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ABSTRACT

Molecular dynamics simulations have been performed to investigate the
relative importance of the specific solvent effect and the intramolecular
conformational potentials on the static and dynamic properties of polymers in dilute
solution. Bead-spring, freely-rotating and polyethylene model chains, each
composed of 30 beads, have been simulated in 738 solvent molecules.
Equilibrium properties of chains, such as overall chain dimensions, pair-correlation
functions and static scattering functions have been studied, as well as dynamic
properties such as translational diffusivities, dynamic scattering characteristics and
orientational correlation functions. Results indicate that chain statistics are equally
sensitive to solvent effect and intramolecular constraints, whereas local chain
dynamics are predominantly described by intramolecular potentials. Translational
diffusivities of all chains exhibit a linear decrease with increasing polymer-solvent
interactions. A power law relation of the form T ~ n@ is observed between the
orientational correlation times T and the size n of chains segments forn < 8. a
values increase with solvent quality.

Stability of short helical polypeptides have been studied by molecular
dynamics simulations. 13-residue polypeptides, composed of alanine, valine,
serine or glycine, have been simulated in water and in vacuum. It is observed that
water destabilizes the helical structure of alanine and valine, whereas glycine and
serine exhibit intrinsic helix-breaking propensities in the absence of water. Local
solvation patterns around alanine CB, valine CY and serine OY atoms are found to
be similar in helical state. The locations of the first hydration shells of alanine CB
and valine CY are located closer to the atoms than those observed in protein
crystals structures. Backbone hydrogen bonds are well protected by valine side
chains, compared to alanine and serine. Distributions of water molecules around
the backbone hydrogen bonds before and after these bonds break clearly shows
that helical structure is destabilized as a result of water molecules competing to
form alternative hydrogen bonds with the backbone.



OZET

Molekuler dinamik yontemi kullanilarak, seyreltik cozeltilerde polimer-
¢cozucl etkilegsme parametresi ve polimerin i¢ yapisini belirleyen potansiyellerin,
sincirin ozellikleri Gzerindeki etkisi aragtiriimistir. 30 birimden olusan t¢ model
zincir (boncuk-yay model zincir, serbest dénme agilarina sahip zincir ve polietilen)
738 cozlict molekill iginde simile edilmistir. Zincir boyutlari, ikili korelasyon ve
statik sagiima fonksiyonlari gibi denge dzellikleri ve diflizyon katsayist, dinamik
saciima fonksiyonu ve yerel yonlenme korelasyonlari gibi dinamik o6zellikler
incelenmistir. Model zincirlerin statik davraniginin, cbziicl etkisi ve i¢ yapisal
etkilere ayni oranda bagl oldugu, oysa polimerin lokal dinamig@ini zincirin i¢
yapisinin belirledigi gdzlenmistir. Diflizyon katsayis! polimer-¢oziici etkilegmesi
artttkca dogrusal olarak azalmaktadir. Yerel yénlenme korelasyonlarinin
karakteristik zamani (z) incelendiginde, n < 8 birimden olusan kisa segmaniar igin
T ~ na seklinde bir badinti bulunmugtur. Buradaki a katsayisi polimer-¢6zicU
etkilesmesine orantili olarak artmaktadir.

Sarmal yapidaki kisa polipeptit zincirlerinin stabilitesi molekuler dinamik
similasyon yoéntemi ile incelenmistir. 13 birimden olusan ve alanin, valin, serin
veya glisin igeren polipeptitler suda ve vakum sartlarinda incelenmistir. Suyun
alanin ve valinin sarmal yapisini bozdugu, bunun yani sira serin ve glisinin suyun
etkisinden bagimsiz olarak sarmal yapty! bozma ozellikleri oldugu gdzlenmistir.
Alanin CB, valin CY and serin OY atomlari etrafindaki su molekilleri benzer bir
dagilim sergilemektedir. Bu atomlar etrafindaki sularin ilk hidrasyon dlzeyi, protein
kristal yapilarinda gozlenenlere oranla daha yakinda bulunmaktadir. Valinin yan
gruplari, sarmal yapidaki hidrojen baglarini, su molekullerinden alanin ve serine
oranla daha iyi korumaktadir. Sarmal yapiyi olugturan hidrojen baglar bozulmadan
dnce ve sonra, etraflarinda bulunan su molekdllerinin dagiimi incelendiginde, su

molekiillerinin alternatif hidrojen baglari olugturarak sarmal yapiyi bozduklari
gdzlenmektedir.
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1. INTRODUCTION

Theoretical studies on polymers generally consider single polymer
chains under theta solvent conditions, because the incorporation of the specific
polymer-solvent interactions and the excluded volume effect in analytical models
is quite difficult. However, it is known that these interactions significantly alter the
properties of polymers in solution. In this respect, molecular dynamics (MD)
simulation is an alternative and useful tool to investigate the behavior of
polymers in various environment. MD simulations can produce realistic
trajectories in time by precisely considering all the intra- and intermolecular
interactions in the system, composed of the polymer and explicit solvent
molecules.

In the first part of this thesis presented in Section 2, MD simulations are
performed for model polymer chains of 30 monomers, immersed in 738 solvent
molecules. Three chain models, which have been widely used in previous
studies on polymers, are adopted, namely, the bead-spring[1], the freely-
rotating[2] and the polyethylene[2] chain models. The polymer-solvent
interaction energy parameter is systematically varied in the simulations to
achieve distinct -poor, close to theta and good- solvent conditions. The solvent
effect on the equilibrium properties of the model chains, such as pair correlation
and static scattering functions is investigated. Two dynamic properties are of
interest in this study: (i) the translational diffusivity of the overall chain, and (ii) the
orientational mebility of chain segments of various sizes. The former is a global
property which has been widely investigated for athermal solutions, in general.
The second refers to internal conformational motions in polymers, which are
critically important for the interpretation of experiments, such as NMR
spectroscopy, fluorescence anisotropy and dielectric relaxation. This is the first

datailed MD analysis of segmental relaxation processes in varying solvent
conditions.

Small polypeptides, composed of less than 20 amino acid residues, are
known to acquire o. helical conformation in aqueous solution under physiological
conditions. This secondary structure formation, which is not observed in synthetic
polymers in solution, plays an important role in the initial stage of protein
folding[3]. Amino acids display significant variation in propensity for a-helical, -



sheet and other main chain conformational states in proteins and polypeptides.
An important stage in the solution of the protein folding problem is to understand
the factors that determine the tendency of short polypeptide sequences to
populate different conformational states in solution. Several factors have been
suggested to be responsible for the c-helix propensities of amino acids, such as
steric factors, conformational entropy loss, hydrophobic effect and main-chain
electrostatics. Meanwhile, it is accepted that water plays an important role in the
formation of secondary structures because it competes 1o form hydrogen bonds
with the main chain polar groups.

In the second part of this thesis, MD simulations are carried out for
different model polypeptides in vacuum and in the presence of explicit water
molecules. Model polypeptides, composed of 13 residues of alanine, valine,
serine or glycine, are explcred. The dynamics of structural transitions are
analyzed by monitoring the fractional helix contents of the peptides during the
trajectories. Water distribution around the side chains and the backbone
hydrogen bonds are investigated. The different solvation patterns of the four
amino acids obtained in this study are correlated with their helix forming /
breaking tendencies.



2. STATISTICS AND DYNAMICS OF POLYMER CHAINS
IN DILUTE SOLUTION

Models based on single chain statistics[2] are applicable only in
particular cases, such as dilute polymer-solvent systems under theta conditions
or polymers in the bulk state, where a given chain does not distinguish between
the surrounding molecules and intramolecular chain segments. Otherwise, the
intrachain excluded volume effect and the specific solvent-polymer interaction,
which are known to perturb chain equilibrium and dynamic properties[4, 5], need
be considered for a realistic estimation of behavior in solution.

Simulation of polymer-solvent systems is a useful tool to investigate the
behavior of polymers in various environment.[6, 7] Among various computational
methods, Monte Carlo algorithms are suitable for studying equilibrium properties
of large systems, such as long polymer chains or concentrated systems. These
algorithms do not supply information on chain dynamics, except for the dynamic
Monte Carlo method coupled with Metropolis algorithm. Brownian dynamics (BD)
simulations reproduce most of time-dependent processes and are particularly
useful for the study of relaxation phenomena with time scales on the order of
nanoseconds. However, the local solvent structure and dynamics cannot be
realistically represented in BD, because the solvent-polymer interactions are
averaged by a normal stochastic noise and an adjustable friction coefficient is
adopted for representing the effective frictional drag of the surroundings. In this
respect, molecular dynamics (MD) simulations, which consider precisely the
interaction between the individual constituents of a polymer-solvent system, are
particularly suitable. It is noted that the intrachain excluded volume effect is also
inherently present in MD simulations, as interactions between all nonbonded
units along the chain are explicitly accounted for.

Molecular dynamics has proven to be a valuable tool for understanding
the mechanism and evolution of several time-dependent processes in polymeric
systems, such as orientational and translational motions in solution[8-17] or in
the bulk state,[18, 19] freezing in of internal rotational motions near the glass
transition,[20] and diffusion of simple gas molecules in polymer matrix.[21, 22]
The major drawback of the MD method is that the complexity of the models and



the size of the systems to be studied are limited by the computational resources
available.

The mode! chains used in MD simulations are selected at different
levels of sophistication depending on the specific properties under study. Bead-
rod model chains (or Kuhn equivalent freely jointed chain) and bead-spring
chains are classical examples which have been adopted in early simulations of
chain dynamics[8, 9, 11, 10, 12] and continue to be explored.[13-17] These
simple models are particularly suitable for verifying various scaling
arguments[23] and/or for establishing some concise analytical expressions
relating chain size to static and dynamic characteristics. Another group of MD
studies[24, 20, 25, 21, 22, 18, 19] incorporates the structure and energy
parameters of real chains, based on the rotational isomeric state model[2] of
equilibrium statistics; their approach is essential for establishing the physical
connection between theory and experiments, and for rationalizing the distinct
behavior of different macromolecules.

The first molecular dynamics simulations of polymer chains in solution
have been performed by Bishop et. al.[8] and Rapaport[9]. Later, MD studies[11,
10, 12-14] have been carried out to investigate the role of interaction potentials,
solvent density and quality on the various equilibrium and dynamic properties of
polymer chains in solution. Bead-red and bead-spring model chains of various
lengths have been used in these particular studies.

On the same line of work, MD simulations for bead-spring model chains
immersed in good solvents of varying quality have been performed[26] and the
results indicate a systematic perturbation in static and dynamic properties of the
chain due to the specific solvent effect. This study on bead-spring model chains,
which will be presented in Section 2.2.1, invites attention to the importance of the
interaction of polymer chains with their surroundings. Then, the question arises
whether the solvent effect might have been overestimated due to the fact that
bead-spring model chains do not carry any structural and conformational
constraints other than chain connectivity. Thus, a complementary study has been
carried out[27] to analyze the importance of solvent effect on polymer chains
which are subject to more realistic intramolecular constraints, i.e. which possess
some inherent stiffness in contrast to the fully flexible bead-spring model chains.
The second part of the work on dilute polymer-solvent systems, which comprises
Section 2.2.2 ., summarizes the simulation results for two more realistic model



chains. The classical freely-rotating model chain[2], in which bond angles are
constrained to be fixed around the tetrahedral value, whereas bonds are allowed
to rotate freely about their own axis, is one of the models investigated. In the
second model, the structure and energy parameters of polyethylene chains
based on the rotational isomeric state model of equilibrium statistics[2] is
adopted, where the CHp monomeric units are taken as collapsed on the chain
backbone. The relative importance of the specific solvent effect and the
intrachain potentials, i.e. bond stretching, bending and torsional potentials is
analyzed by simulating both the freely-rotating (FRC) and the polyethylene-
like(PE) model chains in solvents of varying polymer-solvent interactions. Details
of the simulations, which are almost identical for the three mode! chains, will be
explained in Section 2.1. However, the results of the simulations will be
presented in separate sections, namely Section 2.2.1 on the bead-spring model
chain and Section 2.2.2 on the freely-rotating and polyethylene-like model
chains.

2.1. Simulation Model and Method

2.1.1. Molecuiar Models

The total potential energy U for the system of N particles, consisting of a
polymer chain of Ny beads, i.e. monomer units collapsed on the backbone,
surrounded by N solvent molecules, is obtained by summing up all the
nonbonded (Unp) and bonded (Up) interaction energies.

U=Unp+Up (2.1)



In all simulation systems, the nonbonded interactions between polymer

bead-solvent, bead-bead, and solvent-solvent pairs are included in Upp
according to the following summation.

N
Ub= 2 > Vsr(r) (2.2)

Here, the interaction between the nonbonded pair of particles i and j at a
distance rjj= 1 rj- r; | from each other is taken to be of the form of the shifted-force
potential, Vsr (rij)[6]

Vertr) { Viulry) = Vilre) - (- re) (AVi(ry) / dridrere < e
ri) =
SFTjj 0 i > 1o (2.3)
where Vi (rjj) is the Lennard-Jones (LJ) (6-12) potential given by
Vig(ryp) = 4 eij[(Gij /r)'?- (5 / rij)6] (2.4)

and rc is the cutoff distance beyond which the interaction vanishes. gj; and Gij in

Equation (2.4) are the respective energy and distance parameters corresponding
to the particular pair of particles /and j. The adoption of a cutoff separation
introduces discontinuities in the absolute value and slope of the interaction
energy at re, which are eliminated by the addition of the last two terms in
Equation (2.3). Minimum image convention is used for the specification of rij.[6]
The subscripts i and j of the above variables are later replaced by either s



(solvent) or b (polymer bead) depending on the type of interacting particles. The
van der Waals radii and consequently the length parameters of polymer beads
and solvent molecules are assumed to be equal to each other. Thus, the

subscript ij in the LJ length parameter oj;can be omitted for brevity. The cutoff
separation is takenas r,= 2.5 c.

In bead-spring model chains, the elastic potential of the ith spring is
given by the so-called finitely extendable nonlinear elastic or FENE potential[1]

Van () = - 0.5 kolo2 N[ 1- (1/10)2]  li< lo
(2.5)
Van (li) = o i >l

where i is the instantaneous length of the ith spring. The subscript QH refers to
the quasiharmonic nature of the potential. ko and | are the energy and length
parameters of the quasiharmonic potential, respectively. The above form of
connector potential has found widespread use in previous MD studies of polymer
solutions.[11, 14, 15] This function is monotone strictly increasing with |;, thus
favoring small extensions and eventual overlap of the beads. Yet, the beads can
not actually approach each other by more than some limiting separation, as
inherently implemented by the shifted potential function of Equation (2.3), which
applies to all pairs of nonbonded beads. Thus, the total bonded interaction
energy for the bead-spring model chain is given by the following summation

Np -1
U= ., Var (k) (2.6)
k=1

In the polyethylene (PE) model chain, presented in Figure 2.1, the
bonded interaction energy includes contributions from bond stretching, bond



angle bending and bond torsional motions, given by the first, second and third
summations in the following equation, respectively.

Np-1 Np- 2 Np-2
Up= 2 Vo (k)+ rTz; Vo (Bm) + Ez Vo (0n) (2.7)

Here, the spring-like character of the bonds connecting the beads are
maintained by the harmonic potential, Vy, ()

Vi (i) = (kp/ 2) (Ij-1p)2 i=1,.. Np-1 (2.8)

where kp, is the bond-stretching force constant, |; is the instantaneous length of
the ith spring connecting atoms Cj.y and C;, as shown in Figure 2.1, and Iy is the
equilibrium bond length.

FIGURE 2.1. A section of the polyethylene-like model chain between atoms Cio
and Cij,o The generalized coordinates are Ij, 6;, ¢;, where ljis the bond vector

between atoms Ci.1 and C;, 8;is the supplemental bond angle at C; and 0i is the
torsional angle defined by bond vectors li.1, ljand lj,1.



The supplemental bond angle 6;at the i th atom is constrained to
fluctuate about 6, by the quadratic potential, Vg (6j), with a force constant kg

Vg () = (kg / 2) (cosBi- cosB,)2 i=1,. Np-2 (2.9)

Finally, the torsional angle ¢; defined by the spatial position of bond
vectors li.y liand lj,4, is maintained by the rotational potential V¢ (¢i)[24, 28]

5
Vo (0i) = kg Y. ancos " O i=2,..N,-2 (2.10)
n=0

where k¢ is the bond torsion constant, and the coefficients an (0 <n <5), listed

5
in Table 2.1, satisfy the relationship 2 ap = 0. This potential ensures that the
: n=0
dihedral angles assume values in the neighborhood of three rotational minima,

namely, trans (t, 0°), gauche* (g*, 120°) and gauche™ (g~, -120°).

In the freely-rotating chain model, V¢ (¢i) = 0 allowing the torsional
angles to freely rotate about their own axis. In the freely-rotating and
polyethylene-like model chains, nonbonded interactions among polymer beads
which are separated by less than four bonds along the chain are not included in
the summation of Equation (2.2) to avoid any bias of bond torsional and angle
bending potentials.
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2.1.2. Simulation System and Parameters

The system consists of Ng= 738 solvent molecules and a polymer chain
of Ny =30 beads, each of equal mass m. A cubic simulation box composed of
body-centered cubic (bcc) lattice sites is adopted for describing the original

coordinates of the set of Ny + Ns= N particles.The box is subject to periodic
boundary conditions.

The particles are originally placed at the centers and four of the corners
along opposite diagonals of each bcc lattice site, thus leading to a tetrahedral
arrangement for the polymer bonds in their original state. This structure will be
certainly lost during simulation but such a symmetric arrangement of chain beads
at start has the advantage of necessitating shorter equilibration period compared
to randomly placed beads. Following this prescription, each site accommodates
1.5 particles. Thus, the set of N = 768 particles considered in the majority of
simulations results from a cubic box of 8 bcc sites along each edge. The first
bead of the polymer chain and the particular sequence of connected beads are
selected by a random number generator subroutine. Accordingly, for the choice
of the bead i+7 along the chain, the random number generator assigns one
tetrahedral directional vector among those (three or less) accessible to bead i.
The term accessible refers here to those directional vectors leading to sites
which are not already occupied by the previously selected beads. The position
vector of the ith particle (polymer bead or solvent) is denoted by r;, with respect to
the laboratory-fixed frame whose origin is conveniently located at the center of
the simulation box.

The initial velocities are assigned in conformity with the Boltzmann
distribution at the simulation temperature (T = 378 K) and the net linear
momentum is set equal to zero by subtracting the mean velocity from the initial
velocities. Isothermal conditions are maintained by monitoring and rescaling the
velocities of the particles at regular time intervals of 200 time steps. Inasmuch as
the total energy is also conserved along the trajectory, the resulting averages
approximate the behavior of a isenthalpic-canonical ensemble.
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The values of the parameters used in simulations are listed in Table 2.1,
as well as the expressions and values for their reduced counterparts, indicated
with the subscript r. €*, 6™ and m*in Table 2.1 are the respective energy, length,
and mass-scaling parameters used for obtaining the reduced quantities. The LJ
parameter €qs is subjected to variations within the range 0.1 < €p¢ < 0.8 kcal/mol,
while the other two interaction potentials are kept fixed at €y = €45 = 0.5 kcal/mol.
The simulation box has a volume V = L3 = (24.3 A)3, where L equals 9.0 in
reduced units. Since the box accomodates 768 particles in total, the reduced
number density p; = 1.054 is equivalent to an absolute mass density p, of 1.07 g
/ cm3, as follows from the identity pn= Nm /L3. The values L = 9 6* and Ns=
738 have been used in the simulations, except for a few runs performed with the
aim of estimating the effect of system size and the extent of hydrodynamic
interactions on the polymer properties, as will be indicated in the text.

2.1.3. Simulation Algorithm

The equation of motion for the ith particle, 1 < i< N, is

- miai=fi=-Vy U (2.11)

where m; = m is the mass of particle j, fjis the force exerted on particle /, a; is its
acceleration and Vr, U is the gradient of the potential U with respect to rj. For a
given configuration at time t, fiand a; are calculated fcr each particle from the
gradient of the potentials described in Section 2.1.1. The new positions of the
particles at time (t + At) are, then, computed by using a modified Verlet algorithm
with the recurrence equations given by[6]



TABLE 2.1. Simulation Parameters in Absolute and Reduced Units

Real Variable

Absolute Value Dimensionless Reduced

Variable Value

m 12 g mol-1 mr=m/m* 1

T 378 K T,=RT/e* 0.75

V=L3 (24.3 A)3 Vi=V/o*3 9.08

p=N /V 0.0535 A-3 pr=p ¢*3 1.054

At 4,57 fs Aty = At / (6*2m*/e%)12 1 0.01

c 2.7 A or=c/c* 1

€bb 0.5 kcal mol-1 €bbr = Epb / €* 0.5

€ss 0.5 kcal mol- €ssr = Ess / € 0.5

€hs 0.1-0.8 kcal mol-1 | epgr = €ps / €* 0.1-0.8

re 6.75 A rer=rc/ * 2.5

Ko 20 €pp / 62 Kor = ko 6*2/ €* 10

lo 5.265 A lor=1lo / & 1.95

kb 82.7 kcal A2 mol! | kpy = kp 6*2 / €* 602.9

b 1.54 A lbr=Ib/ c* 0.57

Ko 43.5 kcal mol-1 ker =kg / €* 43.5

cos 0o 1/3

ko - 2.22 kcal mol-1 Kor =Ko / €* 2.22

ao 1.0000 '

aq 1.3108

az -1.4135

as -0.3358

a4 2.8271

as -3.3885

Reference values: m* =12 g/ mol; ¢* =2.7 A:e*=1.0kcal/mol

12
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H(t+At) = r(t) + At vi(t)+% At a (t) - é (A aj (t - At)
(2.12)

vi(t+At)

Vi(f)+%Ata;(t+At) +% At a (1) -éAtai(t - At)

Here v; ( t ) is the velocity of particle i at time t and At is the size of the time step.
This algorithm, in which the acceleration a; (t - At ) is stored in addition to r; (1),
vi(t)anda;(t), allows for a more accurate estimation of velocities compared to
the classical Verlet method, and consequently brings about an improvement in
energy conservation.[6]

The recurrence Equations (2.12) may be identically rewritten in terms of
reduced variables:.riy = i/ c*;vir = vi (m*/e*)V2 . ajr = ajc*m* /e*. The
expression for the reduced velocity vir follows from the broadening of the
Gaussian distribution of velocities by a factor of (m* / €* )72 due to the use of

reduced temperature and mass in the Maxwell-Boltzmann expression. A detailed
summary of the molecular dynamics simulation algorithm, which is described in
the present section, is given in Appendix A.

2. 2. Results and Discussion

2.2.1. Bead-Spring Model Chain

In the simulations with bead-spring model chains, €ps IS varied
between 0.1 and 0.8. At each &ps value, several simulations are performed

starting from different initial configurations.

In general, an increase in gj strengthens the interaction, both attractive

and repulsive, between particles iand j. However, the attractive portion of the LJ
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energy curves is more sensitive to € while the steep change in the repulsive

regime is weakly affected. Thus, the effective change brought about by an
increase in € is to enhance the favorable interaction between particle j and ;i

Accordingly, a lower value for gps should give rise to a more compact chain

configuration. In view of these qualitative features, the influence of solvent-

polymer interaction on various polymer properties will be investigated in the
following.

2.2.1.1. Mean Energies and Overall Chain Dimensions.Table 2.2
illustrates for three selected values of €ps, namely 0.2, 0.5 and 0.8 kcal/mol, the

mean values and standard deviations of different types of energies, resulting
from short runs of 104 steps. '

TABLE 2.2. Mean energies (kcal / unit) and their standard deviations (S. D.)

Ebsr VaH Vsg Kinetic Te
0.2 Mean 2.072 -0.096 1.125 0.750
S. D. 0.051 0.009 0.026 0.017
0.5 Mean 2.070 -0.197 1.125 0.750
S. D. 0.057 0.008 0.026 0.017
0.8 Mean 2.023 -0.343 1.125 0.750
S. D. 0.062 0.010 0.027 0.018

Here, the quasiharmonic potential energies Vqn represent the average over the
trajectory and over the Np- 1 springs. The shifted force potentials Vsr and the
kinetic energies correspond to averages over all units, i.e. polymer beads and
solvents. The negative values for the mean Vsf indicates that, in general,
favorable interactions, i.e. good solvent conditions, are brought about by the
present choice of simulation parameters.

Table 2.3 summarizes the overall chain dimensions, namely, the mean-
square end-to-end separation < r>>, the radius of gyration Rq = < s2>12, and the

expansion coefficient o.
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TABLE 2.3. Mean-square chain dimensions and expansion coefficients o as a
function of solvent quality

€bsr <r2> (A2) <s2> (A2) o

0.1 83.86 + 5.81 19.57 £ 0.93 1.265
0.3 155.30 + 19.19 29.96 £ 1.29 2.342
0.5 226.73 + 12.90 40.34 £ 1.69 3.420
0.8 333.90 + 11.55 55.91 + 0.04 5.036

< s2> is given the expression

<§2> = Nb-1 z < (lri - rcm! )2> (213)
=1

where rqm, is the instantaneous position vector of the chain center of mass, and
the brackets refer to a time average over several snapshots in a given run. The
expansion coefficient is defined as

o=<r12>/<r2>, (2.14)

where the unperturbed mean-square end-to-end separation < r2 >, for bead-
spring model chains is calculated from



16

<1255 2 (Np -1) Iay 2 (2.15)

with the average bond-spring length taken as Ia, = 0.56 6~ (See Figure 2.5). All
the bead-spring chain systems presently studied represent good solvent
conditions, as demonstrated by the expansion coefficients o > 1, listed in Table
2.3. It is clearly demostrated that the chains expand as the polymer-solvent
interaction energy increases.

The ratio <r2> / <s2> of the mean-square dimensions of the chains of 30
beads is found to be 6.5£0.7 in the present MD simulations. This follows from the
slope of the two lines drawn in Figure 2.2, in which the results from several runs
with various €ps are plotted. The least square fit to the data yields the line with
slope 7.2. If the line is constrained to pass through the origin, on the other hand,
the best fit leads to a value of 5.8, which is in agreement with the following
expression for freely jointed chains of Ny units.

<re>/<s2>=6Np/ (Np+1) (2.16)

The slightly larger value presently obtained for <r2> / <s2> may be
attributed to the the finite persistence length of the present relatively short chains
and the excluded volume effect, which is not included in the freely jointed chain
model but is implicitly present in the simulation method. It is noted that a wide
range of MD values is reported in literature for the ratio <r?2> / <s2> of short bead-
spring model chains. These deviations may be understood in view of the large
amplitude scatter observed here in independent MD runs of short duration.
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FIGURE 2.2. Dependence of the mean-square end-to-end separation < r2> on
the radius of gyration < s2 >. Circles represent time averages from independent
runs of 104 steps evaluated irrespective of solvent-polymer interaction. The best
fitting line through the data points yields a slope equal to 7.2. The second line
represents the best fit for the line constrained to cross the origin and leads to < r2
>/<s2>=58.

2.2.1.2. Pair-Correlation Functions. The pair-correlation function g;(r),
also referred to as radial distribution function, gives the unnormalized probability
of finding a pair of particles i and j at a distance r apart. gj(r) is evaluated from

gj(r) = (p/ N) < nilr) >/ (4 12Ar) (2.17)

where the number < ny(r) > of particles located at a distance r from each other is
found from the time average of the following expression.
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nq(r)=2fdr226(r-ra+r;). (2.18)

This integration is performed over a thin spherical shell of thickness Ar, about r,
and the summations of the delta functions include all pair of particles of type i
and j with j # i, changing in the range [1,N; ] for polymer beads and [1, Ns] for
solvent molecules. In the limit as r becomes infinitely large, using image particles
convention throughout space, gjj{r) approaches the ratio NiN;/ N2, for i #/ and N;
(N; -1)/N2 for pairs of the same type. Thus, the radial distribution curves should
approach unity provided that they are normalized with respect to these
asymptotic values. Both time and ensemble averages are used in evaluating
gii(r), leading to curves with minimal noise.

The computation of pair correlation functions from MD simulations is
performed here for an assessment of the compliance of our results with previous
work,[14] and for a clear visualization of the change in intrachain separations as
a function of solvent type. Figures 2.3 and 2.4 illustrate the dependences of
Obs(r), gop(r) and gss(r) on solvent quality. The grid size is taken as Ar = 0.01c".
Short durations of simulation (~104 time steps) are found to be sufficient to
reproduce -indistinguishably- each of the curves displayed in the figures. This
tendency of the chain to assume more expanded configurations in good solvent,
i.e. with increasing €ps, is manifested in Figure 2.3 by the larger gps(r) values
attained at short separations in media with higher ggg, in agreerﬁent with the MD
results obtained by Freire and collaborators[14] for a smaller system. The
successive peaks in the distribution function occur at locations r / ¢* ~ 1.1, 2.0
and 3.0, in perfect agreement with previous work, in which the same model and
comparable energy and length parameters have been adopted.[14] The gradual
shifting of the first peak to larger r/ ¢* values with increasing €ps is also in
quantitative conformity with previous MD results.[14] The oscillations of gps(r)
corresponding to successive shells of neighbors are observed to be stronger
with increasing €ps. Weaker €ps values, on the other hand, induce less
pronounced peaks associated with more randomized relative positions of
particles. This feature is indicative of the increased diffusional mobility of the
particles in the presence of weak intermolecular associations, which is further
exploited below.
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FIGURE 2.3. Radial distribution function gps(r) for polymer-solvent pair as a
function of the reduced separation r / ¢*. Results are shown for systems subject
to €psr = 0.1, 0.3, 0.5 and 0.8.

The intrachain radial distribution function gpp(r) shown in Figure 2.4 has
been evaluated on the basis of nonbonded units along the chain. First
neighboring units are not included in this analysis inasmuch as their separation
is predominantly determined by the quasiharmonic potential and attention here
is primarily focused on the influence of solvent quality on the spatial arrangement
of the atoms/beads. The distribution of bond lengths | in response to the changes
in solvent quality will be separately considered next. A strong dependence on €ps
is observable in Figure 2.4, in conformity with the behavior described above: The
beads come closer to each other as the solvent becomes poorer. The diagram
on the upper right part of Figure 2.4 shows the solvent-solvent radial distribution
functions gss(r) which have been obtained in MD simulations, for various €. The

insensitivity of gss(r) to €ps is legitimate for the highly dilute system presently
investigated.



20

' ' 3.0 —tr——————T——
3 |
)
n0.1,0.5,0.8
. 20} -
} -
0.040 ~ W i
7}
o qof
— : 0.1
Yo "
~ . ifa : 0.0 4 ' '
a 2 ’I\‘ “" 0 1 2 3 4
@ oooF r /G .
Y\ 0.5 ™
v ’~.,'
\ RALT
A Y "re,,
\\ .......
0.8 ~~~- —————— Il 'S = vrT
0.000 —— L L — i . L 1
0.8 1.2 1.6 2.0 2.4 2.8
*
r/oc

FIGURE 2.4. Radial distribution function gpp(r) for non-bonded beads pairs of the
polymer chain as a function of the reduced separation r / ¢*. Results are shown

for epsr = 0.1, 0.5 and 0.8. The upper small diagram on the right is obtained with

the same set of data and illustrates the insensitivity of solvent-solvent pair
correlation function gss(r) to polymer-solvent interaction.

2.2.1.3. Equilibrium_Distribution of Bond/Spring Lengths. Figure 2.5
displays the probability distribution W(l / ¢*} of the reduced length |/ ¢* of bonds

for various €ps values. The zero level of the distribution curves are vertically
shifted by a value of 1.0 for clarity. With increasing €ps the approximately

Gaussian shape of the distribution is distorted into a bimodal structure.
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FIGURE 2.5. Distribution W(l) of bond/spring lengths | in chains subject to
interactions of various strength with the surroundings. ey, values are 0.1, 0.3,
0.5, 0.7 and 0.8 as indicated by the labels on each curve.

For isolated dumbbells subject to the FENE potential, the connector
length distribution is given by[1]

Wan () = J [ 1-(11/15)2 ] kolo? /2KT ]

(2.19)
Wan (I) =0 iz 1o

where J is the normalization constant. The lowest dashed curve in Figure 2.5 is
calculated by inserting the FENE parameters of Table 2.1, adopted in simulations,
into Equation (2.19) multiplied by 4nl2. All of the curves are normalized.
Comparison of the dashed curve with those resulting from MD simulations
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indicates that the chain connectivity and the interaction with the surroundings
substantially modify the distribution corresponding to isolated dumbbells. In
general, the mean of the distribution function is shifted to larger values (i.e. from
~ 0.40 to 0.56) when the dumbbell belongs to a chain. This shift is presumably
forced by the intrachain Lennard-Jones type potential, which requires second
neighboring bonds toc be separated by a distance of about 216s*. This
requirement leads to an average separation of 0.56¢* between adjacent beads,
in exact conformity with the MD resuits. At €, = 0.1€* the attractive potential of
the environment is relatively weak to perturb the shape of the distribution function
and a unimodal distribution centered about 0.56c" is observed. However, as the
interaction between polymer and solvent is strengthened, the distribution is
gradually modified into a bimodal shape. The peak to the right may be attributed
to an increased separation between adjacent beads due to their simultaneous
interaction with a single solvent molecule. These two beads that are strongly
attracted to a single molecule are being forced apart by that interaction.
However, when the corresponding bond assumes this increased length, its first
neighbor has to assume a relatively contracted configuration in order to comply
with the requirements of intrachain LJ potential between second neighbors, and
hence the appearance of the accompanying peak at the left.

2.2.1.4. Translational Diffusivitly as a Function of Solvent-Polymer
Interaction. The diffusion coefficient is computed from the time decay of the
chain center-of-mass velocity autocorrelation function <vep(te) . Vem(tot+t)>
according to the Green-Kubo relationship

j < Vem(lo) + Vem(lot+ 1) > dit : (2.20)
0]

w |-+

where the angular brackets refer to the time average over initial times t,. This
average relies on the independence of the dynamics of stationary processes
upon the time origin. The velocity vem(t) of the polymer mass center at a given



23

time t is found from the average of the instantaneous velocities of the N beads
as Vem(t) = Np 7 2 vi(t).

Figure 2.6 displays the time decay of the normalized velocity
autocorrelation function of the polymer mass center, for various €ps values as
indicated by the labels. The abscissa is the ratio t / At of the elapsed time t to the
time step At of simulation. Full relaxation of vem(t) is observed to occur in the
range of picoseconds. The weak statistical noise of the decay curves in the long
time range is minimized by taking averages over simulations durations of about
105 time steps, for each €,s. The fluctuations occurring in the long time portions of
the curves do not arise from any statistical uncertainties but are identically
reproduced in repetitive runs, indicating the particular structure of the time decay
of < Vem(to) - Vem(to+t) >. Performing a set of short runs with different original
configurations rather than a single run of long duration has proven to be a
computationally efficient method of determining the decay curves.
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FIGURE 2.6. Time decay of the autocorrelation function <vem(0) .« Vem(t)> /
<Vem2> of the polymer mass center velocity vem. The abscissa represents the
reduced time t / At or the number of MD time steps. Curves are given for €ps =

0.1, 0.3, 0.5 and 0.8 kcal / mol.
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The resulting translational diffusion coefficients from the decay curves
are shown by the filled circles in Figure 2.7 as a function of €ps. Results are

displayed in reduced units D,= D (m* / €*)1/2/c*. The diffusion coeftficients

calculated from short runs of 104 time steps are plotted in the upper small
diagram in the figure. This diagram gives an estimate of the scatter of Dy values
resulting from successive runs of different original configurations. However, by
taking the averages for each given €ps, the smooth linear decrease of Dy with
increasing solvent quality emerges, which has been also pointed out by Lugue et
al.[14] for shorter chains (Np = 12). The present study indicates that numerical
uncertainties are eliminated only if sufficiently long simulations with a variety of
different original configurations are performed.
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FIGURE 2.7. Dependence of reduced translational diffusivity Dy on solvent-
polymer interaction energy €ps. The filled circles represent the averages of
several runs of 104 time steps for each €ps value, which are illustrated in the
upper small diagram. The empty triangles. represent the results obtained by
keeping Rg/L fixed as Rg/L = 0.21, and rescaling the size of the simulation box
accordingly. The empty circles in the figure (and the filled circles in the upper
small diagram) represent results obtained from Einstein plots. The best fitting line
through the MD resuits is given by the equation Dy = 3.931x103 - 3.020x10-3 gps
with a correlation coefficient of 0.988.
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As a further check, the diffusion coefficients are computed from the long

time slope of the mean-square displacement of the mass center as a function of
time, using the Einstein relationship

6Dt= <[ fomlto +1) - Fom(to) 2> = < [ Arem(t) 2> (2.21)

where the brackets refer to average over various initial times to. Figure 2.8
displays the change in <[ Arcm(t) ]2 > as a function of time for gps = 0.1, 0.5 and
0.8 kcal/mol. The resulting diffusion coefficients, calculated from the slopes
according to Equation (2.21), are displayed by the empty circles in Figure 2.7,
and by the filled circles in the upper small diagram of the same figure.
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FIGURE 2.8. Mean-square displacement of the mass center < [ Arem(t) 2> as a
function of time, for polymer-solvent interaction energies €ps, = 0.1, 0.5 and 0.8.
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2.2.1.5. Translational Diffusivity in Relation to Chain Dimensions.
The change in the diffusivity of the polymer with the solvent quality is an effect
which should be rather attributed to the change in the equilibrium spatial
distribution of chain atoms in response to their interaction with the surroundings.
In fact, Figure 2.4 already confirmed that the interatomic separations are
significantly perturbed by specific polymer-solvent interactions. These
perturbations are directly reflected on overall chain dimensions, such as < 2>,
and < s2>, as presented in Table 2.3, which in turn affects the chain diffusivity.
Figure 2.9 displays the change in diffusivity with radius of gyration, resulting from
runs performed for various €ys. The reduced diffusion coefficient is plotted against
the reciprocal of the reduced mean-square radius of gyration, <s2>,12 = Rg / o*.
The filled circles in Figure 2.9 represent the average values obtained from runs
of 104 steps and organized on the basis of grids of size A<s2>,12 = 0.05 in the
range 0.1 < &ps < 0.8 kcal/mol. A smooth linear dependence of Dy on 1/Rq follows
upon consideration of simulation durations > 10° steps, as shown in the figure.
The best fitting line is drawn. It is noted that here the variations in radius of
gyration do not arise from any change in chain length, but from the change in the
environment for a fixed chain length. Yet, the translational diffusion coefficient
exhibits a linear dependence on the radius of gyration in conformity with the
implications of Zimm's theory[29] of chain dynamics.

It has been recently pointed out[15] that in standard MD simulations of
finite-size systems subject to periodic boundary conditions, inasmuch as the
infinite dilution hypothesis does not strictly hold, an effective hydrodynamic
radius Ry, incorporating the interaction between the chain and all its images,
need be computed for a correct comparison of the results with the Kirkwood
theory. A practical approach to circumvent such periodic boundary artifacts in
finite-size systems is asserted to perform the MD simulations at constant Rg/L
ratios, when comparing the diffusivity of chains of various length.[15] This
approach has recently proven useful for verifying the scaling law D ~ Ny =V or D ~
Rg1.[17] In view of these arguments, the influence of the finite-system-size effect
on the presently obtained MD results might be questioned.
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FIGURE 2.9. Dependence of D; on the radius of gyration Rg, irrespective of the
specific solvent-polymer interaction. The abscissa is the reciprocal of the
reduced radius of gyration, written as 1/ < s2 >,1/2. Filled circles represent the
averages over grids of 1/ < s2>/1/2= 0.05. The empty triangles are found by
keeping the ratio Rg/L fixed at 0.21. The best fitting line through the MD results is
drawn. The corresponding equation is Dy = 4.391x104 + 4.190x10-3 (c* / Rg)
with a correlation coefficient of 0.950.

In the present simulations, although the chain length is kept fixed, the
radius of gyration changes depending on solvent quality. All simulations being
carried out in the same simulation box of size £,3= (L/c*)3= 9.03

accommodating an ensemble of 738 solvent molecules, an implicit increase in
the ratio Ry/L. is implemented with increasing €. Here, the ratio Rg/L is found to
increase from 0.13 to 0.29, as €ps varies from 0.1 to 0.8 kcal/mol.This increase
may be partly responsible for the observed decrease of D with increasing €ps.
Likewise, the observed linear dependence of D on Rg'1 in Figure 2.9 might be
biased with the same size effect, although these results are in satisfactory
agreement with the predictions of the Zimm theory. As an inspection of this
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effect, simulations have been repeated with different box sizes, keeping on the
other hand the density of the system fixed at p,= 1.054. As an illustrative
example, let us consider the reference value of Rg/L = 0.21 corresponding to the
case €ps = 0.4 kcal/mol = 0.4e*. Now, if one is interested in performing the
simulations at fixed Rg/L and py, this implies a choice of L= 6.7 and Ng= p, L3
-Np =294 for the case &, = 0.12€*, for example. Performing the simulations for
Ebs = 0.12e™ with those parameters, yields the result displayed by the empty
triangles at D, = 3.34 x 108 in Figures 2.7 and 2.9. A weak decrease in D, almost
ranging within statistical error limits of Green-Kubo integration method, is
observable. The close agreement with the original results, which have been
obtained with different Rg/L ratios, indicates that the size effect is practically
inconsequential in the investigated Rg/L range and chain length. A further check
would be to perform the simulations for the opposite case, say €ps = 0.56 €*
adopting now a cubic box of edge L, = 11.2, and Ns= 1470, and control whether
the polymer in a larger simulation box enjoys higher mobility. The result is shown
by the empty triangles located at D, = 2.28 x 103 in Figures 2.7 and 2.9. Only a
slight tendency for increased mobility in larger box is discernible in this latter
simulation, which again supports the idea that the size effect is of secondary
importance in the present simulation data. It could be desirable to check the
extreme case of €5 = 0.8 €%, as well. However, this task is not undertaken in view

of (a) the high computational cost and/or less precise data collected within

reasonable CPU time in this case, and (b) the fact that the results obtained for
€ps=0.12 and 0.56 kcal/mol do not invoke a further search in that direction.

2.2.1.6. Orientational Autocorrelation Functions. The first and second
orientational autocorrelation functions (OACF) for a unit vector m in motion are
defined by the following expressions for M{(t) and Ma(t), respectively.

Mi(t) =<m (0). m (t) > (2.22)

Mal(t) = ;— <3[m(0).m®PR-1> (2.23)
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Angular brackets in Equations (2.22) and (2.23) refer to the ensemble average
over all configurational transitions, evaluated here on the basis of snapshots at
various starting times. The first and second OACFs are normalized, i.e. start from
the value of 1 att = O, because m is a unit vector. Representation of local
dynamics in terms of OACFs is of interest, inasmuch as M1(t) is measured in
dielectric relaxation experiments, and Ma(t) in fluorescence anisotropy, NMR and
ESR. In principle, the reorientational motion of a unit vector rigidly embedded in
any direction on a chain segment can be extracted from the MD trajectories.
Here, the first OACF is evaluated for bond vectors and chain segments of various
sizes for the bead-spring model chain. In Section 2.2.2 on realistic model chains,
both M1{t) and Ma(t) will be analyzed.

The influence of solvent-polymer interaction on local motion of the
chain may be surveyed from the comparative analysis of the first orientational
autocorrelation functions obtained for bond vectors under various €ps. Figure
2.10 displays the time decay of the bond autocorrelations obtained from MD runs
of 2 x 105 time steps duration, for each of the cases €,5 = 0.2, 0.4 and 0.6. A
significant change in local orientational mobility is observed, the motion
becoming slower in the environment with larger €,s, as is conceivable in a

system subject to stronger polymer-solvent attractive interactions.
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FIGURE 2.10. Influence of solvent-polymer interaction on the orientational
relaxation of bond vectors. The time decays of < m(0) . m (1) > of unit vectors
along backbone bonds are shown for €55 = 0.2, 0.4 and 0.6 kcal / mol.

Figure 2.11 displays the time decays for a series of unit vectors m along
the end-to-end separation of segments of n bonds, for 1 <n < 12. gy is taken as
0.2 kcal/mol. The autocorrelation functions represent the averages over all
internal chain segments, excluding the terminal four atoms at both ends of the
chain, in order to eliminate the bias arising from end effects.
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FIGURE 2.11. Time decay of orientational correlation functions < m(0) . m (1) >
for unit vectors along the end-to-end separation of chain segments of n bonds,
forn = 1, 2, 3, 5, 8 and 12, as indicated. Curves are obtained from MD
simulations with €ps = 0.2 kcal/mol. The error bars in the cases of highest noise
are shown.

Figure 2.11 shows that relaxation rates depend strongly on the size of
the chain segment, being faster in the case of more localized motions i.e. shorter
segments, as expected. The slowest relaxation process would occur in the case
of n = N -1. (The latter is not shown since it decays to about 0.8 only, within the
time scale of the figure, and is subject to relatively large fluctuations.)

Simulations of 2 x 105 time steps (~1ns) have been performed to obtain
the decay curves of Figure 2.11. Yet, the curves from independent runs exhibit
considerable fluctuations, increasing with time and segment size. The statistical
error due to finite time averaging in computer experiments has been analyzed by
Zwanzig and Ailawadi.[30, 6] Accordingly, the MD results for a given normalized
correlation function C(t) differ from the exact value R(t) by the equation
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Rt)=C(ty+ 21/ T)"2[1 - C(t) ] (2.24)

where T is the total duration of simulation and T is the relaxation time associated

with the particular correlation function. Thus, the statistical error is proportional to
T-12in general, and increases from O att = 0 to (2T /T)"2 at long times. On the

basis of the characteristic times T of the orientational relaxation of segments of

various sizes, which will be considered in the next paragraph, the highest
statistical errors in Figure 2.11 are estimated to be R(t) - C(t) =0.140 £ 0.004 for n
2 8 at t =6000 At , and decreases to 0.081 + 0.002 at t =3000 At. It is pointed
out, however, that the error is reduced by a factor of N2 when an average over
N identical, separate particles/functions is possible.[30, 6] Although the precision
introduced by this approach depends upon the range of correlations in the chain,
the extra averaging over several internal chain segments of a given length, as
presently performed, reduces further the statistical noise of the correlation
functions. For example, the statistical errors at t = 6000 At decrease to 0.039 and
0.043 for n = 8 and 12, respectively, when the extra averaging over (N, -n-7)
internal segments of the chain is performed.These statistical uncertainties are
indicated by the error bars in Figure 2.11.

2.2.1.7. Dependence of Correlation Time on the_ Size of Chain
Segment in Motion. The dependence of the rate of orientational relaxation on
the size of chain segments involved in local motions has been a subject of
interest in previous studies. A correlation time T may be assigned to each size

segment either from the integral of the above time decay curves or from the
inverse of their initial slope.[31] The second approach is presently undertaken,
inasmuch as the correlation function for large n becomes statistically unreliable
at long times. The resulting correlation times are plotted in Figure 2.12 forn < 8
and €p5 = 0.1, 0.3, 0.5, 0.6 and 0.8 kcal/mol. An almost linear dependence
between T and n is observed in the logarithmic plot of Figure 2.12, supporting the
presence of a power law of the form T ~ n@between the size and the
orientational relaxation time of short chain segments in a given environment. For
£ps = 0.1 kcal/mol, the best fitting line indicates an exponent of a = 1.00 for the
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variation T ~ n2. The exponent increases with increasing quality of the solvent
and equates to 1.46 for £, =0.8 kcal/mol.
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FIGURE 2.12. Dependence of orientational correlation times T on the size of the
chain segment involved in local motion. log( t/ sec) is plotted against log n
where n is the number of bonds in the segment. The straight lines are drawn by
least square fit. -

In Rouse dynamics, the relaxation times scale as n2, whereas the Zimm theory
yields an exponent of 3v in the presence of hydrodynamic interactions, v
assuming the values 0.5 and 0.6 in theta and good soivents, respectively. The
Rouse-Zimm model! is developed for long chains consisting of several Gaussian
subchains, and gives a good description of low frequency motions in polymers.
In the so-called sub-Rouse regime, on the other hand, which involves small-
wavelength or intermediate frequency range motions, a weaker dependence on
the size of the moving unit is predicted.[32-34] Both analytical[34] and
numerical[32] analysis of the dispersion of normal relaxational modes for a
segment of n = 16 coupled bonds indicate that, except for a few slowest modes, a
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plateau value is approached for the frequency of all relaxational modes, and an
almost linear dependence of terminal mode relaxation rate on n is observed up
to n =150. This weaker dependence of relaxation rate on the size of the kinetic
unit, compared to classical Rouse-Zimm model, has been thoroughly discussed
in previous work.[34] Arguments on the reduced mobility of short constrained
chain segments associated with their smaller number of degrees of freedom, go
back to the original work of Kuhn.[23] The present simulations lend support to
those arguments. The exponent a lies below the Rouse-Zimm values, in general.
Furthermore, the present simulations indicate that the exponent, not only
assumes lower values in high frequency regime, but also changes depending on
the quality of the solvent. Interestingly enough, the lowest exponent is observed
here in the case of the most compact chains (i.e. for €ps =0.1 kcal/mol), which is
intrinsically subject to strongest intramolecular constraints. In analogy with the
increase of the Zimm exponent from 1.5 to 1.8 with solvent quality, the exponent
a shows a systematic increase as the chain. assumes more expanded
configurations.



36

2.2.2. Freely-Rotating Chain and Polyethylene Chain

Two competing effects prescribe the static and dynamic properties of
the polymer chain in solution: (a) the intramolecular potentials and (b) the
intermolecular nonbonded interactions between the polymer beads and
surrounding solvent molecules. In the following, simulation results for the freely
rotating chain (FRC) and the polyethylene chain (PE) will be examined in three
different solvent environment with eps = 0.2, 0.5, and 0.8 kcal / mol and the
influence of these two competing effects on the properties of the polymers will be

discussed. Simulations are carried out for 127,000 steps of total duration at each
€ps Value.

2.2.21. OQOverall Chain Dimensions. Table 2.4 summarizes the simulation
results for the overall molecular chain dimensions <r2> and <s2>, and the
expansion coefficient a. Simulations carried out at different eps = 0.2, 0.5, and 0.8
kcal / mol with the FRC and PE models will be named FRC-2, FRC-5, FRC-8, PE-
2 , PE-5 and PE-8, as indicated in the table.

TABLE 2.4. Mean-square chain dimensions and expansion coefficients o as a
function of solvent quality

Simulation |  &psr <r2> (A2) <s2> (A2) o

FRC-2 0.2 39.65 + 16.48 11.08 £ 0.44 0.544
FRC-5 0.5 70.64 £ 26.83 15.38 £ 1.17 0.726
FRC-8 0.8 291.24 + 82.60 39.58 + 5.54 1.475
PE-2 0.2 35.65 + 18.95 12.17 £ 0.87 0.351
PE-5 0.5 214.98 + 33.02 29.96 + 6.49 0.861
PE-8 0.8 495.14 £ 143.76 | 59.34 £ 6.49 1.307

In the calculation of o by Equation (2.14), the unperturbed mean-square
end-to-end separation < r2>, is given by[2]
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<>o=nl?[(1+0) (1-0)"-(2a/n) (1-o") (1-0)2?] (2.25)

for the FRC model of n = Nj,- 1 bonds, with o = cos 6, = 1/3, and by

< >,=nl? [ (E + <T>) (E- <T>)" -

(2<T>/n) (E- <T>") (E - <T>)? |y (2.26)

for the PE model, using the rotational isomeric state formalism. Here E is the
identity matrix of order 3, T is the transformation matrix operating on conventional
bond-based frames,[2] the angular brackets refer to the averaging of the
elements of T using the potential given in Equation (2.10), and the subscript 11
refer to the element 11 of the matrix in square brackets. The term <T>"is
conveniently calculated by transformation of <T> into the diagonal matrix of its
eigenvalues. Application of Equations (2.25) and (2.26) yield <r2>, / 6*2= 18.36
and 39.76 for FRC and PE models, respectively. The expansion coefficients
calculated on the basis of these values, indicate the occurrence of poor solvent
conditions when €ps = 0.2 kcal/mol, appreximately theta conditions at €ps = 0.5
kcal/mol, and finally relatively good solvent environment with €ps = 0.8 kcal/mol.
Thus, the present choice of polymer-solvent interaction energy parameters
allows for the examination of the dynamics of both model chains under three
distinct states, i.e. contracted, unperturbed, and expanded configurations. It
should be noted that these specific conditions resuit from the counterplay
between intermolecular and intrachain potentials, adopted in the present study,
and should not be uniquely attributed to the choice of the parameter €ps. In fact,

adoption of the same polymer-solvent interaction parameters is observed to lead
to good solvent conditions for the bead-spring mode! chain in Section 2.2.1.1.,
where the FENE potential between bonded units, and the shifted-force potential
among beads separated by two or more bonds are used. The latter interaction, in
particular, places severe constraints as to the spatial location of near
neighboring (separated by 2 or 3 bonds) beads, forcing them to be sufficiently
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apart from each other, and consequently leading to more expanded chain
configurations.

2.2.2.2. Translational Diffusivity as a Function of Solvent-Polymer
Interaction. Figure 2.13 displays the reduced translational diffusivities (Dy =D
(m* / €*)¥2/G*) of the two model chains as a function of eps. The circles are the
simulation results, obtained from the Einstein relationship, given by Equation
(2.21). In this figure, the FRC model exhibits larger diffusivity compared to PE, as
might be expected from the increased intrinsic flexibility of the former. The
dependence of D on solvent quality is more significant, however. The slower
diffusion of the chains with increasing €ps is mainly attributed to the expansion of
the chain as the interactions with the solvent get more favorable. Similar trends,
i.e. an inverse linear relationship between D and €ps, have been obtained for the
bead-spring model chain in Section 2.2.1.4, in conformity with the present
results. Careful examination of the possible changes in D due to artificial
increases in hydrodynamic radius (resulting from the physically unrealistic
interaction of polymer beads with image beads), has indicated that this periodic
boundary artifact is negligibly small for the bead-spring model chains of 30
beads in the adopted simulation boxes. Except for PE-8, the chains investigated
in the present section assume even less expanded configurations, compared to
those of bead-spring model chains, and such periodic boundary artifacts should
be further reduced. Thus, the linear decrease of D with €ps appears as a general

property change associated with solvent quality, irrespective of the particular
structural characteristics of the polymer.
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FIGURE 2.13. Dependence of polymer transiational diffusivity on polymer-
solvent interaction. Reduced diffusion coefficient D, is plotted against polymer-
solvent interaction energy €ps. Filled and empty circles represent the average D,
values for the respective FRC and PE models, calculated by the Einstein formula.

2.2.2.3. Pair-Correlation Functions. Figure 2.14 illustrates polymer-
solvent pair correlation function gpg(r) for the model chains FRC-5 and PE-5 (See
Section 2.2.1.2 for definitions). A plateau region, which is not observed in bead-
spring chains at the same €pg value, appears between the first two peaks when
the polymer chain is constrained by bond bending and torsional potentials. The
larger gps(r) values of PE at short separations indicate its more expanded
configuration relative to the FRC at the same €ps.
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FIGURE 2.14. Radial distribution function gps(r) for polymer bead-solvent pairs
as a function of the reduced separation r / . Empty and filled circles represent

dbs(r) for FRC-5 and PE-5, respectively. The upper small diagram compares
gps(r) for FRC-8 and PE-5.

Pair-correlation functions analyzed for various €ps (not shown) indicated
the following features: The oscillations of gps(r) in the FRC model are found to
become more pronounced as the quality of the solvent is improved, in conformity
with prior observations on bead-spring model chains. Although a similar trend is
observed with PE in poor solvent, an asymptotic behavior is reached at epg = 0.5
kcal/mol, and the shape of the radial distribution function does not change upon
further increase in solvent quality. More interestingly, the pair correlation function
of FRC-8 closely resembles that of PE-5, as illustrated in the insertion of Figure
2.14. FRC-5 and PE-2 also exhibit similar patterns. This suggests that in the
presence of relatively favorable interactions with the surroundings, leading to
lower energy or more stable conformations on a local scale, the decreased
flexibility of FRC is manifested by the same behavior as that of a polyethylenelike
chain which, itself, is locally stiff due to torsional potentials hindering bond
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rotations, but enjoys some freedom due to weaker interaction with the medium.
Thus, irrespective of the origin -intramolecular or intermolecular- of local reduced

flexibility, the same functional form is obtained in two distinct cases for the pair
correlation function.

Figure 2.15 displays the intrachain pair correlation functions Opb(r) for
FRC and PE models at eps=0.5 kcal/mol, computed on the basis of non-bonded
beads separated by at least two bonds along the polymer backbone.The first
sharp peak appears at about r/ ¢* = 0.9 on both curves. This corresponds to the
reduced distance between atoms Cjand Ci,2 which are constrained around the
tetrahedral angle in both cases. The particular choice of parameters in the
torsional potential Vg (¢i) restricts the dihedral angle values around 0° and
1120° and thereby constrains the separation of atoms Cjand Ci,3. In fact, the
second peak at r/ c* = 1.43 on the curve of the PE-5 corresponds to the trans
placement of the bond (Cj;1 -Cis2). Likewise, two consecutive bonds at the traris
state place backbone atoms separated by 4 bonds at r / ¢* = 1.86 , which
coincides with the third peak observed in PE-5. A similar pattern can be
observed on the gpp(r) of FRC-8 as shown on the inlet of Figure 2.15. Thus, in
parallel with the relative behavior of PE-5 and FRC-8, displayed in the inset of
Figure 2.14, the existence of more favorable polymer-solvent interactions is
manifested as if a rotational barrier were imposed on the dihedral angles of FRC.
For comparative purposes, gpp(r) of FRC-2 is also given in the insertion of Figure
2.15. -

These observations stipulate the competing contributions of inter- and
intramolecular effects in prescribing the particular shapes of pair-correlation
functions. And attempts to attribute a particular shape of g;jj(r) to entirely
intrachain constraints or, alternatively, to environmental effects might fail, if one
considers exclusively g (r) as a measure of characterizing chain behavior.
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FIGURE 2.15. Radial distribution function gpp(r) for pairs of non-bonded units
along the polymer chain as a function of the reduced separation r / . Empty and
filled circles represent gpp(r) for FRC-5 and PE-5, respectively. The upper small
diagram displays gpp(r) for FRC-2 and FRC-8.

2.2.2.4. Static _Scattering Functions. For a chain composed -of Np
scattering units, the static scattering function S(qg), also called the particle
scattering function, is defined as

Np Np

Sla)=—- <3 3 expl-iq. (- )] > (2.27)
Nbp =1 k=1
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where rjand rk are the respective position vectors of particles j and k, q is the
scattering wavevector with magnitude q = (4 /X) sin (8/ 2), depending on the
wavelength A of the radiation and the scattering angle 8. The angular brackets
refer to a space and ensemble average over all equilibrium configurations of the
chain. Averaging over all orientations of the vector q in space, and taking the
real part of the exponential function yields the expression

No sin gr;
s =1 <y Y ik, (2.28)

where rik =11} - rgl. The ensemble average represented by angular brackets is
evaluated here as a time average over several snapshots in a given run.

The static scattering functions for the investigated model chains in
different solvents are presented in the form of Kratky plots in Figures 2.16(a) and
2.16(b). Figure 2.16(a) displays the MD results for FRC-2, FRC-5 and FRC-8.
The oscillations are observed to damp out with increasing strength of polymer-
solvent interactions. In Figure 2.16(b), PE model chains exhibit a similar behavior
at €ps =0.2 and 0.5 kcal/mol, but the shape of the scattering function does not
undergo further change upon increase of the polymer-solvent interaction to €pg =
0.8 kcal/mol. This behavior, in fact, is in conformity with the previous results on
pair correlation functions gpb(r) and gps(r). Moreover, the Kratky plot of FRC-8 is
almost coincident with the plots for the PE-5 or PE-8. The fact that the local
behavior of FRC in the presence of stronger interactions with the surroundings
resembles that of a chain with constrained rotational angles in a less interactive
medium, has been already commented on in the preceding section.
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FIGURE 2.16. Kratky plots of static scattering function, as S(qr)qr? against qr =
qo* (a) for FRC-2, FRC-5 and FRC-8. (b) for PE-2, PE-5 and PE-8.
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A wider range of Kratky plot, covering highly localized domains up to qr
=qo = 10, is displayed in Figure 2.17. The curves for €ps = 0.5 kcal/mol are
plotted only, as indicated by the labels. At large g values, domains of the size of
small amplitude fluctuations about minimum energy states are observed, and
gradually differences between FRC and PE model chains vanish. This may be
explained by the fact that in this range, mostly stretching and bending potentials,
which are taken to be the same for both chains, are operative.Torsional motions
of backbone bonds occur through vibrational motions only in this g-range, and

no contribution from large jumps between rotational isomeric states is
observable.

Sq,)q,?

FIGURE 2.17. Representation of Kratky plots on a wider g, (= 0-10) range. The
curves for FRC-5 (empty circles) and PE-5 (filled circles) are shown. S(qr)qs? vs
qr curves theoretically predicted for freely jointed Gaussian chains of N = 10 and
30 units, and the Debye limit are also drawn.

For comparative purposes, theoretical curves are piotted in Figure 2.17
using the expression
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S(@) = NT{1+2(%- 1)1 [1-N1(1-e)1(1-e0N)]) (2.29)

for freely jointed Gaussian chains containing N segments_[35] Here the variable
o is given by o = g2a?/6, where 3 is the statistical segment length evaluated
from Rg? = Na2/6. The curves are drawn for chains of N = 10 and 30 units,
adopting Rq of PE-5 from simulations. S(q) for the Debye limit [35] with k2 = aN is
also shown in the figure. The latter is evaluated from

S(q) = (2 /K% (6K + K2 - 1) (2.30)

These results indicate that Equation (2.29), with suitable choice of parameters,
may provide a qualitative representation of the g-dependence of the static
scattering function in the high q regime. Yet, a rigorous theoretical interpretation
or reproduction of the detailed form of the scattering function, including its
dependence on intrachain and solvent effects, is not possible with current
analytical approaches, and MD simulations appear to be of use in estimating
best fitting parameters to be conveniently adopted in existing closed form
expressions.[36, 35]

2.2.2.5. Intermediate Scattering Functions. The intermediate scattering
function S(q,t) given by

Ny Np

San=—1- <Y Y e {-a.[50-n®1}>  (231)
Nb j=1 k=1
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is transformed into a form similar to Equation (2.28), by replacing rjk with rjx = |
rj(0) - rk()l. The angular brackets here refer to an average over different initial
times. The dynamic scattering behavior of a polymer chain can be divided into
three different regimes. [35, 37] At low frequencies, identified by gRg < 1, the
diffusion of the whole polymer chain is observed. At large q values (qglo = 1),
local motions dominate. And in the intermediate region defined by qRg= 1 and
glo < 1, the coupled conformational changes chain segments operate. The time
decays of S(q,t) for FRC and PE in different solvents are plotted as In[S{qy, t/ At)
/S(qr, 0)] vs t/ At in Figure 2.18, using q; = 4 which corresponds to the regime of
local motions. Clearly, at t=0, S(q, 0) is simply the static scattering function, S(q).
The increased flexibility of FRC on & iocal scale, compared to PE, is verified from
the faster decay of the curves for FRC. On the other hand, decay curves for the
intermediate region (not shown), using g; = 1 for instance, indicate that the
differences in the dynamic behavior of the respective chains diminish when the
chains are observed from a sufficiently wide time window.

In[S(qr ,t/ AD/S(q, 0)]

_20 " 1 1 L 1 I 1 L L L L 1 i 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
t/ At

FIGURE 2.18. Time decay of In [S(qr, t/ At) / S(qr, 0)) at gr = g 6" = 4.0 showing
local dynamics for FRC-2, 5, 8 and PE-2, 5, 8.
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The first cumulant, Q, which is defined as

Qe lim {a In [S(q,t)/S(q,O)]} 2.32)
-0

ot

permits the representation of the dispersion of the intermediate scattering
function over a wide frequency range.[35, 37] Figure 2.19 displays the g-
dependence of Q,/q,2 for FRC-5, where Q, is the reduced cumulant in which t
and q are replaced by t / At and q, respectively. The evaluation of first cumulants
from the time decay of intermediate scattering functions is a tedious and
somewhat arbitrary task, inasmuch as the results are quite sensitive to the time
interval selected for the estimation of Q. For this reason, two different methods
have been adopted for determining Q,: (a) the initial slopes of In[S(qr, t/ At)
/S(qr.0)] decay curves, and (b) the coefficient of the first order term in fifth order
polynomials fitted by least squares to In[S(qr, t / At) /S(qr,0)] curves. The
corresponding results are shown by the empty and filled circles, respectively.
The method (b) might slightly overestimate the rates, as apparent from the
vertical shift between the results from the two methods. Yet, the same qualitative
trend is followed in both cases, lending support to the generality of the observed
dependence of first cumulants on g. The three different g regimes can be
tentatively distinguished on the graph, conformmg with the particular shape
predicted by Akcasu et al.[35] Comparison of the Q//q,2 against q, curves drawn
for FRC-5 and PE-5 (not shown)have indicated that the structural differences
between PE and FRC do not appear explicitly on logarithmic plot. But, the
verification of the specific dependence of Q/q,2 on q; , which, to our knowledge,
has not been achieved in previous MD studies, is interesting enough.
Furthermore, the oscillations in the curves in the higher g-regime might be also
consistent with previous theoretical and experimental results.[38]
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FIGURE 2.19. Dependence of first cumulant on g, represented in reduced form
Q (qr, t/At) / qr? vs gy for FRC-5. Q, values are determined from: (a) the initial
slopes of In[S(qy, t/ At) /S(qr,0)] decay curves (empty circles), and (b) the
coefficient of the first order term in fifth order polynomials fitted by least squares
to In[S(qr, t / At) /S(qr,0)] curves (filled circles).

2.2.2.6. Orientational Autocorrelation Functions. Here, the first and
second OACFs, given by the respective Equations (2.22) and (2.23), are
evaluated for the following two types of unit vectors: (a) my, representing unit
vectors along the bonds of the chain and (b) m, , the out-of-plane vectors

perpendicular to the local planes defined by successive pairs of bonds. The
autocorrelations are computed from the average over unit vectors appended to
all atoms along the chain, excluding the terminal four atoms at both ends of the
chain. Figures 2.20(a) and 2.20(b) give the first and second OACFs,
respectively, obtained for the vectors myjin FRC and PE models at various €ps.
The relative importance of intra- and intermolecular factors in controlling local
chain dynamics can be reckoned from these graphs. FRC and PE exhibit quite
distinct relaxation time scales in both figures, indicating that intramolecular
constraints are of primary importance in determining the rate of local relaxation
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processes. Intermolecular forces due to interactions with the solvent molecules
affect the rates of OACF decays in a given type of chain towards the long time
portions of the curves, in particular. PE appears to be more strongly affected by
solvent effect, compared to FRC. Yet, the solvent interaction is not sufficient to
compensate for effects due to specific chain structure: In contrast to the
equilibrium characteristics of the two types of chains in different solvents,
revealing for example close similarities between PE-5 and FRC-8 as discussed
above, the dynamic behaviors of PE and FRC are quite distinct and this
difference is preserved irrespective of the solvent quality. This suggests that
intramolecular conformational characteristics play a predominant role in
prescribing local chain dynamics compared to solvent effects.

It should be noted that in the absence of bending and torsional
constraints, the local dynamics of the bead-spring model chains in solution is
found to be more significantly affected by the specific solvent effect in Section
2.2.1.6. Inclusion of intramolecular conformational potentials decreases the
apparent effect of solvent. This is understandable, since the solvent effect now
competes with effects from intrachain conformational potentials.
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FIGURE 2.20. Time decay of (a) the first orientational autocorrelation function
M4 (t) and (b) the second orientational autocorrelation function Ma(t) for unit
vectors my along the bonds, for FRC-2, 5, 8 and PE-2, 5, 8.
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2.2.2.7. Streched Exponetial Forms of OACFs. The stretched
exponential expression

Mi(t) =exp {- (t/Ti)P} (2.33)

with 0 £ 3 < 1 has found widespread use in literature for representing data on
M+(t) and/or M2(1).[39] Tjis the characteristic relaxation time at which M;(t) decays
to 1/e, with i = 1, 2. Equation (2.33) may be rewritten as

log [-In Mj(t)]= Blogt-BlogT; (2.34)

which permits easier graphical evaluation of f and 7. Such log [-In Mj(t)] vs log t
plots are displayed in Figures 2.21(a) and 2.21(b), for i = 1 and 2, respectively.
Results for FRC-2, FRC-8, PE-2 and PE-8 are shown in the figures, as indicated,
those for FRC-5 and PE-5 being not displayed for clarity. Again, the specific
intramolecular characteristics of the chain are more important in prescribing the
time scale of motion, rather than the solvent effect. This is obvious from the time
scale difference between FRC and PE, which is definitely large compared to that
occurring between FRC-2 and FRC-8 (or PE-2 and PE-8). The solvent effect
appears in these logarithmic plots as a weak perturbation, whereas
intramolecular conformational potentials exert a dramatic effect on the time scale
of the local motions.
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Tables 2.5 and 2.6 summarize the stretched exponential parameters Tj

and B evaluated for the first and second OACFs of vectors my and m_,
repectively

TABLE 2.5. Stretched exponential parameters for OACF my

Model Ty (ps) B1 To (ps) B o /T
FRC-2 6.52 0.60 1.18 0.62 5.53
FRC-5 8.28 0.58 1.40 0.61 5.91
FRC-8 8.39 0.58 1.42 0.61 5.91
PE-2 38.0 0.65 7.30 0.53 5.21
PE-5 45.7 0.61 10.7 0.54 4.27
PE-8 74.8 0.56 14.1 0.51 5.30
TABLE 2.6. Stretched exponential parameters for OACF m

Model 4 (ps) B1 T2 (ps) B2 Y/ %
FRC-2 1.88 0.72 0.61 0.55 3.09
FRC-5 2.18 0.70 0.69 0.54 3.17
FRC-8 2.06 0.71 0.70 0.47 2.94
PE-2 23.6 0.67 8.68 0.48 2.72
PE-5 16.3 0.66 6.61 0.47 2.47
PE-8 16.7 0.63 6.51 0.43 2.57
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Several features emerge from the analysis of the results presented in
these tables:

(a) In agreement with the above observations, the solvent effect is significantly
weaker compared to the effect of intrinsic chain structure, except for the
relaxation times of my in PE. This general feature is inferred from the close
values of the parameters T (or B ) obtained for a given type of chain subject to
different interactions with the surroundings. In particular, the exponents B are
quite insensitive to solvent effect.

(b) In general, the exponents B decrease with increasing intrachain constraints.
This final property has lead to an interpretation of the exponent B as a measure
of cooperativity between chain segments during relaxational motions. [40]

(c) The relative time scale of the decay of the OACFs associated with the two
types of reference vectors needs attention. For the vector m in FRC and PE, the
correlation times of the first and second OACFs differ by a factor of T1/To =
5.78+0.25 and 4.93+0.66, respectively, whereas for m | in FRC and PE the
respective ratios are 3.07+0.13 and 2.59+0.13, as may be deduced from the last
column in Tables 2.5 and 2.6. The latter turn out to be relatively close to the
values 2.14 and 2.10 obtained for T1/ T2 of m  in MD simulations of bulk FRC

and PE, respectively.[18] For mjj, on the other hand, departing from the behavior
in solution, bulk polymers were shown to exhibit significant increase in relaxation
times, and a sharp difference (T1/7T2 ~ 102) between the time scales of the two
OACFs.[18] That this ratio is decreased to about 5.0 in solution, in agreement
with present results, is also confirmed by recent BD simulations of PE chains.[39]

(d) The anisotropy of motion for chain segments, which is a well known
phenomena for polymers in solution or in the bulk state,[41, 18] is affected by
solvent effect. In general, the orientational relaxation ot vectors lying along the
chain axis (my)) is recognized to be slower than that of the out-of plane vector
(m}), this being a consequence of chain connectivity. This behavior is, in fact,
verified here by the relative values of the relaxation times for my; and m,. For
example, the mean ratios Ty /T1, 1 and Tz, / T2, are larger than unity. They are
calculated as 3.78+0.30 and 2.00£0.07, respectively, for FRC model chains. As
to the PE model, it would be inaccurate to report mean values for T1 /7Ty 1 or

Toy/ T2 o, due to large fluctuations arising from solvent effect. In particular, for
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PE chains in the highly contracted state (PE-2) To | < T2,1 , in contrast to the
general trend. Thus, the motions along the backbone and those perpendicular to
it, which might be identified as the axial and lateral motions, are of comparable
rate in the highly contracted state of PE. This is understandable in view of the
gradual weakening of the constraints from connectivity along the chain contour,
with contraction of the chain configuration. Accordingly, T1 ) and Tp, increase
as PE expands from o = 0.351 to o = 1.307 whereas an opposite change occurs
in T, 1. This invites attention to the role of solvent in perturbing the qualitative
nature of the motion anisotropy, even though its effect on the absolute time
scales of relaxation is not as significant as that of intramolecular constraints.

2.2.2.8. Dependence of Correlation Time on the Size of Chain
Segment in Motion. The orientational relaxation of chain segments containing
more than a single bond are analyzed in various €ps. Equation (2.22) is used to

calculate the first OACF for unit vectors lying along chain segments of different
sizes, characterized by the number of bonds n. A correlation time T can be

assigned to each segment size from the inverse of the initial slopes of the OACF
curves. Figure 2.22 displays log T vs log n curves for FRC and PE model chains
in various solvents with indicated €pg values.

In accordance with the results obtained for bead-spring model chains in
‘Section 2.2.1.7, a linear dependence is observed on the logarithmic scale. Thus,
a power law of the form T ~ nZ seems applicable for short segments with n < 8.

The exponent a is found to be equal to 0.66, 0.89 and 1.13 for PE-2, PE-5 and
PE-8, respectively; whereas it changes between 0.90 and 0.98 for FRC2-8. For
bead-spring model chains in solution, the exponent a has been found to
increase in the range 1.0 < a <1.5 with increasing solvent quality. In summary, for
all model chains studied by MD simulations,the value of a increases as the
intermolecular interactions get more favorable. Yet, the values of the exponent a
obtained by MD simulations in various solvent lie below the Rouse and Zimm
exponents, which equate to 2 and 3v, respectively, v assuming the respective
values 0.5 and 0.6 in theta and good solvent conditions. This latter result lends
support to the existence of a so-called sub-Rouse regime, in which an exponent
2 lower than the Rouse-Zimm values applies.[33, 34] As a final remark, a definite
time scale difference is observed in the orientational relaxation of FRC and PE
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in parallel with the behavior discussed in the previous section, and PE seems to
be more affected by the changes in solvent quality.

-10.0
-10.5
>
S -110
0
2
-11.5 @ FRC-2 © PE-2
' FRC-5 ™ PE-5
x FRC-8 © PE-8
_120 2 | 1 1 1 L 1 1 1
0.0 02 0.4 06 08 1.0

log n

FIGURE 2.22. Dependence of the orientational correlation times T on the size of
the chain segment involved in local motion. log(t /s) vs. logn is plotted for FRC-2,
5, 8 and PE-2, 5, 8, where n is the number of bonds in the chain segment. The
straight lines are drawn by least square fit. .
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3. DYNAMICS OF HELICAL POLYPEPTIDES IN VACUUM
AND IN WATER

3.1. Theoretical Background

3.1.1. Biological Activity of Proteins

Proteins play important roles in virtually all biological processes. [42]
They may be classified mainly into three types: fibrous, membrane and
globular.[43] Fibrous proteins form the major component of structures, such as
muscle, skin, tendon, bone and hair. Membrane proteins reside in cellular
membranes, where they mediate the exchange of small molecules and
information across cell boundaries. Enzymes, which are globular proteins, are
responsible for the catalysis and regulation of the chemical reactions that take
place in biological systems. Chemical transformations in vivo rarely proceed at
perceptible rates in the absence of enzymes. Other biological processes in which
proteins play a major role are the immune protection, the generation and
transmission . of nerve impulses and the control of growth and differentiation of
cells.[42] Thousands of different types of proteins exist to participate in this great
number and variety of biological events.

3.1.2. Structure of Proteins

Proteins are linear unbranched polymer chains made up of tens to
thousands of monomer units. The monomers are the naturally occurring amino
acids, which are successively linked to each other by peptide bonds. A chain
composed of amino acids is called a polypeptide or simply a peptide. If a
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polypeptide consists of more than 50 amino acids, it is placed in the protein
category. [44]

Naturally occurring amino acids have the following general chemical
structure

NH3 COO~

where the amino (NH3*) and carboxyl (COO") functional groups attached to the
alpha carbon are protonated and deprotonated, respectively, at neutral pH. Thus,
the ionic form of the amino acids predominates at neutral pH. Each amino acid is
distinguished by the structure of the R group. The R group can vary from a single
hydrogen atom in glycine to a more complex structure such as the guanidine
group in arginine. The chemical structures of the R groups, the names and the
commonly used three-letter codes for the twenty amino acids found in proteins
are given in Appendix B. The side chain units are successively designated by the
symbols B, v, 8, e and ¢ (e.g. CB, Cv, etc.), starting from the group connected to the
Co. In all twenty natural amino acids, except glycine, the o carbon is an
asymmetric center, attached to four different groups. Among the two
stereoisomers, that are called the L and D configurations, only L-amino acids are
known to occur in proteins. The carboxyl group of one amino acid is joined to the
amino group of another and a water molecule is lost by the formation of a peptide
bond. Figure 3.1 displays a section of an a-L-polypeptide chain in all-trans

conformation.[45]
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FIGURE 3.1 A section of an o-L-polypeptide chain in all-trans conformation.[45]

A polypeptide chain has a direction due to the two distinct terminal groups
existing at the ends, namely the o amino group (N-terminal) and the o carboxyl
group (C-terminal). Residues are conventionally indexed serially from 1 to n,
starting from the N-terminus. The individual amino acids differ according to their
R-group side chains. The primary structure of the chain is determined by
specifying the identity and sequence of all amino acids in the polypeptide.

Considering all bond lengths and angles to be fixed at their equilibrium
values, the conformation of a polypeptide is determined by the rotations of the
backbone and side chain dihedral angles. An important aspect of the
polypeptide structure is that the peptide bond usually occurs in planar trans
conformation due to its partial double-bond character. Therefore, the
specification of all ¢j and w; rotations about the respective N-C® and C%-C bonds
is sufficient to uniquely determine the conformation of the polypeptide backbone.
The specification of rotation angles in biopolymers is different from the Flory
notation[2], which is adopted in the Section 2 on polymer dynamics. In Flory
notation, the trans state is assigned a rotational angle of 0°, whereas in Bio-
notation, which will be adopted in current section of this thesis on polypeptides,
the cis conformation is taken as 0° and trans is 180° (or -180°).
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Polypeptides can fold into regular structures. Patterns of hydrogen
bonding between carbonyl oxygens and amide hydrogens of the backbone,
combined with repeating values of o¢;j and i angles define the regular secondary
structures observed in polypeptides. a-helix and B-sheet are the two common
secondary structures observed in proteins. The B-sheet structure involves

repeating patterns of hydrogen bonds between distant parts of the backbone,
whereas helices involve local H-bonding.

The right-handed a-helix, shown in Figure 3.2, is formed with ¢ = -57°
and y = -47°. The tightly coiled polypeptide main chain forms the inner part of the
rod, and the side chains extend outward. The a-helix is stabilized by the H-bonds
between the CO group of residue i and the NH group of residue (i+4) along the
backbone. The H-bonds are nearly parallel to the helix axis, with all CO groups
pointing toward the C-terminal. The peptide bond has a substantial dipole
moment and in helix structure the peptide dipole moments add end-to-end
across the H-bonds to generate a macrodipole, with positive and negative poles
at the N- and C-terminus, respectively.[46] The pitch, or repeat, of an ideal .-
helix is 3.6 residues per turn. For that pitch, the rise per residue along the helix
axis is 1.5 A, or 5.4 A per turn. Thus, amino acids that are placed three or four
residues apart in the linear sequence are spatially quite close to one another,
whereas amino acids two residues apart are situated on opposite sides of the
helix. [47] Three NH and three CO groups at the respective N- and C-terminus of
the polypeptide do not have H-bonding partners along the backbone. They often
form H-bonds with the solvent or participate in helix-capping interactions with the
side chains of nearby residues. The o helices observed in proteins are right-
handed, because in the left-handed a-helix (¢ = 57° and y = 47°) each CP atom
would collide with the following turn on the helix. However, isolated residues with
left-handed helix torsions are fairly common, especially glycine.

The only other common type of repeating secondary structure in
proteins is the extended B-pleated sheet. Figure 3.3 displays a polypeptide in B-
sheet conformation. This is almost fully extended rather than being tightly coiled
as in the a-helix. The axial distance between adjacent amino acids is 3.5 A, in
contrast to 1.5 A for the o-helix. The nonlocal H-bonds are between different
strands of the same polypeptide chain or of different chains. The H-bonded
strands in a B-sheet can run in the same direction (parallel B-sheet with ¢ =
-119° and y = 113°) or in opposite directions (antiparallel -sheet with ¢ =
-139°, y = 135°).[45]
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FIGURE 3.2. Right-handed a-helix structure(42]



FIGURE 3.3. B-pleated sheet structure[42]

63
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Two dimensional plots of the backbone ¢ and y angles, known as
Ramachandran plots, show clearly the regions of repeating secondary structures
and regions of unfavorable steric overlaps. Figure 3.4 displays the
Ramachandran plot for all amino acid residues, except glycine and proline. This
plot is obtained from the crystal structures of 310 proteins.[48] The major regions
observed on the plot are the right-handed a-helical cluster in the lower left, the
broad region of extended B strands in upper left , and the sparsely populated left-
handed o-helical region in the upper right quadrants. Vacant areas are the
conformations that place atoms unfavorably close to each other within the
dipeptide unit. The asymmetry of the plot results from the steric clashes with the
CB atoms of the side chains. The Ramachandran diagram for glycine is centrally
symmetric, i.e. symmetric with respect to any line that passes through the center
(0 = 0° and wy = 0°). This is a consequence of the symmetry of the glycine
residue.[45]

Other secondary structures, such as turns, connections and compact
loops, exist which are composed of well-ordered but non-repeating
conformations. These structures are different from random coil conformation,
because they are compact and stabilized by backbone H-bonds and side-chain-
to-main-chain H-bonds. For example, B-turns are formed when a polypeptide
chain makes a sharp 180° reversal, which is generally stabilized by a local
CO;....NHj,3 hydrogen bond.[48]

The secondary structural elements assemble in various ways into larger
modules called supersecondary structures, such as B-hairpin, the p/o/f unit, and
the a/o. hairpin. These in turn form the basis of larger domain structures. The
high-level architecture of a protein, in which helices, sheets and other secondary
structures fit together, is called the tertiary structure. The unique tertiary structure
of a globular protein, known as its native or folded state, is extremely compact
and determines its biological activity.

There is still a higher level of organization in some proteins, which is
called the quaternary structure.This structure is found in oligomeric proteins that
exist as aggregates of two or more polypeptide chains, which are linked together
by noncovalent forces.
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FIGURE 3.4. Ramachandran plot for all amino acid residues, except proline and
glycine, obtained from the crystal structures of 310 proteins[48]
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3.1.3. The Protein Folding Problem

A protein molecule adopts its unique, three-dimensional structure
spontaneously under physiological conditions, i.e. in aqueous solution near
neutral pH and at 20-40°C. [43, 49, 3] This native structure can be denatured
often reversibly by elevated temperature, acidic or basic pH and some
nonagueous solvents, and the protein unfolds to an ensemble of more expanded
conformations. The protein in coil conformation may refold to the unique, native
state in vitro conditions, with full restoration of its biological activity.

The transition of the polypeptide chain from a disordered state to the
ordered, native state is called protein folding.[43, 49, 3] It is well established that
this transition is directed primarily by the amino acid sequence of the chain. The
protein folding problem is to understand how the primary structure of the chain
determines its three-dimensional structure. The solution of this fundamental
problem will be a breakthrough in biomedicine, which will enable the design of
novel proteins and drugs.

Several important experimental observations have been made about
the native states of proteins and the folding process, which will be summarized
below:

(a) The protein folding transition of small globular proteins exhibits two-state
kinetics, in which the folded and unfolded states with respective concentrations
of [N] and [U] interconvert with negligible population of stable intermediates.[49]
The difference in free energy between the native and unfolded states is given by

AG =~ RT In Kunf (31)

where Kyni = [N]/[U], R is the gas constant and T is the absolute temperature.
For globular proteins, typical values of AG are quite small, lying in the range of
about -5 to -15 kcal / mol.[49]
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(b) Amino acids can be classified as nonpolar, polar or ionic. In globular proteins,
nonpolar residues tend to be buried inside the core of the globule, implying that
proteins are driven to compactness due to the hydrophobic effect.[43] Polar and
lonic residues tend to reside on the surface of the globule, although exceptions
are common. However, even residues with hydrophobic side chains have H-
bonding capacity due to backbone NH and CO groups. If these groups were not
able to make H-bonds in the protein interior through secondary structure
formation, they would drive the protein to denaturation.[3]

(c) The interior of globular proteins are tightly packed, with packing densities
close to crystals of small organic molecules, i.e. solids rather than hydrophobic
oil aggregates. The protein core is comprised primarily of o and B structures, with
connecting elements of nonrepetitive turns and loops existing on the outside.
Side chains in the interior fit together with striking complementarity, like pieces of
a three-dimensional jigsaw puzzle.[3] These specific packing interactions within
the globule are believed to be the major source of structural specificity in
proteins. The formation of this unique fold instead of an ensemble of micelle-like
structures cannot be explained by the hydrophobic effect alone.

(d) Although static measurements suggest tight packing with constrained
tolerances inside the globule, both dynamics and mutagenesis studies indicate
that the protein molecule can tolerate a broad diversity of residue substitutions
with minor effects on structure, stability and function.[3] These conflicting
properties of protein structure, i.e. tight versus malleable, could coexist it tight
packing of the protein is attained primarily by local arrangements, without global
rearrangements.

In view of these observations, a hierarchic framework model of protein
folding has been proposed[3], in which secondary structural elements associate
in step-wise fashion, leading to larger modules and further association to tertiary
structure. The experimental evidence of short, stable helices in water, which will
be explained in the next section, have suggested that one of the earliest steps in
protein folding is the formation of secondary structural elements. Stable, isolated
turns and loops in solution have also been reported[3] However studies on
isolated B-sheets have not been possible because sheets tend to aggregate in

solution.
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3.1.4. Experimental Work on o-Helices

The a-helix is the most abundant form of secondary structure found in
globular proteins. Yet, it has long been regarded that short helices of less than
20 residues should not exhibit measurable helix formation in water at any
temperature, according to the Zimm-Bragg helix-coil transition theory.[50] The N-
terminal C- and S-peptide fragments of ribonuclease A (residues 1-13 and 1-20,
respectively) are the first examples with significant a-helix formation in aqueous
solution near 0°C.[50] Further studies on the C-peptide[51, 46, 52]show that helix
stability is pH dependent. In o helices, acidic and basic residues occur
preferentially near the respective N- and C-terminus, which permits favorable
interactions between charged groups and the macrodipole of the helix. The
studies on the C-peptide[46, 52] support the existence of this charged group
effect on helix stability termed as the ‘'helix dipole model'. Marqusee and
Baldwin[53] have designed alanine-based peptides, which are 16-17 residues
long and contain three glutamic acid/lysine residue pairs. These peptides exhibit
high helix content (up to 80 per cent) due to the formation of (Glu-, Lys*) ion pair
interactions.

The examples of short peptide helices in water stabilized by specific
side chain interactions have raised the question of what helix content these short
peptide sequences would exhibit in the absence of these interactions. It is shown
by Marqusee et al.[50] that short 16-residue, alanine based peptides, which are
solubilized in water by insertion of charged residues of a single type(Glu- or
Lys+), form stable helices in water. These surprising results, which cannot be
explained by specific interactions, indicated that individual alanine residues
have a high helical potential and can stabilize o helices. Later other de novo
designed peptides[54-56] have been reported to exhibit helical structure at low
temperature.
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3.1.5. o-Helix Propensities of Amino Acids

Amino acids differ in their intrinsic helical propensities. Statistical analysis
of the frequency of occurrence of amino acids in different secondary structures
have suggested that different side-chains have distinct conformational
preferences.[57] Different experiments have been carried out to estimate o-helix
propensities of amino acids. Scheraga and co-workers measured helix stability
by introducing the amino acid of interest as a 'guest' into water-soluble helix-
- forming synthetic copolymers.[58] Emall model peptides have also been used to
determine the changes in free energy associated with the substitution of different
amino acids in the host systems.[59-61] On the other hand, directed mutagenesis
experiments have been carried out by substituting the amino acids at specific
solvent-exposed a-helical sites of proteins, such as lysozyme and barnase.[62,
63] Table 3.1 summarizes the helix propensity scales obtained from the statistical
and experimental studies. In experimental studies, free energy differences AG for
amino acids are calculated from Equation (3.1), by considering a two-state model
between helix and non-helix states (or native and unfolded proteins). In this
equation, Kynf = f/ (1-f), where f is the fraction of helix determined from circular
dichroism (CD) or fluorescence spectroscopy measurements of the polypeptides.
The free-energies of helix formation relative to glycine are tabulated as AA G
values so that the helix propensity of Gly is 0.[59]

It appears that the rank order of helix-forming tendencies depend on the
system in which replacements are made. One major difference between helical
peptides and o helices in proteins is that the ends of the peptides fray. There are
also recent experiments,[64, 65] which give scales of B-sheet propensities of
amino acids.

Different factors have been suggested as the reason for the relative helical
propensities of amino acids, including conformationai entropy, steric factors,
hydrophobic effect and main-chain electrostatics.

Helix formation imposes restrictions on the side chain conformations of
residues because of steric clashes with the bulky helix backbone. In extended
conformations, side chain dihedral angles, x1, populate the g+ (-60°), g- (60°)
and t (180°) conformers for optimal staggering of substituents on the Co and CB
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TABLE 3.1. Helix Propensity Values for Amino Acids.[62, 63]

Amino Acid A A G (kcal/mol) Percent Po

(A) (B) (C) (D) helix (E) (F)

Ala -0.96 -0.91 -0.77 -0.79 78 1.42
Leu -0.92 -0.56 -0.62 -0.62 80 1.21
Met -0.86 -0.60 -0.50 -0.57 1.45
lle -0.84 -0.10 -0.23 -0.39 41 1.08
Gin -0.80 -0.43 -0.33 -0.48 1.11
Arg -0.77 -0.77 -0.68 0.98
Lys -0.73 -0.72 -1.23 1.16
Tyr -0.72 -0.09 -0.17 0.69
Val -0.63 -0.03 -0.14 -0.34 17 1.06
Phe -0.59 -0.22 -0.41 23 1.13
Trp -0.58 -0.07 -0.45 1.08
His -0.57 -0.13 -0.06 1.00
Thr -0.54 -0.12 -0.11 -0.23 0.83
Glu -0.53 -0.36 -0.27 1.51
Ser -0.53 -0.50 -0.35 -0.28 0.77
Asp -0.42 -0.20 -0.15 1.01
Cys -0.42 -0.09 -0.23 0.70
Asn -0.39 0.25 |- -0.07 -0.18 0.67
Gly 0.00 0.00 0.00 0.00 0.57
" Pro 2.50 3.17 3.00 0.57

(A) Results of directed mutagenesis of T4 lysozyme at residue 44[63]

(B) Results of directed mutagenesis of barnase at residue 32[62]

(C) Results obtained with a noncovalent o-helical dimer[60]

(D) Data from a peptide containing blocks of Glu and Lys residues[59]

(E) Data from a 17-residue alanine-based peptide[61]

(F) Statistical survey of Chou and Fasman.[57] P, represents the relative
frequency with which amino acids occur in ¢ helices.
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atoms. For most residues in helix conformation, the g conformer becomes
effectively forbidden by steric clashes between Cy of residue i and the carbony!
oxygen of residue i-3 on the helix.[48] Alanine has no Cy atom, which may be
one factor affecting its high helical propensity. In the most common conformer,
g*, in a helices, the average y1 value is shifted by 8° from -60°, which is the
value observed in B-sheets or coils.[48] This must introduce a strain energy,
which will be absent in Gly and Ala residues. The branched B-carbon amino
acids (Val, lle and Thr) are special because they cannot relieve clashes with the
previous turn by changing x1. Consequently their x1 values remain close to -609,

but they must be under considerable strain. This may also explain why these
amino acids are relatively poor helix formers.

Creamer and Rose[66] have shown by Monte Carlo simulations that the
loss of side chain conformational entropy upon helix formation correlates with the
experimental propensity scales for the eight nonpolar amino acids. The stability
of small nonpolar amino acid residues in helix conformation has also been
studied by free energy simulations.[67] The resuits correlate well with the
experimental propensities and qualitatively suggest that the conformational
entropy and steric strain affect the a-helix propensities of amino acid residues.

The site-directed mutagenesis experiments of Blaber et al.[63] on T4
lysozyme show that the side chain hydrophobic surface area buried against the
protein correlates well with the relative free energies of unfolding of the mutant
helices. They therefore propose that hydrophobicity primarily determines the
preferences of residues for helix conformation.

Avbelj and Moult[68] have proposed main chain electrostatics to be the
determining factor of residue conformational preferences. The a-helical, B-sheet
and other main chain conformational states of residues have quite distinct
electrostatic energies of interaction between adjacent peptide groups.
Specifically, the CO and NH dipoles are aligned antiparallel in 3 conformation
and interact favorably , whereas in o-helices, parallet orientation of neighboring
dipoles lead to unfavorable interactions. These locai crientation effects extend
over the whole polypeptide. Screening of these electrostatic interactions by
surrounding water molecules depends on the type of amino acid side chains.
The electrostatic model of Avbelj and Moult, which is based on the distributions
of conformations in experimental protein structures, explains the conformational
preferences of residues in terms of the degree of screening of main chain
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electrostatics by different side chain types. The model seems to explain the

experimental a-helix and B-sheet propensity scales of amino acids, at the same
time.

3.1.6. MD Simulations of Helical Peptides

Molecular dynamics simulations have been carried out to investigate the
dynamics of small peptides in various solvents. Daggett et al.[69] have performed
MD simulations of a 17-residue peptide at 278 K, experimentally designed by
Bradley and co-workers.[55] Three different dielectric models, namely a linear
distance dependent dielectric function, a sigmoidal distance dependent dielectric
function and a constant dielectric with explicit water molecules around the |
peptide, are used in the simulations with the aim of determining how well these
models reproduce the experimentally observed helical characteristics of the
peptide. Simulations of 1.2 ns total duration, carried out at low pH using the
sigmoidal function, lead to comparable results with experimental data. In
contrast, the results obtained with the linear dielectric function are not
satisfactory. Although the simulations with explicit water molecules (100 ps) are
the most realistic, they have the disadvantage of computational ineffiency. In this
study, the sigmoidal function is shown to be a reasonable alternative, since the
peptide samples both helical and nonhelical regions of the conformational space
efficiently.

Simulations have been performed to analyze the dynamics of helix-coil
transitions, which have a time scale on the order of 10-9 - 10-6 sec. However, it is
impossible to cover the whole time-scale range of such transitions by
simulations, that can go up to several nanoseconds (10°9) by the currently
available computer resources. McCammon and Northrup[70] have performed the
first relatively long simulations (12 ns) of a 15-residug polyvaline using a
simplified mode! where each residue is represented by a soft sphere and virtual
bonds. Stochastic dynamics simulations start from an initial o-helix conformation
and the dynamics of unwinding of the last four residues are analyzed by fixing
all other residues in space.
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Daggett et al.[71] have simulated a 20-residue polyalanine chain at high
temperature (400 K) using a linear dielectric constant to make a detailed analysis
of the helix-coil transitions. The results of the 4 ns MD trajectory indicate that the
peptide spends most of its time fluctuating between different conformations with
intermediate helix contents. Transitions between high and low helical contents
are rare and rapid. These results are in accordance with the experimental
findings that small peptides are only marginally stable as helices in solution.

In a survey of protein crystal structures that contain hydrated o helices,
Sundaralingam and Sekharudu[72] have found a number of instances in which
a water molecule is inserted into the backbone H-bond, acting as a bridge
between the carbonyl and amide groups and suggested that these structures
may be intermediates in the folding / unfolding pathway. Later, MD simulations of
polyalanine peptides[73] have revealed instances of local helix destabilization
by this specific water insertion process.

Daggett and Levitt[74] have investigated the helix-coil transitions in a 13-
residue polyalanine both in vacuum and in the presence of explicit water
molecules by MD simulations. The denaturation of the peptide is monitored as a
function of temperature (ranging from 5 to 200 °C). In vacuum, the helical state
predominates at all temperatures, whereas in solution the helix melts with
increasing temperature. At high temperature (473 K), the peptide unfolds and
adopts various collapsed unstructured states. The intrachain H-bonds that break
at high temperature are not fully compensated by H-bonds with water molecules.
Numerous water molecules inserted into the intrachain hydrogen bonds have
been observed, the occurrence of which increased with temperature.

Molecular dynamics simulations[75] have been performed on the C-
terminal o-helix part of myoglobin at 300 K in two different solutions, namely
water and water with 30 per cent trifluoroethanol (TFE). In the course of 200 ps
trajectory, unfolding of the helix is observed in water. In TFE solution, two stable
parts of the helix exist till the end of the trajectory, supporting that TFE is a
structure-forming solvent.

In practice, it is almost impossible to study the conformational equilibrium
in peptides by a single simulation, since the system generally gets trapped in
wells on the potential energy surface and transitions across high energy barriers
occur rarely during a sufficiently long simulation. Tobias and Brooks[76] have
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overcome this problem by using a specialized technique known as '‘umbrella
sampling', and used molecular dynamics simulations to study the folding /
unfolding of one turn of an a-helix in alanine and valine tripeptides with methyl-
capped ends. Analysis of the peptide conformations during the simulation show
that o helices, reverse turns and extended conformations correspond to minima
on the free energy surfaces of both peptides. The free energy difference between
a-helix and extended conformations is determined to be approximately -1 kcal /
mol and -5 kcal / mol for the alanine and valine peptides, respectively. Reverse
turns appear as important intermediates along the helix folding / unfolding
pathway, in both peptides. Their results indicate that the large differences
between the helical propensities of Ala and Val cannot be explained simply by
concepts of side-chain rotamer restriction or unfavorable steric interactions.
Rather, the origin of the difference seems to be more complicated due to
difference in the solvation of the two peptides.

Brooks and Nilsson[77] have used the same sampling technique to study
the conformational free energy surfaces of the same alanine tripeptide in
methanol, TFE, water and their mixed solvents. Simulation results indicate the
helix-promoting abilities of the particular solvents in the following order: TFE-
water = methanol > methanol-water > water = TFE. Differences in the solvation
thermodynamics of peptides in aicoholic and aqueous solvents have been
observed.

3.2. Simulation Method and Parameters

Molecular dynamics simulations of polypeptides are carried out using
GROMOSS87 Simulation Package, which has been developed for the dynamic
modeling of biomolecules. (W.F. van Gunsteren and H.J.C. Berendsen,
GROMOS: Groningen Molecular Simulation Program, University of Groningen,
1987) Appendix C gives information on the basic concepts, equations and force
fields utilized in GROMOSS87, together with a description of its application to the
specific polypeptide systems considered in this work.
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Four different model polypeptides, each composed of 13 residues, are
simulated in vacuum and in the presence of explicit water molecules at 350 K
and 1 bar. The primary structures of the polypeptides are Alaq3 (polyalanine),
Valy3 (polyvaline), Seryz (polyserine) and AlasGlysAlas (polyglycine). It should
be noted that the peptide named as polyglycine also contains alanine residues.
Table 3.2 summarizes the simulations performed with the four polypeptides,
which will be designated as pAla, pVal, pSer and pGly, for simplicity, in the
following. Simulations in water and in vacuum will be differentiated by the capital
letters W and V, respectively. Each run in Table 3.2 represents a simulation of
300 ps duration. Independent runs starting from the same initial configuration of
each peptide and water molecules but with different initial Gaussian velocity
assignments are numbered as 1, 2 and 3. The simulations in water are
performed in simulation boxes subject to periodic boundary conditions.

The initial conformation of each polypeptide is generated as a full right-
handed o-helix by assigning ¢ = -57.5°, y = -47.5° for the backbone dihedral
angles. (Bio-notation is used, see Figure 3.1) The N-terminal and C-terminal
groups of each chain are NHz* and COO- and the molecule is taken electrically
neutral overall. Each helical polypeptide is then placed in the middle of an
orthogonal simulation box and the box is filled with equilibrated SPC (Simple
Point Charge Model)[78] water molecules. The water molecules are placed with
the requirements that the minimum distance between any atom of the peptide
and the walls of the box is 7 A and that no water molecule exists within 2.3 A of
any peptide atom. The lengths of the edges of the orthogonal box along x, y and
* z directions and the number of the generated solvent molecules are given in
Table 3.2 for each peptide. The helix axis lies along the z-direction. The box
edges along x and y direction and the number of solvent molecules generated
for polyvaline and polyserine are considerably greater than those for polyalanine
and polyglycine due to the bulky side groups of valine and serine. For
polyalanine, a box with longer edges along x and y directions is also generated
for exploring the effect of the size of the simulation box, which is indicated by
pAla-WL.

The energy of the original configuration is minimized by applying 50
steps of steepest descent algorithm. One Nat and one CI- ions are added to the
box by randomly replacing two water molecules. A brief energy minimization of
this configuration is performed (about 30 steepest descent cycles). All atoms in
the box are assigned velocities from a Gaussian distribution at 350 K. Two
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different equilibration procedures are employed. Runs indicated by W1 are
equilibrated by adopting the procedure of van Buuren and Berendsen.[75] In this
procedure, a 20 ps equilibration period is adopted, during which the system is
heated by coupling to an external heat and pressure bath[79] at 350 K and 1 bar.
In this external bath system, the temperature of the system, T, is kept around the
reference temperature To by rescaling the velocities at each time step.
Accordingly, the velocities are multiplied by a scaling factor A, of the form

where A t is the time step size and 17 is the temperature scaling constant. tT is a
measure of the strength of coupling to the heat bath. If t7is infinitely large, there
is no temperature scaling and if 11 = A t, the temperature of the system is kept at
To at all times. Similarly, the pressure P of the system is kept around the
reference pressure, Py, by multiplying all the atomic coordinates by p and the
box volume by 13 at each time step. 1 is given by

w =
w
)

U= 1+f—;B(P-PO)

where 1p is the pressure scaling constant and 3 is the compressibility of the
system. tT and tp are taken as 0.01 and 0.05 ps, respectively, during
equilibration periods. During the first 5 ps of the equilibration period of W1 runs,
the peptide is harmonically constrained to its initial helical conformation. The
runs designated by W2 and W3 involve short equilibration periods of 1 ps by
coupling to the same external bath at 350 K and 1 bar and applying no
constraints on the peptide. MD simulations of 300 ps are performed after the
equilibration periods by coupling to an external bath at 350 K and 1 bar with 17 =
0.1 and tp = 0.5 ps. The structures are saved every 0.25 ps during the trajectory



77

resulting in 1200 structures for analysis. Covalent bond lengths and the water
angle are constrained by the SHAKE algorithm([80] (tolerance 0.0001A), which
allows the use of 2 fs time steps. Nonbonded interactions are cut off at 0.8 nm.

In vacuum simulations, the energy minimization is performed on the
initially generated polypeptide in full o-helix conformation by applying 50 cycles
of conjugate gradients. A brief equilibration procedure of 1 ps is applied as in
water simulations indicated by W2 and W3. MD simulations of 300 ps follow after
the equilibration periods with 2 fs time steps. The external bath at 350 K and 1
bar with the same time constants as those of water simulations is used. No

nonbonded cutoff is applied in vacuum simulations.

TABLE 3.2. Summary of Simulation Experiments

Run | Polypeptide | - Model No.of Simulation Box Sizes (nm)
Solvents X y z
1 Ala{s pAla-W1 540 2.13913 | 2.27856 | 3.61099
2 Alaqs pAla-W2 540 2.13913 | 2.27856 | 3.61099
3 Alaiz pAla-W3 540 2.13913 | 2.27856 | 3.61099
4 Alas pAla-WL 764 2.53913 2.67856 | 3.61099
5 Alaqs pAla-V1 vacuum
6 Alaiaz pAla-V2 | vacuum
7 Valiz pVal-W1 677 2.40030 | 2.53279 | 3.61099
8 Vali3 pVal-W2 677 2.40030 | 2.53279 | 3.61099
9. Valq3 pVal-W3 677 2.40030 | 2.53279 | 3.61099
10 Valiz pVal-V1 vacuum
11 Valqs pVal-V2 | vacuum
12 | AlaygGlysAlag| pGly-W1 544 2.13913 | 2.27856 | 3.61099
13 | AlagGlysAlaa| pGly-W2 544 2.13913 | 2.27856 | 3.61099
14 | AlagGlysAlas| pGly-V1 vacuum
15 | AlagGlysAlas| pGly-V2 | vacuum
16 Serq3 pSer-W1 627 2.34443 | 242446 | 3.62330
17 Seria pSer-W2 627 2.34443 2.42446 | 3.62330
18 Sery3 pSer-W3 627 2.34443 | 2.42446 | 3.62330
19 Serq3 pSer-V1 | vacuum
20 Serig pSer-V2 | vacuum




78

3.3. Simulation Results and Discussion

In this section, the simulation results for the four model polypeptides will
be presented and discussed. Structural properties are analyzed with emphasis
on the changes in the helix contents of the peptides during each trajectory.
Patterns of water distribution around the side chains and the hydrogen bonds are

investigated to explain the differences between the helix-forming / breaking
tendencies of the four amino acids.

3.3.1. Structural Properties of the Polypeptides

The (¢, v) dihedral angle pairs of the residues making up each model
chain are plotted in the form of Ramachandran maps in Figure 3.5. Each plot
represents the results from an independent run and each point on the plot
represents a (0, y) pair of a specific residue at a snapshot of the simulation. The
initial 100 ps period of the simulations is discarded to remove the bias resulting
from the starting full a-helix conformation. In the pAla, pVal and pSer, the end
residues are excluded, whereas only glycine residues are considered for pGly.
Figures 3.5 (a), (c), (e) and (g) give the results from pAla, pVal, pSer and pGly
simulations, respectively, in explicit water molecules. The o-helix (lower left
quadrant) and B-sheet (upper left quadrant) regions of pAla-WL, pVal-W2 and
pSer-W2 can be clearly observed in these plots. Figure 3.5 (g) represents a
typical symmetric plot of glycine. In vacuum, the o-helix regions of pAla and pVal
are highly populated (Figures 3.5 (b) and (d)), which indicates that the initial
helical conformation is highly stable. The plot of pSer-¥2 shows more transitions
to the B-sheet region compared to pAla and pVal. The Ramachandran map of
pGly-V1 is not symmetric as the map of pGly-W1 in solution, because the upper-
right hand quadrant is not populated.

Changes in the helical content of the polypeptides are monitored during
the course of the simulations. The broad a-helical regions observed in the
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FIGURE 3.5. Ramachandran plots showing all dihedrai pairs during the final 200
ps of the simulations: (a) pAla-WL, (b) pAla-V1, (c) pVal-W2, (d) pVal-V2,
(e) pSer—W2, (f) pSer-V2, (g) pGly-W1 and (h) pGly-V1.
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Ramachandran maps of polyalanine, polyvaline and polyserine can be
described by the region of -100° < ¢ < -25°and -80° < y < -5°, in conformity with
the work of Daggett and Levitt.[74] The percentage of residues that are locally
helical are plotted as a function of time in Figure 3.6 (a)-(p) for each run. The N-
terminal and C-terminal residues are not considered in the calculation of the
percentages because their respective ¢ and y angles cannot be uniquely
determined. A 100 per cent helix conformation refers to a structure with 11
residues with ¢ and v angles in the defined helical region. All simulations carried
out in water except pVal-W1 shows drops in local helix content with time.

Figures 3.6 (a)-(d) give helix content trajectories for polyalanine in
water. The first three simulations (W1,W2 and W3) start from the same initial
configuration and exhibit completely different behavior in time, after the
equilibration periods which are not shown. In the run pAla-W3, the local helix
content drops drastically at about 100 ps and stays below 20 per cent for the rest
of the trajectory. This behavior seems unexpected for polyalanine, since alanine
is a good a-helix former. Analysis of the three-dimensional structures of pAla in
the simulation box indicates that the helix axis of polyalanine changes its
direction in time and does not lie along the z-axis during the whole trajectory.
The edges of the box along x and y directions are not sufficiently large to hydrate
the helix and it interacts with its periodic images. To observe the effect of box
size, i.e. the number of solvent molecules, a box with longer edges along x and y
directions is generated and the simulation pAla-WL is performed. Starting with
the< same random number of pAla-W3, which determines the initial Gaussian
velocity distribution, pAla-WL exhibits higher helix content compared to pAla-W3.

Figures 3.6 (e)-(g) represent the simulation results of polyvaline in
water. Run pVal-W1 shows a steady local helix percentage of 80 to 90
throughout the whole trajectory, whereas the helix contents of pVal-W2 and pVal-
W3 decrease in time. pVal-W1 seems to get trapped in the helical minimum
conformation. The helix content trajectories of polyserine in water given in
Figures 3.6 (h)-(j) display various degrees of unfoiding with time. pSer-W1
exhibits a similar dynamical behavior to pVal-W1i. pGly-W1 and pGly-W2
(Figures 3.6 (k) and (1)) show large decreases in local helix percentage with time.
The helix content of pGly falls to around 20 per cent at the end of both
simulations. This behavior of polyglycine in solution can be rationalized by the
fact that glycine is a helix breaker.
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Figures 3.6 (m)-(p) represent the results of vacuum trajectories. Only
the runs indicated by V1 are presented for each model peptide, inasmuch as
reproducible trends are observed in V1 and V2 simulations. pAla and pVal stay

close to full helical conformation, whereas pSer and pGly show decrease in helix
content with time.

To get an overall view of helical structure evolutions for each model
peptide, the helix fractions of the different trajectories are averaged out. The
results are displayed in Figures 3.7 (a)-(d) for water and vacuum simulations,
with a time spacing of 1.5 ps between successive data points. pAla-W3, pVal-W1
and pSer-W1 are not included in the averages. When the average helix content
trajectories of peptides are analyzed, pAla and pVal show a significant decrease
in helix content in water compared to vacuum. In contrast, pSer and pGly exhibit
similar helix contents in solution and in vacuum.

As a summary of water simulation results, a helix content scale of pAla-
W = pVal-W = pSer-W > pGly-W is obtained. In vacuum, pAla and pVal display
the highest helix contents and the following scale is observed: pAla-V = pVal-V >
pSer-V > pGly-V.

The fraction of time a residue stays locally helical during a complete
trajectory is presented as a function of residue number along the peptide in
Figure 3.8 (a)-(f). The same criteria of ¢,y angle pairs used in determining the
helix content trajectories is applied. Helicity of end residues cannot be
determined as mentioned before. Figures 3.8 (a)-(d) display results for all the
simulations in water. A common feature of pAla, pVal and pSer is that the end
residues of the peptides spend less time in helix conformation than the middle
residues, with the C-terminal fraying more compared to the N-terminal. On the
contrary, the middle residues of pGly-W exhibit lower helix percentage. This
behavior of pGly is expected since it contains four alanine residues at each end,
which have helical propensity. Averages of the different runs for each peptide
model are presented in Figures 3.8 (e) and (f) for water and vacuum simulations,
respectively. As in the calculations of average helix content trajectories,
simulations pAla-W3, pVal-W1 and pSer-W1 are not included while taking the
averages.
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3.3.2.  Equilibrium Distribution of Water around Side-chains

The equilibrium distribution of water molecules around the side chain atoms
ot alanine, valine and serine are investigated to elucidate the differences in the
hydration patterns around these side chains. The geometry of side-chain-water
interactions is adopted from the work of J.M. Goodfellow and co-workers[81], who
have analyzed the solvation of all amino acids[82] and main chain atoms|[83]
using more than 20 high resolution protein crystal structures from the
Brookhaven Databank.[84] Figure 3.9 is g representation of the spherical polar
coordinates (r, 0, ¢) used in the analysis of water distribution around atom A,
placed at the origin. In this geometry, atoms A, B, and C lie in the xz-plane. B and
C are the atoms connecting the side-chain and the backbone (see Table 3.3)

4

A

\
\\

FIGURE 3.9. Geometrical representation of the spherical polar coordinates {(r, 6,
®) used in calculating the distributions of solvent molecules (W) around atom A.
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The position of the OXygen atoms of water molecules (represented by point
W in Figure 3.9) is used in calculating the (r, 6, ¢) distributions around atom A.
The x, y and z coordinates of the (water) oxygen atom W are x = r sin 6 cos o,y =

rsin ® sin o and z=rcos 6. In this geometrical representation, ¢ = 09, 90°, 18Q°

and 2700 lie along the X-axis, y-axis, - x-axis and - y-axis, respectively.

Table 3.3 summarizes the atoms that are fixed as A, B and C in the
analysis of water distribution around the beta carbon (CB) of alanine, valine and
serine, gamma carbons (CY! and C72) of valine and the oxygen atom (OY) of
serine. Only the residues that are locally helical are considered in the analysis.
The normalized equilibrium distributions of r, © and ¢ from independent
simulations give reproducible results for each residue type. Two runs (indicated

in Table 3.3) are found to be satisfactory for the analysis of average distributions
around each amino acid.

TABLE 3.3. The Atoms Fixed as A, B and C in the Analysis of Water Distributions
around Amino Acids

Residue Atom A Atom B Atom C Runs Analyzed
alanine CB Co N pAla-W1, pAla-W2
valine CB ol N pVal-W1, pVal-w2
valine cvl Cy? CB | pval-w1, pval-w2
valine CY2 Cv! TB pVal-W1, pVal-w2
serine Ch Ca N pSer-W2, pSer-W3
serine oy CB Co pSer-W2, pSer-W3

The radial distribution function g(r), is proportional to the probability of
finding a solvent oxygen atom at a distance r from atom A. g,(r) is calculated from

g =<n(n>/r? Nasy (3.4)
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where n(r)

is the number of OXygen molecules located in a thin spherical shell of

thickness Ar = 0.2 A at a distance r from each side-chain atom A of the locally

helical residues at each snapshot of the trajectory. Angular brackets represent a

time average over different snapshots. Normalization of the distributions is
accomplished first by division by r2 and then b

; y the asymptotic value Nasy of the
curvesatr=10A.

The normalized 6 distribution around atom A, indicated by gg(9), is
calculated by counting the number of Oxygen atoms which have r < 5 A and fall
into A8 = 10° grids. Normalization is done by division by the total number of
occurrences of oxygen atoms. Similarly, the normalized ¢ distributions ge(0) are
calculated for oxygen atoms with r < 5 A by considering A¢ = 10° grids and by
using the same normalization as in ge(0). Figure 3.10 displays the g(r)
distributions around the side chain atoms of different residues. Figures 3.11 and
3.12 give the results of gg(0) and Jo(0) distributions, respectively. Solvation of
each amino acid will be separately discussed in the following.

3.3.2.1. Alanine. Figure 3.10 (a) displays two distinct radial distribution
functions around CP atoms of alanine residues. Curve indicated by pAla is the
average distribution when all the solvent molecules are considered in the
analysis. The second distribution, pAla(np), is calculated by excluding all water
molecules which are located within 3.5 A of a polar atom, i.e. a carbonyl oxygen
or backbone nitrogen. This latter representation gives a nonpolar distribution by
excluding the water molecules that may be hydrogen bonded to the polar atoms.

Both r distributions show peaks at about r= 3.3 A, which corresponds to
the first hydration shell around CB. These peaks were found to be located
between 3.8 and 4.0 A in the crystal structures studied by Walshaw et al.[81] This
difference might arise from the potentials of GROMOS87, in which the CHg3
groups are taken as collapsed.

The 6 distributions in Figure 3.11 (a) exhipit an excluded region
between 8 = 140° and 180°, which may result from steric overlap of the water
molecules with the backbone atoms. The distributions have peaks at 85° and
65° when all and nonpolar atoms are considered, respectively. Similar peaks
have been observed in the analysis of crystal structures.[81]
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Distribution of the azimythal angle ¢ in Figure 3.12 (a) shows more
water molecules at negative values, i.e. in the front plane defined by CB, C* and
N atoms, in conformity with the results from crystal structures. However, the
excluded regions around ¢; = 0° angd 180° {or -180°) in our ge(d) plots, which
apparently reflects the steric overlap with the (NH)i;1 and (CO)i.1 groups,
respectively, cannot be clearly observed in the crystal structures.

3.3.2.2. Valine. In the analysis of crystal structures[81], the r, 6 and ¢

distributions were calculated for C1! and C12 separately and differences were

shown to exist among the two structures. Our results, on the contrary, indicate no
significant difference between the solvation of the two gamma carbons. Figure
3.10 (b) shows the r distribution and the 8 and ¢ distributions (not shown) are
also identical. The do(®) curves are mirror images of each other due to the
definitions of ¢ angle around C¥! and C¥2. The reason for the differences
observed in the solvation of CY! and C%2 atoms in crystal structures may be due
to the inadequate number of water molecules analyzed.

Figures 3.10 (c) and (d) show the pair distributions around CY and CB
atoms of valine, respectively. The peak of first hydration shell of gamma carbons
is located at r = 3.3 A as in CB of alanine. In crystal structures, this peak has been
determined around 3.8 - 4.0 Z\,[81] The first hydration shell around the beta
carbon of valine is shifted to higher values of r, namely tor = 4.3 - 4.5 A. This
indicates that the CB of valine is relatively protected, i.e. is less accessible to
solvent, compared to CB of alanine.

The gg(6) and gy(¢) distributions (Figures 3.11(b) and 3.12 (b)) around
the CY atoms of valine display similar features irrespective of the choice of all or
nonpolar water molecules. gy(8) plots show peaks at 850 and excluded regions
between 6 = 150 and 180°.

3.3.2.3. Serine. The radial distribution functions around the OY and CB atoms
of serine in Figures 3.10 (e) and (f) display first hydration shells at 2.7 and 3.3 A,
respectively. The peak at 2.7 A is a result of hydrogen bonding with water. Th?
crystal structure data[82] show a broad r distribution between 2.5 and 3.5 A
around the OY atom, which is in contrast with the sharp peaks observed in Figure
3.10 (e).
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The 6 distribution around O in Figure 3.11(c) displays a peak at 75°
and no significant excluded region. This peak corres

ponds to the expected value
of 700 for tetrahedral hybridization(

interaction with water molecules). The
distribution from crystal structures[82] shows a similar peak at 65° and a broad
excluded region above 1200,

The ¢ distribution around OY in Figure 3.12 (¢) is symmetric since a
water molecule above the xz-plane cannot be distinguished from one below the
plane if their 6 value is the same. In contrast, the distributions around alanine
and valine have been found to be nonsymmietric due to the chirality of the

neighboring carbon atoms. A peak at 180° is observed in the symmetric
distribution of crystal structures.

Figures 3.10 (g, h), 3.11 (d) and 3.12 (d) compare the gr(r), ge(8) and
go(9) distributions of alanine, valine and serine. The distributions around the CB
atoms indicate that the beta carbons of alanine and serine are solvated in a
similar pattern, whereas the CB of valine is less accessible to water. The gamma
carbons of valine also show a similar hydration pattern to that of CB of alanine,
whereas the water molecules are located quite close to the OY of serine due to
hydrogen bonding.

3.3.3. Water Distribution around Hydrogen Bond Forming ‘Groups

The stability of the backbone hydrogen bonds is inversely proportional
to their accessibility to water molecules, which compete to form alternative
hydrogen bonds with the backbone carbonyl and amide groups. The hydrogen
bonds that are protected from water molecules are expected to be more stable
which implies that the four residues in between the hydrogen bonding partners
stay locally helical.

To observe the differences between the solvation of hydrogen bonds in
the four peptides, pair distribution functions gr(r) of water molecules around the
backbone carbonyl oxygen are drawn before and after the hydrogen bond
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breaks. The closest hydrogen atom of each water molecule to the carbony!
oxygen is considered in the calculation of distrib

bonds are considered intact
the (i+4)th residue hydrogen

utions. Backbone hydrogen
if the distance between the ith residue oxygen and
atoms forming the H-bond is less than 2.3 A, and
broken otherwise. Seven carbonyl oxygens have (i+4)
each peptide. Thus, in pAla, pVal and pSer, seven hydrogen bonds are analyzed
at each snapshot. In PGly, only five bonds that have at least two glycine residues

in between are considered, i.e. the two hydrogen bonds that may form at the two
ends of the peptide are not taken into account.

th bonding partners in

Pair distribution functions are calculated according to Equation (3.4),
where Nasy is taken as the sum of instances that the hydrogen bonds between
the carbonyl oxygens and the {i+4) th hydrogens are intact or not during the
trajectory. Total number of instances for pAla, pVal and pSer is 7 bonds x 1200
.snapshots = 8400 in each 300 ps simulation, and 5 bonds x 1200 snapshots =
6000 for pGly. These total numbers are divided into helical and non-helical (coil)
instances, which are listed in Table 3.4 for the runs considered in this analysis.

TABLE 3.4. Instances of Helical and Coil Conformations in the Simulations

Run Analyzed Helical Instances | Coil Instances Total Instances
pAla-WH1 3147 5253 , 8400
pAla-WL 2229 6171 8400
pVal-W2 * 1847 6553 8400
pVal-W3 3613 4787 8400
pSer-Wi1 4759 3641 8400
pSer-W2 3087 5313 8400
pGly-Wi1 0 6000 6000
pGly-W2 0 6000 6000

Figures 3.13 (a)-(d) compare the hydration patterns around the carbonyl
oxygen before and after the hydrogen bond breaks, which are termed as helical
and coil conformations, respectively, and are represented by the letters h and ¢,
in the figure legends. Intact hydrogen bonds in pGly are not observed during the
whole trajectory. Thus, only the equilibrium distribution for the coif conformation
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is represented. Each curve is an average of the two simulations chosen for that
peptide, given in Table 3.4. It can be observed in pAla, pVal and pSer that more
hydrogen bonds with water molecules form after the backbone hydrogen bonds
break and the canrbonyl OXygens become more exposed to solvent. The small
peak at r = 2.1 A in pAla{h) moves to 1.9 A and becomes highly pronounced
when pAla(c) is considered. A similar trend is observed for pVal and pSer.

The helix and coil distributions of the peptides are plotted separately for
comparison in Figures 3.13 (e) and (f). All distributions reach the same gr(r) value
atr =10 A, which indicates that the normalization procedure applied is suitable
for comparison of results from runs carried out with different peptide models.
Figures 3.13 (g) and (h) give the same comparison curves for 1 < r < 3 A In
these short range plots, it can be observed that intact hydrogen bonds in pAla
are more exposed to water than in pSer and pVal, and bonds are the most
hindered to solvent in pVal. Water distribution around carbonyl oxygen after the.
hydrogen bonds break shows the following order of hydrogen bond formation
with water: pAla > pVal > pSer > pGly.

The angular distribution of the water hydrogens around the carbonyl
oxygen is plotted considering only those hydrogen atoms that are less than 3.5 A
from the oxygens. Angle 8 is defined as in Figure 3.9, provided that A, B and W

atoms are replaced by carbony! oxygen, carbon and water hydrogen atoms,
respectively. Figures 3.14 (a) and (b) summarize the gg(8) distributions. It can be
clearly observed that there are less water molecules in the region r < 3.5 A
around .the carbonyl oxygens when the hydrogen bonds are intact. This
difference is the most pronounced for pVai(h). The peaks in 8 distributions are
located at 82.5° and 67.5¢ for helical and coiled residues, respectively.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1. Conclusions

The conclusions that can be drawn from the molecular dynamics

simulation results presented in Sections 2 and 3 will be summarized separately in
the following.

4.1.1. Bead-Spring, Freely-Rotating and Polyethylene Model Chains

1. The MD study of bead-spring model chains indicates that the solvent quality
affects the properties of polymers in dilute solution at two distinct levels. First,
chain properties are affected on a local scale, i.e. at the level of individual chain
units and segments. Second, an impact on the chain overall statistics and
dynamics is observable.

2. A linear decrease in translational diffusion coefficients is observed with the
enhancement of more favorable polymer-solvent interactions, for all model chains.

3. The local flexibility of a chain may be decreased by either introducing barriers to
intrachain bond rotations which impart certain chain stiffness, or by increasing the
strength of polymer-solvent interactions. The reduction of local flexibility by either
means leads to almost indistinguishable behavior. Specifically, the local
equilibrium characteristics of a FRC subject to strong interactions with the
surroundings closely resemble that of a PE chain in the presence of less favorable
interactions.

4. Orientational autocorrelation functions for bond vectors and their stretched
exponential forms indicate that the intramolecular constraints are predominant in
determining the rates of local relaxational processes. This is apparent from the
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quite different time scales of relaxations of FRC and PE. Thus, the solvent effect

seems to cause relatively small perturbations on highly localized dynamic
phenomena, in contrast to its significant effect on the equilibrium properties. The

local dynamics of bead-spring model chains seem to be more efficiently affected
by solvent quality, compared to FRC and PE.

5. The stretched exponential functions fitting the time decay of orientational
autocorrelation functions yield almost constant exponents B for a given type of
chain in various environment. B assumes the respective values of 0.61 + 0.01 and
0.53 + 0.02 for bond vectors in FRC and PE. B is rather affected by the intrinsic
conformational features of the chain.

6. In contrast to the widely accepted view that vectorial quantities perpendicular to
the chain backbone (m ) undergo faster relaxation compared to those along the

axis (my), it is shown that .under suitable choice of polymer-solvent interaction

energy parameters leading to highly contracted chain conformations this behavior
may be inverted.

7. A power law relation of the form T ~ nais found to exist for short segments of n
bonds (n < 8). The exponent a increases with solvent quality and remains always
lower than 1.5, in contrast to Rouse regime dynamics where a = 2. For bead-
spring model chains, 1.00 < a < 1.46, when the polymer-solvent interaction
energy is varied in the range 0.1 < epg < 0.8 kcal / mol. It remains almost fixed at a
= 0.94 + 0.04 in the case of FRC model and varies in the interval 0.66 < a< 1.13 in
the case of polyethylene chains in various solvent erivironment of 0.1 < gps < 0.8
kcal / mol. These results are in accordance with sub-Rouse regime dynamics of
short polymer chains.

4.1.2. Polypeptide Model Chains

Comparison of the results of vacuum and water trajectories indicates that
water has a destabilizing effect on helices, especially of alanine and valine
residues. Glycine and serine, on the other hand, have some intrinsic helix-breaking
propensities, which can be observed in the absence of water. Simulations
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averaged over the trajectories indicate the following scales of helix stabilities: pAla-

W = pVal-W = pSer-W > pGly-W and PAla-V = pVal-V > pSer-V > pGly-V in water
and in vacuum, respectively. These tentative scales agree with the experimentally
determined fact that glycine is a helix-breaker. Table 3.1 clearly shows that alanine
is a good-helix former. Valine and serine are generally known to occur less
frequently in a-helices compared to alanine. However, no clear difference between
the helix propensities of alanine, valine and serine can be observed in water
simulations. Two reasons may be given for this observation. First, the differences
in the experimentally observed propensities of amino acids in Table 3.1 are quite
small to be detected accurately by MD simulations. A second reason might be that
the model parameters of the simulation program do not satisfactorily represent the
peptides in solution. For instance, valine whose bulky side groups are expected to
be highly strained in a helical structure seems to sustain this compact environment
without any unfavorable interactions in simulations.

Equilibrium distribution of water molecules around the side chains of the
locally helical alanine, valine and serine residues indicate that the beta carbon of
alanine and serine and the gamma carbon of valine have similar solvation
patterns. The locations of the first hydration shells around alanine CB and valine CY
are quite different from those observed in crystal structures. This might indicate
that the collapsed CH3 groups of alanine and valine side chains are not adequate
to realistically model these amino acids. Specifically, the helix-breaking
characteristics of valine due to steric overlap might not be realized with such
collapsed CH3 groups. Furthermore, the torsional mobility of the C*-CB bonds is
rather reduced in helices and from the entropic point of view valine should dislike a
tight environment hindering C*-CB rotations In fact, exploratory calculations for
valine indicate some lowering in helix stability provided that the intrinsic torsional
barriers are not as high as those used in the simulation program.

Water distributions around intact hydrogen bonds of the backbone
indicate that the hydrogen bonds are well protected by valine side chains,
compared to alanine and serine. The fact that hydrogen bonds in alanine are quite
open to attact by water molecules gives an explanation for the helix propensity of
alanine, which is found to be lower than expected. It is clear that water molecules
compete to form hydrogen bonds with the backbone and , as a result, the helical

structure gets disrupted.
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4.2. Recommendations

As computer resources permit in the future, it would be complementary to
study system size effects in more detail by using larger simulation boxes for all the
systems considered in this thesis. The problem of hydrodynamic interactions due
to periodic boundary artifacts could be alternatively overcome by the method of
Ewald summation. It would be interesting to analyze the solvent effect on real

polymers by considering solvents of varying quality, such as polar and nonpolar
solvents. ‘

Other polar and ionic amino acid residues might be analyzed for helix
forming / breaking tendencies. Specifically, the stability of some experimentally
designed peptides, some of which are mentioned in Table 3.1, and other short
protein segments can be investigated by MD. For example, the experimentally
designed peptides with Asp-Arg, Glu-Arg and Glu-Lys [53, 56] residues in different
orientations and spacings and specific peptide fragments of lysozyme[85] may be
simulated. B-sheet and other secondary structures, which are more difficult to
study experimentally, remain other alternatives for future MD simulations.
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APPENDIX A

Algorithm of the molecular dynamics simulation program used in Section
2 is summarized as follows:

. Input of data

. Initial data manipulation

. Calculation of initial positions of all atoms (Subroutine BCC)

. Assignment of initial velocities (Subroutine CONVEL)

. Generation of polymer chain

. Calculation of initial forces using classical Verlet algorithm to evaluate a(t).
. Beginning of main loop

. First part of the Modified Verlet Algorithm (Subroutine MOVEAP)

. Storing forces in previous step as old forces

10. Calculation of forces to evaluate a(t+dt) (Subroutine FORCEP)

11. Second part of modified Verlet algorithm (Subroutine MOVEBP)

12. Calculation of relevant quantities, such as kinetic energy, center of mass,
overall chain dimensions, e. t. ¢., at regular time intervals.

13. Printing of atomic coordinates at regular time intervals

14. End of main loop

15. Calculation of averages, standard deviations

16. Calculation of velocity autocorrelation functions, diffusion coeffucnents pair
distribution functions e.t.c:

17. Printing of the results
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APPENDIX B
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APPENDIX C

GROMOSS87 |

W.F. van Gunsteren and H.J.C. Berendsen, GROMOS:
Groningen Molecular

Simulation Program, University of Groningen, 1987) is a
computer simulation package, which has been developed for the dynamic
modelling of biomolecules. GROMOS can perform the following operations:

1. Simulation of proteins or arbitrary molecules using the molecular dynamics
(MD) or stochastic dynamics (SD) method.

2. Energy minimization (EM) of these molecules.

3. Analysis of molecular conformations obtained by experiment (X-ray, 2D-NMR),
by model building or by computer simulation,

Different applications of GROMOS in chemistry and physics are:
1. Prediction of the dependence of a molecular conformation on the type of
environment (water, apolar solvent, crystal, etc.)
2. Calculation of relative binding constants by evaluating free energy differences
between various molecular complexes
3. Prediction of energetic and structural changes caused by modification of
amino acids in enzymes or base pairs in DNA _
4. Derivation of three-dimensional (3D) molecular structure on the basis of 2D-
NMR data by using restrained MD techniques
5. Dynamic modelling of molecular complexes by searching configuration space
by MD
6. Prediction of properties of materials under extreme conditions of temperature
and pressure, which may be experimentally inaccessible

GROMOS consists of about 45000 lines of standard FORTRAN code
and is a batch oriented packege. It contains about 100 independent building
blocks (programs and subroutines), which can be combined in a great variety
ways to perform different tasks. The building block philosphy of GROMOS
provides great flexibility to the user.

GROMOS contains six types of programs:
1. Programs that build a molecular topology.



2. Programs that transform a given atom coordi

sequence in the molecular topology, and to the GROMOS coordinate format
3. Programs that generate atom coordinates

4. Programs that perform simulations (EM, MD and SD)
5. Programs that analyze configurations or Sequences of configurations.

6. Programs that merge or reduce coordinate files or transform atom coordinates
to a special format for interfacing.

The total energy, U, in GROMOS is expressed in the form:

Np Ng Né N¢ Nat
U= 2% Vp(bn)+ Z{ Vo(Bn) + Y Ve(E) + D Volon) + D [Vl +Ves(ri) 1 S(ry)
n= n= n=1 n=1

i<j

+ special terms (C.1)

where the equation for each of the summation terms is presented below:

Bond stretching potential:

Vp(by) = ;— Kon [ b - bon 12 (C.2)

Bond angle potential:

N |—

Vo(6n) Kon [ 05 - 8on I° (C.3)
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Improper angle torsion potential:

Vi(&n) = ;‘ Kén [ in - &.'on ]2

(C.4)
Dihedral angle torsion potential:
V(0n) =-;- Koo [ 14 €08 (Kndn-8n) ] (C.5)
Lennard-Jones potential:
Vi) = =200 Coll) (.)
i j
Electrostatic potential:
Ves(r)) = 4—71—2‘—” (€.7)

All the parameters in the above equations are described in the List of Symbols
Section. First and second neighbors are excluded from the summation of
nonbonded interactions, i.e. van der Waals (Lennard-Jones) and electrostatic
interactions.
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Two different potential energy parameter sets are used in GROMOS.
The C-versions are the basic force fields designed for molecules in solution or in

crystalline form. The D-versions are derived from the C-versions for simulating
molecules in vacuum. In these force fields, all parameters in Equation (C.1) are

specified for 37 different types of atoms that exist in amino acids, DNA, sugars,
phospholipids and other molecules.

The non-bonded interaction energies and forces can be efficiently
calculated in GROMOS by the method of charge groups. A charge group is a
bonded group of atoms whose partial atomic charges add up to zero. The
leading term of the electrostatic interactions between two charge groups of
atoms is of dipolar (1/r3) character, because the 1/r monopole contributions of the
various atom pairs to the group-group electrostatic interaction will be zero. The
range of electrostatic interactions is considerably reduced when atoms are
assembled into charge groups. Consequently, the errors due to the application of
a cut-off distance for nonbonded interactions are also reduced. The switching
function, S(rij) is added to the nonbonded interactions to obtain a smooth
potential energy function when a cut-off radius is used.

Interaction potential may contain special terms for position restraining
and/or distance restraining. When simulating a molecular system, it may be
desirable to fix specific atoms or parts of the System to given reference positions.
In GROMOS, the motions of the atoms are restrained around specific positions by
applying a harmonic force. The distance between specific atoms may similarly be
restrained to a specified value. It is also possible to restrain bond angles and
dihedral angles to specified values.

The method of constrained dynamics can be applied in GROMOS. In
this method [80], also called the SHAKE algorithm, the degrees of freedom with
the highest frequencies in the system are frozen at equilibrium values, which
allows the use of larger time step sizes, At. It turns out that the application of
bond-length constraints saves abour a factor of 2-3 in computer time. All solvents
in GROMOS are modeled with bond length and bond angle constraints.

Energy minimization, which is used to reach low energy configurations
in a system, is accomplished by two different methods, namely steepest descents
and conjugate gradients minimization methods.
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temperature and/pressure of the System at specified values. Details on
this exter

nal bath are given in Section 3.2 and by Equations (3.2) and (3.3).

Two different boundary conditions are used in the simulations of finite
size systems. The vacuum boundary condition, which corresponds to the gas
phase at zero pressure, gives best results for relatively large globular
macromolecules. In the simulation of liquids or solutions, periodic boundary
conditions are used to minimize edge or wall effects.Different types of periodic

boxes may be used in GROMOQS, namely rectangular, monoclinic or truncated
octahedron.

In GROMOS, the information concerning a molecular system is
distributed over two distinct data files: a molecular topology (MT) file and an
atomic coordinate (AC) file. An MT file contains information about the topology of
a molecular system, i.e. data on the covalent structure, atomic masses, charges,
van der Waals parameters, etc. An AC file specifies the configurations of a
molecular system, such as Cartesian coordinates, velocities and sizes of the
periodic box. These two types of information are stored separately, because
configurations change continuously, whereas the molecular topology generally
remains unchanged during simulation. Only in the application of thermodynamic
integration formalism, used for the determination of free energy differences
between two states, the molecular topology of a system is perturbed by a
perturbation potential. Most programs of GROMOS use a binary molecular
topology file containing the topological and force field data of the system. There
are several different ways of forming MT files. Specifically, the MT files for large
biomolecules can be easily generated by the use of the existing molecular
topology building blocks in GROMOS, which are molecules or parts of molecules
like amino acid residues, nucleotides, etc.

The GROMOS programs are run by the use of shell command files,
which specif;./ the names and locations of input and output files and the programs
and subroutines to be used to perform a specific task. An example of a shell
command file to carry out a molecular dynamics run and its sample input file
defining the simulation parameters are given in the following.
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SHELL COMMAND FILE

#!/bin/sh

# This file created from the vms original
# Fri Jun 17 16:39:24 MeT DST 1994 o °n

# Start by removing old fortran links
rm -f fort.?; rm -f fort .77

# Identify the gromos directo

ry for input files
2g=../examples

dt=../data

IDDUt_f=$eg/imd§lail:dat # input polyalanine (+ions-startup)

In -s mta}a1c4.b1n fort.20 # binary molecular topology (pAla+ions)
In -s alaixeml.dat fort.21 # initial coordinates (pAla+ions)

# 1ln -s XXXX fort.23 # old option, not used

# 1n -s XXXX fort.24 % restraining reference positions

# 1ln -s XXXX fort .25 # sequence numbers of restrained atoms
# 1n -s HKKKK fort.26 # distance restraint atom pairs

# 1n -s XRXXK fort .27 # perturbation of molecular topology

# In -s XXXX fort.28 # restrained dihedral angles

In -s alaixmdl.dat fort..31 # final coordinates (pAla+ions+water)
In -s alairmdl .dat fort.12 # md trajectory coordinates (idem)

# 1In -s KKXK fort .13 # md trajectory velocities

# 1n -s XXXX fort.15 # md trajectory energies, etc.

output_f=ocutmdalail.lis
../promd.64 < S$input_f > $eg/out/Soutput_f
rm -f fort.20 fort.21 fort.31 fort.12

INPUT FILE ‘imdalail.dat’

13residue poly(ALA)+NA+CL+540H20,MD(STARTUP),ALAXEMl,ALAXMDl,pemra,janl995

1 540 1 : 0 280686 350.0 .0
2 2.13913 2.27856 3.61099 90.0
1 2 350.0 10.0 .01 .01
2 3 .06102 .0007476 .05
81 82 83
3 1 100000
500 1 3 0.0 .002
3 0 .0001
3 2 2 0 81
1 10 .8 10.0 10.0 .2 .8
10 .1
25 100000 25 0 1 0 2
0 19000.0
0 1000.0 0.0 .1 .153
0 0 2 .0 .0
0

1.0
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