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ABSTRACT 
 

 

INTEGRATION OF PUBLIC TRANSPORTATION USING 

AUTONOMOUS VEHICLES 
 

 

While public transportation (PT) plays a critical role in urban mobility, the discomfort 

and the disutility of the last-mile trips make PT unattractive. We investigate the feasibility 

of shared autonomous vehicles (AV) in terms of providing an alternative on-demand 

transportation service for last-mile mobility to the conventional bus routes that have fixed 

routes and schedules. To this end, the bus routes that operate along the edges of the 

transportation network are selected. The origin and destination (OD) pairs of the trips made 

in these bus routes are inferred at an individual level. Then, the related vehicle routing 

problem is formulated by taking the characteristics of the proposed transportation service 

into consideration. Several solution methods are developed for both solution construction 

and solution improvement phases of the problem. An agent-based simulation framework is 

constructed to evaluate the performance of the solution methods with real-world data. The 

findings of the study indicate the success of the solution methods in solving a highly dynamic 

problem. The results show that the integration of PT using AVs is well-suited to improve the 

service quality in the last-mile mobility. The investment and the operational costs of the 

proposed transportation service are further analyzed and shown to be more advantageous 

than conventional buses with fixed routes. 
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1. INTRODUCTION 
 

 

1.1. The Motivation of the Dissertation 

 

Transportation is a basic need for humans, enabling them to mobilize to different 

locations at local, national, and international levels. While it is an essential part of our lives, 

it is also one of the major users of energy. Energy used in transportation activities causes 

carbon emissions and contributes to global warming significantly.  

 

Even with electric vehicles, environmental pollution will still be a concern since the 

electricity consumed by electric vehicles is generated mostly by fossil fuels. This situation 

will not dramatically change in the short term. In fact, fossil fuel is expected to be a primary 

resource for energy by over %60 in 2040 (World Energy Council, 2019). Therefore, 

increasing the overall efficiency of transportation systems is a must for decreasing fossil fuel 

consumption.  

 

Private cars have occupied a great portion of passenger transportation and shaped 

personal mobility in the past century by providing fast door-to-door travel. However, the 

usage of private vehicles has increased traffic congestion, the need for parking spaces in 

urban areas, and oil consumption, thus greenhouse gases. In addition, the vast majority of 

the vehicles in urban areas are underutilized. Private cars spend 90 % of their lifespan as 

parked (Federal Highway Administration, 2011). While public transit is also one of the most 

used transportation modes, the discomfort, and the inconvenience experienced during 

ridership of PT, especially in the first and last-mile of the trips, make PT unattractive. There 

is an imbalance between these two transportation modes in terms of costs, comfort, and 

efficiency. In order to increase the efficiency of overall transportation systems in urban areas, 

it is necessary to have such a transportation service that combines advantageous 

characteristics of these two transportation modes.  

 

Shared use services have allowed passengers to experience such transportation mode, 

which has the comfort of private cars and is a relatively cheaper option than owning a private 
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vehicle. These services aim to decrease the empty seats during a trip, thus minimize the total 

vehicles needed and operation costs. By achieving these, ride-sharing services can help to 

reduce traffic congestion and fuel costs. For these reasons, ride-sharing services have 

become a common transportation mode in recent years. However, ride-sharing services still 

have some disadvantages, and fixed-route transits or private cars are more convenient for 

some trip purposes. Autonomous Vehicles (AV) are expected to eliminate these problems 

and become a more efficient transportation mode with ride-sharing operations. With the help 

of driverless vehicles, human-related performance limitations and the inefficiencies related 

to these limitations can be eliminated. With increased efficiency in operation, shared use 

AVs can significantly benefit passenger transportation in urban areas (Hyland, 2018).  

 

Our study proposes a transportation service that consists of shared AVs and offers 

point-to-point transportation. This system is designed to replace the conventional bus routes 

that operate in the last- -trips. The main idea behind 

selecting these routes is to establish a system that increases access to high-capacity 

transportation modes. Since mass transit is essential for an efficient transportation system in 

urban areas, continued investment in these mass transit modes should be guaranteed (Union 

of Concerned Scientists, 2017). Meanwhile, the conventional transportation services 

operating at the edges of the transportation networks must be replaced by the services that 

utilize the emerging technologies. 

 

In this sense, we collected the trip data of bus routes that operate in a region near a 

subway station. The trips made in this region contain the characteristics of a typical last-mile 

problem. Origin and destination (OD) points of these trips were determined using the 

inference methods proposed in previous studies and the methods introduced in this study.  

After acquiring the OD pairs of the trips, the trips were simulated with shared autonomous 

vehicles. To solve the vehicle routing problem, several constructive and improvement 

heuristics were developed.  

 

1.1. Last-mile Problem 

 

Public transportation is an essential component of any sustainable urban transport 

system. Since it helps to reduce private car usage, thus traffic congestion, fuel consumption, 
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and carbon emissions, municipalities are trying to increase the portion of PT in the 

transportation systems. However, it is crucial to serve sustainable and accessible public 

transportation to the passengers to make it preferable by the general public.  

 

In major cities, the main public transportation modes are bus and rail services. 

However, most passengers need to walk, drive their private vehicles, and use taxis or other 

transportation modes to reach the nearest station or stop. These trips, which are the first or 

last leg of the daily trips, are defined as the first or last mile. Since in most of the cases, the 

first and last mile of the trips are inflexible and slow, while using public transportation, last 

mile or first mile experiences causes inconveniences for passengers (Scheltes and de 

Almeida Correia, 2017). This disadvantage in public transportation systems is one of the 

main deterrents that make PTs an undesirable transportation mode for passengers (H. Wang 

and Odoni, 2016).  Even though various transportation modes are started to be used to 

eliminate the first and last mile problem in recent years, passengers still encounter limitations 

and difficulties such as long travel times, high costs, bad weather conditions when they 

prefer these new concepts. In this sense, convenient services for first and last-mile 

transportation need to be offered. By reducing the travel time of the commuters between the 

transit and their homes or workplaces and eliminating the difficulties in these trips, a more 

integrated public transit network potentially provides a cost-effective and sustainable door-

to-door transportation (Chong et al., 2011).  

 

1.2. Vehicle Routing Problem  

 

There has been a rapid and significant evolution in passenger transportation. With the 

emergence of intelligent transportation systems and the smart phone technologies daily 

commute of passengers has become more efficient. Several companies like Lyft and Uber 

have used these technologies and offered users ride-sharing transportation services in recent 

years. In the near future, electrical and autonomous vehicle technology will revolutionize 

passenger transportation (Martin, 2019). The positive impact of these emerging technologies 

on the environment and the economy can be realized when efficient vehicle routing is 

achieved. 
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In this sense, planning and optimizing transportation services become vital, and 

problems faced during the operations of transportation services have attracted the attention 

of both the industry and academia. Researchers developed various methodologies that offer 

efficient solutions to operational problems. The routing problem is one of the most 

challenging problems in this domain. Therefore, VRP has become an important topic for 

various organizations and companies in the transportation of goods or passengers.  

 

The VRP was first introduced by Dantzig et al. (1954) as Vehicle Routing Problem 

(VRP), which aims to find the set of optimal routes for vehicles that are supposed to visit all 

the customers. This basic problem has been extended to several variants that simulate real-

life problems and include the complexity of real applications. With the advances in solution 

methods and technological developments, these problems have become one of the major 

research topics in operation research. With the introduction of real-life VRP applications 

that are more complex and large scale, the extent of VRP has grown considerably. According 

to Eksioglu, et al. (2009), the VRP literature has been growing exponentially at a rate of 6% 

each year. 

 

The VRP can be defined as finding a set of routes for the vehicles to serve the trip 

requests with the consideration of problem constraints (Irnich, Toth, and Vigo, 2014). The 

task defined for VRP contains two steps, grouping the passengers into vehicles and finding 

the optimal routes. To utilize the emerging technologies efficiently, the routing problems we 

encounter in almost all transportation modes should be well defined and solved as optimal 

as possible.    

 

There are several variants of VRP which formulate problems with different 

characteristics. The services that provide point-to-point transportation for passengers are 

classified as dial-a-ride problems (DARP) (Doerner and Salazar- . In our 

study, we propose a transportation service similar to shared taxis. However, in our case, the 

vehicles in the fleet are autonomous. In addition, dynamic vehicle routing can be defined as 

the problem of dispatching vehicles to serve the trip requests revealed dynamically in real-

time. The trip requests are highly dynamic in our studied problem since these requests were 

taken from a mass transit mode. In this sense, our studied problem can be defined as a 

dynamic dial-a-ride problem.  



5 
 

 
 

1.3. Why Autonomous Vehicles 

 

Autonomous Vehicle (AV) technology is a breakthrough in the transportation domain. 

The inclusion of AVs in transportation networks is expected to have various impacts on the 

transportation industry (Wen et al., 2018). In recent years, online mobility-on-demand 

services have gained a significant share from conventional transportation modes (Rayle et 

al., 2016). It is anticipated that with the advances of AV technology, these services will 

attract more share in the transportation systems of major cities. Since they have a great 

potential to be utilized instead of certain types of public transportation modes, it will affect 

the ridership and general viability of PT. Instead of considering the AVs as a threat to PT or 

other transportation modes, it should be perceived as a great opportunity to increase the 

efficiency of the present transportation networks.  

 

Integrated public transportation with autonomous vehicles is first discussed by Lenz 

and Fraedrich (2016). They illustrated the AVs as a service to increase the options of public 

transportation in less congested areas. Shen et al. (2018) utilized a simulation to examine the 

potential of AV services as a supporting system to bus operation and planning. Their study 

showed that an integrated transportation network would increase the efficiency of the 

process for both AV operators and public transportation agencies. Yan et al. (2019) focused 

on ride-sharing services like Uber and Lyft, with PT for first and last-mile transportation. 

They also studied the potential of these services as a substitute for low-demand routes. Wen 

et al. (2018) proposed a transit-oriented AV operation for integrated autonomous vehicles 

and public transportation systems. They focused on the opportunities between AV and PT 

when the AVs are utilized to support the existing PT network. 

 

Several semi-autonomous features, from parking assistance systems to lane-keeping 

assistance systems, have already been utilized in vehicles. However, fully autonomous 

vehicles are not widely used in the transportation domain. With the utilization of fully 

autonomous vehicle technology,  AVs will have significant potential benefits. 
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1.3.1. Capacity Gain 

 

AVs are expected to have a shorter reaction time compared to human drivers. When 

the roads are occupied by only fully autonomous vehicles, the advantage of shorter reaction 

time will result in capacity gains on highway network up to %370 and on urban road network 

up to %80 (Brownell, 2013; Fernandes and Nunes, 2010).  

 

1.3.2. New Users 

 

With the elimination of human drivers, those who are not allowed or able to drive 

vehicles will have the chance to travel independently with AVs. In this sense, elderly people, 

adults without a license, unaccompanied children, people with mobility-restricting 

disabilities, and some other passenger groups will benefit from the advantage of AVs. 

 

1.3.3. The Financial Burden of Private Car Ownership 

 

While private car ownership comes with great comfort in the transportation experience 

compared to public transportation, it also has a significant financial burden apart from the 

purchasing cost such as insurance, repair costs, and taxes. For families owning multiple 

vehicles, these costs occupy a great portion of their yearly expenditures. AVs can provide 

the same comfort level by door-to-door transportation service without the costs related to 

private car ownership. 

 

1.3.4. Non-driving Activities 

 

Another advantage of AVs is the opportunity to perform non-driving activities. 

Because of the need for human control in traditional vehicles, drivers must focus on the road 

and the vehicle. The necessity of human control prevents drivers from enjoying any non-

driving activities. With fully autonomous vehicles, drivers will become passengers in the 

vehicle and can utilize the trip duration with various activities such as reading a book, 

watching a movie, etc. With this advantage, AVs combine the comfort in private cars with 

the opportunity to enjoy non-driving activities in public transportation and serve better 

transportation service comfort-wise. 
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1.3.5. Traffic Congestion 

 

It is predicted that a 33 percent increase in the world population by 2050 will have an 

impact on an increase in the number of cars. It is expected that around 1 billion additional 

cars will hit the roads (Voelcker, 2014). An increase in the number of vehicles with this 

magnitude will directly result in a need for extra infrastructure. Considering that the 

population will be more concentrated in cities in the future, the need for better transportation 

infrastructure will be a challenging problem for urban areas.  

 

1.3.6. Parking Cost 

 

In AV technologies, it is assumed that the vehicle will maneuver itself from its original 

parking lot to the passenger and vice versa (Lenz and Fraedrich, 2016). This means that the 

effort of passengers to reach and park the vehicle is eliminated in AVs. These vehicles can 

be moved to the place where it is demanded and leave the passenger at their destination, 

thereby providing a door-door service. With the utilization of AVs, land use for parking 

space in city centers will be considerably decreased (Heinrichs, 2016).  

 

1.3.7. Safety 

 

According to World Health Organization (WHO, 2018), road injuries are the 8th 

leading cause of death overall with the death of 1.3 million people each year. It is also the 

leading cause of death for people aged between 5-29 years. Furthermore, human errors, by 

far, the biggest reason behind these accidents.  The study of the National Highway Traffic 

Safety Administration (NHTSA) concludes that over 90 percent of accidents are related to 

human errors (NHTSA, 2008).  Since AV technologies focus on eliminating human drivers, 

AVs' utilization in transportation networks is expected to dramatically decrease crash rates. 

However, it is also possible that trust in AVs may encourage pedestrians or bicyclists to take 

more risks on roads (Kockelman et al., 2016). 
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1.3.8. Compliance with al Plans 

 

Operational policies for a fleet are made for efficient fleet management. However, it 

is hard to force drivers to obey operational policies. Since in taxi or ride-sharing services, 

drivers have the autonomy to some extent, they tend to choose what is best for them among 

the alternatives and may ignore the overall efficiency of the fleet, full compliance with the 

operational policies of the fleet manager is hard to achieve. With a fleet of AVs, complete 

control over the vehicles can be supported, and the fleet manager can successfully implement 

policies that potentially increase the overall efficiency of the entire fleet. In order to achieve 

this, some AVs may need to serve in areas with low demand, where in a taxi example, no 

driver prefers to spend time in such places (Hyland, 2018). 

 

1.3.9. Adapting to Pandemic Conditions 

 

Because of the Covid19 pandemic, social distance in public transit has become very 

important for passengers. People fear being infected due to their interaction with other 

passengers. However, it is hard to find a public transportation system that offers the required 

personal space to its passengers. In this sense, shuttle or taxi-like vehicles are expected to 

occupy a bigger portion of the public transportation system. Moreover, since the drivers of 

buses or other PT vehicles interact with so many people on daily basis, the risk for them to 

be infected is exceptionally high. With the help of autonomous vehicle technology, the need 

for a human driver will no longer be present, and all the risk factors for the drivers will be 

eliminated. 

 

1.3.10.  Challenges with Autonomous Vehicles 

 

Although there are several technical advantages of AVs, there is also a wide range of 

challenges that need to be eliminated in order to make AVs available to the general public. 

For instance, Lidar systems used by most AV companies are still very expensive while 

alternatives like using regular cameras in tandem with image recognition software provide a 

lower level of precision. Another difficulty arises from the bad weather conditions. Since the 

AVs observe the surrounding environment via cameras or sensors when the sight of AV is 

blurred by rain or snow, they become inoperable. Even in conditions where the sensor itself 
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is not obscured but the lane dividers are AVs that cannot track the lanes.  The computer 

systems that are integral to AVs are also vulnerable to hacking attacks that can lead to 

collisions and other costly disturbances in crowded cities. 

 

Aside from the technical challenges, legislative problems have not been solved yet. 

When an accident occurs, there is no consensus about who is going to be the liable party: 

passenger, manufacturer, or software developer, etc. After all these challenges are resolved, 

people might still hesitate to use this new technology due to the resistance to adapt to new 

technologies. Several researchers have studied the key factors from safety to perceived 

usefulness that affect the adoption of AVs (Xu et al., 2018; Howard and Dai, 2014).  

 

1.4. Presentation of Problem Studied  

 

Since the conventional transportation modes of PT fail to provide a fast and flexible 

experience to passengers for the last mile, there is a need for new transportation concepts 

(Scheltes and de Almeida Correia, 2017). In order to have full integration of PT, these new 

transportation concepts should serve efficient transportation service that eliminates the 

disutility experienced in the conventional last-mile transportation modes.   

 

This study aims to propose a transportation service that can replace the conventional 

bus routes operating in the last mile of public transportation. To achieve this, it is necessary 

to develop the models and solution methods for the routing problem that arose in the 

proposed service's execution. The characteristics of the proposed service are summarized as 

follows: 

 

 The vehicles in the fleet are autonomous. 

 The fleet is homogenous. All the vehicles have the same functional characteristics 

related to the service. 

 Passengers should be delivered as soon as possible. 

 Shared rides are allowed.  
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The proposed service offers point-to-point transportation. For this kind of problem, 

passengers make trip requests with their origins and destination of the trips. The optimization 

problem has two steps: assigning vehicles to passengers and generating the routes for each 

vehicle. This problem is defined as a dial-a-ride problem in the VRP literature. The problem 

consists of several constraints, and the relevant ones to our problem can be summarized as 

follows: 

 

 Each passenger must be served. This constraint is relevant for the cases where the 

rejection of the trip request is not allowed. 

 Each passenger must be picked up and delivered by the same vehicle. Passenger 

transfer is not allowed. 

 Passengers must be picked up before being delivered.  

 The number of passengers assigned to a vehicle cannot exceed the predefined vehicle 

capacity.  

 

To generate the problem mentioned above, time, origin, and destination of trips are 

needed. For this purpose, the origin and destination of trips made in bus routes operating in 

the last mile are inferred. These origins and destinations and the time of the requests are used 

in the studied routing problem. An agent-based simulation framework is developed to 

evaluate the performance of the solution methods developed for the problem. The simulation 

is coded in Python 3.9. The solution algorithms used for the passenger-vehicle assignments 

and routing are embedded in the simulation.  

 

1.5. Contributions of the Dissertation  

 

The main contributions of the study can be summarized as follows: 

 

 By extending the assumptions made in previous OD studies, a robust trip chaining 

algorithm is developed to find the OD pairs of the bus passengers. 

 To the best of our knowledge, none of the previous studies used inferred OD pairs of 

bus passengers at an individual level for their routing problems. This study used real 

OD pairs of bus passengers for the routing problem.  
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 The study proposed a point-to-point transportation service containing a fleet of shared 

AVs that is designed to replace conventional bus routes operating in the last mile of 

PT.  

 Exact and heuristic methods are widely utilized for solving routing problems. 

However, most of the previous studies used synthetic data for their research. The 

complexity of real-life problems cannot be fully perceived with synthetic data. In this 

study, the performance of the solution methods is tested with real data in a highly 

dynamic setup. 

 We have introduced a new constructive heuristic method for the solution construction 

of the dynamic DARP. This method can be implemented in other solution methods or 

other variants of VRP. 

 The neighborhood structure in improvement heuristics is designed to limit the 

computational effort required. With this method, the computational time of the related 

operators is kept in a reasonable range. By achieving this, the proposed algorithm 

becomes suitable for a dynamic environment. 

 An agent-based simulation framework is constructed to evaluate the performance of 

the solution methods. 

 The proposed model and the solution algorithms can be applied in present 

transportation systems. Although the vehicles are designed to be autonomous in our 

research, the conventional vehicles with drivers can be operated by the proposed 

model, and the solution methods can be used to solve the related routing problem. 

 We have shown the economic feasibility of the proposed model in terms of both capital 

and operational cost. 

 

1.6. Overview of the Dissertation 

 

The rest of the dissertation is organized as follows: 

 

 Chapter 2 overviews the literature for the VRP and its variants. The elements of VRP 

related to our studied problem are described in detail. Operational decisions which can 

be made during the execution of the proposed transportation service are discussed. 

Solution methods used to solve the VRP and its variants in previous studies are shown. 
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 Chapter 3 investigates the previous methods and the assumptions made in these 

methods for the OD inference of PT users. Further assumptions made in this study and 

some methods developed for the destination inferences are described in detail.  

 Chapter 4 formulates the studied routing problem. The assumptions made for the 

related problem are shown. Constructive and improvement heuristics developed for 

the related problem are described in detail. The pseudo-codes for the solution methods 

are generated.  

 Chapter 5 is dedicated to the elements of the simulation. Important parameters that 

affect the performance of the solution methods are analyzed.  

 Chapter 6 examines the results of the simulation. The performances of the proposed 

solution methods are compared with each other in different settings. 

 Chapter 7 finalizes the thesis by commenting on the main contribution of the study. 

The economic feasibility of the problem is analyzed in terms of investment and 

operational costs. In addition, some limitations of the studied problem are discussed in 

this chapter. 
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2. VEHICLE ROUTING PROBLEM 
 

 

The vehicle routing problem is a delivery problem that many organizations and 

companies encounter daily while mobilizing goods or people. The VRP is a combinatorial 

optimization problem, and since the problem was first studied, there have been several exact 

and approximate solution methods developed by researchers. Like TSP, it is an NP-hard 

problem because VRP generalizes TSP.  

 

Even though a huge literature and countless studies are focusing on VRP, researchers 

have still not reached a consensus on the definition of the VRP (Eksioglu, Vural, and 

Reisman, 2009). Especially for specific variants of VRP, different terminologies are used in 

the literature by various researchers.  

 

2.1. Variants of VRP 

 

Dantzig et al. (1954) published a paper introducing VRP to the literature as a 

generation of the Traveling Salesman Problem formalized by Flood (1956). TSP can be 

classified as a specific version of VRP. After this, various TSP papers were published. Clarke 

and Wright (1964) used multiple vehicles in their routing problem and generalized the 

problem such that it reflects the problems widely encountered in the logistics and 

transportation industry. After this classical formulation, various types of VRP were studied. 

One of the most common versions of VRP is the Capacitated Vehicle Routing Problem 

which vehicles have a limited capacity. Another widely studied variant of VRP is the Vehicle 

Routing Problem with Time Windows, where the customers need to be visited in a defined 

time frame. While some versions of VRP involve the transportation of goods, like Pick-up 

and Delivery Problem (PDP), others formalized the movement of passengers from their 

origins to destinations, such as Dial-A-Ride-Problem (DARP). Although the VRP has been 

studied extensively, and much progress has been achieved since it is first introduced, it is 

still a challenging research area (Ritzinger, Puchinger, and Hartl, 2016). 
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2.1.1. Classical Vehicle Routing Problem 

 

The classical VRP, known as Capacitated Vehicle Routing Problem (CVRP), is 

designed to search for the set of routes for a fleet of vehicles with the minimum cost. The 

routes begin and end at the depot while the vehicles visit each customer once. The capacity 

of vehicles is not exceeded, and the route length restrictions should be met. Most of the exact 

solution algorithms consider the capacity restrictions, while the others have been developed 

with distance constraints. On the other hand, approximate solution methods deal with both 

capacity and distance constraints (Cordeau et al., 2007). Capacitated Vehicle Routing 

Problem is constructed to explore the routes for a specified number of vehicles and find the 

set of routes that gives the overall optimum result (Elshaer et. al. 2020). In CVRP, all 

vehicles should start their trips from a depot and end up in the same depot.  

 

2.1.2. Vehicle Routing Problem with Time Windows (VRPTW) 

 

Another important generalization of the classical vehicle routing problem is the 

Vehicle Routing Problem with Time Windows (VRPTW). In VRPTW, each vehicle visits 

the customers within a defined time window. A vehicle is allowed to visit the customer 

before a certain time and wait, but the visits after that time are not allowed (Cordeau et al., 

2007). There are two types of time windows in VRPTW, VRP with soft time windows and 

VRP with hard time windows. In VRP with soft time windows, late arrival to the customers 

is not prohibited but comes with a penalty cost (Iqbal, Kaykobad, and Rahman, 2015). 

However, in VRP with hard time windows, visits after that time are not allowed.   

 

The VRPTW is used in various fields, from food distribution to industrial waste 

collection (Golden, Assad, and Wasil, 2002). VRPTW generalizes the CVRP; therefore, it 

is an NP-hard problem. Thus, the researchers have focused on heuristic methods to find 

approximate solutions to VRPTW. Nevertheless, it is possible to find the optimal solutions 

for VRPTW through mathematical programming when the time intervals are narrow and the 

problem size is small (Cordeau et al., 2007). 
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2.1.3. Dynamic Vehicle Routing Problem (DVRP) 

 

In most of the practical applications of VRP, parts of the information about the 

problem become available during the execution. This type of VRP where some of the input 

data are revealed dynamically is called dynamic VRP (DVRP), also called online or real-

time VRP. Commonly used dynamic components of DVRP are the time of customer 

requests, service and travel times, and demands of the customers (Ritzinger, Puchinger, and 

Hartl, 2016).  

 

Since DVRP reflects numerous real-life applications, it is extensively studied. With 

the inclusion of dynamic inputs, the problem becomes more complex. Due to the complexity 

of the problem, sometimes it is not easy to find feasible solutions for certain trip requests. In 

some of those cases, rejecting some service requests is allowed.  

 

In DVRPs, reaction time becomes highly important since the decisions should be made 

dynamically in a short time. However, it is hard to give a good solution quickly since it 

requires high computation time. Therefore, the balance between decision quality and 

reactiveness should be achieved. For this purpose, Sleator and Tarjan (1985) introduced the 

competitive analysis, and it has been used to measure the performance of the online 

algorithms by several researchers. 

 

2.1.4. Pick-Up and Delivery Problem (PDP) 

 

In pickup and delivery problems, transportation requests include both origins and 

destinations. These types of transportation services refer to door-to-door or point-to-point 

transportation. Transportation may require the movement of passengers or goods from a 

pick-up location to a corresponding delivery location. For the cases in which the 

transportation of goods is considered, the term pick-up and delivery problem (PDP) is used 

(Parragh, Doerner, and Hartl, 2008; Battarra, Cordeau, and Iori, 2014). When the problem 

deals with the transportation of people, the term dial-a-ride problem (DARP) is used 

(Doerner and Salazar- . Most of the DARPs are originally designed to solve 

the routing problem of transporting patients, disabled or elderly people (Hyland, 2018). Time 
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window constraints for pick-ups and deliveries are generally applied to the problem either 

in the objective function or with problem constraints (Irnich, Toth, and Vigo, 2014).  

 

2.1.5. Stochastic Vehicle Routing Problems (SVRP) 

 

In most real-world applications, while there is uncertainty about the problem, historical 

data is available in advance. With the help of this data, one can forecast future events based 

on one or more components of the problem that follow a probability distribution. This type 

of VRP is called stochastic VRP (SVRP). There are three common cases of SVRP, VRP 

with stochastic customers (VRPSC), VRP with stochastic demand (VRPSD), VRP with 

stochastic travel and service times (VRPSTS) (Elshaer and Awad, 2020). Compared to the 

deterministic VRPs, SVRPs are more complex and require additional components for the 

solution method. Therefore researchers introduce a priori optimization step for solving 

SVRPs (Cordeau et al., 2007). 

 

2.2. Elements of Vehicle Routing Problem 

 

The proposed transportation service in our study is similar to shared autonomous taxis, 

which fall under the dynamic dial-a-ride problem. To be more specific, the studied routing 

problem can be classified as a multi-vehicle, dynamic, dial-a-ride problem with soft time-

window constraints and fixed fleet size. Related but not limited to our problem, VRPs 

include various elements.  

 

2.2.1. Rejections of Trip Requests 

 

Rejection of trip requests sometimes can be allowed when the fleet operator considers 

the revenue generated by the vehicles. In the cases of unprofitable trips, the operator may 

decline the trip requests of the passengers. Moreover, the rejection can be relevant for 

especially highly dynamic problems where the possibility of encountering infeasible 

solutions is relatively high.  

 

Some studies allow the fleet controller to reject the trip requests during the execution 

(Seow, Dang, and Lee, 2010), while others aim to minimize the number of rejected trip 
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requests (Saint-Guillain, Solnon, and Deville, 2017; Pureza and Laporte, 2008). Since the 

proposed transportation service in our study aims to replace a public transportation service, 

it is expected to serve all the trip requests. Therefore, in the formulation of the studied 

problem, rejection of trip requests is not allowed. 

 

2.2.2. Objective Functions 

 

While in static VRPs common objective is to minimize the total cost of routes,  in 

dynamic versions of VRPs, some other aspects are included in the objective function, which 

generally reflects the service level or the total revenue (Pillac et al., 2013). Also, some of the 

objectives, such as travel time or completion time, 

the dynamic cases (M. W. P. Savelsbergh and Sol, 1995). In this sense, objective functions 

in dynamic VRPs are frequently distinguished from the objective functions in static VRPs 

(Psaraftis, 1995).  

 

Even within the dynamic VRP literature, researchers used various objective functions. 

Bent and Van Hentenryck (2004) generated an objective function that maximizes the number 

of served passengers. Branke et al.(2005) aim to maximize the probability of new customers 

being inserted into fixed tours. Pureza and Laporte (2008) proposed an objective function 

that aims to minimize the number of rejected passengers.  

 

The objective function used in the studied problem contains two parameters: total 

traveled distance and waiting time of the passengers. While the first one reflects the cost of 

the fleet operation, the latter stands for the service quality. It should also be noted that the 

waiting time of a passenger is defined as the gap between the service duration of the 

passenger and the travel time of the shortest path between the origin and destination of the 

passenger. The service duration starts with the passenger's trip request and ends with the 

delivery of the passenger. This definition challenges the solution method to find solutions 

close to the optimal solutions for passengers. 
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2.2.3. Time Window Structure 

 

In the taxonomy proposed by Eksioglu et al. (2009), there are three types of time 

window structures: soft, strict, and mixed. When time windows for trip requests are applied, 

the vehicles should serve the trip requests within predefined time windows. On the other 

hand, there is a difference between applying strict and soft time windows to the studied 

problem. While strict time-window structure requires additional constraints in the problem, 

soft time-window structure is generally reflected in the objective function by including 

related parameters. 

 

Our problem, which contains shared AVs, can be formulated with a strict or soft time-

window structure. However, the problem has several constraints due to its characteristics. In 

addition to this, the dynamism and the size of the problem are considerably high. Introducing 

an additional constraint causes increased complexity hence requires extra computational 

effort. In order to avoid this, a soft time-window structure is used in this study, and the 

waiting time parameter is included in the objective function. This parameter is related to the 

service quality of the proposed transportation system. 

 

2.2.4. En-Route Diversion 

 

Some variants of routing problems allow vehicles to divert from their planned route 

and serve new requests. Especially in dynamic variants, allowing the diversion of en-route 

vehicles may contribute additional savings due to the possible assignments to the closer 

passengers that become available to the fleet controller during the execution of the routes. 

Lorini et al. (2011) argue the benefits of the en-route diversion based on the computational 

results of benchmark instances.  

 

To find better solutions with the new requests that arrived dynamically, a planned 

route, which is the solution for the previous iteration's routing problem, should be 

decomposed, and reassignment should be carried out. However, reassignment of trip 

requests to the vehicles; in other words, diversion of en-route vehicles increases the studied 

problem's complexity and solution space.  
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Our problem is highly dynamic, and the diversion of the vehicles upon the new 

requests can change the solution quality significantly. Therefore, the diversion of vehicles 

or reassignment of the trip request is allowed for the studied problem. A solution generated 

in a decision epoch is decomposed in the next iteration, and a new solution is created. After 

reassigning the revised trip requests to the vehicles, the proposed algorithm aims to find 

optimal routes for each vehicle. For the passengers onboard, reassignment can not be made 

since the passenger transfer is not allowed in our study. However, the sequence of the 

 

 

2.2.5. Evolution and Quality of Information 

 

The evolution of information reflects variants of VRPs where some information 

becomes available to the planner during the execution of the service. Quality of information 

relates to the uncertainty on the available data (Pillac et al., 2013). According to this 

classification, there are four categories of vehicle routing problems shown in Table 2.1. 

Pillac et al. (2013) and Ho et al. (2018) used similar taxonomies for the reviews of dynamic 

vehicle routing problems and dial-a-ride problems, respectively.  

 

Table 2.1. Taxonomy of routing problems by evolution and quality of information. 

  Information Quality 

  Deterministic Stochastic 

Information Evolution 
Known beforehand Static and deterministic Static and stochastic 

Changes over time Dynamic and deterministic Dynamic and stochastic 

 

In static and deterministic problems, all the input used in the problem is known 

beforehand in such a way that routes of the vehicles can be determined before the execution. 

Once the execution starts, none of the input is changed. In static and stochastic routing 

problems, inputs are partially available to the planner. Also, only minor changes in the 

planned route can be accepted during the execution.  

 

For the category of dynamic and deterministic, the planner has no distributional 

information to exploit. Pillac et al. (2013) state that exact information becomes available to 
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the planner during execution in dynamic and deterministic problems. On the other hand, it 

is argued that deterministic routing problems cannot be dynamic. Only stochastic problems 

satisfy the characteristics of a dynamic problem (Lahyani, Khemakhem, and Semet, 2015). 

 

In dynamic and stochastic VRPs, related problem inputs become available to the 

planner in real-time.  On the other hand, the planner can exploit the available data on the 

studied problem when repositioning and routing vehicles. For example, although the real 

igins and destinations are known during the execution, the 

fleet controller can take necessary action based on the spatio-temporal distribution of the 

previous trip requests in the studied region. 

 

The routing problem studied in this research is considered to be a dynamic routing 

problem since all related inputs like request times, origin and destination locations, etc., 

reveal in real-time. Furthermore, the trip history of the studied bus routes is known 

beforehand and utilized in certain steps of the service execution. In this sense, our studied 

problem is under the umbrella of dynamic and stochastic routing problems.  

 

2.2.6. Homogeneity of Vehicles and Users 

 

Bodin and Golden (1981) categorized the type of vehicle fleet in two categories: 

homogeneous and heterogeneous. The vehicle fleet becomes heterogenous when the vehicles 

in the fleet are differentiated by the capacity or other characteristics (Ho et al., 2018). Most 

of the studies considering heterogenous vehicle fleets are motivated by the fact that 

transportation service providers need to acquire vehicles with different capacities and 

equipment to serve people with various limitations in real-life applications. The formulation 

of the routing problem is highly dependent on the characteristics of the vehicle fleet. The 

increase in the complexity of the problem challenges solution methods developed for the 

problem.  

 

Due to the characteristics of the problem, some studies considered user heterogeneity. 

The introduction of different types of users is sometimes motivated by the operation 

strategies advantageous to the fleet operator (Molenbruch et al., 2017). User heterogeneity 

may also be needed due to the requirements in the studied problem (Ilani et al., 2014).  
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The problem in this dissertation aims to solve the routing problem for the trips made 

transportation services, this study considers homogeneous vehicle fleets and users. One can 

argue that for disabled passengers, vehicles in PT should be equipped properly. Even in this 

case, instead of equipping some vehicles in the fleet, all of the vehicles should be designed 

to serve all PT users.  

 

2.2.7. Road Network 

 

The road network is one of the most crucial components of VRP that generally consists 

of arcs and nodes. The origins and destinations of the passengers and depots can be 

represented by the nodes, while the arcs can represent the roads. Some of the VRP studies 

road structure. These networks are simplistic 

and introduced by the researchers to test their solution algorithms for the related VRP. On 

the other hand, some studies used real road networks with the nodes representing the 

intersections and the arcs representing the roads that connect the nodes. On the other hand, 

some of the real networks have additional nodes in the arcs besides the nodes in the 

intersections. These additional nodes increase the precision of the studied networks; hence 

the studied problem reflects the real routing problem more. A real road network is used in 

our study, and additional nodes are included in the network to increase precision.  

 

2.2.8. Ridesharing 

 

Shared rides refer to the trips where the vehicle transports more than one passenger. 

After the launch of several shared mobility services like Car2Go, Zipcar, and others, the 

concept of shared mobility has improved its popularity in recent years with the increasing 

attention from academia and the transportation industry (Mourad, Puchinger, and Chu, 

2019). Therefore, several VRP studies that deal with DARP consider ridesharing in their 

routing problems. In order to have the benefits of the shared rides, the vehicles are assumed 

to be shared by the passengers. It should also be noted that it seems almost impossible to 

introduce such a fleet that can serve the demand of the conventional busses with the limited 

number of vehicles. 
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2.2.9. Repositioning of Idle Vehicles 

 

In some stochastic vehicle routing problems, spatio-temporal trip demand can be 

estimated based on the trip history of the service region. In these examples, it is possible to 

reposition the vehicles in such subregions where the future trip demand is expected to be 

higher than the presently available vehicles in that subregion. This strategy can significantly 

improve the overall efficiency of the vehicle fleet. On the other hand, it requires stochastic 

information of the trip demand and computational efforts in the fleet's operation. In this 

study, repositioning of the vehicles in the fleet is not considered to eliminate a further 

increase in computational effort. 

 

2.2.10.  Passenger Transfers 

 

In most of the studied DARPs, passengers stay in the same vehicle for the entire trip. 

Some of the recent studies consider the possibility of transferring passengers between 

vehicles. Although transferring a passenger at a transfer point requires additional constraints 

hence increases the complexity of the studied problem, researchers were motivated by the 

advantages that can be gained by passenger transfers to improve the overall efficiency. Even 

if some passengers need to wait at the transfer points, and their journeys become less direct, 

significant savings can be achieved in the total trip duration and total traveled distance 

. 

 

As stated above, considering passenger transfers increases the number of constraints 

and computational efforts needed to solve the studied problem. In our study, due to the 

problem size and the dynamism of the trip requests, solution algorithms require a high 

computational time. Therefore, the additional complexity in the problem is avoided. 

Moreover, the studied network is relatively small, and the introduction of transfer points in 

the network is not expected to give significant savings in the parameters of the objective 

function. 
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2.3. Solution Methods 

 

A crucial factor for successfully solving sophisticated vehicle routing problems (VRP) 

is to offer reliable and flexible solutions. Due to the characteristics of VRPs, exact solution 

algorithms can only solve cases where the problem sizes are considerably small. Because 

the real routing problems we face in our daily life often exceed the sizes that the exact 

algorithms can solve, researchers have tried to generate heuristics or metaheuristics for the 

related routing problems in their studies. Especially in dynamic cases, the computational 

time needed to solve the problem becomes extremely important. Therefore, finding a good 

solution in a reasonable time is much more applicable to the real-world problem than 

searching extensively for the optimal solution. 

 

On the other hand, in the application of dynamic dial-a-ride problems, which is 

considered to be the class of our studied problem, some metaheuristic methods can be 

computationally demanding . Although several metaheuristics 

were used for VRPs in previous studies, additional constraints and the degree of dynamism 

of our studied problem require high computational effort. Therefore, we mainly focused on 

constructive and improvement heuristics to get feasible and good solutions in reasonable 

computational time. We also developed a simulated annealing algorithm for the solution 

improvements to diversify the generated solutions. Additional parameters and steps are 

included in the proposed SA algorithm.  

 

2.3.1. Constructive Heuristics 

 

Heuristics used in constructing the initial solution often provide a starting solution to 

the improvement heuristics (Laporte, Ropke, and Vidal, 2014). These heuristics aim to build 

feasible and good solutions by inserting a new request into a new route or an existing route. 

There are two main types of solution construction in the VRP literature: sequential and 

parallel construction methods. In sequential construction, additional vehicles can be used 

when no vehicle can be assigned to further requests. In the parallel construction method, the 

number of vehicles in the fleet is predefined, and all available vehicles are open to user-

vehicle assignments.  
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Although the metaheuristic methods are effective in finding a good solution in such a 

way that they can even start from randomly generated initial solutions (Laporte, Ropke, and 

Vidal, 2014), construction heuristics are useful to acquire feasible solutions quickly. The 

dynamic variants of routing problems require fast initialization of the solution. Hence it is 

helpful to use construction heuristics in dynamic cases of VRP. 

 

One of the most used insertion heuristics is the greedy insertion heuristic proposed by 

Jaw et al. (1986). In this method, each request is inserted into a route where the cost of the 

insertion has the minimum value. Although this heuristic is fast and simple, finding the 

optimal position for a request may require relatively high computational time in large-sized 

problems.  

 

Another method widely used in previous studies is the method that assigns the 

passenger to the closest vehicles (Solomon, 1987). While this method is considerably 

advantageous in terms of computational time, the quality of the generated solutions is 

relatively worse. 

 

The researchers propose various other construction heuristics. However, the 

performance of the construction heuristics is highly dependent on the characteristics of the 

studied problem. Hence one should find the best constructive heuristics for the studied 

problem. As discussed in Chapter 4, we proposed a constructive heuristic applied to the 

problem in the passenger-vehicle assignment phase. The heuristic searches available 

vehicles for a request within predefined radius intervals then makes the user-vehicle 

assignment.  

 

2.3.2. Improvement Heuristics 

 

Improvement heuristics are mostly used after the construction of solutions. 

Improvement heuristics used in VRPs contain two types of moves: intra-route and inter-

route moves. Intra-route moves aim to improve the route of a particular vehicle by changing 

-route moves, heuristic 

methods used for TSP can be applied for VRPs also (Laporte, Ropke, and Vidal, 2014). 

Clarke and Wright (1964) proposed a saving heuristic that uses intra-route moves. This 
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method is widely used to construct an initial solution for more advanced algorithms. Inter-

route improvements, on the other hand, move the users from one route to another. Most of 

the studies combine these inter-route and intra-route heuristics to get better solutions. 

 

One of the most used intra-route heuristics is the 2-opt search proposed by Lin (1965). 

-

edges that will be removed from the route. 2-opt search gives satisfactory results in a 

reasonable computational time. Potvin and Rousseau (1995) modified the 2-opt heuristic in 

a way that the exchange is made between different routes.  

 

Various inter-route improvement methods were introduced by  Savelsbergh (1992). 

These methods were further used by Prosser and Shaw (1996) for the VRPTW. One of these 

methods is the re-locate operator, which can be defined as removing a certain number of 

customers from their assigned vehicle and inserting them into other suitable routes. Another 

method is to exchange or swap in which passengers are swapped between the routes of 

different vehicles. However, it is important to note that intra-route improvement heuristics 

should be implemented within or after the inter-route heuristics to reach good solutions.  

 

In improvement heuristics, two alternative methods are used for accepting the 

solutions, best-improve and first-improve strategies. In the first strategy, the heuristic 

searches the entire neighborhood to find the best improvement. The second strategy accepts 

the first better solution that is generated in the neighborhood of the current solution. While 

the first method gives better solutions, the second method has computational advantages. It 

is also possible to be stuck in the local optima in the best-improve strategy.  

 

In our study, the routes of vehicles are solved mainly by exact methods. Therefore, 

there was no need to utilize intra-route improvement heuristics. On the other hand, for inter-

route improvement, three different move strategies discussed in Chapter 4 were determined 

and tested with real data.  
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2.3.3. Metaheuristics 

 

Metaheuristic algorithms are designed to find good solutions for sophisticated 

optimization problems in a reasonable time. The main goal of metaheuristic algorithms is to 

find near-optimal solutions instead of finding the optimal solutions. VRP is an NP-hard 

problem, and therefore, metaheuristic algorithms are widely used to solve it. They contain 

operations for both intensification and diversification. For the sake of diversification, most 

of the metaheuristic algorithms allow the moves that make the solution worse. This method 

allows the algorithms to explore a larger portion of solution space. Metaheuristics can be 

broadly classified into single-solution-based and population-based heuristics. While the 

population-based metaheuristics focus more on diversification, single-solution-based 

methods focus on intensification (Ho et al., 2018). In this research, we focused on the single-

solution-based metaheuristics as these methods have given promising results in the previous 

VRP studies. One major advantage of these methods, especially for dynamic variants of 

VRP, is the ability to give good results in a short time. 

 

The Tabu search (TS) method widely used in VRP studies was first introduced by 

Glover (1986). A tabu list that reflects the short-term memory is utilized to track the 

modifications made in the solution. The list prevents the algorithm from visiting the 

solutions that were found in previous iterations. Cordeau and Laporte (2003) used this 

method for a DARP example and introduced various diversification strategies, accepting 

infeasible solutions and penalizing the repeated moves. Due to its effectiveness and 

efficiency in DARPs, many researchers adapted TS in their studies (Beaudry et al., 2010; 

Ho and Haugland, 2011; Detti, Papalini, and Lara, 2017; Paquette et al., 2013; Guerriero, 

Bruni, and Greco, 2013; Pandi et al., 2018; Torgal, Dias, and Fontes, 2021). These studies 

adapted TS to handle more complex problems with real-life constraints.  

 

Simulated annealing is a local search metaheuristic algorithm that has been a popular 

technique for optimization problems due to its convergence properties and ease of 

implementation (Nikolaev and Jacobson, 2010). The method is based on an analogy to the 

annealing process of solids in which a solid is heated to a certain temperature and cooled 

gradually until its regular crystal configuration is achieved.  If the cooling process is arranged 

in a sufficiently slow manner, the final structural integrity of the solid is much superior. SA 
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algorithm proposes an analogy between this thermodynamic behavior and the search for 

optimum solutions. At each iteration of the SA algorithm, the current solution and newly 

generated solution are compared. If the new solution is an improving solution, then it is 

accepted as the new current solution. Otherwise, the solution is accepted with a probability 

of e /T n between the objective functions of the current and new 

solution. This allows some portion of non-improving solutions to be accepted for the sake 

of escaping the local optima of the current solution. As the temperature decreases in each 

iteration, the probability of accepting non-improving solutions converges to zero.   

 

The SA algorithm is used for several variants of VRP (Osman, 1993; Chiang and 

Russell, 1996; Kuo, 2010). Although it has not been used for DARPs as widely as other 

metaheuristic methods (Ho et al., 2018), some researchers utilized a standard SA using basic 

neighborhood structures in their related DARPs (Mauri, Antonio, and Lorena, 2009; 

Reinhardt, Clausen, and Pisinger, 2013) and obtained satisfactory results. Braekers et al. 

(2014) modified the standard SA algorithm in a way that non-improving solutions are 

t exceed a predefined threshold. Yu 

et al. (2018) also proposed a new SA algorithm to solve the share-a-ride problem that is 

similar to DARP, and showed that their algorithm outperformed the basic SA algorithm. 
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3. ORIGIN AND DESTINATION INFERENCE 
 

 

PT ridership has been traditionally measured by regularly counting the number of 

boarding and alighting passengers at each stop. In order to validate and supplement these 

measurements, transit agencies periodically conduct surveys (Gordon, Koutsopoulos, and 

Wilson, 2018). With the increasing usage of Automated Data Collection (ADC) Systems, 

transit agencies have gained various transportation data that can be utilized for a wide range 

of applications. ADC systems have been shown to provide sufficient data for origin and 

destination (OD) inference. With the utilization of these technologies, the disadvantages of 

conventional data collection methods like small sample size, high cost, biased samples, etc., 

were eliminated.  

 

The origin and destination matrix of public transportation users can be utilized in 

various ways. OD matrices can provide an insight into the performance of the bus routes. 

The number of passengers onboard, maximum loads over the route, interchange locations, 

average interchange duration, and various other information can be acquired from the 

inferred OD matrices. These metrics guide the transit agencies in service design, bus 

scheduling, route optimization, etc. Therefore, OD matrices provide valuable information 

for transit agencies to improve the service quality of public transportation systems. 

 

To infer the origins of passengers, Automated Fare Collection (AFC) data and the 

Automated Vehicle Location (AVL) were used. The AFC and AVL data were matched by 

the time stamp to detect the boarding location of the passengers 

Chapleau, 2007; Cui, 2006). Many researchers aimed to infer the destinations of the 

passengers in their studies by setting up several rules and determining the trips that met these 

predefined rules. Barry et al. (2002) assumed that the destination of a rail trip is the nearest 

station to the origin of the next trip and the last trip of the day ends at the closest stop to the 

boarding of the first trip of the day. Zhao et al. (2007) and Wang et al. (2011) used similar 

assumptions to infer the rail destinations and bus destinations, respectively. Munizaga and 

Palma (2012) utilized a generalized cost function that uses the disutility of time and distance 

to infer bus destinations. -  extends the generalized-cost approach to 
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rail networks and uses dynamic programming to infer transfers on multileg journeys. Jung 

and Sohn (2017) used a supervised machine learning model to infer the origins and 

destinations of bus passengers based on land-use characteristics and smartcard data. 

 

OD inference studies in the literature offered a wide range of methods to infer the OD 

matrices of passengers. However, most of these studies have not utilized the OD matrices 

for further studies. In our research, OD pairs of the PT users were used in another problem, 

dynamic DARP. One of the aims of this study was to analyze the feasibility of AV fleet 

being an alternative to conventional public transportation bus routes. To achieve this, 

information on the PT trips of the passengers at an individual level must be known. With the 

and destination locations 

were gained. The OD matrices also contain the date and time of the trips. With the time, 

origin, and destination information of trips, it is possible to simulate the trips with different 

transportation modes. 

 

The studied bus routes are operating near the university region. 9 different bus routes 

shown in Table 3.1 were analyzed. These trips were made between October 1, 2019, and 

December 31, 2019. However, OD pairs from four of the studied bus routes were used in 

further phases of this thesis because only these bus routes have the characteristics that suit 

the studied problem. Routes of the studied bus routes are shown in Figure 3.1. 

 

Table 3.1. Number of trips and GPS data of the studied bus routes. 

Bus Route ID Total Trips Total GPS Data 

4/G 468,041 648,561 

35/G 453,267 658,869 

1/T 345,003 580,732 

3/G 239,324 670,962 

E/12 160,651 570,695 

E/13 136,391 574,391 

B/33-K 100,313 343,780 

43/D 79,683 419,730 

B/35 4,222 65,207 

Total 1,986,895 4,532,927 
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Although the number of studied bus routes is low compared to the total number of bus 

routes operating in the city, searching certain information like the trips made before and after 

the studied trips, was necessary. Therefore, over 180 million GPS data and 60 million trip 

data were analyzed. After making the required analysis on big data, trips made on the bus 

routes operating around the university area were obtained. A total number of 1.9 million 

trips were determined. From the AVL data of the buses that were used in the related bus 

routes, over 4.5 million GPS data were obtained.  

 

  

Figure 3.1. Routes of the studied bus routes. 

 

3.1. Boarding Data 

 

Boarding data analyzed in the study contains the trips from October 1, 2019, to 

December 31, 2019. These data were collected via Automated Fare Collection (AFC) 

Systems when the passengers use the smartcard while boarding the bus. The boarding data 

has the following information: 

 

 Time and date of the trip 
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 The ID of the bus route 

 Card ID of the passenger 

 Vehicle ID 

 Bus route ID of the previous trip 

 Vehicle ID of the previous trip 

 

3.2. GPS Data 

 

The AVL system tracks the vehicles in the fleet dynamically. The locations of the 

vehicles are detected and recorded in a high frequency. Because of the need for precision on 

vehicle location data, the size of the GPS data reaches high numbers when the studied time 

becomes too long. Hence computational efforts for the operations made on GPS data might 

be considerably high when dealing with long periods. In our GPS data following information 

was available: 

 

 Date and time of the data 

 The ID of the bus route 

 Vehicle ID 

 Position of the vehicle by latitude and longitude 

 

3.3. Origin inference 

 

In most of the studies, AFC data contains the information of the boarding location of 

the passenger. This information can be achieved by matching the boarding data with the GPS 

data of the bus. The timestamp in the boarding data is determined and searched through the 

GPS data of the bus. The closest timestamp in the GPS data is selected, and the location 

information for that timestamp is taken.  

 

However, in our study, origin inference required further analyses because of the data 

structure. The data acquired from the GPS data of the buses are the latitude and longitude of 

the buses. These GPS data are needed to be converted to bus stops along the related bus 

route. To achieve this, the positions of the bus stops should be known. After that, the nearest 
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bus stop to the acquired vehicle position was assigned to the vehicle. This assignment could 

be done for only timestamps in the boarding data or all of the GPS data of the vehicle. In our 

orrect boarding stop 

of the passenger, it is necessary to know the direction of the bus. To detect the directions of 

the buses, all GPS data of the buses were analyzed in our study.  

 

It is not possible to determine the direction of the vehicle by a single location data. The 

previous and the following locations of the bus are also needed to infer the direction of the 

GPS data were analyzed along the time on the studied day. For every GPS data, the closest 

bus stops in both directions were determined. Then, the direction which gives an increasing 

order was selected as the actual direction of the vehicle. This process was carried out for 

every vehicle that operated in the studied bus routes on the studied dates.  

 

3.3.1. Errors in GPS Data 

 

The boarding locations and the inferred destination locations are all based on the 

positions that were acquired from the GPS data. Therefore, even a small error in GPS data 

may result in an incorrect inference of the OD pairs. In our study, we have experienced 

various types of errors resulted from GPS data. Several methods were introduced to 

eliminate these errors. For simplicity, only one of them will be stated in this thesis.  

 

The GPS data used in our study sometimes failed to give accurate locations of the 

vehicle. In some cases, the location data taken from the GPS data was wrong but considered 

hese 

data points. The data points that were considered to be wrong were compared to previous 

and next GPS data of the vehicle. From the positions in the GPS data, the movement of the 

vehicle can be easily determined. However, these incorrect data break the increasing order 

these errors, it generates another route from the locations where the wrong data refers. To 

tackle this problem, instead of getting the nearest bus stops to the GPS data, all bus stops 

within a certain radius were determined. This process produces not an exact bus stop but 

possible bus stops that can be assigned to the studied GPS data. A bus stop in the possible 
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stops that does not break the vehicle's movement is selected and assigned to the related GPS 

data as the boarding stop.  

 

3.4. Destination inference 

 

To infer the OD pairs of transit users, the location information of the vehicles must be 

known. For this reason, transit agencies all around the world equipped their vehicles with 

Global Positioning Systems. The equipment in the vehicles produces Automated Vehicle 

Location (AVL) data. The location data of the vehicles are matched with the boarding or 

alighting data of the users. Hence the OD locations of the passengers can be inferred. 

However, very few cities have transportation systems that record both boarding and alighting 

stops of the users (Jung and Sohn, 2017). In most PT systems, passengers only swipe the 

Therefore, there is a need for further inference study to get the alighting locations of the 

users.  

 

Previous studies used similar assumptions to infer the destinations of the passengers 

Barry et al., 2002; W. Wang, Attanucci, and Wilson, 2011). These assumptions can be 

summarized as follows: 

 

 There is no other transportation mode used between two PT trips. 

 The walking distance of the passengers between two PT trips cannot exceed a 

predefined distance. 

 The destination of the last trip of the day is the boarding location of the first trip of the 

day. 

 

Fidanoglu (2015) further proposed the assumption that if there is a missing leg in the 

chained trips of the passenger that can be easily determined, the destination inference should 

be made from the missing trip. This assumption is valid for some instances where the 

passenger cannot physically make the recorded trips without introducing the missing leg. To 

detect that the missing leg of the trips should be obvious. However, in our study, we did not 

assume any missing trip besides the recorded trip. 
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To determine the destination of a trip, all relevant trip data of the same passenger 

should be determined. In this study, the following trips of the passengers were also studied: 

 

 Previous trip of the passenger 

 Next trip of the passenger 

 First trip of the passenger on the day of the studied trip 

 Last trip of the passenger on the day of the studied trip. 

 

All of the above trips serve for further inferences of destination. For some studied trips, 

the above trips can not be obtained due to the lack of information. It is also possible to 

acquire such trips that are irrelevant to studied trips. For example, a subsequent trip made 

destination.  

 

The destination inferences based on the next trips are the most reliable method if the 

next trip is made within a short time. Therefore, at the first stage of the destination inferences, 

the trips made within 2 hours after the studied trip were analyzed. If the boarding location 

of the next trip is close enough to any bus stop on the route of the studied bus route, the 

nearest stop is taken as the destination of the trip. The maximum distance was limited to 

approximately 500 meters for this method.  

 

Next, inferences from the first trip of the day were studied. If the trip is the last trip of 

the day, it is checked whether the passenger has a different trip that is the first trip of the 

passenger on that day. If the first trip is different from the last trip of the passenger, meaning 

that the passenger made at least two trips on the studied day, the boarding location of the 

first trip is determined. Then, the distance between the boarding location and the closest bus 

stop of the studied bus route is calculated. If the distance satisfies the requirements, the 

nearest bus stop is considered to be the destination of the last trip of the day. The maximum 

distance for this method was set to approximately 300 meters. The main logic behind these 

inferences was that at the end of the day, passengers return to the locations where they started 
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their trips on that day. Therefore, the maximum distance was lower compared to the distance 

used in the previous destination inference method. 

 

If the inferences from the interchange within 2-hours or the first trip of the day could 

not be achieved, next trips made within 24 hours after the studied trip are determined.  The 

same procedure used in the first destination inference method is followed for these trips also. 

 

Next, the proposed algorithm aims to infer destinations for the first trips of the day 

from the last trips of the day. If the boarding of the last trip is within a distance of 300-meters 

to any stop in the studied route, the closest stop to the boarding of the last trip is assigned as 

the destination of the first trip. In fact, the previous method includes destination inference 

from the last trip of the day if the next trip after the first trip of the day is the last trip of the 

day. However, in some cases, there are some other trips between the first and the last trips 

of the day. For some of those cases, destination inference can not be achieved from the 

interchanges. Therefore, this step is included in the proposed method.  

 

For all of the destination inference methods, a stop correction method was introduced. 

This method aims to correct the inferred destination stop if a direction error occurs. For the 

bus routes that follow a circular route, some stops are very close to each other. When the 

closest stop to a certain location is determined for the destination inference, it is highly 

possible to select the wrong stop. In this case, a direction error will rise. To eliminate this 

problem, the introduced method searches the stops nearby and assigns the other bus stop if 

it resolves the direction problem. 

 

In some of the proposed inference methods, the time between the studied trip and the 

trips that the destination inference was made from can be considered too long. However, for 

the PT users, this kind of trip pattern is not something unexpected. In addition, even if the 

time difference between the trips is too long, estimating the destination of the trip using other 

methods would require further assumptions. Therefore, it is assumed that if the passenger 

can be tracked within the routes of his trips, the destination inference is valid. 

 

All of the above-mentioned methods that were used for the destination inference of the 

trips check the direction error. If the inferred boarding stop is behind the boarding stop of 
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the studied trip in the direction of the bus, it is concluded that there is a direction error. In 

these cases, inferred destinations were not accepted.  

 

3.5. Derived Destinations 

 

At the end of destination inferences, some of the trips were still missing destinations. 

To infer destinations for these trips, inferred OD pairs were used. The OD matrix contains 

the ID for each cardholder. Therefore, it is possible to obtain the inferred OD pairs for each 

passenger. A data frame including the following information was generated: 

 

 The ID of the bus route 

 Card ID 

 The direction of the bus route 

 Inferred boarding stop 

 Inferred alighting stop 

 Number of trips 

 

For every origin point, the probabilities of destination points were determined by the 

number of trips. For a trip missing a destination, the passenger Card ID is determined, and 

the above data frame is constructed. If the data frame contains the direction and the boarding 

stop of the studied trip, meaning that the passenger made a trip similar to the studied trip, 

the alighting stop is probabilistically inferred. 

 

If the inference was not achieved from other trips of the cardholder, the overall 

distribution of OD pairs was used for destination inference. To achieve this, inferred OD 

pairs for the studied bus route were clustered into three groups of time zones. Time intervals 

of the categories were 06:00-10:59, 11:00-15:59, 16:00-23:59.  This categorization was done 

because the patterns of the trips during the morning and evening hours were different.  

 

Next, the time of the studied trip and the boarding stop was determined. From the 

inferred OD pairs, trips sharing the same time zone, direction, and boarding stop with the 
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studied trip were extracted. A destination point from these pairs was probabilistically 

selected and assigned to the studied trip. 

 

Previous studies evaluate the performance of the proposed algorithm by the inference 

rate. However, in our research, if the algorithm fails to infer a destination to a passenger 

from his or her trips, it searches for similar trips through the inferred OD pairs and assigns a 

destination to the trip. Therefore, at the end of the destination inference process, all trips 

have inferred destinations. 
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4. MODELING FRAMEWORK OF THE PROBLEM       
 

 

4.1. Motivation and Problem Definition 

 

The goal of the study is to design a transportation service that serves passenger requests 

most efficiently. The transportation service proposed in this study contains a fleet of AVs 

that is controlled by a centralized algorithm. Passengers make their trip requests with the 

origin and destination locations of their trips. These locations must be selected among the 

predefined bus stops. The request time of the passengers is also recorded and used in the 

model.   

 

The fleet controller has stochastic information about the trips in the studied region. 

However, this information is used only for the initial positioning of the vehicles in the fleet.  

igin and destination 

of the previous trips.  

 

The main objectives of the system are to minimize the waiting time of the passengers 

and the total distance of vehicles. While total traveled distance by the fleet is directly related 

to the operational cost of the proposed service, minimizing the average waiting time of the 

passengers is the key factor that affects the performance of the service (Krueger, Rashidi, 

and Rose, 2016). However, it should be noted that these two parameters are related to each 

other. Increasing the total distance would increase the average waiting time of the 

passengers. Although these two parameters are not mutually exclusive, excluding one from 

the model would cause issues in service quality at an individual level. 

In the proposed model, the vehicles are autonomous and shared by the passengers. 

Eliminating the driver has certain advantages, as described in previous sections. In the 

operation of the transportation service, the most significant advantage of AVs is that it 

enables a centralized decision-making system to be applied to the whole fleet. In this way, 

none of the vehicles can make their own decision thus, the overall efficiency can be increased 

considerably. The algorithm aims to optimize the overall system instead of focusing on 

specific vehicles or passengers.  
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Some variants of VRPs used the depots for the starting and ending points of vehicles. 

However, the introduction of a depot becomes highly impractical in dynamic routing 

Besides, the related routing problem for the vehicle is needed to be resolved continuously. 

Due to the characteristics of our problem, vehicle depots are not included in the studied 

problem. 

 

4.2. Characteristics of the Studied Model 

 

The characteristics of the studied model can be summarized as follows: 

 

 Pick-up and delivery locations must be specified by the passengers meaning that each 

passenger needs to have an origin and destination location.  

 Origin and destination locations of the trip requests must be among the predefined 

locations. These locations are the stops of specific bus routes that operate in the studied 

area.  

 The fleet controller has the trip history of the studied routes. However, this information 

can only be used to position the vehicles at the start of the operation. No other actions 

are made upon the stochastic information of trip requests. 

 Centralized computing architecture is used for the studied problem. None of the 

vehicles or a bunch of vehicles can make their own decisions. A centralized algorithm 

optimizes the overall system with the information of vehicles and passengers. 

 Time windows structure is designed as soft time windows that refer to the inclusion of 

the time window constraint into the objective function. 

 Fleet size is fixed. The number of vehicles cannot be increased or decreased during the 

execution of the transportation service. If the demand exceeds the total capacities of 

the vehicles, passengers need to wait until some vehicles become available. 

 Vehicles in the fleet are homogeneous. Characteristics and the capacities of the 

vehicles are assumed to be the same in terms of their functionality.  
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 The number of passengers assigned to a vehicle cannot exceed a predefined value. This 

capacity constraint for vehicles is imposed all the time. The capacity value cannot be 

increased or decreased during the operation. 

 There is no maximum service time or distance for vehicles. Vehicles need to serve the 

passengers even if they need to carry out relatively long routes. 

 The objective of the proposed model is to minimize the total traveled distance and the 

waiting time of the passengers. 

 Rejection of a trip request is not allowed. All the trip requests must be served by the 

fleet eventually. The algorithm takes requests of the passengers in the very next 

decision epoch. Suppose a vehicle assignmen

achieved in that decision epoch. In that case, the algorithm labels the passengers as 

 

 All the trip requests are immediate. This means that passengers request the service as 

soon as possible. There is no reservation structure. 

 Vehicles can be shared by passengers. The decision of sharing cannot be made by the 

passengers. The centralized algorithm decides which vehicles will be shared by 

passengers. 

 En-route diversion is allowed. Passengers assigned to certain vehicles can be 

reassigned to different vehicles in the following decision epochs. However, 

reassignment cannot be done for the passengers onboard. 

 A real road network is used. The real road network of the studied area is installed using 

the related libraries. The shortest paths between the nodes are determined on the real 

network considering the speed limits assigned to the roads.  

 The system is reoptimized in predefined periods.  

 

In order to simulate the defined problem, real OD pairs of bus passengers were used. 

OD pairs of bus trips were inferred by the algorithm explained in Chapter 3. This problem 

is considered to be a dynamic dial-a-ride problem. 
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4.3. Components of the Model 

 

To model the proposed transportation service, a suitable framework should be 

constructed. Considering the fact that our problem is a highly dynamic routing problem, the 

modeling framework should capture the status of the vehicles and passengers over time and 

the evolution of these statuses during execution. To achieve this, the modeling framework 

should contain the following elements: state variables, decision epochs, exogenous 

information, decision variable, and transition function. 

 

State variables refer to information needed to model the system. The status of vehicles, 

including the information of their availability and locations, should be tracked. Also, the 

state of passengers referring to the status of their trip request should be revised and recorded 

continuously. 

 

Decision epoch can be defined as when the state variables are evaluated and the related 

decisions are made. In some studies, decision epochs are related to the system state. In these 

cases, the decision procedure is started when a predefined change is realized in the system. 

For other cases like ours, there is a certain number of decision epochs. When a predefined 

time is completed, the system collects the state variables and solves the related problem. 

This process is repeated until the predefined decision epochs are realized, or there are no 

unserved passengers.  

 

The exogenous information becomes available at each decision epoch. It changes the 

state of the system. In our studied problem, the exogenous information only includes the trip 

requests made by the passengers between the previous decision epoch and the present 

decision epoch.  

 

The fleet controller can control the operation using decision variables. These variables 

mainly contain the passenger-vehicle assignment and the determined route for the vehicle. 

However, these decisions should be made upon consideration of problem constraints.  

  

Revision in the state of the system from the previous decision to the next one is defined 

by the transition function. State variables defined for the problem should be revised 
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according to the decision made at the related epoch. The status of the passengers and the 

vehicles should be updated using the transition function. 

 

4.4. Problem Formulation 

 

The problem consists of a set  with  vehicles and a set  with  trip requests. Each 

vehicle  has an origin  which is the location of a vehicle and capacity of  

passengers.  denotes the earliest departure time of the vehicle that is also the end time of 

the decision epoch. Each trip request  has an origin  and destination  with  being 

the request time. 

 

 is set of all origins and destinations of all  trip requests. For  trip 

request  which its origin is visited,  is excluded from . When a destination of a trip 

request is visited,   is excluded from .  is set of all points with 

total number . The points representing the same location in the network are denoted 

by distinct points. Let  denotes set of all arcs , ,  with the condition of 

. 

 

 denotes the number of passengers getting in or off the vehicle at point . It 

gets a negative value in destination points. For the vehicle locations ,  since no 

passenger is being served at this location.  

 

 is the route of a vehicle . This is a sequence of points in the 

location of the vehicle . Other points represent the origins and destinations of the 

passengers. If a trip request  is assigned to a vehicle , then both origin  and destination 

 must be in , and   must be after .  denotes the time of the shortest path 

between the points  and .  denotes the cost of the shortest path between the 

points  and  which is the distance between these two points.  

 

Let  denotes the time of point  in the route  is served.  and for the 

points in the route  for  where  denotes the time of the 
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shortest path between the points  and . The waiting time of a passenger is denoted by 

 which can be defined as the gap between the service duration of the 

passenger and the travel time of the shortest path between the origin and destination of the 

passenger. 

 

For the capacity constraint of a vehicle, the load of a vehicle cannot exceed the 

predefined vehicle capacity .  denotes the number of passengers in vehicle  after the 

point .  for  in the first decision epoch, and for , . 

 

During the optimization, the following decision variables are used: 

 

  is 1 if point v is just after point u in the route of vehicle , 0, otherwise. 

  is 1 if request  is assigned to vehicle . 

  is the time of the service at point  in the route of vehicle . This variable is ignored 

in the case where  is not in  

  is the number of passengers onboard after the service of point  in the route of vehicle 

. This variable is ignored in the case where  is not in  

  is the coefficient for the waiting time parameter.  

 

Objective function: 

 

  (1.1) 

 

Subject to: 

 

   (1.2) 

   (1.3) 
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   (1.4) 

   (1.5) 

   (1.6) 

   (1.7) 

   (1.8) 

 

To ensure that each trip request is visited once at most, constraint (1.2) is introduced. 

Constraint (1.3) guarantees that the position of vehicle  is in its route. Constraint (1.4) 

ensures that the origin and destination of a trip request will be visited by the same vehicle. 

Constraints (1.5) and (1.6) are introduced for the time constraints, while constraints (1.7) 

and (1.8) are used to guarantee that the number of passengers onboard does not exceed the 

capacity of the vehicle. Parameters used in the problem are summarized in Table 4.1. 

 

Table 4.1. Parameters used in the problem formulation. 

 the earliest departure time of vehicle  

request time of request  

number of passengers getting in or off the vehicle at point 

 

 route of vehicle  

 time of the shortest path between the points  and  

 cost of the shortest path between the points  and  

 time of the service at point  in the route of vehicle  

 waiting time of a passenger  

 number of passengers onboard after the service of point  

in the route of vehicle 

 coefficient for the waiting time parameter 
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4.5. Solution Construction 

 

The studied problem contains a vehicle fleet to serve the trip requests. Therefore, to 

construct a complete solution, two decisions need to be made: grouping and routing. 

Grouping refers to the assignment task in which the passengers are assigned to vehicles. 

Routing refers to finding the optimal routes for each vehicle according to the assignments 

made in the grouping phase.  

 

4.5.1. Assignment 

 

The very first step after getting the trip requests is to assign passengers to vehicles. In 

order to achieve this task, it is necessary to obtain the available capacities of vehicles. This 

information is acquired from the available seat column of the vehicle data frame. The 

locations of the vehicles are also needed since one of the major criteria for assigning a vehicle 

to a passenger is the distance between the passenger and the vehicle. Once the positions of 

the vehicles are taken from the related data frame, the SciPy python library (Virtanen et al., 

2020) is used to determine the Euclidean distances between the vehicles and the passengers.  

 

The assignment method aims to assign unassigned passengers to available vehicles by 

starting from the beginning of the passenger data frame ordered by the passengers' request 

times. This method ensures that the passengers with earlier request times will be assigned to 

the vehicles before the passengers who make their request later. Since available vehicles are 

revised after each assignment, earlier passengers have the advantage of being assigned to 

better vehicles. This strategy aligns with the objective function of the study because the 

waiting time of the passengers is the major component of the objective function and is 

considered to be the key factor that defines the service quality of the fleet.  

 

Various strategies were tested for the vehicle assignment task in this study. At first, 

random assignment of vehicles to passengers was tested. The method assigns vehicles to 

each passenger according to the s the available 

seats of the vehicles. Since this method 

and passengers when assigning the vehicles to passengers, the total distances of the vehicle 

routes were considerably high.  
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Another method used in this study was assigning passengers to the closest available 

vehicle. This strategy was tested with different values of the model parameters but failed to 

give satisfactory results. The main problem with 

 solutions were stuck in 

certain locations in the solution space. Even with improvement heuristics, the method could 

not outperform other assignment strategies. 

 

 To satisfy diversification in generated solutions, there must be some randomness in 

the assignment method. On the other hand, fully random assignments could not achieve good 

results. Therefore, the assignment method should contain some randomness and make wise 

assignments. To achieve that, a vehicle search within a distance that is incrementally 

increased, is introduced. In this method, available vehicles within a short distance to a 

any available vehicle within the distance, a search for the next passenger is carried out. This 

process continues until all requests in the iteration are examined. After that, the distance is 

increased by a predefined value and the search starts from the beginning of the passenger 

data frame. When all the searches are completed with all predefined distances, the 

assignment phase of the algorithm ends. An example of this passenger-vehicle assignment 

is shown in Figure 4.1. Red vehicles are the occupied vehicles that have no available seats, 

while blue vehicles have free seats. The search in the shortest radius gives only Vehicle 3, 

which is a fully occupied vehicle. Therefore, the radius is increased and the search is 

repeated. With the increased radius, the passenger has three vehicles that can be assigned. 

One of them, Vehicle 1, is occupied; hence is eliminated from the assignment list. Then, a 

random assignment is done from vehicles number 2 and 4. After random assignment Vehicle 

2 is assigned to the passenger. 
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Figure 4.1. Passenger-vehicle assignment. 

 

Some of the previous studies used the cheapest insertion method to generate the initial 

solution. In this method, the passenger is assigned to a vehicle with the least increase in the 

objective function. This method requires searching for the best vehicle and the best position 

for a passenger; thus, a considerable number of solutions are needed to be explored. 

Considering the problem size in our study, this assignment method would require high 

computational effort. Furthermore, the grouping and the routing tasks of the studied problem 

were carried out separately in this study. For this reason, at the assignment phase of the 

solution construction, passengers were assigned to the vehicles without determining the 

positions of their origins and destinations in the route. 

 

In the initial trials of simulations, passengers are assigned to the vehicles according to 

their positions. However, while examining the results of the simulations, it was seen that 

even the average waiting times of the passengers were quite small and satisfactory, the 

maximum waiting time is found at an unacceptable level, over 40 minutes. When the 

simulation results were further analyzed it was observed that some passengers, mostly one 

or two passengers in every simulation, were being picked up by a vehicle immediately after 

his or her request but not delivered for a long time. Simulation data in each iteration was 

examined. It was found that the vehicles that these passengers boarded were assigned to 

other passengers with a destination point far away from the destination of the passengers 

onboard. Since the vehicle tries to optimize the total distance of the vehicle and the total 

waiting time of the passengers in each iteration, the route of the vehicle sometimes may 

cause huge delays in the delivery time of some passengers while it minimizes the travel time 
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of other passengers. This situation keeps happening in every iteration because, in upcoming 

iterations, the vehicle is positioned far from the destination of the passengers onboard and 

accepts passengers with different destination locations. To solve this problem, the coefficient 

of the waiting time parameter in the objective function was increased. However, the problem 

was not fixed even with high values of the waiting time coefficient. This is mainly caused 

by the fact that these passengers having high waiting times are picked up by the vehicles 

very fast. After a passenger is in a vehicle, the onboard,

and the flexibility of removing the passenger from the vehicle and assigning him or her to 

other vehicles is no longer an option.  

 

To eliminate this problem and limit the computational time, positions of stops which 

are possible origin and destination points in our problem, were clustered into clusters using 

k-means clustering, meaning that the studied region is clustered into sub-regions. After 

clustering, every trip had an origin and destination cluster along with origin-destination 

stops. K-means clustering was done by the related function in the scikit-learn python library 

(Pedregosa et al., 2011). In the assignment of vehicles to passengers, destination clusters of 

the passengers and the destination cluster of the vehicle should be met, or the vehicle 

assigned to a passenger should not have a destination cluster, meaning no passenger is 

assigned to that vehicle yet. In order to achieve this, destination clusters of the vehicles were 

updated in every assignment according to the assigned passengers. For further assignments, 

the destination cluster of the vehicle limits the possible assignments among passengers. 

Origin cluster information was not used in the assignment process because vehicles were 

already assigned to passengers based on their closeness to the passengers. On the other hand, 

for the improvement strategies, origin and destination cluster information were both used in 

order to eliminate bad neighborhood moves. 

 

4.5.2. Routing 

 

After the passengers are assigned to the available vehicles, the routes of the vehicles 

should be determined. The assignment phase of the solution construction deals with only 

grouping passengers into vehicles. However, to have a complete solution, routing of the 

vehicles also needed to be completed.  
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The vehicle capacities were limited to 4 passengers in this study. This constraint limits 

the number of possible solutions for a vehicle in an acceptable range. Hence, finding the 

exact solutions for the routes of the vehicles becomes feasible. To achieve this, all of the 

solution space is needed to be explored.  

 

The analysis of this study was carried out by Pandas python library (Mckinney, 2011). 

Pandas library offers various functions for different data operations. However, to utilize the 

library efficiently, the code and the data should be constructed in a way that the library shows 

higher performance. Even for such operations that require high computational effort, the 

computational times were achieved to be kept short if the code and the data were constructed 

suitably. If a function can be applied to a whole column, the computational time is 

dramatically decreased compared to the operations carried out row by row. In this manner, 

the most challenging goal was to vectorize the operations. 

 

All the functions used for the exact solution of the routing problem were designed to 

be vectorized. With this advantage, the functions that were developed to find the exact 

solutions complete their task in a short time. It should also be noted that even a small increase 

in the vehicle capacity disables the utilization of these functions for the search of the exact 

solutions. Before the exact solution algorithm runs, all possible route sequences were 

determined. These sequences were categorized by the number of passengers assigned to a 

vehicle and stored in different data frames. The exact solution algorithm recalls these data 

frames according to the number of passengers assigned to the vehicle. 

 

One other parameter besides the number of assigned passengers was the number of 

passengers onboard. In DARPs, passengers have pick-up and delivery locations, meaning 

that for a passenger, two locations must be visited by the vehicle. During the execution of a 

route, a passenger might be onboard. This indicates that the vehicle assigned to that 

passenger visited the origin location of the passenger and picked the passenger. After this 

point, the vehicle has only one location related to that passenger which it needs to visit, and 

that is the destination of the passenger. Therefore, the size of the route for a particular vehicle 

is determined by the status of the passengers that are assigned to the vehicle. When the 

number of passengers onboard is determined, the data frame containing all possible 

sequences for a certain number of passengers is filtered according to this information.  
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The exact solution algorithm aims to find the optimum route for a vehicle according 

to a given objective function. In this sense, all necessary information regarding the 

parameters in the objective function should be present. The objective function in our study 

contains two main parameters, the total distance of the route and the total waiting time of 

passengers. The distance of a route can be determined by the sum of the distances of each 

edge in a route. On the other hand, the total waiting time for a route should be calculated by 

the summation of the individual waiting times of the passengers. Therefore, the request times 

of each passenger are also included in the data frame that is given to the exact solution 

algorithm as an input. 

 

4.6. Improvement Heuristics 

 

When a complete solution is generated with the exact solution for the related 

passenger-vehicle assignments, improvement heuristics take this solution and try to improve 

it. However, a complete search for a neighborhood of a solution requires high computational 

effort. Therefore, it is necessary to limit the number of considered moves. It is possible to 

restrict the neighborhood in the way of imposing geographical restrictions to eliminate the 

moves that consider two distant passengers (Johnson and Mcgeoch, 1995). In this study, the 

moves are limited to certain neighborhood structures. In this sense introduction of sub-

regions is utilized for the solution improvements. Three different move operators and a SA 

algorithm are proposed for improvement heuristics. 

 

4.6.1. Relocate Operator 

 

This improvement heuristic method moves a trip request from a vehicle and assigns it 

to another vehicle. The origin and destination location of a request is removed from a route 

and inserted into another route. After the reassignment process, the routes of the vehicles are 

reoptimized. Insertion of the passenger can be applied only to the vehicles that have available 

seats. When a passenger is selected for this operator, all of the neighborhood is searched, 

and the move with best-improve in the objective function is accepted. 

 

An example of the relocate operator is shown in Figure 4.2. Passenger 1 is selected 

from Vehicle1 for relocation, and Vehicle 2 is selected as the new assignment. Origin and 
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destination points of Passenger 1 are removed from the route of Vehicle 1. With the new 

state of assignment, Vehicle 1 has Passenger 2, 3, and 7. The optimal route for these 

passengers is recalculated. It is highly possible that the remaining sequence of the route will 

not be the same, meaning that the positions of the remaining OD pairs might change. As 

seen in the example, positions of the 3+ and 7+ have changed after optimization. When 

Passenger 1 is assigned to Vehicle 2, the optimization of its route needs to be accomplished. 

After finding the optimal route for Vehicle 2 with the new assignment, OD pairs of Passenger 

1 are inserted in the optimal positions in the route. It also changes the sequence of 4- and 6+ 

that are the destination of Passenger 4 and the origin of Passenger 6, respectively.  

 

 

Figure 4.2. Relocate operator. 

 

To limit the possible moves and ensure a good neighborhood structure, the 

neighborhood is restricted to the vehicles that go to the sub-region of the relocated 

destination of this passenger is located in the sub-region , then the vehicles going to the 

same sub-region are selected for relocate operator. Among these vehicles, the one that gives 

the best improvement is selected. With this limitation, instead of exploring all 

neighborhoods, only promising areas are explored. 

 

4.6.2. Exact Swap Operator 

 

Another method used for solution improvement is to swap two passengers between 

two vehicles. An example of this method is shown in Figure 4.3. Passengers 1 and 5 are 
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selected for the swap operator. Then Passenger 1 is removed from Vehicle 1 and reassigned 

to Vehicle 2. Similarly, Passenger 2 is removed from Vehicle 2 and reassigned to Vehicle 1. 

After reassignment is completed, the vehicles have different passengers assigned. With the 

new assignments, optimal routes for these vehicles are recalculated using the exact solution 

algorithm. As seen in the example, the sequence of the remaining passenger OD positions is 

changed due to the new assignments.  

 

 

Figure 4.3. Swap operator (Exact). 

 

Similar to relocate operator, restricted neighborhood structure is used for swap 

operator also. When a passenger is selected for swap operator, a second passenger can be 

selected among the passengers sharing the same sub-region for the destination. After 

exploring all possible swaps, the best-improve swap is implemented. 

 

Although this method satisfies improvements in the solutions, it requires high 

computational effort. In this method, when two passengers are selected for swap operator, 

the exact solutions for the new assignments need to be found for each vehicle. For example, 

if Passenger 1 is selected for swap operator and the suitable pair for the swap is searched in 

the neighborhood, the exact solution for Vehicle 1 must be found for every trial of swaps.  
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4.6.3. Approximate Swap Operator 

  

Due to the computational inefficiency of the exact swap operator, another method is 

utilized in this study. In this method, the passengers are swapped with the positions of their 

origins and destinations. An example of this operator can be found in Figure 4.4. Passenger 

1 and Passenger 5 are selected for the swap operator. The origin of Passenger 1 is removed 

, the origin 

origin. The same operation is carried out for the destination points of the swapped 

passengers. 

 

The same restriction used in previous improvement operators is utilized for the 

neighborhood. After searching for all possible swaps, the swap with the best improvement 

in the objective function is carried out. This method does not guarantee an optimal solution. 

However, it has computational efficiency since it does not require exact solutions.  

 

 

Figure 4.4. Swap operator (Approximate). 

 

4.6.4. Simulated Annealing 

 

Simulated annealing is widely used in solving combinatorial optimization problems. 

It is addressed as a local search metaheuristic since it explores a neighborhood of a solution 

(Nikolaev and Jacobson, 2010). The mechanism of accepting moves that worsen the solution 

provides an escape from local optima.  
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In this study, the SA algorithm is mainly used to diversify the solution. In order to 

improve diversification in the SA algorithm, we modified it and introduced the parameter of 

similarity factor, . This factor is used to find the similarity rate between two solutions. The 

proposed SA algorithm is used after a certain improvement heuristic is applied to the 

solution. The solution acquired from an improvement heuristic is called the local optima of 

solution ( ) of the solution ( ) that the improvement heuristic is applied. These two 

solutions are given to the SA algorithm. The algorithm aims to find solutions around  with 

the decrease in similarity factor. The main purpose of it is to explore the neighborhood of  

that is far from its local optima . At the beginning of the algorithm, a similarity factor is 

calculated by using the given  and . This value is taken as the reference value, and at 

upcoming iterations, it is revised with the new similarity factors calculated by using   and 

. If the factor is found to be higher than the reference value, then the algorithm moves to 

the next solution. If it is lower than the reference value, then steps for approval of a new 

solution are followed. If a solution is accepted, then the reference value for the similarity 

factor is revised. The similarity factor is calculated as the portion of common vehicle 

assignments. This is the ratio of the number of passengers sharing the same vehicle 

assignments in  and  to the total number of passengers. 

 

Similar to the previous SA algorithm, our proposed algorithm involves the parameters 

like initial temperature  and the temperature reduction factor . To limit the number of 

iterations, two parameters are defined:  and .  limits the number of iterations for 

temperature reduction. On the other hand, limits the number of iterations for the 

neighborhood search of a passenger.  

 

The algorithm starts by selecting a passenger  among the passengers who are not 

onboard  . After the selection of candidates for a second passenger,  is determined 

with predefined limitations. These limitations are similar to the ones utilized in the above-

mentioned operators.  

 

The algorithm uses the approximate swap operator for the neighborhood search. When 

the second passenger  is selected from 

and destinations are swapped between the vehicles that they are assigned to. As mentioned 
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above, the approximate swap operator has a computational efficiency sin

optimal solutions. To limit the computational effort needed for the proposed SA algorithm, 

this operator is used. 

 

1: Given an initial solution  and {  is the local optima of  }, initial temperature 

, temperature reduction factor , iteration limit for temperature reduction  and 

for neighborhood search 

2: Find passengers who are not onboard  

3: Set temperature   

4: Find similarity factor  

5: for   do  

6: Select a random passenger  in  

7: Generate a list of passengers  in the neighborhood of  

8: for   do 

9: Select a random passenger  in  

10: Swap the passengers to get a new solution   

11: if  then 

12: continue 

13: Find  

14: if  then 

15:   

16:   

17: else 

18:  {a random value between 0 and 1} 

19: if  then 

20:   

21:   

22:   

23: Return  

 
Figure 4.5. Pseudocode of the proposed SA algorithm. 

 



56 
 

 
 

If the generated solution  is better than the current solution  then the algorithm 

accepts the new solution. However, if it is worse than the current solution, then the 

probability of accepting this solution is calculated by , where  refers to the change 

in the objective function. At the higher temperatures, the algorithm tends to accept the low-

quality solutions more, while at the lower temperatures, the probability of acceptance of non-

improving solutions becomes very small. 

 

The pseudocode of the proposed SA algorithm is shown in  

Figure 4.5. The performance of the algorithm is highly dependent on the choice of SA 

parameters like initial temperature, temperature reduction factor, and the number of 

iterations. Various combinations of these parameters are tested for the studied problem. 
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5. SIMULATION 
 

 

5.1. Data Preparation 

 

One of the main goals of this study is to explore the feasibility of a shared autonomous 

taxi system to replace conventional buses. In order to achieve this, the origins and 

destinations of the passengers in several bus lines in a university area were inferred using 

state-of-the-art algorithms. These origin and destination pairs are used in the dynamic dial-

a-ride problem.  

 

For origin and destination inference studies, it is highly possible that some portions of 

the OD pairs are missing. One of the main reasons behind this problem is the inaccurate GPS 

data of vehicles. Since the OD inference algorithms mainly rely on the position of the 

vehicle, origin and destination inferences cannot be made for the trips with inaccurate or 

missing GPS data. In order to simulate the actual trip load of the real-life application, a 

specific day with minimum data loss is chosen among the studied days.  

 

Typical trip loads in PT vary during the day. Figure 5.1 shows the trip distribution of 

the studied bus routes by hours of a day. As seen in Figure 5.1, the maximum trip load is 

experienced during morning peak hours. To challenge the proposed model, a one-hour 

period (08:00 a.m. - 09:00 a.m.) that has the maximum trip load during the day was chosen. 

During this period of the day, studied bus routes carried 1996 passengers. The algorithms 

were tested for other periods of the day also and showed better performance. This was an 

expected result due to the decrease in trip load. Since the vehicle fleet should be designed to 

serve at the required performance level all day, the algorithm should be tested and perform 

well for the worst-case scenario.  
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Figure 5.1. Percentages of daily trips by hours. 

 

To decrease the computational time and problem size, the stops within an 

approximately 100-meter distance were consolidated into one reference stop.  

 

The next step was to install the network, which contains the studied bus routes and the 

surrounding area. The network of the studied is imported using Open Street Map. In this 

network, road junctions are shown by the nodes, and edges between nodes represent road 

segments. The information on the position of the nodes by their coordinates and the several 

characteristics of edges, including lengths and speed limits, are given in the network.  

 

To import and analyze the network from Open Street Map, we utilized the OSMnx 

Python package (Boeing, 2017). One can install two types of networks; simplified or detailed 

versions.  To acquire a more precision detailed version of the network is installed. This 

increases the number of nodes hence computational times of operations. On the other hand, 

it is necessary to burden this problem in our studied case because the problem is solved using 

simulation methods, and in every iteration of the simulation, the position of vehicles should 

be determined in a more precise way. For our studied network, the number of nodes is over 

5,000, and the number of edges is over 10,000. These nodes and edges should be connected 

to have a complete network. Otherwise, the routing functions can not operate correctly. 

However, in some examples, also in our case, it is seen that some nodes and edges are not 

connected properly. To solve this issue, the strongly connected component of the network is 
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obtained by using osmnx.utils_graph.get_largest_component function in the OSMnx library. 

The installed network is shown in Figure 5.2. 

 

 

Figure 5.2. Network of the studied area. 

 

5.1.1. Distance Matrix 

 

In most VRP studies, the distances between the nodes are assumed to be known in 

advance, while in practice, the routing problems are defined on the actual road network. If 

detailed information on the road network of the studied area is available, it is possible to 

generate a distance matrix by solving a series of shortest-path problems. However, if the 

network contains a high number of nodes, considering the fact that for a particular pair of 

nodes there could be different shortest, cheapest, and quickest paths, shortest path 

computations may require a significant amount of memory and time (Boy

Letchford, 2021). In our study, the trips are defined on an actual road network, and the 

passengers are expected to make their trips between the predefined origin and destination 

locations. These locations were the stops of the studied bus routes. In heuristic solution 
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methods, solution space is extensively explored to find the optimal solution. In our problem, 

this means that countless paths between origin and destination points should be found. It 

should be noted that finding the shortest path, distance, and duration between two points is 

extremely time-consuming when the number of different OD pairs increases. In order to 

eliminate this problem, OD locations were limited to the present bus stops in our study. In 

addition, setting the pick-up and delivery points at strategic points such as rail stations, bus 

stops, etc., increases the feasible passenger-vehicle assignments. The concept of meeting 

points has been shown to improve the efficiency of the proposed transportation system (Li 

et al., 2018; Stiglic et al., 2015). 

 

A data frame containing all possible routes between the stops was generated. Since the 

network is not symmetric, the size of the distance matrix equals the square of the number of 

unique bus stops. In our studied bus routes, 93 unique bus stops are determined after the 

consolidation of very close bus stops into a single stop. Therefore 8,649 different paths are 

calculated with the nodes along the route, total distance, and total duration. If one intends to 

find all possible paths between the nodes in the network, the size of the distance matrix 

reaches an unacceptable range. For example, this figure can reach over 26 million for our 

studied network.  

 

Although the origin and destination locations are fixed in our problem, the routes 

generated during the simulation are not limited to the routes in the distance matrix. Because 

our problem is defined as dynamic and the location of the vehicles is not necessarily a bus 

stop and can be any nodes along the routes when the simulation is stopped, new shortest 

paths between the locations of the vehicles and the origins and destinations of the passengers 

should be calculated. To achieve this, location of the vehicles at any time should be found 

first. In the distance matrix, apart from the shortest path, the distances and the durations, 

cumulative distance, and duration along the route were also calculated using the nodes in the 

shortest paths. An example is shown in Table 5.1. A function returning the cumulative 

distance and duration of the route was generated and used to find these for the routes in the 

distance matrix. With the help of cumulative duration over the route, simulation detects the 

location of the vehicle at any given time.  
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Table 5.1. Example of an instance in the distance matrix. 

  

  

  

  

 

 

Cumulative 

Distance 
 

 
 

 

At the initial trials of the simulation, the distance matrix was kept unchanged, 

containing only the routes between the bus stops. When a new route was encountered 

because of the changing position of the vehicles, the shortest path was found using the related 

function. After a great number of simulations, it was observed that the trips are focused on 

a particular area of the network. Since the shortest path is calculated when an OD pair is not 

found in the distance matrix, it is logical to expand the distance matrix with possible paths 

if the size of the distance matrix can be kept in a reasonable range. For this purpose, when a 

new route is observed during the simulation, it is included in the distance matrix, and the 

distance matrix is revised. At the end of each simulation, the size of the distance matrix is 

increased. The increase in the size of the distance matrix keeps getting smaller in every 

iteration because some of the possible routes are already determined in previous simulations. 

By achieving this, the need for the calculation of the shortest path for new OD pairs and the 

additional computational effort is extensively reduced. 
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5.1.2. Initial Positions of the Vehicles 

 

The inference of OD points of the passengers was the key step of this study. 

Information regarding the trips of the passengers is derived from the outputs of origin and 

destination inferences. Since the origin and destination distribution over time is acquired, it 

is highly effective to position the vehicle according to this information. The probabilistic 

distribution of the demand for origins is determined for every hour, and the initial positions 

of the vehicles were assigned probabilistically using the distribution in the related hour. If 

the inference study is conducted for a longer time and the data for origin-destination demand 

of the passengers is extended, the initial positioning of the vehicles is expected to increase 

the performance of the algorithms. 

 

 

Figure 5.3. Initial positions of the vehicles (Colored circles represent vehicles). 

 

In order to have diversity and understand the real performance of the algorithms, the 

initial positions of the vehicles are changed before each simulation starts.  It is seen that the 

initial positions of the vehicles are affecting the performance of the solution algorithms 

considerably. However, it is not possible to determine the exact spatio-temporal distribution 
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of the trips in real life. Therefore, in the autonomous shared taxi fleet operation, fleet 

controllers should determine the positions of the vehicles based on the trip history and revise 

the positions while the historical data grows. 

 

5.2. Parameters Used in Simulation 

 

5.2.1. Period Duration 

 

In our problem, trip requests arrive dynamically, and the passengers expect to be 

served immediately. Therefore, the proposed algorithm should offer a proper framework to 

the fleet controller. One of the main parameters of the simulation study that affects the fleet's 

operation is the period duration representing the duration of the decision epoch. While some 

studies use the instant approach in which the problem is resolved when there is an update in 

the requests, we utilize the periodic approach in our study. The main reason behind this was 

the size of the problem in our study. For a 60 minutes time interval, there are about 2,000 

trips in rush hours, meaning that in every 1.8 seconds, a new request arrives. It was highly 

inefficient to reoptimize the problem in every update of the requests when we consider the 

fact that even the simulation processes like revising the position of vehicles, status of the 

passengers, etc., need some computational time.  

 

Since the requests in the decision epochs are solved at the end of each period duration, 

an increase in the period duration is expected to affect the waiting time of the passengers. 

Therefore, in the initial simulations, the period duration was kept as small as possible to 

ensure that the requests of the passengers are solved, and the vehicles are assigned to those 

passengers immediately. However, after the simulations with different period durations, it is 

seen that a 

the period duration increases, the number of requests being optimized in a decision epoch 

increases. The optimization algorithm shows higher performance when the size of the 

problem increases. On the other hand, with higher values of period duration, the gain from 

the optimization cannot cover the increase in the waiting times of the passengers. As seen in 

Figure 5.4, the optimum period duration is found to be around 120 seconds for our study. 
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Figure 5.4. Objective values for different period durations. 

 

5.2.2. Vehicle Capacity 

 

There are mainly three types of vehicle capacity constraints; imposed all the time, 

imposed at certain times, not imposed (Bodin and Golden, 1981). If the vehicles are small 

and the shared rides are offered as a service option, the capacity constraints for vehicles 

should be imposed all the time. Since our study deals with a problem with shared rides, the 

capacity constraint was imposed during the whole operation of the fleet.  

 

In systems with shared rides, capacity constraints prevent the vehicles from being 

overused. In some studies using relatively big vehicles, the minimum number of passengers 

for shared rides is introduced in the model as the lower bound of the capacity constraint 

(Kaan and Olinick, 2013). We used relatively 

impose a minimum number of passengers for shared rides. Furthermore, the immediate pick-

up and delivery of the passengers are quite crucial in our study, and imposing such a 

constraint would increase the waiting time dramatically.  

 

The maximum number of passengers is set to be four in this study. Since the proposed 

model aims to offer a taxi-like service, the capacity of the vehicles is kept small. The capacity 

constraint is imposed not only for the passengers onboard; the number of passengers 

assigned to a vehicle in the grouping phase cannot exceed four. This limitation eliminates 
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the need for a capacity check along the route of the vehicle. Otherwise, the algorithm should 

check whether the capacity constraint is violated during the execution of pick-ups and 

deliveries. Another advantage of small capacities is the feasibility of using exact solution 

methods for routing problems. If the number of passengers is kept in a small range, the 

computational time for exact solution methods becomes suitable for such a dynamic 

problem. The routing problem in our study contains pick-up and delivery locations. This 

means that the number of locations to be visited by the vehicle is two times the number of 

passengers assigned to that vehicle. For example, a vehicle having four passengers assigned 

to it will visit 8 locations. The total number of possible route sequences is 2,520 for four 

passengers. If we increase the capacity with only one passenger, a vehicle with five would 

have 113,400 different routes. As seen in this example, the problem size increases 

considerably even with a small increment.  

 

5.2.3. Number of Vehicles 

 

In some versions of the VRPs, the objective function aims to minimize the number of 

vehicles to be used. Some studies set the minimization of the number of vehicles as the 

primary objective, then optimize the total distance and duration. In our case, the number of 

vehicles is predefined, and the solution algorithm is free to assign passengers to available 

vehicles during the simulation. On the other hand, the number of vehicles should be 

minimized without violating the problem constraints since the fleet operators would prefer 

less investment cost. Therefore, the number of vehicles is incrementally decreased while the 

algorithm converges its performance limit for that number of vehicles. If the objective 

function value is no longer decreasing in a meaningful range and the constraints of the 

problems are not violated, further simulations are carried out with a smaller fleet size. In this 

study, the number of vehicles decreased from 120 to 90. Considering the fuel consumption 

and the investment cost of the conventional bus, this figure seems acceptable. In comparison, 

during the studied hour, the total 1996 trips were carried by 20 unique buses on the studied 

day.  
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5.3. Simulation Framework 

 

The simulation starts with acquiring the trip requests  between start time  and end 

time   of the related iteration. The start and end times of each iteration depend on the period 

time  defined before the simulation starts. At the end of each iteration, start and end time 

values are increased by the period time. The following information about the trip requests 

are taken: 

 

 Time of request 

 Passenger number (This is assigned to each passenger by the algorithm according to 

their request time) 

 Coordinates of the OD pairs  

 OSMIDs of the OD pairs  

 Clusters of OD pairs 

 Distance and duration of the shortest path between the origin and destination of the 

passenger. This data is previously determined and stored in the distance matrix 

 

This information generates a data frame that contains all necessary information about 

the passengers and their trips. After acquiring the information from the passenger side, the 

data frame is extended with columns filled by the algorithm over the simulation steps.  These 

columns contain the following information: 

 

 The vehicle number assigned to the passenger 

 The pick-up and delivery time of the passenger  

 The state of the passenger 

 

There are three different states for passengers. The first one is the 

meaning that the passenger request is taken, but no vehicle has picked up the passenger yet. 

Another state is the onboard  state, referring to the passengers that are taken by the vehicles 

and on a route to their destinations. The final state for the passengers is the state 

that stands for the passengers being delivered to their destinations. These passengers are 
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considered to be served, and the information about these passengers is no longer carried on 

next iterations.  

 

Apart from the passenger information, the simulation needs vehicle states also. As 

previously mentioned, the vehicles are positioned in certain locations according to the 

demand history of studied routes. This information is written in a data frame that contains 

other relevant information on vehicles. The following information is stored and revised in 

the vehicle data frame at each iteration: 

 

 Vehicle number 

 Vehicle capacity 

 Passengers onboard 

 Number of passengers onboard 

 Available seats 

 To which cluster the vehicle is going to 

 Total traveled distance of the vehicle 

 The total duration that the vehicle has been actively serving 

 Location of the vehicle in terms of OSMID 

 Passengers assigned to the vehicle 

 Number of passengers assigned to the vehicle 

 

The simulation has two major tasks in each iteration: passenger-vehicle assignment 

and routing. For the assignment task, the proposed algorithm aims to assign the passengers 

to the vehicles. The assignment algorithm always prioritizes the passengers with earlier 

request times. When the demand exceeds the capacity of the fleet, no more assignments can 

be done. This results in passengers without assigned vehicles. It is also possible not to be 

 

 

After the assignment task is completed, the routes of the vehicles are generated by the 

exact algorithm that finds the optimal route for the vehicles with given passengers. The 

algorithm aims to find an optimal solution for each vehicle that has passengers assigned to 

it according to the proposed objective function. As discussed in Chapter 4, the objective 
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function contains the total traveled distance and the waiting time of the passengers. In order 

to satisfy the service quality, the waiting time parameter is included in the objective function. 

The coefficient of waiting time  is needed to be determined to balance the effects of the 

objective function parameters. With a given , the optimal route for each vehicle is 

determined. The algorithm tries to minimize the total distance of the route while the total 

waiting time of the passengers is aimed to be kept short. 

 

The passenger-vehicle assignments and the routes generated by the exact algorithm 

form a complete solution. This solution is improved by the selected improvement heuristics. 

In our study, several improvement heuristics are proposed and tested. In some cases, these 

heuristics are jointly utilized for the improvement task.  

 

After the solution improvement is achieved, the simulation takes the routes and moves 

the vehicles along the routes for a period duration . During the implementation of the 

routes, some passengers might get on the vehicles while some might be delivered. The status 

of trip requests is revised according to the states of the passengers. Delivered passengers are 

eliminated from the requests . The vehicle positions and the passengers onboard are 

revised according to moves carried out by the vehicles. The revised variables are defined as 

the state variables. The functions utilized for the revision in state variables can be considered 

as the transition functions.  

 

At last, the start time   and the end time   of the period is increased by the 

predefined period duration . At the next iteration, the trip requests are captured between 

the increased   and . This process is carried out until there is no unserved trip request 

left.  The pseudocode for the simulation is shown in  

Figure 5.5.  

 

Not only the solution quality but also the computational time of the simulation runs 

are highly dependent on the parameters used in the simulation. Therefore, various settings 

are tested to get suitable parameters. However, with some settings, the computational effort 

needed to solve the problem reaches a high level. These settings were not used for further 

simulation runs since it is impractical to get results in an unreasonable time. 
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1: Initial Positions of Vehicles 

2: A set  with  trip requests  

3: Choose values for period duration and waiting time coefficient  

4: Set start time  and end time  

5: while stopping criteria is not met do {criteria: there is no unserved request} 

6: Collect the trips requests  between  and  

7: Revise  and find unserved requests {by appending } 

8: for  do 

9: if  is not visited {For each passenger who is not onboard} then 

10: Make vehicle assignment  

11: for  {For each vehicle} do 

12: Find optimal route 

13: Improve Solution {Using improvement heuristics} 

14: Update status of requests {exclude the served requests} 

15: Update status of vehicles  

16:   

17:   

 
Figure 5.5. Pseudocode for the simulation. 
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6. SIMULATION RESULTS 
  

 

The simulations were run on a 64-bit computer with 128GB of RAM, and a 2.20 GHz 

processor. 

 

The performance of the solution methods is evaluated upon the results obtained from 

the simulation runs. However, it is important to set the parameters used in the algorithms 

since the results are highly dependent on these parameters. 

 

The period duration  is chosen as 120 seconds. With this period duration, the 

proposed solution methods produce good results in a reasonable time. The number of 

vehicles  are changed during the study. If satisfactory results are obtained with a certain 

number of vehicles, then it is decreased to a certain value to challenge the algorithm further. 

This process is carried out until the value of 90 for the fleet size, and most of the simulation 

runs used this value. 

 

As stated before, the objective function of the optimization problem contains two 

parameters, total traveled distance and the total waiting time. Even it is not included in the 

objective function, the maximum waiting time is taken as an output from the simulation. It 

is seen that for some cases, even average waiting time is quite low, some passengers might 

suffer from long waiting times. Therefore, the solution methods that produce low maximum 

waiting times are preferred. This is a significant concern since the proposed transportation 

service should serve all passengers at certain service quality.  

 

The simulation runs carried out with different waiting time coefficient values. Table 

6.1 summarizes the results of 30 simulation runs. The value of 200 gives promising results 

in terms of both waiting times and traveled distances. To recognize the importance of the 

waiting time parameter, the coefficient for the waiting time  in the objective function is 

chosen as 200. 
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Table 6.1. Waiting time coefficient trials. 

  
Average Waiting 

Time (min) 

Average Total 

Traveled Distance 

(mt) 
W

ai
tin

g 
Ti

m
e 

C
oe

ff
ic

ie
nt

 

0.5 4.57 3701557.87 

5 4.52 3728996.59 

10 4.55 3701475.13 

30 4.70 3734726.26 

50 4.49 3740575.09 

100 4.48 3691138.88 

200 4.37 3669086.35 

300 4.41 3705927.09 

500 4.40 3688062.58 

1000 4.44 3710244.67 

 

In our proposed SA algorithm, four parameters need to be determined before the 

algorithm runs. These are initial temperature , the temperature reduction factor ,  the 

number of iterations for temperature reduction, and  the number of iterations for every 

temperature value.  

 

Typically temperature reduction factor ranges between 0.8 and 0.99 (Hosny, 2010). 

Various reduction factor values are tested, but none of them makes a significant difference, 

and we set the reduction factor  as 0.90. We also tried several initial temperature values, 

and choose 106 as . Table 6.2 summarizes 16 simulation runs with different initial 

temperatures. 106  has given the best performance. This value is high because our objective 

function produces high values, hence the changes in the objective function are also high. To 

ensure that some non improving solutions are also accepted, the temperature needs to be 

high enough. To limit the search, we use  and  parameters. We used the values of 20 and 

40 for  and  respectively.  
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Table 6.2. Initial temperature trials. 

Initial 

Temperature 

Objective 

Value 

1000 5605047.4 

10000 5554370.6 

100000 5567771.9 

1000000 5530567.3 

 

6.1. Computational Time 

 

The biggest challenge of this study was to limit the computational efforts needed to 

solve the related problem. Due to the dynamism of the problem, the solutions need to be 

generated in a reasonable time. Because the passengers require immediate service for taxi-

like transportation systems. It is also important to have a short computational time because 

the simulation runs for a certain time, and it requires several iterations. To see the 

performance of a proposed solution method, the output of the simulation needs to be 

acquired. If the computational effort is not limited to a reasonable range, it would be 

impractical to find the optimal parameters due to a need for various trials of simulation runs. 

Therefore, besides the performance parameters related to the operation of such a system, the 

proposed solution methods are always evaluated by their computational time.  

 

As discussed in Chapter 4, the exact solution algorithm is used to find the routes of 

vehicles according to given passenger-vehicle assignments. Among the improvement 

heuristics, relocate operator and exact swap operator also utilizes the exact solution 

algorithm. In the exact swap operator, the routes of two vehicles are reoptimized for every 

move, while in relocate operator, the route of the vehicle that is the current vehicle of the 

passenger who will be relocated, is reoptimized once. Thus, the exact swap operator requires 

much higher computational time. Due to this inefficiency, the exact swap operator is only 

used a couple of times. In the approximate swap operator, the routes are not found optimally; 

hence, the computational time required for this method is in a reasonable range. Table 6.3 

summarizes the average computational time required for a simulation run. When no 

improvement strategy is applied to the solution, simulation is completed in around 10 
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minutes which includes the operations needed for solution construction and the simulation. 

The total CPU time required for the improvement heuristics should be evaluated considering 

the fact that they also contain these operations. 

 

Table 6.3. The computational time required for improvement operators. 

Improvement Type Total CPU (min) 

No Improvements 10.06 

Relocate Operator 21.05 

Approximate Swap Operator 27.64 

Exact Swap Operator 173.98 

 

6.2. Radius Ranges in Passenger-Vehicle Assignment 

 

Another parameter that needs to be determined is the radiuses used in the passenger-

vehicle assignment task. As indicated before, various strategies are tested for passenger-

vehicle assignments. Assigning the closest available vehicles is one of the strategies that is 

tested and failed to give satisfactory results. Another method used for the assignment is to 

make the assignment in a predefined radius first, then assign the unassigned passengers to 

the closest vehicles. This method ensures that if there are available vehicles, every single 

proposed assignment method. The main reason is believed to be that, this method tries to 

make assignments for all passengers. Therefore, in some cases, it assigns vehicles to 

passengers far away from each other. 

 

We proposed a vehicle search in certain radiuses. These radiuses are incrementally 

increased to expand the area for the vehicle search. To limit the distance between vehicle 

and passenger for assignment, the maximum radius is set to a certain value. Among the 

various set of radiuses, most promising results are taken by the following set of radiuses: 

[0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03]. The first 

radius refers to approximately 100 meters, while the last one refers to 3 km.  
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6.3. Number of Sub-regions 

 

As stated before, the introduction of sub-regions considerably improves the solution 

quality. The origin and destination points of the trip requests are clustered into a predefined 

number of clusters for generating the sub-regions. The sub-region information is used both 

in the passenger-vehicle assignment and improvement tasks. For the assignment task, the 

vehicles moving towards a sub-region can be assigned to the passengers having the same 

sub-region for the destination points. Similarly, relocate operator can be applied to the 

passengers and vehicles sharing the same destination cluster. For the swap improvement 

heuristics, the neighborhood structure is restricted with the passengers having the same 

origin and destination clusters.  

 

Before the simulation starts, the number of sub-regions needs to be determined. The 

solution quality is affected by the number of sub-regions. Therefore, there is a need for a 

fine-tuning of this parameter. To find the suitable range for the number of sub-regions, over 

90 simulations are carried out, and the average objective results are shown in Figure 6.1.  

 

The value 1 refers to the case where there is no sub-region restriction. All the studied 

area is considered to belong to the same cluster. As expected, this value produces low-quality 

results. While the clusters are increased, the objective value gradually decreases. However, 

after the 10-15 range, the objective value starts to increase again. Therefore, a value in this 

range should be selected. For most of the simulation runs, a value of 11 is chosen for the 

number of sub-regions. 

 

It should also be noted that when the number of sub-regions is kept small, the 

computational efforts needed for the solution generation and improvement heuristics 

increase. When the number of sub-regions is small, it requires a larger neighborhood search 

for the solution improvements.   
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Figure 6.1. Average objective values vs. the number of sub-regions. 

 

6.4. Improvement Types 

 

As discussed in Chapter 4, four different improvement heuristics are proposed for this 

study. We analyzed the individual performance of the three operators. The proposed SA 

algorithm is mainly used for diversification purposes. Therefore, it is utilized jointly with 

other operators. The following improvement types are tested: 

 

 Improvement Type 1: Relocate operator 

 Improvement Type 2: Approximate swap operator 

 Improvement Type 3: Relocate operator + SA algorithm.  

 Improvement Type 4: Relocate operator + SA algorithm + Relocate operator.  

 Improvement Type 5: Approximate swap operator + SA algorithm 

 Improvement Type 6: Approximate swap operator + SA algorithm + Relocate operator 

 Improvement Type 7: Relocate operator + Approximate swap operator 

 Improvement Type 8: Exact swap operator 

 Improvement Type 9: Relocate operator + Exact swap operator 

 Improvement Type 10: Approximate swap operator + Relocate operator 

 Improvement Type 11: Exact swap operator + Relocate operator 
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In some improvement types, the improvement heuristics are jointly used. For example, 

in improvement type 4, relocate operator is applied to the current solution just after the exact 

solution algorithm. After the relocate operator, the SA algorithm is applied to the same 

solution generated by the exact solution algorithm. The SA algorithm also takes the solution 

that is produced by the relocate operator as the local optima of the current solution. The 

solution produced by the SA algorithm is taken as the current solution, and the relocate 

operator is used again and applied to that solution. The proposed SA algorithm requires two 

solutions, the current solution and the local optima of that solution. Therefore, in 

improvement types including the SA algorithm, the solution produced by the exact solution 

algorithm is used. The solution generated by the operators is taken as the local optima by the 

SA algorithm. 

 

The improvement types without the 

The current solution is revised with the operators, then the solution generated by the 

operators is taken as the new current solution. The next operator uses only this solution for 

further improvements. In the improvement types including the SA algorithm, keep the 

solutions produced by each improvement step and take the best solution as the final solution. 

 

6.5. Performance of Improvement Types 

 

The proposed solution algorithms aim to find the solutions with the minimum objective 

function. Therefore, it is logical to evaluate the performance of the solution methods 

according to the objective values. For the passenger-vehicle assignment previously 

mentioned method is used for all solution methods. Then the optimal routes of the vehicles 

are found by the exact algorithm. The solution methods differentiate each other with the 

improvement types used for the solution improvement.  

 

To evaluate the performance of the improvement types, several simulation runs for 

each improvement type were carried out. Figure 6.2 shows the average objective values 

obtained at the end of the various simulations. Improvement type 8 outperforms the rest of 

the improvement types in terms of objective value. However, as stated before, the exact swap 

operator, which is used in improvement type 8, requires high computational effort. 

Therefore, the improvement methods including the exact swap operator are computationally 
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uire high computational time. 

In this method, the approximate swap operator, the SA algorithm, and the relocate operator 

are applied to the solution in order. The proposed SA algorithm satisfies the diversification 

and leads to high-quality results. When the approximate swap operator is used before the SA 

algorithm, the solution quality is increased like in improvement types 5 and 6. However, 

when the relocate operator is utilized before the SA algorithm, the improvement phase 

produces low-quality solutions like improvement types 3 and 4. This may have resulted from 

the fact that the individual performance of the approximate swap operator for solution 

improvement is higher than the relocate operator. One other reason could be the 

neighborhood structure used in the SA algorithm. The SA algorithm and the approximate 

swap operator share the same neighborhood structure. Since the SA algorithm uses the 

improved solution acquired from the predecessor improvement heuristic as the local optima 

of the current solution, sharing the same neighborhood structure might improve the success 

of the diversification. 

 

 

Figure 6.2. Objective values and total CPU of simulations vs. improvement types. 

 

The objective function contains two main parameters, the total traveled distance of the 

fleet and the waiting time of the passengers. Figure 6.3 summarizes the performances of the 

improvement types on both traveled distance and the average waiting time. Except for the 

improvement type 6, all improvement types including the relocate operator produce results 

with less traveled distance. The reason behind this could be the fact that the relocate operator 
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can reduce the number of vehicles being on the operation while the swap operators can only 

replace passengers between vehicles. By reducing the number of vehicles, the optimization 

algorithm can offer solutions with less traveled distance. However, when the number of 

vehicles is reduced, it is possible to have a high waiting time. There seems to be an inverse 

relationship between the traveled distance and the waiting times. 

 

 

Figure 6.3. Total traveled distance and average waiting time vs. improvement types. 

 

6.6. Operational Efficiency 

 

To evaluate the operational efficiency of the fleet, we further analyzed whether the 

fleet is utilized properly. Figure 6.4 and Figure 6.5 show the result of an instance where 

improvement type 9 is used. As seen in both figures, the number of used vehicles reaches 

the size of the fleet in a short time and continues to stay at that point for almost the entire 

operation. This means that for most of the studied period, there are not idle vehicles. This 

shows that the fleet is not underutilized. Figure 6.4 also shows the occupancy rate of the 

moving vehicles and the whole fleet. Since almost all vehicles are assigned to passengers 

and on move, the occupancy rates of the moving vehicles and the whole fleet become equal. 

The average occupancy rate of the moving vehicles is 55%. Considering the fact that the 

vehicles need to move towards the origins of the passengers with available seats, this rate is 

found quite satisfying. The assignment rate in  Figure 6.4 refers to the rate of assigned 

passengers to the capacity of the fleet. The average assignment rate is around 80%.  
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Figure 6.4. Occupancy and assignment rate of the fleet during the studied period. 

 

Figure 6.5 shows the number of passengers onboard, the total number of passengers, 

and the number of passengers assigned to a vehicle during the studied period. The total 

number of passengers refers to the number of passengers who are not delivered to their 

destination points yet. The total number of passengers exceeds the capacity of the fleet at 

certain times of the execution. This shows that the demand of the studied period challenges 

the proposed system in terms of capacity. However, it is observed that even there is available 

capacity in the fleet, -vehicle assignments. As 

discussed before, this is caused by the fact that there are certain geographical restrictions in 

the assignment phase. A vehicle cannot be assigned to a distant passenger even though no 

vehicle is assigned to that passenger. 

 

The improvement heuristics contain the relocation of a passenger or swapping two 

passengers between vehicles. Therefore, these heuristics can only be applied to the 

passengers who are not onboard since passenger transfers are not allowed in our study. The 

gap between the number of passengers onboard and the number of assigned passengers 

Figure 6.5 represents these passengers. As seen in the figure, in some decision epochs, there 

are not that many passengers to whom the improvement heuristics can be applied.  
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Figure 6.5 also shows that the problem size for each decision epoch is considerably 

large. In some cases, the total number of passengers waiting for the delivery reaches over 

450 passengers. This problem is repeatedly solved in every decision epoch.  

 

 

Figure 6.5. Passenger statistics. 
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7. CONCLUSION 
 

 

In this study, we investigated the feasibility of a shared AV fleet to replace 

conventional bus routes. To achieve this, OD pairs of bus trips are inferred at an individual 

level. Then the related vehicle routing problem is formulated. The proposed transportation 

system is considered to be a dynamic dial-a-ride problem, which is a common variant of 

VRP. Then the solution algorithms are generated for both solution construction and 

improvement. The construction of a solution mainly contains two steps, grouping and 

routing. For the grouping of passengers into vehicles, we designed a new method that gives 

promising results in reasonable computational time. For the routing part, we developed an 

exact solution algorithm. With the help of capacity constraints of the vehicles in the proposed 

transportation system, the 

computational effort.  After a complete solution is acquired, several improvement heuristics 

are applied to the solution. The improvement heuristics are applied to the problem 

individually and jointly to obtain the performance of all combinations of improvement 

heuristics. While some methods are not suitable for a highly dynamic environment, others 

achieved produce good results in a short time. 

 

We have faced several challenges during this study. However, some of them deserve 

to be emphasized. One of the challenging tasks to infer the OD pairs of PT users was to 

eliminate the GPS errors. The algorithms used for the OD inferences mainly rely on the 

location data of the boarding. If incorrect data is not eliminated or corrected, both origin and 

destination points are inferred incorrectly. We developed several methods to correct the 

location data and infer the correct positions of the OD pairs. 

 

Another challenge was to develop simulation software to obtain the performance of 

the proposed solution methods. Since our problem is a highly dynamic vehicle routing 

problem, it was important to apply this dynamism to the problem. To fully appreciate the 

dynamism, a simulation needs to be carried out with the inferred OD pairs. All the codes 

were developed specifically for this problem. The simulation also used a real network, and 

all settings of the network are designed to reflect the real-world situation. 
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We have tried countless methods and settings to solve the related problem. Some of 

s. 

Although some solution methods or settings were good at generating high-quality solutions, 

it was impractical to use them due to the high computational effort they required. Among all 

of these methods and settings, some affect the solution quality considerably. Therefore, we 

need to mention them for future works. 

 

At the initial trials of the simulation, the passenger-vehicle assignments were carried 

to the following iterations. This means that if a passenger is assigned to a vehicle, it is 

impossible to change this assignment. However, due to the high dynamism of the studied 

problem, it is possible to have better options for the passenger-vehicle assignment with the 

new trip requests arrived in the following decision epochs. After we dismiss all assignments 

in the upcoming iterations, except for the passengers onboard, the solution quality and 

performance metrics were considerably improved. 

 

Another important factor that greatly affected the solution quality was the introduction 

of sub-regions. With the help of sub-regions, passengers having OD pairs close to each other 

are grouped into the same vehicles. By achieving this, the solution construction phase 

produces high-quality solutions. The introduction of sub-regions also serves for the 

restrictions of neighborhood structure used in the solution improvement phase. Therefore, 

clustering the studied region into sub-regions not only helps to acquire promising solutions 

but also limits the computational effort needed to improve the current solutions. 

 

As repeatedly stated before, one of the major concerns of the study was to limit the 

computational time. To generate the shortest path between the origins and the destinations 

requires some computational time in real networks. If the number of paths increases, the 

computational effort needed to find these paths and generate a distance matrix might reach 

unbearable levels. It is also impractical to generate all possible paths before the execution 

since even for a small network, the size of the distance matrix reaches high numbers. In this 

study, we first generate a distance matrix only for the bus stops. However, after a close look 

into the results of the simulations, it is realized that the routes of vehicles are concentrated 

in certain areas. After that point, we add a new path to the distance matrix when a new path 
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is obtained during the simulation. From the point of this decision, countless simulation runs 

are completed, and the size of the distance matrix is converged to a reasonable level.   

 

7.1. Investment and Operation Costs 

 

One of the main goals of this study is to evaluate the feasibility of using a shared AV 

fleet instead of conventional buses. To achieve this, the operation and the capital cost of the 

proposed transportation service must be determined. In this study, we assume a fleet of AVs 

that are electric vehicles. Therefore, the comparison is made between electric vehicles and 

buses. Since autonomous cars and buses have not been widely used in the transportation 

domain and it is hard to find any information regarding the operation and the investment 

costs of such vehicles, the analysis is restricted to electric vehicles. 

 

Quarles et.al. (2020) used 550,000 USD purchase price for a 12-meter electric bus in 

their study based on the statistics of various electric buses. On the other hand, the average 

price for an electric car was 55,600 USD in 2019, down from 64,300 USD in 2018, according 

to Cox Automotive (Crothers, 2020). In terms of purchase prices, electric buses are ten times 

more expensive than electric cars.  

 

The proposed system can solve the problem with 90 vehicles while in the studied hour, 

the total number of 1996 trips were carried by 20 unique buses. In terms of investment cost, 

the proposed system has an obvious advantage over the conventional bus routes. This 

comparison is valid for such fleets containing autonomous vehicles or autonomous buses. If 

the vehicles have drivers, the costs related to the drivers should be included in the economic 

analysis. On the other hand, AV technology is expected to occupy the transportation domain 

in the near future. Therefore, compared to the conventional bus routes, the proposed 

transportation system would benefit the service providers at a significant level in terms of 

investment cost.  

 

The average energy consumption for a 12-meter electric bus is found to be 1.15 

kWh/km by a Dutch company ViriCiti upon a 10-months data collection of over 100 electric 

vehicles (ViriCiti, 2020). The type of buses used in the bus routes studied in this thesis is 

also 12-meter buses. The average energy consumption of electric cars is concentrated in the 
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range between 0.14 to 0.2 kWh/km (Hao et al., 2020). This comparison shows us that electric 

buses consume 6-8 times more energy than electric cars. 

 

The total traveled distance by the buses in the studied period and routes is shown in 

Table 7.1. The buses traveled about 674 km in the fixed routes to serve the trip requests in 

the related period. When the energy consumption rates of electric buses and electric cars are 

considered, a total traveled distance up to about 5,000 km is acceptable. Over this value, the 

proposed system would lose operational advantages. As shown in Chapter 6, the total 

distance of the AV fleet is almost always below 4,000 km for the studied period. 

 

Table 7.1. Total traveled distance of the studied routes during the studied period. 

Bus 
Route 

Number of 
Tours 

Total Distance of a 
Tour in km 

Total 
Distance in 

km 
1/T 11 22 242 
3/G 8 22 176 
35/G 10 16 160 
4/G 6 16 96   

Total 674 
 

The proposed system is designed to serve PT users a more comfortable transportation 

service. On the other hand, it also benefits the service providers in terms of investment in 

the fleet and operational costs. Ultimately both parties, users and service providers, would 

gain a lot from the implementation of such a system.  

 

One of the highest operating costs of the current PT system is related to the drivers. 

Therefore, decision-makers would immediately utilize it when the AV technology is ready 

to be implemented in the PT domain. The proposed service eliminates the need for drivers 

and offers a more advantageous service economically. This finding is believed to be highly 

crucial for transit agencies. 

 

7.2. Limitations 

 

Although this study aimed to simulate the real-world application of the proposed 

transportation service as much as possible, there are certain limitations. Some of these 
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limitations are related to the fact that we needed to solve the problem in a reasonable time to 

test the solution methods. Therefore, the problem should be restricted to some extent. Also, 

the hardware used for this study is a standard computer, while the hardware utilized in real 

life for such a system has high computational power. For this reason, our proposed model 

and the solution methods can be applied in real life with less computational time. 

 

The methods used in our study for OD inferences are taken mostly from the previous 

studies. These studies validated their methods by various validation methods. Most of the 

studies used surveys to validate their OD inference algorithms. Since the OD matrix 

algorithm was not the core of this study, the validation process was not conducted. Even the 

methods used in OD inferences are validated methods by the previous studies, it is possible 

to have different results caused by the characteristics of the studied transit network.  

 

In our study, passengers are not allowed to make a trip from an origin to a destination 

other than the predefined locations. Since the study was aimed to explore the feasibility of 

s instead of conventional busses, these origin and 

destination locations were selected as the present stops of the studied bus lines. This limits 

the problem size, especially in routing problems hence decrease the computational time. It 

is important to note that finding the shortest path, distance, and duration are extremely time-

consuming if heuristics are used to find the optimal routing since the heuristics aim to find 

the optimum route by exploring the solution space. This means that countless paths should 

be calculated to converge the good results, causing an increase in computational efforts. 

However, it is highly possible that passengers using a shared taxi-like system prefer to decide 

where they are picked up and delivered. If the passengers are forced to come to the locations 

for their trips, they might expect further advantages from the proposed system like cost, 

comfort, efficiency, etc.   

 

Depending on the assignment strategies and improvement heuristics, grouping and the 

routing steps in each iteration take some time. Even in some cases, computational time can 

reach 500 seconds per iteration due to the exhaustive searches in the improvement phase. In 

our study, the computational time needed to solve the problem is not taken into account, 

meaning that results of the grouping of the passengers and the routing of the vehicles are 

immediately executed in each iteration. Therefore, the 
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computational time to its time before the execution. The vehicle routing problem in each 

iteration is considered to be solved immediately. In real life, this cannot be realized since 

every step of the algorithm requires some computational time. On the other hand, specialized 

software and hardware are used in the real-life application of this kind of problem by the 

fleer operators. The performance of these systems is far better than the hardware that we 

used in our study. It should also be noted that even in our study, some of the improvement 

strategies require low computation time.  

 

The proposed study was aimed to propose an autonomous shared taxi model for the 

transportation of PT users. For this purpose, the capacity of the vehicles was kept small. 

With the advantage of small capacities, exact solution methods are utilized for solving 

routing problems in the proposed algorithm. If the capacity of vehicles is increased, exact 

solution methods may need to be excluded from the algorithm.  

 

7.3. Future Works 

 

To reflect the last-mile problem, this study is conducted on a specific area of the public 

transportation network. When the size of the service area is increased, the problem size is 

also increased. Hence the computational effort needed to solve the related problem becomes 

higher. On the other hand, with the increased problem size, solution methods can produce 

solutions with higher quality. It would be much more practical to analyze the whole system 

since the fleet is sometimes underutilized, and the idle vehicles can serve in other service 

areas where the demand is high. 

 

To simplify the problem, the congestion on the roads is not considered in this study. 

However, in real-life applications, congestion causes considerable delays in transportation 

services. To reflect the real-life situations more, future works should consider the congestion 

on the network, especially for rush hours. 

 

We proposed a taxi-like transportation service for the studied problem. Therefore, we 

used vehicles with small capacities in this study. The number of possible routes for a vehicle 

is directly related to the number of passengers assigned to it. Even a small increase in the 

number of passengers expands the solution space dramatically. The limitation on the 
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capacity enabled us to use the exact solution methods. However, in some cases, using small-

capacity vehicles might be inefficient. Future works should improve the computational 

performance of the solution methods. By achieving this, the vehicles with different 

capacities can be used for the related problem. 

 

In this study, the stochastic information of the bus trips was only used for determining 

the initial positions of the vehicles. It is highly possible to forecast the trip requests during 

the day if there is sufficient trip data. Future works can utilize the trip history of related bus 

routes and acquire the possible OD pairs for different periods of a day.
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