidine protons) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $196.2,170.5,134.1,130.5,130.3,130.0,129.9,129.1,129.0,128.9,128.7,128.6,79.6$, 58.9, 58.5, $58.258 .1,55.8,52.6,52.5,41.3,37.8,30.2,29.6,21.5 \mathrm{ppm}$. ATR-FTIR:1727, $1616 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{OSH}+$: 435,2219 ;Found: 435,2218.

4.2.1.12. 3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1-benzylpyrrolidine-3-ylimino)

thiazolidine-4-one ($10 S S$). The compound was synthesized according to the general procedure using $1.97 \mathrm{~g}(5 \mathrm{mmol}) 5 S S, 0.84 \mathrm{~g}(6 \mathrm{mmol}) \alpha$-bromoacetic acid, $0.49 \mathrm{~g}(6$ mmol) sodium acetate, and ethanol (30 mL). Yield: 0.93 g (43%), mp: $78-80{ }^{\circ} \mathrm{C}$ (red coloured solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.48-7.20$ (m, 10H, Ar-H), 4.77 (br, 1 H , pyrrolidine CH_{a} proton at $\mathrm{C}-3$), $4.63\left(\mathrm{br}, 1 \mathrm{H}\right.$, pyrrolidine CH_{b} proton at $\left.\mathrm{C}-3\right), 4.00(\mathrm{~s}$,
$2 \mathrm{H}, \mathrm{CH}_{2}$ protons at C-5), 4.04 (br, 2 H , benzyl $\mathrm{CH}_{2 \mathrm{a}}$ protons), $4.04\left(\mathrm{~b}, 2 \mathrm{H}\right.$, benzyl $\mathrm{CH}_{2 \mathrm{~b}}$ protons), 3.89-0.82 (m, 12H, pyrrolidine protons) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $196.2,170.5,134.1,130.5,130.3,130.0,129.9,129.1,129.0,128.9,128.7,128.6,79.6$, 58.9, 58.5, $58.258 .1,55.8,52.6,52.5,41.3,37.8,30.2,29.6,21.5 \mathrm{ppm}$. ATR-FTIR: 1727, $1616 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{OSH}+: 435,2219$; Found: 435,2213.

4.3. Synhesis of 5-Benzylidene-2-Imino thiazolidine-4-ones and 5-Benzylidene-thiazolidine-2,4-diones

4.3.1.General procedure

The appropriate 2-imino thiazolidine-4-one derivatives and benzaldehyde were refluxed for $7 / 12 \mathrm{~h}$ in acetic acid in the presence of sodium acetate. At the end of this period, the excess of acetic acid was evoporated. The compounds were washed with water and purified from a mixture of ethyl acetate and hexane (a minimum amount of ethyl acetate was used to dissolved the crude product and then hexane was added until the precipitation was observed).

4.3.1.1. 5-Benzylidene-3-((R)-1-phenylethyl)-2-((R)-1-phenylethylimino)thiazolidin

-4-one (11RR). The compound was synthesized according to the general procedure using $0.81 \mathrm{~g}(2.5 \mathrm{mmol}) 6 R R, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, $0.23 \mathrm{~g}(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid. Yield: $0.42 \mathrm{~g}(41 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.68(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 7.51-7.24(\mathrm{~m}, 15 \mathrm{H} \operatorname{Ar}-\mathrm{H}), 6.08\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 4.48(\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 1.96\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.39\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,146.2,145.1,140.1,134.3,130.1-126.5,121.9,62.9$, 53.4, 29.9, 25.2, 16.4 ppm.HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OSH}+: 413.1688$; Found:413.1670.ATR-FTIR: $1705,1638 \mathrm{~cm}^{-1} \cdot[\alpha]^{26} 360=(+) 444.4^{\circ}$.

4.3.1.2. 5-Benzylidene-3-((S)-1-phenylethyl)-2-((S)-1-phenylethylimino)thiazolidin

-4-one (11SS). The compound was synthesized according to the general procedure using $0.81 \mathrm{~g}(2.5 \mathrm{mmol}) 6 S S, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, $0.23 \mathrm{~g}(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid. Yield: $0.39 \mathrm{~g}(38 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$7.68(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 7.51-7.24(\mathrm{~m}, 15 \mathrm{H} \operatorname{Ar}-\mathrm{H}), 6.08\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 4.48(\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 1.96\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.39\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,146.2,145.1,140.1,134.3,130.1-126.5,121.9,62.9$, 53.4, 29.9, 25.2, 16.4 ppm. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OSH}+: 413.1688$;Found:413.1696. ATR-FTIR:1705, $1638 \mathrm{~cm}^{-1} \cdot[\alpha]^{26}{ }_{360}=(-) 488.9^{\circ}$.

4.3.1.3. 5-Benzylidene-3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-naphthalen

-1-yl)ethylimino)thiazolidine-4-one (12RR). The compound was synthesized according to the general procedure using $1.06 \mathrm{~g}(2.5 \mathrm{mmol}) 7 R R, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, 0.23 $\mathrm{g}(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid. Yield: $0.31 \mathrm{~g}(24 \%), \mathrm{m} . \mathrm{p}: 228-230{ }^{\circ} \mathrm{C}$, white powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 8.15-6.15(\mathrm{~m}, 19 \mathrm{H} \mathrm{Ar}-$ H), $6.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 5.59\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 2.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=\right.$ $7.2 \mathrm{~Hz}), 1.87\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 181.5,174.0$, 137.7-122.5, 110.2, 53.2, 51.1, 29.9, 22.9, 20.1 ppm. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OSH}+: 513.2001$;Found:513.2052.ATR-FTIR: 1674, $1616 \mathrm{~cm}^{-1} \cdot[\alpha]^{26}{ }_{360}=(-)$ 177.8°.
4.3.1.4. 5-Benzylidene-3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-naphthalen
-1-yl)ethylimino)thiazolidine-4-one ($12 S S$). The compound was synthesized according to the general procedure using $1.06 \mathrm{~g}(2.5 \mathrm{mmol}) 7 S S, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, 0.23 $\mathrm{g}(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid. Yield: $0.40 \mathrm{~g}(31 \%) . \mathrm{m} . \mathrm{p}: 228-230{ }^{\circ} \mathrm{C}$, white powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 8.15-6.15(\mathrm{~m}, 19 \mathrm{H} \mathrm{Ar}-$ H), $6.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 5.59\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 2.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=\right.$ 7.2 Hz), $1.87\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 181.5,174.0$, 137.7-122.5, 110.2, 53.2, 51.1, 29.9, 22.9, 20.1 ppm. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OSH}+: 513.2001$; Found: 513.2052. ATR-FTIR: $1674,1616 \mathrm{~cm}^{-1} .[\alpha]^{26}{ }_{360}=(+)$ 133.3.
4.3.1.5. 5-Benzylidene-3-((R)-1-cyclohexylethyl)-2-((R)-1-cyclohexylethylimino)
thiazolidine-4-one $(13 R R)$. The compound was synthesized according to the general procedure using $0.95 \mathrm{~g}(2.8 \mathrm{mmol}) 8 R R, 0.33 \mathrm{~g}(3.1 \mathrm{mmol})$ benzaldehyde, $0.25 \mathrm{~g}(3.1$ mmol) sodium acetate, and 10 ml acetic acid. Yield: $0.50 \mathrm{~g}(40 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CHPh}$), 7.54-7.34 (m, 5H Ar-H), 4.39 (br, 1H, CH_{a},), 3.08 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$,), 1.92-0.89 (m, 22H cyclohexyl protons), $1.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.4 \mathrm{~Hz}\right), 1.15$
(d, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.8 \mathrm{~Hz}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9$, 134.4, 129.9, 129.1, $128.9,128.5,122.3,64.8,60.4,56.8,44.5,38.9,31.6,30.7,30.0,29.1,26.6,26.4,26.3$, $25.9,25.8,22.6,18.9,15.7,14.1 \mathrm{ppm} . \operatorname{HRMS}$ (TOF MS ES+): Calculated: $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OSH}+: 425.2627$; Found: 425.2629 . ATR-FTIR: $1705,1642 \mathrm{~cm}^{-1} \cdot[\alpha]^{26}{ }_{360}=(+)$ 88.9°.

4.3.1.6. 5-Benzylidene-3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)

thiazolidine-4-one (13SS). The compound was synthesized according to the general procedure using $0.95 \mathrm{~g}(2.8 \mathrm{mmol}) 8 S S, 0.33 \mathrm{~g}(3.1 \mathrm{mmol})$ benzaldehyde, 0.25 g (3.1 $\mathrm{mmol})$ sodium acetate, and 10 ml acetic acid. Yield $0,56 \mathrm{~g}(47 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 7.54-7.34\left(\mathrm{~m}, 5 \mathrm{H}\right.$ Ar-H), $4.39\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$), 3.08 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}$), 1.92-0.89 (m, 22H cyclohexyl protons), $1.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.4 \mathrm{~Hz}\right.$), 1.15 (d, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.8 \mathrm{~Hz}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,134.4,129.9$, 129.1, $128.9,128.5,122.3,64.8,60.4,56.8,44.5,38.9,31.6,30.7,30.0,29.1,26.6,26.4,26.3$, 25.9, 25.8, 22.6, 18.9, 15.7, 14.1 ppm.HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OSH}+$: 425.2627; Found: 425.2627.ATR-FTIR: 1705, $1642 \mathrm{~cm}^{-1} .[\alpha]^{26}{ }_{360}=(-) 88.9^{\circ}$.
4.3.1.7. 5-Benzylidene-3-((R)-1-(4-methoxyphenylethyl)-thiazolidine-2,4-dione (14R). The compound was synthesized according to the general procedure using $0.85 \mathrm{~g}(2.5 \mathrm{mmol})$ $9 R R, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, $0.23 \mathrm{~g}(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid and refluxed for 1.5 hours. The reaction was followed by TLC Yield: $0.67 \mathrm{~g}(79 \%)$, m.p : 182-184 ${ }^{\circ} \mathrm{C}$, yellow powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.78$ (s, $1 \mathrm{H},=\mathrm{CHPh}), 7.55-6.88(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.72(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}), 1.89\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=\right.$ $6.8 \mathrm{~Hz}) \mathrm{ppm}$. For minor isomer $\delta 7.82(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 7.55-6.88(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.34(\mathrm{q}$, $1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}$), $1.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right) \mathrm{ppm}$ (Major/minor : 4.54). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.2,176.0,159.2,134.1-126.5,114.2,56.6,55.2,22.5 \mathrm{ppm}$. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SH}+: 339.0929$; Found:339.1150.ATR-FTIR: $1667 \mathrm{~cm}^{-1} \cdot[\alpha]^{26}{ }_{360}=(+) 222.2^{\circ}$.
4.3.1.8. 5-Benzylidene-3-((S)-1-(4-methoxyphenylethyl)-thiazolidine-2,4-dione (14S). The compound was synthesized according to the general procedure using $0.85 \mathrm{~g}(2.5 \mathrm{mmol})$ $9 S S, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, $0.23 \mathrm{~g}(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid and refluxed for 1.5 hours. The reaction was followed by TLC Yield: 0.54 g (63%), m.p : 182-184 ${ }^{\circ} \mathrm{C}$, yellow powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.78$ (s,
$1 \mathrm{H},=\mathrm{CHPh}), 7.55-6.88(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.72(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}), 1.89\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=\right.$ $6.8 \mathrm{~Hz}) \mathrm{ppm}$. For minor isomer $\delta 7.82(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHPh}), 7.55-6.88(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.34(\mathrm{q}$, $1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}$), $1.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right.$) ppm (Major/minor : 4.54). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.2,176.0,159.2,134.1-126.5,114.2,56.6,55.2,22.5 \mathrm{ppm}$. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SH}+: 339.0929$;Found:339.1148.ATRFTIR: $1667 \mathrm{~cm}^{-1} \cdot[\alpha]^{26}{ }_{360}=(-) 222.2^{\circ}$.

4.3.1.9. 5-Benzylidene-3-((R)-1-benzylpyrrolidine-3-yl)-2-((R)-1-benzylpyrrolidine

-3-ylimino)thiazolidine-4-one (15RR): The compound was synthesized according to the general procedure using $1.09 \mathrm{~g}(2.5 \mathrm{mmol}) 10 \mathrm{RR}, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, 0.23 g $(2.8 \mathrm{mmol})$ sodium acetate, and 10 ml acetic acid. Yield: $0.48 \mathrm{~g}(37 \%)$, m.p: $70-72{ }^{\circ} \mathrm{C}$, brown colored solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.17(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CHPh}), 4.62-1.52\left(\mathrm{br}, 18 \mathrm{H}\right.$ benzyl $\mathrm{CH}_{2 \mathrm{a}}$ and $\mathrm{CH}_{2 \mathrm{~b}}$ protons and pyrrolidine protons) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,168.8,166.6,151.6,138.8,-121.8,60.0,59.3,59.2$, 58.7, 54.2, 53.6, 53.1, 52.4, 52.1, 47.9, 30.9, 26.4, 22.5,21.1 ppm. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{OSH}+: 523.2532$;Found:523.2547.ATR-FTIR: 1708, $1599 \mathrm{~cm}^{-1}$.
4.3.1.10. 5-Benzylidene-3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1-benzylpyrrolidine -3-ylimino)thiazolidine-4-one (15SS). The compound was synthesized according to the general procedure using $1.09 \mathrm{~g}(2.5 \mathrm{mmol}) 10 S S, 0.30 \mathrm{~g}(2.8 \mathrm{mmol})$ benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.39 g (30\%), m.p: $70-72{ }^{\circ} \mathrm{C}$, brown colored solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95-7.17$ (m, $15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.46(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CHPh})$, 4.62-1.52 (br, 18 H benzyl $\mathrm{CH}_{2 \mathrm{a}}$ and $\mathrm{CH}_{2 \mathrm{~b}}$ protons and pyrrolidine protons) ppm. ${ }^{13}{ }^{1} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 172.1,168.8,166.6,151.6,138.8,-121.8,60.0,59.3,59.2$, 58.7, $54.2,53.6,53.1,52.4,52.1,47.9,30.9,26.4,22.5,21.1 \mathrm{ppm}$. HRMS (TOF MS ES+): Calculated: $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{OSH}+: 523.2532$;Found:523.2526. ATR-FTIR: $1708,1599 \mathrm{~cm}^{-1}$.

4.4. Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones

4.4.1.General procedure

The compounds $16 R, 16 S, 17 R, 17 S$ and $18 S$ were synthesized by the reaction of corresponding aryl isocyanates and ethyl lactate. The appropriate aryl isocyanates and
ethyl lactate were refluxed for 7 h in xylene. At the end of the reflux period, the obtained oily compound was heated in 6 N HCl and then cooled to give precipitate. The precipitated product was isolated by vacuum filtration, washed with water, and dried in vacuo.
4.4.1.1. (5R)-Methyl-3-phenyloxazolidine-2,4-dione $(+16 R)$. The compound was synthesized according to the general procedure using phenyl isocyanate ($1.39 \mathrm{~g}, 0.012$ $\mathrm{mol})$, (R)- ethyl lactate ($1.42 \mathrm{~g}, 0.012 \mathrm{~mol}$) and 25 mL xylene. Yield: $0.60 \mathrm{~g}(26 \%), \mathrm{mp}$: $76-78{ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.03(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.72$ (d, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6,154.1,130.9-110.2,76.1$, 17.0 ppm . ATR-FTIR: $1728.3 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}$: 191.0582; Found:191.0554. $[\alpha]^{26}{ }_{360}=(+) 111.1^{\circ}$.
4.4.1.2. (5S)-Methyl-3-phenyloxazolidine-2,4-dione (-16S). The compound was synthesized according to the general procedure using phenyl isocyanate ($1.39 \mathrm{~g}, 0.012$ $\mathrm{mol})$, (S)- ethyl lactate ($1.42 \mathrm{~g}, 0.012 \mathrm{~mol}$) and 25 mL xylene. Yield: $0.25 \mathrm{~g}(11 \%), \mathrm{mp}$: $76-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.52-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.03(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.72$ $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6,154.1,130.9-110.2,76.1$, 17.0 ppm . ATR-FTIR: $1733.6 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+ + : Calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{H}^{+}$: 192.0616; Found:192.0600. $[\alpha]^{26}{ }_{360}=(-) 114.3^{\circ}$.
4.4.1.3. (5R)-Methyl-3-(m-tolyl)oxazolidine-2,4-dione $(+17 R)$. The compound was synthesized according to the general procedure using m-tolyl isocyanate $(1.60 \mathrm{~g}, 0.012$ $\mathrm{mol})$, (R)- ethyl lactate ($1.42 \mathrm{~g}, 0.012 \mathrm{~mol}$) and 25 mL xylene. Yield: $0.2 \mathrm{~g}(8 \%), \mathrm{mp}: 56-$ $58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.7, 154.2, 140.6-120.5, 76.1, $21.5,17.0 \mathrm{ppm}$. ATR-FTIR:1727.9 cm${ }^{-1}$. HRMS (TOF MS ES+): Calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{NaH}^{+}: 229.0715$; Found: 229.0736. $[\alpha]^{26}{ }_{360}=(+) 116.3^{\circ}$.
4.4.1.4 (5S)-Methyl-3-(m-tolyl)oxazolidine-2,4-dione (-17S). The compound was synthesized according to the general procedure using m-tolyl isocyanate $(1.60 \mathrm{~g}, 0.012$ mol), (S)- ethyl lactate ($1.42 \mathrm{~g}, 0.012 \mathrm{~mol}$) and 25 mL xylene. $\mathrm{mp} .: 56-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,154.2,140.6-120.5,76.1,21.5,17.0$ ppm. ATR-FTIR: $1727.9 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{NaH}^{+}$: 229.0715; Found: 229.0742. $[\alpha]^{26}{ }_{360}=(-) 119.1^{\circ}$.
4.4.1.5. (5S)-Methyl-3-(o-tolyl)oxazolidine-2,4-dione (-18S). The compound was synthesized according to the general procedure using o-tolyl isocyanate $(1.60 \mathrm{~g}, 0.012$ mol), (S)- ethyl lactate ($1.42 \mathrm{~g}, 0.012 \mathrm{~mol}$) and 25 mL xylene. $\mathrm{mp} .: 56-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,154.2,140.6-120.5,76.1,21.5,17.0$ ppm. ATR-FTIR: $1727.9 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+): Calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{NaH}^{+}$: 229.0715; Found: 229.0742. $[\alpha]^{26} 360=(-) 96.8^{\circ}$.

4.5. Reduction of 2-Imino-Thiazolidine-4-ones with LiAlH_{4}.

4.5.1.General Procedure

The appropriate amount of 2-imino-thiazolidine-4-one was dissolved in THF and appropriate equiv. LiAlH_{4} was added to the mixture. The reaction mixture was stirred at room temperature for 5 minutes. At the end of the this period water was added to quench the reaction mixture. And the mixture was extracted with ethyl acetate and dried with CaCl_{2}. And the solvent was evoporated.
4.5.1.1. 3-((R)-1-phenylethyl)-2-((R)-1-phenylethylimino)thiazolidine-4-ol (19RR). This compound was synthesized according to the general procedure using 0.2 g 6RR (0.62 $\mathrm{mmol}), 0.035 \mathrm{~g} \mathrm{LiAlH} 4$ (0.93 mmol) and 10 mL THF. Yield: $0.06 \mathrm{~g}(29 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.55-7.17(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.61\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J\right.$ $=7.2 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.31\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.17,3.01(\mathrm{AB}$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 1.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.47\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=\right.$ $6.4 \mathrm{~Hz}) \mathrm{ppm}$ and for minor isomer $\delta 7.55-7.17(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.70\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2\right.$ $\mathrm{Hz}), 5.48\left(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}\right.$,), $4.27\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right.$,), 3.32, 3.03 (AB quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $J=4.8 \mathrm{~Hz}$), $1.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4\right.$ Hz) ppm. (major/minor: 3.2). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer δ 153.8, 146.8, 142.0, 129.0-125.6, 82.0, 64.2, 53.3, 36.9, 25.7, 18.3 ppm and for minor isomer δ 154.1, $146.8,142.5,129.0-125.6,81.4,64.4,52.6,36.4,25.8,18.0 \mathrm{ppm}$. ATR-FTIR: $3340,1626 \mathrm{~cm}^{-1}$.
4.5.1.2. 3-((S)-1-phenylethyl)-2-((S)-1-phenylethylimino)thiazolidine-4-ol (19SS). This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 6 S S(0.62$ $\mathrm{mmol}), 0.035 \mathrm{~g} \mathrm{LiAlH} 4$ (0.93 mmol) and 10 mL THF. Yield: $0.06 \mathrm{~g}(29 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.55-7.17(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.61\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J\right.$ $=7.2 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.31\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.17,3.01$ (AB quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $J=4.8 \mathrm{~Hz}$), $1.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.47$ (d, 3 H , $\left.\mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm}$ and for minor isomer $\delta 7.55-7.17(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.70(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}$), $5.48(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}),, 4.27\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right.$,), 3.32, $3.03(\mathrm{AB}$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $J=4.8 \mathrm{~Hz}$), $1.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.46$ (d, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}$) ppm. (major/minor: 3.2). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 153.8,146.8,142.0,129.0-125.6,82.0,64.2,53.3,36.9,25.7,18.3 \mathrm{ppm}$ and for minor isomer $\delta 154.1,146.8,142.5,129.0-125.6,81.4,64.4,52.6,36.4,25.8,18.0 \mathrm{ppm}$. ATR-FTIR: $3338,1625 \mathrm{~cm}^{-1}$.

4.5.1.3. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-(naphthalen-1-yl)ethylimino)

thiazolidin-4-ol $(20 R R)$. This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 7 R R(0.47 \mathrm{mmol}), 0.027 \mathrm{~g} \mathrm{LiAlH}_{4}(0.71 \mathrm{mmol})$ and 10 mL THF. Yield: $0.09 \mathrm{~g}(45 \%)$, white solid, $\mathrm{mp}: 48-50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer δ 8.42-6.30 (m, 14H, Ar-H), $6.30\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 5.12\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4\right.$ $\mathrm{Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=6.4 \mathrm{~Hz}), 2.84$, (d, 2H, CH ${ }_{2}$ at $\left.\mathrm{C}-5, J=2,4 \mathrm{~Hz}\right), 2.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}$, $J=8.0 \mathrm{~Hz}$), $1.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz},\right), 1.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm}$. for minor isomer $\delta 8.49-7.34(\mathrm{~m}, 14 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.54\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 5.36(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}), 5.09$ $\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.27,2.93$ (AB quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $J=4.8 \mathrm{~Hz}$), $2.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J=8.0 \mathrm{~Hz}), 1.76\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm. (major/minor: 3.2). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 152.9,142.9$, 136.4-123.9, 82.0, 61.6, 49.7, 36.9, 24.9, 17.6 ppm and for minor isomer $\delta 156.5,142.6$, 137.1, 134.1-123.9, 80.6, 60.5, 48.4, 36.5, 25.0, 17.5 ppm . ATR-FTIR: $3379,1614 \mathrm{~cm}^{-1}$.
4.5.1.4. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-(naphthalen-1-yl)ethylimino)
thiazolidin-4-ol (20SS). This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 7 S S(0.47 \mathrm{mmol}), 0.027 \mathrm{~g} \mathrm{LiAlH}_{4}(0.71 \mathrm{mmol})$ and 10 mL THF. Yield:0.12 g (60%), white solid, mp: $48-50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer δ 8.42-6.30 (m, 14H, Ar-H), $6.30\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 5.12\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4\right.$
$\mathrm{Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=6.4 \mathrm{~Hz}), 2.84$, (d, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\left.\mathrm{C}-5, J=2,4 \mathrm{~Hz}\right), 2.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}$, $J=8.0 \mathrm{~Hz}), 1.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz},\right), 1.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm}$. for minor isomer $\delta 8.49-7.34(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.54\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 5.36(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}), 5.09$ $\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 3.3 .27,2.93\left(\mathrm{AB}\right.$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $J=4.8$ $\mathrm{Hz}), 2.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J=8.0 \mathrm{~Hz}), 1.76\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4\right.$ Hz) ppm. (major/minor: 3.2). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 152.9$, $142.9,136.4-123.9,82.0,61.6,49.7,36.9,24.9,17.6 \mathrm{ppm}$ and for minor isomer $\delta 156.5$, 142.6, 137.1, 134.1-123.9, 80.6, 60.5, 48.4, 36.5, 25.0, 17.5 ppm. ATR-FTIR: 3379, 1614 cm^{-1}.

4.5.1.5. 3-((R)-1-cyclohexylethyl)-2-((R)-1-cyclohexylethylimino)

thiazolidine-4-ol $(21 R R)$. This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 8 R R(0.60 \mathrm{mmol}), 0.034 \mathrm{~g} \mathrm{LiAlH}_{4}(0.89 \mathrm{mmol})$ and 10 mL THF. Yield: $0.07 \mathrm{~g}(36 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 5.29(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}, J=4.8 \mathrm{~Hz}), 4.01\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right.$ and $\left.J=6.8 \mathrm{~Hz}\right), 3.29,3.07(\mathrm{AB}$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 2.81\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}} J=5.2 \mathrm{~Hz}\right.$ and $\left.J=6.4 \mathrm{~Hz}\right), 1.78-$ 0.80 (m, 22H cyclohexyl protons), 1.26 (d, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}$), 1.06 (d, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4$ Hz) ppm and for minor isomer $\delta 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=4.8 \mathrm{~Hz}), 3.71\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right.$ and $J=6.8 \mathrm{~Hz}), 3.31,3.05\left(\mathrm{AB}\right.$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 2.71(\mathrm{qd}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=5.2 \mathrm{~Hz}$ and $J=6.4 \mathrm{~Hz}$), 1.78-0.80 (m, 22 H cyclohexyl protons), 1.28 (d, 3 H , $\mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}$), $1.03\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 152.9,83.9,66.9,55.0,45.1,41.6,36.6,31.1-26.1,19.6,17.5 \mathrm{ppm}$ and for minor isomer $\delta 152.9,81.9,66.2,57.1,45.0,41.8,36.8,31.1-26.1,19.5,17.4 \mathrm{ppm}$. ATRFTIR: 3338, $1638 \mathrm{~cm}^{-1}$.

4.5.1.6. 3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)

thiazolidine-4-ol $(21 S S)$. This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 8 S S(0.60 \mathrm{mmol}), 0.034 \mathrm{~g} \mathrm{LiAlH}_{4}(0.89 \mathrm{mmol})$ and 10 mL THF . Yield:0.09 g (46\%), oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 5.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, $J=4.8 \mathrm{~Hz}), 4.01\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right.$ and $\left.J=6.8 \mathrm{~Hz}\right), 3.29,3.07(\mathrm{AB}$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 2.81\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}} J=5.2 \mathrm{~Hz}\right.$ and $\left.J=6.4 \mathrm{~Hz}\right), 1.78-0.80$ ($\mathrm{m}, 22 \mathrm{H}$ cyclohexyl protons), 1.26 (d, $3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}$), $1.06\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm and for minor isomer $\delta 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=4.8 \mathrm{~Hz}), 3.71\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right.$ and
$J=6.8 \mathrm{~Hz}), 3.31,3.05\left(\mathrm{AB}\right.$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 2.71(\mathrm{qd}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{b}}, J=5.2 \mathrm{~Hz}$ and $\left.J=6.4 \mathrm{~Hz}\right), 1.78-0.80\left(\mathrm{~m}, 22 \mathrm{H}\right.$ cyclohexyl protons), $1.28\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}\right.$, $J=7.2 \mathrm{~Hz}), 1.03\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 152.9,83.9,66.9,55.0,45.1,41.6,36.6,31.1-26.1,19.6,17.5 \mathrm{ppm}$ and for minor isomer $\delta 152.9,81.9,66.2,57.1,45.0,41.8,36.8,31.1-26.1,19.5,17.4 \mathrm{ppm}$. ATR-FTIR: $3338,1638 \mathrm{~cm}^{-1}$.
4.5.1.7. 3-((R)-1-(4-methoxyphenyl)ethyl)-2-((R)-1-(4-methoxyphenyl) ethylimino) thiazolidin-4-ol ($22 R R$). This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 9 R R(0.52 \mathrm{mmol}), 0.059 \mathrm{~g} \mathrm{LiAlH}_{4}(1.56 \mathrm{mmol})$ and 10 mL THF. Yield: $0,071(35 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.29-6.83$ (m, 8H, Ar-H), $5.54\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.27\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$, $J=6.4 \mathrm{~Hz}), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.14,2.99\left(\mathrm{AB}\right.$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $J=4.8 \mathrm{~Hz}), 1.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.45\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm}$. for minor isomer $\delta 7.47-6.88(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.66\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz},\right), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz})$, $4.23\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.8 \mathrm{~Hz}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30,3.02(\mathrm{AB}$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 1.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.45\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm. (major/minor: 3.2). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 158.0$, 139.0126.9, 82.1, 63.5, 55.2, 36.8, 25.6, 18.2 ppm and for minor isomer $\delta 158.8,136.2-126.9$, 81.4, $61.2,55.8,52.8,36.2,24.9,18.0 \mathrm{ppm}$. ATR-FTIR: $3349,1610 \mathrm{~cm}^{-1}$.

4.5.1.8. 3-((S)-1-(4-methoxyphenyl)ethyl)-2-((S)-1-(4-methoxypheyl)

ethylimino) thiazolidin-4-ol (22SS). This compound was synthesized according to the general procedure using $0.2 \mathrm{~g} 9 S S(0.52 \mathrm{mmol}), 0.059 \mathrm{~g} \mathrm{LiAlH}_{4}(1.56 \mathrm{mmol})$ and 10 mL THF. Yield: $0,086(43 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.29-6.83$ (m, $8 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 5.54\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.27\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$, $J=6.4 \mathrm{~Hz}), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.14,2.99\left(\mathrm{AB}\right.$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $J=4.8 \mathrm{~Hz}), 1.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.45\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm}$. for minor isomer $\delta 7.47-6.88(\mathrm{~m}, 8 \mathrm{H}, \operatorname{Ar}-\mathrm{H})$, $5.66\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz},\right), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz})$, $4.23\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.8 \mathrm{~Hz}\right), 3.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30,3.02(\mathrm{AB}$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.2 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 1.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.45\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right)$ ppm. (major/minor: 3.2). ATR-FTIR: 3328, $1609 \mathrm{~cm}^{-1}$.

4.6. Transformation of Chiral Hemiaminals to Thiazol-2-imines

4.6.1.General Procedure

Transformations of the chiral hemiaminals 19-22 to thiazol-2-imine 23-26 were followed by taking ${ }^{1} \mathrm{H}$ NMR spectra periodically. The solvent effect for the transformation was investigated by following the kinetics in CDCl_{3} and in $\mathrm{C}_{6} \mathrm{D}_{6}$.
4.6.1.1. 3-((R)-1-phenylethyl)-2-((R)-1-phenylethylimino)thiazoline (23RR). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=4.8 \mathrm{~Hz}), 5.86(\mathrm{q}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 5.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5), J=4.8 \mathrm{~Hz}), 4.09\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 1.72$ $\left(\mathrm{d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 128.8, 128.7, 128.6, 125.5, 127.9, 127.3, 126.9, 126.5, 126.2, 124.3, 96.6, 63.6, 53.1, 25.2, 19.4 ppm .
4.6.1.2. 3-((S)-1-phenylethyl)-2-((S)-1-phenylethylimino)thiazoline (23SS). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=4.8 \mathrm{~Hz}), 5.86(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{a}}, J=7.2 \mathrm{~Hz}$), $5.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5), J=4.8 \mathrm{~Hz}), 4.09\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}, J=6.4 \mathrm{~Hz}\right), 1.72(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right), 1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $128.8,128.7,128.6,125.5,127.9,127.3,126.9,126.5,126.2,124.3,96.6,63.6,53.1,25.2$, 19.4 ppm .
4.6.1.3. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-(naphthalen-1-yl)
ethylimino)thiazoline ($24 R R$). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99-6.99(\mathrm{~m}, 14 \mathrm{H}$, ArH), $6.55(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=5.2 \mathrm{~Hz}), 5.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5)$, $J=5.2 \mathrm{~Hz}), 4.88(\mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.85\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.79\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=\right.$ $6.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.5,142.2,136.8,134.0,133.8,131.6$, $131.3,128.8,128.4,127.1,126.7,125.9,125.5,124.9,124.4,124.2,124.1,123.6,9,96.8$, $61.6,49.7,24.3,18.2 \mathrm{ppm}$.
4.6.1.4. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-(naphthalen-1-yl)
ethylimino)thiazoline ($24 S S$). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99-6.99(\mathrm{~m}, 14 \mathrm{H}$, ArH), $6.55(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=5.2 \mathrm{~Hz}), 5.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5)$, $J=5.2 \mathrm{~Hz}), 4.88(\mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.85\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=6.8 \mathrm{~Hz}\right), 1.79\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=\right.$ $6.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.5,142.2,136.8,134.0,133.8,131.6$, $131.3,128.8,128.4,127.1,126.7,125.9,125.5,124.9,124.4,124.2,124.1,123.6,9,96.8$, $61.6,49.7,24.3,18.2 \mathrm{ppm}$.

4.6.1.5. 3-((R)-1-cyclohexylethyl)-2-((R)-1-cyclohexylethylimino)

thiazoline ($25 R R$). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=5.2 \mathrm{~Hz}$), $5.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5), J=5.2 \mathrm{~Hz}), 4.20\left(\mathrm{qd}, J=7.2 \mathrm{~Hz}\right.$ and $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right), 2.56(\mathrm{qd}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}$), 1.77-0.87 ($\mathrm{m}, 22 \mathrm{H}$ cyclohexyl protons), $1.18\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right.$), $1.01\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.5, 127.1, 105.9, 63.9, 60.1, 43.6, 42.3, 30.3-25.7, 18.1, 16.8 ppm .

4.6.1.6. 3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)

thiazoline (25SS). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=5.2 \mathrm{~Hz}$), $5.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5), J=5.2 \mathrm{~Hz}), 4.20\left(\mathrm{qd}, J=7.2 \mathrm{~Hz}\right.$ and $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right), 2.56$ (qd, $\left.J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right), 1.77-0.87\left(\mathrm{~m}, 22 \mathrm{H}\right.$ cyclohexyl protons), $1.18\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}, J=7.2 \mathrm{~Hz}\right)$, $1.01\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.5, 127.1, 105.9, 63.9 , $60.1,43.6,42.3,30.3-25.7,18.1,16.8 \mathrm{ppm}$.
4.6.1.7. 3-((R)-1-(4-methoxyphenyl)ethyl)-2-((R)-1-(4-methoxyphenyl) ethylimino) thiazoline ($26 R R$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.17-6.70 (m, $8 \mathrm{H}, \mathrm{ArH}$), $6.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=4.8 \mathrm{~Hz}), 5.76(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.66$ (d, 1H, CH(C-5), $J=4.8$ Hz), $3.98(\mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{a}}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{~b}}\right), 1.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}\right.$, $J=6.8 \mathrm{~Hz}), 1.42\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6$, $159.9,159.5128 .4,127.9,114.5,111.4,106.6,59.7,55.3,55.2,23.1,19.5 \mathrm{ppm}$.
4.6.1.8. 3-((S)-1-(4-methoxyphenyl)ethyl)-2-((S)-1-(4-methoxyphenyl)
ethylimino) thiazoline ($26 S S$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17-6.70(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$), $6.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-4), J=4.8 \mathrm{~Hz}), 5.76(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5), J=4.8$ Hz), $3.98(\mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{a}}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3 \mathrm{~b}}\right), 1.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{a}}\right.$, $J=6.8 \mathrm{~Hz}), 1.42\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{~b}}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6$, $159.9,159.5128 .4,127.9,114.5,111.4,106.6,59.7,55.3,55.2,23.1,19.5 \mathrm{ppm}$.

4.7. Bromination of Compound 23SS

4.7.1. General Procedure

The starting compound was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and excess Br_{2} was added to the solution. The mixture was stirred at room temperature for 5 minutes. At the end of the this period, the solvent was evaporeted and the crude product was purified from a mixture of ethyl acetate-hexane.

4.7.1.1. (S)-N-(4,5-dibromo-3-((S)-1-phenylethyl)thiazolidin-2-ylidene)

-1-phenylethanamine (27). This compound was synthesized using $0.08 \mathrm{~g}(0.26 \mathrm{mmol}) 23 \mathrm{SS}$ and excess Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $0,048 \mathrm{~g}(39 \%)$, purified from ethyl acetate/hexane mixture. Pale yellow solid, mp: 144.8-146.2 ${ }^{0} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): for major isomer δ 7.63-7.04 (m, 10H, ArH), $6.24(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}), 5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ at C-4), 5.37 (s, 1H, CH at C-5), $4.56(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}), 1.81\left(\mathrm{~d}, 3 \mathrm{H} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 1.77$ (d, $\left.3 \mathrm{H} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right) \mathrm{ppm}$, for minor isomer $\delta 7.63-7.04(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 6.28(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}$, $J=6.8 \mathrm{~Hz}), 5.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ at C-4), $5.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-5), 4.59(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz})$, $1.58\left(\mathrm{~d}, 3 \mathrm{H} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 1.33\left(\mathrm{~d}, 3 \mathrm{H} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.2,139.6,137.4,129.6,129.4,129.3,128.4,127.6,126.4,125.7,94.2,60.9$, 57.7, 51.3, 22.5, 19.1 ppm .

4.8. Reduction of Axially Chiral Pyridine Compounds with LiAlH_{4}

4.8.1.General Procedure

The reduction of axially chiral pyridine compounds $\mathbf{2 8}$ - $\mathbf{3 1}$ were carried out according to general procedure 4.5.1.
4.8.1.1. (\pm)-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (32). This compound was synthesized according to the general procedure using $0.1 \mathrm{~g}(28)(0.37 \mathrm{mmol}), 0.021 \mathrm{~g}$ LiAlH_{4} (0.56 mmol) and 10 mL THF. Yield: $0,065 \mathrm{~g}(65 \%)$, oily. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}, \mathrm{J}=4.0 \mathrm{~Hz}), 8.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.24(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 5.52(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}$,

OH), 3.52, 3.27 (AB quartet, 1 H for each, $J_{\mathrm{AB}}=12.0 \mathrm{~Hz}$ and $J=5.6 \mathrm{~Hz}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.0,156.1,150.3,148.1,138.6,125.6,122.4,119.5,117.3,104.8,85.4$, 34.0 ppm . ATR-FTIR: $3331,1654 \mathrm{~cm}^{-1}$.
4.8.1.2. (\pm)-3-(3-methylpyridin-2-yl)-2-(3-methylpyridin-2-ylimino)thiazolidin-4-ol (33). This compound was synthesized according to the general procedure using 0.1 g (29) (0.34 $\mathrm{mmol}), 0.019 \mathrm{~g} \mathrm{LiAlH}_{4}(0.50 \mathrm{mmol})$ and 10 mL THF. Yield: $0,052 \mathrm{~g}(51 \%)$, pale yellow cyristal, mp: 168-170 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.2$ (d, 2H, $\mathrm{ArH}, J=2.8 \mathrm{~Hz}$), $7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}, J=7.2 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}, J=6.8 \mathrm{~Hz}), 7.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{ArH}, J=4.8 \mathrm{~Hz}$ and $J=7.2 \mathrm{~Hz}$), 6.83 (dd, 1H, $\mathrm{ArH}, J=4.8 \mathrm{~Hz}$ and $J=7.2 \mathrm{~Hz}$), $6.22(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.80(\mathrm{~d}$, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.49,3.21\left(\mathrm{AB}\right.$ quartet, 1 H for each, $J_{\mathrm{AB}}=11.6 \mathrm{~Hz}$ and $\left.J=4.8 \mathrm{~Hz}\right), 2.30(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.3,154.1,145.0$, $144.2,139.9,138.3,131.6,128.3,122.5,119.1,83.9,36.1,18.8,17.4 \mathrm{ppm}$. ATR-FTIR: $1575 \mathrm{~cm}^{-1}$.
4.8.1.3. (\pm)-5-methyl-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (34). This compound was synthesized according to the general procedure using 0.1 g (30) (0.35 $\mathrm{mmol}), 0.020 \mathrm{~g} \mathrm{LiAlH} 4$ (0.53 mmol) and 10 mL THF. Yield: $0,043 \mathrm{~g}$ (43%), yellow colored solid, mp: $64-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 8.42-6.34$ (m, $8 \mathrm{H}, \mathrm{ArH}$), $5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$ at $\left.\mathrm{C}_{4}, J=0.8 \mathrm{~Hz}\right), 5.12(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.56(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}_{5}, J=0.8 \mathrm{~Hz}$ and $\left.J=7.2 \mathrm{~Hz}\right), 1.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right) \mathrm{ppm}$. for minor isomer $\delta 8.43-$ $6.72(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 5.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$ at $\left.\mathrm{C}_{4}, J=5.2 \mathrm{~Hz}\right), 5.29(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.86(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}_{5}, J=5.2 \mathrm{~Hz}$ and $J=7.2 \mathrm{~Hz}$), $1.54\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right.$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 159.5,159.3,157.7,153.2,153.0,147.3,137.6,137.6,137.5,137.4,119.6$, $119.5,118.9,118.8,113.4,109.4,89.7,85.1,43.3,41.9,21.2,13.0$ ppm. ATR-FTIR: 3342, $1589 \mathrm{~cm}^{-1}$.
4.8.1.4. (\pm)-5-methyl-3-(3-methylpyridin-2-yl)-2-(3-methylpyridin-2-ylimino) thiazolidin-4-ol (35). This compound was synthesized according to the general procedure using $0.1 \mathrm{~g}(31)(0.32 \mathrm{mmol}), 0.018 \mathrm{~g} \mathrm{LiAlH} 4$ (0.48 mmol) and 10 mL THF. Yield: $0,038 \mathrm{~g}$ (38\%), yellow colored solid, mp:112-115 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer δ 8.06-6.60 (m, $6 \mathrm{H}, \mathrm{ArH}$), $6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ at $\left.\mathrm{C}_{4}\right), 3.50(\mathrm{q}, 1 \mathrm{H}$, CH at $\left.\mathrm{C}_{5}, J=7.2 \mathrm{~Hz}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\mathrm{C}-5, J=7.2$ Hz) ppm. for minor isomer $\delta 8.06-6.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$
at $\left.\mathrm{C}_{4}\right), 3.60\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{CH}\right.$ at $\mathrm{C}_{5}, J=6.8 \mathrm{~Hz}$ and $\left.J=11.2 \mathrm{~Hz}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.54\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-5, J=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.0$, $156.8,146.4,144.9,143.8,139.6,138.1,131.3,128.0,123.5,122.2,120.4,118.7,117.2$, $116.4,113.3,89.7,85.7,45.2,44.0,20.9,18.4,18.2,17.2$ ppm. ATR-FTIR: 3358, 1599 cm^{-1}.

4.9. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH_{4}.

4.9.1. General Procedure

The appropriate amount of enantiomericaly pure 5-methyl-3-aryloxazolidine-2,4dione was dissolved in THF and appropriate equiv. LiAlH_{4} was added to the mixture. The reaction mixture was stirred at room temperature for 5 minutes. At the end of the this period water was added to quench the reaction mixture. And the mixture was extracted with ethyl acetate and dried with CaCl_{2}. And the solvent was evoporated.
4.9.1.1. (\pm)-4-hydroxy-5-methyl-3-phenyloxazolidin-2-one (36). This compound was synthesized according to the general procedure using $0.115 \mathrm{~g} 16 S(0.60 \mathrm{mmol}), .034 \mathrm{~g}$ $\mathrm{LiAlH}_{4}(0.89 \mathrm{mmol})$ and 10 mL THF. Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.61-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-4, J=6.4 \mathrm{~Hz}), 4.48(\mathrm{dq}, 1 \mathrm{H}, \mathrm{CH}$ at C$5, J=1.6 \mathrm{~Hz}$ and $J=6.4 \mathrm{~Hz}), 3.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J=8.4 \mathrm{~Hz}), 1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right)$ ppm and for minor isomer $\delta 8.66-7.05(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.54(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-4, J=5.6 \mathrm{~Hz})$, $4.69(\mathrm{dq}, 1 \mathrm{H}, \mathrm{CH}$ at C-5, $J=6.4 \mathrm{~Hz}$ and $J=6.8 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J=8.4 \mathrm{~Hz}), 1.45(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 155.0,136.3$, $129.8,125.8,121.8,121.6,86.7,78.8,18.8,13.1 \mathrm{ppm}$ and for minor isomer $\delta 159.3,129.7$, 125.6, 124.9, 120.0, 116.9, 83.0, 75.5, 18.8, 13.1 ppm . ATR-FTIR: $3306,1725 \mathrm{~cm}^{-1}$.
4.9.1.2. (\pm)-4-hydroxy-5-methyl-3-m-tolyloxazolidin-2-one (37). This compound was synthesized according to the general procedure using $0.123 \mathrm{~g} 17 S(0.60 \mathrm{mmol}), .034 \mathrm{~g}$ $\mathrm{LiAlH}_{4}(0.89 \mathrm{mmol})$ and 10 mL THF. Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 7.42-6.81(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-4, J=5.6 \mathrm{~Hz}), 4.49$ (dq, $1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-5$, $J=1.6 \mathrm{~Hz}$ and $J=7.6 \mathrm{~Hz}), 3.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J=8.4 \mathrm{~Hz}), 1.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right)$ ppm and for minor isomer $\delta 8.66-6.81(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.56(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-4, J=4.8 \mathrm{~Hz})$, $4.70(\mathrm{dq}, 1 \mathrm{H}, \mathrm{CH}$ at C-5, $J=6.0 \mathrm{~Hz}$ and $J=6.4 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, J=8.4 \mathrm{~Hz}), 1.49(\mathrm{~d}$,
$\left.3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): for major isomer $\delta 172.0,129.3$, 127.1, 122.8, 119.2, 86.8, $82.9,21.7,19.1 \mathrm{ppm}$ and for minor isomer $\delta 170.6,126.4,125.9$, $117.2,116.2,78.5,75.5,21.7,19.1 \mathrm{ppm}$. ATR-FTIR: $3302,1730 \mathrm{~cm}^{-1}$.

4.10. Ring Opening Reaction of 5-Methyl-3-aryloxazolidine-2,4-diones with NaBH_{4}

4.10.1. General Procedure

To a mixture of 5-methyl-3-aryloxazolidine-2,4-dione (1 eq.) in THF was added a solution of sodium borohydride (4 eq.) in water maintaing the reaction mixture temperature at $24-25{ }^{\circ} \mathrm{C}$. The mixure was stirred at room temperature until the completion of the reaction. As soon as the disappearance of stating compound, 2 M HCl (5 eq .) was added to the reaction mixture. And the mixture was extracted with ethyl acetate and dried with CaCl_{2}. And the solvent was evaporated.
4.10.1.1. (\pm)1-hydroxypropan-2-yl phenylcarbamate (38). This compound was prepared according to the general procedure using $0.1 \mathrm{~g}(0.52 \mathrm{mmol})$ compound $16 S$ in 0.63 ml THF $(0,33 \mathrm{M}), 0.08 \mathrm{~g}(2.09 \mathrm{mmol})$ sodium borohydride in $0,51 \mathrm{ml}$ water $(4,05 \mathrm{M})$. Yield: 0.056 (55\%). Oily. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.38-7.07$ (m, 5H, Ar-H), 6.69 (br s, $1 \mathrm{H}, \mathrm{NH}$), 5.03-4.99 (m, 1H, CH), 3.73 and $3.69,3.71$ and $3.70\left(2 \mathrm{AB}\right.$ quartets, 1 H each, $\mathrm{CH}_{2}, J=$ 12.00 Hz), $2.20(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 153.8,137.7,129.0,123.6,120.5,118.8,72.9,66.4,16.4 \mathrm{ppm}$. ATR-FTIR: $3303,1700 \mathrm{~cm}^{-1}$.
4.10.1.2. (\pm)1-hydroxypropan-2-yl m-tolylcarbamate (39). This compound was prepared according to the general procedure using $0.1 \mathrm{~g}(0.49 \mathrm{mmol})$ compound $17 S$ in 0.60 ml THF $(0,33 \mathrm{M}), 0.075 \mathrm{~g}(1.97 \mathrm{mmol})$ sodium borohydride in $0,48 \mathrm{ml}$ water $(4,05 \mathrm{M})$. Yield: $0.043(42 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.78-7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.48$ (br s, 1H, NH), 5.05-4.97 (m, 1H, CH), 3.76 and 3.66, 3.73 and 3.71 (2 AB quartets, 1 H each, $\mathrm{CH}_{2}, J=$ $12.00 \mathrm{~Hz}), 1.85(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} 1.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.6,130.5,130.4,126.9,124.5,124.3,73.2,66.2,17.7,16.5$ ppm. ATR-FTIR: $3287,1689 \mathrm{~cm}^{-1}$.
4.10.1.3. (\pm)1-hydroxypropan-2-yl o-tolylcarbamate (40). This compound was prepared according to the general procedure using $0.1 \mathrm{~g}(0.49 \mathrm{mmol})$ compound $18 S$ in 0.60 ml THF $(0,33 \mathrm{M}), 0.075 \mathrm{~g}(1.97 \mathrm{mmol})$ sodium borohydride in $0,51 \mathrm{ml}$ water $(4,05 \mathrm{M})$. Yield: $0.085(83 \%) .{ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.76-7.04(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 5.05-4.97 (m, 1H, CH), 3.76 and 3.66, 3.73 and 3.71 (2 AB quartets, 1 H each, $\mathrm{CH}_{2}, J=$ 12.00 Hz), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} 1.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 135.6,130.5,130.4,126.9,124.5,124.3,73.2,66.2,17.7,16.5 \mathrm{ppm}$. ATR-FTIR: $3274,1688 \mathrm{~cm}^{-1}$.

5. CONCLUSION

N, N '-bis-thioureas and their cyclized derivatives were synthesized as single enantiomers and their optical purities were proven by polarimetric measurements and HPLC analyses on optically active stationary phases. Conformational structures steming from the rotation about $\mathrm{C}-\mathrm{N}$ partial double bond of the thioureas were studied experimentally. The variable NMR revealed that there is a rapid equilibrium between the $E, Z / Z, E$ conformations in the solution but X-Ray analyses showed that the thioureas prefer to stay on the Z, Z conformation in the crystalline state.

Single enantiomers of the new 5-methyl-3-aryloxazolidine-2,4-diones were obtained by an asymmetric synthesis and their optical purities were proven by polarimetric measurements, HPLC analyses on optically active stationary phases and optically active auxiliary compound (R)-2,2,2-trifluoro-1-(9-anthryl)ethanol ((R)-TFAE).

Chiral hemiaminals were synthesized from the corresponding 2-iminothiazolidine-4-ones by LiAlH_{4} reductions stereoselectively. The hemiaminals were converted to single enantiomer thiazol-2-imines and their conversion kinetics have been followed by time dependent ${ }^{1} \mathrm{H}$ NMR spectroscopy. One of the thiazol-2-imine derivative was brominated stereoselectively and a diastereomeric pair was obtained from the trans-addition of bromine to the double bond of the alkene. The trans hydrogens of the dibrominated products present on adjacent carbons of the thiazolidine-4-one ring, did not couple with each other. This fact was exploited to differentiate the cis oriented hydrogens of the hemiaminals and from the trans oriented ones based on their observed coupling constants.

Another series of hemiaminals were synthesized from the axially chiral pyridine compounds carrying 2-iminothiazolidin-4-one core from the reduction with LiAlH_{4}. For these compounds because of the restricted rotation around the N_{3}-aryl single bond, the M / P isomerization was observed. The 2D-NOESY ${ }^{1} \mathrm{H}$ NMR experiments revealed that the OH prefer to be on the same side with the N_{3} pyridine nitrogen because of the possibility for an intramolecular H -bond formation.

The single enantiomers of 5-methyl-3-aryloxazolidine-2,4-diones were reduced to their hemiaminal derivatives via LiAlH_{4} reductions. Additionally their ring opening
reactions were carried out in the presence of NaBH_{4}. During these reactions, it was investigated that whether the configuration at $\mathrm{C}-5$ is retained or not. It was revealed that compounds partially racemize under basic conditions because of the enolization of the molecule due to the presence of the acidic α-hydrogen at C-5 of the ring. The ortho tolyl derivative of 5-methyl-3-aryloxazolidine-2,4-diones was found to have less racemization ratio than the others during the ring opening reaction with NaBH_{4}. This can be explained by the steric hindrance of ortho methyl group that hindered the approach of the hydride ion. Furthermore, during the ring opening reactions of 5-methyl-3-aryloxazolidine-2,4diones, the corresponding hemiaminals were found as intermediates.

REFERENCES

1. Loxq, P., E. Manourya, R. Poli, E. Deydier, A. Labande. "Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals ", Coordination Chemistry Reviews, Vol. 308, pp. 131-19, 2016.
2. Oki, M., Topics in Stereochem. Wiley, New York, USA, Vol. 14, pp. 1-81, 1983.
3. Kumarasamy, E., R. Raghunathan, M. P. Sibi, J. Sivaguru, "Nonbiaryl and Heterobiaryl Atropisomers: Molecular Templates with Promise for Atropselective Chemical Transformations", Chemical Reviews, Vol. 115, pp. 11239-11300, 2015.
4. Glunz, P. W., "Recent encounters with atropisomerism in drug discovery", Bioorganic \& Medicinal Chemistry Letters, Vol. 28, pp. 53-60, 2018.
5. LaPlante, S. R., P. J. Edwards, L. D. Fader, A. Jakalian, O. Hucke, "Revealing Atropisomer Axial Chirality in Drug Discovery", ChemMedChem, Vol. 6, pp. 505 513, 2011.
6. Šenica, L., K. Stopar, M. Friedrich, U. Grošelj, J. Plavec, M. Počkaj, Č. Podlipnik, B. Štefane, J. Svete, " Synthesis and Rotational Isomerism of 1-Substituted Methyl (S)-[5-(2-Nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates", The Journal of Organic Chemistry, Vol. 81, pp. 146-161, 2016.
7. Patel, D. C., R. M. Woods, Z. S. Breitbach, A. Berthod, D. W. Armstrong, "Thermal racemization of biaryl atropisomers", Tetrahedron: Asymmetry, Vol. 28, pp. 15571561, 2017.
8. Doğan, İ., T. Burgemeister, S. Icli and A. Mannschreck, "Synthesis and NMR Studies of Chiral 4-Oxazolidinones and Rhodanines", Tetrahedron, Vol. 48, No. 35, pp. 71577164, 1992.
9. Oğuz, S. F. and İ. Doğan, "Determination of Energy Barriers and Racemization Mechanisms for Thermally Interconvertible Barbituric and Thiobarbituric Acids Enantiomers", Tetrahedron: Asymmetry, Vol. 14, No. 13, pp. 1857-1864, 2003.
10. Erol, Ş. and İ. Doğan, "Axially Chiral 2-Arylimino-3-aryl-thiazolidine-4-one Derivatives: Enantiomeric Separation and Determination of Racemization Barriers by Chiral HPLC", The Journal of Organic Chemistry, Vol. 72, No.7, pp. 2494-2500, 2007.
11. Isikgor, F. H., S. Erol, I. Dogan, "Axially chiral pyridine compounds: synthesis, chiral separations and determination of protonation dependent barriers to hindered rotation", Tetrahedron: Asymmetry, Vol. 25, pp. 449-456, 2014.
12. Takahashi, M., H. Tanabe, T. Nakamura, D. Kuribara, T. Yamazaki, O. Kitagawa, "Atropisomeric lactam chemistry: catalytic enantioselective synthesis, application to asymmetric enolate chemistry and synthesis of keyintermediates for NET inhibitors", Tetrahedron, Vol. 66, pp. 288-296, 2010.
13. Sarigul, S. and I. Dogan, "Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives", The Journal of Organic Chemistry, Vol. 81, pp. 5895-5902, 2016.
14. Suzumura, N., M. Kageyama, D. Kamimura, T. Inagaki, Y. Dobashi, H. Hasegawa, H. Fukaya, O. Kitagawa, "Studies on rotational barriers of $\mathrm{N}-\mathrm{C}$ axially chiral compounds: increase in the rotational barrier by aromatization", Tetrahedron Letters, Vol. 53, pp. 4332-4336, 2012.
15. Suzuki, Y., I. Takahashi, Y. Dobashi, H. Hasegawa, C. Roussel,O. Kitagawa, "Relationship between rotational barriers and structures in $\mathrm{N}-\mathrm{C}$ axially chiral 3,4-dihydroquinolin-2-one and 3,4-dihydrobenzoquinolin-2-one", Tetrahedron Letters, Vol. 56, pp. 132-135, 2015.
16. Hasegawa, F., K. Kawamura, H. Tsuchikawa, M. Murata, "Stable C-N axial chirality in 1-aryluracil scaffold and differences in in vitro metabolic clearance between atropisomers of PDE4 inhibitor", Bioorganic \& Medicinal Chemistry, Vol. 25, pp. 4506-4511, 2017.
17. Yılmaz, E. M., İ. Doğan, "Axially chiral N-(o-aryl)-2-thioxo-oxazolidine-4-one and rhodanine derivatives: enantiomeric separation and determination of racemization barriers", Tetrahedron: Asymmetry, Vol. 19, pp. 2184-2191, 2008.
18. Illisz, I., A. Bajtai, W. Lindner, A. Péter, "Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids", Journal of Pharmaceutical and Biomedical Analysis, Vol. 159, pp. 127-152, 2018.
19. Fujii, N., T. Takata, N. Fujii, K. Aki, H. Sakaue, " D-Amino acids in protein: The mirror of life as a molecular index of aging ", BBA - Proteins and Proteomics, Vol. 1866, pp. 840-847, 2018.
20. Grecsó, N., M. Kohout, A. Carotti, R. Sardella, B. Natalini, F. Fülöp, W. Lindner, A. Péter, I. Ilisz, "Mechanistic considerations of enantiorecognition on novel Cinchona alkaloid-based zwitterionic chiral stationary phases from the aspect of the separation of trans-paroxetine enantiomers as model compounds", Journal of Pharmaceutical and Biomedical Analysis, Vol. 124, pp. 164-173, 2016.
21. Tseng, S., G. Pak, K. Washenik, M. K. Pomeranz, J. L. Shupack, "Rediscovering thalidomide: A review of its mechanism of action, side effects, and potential uses", Journal of the American Academy of Dermatology, Vol. 35, pp. 969-979, 1996.
22. Daviesa, B. J., M. K. Herbert, J. A. Culbert, S. M. Pyke, J. K. Coller, A. A. Somogyi, R. W. Milne, B. C. Sallustio, "Enantioselective assay for the determination of perhexiline enantiomersin human plasma by liquid chromatography", Journal of Chromatography B, Vol. 832, pp. 114-120, 2006.
23. Lv, L., H. Lv, X. Qiu, J. Yan, S. Tong, "Stereoselectiveseparation of racemic transparoxol, N -methylparoxetine and paroxetine containing two chiral carbon centres by countercurrent chromatography", Journal of Chromatography A, Vol.1570, pp. 99108, 2018.
24. Prasad, B. B., D. Kumar, R. Madhuri, M. P. Tiwari, "Metal ion mediated imprinting for electrochemical enantioselective sensing of 1-histidine at trace level", Biosensors and Bioelectronics, Vol. 28, pp. 117-126, 2011.
25. Clayden, J., W. J. Moran, P. J. Edwards, S. R. LaPlante, "The Challenge of Atropisomerism in Drug Discovery", Angewandte Chemie International, Vol. 48, pp. 6398-6401, 2009.
26. Lee, S., T. Kamide, H. Tabata, H. Takahashi, M. Shiro, H. Natsugari, "Axial chirality and affinity at the GABA $_{A}$ receptor of pyrimido $[1,2-a][1,4]$ benzodiazepines and related compounds", Bioorganic \& Medicinal Chemistry, Vol. 16, pp. 9519-9523, 2008.
27. Yoshida, K., R. Itoyama, M. Yamahira, J. Tanaka, N. Loaëc, O. Lozach, E. Durieu, T. Fukuda, F. Ishibashi, L. Meijer, M. Iwao, "Synthesis, Resolution, and Biological Evaluation of Atropisomeric (aR)- and (aS)-16-Methyllamellarins N: Unique Effects of the Axial Chirality on the Selectivity of Protein Kinases Inhibition", Journal of Medicinal Chemistry, Vol. 56, pp. 7289-7301, 2013.
28. Yao, G., M. Ye, R. Huang, Y. Li, Y. Zhu, Y. Pan, Z. Liao, H. Wang, "Synthesis and antitumor activity evaluation of maleopimaric acid N -aryl imide atropisomers", Bioorganic \& Medicinal Chemistry Letters, Vol. 23, pp. 6755-6758, 2013.
29. Hallock, Y. F., K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, M. SchaÈffer, K. P. Gulden, G. Bringmann, A. Y. Lee, J. Clardy, G. François, M. R. Boyd," Korupensamines A-D, Novel Antimalarial Alkaloids from Ancistrocladus korupensis", Journal of Organic Chemistry Vol. 59, pp. 6349-6355, 1994.
30. Seco, J. M., E. Quiñoá, R. Riguera, "Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents", Chem. Rev. Vol. 112, pp. 4603-4641, 2012.
31. Demir Ordu, Ö., İ. Doğan, "Determination of energy barriers to rotation and absolute conformations of thermally interconvertible 5,5-dimethyl-3-(o-aryl)-2,4oxazolidinedione enantiomers", Tetrahedron: Asymmetry, Vol. 15, pp. 925-933, 2004.
32. Eliel, E. L., S. H. Wilen, "Stereochemistry of Organic Compounds", John Wiley \& Sons, Inc.,New York, $1^{\text {th }}$ Edition, pp. 125-187, 1994.
33. Silva, S. C., S. M. M. Rodrigues, V. Nardini, A. L. L. Vaz, V. Palaretti, G. V. J. da Silva, R. Vessecchi, G. C. Clososki, " Conformational dynamics of 4formylaminoantipyrine based on NMR and theoretical calculations ", Journal of Molecular Structure, Vol. 1163, pp. 280-286, 2018.
34. Schroeder, D. C., "Thioureas", Chemical Review, Vol. 55, pp. 181-228, 1955.
35. Manjula, S. N., N. M. Noolvi, K. V. Parihar, S. A. M. Reddy, V. Ramani, A. K. Gadad, G. Singh, N. G. Kutty and C. M. Rao, "Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents", European Journal of Medicinal Chemistry, Vol. 44 pp. 29232929, 2009.
36. Hroch, L., P. Guest, O. Benek, O. Soukup, J. Janockova, R. Dolezal, K. Kuca, L. Aitken, T. K. Smith, F. Gunn-Moore, D. Zala, R. R. Ramsay and K. Musilek, "Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer's disease treatment", Bioorganic \& Medicinal Chemistry, Vol. 25, pp. 1143-1152, 2017.
37. Sabolová, D., P. Kristian, M. Kožurková, "Multifunctional properties of novel tacrine congeners: cholinesterase inhibition and cytotoxic activity", Journal of Applied Toxicology, Vol. 38, pp. 1377-1387, 20018.
38. Kumar, S., W. Purcell, J. Conradie, R. R. Bragg and E. H. G. Langner, " Synthesis, characterization, computational and antimicrobial activities of a novel iridium thiourea complex", New Journal of Chemistry, Vol. 41, pp. 10919-10928, 2017.
39. Terhorst, J. P., W. L. Jorgensen, " E/Z Energetics for Molecular Modeling and Design", Journal of Chemical Theory and Computatio, Vol. 6, pp. 2762-2769, 2010.
40. Roussel, C., M. Roman, F. Andreoli, A. D. Rio, R. Faure, N. Vanthuyne, "Non-racemic atropisomeric (thio)ureas as neutral enantioselective anion receptors for amino-acid derivatives: Origin of smaller Kass with thiourea than urea derivatives", Chirality, Vol. 18, pp. 762-771, 2006.
41. Zabka M., R. Sebesta, " Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis", Molecules, Vol. 20, pp. 15500-15524, 2015.
42. Klausen, R. S., C. R. Kennedy, A. M. Hyde, E.N. Jacobsen, "Chiral Thioureas Promote Enantioselective Pictet-Spengler Cyclization by Stabilizing Every Intermediate and

Transition State in the Carboxylic Acid-Catalyzed Reaction", Journal of the American Chemical Society, Vol. 139. pp. 12299-12309, 2017.
43. Andres, J. M., F. Gonzalez, A. Maestro, R. Pedrosa, M. Valle, "Novel Biodegradable Chitosan-Derived Thioureas as Recoverable Supported Organocatalysts-Application to the Stereoselective Aza-Henry Reaction", European Journal of Organic Chemistry, Vol. 25, pp. 3658-3665, 2017.
44. Zhang, G., C. Zhu, D. Liu, J. Pan, J. Zhang, D. Hu and B. Song, "Solvent-free enantioselective conjugate addition and bioactivities ofnitromethane to Chalcone containing pyridine", Tetrahedron, Vol. 73, pp. 129-136, 2017.
45. Cerisoli, L., M. Lombardo, C. Trombini and A. Quintavalla, "The First Enantioselective Organocatalytic Synthesis of 3-Spiro- α-Alkylidene- γ-Butyrolactone Oxindoles", Chemistry A. European. Journal, Vol. 22, pp. 3865 -3872, 2016.
46. Tripathi, A. C. , S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma, S. K. Saraf, " 4Thiazolidinones: The advances continue...", European Journal of Medicinal Chemistry, Vol. 72, pp. 52-77, 2014.
47. Qi, B., Y. Yang, H. He, X. Yue, Y. Zhou, X. Zhou, Y. Chen, M. Liu, A. Zhang, F. Wei, "Identification of novel N^{l}-(2-aryl-1, 3 -thiazolidin-4-one)- N^{3}-aryl ureas showing potent multi-tyrosine kinase inhibitory activities", European Journal of Medicinal Chemistry, Vol. 146, pp. 368-380, 2018.
48. Angapelly, S., P. V. S. Ramya, R. SunithaRani, C. G. Kumar, A. Kamal, M. Arifuddin, "Ultrasound assisted, VOSO_{4} catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives", Tetrahedron Letters, Vol. 58 pp. 4632-4637, 2017.
49. Filho, G. B. O., M. V. O. Cardoso, J. W. P. Espíndola, L. F. G. R. Ferreira, C. A. Simone, R. S. Ferreira, P. L. Coelho, C. S. Meira, D. R. M. Moreira, M. B. P. Soares, A. C. L. Leite, "Structural design, synthesis and pharmacological evaluation of 4thiazolidinones against Trypanosoma cruzi", Bioorganic \& Medicinal Chemistry, Vol. 23, pp. 7478-7486, 2015.
50. Ruiz, F. A. R., R. N. García-Sánchez, S. V. Estupiñan, A. Gómez-Barrio, D. F. T. Amado, B. M. Pérez-Solórzano, J. J. Nogal-Ruiz, A. R. Martínez-Fernández, V. V. Kouznetsov, "Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds", Bioorganic \& Medicinal Chemistry, Vol. 19 pp. 4562-4573, 2011.
51. Szychowski, K. A., M. L. Leja, D. V. Kaminskyy, U. E. Binduga, O. R. Pinyazhko, R. B. Lesyk, J. Gmiński, "Study of novel anticancer 4-thiazolidinone derivatives", Chemico-Biological Interactions, Vol. 262 (2017) pp. 46-56.
52. Ansari, M. F., S. M. Siddiqui, K. Ahmad, F. Avecilla, S. Dharavath, S. Gourinath, A. Azam, "Synthesis, antiamoebic and molecular docking studies of furan-thiazolidinone hybrids", European Journal of Medicinal Chemistry, Vol. 124, pp. 393-406, 2016.
53. Küçükgüzel, I., G. Satılmış, K.R. Gurukumar, A. Basu, E. Tatar, D. B. Nichols, T. T. Talele, N. Kaushik-Basu, "2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class ofnon-nucleoside inhibitors of HCV NS5B polymerase", European Journal of Medicinal Chemistry, Vol. 69, pp. 931-941, 2013.
54. Omar, Y. M., H. H. M. Abdu-Allah, S. G. Abdel-Moty, "Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as antiinflammatory agents with dual inhibition of COX-2 and 15-LOX", Bioorganic Chemistry, Vol. 80 , pp. 461-471, 2018.
55. Bolli, M. H., S. Abele, C. Binkert, R. Bravo, S. Buchmann, D. Bur, J. Gatfield, P. Hess, C. Kohl, C. Mangold, B. Mathys, K. Menyhart, C. Muller, O. Nayler, M. Scherz, G. Schmidt, V. Sippel, B. Steiner, D. Strasser, A. Treiber and T. Weller, "2-Imino-thiazolidin-4-one Derivatives as Potent, Orally Active S1P1 Receptor Agonists", Journal of Medicinal Chemistry, Vol. 53, pp. 4198-4211, 2010.
56. Arshadi S., E. Vessally, M. Sobati, A. Hosseinian, A. Bekhradnia, "Chemical fixation of CO2 to N-propargylamines: A straightforward route to 2-oxazolidinones", Journal of CO2 Utilization, Vol. 19 pp. 120-129, 2017.
57. Leach, K. L., S. J. Brickner, M. C. Noe, P. F. Miller, "Linezolid, the first oxazolidinone antibacterial agent", Annals of the New York Academy of Sciences, Vol. 1222, pp. 4954, 2011
58. Moran G. J., F. Edward, G. R. Corey, A. F. Das, C. De Anda, P. Prokocimer, " Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skintructure infections (ESTABLISH-2): a randomised, double-blind, phase 3, noninferiority trial", The Lancet Infectious Diseases, Vol. 14, pp. 696-705, 2014.
59. Moureau F., J. Wouters, M. Depas, D.P. Vercauteren, F. Durant, F. Ducrey, J.J. Koenig, F. X. Jarreau, "A reversible monoamine oxidase inhibitor,Toloxatone: comparison of its physicochemical properties with those of other inhibitors including Brofaromine, Harmine, R40519 and Moclobemide", European Journal of Medicinal Chemistry, Vol. 30, pp. 823-837, 1995.
60. Demir, Ö., İ. Doğan, "Conformational preferences in diastereomeric (5S)-methyl-3-(o-aryl)-2,4-oxazolidinediones", Chirality, Vol. 15, pp. 242-250, 2003.
61. Farshbaf S., L. Z. Fekrib, M. Nikpassand, R. Mohammadi, E. Vessally, "Dehydrative condensation of β-aminoalcohols with CO 2 : An environmentally benign access to 2oxazolidinone derivatives", Journal of CO_{2} Utilization, Vol. 25 , 194-204, 2018.
62. Zhang, Y., Y. Zhang, Y. Ren, O. Ramström, " Synthesis of chiral oxazolidinone derivatives through lipase-catalyzedkinetic resolution", Journal of Molecular Catalysis B: Enzymatic, Vol. 122, pp. 29-34, 2015.
63. Yufit, D. S., J. A. K. Howard, "Structure of hemiaminal intermediate of the reaction of diethylamine with cyclobutanone", Journal of Molecular Structure, Vol. 984, pp. 182185, 2010.
64. Olczak, T., M. Śmiga, A. Kwiecieǹ, M. Bielecki, R. Wróbel, M. Olczak, Z. Ciunik, "Antimicrobial activity of stable hemiaminals against Porphyromonas gingivalis", Anaerobe, Vol. 44, pp. 27-33, 2017.
65. Velázquez, M., H. Salgado-Zamora, C. Pérez, M. E. Campos-A, P. Mendoza, H. Jiménez, R. Jiménez, "Intramolecular hydrogen bond stabilization of hemiaminal
structures, precursors of imidazo[1,2-a]pyridine", Journal of Molecular Structure, Vol. 979, pp. 56-61, 2010.
66. Suni, V., M. R. P. Kurup, M. Nethaji, "Unusual isolation of a hemiaminal product from 4-cyclohexyl-3-thiosemicarbazide and di-2-pyridyl ketone: Structural and spectral investigations ", Journal of Molecular Structure, Vol. 749, pp. 177-182, 2005.
67. Wajda-Hermanowicz, K., D. Pieniążczak, R. Wróbel, A. Zatajska, Z. Ciunik, S. Berski, "A study on the condensation reaction of aryl substituted 4-amine-1,2,4-triazole with benzaldehydes: Structures and spectroscopic properties of schiff bases and stable hemiaminals", Journal of Molecular Structure, Vol. 1114, pp. 108-122, 2016.
68. Erol Gunal, S., G. Sabuncu Gurses, S. Sag Erdem, I. Dogan, "Synthesis of stable tetrahedral intermediates (hemiaminals) and kinetics of their conversion to thiazol-2imines", Tetrahedron, Vol. 72 pp. 2122-2131, 2016.
69. Lorentzen, E., B. Siebers, R. Hensel, E. Pohl, " Mechanism of the Schiff Base Forming Fructose-1,6-bisphosphate Aldolase: Structural Analysis of Reaction Intermediates", Biochemistry, Vol. 44, pp. 4222-4229, 2005.
70. Murru, S., C. B. Singh, V. Kavala, B. K. Patel, "A convenient one-pot synthesis of thiazol-2-imines: application in the construction of pifithrin analogues", Tetrahedron, Vol. 64, pp. 1931-1942, 2008.
71. Zhao, Q., C. Shen, H. Zheng, J. Zhang, P. Zhang, "Synthesis, characterization, and cytotoxicity of some novel glycosyl thiazol-2-imines as antitumoral agents", Carbohydrate Research, , Vol. 345, pp. 437-441, 2010.
72. Heravi, M. M., S. Moghimi, "An efficient synthesis of thiazol-2-imine derivatives via a one-pot, three-component reaction", Tetrahedron Letters, Vol. 53, pp. 392-394, 2012.
73. Shiran, J. A., A. Yahyazadeh, B. M. Yamin, M. Mamaghani, J. Albadi, "Basic Ionic Liquid as Catalyst and Reaction Media for the One-pot Three-component Regioselective Synthesis of Various Thiazol-2-imine Derivatives", Journal of Heterocyclic Chemistry, , Vol. 53, p. 1009, 2016.
74. Chen, C., I. J. Barve, C. Sun, "One-Pot Three-Component Synthesis of 2-Imino-1,3Thiazolines on Soluble Ionic Liquid Support", ACS Comb. Sci., Vol., 18, 638-643, 2016.
75. Kumar, G. S., S. P. Ragini, H. M. Meshram, "Catalyst free, regioselective one-pot three-component synthesis of thiazol-2-imine derivatives in ionic liquid", Tetrahedron Letters, , Vol. 54, pp. 5974-5978, 2013.
76. Haouas, B., N. Sbei, H. Ayari, M. L. Benkhouda, B. Batanero, "Efficient synthetic procedure to new 2 -imino-1,3-thiazolines and thiazolidin-4-ones promoted by acetonitrile electrogenerated base", New J. Chem., Vol. 42, pp. 11776-11781, 2018.
77. Ruano, J. L. G., M. C. García, A. L. Navarro, F. Tato, A. M. M. Castro, "Reactions of enantiopure β-ketimino sulfoxides with $\mathrm{Et}_{2} \mathrm{AlCN}$. Scope and limitations in asymmetric synthesis of α-aminonitriles", ARKIVOC, Vol. 6, pp. 33-45, 2005.
78. Chen, F., Z. Ding, Y. He, J. Qin, T. Wang, Q. Fan, "Asymmetric hydrogenation of Nalkyl and N -aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: the counteranion and solvent effects, and substrate scope", Tetrahedron, Vol. 68, pp. 5248-5257, 2012.
79. Wang, P., L. Liu, Z. Luo, Q. Zhou, Y. Lu, F. Xia, Y. Liu, " Combination of transition metal Rh-catalysis and tautomeric catalysis through a bi-functional ligand for one-pot tandem methoxycarbonylation-aminolysis of olefins towards primary amides", Journal of Catalysis, Vol. 361, pp. 230-237, 2018.
80. Teke Tuncel, S., S. Erol Gunal, M. Ekizoglu, N. Gokhan Kelekci, S. S. Erdem, E. Bulak, W. Frey, I. Dogan, "Thioureas and their cyclized derivatives: Synthesis, conformationalanalysis and antimicrobial evaluation", Journal of Molecular Structure, Vol. 1179, pp. 40-56, 2019.
81. Rang, K., J. Sandström and C. Svensson, "The conformational equilibrium of N, N '-bis[(S)-1-phenylethyl]-thiourea and its solvent dependence, studied by NMR and CD spectra and by X-ray crystallography", Canadian Journal of Chemistry, Vol. 76 pp. 811-820, 1998.
82. Berber, H., P. Lameiras, C. Denhenz, C. Anthheaume, J. Clayden, "Atropisomerism about Aryl-Csp ${ }^{3}$ Bonds: The Electronic and Steric Influence of ortho-Substituents on Conformational Exchange in Cannabidiol and Linderatin Derivatives", The Journal of Organic Chemistry, Vol. 79, pp. 6015-6027, 2014.
83. Roschester, J., U. Berg, M. Pierrot and J. Sandstrom, "Conformational Analysis of N-(1- Phenylethyl)- Δ^{4}-thiazoline-2-thiones and Analogues. A ${ }^{1} \mathrm{H}$ NMR, Circular Dichroism, X-ray Crystallographic, and Molecular Mechanics Study", Journal of American Chemical Society, Vol. 109, pp. 492-507, 1987.
84. Rang, K., F. Liao, J. Sandström and S. Wang, "Diastereomers of 3-(S)-(1-Phenylethyl)-5-Methyland -5-Phenylrhodanine: Crystal Structures, Conformations, and Circular Dichroism Spectra", Chirality, Vol. 9, pp. 568-577, 1997.
85. Kaminskyy, D., A. Kryshchyshyn and R. Lesyk," 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry", European Journal of Medicinal Chemistry, Vol. 140, pp. 542-594, 2017.
86. Ottana, R., R. Maccari, M. L. Barreca, G. Bruno, A. Rotondo, A. Rossi, G. Chiricosta, R. Di Paola, L. Sautebin, S. Cuzzocrea and M.G. Vigorita, "5-Arylidene-2-imino-4thiazolidinones: design and synthesis of novel anti-inflammatory agents ", Bioorganic \& Medicinal Chemistry, Vol. 13, pp. 4243-4252, 2005.
87. Erol Gunal, S., S. Teke Tuncel, N. Gokhan Kelekci, G. Ucar, B. Yuce Dursun, S. S Erdem, I. Dogan, "Asymmetric synthesis, molecular modeling and biological evaluationof 5-methyl-3-aryloxazolidine-2,4-dione enantiomers as monoamineoxidase (MAO) inhibitors", Bioorganic Chemistry, Vol. 77, pp. 608-618, 2018.
88. Demir-Ordu, O., I. Dogan," Stereoselective lithiation and alkylation and aldol reactions of chiral 5-methyl-3-(o-aryl)-oxazolidinones", Tetrahedron:Asymmetry, Vol. 21, pp.2455-2464, 2010.
89. Demir-Ordu, Ö., E. M. Yılmaz, İ. Doğan, "Determination of the absolute stereochemistry and the activation barriers of thermally interconvertible heterocyclic compounds bearing a naphthyl substituent ", Tetrahedron: Asymmetry, Vol. 16, pp. 3752-3761, 2005.
90. Essiz, S., E. Dalkilic, O. Sari, A. Dastan, M. Balci, "Unexpected regioselectivity observed in the bromination and epoxidation reactions of p-benzoquinone-fused norbornadiene: An experimental and computational study", Tetrahedron, Vol. 73, pp. 1640-1649, 2017.

APPENDIX A: SPECTROSCOPIC DATA

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for the synthesized compounds are given.

Figure A. $1{ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 R R}, \mathbf{1 S S}$ and $\mathbf{1 D L}\left(\mathrm{CDCl}_{3}\right)$.

 ppm (f1)

Figure A.2. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 R R}, \mathbf{1 S S}$ and $\mathbf{1 D L}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.3. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 R R}, \mathbf{2 S S}$ and $\mathbf{2 D L}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.4. ${ }^{1}$ H NMR of compound $2 S S$ in Pyridine- d_{5}

Figure A.5. ${ }^{1}$ H NMR of compound $\mathbf{2 S S}$ in Methanol- d_{4}.

Figure A.6. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 S S}$ in DMSO- d_{6}.

Figure A.7. ${ }^{1} \mathrm{H}$ NMR of compound $2 S S$ at 233 K in CDCl_{3}.

Figure A.8. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{2 R R}, \mathbf{2 S S}$ and $\mathbf{2 D L}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.9. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{3 R R}$ and $\mathbf{3 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.10. ${ }^{1} \mathrm{H}$ NMR of compound $3 S S$ at 243 K in CDCl_{3}.

Figure A.11. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{3 R} \boldsymbol{R}$ and $\mathbf{3 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.12. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{4} \boldsymbol{R} \boldsymbol{R}$ and $\mathbf{4 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.13. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 S S}$ at 233 K in CDCl_{3}.

Figure A.14. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{4 S S}$ and $\mathbf{4 R R}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.15. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{5 S S}$ and $\mathbf{5 R R}$ (DMSO- d_{6}).

Figure A.16. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{5 R R}$ and $\mathbf{5 S S}$ (DMSO- d_{6}).

Figure A.17. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{6 R R}$ and $\mathbf{6 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.18. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{6 R R}$ and $\mathbf{6 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.19. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{7 R R}$ and $\mathbf{7 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.20. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{7 R R}$ and $\mathbf{7 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.21. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{8} \boldsymbol{R} \boldsymbol{R}$ and $\mathbf{8 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.22. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{8 R R}$ and $\mathbf{8 S S}\left(\mathrm{CDCl}_{3}\right)$.

ppm (f1)

Figure A.23. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{9 R R}$ and $\mathbf{9 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.24. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{9} \boldsymbol{R} \boldsymbol{R}$ and $\mathbf{9 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.25. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 0 R R}$ and $\mathbf{1 0 S S}$ (DMSO- d_{6}).

Figure A.26. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 0 R R}$ and $\mathbf{1 0 S S}\left(\right.$ DMSO- $\left.d_{6}\right)$.

ppm (f1) ${ }^{9.0}$

Figure A.27. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 1 R R}$ and $\mathbf{1 1 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.28. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 1 R R}$ and $\mathbf{1 1 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.29. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 2 R R}$ and $\mathbf{1 2 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.31. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 3 R R}$ and $\mathbf{1 3 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.32. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 3 R R}$ and $\mathbf{1 3 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A. $33 .{ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 4 R}$ and $\mathbf{1 4 S}\left(\mathrm{CDCl}_{3}\right)$. (major/minor=4.54)

Figure A. $35 .{ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 5 R R}$ and $\mathbf{1 5 S S}\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure A.36. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 5 R R}$ and $\mathbf{1 5 S S}\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure A. $37 .{ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 6 S}$ and $\mathbf{1 6 R}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.39. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 7 S}$ and $\mathbf{1 7 R}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.40. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 7 S}$ and $\mathbf{1 7 R}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.41. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 8 S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.42. . ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 8 S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.43. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{1 9 R R}$ and $\mathbf{1 9 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.44. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{1 9 R R}$ and $\mathbf{1 9 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.45. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 0 R R}$ and $\mathbf{2 0 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.46. ${ }^{13} \mathrm{C}$ NMR of compounds $20 R R$ and $20 S S\left(\mathrm{CDCl}_{3}\right)$.

Figure A.47. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 1 R R}$ and $\mathbf{2 1 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.48. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{2 1 R R}$ and $\mathbf{2 1 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.49. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 2 R R}$ and $\mathbf{2 2 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.50. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{2 2 R R}$ and $\mathbf{2 2 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.51. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 3 R R}$ and $\mathbf{2 3 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.53. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 4 R R}$ and $\mathbf{2 4 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.54. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{2 4 R R}$ and $\mathbf{2 4 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.55. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 5 R R}$ and $\mathbf{2 5 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.56. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{2 5 R R}$ and $\mathbf{2 5 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.57. ${ }^{1} \mathrm{H}$ NMR of compounds $\mathbf{2 6 R R}$ and 26SS $\left(\mathrm{CDCl}_{3}\right)$.

Figure A.58. ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{2 6 R R}$ and $\mathbf{2 6 S S}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.59. ${ }^{1} \mathrm{H}$ NMR of compound $27\left(\mathrm{CDCl}_{3}\right)$.

Figure A.60. ${ }^{13} \mathrm{C}$ NMR of compound $27\left(\mathrm{CDCl}_{3}\right)$.

Figure A.61. ${ }^{1} \mathrm{H}$ NMR of compound $32\left(\mathrm{CDCl}_{3}\right)$.

Figure A.62. ${ }^{13} \mathrm{C}$ NMR of compound $32\left(\mathrm{CDCl}_{3}\right)$.

Figure A. $63 .{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 3}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.64. ${ }^{13} \mathrm{C}$ NMR of compound $33\left(\mathrm{CDCl}_{3}\right)$.

Figure A.65. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 4}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.66. ${ }^{13} \mathrm{C}$ NMR of compound $34\left(\mathrm{CDCl}_{3}\right)$.

Figure A.67. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 5}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.68. ${ }^{13} \mathrm{C}$ NMR of compound $35\left(\mathrm{CDCl}_{3}\right)$.

Figure A.69. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 6}\left(\mathrm{CDCl}_{3}\right)$.

 $\begin{array}{llllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ ppm (f1)

Figure A.70. ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 6}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.71. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 7}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.72. ${ }^{13} \mathrm{C}$ NMR of compound $37\left(\mathrm{CDCl}_{3}\right)$.

Figure A.73. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 8}\left(\mathrm{CDCl}_{3}\right)$.

Figure A.74. ${ }^{13} \mathrm{C}$ NMR of compound $38\left(\mathrm{CDCl}_{3}\right)$.

Figure A.75. ${ }^{1} \mathrm{H}$ NMR of compound $39\left(\mathrm{CDCl}_{3}\right)$.

Figure A.76. ${ }^{13} \mathrm{C}$ NMR of compound $39\left(\mathrm{CDCl}_{3}\right)$.

Figure A.77. ${ }^{1} \mathrm{H}$ NMR of compound $40\left(\mathrm{CDCl}_{3}\right)$.

Figure A.78. ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 0}\left(\mathrm{CDCl}_{3}\right)$.

