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ABSTRACT 

An effective analytical model based on the hybrid FEM-DRBEM scheme has been 

developed to study the fluid-structure interaction and earthquake response of arch dam

reservoir systems. Applying the substructure technique, the finite element method is utilized 

to model dam structure and the dual reciprocity method is used to model the reservoir domain. 

Considering the bottom absorption effects, the reservoir domain is idealized as a finite region 

of irregular geometry adjacent to an infinite domain of uniform cross section. The three

dimensional dual reciprocity method is applied to model the finite domain of the reservoir. 

The uniform infinite domain is modeled by applying two-dimensional eigenvalue analysis 

based on the dual reciprocity formulations over the uniform cross section combined with a 

continuum expression in the upstream direction. Based on the model, a computer code has 

been developed to calculate the seismic response of a three-dimensional dam-reservoir system 

of arbitrary geometry to upstream-downstream, cross-stream and vertical harmonic ground 

motion. The model is verified by comparing the hydrodynamic response of a three,. 

dimensional rectangular reservoir with that from the analytical formulation existing in the 

literature. The model was applied to investigate the hydrodynamic and structural response of 

the Karakaya dam-reservoir system. The effects of arch dam-reservoir interaction, the reservoir 

geometry and the reservoir boundary bottom absorption on the hydrodynamic and structural 

responses are studied 

Key Words: Fluid-structure interaction, dual reciprocity boundary element method, finite 

element method, arch dam 
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OZET 

Bu tezde, deprem etkisiyle kemer baraj-resrvuar sistemlerinde yapl-su etkile~imini 

incelemi~tir. Bu ama<;la sonlu elemanlar metodu (SEM) ve kar~lthkh smlr elemanlan metodu 

(KSEM) kullamlarak 3-boyutlu bir hibrid nlimerik model geli~tirmi~tir. SEM kemer baraj 

govdesinde, KSEM ise reservuann modellenmesinde kullamlml~tlr. Baraj reservuan taban 

geometrisinin ve tabanm sonumleme etkisinin hissedildigi sonlu uzunluktaki bir hacim ve 

enerji radyasyonu etkisiyle sonumlemenin etkili oldugu uniform kesitli sonsuz bir hacim 

olarak iki par<;ada ele ahnml~t1r. Sonlu hacim i<;in 3-boyutlu KSEM kullamlml~t1r. Sonsuz 

hacimde, du~ey duzlemde 2-boyutlu KSEM kullamhrken reservuar aksl yonunde analitik bir 

ifadeden yarar1amlml~t1r. Geli~tirilen modelle, istenen geometrideki 3-boyutlu kemer baraj

reservuar sistemlerinin depreme tepkisi elde edilebilmektedir. Model baraj ve reservuann 

depreme tepkilerinin ayn ayn hesaplanmasma olanak sagladlgl gibi etkile~imlerinin de 

incelenmesine olanak saglamaktadlr. Model sonu<;lannm dogrulugunun ara~tmlmasl ise 

literattirde mevcut olan basitle~tirilmi~ geometrideki baraj-reservuar sistemleri i<;in elde edilen 

analitik model sonu<;lan kullamlarak yapllml~t1r. Aynca modelin SEM ile ge1i~tirilen 

klsmlannm sonuylan SAPIV programl sonu<;lan ile kar~lla~tmlml~t1r. Kar~lla~tmnalar 

sonucunda modelin dogrulugu gosterilmi~tir. Model Karakaya Barajl ve reservuanna 

uygulanml~tlr. Sistemin rezervuar aksma paralel veya dik yonlerde uygulanan bir depreme 

tepkisinin, yapl-su etkile~imi, taban geometrisi ve taban sonumlemesi ile degi~imi 

incelenmi~tir. Model sonu<;lan baraj govdesi uzerinde detayh hidrodinamik basmy ve kuvvet 

dagIllmlan olarak sunulmu~tur. 
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1. INTRODUCTION 

The ever increasing demand for energy and the need to better manage our limited water 

resources necessitates the design and construction of dams. Often, dams have to be constructed 

in regions of considerable seismic activity. The catastrophic consequences of a dam failure 

make it especially important that such structures be designed to withstand seismic activity. 

The evaluation of the safety of existing dams subjected to earthquakes is also of vital 

importance. Thus, there exists a strong motivation for research leading to better analysis and 

design methods to study the earthquake response of dam systems. The present study will 

concentrate on the earthquake response of arch dam systems. 

An arch dam system consists of the arch dam itself, the foundation and the reservoir. 

The study of the earthquake response of an arch dam system is complicated by the dynamical 

interactions between these components. Improved understanding ofthe complex interactions 

between these aspects is necessary to the development of more reliable analysis procedures 

and mathematical models. As a result, extensive research has been carried out on the complete 

dam-reservoir-foundation system in an attempt to achieve better understanding ofthe dynamic 

behavior of the sub-systems and their interactions. In spite of the great volume of work on 

dam-reservoir systems, the inherently complex system still remains a difficult problem. The 

rapid progress in modem computing technology, together with significant developments in 

numerical methods has paved the way to the development of more effective and accurate 

procedures to study the dynamic interactions among the structural, hydro dynamical and 

geotechnical aspects and the behavior of the total system. 

1.1. Problem .Definition 

The arch dam-reservoir-foundation system includes domains with different properties 

and behaviors. These domains are the concrete arch dam, the foundation rock, the impounded 

water in the reservoir and the bottom sediments. During earthquakes these domains interact, 

therefore it is essential to carry out the analysis of the complete system. The development of 

a technique to study the earthquake response of arch dams is complicated by several 

geometrical and interactive factors. The deformations ofthe dam interactively influence water 



motion in the reservoir and the deformation ofthe bed rock. Numerical methods are the only 

solution means able to overcome such complexities 

The application of numerical methods to model the complete response of the dam

fluid-foundation system was greatly improved with the introduction of the substructure 

concept. In addition to its efficiency in reducing computational effort and storage, it pemlits 

the application of different mathematical methods to model each of the substructures. Based 

on the method, the foundation and reservoir domains are first solved separately as 

substructures. Subsequently, these solutions are used to modify the equations of the dam 

structure and of the other substructures. 

A survey of past studies indicates that the finite element method is the preferred 

method for modeling the arch dam structure. The reservoir, in most cases, extends to a very 

large distance in the upstream direction. ·To include a sufficient part of the reservoir into the 

analysis, it is customary to idealize it as a finite region of irregular geometry adjacent to an 

infinite domain with uniform cross section. The inclusion of a realistic representation of the 

reservoir geometry in the finite region requires considerable computational effort. The 

compatibility and equilibrium conditions of pressure and pressure gradients are applied at the 

so-called far boundary or scattering boundary along the interface of the finite and infinite 

regIOns. 

As the interaction problem is defined on the interface ofthe dam and the reservoir, the 

boundary element method seems to be a logical choice in modeling the reservoir domain. The 

major difficulty encountered in applying the classical boundary elements formulation to the 

dynamic analysis of the arch dam-reservoir system is due to the fact that the system matrices 

implicitly contain the frequency parameter embedded in the fundamental solution. A recent 

development in the boundary element method is the adopting of a frequency independent 

fundamental solution which results in the dual reciprocity method. The method was applied 

successfully to model a two-dimensional dam-reservoir interaction in the frequency domain 

by Tsai et al (1988). One ofthe objectives of the present study, is to extend the formulation 

based on the dual reciprocity method to include the bottom absorption effects and to apply the 

method to model the three-dimensional finite region of the reservoir. 



To account for the energy loss due to the radiation damping in the infinite domain, an 

effective model was proposed by Hall and Chopra(1980). The model utilized the separation 

of variables technique to combine a two-dimensional finite element discretization over the 

uniform cross section of the domain with a continuum expression in the upstream direction. 

The problem ultimately reduced to the solution of a standard eigenvalue problem. An 

alternative model, due to Rashed and Kandasamy (1990), based on the boundary element 

method had the major drawback that the system matrices were implicitly dependent on the 

eigenvalues of the system which meant that the problem could not be cast in the form of a 

standard eigenvalue problem. 

Recent developments in the dual reciprocity method have proven the method to be an 

effective tool in the application to free vibration elasticity problems (Nardini and 

Brebbia,1982, Ahmad and BaneIjee,1986) and acoustic eigenvalues analysis (Baneljee, et 

al,1988, Ali, et al,1991). Another objective ofthis study is to use the dual reciprocity method 

together with the separation of variables technique to model the radiation condition at the far 

end of the reservoir. 

In summary, the objectives of the present study are: 

(a) to model the arch dam-reservoir system, using the finite element method for the dam 

structure and the dual reciprocity method for the reservoir domain; 

(b) to develop a formulation based on the dual reciprocity method to account for the radiation 

condition at the reservoir far end; 

(c) to study the interaction effects of the arch dam-reservoir system on the hydrodynamic 

pressure in the reservoir; and 

(d) to study the seismic response of the Karakaya dam-reservoir system. 
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1.2. Literature Survey 

Over the last two decades, great progress in analyzing and testing the earthquake 

behavior of concrete dams has been made. Early studies were mainly concerned with the 

analytical solution of the hydrodynamic pressure distribution on rigid dams. The introduction 

of numerical techniques into the analysis has facilitated comprehensive studies of the dynamic 

behavior of the complete reservoir-darn-foundation system. Special attention was given to the 

interactions among the different domains ( the dam structure, the reservoir and the foundation 

rock). A survey of the literature in this area reveals the development of various analytical and 

numerical models to study the problem. In this section, a review of the existing analytical, 

numerical and experimental studies is presented. 

1.2.1. Concrete Gravity Dam 

In general, the length of a concrete gravity dam is large in comparison to its thickness 

and its cross-section usually remains constant throughout its length. In practice, for a majority 

of the cases, a concrete gravity dam may be considered as a two-dimensional system. The 

literature contains numerous studies of the seismic response of gravity dam-reservoir

foundation systems. 

The first analytical study of the earthquake induced hydrodynamic pressure on rigid 

dams was carried out by Westergaard (1933). In his study, he solved the hydrodynamic 

pressure on a rigid vertical dam due to the horizontal harmonic motion for a compressible 

reservoir. He suggested the "added mass" concept which influenced designers for a long time. 

The importance of reservoir-dam interaction in determining the dynamic behavior of the 

system was demonstrated by Chopra (1967a, 1967 b, 1968, 1970). In his studies, he represented 

the deformations of the dam by considering the first fundamental mode shape of the dam. He 

treated the reservoir as a continuum whose motion was governed by a two-dimensional wave 

equation. He determined complex frequency responses for the coupled reservoir-dam system 

subjected to both arbitrary ground motions and to stationary whil;~ noise excitation. He found 

that neglecting the water compressibility may lead to results with significant error. He 
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demonstrated that simple analyses which ignore dam-reservoir interaction may not be 

satisfactory in predicting the behavior of the dam. Chakrabarti and Chopra (1974) found the 

contribution of the vertical component of ground motion to be of special importance in the 

dam-reservoir seismic response. 

The analysis of the complete response of the dam-fluid-foundation system was greatly 

enhanced with the introduction of the substructure concept. Applications of the substructure 

technique to the dam-water-foundation interaction system were carried out by Chakrabarti and 

Chopra (1973a,1973b,1974) to model the dam-reservoir interaction, by Vanish and Chopra 

(1974) to model the dam-foundation system and by Chopra and Chakrabarti (1981) to model 

the dam-water-foundation system. Chakrabarti and Chopra (1 973b, 1974) applied the finite 

element method to model the dam structure, and a continuum solution to model the reservoir. 

The structural displacements of the dam, including effects of the water, were expressed as a 

linear combination of undamped free vibration modes of the dam structure. They found the 

procedure to be very effective and to give excellent results even though only the first few 

modes were used. 

The finite element method was used to model the reservoir by Hall and Chopra (1980). 

In their study, treating the dam structure and fluid domain as substructures, they developed 

two- and three-dimensional finite and infinite reservoir models. In the infinite reservoir model, 

they coupled the finite element model with the continuum solution to model the radiation waves 

at the far end of the reservoir. To account for the effects of foundation flexibility on the 

hydrodynamic pressure response, they proposed a simplified one-dimensional fluid-foundation 

interaction model which allowed energy dissipation along the fluid-foundation boundary. 

Chandrashaker and Humar (1993) verified the simplified model by comparing it with a hybrid 

finite elements- boundary elements model. They concluded that the difference between the 

model and the simplified approach was minor in the case of the displacement response 

functions. 

Different approaches to study the radiation and scattering of water waves in two

dimensional reservoirs were proposed by Humar and Roufail (1983), ~_.aran and Gladwell 

(1985) and Sharan (1987). They used finite elements to model the res,=rvoir and proposed 



different analytical formulations to model the radiation boundary condition in the frequency 

domain. 

The effects of energy absorption due to the interaction between the reservoir water and 

the underlying sediments and the flexible soil, were studied extensively by F enves and Chopra 

(1983,1984a,1984b,1985). In their studies, they demonstrated the importance of reservoir 

bottom absorption in reservoir and dam responses. In the models, considering the foundation 

to be rigid, these responses can be affected primarily in the case where the excitation frequency 

is smaller than the fundamental frequency of the reservoir. Lotfi et al (1987) proposed fluid

solid hyper-elements and Cheng( 1986) proposed the use of poro-elastic sediments to model 

the reservoir bottom sediment effects. 

Rapid developments in boundary elements methods in the last decade have facilitated 

the application of the method to model the dam-reservoir-foundation system. Humar and 

Jablonski (1988) applied the method to analyze the hydrodynamic forces on a rigid dam. 

Medina and Dominguez (1989) applied the method to account for the dynamic interaction of 

dam-water-foundation systems in the seismic response of concrete gravity dams. Tsai, et al 

(1988,1992) proposed a hybrid scheme based on finite elements to model the dam structure 

and boundary elements with particular integrals to model the near reservoir domain. In his 

analysis, he demonstrated the efficiency of the frequency independent fundamental solution in 

the boundary-elements formulation of the fluid domain. 

1.2.2. Arch-Dam 

The behavior of arch dam-reservoir-foundation system is a complex phenomenon. The 

geometrical and interactive complexities make the prediction of the system response by 

analytical means difficult, and suggest numerical methods as the only solution strategy for the 

analysis of the complete system. Due to these complexities, studies on the seismic analysis of 

arch dams have not been as detailed as those of concrete gravity dams. 

Earlier studies have treated the arch dam as a rigid body in order to obtain the analytical 

formulations of the hydrodynamic pressures on the upstream face of the arch da.nL 
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Kotsubo(1961) idealized the arch dam to have a central arch angle of 90°, a constant upstream 

radius and radially extended vertical banks. In his study, he solved the three-dimensional wave 

equation analytically for harmonic excitations. Extending the analytical formulations to permit 

arbitrary ground excitations, Permumalswami and Kar( 1973 a) demonstrated the importance 

of compressibility in the seismic hydrodynamic response on the arch dams. Neglecting water 

compressibility, Zienkiewicz and Nath (1963) computed the hydrodynamic pressure distribution 

on arbitrary three-dimensional reservoir and dam geometry using the electrical analogue. 

To account for the arch dam-reservoir interaction, one-mode analysis of the idealized arch dam 

subjected to the upstream-downstream ground motion was developed by Perumalswami and 

Kar(1973b). Utilizing the substructure technique, Porter and Chopra (1980,1981,1982) 

presented a generalization of the work so as to include any number of vibration modes. The 

arch dam was idealized with finite elements while the hydrodynamic pressure distribution in 

the reservoir was determined analytically. They showed the importance of two factors on the 

arch dam response: the arch dam-reservoir interaction and the additional hydrodynamic force 

resulting from the motion of the banks. 

The finite-elements method has been successfully applied to model the arch dam

reservoir system. In their model, Hall and Chopra (1980, 1982a, 1982b) have treated the dam 

structure and the reservoir as substructures. Taking the fluid-foundation interaction into 

consideration, they applied the method for both finite and infinite reservoir domains. In 

modeling the infinite reservoir domain, they assumed the reservoir to be of a constant cross 

section beyond some upstream point. For such an infinite, uniform region, the finite element 

discretization over the cross section was combined with a continuum representation. 

Nath( 1981) focused on modeling the coupled natural frequencies and mode shapes of realistic 

circular cylindrical arch dams using novel mapping finite elements. 

The complete arch dam-reservoir-foundation was modeled using the finite elements by 

Fok and Chopra (1985, 1986a, 1986b, 1986c). In their studies, they extended the works of Hall , 

and Chopra (1980,1982). They considered the bottom absorption coefficient in the water

foundation model to account for sedimentary material on the reservoir boundary. Using finite 

elements, they developed a homogeneous, massless foundation rock mod.;: to incorporate the 

foundation flexibility into the structure-foundation system. As an alternative to this model, two-



dimensional boundary elements with Fourier expansion formulation was developed to model 

the foundation impedance matrix by Zhang and Chopra (1991). Further developments to 

include the material and radiation damping of the foundation were done by Tan and Chopra 

(1995) utilizing the boundary element method. 

Although the solution of continuum domain vibration problems by boundary element 

techniques offers many advantages, there are only a few studies in the application of the method 

to solve the dam-reservoir-foundation system. In the literature, most of the studies have applied 

the method to model the foundation domain in the dam structure-foundation rock problem. The 

works of Nowak and Hall (1990) and Tan and Chopra (1995) are examples to these studies. 

Boundary elements were applied to solve the fluid domain in the arch dam-reservoir system by 

Tsai and Lee (1987). Neglecting water compressibility, they applied a hybrid finite 

elementslboundary elements scheme. Considering the compressibility of the water, Humar and 

Jablonski and Humar (1986) applied the method in solving the three-dimensional wave equation 

to evaluate the hydrodynamic pressure on a rigid arch dam. The Boundary elements method 

was applied to the complete dam-reservoir-foundation system by Maeso and Dominguez 

(1993). They utilized the classical boundary elements formulation to model all three domains, 

taking into consideration the arch dam- foundation rock interaction, the arch dam-reservoir 

interaction, the reservoir-foundation rock interaction and traveling waves. 

1.3. Scope of the Study 

In the present study, the substructure technique in the frequency domain is adopted to 

treat the arch dam-reservoir interaction system assuming the foundation rock at the dam base 

and canyon banks to be infinitely rigid. The finite element method is utilized to model dam 

structure and the dual reciprocity method is used to model the reservoir domain. In the model, 

the behaviors of the arch dam and the reservoir are assumed to be linear and the free-field 

ground motion is assumed to be uniform across the arch dam-reservoir system. 

In Chapter 2, the material and geometrical properties and the assumptions of each of 

the domains in the arch dam-reservoir system are stated and the input ground motion is defIned. 
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In Chapter 3, the frequency domain equations of motion and the boundary conditions of the 

dam structure and the reservoir are presented together with the substructure procedure. In 

Chapters 4 and 5, the three-dimensiortal dual reciprocity formulations for the finite domain of 

the reservoir and the two-dimensional dual reciprocity with the continuum expression for the 

infinite domain are presented. The model results are verified by comparing them with the 

analytical solution of the hydrodynamic response of the three-dimensional rectangular reservoir 

in Chapter 6. The hydrodynamic and structural response of the Karakaya dam-reservoir system 

are studied in Chapter 7. In Chapter 8, the conclusions and recommendations for future 

research are presented. 
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2. ARCH DAM-RESERVOIR SYSTEMS AND GROUND MOTION 

The arch dam-reservoir-foundation system includes domains with different properties 

and behaviors. These domains are the concrete arch darn, the foundation rock, the impounded 

water in the reservoir and the bottom sediments. During earthquakes these domains interact 

therefore it is essential to carry out the analysis of the complete system. In this study, the 

substructure technique in the frequency domain is adopted to treat the fluid-structure 

interaction system assuming the foundation rock at the darn base and canyon banks to be 

infinitely rigid. Based on the method, the foundation and reservoir domains are first solved 

separately as substructures. Subsequently, these solutions are used to modify the equations of 

the darn structure and of the other substructures. In the dynamic analysis of the system, the 

behaviors of the arch darn and the reservoir are assumed to be linear. Therefore, there is no 

possibility of water cavitation, concrete cracking or opening of the construction joints during 

the earthquake. The free-field ground motion is assumed to be uniform across the arch dam

reservoir system. 

2.1. The Arch Dam 

An Arch dam is a type of concrete dam that is curved upstream in the plan. Arch dams 

are designed to transmit a major part of the imposed loads to the canyon walls by horizontal 

thrust. In this study, finite elements are used to discretize the dam. Two types of elements are 

used in the analysis, three-dimensional solid elements and three-dimensional thick shell 

elements. The dam material is considered to be linearly elastic and the deformations of the 

dam small, resulting in linear force-deformation relations for the arch dam. The properties of 

each finite element are characterized by its Young's modulus, Poisson's ratio, the unit weight 

of the concrete and the damping factor. The vibrational energy dissipation properties of the 

darn are characterized by the constant hysteretic damping factor. 
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2.2. The Reservoir 

The reservoir of an arch dam is usually of complicated shape. In some cases, the 

reservoir geometry may be such that the entire fluid domain can be incorporated in the model. 

while in other cases, only part of an extensive reservoir may be included in the analysis. As 

the bottom topography in the immediate vicinity of the dam affects the hydrostatic pressure 

distribution, an efficient analysis needs to include a realistic part of the reservoir geometry. 

The bottom of a reservoir upstream fmm a dam may consist of highly variable layers of 

exposed bedrock, alluvium, silt and other sedimentary material. The absorptive reservoir 

bottom provides an important energy radiation mechanism through refraction of pressure 

waves into the foundation medium deposited to a significant depth. 

The reservoir is considered to extend to a very large distance in the upstream direction. 

Therefore, to model wave radiation, it is appropriate to idealize it as a finite region of irregular 

geometry adjacent to an infinitely long channel with unifonn cross section. The compatibility 

and equilibrium conditions of pressure and pressure gradients are applied at the so-called far 

boundary or scattering boundary along the interface ofthe finite and infinite regions. In the 

arch dam-reservoir system, the interaction problem is defined on the interface ofthe dam and 

the reservoir, therefore the boundary element method seems to be a logical choice in modeling 

the reservoir domain. 

In this study, the dual reciprocity boundary element method is applied to model the 

three-dimensional finite domain ofthe reservoir. For the infinite domain, a two-dimensional 

eigenvalue analysis based on the dual reciprocity fonnulations over the cross section, together 

with a continuum expression in the upstream direction, is utilized to model the variation of 

pressure and pressure gradient across the interface of the finite and .infinite regions. In 

modeling the reservoir, the boundary of the reservoir domain is discretized using four-node 

linear and eight -node quadrilateral surface elements, therefore, linear and quadratic 

representations ofthe geometry, pressure and nonnal acceleration are possible. The absorption 

of hydrodynamic waves at the reservoir boundary is approximately represented by a one

dimensional model proposed by (Hall and Chopra, 1980). The fundamental parameter 

characterizing the effects of absorption of hydrodynamic pressure waves at the reservoir 

boundary is the wave reflection coefficient which may vary in the range from 0 to 1 to cover 
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the wide range of materials encountered at the bottom of actual reservoirs. 

The properties of the reservoir domain model are characterized by the pressure wave 

velocity, the unit weight of the water and the wave reflection coefficient at the bottom of the 

reservOIr. 

2.3. Ground Motion 

The earthquake ground motion is defined by the three transnational components: 

Upstream, cross stream and vertical. In this study, the free-field ground motion was assumed 

to be uniform across the arch dam-reservoir system. For arch dam sites this free-field ground 

motion is expected to vary over the interface. To include these variations appropriately into the 

analysis, a complete dam-foundation-reservoir interaction system required to be modeled, 

which is beyond the scope of this study. Therefore, these spatial variations in the ground 

motion are not included in this study. 



3. ANALYSIS OF THE ARCH DAM-RESERVOIR SYSTEM 

RESPONSE 
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The seismic response analysis of the arch dam-reservoir system is complicated by the 

geometrical and interactive aspects existing in the system. Numerical methods are the only 

solution means able to overcome such complexities. In this study, the substructure concept is 

utilized to treat the arch dam and reservoir domain as separate substructures. The substructures 

are analyzed separately, then coupled through a general analysis procedure. This procedure 

permits the application of different mathematical methods to model the substructures. The 

finite-elements method is utilized to model the arch dam structure while the boundary element 

method is applied to model the reservoir. The foundation domain is considered to be infinitely 

rigid. 

3.1. Equations of Motion for the Dam Structure 

The equation of motion of the arch dam substructure, idealized as a three-dimensional 

thick shell finite elements system and subjected to ground motion acceleration, ii g (t) , is 

Mii + Cli + Ku = -MEii g (t) + Q(t) (3.1) 

where M, C, K, are respectively the mass, damping and stiffness matrices for the finite element 

system. u is the vector for the three translational components of nodal displacements above the 

base, relative to the free ground motion. The related nodal velocity and acceleration are 

denoted by the vectors il and ii . E is the influence matrix which contains the pseudo-static 

influence vectors associated with the three translational components of ground motion 

acceleration, ii g (t) . Q(t) is the vector of the nodal static equivalent of the hydrodynamic 

forces on the upstream face of the arch dam. 

The consistent mass and stiffness matrices of the arch dam elements are evaluated by 

applying isoparametric three dimensional solid elements or isoparametric three dimensional 

thick shell elements and following standard finite element method procedures (Zeinkiewicz, 

1977). The damping properties are expressed in terms of the damping ratios eliminating the 

need to evaluate the damping matrix. 
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Following the substructure technique, nodal displacements of the arch dam system, 

including the hydrodynamic interaction effects, are approximately expressed as a linear 

combination of undamped, free-vibration modes of the arch dam. The natural vibration mode 

shapes, ~j ,and corresponding natural frequencies, co j ,of the arch dam are the solutions of 

the free vibration eigenvalue problem of the system 

The nodal displacements of the arch dam system are expressed as 

J 

net) = :LY/t) ~ j 
j=! 

(3.2) 

(3.3) 

in which, Yj are the generalized modal displacements in the j th mode of vibration. All modes 

contributing significantly to the response should be included in Eq.(3.3). Generally, the 

number of modes necessary is a small fraction of the total number of the degree of freedom 

of the system. The nodal velocities and accelerations are expressed respectively, as 

and 

J . 
iI(t) = :LYj(t)~j 

j=1 

J .. 
net) = :LYj(t) ~ j 

j=! 

(3.4) 

(3.5) 

in which, Yj (t) and Yj (t) are the generalized modal velocities and accelerations in the j til 

mode of vibration. 

Applying the above transformations to Eq.(3.1) and considering the orthogonality 

properties of the mode shapes:, results in a set of equations interms of the generalized modal 

displacement, Yj ,as 

(3.6) 

where 
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C J" = ~ TJ" C~ " = 2r "0) " M " J '::J J J J 

In the expressions above, Mj , Ci and ~ are the generalized mass, damping and 

stiffness for the fh vibration mode. S j is the critical damping ratio and P/t) is the generalized 

load. The nodal force vector, Q f (t) ,is the static equivalent ofthe hydrodynamic pressure on 

the arch dam-reservoir interface, computed by applying the principle of virtual work. The 

vector ~ r is a sub-vector of the fh vibration mode shape, ~ j , including the components 

associated with the nodes along the arch dam-reservoir interface. 

The response of a linear system to steady state harmonic excitation of frequency 0) can 

be conveniently described by its complex frequency response function which is also harmonic 

at the same frequency. In analyzing the arch dam-reservoir system for harmonic ground 

accelerations, ii g (t) = e jw t , the generalized modal displacements, velocities and accelerations 

can be expressed in terms of their complex frequency response functions as 

(3.7) 

(3.8) 

(3.9) 

The nodal hydrodynamic forces vector can he expressed in terms of its complex 

frequency response functions as 

Q(t) = Q(O)) e iw 
t (3.10) 

Substituting the corresponding terms into Eq.(3.6), the equation can be expressed in 

the frequency domain as 

(3.11) 
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where, P j ( ill) is the generalized load in the frequency domain, and can be expressed as 

(3.12) 

In order to solve the system of equations, there is a need to know the hydrodynamic 

force response on the arch dam-reservoir interface. The hydrodynamic forces will be expressed 

in terms of the accelerations at the upstream face of the darn, as a result of the analysis of the 

reservoir domain in the following section. 

3.2. Equations of Motion and Boundary Conditions for the Fluid Domain: 

The motion ofthe water in the three-dimensional reservoir is governed by the Navier

Stokes equations. However, under the assumption of small amplitude motion for irrotational 

compressible water and neglecting surface waves and viscous effects, the hydrodynamic 

pressure distribution in excess of the hydrostatic pressure can be expressed in terms of the 

three dimensional pressure wave equation, as 

(3.l3) 

where x, y, z are the Cartesian coordinates, p(x,y,z,t) is the hydrodynamic pressure in excess 

of the hydrostatic pressure and c is the velocity of sound waves in water. 

For harmonic ground motion, iig (t) = Ee iw 
t ,the hydrodynamic pressure, p(x,y,z,t), 

can be expressed in terms of the complex frequency response function, p( x,y ,z,ill), as 

p(x, y, Z, t) = p(x, y, Z, ill) e jw t (3.14) 

The wave equation thus reduces to the well known three dimensional Helmholtz 

equation, 
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(3.15) 

which governs the hydrodynamic pressure responses, subject to the boundary conditions given 

in the following sections. 

3.2.1. Reservoir Free Surface Boundary Condition 

The hydrodynamic pressure vanishes at the free surface, and the pressure is set equal 

to the gage pressure. 

p(X, y, Z,co) = 0 (3.16) 

3.2.2. Arch Dam-fluid Interface Boundary Condition 

The hydrodynamic pressure, p(x,y,z,t), and the acceleration an(t) of any particle of 

water along the dam interface should satisfy, 

w 
q(x,y,z,t)=--a n (t) 

g 
(3.17) 

where, q = 8p / an , is the normal derivative ofthe hydrodynamic pressure, n is the outward 

normal to the interface, w is the specific weight of water and g is the gravitational 

acceleration., an (t), is the arch dam acceleration along the interface. For steady state response 

cases, the frequency response function of the outward normal component of arch dam 

acceleration along the interface, can be expressed as 

(3.18) 

in which, the first term ofthe right hand side represents the accelerations ofthe rigid arch dam, 

while the second term arises from the arch dam deformations. Using Eq. (3.18), Eq.(3.17) can 

be written as 

(3.19) 
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3.2.3. Reservoir Bottom and Banks BoundaryCondition 

The absorptive reservoir bottom and banks provide an important energy radiation 

mechanism through the refraction of pressure waves into the foundation medium. This 

absorption mechanism through the reservoir-foundation interface can be represented 

approximately by a one-dimensional model assuming the seismic pressure to propagate in a 

direction normal to the boundary. This model leads to the partial absorption of the 

hydrodynamic pressure waves at the reservoir bottom into the foundation medium. As 

presented by Hall and Chopra( 1980), for the steady state response case, this model leads to the 

expresslOn 

w . 
q(x,y,z,m) = --an (m) + I(D y p(x,y,z,m) (3.20) 

g 

in which, a n is the outward normal acceleration component at the reservoir bottom and banks, 

y is the foundation damping coefficient given by 

r 1 (I-a) 
In the expression above, a r is the wave reflection coefficient which is unity for the 

rigid foundation case and vanishes for the full absorption case. 

3.2.4. The Radiation Boundary Conditions 

To model the wave radiation for the infinite domain, the reservoir may be idealized as 

a finite region of irregular geometry adjacent to an infinitely-long chamlel with uniform cross

section. Compatibility of hydrodynamic pressures and pressure gradients are forced along the 

scattering boundary which is located at the interface ofthe finite and infinite domains of the 

reservoir. The energy loss due to radiation damping in the reservoir is considered by applying 

a special radiation condition at the interface. This radiation condition is derived by applying 

a two-dimensional dual reciprocity formulation to model the infinite region. The details ofthis 

model are discussed in the following chapters. 
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3.2.5. Hydrodynamic Pressure and Force Responses on the Upstream of the Dam 

For the steady state response case, the governing equation of the fluid domain together 

with the specified boundary conditions could be solved using the three dimensional dual 

reciprocity method as explained in the next chapter. The resulting hydrodynamic pressure in 

the reservoir domain, p(x,y,z,co), can be expressed as 

2 J 
p (x,y,z,co)=po (x,y,z,co) -co LPj(X,y,z,co)Yj(co) (3.21) 

j=! 

where, P o(x,y,z,co) is the complex frequency hydrodynamic pressure vector due to the ground 

motion acceleration considering arch dam to be rigid, Pj(x,y,z,co) is the corresponding vector 

due to the arch dam acceleration in its fh vibration mode without motion of the boundary. 

By applying the virtual work principal, the complex frequency response functions for 

the hydrodynamic forces on the upstream face of the arch dam can be expressed as 

') J 
Q( co) = Q 0 (co) - co - L Q j (co) Yj (co) (3.22) 

j=! 

where, Q( co) and Qj( co) are the static equivalents of the corresponding pressure functions 

Po(x,y,z,co) and Pj(x,y,z,co) respectively. 

3.3. Equations of the Arch Dam-reservoir System 

In the previous sections, the substructure technique was applied to solve the coupled 

arch dam-reservoir system. Initially, the arch dam substructure was modeled separately using 

the finite element method. The modal displacements and accelerations of the arch dam were 

expressed in terms ofthe generalized displacement associated with free vibration modes ofthe 

arch dam. Then, the reservoir was modeled utilizing the dual reciprocity method. At the arch 

dam-reservoir interface boundary, the hydrodynamic pressure of the reservoir is frequency 

dependent and can be expressed in terms of the generalized displa.cements. 

Substitution of the expressIOn for the hydrodynamic force, Eq.(3.22), into the. 
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expression ofthe generalized load vector, Eq.(3.12), results in 

Thus, Eq.(3.11) which expresses the equations of motion in temlS of generalized 

displacements can be expressed in matrix form as 

S(w )Y(w) = L(w) (3.24) 

where the frequency dependent matrix S( w) relates the generalized displacement vector Y (0)) 

to the corresponding generalized loads L( 0)), as follows 

(3.25) 

(3.26) 

(3.27) 

The hydrodynamic terms modify both L( 0)) and S( 0)) in terms of added masses and 

added loads respectively. The added load is the hydrodynamic force on the rigid arch dam face 

due to the ground motion excitation while the added mass terms are due to hydrodynamic 

forces resulting from the arch dam deformations with respect to the ground motion. 

For a steady state response, the system of equations represented by Eq.(3.24) can be 

solved for the generalized displacements. Substituting the resulting generalized displacements 

into Eqs.(3.4) and (3.5), the modal displacements and accelerations of the dam can be 

computed. The hydrodynamic pressure in the frequency domain may now be computed from 

Eq.(3.21). 
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3.4. Responses to Arbitrary Ground Motion 

The responses of the arch dam-reservoir system to arbitrary excitation, such as 

earthquakes, can be conveniently obtained form the complex frequency response functions by 

using Fourier synthesis. Once the complex frequency responses, Y (w), are obtained for a range 

of excitation frequencies, w, the responses to an arbitrary ground acceleration ag(t), can be 

obtained from the individual harmonic components. That is, 

1 00 

Yj(t) =- jYj(w)ag(ro)eiUl1dro 
2rc 

-00 

where, a g ( W ) , is the Fourier transform of a g (t) given by 

td 

ag(ro)= jag(t)e-iwtdt 
o 

(3.28) 

(3.29) 

In the equation above, td is the duration of the ground motion. Similarly, the 

hydrodynamic pressure response in the reservoir due to an arbitrary ground acceleration can 

be obtained from its harmonic components as, 

00 

1 j ) iWT d pet) =- p(ro)ag(ro e ro 
2rc 

(3.30) 

-00 

The transforms ofEqs. (3.28),(3.29) and (3.30) canreadily be obtained using the Fast 

Fourier Transform (FFT) algorithm. Once the generalized displacements are known, the 

response of the nodal displacements of the dam can be obtained from Eq.(3.3) 



4. THREE-DIMENSIONAL DUAL RECIPROCITY METHOD FOR 

THE RESERVOIR DOMAIN 

In the present study, the reservoir is considered to extend to a very large distance in the 

upstream direction. Therefore, to model wave radiation, it is appropriate to idealize it as a 

finite region of irregular geometry adjacent to an infinitely long channel with uniform cross 

section. In the arch dam-reservoir system, the interaction problem is defined on the interface 

of the dam and the reservoir, therefore the boundary element method seems to be a logical 

choice in modeling the reservoir domain. The method requires only the boundaries of the 

domain to be discretized, thus there is a considerable reduction in data preparation efforts. 

Over the last decade, there have numerous studies to apply the method to the dynamic analysis 

of dam-reservoir-foundation systems (Beskos,1997). The major difficulty encountered in 

applying the classical boundary elements formulation to the dynamic analysis in the frequency 

domain response is due to the fact that the system matrices implicitly contain the frequency 

parameter embedded in the fundamental solution. A recent development in the boundary 

element method is the adopting of a frequency independent fundamental solution which results 

in the dual reciprocity method. The method was applied successfully to model a two

dimensional dam-reservoir interaction problem by Tsai et al (1988). In their model, within a 

general solution procedure to model the dam-reservoir system, a formulation based on the 

particular integral approach was utilized to model the two-dimensional reservoir. In the model, 

the bottom absorbing effects were ignored and an analytical formulation was utilized to 

account for the infinite domain. In this chapter, the formulation based on the dual reciprocity 

approach is extended to include the bottom absorption effects and is applied to model the 

three-dimensional finite domain of the reservoir. 

4.1. Formulations for the Finite Domain of the Reservoir 

The hydrodynamic pressure response in the reservoir domain, as shown in Figure 4.1, 

is governed by the three-dimensional Helmholtz equation 



Finite 
Element 

Dam-water 

FIGURE 4.1 Idealization of arch dam-reservoir system 
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2 00 

V p=--p 
C

2 

where, V 2 is the Laplacian operator given by 

The governing equation is subjected to the following boundary conditions: 

P - 0 1- on r l 

q2 =- w(a g (00) -oo2±Yj(oo)~r) 
g j=1 

q 3 = - wan (00) + ioo Y P 3 
g 

on r 3 

on r 4 

on r 2 

25 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where r 1 is the free surface of the reservoir, r 2 is the arch dam-reservoir interface, r 3 is 

the surface of the reservoir bottom and banks and r 4 is the radiaiton boundary which is the 

interface between the finite and infinite reservoir domains. R is the .radiation matrix which 

relates the hydrodynamic pressure vector to the corresponding pressure gradient vector at the 

boundary. The radiation matrix is a result of applying the dual reciprocity method to model 

the infinite domain as explained in the next chapter. 

4.2. Dual Reciprocity Method for the Helmholtz Equation 

In this section, the dual reciprocity method is applied to solve the Helmholtz Equation. 

Eq.( 4.1) is multiplied by frequency independent fundamental solution ofthe Laplace equation, 

g, and integrated over the reservoir domain, n , to yield 

(4.6) 
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While the left hand side of Eq.( 4.6) readily converts to a boundary integral by the 

application of Green' s second identity, the dual reciprocity method is applied to the right hand 

side to convert the domain integral into a boundary integral. 

Following the dual reciprocity formulations proposed by Partridge et al (1992), the 

total hydrodynamic pressure response can be expressed as 

p= p + P (4.7) 

where, 15 is the homogeneous solution satisfying 

(4.8) 

and p is the particular solution, such that 

(4.9) 

The method proposes a series of particular solutions of the form 

(4.1 0) 

where u
j 

are initially unknown coefficients. N is the number of boundary nodes and L 

represents the number of internal nodes that are used in approximating the particular solution. 

Substituting the proposed particular solutions into Eq.( 4.9) results in 

N+L 2~ 0)2 
" u-V p. =-_.p 
~ J J - 2 
j=l C 

(4.11) 

The above expression may be substituted into the domain integral on the right hand 

side ofEq.(4.6), to obtain 

(4.12) 

As it can be noticed form the above expression, the domain integral on the right-hand 
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side becomes similar to that on the left-hand side, therefore, it also can be expressed in the tann 

of boundary integrals. Applying Green's second identity to both sides, results in 

(4.13) 

where Ci is geometric coefficient which depends on the location of the source point (Brebbia 

et aI, 1984) and c is the boundary of the domain. g 11 = 8g / an is the normal derivative of the 

fundamental solution on the boundary. Defining r to represent the distance from the source 

point to the field point, the fundamental solution of the three-dimensional Laplace equation is 

given in standard boundary elements texts (Banerjee, 1994 and Brebbia et aI, 1984) as 

1 
g(x,~)=-

41tf 
(4.14) 

Discretizing the domain boundary, r, into a series of three-dimensional surface 

elements, ~r k' Eq. (4.13) becomes 

(4.15) 

Evaluation of the integrals in Eq.(4.15) using appropriate shape functions, <rk' yields 

where the coefficients hik and gik are to be computed from, 

hik = J gnN kdr 

i1fk 

gik = JgNkdr 
i1fk 

(4.16) 

Expressing Eq.(4.16) in matrix form and incorporating the -Cj- terms into the diagonal 

terms ofH, the following matrix equation is obtained 

(4.17) 

The matrices G and H are computed on the boundary elements by integrating the 

Laplace fundamental solution multiplied by an appropriate interpolation function. The vectors Ii j 
and q j are developed utilizing the dual reciprocity approximatioIL function, as it will be 
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described in the following sections. Defining Q and p such that each of their COIUllllb is, 

respectively, one of the vectors q j and P j' gives the following matrix expression 

Gq - Hp = (HQ - GP)a (4.18) 

The approximation functions proposed to compute the vector a are discussed in the 

following section. 

4.3. Dual Reciprocity Approximation Functions 

Following Partridge et al (1992), a global shape function, ~, can be introduced in order 

to define the particular solution, such that 

(4.19) 

Substituting into Eq.(4.11), results in 

(4.20) 

Several proposals for ~ may be found in the literature. The simplest, yet the one that has 

been found to yield the best results is to use the distance function r from the fundamental 

solution in a series of the form 

(4.21) 

where, the constants ~ are to be selected to suit the problem.Usingthe above expression, the 

particular solution ofEq.( 4.15) for three dimensional problems can be written as 

(4.22) 

The normal derivatives q(r) can be obtained from p(r) as 

( 
2 3 .m+l) :::l. 

A aor aIr a2 r amI ui 
q(r)= -+--+--+ .. + -

3 4 5 (m + 3) an (4.23) 
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Using Eq.(4.20), the particular solutions can be evaluated at boundary and internal 

points to obtain a set of equations, which can be written in a matrix fonn as 

(4.24) 

F represents geometric relationships between the collocation points in the system and 

is generated using Eq.(4.21). Pre-multiplying both sides of Eq.(4.24) by F-1 ,provided it 

exists, results in 

2 
0) F-1 a=-- p 
c2 

Substituting the above expression for vector a into Eq.(4.20) leads to 

2 
0) (A A)_I 

Gq-HP=-~ HQ-GP F P 

Defining matrix M as 

Eq.( 4.25) can be written as 

2 
0) -

Gq-Hp=--Mp 
c 2 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

The dual reciprocity formulations of the H, G and M matrices are observed to be 

independent of the frequency parameter. Having this advantage, the dual reciprocity method 

is very effective in determining the frequency response ofthe arch dam-reservoir system. 
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4.4 Dual Reciprocity Formulations for the Reservoir Domain 

In this study, the dual reciprocity formulation ofthe Helmholtz equation expressed in 

Eq.( 4.28) is used to solve Eqs. (4.1-4.5) which governs the hydrodynamic pressure response 

distribution in the reservoir. For a specified excitation frequency, co, the system may be 

rearranged and assembled in the following form 

Hll H12 H13 H14 PI G ll G12 G13 G 14 q1 

H21 H22 H23 H24 P2 G 21 G 22 G23 G 24 q2 
= 

H31 H32 H33 H34 P3 G 31 G 32 G 33 G 34 q3 

H41 H42 H43 H44 P4 G 41 G 42 G 43 G 44 q4 

(4.29) 

Mll M12 M13 M14 PI 

co 2 
M21 M22 M 23 M24 P2 

c2 M31 M32 M33 M34 P3 

M41 M42 M43 M44 P4 

- -
where H ij' G ij and M ij are the respective sub-matrices of H, G and M . The indices i and 

j refer to the boundary condition types: free surface of the reservoir on r 1 ,arch dam

reservoir interface on r 2 ,absorbing boundary of the reservoir bottom and banks on r 3 and 

radiation boundary on r 4. The corresponding specified boundary conditions ofEqs.( 4.2-4.5) 

are introduced into Eq.( 4.29), and the system is rearranged such that all the coefficients ofthe 

specified boundary conditions are collected on the left hand side. Defining 

ii = H + co 2 / c 2 M , the system takes the form 

-Gll H}2 - icoyG12 H 13 - icoyG 13 H14 -G 14R ql 

-G 21 H22 -iooyG22 H 23 - icoyG 23 H24 -G24 R pz 
~ 

H33 - icoyG 33 
= 

-G 31 H32 - icoyG32 H34 -G34 R P3 

-G41 H42 -icoyG42 H43 - icoyG 43 H44 -G44 R P4 

(4.30) 

G12 G13 G12 

G 22 G23 
{} J 

G 22 [$j] w a n2 _00 2 'Ly. 
g G 32 G 33 a n3 j=l J G 32 

G4-2 G 43 G 42 
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where an2 and an3 are the ground motion acceleration component normal to the arch dam

reservoir interface r 2 and the reservoir bottom r 3 ' respectively. 

Introducing the notation :H: for the elements of the left hand side matrix, the system 

becomes 

Hll H12 H13 HI4 ql G 12 GI3 G I2 

H2I H22 H23 H24 P2 G 22 G23 
{} J 

G 22 w a n2 2 I y [~j ) - = -(0 . (4.31) 
H31 H32 H33 H34 P3 a G 32 G 33 a n3 j=1 J G," 

b .).::. 

-
H41 H42 H43 H44 Pl4 G 42 G 43 G 42 

Multiplying both sides of the equation above by H = :H: -I yields 

ql HII HI2 H13 HI4 G 12 G13 G I2 

H21 H22 H23 H24 G 22 G23 
{} J 

G 22 P2 w a n2 _(02 I y. [~j ] = (4.32) 
P3 g H31 H32 H33 H34 G 32 G 33 a n3 j=l J G 32 

Pl4 H4I H42 H43 H44 G 42 G 43 G 42 

The equations related to the vector P2,the hydrodynamic pressure vector acting on the 

upstream face of the arch dam, can be extracted from the system as 

(4.33) 

P2' can now be rewritten as 

(4.34) 

where Po' given by 

G 12 G13 

w[- H12 H13 H14] 
G 22 G23 {a nz} Po =-- HII G 32 G 33 a n3 g 

(4.35) 

G 42 G 43 



is the complex hydrodynamic pressure response vector due to the ground motion acceleration 

considering the arch dam to be rigid, and Pj given by, 

G I2 

w[-
HI4 ] 

G 22 
[<\>j] p. =- Hll H12 H13 (4.36) 

J g G 32 

G 42 

is the corresponding vector due to the arch dam acceleration in its t vibration mode with no 

ground motion. 

Applying the virtual work principal (Tsai et al,1988), the equivalent nodal forces on 

the upstream face of the arch dam due to harmonic pressure induced by earthquake ground 

motion are given by 

Q 2 =- f<Pd A d <Pf d1 2 P2 (4.37) 
r 2 

where, <P d ' is the shape function related the finite elements of the dam structure, <P f is the 

shape function ofthe boundary elements of the reservoir and A d is the direction cosine matrix 

of the interface boundary. 

Utilizing Eqs. (4.34) and (4.37), the nodal hydrodynamic forces associated with the 

hydrodynamic pressure on the upstream face of the dam can be expressed as 

(4.38) 

where the hydrodynamic force vector Qo and Q j are static equivalents of the corresponding 

pressure functions Po and Pi' respectively. 
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The reservoir domain is idealized as a finite region of irregular geometry adjacent to 

an infinite domain of uniform cross section. The compatibility and equilibrium conditions of 

pressure and pressure gradients are applied at the so-called far boundary or radiaiton boundal), 

along the interface of the finite and infinite regions. Hall and Chopra (1980) have applied the 

finite element method to model both the finite and the infinite domains of the reservoir. In the 

infinite domain model, they applied the separation of variables technique to combine a two

dimensional finite element discretization over the uniform cross section of the domain with 

a continuum expression in the upstream direction. The problem ultimately reduced to the 

solution of a standard eigenvalue problem. As an alternative, Rashed and Kandasamy (1990) 

applied a two dimensional boundary element discretization together with the continuum 

expression to model the infinite reservoir system of uniform cross section. The major 

drawback of their method is the frequency dependent fundamental solution, which means that, 

the system could not be cast in the form of a standard eigenvalue problem. To obtain a 

standard eigenvalue problem, the dual reciprocity method with a frequency independent 

fundamental solution may be used. This method has proven to be an effective tool in the 

solution of free vibration elasticity problems (Nardini and Brebbia, 1982 and Ahmad and 

Banerjee,1986) and acoustic eigenvalues analysis (Banerjee, et aI, 1988 and Ali, et a, 1991). 

In this study, the dual reciprocity method along with the separation of variables 

technique is adopted to model a three-dimensional infinite domain of uniform cross section. 

The variation of the pressure response in the upstream direction is represented by a continuum 

expression. A two-dimensional eigenvalue analysis based on the dual reciprocity formulations 

is utilized over the cross section of the domain. 



34 

5.1. The Boundary Value Problem for the Infinite Region of the Reservoir 

The infinite reservoir domain is assumed to have a uniform cross section with 

absorptive bottom and sides as it is shown in Figure 5.1. The governing equation for the 

hydrodynamic pressure response is the Helmholtz equation given as, 

(5.1) 

The solution sought is to be subject to the following boundary conditions: 

(A) The free surface boundary condition, the pre sure is set equal to the gage pressure 

p=O (5.2) 

(B) Absorbing boundary conditions at the bottom and sides of the reservoir as suggested by 

(Hall and Chopra, 1980) 

(5.3) 

in which, an is the outward normal acceleration component at the reservoir bottom and sides, 

y is the bottom absorption damping coefficient given by Eq.(3.20) 

(C) Matching boundary conditions at the interface of the finite and infinite regions 

P finite = P infinite q finite = -q infinite (5.4) 

CD) Radiation boundary conditions at the far end of reservoir in the upstream direction 

Pro = 0 (5.5) 

which means that pressure waves leaving the reservoir domain are not reflected at infinity. 
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FIGURE 5.1. Infinite domain radiation model 
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With the assumption of uniform ground motion along the upstream direction, x, the 

hydrodynamic pressure response in this direction, can be separated from the pressure 

distribution over the uniform cross section y-z plane. The hydrodynamic pressure response can 

be written as 

P=PxPyz (S.6) 

thus enabling Eq.(S.l) to be recast in the form 

(S.7) 

The application of the separation of variables technique yields two boundary value 

problems for the hydrodynamic pressure response. One for the upstream direction, x, and the 

other for the uniform cross section y-z plane. The governing equations for these are, 

(S.8) 

and 

(S.9) 

where A 2 = CD 2 / c 2 + K 2 and K is the separation constant. 

5.2. Continuum Expression for the Pressure Along the Upstream Direction 

The hydrodynamic pressure response in the upstream direction is governed by Eq.( 5.8), 

and satisfies the radiation boundary condition at the far end of domain. The pressure waves 

propagate away to infinity or decay with increasing distance, thus, the pressure can be cast in 

the form of a continuum expression in the x-direction as 

where 

-K X Px =e n1 m= 1,2,3, .... (S.10) 
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K ~~A2_.co2 
m m 2 

C 

In the above expression, Am'S are the eigenvalues obtained from the solution of 

Eq.(5.9), the governing equation for the pressure response distribution in the y-z plane. 

5.3. Dual Reciprocity Formulation for the Pressure Over the Uniform Cross Section 

The hydrodynamic pressure response distribution over the y-z plane is governed by the 

two- dimensional Helmholtz equation expressed in Eq.(5.9) and satisfies the fi-ee surface and 

the bottom absorption boundary conditions expressed by Eqs.(5 .2) and (5.3), respectively. The 

dual reciprocity formulation for the Helmholtz equation, as derived in the previous chapter, 

is given by 

2 -Gq -Hp = -A Mp (5.11) 

where, the matrices G and H are computed on the boundary elements by integrating the 

Laplace fundamental solution multiplied by an appropriate interpolation function, the matrix 

:!VI is computed using the dual reciprocity approximation functions. 

For the two-dimensional case, the fundamental solution of the Laplace equation 

(Brebbia et aI, 1984) is given by 

I 
g(x, s) = -In(r) 

2n 
(5.12) 

The radial basis approximation functions utilized in the analysis are of the form 

(5.13) 

The particular solution for the two-dimensional case can be derived (Partridge, et al 

1992) as 

(5.14) 



The normal derivatives q(r) can be obtained from per) as 

A()_ aor aIr a2r amr or 
( 

2 3 m+1 J '"' 
q r - -+--+--+ .. + -

2 3 4 (m + 2) On 
(5.15) 

For a specified excitation frequency, co, Eq.(5.11) may be rearranged and assembled 

in the following discretized form 

H12 0 

H22 0 

H32 I 

M13l{PI} ~23 P2 (5.16) 

M33 P3 

where I is a unitary matrix and Hij , G ij and M ij are the respective sub-matrices ofH, G and 

M . The indices i and j refer to the boundary condition types: free surface ofthe reservoir on r I 

,absorbing boundary of the reservoir bottom and banks on r 2 and the internal nodes in the 

domain Q3'. 

Introducing the specified boundary conditions ofEqs.(5.2-5.3) into Eq.(5.16), results 

III 

~HII HI2 -i~G\2 0 jf } ~ Gil 
G 12 0 

j{- ~:~n2 } = H21 Hn - ~coyGn 0 P2 - G 21 Gn 0 

H31 H32 -lCOyG 32 I P3 G 31 G 32 0 

(5.17) l Mil M12 MlJr} -Ie '2 ~2J Mn ~23 P2 

M3J M32 M33 P3 

The above system of equations can be partitioned as follows 
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[
H22 -icoyG22 0 ]{P2}_[G 21 ]{Ql}+ w [G 22 l{a

n2} = -Ie 2[~22 ~23]{P2} (S.19) 
H32 -icoyG 32 I P3 G31 g G32 J M32 M33 P3 

In order to set the system of the equation as eigenvalue problem in tel111S of the 

unknown pressure Px y' ql can be eliminated from the above two system of equations and the 

vector ql can be solved for the system ofEq.(S.18) as 

Substituting Eq.(S.20) into Eq.(S.19) results in the following eigenvalue problem 

[ 
- - 2 -]{ } w -H + icoyG - AMp yz = - - d 

. g 
(S.21) 

where 

o ] 



40 

The matrices, H, G and M are non-symmetrical and are independent of the 

excitation frequency. Only the nodes below the free surface within the cross section are 

included in the system ofEq.(5.21). It is interesting to observe that the eigenvalue problem of 

Eq.(5.21) has a similar form to that obtained by Hall and Chopra (1980) using the finite 

element discretization as shown in Appendix. C. 

5.4. Formulation of the Radiation Matrix 

In the three-dimensional earthquake response analysis of arch dam- reservoir systems, 

the boundary motions of the reservoir domain can be classified as due to : 

(a) the deformational motions of the arch dam without any ground motion, 

(b) the upstream-downstream excitation or the x -component of the ground motion, 

(c) the cross stream excitation or the y-component of the ground motion, and 

(d) the vertical excitation or the z-component of the ground motion. 

For cases (1) and (2), the boundary motion of the reservoir is normal to the surface 

boundary of the reservoir. Therefore, the right hand vector d ofEq.(5.21) vanishes and the 

equation is simplified to the form 

(5.22) 

which represents a generalized eigenvalue problem. For an absorptive reservoir boundary, the 

eigenvalues A m and the eigenvectors, \.f'm' obtained from the solution of Eq.(5.22) are 

complex valued and dependent on the excitation frequency. The eigenvectors, \.f'm' are 

orthogonal and normalized so that 

(5.23) 

and they satisfy the equation 

(5.24) 

where, A is a diagonal matrix ofM eigenvalues A ~, A 22' "', A 2M and \.f' is the matrix of M 
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eigenvectors, ['1' l' '1'2' ... , '1' M ] . 

The hydrodynamic pressure response over the cross section ofthe infinite domain can 

be expressed approximately as a linear combination of the M eigenvectors. That is, 

(S.2S) 

where, 11 m ' are unknown coefficients. 

Substituting, Eqs.(S.IO) and (S.2S) into Eq.(S.6), the hydrodynamic pressure response 

vector in the infinite domain can be written as 

M 
P = I 11m '1' me -Km X (S.26) 

m=l 

Differentiating the hydrodynamic pressure response with respect to the outward n0TI11al 

to the cross section plane (y-z), noting that the normal is parallel to upstream direction, x, 

results in 

(S.27) 

Eqs.(S.26) and (S.27) can be rewritten in matrix form as 

(S.28) 

q = -'¥KEll (S.29) 

In Eqs.(5.28) and (5.29), 11 , is the vector of unknown coefficients, K is a diagonal 

matrix with elements, K I' K 2' ... , K M and E is another diagonal matrix with elements 
-K x e m 

By eliminating Ell between Eqs.(5.28) and (5.29), the relation between p and q can 

be obtained as 
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q=Rp (5.30) 

where, 

R = '¥K,¥-l (5.31 ) 

The radiation matrix, R, relates the pressure response vector, p, and its nomlal 

derivative, q, for the nodes below the free surface on the radiaiton boundary between the finite 

and infinite domains of the reservoir. For the absorbing bottom boundary of the reservoir, R 

is dependent on the excitation frequency, co. 

Using the same procedure in Eqs.(5.28-5.31), it is also possible to generate a radiation 

matrix, R, based on the Hall and Chopra(1980) model for the infinite domain. This 

formulation is discussed in Appendix C. 

For vertical and cross-stream excitations, cases (3) and (4) of Vertical and cross-stream 

ground motions, no variation in ground motion is assumed along the upstream direction. The 

solution of the infinite reservoir system with uniform cross section is independent ofx. As a 

result, the normal derivative ofthe pressure response, q, along the radiaiton boundary is equal 

to zero, therefore the radiation matrix, R, identically zero. 
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6. VERIFICATION OF THE HYDRODYNAMIC MODEL 

In the previous chapters, an effective numerical model based on a hybrid FEM

DRBEM scheme has been developed to study the fluid-structure interaction and eat1hquake 

response of arch darn-reservoir systems. Applying the substructure technique, the finite 

element method is utilized to model darn structure and the dual reciprocity method was used 

to model the reservoir domain. Considering the bottom absorption effects, the reservoir 

domain was idealized as a finite region' of irregular geometry adjacent to an infinite domain 

ofuniforrn cross section. Based on the model, a computer code was developed to calculate the 

seismic response of a three-dimensional darn-reservoir system of arbitrary geometry to 

upstream-downstream, cross-stream and vertical harmonic ground motion. In this chapter, the 

model is verified by comparing the hydrodynamic response of a three-dimensional rectangular 

reservoir with that from the analytical formulation existing in the literature. 

6.1. Case Study: Three-Dimensional Rectangular Reservoir 

To check the validity of the numerical model, the hydrodynamic pressure distribution 

in a three-dimensional rectangular reservoir is compared with that given through the analytical 

expressions derived by Rashed and Iwan (1984). The verification is carried out for all three 

components of the ground motion. A sketch of the reservoir used in the analysis is given in 

Figure 6.1. In the computations, the reservoir properties used are as follows: Water depth, 

H=lOOm, radiation boundary is placed at a distance L=100m from the upstream face of the 

darn, the velocity ofthe sound in water, c=1440m/sec and the mass density of water Pw =1000 

kg/m3• The first fundamental frequency of the reservoir with the above properties is 

determined from oo l =Jtc!2H,andis 22.62 rad/sec(3.6Hz)~ 

Earlier studies [Jablonski,1990] have shown that the numerical results depend strongly 

on the modeling of the radiation boundary for excitation frequencies greater than 00 1. Accurate 

results can be obtained from the numerical model provided the element size in the mesh is not 

more than one-tenth of the shortest wave length in the reservoir. 



L 

Finite Domain 
of Reservoir 

Uniform 
Cross Section of 

---t __ ~ 00 upstream 
direction 

FIGURE 6.1. Three-dimensional rectangular infinite reservoir. 
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The reservoir boundary is discretized into 600 three-dimensional isoparametric first 

order quadrilateral elements with 441 internal nodes. To model the radiation condition in the 

finite and uniform infinite domains a two-dimensional dual reciprocity model is considered. 

Boundaries of the uniform cross section of the infinite domain are discretized into 40 

isoparametric linear elements. The internal nodes existing on the interface are considered as 

internal nodes for the radiation model. The thin plate spline approximating function is used 

in the dual reciprocity models. To check the validity of the radiation model, a finite element 

model based on the formulation given in Appendix C was also developed. In this modeL 1 5 

isoparametric four-node linear quadrilateral elements were used. 

6.2. Verification of the DRBEM-Radiation Model 

The radiation model for the re·servoir infinite domain is based on applying the 

separation technique to combine a two-dimensional eigenvalue problem over the cross section 

with a continuum expression for the variation of the pressure response in the upstream 

direction. The model applies the dual reciprocity formulations derived in Chapter 5 to develop 

an eigenvalue problem for the infinite domain of the reservoir. The procedure results in a 

generalized eigenvalue problem which can be solved using the QZ algorithm originally 

developed by Moler and Stewart(1973). 

To verify the model results, the eigenvalues of the system are compared with those 

obtained using the finite element method and with the eigenvalues determined using 

theanalytical formulation of Rashed and Iwan,1984. For a fully reflective reservoir boundary, 

u=l.O, the eigenvalues are independent of the excitation frequency. The first 10 eigenvalues 

are presented in Table 6. L Despite the non-symmetric nature of the dual reciprocity matrices, 

the model is found to yield results which compare extremely well with those obtained from 

Rashed and Iwan(1984). The maximum relative error for the represented eigenvalues is less 

than 0.63 %. Some ofthe complex eigenvalues ofthe system appear only at higher frequencies 

where the higher order vibration modes are inevitable in the continuum problem. The finite 

element model results are presented for the sake of comparison. The maximum relative error 

for the same eigenvalues range is 3.64%. For fully reflecting reservoir boundaries, the 

eigenvalues obtained from the finite element method are real valued. When boundary 
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absorption effects are included the eigenvalues given by both the DRBEM and the FEM are 

complex valued and dependent on the excitation frequency. 

6.3. Verification of the DRBEM-Reservoir Model 

The hydrodynamic pressure and hence the hydrodynamic force on the upstream face 

of rigid dams are determined by the hydrodynamic pressure responses in the reservoir domain 

which includes a finite irregular domain adjacent to an infinite domain of unifOlm cross

section. 

As indicated in the procedure explained in Chapter 4, the hydrodynamic pressure response can 

be computed for a given excitation frequency by solving the generalized eigenvalue problem 

for the infinite domain of the reservoir to form the radiation matrix based on the dual 

reciprocity formulation. The radiation matrix is used to relate the pressure and the pressure 

gradients across the radiation boundary ofthe finite domain ofthe reservoir model. The finite 

domain of the reservoir is modeled utilizing the dual reciprocity method. 

The hydrodynamic responses of a rigid dam-reservoir system are presented for four 

values ofthe reservoir boundary reflection coefficient Ur =1.0(total reflection), 0: 75,0.50, and 

O(total absorbtion). The following cases are studied: 

(a) rigid dam SUbjected to upstream ground motion, 

(b) rigid dam subjected to vertical ground motion, 

(c) rigid dam subjected to cross-stream ground motion. 

In the following sections, the results of the model are compared with the analytical 

solution of Rashed and lwan, 19&4. 

6.3.1. The Hydrodynamic Pressure 

The frequency response functions of tpe hydrodynamic pressure distribution on the 

upstream face ofthe dam are calculated for an excitation amplitude of 1 g and a wide range of 

the excitation frequency values, 0). The four reflection coefficients given above are used. 
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The following variables were used in the study: 

p* : the hydrodynamic pressure nonnalized by the hydrostatic pressure at the bottom of the 

reservoir, p*=p/(yH). 

x* : the distance along the upstream direction nonnalized by the upstream length ofthe finite 

reservOIr. 

z* : the vertical distance across the height of the dam nonnalized by the reservoir height, H. 

o : the excitation frequency nonnalized by (01= 1[c/2H, the first natural vibration frequency of 

an infinite reservoir of unifonn depth H with a rigid reservoir bottom. 

For the upstream-downstream ground excitation, the total n0l111alized hydrodynamic 

pressure on the upstream face along with its in-phase and out-of-phase components is 

presented in Figures 6.2-6.5 over a frequency range 0=0.4 to 4.8. The cOlTesponding 

hydrodynamic pressure distributions on the reservoir bottom along the upstream direction are 

shown in Figures 6.6-6.9. The dual reciprocity model results are found to be in a good 

agreement with the analytical solution of Rashed and Iwan(1984). As expected, for the fully 

reflecting reservoir boundary case, the hydrodynamic pressures are entirely in-phase with the 

excitation for values of 0 less than unity. For nonnalized excitation frequencies, 0, greater 

than unity, the pressure associated with the higher frequency modes propagates in the 

upstream direction of the infinite channel resulting in energy radiation to infinity and hence 

the out-of-phase pressure component appears over this frequency range. For absorbing 

reservoir boundaries both the in phase and the out of phase components exist over the entire 

frequency range due to the energy dissipation at the absorbing boundaries in addition to the 

radiation boundaries. 

For vertical ground excitation, the total, in-phase and out-of-phase components ofthe 

normalized hydrodynamic pressure on the upstream face of the dam are presented. in Figures 

6.10-6.13. The dual reciprocity model results are found to be in a good agreement with the 

analytical solution. For the fully reflecting reservoir boundary case, the hydrodynamic 

pressures are entirely in-phase with the excitation for the entire frequency range. With the 

assumption of no variation of ground motion in the upstream direction, no energy will be 

radiated out of the system. For absorbing reservoir boundary cases, the absorption on the 

boundaries is the only energy dissipation mechanism. As mentioned above, boundary energy 

absorption causes the out-of-phase component of the hydrodynamic pressure to appear over 
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the total frequency range. 

The upstream and vertical ground motion excitations have symmetrical vibration 

modes, while the cross-stream ground excitation has anti-symmetric modes. For the upstream 

and vertical ground motion, the hydrodynamic pressure does not vary across the width of the 

upstream face of the dam. In the cross-stream case, the hydrodynamic pressure distribution 

varies anti-symmetrically across the width of the dam. The total, in-phase and out-of-phase 

components of the hydrodynamic pressure on the upstream face at the side boundary of the 

upstream phase where y=O.O, are presented in Figures 6.14-6.17 for a frequency range Q=O.4 

to 4.8 and for four different reflection coefficients. The system has an energy dissipation 

mechanism which is similar to that of the vertical excitation case. 

It should be noted that the phase angle of the hydrodynamic pressure response varies 

along the height ofthe dam. This means that the maximum pressures along the height do not 

occur at the same instance of time. 

6.3.2. Hydrodynamic Forces 

The frequency response functions for the hydrodynamic force on the upstream face of 

the dam are computed by integrating the corresponding hydrodynamic pressure response 

functions obtained from the solution ofthe Helmholtz equation. The hydrodynamic force F* 

is normalized with respect to the hydrostatic force on of the upstream face of the dam, Fst = 

0.5yH2B, where y is the unit weight of the water, H is the water depth and B is the width of the 

reseroir. As before, the excitation frequency is normalized with respect to wI. 

The total, in-phase and out-of-phasecomponents of the. total hydrodynamic force on 

the upstream face of a rigid dam are computed for normalized excitation frequencies Q=O.O 

to 5.0 and for an excitation amplitude of 19 in the upstream-downstream, vertical and cross

stream ground motion directions. The reservoir boundary reflection coefficients a =0.0,0.5, 

0.75 and 1.0 are used. The model results are compared with the hydrodynamic forces obtained 

from the analytical formulation of Rashed and Iwan,1984. 

For the upstream-downstream ground motion excitation, the total, in-phase and out-
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phase components of the nonnalized hydrodynamic force on the upstream face, are presented 

in Figures 6.18-6.20 for the different values of the reflection coefficient. The results for 

vertical ground motion excitation are represented in Figures 6.21-6.23. As the hydrodynamic 

pressure response to cross-stream ground motion is anti-symmetrical, the hydrodynamic force 

on one half of the dam is of opposite phase relative to the force on the other half. For cross

stream ground motion excitation, the hydrodynamic force on one half of the upstream face is 

nonnalized with respect to the corresponding hydrostatic force and plotted in Figures 6.24-

6.2 7. The model results compare favorably to the analytical fonnulation results for all the three 

ground motion excitations and different reservoir boundaries absorbing factors. 

For the fully reflecting reservoir boundary, ur=1.0, the hydrodynamic force response 

functions are unbounded at the natural frequencies of the infinite unifom1 domain for all 

directions of ground motion excitation considered. The hydrodynamic force responses due 

to upstream ground motion are entirely in-phase with the excitation frequency for Q less than 

unity. The out-of-phase component exists at higher excitation frequencies indicating radiation 

due to propagation of hydrodynamic pressure waves in the upstream direction. With increasing 

excitation frequency, a larger number of modes are associated with the propagating pressure 

waves, leading to increased energy radiation and hence smaller hydrodynamic force, except 

for the local resonance behavior near the natural vibration frequencies of the infinite domain. 

For vertical and cross-stream ground motions, the out-of-phase component does not exist 

since, as mentioned above, upstream radiation of energy does not take place. 

When reservoir boundary absorption exists, the hydrodynamic force response functions 

are bounded for all excitation frequencies for all three components of ground motion due to 

the boundary energy dissipation. The out-of-phase component of the hydrodynamic force 

response exists for all excitation frequencies. For normalized excitation frequencies less than 

unity, the out-of-phase component arises from the radiation of energy due to the absorption 

of pressure waves into the absorptive reservoir boundary, whereas for higher excitation 

frequencies, the out-of-phase component arises from the radiation of energy due to both the 

propagation of pressure waves in the upstream direction and the refraction into the adsorptive 

reservoir boundary. 



TABLE 6.1. Comparison of natural frequencies of the infinite domain in a three

dimensional rectangular reservoir. 

Natural Analytical FEM DRBEM 

frequency, (Rashed and I wan, (Hall and Chopra, (Present study) 

(D (rad/sec) 1984) 1981) 

(DI 
22.604 22.626 22.635 

(0.10%) (0.14%) 

(D2 
50.544 50.720 50.603 

(0.35%) (0.12%) 

(D3 
67.811 68.440 67.837 

(0.93%) (0.04%) 

(D4 
81.499 82.126 81.600 

(0.77%) (0.12%) 

(Ds 
93.198 94.653 93.440 

(1.56%) (0.26%) 

(DG 
113.02 114.59 112.99 

(1.39%) (0.03%) 

(D7 
113.02 115.94 112.99 

(1.39%) (0.03%) 

(Ds 
121.72 124.51 122.31 

(2.29%) (0.48%) 

(D9 
137.49 142.49 138.35 

(3.64%) (0.63%) 

(DlO 
144.73 147.95 145.07 

(2.22%) (0.23%) 
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FIGURE 6.26. Out-of-phase hydrodynamic force onthe upstream face of a rigid dam due 

to harmonic cross-stream ground motion. 
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7. CASE STUDY: DYNAMIC RESPONSES OF KARAKAYA DAM 

The responses of the arch dam-reservoir system to harmonic ground motion are 

presented in this chapter. Responses computed by the model proposed in Chapters 2, 3 and 4 

are presented for the upstream-downstream, vertical and cross-stream components of the 

ground motion, and for the parameters characterizing the geometrical and material properties 

of the dam structure and reservoir domain. Taking the Karakaya dam-reservoir system as a 

case study, the effects of the dam-water interaction, reservoir boundary absorption and 

reservoir geometrical shape on the hydrodynamic pressure response and the dynamic response 

of the dam are investigated. 

7.1. Idealization of the Karakaya Dam-Reservoir System 

Karakaya is one ofthe most important dams in Turkey. Completed in 1987 it is located 

on the Firat River in the south east of Turkey. It has 158 m height, 382 m crest length and 

9580 hm3 reservoir volume. The dam is a single-centered arch dam with maximum central 

angle of 118.5 0 and intrados and extrados radii of 175 m and 225m respectively. Figure 7.1 

is an aerial photograph showing the Karakaya dam-reservoir system. A detailed description 

of the geometry of the dam and reservoir is available in Orhon, et a11991. In the model, the 

dam structure and the reservoir are discretized using finite elements and boundary elements 

respectively. The discretized system is shown in Figure 7.2. 

7.1.1. The Dam Structure 

The finite element idealization of the d~ shown in Figure 7.2, consists 0[296 eight

node solid elements, with a total of 525 nodes. Taking the foundation rock to be rigid, this 

idealization has 1242 degrees of freedom. The concrete mass in the dam is assumed to be 

homogenous, isotropic and linearly elastic with the following properties: Young's modulus, . 

Es= 3.5x109 kg/m2
, unit weight, 1s =2.45x103 kg/m3 and Poisson's ratio vs=O.2. A constant 

hysteretic damping factor 11s =0.10, which corresponds to five percent damping in all vibration 

modes of the dam with empty reservoir on rigid foundation rock, is selected. 
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FIGURE 7.1. The Karakaya Dam and reservoir system 
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(a) Actual geometry reservoir 

(b) Symmetric reservoir 

FIGURE 7.2. Idealization of the Karakaya dam and reservoir system 
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7.1.2. The Reservoir Domain 

The reservoir is idealized as a finite irregular region combined with an infinite unifol111 

domain. The finite irregular domain boundary is discretized into 760 isoparametric two

dimensional surface quadrilateral elements with a total of 762 boundary nodes and an 

additional 150 dual reciprocity nodes are placed within the fluid domain. To model the 

radiation condition on the interface of finite and infinite domains, a two-dimensional dual 

reciprocity model is considered. Boundaries of the uniform cross section ofthe infinite domain 

are discretized into 48 isoparametric linear elements with 48 boundary nodes. The boundary 

nodes of the finite domain within the interface are considered as internal nodes for the two

dimensional dual reciprocity model. The thin plate spline approximating function is used in the 

dual reciprocity models. To check the validity ofthe radiation model, the finite element model 

based on the formulation in Appendix C is utilized. For this model, 140 isoparametric four

node linear quadrilateral elements with a total of 165 nodes are used. 

To investigate the effects of reservoir shape on the hydrodynamic pressure response, 

the reservoir is discretized in the two different ways shown in Figure 7.2. The first 

discretization is for the actual reservoir geometry with all its variations. Polynomial 

interpolating functions are extracted from the contour maps of the darn-reservoir then used to 

modify the mesh generation routines. The second symmetrical idealization of the geometry is 

a radially increasing reservoir in the upstream direction which used in analytical solution ofthe 

hydrodynamic pressure on the upstream face ofthe dam(Kotsubo, 1961 and Porter and Chopra, 

1980). In the computations, the following properties ofthe reservoir are used: The water depth, 

H=158m, the velocity ofthe sound in water, c=1439m1s and the mass density of water Pw=1000 

kg/m3
. The radiation boundary is placed at a distance L=225m from the upstream face of the 

dam. To investigate the effects of the reservoir boundary absorption, four different absorbing 

factors of the reservoir boundary are considered with the following values of coefficient of 

reflection: ur =0.0,0.5, 0.75 and 1.0. The model can handle any water level provided the finite 

element mesh for the darn is defined to match the nodal points at the water level. In this study, 

the reservoir is assumed to be full, unless stated otherwise. 
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7.1.3. The Ground Motion 

The excitation for the arch dam -reservoir is defined by three components of the free

field ground motion: The upstream-downstream (x) component, the vertical (z) component and 

the cross-stream (y) component. Each component of ground acceleration is assumed to be 

harmonic with the excitation frequency ill which is varied over a wide range. No spatial 

variations in the ground motion are considered, therefore the ground motion excitations are 

assumed to be uniform across the arch dam-reservoir system. 

7.2. Hydrodynamic Responses on the Rigid Arch Dam 

Before studying the response ofthe complete arch darn-reservoir system, it is useful to 

investigate the hydrodynamic responses on the upstream face of a rigid arch darn. These 

responses are determined for both the actual and the idealized reservoir geometries. The 

analyses have been carried for the three components of the ground motion excitations with an 

excitation amplitude of 19 and a wide range of the excitation frequency values ill. The 

coefficient of reflection is taken as: aT =0.0, 0.5, 0.75 and 1.0. The frequency response 

functions of the hydrodynamic pressure distribution on the upstream face of the darn are 

computed using the procedure described in Chapter 4, for no interaction between the arch darn 

and the reservoir system. The hydrodynamic pressure, force and the excitation frequency are 

normalized as in Section 6.3. 

7.2.1. Free Vibrations of The Infinite Domain 

To model the radiation condition along the ·finite and infinite domains of the reservoir, 

a radiation model based on the dual reciprocity method was formulated in Chapter 5. The cross 

section of the finite domain of the reservoir at the scattering surface extends uniformly to 

infinity to form the infinite domain of the reservoir. The radiation model results in a 

generalized eigenvalue problem for the infinite domain of the reservoir. The resulting system 

matrices are real and non-symmetrical. The eigenvalue problem is solved using the QZ 

algorithm of Moler and Stewart, 1973. To verify the model results, the eigenvalues of the 

infinite domain ofthe actual reservoir idealization, are compared with the results obtained from 
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the finite element model given in Appendix C. For a fully reflecting reservoir boundary (a= 1.0) 

the eigenvalues are independent of the excitation frequency. The first 10 eigenvalues reSUlting 

from the two models are presented in Table 7.1. The maximum relative difference between the 

two models, ranges from 0.27% in the first eigenvalue to 10.55% in the ninth eigenvalue. 

When boundary absorption effects are included the eigenvalues given by both the D RB EM and 

the FEM are complex valued and dependent on the excitation frequency. 

7.2.2. Effects of Reservoir Geometry Shape 

To study the effects ofthe reservoir geometry variations in the vicinity of the arch dam, 

hydrodynamic responses were investigated for both the symmetrical and the actual geometry 

reservoir idealizations. The normalized hydrodynamic pressure distributions on the upstream 

face ofthe arch dam are presented in Figures 7.6-7.8 for the symmetrical reservoir case and in 

Figures 7.9-7.11 for the actual geometry reservoir case. The total hydrodynamic pressure 

response amplitude on the upstream face for the three components of the ground motion 

excitation are presented over the frequency range, n=O.4 to 2.4 and for a reservoir boundary 

reflection coefficient ur=0.75. As can be seen from the figures and as expected, the presence 

of the geometrical variations of the reservoir affects the hydrodynamic pressure distributions 

on the upstream face of the dam. The hydrodynamic pressure distribution is no longer 

symmetrical and the maximum pressure regions are different from the symmetrical reservoir 

case. The x-components of the normalized total hydrodynamic force responses acting on the 

upstream face of the arch dam due to upstream, vertical and cross-stream ground motions are 

given as frequency response functions in Figures 7.18, 7.19 and 7.20, respectively. For the 

three components of the ground motions excitations, the geometrical variations of the actual 

reservoir affect the hydrodynamic response in different manners. It can be clearly noticed that, 

for the upstream-downstream. ground motion excitation case, the geometrical variations reduce 

the hydrodynamic response for the normalized frequency, n, less than unity, and increase the 

response n greater than 3.0. 



98 

7.2.3. Effects of Reservoir Boundary Absorption 

To study the reservoir boundary absorption effects on the hydrodynamic force 

responses on the arch dam, the x-component ofthe total hydrodynamic force responses acting 

on the upstream face ofthe dam due to upstream, vertical and cross-stream ground motion, are 

shown as frequency response functions in Figures 7.6-7.8 for the symmetrical reservoir and in 

Figures 7.9- 7.11 for the actual geometry reservoir. The hydrodynamic force responses are 

presented for four values of reservoir boundary reflection coefficients: 1.0,0.75,0.50, and 0.0. 

F or a fully reflecting reservoir boundary, a r= 1.0, the hydrodynamic force responses are 

unbounded at the natural frequencies ofthe reservoir for all the three components ofthe ground 

motion excitation. It can be observed that, the hydrodynamic force responses are extremely 

sensitive to the excitation frequency and additional bounded peaks appear in the high 

frequency range .0>2. The fully reflecting reservoir assumption is not realistic because of the 

existence of the sediments and the foundation damping at the bottom of the reservoir. 

Introducing absorption damping into the system, smoothens these additional peaks. For the 

symmetrical reservoir case, there are double peaks in the vicinity of the natural frequency of . 

the infinite reservoir. This can be interpreted as the effects of the resonance of both the finite 

and infinite domain of the reservoir. Only one peak exists for the case of the actual geometry 

reservOlr case. 

When reservoir boundary absorption is considered, the hydrodynamic forces are 

bounded for all excitation frequencies for all three components of the ground motion. The 

hydrodynamic pressure and force responses due to upstream ground motion are complex

valued for all excitation frequencies. With increasing excitation frequency, a larger number of 

modes are associated with the propagating pressure waves leading to increased energy 

radiation. For the symmetrical reservoir, the hydrodynamic force responses decrease with 

increasing excitation frequency for .0 greater than unity. For the real geometry case, the 

radiation damping has less effect on the hydrodynamic force response due to the boundary 

reflection effects in the vicinity of the dam. 
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7.3. Dam-Water Interaction Effects 

As discussed in Chapter 3, the substructure concept is utilized to treat the arch dam and 

reservoir domain as separate substructures. The finite elements method is utilized to model the 

arch dam structure while the boundary element method is applied to model the reservoir. Based 

on this procedure, the dam and reservoir domains are first solved separately as substructures. 

Subsequently, these solutions are used to modify the equations ofthe dam structure and ofthe 

reservoir. Utilizing the analysis procedures developed in Chapters 3-5, the interactions of the 

arch dam and reservoir system are investigated. The effects ofthe dam-water interaction on the 

hydrodynamic and structural responses of the Karakaya dam-reservoir system are presented. 

7.3.1. Free Vibration of Karakaya Dam 

Based on the substructure procedure discussed in Chapter 3, the free vibration 

eigenvalue system described in Eq.3.2 is employed to find the natural vibration mode shapes, 

~ j , and the corresponding natural frequencies, ffi j , of the Karakaya dam. The resulting 

system matrices are symmetrica1. Therefore, Cholesky factorization is utilized to compute the 

eigenvalues of the system. The routine EVLSF from the IMSL library is used. Discussions of 

this routine and some timing results are given by Hanson et al. (1990). 

The first ten natural frequencies of the Karakaya dam, are presented in Table 7.2. The 

present finite element model results based on lumped and consistent mass assumptions are 

compared with SAPIV results. In comparison to SAPIV results, the maximum relative error 

for the lumped mass approach is less than 0.38 per cent. The first six natural modes ofvibration 

of the Karakaya Dam are presented in Figures 7.3-7.5. Odd natural modes of vibration 

correspond to the symmetrical mode shapes while the even ones correspond to the anti

symmetrical modes. 

7.3.2. Hydrodynamic Forces on the Flexible Dam 

Considering the arch dam-reservoir interaction, the hydrodynamic pressure response 

on the upstream face ofthe arch dam consists of two components: The hydrodynamic pressure 

response due to the ground motion acceleration taking the arch dam to be rigid, and the 
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pressure response due to the arch dam deformational motions without boundary motion. The 

frequency response functions for the hydrodynamic force are computed by integrating the 

corresponding hydrodynamic pressure response functions over the upstream face of the arch 

dam. 

Considering the dam-water interaction, the normalized hydrodynamic pressure 

distributions on upstream face of the arch dam are presented in Figures 7.12-7.14 for the 

symmetrical reservoir case and in Figures 7.15-7.17 for the actual geometry reservoir case. The 

total hydrodynamic pressure responses are presented for the three components of the ground 

motion excitation and over the frequency range Q=OA to 2.4 and for a reservoir boundary 

reflection coefficient ur=0.75. The dam-water interaction affects both the magnitudes and the 

distributions of the hydrodynamic pressure responses. For the symmetrical reservoir case, the 

hydrodynamic responses resulting from the deformational motion of the arch dam act to 

reinforce the hydrodynamic responses resulting from the ground motion acceleration. In the 

cases of upstream and vertical ground motions, the symmetric properties of the pressure 

distribution are preserved because both pressure responses have the same phase over the 

upstream face of the arch dam. In the cross-stream ground motion case, both of the pressure 

responses have different phases. The symmetry of the distribution no longer exists. This is 

especially more pronounced for Q> 1. 

Considering the dam-reservoir interaction, the x-components of the normalized total 

hydrodynamic force responses acting on the upstream face of the arch dam due to upstream, 

vertical and cross-stream ground motions are given as frequency response functions in Figures 

7.27- 7.29 for the symmetrical reservoir case, and in Figures 7.30- 7.32 for actual geometry 

reservoir. The dam-reservoir interaction has an amplifying effect on the hydrodynamic force 

responses especially when the normalized frequency is greater than unity_ For Q greater than 

unity, the hydrodynamic force responses exhibit complex behavior and have additional peaks 

resulting from the interaction. As it can be seen from both the symmetrical and the actual 

geometry reservoir cases, the system is strongly coupled in the normalized frequency range, 

Q=2 to 4. 
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7.3.3. Structrual Responses 

The response of the arch darn with an empty reservoir is the characteristic of a multi

degree of freedom system with frequency-independent mass, stiffness, and damping properties. 

Considering the water compressibility, the response ofthe darn with a full reservoir is affected 

by frequency dependent hydrodynamic terms. As described in Chapter 3, the hydrodynamic 

terms modify the equations of motion of the arch darn in terms of added masses and added 

loads. The added load is the hydrodynamic force on the rigid arch darn face due to the ground 

motion excitation, while the added mass terms are due to hydrodynamic forces resulting from 

the arch darn deformations with respect to the ground motion. 

The dynamic response of Karakaya Dam to harmonic ground accelerations in the 

upstream-down stream, vertical and cross-stream excitation were investigated. The radial 

acceleration responses ofthe darn at different locations on the darn mesh(8 =0.0°, 15.2r and 

31.51°) on upstream face of the darn at the spillway level are studied. The center of the dam 

corresponds to 8 =0.0 °while 8 = 15.27 ° and 31.51 ° are two points in-between the center and 
~ 

the right abutment ofthe darn. Considering both empty and full reservoir cases, these responses 

are presented in Figures 7.33-7.35 for the symmetrical reservoir and in Figures 7.36-7.38 for 

the actual geometry reservoir. The reservoir boundary absorption coefficient, Ur, is taken as 

0.75 for the analysis. Because of the strong frequency dependence ofthe hydrodynamic tenns, 

the darn response behaviors are complicated with the interaction ofthereservoir. It is observed 

that, the actual geometry reservoir has more influence on the darn responses, especially at the 

excitation frequencies in the neighborhood of the natural frequencies of the reservoir. 
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TABLE 7.1. Comparison of natural frequencies of the infinite reservoir domain ofKarakaya 

Dam ( actual geometry reservoir case). 

frequency DRBEM FEM Relative 

( cycles/sec) (Present study) (Hall and Chopra, Difference 

1981) 

(01 
2.77 2.78 0.27% 

(02 
4.66 4.68 0.41% 

(03 
5.58 6.03 7.33% 

(04 
7 7.2 2.75% 

(05 
7.72 7.94 2.71% 

(06 
8 8.81 9.22% 

(07 
9.1 9.83 7.42% 

(Os 
10.5 10.72 6.23% 

(09 
10.33 11.55 10.55% 

(010 
11.15 12.14 8.19% 
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TABLE 7.2. Comparison of the free vibration frequencies ofKarakaya Dam 

frequency Present Study Present Study SAPIV 

(cycles/sec) (Lumped Mass) (Consistent Mass) (Lumped Mass) 

s co] 3.2 3.276 3.208 

co~ 3.546 3.678 3.555 

s 
co3 

4.257 4.521 4.262 

co~ 5.022 5.502 5.018 

s 
COs 

6.008 6.848 6.004 

s 
C06 

6.407 6.951 6.401 

s 
co7 

6.604 7.099 6.629 

co~ 7.266 7.958 7.259 

co~ 
7.457 8.085 7.430 

s 
colO 

7.922 8.513 7.936 
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1 st mode 

2nd mode 

Figure 7.3. Natural vibration modes of Karakaya Dam 
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3rd mode 

4th mode 

Figure 7.4. Natural vibration modes of Karakaya Dam 
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5th mode 

6th mode 

Figure 7.5 Natural vibration modes ofKarakaya Dam 
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FIGURE 7.6. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : without dam-reservoir interaction, symmetrical reservoir, harmonic upstream

downstream ground motion, reservoir boundary reflection coefficient, 0,=0.75. 

(0=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to 00= 0.93,1.86,2.78, 3.71,4.64,5.57 cycles/sec) 
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FIGURE 7.7. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : without dam-reservoir interaction, symmetrical reservoir, harmonic vertical ground 

motion, reservoir boundary reflection coefficient, a,.=0.75. 

(Q=O.4,0.8,1.2,1.6,2.0,2.4 corresponds to c:o= 0.93,1.86,2.78,3.71,4.64,5.57 cycles/sec) 
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FIGURE 7.8. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Darn : without darn-reservoir interaction, symmetrical reservoir, harmonic cross-stream 

ground motion, reservoir boundary reflection coefficient, a,.=0.75. 

(Q=0.4,0.8, 1.2, 1.6,2.0,2.4 corresponds to ro= 0.93,1 .86,2.78, 3.71,4.64,5.57 cycles/sec) 
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FIGURE 7.9. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : without dam-reservoir interaction, actual geometry reservoir, harmonic upstream

downstream ground motion, reservoir boundary reflection coefficient, 0,=0.75. 

(0=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to co= 0.93,1.86,2.78, 3.71,4.64,5.57 cycles/sec) 
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FIGURE 7.10. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : without dam-reservoir interaction, actual geometry reservoir, harmonic vertical 

ground motion, reservoir boundary reflection coefficient, n,=0.75 . 

(Q=O.4,0.8,1.2,1.6,2.0,2.4 corresponds to co= 0.93,1.86,2.78, 3.71 ,4.64,5 .57 cycles/sec) 



112 

n =0.4 n =0.8 
0.36 

0.36 
0 .32 

0.)2 
0 .28 

0.28 
0.24 

0.24 
0.20 

0.20 
0 .16 0 .16 
0 .12 0 .12 

0.08 0.08 

0.04 0.04 

0.00 0 .00 

n = 1.2 n = 1.6 
0.48 

0.40 0.44 
0.36 0 .40 
0.32 0 .36 

0.28 0 .32 

0.24 0 .28 

0.20 0 .24 

0.16 
0.20 

0. 16 
0.12 

0. 12 
0.08 0.08 
0.04 0.04 
0.00 0.00 

n =2.0 n =2.4 
1.10 2.20 

1.00 2.00 

0.90 1.80 

0.80 1.60 

0.70 1.40 

0.60 1.20 

0.50 1.00 

0.40 0 .80 

0.30 0 .60 

0.20 0 .40 

0.10 0.20 

0.00 0.00 

FIGURE 7.11. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : without dam-reservoir interaction, actual geometry reservoir, hannonic cross-stream 

ground motion, reservoir boundary reflection coefficient, 0.=0.75 . 

(Q=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to (0= 0.93,1.86,2.78,3 .71,4.64,5 .57 cycles/sec) 
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FIGURE 7.12 The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : with dam-reservoir interaction, symmetrical reservoir, harmonic upstream

downstream ground motion, reservoir boundary reflection coefficient, a,=0.75 . 

(0=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to OF 0.93,1.86,2.78,3.71,4.64,5.57 cycles/sec) 
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FIGURE 7.13. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : with dam-reservoir interaction, symmetrical reservoir, harmonic vertical ground 

motion, reservoir boundary reflection coefficient, a.=O.75 . 

(Q=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to 00= 0.93,1.86,2.78,3 .71,4.64,5 .57 cycles/sec) 
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FIGURE 7.14. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : with dam-reservoir interaction, symmetrical reservoir, harmonic cross-stream 

ground motion, reservoir boundary reflection coefficient, 0..=0.75. 
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FIGURE 7.15. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : with dam-reservoir interaction, actual geometry reservoir, harmonic upstream

downstream ground motion, reservoir boundary reflection coefficient, a,. =0.75. 
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FIGURE 7.16. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : with dam-reservoir interaction, actual geometry reservoir, harmonic vertical ground 

motion, reservoir boundary reflection coefficient, a.,=O.75. 

(0=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to ro= 0.93,1.86,2.78,3 .71,4.64,5.57 cycles/sec) 
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FIGURE 7.17. The hydrodynamic pressure distribution on the upstream face ofKarakaya 

Dam : with dam-reservoir interaction, actual geometry reservoir, harmonic cross-stream 

ground motion, reservoir boundary reflection coefficient, 0.=0.75. 

(Q=0.4,0.8,1.2,1.6,2.0,2.4 corresponds to w= 0.93,1.86,2.78,3.71 ,4.64,5.57 cycles/sec) 
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FIGURE 7.19. Total hydrodynamic force on the upstream face ofKarakaya dam: without 

dam-reservoir interaction, symmetrical reservoir, harmonic vertical ground motion, reservoir 

boundary reflection coefficient, a,. =0.75. 
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FIGURE 7.20. Total hydrodynamic force on the upstream face ofKarakaya dam: without 

dam-reservoir interaction, symmetrical reservoir, harmonic cross-stream ground motion, 

reservoir boundary reflection coefficient, ur=O. 75. 
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FIGURE 7.21. Total hydrodynamic force on the upstream face ofKarakaya dam without 

dam-reservoir interaction for the symmetrical reservoir case due to harmonic the upstream

downstream ground motion. 
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FIGURE 7.22. Total hydrodynamic force on the upstream face of Karakaya dam without 

dam-reservoir interaction for the symmetrical reservoir case due to harmonic vertical ground 

motion. 
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FIGURE 7.25. Total hydrodynamic force on the upstream face ofKarakaya dam without 

dam-reservoir interaction for the actual geometry reservoir case due to harmonic vertical 

ground motion. 
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FIGURE 7.28 Total hydrodynamic force on the upstream face ofKarakaya dam \vith dam

reservoir interaction for the symmetrical reservoir case due to harmonic vertical ground 

motion. 
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downstream ground motion. 
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reservoir interaction for the actual geometry reservoir case due to harmonic vertical ground 

motion. 
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FIGURE 7.32 Total hydrodynamic force on the upstream face ofKarakaya dam with dam

reservoir interaction for the actual geometry reservoir case due to harmonic cross

downstream ground motion. 
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symmetrical reservoir case due to harmonic upstream-downstream ground motion with 

reservoir boundary reflection coefficient, ur=O.7S. 
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FIGURE 7.34 The radial acceleration response of the Karakaya Dam structure for the 

symmetrical reservoir case due to harmonic vertical ground motion with reservoir boundary 

reflection coefficient, a,. =0.75 
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FIGURE 7.35 The radial acceleration response of the Karakaya Dam structure the 

symmetrical reservoir case due to harmonic cross-stream ground motion with reservoir 

boundary reflection coefficient, ur=O.75. 
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FIGURE 7.37 The radial acceleration response of the Karakaya Dam structure for the 

actual geometry case due to harmonic vertical ground motion with reservoir boundary 

reflection coefficient, a,. =0.75 
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8. CONCLUSIONS 

Three-dimensional dual reciprocity formulations have been developed to model the 

reservoir domain in order to study the earthquake response of arch dam-reservoir systems. The 

substructure technique in the frequency domain has been applied to treat the interaction of the 

arch dam-reservoir system. Assuming the foundation rock at the dam base and canyon banks 

to be infinitely rigid, the finite element method is utilized to the model dam structure. 

Considering the bottom absorption effects, the reservoir domain is idealized as a finite domain 

of irregular geometry adjacent to an infinite domain of uniform cross section. The three

dimensional dual reciprocity method is applied to model the finite domain of the reservoir. 

The uniform infinite domain is modeled by applying two-dimensional eigenvalue analysis 

based on the dual reciprocity formulations over the uniform cross section combined with a 

continuum expression in the upstream direction. 

In the arch dam-reservoir system, the interaction problem is defined on the interface of 

the dam and the reservoir. By utilizing the dual reciprocity method, there is a considerable 

reduction in data preparation efforts as the method requires only the boundaries of the domain 

to be discretized. Dual reciprocity methods overcome the major difficulty encountered in 

applying the classical boundary elements formulation to the dynamic analysis by utilizing a 

frequency independent fundamental solution. The system matrices are no longer dependent on 

the excitation frequency. This results in a great reduction of the computational effort in 

determining the dynamic response of the arch dam-reservoir system. 

The model was applied to investigate the hydrodynamic responses of a three

dimensional rectangular reservoir and the hydrodynamic and structural response ofKarakaya 

dam-reservoir system. The effects of arch darn-reservoir interaction, thereservoir geometry and 

the reservoir boundary bottom absorption on the hydrodynamic and structural responses are 

studied. 
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8.1. Hydrodynamic Response in Three-dimensional Rectangular Reservoir 

For upstream-downstream excitation and a fully reflecting reservoir boundary, the 

hydrodynamic pressures are entirely in-phase with the excitation for values of Q less than 

unity. For Q greater than unity, the pressure associated with the higher frequency modes 

propagates in the upstream direction of the infinite channel resulting in energy radiation to 

infinity and hence the out-of-phasepressure component appears over this frequency range. For 

absorbing reservoir boundaries both the in phase and the out of phase components exist over 

the entire frequency range due to the energy dissipation at the absorbing boundaries in addi tioD 

to the radiation boundary. 

For vertical and cross-stream ground excitations and a fully reflecting reservoir 

boundary case, the hydrodynamic pressures are entirely in-phase with the excitation over the 

entire frequency range. With the assumption of no variation of ground motion in the upstream 

direction, no energy will be radiated out of the system. For absorbing reservoir boundary cases, 

the absorption on the boundaries is the only energy dissipation mechanism. The boundary 

energy absorption causes the out-of-phase component ofthe hydrodynamic pressure to appear 

over the total frequency range. 

The upstream and vertical ground motion excitations have symmetrical vibration modes 

and the hydrodynamic pressure does not vary across the width of the upstream face of the dam, 

while the cross-stream ground excitation has anti-symmetric modes and the hydrodynamic 

pressure distribution varies anti-symmetrically across the width of the dam. 

For a fully reflecting reservoir boundary, the hydrodynamic force response functions 

are unbounded at the natural frequencies of the.infmite uniform domain for aU directions of 

ground motion excitation considered. When reservoir boundary absorption exists, the 

hydrodynamic force response functions are bounded for all excitation frequencies for all three 

components of ground motion due to the boundary energy dissipation. 
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8.2. Hydrodynamic Response on the Upstream Face of Karakava Dam 

The presence of geometrical variations of the reservoir shape affects the hydrodynamic 

pressure distributions on the upstream face ofthe dam. The hydrodynamic pressure distribution 

is no longer symmetrical and the maximum pressure regions are different from the symmetrical 

reservoir case. For the upstream-downstream ground motion excitation case, the geometrical 

variations reduce the hydrodynamic response for 0 less than unity, and increase the response 

in the range 0 >3.0. 

For a fully reflecting reservoir boundary, the hydrodynamic force responses are 

unbounded at the natural frequencies ofthe reservoir for all the three components of the ground 

motion excitation. Additional bounded peaks appear in the high frequency range 0>2. 

Introducing absorption damping into the system smoothens these peaks. For the symmetrical 

reservoir case, there are double peaks in the vicinity of the natural frequency of the infinite 

reservOIr. 

When reservoir boundary absorption is considered, the hydrodynamic forces are 

bounded for all excitation frequencies for all three components of the ground motion. The 

hydrodynamic pressure and force responses due to upstream ground motion are complex

valued for all excitation frequencies. With increasing excitation frequency, a larger number of 

modes are associated with the propagating pressure waves leading to increased energy 

radiation. For the symmetrical reservoir, the hydrodynamic force responses decrease with 

increasing excitation frequency for 0 greater than unity. For the actual geometry case, the 

radiation damping has less effect on the hydrodynamic force response due to the boundary 

reflection effects in the vicinity of the dam. 

8.3. Dam-Water Interaction Effects 

For the symmetrical reservoir case, the hydrodynamic responses resulting from the 

deformational motions of the arch dam act to reinforce the hydrodynamic responses resulting 

from the ground motion acceleration. In the cases of upstream and vertical ground motions, the 

symmetric properties ofthe pressure distribution are preserved because both pressure responses 
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have the same phase over the upstream face ofthe arch dam. In the cross-stream ground motion 

case, both of the pressure responses have different phases. The symmetry of the distribution 

no longer exists. This is especially more pronounced for Q> 1. 

The dam-reservoir interaction has an amplifying effect on the hydrodynamic force 

responses especially when the normalized frequency is greater than unity. For Q, greater than 

unity, the hydrodynamic force responses exhibit complex behavior and have additional peaks 

resulting from the interaction. As it can be seen from both the symmetrical and the actual 

geometry reservoir cases, the system is strongly coupled in the normalized frequency range, 

Q=2 to 4. 

The actual geometry reservoir has more influence on the resonant amplitudes of 

acceleration responses of the dam, especially at the excitation frequencies in the neighborhood 

of the natural frequencies of the reservoir. The responses of the dam to the three components 

of the ground motion considering the interaction generally exceed those of the dam without 

water. In the normalized frequency range, Q=2 to 4, the coupled effects greatly increased the 

response of the radial acceleration especially for the vertical ground motion. 

8.4. Recommendations for Further Research 

Further studies could be made on the followings; 

A) Applying DRBEM to model the foundation effects. 

B) Investigation of the relation between the sediment layer properties in the reservoir and the 

reflection coefficient analytically and experimentally. 

C) Utilizing the model for a comprehensive parametric study for the arch dam-reservoir system 

for different material and geometrical properties. 
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Several proposals for the approximating function ~ may be found in the literature 

(Partridge, 1997). Recently, there have been successful implementations of thin plate spline 

approximation functions to find a particular solution for the Poisson equation (Karur and 

Ramachandran, 1995) and for elasticity problems (Bridges and Wrobel, 1996). The thin plate 

spline function is radial basis function and is given by 

f (r) = r2 In(r) (A.l) 

The particular solution of Eq.(4-19) can be written in polar coordinates for two and 

three-dimensional cases, as 

'\7 2 A _ I a ( ap) _ C,( ) v p--- r- -llr 

r ar ar 
(2 - D) (A.2) 

'\7 2 A_I a ( 2 ap) - fie ) v p--- r - - r 
r2 ar ar 

(3 - D) (A.3) 

The particular solution, per) ,can be obtained by integrating the above expression two 

times. The integration constants that result are taken to be zero since there is no obvious way 

of determining what they should be, and also because their inclusion makes the expression 

exceptionally complicated (Bridges and Wrobel, 1996). Thus, the particular solutions can be 

obtained as . 

A( ) 4(-1 lner)) pr=r -+--
32 16 

(2 -D) (A.4) 

A 4 ( - 9 In(r)) p(r)=r -+--
400 20 

(3 - D) (A.5) 

The normal derivatives, q.Cr) , can be derived from per) as 
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q(r) = ap(r) = r3(-=2 + In(r)) ~ (2 _ D) 
an 16 4 an 

(A.6) 

(A.7) 



APPENDIX B: FINITE ELEMENT FORMULATION OF THE 

RADIATION MATRIX 

146 

The infinite domain of the reservoir is assumed to have a uniform cross section with 

absorptive bottom and sides. Based on the formulation of Hall and Chopra (1980), the 

separation of variables technique is applied to combine a two-dimensional finite element 

discretization over the uniform cross section ofthe domain with a continuum expression in the 

upstream direction. The problem ultimately reduces to the solution of a standard eigenvalue 

problem. 

The governing equation and the boundary conditions for the hydrodynamic pressure 

response in the infinite domain of the reservoir are given in Eqs.(S.2-S.S). Following the 

procedure given in Chapter(S), the separation of variables technique yields two boundary value 

problems for the hydrodynamic pressure response. One for the upstream direction, x, and the 

other for the uniform cross section y-z plane. These are given in Eq.(S.8) and Eq.(S.9), 

respectively. The solution in the upstream direction is given as a continuum expression in 

Eq.(S.10). 

The hydrodynamic pressure response distribution over the y-z plane is governed by the 

two- dimensional Helmholtz equation ofEq.(S.9) and satisfies the free surface and the bottom 

absorption boundary conditions expressed by Eqs.(S.2) and (S.3), respectively. A finite element 

discretization using a two-dimensional mesh (Fig. B.1) leads to the following matrix equation 

(B.1) 

where, P xy is the vector of pressure values at nodes below. the free surface. In the above 

expression, H f , B f and G f are symmetrical matrices analogous to the stiffness, damping 

and mass matrices arising in the dynamics of solid continua. d f , is the vector of nodal 

accelerations computed from the normal acceleration along the boundary. 

For the cases, where boundary motions of the reservoir domain are defined by 

upstream-downstream excitation or the deformational motions ofthe arch dam, the right hand 

vector d f ofEq.(B.l) vanishes as described in Section S .4., and the equation simplifies to the 
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form 

(B.2) 

which represents a generalized eigenvalue problem. For an absorptive reservoir boundary. the 

eigenvalues, Am' and the eigenvectors, \{' m' obtained from the solution of Eq.(B.2) are 

complex valued and depend on the excitation frequency. For the non-absorptive reservoir 

boundary, where y = 0, the eigenvalues and eigenvectors are real valued and frequency 

independent. The eigenvectors, \{' m ' are orthogonal and normalized so that 

(B.3) 

and they satisfy the equation 

(B.4) 

where, A is a diagonal matrix of N eigenvalues A ~, A ~, "', A 2N and \{' is the matrix of N 

eigenvectors, ['f' l' 'f' 2' ''', \{' N ] . 

The hydrodynamic pressure response over the cross section of the infinite domain can 

be expressed approximately as a linear combination of the N eigenvectors. That is, 

(B.5) 

where, 11 m ' are unknown coefficients. 

Substituting, Eqs.(S.10) and (B.5) into Eq.(5.6), the hydrodynamic pressure response 

vector in the infinite domain can be written as 

(B.6) 

Differentiating the hydrodynamic pressure response with respect to the outward normal 

to the cross section plane (y-z), noting that the normal is parallel to upstream direction, x. 
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results III 

N 
q=- IKmllm'Pme-Kmx (B.7) 

m=l 

Eqs.(B.6) and (B. 7) can be rewritten in matrix form as 

p = 'PEll (B.8) 

q = -'PKEll (B.9) 

In Eqs.(B.8) and (B.9), 11 , is the vector of unknown coefficients, K is a diagonal 

matrix with elements, K l' K 2 , ... , K Nand E is another diagonal matrix with elements 

e-KmX 

The results ofEqs.(B.8) and (B.9) will be applied to specify the scattering boundary 

condition along the interface of the finite and infinite regions. Since the dual reciprocity 

method is applied to model the finite domain ofthe reservoir, a relation between the pressure 

and the pressure gradient vectors along the boundary may be introduced into the formulations. 

By eliminating Ell between Eqs.(B.8) and (B.9), the relation between p and q can be 

obtained as 

q=Rp (B.IO) 

where, 

R = 'PK'P-1 (B.Il) 

The radiation matrix, R, relates the pressure response vector, p, and its nom1aI 

derivative, q, for those nodes below the free surface on the radiation boundary between the 

finite and the infinite domains of the reservoir. For the absorbing bottom boundary of the 
I 

reservoir, R is dependent on the excitation frequency, 0). 
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APPENDIX C: DAM3D COMPUTER PROGRAM 

The Fortran90 computer program DAM3D was developed for the purpose of 

investigating the effects of fluid-structure interaction on the hydrodynamic pressure in the 

reservoir and on the dynamic structural behavior of arch dams. The DAM3D program was 

developed using Microsoft Fortran Power Station 4.0 and the IMSL Library. The program was 

compiled and executed using a Pentium Pro/200 system running underWin95. The storage 

requirements were significantly reduced using the dynamic memory allocation feature 

supported by Fortran90. The program consists of a main program, seven modules and twenty

two external subroutines. The block diagram of the program is illustrated in Fig.(C.1). 

The program is based on the analysis procedures developed in Chapters (2-5). The 

program calculates the seismic modal response ofthe arch dam-reservoir system to any of the 

three components, upstream-downstream, cross-stream and vertical, of the harmonic ground 

motion. There are no geometrical restrictions for the system, except that the infinite domain 

ofthe reservoir be of constant cross section. The arch dam is modeled using finite elements and 

can be discretized using two type of elements: three-dimensional isoparametric eight node 

elements and three-dimensional sixteen node thick shell elements. The free vibration 

eigenvalue analysis is accomplished using the IMSL routine GVCSP. The finite domain of the 

reservoir is modeled using the dual reciprocity method and can be discretized using three

dimensional isoparametric quadrilateral elements with either four or eight nodes. There are two 

alternatives in modeling the infinite domain of the reservoir: Either the dual reciprocity method 

or the finite element method. For dual reciprocity modeling, either two-dimensional two-node 

linear elements, or 3-node quadratic elements with internal nodes placed within the interface 

may be used. For the finite element model two-dimensional four node or eight node 

quadrilateral elements may be used; The resulting eigenvalue problem is solved using the 

IMSL routine GVCSP. 
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