SYNTHESIS AND REACTIONS OF THIOUREAS, THEIR CYCLIZED DERIVATIVES AND OXAZOLIDINDIONES

by

Şenel Teke Tunçel B.S., Chemistry, Niğde Ömer Halisdemir University, 2008 M.S., Chemistry, Gaziantep University, 2011

> Submitted to Institute for Graduate Studies in Science and Engineering in partial fulfilment of the requirements for the degree of Doctor of Philosophy

> > Graduate Program in Chemistry Bogazici University 2019

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Professor İlknur Doğan for her endless patience, help, encouragement and support. It was hard to finish this study without her support. Her depth knowledge has illuminated my way at every stage of this work.

I also would like to express my thanks to my PhD thesis committee Associate Prof. Ali Ersin Acar ,Professor Safiye Erdem, Asistant Prof. Sevgi Sarıgül and Prof. Duygu Avcı Semiz for their contributions.

I sincerely thank to my lab friends Dr. Şule Erol Günal, Asistant Prof. Sevgi Sarıgül, Ari Hakgör, Melis Bacak for their friendships, support and great times we spend in and out of the lab.

I would also like to thank my dear friends Ayşe Çağlayan, Çimen Özgüç Önal, Elif Kurnaz, Ekmel Helvacıoğlu, Jesmi Çavuşoğlu and Sedef Özcan for their friendships and support during my graduate years.

My final thanks go to my husband Serhat Tunçel and my family for their love, support and encouragement.

This project has been supported by TUBITAK with research number 114Z172 and Bogazici University Research Fund with project number 9760 (15B05M5 coded project) and with project number 11982 (16B05D7 coded project).

ABSTRACT

SYNTHESIS AND REACTIONS OF THIOUREAS, THEIR CYCLIZED DERIVATIVES AND OXAZOLIDINDIONES

In this study, several single enantiomer thioureas were synthesized and converted to their cyclic derivatives: 2-imino-thiazolidin-4-ones and 5-benzylidene derivatives. The conformations of the thioureas were determined in solution and in the solid state. In solution; an interconversion between the E,Z and Z,E conformations was observed with ΔG^{\neq} values of around 50 kJ/mole. However in the solid state X-Ray crystal structure analyses revealed that they possess a Z,Z conformation. The thiazolidin-4-ones were found to be present only in the anti-conformation. Chiral hemiaminals were synthesized from the corresponding 2-iminothiazolidine-4-ones by LiAlH₄ reductions stereoselectively and were converted to single enantiomer thiazol-2-imines by a water elimination reaction. The optical purities of thiazol-2-imines were proven by polarimetric measurements. The kinetics of the dehydration reactions which occured spontenaously both in the solid state and in solution were followed by time dependent ¹H NMR spectroscopy. The corresponding first order rate constants and free energies of activation for the conversions were reported. It was found that the N-naphthalen-1-yl)ethyl derivatized hemiaminals were the most stable of all, the half-lives amounting to 267 days in the solid state and 96 hours in soluton. A series of axially chiral pyridine compounds carrying 2-iminothiazolidin-4one core were also reduced to their hemiaminal derivatives using LiAlH₄. Due to the restricted rotation around the N_3 -aryl single bond, the M/P isomerization was observed. Single enantiomers of the new 5-methyl-3-aryloxazolidine-2,4-diones were synthesized by an asymmetric synthesis using chiral pool strategy and their optical purities were proven. Enantiomerically pure 5-methyl-3-aryloxazolidine-2,4-diones were reduced to their hemiaminal derivatives and ring opening products in the presence of LiAlH₄ and NaBH₄, respetively. Partial racemization was observed due to enolization of the molecules because of the acidic α -hydrogen at C-5 of the ring during these reactions.

ÖZET

TİYOÜRELER, HALKALAŞMIŞ TÜREVLERİ VE OKSAZOLİDİNDİONLARIN SENTEZİ VE REAKSİYONLARI

Bu çalışmada, çeşitli tiyoüre türevleri tek enantiyomer olarak sentezlendi ve halkalı türevleri olan 2-imino-tiyoazolidin-4-on ve 5-benzilidenlere dönüştürüldü. Tiyoürelerin konformasyonları çözeltide ve katı halde saptantı. Çözeltide , E,Z ve Z,E konformasyonları arasında bir denge olduğu 50 kJ/mol civarında ΔG^{\neq} değeriyle gözlemlendi. Ancak katı halde X-Ray kristal yapı analizi, bileşiklerin Z,Z konformasyonuna sahip olduğunu gösterdi. Tiyoazolidin-4-onların sadece anti-konformasyonda mevcut oldukları bulundu. Kiral hemiaminaller LiAlH₄ indirgemesiyle 2-imino-tiyoazolidin-4-onlardan stereosecimli olarak sentezlendi ve tek enantiyomer tiyoazol-2-iminlere su eliminasyonu reaksiyonu ile dönüştürüldü. Tiyoazol-2-iminlerin optik saflıkları polarimetrik ölçümlerle kanıtlandı. Hem katı halde hem de çözeltide kendiliğinden oluşan dehidrasyon reaksiyonlarının kinetikleri zamana bağlı¹H NMR spektroskopisiyle takip edildi. Dönüşümler için birinci derece hız sabitleri ve serbest aktivasyon enerjisi değerleri tayin edildi. N-naftil-1-il)etil türevli hemiaminallerin hepsinin en kararlısı olduğu, yarı ömürlerinin katı halde 267 gün çözeltide 96 saat kadar olduğu bulundu. 2-İmino-tiyoazolidin-4-on halkası taşıyan aksiyel olarak kiral bir seri piridin bileşiği de LiAlH₄ kullanılılarak hemiaminal türevlerine indirgendi. N₃-aril tek bağı çevresindeki dönmeden dolayı M/P izomerlerinin oluştuğu gözlemlendi. Yeni 5-metil-3-ariloksazolidin-2,4-dionlar kiral havuz yaklaşımı kullanılarak tek enantiyomer olarak elde edildi ve optik saflıkları kanıtlandı. Enantiyomerik olarak saf 5-metil-3-ariloksazolidin-2,4-dionlar hemiaminal ve halka açılma ürünlerine sırasıyla LiAlH₄ ve NaBH₄ kullanılılarak indirgendi. Bu reaksiyonlar sırasında halkanın C-5 karbonundaki asidik α -hidrojenden dolayı molekülün enolizasyonu sebebiyle kısmi rasemizasyon gözlemlendi.

TABLE OF CONTENTS

AC	KNO	WLEDGEMENTS	iii
AB	STRA	ACT	iv
ÖZ	ЕТ		v
TA	BLE (OF CONTENTS	vi
LIS	T OF	FIGURES	xiii
LIS	T OF	TABLES	xxii
LIS	T OF	SYMBOLS	xxiii
LIS	T OF	ACRONYMS/ABBREVIATIONS	xxiv
1.	INTI	RODUCTION	1
	1.1.	Chirality	1
	1.2.	Biological Importance of Chirality	5
	1.3.	Methods Used for the Evaluation of Enantiomeric Purity and	nd
		Assigment of Absolute Chemistry of Chiral Molecules	9
		1.3.1. HPLC with a Chiral Stationary Phase	9
		1.3.2. ¹ H-NMR in the presence of a Chiral Auxiliary Compound	9
		1.3.3. By X-Ray Crystallography	10
	1.4.	Determination of Rotational Barrier by Low Temperature NMR	10
	1.5.	Thioureas	11
	1.6.	2-Imino-Thiazolidin-4-ones and Their 5-Benzylidene Derivatives	12
	1.7.	Oxazolidindiones	14
	1.8.	Hemiaminals	15
2.	AIM	I OF THE STUDY	
3.	RES	ULTS AND DISCUSSION	
	3.1.	Chiral Thioureas and Their Cyclized Derivatives [80]	

		3.1.1.	Synthesis of Chiral Thioureas, 2-Imino-Thiazoidin-4-ones and 5- Benzylidenes	20
		212	Conformational Analysis of Thiouroos	21
		3.1.2.	2 Imine Thisselidine 4 area and Their 5 Densylidere	21
		3.1.3.	2-Immo-Imazondine-4-ones and Ineir 5-Benzyndene Derivatives	31
	3.2.	2,4-Ox	azolidinediones [87]	35
		3.2.1.	Asymmetric Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones	35
	3.3.	Chiral	Hemiaminals from Chiral 2-imino-thiazolidine-4-ones	37
		3.3.1.	Synthesis of Chiral Hemiaminals	37
		3.3.2.	Transformation of the Chiral Hemiaminals to Single Enantiomer Thiazol-2-Imine Derivatives	40
	3.4.	Bromi	nation of Compound 23SS	44
		3.4.1.	Synthesis of Compound 27	44
	3.5.	Stable	Hemiaminals from Axially Chiral Pyridine Compounds	46
		3.5.1.	Synthesis of Stable Hemiaminals from Axially Chiral Pyridine Compounds	46
	3.6.	Reduc	tion of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH ₄	51
		3.6.1.	Synthesis of Hemiaminals from Single Enantiomer 5-Methyl-3- aryloxazolidine-2,4-diones	51
		3.6.2.	Diastereoselectivity in Reduction of 5-Methyl-3-aryloxazolidine- 2,4-dione Derivatives with LiAlH ₄	52
	3.7.	Reduc	tion of 5-Methyl-3-Aryloxazolidine-2,4-Diones with NaBH ₄	56
		3.7.1.	Synthesis of the Ring Opening Products from 5-Methyl-3- Aryloxazolidine-2,4-Diones	56
4.	EXP	ERIME	NTAL	59
	4.1.	Synthe	esis of <i>N</i> , <i>N</i> '–Bis-Thioureas	59
		4.1.1.	General procedure	59
			4.1.1.1. <i>N</i> , <i>N</i> '-bis((<i>R</i>)-1-phenylethyl)thiourea (1 <i>RR</i>)	59

		4.1.1.2.	<i>N</i> , <i>N</i> '-bis((<i>S</i>)-1-phenylethyl)thiourea (1 <i>SS</i>)	59
		4.1.1.3.	<i>N</i> , <i>N</i> '-bis(1-phenylethyl)thiourea (1 <i>DL</i>)	59
		4.1.1.4.	N,N'-bis((R)-1-(naphtalen-1-yl)ethyl)-thiourea (2RR)	60
		4.1.1.5.	N,N'-bis((S)-1-(naphtalen-1-yl)ethyl)-thiourea (2SS)	60
		4.1.1.6.	N,N'-bis(1-(Naphtalen-1-yl)ethyl)thiourea (2DL)	60
		4.1.1.7.	<i>N</i> , <i>N</i> '-bis((<i>R</i>)-1-cyclohexylethyl)thiourea (3 <i>RR</i>)	61
		4.1.1.8.	<i>N</i> , <i>N</i> '-bis((<i>S</i>)-1-cyclohexylethyl)thiourea (3 <i>SS</i>)	61
		4.1.1.9.	N, N'-bis((R)-1-(4-methoxyphenyl)ethyl)thiourea (4 RR)	61
		4.1.1.10	N,N'-bis((S)-1-(4-methoxyphenyl)ethyl)thiourea (4SS)	61
		4.1.1.11	. <i>N</i> , <i>N</i> '-bis((<i>R</i>)-1-benzylpyrrolidine-3-yl)thiourea (5 <i>RR</i>)	62
		4.1.1.12	N,N'-bis((S)-1-benzylpyrrrolidine-3-yl)thiourea (5SS)	62
4.2.	Synthe	esis of 2-1	Imino-Thiazolidine-4-ones	62
	4.2.1.	General	procedure	62
		4.2.1.1.	3-((<i>R</i>)-1-phenylethyl)-2-((<i>R</i>)-1-	
			phenylethylimino)thiazolidine-4-one (6RR).	63
		4.2.1.2.	-((<i>S</i>)-1-phenylethyl)-2-((<i>S</i>)-1-	
			phenylethylimino)thiazolidine-4-one (6SS).	.63
		4.2.1.3.	3-(1-phenylethyl)-2-(1-phenylethylimino)thiazolidine-4-	
			one (6 <i>DL</i>).	63
		4.2.1.4.	3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-naphthalen-1-	
			yl)ethylimino)thiazolidine-4-one (7 <i>RR</i>)	64
		4.2.1.5.	3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-naphthalen-1-	C 1
			yl)ethylimino) thiazolidine-4-one (7SS)	64
		4.2.1.6.	3-(1-(naphthalen-1-yl)ethyl)-2-(1-naphthalen-1-	C 1
			yı)etnyıimino)tniazolidine-4-one (<i>/DL</i>)	64
		4.2.1.7.	3-((R)-1-cyclohexylethyl)-2-((R)-1-	
			cyclonexylethylimino)thiazolidine-4-one(8KK)	65

		4.2.1	1.8.	3-((<i>S</i>)-1-cyclohexylethyl)-2-((<i>S</i>)-1-	
				cyclohexylethylimino)thiazolidine-4-one (8SS)	65
		4.2.1	1.9.	3-((<i>R</i>)-1-(4-methoxyphenylethyl)-2-((<i>R</i>)-1-(4-	
				methoxyphenylethylimino)thiazolidin-4-one (9RR)	65
		4.2.1	1.10	3-((<i>S</i>)-1-(4-methoxyphenylethyl)-2-((<i>S</i>)-1-(4-	
				methoxyphenylethylimino)thiazolidin-4-one (9SS)	66
		4.2.1	1.11	3-((<i>R</i>)-1-benzylpyrrolidin-3-yl)-2-((<i>R</i>)-1-	
				benzylpyrrolidine-3-ylimino)thiazolidine-4-one (10RR)	66
		4.2.1	1.12	3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1-	
				benzylpyrrolidine-3-ylimino)thiazolidine-4-one (10SS)	66
4.3.	Synhe	sis	of	5-Benzylidene-2-Imino-thiazolidine-4-ones and 5-	
	Benzy	lidene	e-thi	azolidine-2,4-diones	67
	4.3.1.	Gen	eral	procedure	67
		4.3.1	l.1.	5-Benzylidene-3-((<i>R</i>)-1-phenylethyl)-2-((<i>R</i>)-1-	
				phenylethylimino)thiazolidin-4-one (11RR).	67
		4.3.1	1.2.	5-Benzylidene-3-((S)-1-phenylethyl)-2-((S)-1-	
				phenylethylimino)thiazolidin-4-one (11SS)	67
		4.3.1	1.3.	5-Benzylidene-3-((<i>R</i>)-1-(naphthalen-1-yl)ethyl)-2-((<i>R</i>)-	
				1-naphthalen-1-yl)ethylimino)thiazolidine-4-one (12RR)	68
		4.3.1	1.4.	5-Benzylidene-3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-	
				naphthalen-1-yl)ethylimino)thiazolidine-4-one (12SS)	68
		4.3.1	1.5.	5-Benzylidene-3-((<i>R</i>)-1-cyclohexylethyl)-2-((<i>R</i>)-1-	
				cyclohexylethylimino)thiazolidine-4-one (13RR)	68
		4.3.1	1.6.	5-Benzylidene-3-((S)-1-cyclohexylethyl)-2-((S)-1-	
				cyclohexylethylimino)thiazolidine-4-one (13SS)	69
		4.3.1	1.7.	5-Benzylidene-3-((<i>R</i>)-1-(4-methoxyphenylethyl)-	
				thiazolidine-2,4-dione (14 <i>R</i>)	69
		4.3.1	1.8.	5-Benzylidene-3-((S)-1-(4-methoxyphenylethyl)-	
				thiazolidine-2,4-dione (14S)	69

		4.3.1.9.	5-Benzylidene-3-((<i>R</i>)-1-benzylpyrrolidine-3-yl)-2-((<i>R</i>)-1-
			benzylpyrrolidine-3-ylimino)thiazolidine-4-one (15RR)70
		4.3.1.10	.5-Benzylidene-3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1-
			benzylpyrrolidine-3-ylimino)thiazolidine-4-one (15SS)70
4.4.	Synthe	esis of 5-1	Methyl-3-aryloxazolidine-2,4-diones70
	4.4.1.	General	procedure
		4.4.1.1.	(5 <i>R</i>)-Methyl-3-phenyloxazolidine-2,4-dione (+16 <i>R</i>)71
		4.4.1.2.	(5 <i>S</i>)-Methyl-3-phenyloxazolidine-2,4-dione (-16 <i>S</i>)71
		4.4.1.3.	(5 <i>R</i>)-Methyl-3-(<i>m</i> -tolyl)oxazolidine-2,4-dione (+17 <i>R</i>)71
		4.4.1.4	(5 <i>S</i>)-Methyl-3-(<i>m</i> -tolyl)oxazolidine-2,4-dione (-17 <i>S</i>)71
		4.4.1.5.	(5 <i>S</i>)-Methyl-3-(<i>o</i> -tolyl)oxazolidine-2,4-dione (-18 <i>S</i>)72
4.5.	Reduc	tion of 2-	Imino-Thiazolidine-4-ones with LiAlH ₄ 72
	4.5.1.	General	Procedure
		4.5.1.1.	3-((<i>R</i>)-1-phenylethyl)-2-((<i>R</i>)-1-
			phenylethylimino)thiazolidine-4-ol (19RR)72
		4.5.1.2.	3-((<i>S</i>)-1-phenylethyl)-2-((<i>S</i>)-1-
			phenylethylimino)thiazolidine-4-ol (19SS)73
		4.5.1.3.	3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-(naphthalen-1-(naphth
			yl)ethylimino)thiazolidin-4-ol (20RR)73
		4.5.1.4.	3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-(naphthalen-1-
			yl)ethylimino)thiazolidin-4-ol (20SS)
		4.5.1.5.	3-((R)-1-cyclohexylethyl)-2-((R)-1-
			cyclohexylethylimino)thiazolidine-4-ol (21RR)74
		4.5.1.6.	3-((S)-1-cyclohexylethyl)-2-((S)-1-
			cyclohexylethylimino)thiazolidine-4-ol (21SS)74
		4.5.1.7.	3-((<i>R</i>)-1-(4-methoxyphenyl)ethyl)-2-((<i>R</i>)-1-(4-
			methoxyphenyl)ethylimino) thiazolidin-4-ol (22 <i>RR</i>)75
		4.5.1.8.	3-((<i>S</i>)-1-(4-methoxyphenyl)ethyl)-2-((<i>S</i>)-1-(4-
			methoxypheyl)ethylimino) thiazolidin-4-ol (22SS)75

4.6.	Transformation of Chiral Hemiaminals to Thiazol-2-imines			
	4.6.1.	General Procedure	76	
		4.6.1.1. 3-((<i>R</i>)-1-phenylethyl)-2-((<i>R</i>)-1-		
		phenylethylimino)thiazoline (23RR)	76	
		4.6.1.2. 3-((<i>S</i>)-1-phenylethyl)-2-((<i>S</i>)-1-		
		phenylethylimino)thiazoline (23SS)	76	
		4.6.1.3. 3-((<i>R</i>)-1-(naphthalen-1-yl)ethyl)-2-((<i>R</i>)-1-(naphthalen-1-		
		yl)ethylimino)thiazoline (24RR)	76	
		4.6.1.4. 3-((<i>S</i>)-1-(naphthalen-1-yl)ethyl)-2-((<i>S</i>)-1-(naphthalen-1-		
		yl)ethylimino)thiazoline (24SS)	77	
		4.6.1.5. 3-((<i>R</i>)-1-cyclohexylethyl)-2-((<i>R</i>)-1-		
		cyclohexylethylimino)thiazoline (25RR)	77	
		4.6.1.6. 3-((<i>S</i>)-1-cyclohexylethyl)-2-((<i>S</i>)-1-		
		cyclohexylethylimino)thiazoline (25SS)	77	
		4.6.1.7. 3-((<i>R</i>)-1-(4-methoxyphenyl)ethyl)-2-((<i>R</i>)-1-(4-		
		methoxyphenyl)ethylimino)thiazoline (26RR)	77	
		4.6.1.8. 3-((<i>S</i>)-1-(4-methoxyphenyl)ethyl)-2-((<i>S</i>)-1-(4-		
		methoxyphenyl)ethylimino) thiazoline (26SS)	77	
4.7.	Bromi	nation of Compound 23SS	78	
	4.7.1.	General Procedure	78	
		4.7.1.1. (S)-N-(4,5-dibromo-3-((S)-1-phenylethyl)thiazolidin-2-		
		ylidene)-1-phenylethanamine (27).	78	
4.8.	Reduc	tion of Axially Chiral Pyridine Compounds with LiAlH ₄	78	
	4.8.1.	General Procedure	78	
		4.8.1.1. (±)-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-		
		ol (32).	78	
		4.8.1.2. (±)-3-(3-methylpyridin-2-yl)-2-(3-methylpyridin-2-		
		ylimino)thiazolidin-4-ol (33)	79	

4.8.1.3. (±)-5-methyl-3-(pyridin-2-yl)-2-(pyridin-2-
ylimino)thiazolidin-4-ol (34)79
4.8.1.4. (±)-5-methyl-3-(3-methylpyridin-2-yl)-2-(3-
methylpyridin-2-ylimino)thiazolidin-4-ol (35)
4.9. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with $LiAlH_4$ 80
4.9.1. General Procedure
4.9.1.1. (±)-4-hydroxy-5-methyl-3-phenyloxazolidin-2-one (36)80
4.9.1.2. (±)-4-hydroxy-5-methyl-3- <i>m</i> -tolyloxazolidin-2-one (37)80
4.10. Ring Opening Reaction of 5-Methyl-3-aryloxazolidine-2,4-diones
with NaBH ₄
4.10.1. General Procedure
4.10.1.1.(±)1-hydroxypropan-2-yl phenylcarbamate (38)81
4.10.1.2.(±)1-hydroxypropan-2-yl <i>m</i> -tolylcarbamate (39)81
4.10.1.3.(±)1-hydroxypropan-2-yl <i>o</i> -tolylcarbamate (40)82
5. CONCLUSION
REFERENCES
APPENDIX A: SPECTROSCOPIC DATA97

LIST OF FIGURES

Figure 1.1. F	R and S enantiomers derived from central chirality
Figure 1.2. 7	The structures of axially chiral biaryl atropisomers2
Figure 1.3.	Fast interconversion between the atropisomers of 1-substituted methyl (S)-[5-(2-nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates
Figure 1.4.	Structures of biaryls showing ΔG^{\neq} values needed for slow interconversion between the atropisomers
Figure 1.5.	Selected examples of axial chirality about C-N single bond4
Figure 1.6.	Structure of axially chiral N-(o-aryl)-2-thioxo-oxazolidine-4-one and rhodanine derivatives
Figure 1.7.	The chemical structures of <i>transoid</i> -(-)-and <i>transoid</i> -(+)-paroxetine6
Figure 1.8.	The chemical structure of <i>L</i> -Histidine
Figure 1.9.	Atropoisomers of Pyrimido[1,2- <i>a</i>][1,4]benzodiazepine7
Figure 1.10.	Enantiomers of axially chiral lamellarin <i>N</i> derivates7
Figure 1.11.	Chemical structures of maleopimaric acid N-aryl imides
Figure 1.12.	Structures of biologically active axially chiral natural products
Figure 1.13.	The proposed solvation model10
Figure 1.14.	Biologically active 1,3-thiazolidin-4-ones described in the literature13
Figure 1.15.	Biologically active 5-ene- thiazolidin-4-ones described in the literature14
Figure 1.16.	Commercial drugs containing oxazolidinone structure15
Figure 1.17.	Stabilization of hemiaminals through the H-bonding and amidine conjugation

Figure 1.18.	Chemical structure of 1-benzoyl-4-(4-nitrophenyl)-3-b-D-
	glucopyranosyl-thiazol-2(3H)-imine
Figure 3.1.	Synthesis of N,N° -bis-thioureas 1-5, the axially chiral 2-
	iminothiazolidin-4-ones 6-10 and the corresponding 5-benzylidene-
	2-imino-thiazolidine-4ones 11-13 and 1521
Figure 3. 2.	Interconverting conformers of <i>N</i> , <i>N</i> -bis-thioureas22
Figure 3.3.	Crystal structures of compounds 2RR, 2SS, 4RR and 4SS23
Figure 3.4.	Partial ¹ H NMR spectra of compound 2SS (CDCl ₃ ,400 MHz)
	showing the temperature dependance of the NH, CH (I) and the CH_3
	(II) proton signals. Assignment of ¹ H NMR shifts of compound 2SS
	at 233 K are given with the coupling constants (Hz) in parenthesis
	(III)
Figure 3.5.	Partial ¹ H NMR spectrum of compound 3SS (CDCl ₃) showing the
	temperature dependance of the NH and CH protons
Figure 3.6.	Partial ¹ H NMR spectrum of compound 4SS (CDCl ₃) showing the
C	aromatic, NH and CH protons
Figure 3.7.	Partial ¹ H NMR spectrum of compound 4SS (CDCl ₃) showing the
	temperature dependance of the NH and CH protons
F : 2 0	
Figure 3.8.	Partial 'H NMR spectrum of compound 4SS (CDCl ₃) showing the
	temperature dependance of the OCH ₃ protons29
Figure 3.9.	Partial ¹ H NMR spectrum of compound 4SS (CDCl ₃) showing the
1.9010.0191	temperature dependance of the CH_2 protons 30
	competitute dependance of the eff3 protons
Figure 3.10.	Resonance structures of 9RR showing a higher electron density on
	the imino nitrogen
Figure 3.11.	The 400 MHz ^T H NMR spectrum of compound $7RR$ in CDCl ₃ showing
	AB type splitting for diastereotopic methylene protons at C-532

Figure 3.12.	The NOESY spectrum of 9RR in CDCl ₃ showed a crosspeak between
	the methine proton bonded to the imino nitrogen (H_b) and the phenyl
	hydrogen bonded to N_3 through a methine linkage
Figure 3.13.	Synthesis of 5-benzylidene-thiazolidine-2,4-diones 14R and 14S
	starting from the 2-imino-thiazolidine-4-ones 9RR and 9SS
Figure 3.14.	Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones
Figure 3.15.	Partial ¹ H NMR spectrum of compounds (\pm) 16 and (-)-16S showing
	quartets for CH protons at C-5 (I) and the doublets for methyl
	groups at C-5 (II) in the presence of six equivalent of chiral auxiliary
	(R)-TFAE in CDCl ₃ . (III) The HPLC chromotograms of compounds
	(±)-16, (+)-16R and (-)-16S on Chiralpak IC. Retetion times (min)
	are writen the on top of the chromatographic peaks. Eluting solvent:
	Hexane:Ethanol (95:5), flow rate: 0.8 mL/min
Figure 3.16.	Synthesis of chiral hemiaminal derivatives and their elimination products38
Figure 3.17.	Partial ¹ H NMR spectrum of hemiaminal 19 <i>RR</i>
Figure 3.18.	¹ H NMR signals of the H_e protons on C4 for the major and the
	minor diastereomers of the hemiaminals 19RR, 20RR, 21RR and
	22 <i>RR</i> (dr=3:1)
Figure 3.19.	The major and the minor diastereomers of the compound 19RR40
Figure 3.20.	Partial ¹ H NMR spectrum of hemiaminal 19RR showing its
	transformation to thiazol-2-imine 23RR in CDCl ₃ with time. (\blacklozenge) =
	hemiaminal and (\blacktriangle) = thiazol-2-imine
Figure 3.21.	(a) The % consumption of compound $19RR$ and the formation of
	compound 23 <i>RR</i> in CDCl _{3.} (b) the plot of ln (C ₀ /C) versus time. C ₀ /C
	the ratio of the initial amou1nt of hemiaminal consumption to the
	elimination product

xv

Figure 3.22.	The plot of ln (C ₀ /C) versus time for compound 19RR and 20RR in
	solvent free media
Figure 3.23.	Bromination of compound 23 <i>SS</i> 44
Figure 3.24.	Partial ¹ H NMR spectrum of the compound 27 showing the diastereoselectivity on C-4 and C-5 protons
Figure 3.25.	Synthesis of stable hemiaminals from pyridine compounds46
Figure 3.26.	The NOESY spectrum of 3347
Figure 3.27.	The partial ¹ H NMR spectra of compound 33 in the absence of chiral auxiliary (a) and showing the enantiomer ratio in the presence of chiral auxiliary (R)- TFAE showing the enantiomer ratio (b)
Figure 3.28.	The expected eight isomers for compound 35 (the different sized balls under the molecules represent the enantiomeric pairs on the partial ¹ H NMR in Figure 3.29)
Figure 3.29.	Partial ¹ H NMR spectra of compound 35 showing the quartet for CH proton at C-5 (a) and the CH ₃ groups at C-5 and attached to pyridine rings (b)
Figure 3.30.	The chemical structures of the major and the minor isomers of compound 34
Figure 3.31.	Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones
Figure 3.32.	Partial ¹ H NMR spectrum of compound 36 showing the diastereoselectivity for C-4, C-5 and OH protons (dr=2:1)
Figure 3.33.	Partial ¹ H NMR spectrum of compound 37 showing the diastereoselectivity for C-4, C-5 and OH protons (dr=2:1)
Figure 3.34.	The HPLC chromatogram showing the diastreomeric pairs for compound 36 (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: 0.8 mL/min, retention times: t_1 : 11.028 min, t_2 : 17.07 min,

	t ₃ : 21.06 min, t ₄ : 38.432 min) (dr=2:1 and racemization ratio= 90:10)
Figure 3.35.	The HPLC chromatogram showing the diastreomeric pairs for
	compound 37 (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5),
	flow rate: 0.8 mL/min, retention times: t1: 11.073 min, t2: 17.833
	min, t ₃ : 22.5 min, t ₄ : 41.848 min) (dr=2:1 and racemization ratio=
	90:10)
Figure 3.36.	2D-NOESY spectrum of compound 3755
Figure 3.37.	Ring-opening reaction of oxazolidin-2,4-diones 16S, 17S and 18S56
Figure 3.38.	The HPLC chromatograms of compounds 38 (I), 39 (II), 40 (III)
	showing the racemization ratios on Chiralpak AD-H, mobile phase:
	Hexane:Ethanol (95:5)
Figure 3.39.	Partial ¹ H NMR spectra of compound 38 containing just the ring
	bemiaminal formation (II) (\bullet – ring opening product and \bullet –
	hemiaminal)
Figure A.1	H NMR of compounds 1 <i>RR</i> , 1 <i>SS</i> and 1 <i>DL</i> (CDCl ₃)98
Figure A.2. ¹	³ C NMR of compounds 1 <i>RR</i> , 1 <i>SS</i> and 1 <i>DL</i> (CDCl ₃)99
Figure A.3.	¹ H NMR of compounds 2 <i>RR</i> , 2 <i>SS</i> and 2 <i>DL</i> (CDCl ₃)100
Figure A.4. ¹	H NMR of compound 2SS in Pyridine- d_5 101
Figure A.5. ¹	H NMR of compound 2SS in Methanol- d_{4}
Figure A.6.	¹ H NMR of compound 2SS in DMSO- d_{6} 103
Figure A.7. ¹	H NMR of compound 2SS at 233 K in CDCl ₃ 104
Figure A.8. ¹	3 C NMR of compounds 2 <i>RR</i> , 2 <i>SS</i> and 2 <i>DL</i> (CDCl ₃)105
Figure A.9. ¹	H NMR of compounds $3RR$ and $3SS$ (CDCl ₃)106

Figure A.10. ¹ H NMR of compound 3SS at 243 K in CDCl ₃	
Figure A.11. ¹ H NMR of compounds 3 <i>RR</i> and 3 <i>SS</i> (CDCl ₃)	
Figure A.12. ¹ H NMR of compounds 4 <i>RR</i> and 4 <i>SS</i> (CDCl ₃)	
Figure A.13. ¹ H NMR of compound 4 <i>SS</i> at 233 K in CDCl ₃	110
Figure A.14. ¹³ C NMR of compounds 4SS and 4RR (CDCl ₃)	111
Figure A.15. ¹ H NMR of compounds 5SS and 5RR (DMSO- d_6)	112
Figure A.16. ¹ H NMR of compounds 5 <i>RR</i> and 5 <i>SS</i> (DMSO- d_6)	113
Figure A.17. ¹ H NMR of compounds 6 <i>RR</i> and 6 <i>SS</i> (CDCl ₃)	114
Figure A.18. ¹³ C NMR of compounds 6 <i>RR</i> and 6 <i>SS</i> (CDCl ₃)	115
Figure A.19. ¹ H NMR of compounds 7 <i>RR</i> and 7 <i>SS</i> (CDCl ₃)	116
Figure A.20. ¹³ C NMR of compounds 7 <i>RR</i> and 7 <i>SS</i> (CDCl ₃)	117
Figure A.21. ¹ H NMR of compounds 8 <i>RR</i> and 8 <i>SS</i> (CDCl ₃)	
Figure A.22. ¹³ C NMR of compounds 8 <i>RR</i> and 8 <i>SS</i> (CDCl ₃)	
Figure A.23. ¹ H NMR of compounds 9 <i>RR</i> and 9 <i>SS</i> (CDCl ₃)	
Figure A.24. ¹³ C NMR of compounds 9 <i>RR</i> and 9 <i>SS</i> (CDCl ₃)	
Figure A.25. ¹ H NMR of compounds $10RR$ and $10SS$ (DMSO- d_6)	
Figure A.26. ¹³ C NMR of compounds $10RR$ and $10SS$ (DMSO- d_6)	
Figure A.27. ¹ H NMR of compounds 11 <i>RR</i> and 11 <i>SS</i> (CDCl ₃)	
Figure A.28. ¹³ C NMR of compounds 11 <i>RR</i> and 11 <i>SS</i> (CDCl ₃)	
Figure A.29. ¹ H NMR of compounds 12 <i>RR</i> and 12 <i>SS</i> (CDCl ₃)	
Figure A.30. ¹³ C NMR of compounds 12 <i>RR</i> and 12 <i>SS</i> (CDCl ₃)	

Figure A.31. ¹ H NMR of compounds 13 <i>RR</i> and 13 <i>SS</i> (CDCl ₃)	28
Figure A.32. ¹³ C NMR of compounds 13 <i>RR</i> and 13 <i>SS</i> (CDCl ₃)	29
Figure A.33. ¹ H NMR of compounds $14R$ and $14S(CDCl_3)$. (major/minor=4.54)13	30
Figure A.34. ¹³ C NMR of compounds 14 <i>R</i> and 14 <i>S</i> (CDCl ₃)	31
Figure A.35. ¹ H NMR of compounds <i>15RR</i> and <i>15SS</i> (DMSO- d_6)	32
Figure A.36. ¹³ C NMR of compounds <i>15RR</i> and <i>15SS</i> (DMSO- d_6)	33
Figure A.37. ¹ H NMR of compounds <i>16S</i> and <i>16R</i> (CDCl ₃)	34
Figure A.38. ¹³ C NMR of compounds <i>16S</i> and <i>16R</i> (CDCl ₃)	35
Figure A.39. ¹ H NMR of compounds <i>17S</i> and <i>17R</i> (CDCl ₃)	36
Figure A.40. ¹³ C NMR of compounds <i>17S</i> and <i>17R</i> (CDCl ₃)13	37
Figure A.41. ¹ H NMR of compound <i>18S</i> (CDCl ₃)	38
Figure A.42 ¹³ C NMR of compound <i>18S</i> (CDCl ₃)	39
Figure A.43. ¹ H NMR of compounds 19 <i>RR</i> and 19 <i>SS</i> (CDCl ₃)14	40
Figure A.44. ¹³ C NMR of compounds 19 <i>RR</i> and 19 <i>SS</i> (CDCl ₃)14	41
Figure A.45. ¹ H NMR of compounds 20 <i>RR</i> and 20 <i>SS</i> (CDCl ₃)14	12
Figure A.46. ¹³ C NMR of compounds 20 <i>RR</i> and 20 <i>SS</i> (CDCl ₃)14	13
Figure A.47. ¹ H NMR of compounds 21 <i>RR</i> and 21 <i>SS</i> (CDCl ₃)14	14
Figure A.48. ¹³ C NMR of compounds 21 <i>RR</i> and 21 <i>SS</i> (CDCl ₃)14	15
Figure A.49. ¹ H NMR of compounds 22 <i>RR</i> and 22 <i>SS</i> (CDCl ₃)14	16
Figure A.50. ¹³ C NMR of compounds 22 <i>RR</i> and 22 <i>SS</i> (CDCl ₃)14	17
Figure A.51. ¹ H NMR of compounds 23 <i>RR</i> and 23 <i>SS</i> (CDCl ₃)14	18

Figure A.52. ¹³ C NMR of compounds 23 <i>RR</i> and 23 <i>SS</i> (CDCl ₃)	149
Figure A.53. ¹ H NMR of compounds 24 <i>RR</i> and 24 <i>SS</i> (CDCl ₃)	
Figure A.54. ¹³ C NMR of compounds 24 <i>RR</i> and 24 <i>SS</i> (CDCl ₃)	151
Figure A.55. ¹ H NMR of compounds 25 <i>RR</i> and 25 <i>SS</i> (CDCl ₃)	
Figure A.56. ¹³ C NMR of compounds 25 <i>RR</i> and 25 <i>SS</i> (CDCl ₃)	
Figure A.57. ¹ H NMR of compounds 26 <i>RR</i> and 26 <i>SS</i> (CDCl ₃)	
Figure A.58. ¹³ C NMR of compounds 26 <i>RR</i> and 26 <i>SS</i> (CDCl ₃)	155
Figure A.59. ¹ H NMR of compound 27 (CDCl ₃)	156
Figure A.60. ¹³ C NMR of compound 27 (CDCl ₃).	
Figure A.61. ¹ H NMR of compound 32 (CDCl ₃)	
Figure A.62. ¹³ C NMR of compound 32 (CDCl ₃)	159
Figure A.63. ¹ H NMR of compound 33 (CDCl ₃).	160
Figure A.64. ¹³ C NMR of compound 33 (CDCl ₃)	161
Figure A.65. ¹ H NMR of compound 34 (CDCl ₃)	
Figure A.66. ¹³ C NMR of compound 34 (CDCl ₃).	
Figure A.67. ¹ H NMR of compound 35 (CDCl ₃)	164
Figure A.68. ¹³ C NMR of compound 35 (CDCl ₃).	165
Figure A.69. ¹ H NMR of compound 36 (CDCl ₃).	166
Figure A.70. ¹³ C NMR of compound 36 (CDCl ₃)	167
Figure A.71. ¹ H NMR of compound 37 (CDCl ₃).	
Figure A.72. ¹³ C NMR of compound 37 (CDCl ₃).	

Figure A.	73. ¹ H NMR of compound 38 (CDCl ₃)	170
Figure A. ²	74. ¹³ C NMR of compound 38 (CDCl ₃)	171
Figure A. ²	75. ¹ H NMR of compound 39 (CDCl ₃)	172
Figure A. ²	76. ¹³ C NMR of compound 39 (CDCl ₃)	173
Figure A.	77. ¹ H NMR of compound 40 (CDCl ₃)	174
Figure A.	78. ¹³ C NMR of compound 40 (CDCl ₃).	175

LIST OF TABLES

Table 3.1. Data from cyrstal structures of compounds 2 <i>RR</i> and 2 <i>SS</i>	24
Table 3.2. Data from cyrstal structures of compounds 4 <i>RR</i> and 4 <i>SS</i>	25
Table 3.3. Selected Thermodynamic and Kinetic Parameters for Compounds 2SS,	
3SS and 4SS Determined by ¹ HNMR in $CDCI_3$ (* at 233 K and **at 243	
K)	26
Table 3.4. The polarimetric and the HPLC data for compounds 6-10 and 11-15	33
Table 3.5. Experimental first order rate constants (k), ΔG^{\neq} and $t_{1/2}$ for the	
transformation of chiral hemiaminals to chiral thiazol-2-imines	42
Table 3.6. Experimental first order rate constants (k), ΔG^{\neq} and $t_{1/2}$ for chiral	
thiazol-2-imines in solvent free media.	43
Table 3.7. The polarimetric data for compounds 23-26.	43
Table 3.8. Racemization ratios of compounds 38, 39 and 40 during the ring	
opening reaction with NaBH4 on Chiralpak AD-H, mobile phase:	
Hexane:Ethanol (95:5).	57

LIST OF SYMBOLS

[α]	Specific Rotation
dr	Diastereomeric ratio
h	Hour
h	Planck's constant
Н	Hertz
J	Joule
К	Kelvin
kь	Boltzman constant
S	Second
t	Time
Т	Temperature
$t_{1/2}$	Half-life
t _R	Retention time
δ	Chemical shift
ΔG^{\neq}	Free energy of activation

LIST OF ACRONYMS/ABBREVIATIONS

CH ₃ COOH	Acetic acid
CDCl ₃	Deuterated chloroform
C_6D_6	Deuterated benzene
CS_2	Carbon Disulfide
COX	Cyclooxygenase
CSA	Chiral solvating agent
CSP	Chiral stationary phase
EtOH	Ethanol
GABA _A	γ-Aminobutyric acid type A
HPLC	High-Performance Liquid Chromatography
HIV	Human Immunodeficiency Virus
IC ₅₀	The Half Maximal Inhibitory Concentration
LiAlH ₄	Lithium aluminium hydride
LOX	Lipooxygenase
S-TFAE	S-(+)-1-(9-antryl)-2,2,2-trifluoro ethanol
S1P	Sphingosine-1-phosphate
MAO	Monoamineoxidase
NaBH ₄	Sodium borohydride
NaOAc	Sodium acetate
R-TFAE	R-(-)-1-(9-antryl)-2,2,2-trifluoro ethanol
THF	Tetrahydrofuran
VOSO ₄	Vanadium(IV) oxide

1. INTRODUCTION

1.1. Chirality

Chirality stems from different orientations of the groups attached to the threedimensional objects. If a molecule is chiral, it can not be superimposed on its mirror image. A chiral molecule and its non-superimposible mirror image reflection are enantiomers of each other. The existence of enantiomers is generally associated with the presence of a chiral center or a chiral axis. On the other hand, diastereomers contain more than one of these elements.

A great deal of chiral molecules exist in central chirality (Figure 1.1) where four different groups are attached to a tetrahedral central atom (C, N, P, S). The transformation of one enantiomer of a centrally chiral molecule to other one requires bond-breakage and this process is called as racemization.

Figure 1.1. **R** and **S** enantiomers derived from central chirality.

Axial chirality results from restricted rotation about a single bond. The typical and well-known examples of this type of chirality are BINOL and BINAP derivatives (Figure 1.2) [1].

Figure 1.2. The structures of axially chiral biaryl atropisomers.

The 180° rotation about the chiral axis gives rise to the formation of interconvertible stereoisomers. The interconvertable stereoisomers are defined as atropisomers if they have life-times greater than 1000 seconds at a given temperature [2]. The atropisomers are usually nomenclatured according to their helicities *P* (positive helix) and *M* (negative helix) or *R* (or R_a) and *S* (or S_a), (Cahn–Ingold–Prelog rules) [3].

Although the interconversion of the classical stereoisomers requires a bondbreakage, axially chiral compounds resulting from an intramolecular restricted rotation can interconvert to one another with time through slow bond rotation. The rate of rotation depends on the steric hindrance to rotation and on the temperature of the medium [4]. The rotational barier (ΔG^{\neq}) value is an important parameter for the evaluation of the stability of the axially chiral compounds. LaPlante *et al.* (2011) divided the axially chiral compounds into three classes. Class 1: Compounds with rotational barrier less than 20 kcal/mol have fast axial rotation rates on the order of seconds or faster, show no axial chirality at room temperature (25 °C). Class 2: Compounds with rotational barrier greater than 20 kcal/mol are atropisomeric at ambient temperature. Class 3: Compounds with rotational barrier greater than 30 kcal/mol have very small axial rotation rates and their racemizations take years [5].

Šenica *et al.* (2016) synthesized a series of 1-substituted methyl (*S*)-[5-(2-nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates (**I**) (Figure 1.3) and determined the free energy barriers of rotation, (ΔG^{\neq}) using temperature-dependent ¹H NMR spectroscopy. However, they could not succeed to isolate the isomers due to the low rotational bariers ΔG^{\neq}_{298} values of 19.5-20.5 kcal/mol at [6].

Figure 1.3. Fast interconversion between the atropisomers of 1-substituted methyl (*S*)-[5-(2-nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates.

Patel *et al.* (2017) investigated thermal racemization of BINOL (**II**), BINAM (**III**), NOBIN (**IV**), Phenap (**V**) and TriChlophbin (**VI**) and they found that the compounds were atropisomeric. They reported that the free energy barrier of rotation (ΔG^{\neq}) about the C_{aryl} – C_{aryl} single bond changed in the range of 26-43 kcal/mol [7] (Figure 1.4).

The hindered rotation about C-N single bond may also result in the formation of axial chirality. There are extended studies in the literature about such type of axial chirality and rotational barier studies over the years [8-13]. Suzumura *et al.* (2012) reported the activation barier (ΔG^{\neq}) value of a highly rotationally stable C-N axially chiral compound 1-(2,5-di-tert-buthyphenyl)-dihydroquinazolin-2-one (**VII**) as 30 kcal/mol (Figure 1.5) [14]. Suzuki *et al.* (2015) reported a rotational barier (ΔG^{\neq}) of 32 kcal/mol for *N*-(2-*tert*-buthyphenyl)-3,4-dihydroquinolin-2-one (**VIII**) (Figure 1.5) [15].

Hagesawa *et al.* (2017) compared the rotational bariers (ΔG^{\neq}) of axially chiral 1phenyl-6-aminouracil derivatives (**IX**) and the corresponding biaryl compounds and reported that shorter C–N bond length than the C–C bond in the biaryl systems contributes to the stability of the molecules via hindering the rotation around the chiral axis with a high rotational barier value. They found a ΔG^{\neq} value for 1-phenyl-6-aminouracil derivatives (**IX**) as 30.5 kcal/mol with a racemization half-life 81.2 years (Figure 1.5) [16].

Figure 1.5. Selected examples of axial chirality about C-N single bond.

Another factor affecting the rotational barier ΔG^{\neq} value of axially chiral compounds is a bulky group attached at *ortho*-positition. Yılmaz *et al.* (2008) synthesized a series of axially chiral 5,5-dimethyl-3-(*o*-aryl)-2-thioxo-4-oxazolidinones (**X**), 5,5-dimethyl-3-(*o*-aryl)-2-thioxo-4-thiazolidinones (**XI**), and 3-(*o*-aryl)-2-thioxo-4-thiazolidinones (**XII**). They found the barriers to rotation about the N_{sp2}–C_{aryl} single bond (ΔG^{\neq}) in the range of 19.6-30.8 kcal/mol depending on the the size of the substituents at *ortho*-position (Figure 1.6) [17].

Z=F, Cl, Br, I

Figure 1.6. Structure of axially chiral N-(o-aryl)-2-thioxo-oxazolidine-4-one and rhodanine derivatives.

1.2. Biological Importance of Chirality

Chirality possesses a crucial importance for living organisms due to the fact that the components of a living organism such as proteins, peptides, most amino acids, saccharides, enzymes and many metabolites are chiral [18] and only one form of these molecules is selected by the organism while the other is eliminated [19]. Enantiomers have the same physical and chemical properties in achiral media but they have different properties if the medium is chiral. Therefore, they cause different effects on a living organism due to the fact that living systems are stereoselective against an enantiomeric pair of a chiral molecule. In other words, although one enantiomer of a chiral drug has the positive influence (eutomer) and the other may not have (distomer) [20]. The cases experienced with the racemic drugs thalidomide and perhexiline underline the importance of the stereochemistry in medicinal chemistry. Due to the rapid interconvertion between the thalidomide enantiomers in vivo, the drug caused catastrophic effects in 1960s [21]. Also, perhexiline was used as an antianginal agent in its racemic form and it was withdrawn from the markets in 1980s because of serious hepatic and neurological toxic effects of its (+) enantiomer. The studies revealed that the drug underwent a series of oxidative reactions to form the active metabolite *cis*-4-monohydroxyperhexiline. (–)-Perhexiline was more quickly transformed into this metabolite than its (+) enantiomer and in this way the concentration of the toxic (+)-perhexiline in the body was found to increase [22].

Paroxetine which is used as an antidepressant drug contains two stereogenic centers and has four stereoisomers two in *cisoid* and two in *transoid* configurations. However, just the (-)-*transoid* configuration, (-)-*trans*-4-(4-fluorophenyl)-3-(3,4-ethylenedioxyphenoxymethyl)piperidine is the active stereoisomer (Figure 1.7) [23].

transoid-(-)-paroxetine

transoid-(+)-paroxetine

Figure 1.7. The chemical structures of *transoid* -(-)-and *transoid*-(+)-paroxetine.

L-Histidine (*L*-His) is one of the essential amino acids which is important for human health and participates in many biological activities in the human body. *L*-His is converted into histamine which is a neurotransmitter in the brain however its *D*-form is not active (Figure 1.8) [24].

Figure 1.8. The chemical structure of *L*-Histidine.

Atropisomers act in the same way as stereoisomers with classical chiral centers, however the presence of atropoisomeric forms increase the complexity of drug molecules due to their isomerization rates [25]. In recent years there have been extended studies demonstrating different biological activities of atropisomers. Lee *et al.* (2008) investigated selectivity of 1,4-benzodiazepines at the GABA_A receptor and they found that the atropisomers of pyrimido[1,2-*a*][1,4]benzodiazepines derivatives had different selectivities at the receptor; the *R* atropisomer had 50 fold stronger potency than its *S* one. (Figure 1.9) [26].

Figure 1.9. Atropoisomers of Pyrimido[1,2-*a*][1,4]benzodiazepine.

Yoshida *et al.* (2013) synthesized axially chiral lamellarin N derivates and seperated the atropisomers. They found that each atropisomer had different selectivity in terms of their protein kinase inhibitory activity (Figure 1.10) [27].

Selective inhibitor activity

Figure 1.10. Enantiomers of axially chiral lamellarin N derivates.

Yao *et al.* (2013) synthesized maleopimaric acid N-aryl imides and methyl maleopimaric acid N-aryl imides and seperated the enantiomerically pure forms of atropisomers (R and S) (Figure 1.11). They investigated the cytotoxicity of atropisomers against several cancer cell lines. They found that the R atropisomer had stronger cytotoxicity than the S one [28].

Maleopimaric acid N-aryl imide

Methyl maleopimaric acid N-aryl imide

Figure 1.11. Chemical structures of maleopimaric acid N-aryl imides.

The axial chirality also exist in the natural products having important biological activities. Hallock *et al.* (1994) isolated atropisomers of korupensamines from the Cameroonian tropical liana *Ancistrocladus korupensis* and found that these axially chiral alkaloids have different antiviral activities against HIV-1, HIV-2 and antimalarial activity (Figure 1.12) [29].

HO MeO Me HO OH Me NH

 $IC_{50} = 0.31 \ \mu g/mL$ aganist *P. falciparum* $IC_{50} = 0.56 \ \mu g/mL$ aganist *P. berghei*

Korupensamine A

 $IC_{50} = 0.18 \ \mu g/mL$ aganist *P. falciparum* $IC_{50} = 0.41 \ \mu g/mL$ aganist *P. berghei*

Korupensamine B

1.3. Methods Used for the Evaluation of Enantiomeric Purity and Assigment of Absolute Chemistry of Chiral Molecules

1.3.1. HPLC with a Chiral Stationary Phase

Seperation of enantiomers has a crucial importance in drug chemistry and the HPLC on a chiral stationary phase method is the most efficient and reliable technique. The ordinary stationary phases cannot work to seperate the enantiomeric pair because of the same retention times. Therefore a chiral medium is needed. Commercially available chiral stationary phases (CSP) are successfully used to resolve the chiral compounds. One enantiomer of a chiral compound binds strictly to the stationary phase to form a transient diastereomeric complex and a result of this binding they retain at different retention times. The factors affecting the binding to CSP are hydrogen bonding, π - π interactions and dipole-dipole interactions. The advantage of this technique is the fact that even a small amount of sample is enough to take measurement.

1.3.2.¹H-NMR in the presence of a Chiral Auxilary Compound

Enantiomers exhibit identical NMR spectra in an achiral medium. However, absolute configuration (AC) of a chiral compound can be assigned *via* creating a chiral environment. There are two approaches for qualitative enantioseperation by NMR: The first approach comprises the addition of an enantiomerically pure chiral solveting agent (CSA) or a chiral solvent into the mixture of the sample and an achiral NMR solvent and so that they form transient association complexes through non-covalent interactions. Thus the two enantiomers of the sample become distinguishable by differences (may be very small) in chemical shifts. At the second approach, an enantiopure sample is reacted with the two enantiomers of a chiral derivatizing agent (CDA) to produce two diasteromeric derivatives. As a result of covalent binding between the auxiliary reagent and the substrate, much larger differences in chemical shifts can be observed than the CSAs method [30].

Demir-Ordu *et al.* (2004) proposed an association complex model between (*S*)-TFAE and 5,5-dimethyl-3-(o-aryl)-2,4-oxazolidinedione derivatives. According to their model, the formation of the association complex is related with hydrogen bonding between the hydroxyl group of chiral auxiliary (*S*)-TFAE and oxygen atoms of the heterocyclic ring and also π - π interaction between anthryl group and benzene ring [31] (Figure 1.13).

Figure 1.13. The proposed solvation model.

1.3.3. By X-Ray Crystallography

X-ray crystolography which is the most reliable method provides two types of stereochemical information: relative configration of chiral centers can be determined and absolute configuration can be established [32].

1.4. Determination of Rotational Barrier by Low Temperature NMR

Nuclear Magnetic Resonance (NMR) at ambient temperature cannot detect the conformational exchanges or transitions and shows only an ensemble of all conformations undergoing rapid interconversions. However, if the exchange is slowed down, the NMR signals of exchanging conformations become distinguishable [33]. Dynamic Nuclear Magnetic Resonance (DNMR) is a process used to detect rapid interconversions of stereoisomers at variable temperature. In DNMR spectroscopy; if k<< Δv , the exchange is slow, the two signals having different chemical environment are merged into one signal by increasing the temperature. However; if k>> Δv , the exchange is fast, one signal undergoes exchanging by decreasing the temperature and the stereoisomers become distinguishable. In this process the temperature at which the peaks coalesce is called the coalescence temperature, T_c.

$$k_c = \pi \Delta v / 2^{1/2} \tag{1.1}$$

 Δv : the chemical shift difference between ¹H NMR signals of certain protons in Hz at low temperature.

This rate constant is substituted into the appropriately modified Eyring equation (1.2) to find free enegy of activation values (ΔG^{\neq}):

$$k_c = [(k_b.T_c)/h]e^{-\Delta G \neq /RT}$$

(1.2)

R: the gas constant (=8.3143 J/mol.K) T: temperature (K) k_b: the boltzman constant(=1.3805x10⁻²³ J/K) h: the planck's constant (=6.625x10⁻³⁴ J.s)

1.5. Thioureas

Thioureas have long been attracting considerable attention due to their biological importance and versatile usage in organic chemistry. The facile synthesis of thioureas enabled the preparation of their numerous derivatives, most of which have been evaluated for their biological activities [34]. In the last years, several optically active thioureas and their thiazole derivatives were shown to posses antitumor activities and therefore have been proposed as a novel class of anticancer agents [35]. Indolyl and acridine conjugated thiourea analogues were found to be monoamine oxidase and cholinesterase inhibitors respectively, were proposed for the Alzheimer's disease treatment [36, 37]. Recently an iridium complex of a thiourea derivative has been shown to have a good antimicrobial activity against the Gram-positive bacteria [38].

The E and Z conformations of thioureas have been shown to influence the binding and biological properties of the compounds [39, 40]. Chiral thioureas, in addition to their bioactivities are also highly effective organocatalysts used in asymmetric syntheses [41-45].

1.6. 2-Imino-Thiazolidin-4-ones and Their 5-Benzylidene Derivatives

There have been an increasing interest for 1,3-thiazolidin-4-ones over the years in organic and medicinal chemistry since this heterocyclic core display diverse biological activities [46]. Qi *et al.* (2018) synthesized N^{I} -(2-aryl-1, 3-thiazolidin-4-one)- N^{3} -aryl urea derivatives which have potent multi-tyrosine kinase inhibitory activities [47] (Figure 1.14 (**a**)). Angapelly *et al.* (2017) developed a simple method using VOSO₄ as a catalyst under ultrasonic irradiation for the synthesis of indazole-4-thiazolidinone derivatives which have encouraging antimicrobial activity [48] (Figure 1.14 (**b**)). Filho *et al.* (2015) examined the chemistry and pharmacology of thiazolidinones derived from a thiosemicarbazone which is a highly potent cruzain inhibitor [49] (Figure 1.14 (**c**)). Ruiz *et al.* (2011) found that N-(aminoalkyl)thiazolidin-4-one derivatives had best *in vitro* and *in vivo* antimalarial activity and low cytotoxicity compared to the reference drug chloroquine [50] (Figure 1.14 (**d**)).

IC₅₀ =5.9 μM aganist *T. cruzi* Trypanocidal activity

Figure 1.14. Biologically active 1,3-Thiazolidin-4-ones described in the literature.

5-Ene derivatives of thiazolidin-4-ones are also among the most promising molecules as drug candidates due to their wide range biological activities such as anticancer [51], antiamoebic [52] HCV NS5B polymerase inhibitor [53] activities as well dual cyclooxygenase (COX-2) and 15-lipooxygenase (15-LOX) inhibitor activity in the treatmet of inflammatory disorders [54], sphingosine-1-phosphate (S1P) receptor agonist for autoimmune disorders [55] (Figure 1.15),

Sphingosine-1-phosphate (S1P) receptor agonist

IC₅₀=5.6μM HCV NS5B polymerase inhibitor

Figure 1.15. Biologically active 5-ene- thiazolidin-4-ones described in the literature.

1.7. Oxazolidindiones

Compounds carrying oxazolidinone skeleton attract considerable interest in synthetic and medicinal chemistry due to the fact that this skeleton exists in the structure of many biologically active drugs [56]. Linezolid which is an antibiotic drug belonging to the class of marketed chiral drugs containg oxazolidinone moeity is highly effective molecule against serious Gram-positive bacteria strains [57] (Figure 1.16). Tedizolid is used in the treatment of acute bacterial skin and skin-structure infections [58] (Figure 1.16).

Toloxatone (5-(hydroxymethyl)-3-(3-methylphenyl)-1,3-oxazo lidin-2-one) is used as a selective monoamine oxidase inhibitor MAO-A [59] (Figure 1.16).

Linezolid (antibiotic)

Toloxatone (antidepressant)

Figure 1.16. Commercial drugs containing oxazolidinone structure.

The importance of this hetereocyclic core prompted the researchers to develope new synthetic routes. Demir *et al.* (2003) synthesized 5-methyl-3-(o-aryl)-2,4-oxazolidinediones from the reaction of (*S*)-(-)-ethyl lactate and *o*aryl isocyanates in the presence of sodium metal [60]. Farsbhaf *et al.* (2018) synthesized various 2-oxazolidinones through dehydrative condensation of β -amino alcohols with carbon dioxide [61]. Zhang *et al.* (2015) synthesized chiral oxazolidinone derivatives enantioselectively through enzyme-catalyzed reaction of 1,2 aminoalchols with diphenyl carbonate [62].

1.8. Hemiaminals

Hemiaminals (carbinolamines) are unstable intermediates containing a hydroxyl group and a nitrogen atom attached to tetrahedral carbon atom. The characterizations and isolations of these unstable intermediates are almost impossible [63] and they are easily

subject to dehydration to give the imine or the related compond [64]. Theoretical studies showed that H-bonding had an important role in the stabilization of hemiaminals [65]. Suni *et al.* (2005) obtained a stable hemiaminal as single crystal from the condensation reaction of di-2-pyridyl ketone with 4-cyclohexyl-3-thiosemicarbazide and X-ray diffraction result showed that the intermolecular hydrogen bonding interactions affect the stability of the molecule [66]. A recent study about the X-ray-diffractions of hemiaminals obtained from 4-amino-3,5-dipyridyn-2-yl-1,2,4- triazole revealed that the crystals are stabilized by strong hydrogen bonds between hydroxyl group and the nitrogen atom of the triazole ring [67].

In 2016, our research group synthesized stable hemiaminals in the solute state but, undergoing elimination of water in solution to give the thiazol-2-imines. We found that the half-life of the *o*-methoxyphenyl derivative of the hemiaminals in the solution was longer than the others due to the intramolecular H-bonding and even the amidine conjugation of the hemiaminal nitrogen contributed to the stabilities of all hemiaminals in the solid state [68] (Figure 1.17).

Figure 1.17. Stabilization of hemiaminals through the H-bonding and amidine conjugation.

Hemiaminals were also proposed as intermediates during enzymatic Schiff base forming processes by the reaction of the amino acid lycine and the ring opened form of fructose 1,6-bisphosphate [69].

Thiazol-2-imines which are the dehydration products of hemiaminals are biologically active compounds whose synthesis by various different methods have received considerable attention [70-76]. Murru *et. al.* (2008) succeeded the one-pot synthesis of substituted thiazol-2-imines by the condensation reaction of carbonyl compounds with thioureas and 1,3-disubstituted thioureas [70]. Zhao *et. al.* (2010) synthesized glycosyl thiazol-2-imines from the hydrolysis of thiazol-2(3H)-imine-linked glycoconjugates and

found that 1-benzoyl-4-(4-nitrophenyl)-3-b-D-glucopyranosyl-thiazol-2(3H)-imine derivative of the series was the most potent antitumor agent (Figure 1.18) [71].

IC₅₀= 34.02 µM aganist HCT-8

Figure 1.18. Chemical structure of 1-benzoyl-4-(4-nitrophenyl)-3-b-D-glucopyranosylthiazol-2(3H)-imine.

The single enantiomer thiazol-2-imines can be used in asymmetric chemistry as chiral substrates, such as in the preparation of chiral α -aminonitriles [77], in asymmetric hydrogenations [78] or as catalysts in converting olefins to primary amides [79].

2. AIM OF THE STUDY

In this study, we aimed to synthesize *N*,*N*'-bis thiourea, chiral thiazolidine-4-one, and their corresponding 5-benzylidene derivatives as single enantiomers and investigate their antimicrobial activity. We also aimed to obtain oxazolidine-2,4-dione derivatives by an asymmetric synthesis using chiral pool strategy to investigate their *in vitro* monoamine oxidase (hMAO) inhibitory activities In addition, we aimed to synthesize the hemiaminal derivatives of thiazolidine-4-ones and oxazolidine-2,4-diones. Therefore, we planned to carry out the followings:

- To synthesize *N*,*N*'-bis thioureas as single enantiomer from the reaction of chiral amines with carbon disulfide and to determine the conformations of *N*,*N*'-bis thioureas in solution and solid state.
- To synthesize chiral 2-imino-thiazolidine-4-ones from the cyclization of N,N'-bis thioureas with α -bromo acetic acids in the presence of sodium acetate. To synthesize 5-benzylidene derivatives of the corresponding chiral 2-imino-thiazolidine-4-ones by the reaction of benzaldehyde and prove their enantiomeric purities by chiral HPLC.
- To synthesize single enantiomer oxazolidine-2,4-diones from the reaction of enantiomerically pure *R* and *S* ethyl lactate with the aryl isocyanates and prove their enantiomeric purities by HPLC on chiral stationary phase and by ¹H NMR spectroscopy using optically active chiral auxiliary (*R*)-(-)-1-(9-antryl)-2,2,2-trifluoro ethanol ((*R*)-TFAE).
- To reduce the on C-4 carbonyl group of chiral 2-imino-thiazolidine-4-ones distereoselectively and to determine their elimination kinetics to the corresponding single enantiomer thiazol-2-imines in solution and in solvent free media.
- To reduce axially chiral pyridine compounds to their hemiaminal derivatives and examine their stabilities.

• To reduce the single enantiomer oxazolidine-2,4-diones regioselectively from the carbonyl group at the C-4 instead of C-2 with LiAlH₄ and NaBH₄ and determine the racemization ratio by HPLC on chiral stationary phase.

3. RESULTS AND DISCUSSION

3.1. Chiral Thioureas and Their Cyclized Derivatives [80]

3.1.1. Synthesis of Chiral Thioureas, 2-Imino-Thiazoidin-4-ones and 5-Benzylidenes

Chiral amines were reacted with carbon disufide (CS₂) under N₂ atmosphere in proper solvent to obtain the single enantiomer N,N^{2} -bis-thioureas. The reaction of the thioureas with α -bromoacetic acid yielded 2-imino-thiazolidin-4-ones which were converted to their benzylidene derivatives in the presence of benzaldehyde and sodium acetate (Figure 3.1) [10].

Figure 3.1. Synthesis of *N*,*N*'-bis-thioureas **1-5**, the axially chiral 2-iminothiazolidin-4ones **6-10** and the corresponding 5-benzylidene-2-imino-thiazolidine-4ones **11-13** and **15**.

3.1.2. Conformational Analysis of Thioureas

Thioureas can in principle exist in four different conformations: *EE*, *EZ*, *ZE* and *ZZ* due to the partial double bond character of the C-N bond resulting from the thiourea resonance (Figure 3. 2).

Figure 3. 2. Interconverting conformers of N,N-bis-thioureas.

X-ray analyses of the thioureas **2RR**, **2SS**, **4RR** and **4SS** showed that the molecules prefer to stay at **Z**,**Z** conformation in the solid state (Figure 3.3). The data obtained from crystal structures of compounds **2RR**, **2SS**, **4RR** and **4SS** are summarized in Table 3.1 and

Table 3.2. Room temperature (298 K) ¹H NMR of the thioureas on the other hand showed a broadening in all of their proton signals (Figure 3.4) in CDCl₃ solution. When ¹H NMR spectra were taken at 233 K, two different set of signals for each proton of the molecule were observed with equal intensities (Figure 3.4, Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8, Figure 3.9). This result indicated the presence of two different conformations of the molecule at low temperature and a rapid interconversion between them at room temperature. Variable temperature analyses of the spectra enabled us to determine the free energy of activation, ΔG^{\neq} values for the interconversions (Figure 3.4, Table 3.3). The results revealed a ΔG^{\neq} value of about 50 kJ/mole independent from the size of the G group in the molecule (Figure 3. **2Hata! Başvuru kaynağı bulunamadı.**, Table 3.3). A ΔG^{\neq} value of 53.5 kJ/mol (12.8 kcal/mol) has been determined previously by Rang *et. al.* for the compound **1SS** [81] where G=phenyl.

2RR

Figure 3.3. Crystal structures of compounds 2RR, 2SS, 4RR and 4SS.

	2RR	288
	Bond Distances (Å)	
S(1)-C(1)	1.7056	1.6998
C(1)-N(1)	1.3470	1.3450
C(1)-N(2)	1.3420	1.3388
N(1)-C(2)	1.4623	1.4574
N(2)-C(14)	1.4643	1.4586
C(2)-C(3)	1.5386	1.5348
C(14)-C(15)	1.5330	1.5259
C(2)-C(4)	1.5328	1.5257
C(14)-C(16)	1.5309	1.5255
	Bond Angles (°)	
S(1)-C(1)-N(1)	121.87	121.88
S(1)-C(1)-N(2)	123.33	123.55
N(1)-C(1)-N(2)	114.79	114.55
C(1)-N(1)-C(2)	126.45	126.31
C(1)-N(2)-C(14)	126.82	126.48
N(1)-C(2)-C(3)	108.13	108.05
N(2)-C(14)-C(15)	108.07	107.93
N(1)-C(2)-C(4)	112.90	112.92
N(2)-C(14)-C(16)	112.29	112.26
C(3)-C(2)-C(4)	110.45	110.60
C(15)-C(14)-C(16)	111.06	110.99
	Dihedral Angles (°)	
S(1)-C(1)-N(1)-C(2)	9.50	-9.69
S(1)- C(1)-N(2)-C(14)	4.70	-4.78
C(1)-N(1)-C(2)-C(3)	-142.56	142.63
C(1)-N(2)-C(14)-C(15)	-141.88	141.94
C(1)-N(1)-C(2)-C(4)	94.94	-94.72
C(1)-N(2)-C(14)-C(16)	95.29	-95.43
N(1)-C(2)-C(4)-C(5)	21.01	-21.09
N(2)-C(14)-C(16)-C(17)	19.51	-19.33

Table 3.1. Data from cyrstal structures of compounds *2RR* and *2SS*.

	4RR	4SS
	Bond Distances (Å)	
S(1)-C(1)	1.6973	1.6955
C(1)-N(1)	1.3605	1.3839
C(1)-N(2)	1.3458	1.3430
N(1)-C(2)	1.4660	1.4667
N(2)-C(11)	1.4664	1.4760
C(2)-C(3)	1.5277	1.5290
C(11)-C(12)	1.5272	1.5280
C(2)-C(4)	1.5195	1.5170
C(11)-C(13)	1.5240	1.5210
C(7)-O(1)	1.3737	1.3708
C(16)-O(2)	1.3702	1.3669
O(1)-C(10)	1.4173	1.4170
O(2)-C(19)	1.4239	1.4246
	Bond Angles (°)	
S(1)-C(1)-N(1)	121.45	121.78
S(1)-C(1)-N(2)	123.89	123.96
N(1)-C(1)-N(2)	114.65	114.26
C(1)-N(1)-C(2)	124.14	122.99
C(1)-N(2)-C(11)	125.22	125.18
N(1)-C(2)-C(3)	107.11	106.23
N(2)-C(11)-C(12)	109.74	110.21
N(1)-C(2)-C(4)	113.44	113.83
N(2)-C(11)-C(13)	110.58	110.13
C(3)-C(2)-C(4)	110.42	110.70
C(12)-C(11)-C(13)	113.73	113.75
C(7)-O(1)-C(10)	117.77	117.73
C(16)-O(2)-C(19)	117.65	117.65
	Dihedral Angles (°)	
S(1)-C(1)-N(1)-C(2)	2.96	-2.92
S(1)-C(1)-N(2)-C(11)	0.70	1.3
C(1)-N(1)-C(2)-C(3)	-162.02	162.60
C(1)-N(2)-C(11)-C(12)	-116.02	114.30
C(1)-N(1)-C(2)-C(4)	75.10	-75.32
C(1)-N(2)-C(11)-C(13)	117.7	-119.4
N(1)-C(2)-C(4)-C(5)	-153.75	154.51
N(2)-C(11)-C(13)-C(18)	-28.40	28.2

Table 3.2.Data from cyrstal structures of compounds **4***RR* and **4***SS*.

Com	Type of proton	Δv_0	$T_{c}(K)$	k _c	$\Delta G^{\neq}{}_{c}$
pd.					(kJ/
				(s ⁻¹)	mol)
255	СН	60.0*	258	131.0	52.4
	CH ₃	80.0*	258	177.6	52.0
355	СН	479.2**	273	1064	50.8
	NH	201.6**	263	447.6	50.7
	СН	87.6*	273	194.5	52.6
4 <i>SS</i>	OCH ₃	26.0*	253	58.6	53.0
	CH ₃	27.6*	253	61.3	52.9

Table 3.3. Selected Thermodynamic and Kinetic Parameters for Compounds **2***SS*, **3***SS* and **4***SS* Determined by ¹HNMR in CDCI₃ (* at 233 K and **at 243 K).

Figure 3.4. Partial ¹H NMR spectra of compound **2***SS* (CDCl₃,400 MHz) showing the temperature dependance of the NH, CH (**I**) and the CH₃ (**II**) proton signals. Assignment of ¹H NMR shifts of compound **2***SS* at 233 K are given with the coupling constants (Hz) in parenthesis (**III**).

Figure 3.5. Partial ¹H NMR spectrum of compound **3***SS* (CDCl₃) showing the temperature dependence of the NH and CH protons.

Figure 3.6. Partial ¹H NMR spectrum of compound **4***SS* (CDCl₃) showing the aromatic, NH and CH protons.

Figure 3.7. Partial ¹H NMR spectrum of compound **4***SS* (CDCl₃) showing the temperature dependence of the NH and CH protons.

Figure 3.8. Partial ¹H NMR spectrum of compound **4***SS* (CDCl₃) showing the temperature dependance of the OCH₃ protons.

Figure 3.9. Partial ¹H NMR spectrum of compound **4***SS* (CDCl₃) showing the temperature dependance of the CH₃ protons.

3.1.3.2-Imino-Thiazolidine-4-ones and Their 5-Benzylidene Derivatives

There are only few atropisomeric axially chiral molecules resulting from rotations around Csp^2-Csp^3 single bonds in literature [82]. Among compounds showing restricted rotations about a Csp^2-Csp^3 single bond, conformational analysis of N-phenylethyl substituted thiazoline-2-thiones [83] and rhodanines [84] showed that the molecules are axially chiral, however only with small barriers to rotation. In addition, the molecules were found to be oriented such that N₃-methine proton (the proton on the methine carbon which is bonded to N₃ of the heterocylic ring) was pointing towards the larger exocylic group of the heterocyclic ring. The corresponding conformation has been called as the *anti* conformation [84]. The ¹H NMR of 6-10*RR* and *SS* studied in this work showed the presence of only one rotamer at ambient temperature and based on the earlier work done on structurally similar compounds [84], we assigned an *anti* confirmation to 6-10. This assignment has been supported by the NOESY experiments as will be explained further in the text.

Compounds 6-10 have an amidine linkage in their structures. For this reason there exists a resonance structure (Figure 3.10) whose contribution increases the electron density in the vicinity of the group bonded to the imino nitrogen (C=N_b). Accordingly in NMR, these groups are expected to appear more shielded with respect to the groups attached to the amido nitrogen (N_a). ¹H NMR of the compounds supports this expectation (Figure 3.11).

Figure 3.10. Resonance structures of **9RR** showing a higher electron density on the imino nitrogen.

Figure 3.11. The 400 MHz ¹H NMR spectrum of compound **7***RR* in CDCl₃ showing AB type splitting for diastereotopic methylene protons at C-5.

The NOESY spectrum taken for 9RR, did not show any cross peak between the protons of the two methoxyphenyl rings of the molecule but did show a cross peak between the methine proton bonded to the imino nitrogen (H_b) and a hydrogen phenyl

bonded to N_3 through a methine linkage (Figure 3.12). This observation enabled us to draw the conformation shown in Figure 3.12.

Additionally, the ¹H NMR spectra of the compounds **6***R***R**, **6***SS*, **7***RR*, **7***SS*, and **9***RR*, **9***SS* have shown that the diastereotopic protons at C-5 gave AB type splitting at around 3.60 ppm with coupling constants of 16.8 Hz ($J_{AB} = 16.8$ Hz) regardless of the attached group G (Figure 3.1). On the other hand, the compounds **8***RR*, **8***SS*, **10***RR* and **10***SS* gave a singlet for these C-5 protons. The HPLC and the polarimetric results are summarized in Table 3.4.

Compd.	$[\alpha]^{26}_{360}$	Stationary	Mobile phase	Flow rate	Retetion
		phase		(ml/min)	time (min.)
6RR	(+) 2597 5°	Chiralpak	Hexane:Ethanol	0.6	20.14
	(1) 2001.0	IC	(00.1)	0.0	16 51
033	(-) 2597.5°	IC.	(99:1)		10.31
700	$(+) \in 0 = 0 0^0$	Chinalmala	UavanaiEthanal	0.6	14.97
/KK	(+)0030.9	Сштаграк	nexane:Ethanoi	0.0	14.82
7 <i>SS</i>	(-)6050.9°	IC	(95:5)		12.66
8RR	(-)744.9°	Chiralpak	Hexane:Ethanol	0.6	6.48
8 <i>SS</i>	(+)744.9°	IB	(99:1)		6.30
9 <i>RR</i>	$(+)1180.6^{\circ}$	Chiralpak	Hexane:Ethanol	0.6	34.91
055	$()1180.6^{\circ}$	IC	(05.5)	0.0	23 72
955	(-)1180.0	IC.	(95.5)		23.12
10 <i>RR</i>	_*	Chiralpak	Hexane:Ethanol	0.6	25.09
10 <i>SS</i>		IC	(95:5)		22.99
11 <i>RR</i>	(+)444.4°	Chiralpak	Hexane:Ethanol	0.8	12.76
1155	$(-)488.9^{\circ}$	IA	(99.1)		9 94
1100	()100.9		()))))		<i></i>
12 <i>RR</i>	(-)177.8°	Chiralpak	Hexane:Ethanol	0.8	19.35
12 <i>SS</i>	(+)133.3°	AD-H	(90:10)		39.08
1 <i>3RR</i>	(+)88.9°	Chiralpak	Hexane:Ethanol	0.8	8.33
1266	(1)0019	D	(00.1)	0.0	7.09
1999	(-)88.9 °	ID	(99.1)		1.90

Table 3.4. The polarimetric and the HPLC data for compounds 6-10 and 11-15.

14 R	(+)222.2°	Chiralpak	Hexane:Ethanol	1.0	40.21
14 <i>S</i>	(-)222.2°	IC	(90:10)		55.50
15RR	_*	Chiralpak	Hexane:Ethanol	0.6	12.33
15 <i>SS</i>		IC	(95:5)		14.42

Table 3.4. The polarimetric and the HPLC data for compounds 6-10 and 11-15.

*measurements could not be performed due to the color of the compound (even in lower concentration).

Figure 3.12. The NOESY spectrum of 9RR in CDCl₃ showed a crosspeak between the methine proton bonded to the imino nitrogen (H_b) and the phenyl hydrogen bonded to N₃ through a methine linkage.

The 5-benzylidene derivatives **11-15** were synthesized from 2-imino thiazolidine-4ones by reaction with benzaldehyde in the presence of sodium acetate [10]. The disapperance of CH₂ protons at C-5 of starting compounds (**6-10**) and the appearance of =CHPh proton as a singlet at about δ 7.70 ppm in the ¹H NMR spectra of compounds **11-15** proved the formation of the benzylidene bond on the fifth position of the heterocyclic ring. All the 2-imino thiazolidine-4-ones except the 4-methoxyphenyl derivative of the series have been found to give the corresponding 2-imino-5-benzylidene derivatives. The 4-methoxyphenyl derivatives **9***RR* and **9***SS* were found to give the 5-benzylidene-thiazolidine-2,4-diones **14***R* and **14***S* (Figure 3.13). For compounds **11-15** *E* or *Z* conformation steaming from the C-C double bond at C-5 is possible. But the literature ¹H NMR and X-ray studies have revealed that these compounds have preferred to be on *Z* configuration [85, 86].

Figure 3.13. Synthesis of 5-benzylidene-thiazolidine-2,4-diones **14***R* and **14***S* starting from the 2-imino-thiazolidine-4-ones **9***RR* and **9***SS*.

3.2. 2,4-Oxazolidinediones [87]

3.2.1. Asymmetric Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones

The synthesis of 5-methyl-3-aryloxazolidine-2,4-diones starting with *S*-ethyl lactate were carried out by our research group before. However we found out that the chiral center at C5 of the oxazolidinone ring coming from the lactate has been racemized during the synthesis in the presence of sodium metal [88]. Therefore enantiomerically pure *R*- and *S*-ethyl lactate was reacted with the aryl isocyanates under reflux conditions in xylene without any sodium metal, and then acid catalyzed cyclization of the formed carbamate yielded the enantiomerically pure oxazolidindiones (Figure 3.14).

Figure 3.14. Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones.

In order to determine the enantiomeric purities of chiral compounds, optically active auxiliary compounds were used. In this method, the single enantiomer auxiliary is expected to associate with each enantiomer and form two ¹H NMR distinguishable complexes [89]. Thus if the oxazolidinedione is racemic, the doubled signals will be observed as at the ¹H NMR spectrum. On the other hand if it is enantiomerically pure, only one set of signals will be observed. The optical purities of the synthesized oxazolidinediones were proved by ¹H NMR in the presence of the optically active auxiliary compound (*R*)-2,2,2-trifluoro-1-(9-anthryl)ethanol ((*R*)-TFAE) and by HPLC on an optically active stationary phase (Figure 3.15). The observation of only one set of signals in NMR in the presence of (*R*)-TFAE and one chromatographic peak in the HPLC chromatogram (Figure 3.15) have been taken as proofs for the existence of **16** and **17** as single enantiomers. The enantiomeric purity of axially chiral compound **18S** was proved on Chiralpak IB by HPLC (Eluting solvent: Hexane:Ethanol (99:1), flow rate: 0.7 mL/min, Retention time: 67.22 min.).

Figure 3.15. Partial ¹H NMR spectrum of compounds (±) **16** and (-)-**16***S* showing quartets for CH protons at C-5 (**I**) and the doublets for methyl groups at C-5 (**II**) in the presence of six equivalent of chiral auxiliary (*R*)-TFAE in CDCl₃. (**III**) The HPLC chromotograms of compounds (±)-**16**, (+)-**16***R* and (-)-**16***S* on Chiralpak IC. Retetion times (min) are writen the on top of the chromatographic peaks. Eluting solvent: Hexane:Ethanol (95:5), flow rate: 0.8 mL/min.

3.3. Chiral Hemiaminals from Chiral 2-imino-thiazolidine-4-ones

3.3.1. Synthesis of Chiral Hemiaminals

Chiral hemiaminals **19-22** were synthesized from the corresponding chiral 2iminothiazolidine-4-ones **6-9** by LiAlH₄ reductions diastereoselectively in THF at room temperature and they were found to convert to chiral thiazol-2-imines **23-26** with time (Figure 3.16).

Figure 3.16. Synthesis of chiral hemiaminal derivatives and their elimination products.

The ¹H NMR spectra of hemiaminals **19-22** showed the formation of major and minor isomers with a 3:1 ratio. The isomers of the hemiaminal **19RR** have been identified based on the observation of a doublet for H_e proton at C-4 (at 5.03 and 5.50 ppm for the major and the minor isomers respectively) coupling with H_c at C-5 (${}^{3}J_{HcHe}$ = 4.8 Hz) which is *cis* to it however not coupling with H_d which is *trans* to it. (${}^{3}J_{HcHe}$ =~0 Hz) (Figure 3.17). The *cis-trans* assignment has been done based on the ¹H NMR spectra of the *trans* vicinal dibromides obtained from **23SS**, as will be explained further in the text. The methylene protons at C-5 H_c and H_d gave an AB type splitting (at δ_A =3.17 and δ_B =3.01 ppm for the major and at δ_A =3.32 and δ_B =3.03 ppm for the minor isomers respectively) having a geminal coupling between H_c and H_d (${}^{2}J_{HcHd}$ =11.2 Hz) and a vicinal coupling between H_c and H_e (${}^{3}J_{HcHe}$ =4.8 Hz) (Figure 3.17).

Figure 3.17. Partial ¹H NMR spectrum of hemiaminal **19RR**.

A new chiral center on C-4 is formed from the reaction of 2-imino-thiazolidine-4ones with LiAlH₄. The ¹H NMR signal of H_e bonded to C-4 of the major diastereomers were found to appear more shielded than their minor counterparts for **19RR**, **20RR**, and **22RR** but not for **21RR**. The former three compounds carry an aromatic group G, bonded to the methine carbon, whereas the latter has a cyclohexyl group on CH (Figure 3.18). The aromatic groups apparently have a shielding effect on the H_e proton signal. This in turn gave a clue about the configuration of the C4 carbon atom. Previously, the X-ray analysis of 3-(S)-(1-Phenylethyl)-5-methylrhodanines revealed that the 1-phenylethyl group is oriented so that the Ph-C-Me angle is approximately bisected by the rhodanine plane with the methine proton pointing towards the more bulky exocyclic group [84]. Therefore for the hemiaminal obtained from the compound **19RR**, the major isomer's C-4 configuration was assigned as **R** and that of the minor one as **S** (Figure 3.19). The diastereomeric ratios of the hemiaminals **19RR-22RR** and **19SS-22SS** were all found as 3:1 (Figure 3.18).

Figure 3.18. ¹H NMR signals of the H_e protons on C4 for the major and the minor diastereomers of the hemiaminals **19RR**, **20RR**, **21RR** and **22RR** (dr=3:1).

Figure 3.19. The major and the minor diastereomers of the compound 19RR.

3.3.2. Transformation of the Chiral Hemiaminals to Single Enantiomer Thiazol-2-Imine Derivatives

The chiral hemiaminal derivatives can be transformed into thiazol-2-imine *via* an elimination of a water molecule (Figure 3.16). It was observed that chiral hemiaminals **19**-

22 underwent elimination of water even in solvent free media. First, the formation of the elimination product **23***RR* of chiral hemiaminal **19***RR* was examined by ¹H NMR analysis. The peaks of H_e on C-4 at 5.48-5.03 ppm and those of H_c and H_d on the C-5H at 3.33-3.01 ppm of the major and minor isomers of **19***RR* disappered, whereas the peaks of the proton on C-4 at 6.46 ppm and of proton on C-5 at 5.76 ppm of **23***RR* appeared as doublets with time (Figure 3.20). For the transformation of compound **19***RR* to **23***RR*, the rate constant was found as $6x10^{-5}$ s⁻¹, ΔG^{\neq} as 97.1 kJ/mol and the half life as 3.20 h in CDCl₃ (Figure 3.21). The kinetics of the process was found to be solvent dependent. The rate constant was found as $2x10^{-5}$ s⁻¹, ΔG^{\neq} as 99.8 kJ/mol and the half life as 9.63 h in C₆D₆. The transformation of compound **19***RR*, **22***SS* followed similarly by ¹H NMR with time. The results for the transformation kinetics of compounds **19***RR*, **21***RR*, **22***SS* followed similarly by ¹H NMR with time. The results for the transformation kinetics of compounds **19***R*. **23***RR*, **21***RR*, **22***SS* followed similarly by ¹H

Figure 3.20. Partial ¹H NMR spectrum of hemiaminal **19***R* showing its transformation to thiazol-2-imine **23***R* in CDCl₃ with time. (\blacklozenge) = hemiaminal and (\blacktriangle) = thiazol-2-imine.

Figure 3.21. (a) The % consumption of compound 19RR and the formation of compound
23RR in CDCl_{3.} (b) the plot of ln (C₀/C) versus time. C₀/C the ratio of the initial amount of hemiaminal consumption to the elimination product.

Table 3.5. Ex	perimental first	order rate	constants (k)	, ΔG [≠]	and	$t_{1/2}$ for the	ne transfo	ormation
	of chiral	hemiamin	als to chiral t	hiazo	1-2-ir	mines.		

mpounds	Solvent	k (s ⁻¹)	ΔG ⁺ (kJ/mol)	t _{1/2} (hour)
סכ	CDCl ₃	6x10 ⁻⁵	97.1	3.20
	C_6D_6	$2x10^{-5}$	99.8	9.63
מנ	CDCl ₃	6x10 ⁻⁶	102.8	32.10
ι Λ	C_6D_6	$2x10^{-6}$	105.5	96.27
מנ	CDCl ₃	5x10 ⁻⁵	97.5	3.85
ι Λ	C_6D_6	2x10 ⁻⁵	99.8	9.63
.c	CDCl ₃	5×10^{-5}	97.5	3.85
U.	C_6D_6	3x10 ⁻⁵	99.1	6.42
RR RR RR	CDCl ₃ C_6D_6 CDCl ₃ C_6D_6 CDCl ₃ C_6D_6 CDCl ₃ C_6D_6	$6x10^{-5}$ $2x10^{-5}$ $6x10^{-6}$ $2x10^{-6}$ $5x10^{-5}$ $5x10^{-5}$ $3x10^{-5}$	97.1 99.8 102.8 105.5 97.5 99.8 97.5 99.1	 3.20 9.63 32.10 96.27 3.85 9.63 3.85 6.42

The stabilities of compounds **19RR** and **20RR** in solvent free media were also investigated. The solid state samples taken at time intervals have been dissolved in the NMR solvent and the spectrum was taken immediatelly. The rate constants were found as

 $2x10^{-7}$ s⁻¹ for **19RR** and $3x10^{-8}$ s⁻¹ for **20RR** (Figure 3.22). The results are summarized in Table 3.6.

Figure 3.22. The plot of $\ln (C_0/C)$ versus time for compound **19RR** and **20RR** in solvent free media.

Table 3.6. Experimental first order rate constants (k), ΔG^{\neq} and $t_{1/2}$ for chiral hemiaminals **19RR** and **20RR** during their transformation to chiral thiazol-2-imines in solvent free

media.

Compounds	Solvent	k (s ⁻¹)	ΔG [≠] (kJ/mol)	t _{1/2} (day)
19 <i>RR</i>	CDCl ₃	$2x10^{-7}$	111.2	40.1
20 <i>RR</i>	CDCl ₃	3x10 ⁻⁸	115.9	267.4

The polarimetric measurments done for compounds 23-26 are shown in Table 3.7.

Table 3.7. The polarimetric data for compounds 23-26.

Compound	$[\alpha]^{26}_{360}$
23 <i>RR</i>	+1111.11
23 <i>SS</i>	-1200.00
24 <i>RR</i>	+1555.56
24 <i>SS</i>	-1644.44

25 <i>RR</i>	+88.89
25 <i>SS</i>	-88.89
26 <i>RR</i>	+666.67
26SS	-755.56

Table 3.7. The polarimetric data for compounds 23-26.

3.4. Bromination of Compound 23SS

3.4.1. Synthesis of Compound 27

The double bond of the chiral compound thiazol-2-imine **23***SS* was brominated as shown in Figure 3.23.

Figure 3.23. Bromination of compound 23SS.

The addition mechanism of bromine to alkene is essentially related with the formation of a bromonium ion and the formation of a *trans*-addition product by *anti*-attack of bromide to a cyclic ion [90]. From the reaction of compound **23***SS* with Br_2 , compound **27** was obtained as a diastereomeric pair as expected (Figure 3.23). The ratio of diastereomers for compound **27** was found as 2.4:1 (Figure 3.24). Due to the presence of PhCHCH₃ group on N₃ of the thiazol ring, the bromide ion is tought to prefer to attack from the opposite site of CH₃ group to form the major product and the minor has been

formed by the attack from the same site as CH_3 . The vicinal protons on the newly forming chiral centers on C-4 and C-5 appeared as singlets and the protons did not couple with each other. According to Karplus if the dihedral angle is about 90°, ³*J* coupling is in the range of 0-2 Hz. This points to the fact that dihedral angle between the H_a and H_b (Figure 3.23) is close to 90° which points to a *trans* orientation. In this way, it was shown that there exists no coupling between the *trans* protons of the 5-membered heterocyclic ring. Also, due to the shielding effect of the phenyl group, the C-4 proton of the major isomer (which is on the same site with the phenyl group) appeared at a higher field than the C4-H of the minor isomer (Figure 3.24).

Figure 3.24. Partial ¹H NMR spectrum of the compound **27** showing the diastereoselectivity on C-4 and C-5 protons.

3.5. Stable Hemiaminals from Axially Chiral Pyridine Compounds

3.5.1. Synthesis of Stable Hemiaminals from Axially Chiral Pyridine Compounds

As a part of this study, we synthesized a series of stable 3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (**32-33**) and 5-methyl-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (**34-35**) derivatives (hemiaminals) regioselectively from 2-iminothiazolidin-4-one derivatives using LiAlH₄ (Figure 3.25).

Compound **28**: $R_1=H$ Compound **29**: $R_1=CH_3$

Compound **32**: $R_1 = H$ Compound **33**: $R_1 = CH_3$

and

Figure 3.25. Synthesis of stable hemiaminals from pyridine compounds.

The hemiaminals **32-35** obtained from axially chiral pyridine compounds [11] did not undergo an elimination reaction to form the corresponding thiazole-2-imines. The formation of an intramolecular hydrogen bond between the N₃ pyridine nitrogen and the hemiaminal OH (Figure 3.26) has been deduced from ¹H NMR where the OH signal was observed to shift to more down field (from 2.43 ppm to 6.22 ppm). The *RM* and *SP* enantiomeric pair of compound **33** has been isolated by crystallization and the enantiomeric ratio has been determined as 1:1 by ¹H NMR for in the presence of chiral auxiliary (*R*)-TFAE (Figure 3.27). By the 2D-NOESY experiment (Figure 3.26), the OH group was found to prefer to be on the same side with the N₃ pyridine nitrogen probably because of the possibility for an intramolecular H-bond formation. As a matter of fact, the OH signal was shifted towards more down field in ¹HNMR taken in CDCl₃ (Figure 3.27).

Figure 3.26. The NOESY spectrum of **33**.

When an 87.2:12.8 isomeric mixture (*SP/RM*: *SM/RP*) of compound **31** was reduced to its hemiaminal derivative, the formation of eight isomers were expected due to the presence of the chiral center at C-5, the N₃-C_(aryl) chiral axis and the newly formed chiral center at C-4. (Figure 3.28). However, the ¹H NMR spectrum of compound **35** showed three sets of peaks for three enantiomeric pairs (Figure 3.29). The larger groups OH at C-4 and CH₃ group at C-5 stay *anti* to each other and OH group prefered to make an H-bond with the nitrogen atom of the pyridine at N₃. Consequently, 4R, 5R, P/4S, 5S, M enantiomeric pair became the major and the 4R, 5S, P/4S, 5RM enantiomeric pair, the minor products. The ratio of the isomers (major:minor:trace) was determined as 69.9:26.4:3.7.

Compound 35

Figure 3.28. The expected eight isomers for compound **35** (the different sized balls under the molecules represent the enantiomeric pairs on the partial ¹H NMR in Figure 3.29).

Figure 3.29. Partial ¹H NMR spectra of compound **35** showing the quartet for CH proton at C-5 (**a**) and the CH₃ groups at C-5 and attached to pyridine rings (**b**).

Two sets of peaks were observed from the ¹H NMR spectrum of compound **34** belonging to 4S,5S,M/4R,5R,P enantiomeric pair as the major isomer and 4S,5R,M/4R,5S,P enantiomeric pair as the minor one. The diastereomeric ratio of the major to minor isomers were determined as 77:23 (Figure 3.30).

minor

Figure 3.30. The chemical structures of the major and the minor isomers of compound 34.

3.6. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH₄

3.6.1.Synthesis of Hemiaminals from Single Enantiomer 5-Methyl-3-aryloxazolidine-2,4-diones

The single enantiomers of 5-Methyl-3-aryloxazolidine-2,4-diones **16***S* and **17***S* were reduced to their hemiaminal derivatives **36** and **37** regioselectively from the carbonyl group at the C-4 instead of C-2 in the presence of LiAlH₄ (Figure 3.31).

Figure 3.31. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones.

3.6.2. Diastereoselectivity in Reduction of 5-Methyl-3-aryloxazolidine-2,4-dione Derivatives with LiAlH₄

From the reductions of oxazolidin-2,4-dione derivatives **16***S* and **17***S* with LiAlH₄, the formation of a diastereomeric pair was expected by the attack of hydride ion. The ¹H NMR spectra showed the formation of the diasteromers with a ratio of 2:1 as shown in Figure 3.32 and Figure 3.33 for hemiaminal **36** and **37** respectively. In addition, the HPLC chromatogram revealed that although the starting oxazolidin-2,4-diones **16***S* and **17***S* were enantiomerically pure, the obtained hemiaminals **36** and **37** were found to partially racemize at C-5 (Figure 3.34 and Figure 3.35, racemization ratio 90:10). This result can be explained by the enolization of the molecule due to the presence of the acidic α -hydrogen at C-5 of the ring. Thus, the configuration of oxazolidin-2,4-dione derivatives at C-5 could not be retained completely.

Figure 3.32. Partial ¹H NMR spectrum of compound **36** showing the diastereoselectivity for C-4, C-5 and OH protons (dr=2:1).

Figure 3.33. Partial ¹H NMR spectrum of compound **37** showing the diastereoselectivity for C-4, C-5 and OH protons (dr=2:1).

Figure 3.34. The HPLC chromatogram showing the diastreomeric pairs for compound 36 (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: 0.8 mL/min, retention times: t₁: 11.028 min, t₂: 17.07 min, t₃: 21.06 min, t₄: 38.432 min) (dr=2:1 and racemization ratio= 90:10).

Figure 3.35. The HPLC chromatogram showing the diastreomeric pairs for compound 37 (Chiralpak IC, mobile phase: Hexane:Ethanol (95:5), flow rate: 0.8 mL/min, retention times: t₁: 11.073 min, t₂: 17.833 min, t₃: 22.5 min, t₄: 41.848 min) (dr=2:1 and racemization ratio= 90:10).

Figure 3.36. 2D-NOESY spectrum of compound 37.

To clarify the stereochemistry of the compound **37**, a 2D-NOESY spectrum was taken in CDCl_3 (Figure 3.36). A crosspeak between the CH proton at C-4 and CH proton at C-5 was observed not only for the major isomer but also for the minor one due to being adjacent to one another. This result did not give a satisfactory information about the stereochemistry. However when the 1D ¹H NMR result was examined, CH proton at C-4 of the minor isomer was found to couple with both OH and CH at C-5 protons (which is *cis* to CH at C-4) and splitted into a doublet of a doublet which appeared as a triplet. However, the CH proton at C-4 of major isomer just coupled with the OH proton and splitted into a doublet (protons at C-4 and C-5 are *trans* to each other). In the light of all these results it was concluded that the hyride ion prefered to attack from the same side of the directing methyl group at C-5 so that the configuration where the larger groups (CH₃ and OH) are *trans* to each other was favored and formed as the major product.

3.7.1. Synthesis of the Ring Opening Products from 5-Methyl-3-Aryloxazolidine-2,4-Diones

The reduction of compounds 16S, 17S and 18S were also carried out using 4 equivalents NaBH₄ in THF at room temperature. The reaction was found to produce a reductive ring opened product. The reduction proceeded regioselectively where only the carbonyl group at C-4 was reduced (Figure 3.37). The racemization ratio of compound 40 was found to be less than the other ring opened products 38 and 39 because of the steric hindrance of *ortho* methyl group that hindered the approach of the hydride ion.

Figure 3.37. Ring-opening reaction of oxazolidin-2,4-diones 16S, 17S and 18S.

The apperance of two peaks on the HPLC chromatograms of compounds **38**, **39**, **40** on chiralpak AD-H showed that a partial racemization at C-5 also took place during the reduction with NaBH₄ (Table 3.8, Figure 3.38).

Table 3.8. Racemization ratios of compounds (obtained from the integration of the HPLC peaks) **38**, **39** and **40** during the ring opening reaction with NaBH₄ on Chiralpak AD-H, mobile phase: Hexane:Ethanol (95:5).

Compo	I. Racemization	
	ratio	
38	60:40	
39	60:40	
40	90:10	
0.10		96.52
$t_{\rm R}=6$		E S
Λ		\bigwedge
40%	(T)	60%
	(1)	4
02		95.7
=e1.		t _R =
t		Λ
\wedge		$ \rangle$
1		
40%	(II)	60%
-	(II)	71.4
8.80		E C
t _R =4		$ \land $
~		

Figure 3.38. The HPLC chromatograms of compounds **38** (**I**), **39** (**II**), **40** (**III**) showing the racemization ratios on Chiralpak AD-H, mobile phase: Hexane:Ethanol (95:5).

It was interfered from the ¹H NMR spectrum of compound **38** that, during the reduction with $NaBH_4$ the ring opening process occured through the formation of hemiaminal as an intermediate product and then the hemiaminal went to ring opening (Figure 3.39).

Figure 3.39. Partial ¹H NMR spectra of compound **38** containing just the ring opening product (**I**) and the progression of the reaction through hemiaminal formation (**II**) (\bullet = ring opening product and \blacklozenge = hemiaminal).

4. EXPERIMENTAL

4.1. Synthesis of *N*,*N*'–Bis-Thioureas

4.1.1. General procedure

The appropriate amine derivative was dissolved in the appropriate solvent (ethanol or pyridine) after which CS_2 was added. The mixture was refluxed overnight under N_2 . Next, the solution was concentrated by evaporating the solvent and then cooled to give a precipitate. The precipitated product was isolated by vacuum filtration. The crude N,N'-bis-thiourea was purified by recrystallization from ethanol.

4.1.1.1. *N*,*N*'-bis((*R*)-1-phenylethyl)thiourea (1*RR*). The compound was synthesized according to the general procedure using (*R*)-(+)-1-Phenylethylamine 10.91 g (90 mmol), carbon disulfide 13.71 g (180 mmol) and ethanol (50 mL). Yield: 12.13 g (95%), mp: 186-188 ⁰C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.01 (m, 10H, Ar-H), 6.01 (br, 2H, NH), 5.04 (br, 2H, CH), 1.47 (d, 6H, *J* = 6.8 Hz, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.3, 142.4, 129.1, 127.8, 125.8, 54.3, 23.4 ppm. ATR-FTIR: 3240, 1541 cm⁻¹. Calculated for: C₁₇H₂₀N₂S: C: 71.79; H: 7.09; N: 9.85. Found: C: 71.84; H: 7.03; N: 9.05. $[\alpha]^{26}_{360} = (+) 163.4^{\circ}$.

<u>4.1.1.2.</u> *N*,*N*'-bis((*S*)-1-phenylethyl)thiourea (1*SS*). The compound was synthesized according to the general procedure using (*S*)-(-)-1-Phenylethylamine 10.91 g (90 mmol), carbon disulfide 13.71 g (180 mmol) and ethanol (50 mL). Yield: 12.8 (100%), mp: 186-188 0 C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.01 (m, 10H, Ar-H), 6.01 (br, 2H, NH), 5.04 (br, 2H, CH), 1.47 (d, 6H, *J* = 6.8 Hz, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.3, 142.4, 129.1, 127.8, 125.8, 54.3, 23.4 ppm. ATR-FTIR: 3237, 1542 cm⁻¹. Calculated for: C₁₇H₂₀N₂S: C: 71.79; H: 7.09; N: 9.85. Found: C: 72.19; H: 6.88; N: 9.58. [α]²⁶₃₆₀ = (-) 163.4°.

<u>4.1.1.3. *N*,*N*'-bis(1-phenylethyl)thiourea (1*DL*)</u>. The compound was synthesized according to the general procedure using *DL*-1-Phenylethylamine 10.91 g (90 mmol), carbon disulfide 13.71 g (180 mmol) and ethanol (50 mL). Yield: 11.72 (92%), mp: 120-122 0 C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.01 (m, 10H, Ar-H), 6.01

(br, 2H, NH), 5.04 (br, 2H, CH), 1.47 (d, 6H, J = 6.8 Hz, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.3, 142.4, 129.1, 127.8, 125.8, 54.3, 23.4 ppm. ATR-FTIR: 3257, 1544 cm⁻¹. Calculated for: C₁₇H₂₀N₂S: C: 71.79; H: 7.09; N: 9.85. Found: C: 72.18; H: 7.14; N: 9.16.

<u>4.1.1.4.</u> *N*,*N*'-bis((R)-1-(naphtalen-1-yl)ethyl)-thiourea (2*RR*). The compound was synthesized according to the general procedure using (*R*)-(+)-1-(1-Naphtyl)ethylamine 5 g (30 mmol), carbon disulfide 4.42 g (60 mmol) and ethanol (30 mL). Yield: 4.8 g (83.2%), mp: 178-180 0 C, (white coloured crystal).¹H NMR (400 MHz, CDCl₃): δ 7.95-7.02 (m, 14H, Ar-H), 5.79 (br, 4H, CH and NH) 1.58 (d, 6H, *J* = 6.4 Hz,CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 179.9, 137.1, 133.9, 130.3, 129.1, 128.5, 126.8, 125.9, 125.3, 122.8, 50.6, 31.1, 21.8 ppm. ATR-FTIR: 3251, 1540 cm⁻¹. Calculated for C₂₅H₂₄N₂S: C: 78.09; H: 6.29; N: 7.28. Found: C: 78.32; H: 6.49; N: 6.85. [α]²⁶₃₆₀ = (-) 1535.0°.

4.1.1.5. *N*,*N*'-bis((*S*)-1-(naphtalen-1-yl)ethyl)-thiourea (2*SS*). The compound was synthesized according to the general procedure using (*S*)-(-)-1-(1-Naphtyl)ethylamine 5 g (30 mmol), carbon disulfide 4.42 g (60 mmol) and ethanol (30 mL).Yield: 4.97 g (86.3%), mp: 178-180 0 C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.02 (m, 14H, Ar-H), 5.79 (br, 4H, CH and NH) 1.58 (d, 6H, *J* = 6.4 Hz,CH₃) ppm. ¹H NMR (400 MHz, Pyridine-*d*₅): δ 8.60 (2H, br, NH), 7.92-7.32 (m, 14H, Ar-H), 6.79 (br, 2H, CH), 1.72 (d, 6H, *J* = 6.8 Hz, CH₃) ppm. ¹H NMR (400 MHz, Methanol-*d*₄): δ 8.12-7.38 (m, 14H, Ar-H), 7.29 (br, 2H, NH), 6.18 (br, 2H, CH), 1.53 (d, 6H, *J* = 6.64 Hz, CH₃) ppm. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.17-7.47 (m, 14H, Ar-H), 6.20 (br, 2H, CH) 1.50 (d, 6H, *J* = 6.8 Hz, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 179.9, 137.1, 133.9, 130.3, 129.1, 128.5, 126.8, 125.9, 125.3, 122.8, 50.6, 31.1, 21.8 ppm. ATR-FTIR: 3254, 1541 cm⁻¹. Calculated for: C₂₅H₂₄N₂S: C: 78.21; H: 6.29; N: 6.87. Found: C: 78.09; H: 6.29; N: 7.28. [α]²⁶₃₆₀ = (+) 1534.9°.

<u>4.1.1.6. *N*,*N*'-bis(1-(Naphtalen-1-yl)ethyl)thiourea (2*DL*)</u>. The compound was synthesized according to the general procedure using *DL*-1-(1-Naphtyl)ethylamine 5 g (30 mmol), carbon disulfide 4.42 g (60 mmol) and ethanol (30 mL). Yield: 5.03 (87.3%), mp: 156-160 0 C, (white coloured solid).¹H NMR (400 MHz, CDCl₃): δ 7.95-7.02 (m, 14H, Ar-H), 5.79 (br, 4H, CH and NH) 1.58 (d, 6H, *J* = 6.8 Hz,CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 179.9, 137.1, 133.9, 130.3, 129.1, 128.5, 126.8, 125.9, 125.3, 122.8, 50.6, 31.1, 21.8 ppm.

ATR-FTIR: 3252, 1540 cm⁻¹. Calculated for: $C_{25}H_{24}N_2S$; C: 78.09; H: 6.29; N: 7.28. Found: C: 78.43; H: 6.29; N: 6.72.

4.1.1.7. *N*,*N*'-bis((*R*)-1-cyclohexylethyl)thiourea (*3RR*). The compound was synthesized according to the general procedure using (*R*)-(-)-1-cyclohexylethylamine 7.62 g (60 mmol), carbon disulfide 9.12 g (120 mmol) and pyridine (20 mL). Yield: 2.70 g (27%), mp : 178-180 ⁰C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 5.49 (br, 2H, NH), 3.91 (br, 2H, CH), 1.78-0.94 (m, 22H, cyclohexyl protons) 1.15 (d, 6H, *J* = 6.8 Hz CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.0, 54.6, 43.2, 29.4, 28.8, 26.3, 26.2, 26.1, 17.5 ppm. ATR-FTIR: 3225, 1538 cm⁻¹. Calculated for: C₁₇H₃₂N₂S: C: 68.86; H: 10.88; N: 9.45. Found: C: 68.83; H: 11.31; N: 8.74. [α]²⁶₃₆₀ = (+) 163.5^o.

4.1.1.8. *N*,*N*'-bis((*S*)-1-cyclohexylethyl)thiourea (3*SS*). The compound was synthesized according to the general procedure using (*S*)-(+)-1-cyclohexylethylamine 7.62 g (60 mmol), carbon disulfide 9.12 g (120 mmol) and pyridine (20 mL). Yield: 2.70 (27%), mp : 178-180 0 C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 5.49 (br, 2H, NH), 3.91 (br, 2H, CH), 1.78-0.94 (m, 22H, cyclohexyl protons) 1.15 (d, 6H, *J* = 6.8 Hz CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.0, 54.6, 43.2, 29.4, 28.8, 26.3, 26.2, 26.1, 17.5 ppm. ATR-FTIR: 3223, 1536cm⁻¹. Calculated for: C₁₇H₃₂N₂S: C: 68.86; H: 10.88; N: 9.45. Found: C: 68.72; H: 10.47; N: 8.02. $[\alpha]^{26}_{360} = (-) 163.5^{\circ}$.

4.1.1.9. N, N'-bis((R)-1-(4-methoxyphenyl)ethyl)thiourea (4RR). The compound was procedure using synthesized according to the general (R)-(+)-1-(4-Methoxyphenyl)ethylamine 7.56 g (50 mmol), carbon disulfide 7.61 g (100 mmol) and ethanol (30 mL). Yield: 4.00 g (46.5%), mp: 136-140 0 C, (white coloured crystal). ¹H NMR (400 MHz, CDCl₃): δ 6.94- 6.73 (m, 8H, Ar-H), 5.93 (br, 2H, CH), 4.96 (br, 2H, NH), 3.72 (s, 6H, OCH₃), 1.44 (d, 6H, J = 6.8 Hz CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.1, 159.2, 134.3, 127.1, 114.4, 110.2, 55.4, 53.8, 23.2 ppm. ATR-FTIR: 3269, 3232, 1533cm⁻¹. Calculated for: C₁₉H₂₄N₂O₂S: C: 66.25; H: 7.02; N: 8.13. Found: C: 65.29; H: 6.83; N: 7.69. $\left[\alpha\right]^{26}_{360} = (+) 1108.0^{\circ}.$

<u>4.1.1.10. N,N'-bis((S)-1-(4-methoxyphenyl)ethyl)thiourea (4SS)</u>. The compound was synthesized according to the general procedure using (S)-(-)1-(4-Methoxyphenyl)ethylamine 7.56 g (50 mmol), carbon disulfide 7.61 g (100 mmol) and ethanol (30 mL). Yield: 5.57 g (64.7%), m.p: 136-140 ^oC, (white coloured crystal). ¹H

NMR (400 MHz, CDCl₃): δ 6.94- 6.73 (m, 8H, Ar-H protons), 5.93 (br, 2H, CH), 4.96 (br, 2H, NH), 3.72 (s, 6H, OCH₃), 1.44 (d, 6H, *J* = 6.8 Hz CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 180.1, 159.2, 134.3, 127.1, 114.4, 110.2, 55.4, 53.8, 23.2 ppm. ATR-FTIR: 3269, 3233, 1537cm⁻¹. Calculated for: C₁₉H₂₄N₂O₂S: C: 66.25; H: 7.02; N: 8.13. Found: C: 66.12; H: 7.10; N: 7.92. [α]²⁶₃₆₀ = (-) 1108.0°.

4.1.1.11. *N*,*N*'-bis((*R*)-1-benzylpyrrolidine-3-yl)thiourea (5*RR*). The compound was synthesized according to the general procedure using 5.28 g (30 mmol) (3*R*)-(-)-1-Benzyl-3-aminopyrrolidine, carbon disulfide 4.42 g (60 mmol) and ethanol (30 mL). Yield: 6.40 (98%), mp :124-126 0 C, (yellow coloured solid).¹H NMR (400 MHz, DMSO-*d*₆): δ 8.37 (br, 2H, NH), 7.49-7.30 (m, 10H, Ar-H), 4.89 (m, 2H at C-3 pyrrolidine ring), 4.27 (m, 4H, benzyl –CH₂ protons), 3.43-1.97 (m, 12H, pyrrolidine protons) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 214.8, 198.5, 181.5, 139.0-127.4, 62.4-49.5 ppm. ATR-FTIR: 3213, 1541cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₂₃H₃₀N₄SH+: 394,22 Found: 395,2268. [α]²⁶₃₆₀ = (-) 36.3^o.

4.1.1.12. *N*,*N*'-bis((*S*)-1-benzylpyrrrolidine-3-yl)thiourea (5*SS*): The compound was synthesized according to the general procedure using 5.28 g (30 mmol) (3*S*)-(+)-1-Benzyl-3-aminopyrrolidine, carbon disulfide 4.42 g (60 mmol), ethanol (30 mL). Yield: 6.43 (98%), mp:124-126 ⁰C, (yellow coloured solid): ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.37 (br, 2H, NH), 7.49-7.30 (m, 10H, Ar-H), 4.89 (m, 2H at C-3 pyrrolidine ring), 4.27 (m, 4H, benzyl –CH₂ protons), 3.43-1.97 (m, 12H, pyrrolidine protons) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 214.8, 198.5, 181.5, 139.0-127.4, 62.4-49.5 ppm. ATR-FTIR: 3208, 1541cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₂₃H₃₀N₄SH+: 394,22 Found: 395,2374. [α]²⁶₃₆₀ = (+) 36.3^o.

4.2. Synthesis of 2-Imino-Thiazolidine-4-ones

4.2.1. General procedure

The appropriate N,N'-diarylthiourea and α -bromoacetic acid were refluxed for 7/12 h in absolute ethanol in the presence of sodium acetate. At the end of this period, the excess of ethanol was evoporated. The compounds were purified from a mixture of ethyl

acetate and hexane (a minimum amount of ethyl acetate was used to dissolve the crude product and then hexane was added until the precipitation was observed).

4.2.1.1. 3-((*R*)-1-phenylethyl)-2-((*R*)-1-phenylethylimino)thiazolidine-4-one (6*RR*) The compound was synthesized according to the general procedure using 1.42 g (5 mmol) 1*RR*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.94 g (58 %), oily. ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.20 (m, 10H, Ar-H), 5.94 (q, 1H, CH_a, J = 6.8 Hz), 4.38 (q, 1H, CH_b, J = 6.4 Hz), 3.77, 3.69 (AB quartet, 1H for each, $J_{AB} = 16.8$ Hz), 1.88 (d, 3H, CH_{3a}, J = 7.2 Hz), 1.37 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 145.2, 139.9, 128.5, 128.1, 127.9, 127.5, 127.0, 126.5, 61.9, 53.3, 32.6, 25.0, 16.1 ppm. ATR-FTIR: 1716,1633 cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₁₉H₂₀N₂OSH+: 325,1375 ; Found: 325,1368.[α]²⁶₃₆₀ = (+) 2597.5°.

4.2.1.2. 3-((*S*)-1-phenylethyl)-2-((*S*)-1-phenylethylimino)thiazolidine-4-one (6SS). The compound was synthesized according to the general procedure using 1.42 g (5 mmol) 1SS, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.88 g (54%), oily. ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.20 (m, 10H, Ar-H), 5.94 (q, 1H, CH_a, J = 6.8 Hz), 4.38 (q, 1H, CH_b, J = 6.4 Hz), 3.77, 3.69 (AB quartet, 1H for each, $J_{AB} = 16.8$ Hz), 1.88 (d, 3H, CH_{3a}, J = 7.2 Hz), 1.37 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm.¹³C NMR (100 MHz, CDCl₃): δ 171.6, 145.2, 139.9, 128.5, 128.1, 127.9, 127.5, 127.0, 126.5, 61.9, 53.3, 32.6, 25.0, 16.1 ppm. ATR-FTIR: 1716,1633 cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₁₉H₂₀N₂OSH+: 325,1375 ; Found:325,1361. [α]²⁶₃₆₀ = (-) 2597.5°.

<u>4.2.1.3. 3-(1-phenylethyl)-2-(1-phenylethylimino)thiazolidine-4-one (6DL)</u>. The compound was synthesized according to the general procedure using 1.42 g (5 mmol) 1DL, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and 30 ml ethanol. Yield: 1.2 g (76%), oily. ¹H NMR (400 MHz, CDCl₃): δ 7.40-6.96 (m, 20H, Ar-H), 5.94 (q, 1H, CH_a, J = 7.2 Hz), 5.50 (q, 1H, CH_a, J = 7.2 Hz), 4.38 (q, 1H, CH_b, J = 6.4 Hz), 4.30 (q, 1H, CH_b, J = 6.4 Hz), 3.68 (s, 2H, CH₂ C-5), 3.69, 3.62 (AB quartet, 1H for each, $J_{AB} = 16.8$ Hz), 1.81 (d, 6H, CH_{3a}, J = 7.2 Hz), 1.40 (d, 3H, CH_{3b}, J = 6.4 Hz), 1.37 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 145.2, 139.9, 128.5, 128.1, 127.9, 127.5, 127.0, 126.5, 61.9, 53.3, 32.6, 25.0, 16.1 ppm. ATR-FTIR: 1716,1633 cm⁻¹. HRMS (TOF

MS ES+): Calculated for: C₁₉H₂₀N₂OSH+: 325,1375 ; Found:325,1388.

4.2.1.4. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-naphthalen-1-yl)ethylimino)

thiazolidine-4-one (7*RR*). The compound was synthesized according to the general procedure using 1.92 g (5 mmol) 2*RR*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.58 g (27%), mp : 72-74 0 C (white coloured solid). ¹H NMR (400 MHz, CDCl₃): δ 8.29-6.89 (m, 14 H, Ar-H), 6.57 (q, 1H, CH_a, *J* = 7.2 Hz), 5.17 (q, 1H, CH_b, *J*= 6.4 Hz), 3.67, 3.54 (AB quartet, 1H for each, *J*_{AB} =16.8 Hz), 1.99 (d, 3H, CH_{3a}, *J* = 7.2 Hz), 1.60 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 171.4,150.9, 141.0, 134.3, 134.2, 133.7, 131.8, 130.8, 129.2, 128.9, 128.6, 127.8, 127.6, 126.4, 126.1, 125.8, 125.6, 125.4, 124.8, 124.4, 123.9, 123.7, 59.2, 50.4, 32.4, 24.3, 16.4ppm. ATR-FTIR: 1708,1620 cm⁻¹.HRMS (TOF MS ES+): Calculated for: C₂₇H₂₄N₂OSH+: 425,1688 ; Found: 425,1686. [α]²⁶₃₆₀ = (+) 6050.9°.

4.2.1.5. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-naphthalen-1-yl)ethylimino)

thiazolidine-4-one (7SS). The compound was synthesized according to the general procedure using 1.92 g (5 mmol) 2SS, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.69 g (32.5%), mp : 72-74 0 C (white coloured solid). ¹H NMR (400 MHz, CDCl₃): δ 8.29-6.89 (m, 14 H, Ar-H), 6.57 (q, 1H, CH_a, J = 7.2 Hz), 5.17 (q, 1H, CH_b, J = 6.4 Hz), 3.67, 3.54 (AB quartet, 1H for each, $J_{AB} = 16.8$ Hz), 1.99 (d, 3H, CH_{3a}, J = 7.2 Hz), 1.60 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm.¹³C NMR (100 MHz, CDCl₃): δ 171.4, 150.9, 141.0, 134.3, 134.2, 133.7, 131.8, 130.8, 129.2, 128.9, 128.6, 127.8, 127.6, 126.4, 126.1, 125.8, 125.6, 125.4, 124.8, 124.4, 123.9, 123.7, 59.2, 50.4, 32.4, 24.3, 16.4ppm. ATR-FTIR: 1708, 16189 cm⁻¹. HRMS (TOF MS ES+):Calculated for: C₂₇H₂₄N₂OSH+: 425,1688 ; Found: 425,1671. [q]²⁶₃₆₀ = (-) 6050.9°.

4.2.1.6. 3-(1-(naphthalen-1-yl)ethyl)-2-(1-naphthalen-1-yl)ethylimino)thiazolidine-

4-one (7*DL*). The compound was synthesized according to the general procedure using 1.92 g (5 mmol) 2DL, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate and ethanol (30 mL). Yield: 0.82 g (37%), mp: 172-178 ⁰C (white coloured solid). ¹H NMR (400 MHz, CDCl₃): δ 8.29-6.89 (m, 28 H, Ar-H), 6.63 (q, 1H, CH_a, J = 6.8 Hz), 6,57 (q, 1H, CH_a, J = 6.8 Hz), 5.17 (q, 1H, CH_b, J = 6.4 Hz), 3.67, 3.54 (AB quartet, 1H for each, $J_{AB} = 16.8$ Hz), 3.62 (s, 2H, CH₂ C-5), 2.00 (d, 3H, CH_{3a}, J = 6.8 Hz), 1.99 (d, 3H, CH_{3a}, J = 6.8 Hz) 1.76 (d, 3H, CH_{3b}, J = 6.4 Hz), 1.60 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm. ¹³C

NMR (100 MHz, CDCl₃): δ 171.4,150.9, 141.0, 134.3, 134.2, 133.7, 131.8, 130.8, 129.2, 128.9, 128.6, 127.8, 127.6, 126.4, 126.1, 125.8, 125.6, 125.4, 124.8, 124.4, 123.9, 123.7, 59.2, 50.4, 32.4, 24.3, 16.4ppm. ATR-FTIR: 1709, 1619 cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₂₇H₂₄N₂OSH+: 425,1688 ; Found:425.1678.

4.2.1.7. 3-((R)-1-cyclohexylethyl)-2-((R)-1-cyclohexylethylimino)thiazolidine-4-one

(8*RR*). The compound was synthesized according to the general procedure using 1.48 g (5 mmol) 3*RR*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.83 g (49%), oily. ¹H NMR (400 MHz, CDCl₃): δ 4.14 (br, 1H, CH_a), 3.67 (s, 2H, CH₂ at C-5), 2.88 (m, 1H, CH_b), 2.15-0.74 (m, 22H cyclohexyl protons), 1.31 (d, 3H, CH_{3a}, J = 6.8 Hz), 1.00 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ172. 8, 148.4 44.7, 38.7, 32.4, 30.8, 30.1, 29.2, 26.8, 26.6, 26.5, 24.4, 26.1, 26.0, 18.7, 15.6ppm. ATR-FTIR: 1715, 1635 cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₁₉H₃₂N₂OSH+: 337,2314 ; Found: 337,2317. [α]²⁶₃₆₀ = (-) 744.9°.

4.2.1.8. 3-((*S*)-1-cyclohexylethyl)-2-((*S*)-1-cyclohexylethylimino)thiazolidine-4-one (8*SS*). The compound was synthesized according to the general procedure using 1.48 g (5 mmol) 3*SS*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.74 g (44%), oily. ¹H NMR (400 MHz, CDCl₃): δ 4.14 (br, 1H, CH_a), 3.67 (s, 2H, CH₂ at C-5), 2.89 (m, 1H, CH_b), 2.15-0.74 (m, 22H cyclohexyl protons), 1.31 (d, 3H, CH_{3a}, *J* = 6.8 Hz), 1.00 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ172.8, 148.4 63.8, 44.7, 38.7, 32.4, 30.8, 30.1, 29.2, 26.8, 26.6, 26.5, 24.4, 26.1, 26.0, 18.7, 15.6 ppm. ATR-FTIR: 1716, 1636 cm⁻¹. HRMS (TOF MS ES+): Calculated for: $C_{19}H_{32}N_2OSH+: 337,2314$; Found:337,2313. [α]²⁶₃₆₀ = (+)744.9°.

4.2.1.9. 3-((*R*)-1-(4-methoxyphenylethyl)-2-((*R*)-1-(4-methoxyphenylethylimino)

thiazolidin-4-one (9*RR*). The compound was synthesized according to the general procedure using 1.72 g (5 mmol) 4*RR*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 1.33 g (69.3%), oily. ¹H NMR (400 MHz, CDCl₃): δ 7.44-6.76 (m, 8H, Ar-H), 5.87 (q, 1H, CHa, J = 7.2 Hz), 4.33 (q, 1H, CH_b, *J*= 6.4 Hz), 3.80 (s, 3H, OCH_{3b}), 3.79 (s, 3H, OCH_{3a}), 3.73, 3.65 (AB quartet , 1H for each, *J*_{AB} =16.8 Hz), 1.85 (d, 3H, CH_{3a}, J = 7.2 Hz), 1.38 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 159.0, 158.4, 137.5, 133.6, 132.1, 129.4, 127.8, 127.5, 114.4, 113.9, 113.4, 110.2, 61.3, 55.9, 55.4, 52.9, 32.6, 25.2, 16.3ppm. ATR-FTIR: 1714,

1633 cm⁻¹. HRMS (TOF MS ES+): Calculated for: $C_{21}H_{24}N_2O_3SH$ +: 385,1586 ; Found: 385,1642. $[\alpha]^{26}_{360} = (+) 1180.6^{\circ}$.

4.2.1.10. 3-((S)-1-(4-methoxyphenylethyl)-2-((S)-1-(4-methoxyphenylethylimino)

thiazolidin-4-one (9*SS*). The compound was synthesized according to the general procedure using 1.72 g (5 mmol) 4*SS*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.78 g (40.6%) , oily.¹H NMR (400 MHz, CDCl₃): δ 7.44-6.76 (m, 8H, Ar-H), 5.87 (q, 1H, CHa, J = 7.2 Hz), 4.33 (q, 1H, CH_b, J = 6.4 Hz), 3.80 (s, 3H, OCH_{3b}), 3.79 (s, 3H, OCH_{3a}), 3.73, 3.65 (AB quartet , 1H for each, $J_{AB} = 16.8$ Hz), 1.85 (d, 3H, CH_{3a}, J = 7.2 Hz), 1.38 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ171.6, 159.0, 158.4, 137.5, 133.6, 132.1, 129.4, 127.8, 127.5, 114.4, 113.9, 113.4, 110.2, 61.3, 55.9, 55.4, 52.9, 32.6, 25.2, 16.3ppm. ATR-FTIR:1714, 1632 cm⁻¹.HRMS (TOF MS ES+):Calculated for: C₂₁H₂₄N₂O₃SH+: 385,1586 ; Found: 385,1591. [α]²⁶₃₆₀ = (-) 1180.6°.

4.2.1.11. 3-((*R*)-1-benzylpyrrolidin-3-yl)-2-((*R*)-1-benzylpyrrolidine-3-ylimino)

<u>thiazolidine-4-one (10*RR*)</u>. The compound was synthesized according to the general procedure using 1.97 g (5 mmol) 5*RR*, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.87 g (40%), mp: 78-80 0 C (red coloured solid). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.48-7.20 (m, 10H, Ar-H), 4.77 (br, 1H, pyrrolidine CH_a proton at C-3), 4.63 (br, 1H, pyrrolidine CH_b proton at C-3), 4.00 (s, 2H, CH₂ protons at C-5), 4.04 (b, 2H, benzyl CH_{2a} protons), 4.04 (br, 2H, benzyl CH_{2b} protons), 3.89-0.82 (m, 12H, pyrrolidine protons) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.2, 170.5, 134.1, 130.5, 130.3, 130.0, 129.9, 129.1, 129.0, 128.9, 128.7, 128.6, 79.6, 58.9, 58.5, 58.2 58.1, 55.8, 52.6, 52.5, 41.3, 37.8, 30.2, 29.6, 21.5 ppm. ATR-FTIR:1727, 1616 cm⁻¹.HRMS (TOF MS ES+): Calculated for: C₂₅H₃₀N₄OSH+: 435,2219 ;Found: 435,2218.

4.2.1.12. 3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1-benzylpyrrolidine-3-ylimino)

thiazolidine-4-one (10SS). The compound was synthesized according to the general procedure using 1.97 g (5 mmol) 5SS, 0.84 g (6 mmol) α-bromoacetic acid, 0.49 g (6 mmol) sodium acetate, and ethanol (30 mL). Yield: 0.93 g (43%), mp: 78-80 0 C (red coloured solid). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.48-7.20 (m, 10H, Ar-H), 4.77 (br, 1H, pyrrolidine CH_a proton at C-3), 4.63 (br, 1H, pyrrolidine CH_b proton at C-3), 4.00 (s,

2H, CH₂ protons at C-5), 4.04 (br, 2H, benzyl CH_{2a} protons), 4.04 (b, 2H, benzyl CH_{2b} protons), 3.89-0.82 (m, 12H, pyrrolidine protons) ppm.¹³C NMR (100 MHz, CDCl₃): δ 196.2, 170.5, 134.1, 130.5, 130.3, 130.0, 129.9, 129.1, 129.0, 128.9, 128.7, 128.6, 79.6, 58.9, 58.5, 58.2 58.1, 55.8, 52.6, 52.5, 41.3, 37.8, 30.2, 29.6, 21.5 ppm. ATR-FTIR: 1727, 1616 cm⁻¹. HRMS (TOF MS ES+): Calculated for: C₂₅H₃₀N₄OSH+:435,2219 ; Found: 435,2213.

4.3. Synhesis of 5-Benzylidene-2-Imino thiazolidine-4-ones and 5-Benzylidenethiazolidine-2,4-diones

4.3.1. General procedure

The appropriate 2-imino thiazolidine-4-one derivatives and benzaldehyde were refluxed for 7/12 h in acetic acid in the presence of sodium acetate. At the end of this period, the excess of acetic acid was evoporated. The compounds were washed with water and purified from a mixture of ethyl acetate and hexane (a minimum amount of ethyl acetate was used to dissolved the crude product and then hexane was added until the precipitation was observed).

4.3.1.1. 5-Benzylidene-3-((R)-1-phenylethyl)-2-((R)-1-phenylethylimino)thiazolidin

<u>-4-one (11*RR*)</u>. The compound was synthesized according to the general procedure using 0.81 g (2.5 mmol) 6*RR*, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.42 g (41%), oily.¹H NMR (400 MHz, CDCl₃): δ 7.68 (s, 1H, =CHPh), 7.51-7.24 (m, 15H Ar-H), 6.08 (q, 1H, CH_a, *J* = 7.2 Hz), 4.48 (q, 1H, CH_b, *J* = 6.4 Hz), 1.96 (d, 3H, CH_{3a}, *J* = 7.2 Hz), 1.39 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 146.2, 145.1, 140.1, 134.3, 130.1-126.5, 121.9, 62.9, 53.4, 29.9, 25.2, 16.4 ppm.HRMS (TOF MS ES+): Calculated: C₂₆H₂₄N₂OSH+: 413.1688 ; Found:413.1670.ATR-FTIR: 1705, 1638 cm⁻¹. $[\alpha]^{26}_{360} = (+) 444.4^{\circ}$.

4.3.1.2. 5-Benzylidene-3-((S)-1-phenylethyl)-2-((S)-1-phenylethylimino)thiazolidin

<u>-4-one (11SS)</u>. The compound was synthesized according to the general procedure using 0.81 g (2.5 mmol) 6SS, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.39 g (38%), oily. ¹H NMR (400 MHz, CDCl₃): δ

7.68 (s, 1H, =CHPh), 7.51-7.24 (m, 15H Ar-H), 6.08 (q, 1H, CH_a, J = 7.2 Hz), 4.48 (q, 1H, CH_b, J = 6.4 Hz), 1.96 (d, 3H, CH_{3a}, J = 7.2 Hz), 1.39 (d, 3H, CH_{3b}, J = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta 166.8$, 146.2, 145.1, 140.1, 134.3, 130.1-126.5, 121.9, 62.9, 53.4, 29.9, 25.2, 16.4 ppm. HRMS (TOF MS ES+): Calculated: C₂₆H₂₄N₂OSH+: 413.1688 ;Found:413.1696. ATR-FTIR:1705, 1638 cm⁻¹. [α]²⁶₃₆₀ = (-) 488.9°.

4.3.1.3. 5-Benzylidene-3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-naphthalen

<u>-1-yl)ethylimino)thiazolidine-4-one (12*RR*)</u>. The compound was synthesized according to the general procedure using 1.06 g (2.5 mmol) 7*RR*, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.31 g (24%), m.p: 228-230 °C, white powder. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H, =CHPh), 8.15-6.15 (m, 19H Ar-H), 6.35 (m, 1H, CH_a, *J* = 7.2 Hz), 5.59 (q, 1H, CH_b, *J* = 6.4 Hz), 2.00 (d, 3H, CH_{3a}, *J* = 7.2 Hz), 1.87 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 181.5, 174.0, 137.7-122.5, 110.2, 53.2, 51.1, 29.9, 22.9, 20.1 ppm. HRMS (TOF MS ES+): Calculated: C₃₄H₂₈N₂OSH+: 513.2001 ;Found:513.2052.ATR-FTIR: 1674, 1616 cm⁻¹. [α]²⁶₃₆₀ = (-) 177.8°.

4.3.1.4. 5-Benzylidene-3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-naphthalen

<u>-1-yl)ethylimino)thiazolidine-4-one (12SS)</u>. The compound was synthesized according to the general procedure using 1.06 g (2.5 mmol) 7SS, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.40 g (31%). m.p: 228-230 °C, white powder. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H, =CHPh), 8.15-6.15 (m, 19H Ar-H), 6.35 (m, 1H, CH_a, *J* = 7.2 Hz), 5.59 (q, 1H, CH_b, *J* = 6.4 Hz), 2.00 (d, 3H, CH_{3a}, *J* = 7.2 Hz), 1.87 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 181.5, 174.0, 137.7-122.5, 110.2, 53.2, 51.1, 29.9, 22.9, 20.1 ppm. HRMS (TOF MS ES+): Calculated: C₃₄H₂₈N₂OSH+: 513.2001 ; Found: 513.2052. ATR-FTIR: 1674, 1616 cm⁻¹. [α]²⁶₃₆₀ = (+) 133.3.

<u>4.3.1.5. 5-Benzylidene-3-((R)-1-cyclohexylethyl)-2-((R)-1-cyclohexylethylimino)</u>

thiazolidine-4-one (13RR). The compound was synthesized according to the general procedure using 0.95 g (2.8 mmol) 8RR, 0.33 g (3.1 mmol) benzaldehyde, 0.25 g (3.1 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.50 g (40%), oily.¹H NMR (400 MHz, CDCl₃): δ 7.65 (s, 1H, =CHPh), 7.54-7.34 (m, 5H Ar-H), 4.39 (br, 1H, CH_a), 3.08 (m, 1H, CH_b), 1.92-0.89 (m, 22H cyclohexyl protons), 1.46 (d, 3H, CH_{3a}, *J* = 6.4 Hz), 1.15

(d, 3H, CH_{3b}, J = 6.8 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 134.4, 129.9, 129.1, 128.9, 128.5, 122.3, 64.8, 60.4, 56.8, 44.5, 38.9, 31.6, 30.7, 30.0, 29.1, 26.6, 26.4, 26.3, 25.9, 25.8, 22.6, 18.9, 15.7, 14.1 ppm. HRMS (TOF MS ES+): Calculated: C₂₆H₃₆N₂OSH+: 425.2627 ; Found: 425.2629. ATR-FTIR: 1705, 1642 cm⁻¹. [α]²⁶₃₆₀ = (+) 88.9°.

4.3.1.6. 5-Benzylidene-3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)

thiazolidine-4-one (13SS). The compound was synthesized according to the general procedure using 0.95 g (2.8 mmol) 8SS, 0.33 g (3.1 mmol) benzaldehyde, 0.25 g (3.1 mmol) sodium acetate, and 10 ml acetic acid. Yield 0,56 g (47%), oily. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (s, 1H, =CHPh), 7.54-7.34 (m, 5H Ar-H), 4.39 (br, 1H, CH_a,), 3.08 (m, 1H, CH_b,), 1.92-0.89 (m, 22H cyclohexyl protons), 1.46 (d, 3H, CH_{3a}, J = 6.4 Hz), 1.15 (d, 3H, CH_{3b}, J = 6.8 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃):δ166.9, 134.4, 129.9, 129.1, 128.9, 128.5, 122.3, 64.8, 60.4, 56.8, 44.5, 38.9, 31.6, 30.7, 30.0, 29.1, 26.6, 26.4, 26.3, 25.9, 25.8, 22.6, 18.9, 15.7, 14.1 ppm.HRMS (TOF MS ES+): Calculated: C₂₆H₃₆N₂OSH+: 425.2627; Found: 425.2627.ATR-FTIR: 1705, 1642 cm⁻¹. [α]²⁶₃₆₀ = (-) 88.9°.

4.3.1.7. 5-Benzylidene-3-((*R*)-1-(4-methoxyphenylethyl)-thiazolidine-2,4-dione (14*R*). The compound was synthesized according to the general procedure using 0.85 g (2.5 mmol) 9*RR*, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid and refluxed for 1.5 hours. The reaction was followed by TLC Yield: 0.67 g (79%), m.p : 182-184 °C, yellow powder. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.78 (s, 1H, =CHPh), 7.55-6.88 (m, 9H, Ar-H), 4.72 (q, 1H, CH, *J* = 6.8 Hz), 1.89 (d, 3H, CH₃, *J* = 6.8 Hz) ppm. For minor isomer δ 7.82 (s, 1H, =CHPh), 7.55-6.88 (m, 9H, Ar-H), 5.34 (q, 1H, CH, *J* = 6.8 Hz), 1.67 (d, 3H, CH₃, *J* = 6.8 Hz) ppm (Major/minor : 4.54). ¹³C NMR (100 MHz, CDCl₃):δ179.2, 176.0, 159.2, 134.1-126.5, 114.2, 56.6, 55.2, 22.5 ppm. HRMS (TOF MS ES+): Calculated: C₁₉H₁₇NO₃SH+: 339.0929 ; Found:339.1150.ATR-FTIR: 1667 cm⁻¹. [α]²⁶₃₆₀ = (+) 222.2°.

<u>4.3.1.8.</u> <u>5-Benzylidene-3-((*S*)-1-(4-methoxyphenylethyl)-thiazolidine-2,4-dione (14*S*)</u>. The compound was synthesized according to the general procedure using 0.85 g (2.5 mmol) 9*SS*, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid and refluxed for 1.5 hours. The reaction was followed by TLC Yield: 0.54 g (63%), m.p : 182-184 °C, yellow powder.¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.78 (s,

1H, =CHPh), 7.55-6.88 (m, 9H, Ar-H), 4.72 (q, 1H, CH, J = 6.8 Hz), 1.89 (d, 3H, CH₃, J = 6.8 Hz) ppm. For minor isomer δ 7.82 (s, 1H, =CHPh), 7.55-6.88 (m, 9H, Ar-H), 5.34 (q, 1H, CH, J = 6.8 Hz), 1.67 (d, 3H, CH₃, J = 6.8 Hz) ppm (Major/minor : 4.54). ¹³C NMR (100 MHz, CDCl₃): δ 179.2, 176.0, 159.2, 134.1-126.5, 114.2, 56.6, 55.2, 22.5 ppm. HRMS (TOF MS ES+): Calculated: C₁₉H₁₇NO₃SH+: 339.0929 ;Found:339.1148.ATR-FTIR: 1667 cm⁻¹. [α]²⁶₃₆₀ = (-) 222.2°.

4.3.1.9. 5-Benzylidene-3-((R)-1-benzylpyrrolidine-3-yl)-2-((R)-1-benzylpyrrolidine

<u>-3-ylimino)thiazolidine-4-one (15*RR*)</u>: The compound was synthesized according to the general procedure using 1.09 g (2.5 mmol) 10*RR*, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.48 g (37%), m.p: 70-72 °C, brown colored solid.¹H NMR (400 MHz, CDCl₃): δ 7.95-7.17 (m, 15H, Ar-H), 7.46 (s, 1H, =CHPh), 4.62-1.52 (br, 18H benzyl CH_{2 a} and CH_{2 b} protons and pyrrolidine protons) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 168.8, 166.6, 151.6, 138.8,-121.8, 60.0, 59.3, 59.2, 58.7, 54.2, 53.6, 53.1, 52.4, 52.1, 47.9, 30.9, 26.4, 22.5,21.1 ppm. HRMS (TOF MS ES+): Calculated: C₃₂H₃₄N₄OSH+: 523.2532 ;Found:523.2547.ATR-FTIR: 1708, 1599 cm⁻¹.

4.3.1.10. 5-Benzylidene-3-((S)-1-benzylpyrrolidine-3-yl)-2-((S)-1-benzylpyrrolidine

<u>-3-ylimino)thiazolidine-4-one (1555)</u>. The compound was synthesized according to the general procedure using 1.09 g (2.5 mmol) 10*SS*, 0.30 g (2.8 mmol) benzaldehyde, 0.23 g (2.8 mmol) sodium acetate, and 10 ml acetic acid. Yield: 0.39 g (30%), m.p: 70-72 °C, brown colored solid.¹H NMR (400 MHz, CDCl₃): δ 7.95-7.17 (m, 15H, Ar-H), 7.46 (s, 1H, =CHPh), 4.62-1.52 (br, 18H benzyl CH_{2 a} and CH_{2 b} protons and pyrrolidine protons) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 168.8, 166.6, 151.6, 138.8,-121.8, 60.0, 59.3, 59.2, 58.7, 54.2, 53.6, 53.1, 52.4, 52.1, 47.9, 30.9, 26.4, 22.5,21.1 ppm. HRMS (TOF MS ES+): Calculated: C₃₂H₃₄N₄OSH+: 523.2532 ;Found:523.2526. ATR-FTIR: 1708, 1599 cm⁻¹.

4.4. Synthesis of 5-Methyl-3-aryloxazolidine-2,4-diones

4.4.1. General procedure

The compounds 16*R*, 16*S*, 17*R*, 17*S* and 18*S* were synthesized by the reaction of corresponding aryl isocyanates and ethyl lactate. The appropriate aryl isocyanates and

ethyl lactate were refluxed for 7 h in xylene. At the end of the reflux period, the obtained oily compound was heated in 6N HCl and then cooled to give precipitate. The precipitated product was isolated by vacuum filtration, washed with water, and dried in vacuo.

4.4.1.1. (5*R*)-Methyl-3-phenyloxazolidine-2,4-dione (+16*R*). The compound was synthesized according to the general procedure using phenyl isocyanate (1.39 g, 0.012 mol), (R)- ethyl lactate (1.42 g, 0.012 mol) and 25 mL xylene. Yield: 0.60 g (26 %), mp: 76-78 °C ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.40 (m, 5H), 5.03 (q, 1H, *J*=7.0 Hz), 1.72 (d, 3H, *J*=7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 172.6, 154.1, 130.9-110.2, 76.1, 17.0 ppm. ATR-FTIR: 1728.3 cm⁻¹. HRMS (TOF MS ES+): Calculated for C₁₀H₉NO₃: 191.0582; Found:191.0554. [α]²⁶₃₆₀ = (+)111.1°.

4.4.1.2. (5*S*)-Methyl-3-phenyloxazolidine-2,4-dione (-16*S*). The compound was synthesized according to the general procedure using phenyl isocyanate (1.39 g, 0.012 mol), (S)- ethyl lactate (1.42 g, 0.012 mol) and 25 mL xylene. Yield: 0.25 g (11 %), mp: 76-78 °C. ¹H NMR (400 MHz, CDCl3): δ 7.52-7.40 (m, 5H), 5.03 (q, 1H, *J*=7.0 Hz), 1.72 (d, 3H, *J*=7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 172.6, 154.1, 130.9-110.2, 76.1, 17.0 ppm. ATR-FTIR: 1733.6 cm⁻¹.HRMS (TOF MS ES+): Calculated for C₁₀H₉NO₃H⁺: 192.0616; Found:192.0600. [α]²⁶₃₆₀=(-)114.3°.

4.4.1.3. (5*R*)-Methyl-3-(*m*-tolyl)oxazolidine-2,4-dione (+17*R*). The compound was synthesized according to the general procedure using *m*-tolyl isocyanate (1.60 g, 0.012 mol), (R)- ethyl lactate (1.42 g, 0.012 mol) and 25 mL xylene. Yield: 0.2 g (8 %), mp: 56-58 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.20 (m, 4H), 5.02 (q, 1H, *J*=7.0 Hz), 2.41 (s, 3H), 1.73 (d, 3H, *J*=7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): 172.7, 154.2, 140.6-120.5, 76.1, 21.5, 17.0 ppm. ATR-FTIR:1727.9 cm⁻¹.HRMS (TOF MS ES+): Calculated for C₁₁H₁₁NO₃NaH⁺: 229.0715 ; Found: 229.0736. [α]²⁶₃₆₀ = (+)116.3°.

<u>4.4.1.4 (5*S*)-Methyl-3-(*m*-tolyl)oxazolidine-2,4-dione (-17*S*). The compound was synthesized according to the general procedure using *m*-tolyl isocyanate (1.60 g, 0.012 mol), (S)- ethyl lactate (1.42 g, 0.012 mol) and 25 mL xylene. mp.: 56-58 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.20 (m, 4H), 5.02 (q, 1H, *J*=7.0 Hz), 2.41 (s, 3H), 1.73 (d, 3H, *J*=7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 154.2, 140.6-120.5, 76.1, 21.5, 17.0 ppm. ATR-FTIR: 1727.9 cm⁻¹. HRMS (TOF MS ES+): Calculated for C₁₁H₁₁NO₃NaH⁺: 229.0715; Found: 229.0742. [α]²⁶₃₆₀ = (-)119.1°.</u>

4.4.1.5. (5*S*)-Methyl-3-(*o*-tolyl)oxazolidine-2,4-dione (-18*S*). The compound was synthesized according to the general procedure using *o*-tolyl isocyanate (1.60 g, 0.012 mol), (S)- ethyl lactate (1.42 g, 0.012 mol) and 25 mL xylene. mp.: 56-58 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.20 (m, 4H), 5.02 (q, 1H, *J*=7.0 Hz), 2.41 (s, 3H), 1.73 (d, 3H, *J*=7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 154.2, 140.6-120.5, 76.1, 21.5, 17.0 ppm. ATR-FTIR: 1727.9 cm⁻¹. HRMS (TOF MS ES+): Calculated for C₁₁H₁₁NO₃NaH⁺: 229.0715; Found: 229.0742. [α]²⁶₃₆₀ = (-)96.8°.

4.5. Reduction of 2-Imino-Thiazolidine-4-ones with LiAlH₄.

4.5.1. General Procedure

The appropriate amount of 2-imino-thiazolidine-4-one was dissolved in THF and appropriate equiv. LiAlH₄ was added to the mixture. The reaction mixture was stirred at room temperature for 5 minutes. At the end of the this period water was added to quench the reaction mixture. And the mixture was extracted with ethyl acetate and dried with CaCl₂. And the solvent was evoporated.

4.5.1.1. 3-((*R*)-1-phenylethyl)-2-((*R*)-1-phenylethylimino)thiazolidine-4-ol (19*RR*). This compound was synthesized according to the general procedure using 0.2 g 6*RR* (0.62 mmol), 0.035 g LiAlH₄ (0.93 mmol) and 10 mL THF. Yield: 0.06 g (29%), oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.55-7.17 (m, 10H, Ar-H), 5.61 (q, 1H, CH_a, *J* = 7.2 Hz), 5.03 (d, 1H, *J*=4.8 Hz), 4.31 (q, 1H, CH_b, *J*=6.4 Hz), 3.17, 3.01 (AB quartet , 1H for each, J_{AB} =11.2 Hz and *J*=4.8 Hz), 1.74 (d, 3H, CH_{3a}, *J* =7.2 Hz), 1.47 (d, 3H, CH_a, *J* = 7.2 Hz), 5.48 (d, 1H, *J*=4.8 Hz), 4.27 (q, 1H, CH_b, *J*=6.4 Hz), 3.32, 3.03 (AB quartet, 1H for each, J_{AB} =11.2 Hz and *J*=4.8 Hz), 1.67 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.46 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. (major/minor: 3.2). ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 153.8, 146.8, 142.0, 129.0-125.6, 81.4, 64.4, 52.6, 36.4, 25.8, 18.0 ppm. ATR-FTIR: 3340, 1626 cm⁻¹.

4.5.1.2. 3-((*S*)-1-phenylethyl)-2-((*S*)-1-phenylethylimino)thiazolidine-4-ol (19*SS*). This compound was synthesized according to the general procedure using 0.2 g 6*SS* (0.62 mmol), 0.035 g LiAlH₄ (0.93 mmol) and 10 mL THF. Yield: 0.06 g (29%), oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.55-7.17 (m, 10H, Ar-H), 5.61 (q, 1H, CH_a, *J* =7.2 Hz), 5.03 (d, 1H, *J*=4.8 Hz), 4.31 (q, 1H, CH_b, *J*=6.4 Hz), 3.17, 3.01 (AB quartet , 1H for each, J_{AB} =11.2 Hz and *J*=4.8 Hz), 1.74 (d, 3H, CH_{3a}, *J* =7.2 Hz), 1.47 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm and for minor isomer δ 7.55-7.17 (m, 10H, Ar-H), 5.70 (q, 1H, CH_a, *J* = 7.2 Hz), 5.48 (d, 1H, *J*=4.8 Hz), 4.27 (q, 1H, CH_b, *J*=6.4 Hz,), 3.32, 3.03 (AB quartet, 1H for each, J_{AB} =11.2 Hz and *J*=4.8 Hz), 1.67 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.46 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. (major/minor: 3.2). ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 153.8, 146.8, 142.0, 129.0-125.6, 82.0, 64.2, 53.3, 36.9, 25.7, 18.3 ppm and for minor isomer δ 154.1, 146.8, 142.5, 129.0-125.6, 81.4, 64.4, 52.6, 36.4, 25.8, 18.0 ppm. ATR-FTIR: 3338, 1625 cm⁻¹.

4.5.1.3. 3-((R)-1-(naphthalen-1-yl)ethyl)-2-((R)-1-(naphthalen-1-yl)ethylimino)

thiazolidin-4-ol (20*RR*). This compound was synthesized according to the general procedure using 0.2 g 7*RR* (0.47 mmol), 0.027 g LiAlH₄ (0.71 mmol) and 10 mL THF. Yield: 0.09 g (45%), white solid, mp: 48-50 °C. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 8.42-6.30 (m, 14H, Ar-H), 6.30 (q, 1H, CH_a, *J*=6.8 Hz), 5.12 (q, 1H, CH_b, *J*=6.4 Hz), 4.65 (d, 1H, CH, *J*=6.4 Hz), 2.84, (d, 2H, CH₂ at C-5, *J*=2.4 Hz), 2.43 (d, 1H, OH, *J*=8.0 Hz), 1.93 (d, 3H, CH_{3a}, *J*=6.8 Hz,), 1.74 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. for minor isomer δ 8.49-7.34 (m, 14H, Ar-H), 6.54 (q, 1H, CH_a, *J*=6.8 Hz), 5.36 (br, 1H, CH), 5.09 (q, 1H, CH_b, *J*=6.4 Hz), 3.27, 2.93 (AB quartet, 1H for each, *J*_{AB}=11.6 Hz and *J*=4.8 Hz), 2.43 (d, 1H, OH, *J*=8.0 Hz), 1.76 (d, 3H, CH_{3a}, *J* = 6.8 Hz), 1.74 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. (major/minor: 3.2). ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 152.9, 142.9, 136.4-123.9, 82.0, 61.6, 49.7, 36.9, 24.9, 17.6 ppm and for minor isomer δ 156.5, 142.6, 137.1, 134.1-123.9, 80.6, 60.5, 48.4, 36.5, 25.0, 17.5 ppm. ATR-FTIR: 3379, 1614 cm⁻¹.

4.5.1.4. 3-((S)-1-(naphthalen-1-yl)ethyl)-2-((S)-1-(naphthalen-1-yl)ethylimino)

<u>thiazolidin-4-ol (2055)</u>. This compound was synthesized according to the general procedure using 0.2 g 7*SS* (0.47 mmol), 0.027 g LiAlH₄ (0.71 mmol) and 10 mL THF. Yield:0.12 g (60%), white solid, mp: 48-50 °C . ¹H NMR (400 MHz, CDCl₃): for major isomer δ 8.42-6.30 (m, 14H, Ar-H), 6.30 (q, 1H, CH_a, *J*=6.8 Hz), 5.12 (q, 1H, CH_b, *J*=6.4

Hz), 4.65 (d, 1H, CH, *J*=6.4 Hz), 2.84, (d, 2H, CH₂ at C-5, *J*=2,4 Hz), 2.43 (d, 1H, OH, *J*=8.0 Hz), 1.93 (d, 3H, CH_{3a}, *J*=6.8 Hz,), 1.74 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. for minor isomer δ 8.49-7.34 (m, 14H, Ar-H), 6.54 (q, 1H, CH_a, *J*=6.8 Hz), 5.36 (br, 1H, CH), 5.09 (q, 1H, CH_b, *J*=6.4 Hz), 3. 3.27, 2.93 (AB quartet, 1H for each, *J*_{AB}=11.6 Hz and *J*=4.8 Hz), 2.43 (d, 1H, OH, *J*=8.0 Hz), 1.76 (d, 3H, CH_{3a}, *J* = 6.8 Hz), 1.74 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. (major/minor: 3.2). ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 152.9, 142.9, 136.4-123.9, 82.0, 61.6, 49.7, 36.9, 24.9, 17.6 ppm and for minor isomer δ 156.5, 142.6, 137.1, 134.1-123.9, 80.6, 60.5, 48.4, 36.5, 25.0, 17.5 ppm. ATR-FTIR: 3379, 1614 cm⁻¹.

4.5.1.5. 3-((*R*)-1-cyclohexylethyl)-2-((*R*)-1-cyclohexylethylimino)

thiazolidine-4-ol (21*RR*). This compound was synthesized according to the general procedure using 0.2 g 8*RR* (0.60 mmol), 0.034 g LiAlH₄ (0.89 mmol) and 10 mL THF. Yield: 0.07 g (36%), oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 5.29 (d, 1H, CH, *J*=4.8 Hz), 4.01 (qd, 1H, CH_a, *J*=7.2 Hz and *J*=6.8 Hz), 3.29, 3.07 (AB quartet, 1H for each, *J*_{AB}=11.6 Hz and *J*=4.8 Hz), 2.81 (qd, 1H, CH_b *J*=5.2 Hz and *J*=6.4 Hz), 1.78-0.80 (m, 22H cyclohexyl protons), 1.26 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.06 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm and for minor isomer δ 5.21 (d, 1H, CH, *J*=4.8 Hz), 3.71 (qd, 1H, CH_a, *J*=7.2 Hz and *J*=6.8 Hz), 3.31, 3.05 (AB quartet, 1H for each, *J*_{AB}=11.6 Hz and *J*=4.8 Hz), 1.78-0.80 (m, 22H cyclohexyl protons), 1.26 (d, 3H, CH₃=11.6 Hz and *J*=4.8 Hz), 2.71 (qd, 1H, CH_b, *J*=5.2 Hz and *J*=6.4 Hz), 1.78-0.80 (m, 22H cyclohexyl protons), 1.28 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.03 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 152.9, 83.9, 66.9, 55.0, 45.1, 41.6, 36.6, 31.1-26.1, 19.6, 17.5 ppm and for minor isomer δ 152.9, 81.9, 66.2, 57.1, 45.0, 41.8, 36.8, 31.1-26.1, 19.5, 17.4 ppm. ATR-FTIR: 3338, 1638 cm⁻¹.

4.5.1.6. 3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)

<u>thiazolidine-4-ol (21*SS*)</u>. This compound was synthesized according to the general procedure using 0.2 g 8*SS* (0.60 mmol), 0.034 g LiAlH₄ (0.89 mmol) and 10 mL THF. Yield:0.09 g (46%), oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 5.29 (d, 1H, CH, *J*=4.8 Hz), 4.01 (qd, 1H, CH_a, *J*=7.2 Hz and *J*=6.8 Hz), 3.29, 3.07 (AB quartet, 1H for each, *J*_{AB}=11.6 Hz and *J*=4.8 Hz), 2.81 (qd, 1H, CH_b *J*=5.2 Hz and *J*=6.4 Hz), 1.78-0.80 (m, 22H cyclohexyl protons), 1.26 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.06 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm and for minor isomer δ 5.21 (d, 1H, CH, *J*=4.8 Hz), 3.71 (qd, 1H, CH_a, *J*=7.2 Hz and

J=6.8 Hz), 3.31, 3.05 (AB quartet, 1H for each, $J_{AB}=11.6$ Hz and J=4.8 Hz), 2.71 (qd, 1H, CH_b, J=5.2 Hz and J=6.4 Hz), 1.78-0.80 (m, 22H cyclohexyl protons), 1.28 (d, 3H, CH_{3a}, J=7.2 Hz), 1.03 (d, 3H, CH_{3b}, J=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 152.9, 83.9, 66.9, 55.0, 45.1, 41.6, 36.6, 31.1-26.1, 19.6, 17.5 ppm and for minor isomer δ 152.9, 81.9, 66.2, 57.1, 45.0, 41.8, 36.8, 31.1-26.1, 19.5, 17.4 ppm. ATR-FTIR: 3338, 1638 cm⁻¹.

4.5.1.7. 3-((*R*)-1-(4-methoxyphenyl)ethyl)-2-((*R*)-1-(4-methoxyphenyl)

ethylimino) thiazolidin-4-ol (22*RR*). This compound was synthesized according to the general procedure using 0.2 g 9*RR* (0.52 mmol), 0.059 g LiAlH₄ (1.56 mmol) and 10 mL THF. Yield: 0,071 (35%), oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.29-6.83 (m, 8H, Ar-H), 5.54 (q, 1H, CH_a, J = 6.8 Hz), 4.99 (d, 1H, J=4.8 Hz), 4.27 (q, 1H, CH_b, J=6.4 Hz), 3.76 (s, 6H, OCH₃), 3.14, 2.99 (AB quartet, 1H for each, $J_{AB}=11.2$ Hz and J=4.8 Hz), 1.71 (d, 3H, CH_{3a}, J=6.8 Hz), 1.45 (d, 3H, CH_{3b}, J=6.4 Hz) ppm. for minor isomer δ 7.47-6.88 (m, 8H, Ar-H), 5.66 (q, 1H, CH_a, J=7.2 Hz,), 4.47 (d, 1H, J=4.8 Hz), 4.23 (q, 1H, CH_b, J=6.8 Hz), 3.76 (s, 6H, OCH₃), 3.30, 3.02 (AB quartet, 1H for each, $J_{AB}=11.2$ Hz and J=4.8 Hz), 1.71 (d, 3H, CH_{3a}, J=6.8 Hz), 1.45 (d, 3H, CH_{3b}, J=6.4 Hz) ppm. (major/minor: 3.2). ¹³C NMR (100 MHz, CDCl₃): for major isomer δ158.0, 139.0-126.9, 82.1, 63.5, 55.2, 36.8, 25.6, 18.2 ppm and for minor isomer δ 158.8, 136.2-126.9, 81.4, 61.2, 55.8, 52.8, 36.2, 24.9, 18.0 ppm. ATR-FTIR: 3349, 1610 cm⁻¹.

4.5.1.8. 3-((S)-1-(4-methoxyphenyl)ethyl)-2-((S)-1-(4-methoxypheyl)

<u>ethylimino) thiazolidin-4-ol (22SS)</u>. This compound was synthesized according to the general procedure using 0.2 g 9*SS* (0.52 mmol), 0.059 g LiAlH₄ (1.56 mmol) and 10 mL THF. Yield: 0,086 (43%), oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.29-6.83 (m, 8H, Ar-H), 5.54 (q, 1H, CH_a, *J*=6.8 Hz), 4.99 (d, 1H, *J*=4.8 Hz), 4.27 (q, 1H, CH_b, *J*=6.4 Hz), 3.76 (s, 6H, OCH₃), 3.14, 2.99 (AB quartet, 1H for each, *J*_{AB}=11.2 Hz and *J*=4.8 Hz), 1.71 (d, 3H, CH_{3a}, *J*=6.8 Hz), 1.45 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. for minor isomer δ 7.47-6.88 (m, 8H, Ar-H), 5.66 (q, 1H, CH_a, *J*=7.2 Hz,), 4.47 (d, 1H, *J*=4.8 Hz), 4.23 (q, 1H, CH_b, *J*=6.8 Hz), 3.76 (s, 6H, OCH₃), 3.30, 3.02 (AB quartet, 1H for each, *J*_{AB}=11.2 Hz and *J*=4.8 Hz), 1.71 (d, 3H, CH_{3a}, *J*=6.8 Hz), 1.45 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. (major/minor: 3.2). ATR-FTIR: 3328, 1609 cm⁻¹.

4.6. Transformation of Chiral Hemiaminals to Thiazol-2-imines

4.6.1. General Procedure

Transformations of the chiral hemiaminals **19-22** to thiazol-2-imine **23-26** were followed by taking ¹H NMR spectra periodically. The solvent effect for the transformation was investigated by following the kinetics in CDCl₃ and in C_6D_6 .

<u>4.6.1.1.</u> <u>3-((*R*)-1-phenylethyl)-2-((*R*)-1-phenylethylimino)thiazoline (23*RR*). Oily. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.14 (m, 10H), 6.46 (d, 1H, CH(C-4), *J*=4.8 Hz), 5.86 (q, 1H, CH_a, *J*=7.2 Hz), 5.76 (d, 1H, CH(C-5), *J*=4.8 Hz), 4.09 (q, 1H, CH_b, *J*=6.4 Hz), 1.72 (d, 3H, CH_{3a}, *J* = 7.2 Hz), 1.50 (d, 3H, CH_{3b}, *J*=6.4 Hz). ¹³C NMR (100 MHz, CDCl₃): 128.8, 128.7, 128.6, 125.5, 127.9, 127.3, 126.9, 126.5, 126.2, 124.3, 96.6, 63.6, 53.1, 25.2, 19.4 ppm.</u>

<u>4.6.1.2. 3-((*S*)-1-phenylethyl)-2-((*S*)-1-phenylethylimino)thiazoline (23*SS*). Oily. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.14 (m, 10H), 6.46 (d, 1H, CH(C-4), *J*=4.8 Hz), 5.86 (q, 1H, CH_a, *J*=7.2 Hz), 5.76 (d, 1H, CH(C-5), *J*=4.8 Hz), 4.09 (q, 1H, CH_b, *J*=6.4 Hz), 1.72 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.50 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): 128.8, 128.7, 128.6, 125.5, 127.9, 127.3, 126.9, 126.5, 126.2, 124.3, 96.6, 63.6, 53.1, 25.2, 19.4 ppm.</u>

4.6.1.3. 3-((*R*)-1-(naphthalen-1-yl)ethyl)-2-((*R*)-1-(naphthalen-1-yl)

<u>ethylimino)thiazoline (24*RR*)</u>. Oily. ¹H NMR (400 MHz, CDCl₃): δ 7.99-6.99 (m, 14H, ArH), 6.55 (q, 1H, *J*=6.8 Hz), 6.14 (d, 1H, CH(C-4), *J*=5.2 Hz), 5.58 (d, 1H, CH(C-5), *J*=5.2 Hz), 4.88 (q, 1H, *J*=6.4 Hz), 1.85 (d, 3H, CH_{3a}, *J* = 6.8 Hz), 1.79 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 156.5, 142.2, 136.8, 134.0, 133.8, 131.6, 131.3, 128.8, 128.4, 127.1, 126.7, 125.9, 125.5, 124.9, 124.4, 124.2, 124.1, 123.6, 9, 96.8, 61.6, 49.7, 24.3, 18.2 ppm.

4.6.1.4. 3-((*S*)-1-(naphthalen-1-yl)ethyl)-2-((*S*)-1-(naphthalen-1-yl)

ethylimino)thiazoline (24*SS*). Oily. ¹H NMR (400 MHz, CDCl₃): δ 7.99-6.99 (m, 14H, ArH), 6.55 (q, 1H, *J*=6.8 Hz), 6.14 (d, 1H, CH(C-4), *J*=5.2 Hz), 5.58 (d, 1H, CH(C-5), *J*=5.2 Hz), 4.88 (q, 1H, *J*=6.4 Hz), 1.85 (d, 3H, CH_{3a}, *J* = 6.8 Hz), 1.79 (d, 3H, CH_{3b}, *J* = 6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 156.5, 142.2, 136.8, 134.0, 133.8, 131.6, 131.3, 128.8, 128.4, 127.1, 126.7, 125.9, 125.5, 124.9, 124.4, 124.2, 124.1, 123.6, 9, 96.8, 61.6, 49.7, 24.3, 18.2 ppm.

4.6.1.5. 3-((*R*)-1-cyclohexylethyl)-2-((*R*)-1-cyclohexylethylimino)

<u>thiazoline (25*RR*)</u>. Oily.¹H NMR (400 MHz, CDCl₃): δ 6.61 (d, 1H, CH(C-4), *J*=5.2 Hz), 5.95 (d, 1H, CH(C-5), *J*=5.2 Hz), 4.20 (qd, *J*=7.2 Hz and *J*=6.8 Hz, 1H, CH_a), 2.56 (qd, *J*=6.4 Hz, 1H, CH_b), 1.77-0.87 (m, 22H cyclohexyl protons), 1.18 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.01 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): 167.5, 127.1, 105.9, 63.9, 60.1, 43.6, 42.3, 30.3-25.7, 18.1, 16.8 ppm.

4.6.1.6. 3-((S)-1-cyclohexylethyl)-2-((S)-1-cyclohexylethylimino)

<u>thiazoline (255S)</u>. Oily.¹H NMR (400 MHz, CDCl₃): δ 6.61 (d, 1H, CH(C-4), *J*=5.2 Hz), 5.95 (d, 1H, CH(C-5), *J*=5.2 Hz), 4.20 (qd, *J*=7.2 Hz and *J*=6.8 Hz, 1H, CH_a), 2.56 (qd, *J*=6.4 Hz, 1H, CH_b),1.77-0.87 (m, 22H cyclohexyl protons), 1.18 (d, 3H, CH_{3a}, *J*=7.2 Hz), 1.01 (d, 3H, CH_{3b}, *J*=6.4 Hz). ¹³C NMR (100 MHz, CDCl₃): 167.5, 127.1, 105.9, 63.9, 60.1, 43.6, 42.3, 30.3-25.7, 18.1, 16.8 ppm.

4.6.1.7. 3-((*R*)-1-(4-methoxyphenyl)ethyl)-2-((*R*)-1-(4-methoxyphenyl)

ethylimino) thiazoline (26*RR*). ¹H NMR (400 MHz, CDCl₃): δ 7.17-6.70 (m, 8H, ArH), 6.34 (d, 1H, CH(C-4), *J*=4.8 Hz), 5.76 (q, 1H, *J*=6.8 Hz), 5.66 (d, 1H, CH(C-5), *J*=4.8 Hz), 3.98 (q, 1H, *J*=6.4 Hz), 3.70 (s, 3H, OCH_{3a}), 3.70 (s, 3H, OCH_{3b}), 1.60 (d, 3H, CH_{3a}, *J*=6.8 Hz), 1.42 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 159.9, 159.5 128.4, 127.9, 114.5, 111.4, 106.6, 59.7, 55.3, 55.2, 23.1, 19.5 ppm.

4.6.1.8. 3-((S)-1-(4-methoxyphenyl)ethyl)-2-((S)-1-(4-methoxyphenyl)

ethylimino) thiazoline (26SS). ¹H NMR (400 MHz, CDCl₃): δ 7.17-6.70 (m, 8H, ArH), 6.34 (d, 1H, CH(C-4), *J*=4.8 Hz), 5.76 (q, 1H, *J*=6.8 Hz), 5.66 (d, 1H, CH(C-5), *J*=4.8 Hz), 3.98 (q, 1H, *J*=6.4 Hz), 3.70 (s, 3H, OCH_{3a}), 3.70 (s, 3H, OCH_{3b}), 1.60 (d, 3H, CH_{3a}, *J*=6.8 Hz), 1.42 (d, 3H, CH_{3b}, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 159.9, 159.5 128.4, 127.9, 114.5, 111.4, 106.6, 59.7, 55.3, 55.2, 23.1, 19.5 ppm.

4.7. Bromination of Compound 23SS

4.7.1. General Procedure

The starting compound was dissolved in CH_2Cl_2 and excess Br_2 was added to the solution. The mixture was stirred at room temperature for 5 minutes. At the end of the this period, the solvent was evaporeted and the crude product was purified from a mixture of ethyl acetate-hexane.

4.7.1.1. (S)-N-(4,5-dibromo-3-((S)-1-phenylethyl)thiazolidin-2-ylidene)

<u>-1-phenylethanamine (27)</u>. This compound was synthesized using 0.08 g (0.26 mmol) 23*SS* and excess Br₂ in CH₂Cl₂. Yield: 0,048 g (39%), purified from ethyl acetate/hexane mixture. Pale yellow solid, mp: 144.8-146.2 ^oC.¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.63-7.04 (m, 10H, ArH), 6.24 (q, 1H, CH, *J*=6.8 Hz), 5.64(s, 1H, CH at C-4), 5.37 (s, 1H, CH at C-5), 4.56 (q, 1H, CH, *J*=6.8 Hz), 1.81 (d, 3H CH₃, *J*=6.8 Hz), 1.77 (d, 3H CH₃, *J*=6.8 Hz) ppm, for minor isomer δ 7.63-7.04 (m, 10H, ArH), 6.28 (q, 1H, CH, *J*=6.8 Hz), 5.96(s, 1H, CH at C-4), 5.45 (s, 1H, CH at C-5), 4.59 (q, 1H, CH, *J*=6.8 Hz), 1.58 (d, 3H CH₃, *J*=6.8 Hz), 1.33 (d, 3H CH₃, *J*=6.8 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.2, 139.6, 137.4, 129.6, 129.4, 129.3, 128.4, 127.6, 126.4, 125.7, 94.2, 60.9, 57.7, 51.3, 22.5, 19.1 ppm.

4.8. Reduction of Axially Chiral Pyridine Compounds with LiAlH₄

4.8.1. General Procedure

The reduction of axially chiral pyridine compounds **28-31** were carried out according to general procedure 4.5.1.

<u>4.8.1.1. (±)-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (32)</u>. This compound was synthesized according to the general procedure using 0.1 g (28) (0.37 mmol), 0.021 g LiAlH₄ (0.56 mmol) and 10 mL THF. Yield: 0,065 g (65%), oily. ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, 1H, ArH, *J*=4.0 Hz), 8.34 (m, 2H, ArH), 7.80 (m, 1H, ArH), 7.71 (m, 1H, ArH), 7.11 (m, 2H, ArH), 7.05 (m, 1H, ArH), 6.24 (d, 1H, *J*=5.6 Hz), 5.52 (br, s, 1H,

OH), 3.52, 3.27 (AB quartet, 1H for each, *J*_{AB}=12.0 Hz and *J*=5.6 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 156.1, 150.3, 148.1, 138.6, 125.6, 122.4, 119.5, 117.3, 104.8, 85.4, 34.0 ppm. ATR-FTIR: 3331, 1654 cm⁻¹.

<u>4.8.1.2.</u> (±)-3-(3-methylpyridin-2-yl)-2-(3-methylpyridin-2-ylimino)thiazolidin-4-ol (33). This compound was synthesized according to the general procedure using 0.1 g (29) (0.34 mmol), 0.019 g LiAlH₄ (0.50 mmol) and 10 mL THF. Yield: 0,052 g (51%), pale yellow cyristal, mp: 168-170 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.2 (d, 2H, ArH, *J* = 2.8 Hz), 7.61 (d, 1H, ArH, *J* = 7.2 Hz), 7.35 (d, 1H, ArH, *J*=6.8 Hz), 7.18 (dd, 1H, ArH, *J*=4.8 Hz and *J*=7.2 Hz), 6.83 (dd, 1H, ArH, *J*= 4.8 Hz and *J*=7.2 Hz), 6.83 (dd, 1H, ArH, *J*= 4.8 Hz and *J*=7.2 Hz), 6.22 (br, s, 1H, OH), 5.80 (d, 1H, *J*=4.8 Hz), 3.49, 3.21 (AB quartet, 1H for each, *J*_{AB}=11.6 Hz and *J*=4.8 Hz), 2.30 (s, 3H, CH₃), 2.00 (d, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 154.1, 145.0, 144.2, 139.9, 138.3, 131.6, 128.3, 122.5, 119.1, 83.9, 36.1, 18.8, 17.4 ppm. ATR-FTIR: 1575 cm⁻¹.

<u>4.8.1.3. (±)-5-methyl-3-(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-ol (34)</u>. This compound was synthesized according to the general procedure using 0.1 g (30) (0.35 mmol), 0.020 g LiAlH₄ (0.53 mmol) and 10 mL THF. Yield: 0,043 g (43%), yellow colored solid, mp: 64-66 °C. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 8.42-6.34 (m, 8H, ArH), 5.82 (d, 1H, CH at C₄, *J*=0.8 Hz), 5.12 (br, 1H, OH), 3.56 (qd, 1H, CH at C₅, *J*=0.8 Hz and *J*=7.2 Hz), 1.48 (d, 3H, CH₃, *J*=7.2 Hz) ppm. for minor isomer δ 8.43-6.72 (m, 8H, ArH), 5.96 (d, 1H, CH at C₄, *J*=5.2 Hz), 5.29 (br, 1H, OH), 3.86 (qd, 1H, CH at C₅, *J*=5.2 Hz and *J*=7.2 Hz), 1.54 (d, 3H, CH₃, *J*=6.8 Hz ppm. ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 159.3, 157.7, 153.2, 153.0, 147.3, 137.6, 137.6, 137.5, 137.4, 119.6, 119.5, 118.9, 118.8, 113.4, 109.4, 89.7, 85.1, 43.3, 41.9, 21.2, 13.0 ppm. ATR-FTIR: 3342, 1589 cm⁻¹.

4.8.1.4. (±)-5-methyl-3-(3-methylpyridin-2-yl)-2-(3-methylpyridin-2-ylimino)

thiazolidin-4-ol (35). This compound was synthesized according to the general procedure using 0.1 g (31) (0.32 mmol), 0.018 g LiAlH₄ (0.48 mmol) and 10 mL THF. Yield: 0,038 g (38%), yellow colored solid, mp:112-115 °C. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 8.06-6.60 (m, 6H, ArH), 6.27 (br s, 1H, OH), 5.26 (s, 1H, CH at C₄), 3.50 (q, 1H, CH at C₅, *J*=7.2 Hz), 2.21 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 1.21 (d, 3H, CH₃ at C-5, *J*=7.2 Hz) ppm. for minor isomer δ 8.06-6.60 (m, 6H, ArH), 6.27 (br s, 1H, OH), 5.26 (s, 1H, OH), 5.26 (s, 1H, CH at C₅, *J*=7.2 Hz) ppm. for minor isomer δ 8.06-6.60 (m, 6H, ArH), 6.27 (br s, 1H, OH), 5.26 (s, 1H, OH), 5.26 (s, 1H, CH at C₅, *J*=7.2 Hz) ppm. for minor isomer δ 8.06-6.60 (m, 6H, ArH), 6.27 (br s, 1H, OH), 5.26 (s, 1H, CH) (s,

at C₄), 3.60 (dq, 1H, CH at C₅, *J*=6.8 Hz and *J*=11.2 Hz), 2.29 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 1.54 (d, 3H, CH₃ at C-5, *J*=6.8 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 157.0, 156.8, 146.4, 144.9, 143.8, 139.6, 138.1, 131.3, 128.0, 123.5, 122.2, 120.4, 118.7, 117.2, 116.4, 113.3, 89.7, 85.7, 45.2, 44.0, 20.9, 18.4, 18.2, 17.2 ppm. ATR-FTIR: 3358, 1599 cm⁻¹.

4.9. Reduction of 5-Methyl-3-aryloxazolidine-2,4-diones with LiAlH₄.

4.9.1. General Procedure

The appropriate amount of enantiomericaly pure 5-methyl-3-aryloxazolidine-2,4dione was dissolved in THF and appropriate equiv. $LiAlH_4$ was added to the mixture. The reaction mixture was stirred at room temperature for 5 minutes. At the end of the this period water was added to quench the reaction mixture. And the mixture was extracted with ethyl acetate and dried with CaCl₂. And the solvent was evoporated.

<u>4.9.1.1.</u> (±)-4-hydroxy-5-methyl-3-phenyloxazolidin-2-one (36). This compound was synthesized according to the general procedure using 0.115 g 16S (0.60 mmol), .034 g LiAlH₄ (0.89 mmol) and 10 mL THF. Oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.61-7. 22 (m, 5H, Ar-H), 5.29 (d, 1H, CH at C-4, *J* = 6.4 Hz), 4.48 (dq, 1H, CH at C-5, *J*=1.6 Hz and *J*=6.4 Hz), 3.69 (d, 1H, OH, *J* = 8.4 Hz), 1.50 (d, 3H, CH₃, *J*=6.8 Hz) ppm and for minor isomer δ 8.66-7. 05 (m, 5H, Ar-H), 5.54 (t, 1H, CH at C-4, *J* = 5.6 Hz), 4.69 (dq, 1H, CH at C-5, *J*=6.4 Hz and *J*=6.8 Hz), 3.53 (d, 1H, OH, *J* = 8.4 Hz), 1.45 (d, 3H, CH₃, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 155.0, 136.3, 129.8, 125.8, 121.8, 121.6, 86.7, 78.8, 18.8, 13.1 ppm and for minor isomer δ 159.3, 129.7, 125.6, 124.9, 120.0, 116.9, 83.0, 75.5, 18.8, 13.1 ppm. ATR-FTIR: 3306, 1725 cm⁻¹.

<u>4.9.1.2. (±)-4-hydroxy-5-methyl-3-*m*-tolyloxazolidin-2-one (37)</u>. This compound was synthesized according to the general procedure using 0.123 g 17S (0.60 mmol), .034 g LiAlH₄ (0.89 mmol) and 10 mL THF. Oily. ¹H NMR (400 MHz, CDCl₃): for major isomer δ 7.42-6.81 (m, 5H, Ar-H), 5.31 (d, 1H, CH at C-4, *J* = 5.6 Hz), 4.49 (dq, 1H, CH at C-5, *J*=1.6 Hz and *J*=7.6 Hz), 3.25 (d, 1H, OH, *J* = 8.4 Hz), 1.48 (d, 3H, CH₃, *J*=6.4 Hz) ppm and for minor isomer δ 8.66-6.81 (m, 5H, Ar-H), 5.56 (t, 1H, CH at C-4, *J* = 4.8 Hz), 4.70 (dq, 1H, CH at C-5, *J*=6.0 Hz and *J*=6.4 Hz), 3.53 (d, 1H, OH, *J* = 8.4 Hz), 1.49 (d,

3H, CH₃, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): for major isomer δ 172.0, 129.3, 127.1, 122.8, 119.2, 86.8, 82.9, 21.7, 19.1 ppm and for minor isomer δ 170.6, 126.4, 125.9, 117.2, 116.2, 78.5, 75.5, 21.7, 19.1 ppm. ATR-FTIR: 3302, 1730 cm⁻¹.

4.10. Ring Opening Reaction of 5-Methyl-3-aryloxazolidine-2,4-diones with NaBH₄

4.10.1. General Procedure

To a mixture of 5-methyl-3-aryloxazolidine-2,4-dione (1 eq.) in THF was added a solution of sodium borohydride (4 eq.) in water maintaing the reaction mixture temperature at 24-25 $^{\circ}$ C. The mixure was stirred at room temperature until the completion of the reaction. As soon as the disappearance of stating compound, 2 M HCl (5 eq.) was added to the reaction mixture. And the mixture was extracted with ethyl acetate and dried with CaCl₂. And the solvent was evaporated.

<u>4.10.1.1. (±)1-hydroxypropan-2-yl phenylcarbamate (38)</u>. This compound was prepared according to the general procedure using 0.1 g (0.52 mmol) compound 16*S* in 0.63 ml THF (0,33 M), 0.08 g (2.09 mmol) sodium borohydride in 0,51 ml water (4,05 M). Yield: 0.056 (55%). Oily. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.07 (m, 5H, Ar-H), 6.69 (br s, 1H, NH), 5.03-4.99 (m, 1H, CH), 3.73 and 3.69, 3.71 and 3.70 (2 AB quartets, 1 H each, CH₂, *J*= 12.00 Hz), 2.20 (s,br, 1H, OH), 1.31 (d, 3H, CH₃, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 137.7, 129.0, 123.6, 120.5, 118.8, 72.9, 66.4, 16.4 ppm. ATR-FTIR: 3303, 1700 cm⁻¹.

<u>4.10.1.2. (±)1-hydroxypropan-2-yl *m*-tolylcarbamate (39)</u>. This compound was prepared according to the general procedure using 0.1 g (0.49 mmol) compound 17*S* in 0.60 ml THF (0,33 M), 0.075 g (1.97 mmol) sodium borohydride in 0,48 ml water (4,05 M). Yield: 0.043 (42%). ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.05 (m, 4H, Ar-H), 6.48 (br s, 1H, NH), 5.05-4.97 (m, 1H, CH), 3.76 and 3.66, 3.73 and 3.71 (2 AB quartets, 1 H each, CH₂, *J*= 12.00 Hz), 1.85 (br, 1H, OH), 2.26 (s, 3H, CH₃) ppm 1.31 (d, 3H, CH₃, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 135.6, 130.5, 130.4, 126.9, 124.5, 124.3, 73.2, 66.2, 17.7, 16.5 ppm. ATR-FTIR: 3287, 1689 cm⁻¹.

<u>4.10.1.3. (±)1-hydroxypropan-2-yl *o*-tolylcarbamate (40)</u>. This compound was prepared according to the general procedure using 0.1 g (0.49 mmol) compound 18*S* in 0.60 ml THF (0,33 M), 0.075 g (1.97 mmol) sodium borohydride in 0,51 ml water (4,05 M). Yield: 0.085 (83%). ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.04 (m, 4H, Ar-H), 6.48 (br s, 1H, NH), 5.05-4.97 (m, 1H, CH), 3.76 and 3.66, 3.73 and 3.71 (2 AB quartets, 1 H each, CH₂, *J*= 12.00 Hz), 2.26 (s, 3H, CH₃) ppm 1.31 (d, 3H, CH₃, *J*=6.4 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 135.6, 130.5, 130.4, 126.9, 124.5, 124.3, 73.2, 66.2, 17.7, 16.5 ppm. ATR-FTIR: 3274, 1688 cm⁻¹.

5. CONCLUSION

N,N'-bis-thioureas and their cyclized derivatives were synthesized as single enantiomers and their optical purities were proven by polarimetric measurements and HPLC analyses on optically active stationary phases. Conformational structures steming from the rotation about C-N partial double bond of the thioureas were studied experimentally. The variable NMR revealed that there is a rapid equilibrium between the *E,Z/Z,E* conformations in the solution but X-Ray analyses showed that the thioureas prefer to stay on the *Z,Z* conformation in the crystalline state.

Single enantiomers of the new 5-methyl-3-aryloxazolidine-2,4-diones were obtained by an asymmetric synthesis and their optical purities were proven by polarimetric measurements, HPLC analyses on optically active stationary phases and optically active auxiliary compound (R)-2,2,2-trifluoro-1-(9-anthryl)ethanol ((R)-TFAE).

Chiral hemiaminals were synthesized from the corresponding 2-iminothiazolidine-4-ones by LiAlH₄ reductions stereoselectively. The hemiaminals were converted to single enantiomer thiazol-2-imines and their conversion kinetics have been followed by time dependent ¹H NMR spectroscopy. One of the thiazol-2-imine derivative was brominated stereoselectively and a diastereomeric pair was obtained from the *trans*-addition of bromine to the double bond of the alkene. The *trans* hydrogens of the dibrominated products present on adjacent carbons of the thiazolidine-4-one ring, did not couple with each other. This fact was exploited to differentiate the *cis* oriented hydrogens of the hemiaminals and from the *trans* oriented ones based on their observed coupling constants.

Another series of hemiaminals were synthesized from the axially chiral pyridine compounds carrying 2-iminothiazolidin-4-one core from the reduction with LiAlH₄. For these compounds because of the restricted rotation around the N₃-aryl single bond, the M/P isomerization was observed. The 2D-NOESY ¹H NMR experiments revealed that the OH prefer to be on the same side with the N₃ pyridine nitrogen because of the possibility for an intramolecular H-bond formation.

The single enantiomers of 5-methyl-3-aryloxazolidine-2,4-diones were reduced to their hemiaminal derivatives *via* LiAlH₄ reductions. Additionally their ring opening

reactions were carried out in the presence of NaBH₄. During these reactions, it was investigated that whether the configuration at C-5 is retained or not. It was revealed that compounds partially racemize under basic conditions because of the enolization of the molecule due to the presence of the acidic α -hydrogen at C-5 of the ring. The *ortho* tolyl derivative of 5-methyl-3-aryloxazolidine-2,4-diones was found to have less racemization ratio than the others during the ring opening reaction with NaBH₄. This can be explained by the steric hindrance of ortho methyl group that hindered the approach of the hydride ion. Furthermore, during the ring opening reactions of 5-methyl-3-aryloxazolidine-2,4intermediates. diones, the corresponding hemiaminals were found as

REFERENCES

- Loxq, P., E. Manourya, R. Poli, E. Deydier, A. Labande. "Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals ", *Coordination Chemistry Reviews*, Vol. 308, pp. 131–19, 2016.
- 2. Oki, M., Topics in Stereochem. Wiley, New York, USA, Vol. 14, pp. 1-81, 1983.
- Kumarasamy, E., R. Raghunathan, M. P. Sibi, J. Sivaguru, "Nonbiaryl and Heterobiaryl Atropisomers: Molecular Templates with Promise for Atropselective Chemical Transformations", *Chemical Reviews*, Vol. 115, pp. 11239–11300, 2015.
- Glunz, P. W., "Recent encounters with atropisomerism in drug discovery", *Bioorganic* & *Medicinal Chemistry Letters*, Vol. 28, pp. 53–60, 2018.
- LaPlante, S. R., P. J. Edwards, L. D. Fader, A. Jakalian, O. Hucke, "Revealing Atropisomer Axial Chirality in Drug Discovery", *ChemMedChem*, Vol. 6, pp. 505 – 513, 2011.
- Šenica, L., K. Stopar, M. Friedrich, U. Grošelj, J. Plavec, M. Počkaj, Č. Podlipnik, B. Štefane, J. Svete, " Synthesis and Rotational Isomerism of 1-Substituted Methyl (S)-[5-(2-Nitrophenyl)-1H-pyrazole-4-carbonyl]alaninates", *The Journal of Organic Chemistry*, Vol. 81, pp. 146-161, 2016.
- Patel, D. C., R. M. Woods, Z. S. Breitbach, A. Berthod, D. W. Armstrong, "Thermal racemization of biaryl atropisomers", *Tetrahedron: Asymmetry*, Vol. 28, pp. 1557– 1561, 2017.
- Doğan, İ., T. Burgemeister, S. Icli and A. Mannschreck, "Synthesis and NMR Studies of Chiral 4-Oxazolidinones and Rhodanines", *Tetrahedron*, Vol. 48, No. 35, pp. 7157-7164, 1992.
- Oğuz, S. F. and İ. Doğan, "Determination of Energy Barriers and Racemization Mechanisms for Thermally Interconvertible Barbituric and Thiobarbituric Acids Enantiomers", *Tetrahedron: Asymmetry*, Vol. 14, No. 13, pp. 1857-1864, 2003.
- Erol, Ş. and İ. Doğan, "Axially Chiral 2-Arylimino-3-aryl-thiazolidine-4-one Derivatives: Enantiomeric Separation and Determination of Racemization Barriers by Chiral HPLC", *The Journal of Organic Chemistry*, Vol. 72, No.7, pp. 2494-2500, 2007.
- Isikgor, F. H., S. Erol, I. Dogan, "Axially chiral pyridine compounds: synthesis, chiral separations and determination of protonation dependent barriers to hindered rotation", *Tetrahedron: Asymmetry*, Vol. 25, pp. 449–456, 2014.
- Takahashi, M., H. Tanabe, T. Nakamura, D. Kuribara, T. Yamazaki, O. Kitagawa, "Atropisomeric lactam chemistry: catalytic enantioselective synthesis, application to asymmetric enolate chemistry and synthesis of keyintermediates for NET inhibitors", *Tetrahedron*, Vol. 66, pp. 288–296, 2010.
- Sarigul, S. and I. Dogan, "Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives", *The Journal of Organic Chemistry*, Vol. 81, pp. 5895–5902, 2016.
- Suzumura, N., M. Kageyama, D. Kamimura, T. Inagaki, Y. Dobashi, H. Hasegawa, H. Fukaya, O. Kitagawa, "Studies on rotational barriers of N–C axially chiral compounds: increase in the rotational barrier by aromatization", *Tetrahedron Letters*, Vol. 53, pp. 4332–4336, 2012.
- Suzuki, Y., I. Takahashi, Y. Dobashi, H. Hasegawa, C. Roussel,O. Kitagawa, "Relationship between rotational barriers and structures in N–C axially chiral 3,4dihydroquinolin-2-one and 3,4-dihydrobenzoquinolin-2-one", *Tetrahedron Letters*, Vol. 56, pp. 132–135, 2015.
- Hasegawa, F., K. Kawamura, H. Tsuchikawa, M. Murata, "Stable C–N axial chirality in 1-aryluracil scaffold and differences in in vitro metabolic clearance between atropisomers of PDE4 inhibitor", *Bioorganic & Medicinal Chemistry*, Vol. 25, pp. 4506–4511, 2017.
- Yılmaz, E. M., İ. Doğan, "Axially chiral N-(o-aryl)-2-thioxo-oxazolidine-4-one and rhodanine derivatives: enantiomeric separation and determination of racemization barriers", *Tetrahedron: Asymmetry*, Vol. 19, pp. 2184–2191, 2008.

- IIIisz, I., A. Bajtai, W. Lindner, A. Péter, "Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids", *Journal of Pharmaceutical and Biomedical Analysis*, Vol. 159, pp. 127–152, 2018.
- Fujii, N., T. Takata, N. Fujii, K. Aki, H. Sakaue, "D-Amino acids in protein: The mirror of life as a molecular index of aging ", *BBA - Proteins and Proteomics*, Vol. 1866, pp. 840–847, 2018.
- 20. Grecsó, N., M. Kohout, A. Carotti, R. Sardella, B. Natalini, F. Fülöp, W. Lindner, A. Péter, I. Ilisz, "Mechanistic considerations of enantiorecognition on novel Cinchona alkaloid-based zwitterionic chiral stationary phases from the aspect of the separation of trans-paroxetine enantiomers as model compounds", *Journal of Pharmaceutical and Biomedical Analysis*, Vol. 124, pp. 164–173, 2016.
- Tseng, S., G. Pak, K. Washenik, M. K. Pomeranz, J. L. Shupack, "Rediscovering thalidomide: A review of its mechanism of action, side effects, and potential uses", *Journal of the American Academy of Dermatology*, Vol. 35, pp. 969-979, 1996.
- Daviesa, B. J., M. K. Herbert, J. A. Culbert, S. M. Pyke, J. K. Coller, A. A. Somogyi, R. W. Milne, B. C. Sallustio, "Enantioselective assay for the determination of perhexiline enantiomersin human plasma by liquid chromatography", *Journal of Chromatography B*, Vol. 832, pp. 114–120, 2006.
- Lv, L., H. Lv, X. Qiu, J. Yan, S. Tong, "Stereoselectiveseparation of racemic transparoxol, N-methylparoxetine and paroxetine containing two chiral carbon centres by countercurrent chromatography", *Journal of Chromatography A*, Vol.1570, pp. 99– 108, 2018.
- 24. Prasad, B. B., D. Kumar, R. Madhuri, M. P. Tiwari, "Metal ion mediated imprinting for electrochemical enantioselective sensing of 1-histidine at trace level", *Biosensors and Bioelectronics*, Vol. 28, pp. 117–126, 2011.
- Clayden, J., W. J. Moran, P. J. Edwards, S. R. LaPlante, "The Challenge of Atropisomerism in Drug Discovery", *Angewandte Chemie International*, Vol. 48, pp. 6398 – 6401, 2009.

- Lee, S., T. Kamide, H. Tabata, H. Takahashi, M. Shiro, H. Natsugari, "Axial chirality and affinity at the GABA_A receptor of pyrimido[1,2-*a*][1,4]benzodiazepines and related compounds", *Bioorganic & Medicinal Chemistry*, Vol. 16, pp. 9519–9523, 2008.
- 27. Yoshida, K., R. Itoyama, M. Yamahira, J. Tanaka, N. Loaëc, O. Lozach, E. Durieu, T. Fukuda, F. Ishibashi, L. Meijer, M. Iwao, "Synthesis, Resolution, and Biological Evaluation of Atropisomeric (a*R*)- and (a*S*)-16-Methyllamellarins N: Unique Effects of the Axial Chirality on the Selectivity of Protein Kinases Inhibition", *Journal of Medicinal Chemistry*, Vol. 56, pp. 7289-7301, 2013.
- Yao, G., M. Ye, R. Huang, Y. Li, Y. Zhu, Y. Pan, Z. Liao, H. Wang, "Synthesis and antitumor activity evaluation of maleopimaric acid N-aryl imide atropisomers", *Bioorganic & Medicinal Chemistry Letters*, Vol. 23, pp. 6755–6758, 2013.
- Hallock, Y. F., K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, M. SchaÈffer, K. P. Gulden, G. Bringmann, A. Y. Lee, J. Clardy, G. François, M. R. Boyd, " Korupensamines A-D, Novel Antimalarial Alkaloids from Ancistrocladus korupensis", *Journal of Organic Chemistry Vol.* 59, pp. 6349-6355, 1994.
- Seco, J. M., E. Quiñoá, R. Riguera, "Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents", *Chem. Rev.* Vol. 112, pp. 4603–4641, 2012.
- Demir Ordu, Ö., İ. Doğan, "Determination of energy barriers to rotation and absolute conformations of thermally interconvertible 5,5-dimethyl-3-(o-aryl)-2,4oxazolidinedione enantiomers", *Tetrahedron: Asymmetry*, Vol. 15, pp. 925–933, 2004.
- Eliel, E. L., S. H. Wilen, "Stereochemistry of Organic Compounds", John Wiley & Sons, Inc., New York, 1th Edition, pp. 125-187, 1994.
- 33. Silva, S. C., S. M. M. Rodrigues, V. Nardini, A. L. L. Vaz, V. Palaretti, G. V. J. da Silva, R. Vessecchi, G. C. Clososki, " Conformational dynamics of 4formylaminoantipyrine based on NMR and theoretical calculations ", *Journal of Molecular Structure*, Vol. 1163, pp. 280-286, 2018.

34. Schroeder, D. C., "Thioureas", Chemical Review, Vol. 55, pp. 181-228, 1955.

- 35. Manjula, S. N., N. M. Noolvi, K. V. Parihar, S. A. M. Reddy, V. Ramani, A. K. Gadad, G. Singh, N. G. Kutty and C. M. Rao, "Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents", *European Journal of Medicinal Chemistry*, Vol. 44 pp. 2923–2929, 2009.
- 36. Hroch, L., P. Guest, O. Benek, O. Soukup, J. Janockova, R. Dolezal, K. Kuca, L. Aitken, T. K. Smith, F. Gunn-Moore, D. Zala, R. R. Ramsay and K. Musilek, "Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer's disease treatment", *Bioorganic & Medicinal Chemistry*, Vol. 25, pp. 1143–1152, 2017.
- Sabolová, D., P. Kristian, M. Kožurková, "Multifunctional properties of novel tacrine congeners: cholinesterase inhibition and cytotoxic activity", *Journal of Applied Toxicology*, Vol. 38, pp. 1377-1387, 20018.
- Kumar, S., W. Purcell, J. Conradie, R. R. Bragg and E. H. G. Langner, "Synthesis, characterization, computational and antimicrobial activities of a novel iridium thiourea complex", *New Journal of Chemistry*, Vol. 41, pp. 10919-10928, 2017.
- 39. Terhorst, J. P., W. L. Jorgensen, " E/Z Energetics for Molecular Modeling and Design", *Journal of Chemical Theory and Computatio*, Vol. 6, pp. 2762–2769, 2010.
- 40. Roussel, C., M. Roman, F. Andreoli, A. D. Rio, R. Faure, N. Vanthuyne, "Non-racemic atropisomeric (thio)ureas as neutral enantioselective anion receptors for amino-acid derivatives: Origin of smaller Kass with thiourea than urea derivatives", *Chirality*, Vol. 18, pp. 762–771, 2006.
- 41. Zabka M., R. Sebesta, "Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis", *Molecules*, Vol. 20, pp. 15500-15524, 2015.
- 42. Klausen, R. S., C. R. Kennedy, A. M. Hyde, E.N. Jacobsen, "Chiral Thioureas Promote Enantioselective Pictet–Spengler Cyclization by Stabilizing Every Intermediate and

Transition State in the Carboxylic Acid-Catalyzed Reaction", *Journal of the American Chemical Society*, Vol. 139. pp. 12299-12309, 2017.

- 43. Andres, J. M., F. Gonzalez, A. Maestro, R. Pedrosa, M. Valle, "Novel Biodegradable Chitosan-Derived Thioureas as Recoverable Supported Organocatalysts–Application to the Stereoselective Aza-Henry Reaction", *European Journal of Organic Chemistry*, Vol. 25, pp. 3658-3665, 2017.
- 44. Zhang, G., C. Zhu, D. Liu, J. Pan, J. Zhang, D. Hu and B. Song, "Solvent-free enantioselective conjugate addition and bioactivities ofnitromethane to Chalcone containing pyridine", *Tetrahedron*, Vol. 73, pp. 129-136, 2017.
- 45. Cerisoli, L., M. Lombardo, C. Trombini and A. Quintavalla, "The First Enantioselective Organocatalytic Synthesis of 3-Spiro-α-Alkylidene-γ-Butyrolactone Oxindoles", *Chemistry A. European. Journal*, Vol. 22, pp. 3865 –3872, 2016.
- 46. Tripathi, A. C., S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma, S. K. Saraf, " 4-Thiazolidinones: The advances continue...", *European Journal of Medicinal Chemistry*, Vol. 72, pp. 52-77, 2014.
- 47. Qi, B., Y. Yang, H. He, X. Yue, Y. Zhou, X. Zhou, Y. Chen, M. Liu, A. Zhang, F. Wei, "Identification of novel N¹-(2-aryl-1, 3-thiazolidin-4-one)-N³-aryl ureas showing potent multi-tyrosine kinase inhibitory activities", *European Journal of Medicinal Chemistry*, Vol. 146, pp. 368-380, 2018.
- Angapelly, S., P. V. S. Ramya, R. SunithaRani, C. G. Kumar, A. Kamal, M. Arifuddin, "Ultrasound assisted, VOSO₄ catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives", *Tetrahedron Letters*, Vol. 58 pp. 4632–4637, 2017.
- Filho, G. B. O., M. V. O. Cardoso, J. W. P. Espíndola, L. F. G. R. Ferreira, C. A. Simone, R. S. Ferreira, P. L. Coelho, C. S. Meira, D. R. M. Moreira, M. B. P. Soares, A. C. L. Leite, "Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi", *Bioorganic & Medicinal Chemistry*, Vol. 23, pp. 7478–7486, 2015.

- Ruiz, F. A. R., R. N. García-Sánchez, S. V. Estupiñan, A. Gómez-Barrio, D. F. T. Amado, B. M. Pérez-Solórzano, J. J. Nogal-Ruiz, A. R. Martínez-Fernández, V. V. Kouznetsov, "Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds", *Bioorganic & Medicinal Chemistry*, Vol. 19 pp. 4562–4573, 2011.
- Szychowski, K. A., M. L. Leja, D. V. Kaminskyy, U. E. Binduga, O. R. Pinyazhko, R. B. Lesyk, J. Gmiński, "Study of novel anticancer 4-thiazolidinone derivatives", *Chemico-Biological Interactions*, Vol. 262 (2017) pp. 46-56.
- 52. Ansari, M. F., S. M. Siddiqui, K. Ahmad, F. Avecilla, S. Dharavath, S. Gourinath, A. Azam, "Synthesis, antiamoebic and molecular docking studies of furan-thiazolidinone hybrids", *European Journal of Medicinal Chemistry*, Vol. 124, pp. 393-406, 2016.
- 53. Küçükgüzel, I., G. Satılmış, K.R. Gurukumar, A. Basu, E. Tatar, D. B. Nichols, T. T. Talele, N. Kaushik-Basu, "2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class ofnon-nucleoside inhibitors of HCV NS5B polymerase", *European Journal of Medicinal Chemistry*, Vol. 69, pp. 931-941, 2013.
- 54. Omar, Y. M., H. H. M. Abdu-Allah, S. G. Abdel-Moty, "Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as antiinflammatory agents with dual inhibition of COX-2 and 15-LOX", *Bioorganic Chemistry*, Vol. 80, pp. 461–471, 2018.
- 55. Bolli, M. H., S. Abele, C. Binkert, R. Bravo, S. Buchmann, D. Bur, J. Gatfield, P. Hess, C. Kohl, C. Mangold, B. Mathys, K. Menyhart, C. Muller, O. Nayler, M. Scherz, G. Schmidt, V. Sippel, B. Steiner, D. Strasser, A. Treiber and T. Weller, "2-Iminothiazolidin-4-one Derivatives as Potent, Orally Active S1P1 Receptor Agonists", *Journal of Medicinal Chemistry*, Vol. 53, pp. 4198–4211, 2010.
- 56. Arshadi S., E. Vessally, M. Sobati, A. Hosseinian, A. Bekhradnia, "Chemical fixation of CO2 to N-propargylamines: A straightforward route to 2-oxazolidinones", *Journal* of CO2 Utilization, Vol. 19 pp. 120–129, 2017.

- 57. Leach, K. L., S. J. Brickner, M. C. Noe, P. F. Miller, "Linezolid, the first oxazolidinone antibacterial agent", Annals of the New York Academy of Sciences, Vol. 1222, pp. 49-54, 2011
- 58. Moran G. J., F. Edward, G. R. Corey, A. F. Das, C. De Anda, P. Prokocimer, " Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skintructure infections (ESTABLISH-2): a randomised, double-blind, phase 3, noninferiority trial", *The Lancet Infectious Diseases*, Vol. 14, pp. 696-705, 2014.
- Moureau F., J. Wouters, M. Depas, D.P. Vercauteren, F. Durant, F. Ducrey, J.J. Koenig, F. X. Jarreau, "A reversible monoamine oxidase inhibitor, Toloxatone: comparison of its physicochemical properties with those of other inhibitors including Brofaromine, Harmine, R40519 and Moclobemide", *European Journal of Medicinal Chemistry*, Vol. 30, pp. 823-837, 1995.
- 60. Demir, Ö., İ. Doğan, "Conformational preferences in diastereomeric (5*S*)-methyl-3-(*o*-aryl)-2,4-oxazolidinediones", *Chirality*, Vol. 15, pp. 242-250, 2003.
- 61. Farshbaf S., L. Z. Fekrib, M. Nikpassand, R. Mohammadi, E. Vessally, "Dehydrative condensation of β-aminoalcohols with CO2: An environmentally benign access to 2oxazolidinone derivatives", *Journal of CO₂ Utilization*, Vol. 25, 194–204, 2018.
- Zhang, Y., Y. Zhang, Y. Ren, O. Ramström, " Synthesis of chiral oxazolidinone derivatives through lipase-catalyzedkinetic resolution", *Journal of Molecular Catalysis B*: Enzymatic, Vol. 122, pp. 29–34, 2015.
- Yufit, D. S., J. A. K. Howard, "Structure of hemiaminal intermediate of the reaction of diethylamine with cyclobutanone", *Journal of Molecular Structure*, Vol. 984, pp. 182– 185, 2010.
- Olczak, T., M. Śmiga, A. Kwiecień, M. Bielecki, R. Wróbel, M. Olczak, Z. Ciunik, "Antimicrobial activity of stable hemiaminals against *Porphyromonas gingivalis*", *Anaerobe*, Vol. 44, pp. 27-33, 2017.
- 65. Velázquez, M., H. Salgado-Zamora, C. Pérez, M. E. Campos-A, P. Mendoza, H. Jiménez, R. Jiménez, "Intramolecular hydrogen bond stabilization of hemiaminal

structures, precursors of imidazo[1,2-*a*]pyridine", *Journal of Molecular Structure*, Vol. 979, pp. 56–61, 2010.

- 66. Suni, V., M. R. P. Kurup, M. Nethaji, "Unusual isolation of a hemiaminal product from 4-cyclohexyl-3-thiosemicarbazide and di-2-pyridyl ketone: Structural and spectral investigations", *Journal of Molecular Structure*, Vol. 749, pp. 177–182, 2005.
- 67. Wajda-Hermanowicz, K., D. Pieniążczak, R. Wróbel, A. Zatajska, Z. Ciunik, S. Berski, "A study on the condensation reaction of aryl substituted 4-amine-1,2,4-triazole with benzaldehydes: Structures and spectroscopic properties of schiff bases and stable hemiaminals", *Journal of Molecular Structure*, Vol. 1114, pp. 108-122, 2016.
- Erol Gunal, S., G. Sabuncu Gurses, S. Sag Erdem, I. Dogan, "Synthesis of stable tetrahedral intermediates (hemiaminals) and kinetics of their conversion to thiazol-2imines", *Tetrahedron*, Vol. 72 pp. 2122-2131, 2016.
- Lorentzen, E., B. Siebers, R. Hensel, E. Pohl, "Mechanism of the Schiff Base Forming Fructose-1,6-bisphosphate Aldolase: Structural Analysis of Reaction Intermediates", *Biochemistry*, Vol. 44, pp. 4222-4229, 2005.
- Murru, S., C. B. Singh, V. Kavala, B. K. Patel, "A convenient one-pot synthesis of thiazol-2-imines: application in the construction of pifithrin analogues", *Tetrahedron*, Vol. 64, pp. 1931-1942, 2008.
- 71. Zhao, Q., C. Shen, H. Zheng, J. Zhang, P. Zhang, "Synthesis, characterization, and cytotoxicity of some novel glycosyl thiazol-2-imines as antitumoral agents", *Carbohydrate Research*, Vol. 345, pp. 437–441, 2010.
- 72. Heravi, M. M., S. Moghimi, "An efficient synthesis of thiazol-2-imine derivatives via a one-pot, three-component reaction", *Tetrahedron Letters*, Vol. 53, pp. 392–394, 2012.
- 73. Shiran, J. A., A. Yahyazadeh, B. M. Yamin, M. Mamaghani, J. Albadi, "Basic Ionic Liquid as Catalyst and Reaction Media for the One-pot Three-component Regioselective Synthesis of Various Thiazol-2-imine Derivatives", *Journal of Heterocyclic Chemistry*, , Vol. 53, p. 1009, 2016.

- Chen, C., I. J. Barve, C. Sun, "One-Pot Three-Component Synthesis of 2-Imino-1,3-Thiazolines on Soluble Ionic Liquid Support", ACS Comb. Sci., Vol., 18, 638–643, 2016.
- 75. Kumar, G. S., S. P. Ragini, H. M. Meshram, "Catalyst free, regioselective one-pot three-component synthesis of thiazol-2-imine derivatives in ionic liquid", *Tetrahedron Letters*, Vol. 54, pp. 5974–5978, 2013.
- 76. Haouas, B., N. Sbei, H. Ayari, M. L. Benkhouda, B. Batanero, "Efficient synthetic procedure to new 2-imino-1,3-thiazolines and thiazolidin-4-ones promoted by acetonitrile electrogenerated base", *New J. Chem.*, Vol. 42, pp. 11776-11781, 2018.
- 77. Ruano, J. L. G., M. C. García, A. L. Navarro, F. Tato, A. M. M. Castro, "Reactions of enantiopure β-ketimino sulfoxides with Et₂AlCN. Scope and limitations in asymmetric synthesis of α -aminonitriles", *ARKIVOC*, Vol. 6, pp. 33-45, 2005.
- 78. Chen, F., Z. Ding, Y. He, J. Qin, T. Wang, Q. Fan, "Asymmetric hydrogenation of Nalkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: the counteranion and solvent effects, and substrate scope", *Tetrahedron*, Vol. 68, pp. 5248-5257, 2012.
- 79. Wang, P., L. Liu, Z. Luo, Q. Zhou, Y. Lu, F. Xia, Y. Liu, "Combination of transition metal Rh-catalysis and tautomeric catalysis through a bi-functional ligand for one-pot tandem methoxycarbonylation-aminolysis of olefins towards primary amides", *Journal of Catalysis*, Vol. 361, pp. 230–237, 2018.
- Teke Tuncel, S., S. Erol Gunal, M. Ekizoglu, N. Gokhan Kelekci, S. S. Erdem, E. Bulak, W. Frey, I. Dogan, "Thioureas and their cyclized derivatives: Synthesis, conformationalanalysis and antimicrobial evaluation", *Journal of Molecular Structure*, Vol. 1179, pp. 40-56, 2019.
- Rang, K., J. Sandström and C. Svensson, "The conformational equilibrium of N,N'bis[(S)-1-phenylethyl]-thiourea and its solvent dependence, studied by NMR and CD spectra and by X-ray crystallography", *Canadian Journal of Chemistry*, Vol. 76 pp. 811-820, 1998.

- Berber, H., P. Lameiras, C. Denhenz, C. Anthheaume, J. Clayden, "Atropisomerism about Aryl–Csp³ Bonds: The Electronic and Steric Influence of ortho-Substituents on Conformational Exchange in Cannabidiol and Linderatin Derivatives", *The Journal of Organic Chemistry*, Vol. 79, pp. 6015–6027, 2014.
- Roschester, J., U. Berg, M. Pierrot and J. Sandstrom, "Conformational Analysis of N-(1- Phenylethyl)-Δ⁴-thiazoline-2-thiones and Analogues. A ¹H NMR, Circular Dichroism, X-ray Crystallographic, and Molecular Mechanics Study", *Journal of American Chemical Society*, Vol. 109, pp. 492-507, 1987.
- Rang, K., F. Liao, J. Sandström and S. Wang, "Diastereomers of 3-(S)-(1-Phenylethyl) 5-Methyland -5-Phenylrhodanine: Crystal Structures, Conformations, and Circular Dichroism Spectra", *Chirality*, Vol. 9, pp. 568-577, 1997.
- Kaminskyy, D., A. Kryshchyshyn and R. Lesyk," 5-Ene-4-thiazolidinones An efficient tool in medicinal chemistry", *European Journal of Medicinal Chemistry*, Vol. 140, pp. 542-594, 2017.
- Ottana, R., R. Maccari, M. L. Barreca, G. Bruno, A. Rotondo, A. Rossi, G. Chiricosta, R. Di Paola, L. Sautebin, S. Cuzzocrea and M.G. Vigorita, "5-Arylidene-2-imino-4thiazolidinones: design and synthesis of novel anti-inflammatory agents ", *Bioorganic* & *Medicinal Chemistry*, Vol. 13, pp. 4243-4252, 2005.
- 87. Erol Gunal, S., S. Teke Tuncel, N. Gokhan Kelekci, G. Ucar, B. Yuce Dursun, S. S Erdem, I. Dogan, "Asymmetric synthesis, molecular modeling and biological evaluation of 5-methyl-3-aryloxazolidine-2,4-dione enantiomers as monoamineoxidase (MAO) inhibitors", *Bioorganic Chemistry*, Vol. 77, pp. 608–618, 2018.
- Demir-Ordu, O., I. Dogan, " Stereoselective lithiation and alkylation and aldol reactions of chiral 5-methyl-3-(o-aryl)-oxazolidinones", *Tetrahedron:Asymmetry*, Vol. 21, pp.2455-2464, 2010.
- Demir-Ordu, Ö., E. M. Yılmaz, İ. Doğan, "Determination of the absolute stereochemistry and the activation barriers of thermally interconvertible heterocyclic compounds bearing a naphthyl substituent ", *Tetrahedron: Asymmetry*, Vol. 16, pp. 3752–3761, 2005.

90. Essiz, S., E. Dalkilic, O. Sari, A. Dastan, M. Balci, "Unexpected regioselectivity observed in the bromination and epoxidation reactions of *p*-benzoquinone-fused norbornadiene: An experimental and computational study", *Tetrahedron*, Vol. 73, pp. 1640-1649, 2017.

APPENDIX A: SPECTROSCOPIC DATA

¹H and ¹³C NMR data for the synthesized compounds are given.

Figure A.1 ¹H NMR of compounds **1***RR*, **1***SS* and **1***DL* (CDCl₃).

Figure A.2. ¹³C NMR of compounds **1***RR*, **1***SS* and **1***DL* (CDCl₃).

Figure A.3. ¹H NMR of compounds **2RR**, **2SS** and **2DL** (CDCl₃).

Figure A.4. ¹H NMR of compound **2***SS* in Pyridine- d_5

Figure A.5. ¹H NMR of compound **2***SS* in Methanol- d_{4} .

Figure A.6. ¹H NMR of compound **2***SS* in DMSO- $d_{6.}$

Figure A.7. ¹H NMR of compound **2***SS* at 233 K in CDCl₃.

Figure A.8. ¹³C NMR of compounds **2RR**, **2**SS and **2**DL (CDCl₃).

Figure A.9. ¹H NMR of compounds **3***R***R** and **3***SS* (CDCl₃).

Figure A.10. ¹H NMR of compound **3***SS* at 243 K in CDCl₃.

Figure A.11. ¹H NMR of compounds **3***RR* and **3***SS* (CDCl₃).

Figure A.12. ¹H NMR of compounds **4***RR* and **4***SS* (CDCl₃).

Figure A.13. ¹H NMR of compound **4***SS* at 233 K in CDCl₃.

Figure A.14. ¹³C NMR of compounds **4***SS* and **4***RR* (CDCl₃).

Figure A.15. ¹H NMR of compounds **5***SS* and **5***RR* (DMSO- d_6).

Figure A.16. ¹H NMR of compounds **5***R* and **5***SS* (DMSO- d_6).

Figure A.17. ¹H NMR of compounds 6RR and 6SS (CDCl₃).

Figure A.18. ¹³C NMR of compounds **6RR** and **6SS** (CDCl₃).

Figure A.19. ¹H NMR of compounds **7***R***R** and **7***SS* (CDCl₃).

Figure A.20. ¹³C NMR of compounds **7***RR* and **7***SS* (CDCl₃).

Figure A.21. ¹H NMR of compounds **8***RR* and **8***SS* (CDCl₃).

Figure A.22. ¹³C NMR of compounds **8***RR* and **8***SS* (CDCl₃).

Figure A.23. ¹H NMR of compounds **9***RR* and **9***SS* (CDCl₃).

Figure A.24. ¹³C NMR of compounds **9***RR* and **9***SS* (CDCl₃).

Figure A.25. ¹H NMR of compounds **10***RR* and **10***SS* (DMSO- d_6).

Figure A.26. ¹³C NMR of compounds 10RR and 10SS (DMSO- d_6).

Figure A.27. ¹H NMR of compounds 11RR and 11SS (CDCl₃).

Figure A.28. ¹³C NMR of compounds **11***RR* and **11***SS* (CDCl₃).

Figure A.29. ¹H NMR of compounds 12RR and 12SS (CDCl₃).

Figure A.30. ¹³C NMR of compounds 12RR and 12SS (CDCl₃).

Figure A.31. ¹H NMR of compounds **13RR** and **13SS** (CDCl₃).

Figure A.32. 13 C NMR of compounds **13***RR* and **13***SS* (CDCl₃).

Figure A.33. ¹H NMR of compounds **14***R* and **14***S*(CDCl₃). (major/minor=4.54)

Figure A.34. ¹³C NMR of compounds **14***R* and **14***S* (CDCl₃).

Figure A.35. ¹H NMR of compounds *15RR* and *15SS* (DMSO- d_6).

Figure A.36. ¹³C NMR of compounds *15RR* and *15SS* (DMSO- d_6).

Figure A.37. ¹H NMR of compounds *16S* and *16R* (CDCl₃).

Figure A.38. ¹³C NMR of compounds *16S* and *16R* (CDCl₃).

Figure A.39. ¹H NMR of compounds *17S* and *17R* (CDCl₃).

Figure A.40. ¹³C NMR of compounds *17S* and *17R* (CDCl₃).

Figure A.41. ¹H NMR of compound *18S* (CDCl₃).

Figure A.42. . 13 C NMR of compound *18S* (CDCl₃).

Figure A.43. ¹H NMR of compounds **19RR** and **19SS** (CDCl₃).

Figure A.44. ¹³C NMR of compounds 19RR and 19SS (CDCl₃).

Figure A.45. ¹H NMR of compounds **20***RR* and **20***SS* (CDCl₃).

Figure A.46. ¹³C NMR of compounds **20***RR* and **20***SS* (CDCl₃).

Figure A.47. ¹H NMR of compounds **21***RR* and **21***SS* (CDCl₃).

Figure A.48. ¹³C NMR of compounds **21***RR* and **21***SS* (CDCl₃).

Figure A.49. 1 H NMR of compounds **22***RR* and **22***SS* (CDCl₃).

Figure A.50. ¹³C NMR of compounds **22***RR* and **22***SS* (CDCl₃).

Figure A.51. ¹H NMR of compounds **23***RR* and **23***SS* (CDCl₃).

Figure A.52. ¹³C NMR of compounds **23***RR* and **23***SS* (CDCl₃).

Figure A.53. ¹H NMR of compounds **24***RR* and **24***SS* (CDCl₃).

Figure A.54. ¹³C NMR of compounds 24RR and 24SS (CDCl₃).

Figure A.55. ¹H NMR of compounds **25***RR* and **25***SS* (CDCl₃).

Figure A.56. ¹³C NMR of compounds **25***RR* and **25***SS* (CDCl₃).

Figure A.57. 1 H NMR of compounds **26***RR* and **26***SS* (CDCl₃).

Figure A.58. ¹³C NMR of compounds **26***RR* and **26***SS* (CDCl₃).

Figure A.59. ¹H NMR of compound **27** (CDCl₃).

Figure A.60. ¹³C NMR of compound **27** (CDCl₃).

Figure A.61. 1 H NMR of compound **32** (CDCl₃).

Figure A.62. 13 C NMR of compound **32** (CDCl₃).

Figure A.63. ${}^{1}H$ NMR of compound **33** (CDCl₃).

Figure A.64. ¹³C NMR of compound **33** (CDCl₃).

Figure A.66. 13 C NMR of compound **34** (CDCl₃).

Figure A.67. ¹H NMR of compound **35** (CDCl₃).

Figure A.68. 13 C NMR of compound **35** (CDCl₃).

Figure A.69. ¹H NMR of compound **36** (CDCl₃).

Figure A.70. ¹³C NMR of compound **36** (CDCl₃).

Figure A.72. 13 C NMR of compound **37** (CDCl₃).

Figure A.73. ¹H NMR of compound **38** (CDCl₃).

Figure A.74. ¹³C NMR of compound **38** (CDCl₃).

Figure A.75. ¹H NMR of compound **39** (CDCl₃).

Figure A.76. ¹³C NMR of compound **39** (CDCl₃).

Figure A.77. ¹H NMR of compound **40** (CDCl₃).

Figure A.78. 13 C NMR of compound **40** (CDCl₃).