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ABSTRACT 

 

 

ASSESSING PROTEIN-LIGAND BINDING MODES, NOVEL DRUG 

SKELETON CANDIDATES FOR PDE4B AND 

CONFORMATIONAL REARRANGEMENTS OF EF-TU IN GTP 

HYDROLYSIS WITH COMPUTATIONAL TOOLS 

 

 

In the first part of this dissertation, computer-aided drug design approaches, structure-

based methodologies such as docking, molecular dynamics simulations and Gibbs free 

energy calculations with Molecular Mechanics-Generalized Born/Surface Area (MM-

GB/SA) and ligand-based drug design methodologies like pharmacophore modeling are 

used to propose novel inhibitors for Phosphodiesterase4B (PDE4B) inhibitors.  

 

Virtual screening based on structure-based pharmacophore models has been performed 

for PDE4B inhibitors. The free energy of binding (ΔGbinding) as the total average of 40 

independent simulations of each PDE4B inhibitors has been calculated with the MM-GB/SA 

method. The linear correlation between half maximal inhibitory concentration (IC50) and 

MM-GB/SA results have been analyzed with the linear dependency between binding affinity 

(Ki) and IC50, assuming that Michaelis-Menten constant (Km), substrate concentrations [S], 

and experimental conditions are similar. 

 

In the second part of this dissertation, the role of important amino acids in GTPase 

activity of EF-Tu-GTP for different organisms (Thermos-Aquaticus (T.aquaticus) and 

Escheria Coli (E.coli) complex have been determined by the aid of molecular dynamics 

(MD) simulations. The study has been carried out by comparing the experimental results 

with the results of the MD simulations. The conformational changes during the GTP 

hydrolysis in the Elongation factor-thermo unstable (EF-Tu) is explained with MD 

simulations.   
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ÖZET 

 

 

PROTEİN-LİGAND BAĞLANMA MODU TAHMİNİ, PDE4B ENZİMİ 

İÇİN YENİ ADAY İLAÇ YAPILARI VE UZAMA FAKTÖRÜ TU’NUN 

GTP HİDROLİZİNDEKİ KONFORMASYONEL 

DEĞİŞİKLİKLERİNİN HESAPSAL YÖNTEMLERLE TESPİTİ 

 

 

Bu tezin ilk kısmında, PDE4B enzimine yeni inhibitor önerileri için bilgisayar destekli 

ilaç tasarımı yaklaşımlarından, yapı-bazlı yöntemlerden doklama, moleküler dinamik 

benzetim ve serbest bağlanma enerjisi hesaplama yöntemlerinden Moleküler 

Mekanik/Genelleştirilmiş Born Yüzey Alan (MM-GB/SA) tekniği ile ligand-bazlı ilaç 

tasarımı yöntemlerinden olan farmakofor modelleme teknikleri kullanılmıştır.  

 

PDE4B inhibitörleri için yapısal-bazlı farmakofor modelleri ile sanal eleme 

yapılmıştır. Her PDE4B inhibitörü için 40 bağımsız moleküler dinamik simülasyonun 

ortalaması Moleküler Mekanik/Genelleştirilmiş Born Yüzey Alan (MM-GB/SA) tekniği ile 

Gibbs serbest bağlanma enerjileri (ΔGbinding) hesaplanmıştır. IC50 değerleri ile MM-GB/SA 

arasındaki doğrusal korelasyon Michaelis–Menten sabiti (Km), sübstrat konsantrasyonu ve 

deney koşullarının aynı olduğu varsayılarak bağlanma isteği (Ki) ile IC50 arasındaki doğrusal 

bağıntıyla analiz edilmiştir.  

  

Bu tezin ikinci kısmında, farklı organizmalardaki (Thermos-Aquaticus (T.aquaticus) 

ve Escheria Coli (E.coli) EF-Tu-GTP komplesinin GTPaz aktivitesindeki önemli amino-

asitlerin moleküler dinamik simülasyonların yardımıyla tespit edilmiştir. Çalışma, 

moleküler dinamik benzetim sonuçlarının deneysel sonuçlarla kıyaslanmasıyla 

yürütülmüştür. Uzama faktörü Tu’nun GTP hidrolizi esnasındaki konformasyonel değişimi 

moleküler dinamik benzetimleriyle açıklanmıştır.  
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1. INTRODUCTION 

1.1. Phosphodiesterase Enzyme (PDE) 

Phosphodiesterase (PDE), is a large family of enzymes, which is responsible for the 

degradation of cyclic adenosine 3’,5’-monophosphate (cAMP) and guanosine 3’,5’-

monophosphate (cGMP) into 5’-adenosine monophosphate (AMP) and 5’-guanosine 

monophosphate (GMP), respectively [1-3]. cAMP and cGMP (Figure 1.1) are known as 

intracellular second messengers that mediate various biological responses to a wide variety 

of hormones and neurotransmitters [2-4]. The roles of cyclic nucleotides in many metabolic 

processes are cardiac output, glycogenolysis, platelet aggregation, secretion, lipolysis, 

learning, ion channel conductance, apoptosis, and growth control [5-7].  The level of cAMP 

and cGMP in vivo is controlled by synthesis activity of adenylyl and guanylyl cyclases and 

by hydrolysis activity of PDE’s [7]. The higher level of cyclic nucleotides by PDE’s 

inhibition, has considerable effect on the activity of immune and inflammatory diseases [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Cyclic nucleotides: cAMP and cGMP, and hydrolyzed products: AMP 

and GMP. 
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There are 11 families of PDE’s (more than 60 mRNA splicing isoforms), which are 

categorized on the basis of substrate requirements, substrate specificity (cAMP and cGMP), 

tissue distribution and amino acid sequence (Table 1.1) [1,4,6,7,9-12]. 11 families, have the 

same general structure of a highly conserved catalytic site of about 300 amino acid with ~ 

25-49 % sequence similarity, N-terminal regulatory domain [13]. 

 

Table 1.1.  Tissue distribution and substrate specificity over 11 families of PDE’s 

[14]. 

 

PDE 

Family 
Tissue Distribution Substrate 

PDE1 Brain, heart, smooth muscle, lung 

 

cGMP > cAMP 

PDE2 Adrenal gland, lung, heart, platelets, brain, liver,  

corpus cavernosum 

 

cGMP = cAMP 

PDE3 Heart, liver, lung, platelets, vascular smooth muscle, 

corpus cavernosum 

 

cAMP>cGMP 

PDE4 Lung, mast cells, liver, kidney, brain 

 

cAMP 

PDE5 Corpus cavernosum, lung, vascular smooth muscle, 

platelets, brain, esophagus 

 

cGMP 

PDE6 Retina 

 

cGMP > cAMP 

PDE7 Skeletal muscle, T-cells, heart, kidney, brain, 

pancreas 

 

cAMP > cGMP 

PDE8 Testes, thyroid, eye, liver, kidney, heart, skeletal 

muscle, pancreas, T-cells 

 

cAMP 

PDE9 Brain, kidney, liver, lung 

 

cGMP 

PDE10 Brain, testes 

 

cGMP > cAMP 

PDE11 Prostate, skeletal muscle, kidney, liver, testes,  

pituitary, salivary glands 

cAMP = cGMP 
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In the past three decades, various PDE inhibitors have been used as therapeutic agents 

like cardiotonic compounds, vasodilators, smooth muscle relaxants, antidepressants, 

antithrombotic compounds, antiasthma compounds and agents for improving cognitive 

functions such as memory [15-20]. 

1.1.1.   PDE4 Gene Family and Its Isoforms 

Among cAMP-specific isoenzyme of PDE’s, PDE4 isozymes are found in many cell 

types and tissues as leukocytes, airway and vascular smooth muscle, vascular endothelium 

and brain [21]. Through the control of cAMP level, leukocyte responses as the pro-

inflammatory actions of monocytes, T cells and neutrophils, airway and vascular smooth 

muscle construction, and neurotransmitter signaling are regulated by PDE4 [21].  

The PDE4 family with 4 genes (A, B, C and D) comprises more than 20 different PDE4 

isoforms which are categorized by an unique N-terminal domain [21-23]. Through 

chromosomal localization, PDE4A and PDE4C are encoded on different regions of 

Chromosome 19, PDE4B and PDE4D are found on Chromosome1 and 5, respectively [24]. 

The PDE4 isoforms are divided into three subgroups: long isoform, short isoform and 

super-short isoform [22] as shown in Figure 1.3. The long isoform has two regulatory 

domains: upstream conserved region 1 (UCR1) and upstream conserved region 2 (UCR2) in 

addition to the catalytic region [21]. The short isoform has only UCR2 and the super-short 

isoform has a truncated UCR2 [21]. The major role of UCR modules is the regulation of 

PDE4 by protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) 

phosphorylation [22,23]. Long isoform is activated by the enzyme with PKA 

phosphorylation site on UCR1 module. This activation maintains the cellular desensitization 

machinery for cAMP signaling with the increase level for cAMP hydrolysis [25,26].  

1.1.2.   General Information of PDE’s Crystal Structures 

The crystal structure of PDE’s in the protein databank (pdb) indicates some general 

features of the enzymes: 



 

  4 

 

 

 

 

 

 

 

(i) PDE’s generally have a compact arrangement of 16 -helices into three subdomains 

as seen in Figure 1.2 [27]. 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Compact arrangement of 16 -helices in active site of crystal 

structure PDE4D [21]. 

 

 

(ii) The location of active site is at the junction of three subdomains with highly 

conserved residues among all the PDEs. The two divalent metal ions, Zn2+ and/or 

Mg2+, which are at the wider part of active site, have six coordination sites with 

conserved, paired histidine, aspartate residues and two water molecules. 

The active site is categorized into three sub-pockets [28]: 

 

 A metal-binding pocket (M pocket): The divalent metal ions, zinc or 

magnesium, and highly conserved polar residues,  

 A solvent-filled pocket (S pocket):hydrophilic amino-acids and a water 

network, 

 Q pocket: purine-selective glutamine and hydrophobic clamp [28]. 

 

The PDE4 inhibitor’s binding with various interactions in the active site prevents the 

cAMP metabolism. There is an indirect binding to the divalent metal ions with H-bonding 
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to the water. The hydrophobic interactions between the planar ring structure of the PDE4 

inhibitors and hydrophobic residues like phenylalanine and isoleucine, act as a hydrophobic 

clamp. 

 

 

 

 

 

 

 

 

Figure 1.3.  The subdomains of catalytic site of PDE4D. AMP was shown as a stick 

model and the yellow and magenta surfaces are Zn2+ and Mg2+ divalent metal ions, 

respectively [21]. 

 

For nucleotide selectivity, hydrogen bond interaction between the aromatic ring 

structure of inhibitors and the invariant glutamine residue in the Q pocket are important 

[8,28,29].  

1.1.3.   PDE4 Inhibitor Families 

PDE4 inhibitors are proven as potent anti-inflammatory targets especially for the 

inflammatory and immune disorders like asthma, chronic obstructive pulmonary disease 

(COPD) and also therapeutic drugs for rheumatoid arthritis, multiple sclerosis, type II 

diabetes, septic shock, atopic dermatitis, and other immune diseases [18-20,30,31]. The 

clinical trials of PDE4 inhibitors have been limited due to side effects like vomiting, nausea 

and high level of gastric acid secretion [32]. Some PDE4 inhibitors are shown in Figure 1.4 

[13]. 
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Figure 1.4.  Some structures of PDE4 inhibitors [13]. 

 

There are many PDE4 inhibitor families which have been developed and some of these 

inhibitors are under clinical trials (Figure 1.5). Two important categories of these inhibitors: 

 

(i) xanthine derivatives: theophylline, 3-isobutyl-methylxanthine (IBMX), 

arofylline, doxofylline and cipamfylline, 

(ii) dialkoxyphenyl (catechol) family: rolipram, zardaverine, filaminast, mesopram, 

IC-485, piclamilast, atizoram, tetomilast, CC-1088, ONO-6126, cilomilast and 

roflumilast. 

 

There are many other compounds which belong to new chemical families. These are 

AWD-12-28, an indole compound in Phase II trials for asthma; YM-976, a 
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pyridopyrimidinone derivative in Phase I clinical trials; Tofimilast, an indazole derivative in 

clinical trial; Ibudilast, a pyrazolopyridine compound in Phase II clinical trials for multiple 

schlerosis and Lirimilast, a benzofuran derivative under Phase II clinical trial for asthma 

[21].  

 

In pharmaceutical industry, design of novel isoform-selective inhibitors with limited 

side effects for PDE4 family is a challenging task due to the high degree of sequence and 

structural similarity among different isoforms of this family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1.5.  Chemical structures of various PDE4 inhibitors of different families. 

LC, launched; PR,pre-registration; PI, PII, PIII, PhaseI, PhaseII and PhaseIII clinical trial, 

respectively; CD, clinical development; DC, discountinued; NR, no development [21]. 
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1.2. Elongation Factor Tu (EF-Tu) 

1.2.1.   EF-Tu Role in Elongation Cycle of Protein Synthesis 

Protein synthesis on the ribosome is a combination of subprocesses, such as initiation 

of translation, protein elongation, termination and ribosome recycling [33,34]. These 

subprocesses are dependent on the guanosine triphosphate (GTP) hydrolysis which is 

controlled by the members of translational GTPases [35]. G-protein family members 

regulate various cellular activities as a carrier of information and biological components [36-

39]. One of the common properties of the member of this superfamily is the cycle between 

an active and an inactive conformation which depend on the nucleotide binding either 

guanosine triphosphate (GTP: “on” state) (Figure 1.7) or guanosine diphosphate (GDP: “off” 

state) (Figure 1.8) [40-42]. 

 

Elongation factor Tu (EF-Tu), is one of the most important guanosine nucleotide 

binding proteins [43]. EF-Tu is a guanosine triphosphate (GTP)-bound complex which is in 

charge of binding of a new aminoacyl-tRNA (aa∙tRNA) in the A site of the ribosome. In 

bacterial cells, EF-Tu∙GTP is responsible to deliver aminoacyl-tRNA (aa∙tRNA) to the A 

site of the m-RNA programmed ribosome carrying peptidyl-tRNA in the P-site. GTP-bound 

state of EF-Tu forms a high-affinity ternary complex with aa∙tRNA [40]. The ternary 

complex, EF-Tu∙GTP∙aa∙tRNA, binds to the ribosomal A site. Correct codon-anticodon 

interaction triggers GTP hydrolysis on EF-Tu. Major conformational rearrangement of EF-

tu results in the release of EF-Tu∙GDP,  Pi and leaving the aa∙tRNA (Figure 1.6) [44]. 

 

EF-Tu has a very low GTPase activity (intrinsic rate), the activity rate is increased 

when the interaction with the ribosome is observed. Ribosomal-sarcin ricin loop and 

invariant His84 are the important factors for the GTPase activation [40,45-48]. 
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Figure 1.6.  Elongation cycle of protein synthesis and the function of EF-Tu [44]. 

 

1.2.2.   Structural Analysis of EF-Tu 

The X-ray structure of bacterial EF-Tu from Escherichia coli (E. coli) was analyzed 

by Cour et al. and Jurnak in 1985. It is a monomeric protein composed of 400 aminoacids 

with a molecular mass of 40-52 kDa. The protein consists of three structural domains: 
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Domain I (Guanine nucleotide binding domain: residues 1-199), Domain II (residues 209-

299) and Domain III (C terminal domain: residues 300-393) (Figure 1.7) [41,49].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7.  Structure of GTP bound EF-Tu (active form), (T. aquaticus, PDB code: 

1EFT). 

 

 

 

 

 

 

Figure 1.8.  Structure of GDP bound EF-Tu (inactive form), (T. aquaticus, PDB 

code: 1TUI). 

Domain I 

Domain II 

Domain III 
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Domain I, an arrangement of parallel six-stranded β-sheet core surrounded by seven α-

helices, includes the nucleotide binding site that binds to GTP or GDP [50]. It has sequence 

and structural similarity with other GTP/GDP binding proteins. The nucleotide binding 

pocket Domain I, has three important parts: Switch I, Switch II and P-loop which have been 

studied in the literature for the conformational changes. During the elongation cycle of EF-

Tu in the protein synthesis, Domain II and C terminal domain have a rigid body behavior 

[51,52].  

 

The change of the active form to inactive form of EF-Tu, EF-Tu∙GTP to EF-Tu∙GDP,  

the interaction between the three domains are weakened. In the active form of EF-Tu, 

closeness of the domains triggers the formation of the ternary complex: EF-

Tu∙GTP∙aa∙tRNA (Figure 1.9). Switch I in the GDP-bound EF-Tu forms a β-hairpin that 

extends into the aa∙tRNA binding site. GTP binding to EF-Tu causes a local rearrangement: 

Switch I conformation turns to an α-helix from β-hairpin. The helix is flanked by D51 and 

T62. A Mg2+ ion, which is coordinated by T62, which in turn, interacts with β- and γ-

phosphate groups of GTP. The other coordinations of Mg2+ are T25 and two water 

molecules. The side chain of D51 makes a hydrogen bond with one of these water molecules 

and another hydrogen bond with T62.   Thus, both ends of the Switch I are connected to each 

other and to Mg2+ (via a water molecule in the case of D51). The backbone amide proton of 

T62 makes a hydrogen bond to the γ-phosphate group in T. aquaticus EF-Tu crystals but not 

in the E. coli EF-Tu crystal (PDB code: 1OB2). 

1.2.3.   Experimental Studies of EF-Tu 

In the last fifteen years, there are many publications of both intrinsic and ribosome 

induced GTPase activity of EF-Tu to GTP and GDP by mutating some amino acid residues, 

especially in the GTP binding pocket.  

 

The publication of a medium-resolution X-ray crystallographic structure of the 

ribosome∙EF-Tu∙aa∙tRNA∙GTP structure in its active conformation helps to understand the 

mechanism of ribosome-induced hydrolysis of GTP by EF-Tu.  
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Figure 1.9.  Structure of EF-Tu∙GTP∙aa∙tRNA (ternary complex), (E. coli, PDB 

code: 1OB2). 

 

 

An invariant histidine for the catalysis of GTP hydrolysis in translational GTPases was 

proposed by Vorhees et al. [53].  There are many alternatives for the explanation of the 

functions of H84 in the literature. The catalytic effect of H84 is explained by a general base 

mechanism [53]. The other functions are general acid catalysis [54], positioning of the 

nucleophilic water [40], positioning of the PGH motif  [55] and acting as a conformational 

switch [56,57]. On the basis of computed pKa of H85 by Wallin et al. and Adamczyk and 

Warshel [57], it is shown that H85 must be protonated in its active conformation, hence 

cannot act as a general base. 

 

V20 and I61 were proposed to act as a hydrophobic gate to hinder the entrance of H85 

into the active site in the absence of ribosomes. In order to accelerate the GTP hydrolysis in 

the presence of ribosomes, one or both wings of the hydrophobic gate should open, providing 

access of the catalytic histidine to the active site. However, neither V20G nor I60A mutations 

in E. coli increased the intrinsic GTPase activity, contradicting the idea of a hydrophobic 

gate.  
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2. OBJECTIVE AND SCOPE 

 

In the previous section of the dissertation, a brief introduction about the PDE4 enzyme, 

its specific inhibitors, the importance of this enzyme subfamily in pharmaceutical industry 

and the active site orientation of EF-Tu during the GTPase activity are given. More detailed 

discussion of each one is shown in the following chapters. 

 

In the next chapter (Chapter 3-Theoretical Background), the fundamental principles of 

the performed computations, including virtual screening based on structure-based 

pharmacophore models, docking, Molecular Dynamics and free binding energy calculations 

with Molecular Mechanics-Generalized Born/Surface Area (MM-GB/SA) methods are 

introduced. Detailed explanations on the methodologies are presented within the relevant 

chapters.  

 

After this brief overview of the theoretical methods, the results of the studies are 

introduced in three chapters. Chapter 4 aims to provide novel skeletons for PDE4B 

subfamily inhibitors using a structure-based drug design protocol. In Chapter 5, with the 

information obtained by MD and free binding energy calculations by MM-GB/SA, 

theoretical IC50 values were calculated for some PDE4B inhibitors. In Chapter 6, the 

catalytic site orientation of EF-Tu have been analyzed using MD during the GTP hydrolysis 

mechanism. The crucial conclusions drawn from each chapter and concluding remarks are 

presented in Chapter 7.  
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3. THEORETICAL BACKGROUND 

 

This chapter provides the basic principles of the theoretical approaches including 

Virtual Screening, Docking, Pharmacophore Modeling, Molecular Dynamics, Free Binding 

Energy Calculation method: MM-GB/SA. Because of the rich content of each theory, the 

most commonly used methods or the ones used in this dissertation are presented.  

 

3.1. Virtual Screening 

Today, medicinal chemists have serious problems such as the increased cost and 

enormous amount of time taken to discover a new drug, and competition amongst different 

drug companies. Therefore it is important to use multidisciplinary approaches which include 

various computational tools, methodologies for structure guided approach and also global 

gene expression data analysis by softwares.  

 

In the computer-aided drug design, computational methods have speed up the 

discovery of a drug by reducing the number of iterations required and have often provided 

novel structures. For medicinal and computational chemists, Virtual Screening (VS) is a fast 

and cost-effective computational tool to screen large databases and score, rank or filter the 

compounds from the database [58]. 

 

VS methods can be categorized mainly into two groups: ligand-based (LBVS) and 

structure-based Virtual Screening (SBVS) as seen in Figure 3.1 [58] . In the LBVS method, 

structure-activity data of a set of active molecules is used to identify candidates for 

experimental evaluation. There are three different approaches in LBVS. These are: (1) 

similarity and substructure searching, (2) quantitative structure activity relationships 

(QSAR) and finally (3) pharmacophore matching [59]. In the second method of VS, SBVS, 

a database of candidates are docked into three-dimensional (3D) structure of the target 

protein (determined either experimentally through X-ray crystallography or NMR or 

computationally through homology modeling). According to docking results, the docked 
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molecules are ranked based on their binding affinity and this ranking can be used as a criteria 

for selection or combined with other evaluation methods for further analysis.   

 

 

 

 

 

 

 

Figure 3.1.  A virtual screening methods flowchart. 

 

3.2. Molecular Docking 

In the structure-based drug design, molecular docking is one of the most used 

computational tool for the prediction of the binding mode(s) of a ligand with a target (usually 

a protein). It can be used for virtual screening on databases of compounds and scoring 

different conformations in the active site of a receptor and filter out them [58,60]. Basically, 

molecular docking is based on two steps:  prediction of the ligand conformation as well as 

its position and orientation within these sites (usually referred to as pose) and assessment of 

the binding affinity [61]. By this way, any docking program contains a conformational search 

algorithm to sample all degrees of freedom (translational, rotational, and conformational) 

and a scoring function to rank the poses of the ligand in a library [58].  



 

  16 

 

 

 

 

 

 

3.2.1.   Search Algorithm 

The search algorithm provides the knowledge of positions of molecules in various 

locations, orientations and conformations in the active site of a target [60]. 

 

Conformational search algorithm can be either systematic or stochastic (Table 3.1). In 

systematic search methods, the energy landscape of the conformational space is analyzed 

and after evaluation cycle the convergency is achieved with the minimum energy the most 

likely binding mode. The second method, stochastic method, includes basically Monte Carlo 

search (MC) and Genetic Algorithms (GAs) [58]. 

 

MC methods (e.g. in ICM [62] and GLIDE [63]) change one parameter as position, 

orientation and conformation) at a time randomly and produce the energy of the new pose 

[58]. If the energy is lower than the previous one, it is kept. If the energy is not lower, then 

a selection process is applied to satisfy the probability of a defined pose according to its 

Boltzman weight factor [58]. The modifications of MC methods as tabu algorithm or 

simulated annealing algorithm, perform fewer iterations with less run time and have same 

accuracy as MC [58,60].  

 

The second algorithm, GAs (e.g. in GOLD [64] and AutoDock [65]) is based on 

Darwin’s biological evolution theory. In this algorithm, a ligand conformation with its 

different properties (dihedral angles and global rotation/translational vectors) are described 

as a chromosome [58]. The starting point of random search algorithm is this chromosome 

and a population of chromosomes is generated. The population is evaluated and the fittest 

parents with the lowest energy values are selected as a template for the new generation [58].  

3.2.2.   Scoring Functions 

After the first step of the docking method, either systematic or stochastic method, 

many poses are generated for each ligand in a library of compounds.  
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Table 3.1.  A list of various search algorithms for docking. 

Systematic Search Random/Stochastic Search 

eHiTS [66] AutoDock [65] 

FRED [67] Gold [64] 

Surflex-Dock [68] PRO_LEADS [69] 

DOCK [70] EADock [71] 

GLIDE [63] ICM [62] 

EUDOC [72] LigandFit [73] 

FlexX [74] Molegro Virtual Docker [75] 

Hammerhead [76] CDocker [77] 

 

The incorrect poses among all poses of the each ligand can be determined in the scoring 

step of docking [61]. The main goal of a scoring function is to predict the binding affinity 

between a protein and ligand. The prediction of binding energy depends on physical-

chemical filters which are intermolecular interactions, desolvation and entropic effects [78]. 

So, the accuracy of the scoring function is proportional with the number of physical-

chemical filters. On the other hand, as the number of these filters increases, computational 

cost also increases. So, an ideal scoring function should have a balance between accuracy 

and speed especially for a large dataset [79].  

 

Scoring functions can be categorized into three groups: (1) force-field based, (2) 

empirical and (3) knowledge-based functions [80].  

 

Force-field based scoring functions depend on the sum of bonded (bond stretching, 

angle bending, and dihedral variation) and non-bonded terms of a classical molecular 

mechanics force field (e.g. AMBER and CHARMM) including electrostatic and van der 

Waals interactions [58]. A Lennard-Jones potential and the Coulomb energy are used to 

describe van der Waals interactions and the electrostatic component, respectively [58]. The 

main drawback of these methods is the lack of entropic component of the binding free energy 

[58].  
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The second approach is the empirical scoring function. There are several terms of the 

function that describe properties in the formation of the ligand-receptor complex. These 

terms generally define polar interactions like hydrogen-bonding and ionic interactions, 

apolar interactions such as lipophilic and aromatic interactions, loss of ligand flexibility 

(entropic effects) and also desolvation effects [58].  In the empirical scoring function, there 

is a developed model of a series of ligand-receptor complexes with known binding affinities 

and this training set is used to perform a multiple linear regression analysis [58]. Therefore, 

the major disadvantage of this approach is the accuracy of the data that is used in the training 

set [58].  

 

The last approach is the knowledge-based scoring function. The general function is 

obtained from the pairwise energy potentials which are extracted from known ligand-

receptor complexes [81]. These potentials are constructed by taking into account the 

frequency with which two different atoms are found within a given distance in the structural 

dataset. The different types of interactions observed in the dataset are categorized and 

weighted according to their frequency of occurrence. The sum of the individual interactions 

is the final score. The main advantage of this approach is the balance between accuracy and 

speed because this function does not depend on reproducing binding affinities as in empirical 

methods or ab initio calculations as in force-field methods [82]. 

3.2.3.   Docking Process 

The docking process includes several steps such as protein and ligand preparation, the 

bounding box setting, docking options, docking calculation and results analysis. A flowchart 

that shows the docking procedure is shown in Figure 3.2. The detailed procedure about the 

docking process will be discussed in Chapter 4, methodology part.  

 

3.3. Pharmacophore Modeling and Pharmacophore-based Screening Methods 

In computer-aided drug design, pharmacophore model is a set of features that is 

common to a series of active molecules. 
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Figure 3.2.  A docking based virtual screening flowchart [58]. 

 

These features can be hydrogen bond donors, hydrogen bond acceptors, aromatic rings, 

hydrophobic centers (also called neutral centers), positive charge centers, negative charge 

centers, acidic groups, basic groups, bulky groups engaged in steric interactions, planar 

atoms, CO2 centroid (ester or carboxylic acid), NCN+ centroid, metal (also called a metal 

ligator) and excluded volumes [60].  

 

Pharmacophore-based screening is a method of virtual screening to assess millions of 

compounds by computer softwares. There are several computer programs for 

pharmacophore modeling such as Ds Catalyst [83], LigandScout [84], Phase [85], and 

pharmacophore module of MOE [86].  

 

The types of pharmacophore modeling are structure-based and ligand-based methods 

[58]. In the structure based pharmacophore models, the formation of 3D structure of protein-

ligand complex is used to generate the model [58]. On the other hand, in the ligand-based 

pharmacophore models, there is no crystal structure of protein-ligand complex, therefore the 

model can be derived from known ligands. In this method, either common features of a 
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training set of active molecules or a single compound is used as a template for 

pharmacophore model generation [58].  

3.3.1.   Pharmacophore Model Validation Methods 

In pharmacophore-based screening methods, the goal is to enrich as many biologically 

active molecules as possible and to eliminate most of the inactive molecules from a 

compound database. There are many different quality metrics that help to evaluate the 

quality of the pharmacophore models. Some of the metrics are the chemical databases 

validation, enrichment metrics, Receiver Operating Characteristic Curve Analysis (ROC) 

and the area under the ROC curve (ROC-AUC) [58].  

 

In the chemical database validation, it is important to build a proper set of active and 

inactive molecules in order to evaluate the enrichment of a pharmacophore model [58].  

 

The enrichment metrics validation, two basic values, the sensitivity (Se) and the 

specificity (Sp) [58] are found. Se is the ratio of the number of selected active molecules and 

the number of all biological active database molecules [87,88]. Sp is the ability of a 

pharmacophore model to discard inactive compounds. It is found as the ratio of inactive 

molecules not selected by the model and all inactive molecules [87].  

 

A pharmacophore-based screening has become a common technique for hit discovery 

over the past few years. It provides a set of essential chemical features of screened 

compounds and also new active chemical scaffolds as novel candidates in drug discovery.  

 

3.4. Molecular Dynamics Simulation (MD) 

Molecular dynamics (MD) simulations is one of the major tools for modeling proteins, 

nucleic acids and their complexes which enables us to predict how the positions and 

velocities of the particles in the system vary with time [89]. It is a model of motion of some 

group of particles by solving the classical equations of motion. The first molecular dynamic 
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simulation of a condensed phase system was performed by Alder and Wainwright in 1957 

[90]. In 1970s, MD simulations were developed for more complex molecules and today MD 

provides insight into protein folding, refinement of homology modeling, and predicted 

structures, complex conformational changes and their relation to function, and computer-

aided drug design.  

 

For the MD simulations, first step is to specify a set of initial conditions (initial 

positions and velocities of all particles in the system) and interaction potential for deriving 

the forces among all the particles. Secondly, the evolution of the system in time can be 

continued by solving Newton’s equation of motion for all particles in the system. 

 

The MD simulation method which is simply based on the Newton’s second law; the 

equation of motion is: 

                                                                          𝐹𝑖  =  𝑚𝑖𝑎𝑖                                                                             (3.1) 

 

where F is the force exerted of an atom in the case of molecular motion. As the gradient of 

the potential energy function with respect to the internal coordinates gives the force, the 

force acting on each atom, i could be found by the gradient of the forcefield: 

 

                                                                     𝐹𝑖 =  −
𝑑𝑈(𝑟)

𝑑𝑟𝑖
                                                            (3.2) 

 

Combination of these two equations gives: 

 

                                                               −
𝑑𝑈(𝑟)

𝑑𝑟𝑖
=  𝑚𝑖

𝑑2𝑟

𝑑𝑡2
                                                        (3.3) 

 

Potential energy is a function of positions of the atoms in the system. Hence the energy 

term can not be written as a function of time, this equation becomes very complicated and 

can not be solved analytically, it must be solved numerically [91]. 
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There are many numerical algortihms such as Verlet Algorithm, Velocity-Verlet 

Algorithm, Leap-Frog Algorithm etc. to solve equations of motion. In many algorithms 

integration is partitioned into small steps, each of these steps is separated in specific time 

period ∆t. 

 

In molecular dynamics simulation, Periodic Boundary Conditions (PBC) enables 

macroscopic properties to be calculated from fewer particles of the systems. It is used to 

simulate processes in a small part of a large system. In PBCs, the primary cell is replicated 

in all simulated direction as image cells and primary and image cells have the same number, 

position, momentum of atoms, size and shape.  

 

In molecular dynamics simulation, thermodynamic properties of the systems, can be 

obtained by statistical ensembles. Ensembles are formed based on number of particles (N), 

volume (V), energy (E), temperature (T) and pressure (P). The most popular ensembles are: 

(i) NVE ensemble (microcanonical ensemble): constant N, V and E, (ii) NVT ensemble 

(canonical ensemble): constant N, V and T, (iii) NTP ensemble (isothermal-isobaric 

ensemble): constant N, T and P. Among these ensembles, NVT is the most commonly 

preferred one for the biological systems due to its computational efficiency.  

 

The other parameters such as the details of equilibration, heating, time step, cutoff for 

interatomic interactions etc. vary with respect to the systems. More detailed calculation 

schemes of molecular dynamics simulations in this study are introduced within the relevant 

chapters.  

 

3.5. Free Binding Energy Calculation Methods 

One of the most important goal of computational medicinal chemistry is to develop 

methods that can accurately estimate the free energy of binding, ΔGbinding, which allows us 

to predict the binding strength of any drug candidate without synthesizing it [92]. This 

process has been described as the Holy Grail of structure-based drug design [93]. 
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The process is as followed:  

 

                                                                𝐿 + 𝑅 →  𝐿𝑅                                                                  (3.4) 

 

where L is the ligand, R is the receptor (the macromolecule target) and LR is the complex. 

The main objective is to develop methods that accurately can estimate the free energy of this 

reaction. Among the many methods that try to evaluate this free energy of binding, free 

energy perturbation (FEP) [94] and thermodynamic integration (TI) are commonly 

considered as the most rigorous and accurate methods. In these methods, the difference in 

binding free energy between two ligands is calculated by slowly changing one ligand into 

another, via a number of unphysical, intermediate states, using molecular dynamics (MD) or 

Monte Carlo simulations [95]. However, FEP and TI have found relatively little use in drug 

design, because they are computationally very expensive and they only properly converge 

for rather similar ligands. More simplified and faster methods have been developed, such as 

the linear interaction energy (LIE) [96], the Molecular Mechanics-Poisson 

Boltzmann/Surface Area (MM-PB/SA), and the Molecular Mechanics-Generalized 

Born/Surface Area (MM-GB/SA) methods [97]. These methods only simulate the end-points 

of the reaction, i.e., only physical states. They are mainly post-processing methods, i.e. they 

compute free energies of binding from an ensemble average that is usually obtained from a 

molecular dynamics (MD) or Monte-Carlo (MC) simulations using standard MM force field 

[97,98]. In MM/PBSA and MM/GBSA methods, the solvent is treated implicitly via a 

dielectric continuum. Compared with rigorous methods such as free energy perturbation 

(FEP) and thermodynamic integration (TI) methods, MM/PBSA and MM/GBSA are 

computationally more efficient [99].  

3.5.1.   Molecular Mechanics-Generalized Born/Surface Area (MM-GB/SA) 

In MM-GB/SA or MM-PB/SA methods, the free energy of binding (ΔGbinding) between 

a ligand (L) and a receptor (R) to form a complex RL is calculated as: 

 

                                                 ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = < 𝐺𝑅𝐿 > − < 𝐺𝑅 > − < 𝐺𝐿 >                           (3.5)                
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where each free energy is estimated as a sum, according to:  

 

                                                      𝐺 = 𝐸𝑀𝑀 + 𝐺𝑠𝑜𝑙𝑣 − 𝑇𝑆𝑀𝑀                                                   (3.6) 

 

where EMM is the molecular mechanics gas-phase energy of the reactant, consisting of the 

internal energy (from bonds, angles, and dihedral angles), as well as the non-bonded 

electrostatic and van der Waals energies: 

 

                                                      𝐸𝑀𝑀 = 𝐸𝑖𝑛𝑡 + 𝐸𝑒𝑙 + 𝐸𝑣𝑑𝑊                                                (3.7) 

 

Gsolv is the solvation energy, and is calculated with a continuum representation of the 

solvent for the polar part, and by a relation to the solvent-accessible surface area for the non-

polar part. The polar part can either be calculated by using the Generalized Born method 

(MM-GB/SA) or by solving the Poisson-Boltzmann equation (giving MM-PB/SA) [100]. 

The last term TSMM is the product of the absolute temperature and the entropy, which is 

calculated from a normal-mode analysis at the molecular-mechanics level [95,101]. The 

averages in the first equation are calculated from a set of snapshots obtained from MD or 

MC simulations. 

 

MM-GB/SA and MM-PB/SA methods are promising methods that are now widely 

used and can give good results. However, they are crucially dependent on numerous factors: 

 

 The quality of the force field used in the statistical simulations [102] 

 The quality of the sampling, which should result in a statistically converged free 

energy of binding [92] 

 The quality of the implicit solvation method (GB or PB) [99] 

 The effect of the length of MD simulations [99] 

 The number of independent MD simulations using different starting velocities [92] 

 The suitable solute dielectric constant to calculate the polar solvation energies [99] 

 The way by which frames may be selected from the MD simulation including 

clustering [92]. 
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4. VIRTUAL SCREENING STUDY OF NOVEL SKELETON 

CANDIDATES FOR PDE4B 

 

4.1. Molecular Docking Study Based on Pharmacophore Modeling for Novel 

Phosphodiesterase4 (PDE4) Inhibitors 

In this study, pharmacophore modeling was carried out for novel Phosphodiesterase4 

(PDE4) inhibitors. A pharmacophore-based virtual screening workflow, which resulted in 

1959 hit compounds was performed with six chemical databases. Lipinski’s rule of five was 

applied for physicochemical filtering of the hit molecules and this yielded 1840 compounds. 

Three docking software tools, AutoDock 4.0, AutoDock Vina, and Gold v5.1 were used for 

the docking process. All 1840 compounds and the known inhibitor rolipram were docked 

into the active site of the crystal structure of PDE4 taken from the Protein Data Bank (PDB 

code: 1RO6). A total of 234 compounds with all three scoring values higher than those of 

rolipram were determined with the three docking tools. The interaction maps of 14 potent 

inhibitors complexed with PDE4 B and D isoforms have been analyzed and seven key 

residues (Asn395, Gln443, Tyr233, Ile410, Phe446, Asp392, Thr407) were found to interact 

with more than 80% of the potent inhibitors. For each one of the 234 hit compounds, using 

the bound conformation with the highest AutoDock score, the interacting residues were 

determined. 117 out of 234 compounds are found to interact with at least five of the seven 

key residues and these were selected for further evaluation. The conformation with the 

highest AutoDock score for each 117 compounds were rescored using the DSX scoring 

function. This yielded a total of 101 compounds with better score values than the co-

crystallized ligand rolipram. For ADME/TOX calculations, the FAF-Drugs2 server was used 

and 32 out of 101 compounds were found to be non-toxic.  

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP) are intracellular second messengers mediating the response of cells to a wide variety 

of hormones and neurotransmitters in signal transduction pathways [5-7]. The families of 

cyclic nucleotide phosphodiesterase (PDE) enzymes are responsible for the degradation of 
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cAMP or cGMP to 5’-AMP or 5’-GMP [1-3]. The concentration level of cAMP or cGMP in 

vivo is important for many pharmacological processes such as proinflammatory mediator 

production and action, ion channel function, muscle contraction, learning, differentation, 

apaptosis, lipogenesis, glycogenolysis and gluconeogenesis [5-7]. 

Up to now, 11 families of 21 human PDE genes were characterized by different 

substrate specificity (cAMP or cGMP) inhibition, substrate requirements, gene sequence and 

tissue distribution [1,4,6,7,9-12]. One of these families belongs to PDE4, a cAMP specific 

enzyme. The PDE4 isoform is a suitable drug target for a range of inflammatory and immune 

disorders like asthma and chronic obstructive pulmonary disease (COPD) and is also used 

as a theraupetic agent for rheumotoid arthritis, multiple sclerosis, type II diabetes, septic 

shock, atopic dermatitis, and other autoimmune diseases [103-108]. There are about 20 

potent inhibitors (Figures 4.1- 4.2). 
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Figure 4.1.  Potent inhibitors for PDE4 [13]. 
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Figure 4.2.  Different potent inhibitors for PDE4  [13]. 

 

Rolipram is one of the earliest and most extensively studied PDE4 inhibitors. However 

it is known to be the cause of common side effects, such as nausea, headache and diarrhea 

[109-111]. The potentially important clinical benefits of PDE4 inhibition, coupled with the 

limitations of current PDE4 inhibitors, highlight the need for novel PDE4 inhibitor 

chemotypes [112].  

 

The aim of this study is to suggest novel potent inhibitor structures for PDE4 with 

limited side-effects. For this purpose, structure-based pharmacophore models for PDE4 

inhibitors were prepared and a library of compounds that fit most the pharmacophore model 

is created. For virtual screening experiments, the docking process was carried out with three 

docking software tools, Autodock 4.0 [65], AutoDock Vina [113] and Gold v5.1 [64]. The 
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known active inhibitor, rolipram, was also docked and its score value was set as the lower 

limit. The compounds that had score values higher than the lower limit in all three docking 

experiments were selected. Based on the MOE interaction maps, seven residues (Asn395, 

Gln443, Tyr233, Ile410, Phe446, Asp392, Thr407) interacting with more than 80% of the 

known potent PDE4 inhibitors displayed in Figure 4.1-4.2, is created. Then, for each selected 

compound’s most favorable binding pose, all the interacting residues are monitored and 

compared with the residues interacting with the potent inhibitors. The ligands that have 

interactions with at least five of the seven key residues are reselected and their highest-score 

conformations obtained from AutoDock are rescored using the DSX scoring function. This 

yielded a total of 101 compounds with DSX [82] score values higher than that of rolipram. 

Finally, 101 compounds were filtered based on ADME/TOX calculation on the FAF-Drugs2 

[114] server  and 32 compounds were found to satisfy the ADME properties and to be non-

toxic.  

4.1.1.   Methodology 

4.1.1.1.  Pharmacophore Model and Database Generation. In this study, the pharmacophore 

models were generated by the software LigandScout [84] with its default parameters. 

LigandScout yielded a total of eight pharmacophore models for four different PDE4 crystal 

structures taken from the Protein Data Bank (PDB codes: 1RO6, 1Y2J, 1XM4 and 2FM0). 

Then, pharmacophore-based screenings were carried out using these models against six 

distinct chemical databases (Chembridge Library, Maybridge Library, Asinex-Gold Library, 

Asinex-Platinum Library, SPECS database and NCI (National Cancer Institute) with the 

software Catalyst [115]. The pharmacophore model, which gave the highest number of hits 

upon screening, was chosen. The compounds with a fit value -number of matching 

pharmacophore points, the maximum being five- higher than 2.5 were selected for further 

evaluation for Lipinski’s rule of five with MOE [86]. The compounds that satisfy Lipinski’s 

rule of five were subjected to the docking process with AutoDock 4.0, AutoDock Vina and 

Gold v5.1. 
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4.1.1.2.  Docking. The crystal structure of PDE4 (PDB code:1RO6) taken from the PDB 

databank was chosen because of its highest resolution and relatively intact structure [116]. 

The target protein is a homodimer. At the binding site, the water molecule which is found 

near the ligand and the two metal ions Zn2+ and Mg2+, were kept fixed during the docking 

process. Using MOE, the polar hydrogens were added to the protein based on the protonation 

states of the ionizable side chains. Using AutoDockTools (or ADT, the GUI of AutoDock), 

Gasteiger charges were assigned to both the ligand and the macromolecule and non-polar 

hydrogens were merged to the bonded heavy atom based on the united atom model. For 

AutoDock 4.0, the docking process for screening was composed of 10 independent runs 

which yielded 10 docked conformations for each compound in the library. For 

conformational search, the simulated annealing methodology [117] was used with its default 

parameters. A total of 150 distinct ligand conformers are initially generated and positioned 

randomly in the binding pocket. The number of energy evaluations are adjusted with respect 

to the number of torsions in the ligand based on the general guidelines of AutoDock. The 

target protein was held rigid during docking. A pre-calculated three-dimensional energy grid 

of equally spaced discrete points is generated prior to docking, for a rapid energy evaluation, 

using the program AutoGrid [118]. The grid box with dimensions of 32 Å x 72 Å x 31 Å 

covers the entire binding site and its neighboring residues. The distance between two grid 

points is set to 0.375 Å. AutoDock Vina uses the same molecular structure file format used 

by AutoDock 4.0. A pre-calculated three-dimensional energy grid map and assigning atom 

charges are not needed for AutoDock Vina. The two major distinctions between two docking 

tools are the scoring function and the search algorithm. 

 

The docking process was repeated with another docking tool, Gold v5.1. In Gold, a 

genetic algorithm (GA) was used to explore the full range of ligand conformational 

flexibility and the rotational flexibility of receptor hydrogens [64]. The mechanism for ligand 

placement is based on fitting points. The CHEMPLP, GoldScore, ChemScore, and ASP 

scoring functions were used to score the poses and the best poses obtained with CHEMPLP 

were chosen. For defining the binding site, a spherical region surrounding the ligand with a 

radius of 12 Å was chosen. All other variables were held fixed at their default values. 50 ga 

runs were carried out for each ligand. 
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Following the docking process, a total of 234 compounds with all three scoring values 

higher than those of rolipram were determined from AutoDock 4.0, AutoDock Vina and 

Gold v5.1. For each one of the 234 hit compounds, using the bound conformation with the 

highest AutoDock score, the interacting residues were determined and 117 out of 234 

compounds are found to interact with at least five of the seven key residues. All 117 

compounds were rescored using the DSX v.088 scoring function. This yielded a total of 101 

compounds with better score values than that of the ligand rolipram. As a final step, toxicity 

calculation was carried out on FAF-Drugs2 server. FAF-Drugs2 (Free ADMET Filtering-

Drugs2) is the first free web-based package (http://bioserv.rpbs.univ-paris-diderot.fr/FAF-

Drugs/) capable of preparing compound libraries through physicochemical rules, functional 

groups and Pan Assay Interference Compounds (PAINS) detection [119]. Finally, 32 

compounds passed the filtering test for ADME and toxicity.  

4.1.2.   Results 

4.1.2.1. Pharmacophore Models. Figures 4.3-4.4. show the pharmacophore points 

determined by LigandScout for four different crystal structures. In each figure, based on the 

residues surrounding the ligand and the excluded volume, potential interaction points on the 

ligand are highlighted as follows: a hydrophobic feature colored as a yellow sphere is the 

most common feature of all four models. Two other features are represented with red and 

green arrows representing the hydrogen bond acceptor and donor groups, respectively. 

Finally, the gray sphere represents the excluded volume. Two metal ions are represented 

with two small yellow spheres situated at the lower part of the Figures 4.3- 4.4. 

 

In the 1RO6 complex crystal structure (Figure 4.3-a), the co-crystallized ligand is 

rolipram. The aromatic ring and the five-membered ring at the top portion of the molecule 

represent the two hydrophobic features. In addition, the two red arrows represent the 

interactions between two oxygen atoms and Gln443. At the lower portion, the carbonyl 

oxygen of heterocyclic ring interacts with the water molecule positioned between two metal 

ions, Zn2+ and Mg2+. 

http://bioserv.rpbs.univ-paris-diderot.fr/FAF-Drugs/
http://bioserv.rpbs.univ-paris-diderot.fr/FAF-Drugs/
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a) 1RO6                                                             b) 1XM4 

Figure 4.3.  Pharmacophore models for a) 1RO6 and b) 1XM4 crystal structures. 

  

a) 1Y2J                                                           b) 2FM0 

Figure 4.4.  Pharmacophore models for a) 1Y2J and b) 2FM0 crystal structures. 

 

In the 1XM4 complex crystal structure (Figure 4.3-b), the ligand is piclamilast. As in 

1RO6 complex, the two hydrophobic features and the hydrogen bond between two oxygen 
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atoms and Gln443 are present. In 1Y2J, 3,5-Dimethyl-1-(3-Nitro-Phenyl)-1H-Pyrazole-4-

Carboxylic Acid Ethyl Ester is the ligand (Figure 4.4-a). The hydrophobic aromatic feature 

is the same as in the other two models, one of them being on the aromatic ring and the others 

on the methyl group attached to the five-membered ring. Also, as in 1RO6 model, the water 

molecule positioned between two metal ions, Zn2+ and Mg2+, interacts with the oxygen at 

the lower portion of the molecule. In the last model, 2FM0 (Figure 4.4-b), the ligand is (S)-

3-(2-(3-Cyclopropoxy-4-(Difluoromethoxy)Phenyl)-2-(5-(1,1,1,3,3,3-Hexafluoro-2-

Hydroxypropan-2-yl)Thiazol-2-yl)Ethyl)Pyridine 1-Oxide (L-269298). As in 1RO6 

complex, the two hydrophobic features and the hydrogen bond between two oxygen atoms 

and Gln443 are present.  

 

In order to display the common pharmacophore features of these four complex models, 

their ligands were structurally aligned with MOE as shown in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.  Ligand alignment with MOE. 

 

We have also examined six different crystal structures (PDE4) which have the co-

crystallized ligand rolipram: two are with the PDE4 B isoform (PDB codes: 1XN0 and 

1XMY) and four are with the PDE4 D isoform (PDB codes: 1TBB, 1Q9M, 1OYN, and 

3G4K). These six structures and the 1RO6 complex were aligned and superimposed with 
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respect to the backbone (the root-mean-square deviation (rmsd) of each structure with 

respect to 1RO6 is found to be less than 1.7 Å) (Figure 4.6). The ligand rolipram from the 

crystal structure 1RO6 is shown in purple. Only in 1RO6, the five-membered ring in the 

ligand rolipram, is able to interact with the water molecule (HOH_788) and the two divalent 

metal ions (Zn2+ and Mg2+). Because of its highest resolution and intact structure in the B 

isoform, the docking process was carried out with 1RO6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.  The alignment of seven crystal structures co-crystallized with rolipram. 

 

4.1.2.2.  Virtual Screening via Docking. As our reference molecule, rolipram was first 

docked to the active site of the enzyme. The results are sorted based on the binding energy, 

which is the score value of AutoDock (Table 4.1). The conformation with the lowest binding 

energy (or the highest score value) has an rmsd value of 0.81 Å with respect to the known 

conformation in the crystal structure. Also, 8 out of 10 predicted poses have an rmsd value 

under 1 Å, with binding energies between -8.17 and -8.00 kcal/mol. Only one out of 10 poses 

has failed to predict the native state and it has the lowest score value (or highest energy) and 

the highest rmsd value. The strong correlation between the score value and the rmsd value 
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proves AutoDock 4.0 to be a satisfactory tool for molecular recognition studies of the PDE4 

enzyme. 

 

Table 4.1.  Docking results for ligand rolipram with AutoDock 4.0. 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

The docking process was also carried out for the potent inhibitors displayed in Figure 

4.1- 4.2. Seven of these potent inhibitors are the co-crystallized ligands for different PDE4 

complex structures extracted from the Protein Databank. Five of them correspond to PDE4 

B isoform (PDB codes: 1XM4 with piclamilast, 1XLZ with filaminast, 1XLX with 

cilomilast, 1XM6 with mesopram and 1XMU with roflumilast) and two of them belong to 

PDE4 D isoform (PDB codes: 1MKD with zardaverine and 1ZKN with IBMX). These 

potent inhibitors were individually docked into their complex crystals with AutoDock 4.0, 

AutoDock Vina and Gold v5.1. Furthermore, they were also docked into the 1RO6 active 

site. In Table 4.2, the second column represents the binding energy values with AutoDock 

when the ligands were docked into the 1RO6 active site and the last column shows the 

corresponding values when the ligands were docked into their own co-crystallized structures. 

As seen in Figure 4.7, AutoDock (1RO6), AutoDock (co-crystallized) and AutoDock Vina 

Rank 

(Sub-Rank) 
Run 

Binding 

Energy 

(kcal/mol) 

Reference 

RMSD (Å) 

1 (1) 2 -8.17 0.81 

1 (2) 5 -8.16 0.79 

1 (3) 10 -8.16 0.79 

1 (4) 1 -8.16 0.78 

1 (5) 9 -8.16 0.82 

1 (6) 8 -8.16 0.80 

1 (7) 4 -8.16 0.78 

1 (8) 3 -8.00 0.86 

1 (9) 6 -7.27 1.53 

2 (1) 7 -6.13 18.85 
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yield the same trend in binding energies; e.g. cilomilast and IBMX have the highest and 

lowest binding energies respectively. This trend is also justified with Gold v5.1 

demonstrating the validity of the methodologies used in this study. 

 

 

 

 

 

 

 

Figure 4.7.  The correlation between the AutoDock scores docked into 1RO6 and the 

co-crystallized complexes. 

Table 4.2.  Docking results of potent ligands with AutoDock 4.0, AutoDock Vina 

and Gold v5.1. 

a: Target is the PDEIV in 1RO6. b: Target is the PDEIV in their own co-crystallized complexes. 

Potent inhibitors 

Binding 

Energy 

AutoDock 4.0a 

Binding 

Affinity 

AutoDock 

Vinaa 

Gold 

CHEMPLP 

Scorea 

Binding 

Energy 

AutoDock 4.0b 

1.Zardaverine (1MKD) -6.56 -8.2 64.7323 -6.31 

2.Roflumilast(1XMU) -6.98 -9.2 70.6268 -6.90 

3.Piclamilast(1XM4) -8.03 -8.9 73.1025 -7.90 

4.Mesopram(1XM6) -6.62 -8.1 62.8033 -7.39 

5.IBMX(1ZKN) -5.83 -6.7 55.278 -5.96 

6.Filaminast(1XLZ) -6.96 -7.5 76.1991 -7.64 

7.Cilomilast(1XLX) -12.93 -9.7 92.3694 -11.02 
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Following rolipram, 1840 candidate molecules that satisfy the criteria described in 

Methodology, were put to a virtual screening via AutoDock v 4.0, using the same docking 

parameters used for rolipram. For each ligand, the lowest binding energy (highest score) 

value was extracted. A total of 635 molecules were found to have a binding energy lower 

than that of rolipram. 

 

Similarly, all 1840 molecules were subjected to a docking process via AutoDock Vina. 

It was proposed that Vina significantly improves the average accuracy of the binding mode 

predictions compared to AutoDock v4.0, judging by the tests on the training set used in 

AutoDock v4.0 development. Similar to AutoDock v4.0, rolipram was first docked with 

Vina, to check the performance in prediction. Vina was several orders of magnitude faster 

than AutoDock v4.0 and the conformation with the lowest binding energy (or the highest 

score) had an rmsd value of 0.73 Å, which is slightly closer to the native state (0.81 Å in 

AutoDock v4.0). As a result of docking 1840 compounds with AutoDock Vina, 489 

compounds that had better binding affinities than that of rolipram were found.  

 

Finally, the docking process was carried out by using Gold v5.1. Similar to AutoDock 

v4.0 and Vina, rolipram was first docked with different scoring functions: CHEMPLP, 

GoldScore, ChemScore and ASP. Among the scoring functions, CHEMPLP gave the best 

score. Thus, we decided to use Gold v5.1 with CHEMPLP scoring function to dock all 1840 

compounds in the training set into the active site of 1RO6. 681 compounds that had better 

CHEMPLP score values than that of rolipram, were selected as a result of this docking 

process. 

 

The next step consists of combining the results from AutoDock v4.0, AutoDock Vina 

and Gold v5.1. A total of 234 compounds were found to have stronger binding energies 

(higher scores) than rolipram in all three docking experiments, thus were selected for further 

analysis.  

 

4.1.2.3.  Protein-Ligand Interaction Maps. In this part of the study, two-dimensional protein-

ligand interaction maps for known potent inhibitors (Figures 4.1- 4.2) and for the 234 hit 
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molecules were created with MOE. First, the ligand interaction maps for the known potent 

inhibitors were analyzed and five key amino acid residues (Asn395, Gln443, Tyr233, Ile410, 

Phe446) were observed to interact with more than 90% of the 14 known potent inhibitors 

(Figure 4.8). In addition to five key residues, in almost all potent molecules, Asp275 and 

Asp392 were observed in the active site to coordinate with Mg2+, Zn2+ and water, as seen in 

Figure 4.10. 

 

Figure 4.8.  Percentage values of amino acid residues in the active site of the enzyme 

for known potent inhibitors. 

 

 

 

Figure 4.9.  Ligand interaction maps for some potent inhibitors created with MOE. 

0

10

20

30

40

50

60

70

80

90

100

A
sp

2
7

5
H

is
2

7
4

Le
u

3
9

3
A

sn
3

9
5

A
sp

3
9

2
H

is
2

3
4

G
ln

4
4

3
P

h
e4

1
4

Ty
r2

3
3

Th
r4

0
7

Ile
4

1
0

P
h

e4
4

6
Se

r4
4

2
Th

r3
4

5
H

is
2

7
8

G
lu

3
0

4
Se

r2
8

2
Se

r3
4

8
M

e
t3

4
7

Le
u

3
0

3
A

sp
3

4
6

A
sn

2
8

3
M

e
t4

3
1

Tr
p

4
0

6
Ty

r4
0

3
H

is
2

3
8

M
e

t4
1

1
H

is
3

0
7

V
al

2
8

1
G

ly
2

8
0

G
lu

4
1

3
G

ln
4

1
7

P
ro

3
9

6
G

ln
2

8
4

Se
r3

9
4

M
g

Zn
H

O
H



 

  38 

 

 

 

 

 

 

For the 234 hit molecules, similar protein-ligand interaction maps were prepared and 

the percentage of occurrences of residues in the active site of the enzyme were calculated 

(Figure 4.10). As seen in Figure 4.9, a total of five residues interact with more than 80% of 

the hit compounds and they are Asp392, His234, Tyr233, Ile410, and Phe446. Three of these 

five residues which are Tyr233, Ile410, and Phe446 also interact with more than 90% of the 

known potent inhibitors as shown in Figure 4.8. 

 

 

 

Figure 4.10.  Percentage values of interactions observed in the active site of the 

enzyme with docked ligands. 

 

Furthermore, two residues which are Asp392 and Thr407 are observed to interact with 

more than 80%, but less than 90% of the known potent inhibitors. Hence, they are selected 

as key residues in the binding site in addition to five key residues for the potent inhibitors 

mentioned above. Consequently, a total of seven selected key residues were inspected in the 

interaction maps of the hit molecules for which the bound conformation with the highest 

AutoDock score was used, Among the 234 hit compounds, 117 molecules were found to 

interact with at least five of the seven key residues and thus were selected for the next round 

of analysis where they were subjected to a knowledge-based scoring function called DSX. 
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For each of the 117 compounds, the conformation with the highest score obtained 

previously from AutoDock v4.0 was selected and its score value is determined using DSX. 

Rolipram’s known conformation in the crystal structure was also rescored with DSX and 

taken as the lower limit. A total of 101 compounds that had higher DSX score values than 

the lower limit were selected for further tests. Analysis of the structure of the hit compounds 

shows that the trifluoromethyl (-CF3) and the 1,3-dimethoxybenzene (-C6H4(OCH3)2) groups 

are the common functional groups shared by most of the compounds. The trifluoromethyl 

group (-CF3) interacts with two key residues Tyr233, Asp392 and the 1,3-dimethylbenzene 

interacts with another key residue Gln443 within a proximity of about 4 Å. These residues 

are previously shown to be present in both known potent inhibitors and hit compounds with 

high percentages.  

 

As the final step of screening, 101 compounds were subjected to ADME/toxicity 

filtering on FAF-Drugs2 server and 32 of them which passed the test were proposed as 

candidates for the novel PDE4 inhibitors as shown in Figure 4.11. The flowchart that 

illustrates each step of the screening used in this study is displayed as in Figure 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.  Candidate inhibitor molecules which have the highest pharmacophore 

fit values (greater than 3.8). 
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Figure 4.12.  A flowchart depicting the procedure followed in this study. 

 

4.1.3.   Conclusion 

In this study, pharmacophore models were derived from four different protein-ligand 

crystal structures and they were employed to screen Chembridge Library, Maybridge 

Library, Asinex-Gold Library, Asinex-Platinum Library, SPECS database and NCI for the 

detection of PDE4 inhibitors. After the docking process with AutoDock v4.0, AutoDock 

 3D Common feature-based pharmacophore modelling 

                                    

Chemical databases 

900.000 compounds 

 DSX Score 
101 hits 

                                    

Ligand map interactions with MOE  

                                       117hits                                                                                                                           

 Intersection of three docking programs 

234 hits 

                                    

 Pharmacophore fit values > 2.5 

                                       1840 hits 

                                    

 3D pharmacophore-based screening  

1959 hits 

 Docking with 

AutoDock v4.0  

    

     Toxicity filtering 

    32 hits 

Docking with 

AutoDockVina 

    

 Docking with  

   Gold_v5.1 
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Vina, and Gold v5.1, 234 inhibitors with score values higher than those of rolipram in all 

three docking experiments were determined as initial hit compounds. The ligand interaction 

maps for the 14 known potent PDE4 inhibitors reveal seven key residues: Asn395, Gln443, 

Tyr233, Ile410, Phe446, Asp392 and Thr407 which interact with more than 80% of the 

potent inhibitors. The analysis of 2D protein-ligand interaction maps revealed that 117 out 

of 234 compounds interact with at least five of the seven key residues. Therefore, they are 

selected for further analysis which consists of rescoring with DSX scoring function. 

Rescoring yielded 101 compounds with DrugScore values less than -95.56 which belongs to 

rolipram. All 101 compounds were subjected to ADME/toxicity and only 32 of them which 

passed the filtering were proposed as the most promising compounds for novel PDE4 

inhibitors.  

 

4.2. An improvement of the Pharmacophore Model and Docking with Gold v5.1 

Scoring Functions for Novel Phosphodiesterase4 Inhibitors 

In this study, virtual screening based on pharmacophore models and molecular docking 

for Phosphodiesterase4B (PDE4B) inhibitors were carried out to propose novel inhibitors 

for PDE4B family. The pharmacophore model from the previous work was refined based on 

conformational change of known PDE4B inhibitor rolipram in the crystal structure (PDB 

code: 1RO6) with software MOE. The database that was screened against six chemical 

databases from previous work, was resulted in 1840 compounds, combined with twenty-six 

known potent PDE4B co-crsytallized inhibitors from protein databank. A conformational 

search based on stochastic method for this combined dataset was proceeded with MOE. 

Virtual screening based on first refined pharmacophore model yielded 12114 and for the 

second one, 14740 conformers, were merged in a new dataset containing totally 26854 

conformers for docking and binding test. For each conformers of each hit compound, 

docking process was carried out with Gold v5.1 with four different scoring functions: ASP, 

ChemScore, ChemPLP, and GoldScore. Two dimensional ligand interaction maps for the 

twenty-six known PDE4B inhibitors were analyzed with MOE. According to interaction 

maps, seven key residues (Tyr233, His234, Met347, Ile410, Phe414, Gln443, Phe446) in the 

active sites within 5 Å, with occurrence more than 85% of known potent inhibitors were 
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found. For the docked conformers of each compound for each scoring functions were tested 

if they had interaction with these key residues or not. The conformers of each scoring 

functions were kept as hits if they have passed the binding test. After the binding test, 

enrichment factors for each scoring functions were determined by the threshold values and 

the conformers that have had better scores than thresholds in all of four scoring functions 

were selected. For taking only one conformer for each different compound, the best 

conformer with the best docking score were chosen. The final step is to classify these 263 

hits based on Tanimato coefficient similarity with MOE. 263 hits were clustered with more 

than 60% similarity and this yielded 84 different classes. Among these classes, 4 hit 

compounds were found that had better interaction residue energies than known inhibitor 

rolipram. 

 

The goal of this study is to propose novel potent inhibitor structures for PDE4B family 

with limited side effects. The study started with virtual screening based on structure-based 

pharmacophore models. The docking process was carried out with four different scoring 

functions; ASP, ChemScore, CHEMPLP and GoldScore of Gold v5.1. Based on two-

dimensional ligand map interactions, created by MOE, for known inhibitors from pdb, seven 

key residues that give interaction with more than 85 % of the known inhibitors, were 

determined and a binding test was applied for each conformation of each docked compound. 

The docked poses that didn’t have interaction with these key residues were eliminated. For 

filtering based on docking, enrichment factors were calculated with the threshold values for 

each scoring function and the compounds that were found above the thresholds in all four 

scoring functions were chosen. At the final step, clustering based on Tanimato coefficient 

similarity was proceeded with MOE and 4 hit compounds that have better interaction energy 

values with the residues in the active site than known inhibitor rolipram are proposed as 

novel scaffolds for PDE4B selective inhibitors. 

4.2.1.   Methodology 

4.2.1.1.  Structure-Based Pharmacophore Modeling and Database Generation. This study 

starts with the pharmacophore model (1RO6 model) which was created with software 
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LigandScout and validated its discriminative power between active and inactive inhibitors 

for a decoy set with a ROC curve generated with the same software as in our previous work. 

The database that was obtained after screening against six chemical databases (Chembridge 

Library, Maybridge Library, Asinex-Gold Library, Asinex-Platinum Library, SPECS 

database and NCI) with Catalyst with its default parameter is the starting database in this 

study.  

 

In the 1RO6 crystal structure, there are two conformations of ligand rolipram in the 

same chain, chain A (Figure 4.14) In the previous work, only the conformation 1 of ligand 

rolipram was discussed, but in this study, the pharmacophore model was refined based on 

the conformational change of rolipram with software MOE. A new database, which contains 

1840 hits from the previous work and 26 co-crystallized known inhibitors for PDE4 from 

pdb, were merged and a conformational search was proceeded with MOE. For the 

conformational search, stochastic method was chosen. The iteration limit was set to 100, 

MM iteration limit was 200, RMS Gradient was 0.05, RMSD Limit was 0.5 and the 

conformational limit was 10. The other parameters were kept as default. The merged 

database was screened based on both first and second model then the hit compounds were 

combined in a new dataset. 

 

4.2.1.2.  Docking and Binding Test. For the docking process, 1RO6 crystal structure was 

chosen because of its highest resolution (2 Å), intact structure and also co-crystallized 

structure with known ligand rolipram. The target protein is a homodimer and contains two 

divalent metal ions Zn2+ and Mg2+. During the docking process, a water molecule which is 

between two metal ions in the active site was kept. For the protonation, polar hydrogens 

were added with MOE.  

 

Docking was carried out using Gold v5.1 with four different scoring functions: ASP, 

CHEMPLP, ChemScore and GoldScore. In Gold v5.1, the genetic algorithm (GA) 

parameters were used to explore the full range of ligand conformational flexibity and the 

rotational flexibility of receptor hydrogens. For the ligand placement, fitting points option 

was chosen and the binding site was defined as a spherical region surrounding the ligand 
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with a radius of 12 Å. For the other parameters (ga run: 10 and ga search: slow) were held 

fixed as default. For each conformer, 10 ga runs were performed. 

 

For the binding test based on the 26 co-crystallized ligands native binding mode (from 

Protein Databank), the key residues in the active site within 5 Å of the each crystal structures 

for each ligand were determined with MOE. Two dimensional protein-ligand interaction 

maps were prepared with MOE again and the percentage of occurrences of residues in the 

active site of the enzyme were calculated. 

  

According to the binding test, the docked pose of each conformer of each compound 

has to be interact with the key residues otherwise it was eliminated from the dataset. 

 

For further elimination, the threshold values for each scoring function were determined 

with enrichment factor method.  

 

All the selected molecules were simply combined and a molecule was counted as a hit 

if it was found in above of all the four threshold for docking. After elimination based on 

threshold values, only the best conformers with best docking scores for each compounds 

were chosen. 

 

As a final step, a clustering based on Tanimato coefficient similarity was carried out 

with MOE, 84 families which belong to different compounds were obtained. According to 

two-dimensional interaction maps, the interaction energies between ligand and the residues 

within 5Å in the active site were calculated and four representative scaffolds which have 

better interaction energies than the known ligand rolipram, were proposed as novel structures 

for PDE4B inhibitors. 

4.2.2.   Results 

4.2.2.1.  Structure-based Pharmacophore Modeling and Conformational Change.  Figure 4.13 

represents the pharmacophore model for PDE4B selective inhibitor rolipram which was 
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created in our previous work with LigandScout. In this model, important pharmacophoric 

features were represented with yellow spheres for hydrophobic property, red arrows for 

hydrogen bond acceptors and the green ones for hydrogen bond donors. At the bottom part 

of active site, in the M pocket, two metal ions were shown as two small yellow spheres. 

 

In the 1RO6 crystal structure, the known inhibitor rolipram, has two conformations in 

the same chain, chain A as shown in Figure 4.14. In the first conformation of rolipram, the 

oxygen atoms give interaction with Gln443 residue at the top portion of the active site and 

at the M sub-pocket, the five-membered ring has an orientation which provides an interaction 

between carbonyl oxygen atom on the ring and water molecule between two metal ions. 

Comparing with the first conformation; in the second conformation of rolipram, the five-

membered ring on the left part, the interaction between carbonyl oxygen and the water 

molecules was lost and the coordination with the metal ions also was not observed (Figure 

4.14) So, to see the conformational change on the results, starting with the previous 

pharmacophore model (Figure 4.13), MOE was used to refine the model based on 

conformational change.  

 

 

 

 

 

 

Figure 4.13.  1RO6 pharmacophore model with co-crystallized ligand rolipram. 
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Figure 4.14.  Different conformations of known inhibitor rolipram in the 1RO6 

crystal structure. 

 

 

. 

Figure 4.15.  Refined pharmacophore models with MOE based on conformational 

change of known inhibitor rolipram. 
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As seen in Figure 4.15, refined pharmacophore models have four and three important 

pharmacophoric features, respectively. Grey spheres show hydrogen acceptors and the 

yellow ones represent aromatic rings. 

 

4.2.2.2.  Virtual Screening Based on Pharmacophore Models. For the database, twenty-six 

known inhibitors from pdb and the database from our previous work were combined in a 

new database (totally 1867 compounds). For this new database, a conformational search for 

each compound was carried out with MOE. In the conformational search, the stochastic 

method was chosen and the other parameters were set as the iteration limit 100, MM iteration 

limit 200, RMS Gradient 0.05, RMSD Limit 0.5 and the conformational limit 10. After the 

conformational search, totally 17488 conformers were obtained for further study.  

 

The virtual screening was carried out on both pharmacophore models and the first one 

yielded 12114 hits and the second one gave 14740 hits, which were merged in a database 

totally 26854 hits for binding test and docking process. 

 

The key residues in the active site within 5 Å of the each crystal structures for each 

ligands were determined based on the twenty-six co-crystallized ligands native binding 

mode. Two dimensional protein-ligand interaction maps were prepared and the percentage 

of occurrences of residues in the active site of the enzyme were calculated as shown in Figure 

4.18. 

 

As seen in Figure 4.16, a total of seven residues interact more than 85 % of the co-

crystallized ligands. Seven key residues are: Tyr233, His234, Met347, Ile410, Phe414, 

Gln443, and Phe446. 

 

With this binding test, a decoy set that contains 67 non-inhibitors and 62 inhibitors 

from co-crystallized ligands and CHEMBL database, was tested. According to this test, a 

compound will be as a hit for further study if the best pose of the compound will be 

interacting with these seven key residues. The results when the compounds were docked 

with four different scoring functions are shown in Table 4.3. As seen in Table 4.3, more than 
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70% of the inhibitors have passed the binding test when they are docked with all of four 

different scoring functions. The percentage more than 70% value represents that it can be 

used as a powerful tool to filter out non-inhibitors from the database. 

 

 

Figure 4.16.  Percentage occurrences of residues of known inhibitors in the active 

site of enzyme. 

 

Table 4.3.  The percentage of decoy set that passed filtering test based on four 

different scoring functions with Gold v5.1. 

Scoring Function 

Method 

# of Inhibitors 

passed binding test 

# of non-inhibitors 

passed binding test 
% of Filtering Test 

ASP 58 10        58/67*100= 86% 

CHEMPLP 49 14        49/67*100=73% 

ChemScore 49 20        49/67*100=73% 

GoldScore 51 4        51/67*100=76% 

 

After the binding test, the docking results were analyzed with the enrichment factor. 

To determine the enrichment factor, the Equation 4.1 was used: 
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                                                                    𝐸𝑅 =
(𝑇𝑃/𝑛)

(𝐴/𝑁)
                                                            (4.1) 

                                                           

TP is the number of true positives, n is the total number of compounds with a score value 

above threshold, A is the number of inhibitors and N is the total number of compounds 

screened in the study.  

 

For example, for the CHEMPLP scoring function, a total of 37 inhibitors from the 

decoy set (67 inhibitors) and 7925 conformers from the large database (26854 conformers) 

have passed the binding test with a threshold score value larger than 70.9. These results 

correspond to an enrichment factor of 1.87 for 29.5 % database coverage. % database 

coverage belongs to n/N x 100. 

 

For the other scoring functions, ASP, ChemScore and GoldScore, the same procedure 

was repeated. The enrichment factor and % database coverage values were calculated as 

shown in Table 4.4. 

 

Table 4.4.  The calculated enrichment factors and % database coverage values for 

each scoring functions. 

Scoring 

Function 

Method 

Enrichment Factor % database coverage 

CHEMPLP (37/67) : (7925/26854) = 1.87   (7925/26854) x 100 = 29.5 % 

ASP (48/67) : (16170/26854) = 1.18 (16170/26854) x 100 = 60.2 % 

ChemScore (32/67) : (2994/26854) = 4.2 (2994/26854) x 100 = 11.15 % 

GoldScore (40/67) : (8337/26854) = 1.92 (8337/26854) x 100 = 31.04 % 

 

After the enrichment factor calculations, the conformers that have found in all of four 

scoring functions were selected and the others were eliminated from the database. In the 

database, a compound has different conformers with different poses from docking but it is 

enough to select a compound as a hit if its best conformer with best docking score provides 

all the requirements such as passing the binding test and being in all of four scoring functions 
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after docking. So for each compound, only the best conformer with the best score value was 

chosen and finally 263 different compounds were selected. The last step is to classify these 

compounds according to Tanimoto coefficient with more than 60 % similarity. According to 

classification, 84 different families were obtained, and 4 different scaffolds have better 

interaction residue energy than known inhibitor rolipram (Table 4.5). 

4.2.3.   Conclusion 

In this part of the study, an improvement pharmacophore model study was performed 

for PDE4 enzyme. As seen in Table 4.5, the new scaffolds have similar functional parts with 

the known inhibitor rolipram. At the top portion of active site, which is known as Q pocket, 

the oxygen atoms can give interaction with Gln443 residue as similar with rolipram. And 

the other two oxygens, one of them is carbonyl oxygen, are found in the M pocket and have 

been coordinated with metal ion Mg2+ (Figure 4.17). So, these new scaffolds show that these 

interactions are important and most promising parts of the novel compounds for PDE4B 

inhibition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17.  Alignment of proposed scaffolds with MOE. 
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Table 4.5.  The structures of 4 candidate inhibitors for PDE4B. 

Compound Name Interaction 

Residue Energy 

(kcal/mole) 

Structure 

ZINC01645531 -68.3 

 

ZINC01574265 -64.8 

 

4-[8-(3-

nitrophenyl)-1,7-

naphthyridin-6-

yl]benzoic acid 

 

-63 

 

Cilomilast -60.8 
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5. ASSESSING PROTEIN-LIGAND BINDING MODES FOR KNOWN 

PDE4B INHIBITORS 

 

In a first step in the discovery of novel potent inhibitor structures for the PDE4B family 

with limited side effects, we present a protocol to evaluate the potentiality of newly designed 

molecules through the estimation of their IC50 values. Our protocol is based on reproducing 

the linear relationship between the logarithm of experimental IC50 values (log(IC50)) and 

their calculated binding free energies (∆Gbinding). From 13 known PDE4B inhibitors, we 

show here that 1) binding free energies obtained after a docking process by AutoDock are 

not accurate enough to reproduce this linear relationship; 2) MM-GB/SA post-processing of 

molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear 

relationship; 3) by taking into account all representative structures obtained by AutoDock 

and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, 

a linear relationship between log(IC50) and the lowest ∆Gbinding is achieved with R2 = 0.944. 

 

5.1. Introduction 

The cyclic nucleotide phosphodiesterase (PDE) is an enzyme responsible for the 

degradation of the second messengers cyclic adenosine 3’,5’-monophosphate (cAMP) and 

guanosine 3’,5’-monophosphate (cGMP) into 5’-adenosine monophosphate (5’-AMP) and 

5’-guanosine monophosphate (5’-GMP) respectively in many cell types [1-3]. 

 

The second messengers, cAMP and cGMP, are essential for many metabolic processes 

such as vision, muscle contraction, neurotransmission, exocytosis, cell growth, 

differentiation, learning, apoptosis, lipogenesis, glycogenolysis, ion channel functions and 

gluconeogenesis [5-7,120]. The regulation of the level of second messengers in vivo by 

synthesis activity of the receptor-linked enzymes (adenyl and guanylyl cyclases) and 

hydrolysis into 5’-nucleotide monophosphates by PDEs is therefore of crucial importance 

[8,21,28,121]. 
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Up to now, 11 families of PDE enzyme with different substrate specificity, inhibition, 

substrate requirements, gene sequence and tissue distribution have been reported 

[1,4,6,7,12]. Among these families, the cAMP specific one is PDE4, which is encoded by 

four different isoforms as A, B, C and D. These isoforms are characterized by unique N-

terminal regions [21]. The PDE4 subfamily has attracted much attention for its usage in the 

treatment of inflammatory and immune disorders such as asthma, chronic obstructive 

pulmonary disease (COPD), rhinitis and also as therapeutic agent for rheumatoid arthritis, 

multiple sclerosis, type II diabetes, septic shock, atopic dermatitis, and other autoimmune 

diseases [18-20,30]. 

 

In the PDE4 subfamily, among the four isoforms A, B, C and D, PDE4B has a specific 

importance especially in the inflammatory responses of lymphocytes [28]. The design of 

novel inhibitors for PDE4B is of significant interest to the pharmaceutical industry due to its 

usage as an attractive target for anti-inflammatory diseases. There are many PDE4 inhibitors 

that have been under clinical trials [13,21,28] however their clinical utility has often been 

limited due to their side effects like vomiting, nausea and increased gastric secretion [122]. 

It is thus important to design a novel PDE4B selective inhibitor with reduced side effects 

and improved pharmacological profile. 

 

Designing small molecules with desirable binding affinity and biological activity is 

one of the major goals in computational biology [95,98,123,124]. Molecular docking is a 

popular method used to identify the orientations of molecules into the active site of a target 

protein structure. In the last years, docking methods have been improved by adding energy 

contributions or by refining the parameters for scoring functions but there are still some 

limitations especially like sometimes poor correlation between docking score values and 

experimental results [98,123]. Up to now, many studies involving molecular docking, 

molecular modeling, pharmacophore modeling, the investigation of the hydrolysis 

mechanism and the description of the structure-activity relationships for PDE4 inhibitors 

have been published. Different series of PDE4 selective inhibitors have been studied by 

Alexander et al. [125], Kuang et al. [126], Ke et al. [121], and Guay et al. [127], Xu et al. 

[128], Wierzbicki et al. [129], and Zhan et al. [130] have focused  on the hydrolysis 
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mechanism of PDE4 enzyme. In 2002, Colicelli et al. [117] have carried out a molecular 

docking study of competitive PDE inhibitors. Another molecular docking study with 

development of an empirical binding free energy for PDE4 inhibitors in 2006 was performed 

by Barreiro et al. [131]. Zhu et al. [116] have combined multiple pharmacophore modeling 

and molecular docking process to suggest novel PDE4 inhibitors. Another pharmacophore 

modeling study for PDE4 was carried out by Gu et al. [132]. However, to the best of our 

knowledge, no study based on performing molecular dynamics simulations and calculating 

free binding energies with different methods for PDE4 family has been reported so far. 

 

In this context, an important goal of computational medicinal chemistry is to develop 

methods that can accurately estimate the free energy of binding, ∆Gbinding, and that could 

allow the estimation of the binding strength of any drug candidate prior to its synthesis. The 

free binding energies can be represented as: 

 

                                                               ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  −𝑅𝑇𝑙𝑜𝑔𝐾𝑖                                               (5.1) 

 

where R is the ideal gas constant, T is the temperature, and Ki is the binding affinity of the 

inhibitor. The Ki constant can be related to experimental IC50 values based on the following 

equation [133]: 

 

                                                                  𝐾𝑖 =
𝐼𝐶50

1 +  
[𝑆]
𝐾𝑚

                                                           (5.2) 

 

From Eq. 5.2 the binding affinity Ki depends on the IC50 value, the substrate 

concentration [S] and the Michaelis-Menten constant Km. For a set of ligands and their 

experimentally measured IC50, there should therefore be a linear dependency between Ki and 

IC50 provided that the experimental conditions for all ligands are similar: the substrate 

concentration should be identical for all experiments and the thermodynamical conditions 

should remain similar (i.e., temperature, pressure, pKa, etc.). From this point of view, a linear 

trend between ∆Gbinding and log(IC50) values should be expected. 

 



 

  55 

 

 

 

 

 

 

There are many computational approaches for free energy calculation such as free 

energy perturbation (FEP) [94], thermodynamic integration (TI) [134], linear response (LR) 

[96], Molecular Mechanics-Generalized Born/Surface Area (MM-GB/SA) and Molecular 

Mechanics-Poisson Boltzmann/Surface Area (MM-PB/SA) methods [135,136]. Among 

these methods, the most accurate and rigorous ones are FEP and TI [137]. Despite their 

accuracy, they have found little use in drug design [138] due to their convergence only for 

rather similar ligands and computational cost [92]. The MM-GB/SA and MM-PB/SA 

methods, that combine molecular mechanics energy and implicit solvation models, are simple 

and faster than FEP [123]. Therefore, they have been widely used in free energy calculations 

in computational medicinal chemistry [95,98]. It is important to achieve statistically fully 

converged results and statistical estimates in order to test how well the methods reproduce the 

experimental data. As Ryde and coworkers have shown, converged results using MM-GB/SA 

method can be achieved by running multiple independent short molecular dynamics 

simulations starting with different initial velocities and a same initial structure rather than by 

running a single (very) long simulation [92]. 

 

In this project, the aim is to evaluate binding energies with the MM-GB/SA method 

and show the correlation between the binding energies and half maximal inhibitory 

concentration (IC50) values of the ligands. The study includes i) building a database of 

experimental IC50 values that include a training and a test set; ii) performing docking process 

for each ligand, iii) carrying out independent molecular dynamics simulations for the top 

ranked poses of each ligand and calculating the free binding energy using the MM-GB/SA 

approach, iv) analyzing the role of the possible alternative poses of each ligand from MM-

GB/SA calculations and finally v) applying a linear regression method on the training set to 

establish a relationship between calculated ∆Gbinding and experimental log(IC50) and 

verifying the reliability of our approach with the test set. 
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5.2. Methodology 

5.2.1.   Training and Test Set 

For the dataset preparation, the ligands with known IC50 values from experimental 

studies of Dal Piaz et al. [31] and Zhang et al. [28]  were chosen due to their selectivity for 

PDE4B and their large range of different IC50 values. These ligands were also searched in 

the Binding Database [139] and it was found that some of them have more than one IC50 

value reported, as the ligands cilomilast and npv (Tables 5.1 and 5.2). The training set has 

been designed to contain IC50 values from a single source: those of Dal Piaz et al. [31]. It 

contains 8 ligands for which experimental IC50 values range from 0.6 to 9.0 µM (Table 5.1). 

The test set contains 7 molecules: rolipram, tadalafil, filaminast, mesopram, zardaverine, 

cilomilast and npv. Their experimental IC50 values range from 0.025 to 9.2 µM (Table 5.2). 

5.2.2.   Protein and Dataset Preparation 

The starting structure for the protein is the human PDE4B enzyme (PDB code: 1RO6, 

2 Å resolution, Figure 5.1). The X-ray structure contains two identical chains with rolipram 

as a co-crystallized ligand and two metal ions: Zn2+ and Mg2+. All our calculations were 

carried out on one single active chain which includes the two metal ions, Zn2+ and Mg2+, and 

the water molecule (residue #788 in 1RO6) positioned between these two atoms. The choice 

of using the 1RO6 X-ray structure over other available PDE4B X-ray structures like the apo 

one (PDB code: 1F0J) was dictated by the fact that the two structures are very similar (the 

RMSD between the backbones of 1RO6 and 1F0J is only 0.13 Å) and that the docking 

procedure always yielded lower binding energies for 1RO6 than for 1F0J. 

 

The ligand dataset is a combination of training and test sets (Tables 5.1 and 5.2). The 

IC50 values of the ligands are known from different experimental studies [28,29,140,141]. 

The training set contains molecules that have been experimentally tested using a single 

source: guinea pig ventricular tissue [140]. The test set contains ligands which have been 

tested for inhibition using PDE4B proteins from various sources: guinea pig [140], human 
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[28,29], or rat [141]. All these protein sources share a strong sequence homology (> 95% of 

identity). For example, the sequence alignment between guinea pig and human PDE4B in 

UniProt has shown that they differ by only five residues that are out of the active site. 

 

Table 5.1.  Ligand names, 2D chemical sketches and experimental IC50 values for 

the training set [140]. 

 
 

 

Training Set 

Ligand 2D Structure IC50(µM) Ligand 2D Structure IC50(µM) 

Ligand 

3 

 

0.6 ± 0.1 

 

Ligand 

7 

 

6 ± 0.5 

Ligand 

4 

 

0.9 ± 0.2 

 

Ligand 

8 

 

3 ± 0.5 

Ligand 

5 

 

1.1 ± 0.4 
Ligand 

9 

 

4 ± 0.5 

Ligand 

6 

 

9 ± 0.8 

 

Ligand 

10 

 

2 ± 0.5 
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Table 5.2.  Ligand names, 2D structures and experimental IC50 values for the test 

set. 

 

 

Test Set 

Ligand 2D Structure IC50(µM) Ligand 2D Structure IC50(µM) 

rolipram 

 

 

0.32 ± 0.09 

[140] 

 

tadalafil 

 

9.2 

[28] 

filaminast 

 

0.96 

[28] 

 

npv 

 

0.049 ± 

0.007 

[141] 

(0.650) 

[29] 

cilomilast 

 

0.025 [28] 

(0.31) [141] 
mesopram 

 

0.42 

[28] 

zardaverine 

                                                   
           

 

 

           

0.93 

   [28] 
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Figure 5.1.  Cartoon representation of PDE4B X-ray structure. Chain A is 

represented in green as cartoon, the co- crystallized ligand as ball & stick, Zn2+ and Mg2+ 

are in purple, the water molecule is in red. 

 

5.2.3.   Docking Procedure 

The docking process was carried out with AutoDock v4.2 [142]. For each ligand, ten 

independent runs were performed. A pre-calculated three-dimensional energy grid of equally 

spaced discrete points was generated prior to the docking using the program AutoGrid [142]. 

The grid box (32Å x 72Å x 31Å) contains the active site and several key residues important 

for the protein-ligand interaction. The distance between two grid points was set to 0.375 Å. 

The grid map files were calculated by AutoGrid for the ligand atom types: A, NA, C, OA, 

and N. For conformational search, Lamarckian Genetic Algorithm, which combines a local 

search and a genetic algorithm to provide both efficient global space coverage and local 

search optimization, was chosen. During the process, the protein was held rigid. The 

population size was set to 150, the maximum number of energy evaluations was set to 
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2500000, the maximum number of generations was 27000, the mutation rate was 0.02 and 

the crossover rate was 0.8. The remaining parameters were set as the default values. 

 

Ligand atomic charges were calculated with the restrained electrostatic potential fit 

(RESP) method at the B3LYP/cc- pVTZ level after a full geometrical optimization carried 

out at the B3LYP/6-31G* level. This procedure is compatible with the charges obtained for 

the Amber force field [143] used in the subsequent molecular dynamics (MD) runs. Thus, 

the same set of atomic charges will be used in the docking process, in the production of the 

MD trajectories and in the calculations of the binding free energy during the MM-GB/SA 

post-process. 

 

At the end of each docking process, the 10 docked poses of each ligand were clustered 

based on their RMSD values using a cluster RMSD threshold of 0.5Å. For each cluster of 

each ligand, a representative pose with the lowest ∆Gbinding value was selected and 

incorporated in our analysis in order to take into account the diversity of the binding modes. 

5.2.4.   Molecular Dynamics Simulations 

Hydrogen atoms were added to the system with the tleap module of AMBER 12 [144]. 

For histidines, the protonation state was determined based on PROPKA [145] calculations 

and hydrogen bond pattern analysis. Counter sodium ions were added to neutralize the 

system. Waters from the crystal structure were deleted except for the water molecule that is 

located between the two metal ions Zn2+ and Mg2+ and is hydrogen bonded to the co-

crystallized ligand rolipram. The system was solvated with TIP3P [146] water molecules 

extending to at least 10 Å from the protein. The system was cubic with edge length 74.50 Å 

and had an initial density of 1.0 g/cm3. 

 

The MD simulations were performed using the CUDA [147,148] version of the 

PMEMD module of AMBER 12. The Amber ff03 [143] force field was used to model the 

PDE4B protein while the general AMBER force field (GAFF) [149] force field parameters 

were used to model the ligands. The SHAKE [150] algorithm was chosen to constrain bond 
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lengths involving hydrogen atoms. The Andersen temperature coupling algorithm was 

applied to ensure a constant temperature (NVT) ensemble. The time step was set to 2 fs. 

 

In gas phase, before the solvation of the system, a short minimization followed by one 

MD run was carried out for 100 ps at 10 K to optimize the hydrogen atom positions: all 

heavy atoms were restrained to their crystallographic positions using a harmonic potential 

with a force constant of 100 kcal.mol−1.A˚−2. After solvation, the equilibration of the system 

was performed in five stages [151]. First, only the hydrogen atoms of the system were 

allowed to move during 100 ps at 10 K (i.e., by applying a force constant of 50 

kcal.mol−1.A˚−2 on all heavy atom positions). Second, the water molecules were allowed to 

move for the next 100 ps at the same temperature. Third, the force constant on the protein 

heavy atom positions was decreased to 5 kcal.mol−1.A˚−2 for another 100 ps. Then the whole 

system was free to move during 100 ps at 10 K. Finally, the thermostat temperature was 

smoothly increased from 10 K to 300 K for another 2 ns. 

 

After equilibration, for each ligand representative of its cluster, forty independent 

simulations were performed up to 1 ns at 300 K with different initial velocities. During the 

production runs, coordinates were saved every 2 ps for the subsequent MM-GB/SA 

calculations. Using NVIDIA Tesla M2090 GPU, one 1 ns simulation takes in average 1.2 

hours for a speed of about 20 ns/day. 

5.2.5.   MM-GB/SA Post-Processing 

The free energy of binding for each ligand is calculated using the equation: 

 

                                      ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = < 𝐺𝑅𝐿 > − < 𝐺𝑅 > − < 𝐺𝐿 >                            (5.3) 

where RL, R and L stand for receptor-ligand complex, receptor and ligand, respectively. The 

average free energy of each system is estimated as a sum of three terms: 

 

                                                 𝐺 = 𝐸𝑀𝑀 + 𝐺𝑠𝑜𝑙𝑣 − 𝑇𝑆𝑀𝑀                                               (5.4) 
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where EMM is the molecular mechanics energy of each system, including internal, non-

bonded electrostatics, and van der Waals energies. Gsolv is the solvation energy which 

consists of a polar and a nonpolar part. The polar solvation free energy is calculated by a 

Generalized Born (GB) approach. The nonpolar solvation free energy is computed by a 

relation to the solvent-accessible surface area (SASA). The last term TSMM is the product of 

absolute temperature and the entropy. 

 

In this study, the first two terms were calculated using the MMPBSA.py module of 

AMBER 12 with all water molecules stripped off [101]. To evaluate the polar solvation free 

energy, different solvation models have been evaluated: GBHCT [152-154], GBOBC [155], 

GBOBC-2 [144,155], GBGBneck [156], and GBGBneck2 [157]. The hydrophobic contribution has 

been approximated by the Linear Combinations of Pairwise Overlaps (LCPO) method [158]. 

 

In this study, the entropy term was not included in our calculations although it could 

have been evaluated through a usual normal-mode analysis [159]. There have been much 

debate in the literature about the entropy term in MM-GB/SA calculations and whether it 

should be systematically included or not to improve the accuracy of the results [99,160,161]. 

In our case, given the high computational cost of its calculation and the good prediction that 

we have obtained without including it, we have neglected the entropy term component. We 

recall here that the aim of this study was not to estimate the experimental ∆Gbinding, but to 

relate the computed free energy values to experimental inhibition concentrations. 

 

Finally, the calculated ∆Gbinding values are averaged over 40 independent simulations 

for each ligand. 

 

5.3. Results and Discussion 

5.3.1.   Best Docking Scores vs. Experimental IC50 Values 

The study has started with the docking process of all ligands in both datasets into the 

target PDE4B enzyme using AutoDock v4.2. For each ligand, ten poses are obtained from a 
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total of 10 docking runs. The best (i.e., top ranked) pose with the lowest AutoDock ∆Gbinding 

value is recorded and a linear correlation between the ∆Gbinding and log(IC50) is searched for. 

 

In Figure 5.2, the correlation between the lowest AutoDock ∆Gbinding values and the 

corresponding log(IC50) values is represented for the training set. Only a weak linear 

correspondence exists between ∆Gbinding and experimental log(IC50) with R2 value of 0.135. 

That means that, while AutoDock is capable of discriminating between different poses and 

of finding true positive hits, its scoring function is not capable of estimating experimental 

∆Gbinding values in the case of PDE4B. 

 

 

 

 

 

 

 

Figure 5.2.  Correlation between experimental IC50 values and the lowest ∆G scores 

(kcal/mol) obtained by a series of AutoDock docking computations of the training set (in 

blue). Vertical error bars: standard experimental deviations. Blue dashed line: linear fit 

between lowest AutoDock ∆Gbinding values and experimental log(IC50). 

 

5.3.2.   Convergence of the Free Energy Results 

Another way to obtain binding free energies is to use the MM-GB/SA approach. Here, 

∆Gbinding energies are obtained by post-processing MD trajectories of complexed 
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protein:ligand structures. In our cases, we have used as starting structures for the MD 

runs,the complexed structures obtained by AutoDock. For each docked pose, we have 

performed 40 independent 1 ns MD runs. The convergence of ∆Gbinding calculations for two 

independent runs corresponding to the ligand rolipram is represented in Figure 5.3. It shows 

that a 1 ns trajectory is enough to ensure the convergence of ∆Gbinding for that run. However, 

two independent runs can give rather different results: one MD yields ∆Gbinding = -54.6 +/- 

3.6 kcal/mol while the other yields ∆Gbinding = -60.5 +/- 3.4 kcal/mol. As suggested by 

Genheden and Ryde, converged MM-GB/SA results can be obtained by averaging multiple 

independent trajectories. Figure 5.3 represents the convergence of MM-GB/SA ∆Gbinding 

energies for rolipram as a function of the number of independent trajectories. Convergence 

is obtained after 40 trajectories (-57.6 +/- 1.6 kcal/mol). Adding more trajectories do not 

change the picture beyond: ∆Gbinding = -57.8 +/- 1.6 kcal/mol after 80 runs.  

 

 

Figure 5.3.  Convergence of the ∆Gbinding MM-GB/SA computations for rolipram using 

multiple MD trajectories. A) Convergence of the averaged ∆Gbinding, in kcal/mol, for two 

independent runs of 1 ns (500 frames each); B) Convergence of the averaged ∆Gbinding, 

in kcal/mol, as a function of the number of independent 1 ns long MD trajectories, the error 

bars represent the standard deviation in kcal/mol. 

 

 

In the following steps, all MM-GB/SA free energies will be calculated for every 

distinct ligand pose representative of each cluster using the same protocol: the MM-GB/SA 

A) B) 
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post-processing of 40 independent MD runs using different random initial velocities 

associated to the structure coordinates of the corresponding pose as obtained by AutoDock. 

5.3.3. MM-GB/SA Binding Free Energies of Top Ranked AutoDock Poses vs.             

Experimental IC50 Values 

The ∆Gbinding values have been calculated using the MM-GB/SA approach for the top 

ranked poses of all ligands in the training set and the test sets. Figure 5.4 represents the 

correlation between ∆Gbinding and the logarithm of the experimental IC50. For the training set, 

the linearity of the trend is more pronounced (R2 = 0.788) than when using the AutoDock 

scores (R2 = 0.135). This shows that using a molecular force field as the AMBER force field 

yields more accurate results.  

 

Figure 5.4.  Correlation between experimental IC50 values and MM-GB/SA 

averaged ∆Gbinding free energies computed from the top ranked AutoDock poses of the 

training set (in red) and the test set (in blue). Vertical error bars: standard experimental 

deviation. Horizontal error bars: computed standard ∆Gbinding deviations. Red dashed line: 

linear fit between ∆Gbinding values for the top ranked AutoDock poses and experimental 

log(IC50). 
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When the test set is assessed (Figure 5.4, error bars in blue), most ∆Gbinding values are 

correlated to their experimental IC50 counterparts as in the training set. However, one value 

is off the linear region by more than 50 kcal/mol. This corresponds to the npv ligand for 

which two IC50 values have been reported: 0.049 [141] and 0.650 [29]. Given the linear trend 

of the binding free energies found for the training set, from these two IC50
 values should 

correspond two possible ∆Gbinding: one around -66.3 kcal/mol, the other around -45.4 

kcal/mol. Using the top ranked AutoDock pose, the MM-GB/SA binding free energy is 

computed at -23.4 +/- 4.1 kcal/mol instead. 

5.3.4.   Minimum MM-GB/SA Binding Free Energies vs. Experimental IC50 Values 

If MM-GB/SA ∆Gbinding values are better correlated to experimental IC50 values than 

AutoDock ∆Gbinding values, one can wonder whether alternative poses obtained by AutoDock 

would be ranked similarly if the docking score was obtained from a MM-GB/SA 

computation instead. While we cannot change the way AutoDock optimizes the poses during 

molecular docking, we have performed MM-GB/SA calculations on a more diverse set of 

poses: one representative pose of each cluster for each ligand in the training set was chosen 

and MM-GB/SA ∆Gbinding was computed using the same multiple MD trajectory approach 

than for the top ranked AutoDock pose. The number of alternative poses per ligand in the 

training set varies from 1 (e.g., ligand5) to 5 (e.g., ligand7). 

 

In Figure 5.5, the correlation between the calculated ∆Gbinding and the experimental 

IC50 values is represented. For some ligands, a lower ∆Gbinding value than for the top ranked 

AutoDock pose is found. When the minimum averaged ∆Gbinding values are used (blue filled 

circles in Figure 5.5), a better linear trend is found than when only top ranked AutoDock 

poses are considered (red filled circles in Figure 5.5). The relationship between computed 

averaged ∆Gbinding and experimental log(IC50) is expressed as: 

 

                                            𝑙𝑜𝑔(𝐼𝐶)50 = 0.110∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 + 5.060                                        (5.5) 

 

with a correlation coefficient R2 = 0.944. 
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Figure 5.5.  Correlation between experimental IC50 values of the training set and 

MM-GB/SA averaged ∆Gbinding free energies computed for all AutoDock poses (one 

representative pose per AutoDock family). Vertical error bars: standard experimental 

deviations. Horizontal error bars: computed standard ∆Gbinding deviations. Red filled 

circles: ∆Gbinding values corresponding to the top ranked AutoDock poses. Blue filled 

circles: minimum ∆Gbinding values. Red dashed line: linear fit between ∆Gbinding values for 

the top ranked AutoDock poses and experimental log(IC50). Blue dashed line: linear fit 

between minimum ∆Gbinding values and experimental log(IC50). 

 

The improvement of the correlation coefficient shows that while AutoDock is capable 

of discriminating between bad and good binding poses, its docking scores are not 

quantitative enough to be used directly to evaluate the binding affinity of a ligand for 

PDE4B. However, by using the many different poses extracted from AutoDock runs and by 

applying a protocol that involves MM-GB/SA calculations on multiple independent 
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trajectories, it is possible to recover correct ∆Gbinding values that are in quantitative agreement 

with experimental values. 

5.3.5.   Estimation of IC50 Values 

Using Equation 5, it is now possible to estimate IC50 values from MM-GB/SA ∆Gbinding 

values. Table 5.3 summarizes all the results that have been obtained for the test set and the 

training set when applying one of the three computational approaches presented here: i) 

linear fitting using the AutoDock ∆G scores of the top ranked poses; ii) linear fitting using 

averaged MM-GB/SA values for the top ranked AutoDock poses; iii) linear fitting using the 

lowest averaged MM-GB/SA values among representative poses of all AutoDock clusters. 

Because IC50 values are spread in an exponential range from 0.025 µM to 9.2 µM, we use 

mean absolute percentage error (MAPE) as a criteria to evaluate the error between 

experimental IC50 values and estimated IC50 values. MAPE numbers, expressed as 

percentage, are calculated using the following expression: 

 

                                             𝑀𝐴𝑃𝐸 =
1

𝑁
∑ 𝑁

𝑖=1

|
𝐼𝐶50

𝑒𝑠𝑡 − 𝐼𝐶50
𝑒𝑥𝑝

𝐼𝐶50
𝑒𝑥𝑝 |                                             (5.6) 

 

where IC50
est and IC50

exp are the estimated and the experimental IC50 values for molecule i, 

respectively. 

 

Figure 5.6 shows the correlation between estimated IC50 values using the GBOBC model 

and experimental IC50 values for both the training set used to define Eq. 5 and the test set. 

By using all AutoDock clusters, the estimated IC50 values from the test set are within 38% 

of relative error (see Table 5.3). Like in the training set, the use of distinct AutoDock poses 

improves the estimation significantly and no ligand from the test set are wrongly estimated 

as it was the case when only the top ranked AutoDock poses were considered (Figure 5.4). 
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Figure 5.6.  Correlation between experimental IC50 values and estimated IC50 values 

obtained after fitting averaged MM- GB/SA free energies computed from all AutoDock 

poses (1 representent per family) using the GBOBC model. red: training set, blue: test set. 

Vertical error bars: standard experimental deviations. Horizontal error bars: standard 

estimated deviations. Black line: an ideal estimation while dashed lines: an error factor of 

2 (upper dashed line) or 0.5 (lower dashed line) in the estimated IC50 value, respectively. 

 

From Table 5.3, IC50 prediction using the AutoDock scores gives a MAPE of 101.7% 

for the training set and 553.6% for the test set, respectively. As stated above, AutoDock ∆G 

values show a linear trend but the correlation is not strong (R2 = 0.135). When using the 

GBOBC model on the top ranked AutoDock poses, the agreement between experimental and 

predicted IC50 values is improved(R2 = 0.788, MAPE= 38.5% for the training set). However, 

some ligands like npv are wrongly predicted. This yields a MAPE of 2925.5% for the test 

set. By adding alternative poses, the agreement for the training set is much better, yielding 

R2 = 0.944 and MAPE= 15.1%. Test ligands, including npv (see below), are now correctly 

predicted with a MAPE of around 40%. The GBOBC model is the one that leads to the best 

prediction. But other GB/SA models like GBHCT, GBOBC-2, and GBGBneck also give reliable 
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predictions and are always superior than the approach which uses only the top ranked 

AutoDock poses. Surprisingly, the GBGBneck2 model yields the worst results among all 

GB/SA models. This was not expected since it is one of the most recent GB/SA model and 

it has proved to be accurate in modeling solvent effects in protein folding studies [162]. At 

the same time, GBGBneck2 is the GB/SA model that yields to the smallest standard error when 

using multiple MD trajectories. 

 

Finally, one important question that arises from those results is to check if our current 

protocol is capable of discriminating between experimental values when several are 

available in the literature. This is the case for cilomilast and npv. Surprisingly, these two 

molecules are the only two of our sets that contain a carboxylate group. The results reported 

Table 5.3 have been obtained when the carboxylate form was considered. We have 

recomputed predicted IC50 values for the carboxylic acid form for both molecules. For 

cilomilast and using the GBOBC model, the predicted IC50 values for the carboxylate and the 

carboxylic acid forms are 0.017 ± 0.008 and 0.278 ± 0.106 µM, respectively. These two 

values are both in good agreement with the two reported experimental values: 0.025 µM and 

0.31 µM. A possible interpretation of this agreement could be that subtle differences in the 

two experimental protocols yielded to the measurement of the two different acidic forms of  

cilomilast. This is somewhat confirmed in the case of npv. The two predicted IC50 values are 

0.022 ± 0.011 and 1.256 ± 0.392 µM for the basic and the acidic forms of the carboxylic acid 

group, respectively. The predicted IC50 value of the carboxylic acid form again resembles 

more the experimental value (0.650) of Ref. [29] while the basic form resembles more the 

experimental value from Ref. [141]. It would be of course hazardous to generalize such 

findings, but, in our case, two main points can be drawn: 1) the change of protonation of 

ionizable residues can greatly affect the computed binding energies and great care should be 

taken to assess such effects; 2) when multiple experimental values are available, it does not 

necessarily mean that some of them are ”correct” or ”wrong”, but they can represent different 

states or be the results of applying different measurement protocols. 
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Table 5.3.  Linear fitting results, estimated IC50, in µM, for all approaches and 

comparison with experimental values. 

Method Autodock   MM-GB/SA  

 

Pose 

 

top 

ranked 

top    

ranked 

 
min ∆G 

 

GB 

model 

  

OBC 

 

HCT 

 

OBC OBC-2 

 

GBneck 

 

GBneck2 
 

a 
 

0.510 
 

0.124 
 

0.106 
 

0.110 0.104 
 

0.085 
 

0.042 

b 5.030 5.204 5.214 5.060 4.982 4.361 2.975 

        R2 0.135 0.788 0.929 0.944 0.945 0.892 0.780 

 

Molecule Estimated IC50  for the training set exp. 

IC50  
ligand3 

 
2.7 0.8 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 0.6 ± 0.1 [140] 

ligand4 2.8 2.1 ± 0.8 0.9 ± 0.3 0.9 ± 0.3 1.0 ± 0.3 1.1 ± 0.4 1.1 ± 0.2 0.9 ± 0.2 [140] 

ligand5 1.4 0.7 ± 0.3 1.3 ± 0.4 1.2 ± 0.4 1.1 ± 0.4 0.9 ± 0.3 0.9 ± 0.2 1.1 ± 0.4 [140] 

ligand6 3.7 7.4 ± 2.6 8.7 ± 2.7 9.4 ± 3.0 10.0 ± 3.1 9.4 ± 2.3 6.7 ± 0.9 9.0 ± 0.8 [140] 

ligand7 3.0 4.4 ± 1.1 4.1 ± 1.1 4.2 ± 1.2 4.2 ± 1.2 4.4 ± 1.1 4.9 ± 0.6 6.0 ± 0.5 [140] 

ligand8 2.0 3.3 ± 1.0 4.7 ± 1.2 4.6 ± 1.3 4.4 ± 1.2 4.8 ± 1.1 4.7 ± 0.6 3.0 ± 0.5 [140] 

ligand9 2.2 4.4 ± 1.5 3.2 ± 1.1 3.3 ± 1.2 3.3 ± 1.2 2.4 ± 0.8 1.9 ± 0.5 4.0 ± 0.5 [140] 

ligand10 1.4 1.3 ± 0.4 2.3 ± 0.6 2.0 ± 0.6 1.9 ± 0.5 2.2 ± 0.6 3.4 ± 0.5 2.0 ± 0.5 [140] 

 

MAPE (%) 

 

101.7 

 

38.5 

 

19.5 

 

15.1 

 

16.5 

 

24.4 

 

38.4 

 

 

Molecule Estimated IC50  for the test set exp. 

IC50  
tadalafil 

 

2.3 6.7 ± 2.7 7.7 ± 2.8 8.5 ± 3.1 7.2 ± 2.7 5.6 ± 1.7 4.1 ± 0.8 9.2 [28] 

rolipram 2.38 0.25 ± 0.12 0.36 ± 0.12 0.48 ± 0.20 0.42 ± 0.18 0.98 ± 0.37 0.29 ± 

0.06 

0.32±0.09 [140] 

filaminast 3.15 0.28 ± 0.11 0.35 ± 0.12 0.52 ± 0.19 0.45 ± 0.16 0.33 ± 0.12 0.36 ± 

0.07 

0.96 [28] 

mesopram 4.59 0.44 ± 0.19 0.62 ± 0.21 0.78 ± 0.31 0.70 ± 0.27 0.89 ± 0.37 0.51 ± 

0.12 

0.42 [28] 

zardaverine 5.41 0.51 ± 0.21 0.87 ± 0.31 0.88 ± 0.33 0.86 ± 0.31 1.11 ± 0.36 0.59 ± 

0.11 

0.93 [28] 

cilomilast 0.239 0.006 0.006 0.017 0.013 0.035 1.2 × 

10−04 

0.025 [28] 

  
±0.003 ±0.003 ±0.008 ±0.006 ±0.014 ±4.9 × 

10−05 

0.31 [141] 

npv 0.342 9.962 0.023 0.022 0.011 0.012 0.002 0.049 ± 0.007 

[141] 
  

±3.964 ±0.010 ±0.011 ±0.006 ±0.006 ±0.001 0.650 [29] 

 

MAPE (%) 

 

553.6 

 

2925.5 

 

38.8 

 

40.1 

 

43.6 

 

79.5 

 

54.4 
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5.4. Conclusion 

In this study, the Molecular Mechanics-Generalized Born/Surface Area (MM-GB/SA) 

method was used to estimate the free energy of binding, ∆Gbinding, of 15 PDE4B inhibitors. 

Since there exists a linear dependency between binding affinity (Ki) and IC50, assuming that 

Michaelis-Menten constant (Km), substrate concentrations [S], and experimental conditions 

are similar, the goal was to obtain a linear correspondence between log(IC50) values and 

∆Gbinding. 

 

The first step of this study was the database preparation with a combination of training 

and test ligand sets categorized based on their IC50 values. As a second step, a molecular 

docking study was performed. This yielded poor correlations between the docking scores, 

expressed as ∆G values, and the experimental IC50 ones. The results indicated that docking 

scores are not reliable enough to provide a linear dependency between IC50 values and 

∆Gbinding. 

 

After the docking process, 40 independent 1 ns long MD simulations were performed 

for the all representative poses of each AutoDock cluster. Our results show that, instead of a 

single long simulation, running multiple independent runs starting from the same structure 

but with different initial velocities can yield to statistically converged MM-GB/SA free 

energies of binding. 

 

The binding free energy calculations were repeated for different solvation models: 

GBOBC, GBOBC-2, GBHCT, GBGBneck, and GBGBneck2. The best results were obtained with the 

GBOBC model, but other GB/SA models, except GBGBneck2, lead to similar results. After 

checking the results according to best docked poses for each inhibitor, the linear trend was 

improved when all different clusters for each ligand were considered. A linear relationship 

between estimated IC50 vs experimental ones with R2 = 0.944 was achieved. The reliability 

of our approach was verified with the test set that is here correctly predicted. 
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Overall, our study indicates that, to obtain a linear dependency between log(IC50) and 

MM-GB/SA results, it is important to take into account all different poses obtained after a 

docking process and not the best ones only. Such approach will be used in future studies to 

serve as benchmark for putative PDE4B ligands when no experimental value is available. 
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6. CONFORMATIONAL REARRANGEMENTS TRIGGERING GTP 

HYDROLYSIS IN EF-TU 

 

Wild type and mutant EF-Tu·GTP complexes have been studied via molecular 

dynamics simulations. In T. aquaticus, Switch I explores various conformations, including 

one where R57 enters the active site like the catalytic arginine in other G-proteins. When 

R57 is out of the active site, a Na+ or K+ ion coordinates to GTP in parts of the simulations. 

These findings suggest that R57 plays a catalytic role alternately with Na+/K+ in the intrinsic 

GTP hydrolysis. The conformational changes positioning this residue in the active site occur 

more slowly in E. coli with respect to T. aquaticus due to the differences in temperature and 

sequence on Switch I. In addition, pKa calculations show that an important fraction of H85 

is doubly protonated and H85 spends a considerable time in the active site even in the 

absence of ribosomes. Our simulations also indicate that the T62-γ-phosphate and T62-Mg2+ 

interactions are necessary to maintain the GTP bound conformation of Switch I, whereas 

D51 is not crucial. 

 

6.1. Introduction 

Elongation factor Tu (EF-Tu), responsible of the delivery of the aminoacyl-tRNA to 

the ribosome exhibits a cognate codon-anticodon pairing dependent GTPase activity 

[51,52,163,164]. The intrinsic GTP hydrolysis rate of EF-Tu is low [165-167] but can be 

accelerated by ≈ 6 - 7 orders of magnitude by programmed ribosomes [167,168]. In none of 

the ribosome bound EF-Tu crystals (e. g. 2XQD/2XQE [53] or 3FIH/3FIK [169]), the 

ribosome interacts directly with GTP or the hydrolytic water. Instead, the sarcin-ricin loop 

(SRL) of the ribosomal 23S RNA interacts with either H85 (2XQD and 2XQE) or H19 (3FIH 

and 3FIK) of EF-Tu (Thermus aquaticus amino acid numbering is used unless otherwise 

stated). Similarly, electron microscopy studies indicated interactions between SRL and EF-

Tu, but not between any part of the ribosome and GTP or hydrolytic water [169]. Hence, the 

GTP hydrolysis is thought to be triggered by a conformational rearrangement of EF-Tu 

which is in turn caused by a conformational rearrangement of the ribosome and tRNA 
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[40,51,52,163,164,168-171]. However, proposed conformational changes on EF-Tu are 

controversial and highly debated. 

 

EF-Tu consists of three domains [51,52,163,164,172]. GTP binds to Domain I (also 

called the G-domain) while tRNA binds to the cavity between the three domains [173]. 

Studies of the catalytic residues and conformational changes in the literature, as well as this 

work, focus on three regions of Domain I: Switch I, Switch II and P-loop. 

 

Switch I in the GDP-bound EF-Tu forms a β-hairpin that extends into the aa∙tRNA 

binding site. GTP binding to EF-Tu causes a local rearrangement: Switch I conformation 

turns to an α-helix from β-hairpin [49,172,174]. The helix is flanked by D51 and T62. T62 

coordinates to a Mg2+ ion which in turn, coordinates to the β- and γ-phosphate groups of 

GTP [172]. The remaining ligands of Mg2+ are T25 and two water molecules [172]. The side 

chain of D51 makes a hydrogen bond with one of these water molecules and another 

hydrogen bond with T62 [172]. Thus, both ends of the Switch I are connected to each other 

and to Mg2+ (via a water molecule in the case of D51). The backbone amide proton of T62 

makes a hydrogen bond to the γ-phosphate group in T. aquaticus EF-Tu crystals [172]  but 

not in the E. coli EF-Tu crystal (PDB code: 1OB2). The T62S mutant has similar properties 

as the wild type whereas the alanine mutant has low intrinsic and ribosome induced GTPase 

activity, and low tRNA affinity [46]. Mutation of D50 in E. coli does not alter the GTP 

hydrolysis rate, but decreases the tRNA affinity. Fluorescence studies indicate that a 

rearrangement in Domain I, probably involving Switch I, contributes to GTPase activation 

[40,166,168]  although the exact mechanism remains to be explained. 

 

In many G-proteins, a catalytic arginine, such as R178 of Giα1  [175] was found to be 

crucial for GTP hydrolysis. The arginine finger, situated on the GTPase activating protein 

(GAP), stimulates GTP hydrolysis by Ras [176]. However, previous studies were not 

successful in identifying an equivalent arginine on EF-Tu. A potential candidate, the 

conserved R58 of Switch I on E. coli EF-Tu (R59 on T. aquaticus) was determined to be 

involved in ribosome binding but not in catalysis [177]. In T. aquaticus EF-Tu, there is a 

second arginine (R57) on Switch I. In E. coli, the same position is occupied by a lysine 
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(K56). A sequence alignment search indicates that at this position there is either a lysine or 

an arginine in a broad range of species from bacteria and archaea to multicellular eukaryotes, 

suggesting that the positive charge is conserved. No experimental data exists on R57 in T. 

aquaticus. On the other hand, in E. coli, it has been observed that K56 is monomethylated 

during the growth phase and dimethylated in the stationary phase. In E. coli, K56 is 

monomethylated during the growth phase and dimethylated in the stationary phase and 

methylation of K56 decreases the rate of tRNA-dependent GTP hydrolysis.  Mutations at 

these positions K56A and K56Q slows GTP hydrolysis (Baş and Bilgin, in preparation). As 

discussed in the next sections, our study demonstrates that R57 can enter the active site upon 

a reorientation of Switch I, hence can play a catalytic role. Thus, the movement of Switch I 

and, in particular, the position of R57 are at the focus of our study. 

 

The stimulation of GTP hydrolysis by programmed ribosomes in translational GTPases 

needs an invariant histidine (H85) located at the N-terminus of Switch II. This residue is 

oriented away from the active site in EF-Tu∙GTP binary complex crystals [172]. However, 

in some crystals with kirromycin (PDB code: 1OB2) or ribosome [53], H85 is oriented into 

the active site. This observation leads to the idea that the stimulation by the ribosome arises 

from the reorientation of the side chain of H85. H84A mutation in E. coli reduced the 

intrinsic GTPase activity to 10% according to Scarano et al.  [46] whereas Maracci et al. 

[171]  did not observe a significant change in the intrinsic GTPase rate upon this mutation 

[171]. H84A was completely inactive in poly(Phe) synthesis [46,171] indicating that this 

residue is crucial for stimulation by the ribosome. 

 

The function of H85 is highly controversial in the literature. Among the proposed 

functions are general base catalysis [43,53], general acid catalysis [54], positioning of the 

nucleophilic water [40], positioning of the PGH motif [55] and acting as a conformational 

switch [56,57]. Wallin et al. [35] and Adamczyk et al. [57]  computed the pKa of H85 and 

found that it must be protonated in its active conformation, hence cannot act as a general 

base. 
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V20 and I61 were proposed to act as a hydrophobic gate to hinder the entrance of H85 

into the active site in the absence of ribosomes. In order to accelerate the GTP hydrolysis in 

the presence of ribosomes, one or both wings of the hydrophobic gate should open, providing 

access of the catalytic histidine to the active site. However, neither V20G nor I60A mutations 

in E. coli increased the intrinsic GTPase activity, contradicting the idea of a hydrophobic 

gate.  

 

The P-loop consists of a GHXDXGKT motif and is involved in GTP binding. D21 was 

proposed to be involved in catalysis, probably by hydrogen bonding to the β-γ bridging 

oxygen [178]. Mutation of the corresponding A30 in Rab5 to any amino acid but proline 

yielded a functional protein, indicating that the backbone amide proton is involved [178]. In 

addition, the backbone -NH groups of G23, K24 and T25 make hydrogen bonds to the non-

bridging oxygens of β-phosphate [172]. The side chain of K24 interacts with both β- and γ-

phosphates [172]. Warshel and coworkers suggest that H84 (in E. coli) allosterically 

relocates the P-loop into a catalytic position in the presence of ribosome and the major 

transition state stabilization arises from the electrostatic effect of the P-loop [56,57]. 

 

Counter ions, in particular K+, are suggested to have important roles in the structural 

stability and GTPase activity of EF-Tu. Aqvist proposed that a K+ ion ligated by D50 and 

E55 (in E. coli) was crucial for the local structural integrity of the GTPase catalytic centre 

[35]. Rodnina and coworkers found that K+ ions moderately accelarated the GTPase rate in 

the wild type EF-Tu, but this effect was lost in the presence of programmed ribosomes or in 

the D21A mutant [171]. 

 

Several molecular dynamics studies on EF-Tu exist in the literature. Dynamics of 

recognition between tRNA and EF-Tu was studied by Eargle et al. [179]. EF-Tu∙GDP and 

EF-Tu∙tRNA complexes as well as free EF-Tu were considered in the simulation of 

Kulczycka et al. [180]. Wallin et al. [35] focused on the positions and protonation states of 

H84 (in E. coli) and nucleophile (H2O or OH-) [35]. Warshel and coworkers [56,57] carried 

out EVB simulations to explore the catalytic roles of H84 and P-loop. 
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As discussed below, many conformational rearrangements related to the GTP 

hydrolysis occur even in the absence of programmed ribosomes. In the present study, we 

investigate these conformational rearrangements through molecular dynamics simulations 

on EF-Tu∙GTP complexes from E. coli or T. aquaticus. In particular, we focus on i) the 

repositioning of R57, ii) the Switch I movement controlled by T62 and D51, iii) H85 and 

hydrophobic gate, and iv) the effect of counter ions. 

 

6.2. Methodology 

All simulations have been carried out using the ff03 force field [143,181] as 

implemented in the Amber11 and Amber14 program packages [182,183]. The GTP 

parameters have been taken from Meagher et al. [184]. 

 

The starting structure for the T. aquaticus simulations has been taken from the 

crystallographic structure of EF-Tu complexed with a non hydrolyzable GTP analog (PDB 

code: 1EFT) [172]. The GTP analog has been replaced by GTP. For the E. coli binary 

complex simulations, the tRNA has been removed from the crystallographic structure of the 

ternary complex (PDB code: 1OB2) and the GTP analog has been replaced by GTP. For 

mutant simulations, mutations have been done manually. 

 

All simulations have been performed under periodic boundary conditions, using a 

truncated octahedron solvent box containing TIP3P water molecules. The distance between 

the box edge and the closest solute atom has been taken to be at least 10 Å. Na+ or K+ ions 

have been added to neutralize the charge of the simulated systems. Electrostatic interactions 

have been evaluated using the Particle Mesh Ewald (PME) method [147] with a cut off value 

of 9 Å. A cut off distance of 9 Å has been applied for van der Waals interactions. 

 

The initial structures have been energy until the root-mean-square force is less than 

0.01 kcal/mol∙Å. Following the energy minimization, the systems have been simulated in 

the NPT ensemble. Then, the systems have been heated by using the Langevin thermostat 

[185] from 10 K to 310 K in the case of E. coli and to 343 K in the case of T. aquaticus (the 
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thriving temperature of each species). The pressure has been set to 1 bar. All hydrogen 

containing bonds have been constrained by applying the SHAKE algorithm [150], allowing 

a time step of 2 fs. 

 

The pKa values of Nδ and Nε of H85 in T. aquaticus EF-Tu, its D85E and I61A mutants 

as well as H84 in E. coli EF-Tu have been computed using thermodynamic integration 

simulations [186] as described by Simonson et al. [187].  

 

6.3. Results 

A total of 15 simulations have been carried out on wild type and mutant E. coli and T. 

aquaticus EF-Tu structures. Different protonation states of H85 (H84 in E. coli) have been 

considered. In all T. aquaticus and some E. coli simulations, the system has been neutralized 

with Na+ ions, except some E. coli simulations in the presence of K+ ions. We have designed 

3 E. coli EF-Tu simulations with different initial positions of K+ ions: i) all K+ ions in the 

solvent, ii) one of the K+ ions between the side chain of D21, backbone O of G59 and GTP 

(Site 1), iii) one of the K+ ions between D50 and E55 (Site 2). We have preferred using E. 

coli EF-Tu and K+ because experimental data [171,188]  exist for this system and ion 

coordinations are more stable due to the lower temperature. The nomenclature and 

descriptions of all simulations are given in Table 6.1. 

6.3.1.   Conformation and pKa of H85 

The pKa of H85 has been calculated via thermodynamic integration simulations for the 

wild type, D87E and I61A mutants of T. aquaticus EF-Tu as well as the wild type E. coli 

EF-Tu (Table 6.2). In both species Nε is always protonated at physiological pH. Nδ in T. 

aquaticus EF-Tu is mostly unprotonated. Nevertheless, a significant amount of protonated 

H85 exists (≈ 24 % from Henderson-Hasselbach equation). Depending on the length of the 

equilibration period, the pKa of Nδ in E. coli EF-Tu is estimated between 7.6 and 8.1, 

indicating that it is mostly protonated, even though an important fraction of unprotonated 

H84 exists. 
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Table 6.1.  Nomenclature and descriptions of the simulations. Histidines protonated 

at the Nδ or Nε positions are denoted as HID or HIE, respectively and a doubly protonated 

histidine as HIP. All simulations are 200 ns long, except ecHIE343, 300 ns long. 

simulation 

name 
organism temperature (K) 

counter 

ion 
Description 

taHIE T. aquaticus 343 Na+ HIE85 

taHID T. aquaticus 343 Na+ HID85 

taHIP T. aquaticus 343 Na+ HIP85 

taT62A T. aquaticus 343 Na+ T62A mutant, HIP85 

taR59A T. aquaticus 343 Na+ R59A mutant, HIP85 

taR57K T. aquaticus 343 Na+ R57K mutant, HIE85 

taK52N T. aquaticus 343 Na+ K52N mutant, HIE85 

ecHIP E. coli 310 Na+ HIP84 

ecHIE E. coli 310 Na+ HIE84 

ecHIE343 E. coli 343 Na+ HIE84 at 343 K 

ecHIPK E. coli 310 K+ K+ instead of Na+, HIP84 

ecHIPK1 E. coli 310 K+ K+ initially at Site 1, HIP84 

ecHIPK2 E. coli 310 K+ K+ initially at Site 2, HIP84 

ecK56R E. coli 310 Na+ K56R mutant, HIE84  

ecN51K E. coli 310 Na+ N51K mutant, HIE84 

 

In the D87E mutant, the increase in the side chain length of residue at position 87 

allows the carboxylic acid group to coordinate H85. The presence of a nearby negative 

charge results in an elevated pKa value for both Nδ and Nε. This mutant is known to mimic 

the effect of the unprogrammed ribosome [177]. On the other hand, the I61A mutation 

lowers the pKa of both nitrogen atoms of the imidazole ring by ≈ 1 pKa unit. Probably, due 

to the larger side chain of isoleucine in the wild type, a more hydrophobic environment 

between H85 and GTP favors the electrostatic interactions and yields a higher pKa than in 

the I61A mutant. Hence, the role of the “hydrophobic gate” [165] seems to set the pKa of 

H85, rather than controlling its entrance into the active site. Several groups including Wallin 

et al. [35], Adamczyk and Warshel [57], Aleksandrov and Field [54]  found the pKa of H85 

as 9, 11 and 17, respectively. 

 

In order to understand whether the conformational behavior of H85/H84 depends on 

its protonation states, simulations have been performed with three different protonation 

states of this histidine. From Figure 6.1, it can be seen that in the doubly protonated (taHIP, 
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ecHIP, ecHIPK1) and Nδ-protonated (taHID) forms, H85 spends ≈ 50%, 68%, 75% and 10% 

of its time in the active site, respectively. In the Nε-protonated form (taHIE, ecHIE), 

H85/H84 is almost always oriented towards the solvent. The unprotonated Nδ of its side 

chain makes hydrogen bonds to the backbone amide protons of some or all of A86/A85, 

D87/D86 and Y88/Y87 (Figure 6.2). 

 

Table 6.2.  pKa values of Nδ and Nε of H85/H84 in T. aquaticus/E.coli. 

 Nδ Nε 

T. aquaticus   

Wild type 6.9 9.1 

D87E 7.9 (7.9)* 10.7 (9.8)* 

I61A 6.1 7.9 

E. coli   

Wild type 7.6 (8.1)** 9.8 

* no part of the simulations is omitted as equilibration period. 

** no part of the λ = 0.11270 simulation is omitted as equilibration period. 
 

In taHID, hydrogen bonds between Nε and these backbone protons are very rare. Also, 

the hydrogen bond lengths and angles are less favorable. This fact is likely to be the origin 

of the pKa difference of ≈ 2 units between Nδ and Nε. When the doubly protonated H85/H84 

side chain is rotated towards the active site, either Nδ or Nε can face the active site. If Nδ 

faces the active site, Nδ-H makes a hydrogen bond with the nucleophilic water molecule 

(Figure 6.2). Such a hydrogen bond is not possible when Nε faces the active site. In taHIP, 

ecHIP and ecHIPK1, the former situation has been mostly observed (Figure 6.2). In ecHIPK, 

H84 is always in the active site but Nδ faces the solvent whereas Nε-H makes a hydrogen 

bond with GTP (Figure 6.2). Such a hydrogen bond is rare in ecHIP and ecHIPK1, absent in 

taHIP. In ecHIPK1 where a K+ ion is always at Site 1, H84 spends 75% of its time in the 

active site. In addition, in some parts of ecHIP, ecHIPK and taHIP, the H84/H85 and a Na+ 

or K+ ion have been simultaneously found in the active site (Figure 6.2). Hence, their 

presence in the active site is not mutually exclusive. 
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Figure 6.1.  Conformations of the H85/H84 side chain. Positive or negative values of 

the Cα-Cβ-Cγ-Nδ dihedral correspond to conformations where Nδ or Nε is oriented 

towards the active site, respectively. A and B) taHIP, C and D) taHID, E and F) taHIE, G) 

and H) ecHIP. 
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Figure 6.2.  Representative views of conformations where H85/H84 side chain is A) 

away from the active site and the unprotonated Nδ makes hydrogen bonds to A86, D87 

and Y88 backbone amide groups, B) in the active site and Nδ-H makes a hydrogen bond 

with the nucleophilic water, C) in the active site and Nε-H makes a hydrogen bond with 

GTP, D) in the active site together with a Na+ ion. 

 

It is not possible to deduce the exact role of H85 from the present results. In addition, 

our simulations may not be completely equilibrated, therefore our data may be only 

semiquantitative. Nevertheless, some remarks can be made. Since in T. aquaticus EF-Tu, 

H85 is protonated for 24% of the time and spends ≈ 50% of its time in the active site when 

protonated, the overall time spent in the active site can be estimated as 12%. In E. coli, H84 

is mostly protonated and remains in the active site 68-75% of the time when protonated. In 

the literature, the stimulating effect of the ribosome is suggested to be mediated by the 

reorientation of the histidine towards the active site. In the presence of programmed 

ribosomes, the wild type E. coli EF-Tu hydrolyzes GTP 106-fold faster than the H84A 

mutant [171]. However, according to our results, since H85 is situated in the active site 12% 

of the time in the absence of ribosome, the stimulating effect of the latter would be only ≈ 

8-fold in T. aquaticus, and even less in E. coli, if this reorientation was the only effect of the 

ribosome. Moreover, the H84A mutation should have a bigger impact on the intrinsic 

GTPase rate than experimentally observed [171,176]. Since our pKa calculations on both T. 

aquaticus and E. coli EF-Tu consistently yield an elevated pKa for the histidine, we do not 

expect a high error from sampling issues. In addition, all simulations with a doubly 

protonated histidine consistently indicate that this residue stays long time in the active site. 

Therefore, the difference between the ribosome induced 106-fold rate acceleration mediated 
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by H84 found experimentally and the much smaller effect of the reorientation of the histidine 

predicted here cannot be attributed to computational errors. It must be noted, however, that 

the estimation of a ≈ 8-fold rate acceleration assumes that even the neutral form of histidine 

is always in the active site in the presence of the ribosome. If only the protonated form of 

H85 is catalytically competent, the function of the ribosome must be more subtle, as it must 

increase the pKa of this residue and reposition it at the same time. The D87E mutation, which 

is supposed to mimic the effect of unprogrammed ribosomes [46], increases the pKa. But, 

still the pKa of Nδ is close to the physiological pH and a mixture of protonated and neutral 

forms is expected. The neutral form is stabilized by the unprotonated Nδ and the amide 

protons of A86, D87 and Y88. The experimental structures in the presence of the 

programmed ribosome show that access to these protons is prevented by the D87 side chain 

(PDB codes: 2XQD, 3FIH), presumably because of a small shift in the tRNA position with 

respect to the ternary complex (PDB codes: 1B23, 1OB2). This fact is expected to increase 

the pKa further. When H85 is protonated, Nε is usually oriented towards the active site in the 

D87E mutant. However, in the experimental ribosome bound structures Nε interacts with 

the ribosome. Thus, at least part of the effect of the programmed ribosome may be to make 

H85 fully protonated and orient Nδ towards the active site. Nevertheless, this effect is 

unlikely to explain completely the experimentally observed stimulatory effect of the 

ribosome via histidine, especially in E. coli where H84 is mostly protonated and Nδ is in the 

active site. 

 

One may figure out that the ribosome not only reorients the histidine but also locates 

it at a deeper position than can be reached in the binary complex. Indeed, in the crystal 

structure 2XQD, the distance between Nδ of the histidine and Pγ of GTP is 4.59 Å, but in 

taHIP, ecHIP, ecHIPK and ecHIPK1 simulations, this distance is below 4.6 Å only 0.3%, 

0.7%, 0% and 0.2% of the time, respectively. 

 

Warshel and coworkers state that H84 is a switch that repositions the P-loop to trigger 

the catalysis [54,56]. However, the distances between the β-phosphate oxygen and H22, 

G23, K24, T25 amide protons as well as the distance between the β-γ-bridging oxygen and 

the amide proton of D21 exhibit no correlation with the orientation of H85 in taHIP (Figure 
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6.3-6.4). Moreover, different protonation states of H85 do not have significant effects on 

these distances. However, it is possible that the ribosome itself positions the P-loop directly; 

and H85, in turn, positions the ribosome. Since our calculations do not consider the 

ribosome, this point cannot be addressed here. Aqvist and coworkers suggested that, in E. 

coli, the orientation of H84 towards the active site brings the backbone -NH groups of H84 

and G83 in a catalytic position where they stabilize the nucleophilic OH- ion [55]. However, 

the distances between the backbone protons of these residues and the Pγ atom of GTP in 

taHIP, ecHIPK, ecHIPK1 and ecHIPK2, i.e. simulations where the histidine moves in and 

out of the active site, reveal no correlation with the orientation of the histidine. 

 

 

 

Figure 6.3.  The distances between the β-phosphate oxygen and H22, G23, K24, T25 

amide protons (A-D) in taHIP. 
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Figure 6.4. The distance between the β-γ-bridging oxygen and the amide proton of 

D21 in taHIP. 

 

6.3.2.   Switch I Movement and Positioning of R57 into the Active Site 

In most simulations, Switch I has been found to be very mobile, reorienting away from 

Domain II towards the GTP binding site by rotating along a virtual axis passing through I61 

and T62. This motion is depicted in Figures 6.5-6.8 for taHIP, taHIE, taHID and ecHIP, 

respectively. The deviation from the crystallographic position of Switch I is especially large 

in taHID where it becomes almost parallel to GTP. However, all sampled conformations 

have very short life times and Switch I continuously oscillates between different positions. 

 

Figure 6.5. Snapshots illustrating the course of the taHIP simulations.  
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Figure 6.6.  Snapshots illustrating the course of the taHIE simulation 

 

  

Figure 6.7.  Snapshots illustrating the course of the taHID simulation. 

 

 

 

Figure 6.8.  Snapshots illustrating the course of the ecHIP simulation. 
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Figure 6.9 shows the time evolution of the distance between Cζ of R57 and the β-γ-

bridging oxygen of GTP in taHIP, taHIE and taHID. In taHIP, R57 never comes close to 

GTP (Figure 6.9). In the first 9 nanoseconds of taHIE, R57 makes a hydrogen bond to the γ-

phosphate, then it loses contact with GTP. In the last ≈ 35 ns of the simulation, it approaches 

GTP again and makes a hydrogen bond with the α-phosphate (Figure 6.9). During the last ≈ 

120 ns of taHID, R57 interacts with the γ- and α-phosphates as well as with the β-γ-bridging 

oxygen (Figure 6.9). The positioning of R57 in the active site evokes a catalytic role similar 

as the arginine finger in the Ras-GAP complex or the catalytic arginine in heterotrimeric G-

proteins. 

 

 

 

 

 

 

 

Figure 6.9. The time evolution of the distance between Cζ of R57 and the β-γ-

bridging oxygen of GTP in taHIP (A), taHIE (B) and taHID (C), respectively. 

Since R57 enters the active site even in the absence of ribosome, it is likely that it 

contributes to the intrinsic GTP hydrolysis. However, it is not situated there throughout all 

the simulations. One may assume that the interaction with the ribosome would anchor Switch 
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I in an orientation suitable to locate R57 in a catalytic position permanently. In none of the 

experimentally determined ribosome bound EF-Tu structures, an interaction between R57 

and the nucleotide is observed. But, in one of them (3FIH), there is a GDP in the active site. 

In another one (2XQD), GTP is replaced by its analog containing a methylene group instead 

of the β-γ-bridging oxygen. In both situations, the interaction between R57 and the 

nucleotide is expected to be weak. Consequently, R57 is situated away from the active site, 

as opposed to our simulations. 

 

As Switch I and R57 do not behave identically in taHIP, taHID and taHIE simulations, 

one may ask whether their movement is coupled with the protonation state of H85. An 

electrostatic interaction between H85 and charged residues on Switch I is unlikely to have a 

significant effect because they are situated quite far from each other, separated by high 

dielectric solvent environment. On the other hand, when H85 is rotated towards the active 

site, it makes a hydrophobic contact with I61 which, in turn, might affect the position of 

Switch I. However, we have not observed any correlation between the positions of H85 and 

Switch I. For instance, in taHIP, H85 moves in and out of the active site but R57 does not 

come close to GTP. In taHIE, H85 is almost always in the solvent while Switch I is very 

mobile and R57 enters the active site. In taHID, at the onset of the entrance of R57 into the 

active site, H85 is oriented into the solvent. But later, when it rotates into the active site, R57 

still remains there. Thus, it seems that the difference in the behavior of Switch I and R57 in 

these three simulations is simply coincidental. Switch I oscillates independently of the 

protonation state of H85. During these oscillations, R57 becomes trapped in the negatively 

charged regions for a while (between D51 and D81 in taHIP, Figure 6.10: A-B; between 

D51 and E180 in taHID, Figure 6.10C-D and taHIE, Figure 6.11E-F; near GTP in taHID 

and taHIE, Figures 6.9-B and 6.9-C). Of course, the difference between the three simulations 

also indicate that none of them is completely equilibrated. Nevertheless, the fact that R57 

can spend a considerable time in the active site provides evidence that this residue can be 

the equivalent of the catalytic arginine in other G-proteins. 

 

In the simulations on E. coli EF-Tu, K56 (corresponding to R57 in T. aquaticus) has 

not entered the active site and stayed mostly in the solvent in both ecHIP and ecHIE. From 
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time to time, it makes a salt bridge with D47 or hydrogen bonds with backbone carbonyl 

groups of residues 47-52. In addition, the deviation of Switch I helix from its 

crystallographic position is modest as in taHIP (Figures 6.5 and 6.8). To test the stability of 

a configuration with K56 in the active site, we have placed this residue next to GTP and 

carried out a 25 ns simulation with its position restrained. Then, we have removed the 

restraint and simulated for 175 ns. K56 remained in the active site. Thus, this conformation 

is not unstable but the forward and reverse conformational barriers are high to be crossed 

within our simulation time at 310 K. 

 

There are several differences between E. coli and T. aquaticus EF-Tu that may explain 

their different behaviors in our simulations. First, because of the lower temperature in E. coli 

simulations with respect to T. aquaticus (310 and 343 K, respectively) conformational 

fluctuations may take place more slowly and our simulation may not be long enough to 

observe the entrance of K56 into the active site. To test this hypothesis, we have carried out 

a new simulation at 343 K (ecHIE343) for 300 ns. K56 has come near the α-phosphate to 

make a water mediated interaction although it has not entered the active site (Figure 6.10). 

 

Secondly, there are variations at two positions on Switch I. The equivalent of R57 and 

K52 of T. aquaticus EF-Tu are K56 and N51 in E. coli, respectively. Lysine is slightly 

shorter than arginine and more flexible. It may be more difficult for lysine to reach the active 

site. Instead, it spends more time near more accessible negatively charged groups such as 

D47. We have performed R57K and K56R mutant simulations for T. aquaticus and E. coli 

EF-Tu, respectively (taR57K and ecK56R). In both cases, the arginine/lysine has made a 

contact with the α-phosphate, but has not moved further towards the reaction center. The 

taR57K simulation has been performed at 343 K. Hence, even though R57 has been 

substituted by lysine, the high temperature has provided sufficient energy to bring this 

residue next to the α-phosphate. On the other hand, though ecK56R has been carried out at 

310 K, the arginine that substitutes lysine has been able to come next to GTP. We have also 

performed K52N and N51K mutant simulations for T. aquaticus and E. coli EF-Tu, 

respectively (taK52N and ecN51K). In part of the wild type simulations, K52 in T. aquaticus 

interacts electrostatically with nearby negatively charged groups such as D49.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10.  The distance R57 (Cζ) - D51 (Cγ), R57 (Cζ) - D81 (Cγ) in taHIP (A-B); R57 (Cζ) - D51 (Cγ),R57 (Cζ) - E180 (Cε) in 

taHID (C-D) and taHIE (E-F), respectively.
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This interaction may serve as a built-in ionic strength around these groups, preventing 

R57 to be trapped by their electrostatic effects. In none of taK52N or ecN51K, the R57/K56 

has not entered the active site. Though the exact effect of K52/N51 cannot be deduced, it 

seems that K52 in T. aquaticus facilitates the movement of Switch I, but solely its effect is 

not enough to bring R57 next to GTP. Apparently, the differences in the temperature and in 

the sequences of T. aquaticus and E. coli Switch I account for the discrepancy in the behavior 

of EF-Tu from the two organisms. Because of these differences, conformational 

rearrangements involving Switch I and R57 in T. aquaticus occur fast enough to be observed 

in our simulations, whereas they require a longer time in E. coli. Representative snapshots 

from taR57K, ecK56R, taK52N and ecN51K are given in Figure 6.12. 

 

 

Figure 6.11.  The distance between K56 and α-phosphate of GTP in ecHIE343 

during 300 ns (left) and a representative view of K56 and GTP when they are involved in 

a water mediated interaction (right). 

Figure 6.12.  Representative snapshots from A) taR57K, B) ecK56R, C) ecN51K 

and D) taK52N simulations. 
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During the entire ecHIPK1, 71% of ecHIE and approximately half of taHIP, taHID, 

taHIE and ecHIP, the putative position of lysine in the active site (Site 1) is occupied by a 

Na+ or K+ ion. With its positive charge, this cation may substitute K56/R57. While K+ always 

makes direct contacts with GTP, because of its smaller size Na+ is more mobile in the active 

site and displays either direct or water mediated interactions with the nucleotide 

interchangeably. In taHID where R57 is mostly in the active site, Na+ shifts towards the γ-

phosphate rather than being next to the β-γ-bridging oxygen. A K+ ion at Site 1 was observed 

experimentally [171,188]. It was shown to have 3-fold catalytic effect on the intrinsic GTP 

hydrolysis, but no effect in the presence of ribosomes [171]. We hypothesize that R57/K56 

and Na+/K+ occupy the active site alternately during the intrinsic hydrolysis, whereas the 

ribosome anchors the catalytic residue next to GTP permanently, dispensing with the need 

for Na+/K+. It is also possible that R57/K56 cooperates with Na+/K+ in intrinsic hydrolysis, 

at least from time to time, as they can be simultaneously situated in the active site in taHID. 

On the other hand, simultaneous presence of H85 and R57 in the active site in the presence 

of ribosome would leave no room for a Na+ or K+ ion, in agreement with the experimentally 

observed K+ independence of the latter reaction. 

6.3.3.   Interactions between Switch I and GTP 

In all simulations, Mg2+ maintains its coordination shell that includes T25, T62 and 

two water molecules. However, D51 (which makes hydrogen bonds to T62 and a water 

coordinated to Mg2+ in the crystals) is very mobile, scanning various positions shown in 

Figures 6.6-6.9. Notably, in some parts of taHIP, D51 makes a salt bridge with R57 near the 

tRNA binding site. In most part of taHID, it makes hydrogen bonds with 2’ and 3’ –OH 

groups of the ribose moiety of GTP. In some parts of taHIE, it makes a salt bridge with R57 

which is mostly in the active site in contact with GTP. In ecHIPK2 and part of ecHIPK, D50 

(in E. coli) coordinates to a K+ ion. The mobility of this aspartate arises probably from the 

electrostatic repulsion between its side chain and GTP. In ecHIPK2 where a K+ ion has been 

placed initially at Site 2, between D50 and E55, this ion has conserved its position during 

the entire simulation. D50 and Switch I have remained at their positions in the crystal 

structure (Figure 6.13), presumably because this ion screens the electrostatic repulsion 
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between D50 and GTP. The presence of a K+ ion at Site 2 was previously suggested by 

Wallin et al. [35] to be essential for the stability of the crystallographic structure. On the 

other hand, our catalytic R57 hypothesis requires that Switch I oscillates between various 

conformations. Thus, we have checked the occupancy of Site 2 and the position of D50 in 

various simulations. 

 

When we have increased the simulation temperature of ecHIPK2 to 343 K in order to 

accelerate conformational transitions, K+ has left Site 2 and D50 has moved away from its 

position in the crystal structures within 20 ns. In ecHIE343, even though D50 has moved 

away from its crystallographic position, it has remained near E55 and captured a Na+ ion. 

Afterwards, it has returned to its crystallographic position for a short time. Then, both D50 

and Na+ have left this position. In ecHIPK, ecK56R, taK52N and taR57K, after moving 

away from its crystallographic position, D50/D51, together with E55/E56, has coordinated 

a cation for a few nanoseconds (Figure 6.13). But, this has not brought it back to its initial 

position. Later, the cation has gone away. In the rest of the simulations, Site 2 is not 

occupied. Thus, it seems that the presence of a Na+ or K+ ion at Site 2 stabilizes Switch I at 

its crystallographic position. But the ion does not stay there permanently, especially at 343 

K, allowing Switch I oscillate between different conformations. In ecHIPK2, simultaneous 

occupation of both ion binding sites has been observed during 7% of the simulation (Figure 

6.13). 

 

In all crystallographic structures of T. aquaticus EF-Tu, the backbone amide hydrogen 

of T62 makes a hydrogen bond with the γ-phosphate group of GTP (Figure 6.14). However, 

in all E. coli EF-Tu crystals, the amide proton of the corresponding threonine (T61) is 

oriented away from GTP and none of the Switch I residues is involved in a hydrogen bond 

with the nucleotide. In all our T. aquaticus simulations, the interaction between T61 and 

GTP has remained stable. Interestingly however, in E. coli simulations ecHIP, ecHIE and 

ecHIPK2, the amide proton of T61 has rotated towards GTP, like in T. aquaticus. In ecHIPK, 

the amide proton of I60 has been reoriented to interact with the γ-phosphate (Figure 6.14). 
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Figure 6.13.  A) A snapshot from ecHIPK2 superimposed to the crystal structure 

1OB2; B) a snapshot from ecHIPK where a K+ ion is bound to D50 and E55 after D50 

leaves its crystallographic position; C) a snapshot from ecHIPK2 showing that K+ ions can 

bind to Site 1 and Site 2 simultaneously. 

 

We have carried out an additional simulation using the same initial geometry as ecHIP, 

but with different initial velocities. In this simulation, neither a hydrogen bond between 

Switch I and GTP, nor a cation in the active site has been observed. The side chain of T61 

has lost its coordination with Mg2+. One of the water molecules in the coordination shell of 

Mg2+ has shifted to replace T61 while the α-phosphate group has filled the position of this 

water molecule (Figure 6.14). Thus, it appears that the lack of a cation in the active site or a 

hydrogen bond between Switch I and GTP destabilizes the active site organization. The 

reason why the hydrogen bond between Switch I and GTP is seen in T. aquaticus EF-Tu 

crystals, but not in E. coli crystals remains to be investigated. 

 

We have carried out a simulation on the T62A mutant. In this simulation, the amide 

proton of the alanine that replaces threonine has lost the hydrogen bond with GTP. Like in 

the other simulations, D51 has left its crystallographic position. Having lost all its 

interactions with GTP and Mg2+, Switch I has moved towards its position in EF-Tu∙GDP 

complexes (i.e. towards the tRNA binding site) while keeping its helical secondary structure. 

Two configurations have been mainly sampled: one where R57 makes hydrogen bonds to 

the γ-phosphate oxygens and one where Switch I is farther away from GTP (Figure 6.14). 

The mobility of Switch I towards the tRNA binding site can account for the slow hydrolysis 
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rate and low tRNA affinity in this mutant [165]. Also, I61 and V20 are too far apart to 

constitute a hydrophobic gate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14.  A) Interactions between I60/61 and GTP, green: the crystal structure of 

the T. aquaticus EF-Tu (1EFT), cyan: the crystal structure of the E. coli EF-Tu (1OB2), 

pink: a snapshot from the ecHIPK simulation; B) a snapshot from the second ecHIP 

simulation after the break down of the coordination shell of Mg2+; C) two representative 

snapshots from the taT62A simulation, green: R57 makes hydrogen bonds to GTP, pink: 

R57 and Switch I are away from GTP. 

 

There are three interactions that anchor Switch I to the active site: water mediated 

interaction between D51 and Mg2+, coordination between T62 side chain and Mg2+, 

hydrogen bond between T62 backbone and GTP. D51 is very mobile in most simulations, 

nevertheless Switch I remains attached to the active site through T62, although it oscillates 

between various positions mentioned above and depicted in Figures 6.5-6.8. However, in 

simulation periods where D51 retains its crystallographic interactions (especially when 
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coordinated to a cation, as discussed above), Switch I oscillates less and remains nearly at 

its crystallographic positon. These observations suggest that the interaction involving D51 

is not crucial for anchoring Switch I to the active site but reduces its mobility. On the other 

hand, both in T. aquaticus T62A mutant and E. coli EF-Tu where the T61 backbone amide 

proton is oriented away from GTP, Switch I moves towards its position in EF-Tu∙GDP 

crystals. Hence, both the coordination of T62 side chain with Mg2+ and the hydrogen bond 

between T62 backbone and GTP are necessary to anchor Switch I. Interestingly, the only 

nucleotide-EF-Tu interaction removed after GTP hydrolysis is the T62-γ-phosphate 

hydrogen bond. It seems that the loss of this hydrogen bond due to hydrolysis, leads to the 

loss of the T62-Mg2+ coordination. As a result, Switch I moves towards the tRNA binding 

site. 

 

6.4. Conclusion 

In this study, molecular dynamics simulations on the wild type and mutant EF-Tu 

proteins from T. aquaticus and E. coli, in their GTP bound form, have been performed. In 

some T. aquaticus EF-Tu simulations, a subtle movement of Switch I repositions R57 in the 

active site, possibly giving rise to a catalytic function. However, in E. coli EF-Tu 

simulations, the equivalent residue K56 has not entered the active site. Based on the 

following observations, we suggest that the entrance of R57 into the active site is not 

coincidental, but catalytically important: 

 

 In T. aquaticus EF-Tu·GTP binary complexes, at least in some simulations, R57 can 

take a catalytic position, similar to that in other G-proteins. Thus, it should accelerate, to 

some extent, the intrinsic hydrolysis in this organism. 

 

Our results are consistent with the experimental finding that the movement of Switch 

I is involved in GTPase activation. 

 

In many parts of the simulations, a Na+ or K+ ion is found at the catalytic position 

instead of R57/K56, suggesting that Na+/K+ can substitute this residue by providing a 
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positive charge. Moreover, R57 and Na+/K+ can be situated in the active site simultaneously, 

with a shift of Na+/K+ towards the γ-phosphate, suggesting that they can cooperate. This is 

consistent with experiments indicating that K+ ions play a catalytic role in the intrinsic 

hydrolysis. 

 

A Na+ or K+ ion can move in and out of Site 2, allowing Switch I oscillate between 

different conformations, especially at 343 K. 

 

When E. coli EF-Tu is simulated at the thriving temperature of T. aquaticus, K56 

approaches the active site. Similarly, when K56 in E. coli EF-Tu is mutated to arginine, the 

equivalent residue in T. aquaticus, this residue approaches the active site. Thus, 

conformational transitions in T. aquaticus occur faster than in E. coli because of differences 

in the sequence and thriving temperature. We presume that in longer simulations, the 

entrance of K56 into the active site would be observed. 

 

We have computed the pKa of H85 (H84) in both T. aquaticus and E. coli and 

investigated its conformational behavior. We have shown that, at physiological pH, an 

important fraction of this residue is in doubly protonated form. The hydrophobic gate and a 

nearby negative charge increase the pKa. When doubly protonated, this residue spends a 

considerable time in the active site. 

 

Our study provides information about the relative importance of the three interactions 

between Switch I and GTP. The interaction involving D51 is not crucial for positioning 

Switch I, whereas both the T62-γ-phosphate and the T62-Mg2+ coordination are necessary 

to maintain the GTP bound conformation of Switch. 
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7. CONCLUDING REMARKS 

 

 

This dissertation presents a scaffold-based drug discovery paradigm of a protein-ligand 

complex system and molecular dynamics simulations analysis for conformational 

rearrangements of a hydrolysis mechanism in the protein environment.  

 

In the first part of this thesis, the modeling of pharmacophores for PDE4B inhibitors 

and pharmacophore-based virtual screening of drug-like compound libraries was performed 

to propose novel compounds. The procedure was followed by docking process of co-

crystallized ligand rolipram and other candidate molecules. After the filtering based on 

docking, enrichment factors, ligand map interactions and clustering, the most promising 

scaffolds for novel PDE4B inhibitors are similar to rolipram structure and give interactions 

with the Gln443 residue and Mg2+ metal ion coordination.  

 

The study was followed by an original study based on how to correlate experimental 

IC50 values to computed free energies of binding for PDE4B enzyme system. In this study, 

it was shown that while a docking software like AutoDock is capable of discriminating 

between different poses and of finding true positive hits, its scoring function is not capable 

of estimating experimental ∆Gbinding values in PDE4B case. Secondly, it was found that 

averaged binding free energies obtained by the MM-GB/SA post-processing of many 

independent molecular dynamics trajectories gave much more reliable results. Especially, 

when all clusters obtained by AutoDock (and not only the best ones) are taken into account, 

a linear relationship between experimental log(IC50) and ∆Gbinding values can be obtained 

with a very good correlation (R2 = 0.944). 

 

In the second part of the dissertation, the residues which are involved in GTP 

hydrolysis and their roles in GTPase activity were analyzed via molecular dynamics 

simulations. It was shown that R57 on the Switch I region can enter the active site to play a 

catalytic role, similar to the catalytic arginine residues in other enzymatic GTP hydrolysis 
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reactions. Also, it can be said that a conformational change of H85 cannot account for the 

ribosome induced rate acceleration. It is likely that coupled effects of R57 and H85 are 

required for the ribosome induced catalysis. 

 

Overall, throughout this dissertation we tried to address specific issues such as 

pharmacophore modeling, docking studies and free energy of binding (ΔGbinding) of PDE4B 

system and have analyzed the role of important amino acids in GTPase activity of EF-Tu-

GTP for different organisms (Thermos-Aquaticus (T.aquaticus) and Escheria Coli (E.coli) 

complex by the aid of molecular dynamics (MD) simulations. The modeling approaches 

used in this dissertation are advantageous in terms of the investigation of challenging 

problems such as novel scaffolds in computer-aided drug design area by saving time for 

experiments. The detailed conclusions related with the specific problems are drawn within 

the relevant chapters.  

 

As a future work, different free energy of binding calculation (Thermodynamic 

Integration and MM-PB/SA) methods can be used for the evaluation of selected free energies 

of binding. 

 

Also, various parameters such as the convergence of the statistical ensemble, the 

effects of the length of the MD simulations, the usage of independent trajectories that can 

lead to a proper evaluation of the free energy of binding between a protein receptor and a 

small organic ligand may be investigated.  

 

It is expected to test experimentally the novel candidates that are obtained from the 

pharmacophore-based virtual screening study. 

 

Finally, from the PDE4B study part, the same procedure of ΔGbinding calculation and 

IC50 value estimation may be repeated for the complexes with ligands proposed from the 

virtual screening part,   and the knowledge of calculating binding Gibbs Free energies may 

be extended to further studies.  

 



 

  101 

 

 

 

 

 

 

For the conformational rearrangement of GTP hydrolysis in EF-Tu, the MD 

simulations may be extended to observe the entrance of K56 into the active site of EF-Tu. 

Also, the MD simulations may be carried out for ternary complex and the role of tRNA will 

be investigated.   

 

 It is also desirable to elucidate the enhancing role of ribosome (with a rate of ~105 

times faster than that of its intrinsic activity) in the hydrolysis mechanism of GTP binded 

EF-tu by carrying out MD simulations on EF-Tu∙GTP complex on the ribosome.  
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