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ABSTRACT 

AN INVESTIGATION OF SYSTEM IDENTIFICATION AND 

DAMAGE ESTIMATION USING MODAL PLOTS, COUNT PLOTS 

AND A DAMAGE INDICATOR 

Structural Health Monitoring (SHM) aims to detect slow and/or sudden changes in a 

structure, and the possible damage associated with such changes, using system identification 

and damage detection methodologies. It eventually also aims to provide an estimate for the 

remaining useful life of a structure and to provide guidance to structural design.  

In this thesis, new approaches are presented for system identification, damage 

detection and sensor deployment under operational loads. In the introduction chapter, the 

importance of the subject, four crucial questions for SHM system design, and a short 

literature review are discussed.  

In the second chapter of the thesis, a sensitivity based damage detection algorithm is 

developed. The performance of the proposed system identification and damage detection 

methods are investigated numerically. The numerical demonstration of the proposed damage 

detection method is investigated for the full measurement and restricted measurement cases 

at the end of the chapter. The proposed method is tested on a numerical six-story structure 

model for damage at one story and multiple story scenarios in the fifth chapter.  

In the third chapter which deals with system identification, a new interpretation and 

a new algorithm called the ‘modal plot’ are provided for ‘stabilization diagrams’; it is shown 

that, it is possible to automatically identify the natural frequencies and the mode shapes of a 

system by converting its modal plot to a ‘count plot’. The count plot approach could be 

viewed as an alternative to power spectrum analysis. A case study is given at the end of the 

chapter and the proposed method is used to investigate natural frequency changes due to 

damage for data taken from a real structure in Chapter 6. 
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Chapter 4 presents detailed discussions on the performance of the proposed methods 

via three numerical examples, which show that using the proposed methodology, it is 

possible to detect damage using the first three modes. In the experimental study, it is 

proposed that modal zones are sensitive to presence of the damage and the damage indicator 

is used to estimate the damage location.  

In the concluding chapter, a general discussion of the methods proposed in this thesis 

is provided.  
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ÖZET 

MOD PLANI, SAYIM PLANI VE HASAR BELİRTECİ 

KULLANILARAK SİSTEM TANILAMA VE HASAR TAHMİNİ 

ÜZERİNE BİR İNCELEME 

Yapı Sağlığı İzleme Sistemleri (YSİ), sistem tanılama ve hasar tespit yöntemleri ile 

yapıda yavaş yavaş ya da aniden oluşabilecek değişiklikleri ve bu değişikliklerle ilintisi 

muhtemel hasarı belirlemeyi amaçlar. İleri hedefleri ise yapının kalan ömrünü tahmin etmek 

ve yapı tasarımına yön vermektir.  

Bu tezde, işletim yükleri altında sistem tanılama, hasar tespiti ve sensör 

konumlandırma için yeni yöntemler aktarılmaktadır. Giriş bölümünde, konunun önemi, YSİ 

sistem tasarımı için dört önemli soru ve kısa bir yazın taraması tartışılmaktadır.  

Çalışmanın ikinci bölümü olan hasar tespit kısmında ise hassaslık temelli bir yöntem 

geliştirilmiştir. Önerilen parametre ve yöntemin performansı sayısal olarak incelenmiş, 

bölümün sonundaki sayısal örneklerde tam ölçüm ve kısıtlı ölçüm durumları ele alınmıştır. 

Önerilen yöntem, beşinci bölümde altı katlı bir yapı modelinde bir kat hasar ve çok kat hasar 

senaryoları için test edilmiştir.  

Tezin üçüncü bölümü olan sistem tanılama kısmında, ‘kararlılık şeması’ olarak 

adlandırılan yaklaşım ‘mod planı’ olarak isimlendirilen yeni bir yorum ve algoritma ile ele 

alınmıştır. Mod planları, ‘sayım planlarına’ dönüştürülerek sistemin özfrekanslarını ve mod 

şekillerini otomatik olarak belirlemekte kullanılmıştır. Sayım planı yaklaşımı güç tayf 

yoğunluğu yöntemine alternatif bir yöntem olarak düşünülebilir. Bölüm sonunda bir vaka 

çalışması verilmiş ve önerilen yöntem Bölüm 6’da gerçek bir yapıdan alınan ölçümler için 

hasar nedeniyle doğal frekans değişimlerini araştırmak için kullanılmıştır. 
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Vaka analiz çalışmasında (Bölüm 4), üç sayısal örnek tartışılmış ve önerilen yöntem 

ile ilk üç mod kullanılarak ve sistemin iki durumu değerlendirilerek hasar konumunun tespit 

edilebileceği gösterilmiştir. Deneysel çalışmalarda ise modal bölgelerin hasarın varlığına 

hassas olduğu gösterilmiş ve hasar belirteci ile hasarın konumu tespit edilmiştir.  

Kapanış bölümünde ise, tezde önerilen yöntemlerin genel değerlendirmesi 

verilmiştir.  
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1. INTRODUCTION 

There is no unique definition, but depending on the user and the aim in monitoring, 

structural health monitoring (SHM) can be defined by employing various perspectives: From 

the perspective of damage detection, SHM is one of the important tools for engineers dealing 

with mechanics in monitoring the existence, location, and type of the extending defects in 

order to take proper precautions before the growths in defects reach one or more of the 

following critical levels: (i) disturbing  the operational state of a structure, (ii) disrupting the 

“health” of a structure, (iii) endangering the surrounding living and nonliving environment. 

The critical levels are strictly different for target performance levels in the design as well as 

for the type of structure such as nuclear plants, aircraft, bridges, dams. 

From the perspective of the design of materials and structures, SHM is a tool for 

designers (i) to understand the behavior, type and frequency of forces acting on existing 

structures as well as the response of the material and the structure to these acting forces, (ii) 

to design a future structure depending on the frequency content of the forces acting on the 

construction site (as there can be  certain dominant frequency ranges identified in long-term 

collected data from winds, water or underground actions) so that vibration modes of the 

structure do not coincide with the dominant frequencies of the input forces, (iii) to reduce 

the factors of safety in design and possibly decrease the amount of material (Derriso et al., 

2009)  required in a similar future structure (lighter design), (iv) to compare the results of 

numerical models, the experimental results obtained from scaled models and the 

measurements from the real structure, (v) to improve available modeling techniques (vi) to 

develop smart materials based on frequency content of the design. 

 By considering these two perspectives together, it can be said that SHM eventually 

aims to ensure that necessary measures are taken in a timely manner against events 

threatening the structure and to provide guidance to structural design. According to 

researches, many bridges in the US have completed their useful life (Aktan et al., 1996), and 

Japan will face the same situation in a few years (Fujino et al., 2013). In addition, wear and 
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damage caused by unpredictable rare events such as severe earthquakes, severe winds, and 

floods will reduce the useful life of buildings (Shepherd et al., 1995). Therefore, it would be 

an important precaution to monitor and control important structures with SHM systems. In 

many countries such as Japan (Sumitro et al., 2005) and Australia (Chan et al., 2011) SHM 

systems are widely used in critical structures and the necessary software and hardware 

components are developed by these countries. This issue is taken into consideration and its 

popularity is increasing day by day also in Istanbul (Soyoz et al., 2017; Çaktı et al., 2019) 

and in the world (Chen et al., 2017;.Li et al., 2015; Abe et al., 2017; Hester et al., 2017; 

Compán et al., 2017; Lorenzo et al., 2015; Juul et al., 2019; Kirschneck et al., 2015; Nord et 

al., 2017) 

Along with critical and special structures, it is also possible to use SHM systems in 

ordinary structures (Satake et al., 2003) for control purposes. In the design process, 

calculations are made according to the theoretical period of the structure. Although it is 

possible to make these computations precisely, differences between the measured vibration 

periods of the building and the calculated periods of the numerical model are common within 

certain limits. This difference may mean that the calculations are conservative, thereby 

remaining on the safe (non-conservative) side, meaning a possible increased level of risk. 

After a building is constructed, dynamic investigations with small-scale SHM systems may 

give an effective opportunity to identify significant differences and to assess the safety of 

the building (Astroza et al., 2016). 

One of the successful examples for the utilization of SHM in control is the work done 

by Sumitoro et al. (2001). This study compares the results of numerical data, which is related 

to design codes, with experimental data related to the wind tunnel tests and also with real 

data measured on the Akashi Kaikyo Bridge during a typhoon event. In comparison, the 

girder displacements are used. It is found that transversal displacements in the typhoon event 

have good agreement with guidelines. Moreover, the guidelines and wind tunnel test results 

are on the safe side for the vibration amplitudes. 

In SHM systems, different types of sensors are utilized: accelerometers, strain gauges, 

load transducers, and GPS based displacement measurement systems are some of the 
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frequently used devices (technical details of sensors and their uses are described in (Meehan, 

2011)). The effects of the location and the sampling frequency of sensors on the 

measurements are investigated by Grimmelsman et al. (2007) wherein the authors report the 

results of ambient vibration tests conducted over a period of one month on a long-span steel 

arch bridge to observe uncertainties in the measurements. The consistency of the identified 

parameters is examined through statistical analyses, and the effects of bandwidth and 

stationarity on the identified parameters are discussed. The results indicate that unavoidable 

electric and environmental noise produce spurious spikes in measurements. Selection of 

sensor locations, sampling frequency, and data duration may cause spatial and frequency 

aliasing. Uncertainties in stationarity of the measurement data and variability due to traffic 

flow and changes in ambient temperature do not affect the identified natural frequencies 

significantly. Sampling with a rate more than that which covers the target frequency range 

has no pronounced effect on the identified frequencies. The authors suggest selecting a 

sampling rate depending on the frequency range of concern, the amount of stored data, and 

the time required for the analyses. 

The SHM systems are desired to be able to eliminate the effects of environmental 

factors on their components (software and hardware) because environmental factors 

affecting the structural response constantly change during the operation. The changes in the 

ambient temperature, air pressure, and humidity can alter material properties; hence, the 

system properties are likely to change. In most cases, the source of the change in the 

structural response related to environmental effects is not directly associated with structural 

health, but generally these effects can’t be differentiated and the structural changes tend to 

be attributed to structural damage. The three studies briefly mentioned in the following 

paragraphs show that changes induced on the natural frequencies by operational conditions 

may surpass those caused by serious levels damage. 

Jiménez‐Roa et al. (2016) observe that environmental conditions conceal the effect of 

earthquake damage on natural frequencies. They use the Natural Excitation Technique 

(NExT) with the Eigensystem Realization Algorithm (ERA) and the Stochastic Subspace 

Identification (SSI) methods in order to estimate the modal parameters of Building 350 at 

Del Valle University under ambient vibrations and under six critical events. For the effects 
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of earthquake damages on natural frequencies, they conclude that the existence of damage 

cannot be detected by investigating only the changes in the natural frequencies since such 

changes would lay in the expected range of variations in operational and environmental 

conditions.  

Toksoy et al. (1994) formulate a modal flexibility based condition index for a three-

span reinforced-concrete highway bridge. Polyreference frequency and time domain 

parameter estimation methods are used in the analysis of forced vibration test data. The 

bridge is tested in its undamaged condition and also after shear failure of one of its spans 

under high loads, and a 1.44% drop in the first natural frequency is identified, with almost 

no discernable changes in the mode-shapes. Aktan et al. (1997) also investigate the same 

structure using forced and impact vibration tests. They report that microstrain responses due 

to temperature variations in long term monitoring are higher than the bridge microstrain 

responses due to overloaded truck traffic.  

Because the effects of operational and environmental conditions on natural frequency 

changes are not negligible, researchers have developed methods of normalizing the signals 

in order to detect the existence of damage.  

In this context Magalhães et al. (2012) develop a method detecting damage from 

changes in natural frequencies. They used two-year monitoring data obtained on the Infante 

D. Henrique bridge data to identify its natural frequencies while they aim to minimize the 

effects of environmental and operational factors on natural frequency shifts. Static and 

dynamic regression models are developed and dynamic regression models are found to fit 

the operational conditions successfully. Furthermore, PCA analysis is used to improve the 

regression models. Control charts using the outputs of the PCA are constructed, and it is 

shown that resultant control charts are effective indicators in detecting very small natural 

frequency changes due to damage.   

Langone et al. (2017) propose a process that unifies data normalization and damage 

detection steps using the proposed algorithm called adaptive kernel spectral clustering 

(AKSC) algorithm. With user intervention in model selection, the algorithm is calibrated in 

the undamaged state of the structure in order to detect early damages and to minimize the 
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number of false alarms. The method merges clusters or defines new clusters according to 

changes in the data. Two damage sensitive features are introduced (kernel bandwidth, the 

number of clusters) in order to detect critical changes in the data. The method is tested with 

simulated data and real data from the Z24 concrete bridge.   

In fact, environmental conditions may change the capacity of the structure (i.e. change 

in modulus of elasticity of the material due to temperature change, corrosion of steel rebar 

due to permeation of chloride), and therefore the normalization process should also take into 

account possible changes in the capacity of the structure due to variations in environmental 

conditions. In this thesis, a unique identifier for the damage existence problem is proposed, 

which is dependent on both frequency and mode shape estimates, as well as an enhanced 

indicator to locate damage in discrete and continuous systems. Data normalization for 

environmental changes are not considered. One of the properties of the damage sensitive 

parameter proposed in Chapter 2 (modal zone) and Chapter 3 (damage indicator for the 

damage location) is its sensitivity to changes in the capacity of the system, which is 

dependent on material and the geometry of the structure, and non-sensitive to changes in 

demand, which is reflected in the response and depends on the amplitude of the input forces. 

Some of the sensitivity based studies previously published are introduced in Chapter 2. 

1.1. Modal Analysis 

In theory, modal analysis is a process used in defining the inherent dynamic 

characteristics of an object, depending on its material and geometry, in terms of its resonant 

frequencies, mode shapes, damping factors and modal scaling factors without the need of a 

disturbing force. The modal data are used to construct a (mathematical) modal model of the 

object with the aim of replicating its observed dynamic behavior (Fu et al., 2001). In practice, 

for a real structure, observing and/or identifying its modes require that those modes should 

be activated by ‘forces’. Depending on the type of the inputs, modal analysis is generally 

classified under three main headings: experimental, operational and combined modal 

analysis. 
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Experimental modal analysis (EMA) is a conventional tool for SHM which requires 

vibration tests using controlled excitations (known input forces) (Tcherniak et al., 2012). 

The methods used in EMA require measurements of both input forces and responses. Under 

rare events such as earthquakes and strong winds, EMA methods are appropriate if the input 

forces are measured properly. Although it is theoretically possible to apply prescribed forces 

to any structure, the size of the required actuators and the social and/or economic costs due 

to closures for the testing make EMA methods inefficient for large scale civil engineering 

structures. Moreover, in practice, there are certain challenges such as the limited amount of 

response measurement stations and difficulties in measuring the external forces during 

operational conditions. Vibration-based system identification studies often rely on the white 

noise assumption where the operational external forces are modeled as a noise exciting 

‘uniformly’ all the frequency components (Yang, 1975, Peeters, 2000, Ren et al., 2004). The 

white noise assumption facilitates identifying the parameters related to the dynamic behavior 

of the structure under daily (operational) loads. In the literature, such approaches which are 

based only on the system response are called Operational (or Output only) Modal Analysis 

(OMA) (Peeters et al., 2001a). Today, some of the EMA methods are converted to OMA 

counterparts (see one of the examples in Chapter 2.2). OMA methods suit well to civil 

engineering structures, although there are problems related to scaling in the mode shape 

estimation and narrow-banded frequency content of the input forces (Reynders, 2009). To 

address these problems, researchers have developed methods based on the combined 

experimental and operational modal analysis called Operational Modal Analysis with 

eXogenous inputs (OMAX) (Reynders et al., 2010; Cauberghe et al., 2003).  

In this thesis, a well-known OMA method is used to estimate the modal parameters to 

be used in the damage existence problem (see Chapter 2). Moreover, a unique damage 

indicator is used to locate the damage (see Chapter 3). While alternative methods are not 

considered in detail in this thesis, studies using methods from other disciplines for damage 

detection and data normalization are briefly mentioned in Section 1.2. Moreover, in Section 

1.3, some articles related to bridge monitoring are also included in the literature review. 

These two sections are not the main focus of this thesis, yet due to their significance in SHM, 

they are included.   
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1.2. Methods from Different Disciplines 

The term “discipline” is defined as a specific body of teachable knowledge with its 

own background of education, training, procedures, methods and content areas (Gozzer, 

1982). Not so long ago, engineering disciplines were classified into four primary branches: 

Civil, Mechanical, Electrical, and Chemical Engineering. Recently, the number of 

disciplines increased to as much as forty (Steinmann et al., 2014). As the knowledge in the 

disciplines grows, new clusters (disciplines) may be born or a mature discipline may branch 

into two ‘separate’ disciplines. As interdisciplinary studies provide different points of view, 

they may also lead to the birth of new disciplines. 

SHM has started to slowly separate from the dynamics multi-discipline and become a 

new engineering discipline. Researchers have started to use learning algorithms such as 

artificial neural networks (ANN) and deep learning since 1992 and 2014 respectively. A 

drawback of these studies is that they are not appropriate for generic structures but rather 

they have to be tailored for a specific model or a structure. Critical infrastructure systems 

such as bridges and power plants may require significantly more care and for such structures 

more detailed model based methods may be required (Karbhari et al., 2009). There is also 

need to detect biological and chemical loads (Alampalli et al., 2005) in order to take proper 

precautions, for example, biosensors might be used to control the humidity level and to avoid 

insects (Creffield, 1996) and plants harming the structure. There is no study in the literature 

related to the utilization of biosensors in SHM and clearly an interdisciplinary teamwork is 

needed to accomplish this task. As this example demonstrates, SHM has become a 

significantly interdisciplinary subject and the following literature review aims to reflect this 

important feature. An important issue, as previously mentioned, is fitting a distribution to 

natural frequencies dependent on environmental factors such as ambient temperature, and 

recent studies draw heavily from the fuzzy clustering research which is one of the widely 

used methods for image segmentation in image processing and in noise removal. Some 

examples for this approach are provided below. 

Chandrashekhar et al. (2009) use fuzzy clustering analysis for damage detection. They 

present a fuzzy logic system with a sliding window technique. Modal curvature vectors are 
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used for damage identification purposes. It is observed that the sliding window technique 

increases the success rate in damage detection and the fuzzy clustering may compensate for 

missing measurements. The proposed method is tested on a numeric cantilever beam and 

found to be capable of detecting small amounts of damage in the tip of the beam. 

Lam et al. (2006) combine changes in Ritz vectors (i.e. due to damage) and the 

Bayesian ANN design method in order to detect the location and the extension of damage in 

the system. The method is applied to a numeric truss model and the results show that Ritz 

vectors are sensitive to damage and not sensitive to noise in the response or the modeling 

errors. 

Abdeljaber et al. (2017) propose a method which is capable of automatically extracting 

optimal damage-sensitive features and of detecting damage from raw acceleration signals. 

The method uses adaptive implementation of 1D Convolutional Neural Networks for each 

measurement point. The results of both small and large-scale experiments demonstrate the 

superior ability of their approach to learn the extraction of optimal features.  

Feng et al. (2017) compare conventional acceleration based methods with vision based 

displacement measurements which yield lower costs and are non-contact tools. For a simply 

supported beam structure it is shown that one camera is adequate to measure and calculate 

smoother mode shapes and to estimate the natural frequencies accurately. Moreover, one of 

the challenges related to physical dimensioning in vision-based measurements is the 

estimation of the scaling/calibration factor and it is showed that it can be accurately 

estimated. For real-time, distant measurements during the passing of a train on a bridge, the 

potential of vision-based displacement measurements are shown through field tests on the 

Manhattan Bridge.  

Barthorpe et al. (2009) try to estimate the impact location on a plate representing the 

skin panel of an aircraft. Piezoceramics are used as strain sensors and ANN methods are 

applied in the estimation problem. Moreover, the number of sensors is reduced by using the 

ant colony method and the impact location is estimated with an error less than 2%. 
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1.3. SHM in Bridge Monitoring 

There are several special topics in SHM based on the structure type: high rise 

structures, buildings, wind turbine, dams, power plants etc. One of the most important issues 

is apparently the subject of bridge monitoring as it can have implications on the national 

scale for countries. The bridges are life-lines of transportation networks. This section 

addresses some studies related to SHM of bridges with the aim of describing recent and 

general trends. 

Pereira (2012) lists the reasons for the collapse of the suspension bridges as follows: 

problems related to scouring (i.e. Hintze Ribeiro Bridge), construction stage failures 

(Seongsu Bridge), corrosion (Silver Bridge), and resonance (Tacoma Narrows Bridge). 

Taha et al. (2005) present a method based on wavelet-aided fuzzy set theory to quantify 

damage levels in a system. First of all, acceleration signals are converted to dynamic 

behavior patterns using a wavelet - neural network module. Secondly, in the damage 

clustering process, Jeffery’s non-informative prior is used in a Bayesian updating scheme 

with a wavelet domain damage metric (which is a function of measured energy) and 

predicted signals. The proposed method is tested on the finite element model of a pre-

stressed concrete bridge and the results indicate that the method can identify damage levels 

accurately. 

Aktan et al. (1996) present an integrated experimental - analytical research plan for 

bridge condition assessment methodology. Some of the parameters related with limit state 

bridge conditions are illustrated as follows: mechanical, chemical characteristics of the 

materials; initial strains and stresses; initial forces acting on elements or acting on the 

structure globally; distortions and displacements; stiffness; mass or inertia; damping; natural 

frequencies and mode shapes. Important terms in condition monitoring such as damage, 

deterioration, defects, condition assessment, reliability and management concepts are 

defined. A novel condition assessment methodology is formulated using nondestructive and 

destructive testing and structural identification of a number of bridge test specimens.  
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Alampalli et al. (2005) illustrate the cost-benefit aspect of SHM systems in bridge 

maintenance and present a decision flowchart utilizing SHM techniques (reproduced in 

Figure 1.1). According to the ratio of maintenance periods with and without SHM systems 

and the element based costs in maintenance, the benefit of SHM as a function of time is 

calculated. Two important problems related with bridge monitoring are discussed: (i) 

corrosion of bridge deck surfaces due to chemicals and salty environments, and (ii) icy 

conditions on pavements. In order to control the corrosion level, passive chloride detection 

sensors are suggested to be used by embedding the sensors during the pouring of concrete. 

These sensors can detect the corrosion level depending on the chloride content. For detection 

and solution of icy conditions on pavements, use of temperature sensors is recommended in 

order to detect the wetness of the surface and the amount of chemicals required to thaw the 

ice in pavements.  

Zhang et al. (1998) investigate modal flexibility and its derivative (uniform load 

surface) as a candidate damage sensitive parameter. Data taken from a cross - county bridge 

is used in the analysis. In contrast to modal flexibility, the uniform load surface approach 

does not require information from all degrees of freedom and it is found out to be more 

sensitive to damage than modal flexibility. 

Wang et al. (2000) investigate some of the damage sensitive parameters through a 

numerical model of the Tsing Ma Bridge. Frequencies, mode shapes, and modal flexibilities 

are calculated for the intact state and for 10 different damage cases. It is found out that 

frequency is a less-sensitive parameter to the damage, while by using a few of the lowest 

frequency modes, modal flexibilities provide a successful indicator for damage locations. 

Wong et al. (2000) compare design parameters with response monitoring results for 

the Tsing Ma Suspension Bridge and two cable stayed bridges using auto/cross-

correlation/covariance functions and parameters for time domain, the Fast Fourier Transform 

(FFT) with level crossing and peak count algorithms for frequency domain, and Mean 

Square Value function and eight other functions for amplitude domain in the Wind and 

Structural Health Monitoring System (WASHMS) software. They show that under the 

critical event (Typhoon York), vertical movements at mid span, vertical accelerations of the 
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deck, tensile loads in suspenders, strains in the top and bottom cords of the cross - frame, the 

longitudinal truss and the rocker bearing were all within close proximity to the corresponding 

design values. 

 

Figure 1.1. SHM utilization for maintenance activities as presented by Alampalli et al. 

(2005).  

Peeters et al. (2001b) fit thermal dynamics included Auto-Regressive model with 

eXogenous input (ARX) to acceleration data from a healthy bridge and temperature data at 

one location in order to separate environmental effects from actual damage in the system. 
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The ARX model is used to calculate frequencies and to estimate confidence intervals. If the 

variations in frequencies are outside the estimated confidence intervals, it is considered 

probable that the variations are due to actual damage in the system. As a case study, real data 

from Z24 Bridge is used and damage is detected successfully under various damage 

scenarios.  

Basseville et al. (2001) use some output only and covariance-driven subspace-based 

stochastic identification methods in order to detect defect data from multiple sensors and 

accomplish robustness with respect to different temperature and traffic conditions (non-

stationary excitation under operating conditions). When the method is used on real data taken 

from the Z24 Bridge, results show that in stabilization diagrams spurious modes disappear 

and only true modes remain with less fluctuation and the damping of the true modes are 

more accurately estimated. 

Verboven (2002) presents a novel frequency-domain maximum likelihood approach 

using stochastic mode validation criteria. The method is tested on Airbus A320 Slat Track 

and the I40 Bridge. The main aim of the study is to identify and track modal parameters 

including closely spaced and crossing modes under forced and ambient vibrations. A fuzzy 

clustering approach is used to separate physical and computational modes. It is showed that 

modes can be identified and tracked successfully even for the case where high variations 

occur in the modal parameters. 

Kim et al. (2003) identify natural frequencies using the Potential Modal Ratio approach 

with a peak picking method. The main aim of the study is to relate frequency changes with 

mass changes due to traffic. In the case study, the Namhae Suspension Bridge under 

operating conditions is investigated and it is observed that mass change in normal traffic due 

to heavy vehicles is negligible compared to the normal operating conditions. For a simply 

supported bridge, the difference between the natural frequencies of the first vertical mode 

under heavy and light vehicle is about than 2%. 

Nagayama et al. (2005) identify the vibration modes of a full - scale suspension bridge 

using NExT-ERA. The non - iterative structural inverse method is used to make an inverse 

analysis of structural properties for the finite element model. The results of the inverse 
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analysis show that the identified aerodynamic forces are similar to those expected from a 

wind tunnel experiment. It is also concluded that the damping at the end of the girder is 

related to the friction force of the bearing/expansion devices. 

Siringoringo et al. (2008) analyze the ambient response of the Hakucho Suspension 

Bridge using Random Decrement combined with the Ibrahim Time Domain technique (RD-

ITD) and also NExT-ERA. It is found out that RD-ITD is good for identification of lower 

and closely spaced modes and the NExT-ERA technique is efficient in dealing with 

voluminous data. However, the ERA method requires a threshold value. A positive 

correlation is observed with the wind speed with root mean square of the girder’s vertical 

accelerations. The results show that for lower wind velocity speed, damping decreases and 

natural frequencies increase. On the other hand, for higher velocity speed and the case where 

the bearings are unstuck, the aforementioned behavior is reversed. 

Moaveni et al. (2012) investigate the effects of ambient temperature on the natural 

frequencies of a footbridge. Modal parameters are extracted from measured vibration data 

using an automated data-driven stochastic subspace identification algorithm. The identified 

natural frequencies and mode shapes are then used for calibration/updating of an initial finite 

element model by using substructure updating factors. A static polynomial model (fourth-

order polynomial regression model) is constructed to represent the relationship between 

natural frequencies and temperature. 

Cross et al. (2013) investigate SSI methods and effects of ambient temperature, traffic 

loading and wind speed on the dynamic response of the upgraded Tamar Suspension Bridge. 

The results corresponding to the SSI methods show that the data-driven SSI is found to be 

more reliable than covariance-driven SSI in tracking the modal parameters. For the results 

related to the effects of environmental factors on frequency changes, it is found that the 

traffic load has an impact on the natural frequencies in the short term, while ambient 

temperature leads to more pronounced effects on long term variations. The effects of wind 

on the frequencies vary according to the wind speed and direction such that for wind speeds 

higher than 25 mph and for the bridge’s side - on direction, the wind forces lead to significant 

effects on the natural frequencies.  
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An et al. (2015) propose a model-free, impulse hammer force vibration test method for 

damage identification in suspender cables. The normalized curvature difference and 

curvature difference probability of waveform are used as the damage indicator and it is 

calculated directly using cable acceleration data. For a numerical suspension bridge example, 

it is concluded that by using the proposed method, small damages and damages at multiple 

locations can be detected. It is also concluded that the noise in the response data can be 

eliminated by increasing pulse excitation magnitude.  

Zhang et al. (2016) develop an automated modal analysis using both stabilization 

diagrams and the SSI algorithm using acceleration measurements from the deck and the 

towers, and strain and displacement measurements from the deck of the New Carquinez 

Suspension Bridge. Environmental parameters including ambient temperature, wind speed, 

and wind direction are investigated using the ridge regression and Gaussian Process 

Regression (GPR).The results show that GPR appropriately models the relationship between 

the modal frequencies and the environmental and operational conditions of the bridge. 

McNeill et al. (2009) cover data collection, transfer and storage issues for wired 

sensors. In order to reduce stored data, a novelty index is proposed for utilization in the 

process. The Frequency Sensitive Competitive Learning technique uses the resulting 

spectrum obtained via the frequency domain transform of the response measured on the 

structure. The spectrum is used to calculate the novelty index which is a measure for the 

novelty of the current response and it may reduce the need for storage of the response data. 

Malekjafarian et al. (2015) review indirect methods for bridge monitoring using the 

responses measured on a vehicle travelling on the bridge. The responses are used to identify 

the natural frequencies, mode shapes, and damping properties of the bridge. The eventual 

aim is stated as using these indirect measurement methods to detect the damage in a bridge 

of interest. 

Prendergast et al. (2014) review scour event monitoring for bridges. Scour is defined 

as the excavation and removal of material from the bed and banks of streams as a result of 

the erosive action of flowing water, and it is classified in three groups as general, contraction 

and local scour. Some drawbacks of classical methods are expressed in two main articles as 
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a summary. The first one is that instruments used in classical methods are expensive, 

susceptible to damage under flood events, and should be placed close to the scour zone 

(local). The second drawback is that the interpretation of the results is time consuming and 

difficult. SHM methods are taken into consideration as a solution to these problems. 

Instruments of dynamic measurements are easy to install in SHM systems, the risk of flood 

damage is low, the maintenance cost is not restrictive, and such SHM systems can be used 

to observe the global properties of the structure. The authors claim that frequency shift 

sensitivities can be used to estimate the damage due to scouring (Prendergast et al., 2013). 

Ahlborn et al. (2010) summarize modern in - situ techniques in which sensors such as 

accelerometers are used, on-site surveys in which the instruments such as the Ground 

Penetrating Radars (GPR) are used, and standoff remote sensing techniques in which sensors 

such as the Interferometric Synthetic Aperture Radars are used for bridge monitoring. 

Moreover, technical information for SHM used in real bridges is discussed under the case 

studies section. 

Wang et al. (2009) review some of the model based, sensitivity based, and signal 

processing based methods for the first three levels of damage detection used in SHM of 

bridges. Condition assessment, feature extraction and some other methods for model 

updating are briefly summarized.  

Darbani et al. (2007) review new directions in Bridge Management Systems (BMS). 

Importance of wearable technology and decision support systems for bridge inspectors are 

explained briefly. Benefits of integrating BMS globally with SHM systems are discussed. 

Instant alarm systems to detect anomalies and local detection with non-destructive 

evaluation systems through the help of health indices of the elements under consideration 

are mentioned as some of the benefits of such integrated systems. Moreover, other systems 

such as asset management, risk management and vehicle routing systems are mentioned. 

Benefits and drawbacks of using Markov chain forecasting models in prediction of structural 

condition based on visual inspection data and structural and environmental properties are 

discussed. Parameters used in the literature for the state of art models for optimization 
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problems are (i) maintenance, repair and rehabilitation cost, (ii) structural reliability, (iii) 

user cost, (iv) traffic control, and (v) work zone plans. 

Soyoz et al. (2017) report an experimental study design to identify variations in the 

natural frequencies due to major changes in a bridge due to hanger replacement including a 

change in hanger orientation. Ambient vibration responses of the bridge are converted to 

frequency domain spectrums using the Frequency Domain Decomposition method which 

has proven to be powerful in identifying close modes in the modal parameter extraction 

process. The results indicate a variation of 9.6% in the first vertical asymmetric modal 

frequency of the deck and interestingly very small variations in the frequencies for dominant 

modes of the tower. 

Fujino et al. (2013) compare the long - span bridge stock in the US with that in Japan. 

They note that the average construction date of the long-span bridges in Japan is 

approximately 10 years later than those in the US. An important conclusion of the study is 

that by 2020, the maintenance needs for the long span bridges are expected to be significant. 

The importance of health monitoring of bridges for Japan is emphasized.  

Chan et al. (2006) test the effectiveness of Fiber Bragg Grating (FBG) sensors on 

hanger cables and compare the results with nearby resistive strain gauges located at rocker 

bearings and truss girders (of the supporting structure) of the Tsing Ma Bridge. Some of the 

FBG sensors are used as strain free sensors so as to compensate temperature effects in the 

measurements. Tsing Ma Bridge carries both railways and highways and the results show 

that passage of trains and high traffic load can be detected by the FBG sensors located at the 

hangers. Moreover, FBG sensors are shown to be in excellent agreement with conventional 

ones located at rocker bearings and truss girders. 

1.4. Thesis Outline and Main Contributions 

This thesis aims to develop and discuss a robust damage indicator which may be used 

reliably to identify the existence and location of damage in a structure. The particular 

structures for which the method is suitable are beams and beam-like structures such as 
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bridges and buildings. In so doing, the thesis also addresses system identification methods 

that may be used to analyze the data to evaluate the proposed indicator, and instrumentation 

schemes that will help reduce false positives or false negatives which may result from the 

particular approach developed.  

In the first chapter, SHM systems, their aims and tools are introduced. Moreover, the 

existing literature on SHM is reviewed to some extent. The interdisciplinary side of the SHM 

is emphasized, and some studies related to bridge monitoring are summarized.  

The second chapter deals with sensitivity-based damage identification. In this chapter, 

to motivate the chosen framework, some important studies related to sensitivity-based 

methods are reviewed. A baseline dependent parameter and a procedure to use this parameter 

for higher modes is introduced. The performance of the proposed system identification and 

damage detection methods are investigated numerically. 

The third chapter is related to system identification. In this chapter, modal plots, count 

plots, modal points and modal zones are introduced. These concepts and methods are 

explained and their applicability to data analysis with the aim of providing the necessary 

parameters to the proposed damage indicator is discussed. The properties of modal plots, 

which may be used for both damage detection and system identification, are discussed in 

Section 3.4.   

In the numerical part of the fourth chapter, three case studies comprising spring mass 

chain systems are investigated under varying damage scenarios. In Section 4.3, the saddle 

point criteria which has been identified in relation to the proposed the damage detection 

method is addressed by a sensor deployment suggestion. In the experimental part of the 

fourth chapter, a possibility of utilizing modal plots in the damage existence problem is 

identified through an experimental study (Section 4.4). The location of damage is detected 

for the closed system of Section 4.5 using the damage indicator proposed in Chapter 2.  

In Chapter 5, a six-story building model is discussed in detail. A hundred and nineteen 

damage scenarios, out of which ninety are single damage locations, are considered. The 
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efficiency of the damage indicator, using both single modes and multiple modes as proposed 

in Chapter 2, is demonstrated through these damage scenarios. 

In Chapter 6, data from a five-story real structure is investigated and the count plot is 

used to investigate the natural frequency changes between the undamaged state and a 

damaged state of the structure. 

An evaluation of the proposed methods, related conclusions and possible directions 

for future research are discussed in Chapter 7. 
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2. DAMAGE DETECTION 

2.1. Classification of Damage: 

Damage is a word that encompasses many scales and severities. A unique definition 

generally requires the identification of certain thresholds which invariably depend on the 

specific application. It is generally agreed, however, that damage identification methods can 

be systematically categorized in the following order [see, e.g., (Rytter, 1993; Fassosi et al., 

2009)]: 

Level 0: (Fault Detection) Determining whether damage exists in the structure. 

Level 1: (Fault Identification) Detection of the geometric location of the damage. 

Level 2: (Magnitude Estimation) Quantification of the severity of the damage. 

Level 3: Prediction of the remaining service life of the structure. 

In addition to the aforementioned levels, some researchers (Ayres et al., 1998) place 

additional emphasis on the importance of discrimination of damage type. Some of the 

examples of damage types encountered in civil engineering structures are cracking, 

corrosion, plastification, loss of rigidity, material deterioration, and loosening of 

connections.  

In the existing literature, studies related to the effect of damage on modal variables 

have revealed that for minor damage states, the resulting changes in natural-frequencies are 

linearly related to the severity of damage and are non-linearly related to its location 

(Gladwell, 2004). Therefore, when the extent of damage is small, if the location of the 

damage (Level 1) is identified properly, then the determination of the extent of damage 

(Level 2) becomes easier. Moreover, it is a trivial observation that the fault identification 

(Level 1) problem covers the fault detection (Level 0) problem. Therefore, the Level 1 

problem has been the main focus in most of the studies (Doebling et al. 1996). Conducting 

a proper Level 0 fault detection, however, is also vital for the subsequent levels. One of the 
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goals of this study is to show that Level 0 damage detection can be accomplished by using 

the first modal information (Yuen, 1985; Dong et al., 1994). 

2.2. Determination of Damage Sensitive Parameters 

Performing a robust evaluation of the structure and determining reliable damage 

indicators which are strongly associated with the system’s capacity (damage sensitive 

features) are crucial factors in the condition assessment of a given structure. Furthermore, 

the external effects (input forces) in the surrounding environment must be elaborately 

investigated and comprehended. Upon identification of the capacity, it is required to evaluate 

the response (demand) under the operating condition of the system.  

Vibration-based methods aim to use damage sensitive features that are simple, 

computationally not demanding, easily estimated, sensitive to changes in the capacity, and 

not sensitive to changes in demand. Some of the features used in the literature, simple to 

complex, are modal parameters (frequencies, mode shapes, (less frequently) damping, and 

modal scaling factors), signal parameters (e.g. cepstrum and electromyography signals), and 

model parameters (e.g. autoregressive model parameters). In this thesis, modal variables are 

used as damage indicators and some of the sensitivity based methods related to modal 

parameters are discussed in the next section. 

2.3. Sensitivity Based Damage Identification Methods 

Studies that relate changes in modal variables to damage are classified under 

sensitivity-based methods. In the first years of SHM studies, it was generally assumed that 

one formula or definition would be appropriate for all kinds of structures like offshore 

platforms, towers and buildings. Even the definition of damage levels expressed by Rytter 

(1993) is a reflection of this idea. This is one of the reasons why significant efforts were 

spent on sensitivity methods. On the other hand, data from experiments discourage hopes in 

the “one method for all systems” concept. In what follows some of the important studies on 

sensitivity based damage detection are discussed. 
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The initial studies on damage detection have addressed associations of changes in the 

natural-frequencies with the changes in the mass and/or stiffness matrices. Researchers have 

often employed natural frequencies as the damage indicating modal parameters, since these 

frequencies can be easily estimated with high confidence. Because natural-frequencies do 

not explicitly contain geometric information, their use often comes to the fore in Level 0 

applications where the presence of the damage is to be detected. There are studies, however, 

that attempt to identify the location of damage using the first six or more natural-frequencies. 

In studies (Cawley et al.,1979; Hearn et al., 1991), a method is proposed to estimate the 

location and extent of damage using only natural frequencies, employing a numerical model 

of the structure to be investigated. Using the principle of conservation of energy and 

assuming damage stems from a change in stiffness while ignoring changes in the system 

mass, the following relation between member stiffness change and natural frequency change 

for a single member is derived 

∆𝜔𝑗
2 =

𝜀𝑖
𝑇(Φ𝑗)Δ𝑘𝑖𝜀𝑖(Φ𝑗)

Φ𝑗
𝑇𝑀Φ𝑗

 (2.1) 

In this expression, 𝜔𝑗 and Φ𝑗 are the frequency and the mode shape for the jth mode, 

Δ denotes the change in the quantity that it precedes, 𝜀𝑖 stands for a transformation matrix to 

convert the local stiffness matrix of the ith element to global coordinates. M and ki are the 

global mass matrix of the system and the stiffness of the ith element. In order to estimate the 

damage location, all previously compiled damage scenarios (database of ‘characteristic’ 

modal values obtained via numerical simulations on a numerical model) are compared with 

the ‘observed’ damaged state [not necessarily limited to the scenarios included in the 

database]  
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2

𝑗,𝑛
 (2. 2) 

In this expression, 𝐸 stands for mean square error between observed (measured) and 

characteristic frequency change ratios, 𝑁 stands for number of members, sub-indices j and 

n stand for mode numbers, and the sub-index i stands for member number. The performance 
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of the algorithm is tested through experiments performed on a welded steel frame and on a 

wire rope, and the results show that detecting damage location for one member is possible 

using natural frequency changes without using mode shapes. It is also discussed that for the 

transverse motion of the wire rope natural frequencies and mode shapes are insensitive to 

damage and that damping may be the only indication of distress. The main drawback of these 

approaches is that, a slight error in the natural-frequencies can lead to very significant errors 

in estimates of geometric location of damage. 

In Level 1 applications, mode shapes and their derivatives are often used, and the 

second derivative of a mode shape is found to be sensitive to minor changes in the system. 

In the study (Pandey et al., 1991) curvatures of mass-normalized mode shapes are used as 

damage sensitive features and it is tested on finite element models of simply supported and 

cantilever beams in order to identify the existence of damage and its location. Mode shape 

curvatures are calculated using the central difference approximation given by 

Φ𝑗,𝑖
′′ = (Φ𝑗,𝑖+1 − 2Φ𝑗,𝑖 +Φ𝑗,𝑖−1)/ℎ

2 (2. 3) 

where Φ stands for a mode shape, sub-indices j and i stand respectively for mode number 

and DOF counters, Φ𝑗,𝑖
′′  denotes the central difference estimate of the curvature of the jth 

mode shape at the ith node, and ℎ stands for the spatial distance between two consecutive 

nodes. A damaged member is detected using the maximum absolute difference between 

damaged and undamaged member mode shape curvatures calculated via 

∆Φ′′ = |(Φ𝑑)′′ −Φ′′| (2. 4) 

where the superscript d indicates that the mode shape belongs to damaged system. The 

results show that (i) mode shape curvature may localize the damage while mode shapes 

cannot, and (ii) natural frequencies can be used to detect presence of damage and the mode 

shape curvatures can be used to detect its location(s). 

Wahab et al. (1999) use the damage indicator discussed above on the simulated data 

from the model of a simply supported beam and real data from the pre-stressed concrete 

bridge (referred to in the literature as the Z24 Bridge). It is concluded that for the simply 
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supported beam: (i) the lower modes are identified more accurately than higher modes; (ii) 

it is not possible to detect multiple damage locations using only a single mode information; 

(iii) as the number of measurements increases, the technique gives more accurate results. For 

the Z24 Bridge data, curve fitting is required before the calculation of mode shape 

curvatures, and the method proposed by Pandey et al. (1991) is found promising. Other 

researchers (see e.g. Teughels et al. (2002)), however, have claimed that “modal curvatures 

seem to be much more sensitive to small perturbations in the system than modal 

displacements. However, the drawback of this approach is that the estimation of the modal 

curvatures suffers from a large statistical uncertainty”. Therefore the second derivative of 

the mode shapes can only be detected with large uncertainties which make the use of this 

parameter ineffective. 

Yazdanpanah et al. (2015) propose a new damage indicator which is a function of 

mode shapes, mode shape derivatives and mode shape curvatures. The proposed damage 

indicator is compared with the method proposed by Wahab et al. (1999) through a numerical 

example of simply supported one or two span beams with different numbers of elements of 

finite element models. The results show that the proposed method is slightly more sensitive 

to damage location than that of the done by Wahab et al. (1999).  

Gandomi et al. (2008) review the articles on damage detection using either the mode 

shapes or mode shape derivatives so as to determine which of the two parameters is more 

sensitive in fault identification. As a result, they conclude that the parameters related to the 

mode shape changes are more precise. 

One of the original and promising recommendations in this regard is developed by 

Yuen (1985) as the proposed damage indicator contains both natural frequencies and their 

corresponding mode shapes. In this study, a finite element model of a cantilever beam is 

examined. The damage in the cantilever is represented by the reduction of the modulus of 

elasticity. The following indicators are proposed to reflect well both the location and the size 

of the crack in the cantilever: 
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𝑑
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2 (2. 5a) 

𝜃𝑗,𝑖
∗ =

𝜃𝑗,𝑖
𝑑

(𝜔𝑗
𝑑)
2 −

𝜃𝑗,𝑖

(𝜔𝑗 )
2 (2. 5b) 

In these expressions, Φ and 𝜃 are the mass normalized translational and rotational 

mode shapes, respectively; 𝜔 is the natural frequency; subindex j is the mode number; sub 

index i signifies the counter for the DOFs, superscript d shows that a parameter belongs to 

the damaged system. Although the mode number is indicated here by j, Equations 2.5 are 

proposed by Yuen (1985) only for the first modes. It should be noted that as in the study 

done by Pandey et al. (1991), the parameters proposed by Yuen (1985) are also dependent 

on baseline data.  

In Yuen (1985), the method proposed by Yuen (1985) is applied to a beam with both 

its ends fixed by using data from a finite element model established in line with the fracture 

theory, as well as using an experimental data set. It is shown that damage may be detected 

but not as conveniently as in the cantilever beam example in Yuen (1985) and the efficiency 

of the method is increased by using the strain mode shapes. 

2.4. Method Proposal 

2.4.1. Initial Enhancements 

As part of the present study, detailed analyses are carried out on the promising method 

developed by Yuen (1985). As a result of numerous numerical analyses, a new method is 

developed in which Yuen’s method is simplified. In the proposed approach, mode shapes 

are not normalized by the mass matrix but rather they are normalized according to a reference 

DOF in Equation 2.5. With this simplification, the necessity to know (or calculate) the mass 

matrix is eliminated. In the preliminary analyses different powers of natural frequencies are 

tested on numerical examples, and the best difference is attained at power 1 (one). Therefore, 

instead of the eigenvalues (squares of natural-frequency values) in the denominator, the 
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values of the natural-frequencies themselves are used. Moreover, differences of the mode 

shapes between the nodes are used instead of the mode shapes. These steps and the proposed 

damage indicator can be summarized with the following equations  

In these expressions, Φ𝑗,𝑖
𝑎  is the component of the arbitrarily scaled jth mode shape at 

the ith node, Φ𝑗,𝑅 is the value of the jth mode shape at the reference node, so that 𝜙𝑗 is scaled 

to have a unit value on the reference node. 

Since the damage indicator defined by Equations (2. 9) through (2. 10) is claimed to 

improve Yuen’s (1985) proposal, a comparative study is provided in the next section. 

2.4.2. Comparison of the Initial Proposal with Yuen’s Proposal 

In this section, a Bernoulli-Euler cantilever beam with a uniform cross-section is used 

to generate relevant data. The section and model properties are given in Figure 2.1. For each 

element, rotational and translational DOFs are defined. 

 

Figure 2.1. Cantilever model (a) finite element model with element and node numbers. (b) 

cross-section of the beam  (all dimensions in mm). 

Initially, modulus of elasticity is taken as 𝐸 = 208000 N/mm2  and the mass density 

is 𝜌 = 7.8 kg/mm3. Damage is defined as a decrease in the modulus of elasticity so that not 

𝜙𝑗,𝑖 =
Φ𝑗,𝑖
𝑎

Φ𝑗,𝑅
 (2. 6) 

∆𝜙𝑗,𝑖 = 𝜙𝑗,𝑖 −𝜙𝑗,𝑖−1 (2. 7) 

𝜙𝑗,𝑖
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𝑑
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𝑑 −

∆𝜙𝑗,𝑖
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the inertia but stiffness matrix would change. The natural frequencies and mode shapes are 

calculated by solving the eigenvalue problem of the damaged and undamaged systems. 

First, for all members, the elastic modulus is dropped to its half for each element one 

by one, and it is seen that both damage indicators in Yuen (1985) correctly indicate the 

damage location. The translational eigenparameter changes slope and the rotational damage 

indicator takes a step jump on damage element for each case.  As an illustrative example, 

Figure 2.2 shows the damage indicators given in Equation 2.5 for damage located on element 

10. 

  

Figure 2.2. Yuen’s (1985) damage indicators for damage located on element 10. 

As far as the proposed damage indicator defined by Equation 2.8 is concerned, the 

damage indicator takes a positive value on the damages element while for other nodes it 

takes comparatively very small and sometimes even negative values as seen in Figure 2.3.-  
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Figure 2.3. Proposed damage Indicators for damage located on element 10. 

Figure 2.4 shows that the displacement eigenparameter changes slope between nodes 

where damage locates and the slope becomes steeper afterward and remains constant to the 

tip of the cantilever. 

  

Figure 2.4. Proposed translational damage indicator for different damage locations. 

The proposed rotational damage indicator takes a positive value between the nodes 

where damage is located while it is very small or negative on other elements as seen in Figure 

2.5. 
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Figure 2.5. Proposed rotational damage indicator for different damage locations. 

For varying levels of damage, the slope in the displacement eigenparameter increases 

and the damage extent can be identified from slope change (Figure 2.6). On the other hand, 

for the proposed rotational damage indicator, the amplitude of the damage parameter at the 

damage location increases with increasing damage (Figure 2.7). 

 

Figure 2.6. Proposed translational damage indicator for varying degrees of damage on 

element 5. 
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Figure 2.7. Proposed rotational damage indicator for varying levels of damage on element 

5. 

For this example, the damage indicators proposed by Yuen (1985) can detect damage; 

however, the proposed damage indicator after first improvements is still superior because 

there is no need to use mass normalized mode shapes in the proposed indicator, 

Both the parameters used in Yuen (1985) (Equations 2.5) and the proposed first 

improvements (Equation 2.8) may only be used in detection of damage in a fix-free chain 

(sequential spring - mass) model with the first mode information since for the first mode of 

such a model, the differences between the mode shape components across the nodes keep 

the same sign (the first mode shape is monotonically increasing). In order to use the damage 

indicator for other modes and different boundary conditions, the second set of improvements 

as per discussed below are required. 

2.4.3. Further Enhancements 

With the second enhancement procedure, the damage indicator is modified and 

damage can be identified by using either an individual mode or a cumulative set of modes. 

Moreover, it is shown that the proposed method can be used for the mass-spring systems 

with different end conditions (See Section 2.5). 
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The damage indicator calculated by Equation 2.8 is not compatible with a mode shape 

containing ‘saddle points’ i.e. a region where the mode shape difference calculated via 

Equation 2.7 alters sign. In order to use the proposed approach in such cases, the mode 

shapes are first transformed into increasing functions and the same process is adapted. After 

this transformation, the damage indicator may be meaningfully calculated for any mode. 

Damage detection, however, is negatively affected if damage occurs on regions containing 

saddle points since there the difference calculated over the transformed modeshape change 

would be zero.  

To calculate the proposed damage indicator using any mode, the following steps 

should be followed: 

i. In order to convert the mode shape to an increasing function, the absolute value of 

the mode shape difference is used and these differences are summed 

ΔΦ𝑗,𝑖 = |Φ𝑗,𝑖 −Φ𝑗,𝑖−1| (2. 11) 

𝜙̃𝑗,𝑖 =∑ΔΦ𝑗,𝑘

𝑖

𝑘=1

 (2. 12) 

ii. In order to apply the proposed method for damage identification via the calculated 

mode-shape like 𝜙̃𝑗  vector, the vector is normalized by its value 𝜙̃𝑗,𝑅  at the reference DOF 

and the differences of the normalized vector relative to the DOFs are calculated 

𝜙̌𝑗,𝑖 =
𝜙̃𝑗,𝑖

𝜙̃𝑗,𝑅
 (2. 13) 

Δ𝜙̌𝑗,𝑖 = 𝜙̌𝑗,𝑖 − 𝜙̌𝑗,𝑖−1 (2. 14) 

iii. Finally, the damage indicator is defined similarly to Equation 2.8 for any mode 

𝜙𝑗,𝑖
∗ =

Δ𝜙̌𝑗,𝑖
𝑑

𝜔𝑗
𝑑 −

Δ𝜙̌𝑗,𝑖
𝜔𝑗

 (2. 15) 
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This damage indicator can be calculated separately for the first two or three modes, 

and it is also possible to evaluate two or three modes together. On the other hand, as the 

number of modes increases, the number of the saddle points also increases and such saddle 

points adversely affect damage detection, so the use of the first two or three modes is 

recommended. In order to take into account different modes simultaneously, the cumulative 

damage indicator 𝜙𝑖
∗is defined as 

𝜙𝑖
∗ =∑(

Δ𝜙̌𝑗,𝑖
𝑑

𝜔𝑗
𝑑 −

Δ𝜙̌𝑗,𝑖

𝜔𝑗
)

𝑛𝑚

𝑗=1

 (2. 16) 

where 𝑛𝑚 denotes the number of modes that will be included in the calculations of the index. 

Both damage indicators may be normalized by their maximum values as 

𝜙̅𝑗,𝑖 =
𝜙𝑗,𝑖
∗

max
𝑖
𝜙𝑗,𝑖
∗    or    𝜙̅𝑖 =

𝜙𝑖
∗

max
𝑖
𝜙𝑖
∗ (2. 17) 

For ease of reference, Equation (2. 18), or its scaled equivalent given as the first 

expression in Equation (2. 19), will be referred to as the ‘single-mode damage indicator’ 

whereas Equation (2. 20), or its scaled equivalent given as the second expression in Equation 

(2. 21), will be referred to as the ‘multi-mode damage indicator’. It should be noted that by 

the normalization step in Equation 2.15, information regarding the extent of damage is lost 

(see Section 4.5). Another important issue is that if rotations are explicitly defined as DOFs, 

a rotational modal shape may be used instead of translational mode shapes. 

Since the proposed damage indicators are associated with how the mode shape changes 

across nodes, it is possible to say that the probable damage is between the detected 

measurement point and the previous measurement location. For the case where all DOFs are 

instrumented, damage between the nodes can be associated with the spring number in the 

chain model. If the number of measurements is less than the number of DOFs, it will still be 

possible to relate the location of the probable damage to a node since the damage indicator 

will indicate the first measurement point following the damaged spring(s).  
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2.5. Case Studies 

2.5.1. A Numerical Demonstration of the Proposed Fault Identification Method 

In this section, a case of the known damage states and a known system, where each 

variable can be accurately calculated, is considered. The main aim is to examine the 

effectiveness of the proposed damage detection method under a number of damage 

conditions for a 100-DOF spring-mass chain system shown in Figure 2.8. Two different 

boundary conditions are considered: (i) the "cantilever" system, in which only the spring at 

one end is attached to a stationary point, (ii) the "simply supported" system where the springs 

at both ends are attached to stationary points.  

 

Figure 2.8. 100 DOF spring – mass chain systems: (a) the ‘cantilever’ system, (b) the 

‘simply supported’ system. 

In the undamaged system, all masses and spring constants are defined as 𝑚 and 𝑘 

respectively. In the cantilever systems, the nodes (masses) are numbered starting from the 

fixed end and increasing toward the free end (springs are numbered similarly); in the simply 

supported systems, the numbering can be initiated from either end. In the numerical 
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demonstration, it is desired that all modal parameters are accurate and that possible errors 

due to the system identification step do not play a role. Therefore, natural frequencies and 

mode shapes are calculated by solving the eigenvalue problem of the related systems. 

To demonstrate that the proposed method can locate damage at any location, for the 

first set of tests, springs are damaged one by one (one damaged spring per test) by inducing 

5% reduction in the spring stiffness and the damage indicator of Equation 2.15 is calculated 

for each case. Figure 2.9 shows the values of the damage indicators calculated using 

Equation 2.15 for a 5% stiffness reduction in the 1st, 30th, 51st and 90th springs, 

respectively. For each case, 𝜙̅1,𝑖 values to be obtained by using the first mode and 𝜙̅𝑖  values 

obtained by using the first three modes are shown on the same figure. 

 

Figure 2.9. Damage Indicator values calculated via the first mode and the first three modes 

in the case of a 5% stiffness reduction in the 1st, 30th, 51th and 90th springs. 

As can be seen in Figure 2.9 the proposed damage indicator takes on a value of 1 (one) 

at the node right after the damaged spring, and a value close to zero at all the other nodes. 

The observation that the magnitude of the value obtained at the damaged element is several 

times greater than the value obtained at the undamaged nodes enables the damage location 

to be easily identified (which in this case is the spring connecting the peak valued node to 

the previous one). The damage indicator value calculated using Equation 2.15 always takes 
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on a value of 1 at the critical node. For each damaged case in each of which only one spring 

is damaged, the largest and the smallest values of the damage indicator at all the other nodes 

are plotted in Figure 2.10 wherein the horizontal axis shows the number of the damaged 

spring and the vertical axes shows the largest and smallest values of the damage indicator 

calculated at all the nodes other than the critical one (of which there are 99 values). It is 

understood that the value of the damage indicator at the critical node, which is by definition 

equal to one, is approximately 50 to 100 times greater than its values observed all the other 

nodes, thereby indicating a significant difference that would help in clearly distinguishing 

the damage location. 

 

Figure 2.10. A summary representation of the largest and smallest values that the damage 

indicator takes at the undamaged positions for the cantilever system (for a 5% reduction in 

spring stiffness). 
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Figure 2.11. A summary representation of the largest and smallest values of the damage 

indicator in undamaged positions for a simply supported chain system (for a 5% reduction 

in spring stiffness). 

A similar comparison is done for the simply supported system and plotted in Figure 

2.11. Similarly, the value of the damage indicator at the critical node, is 50 to 100 times 

larger than its values observed at all the other nodes. In the case where the spring 

corresponding to the symmetry axis is damaged, the first mode natural-frequency and mode-

shape of the damaged and undamaged systems are equal.  

2.5.2. A Numerical Demonstration of the Proposed Fault Identification Method 

under Limited Measurement Locations 

The number of measurement locations, which will henceforth be simply referred to as 

nodes, is almost always less than the number of DOFs in practice. Therefore, the case study 

reported in this section discusses the validity of the proposed method under limited number 

of measurements. The 100 DOF cantilever system used in Section 2.5.1 is investigated in 

this case study using few measurement points such that the mode shapes are assumed to be 

known (exactly) at every 10th DOF starting at the 10th DOF (10th, 20th, ... , 100th).  

At first, the case of single damage location is investigated and the rigidity of each 

spring is reduced by 5% sequentially as was done in the previous section. The damage 



 

36 

 

 

indicator defined by Equation 2.15 will again take on a value of 1 at the critical node for 

each damage case and the largest and smallest values of the damage indicator at all the other 

nodes are plotted in Figure 2.12 wherein the horizontal axis shows the number of the 

damaged spring and the vertical axes shows the largest and smallest values of the damage 

indicator calculated at all the nodes other than critical one (of which there are now 9 values). 

Again a hundred number of cases exists for the single damage location case. Therefore, 

Figure 2.12 shows the limits of 9 values (other than indicated damaged zone i.e. 1st to 10th 

nodes) for 100 damage scenarios for the single-mode and the multi-mode damage indicators.  

 

Figure 2.12. Summary view of the first mode and the first three modes undamaged 

indicator. 

It is observed in Figure 2.12 that the single-mode damage indicator values calculated 

using the first mode has a negative value on the nodes away from the damage location. For 

the multi-mode damage indicator calculated using the first three modes, the ratio between 

its values calculated for the damaged and undamaged nodes is greater than 10.  

As far as simultaneous damage at multiple locations is concerned, two different cases 

are next discussed: (i) reduced stiffness values for the 55th and the 67th springs and (ii) 

reduced stiffness values for the 23rd and the 78th springs. As shown in Figure 2.13, the 

proposed damage indicators clearly indicate that the damage is somewhere between the 50th 

and the 70th DOFs for the first scenario of the 55th and 67th springs damaged, and 

somewhere between the 20th and the 30th and between the 70th and the 80th DOFs for the 
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second damage scenario of the 23rd and 78th springs damaged. The numerical results 

demonstrate that even with limited measurement locations, it is possible to determine both 

single and multiple damage locations using the proposed damage indicators. 

 

Figure 2.13. Damage Indicator for the first mode and for the sum of first three modes (Few 

Measurements and Multiple Damage Location).
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3. SYSTEM IDENTIFICATION 

In linear systems, modal analysis can be considered valid when the structure is 

vibrating under ambient inputs. In discrete systems, the number of natural frequencies and 

the mode shapes, in theory, is equal to number of the degrees of freedom of the structure. 

Often it is assumed that the number of sensors deployed on the structure does not limit the 

number of natural frequencies that can be identified via measured vibration data. Since, 

however, the higher modes do not generally contribute significantly to the global response, 

it may not be possible to determine these high modes from measurements. The determination 

of a mode shape, on the other hand, would certainly be limited by the number of sensors 

used. 

In order to determine the dynamic variables such as natural frequencies, mode shapes, 

and damping ratios, many methods have been proposed in the literature. It is possible to 

classify these approaches under two main categories: Frequency domain methods and time 

domain methods. It is stated that the frequency domain methods are suitable for systems 

having modal damping ratios higher than 0.3% and that time domain methods are 

appropriate for systems with modal damping ratios less than 5% (Heylen et al., 1997). Civil 

engineering structures are generally within these limits. 

The Fourier transform and frequency response functions (FRF) are frequently used in 

the frequency domain methods. The system is defined by its FRF, which is essentially a 

transfer function that contains the dynamic characteristics of the system. The FRF can be 

calculated as the ratio of the Fourier transform of the response to the Fourier transform of 

the input force. When the amplitude of the FRF, which is a complex function, is plotted, the 

frequency values corresponding to the peaks are considered to be the natural frequencies of 

the structure. The mode shapes can be determined by evaluating the ratio of the amplitudes 

of the peaks for each sensor, together with the angle of the FRF (Armstrong et al., 1995). If 

it is assumed that the PSD of the input force under operating loads is approximately equal in 

all frequency values (white noise assumption), the natural frequencies and the mode shapes 
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can be calculated directly via the Fourier transform of the response. If the input forces do 

not comply with the white noise assumption, the history of the input forces must be measured 

and should be taken into account. The two most important problems of frequency domain 

methods are the generation of new frequencies (spectral leakage) that are not related to the 

natural frequencies of the structure, and a noisy FRF from the noise-free data while 

converting from time-domain to frequency domain under operating loads (Schoukens et al., 

2004). 

Time domain methods are also frequently used in system identification. These methods 

generally construct a model based only on response measurements or both response and 

input time histories, and the identified model in turn is employed in calculating the modal 

variables. An important issue is to determine the model order correctly so that the model is 

consistent with the data (Schwarz, 1978). Although true modes are expected to  be present 

in the model when proper order is chosen, in practice computational modes (that reduce the 

undesirable effects such as noise and leakage in the data (Zhang et al., 1987, 2010) and are 

thought to be irrelevant to the system characteristics) also creep into the model besides the 

actual, physical modes of the structure. As to be expected, the number of computational 

modes increase as the model order increases. Observability and controllability issues also 

lead to limiting the estimates to only a certain number of structural modes. For these reasons, 

the choice of the model order and the discrimination of physical and computational modes 

have been addressed by many researchers in the context of time domain methods (Schwarz, 

1978; Akaike, 1974). There are various tools that are used to solve the aforementioned 

issues, and one of them is the stabilization diagram approach. 

3.1. Stabilization Diagrams 

In some of the time-domain methods, the model order must be ‘selected’ at one stage. 

Precise determination of the model order is a difficult step due to the deviations of modelling 

assumptions from the actual state of things as well as the presence of noise in the data. In 

addition to the Akaike (Akaike, 1974) and Bayes (Schwarz, 1978) Information Criteria, 

stabilization diagrams are frequently used to determine the ‘true’ model order with relatively 
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small errors. A stabilization diagram tries to detect and reflect the stability of selected modal 

variables as the model order is increased from a relatively small number to an excessively 

large value (De Roeck et al., 2000). The steps in constructing a stabilization diagram may 

be summarized in three steps: 

1) A sufficiently high model order is selected and the values of the modal variables are 

calculated accordingly. 

2) The model order is incremented and the modal variables are recalculated. The 

different sets of modal variables are compared and those modes that appear in differing 

model orders are detected. In determining this continuity, generally natural frequencies, 

damping ratios, and MAC (Modal Assurance Criteria) values are taken into account 

(Allemang, 2003).  

 

Figure 3.1. A representative PSD and stabilization diagram as given by (De Roeck et al., 

2000). 

3) Once a sufficient number of models are assessed, the modes that appear in most of 

the models are evaluated as stable and are considered to be structural modes (a representative 

stabilization diagram is given in Figure 3.1).  
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Although the stabilization diagram is a common utility, it contains many iterations and 

often requires user intervention. In the next section, the modal plot (Tufan et al., 2019) 

approach, which is a new method designed as an alternative to the stabilization diagram, is 

explained. 

3.2. The Modal Plot 

For a better understanding of the modal plot approach, it would be useful to mention 

the methods used for time domain system identification. In this study, Output Only Observer 

– Kalman filter IDentification (O3KID) (Vicario et al., 2015) followed by Eigensystem 

Realization Algorithm (ERA) (Juang et al., 1985) is used. This methodology allows 

establishing a first order dynamic model based on response (output) measurements. 

The adaptation of the Observer – Kalman filter Identification (OKID) method to 

environmental vibration analyzes is the result of many contributions. OKID, which requires 

both input force and output measurements, was initially used in the context of system 

diagnostics and control of spacecraft (Juang et al., 1993; Juang, 1994), and later it was 

applied to civil engineering structures (Luş et al., 1999, 2002). The noise used in the input 

and output calculations in the OKID method is reformulated in the O3KID method to 

accommodate the inputs, and thus it is adapted to the operational vibration analysis. The goal 

of the O3KID/ERA approach is to identify a first-order dynamic model for a structure based 

on the response time histories that can be expressed with the following equations for a 

discrete-time linear-time-invariant state-space model  

𝑥𝑖+1 = A𝑥𝑖 + 𝑤𝑖 (3. 1a) 

𝑦𝑖 = C𝑥𝑖 + 𝑣𝑖 (3. 1b) 

In these expressions, sub index 𝑖 is the time step,  𝑦 ∈ ℝ𝑞𝑥1 is the measurement vector 

with dimensions of the number of measurement points on the structure, 𝑥 is the state vector 

with dimensions 𝑛 𝑥 1 where 𝑛 is the (initially unknown) size of the model. 𝑤 and 𝑣 are the 

input and output noise vectors (of dimensions 𝑛𝑥1 and 𝑞 𝑥 1 respectively) that are assumed 

to be white. The 𝑪 matrix is the output matrix that maps the measured responses to the state 
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vector. The physical properties of the structure reside in the state transition matrix A, of 

dimensions 𝑛 𝑥 𝑛, which dictates the time evolution of the state vector. In a mechanical 

system, the matrix A depends on mass, damping and rigidity distributions. For an 

underdamped system the eigenvalues of the matrix appear in complex conjugate pairs and 

they are related to the natural frequencies and damping ratios of the structure. The 

eigenvectors of the matrix are related to the mode-shapes of the structure through the output 

matrix. The model order of the system determines the dimensions of the state vector, the 

state transition matrix, and the output matrix, but it is unknown to begin with and must be 

determined from the data. 

An optimal filter for the system in Equation 3.1 is 

𝑥̂𝑖+1 = A𝑥̂𝑖 + K𝜀𝑖 (3. 2a) 

𝑦̂𝑖 = C𝑥̂𝑖 (3. 2b) 

where 𝑥̂ and 𝑦̂ is the state and output estimates; K, of dimensions 𝑛 𝑥 𝑞,  is the observer gain, 

𝜀, of dimensions 𝑞 𝑥 1, is the vector of output residuals of the Kalman Filter and can be 

defined as 

𝜀𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (3. 3) 

Plugging equations 3.3 and 3.2b into equation 3.2a, the observer state and output can 

be rewritten as to obtain an equivalent form 

𝑥̂𝑖+1 = A𝑥̂𝑖 + Ky𝑖 − KC𝑥𝑖 (3. 4a) 

𝑦𝑖 = C𝑥̂𝑖 + 𝜀𝑖 (3. 4b) 

where  A̅ = A − KC.  

Via repeated substitution, if the current observer state, 𝑥̂𝑖, is defined by its backward 

p steps state, 𝑥̂𝑖−𝑝, such that p (model order) is large enough (𝑝 ≫ 𝑛) and  A̅p becomes 

negligible and converges to zero, one obtains:  

𝑥̂𝑖 = TO𝑖 (3. 5) 
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where  

O𝑖 = [𝑦𝑖−1 𝑦𝑖−2  … 𝑦𝑖−𝑝]𝑇 (3. 6a) 

T = [A̅0K A̅1K … A̅𝑝−1K] (3. 6b) 

Plugging equation 3.5 into equation 3.4b, the output is 

𝑦𝑖 = CTO𝑖 + 𝜀𝑖 (3. 7) 

Equation 3.7 can be written in matrix form for the time step 𝑖 = 𝑝, 𝑝 + 1,… , 𝑙 − 𝑝 as follows:  

Y = ΓV + E (3. 8) 

where 

Y = [𝑦𝑝 𝑦𝑝+1  … 𝑦𝑙−1] (3. 9a) 

Γ = [CA̅0K CA̅1K … CA̅𝑝−1K] (3. 9b) 

V = [O𝑝 O𝑝+1  … O𝑙−1] (3. 9c) 

E = [𝜀𝑝 𝜀𝑝+1  … 𝜀𝑙−1] (3. 9d) 

In the equation 3.8, the matrices Y ∈ ℝ𝑞𝑥(𝑙−𝑝) and V ∈ ℝ𝑞𝑝𝑥(𝑙−𝑝) are known because they 

are constructed by known output, measurements. By having 𝑙 −  𝑝 >  𝑞𝑝 (more equations 

than unknowns), the Γ ∈ ℝ𝑞𝑥𝑞𝑝 matrix can be estimated using Least Square solution given 

that the E matrix is the error term.  

Γ̂ = YV𝑇(VV𝑇)−1 (3. 10) 

where Γ̂𝑖 ∈ ℝ
𝑞𝑥𝑞is an estimate for ith Markov parameter in the bar form CA̅i−1K. 

To estimate the N many Markov parameters in innovation form, the following relation 

is used: 



 

44 

 

 

Ψ𝑖 =

{
 
 

 
 

 

 Γ̂𝑖                                                          𝑖 = 1

Γ̂𝑖 +∑  Γ̂𝑖

𝑖−1

ℎ=1

Ψ𝑖−ℎ                       1 < 𝑖 ≤ 𝑝

Γ̂ [Ψ𝑖−1 Ψ𝑖−2…  Ψ𝑖−𝑝]
𝑇
               𝑖 > 𝑝

 

(3. 11a) 
 

(3. 11b)  
 

(3. 11c) 

where Ψ𝑖 ∈ ℝ
𝑞𝑥𝑞is an estimate for ith Markov parameter CAi−1K.  

The ERA method, using the Markov parameters, which are the outputs of the O3KID 

algorithm, aims to determine the model order of a system objectively according to the 

singular values of the Hankel matrix established with identified Markov parameters of the 

system. ℋ0 ∈ ℝ
𝑞2𝑝𝑥(𝑁−𝑝𝑞)𝑞 and ℋ1 ∈ ℝ

𝑞2𝑝𝑥(𝑁−𝑝𝑞)𝑞 Hankel Matrices are formed as 

follows.  

ℋ𝑟 = [

CArK CAr+1K … CAN−pq−1+rK
CAr+1K CAr+2K … CAN−qp+rK
… … …

CAqp+r−1K CAqp+rK … CAN−2+rK

] (3. 12) 

According to the theory, a Hankel matrix of Markov parameters is the multiplication 

of the observability matrix, 𝕆, and the controllability matrix, ℂ:  

ℋ0 =  𝕆ℂ (3. 13) 

where 

𝕆 = [

C
CA…

CAqp−1
] (3. 14a) 

ℂ = [K AK A𝑁−𝑝𝑞−1K] (3.14b) 

From the control theory since 𝑞𝑝 > 𝑛 and 𝑁 − 𝑞𝑝 > 𝑛, both 𝕆, ℂ and ℋ0 have rank 

𝑛. Singular Values of ℋ0 calculated by Singular Value Decomposion analysis is also 𝑛. 

Accordingly, a sudden decrease in the singular values of Hankel matrix indicates the real 

order of the system such that theoretically, the Hankel matrix should have as many non – 

zero singular values as the true order of the system with all other singular values being zero. 
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Although the determination of the model order is theoretically a very important stage, in 

practice there are no definite divergences due to various reasons, and the singular values 

generally show a close distribution. Therefore, for the case 𝑞𝑝 < 𝑁 − 𝑞𝑝 in Modal Plot 

method 𝑞𝑝 many singular values are calculated as follows:  

ℋ0 = U1[S1 0] [
V1
T

V2
T] (3. 15) 

where 𝑆1 ∈ ℝ
𝑞𝑝𝑥𝑞𝑝 are singular values, and U1 and V1

T comprise the left and the right 

singular vectors. The following relation between observability, controllability matrices and 

singular values, vectors are assumed to be exist:  

𝕆 = U1S1
1/2

 (3. 16a) 

ℂ = S1
1/2
V1
T (3.16b) 

With this choice, the state transition, A, and output matrix, C, can be estimated as 

follows: 

C = first n rows of 𝕆 (3. 17a) 

A = S1
−1/2

U1
Tℋ1V1S1

−1/2
 (3. 17b) 

What is proposed in this chapter is another auxiliary technique called the modal plot. 

A modal plot, a representative of which is given in Figure 3.2, is a diagram that reveals the 

interaction of all estimated frequencies and corresponding mode shapes of high order time 

domain models. When the term modal is used, there would be an expectation to relate it with 

three modal parameters, which are the natural frequencies, the mode shapes, and the modal 

damping ratios. The modal plot comprises the first two and how modal damping ratios affect 

a modal plot will be discussed in Section 3.5. Moreover, the definition of modal zones of 

computational estimates will be also one of the issues to be dealt with in Section 3.4 for a 

discrete system and in Section 4.4 for a continuous system. 
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Figure 3.2. A representative modal plot. 

The number of singular values included is maximized as much as possible in the ERA 

step to generate the state space model with a maximum dimension in order to estimate as 

many modal parameters as possible and a further elimination step is not required in order to 

draw the modal plot.  

The scaling of the mode shapes is done by setting the amplitude of the mode shape to 

1 (one) at the reference node. Once all the modal parameters are extracted from all the 

systems identified using all the overlapping data segments, each frequency and mode modal 

amplitude ratio pair is plotted for each node to construct the modal plots. The modal plot is 

a graphical tool which will be used in latter sections to detect the existence of damage in a 

continuous system, is next converted to the count plots to identify the real modes. 

3.3. The Count Plot 

The count plot is a clustering approach that allows simultaneous determination of the 

true natural frequencies and the corresponding mode shapes of a system. The premise which 

the approach is based on is that the modal variables calculated by the system identification 

methods contain errors, even if in small amounts, but when different data sets are used, the 

scattering in the “actual” modes will be smaller compared to the “computational” modes. 
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For a particular system, when different models are set up using the data collected within a 

time period that the system properties are assumed not to change, the exact same values for 

modal variables will not be obtained from the identified systems. It can, however, be said 

that the distribution of the modal values (within certain limits) will in fact to be related with 

the same model supposedly corresponding to real structure. Based on this clustering 

approach, the number of the modal variable estimates lying within certain limits are counted 

and are plotted based on the frequency values to obtain the count plot. The frequencies that 

correspond to the peaks in the count plots are expected to correspond to the actual 

frequencies of true structural modes. Since both frequencies and mode-shapes are used in 

clustering, the average of the frequency and mode-shape prediction sets corresponding to the 

peaks can be calculated automatically. Thus, the “real” natural-frequencies and mode-shapes 

of the system (which will be referred to here as the ‘modal point’) are estimated. Since the 

modal variables are calculated according to the peaks, a count plot, which is directly 

processed in the time domain, is quite similar to the PSDs of the response signals calculated 

via the Fourier transforms. The count plot approach proposed here will be used to estimate 

the modal variables to be employed in the case studies to be discussed in Sections 4.1-4.3. 

3.4. A Case Study 

This part is related to system identification of a discrete system, and the aim of this 

case study is to demonstrate how to estimate modal parameters using the modal plot. 

The numerical model, with properties provided in Table 3.1, is a one dimensional, 15 

DOF spring-mass chain system with one end fixed to a stationary point as shown in Figure 

3.3. During the simulations, the following guidelines are followed:  

i. System is excited by a white noise input applied at 15th DOF (15th point mass). 

ii. System is linear, time invariant, and undamped. 

iii. There is neither measurement nor plant noise.   
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Figure 3.3. The mass-spring ‘cantilever’ system used. 

Table 3.1. Numerical Analysis Specifications 

# of DOFs 15 

End Conditions Fixed-Free 

Spring Stiffness [k] 2.27E8 N/m 

1st-14th DOF mass [m] 4530 kg  

15th DOF mass 2265 kg 

Damping No 

Input DOF 15th DOF 

Input Type Ambient force 

 

Figure 3.4. Power spectral density estimate of the ambient input applied on the 15th DOF. 
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Power spectral density of the input time history used in the analyses are shown in 

Figure 3.4. The white noise assumption is valid for the input used in the analysis. 

The power spectral density function of the responses obtained on the first, 5th, 9th, 

and 13th DOFs are shown in Figure 3.5. Peaks are clear, well separated and correspond to 

the actual frequencies of the system.  

 

Figure 3.5. Power spectral density estimates for the 1st, 5th, 9th, and 13th DOFs. 

The procedure followed to sketch the modal plots is as follows: 

In each analysis, four measurement locations are considered. The 15th DOF is taken 

as a reference DOF and the remaining 14 DOFs are analyzed in five steps such that in the 

first step, the 1st, 2nd, 3rd, and the 15th DOFs are analyzed, and in the last step the first, 

13th, 14th, and the 15th DOFs are analyzed. Therefore, the first DOF is analyzed twice.  

In each step, the response time histories are divided into segments with 80% overlap. 

O3KID: A relatively high order is chosen for the observer model which is initially 

constructed as a regressive model (in this example model order is 300, which is half of the 

number of observer Markov parameters in the O3KID analysis) and more than 5000 Markov 

Parameters are calculated.  
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ERA: The Markov Parameters are used in a square Hankel matrix which has 

dimensions greater than 4000 by 4000. The system order for the realization is set to 4000, 

and the natural frequency and mode shapes of the system are calculated for the realized 𝐴 

and 𝐶 matrices. 

When all computation process is complete, the frequency – mode shape component 

pairs are plotted as in Figure 3.6, and these plots are what are coined here as ‘modal plots’ 

The modal plots for the first DOF has around 20 000 and the other DOFs have and 10 

000 frequency – mode shape component pair estimates, between 0-40 Hz. 

In Figure 3.6, the actual natural frequencies and mode shape amplitudes of the system 

are indicated as circles. These actual reference values are referred to as ‘modal points’. All 

estimates which are not close to the modal points are candidates for computational modes. 

Based upon this classification, a ‘modal zone’ is defined as a region containing a modal point 

and a ‘curve’ of the surrounding computational modes, as shown in Figure 3.6.  

 

Figure 3.6. Modal plots for various DOFs, including actual modal points (circles) and 

modal zones. 
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For identification purposes, these modal plots are converted to count plots as follows: 

(1) [Optional] Order all estimates according to increasing values of frequencies. 

(2) Define a tolerance limit for the mode shape and the frequency components as in 

Figure 3.7. 

(3) For an estimate, count estimates (other than itself) within the tolerance limit. 

(4) Repeat (3) for all estimated points. 

(5) Plot counts versus frequencies for all estimates as in Figure 3.8. This plot is referred 

to as the “count plot”. 

 

Figure 3.7. Modal plot tolerance limits. 

 

Figure 3.8. Count plot for 0.1% tolerance limit. 
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The actual natural frequencies of the system and the count plot peaks are compatible 

with each other as can be seen in Figure 3.8. The ranges within which the identified 

frequencies are contained are defined according to Figure 3.8. The estimates with maximum 

counts are selected automatically as the candidates for modal points depending on the ranges 

defined. The mode shape values are calculated as the average value of the accumulation of 

points which contains one of the peaks of the count plots as shown in Figure 3.9.  

 

Figure 3.9. Accumulation of estimates in Modal Parameters for DOF 4. 

Figure 3.10 shows the comparison between the mode shapes of the system and 

estimated mode shapes for the first four modes. A very close match is attained for each mode 

and each DOF. The results show that maximum relative errors in the mode shape 

components in percentage are 0.055, 0.067, 0.082, and 0.147 for the first four modes, 

respectively. Therefore, for the particular example considered, the count plots provide 

satisfactorily accurate results.    
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Figure 3.10. The first 4 mode shapes: Lines: exact mode shapes calculated via the 

eigenvalue problem; markers: estimated values using the count plot. 

It should be noted that if the tolerance limit is chosen as a relatively a high value, as 

for example 1% for each modal parameter then counts of computational modes may also be 

included in the assembly of real modal parameters as schematically shown in Figure 3.11. It 

therefore stands to reason to define the tolerance limit as an acceptably low percentage or 

value. 

 

Figure 3.11. Modal plot: 1% tolerance limit. 
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In order to investigate the impact of the user defined tolerance limit on the identified 

modal parameters, the modal points identified for the 15 DOF system discussed above are 

clustered with various tolerance limits. To simplify the discussion, tolerance limits for both 

mode shapes and natural frequencies are selected to be same and are defined in terms of 

percentage points. Due to the scaling of the mode shapes, the maximum modal amplitude is 

1 (one). In the analysis, the tolerance limits around each modal point are set as ±0.1%, ±1% 

and ±5% of the frequency value (corresponding to the vertical axes of the modal plots) and 

of 1 (corresponding to the horizontal axes of the modal plots). Figure 3.12-3.15 show the 

count plots obtained for the 1st, 4th, 7th and the 14th DOFs using these three tolerance limits.  

It is noteworthy that in all cases the natural frequencies are correctly identified, i.e. the cluster 

peaks coincide with the actual values of the frequencies that are also marked on the figures. 

The ‘noise’ in the results, however, indicated by the variations in the scatter of the non-peak 

clusters, tends to increase with increasing tolerance limits. This is to be expected as  ±5% 

is a significant deviation. In any case, the consistency of the identified frequencies is an 

encouraging indicator of the robustness of the approach with regards to user defined 

tolerance limits.  

 

Figure 3.12. Count Plot for different tolerance limits for 1st DOF. 
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Figure 3.13. Count Plot for different tolerance limits for 4th DOF. 

 

Figure 3.14. Count Plot for different tolerance limits for 7th DOF. 



 

56 

 

 

 

Figure 3.15. Count Plot for different tolerance limits for 14th DOF. 

The minimum and maximum errors corresponding to different tolerance limits are 

given in Figures 3.16-3.18. The errors in the estimates of both the natural frequencies and 

the mode shapes are very low and attest to the robustness of the proposed count plot 

approach. The only relatively large errors in the mode shapes appear in the ±5% case. It 

should be emphasized, however, that such a tolerance limit is excessively high and included 

in this discussion only as a representative upper limit. 

 

Figure 3.16. Error limits in modal parameters for tolerance limit 0.001. 
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Figure 3.17. Error limits in modal parameters for tolerance limit 0.01. 

 

Figure 3.18. Error limits in modal parameters for tolerance limit 0.05. 

As an alternative to count plots, histogram plots may also be used for frequency 

estimates. In Figure 3.19 the peaks appear at the natural frequency values in the histogram 

plot. The counts in the histogram are higher than that in the count plot at the frequency bands 

containing the actual values of natural frequencies. However, the error in histogram plot is 

much higher than in the count plots, as evidenced by the high counts in the off peaks. 
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Figure 3.19. Histogram using frequency estimates and its comparison with the count plot. 

3.5. Effect of Damping Ratio on Modal Plot and Count Plot 

Count plot is an efficient tool for modal parameter estimation under no damping and 

no noise case. However, as the noise and in damping ratio increase, the accumulation of 

points around actual modal points may not appear in the modal plots, as hinted by Figure 

3.20.  

 

Figure 3.20. Change in a modal plot for increasing damping for the 1st DOF. 
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To investigate the damping effect on the count plot, four critical damping ratios (CDR) 

are considered in this section which are 0.2%, 1%, 5%, and 10%. The ten percent damping 

ratio is selected deliberately since it may be close to an upper bound for damping ratios 

typically encountered in civil engineering structures.  

Amongst modal parameters, mode shapes are the most sensitive to damping. The 

undamped eigenvalue problems for typical mechanical systems yield “real modes”, such that 

the mode shape values at the nodes have phase differences of either 0 or 𝜋. Physically, a real 

mode shape corresponds to a modal vibration wherein the maximum (minimum) amplitudes 

are reached simultaneously at all nodes, as well as simultaneous attainment of the 

equilibrium (‘zero’) configuration. A damped eigenvalue problem, however, yields 

“complex modes” unless the damping is classical. In a complex mode, the mode shape values 

at the nodes may generally have phase differences other than 0 or 𝜋. Physically, this would 

mean that the nodes reach their relative maxima/minima at different times, such that, for 

example for a phase difference of 𝜋/2 between two nodes, one node would be passing 

through its equilibrium configuration while the other is already at its peak. Naturally this 

brings about various issues regarding the visualization and interpretation of a ‘mode shape’. 

Noise and modelling errors generally tend to scramble the phase information such that, even 

though the system may be classically damped, the phase differences between the components 

of identified modes do not comply with what would be expected of real modes. Therefore 

one issue that comes to the forefront when damping is present is the artificial coupling of the 

modes, i.e. the deviations of the mode shapes from ‘real’ modes, that are induced by 

accumulated errors in the identified models. In the example considered herein, for systems 

with 0.2% and 1% damping ratios, mode shape estimates, which turn out to be complex 

valued, are directly converted to real numbers using the following equations: 

 

𝛽𝑗,𝑖 = cos
−1
𝑅𝑒(Φ𝑗,𝑖)

|Φ𝑗,𝑖|
 (3. 18) 

Φ𝑗,𝑖 = {
|Φ𝑗,𝑖|      if −

𝜋
2⁄ < 𝛽𝑗,𝑖 <

𝜋
2⁄

−|Φ𝑗,𝑖|           Otherwise            
 

(3. 19a) 

(3. 20b) 
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where Φ𝑗,𝑖 is the value of the jth mode shape on the ith node, 𝛽𝑗,𝑖 is phase angle of that same 

mode shape value, | | is the magnitude operator and 𝑅𝑒( ) is the real part of a complex 

number. This approach is quite crude in that it maps a wide range of phase angles to either 

0 or 𝜋, but it may be expected to yield reasonably good answers when the identified modes 

are close to real. 

Since the phase angle of mode shape estimates for the systems with critical damping 

ratio less than 1% is close to 0⁰ and 180⁰, the real parts of the mode shapes and the 

amplitudes calculated via Equations (3.1) and (3.2) are very close. The estimates of mode 

shapes identified from response data are close to the actual mode shapes calculated using the 

mass and stiffness matrices, as shown in Figures 3.21 and 3.22. 

 

Figure 3.21. Mode shape estimates for the tolerance limit 0.004 and 0.01 for CDR 0.2%. 
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Figure 3.22. Mode shape estimates for the tolerance limit 0.004 and 0.01 for CDR 1%. 

However, for the systems with CDR 5% or more, the variations in the phase angles of 

the mode shape estimates become more pronounced. Therefore, the phase differences 

between the nodes lead to bigger errors. To address this problem, and assuming that the 

underlying system is classically damped so that the more a mode shape deviates from a real 

mode the more likely it is to belong to an artificial, computational mode, estimates with 

phase angle deviations higher than a certain threshold are not taken into account, and the 

modal plot is constructed with the remaining estimates. In such a case, one would have to 

determine two thresholds, one pertaining to the phase angle, and the other pertaining to the 

tolerance limit used in constructing the count plots. To reduce the problem from two 

variables to one variable, the tolerance limit is varied  in a range and the average of the mode 

shape estimates identified via all the different tolerance limits is taken as the estimate for the 

given phase angle. In the particular example considered, for CDRs 5% and 10%, the 

tolerance limit is varied from 0.004 to 0.08 with a step size of 0.002, and the threshold values 

for the phase angles are selected as 𝜋/4 and 𝜋/10 . The significance of the threshold values 

for the phase angles is as follows: For a given threshold value 𝛿, i. if the phase angle remains 

within 0 ± 𝛿, it is considered as 0; ii. if the phase angle remains within 𝜋 ± 𝛿, it is considered 

as 𝜋; iii. if the phase angle lays outside these regions, the mode shape is discarded. The 

identified mode shapes are sketched in Figures 3.24 and 3.25 
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Figure 3.23. Mode shape estimates identified for the system with CDR 5% using threshold 

phase angle values of 𝜋/4 and 𝜋/10. 

 

Figure 3.24. Mode shape estimates identified for the system with CDR 10% using 

threshold phase angle values of 𝜋/4 and 𝜋/10. 

To investigate whether a higher model order would lead to improved results as has 

been reported by various previous studies discussing OKID/ERA, the analyses are repeated 

with a higher order for the identified state space model; specifically, the model order is 

increased from 400 to 1000. Figures 3.25 and 3.26 show that the results improve slightly but 

not necessarily significantly to justify working with much increased model orders. 
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Figure 3.25. Mode shape estimates identified for the system with CDR 5% using higher 

model orders and threshold phase angle values of 𝜋/4 and 𝜋/10. 

 

Figure 3.26. Mode shape estimates identified for the system with CDR 10% using higher 

model orders and threshold phase angle values of 𝜋/4 and 𝜋/10.  
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4. NUMERICAL AND EXPERIMENTAL CASE STUDIES 

The aim of the analyses undertaken in this chapter is to discuss in detail the 

performance of the methods proposed in Chapters 2 and 3. In the first three sections, modal 

parameters are estimated from response data by utilization of count plots, and location of 

damage is estimated successfully by the proposed damage indicators. The first and third 

sections are ‘blind tests’ in the sense that only the number of DOFs of the mass-spring 

system, the type of damage (reduction in spring stiffness) and one-minute response 

measurements from each DOF is provided beforehand. Last two sections are related to 

estimation of the existence and location of damage inspired by the observations on 

experimental data. 

4.1. Fault Identification with Noise-Free Ambient Vibration Data: 

Exact calculation of the modal variables is not possible in practice as they would have 

to be estimated from field tests. To address this issue, application of modal analysis to 

simulated operational data is investigated. Acceleration data obtained from a 10-DOF, 

damped spring-mass chain fixed-free system is examined in this section in order to observe 

the effects of the error in the estimation of modal parameters on the proposed indicator. For 

numerical analyses, accelerations are simulated at all DOFs under the white noise type forces 

that resemble ambient inputs. Response histories are calculated for a period of one minute 

with 200 Hz for the undamaged condition and two different damage conditions. The data 

was produced and provided with no additional knowledge. After the analyses were 

concluded it was later confirmed that the first damage case corresponds to a 20% reduction 

in the stiffness of the 8th spring, and the second damage case corresponds to 20% stiffness 

reductions in the 6th and the 8th springs. The purpose of this study is to estimate the system 

parameters with the use of the count plots and to identify the location of damage with the 

proposed damage indicator for noise-free data.  



 

65 

 

 

The initial step undertaken upon receipt of data is a preliminary investigation regarding 

the quality of the data: there is no trend in the signal, and the average of the accelerations at 

each measurement channel is zero. Secondly, the PSD of the data is examined: there are 10 

separate peaks between 0-8 Hz as shown in Figure 4.1. Table 4.1 presents the possible 

natural-frequency ranges to be used in the count plot, the range is selected so that it covers 

undamaged and two damaged conditions. 

 

Figure 4.1. PSD estimates for the three data sets obtained from acceleration data 

‘measured’ at the first DOF. 

The first two steps described above provide preliminary information about the data 

and the system. In the third step, first-order dynamic models are established with O3KID 

and ERA methods. The number of observers is set to 800 in O3KID analysis. In the analysis 

every DOF is analyzed separately with the (reference) 10th DOF. The data is divided into 

25.35-second long segments with overlapping 2.54 second data. For each data segment, a 

total of 390 frequencies between 0-100 Hz and corresponding mode shapes are calculated 

via the identified state space models and the modal plot is constructed. According to ± 0.04 

tolerance limit for the modal variables, the counts for each estimate are calculated and the 

count plots shown in Figure 4.2 are obtained.  
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Table 4.1. Estimated frequency ranges for the first three modes: 

Mode Number Lower Bound (Hz) Upper Bound (Hz) 

1 0.4 0.7 

2 1 2 

3 2 3 

4 3 4 

5 4 5 

6 5 5.5 

7 5.5 6 

8 6 6.5 

9 6.5 6.9 

10 6.9 7.5 

Table 4.2. The natural frequencies determined by O3KID / ERA and the count plots 

M
o

d

e 

Undamaged System Damaged Case 1 Damage Case 2 

Min. Mean Max. Min. Mean Max. Min. Mean Max. 

1 0.528 0.529 0.529 0.527 0.528 0.529 0.517 0.518 0.518 

2 1.576 1.582 1.594 1.534 1.544 1.571 1.519 1.523 1.529 

3 2.599 2.600 2.603 2.564 2.565 2.568 2.535 2.537 2.540 

4 3.560 3.560 3.561 3.548 3.550 3.551 3.494 3.495 3.497 

5 4.437 4.438 4.439 4.367 4.371 4.372 4.344 4.348 4.350 

6 5.226 5.227 5.229 5.108 5.110 5.111 5.032 5.034 5.034 

7 5.878 5.878 5.879 5.858 5.859 5.860 5.832 5.832 5.833 

8 6.412 6.414 6.416 6.383 6.391 6.398 6.277 6.279 6.280 

9 6.785 6.796 6.802 6.668 6.671 6.675 6.617 6.618 6.618 

10 7.039 7.045 7.048 6.990 6.994 6.998 6.897 6.918 7.054 

 

The mean values of peaks and estimates within the tolerance limit are given in Table 

4.2 and Table 4.3. It has been mentioned previously that every modal plot, and the 

corresponding count plot, contains information regarding one node (and also a reference 

node kept constant across all analyses). Therefore, one modal amplitude and one frequency 

value is estimated from each peak cluster in a count plot, and there are as many count plots 

as the number of non-reference nodes. In Table 4.2, the maximum, the minimum, and the 

average values of frequencies obtained via the count plots pertaining to different nodes are 

given for each mode and each damage state.  
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Table 4.3. The mode shapes determined by O3KID / ERA and the count plots 

 Undamaged Case Damaged Case 1 Damaged Case 2 

Mode 1 2 3 1 2 3 1 2 3 

DOF 1 0.148 -0.444 0.733 0.146 -0.407 0.783 0.142 -0.446 0.714 

DOF 2 0.292 -0.804 1.061 0.291 -0.752 1.154 0.282 -0.822 1.066 

DOF 3 0.429 -0.989 0.834 0.428 -0.961 0.933 0.416 -1.057 0.873 

DOF 4 0.557 -1.003 0.156 0.555 -0.993 0.223 0.542 -1.076 0.244 

DOF 5 0.673 -0.789 -0.616 0.67 -0.798 -0.606 0.656 -0.911 -0.523 

DOF 6 0.776 -0.425 -1.055 0.767 -0.461 -1.122 0.781 -0.484 -1.126 

DOF 7 0.863 0.007 -0.925 0.85 -0.061 -1.063 0.863 -0.07 -1.04 

DOF 8 0.932 0.447 -0.312 0.934 0.48 -0.294 0.939 0.469 -0.26 

DOF 9 0.978 0.794 0.465 0.975 0.81 0.476 0.976 0.804 0.499 

DOF 10 1 1 1 1 1 1 1 1 1 

 

 

Figure 4.2. Count Plots for the 4th and the 7th DOFs for the three data sets.  

The damage positions are determined using Equation 2.15 using the single mode 

indicator with only the first mode and the multiple mode indicator using the first three modes 

leading to the results presented in Figure 4.3. Based on the location of the critical nodes 

where the damage indicators show a pulse-like increase, it is observed that there is a certain 

‘damage’ (i.e. an alteration) between the 7th and the 8th nodes (thereby indicating the 8th 

spring) when Damage Case 1 is compared with the Undamaged Case, and similarly that the 

6th and the 8th springs are signaled as damaged when Damage Case 2 and the Undamaged 

Case are compared. It is also seen that the damage indicator calculated with the sum of the 
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first three modes for both cases can locate the damage more clearly than first mode damage 

indicator does. 

 

Figure 4.3. Damage indicator values for Damage Cases 1 and 2 for the 10 DOF system. 

4.2. Fault Identification for Noise-Free Data with Limited Measurement Locations 

In this section, the analysis conducted with exact modal variables in Section 2.5.2 is 

repeated for single and multiple damage cases using noise-free acceleration measurements 

simulated under ambient inputs. The 100 DOF spring-mass chain ‘cantilever’ system shown 

in Figure 4.4 is considered with a critical damping ratio of 1% for all modes. The first 10 

natural frequencies are close to the natural-frequencies of the 10 DOF system discussed in 

Section 4.1. The acceleration data are ‘read’ at every 10th DOF, as in Section 2.5.2, and on 

those same DOFs white noise type forces are applied. For Damage Case 1, the stiffness of 

the 85th spring is reduced by 20%, and for Damage Case 2, the stiffness of the 55th and the 

85th springs are reduced by 20%. Because a few number of measurements were used to 

locate the damage, the responses were analyzed with a high overlap (95%). Modal variables 

are determined automatically by using count plots and the information about the first three 

modes identified are presented in Table 4.4 and 4.5. 
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Figure 4.4. 100 DOF damped ‘cantilever’ system. 

Table 4.4. Natural-frequencies determined by O3KID / ERA and count plot 

M
o

d

e 

Undamaged Case Damaged Case 1 Damaged Case 2 

Min Average Max Min Average Max Min Average Max 

1 0.549 0.551 0.552 0.550 0.551 0.552 0.549 0.551 0.552 

2 1.673 1.675 1.677 1.672 1.675 1.678 1.669 1.673 1.676 

3 2.770 2.784 2.799 2.764 2.775 2.793 2.763 2.771 2.782 

Table 4.5. Mode shapes determined by O3KID / ERA and count plots 

 Undamaged Case Damaged Case 1 Damaged Case 2 

Mode 1 2 3 1 2 3 1 2 3 

DOF 1 0.156 -0.442 0.765 0.156 -0.436 0.745 0.156 -0.436 0.736 

DOF 2 0.309 -0.784 1.098 0.308 -0.773 1.072 0.308 -0.779 1.061 

DOF 3 0.453 -0.966 0.788 0.452 -0.952 0.797 0.451 -0.953 0.789 

DOF 4 0.587 -0.934 0.023 0.586 -0.923 0.026 0.585 -0.928 0.026 

DOF 5 0.706 -0.700 -0.664 0.706 -0.694 -0.648 0.704 -0.699 -0.642 

DOF 6 0.809 -0.321 -1.054 0.808 -0.320 -1.035 0.809 -0.311 -1.031 

DOF 7 0.890 0.143 -0.748 0.889 0.139 -0.739 0.890 0.142 -0.735 

DOF 8 0.950 0.573 -0.031 0.949 0.566 -0.038 0.949 0.567 -0.053 

DOF 9 0.987 0.881 0.681 0.987 0.881 0.685 0.987 0.881 0.686 

DOF 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

Figure 4.5 shows that according to the first mode damage indicator and the multi-mode 

damage indicator comprising the first three modes, the location of possible damage for 

Damage Case 1 is estimated to be between the 80th and the 90th DOF, and the locations of 

possible damage for Damage Case 2 are estimated to be between the 50th and the 60th and 

between 80th and the 90th DOFs. 

The results shown in Figure 4.5 indicate that the multiple mode damage indicator is 

more robust and it can help to determine the location of damage more consistently than the 
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first mode damage indicator. This is partly due to the fact that the first mode shape, especially 

with limited measurements, does not reflect significant variations with the damage scenarios 

considered herein. In order to determine the location of damage with smaller errors by using 

the first mode damage indicator, using a denser sensor array may be considered at the 

expense of increased installation and operation costs. 

 

Figure 4.5. Damage indicator values for Damage Cases 1 and 2 for the 100 DOF system 

with limited measurements. 

4.3. Fault Identification for Noisy Data 

The 10 DOF system used in Section 4.1 is also used in this case study. Likewise, 

damage to the system is defined only as a reduction of the spring stiffness. For numerical 

analyses, the accelerations are simulated at all DOFs when system is excited with white noise 

type inputs applied at all DOFs, for a period of 1 minute with a sampling rate of 200 Hz, and 

‘noise’ is added to the responses. The noise time histories are identically distributed 

independent random sequences. Data is generated for the undamaged system and 2 different 

damage conditions. Damage Case 1 corresponds to a 20% reduction in the stiffness of the 

8th spring, and Damage Case 2 corresponds to 20% reductions in the stiffnesses of the 5th 

and the 8th springs. The purpose of this study is to estimate the system parameters with count 



 

71 

 

 

plots and to identify the locations of damage with the proposed damage indicator for noisy 

data in a fully instrumented system. 

To examine the natural frequencies of the system and to observe the effects of noise, 

the PSDs obtained from the 1st DOF response data are given in Figure 4.6. The data seems 

to indicate clearly separated peaks and observable shifts in the frequencies when the three 

damage cases are considered. On the other hand, the effects of noise become apparent when 

the PSD estimates obtained via noisy and noise free data are considered as shown in Figure 

4.7. In this figure it is clearly seen that the peak amplitude corresponding to the 1st mode 

gets buried under noise. 

 

Figure 4.6. PSD estimates obtained using the noisy acceleration data measured from the 1st 

DOF for the damage cases considered (0-8 Hz). 

The first two steps described above provide preliminary information about the data 

and the system. In the third step, first order dynamic models are established with the O3KID/ 

ERA approach and modal variables are calculated from these models. Using ± 0.008 

tolerance limit for the modal variables, the count plots shown in Figure 4.8 are produced. 

Modal variables that have the highest count value within the tolerance limit and the range 

given in Table 4.1 are estimated and the mean values of the clusters within the tolerance 

limit are given in Table 4.6 through Table 4.9. In the analyses with O3KID / ERA, every 

DOFs is analyzed one by one with the (reference) 10th DOF, and the data is divided into 25 

second segments with 95% overlaps.  
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Figure 4.7. PSD estimates obtained using noisy and noise free data measured from the 1st 

DOF for the undamaged system (0-8 Hz). 

Table 4.6. Natural frequencies determined by O3KID / ERA and count plots 

M
o
d

e 

Undamaged Case Damaged Case 1 Damaged Case 2 

Min Average Max Min Average Max Min Average Max 

1 0.528 0.530 0.532 0.523 0.526 0.536 0.517 0.521 0.523 

2 1.589 1.591 1.595 1.550 1.551 1.552 1.539 1.547 1.555 

3 2.597 2.598 2.599 2.573 2.575 2.576 2.518 2.522 2.524 

4 3.560 3.563 3.567 3.545 3.561 3.569 3.555 3.556 3.557 

5 4.438 4.439 4.440 4.365 4.366 4.367 4.290 4.291 4.294 

6 5.205 5.213 5.230 5.100 5.105 5.114 5.063 5.064 5.065 

7 5.881 5.882 5.884 5.857 5.858 5.859 5.774 5.776 5.777 

8 6.410 6.412 6.415 6.378 6.382 6.385 6.316 6.317 6.317 

9 6.799 6.800 6.801 6.669 6.673 6.678 6.676 6.677 6.678 

10 7.033 7.035 7.036 6.989 7.038 7.407 7.097 7.145 7.213 

For each segment, the number of observers is set to 800 in O3KID analysis and a total 

of 390 frequencies between 0-100 Hz and their corresponding mode shapes relative 

amplitudes are calculated for the tolerance limit ± 0.008. In Table 4.6, the maximum, the 

minimum, and the average values of frequencies obtained via the count plots pertaining to 

different nodes are given for each mode and each damage state.  
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Table 4.7. Mode Shapes determined by O3KID / ERA and count plots for the Undamaged 

Case 

Mode 1 2 3 4 5 6 7 8 9 10 

DOF 1 0.114 -0.42 0.724 -0.97 1.248 -1.46 1.577 -1.90 1.893 -1.97 

DOF 2 0.245 -0.75 1.072 -0.99 0.556 0.251 -1.23 2.209 -3.17 3.837 

DOF 3 0.428 -0.98 0.840 0.004 -1.00 1.401 -0.73 -0.91 3.31 -5.28 

DOF 4 0.626 -.995 0.179 1.011 -.998 -.439 1.746 -.995 -2.31 6.203 

DOF 5 0.638 -.797 -0.589 1.001 0.556 -1.32 -.531 2.398 0.575 -6.39 

DOF 6 0.732 -0.45 -1.039 -.017 1.251 0.614 -1.35 -1.79 1.402 6.371 

DOF 7 0.837 0.018 -0.934 -1.00 0.007 1.249 1.547 -.086 -2.88 -5.76 

DOF 8 0.952 0.458 -0.320 -.985 -1.26 -.818 0.279 1.782 3.307 4.461 

DOF 9 0.924 0.822 0.460 0.007 -.555 -1.14 -1.74 -2.29 -2.63 -2.90 

DOF 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 4.8. Mode Shapes determined by O3KID / ERA and count plots for the Damaged 

Case 1  

Mode 1 2 3 4 5 6 7 8 9 10 

DOF 1 0.083 -.425 0.798 -1.04 1.02 -1.70 2.21 -1.15 1.952 -5.592 

DOF 2 0.230 -.770 1.205 -1.04 0.505 0.05 -1.56 1.434 -3.00 10.292 

DOF 3 0.394 -.963 0.936 0.014 -0.77 1.78 -1.11 -.519 2.592 -14.05 

DOF 4 0.486 -.948 0.249 1.035 -0.88 -.216 2.32 -.719 -0.94 15.531 

DOF 5 0.647 -0.80 -.614 1.030 0.340 -1.73 -0.55 1.477 -1.24 -16.79 

DOF 6 0.729 -0.44 -1.15 0.045 1.053 0.269 -1.93 -.942 2.807 11.901 

DOF 7 0.838 -.064 -1.07 -0.98 0.18 1.631 1.938 -.201 -2.91 -7.414 

DOF 8 0.889 0.478 -.274 -1.03 -1.25 -0.91 0.228 1.644 2.797 4.144 

DOF 9 0.990 0.809 0.480 0.042 -0.50 -1.13 -1.73 -2.18 -2.48 -2.979 

DOF 10 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 4.9. Mode Shapes determined by O3KID / ERA and count plots for the Damaged 

Case 2 

Mode 1 2 3 4 5 6 7 8 9 10 

DOF 1 0.111 -0.48 0.75 -.989 1.088 -1.27 3.106 -.889 1.874 -1.44 

DOF 2 0.377 -0.80 1.106 -.994 0.588 0.044 -1.95 0.991 -2.82 1.65 

DOF 3 0.469 -1.00 0.947 -.004 -.774 1.259 -1.85 -.259 2.414 -1.84 

DOF 4 0.567 -1.02 0.253 0.995 -1.01 -.089 3.094 -.709 -.895 .813 

DOF 5 0.658 -0.84 -.699 0.993 0.527 -1.54 -.883 1.498 -1.24 -.948 

DOF 6 0.81 -0.51 -1.12 0.015 0.992 0.422 -1.74 -1.46 2.76 1.156 

DOF 7 0.822 -.063 -1.00 -1.00 0.02 1.54 2.025 0.197 -2.97 -.941 

DOF 8 0.836 0.47 -.235 -0.99 -1.24 -0.97 0.068 1.483 2.847 1.053 

DOF 9 0.987 0.846 0.49 0.011 -.444 -1.02 -1.66 -2.17 -2.53 -1.17 

DOF 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Figure 4.8. Count plots for the 4th and the 7th DOFs for the three cases. 

 

Figure 4.9. Effects of noise on mode shapes. 

The first three mode shapes identified via noisy and noise free data are sketched in 

Figure 4.9. It is seen from the comparison with the noise free case presented in Section 4.1 

that noise affects the 1st mode shape of the system considerably. This finding is in line with 

the previous observation that the peak amplitude of the first mode was somewhat concealed 

by the noise.  
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Figure 4.10. Single mode damage indicator calculated using the 1st mode: (a) comparing 

Damage Case 1 with the Undamaged Case, (b) comparing Damage Case 2 with the 

Undamaged Case. 

 

Figure 4.11. Single mode damage indicator calculated using the 2nd mode: (a) comparing 

Damage Case 1 with the Undamaged Case, (b) comparing Damage Case 2 with the 

Undamaged Case. 

The same deteriorating effect, however, is not dominant in the other two modes so that 

the results obtained for the second and the third modes seem to be quite accurate. Firstly, the 

single mode damage indicator is calculated using the 2nd mode. The results, shown in Figure 
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4.11, imply that there is a change in the stiffness of the 8th spring when Damaged Case 1 is 

compared with the Undamaged Case, and that there are changes in the stiffness of the 1st 

and the 8th springs when Damage Case 2 is compared with the Undamaged Case. 

 

Figure 4.12. Single mode damage indicator calculated using the 3rd mode: (a) comparing 

Damage Case 1 with the Undamaged Case, (b) comparing Damage Case 2 with the 

Undamaged Case. 

Secondly, the single mode damage indicator is calculated using the 3rd mode. The 

results, shown in Figure 4.12, imply that there is a change in the stiffness of the 8th spring 

when Damage Case 1 is compared with the Undamaged Case, and that there are changes in 

the stiffnesses of the 5th and the 8th springs when the Damage Case 2 is compared with the 

Undamaged Case.  

The results are affected also by the presence of what are termed here as ‘saddle points’. 

The saddle points of a damage indicator are those locations at which the derivative of the 

mode shape are zero. The identifiers of those springs (spring numbers) that overlap with the 

locations of the saddle points are given in Table 4.10. The results shown in Figure 4.11 and 

Figure 4.12 both indicate the existence of damage on the 8th spring when Damage Case 1 is 

compared with the Undamaged Case. When Damage Case 2 and the Undamaged Case are 

compared, however, there is a discrepancy between the single mode indicators calculated 

via the 2nd and the 3rd mode shapes:  the result obtained from the second mode damage 
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indicator imply damage in the 1st and the 8th springs, whereas the third mode damage 

indicator implies damage in the 5th and the 8th springs. As Table 4.10 shows, the 5th spring 

overlaps with the location of the saddle point for the 2nd mode, whereas the saddle points of 

the 3rd mode do not overlap with any of the damage locations. Consequently, the damage 

estimate obtained via the 2nd mode damage indicator is adversely affected by the existence 

of the saddle point, whereas the 3rd mode indicator is not.  The first mode, which will not 

be adversely affected by any saddle point, is however not available for this particular 

example, and this unavailability. The inability to use the first mode without saddle points 

makes it difficult to judge strongly.  

Table 4.10. Numbers of the springs overlapping with the saddle points of the first three 

modes of the 10 DOF system 

Mode Springs overlapping with saddle points 

1 -None- 

2 5th spring 

3 3rd  and 7th springs 

It is evident in the example given in this section that saddle points may lead to errors 

in the detection of damage via the proposed approach. For this reason, this section discusses 

SHM system sensor deployment strategies to remedy this issue. The issue of which sensors 

should be employed and how they should be deployed on a structure is generally both 

structure and methodology dependent. For example, in Meehan (2011), it is recommended 

that strain gauges should be installed on those locations where the largest displacements 

occur when different loading scenarios are considered in static analyses, and that 

accelerometers should be placed on or near saddle points identified during dynamic analyses. 

It is also recommended, based on to results of damage detection studies conducted on real 

construction applications, that strain gauges or Large Area Electronics (LAE) should be 

installed at the saddle points of the first three or even higher modes and accelerometers 

should be placed on both sides of the saddle points. According to this criterion, possible 

deployment strategies for sensor sets including LAE and accelerometers for the 100 DOF 

cantilever and simply supported systems considered in the previous sections may be chosen 

to comprise the layouts shown schematically in Figure 4.13. 
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Figure 4.13. Deployment of sensors for the cantilever and simply supported system. 

As a final note to conclude this section, we discuss whether it would be possible to 

further the analyses by estimating the amount of damage. This analysis is strictly restricted 

to those systems which have diagonal mass matrices with all the non-zero values equal to 

each other (i.e. all the lumped masses are equal). The well generalized eigenvalue problem 

governing the frequencies and mode shapes of s mechanical system is given by 

KΦ = MΦΛ (4.1) 

where Φ is the mode shape matrix with its columns containing arbitrarily scaled mode 

shapes; Λ is the diagonal matrix containing the eigenvalues (squares of the natural 

frequencies) on its diagonal. K and M are the stiffness and the mass matrices of the system. 

When the mass matrix is diagonal with all diagonal entries equal, this eigenvalue problem 

may be expressed as   

KΦ = 𝑎IΦΛ = 𝑎ΦΛ (4.2) 

where I is the identity matrix comprising one (1) on its diagonal and zeros everywhere else, 

and 𝑎 is a scalar. If all the modal parameters, i.e. all the frequencies and the (arbitrarily 

scaled) modeshapes, are identified, then the stiffness matrix may be approximated through 

Eq. (4.2) up to an unknown scalar coefficient: 
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K̃ = 𝑎ΦΛΦ−1 (4.3) 

In this expression, K̃ is an estimate for the stiffness matrix and 𝑎 is an undetermined 

scalar coefficient whose determination requires knowledge of the mass. The ordering of the 

eigenvalues and the mode shapes is assumed to be consistent in constructing these matrices. 

Note that the scaling of the modeshapes has no bearing on the estimate. To see why this is 

so, consider two sets of modeshapes Φ and Φ̂ scaled differently so that Φ̂  = ΦΘ where Θ is 

a diagonal matrix containing scaling coefficients on its diagonal. In this case one would have 

K̃ = 𝑎Φ̂ ΛΦ̂ −1 = 𝑎ΦΘΛΘ−1Φ−1 = 𝑎ΦΛΦ−1 (4.4) 

so that the scaling coefficients in Θ are seen to have no effect on the final estimate. 

In order to identify the changes in the stiffness matrix, relative changes in the estimated 

stiffness coefficients are used:  

Hij = 100(K̃ij
d − K̃ij

u) K̃ij
u⁄  (4.5) 

where, H is the matrix of relative changes of the stiffness matrix (as percentage), lower 

indices  i  and j denote the row and column numbers, respectively; upper indices d and u 

denote the damaged and the undamaged cases, respectively. The important observation is, 

even if the stiffness matrix may not be uniquely identified since the scalar 𝑎 is unknown 

when the mass distribution is unknown, the relative change matrix H may still be uniquely 

identified if the mass matrix is constant between the damaged and the undamaged cases.  For 

the 10 DOF system under consideration, the relative change matrices corresponding to the 

two damage states are given in Table 4.11 and Table 4.12. 

The maximum decrease in the relative change matrix presented in Table 4.11 is about 

21% at the location of the 8th spring; the corresponding values in Table 4.12 are about 20% 

at the location of the 8th spring and in excess of 16% at the location of the 5th spring. The 

small positive and negative values observed in these tables are due to the errors in the 

identified modal parameters which, as the reader would recall, were identified with noisy 

data, which adversely affected particularly the 1st mode results.  
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Table 4.11. Relative Stiffness Matrix for Damage Case 1 as percentage 

  Column Number 

  1 2 3 4 5 6 7 8 9 10 
R

o
w

 N
u

m
b

er
 

1 0.4 -0.5         

2 2.3 -0.3 1.0        

3  0.2 0.2 2.9       

4   -4.6 1.1 -5.5      

5    10.3 2.5 9.4     

6     -4.9 -0.3 0.9    

7      1.8 -11.3 -21.1   

8       -21.3 -8.3 -2.1  

9        1.8 -1.8 3.5 

10         -0.7 1.4 

Table 4.12. Relative Stiffness Matrix for Damage Case 2 as percentage 

  Column Number 

  1 2 3 4 5 6 7 8 9 10 

R
o
w

 N
u

m
b

er
 

1 4.1 16.3         

2 0.3 0.4 2.4        

3  16.3 7.8 13.7       

4   -13.1 -12.3 -27.9      

5    -16.0 -8.8 3.5     

6     7.0 1.5 4.9    

7      0.6 -10.1 -19.5   

8       -20.5 -5.8 -2.6  

9        5.8 -2.1 5.2 

10         6.1 3.7 

Although this analysis is restricted to those systems with identical masses on the 

diagonal mass matrices, the results still are useful in that they clearly show the efficacy of 

the proposed approach in identifying modal parameters form noisy data as well as 

collaborating the results obtained via the damage indicators. The results of the relative 

stiffness matrices comply well with single mode damage indicators previously discussed. 

4.4. Level 0 Damage Detection on a Beam with Hinges Using Modal Zones 

In this experimental study, it is aspired to detect damage in an actual steel beam. For 

this purpose, an intact steel beam with a hollow-rectangular cross-section is cut into nine 

almost identical pieces with a cut angle of 45⁰.  These segments are reconnected to each 
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other using bolts and nails. Holes the size of the diameters of the nails are drilled into the 

samples And bolts are tightened so that the nails are placed into these holes prevent any 

relative sliding of the segments. The cross sectional dimensions are 40 mm by 40 mm, and 

the wall thickness of the specimen varies from 1.6 mm to 2 mm. When bolts are loosened, 

slight sliding is possible along the connection zone. This small sliding in turn leads to a 

reduction in the interaction area. 

 

Figure 4.14. Schematic representation of the steel beam showing segment numbers and the 

locations of the accelerometers. 

Due to their availability, the accelerometers used in this study are Kinematrix 

EpiSensor ES-U2 force balance uniaxial accelerometers. It should be noted that the system 

properties change depending on the measurement location due to the mass of the 

accelerometer. The mass of an accelerometer is 346 grams and mass of each segment is 

around 280 grams. When the measurement location is changed, the mass distribution of the 

system also changes, which results in a variation in the system in every measurement. On 

the other hand, only one damage scenario as will be described below is considered. 

Therefore, the whole analysis amounts to one damage scenario, defined as the loosening of 

the bolts at one location, being tested for seven similar but different systems in this case 

study. 
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The damage imposed is the loosening of two of the bolts located on the 5th piece from 

the fixed end as marked on the photograph of the specimen shown in Figure 4.15. The bolts 

are loosened to the level at which they can be further loosened by hand.  

 

Figure 4.15. Experimental setup and the black box marks the damage position. 

The specimen is instrumented with two uniaxial accelerometers aligned with the 

vertical, one of which is located on the last segment at the free end, and the second one being 

moved to a different segment at each test. For each setup, the duration of measurements is 

five minutes with a sampling rate of 200 Hz.   

 

Figure 4.16. Accelerometer orientation. 

The sensor located at the same location in all the tests is treated as and referred to as 

the ‘reference sensor’ while the second sensor is referred to as the ‘travelling sensor’. A 

close up of sensor installation is presented in Figure 4.16.  
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The measurements are done in the following order (numbers refer to Figure 4.14):  

Before damage: segment 7, 6, 5, 4, 3, 2, 1 

After damage: segment 1, 2, 3, 4, 5, 6, 7 

The system is excited by ambient inputs. Only once a periodic force is applied 

manually with fingertips before the onset of damage in the 2nd segment measurement and it 

is pursued for most of the duration of that set of measurements in order to observe any effects 

related to the amplitude variation of the input force in the modal plot. The 𝐿1 and 𝐿2 norms 

of the normalized response measurement at the reference measurement, defined by  

𝐿1 = ∑|𝑦(𝑡𝑖)|

𝑖

, 𝐿2 = √∑|𝑦(𝑡𝑖)|
2

𝑖

 (4.6) 

where 𝑦(𝑡𝑖) is a zero-mean time series sampled at 𝑡𝑖 for 𝑖 = 0,1,2, …., are given in Table 

4.13. The normalization process comprises removing the mean of the signal. Any impulsive 

deviations caused by the sudden environmental disturbances are excluded from the signal 

and thus some of the modal plots provide fewer estimates than the others. 

Table 4.13. Norms of signals measured by the reference  

Location of the 

Travelling 

Sensor 

Damage 

Type 
𝑳𝟏 𝑳𝟐 

1 Undamaged 16.812 0.341 

1 Damaged 55.646 0.669 

2 Undamaged 2.776 0.017 

2 Damaged 2.523 0.014 

3 Undamaged 2.317 0.013 

3 Damaged 4.778 0.070 

4 Undamaged 2.597 0.017 

4 Damaged 5.601 0.066 

5 Undamaged 2.950 0.015 

5 Damaged 3.599 0.022 

6 Undamaged 3.000 0.021 

6 Damaged 5.123 0.035 

7 Undamaged 2.279 0.011 

7 Damaged 2.737 0.015 
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Figures 4.17 through 4.24 present modal plots and count plots developed for damaged 

and undamaged cases. Figures of modal plots contain two plots, one corresponding to pre 

damage and one corresponding to post damage, with both plots obtained for the system with 

identical mass distribution (i.e. the same location for the travelling sensor).  The distinct 

peaks observed on the count plots of Figure 4.18. 

 

Figure 4.17. Modal plots for the undamaged and the damaged steel beam (accelerometers 

on the 7th and the 8th segments). 

 

Figure 4.18. Count plots for the experimental beam (tolerance limit 0.004). 
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A close inspection of Figures 4.19 to 4.24 show that damage has changed the nature 

of the distribution of points in the first modal zone from 10-11 Hz down to 9-10 Hz. 

Moreover, at every post-damage measurement, there is a separation in the modal zone 

between 9-10 Hz which is not encountered in the pre-damage counterparts between 10-11 

Hz. Systems have different mass distributions but have the same end conditions, and they 

are damaged at the same location with the same damage extent. Also, ambient vibration 

magnitudes are different as can be seen in Table 4.13. In addition, the same behavior is 

observed in six post-damage measurements and there is no evidence of such behavior in the 

measurements before the damage. Although this does not provide a conclusive proof, the 

behavior observed for this particular example implies that the distribution of computational 

modes within the modal zone may also be investigated such that a significant qualitative 

change in this distribution may by indicative of a certain systemic variation. Such an 

information may be useful for the Level 0 damage detection problem.  

 

Figure 4.19. Modal plots for damaged and undamaged systems (accelerometers on 6th and 

8th segments). 
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Figure 4.20. Modal plots for damaged and undamaged systems (accelerometers on 5th and 

8th segments). 

 

Figure 4.21. Modal plots for damaged and undamaged systems (accelerometers on 4th and 

8th segments). 
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Figure 4.22. Modal plots for damaged and undamaged systems (accelerometers on 3rd and 

8th segments). 

 

Figure 4.23. Modal plots for damaged and undamaged systems (accelerometers on 2nd and 

8th segments). 
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Figure 4.24. Modal plots for damaged and undamaged systems (accelerometers on 1st and 

8th segments). 

One possible benefit of this approach might be to offer an alternative for the problems 

associated with the dependence of modal points on environmental factors.  It may prove to 

be difficult to detect the presence of damage by evaluating only the changes in the natural 

frequencies since it is well known that environmental factors may cause similar variations 

on the natural frequencies (Jiménez‐Roa et al., 2016). To investigate the whole distribution 

in the modal zone, on the other hand, may be less prone to contributions from such effects 

since the distribution of computational modes may be expected to not depend explicitly of 

environmental factors such as temperature variations. A more rigorous discussion of this 

possibility would require extensive experimental work with controlled environmental 

variations but such a study is outside the scope of this work.   

4.5. Level 1 Damage Identification of a Beam with Hinges Using the Damage 

Indicator 

To further the discussion, in this section the experimental model considered above is 

reevaluated with an analogous numerical model with the aim of applying the proposed 

damage indicator for Level 1 detection. The other aims are (a) to show that the unscaled 

damage indicator defined in Equations 2.15 and 2.16 provides information on the extent of 

damage, and (b) to show the use of damage indicator on a system where rotational DOFs are 
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defined. To this end, exact values of modal parameters are calculated from the stiffness and 

the mass matrices of the numerical model. 

The system used in Section 4.4 is a closed system in the sense that even though the 

internal distribution of the mass changes, the total mass of the system is constant To 

investigate the possibility of the application of the damage indicator to such a problem, the 

proposed damage indicator will be tested for such a closed system in a numerical example 

where rotational and translational DOFs are defined for every element in the system. In other 

case studies in the thesis, systems for which rotational DOFs are inconsequential have been 

considered. Rotations may, however, be important for such a beam as used in the 

experimental work discussed in Section 4.4, and therefore the rotational DOFs are included 

here.  

The numerical model employed in this section is a 30 DOF system with 15 beam 

elements in series. For every element, rotational and translational DOFs are defined at nodes. 

Section properties and modulus of elasticity of the beam elements are identical with system 

used in the Section 2.4.2. The stiffness and mass matrices of each beam element are identical 

and in compliance with the Bernoulli-Euler beam model.  Mass of each accelerometers is 

equal to 1.25 times the translational mass of each piece. Four states of the system are 

considered (a) undamaged system, system with (b) 50% reduction, (c) 75% reduction and 

(d) 85% reduction in the modulus of elasticity of the 5th beam element. 

Both unscaled and scaled equations are used when comparing the undamaged state and 

one of the damaged states of the system in order to locate the damage. For the unscaled 

damage indicator defined in Equation 2.15, the extent of damage can be detected as an 

increase in the damage indicator values as can be seen in Figure 4.25. However, the extent 

of damage is not apparent when the scaled damage indicators (calculated using Equation 

2.17) are used as seen in Figure 4.26. 
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Figure 4.25. Unscaled Damage Indicator using Equation 2.15. 

 

Figure 4.26. Scaled Damage Indicator using Equation 2.17. 

Figures 4.25 and 4.26 show that when damage is at a single location, the damage 

indicator calculated with the first rotational mode is positive for a damage location and is 

negative for undamaged locations. On the other hand, the translational damage indicator 

value changes sign on the damage location. The damage indicator for the damaged element 

and for the higher numbered elements takes a positive value and negative in all previous 

locations. 

Only translational responses are measured and the rotations are not measured in the 

experimental study in Section 4.4. The translational damage indicator value is expected to 
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be positive starting from the damaged element to the tip element and will be negative 

between the damaged element (omitted) and the support.  

It is important to note that the natural frequencies and mode shapes have been found 

by solving the eigenvalue problems of the systems. Since the mass matrix is dependent on 

the location of the second sensor, the natural frequencies of the system also depends on this 

location (see Table 4.14). Because the travelling sensor and the reference sensor are not 

located on the same segment (on the last segment at the free end of the beam), the same 

natural frequency values are used for the element at the tip and the element closest to the tip 

element.  

Table 4.14. Estimated Modal Parameters for the first mode 

  Undamaged Damaged 

Element 

Number 

Natural 

Frequency 

Mode 

Shape 

Natural 

Frequency 

Mode 

Shape 

1 11.083 0.047 9.204 0.035 

2 11.093 0.151 9.220 0.098 

3 10.910 0.265 9.195 0.177 

4 10.754 0.397 8.918 0.282 

5 10.523 0.538 8.987 0.457 

6 10.341 0.696 8.714 0.646 

7 10.095 0.847 8.714 0.815 

8 10.095 1.000 8.714 1.000 

 

The translational mode shape of the damaged and undamaged systems are given in 

Table 4.14 and in Figure 4.27. The translational damage indicator is also given in Figure 

4.28. The sign change is observed at the fifth element which is the damaged element as in 

the expectations. 
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Figure 4.27. Mode Shape for two states of the system. 

 

Figure 4.28. Location of damage using Translational Damage Indicator for the 

experimental study. 

Based on the observations regarding this example, it is evident that rotational mode 

shapes should be measured if rotational DOFs contribute significantly to the dynamic 

response. It is possible, however, to detect damage using the translational damage indicator 

alone. The results also indicate that unscaled damage indicators should be preferred as they 

may lead to comparative estimates of the extent of damage when consecutively applied on a 

system with varying damage extent.   
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5. APPLICABILITY OF THE PROPOSED DAMAGE INDICATOR 

TO BUILDINGS 

The aim of this chapter is to discuss the applicability and effectiveness of the damage 

indicator proposed in Section 2.4 to realistic civil engineering structures. To this end, 119 

damage scenarios realized on a regular reinforced concrete building are simulated. 

5.1. The Model Building and Damage Scenarios Considered 

The numerical building model used in this chapter is a six-story reinforced concrete 

structure with 400 m2 floor area. The original plan is symmetric regularly and equally spaced 

25 columns with four spans in each direction as shown in Figure 5.1.  

Slabs have no contributions to stiffness of the structure but work as diaphragms. 

Reduction factors of gross moments of inertia of beams and columns are assigned according 

to ACI 318S-05 Design Code. Columns have 60 cm x 60 cm dimensions and beams have 

30cm x 50cm dimensions. Beam-column connection zones are rigid.  Concrete grade used 

in structure is C25. Figure 5.2 schematically shows the elevation and the cross sections of 

the beams and the columns.  

The damage introduced is defined as a decrease in the modulus of elasticity of the 

target column(s). Damage scenarios considered herein may be classified under four 

categories:  

 Category I: Single Column Damaged 

 Category II: Nine Columns Damaged 

 Category III: All Columns Damaged at a Single Story 

 Category IV: All Columns Damaged at Multiple Stories 
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Figure 5.1. Typical floor plan. 

 

Figure 5.2. Elevation of the six story building. 



 

95 

 

 

First three categories are related to single story and the last item is related to multiple 

damage locations. Category I comprises 50% or 100% drop in the modulus of elasticity of a 

single target column. Category II comprises 25%, 50%, 75% or 100% simultaneous 

reduction in the moduli of elasticity of all (neighboring) nine columns. The remaining two 

categories address two levels: 10% damage corresponds to moderate damage and 90% 

damage corresponds to severe damage. Only in the last four scenarios in which all columns 

are considered damaged four levels corresponding to10%, 40%, 60%, 90 % damage are 

investigated.  

To provide a concise summary of the excessive number of scenarios considered, 

Tables 5.1-5.4 are presented. In these tables, the number of the damage scenario is given as 

dependent on variable 𝑁, which denotes the floor number. Therefore, the cases in which a 

single column on the 6th floor is damaged correspond to damage scenarios (DS # column) 

(6-1)*9+1 to 6*9, i.e. to damage scenarios 46 to 54, The coordinates of the damages element, 

in reference to Figure 5.1, is given under column “Number of Damaged Elements and 

Damaged Zone Center” along with the number of damaged elements. The damage intensity 

associated with a particular case is provided under column “Reduced Stiffness of the 

Element” wherein the ratio of the post-damage modulus of elasticity (𝐸𝑑) to the initial 

modulus of elasticity (𝐸𝑖) is presented. To provide an example for a case in which multiple 

columns are damaged, 𝑁 =  1 in Table 5.2 corresponds to the 58th scenario, in which 9 

neighboring columns  of the first floor (𝑁 =  1) located at the intersection of axes A, B, C 

and 3, 4, 5 as shown in Figure 5.2 with the central column located at coordinates [-5m, -5m] 

(hence the notation ‘9C(-5,-5)’ with 9 indicating the number of damaged columns and C(-

5,-5) referring to the location of the central column in reference to the plan given in Figure 

5.2).   
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Table 5.1. Damage scenarios for Category I (single column damage on a single story). 

Damage 

Scenario 

Number 

Story 

Level 

Number of 

Damaged Elements 

and Damaged Zone 

Center 

Damage 

Location At 

the Level 

Reduced 

Stiffness of the 

Element 

(Ed/Ei) 

Is Damage 

Symmetric 

N*9-8 N 1C(0,0) Middle 0 Yes 

N*9-7 N 1C(10,0) Edge 0 No 

N*9-6 N 1C(-10,0) Edge 0.5 No 

N*9-5 N 1C(0,10) Edge 0 No 

N*9-4 N 1C(0,-10) Edge 0.5 No 

N*9-3 N 1C(-10,10) Corner 0 No 

N*9-2 N 1C(10,10) Corner 0.5 No 

N*9-1 N 1C(10,-10) Corner 0 No 

N*9 N 1C(-10,-10) Corner 0.5 No 

Table 5.2. Damage scenarios for Category II (nine neighboring columns damaged on a 

single story). 

Damage 

Scenario 

Number 

Story 

Level 

Number of Damaged 

Elements and 

Damaged Zone Center 

Damage 

Location At 

the Level 

Reduced 

Stiffness of the 

Element 

Is Damage 

Symmetric 

51+4*N N 9C(5,5) Corner 0 No 

52+4*N N 9C(-5,5) Corner 0.25 No 

53+4*N N 9C(5,-5) Corner 0.5 No 

54+4*N N 9C(-5,-5) Corner 0.75 No 

Table 5.3. Damage scenarios for Category III (all columns damaged on a single story). 

Damage 

Scenario 

Number 

Story 

Level 

Number of Damaged 

Elements and 

Damaged Zone Center 

Damage 

Location At 

the Level 

Reduced 

Stiffness of the 

Element 

Is Damage 

Symmetric 

78+N N 25C(0,0) All Columns 0.1 Yes 

84+N N 25C(0,0) All Columns 0.9 Yes 
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Table 5-4 Damage scenarios for Category VI (all columns damaged on a multiple stories). 

DS 

# 

Story 

Level 

Damaged 

Element/ 

Story (DE) 

Damage 

Location At 

the Level 

Reduced 

Stiffness of 

the Element 

Is Damage 

Symmetric 

91 1,2 25C(0,0) All Columns 0.1 Yes 

92 1,3 25C(0,0) All Columns 0.1 Yes 

93 1,5 25C(0,0) All Columns 0.1 Yes 

94 2,4 25C(0,0) All Columns 0.1 Yes 

95 3,6 25C(0,0) All Columns 0.1 Yes 

96 4,5 25C(0,0) All Columns 0.1 Yes 

97 1,6 25C(0,0) All Columns 0.1 Yes 

98 2,6 25C(0,0) All Columns 0.1 Yes 

99 1,2,3 25C(0,0) All Columns 0.1 Yes 

100 1,2,4 25C(0,0) All Columns 0.1 Yes 

101 1,2,5 25C(0,0) All Columns 0.1 Yes 

102 1,2,6 25C(0,0) All Columns 0.1 Yes 

103 2,4,6 25C(0,0) All Columns 0.1 Yes 

104 3,4,5 25C(0,0) All Columns 0.1 Yes 

105 4,5,6 25C(0,0) All Columns 0.1 Yes 

106 2,3,4 25C(0,0) All Columns 0.1 Yes 

107 1,3,5,6 25C(0,0) All Columns 0.1 Yes 

108 1,4,5,6 25C(0,0) All Columns 0.1 Yes 

109 2,3,4,6 25C(0,0) All Columns 0.1 Yes 

110 2,4,5,6 25C(0,0) All Columns 0.1 Yes 

111 3,4,5,6 25C(0,0) All Columns 0.1 Yes 

112 1,2,3,4 25C(0,0) All Columns 0.1 Yes 

113 1,2,3,4,5 25C(0,0) All Columns 0.1 Yes 

114 2,3,4,5,6 25C(0,0) All Columns 0.1 Yes 

115 1,2,3,4,6 25C(0,0) All Columns 0.1 Yes 

116 All 25C(0,0) All Columns 0.1 Yes 

117 All 25C(0,0) All Columns 0.4 Yes 

118 All 25C(0,0) All Columns 0.6 Yes 

119 All 25C(0,0) All Columns 0.9 Yes 
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5.2. Results Obtained via the Single Mode Damage Indicator with the First Mode 

Undamaged sand damaged systems in each damage scenario are analyzed and their 

respective eigenvalue problems are solved, so that the first natural frequencies in X and Y 

direction (Figure 5.2) and their corresponding, mode shapes are evaluated at the mass center. 

These frequencies and mode shapes are used in Equation 2.15 to estimate the damage 

location.  

 

Figure 5.3. Single Column Damaged on the first story. 

The results obtained via the proposed damage indicator are presented in Figures 5.3-

5.14. To keep the presentation as concise as possible, these figures are divided into subplots 

in each of which resides a particular damage case. To visually correlate the location of the 

damage, the subplots are ordered in similar fashion to the location of the damage in reference 

to Figure 5.2. To give an example of this correlation, Case 1 in Figure 5.3 corresponds to 

damage in the central column (located at [0,0] in Figure 5.2) whereas Case 7 corresponds to 

damage in the upper-right column (located at [10,10] in Figure 5.2) and Case 3 corresponds 

to damage in the middle-left column (located at [-10,0] in Figure 5.2). Rest of the figures 

follow the same construction logic. 
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It is seen in Figures 5.3 – 5.8 that damage at a single column can be identified via the 

damage indicator. The details of the figures and the possible success of the approach does 

show small variations depending on where the damage is. In Figure 5.3, for example, it is 

seen that the damage indicator takes on a value of 1 at the 1st floor level but it has a value 

around ½ for the 2nd floor level, which does not provide a clear cut indication of the first 

floor.  As a single column makes very little difference to the overall structure, it is interesting 

to see that this tendency is almost independent of the severity of damage. 

 

Figure 5.4. Single column damaged on the second story. 
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Figure 5.5. Single column damaged on the third story. 

 

Figure 5.6. Single column damaged on the fourth story. 

The results pertaining to single column damages on the second, third and fourth stories, 

as presented in Figure 5.4, Figure 5.5 and Figure 5.6, respectively, indicate that the damage 

indicator has performed acceptably well, with modes shapes along X and Y leading to 

slightly differing patterns. Overall, all the conclusions overlap with the correct locations, 

even though some cases may hint at multiple locations, especially in neighboring stories. 
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Figure 5.7. Single column damaged on the fifth story. 

 

Figure 5.8. Single column damaged on the sixth story. 

The cases in which a single column is damaged on the fifth and the sixth stories, 

however, have posed bigger challenges for the proposed indicator. It may be said that the 

changes in the fundamental frequencies and mode shapes caused by damage in a single 

column is quite limited, and further so when the damage is located on the upper floors. It is 

therefore not surprising that with such limited impact, Figures 5.7 and 5.8 show certain cases 
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in which the location is identified incorrectly: the success rate of the damage indicator is five 

out of nine cases for both directions and six out of nine for one direction.  

On the other hand, if the damage severity is increased such that 9 columns are damaged 

on a given story, the proposed damage indicator has shown satisfactory performance in all 

cases pertaining to the first-five floors as shown in Figures 5.9-5.13.Once again, the cases 

associated with the sixth story pose bigger problems due to their limited impact on the 

fundamental frequencies and mode shapes. It is seen in Figure 5.14 that in 2 out of the 4 

cases considered, the damage locations have been falsely identified as the 5th story instead 

of the 6th story. It is also noteworthy that in cases in which the damage indicator is 

successful, the reductions in stiffness due to damage are 100% and 75%, whereas in those 

cases in which the damage indicator is in error, these reductions are 50% and 25%. 

Furthermore, the trends observed in all cases pertaining to 9 columns being damaged are 

similar for both directions. 

 

Figure 5.9. Nine columns damaged on the first story. 
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Figure 5.10. Nine columns damaged on the second story. 

 

Figure 5.11. Nine columns damaged on the third story. 
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Figure 5.12. Nine columns damaged on the fourth story. 

 

Figure 5.13. Nine columns damaged on the fifth story. 
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Figure 5.14. Nine columns damaged on the sixth story. 

In the extreme case of having all columns damaged on a story, the performance of the 

proposed damage indicator is strongly correlated with the damage severity. For severe 

damage cases corresponding to 90% stiffness reduction, the proposed indicator can clearly 

identify the location. In the case of mild to moderate damage, as for example in the cases 

corresponding to 10%10% reduction in stiffness, the proposed indicator yields some false 

positive results in the sense that the damage is located on adjacent story as opposed to the 

correct one. Relevant results are provided in Figures 5.15 and 5.16. 
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Figure 5.15. All columns severely damaged on a single floor. 

 

Figure 5.16. All columns mildly damaged on a single floor. 

The observations related to cases in which damage occurs on a single story resurface 

when multiple damage locations (i.e. damage on a number of different stories) are 

considered. Figures 5.17 – 5.21 show results pertaining to those cases in which columns are 

severely damaged simultaneously on two or three floors. These results indicate that even 

when multiple locations are in effect, the proposed damage indicator may successfully be 
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employed to locate the damaged stories, especially if the stories are located around the mid-

level of the building. As before, cases involving the last two stories are more prone to errors.  

 

Figure 5.17. All columns severely damaged on two different stories. 

 

Figure 5.18. All columns severely damaged on two or three different stories. 

It is important to note that as the number of locations increase, and in the final case 

reach the level that damage is simultaneously on all stories, the proposed indicator can no 
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longer lead to meaningful results. In essence, the proposed indicator is a ‘local’ tool and 

when the damage is distributed its effectiveness is lost. 

 

Figure 5.19. All columns severely damaged on three or four different stories. 

 

Figure 5.20. All columns severely damaged on four or five different stories. 
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Figure 5.21. All columns severely damaged on five or six different stories. 

5.3. Results Obtained via the Single Mode Damage Indicator with the Second and 

Third Modes 

The previous analysis is replicated in this section by using the second and the third 

modes. The aforementioned procedure is used also in these cases for calculating the natural 

frequencies and the mode shapes of the second and the third modes at the mass center of the 

stories. For ease of comparison with the previous case, only some of the results related to 

the first, the third and the sixth stories are exhibited here.  

In the first case, the performance of the single mode damage indicator using the second 

mode is analyzed. It is known from the previous studies of Sections 2.5 and 4.3 that saddle 

points hinder the proposed damage detection method. The saddle point of the second mode 

for this structure is between the third and the fourth floors, and thereby it is expected to affect 

the damage indicator in relation to the fourth story. The results in Figures 5.22 to 5.24 show 

that this indeed turns out to be the case as the damage indicator is affected by the saddle 

point such that a local peak occurs on the fourth story in the damage indicator estimates. 

Consequentially, the damage scenarios related to the third story cannot be detected by the 

second mode damage indicator. For the other damage scenarios related to first and sixth 
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story, the damage location is detected by this parameter in the sense that the largest peak 

occurs at the correct location even though erroneous peaks are still present. 

 

Figure 5.22. Damage detection for scenarios in which a single column is damaged on a 

single floor via the single mode damage indicator using the second mode. 

 

Figure 5.23. Damage detection for scenarios in which nine columns are damaged on a 

single floor via the single mode damage indicator using the second mode. 
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Figure 5.24. Damage detection for scenarios in which all columns are damaged on a single 

floor via the single mode damage indicator using the second mode. 

 

Figure 5.25. Damage detection for scenarios in which a single column is damaged on a 

single floor via the single mode damage indicator using the third mode. 

As far as the single mode damage indicator using the third mode is concerned, the 

saddle points of the third mode are related to the third and fifth floors. The results in Figures 
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5.25 to 5.27 show that damage detection is affected by the presence of these saddle points as 

the damage indicator shows local peaks on the third and the fifth floors. The damage 

scenarios related to the third story are correctly identified by the third mode damage indicator 

with only 50% success. For the other damage scenarios related to the first and the sixth 

stories, the damage location is detected more accurately by this parameter even though the 

local peaks persist. 

 

Figure 5.26. Damage detection for scenarios in which nine columns are damaged on a 

single floor via the single mode damage indicator using the third mode. 

Compared with the case of the single mode damage indicator using the first mode, the 

use of the second and the third modes are seen to slightly increase the success rate pertaining 

to damage cases concerning the sixth story On the other hand, when overall results are 

considered, the use of the first mode in the single mode damage indicator is seen to yield a 

higher confidence level.  

As far as damage scenarios encompassing multi floors are concerned, the effect of 

saddle points on the damage indicator is observed similarly to the single story scenarios. In 

Figure 5.28, the local peaks coinciding with the saddle points yield false positive results. For 
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this example in which there are only six stories, the results pertaining to damage scenarios 

concerning multiple stories are negatively affected and unreliable. 

 

Figure 5.27. Damage detection for scenarios in which all columns are damaged on a single 

floor via the single mode damage indicator using the third mode. 

 

Figure 5.28. Damage detection for scenarios in which all columns are damaged on a single 

floor via the single mode damage indicator using the second and the third modes. 
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5.4. Results Obtained via the Multi-Mode Damage Indicator with the First Three 

Modes 

It was observed in the previous sections that the first mode is susceptible to false alarms 

when damage occurs at the tip of the structure but that it is a reliable indicator for those cases 

in which damage occurs elsewhere. The second and the third modes, on the other hand, have 

shown better performance in estimating the damage when it is located at the tip of the 

structure whereas they have been significantly prone to false alarms around the saddle points. 

In order to overcome these disadvantages observed in the single mode damage indicator, the 

multi-mode damage indicator is investigated in this section. The multi-mode damage 

indicator is calculated by summing the unscaled damage indicator values of the first three 

modes. The results obtained for various damage scenarios are displayed in Figures 5.29 to 

5.31. 

 

Figure 5.29. Damage detection for scenarios in which a single column is damaged on a 

single floor via the multi-mode damage indicator using the first three modes. 
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Figure 5.30. Damage detection for scenarios in which nine columns are damaged on a 

single floor via the multi-mode damage indicator using the first three modes. 

 

Figure 5.31. Damage detection for scenarios in which all columns are damaged on a single 

floor via the multi-mode damage indicator using the first three modes. 

The multi-mode damage indicator is seen to have better success compared to the single 

mode indicator in detecting the actual damage locations in the damage scenarios considered. 
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The disadvantages of each single mode indicator discussed in the previous sections are seen 

to have been overcome by using a cumulative approach. Neither sets of saddle points 

pertaining to the second and the third mode indicators have noticable adverse affects, and 

false positives are not encountered. Based on the analyses so far, it may be recommended 

that either the multi mode damage indicator and or the single mode damage indicator with 

the first mode is used for when damage is expected to be localized on a single story. 

Finally, Figure 5.32 shows the results obtained, using the multi-mode damage indicator 

with the first three modes and the single mode damage indicator with the first mode, for 

some of the scenarios encompassing damage on multiple floors. The results show a slightly 

better performance for the multi-mode indicator, especially when damage occurs near the 

top end.  Once again, the recommendations previously stated prevail, and overall it is 

recommended that both the multi mode damage indicator and the single mode damage 

indicator with the first mode are employed simultaneously by the analyst to further increase 

confidence and reliability.  

 

Figure 5.32. Damage detection for scenarios in which all columns are damaged on mutiple 

floors via the multi-mode damage indicator using the first three modes. 
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6. ESTIMATION OF MODAL PARAMETERS FROM REAL DATA 

The purpose of the chapter is to investigate the performance of the count plot 

methodology on real data measured on a reinforced concrete structure. In this context, data 

recorded as part of a project is used. Accelerometers are installed on a five story reinforced 

concrete structure (See Figure 6.1), and ambient vibration data is collected at different stages 

of demolishing. The accelerometer records used in this section are taken from two different 

states of the building. Eight recordings are from the undamaged building, and eight others 

are taken after some damage is induced. The measurements are taken from four corners on 

each floor for 20-25 minutes. 

The accelerometers are placed as shown on the plan view of Figure 6.2. For the 

Undamaged State, the reference accelerometer is placed at position “A” on the fifth floor, 

and for the Damaged State, the reference accelerometer is placed on position “B”. Other 

accelerometers are travelling in the sense that data is taken from a given floor for a sufficient 

duration and the accelerometers are then moved to another floor while keeping the reference 

sensor unmoved. For the analyses reported in this section, only the measurements for the 

accelerometers placed on position “A” at each floor are considered for the Undamaged State, 

and similarly for the Damaged State only the measurements collected on position “B” at 

every floor are used.  

The damage in this particular case pertains to demolition of three columns of the first 

story and one beam connecting two of the demolished columns, as shown in Figure 6.1. 

Columns and beams were destroyed by the JCB Hydraulic Rock Breaker device. The project 

is about the damage scenarios as follows: 
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Figure 6.1. The reinforced concrete building investigated and the structural elements 

removed to induce damage. 

 

Figure 6.2. Accelerometer locations on a floor, plan view. 
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1. One column is severely damaged 

2. Three columns are severely damaged  

3. Three columns are damaged severely and a beam is demolished 

4. One column and beam are demolished, two columns severely damaged. 

5. Three columns and beam are demolished. 

Since damage cannot be retrieved back, the damage scenarios are cumulative. In this 

study, the undamaged and damage scenario five is considered in order to evaluate the natural 

frequency changes due to damage by utilizing count plots. For ease of reference, the initial 

state will be simply referred to as the Undamaged State, and the post damage state will be 

referred to as the Damaged State. 

The initial step undertaken is to conduct a preliminary investigation regarding the 

quality of the data. No trend is observed in the signal. However some impact type effects 

and some environmental effect based noise are observed in the data.  Since data with five 

minute duration is proper for the identification step, for 20-25 minute records only five 

minute continuous measurements which does not contain impact type effects are selected. 

For the data especially for the first and third story post damage measurements, the 

environmental noise is serious which result in selection of two minutes and lower continuous 

measurements from 20-25 minute records. For the 1st story measurements, 0.8, 1.2, 1.6, 2.5 

minute durations are used, and for the third story measurements, 1.1, 1.2 and 1.5 minute 

durations are used. The power spectral density estimates for the measurements used in the 

analyses are displayed in Figures 6.3 and 6.4. Two close peaks and one distinct peak are 

observed. 

The first two steps described above provide preliminary information about the data 

and the system. In the third step, first-order dynamic models are established with the 

O3KID/ERA methodology. The number of observers is set to 800 in the O3KID analysis. 

Every acceleration measurement is analyzed separately with its corresponding ‘reference’ 

measurement. The data is divided into 25.35 seconds long, overlapping segments. For 

records of 3 minutes, overlap is set to 2.5 seconds, whereas for records of 5 minutes, overlap 

is set to 2.5 seconds. For each data segment, a total of 390 frequencies between 0-100 Hz 
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calculated via the identified state space models and the modal plot is constructed. To observe 

any variations dependent on the tolerance limit, ± 0.01 and ± 0.04 are set as tolerance limits 

for the modal variables, the counts for each estimate are calculated, and the count plots 

shown in Figures 6.5 to 6.8 are obtained. 

 

Figure 6.3. PSD estimates for the eight data sets obtained from acceleration data measured 

during the Undamaged State. 

 

Figure 6.4. PSD estimates for the eight data sets obtained from acceleration data measured 

during the Damaged State. 
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Figure 6.5. Count plot estimates for the eight data sets obtained from acceleration data 

measured during the Undamaged State using a tolerance limit of ±0.01. 

 

Figure 6.6. Count plot estimates for the eight data sets obtained from acceleration data 

measured during the Undamaged State using a tolerance limit of ±0.004. 
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Figure 6.7. Count plot estimates for the eight data sets obtained from acceleration data 

measured during the Damaged State using a tolerance limit of ±0.01. 

 

Figure 6.8. Count plot estimates for the eight data sets obtained from acceleration data 

measured during the Damaged State using a tolerance limit of ±0.004. 

When the results are examined in detail, it is seen that the first two modes which are close 

to each other on the PSD graph can be detected more accurately for the tolerance limit 0.01. 

Damage-induced natural frequency changes appear to be 2%, 1% and 1% respectively for 
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the first three modes. For the first three modes, the frequency shifts are observed and 

tabulated in Tables 6.1-6.3. 

Table 6.1. Estimated natural frequency for the first mode: 

Stories Undamaged Damaged State Difference (%) 

1 and 5 3.754 3.649 2.80 

2 and 5 3.77 3.695 1.99 

3 and 5 3.771 3.654 3.10 

4 and 5 3.743 3.687 1.50 

Average 3.759 3.671 2.34 

Table 6.2. Estimated natural frequency for the second mode: 

Stories Undamaged Damaged State Difference (%)  

1 and 5 4.107 4.035 1.75 

2 and 5 4.089 4.05 0.95 

3 and 5 4.085 4.06 0.61 

4 and 5 4.053 4.042 0.27 

Average 4.084 4.047 0.91 

 

Table 6.3. Estimated natural frequency for the third mode: 

Stories Undamaged Damaged State Difference (%) 

1 and 5 4.8 4.77 0.63 

2 and 5 4.847 4.752 1.96 

3 and 5 4.81 4.76 1.04 

4 and 5 4.813 4.765 1.00 

Average 4.818 4.761 1.18 
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7. CONCLUSIONS 

In this thesis, system identification and damage detection problems are considered. 

Original novel procedures are proposed and the performances of the proposed methods are 

discussed through numerical and experimental data sets.  

One of the major aims of this thesis work has been to establish an indicator that can be 

used reliably to detect damage in beam-like structures, and this issue is addressed in Chapter 

2. To this end, significant modifications and improvements are performed on a parameter 

initially introduced by Yuen (1985), such that the method is generalized to include both 

single and multiple modes, and the restriction to the fundamental mass-normalized mode is 

eliminated. However, as a drawback of this generalization, “saddle points” are introduced. 

The proposed method has been successfully used to locat the damage in a number of different 

damage scenarios, including those with multiple damage locations, through extensive 

numerical simulations.  

Chapter 3 is focused on system identification, stabilization diagrams, modal plots and 

count plots. The modal plot procedure is introduced, its conversion to the count plot in order 

to estimate the natural frequency and mode shape amplitude is developed. The count plots 

indicate that the largest clustering is at the natural frequencies of the system such that these 

plots, which are constructed via direct application of time domain techniques, may pose an 

alternative to the PSD Estimation method conducted in the frequency domain. These issues 

and applications regarding the joint use of count plots with the previously developed damage 

indicator are further developed in Chapter 4 through extensive simulations. The issue of the 

saddle points is addressed in the context of sensor deployment strategies. In an experimental 

study, it is observed that the existence of damage can be directly inferred by the variations 

in the modal zones.  

In Chapter 5, the applicability of the proposed damage detection approach to realistic 

civil engineering structures is addressed via the numerical model of a six story building. One 

hundred and nineteen damage scenarios, out of which ninety correspond to instances of 
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single damage locations, are considered. The efficiency of the damage indicator, using both 

single modes and multiple modes as proposed in Chapter 2, is demonstrated through these 

damage scenarios. 

In Chapter 6, data from a five story real structure is investigated and the count plot is 

used to investigate the natural frequency changes between the undamaged state and a damage 

state of the structure. The instrumentation, data collection and data analysis stages, in all of 

which the present author actively participated, provide a complete real life case study which 

lends further support to the applicability of the proposed methods to real structures.   

Immediate further work related to the proposals contained in this thesis would be 

expected to focus on further experimental validations and also structured investigations to 

identify the significance of the variations of modal zones for different damage types. 
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